
September 1985

Software
1 IBM BASIC Compiler 2 .00 Overview (Part I)

7 A Review of IBM PC Storyboard

9 ANSI.SYS ESCape Codes

13 TopView Questions and Answers (Part I)

18 DOS Device Drivers (Part I)

22 Customize Your DOS Prompt

Getting Started
23 DOS Filter Commands

26 Watch Where You Copy To!

Random Data
27 Defining the Upper 128 ASCII Characters

30 Robot Simulation in BASIC

31 Keyboard Input for BATch Files

32 IBM PC AT Serial Port Pin Configuration

33 Puzzler

Departments
34 New Products

36 Editor's Comments

Exchange of IBM PC Information
--------- - - --- --- - ---- - - ------ ----- ·-

Exchange of IBM PC lnformarion is a
monthly publication of the National Dis­
tribution Division. International Business
Machines Corporation, Boca Raton,
Florida, USA.

Editor
User Group Editor
Associate Editor,

Design Director
Writer
Editorial Assistant
Illustrators

Production
User Group

Michael Engelberg
Bernard Penney

Karen Porterfield
John Warnock
Steve Mahlum
Michael Bartalos
John Alfred Dorn III
Narda Lebo
John Segal
Charles Slackman
Cohen and Company

Support Manager Gene Barlow

Exchange of IBM PC Information is dis­
tributed at no charge to registered PC
user groups. To register with us, please
write to :

IBM PC User Group Support
IBM Corporation (2900)
P.O. Box 3022
Boca Raton , FL 33431-0922

To correspond with Exchange, please
write to :

Editor, Exchange
IBM Corporation (2900)
P.O. Box 3022
Boca Raton, FL 33431-0922

POSTMASTER: send address changes
to Exchange of IBM PC lnformarion,
IBM Corporation (2900), P.O. Box 3022,
Boca Raton FL 33431-0922.

© 1985 International Business Machines
Corporation.

Printed in the United States of America .
All rights reserved .

IBM cannot be responsible for the secu­
rity of material considered by other firms
to be of a confidential or proprietary na­
ture . Such information should not be
made available to IBM .

IBM has tested the programs contained in
this publication. However, IBM does not
guarantee that the programs contain no
errors.

IBM hereby disclaims all warranties
as to materials and workmanship, either
expressed or implied including without
limitation , any implied warranty of mer­
chantability or fitness for a particular
purpose. In no event will IBM be liable to
you for any damages, including any lost
profits, lost savings or other incidental or
consequential damage arising out of the
use or inability to use any information
provided through this service even if
IBM has been advised of the possibility
of such damages, or for any claim by
any other party.

Some states do not allow the limitation
or exclusion of liability for incidental or
consequential damages so the above limi­
tation or exclusion may not apply to you.

It is possible that the material in this
publication may contain reference to, or
information about, IBM products, pro­
gramming or services that are not an­
nounced in your country. Such references
or information must not be construed to
mean that IBM intends to announce such
IBM products, programmi ng or services
in your country.

1

An Overview of IBM
BASIC Compiler 2.00
(Part 1)

Glenn Crumpley
IBM Corporation

Editor 's note: 7his is the first part of an article on
IBM BASIC Compiler 2.00, covering the new features
of version 2.00and differences between the Compiler
and Interpreter. Part 2, covering modular program­
ming techniques and using ISAM files, will be pub­
lished next month. 7his article is adapted from the
IBM Personal Computer Seminar Proceedings.

The BASIC Compiler 2.00 is an optimizing compiler
designed to complement the BASIC Interpreter.
(Optimizing compilers do such things as change
the order of expressions or eliminate common sub­
expressions to either improve performance or
decrease the size of the programs.)

Creating application programs with the IBM
Personal Computer BASIC Compiler 2.00 provides
several benefits , some of which are:
• Networ)cjng support (Lock and Unlock statements)
• Full graphics support
• Full PCjr compatibility
• Increased file capacity (16,775,616 record

maximum-formerly 32,767)
• Increased input string length (32,767 character

maximum-formerly 255 character maximum)
• Full DOS file capability
• Shell commands support
• Line numbers unnecessary
• Separately compiled modules allow creation of

larger programs
• Increased execution speed for most programs when

compared to the interpreter version
• BASIC source code security

The BASIC Compiler 2.00 offers a powerful
programming environment in which you can use
the BASIC Interpreter to quickly run and debug
programs and then later compile those programs
to increase their execution speed.

A compiled program is optimized machine
code, not source code. Consequently, compiling
substantially improves execution time and protects
your source program from unauthorized alteration
or disclosure.

Licensing Agreement
Application programs that require the runtime
modules BASRUN20.EXE, REBUILD.EXE, or
ISAM.EXE cannot be distributed without entering
into a license agreement with IBM. A copy of the
license agreement can be obtained by writing to:

IBM Corporation
P. 0 . Box 2910
Delray Beach , Florida 33444
Attn: Personal Computer Customer Relations

Note, however, that by compiling with the 10
parameter, it is possible to develop programs
with the BASIC Compiler 2.00 that do not use the
BASRUN20.EXE runtime module and, therefore,
do not require the license agreement. This does
not apply to ISAM .EXE or REBUILD.EXE.

2

Hardware Requirements
The hardware necessary to use this product is:
• Any of the following IBM Personal Computers:

- IBM Personal Computer
-IBM Personal Computer XT
-IBM Personal Computer AT
- IBM Portable Personal Computer
- IBM PCjr

• A minimum of 128KB of Random Access Memory
(RAM) (Additional memory can significantly
improve the performance of the BASIC Compiler
2.00 and the Linker when used on all of the above
listed computers.)

• One or two double-sided diskette drives or a
fixed disk

• A printer (highly recommended)
• A display screen (Although various displays can be

used , best results are obtained with an 80-column
display.)

• Blank, formatted diskettes

Software Requirements
The software necessary to use this product is :
• Disk Operating System (DOS) 2.10 or later version

Changes in BASIC
Compiler 2.00
BASIC Compiler 2.00 differs
from BASIC Compiler 1.00
in the following areas:
• Improved program

control structures
allow a more modular
approach to program­
ming . Enhancements
include:
Named subprograms-provides the ability to call
(execute) a routine or subprogram by a name
instead of a line number.
Named COMMON blocks-can be used for inter­
module communication without chaining. Items
listed in blank COMMON can be accessed by
another chain file.
User-defined multiline fanctions-permits a func­
tion definition to occupy more than one program
line . It must begin with a DEF FN statement and
end with an END DEF statement.
Ability to branch to alphanumeric labels-it is no
longer necessary to use only line numbers ; now
meaningful statement labels may be used (example :
GOTO 1DTALS) .
Separately compiled BASIC subprograms.

• Larger programs can be compiled. The use of a
memory model that separates the instruction space
from the data space allows this , as well as allowing
more than twice as much symbol table space.
Please note, however, that the data segment has a
maximum upper limit of 64KB. In addition , allo­
cated string space is also limited to a maximum
of64KB.

• Large dynamic arrays are supported. The maxi­
mum index for any dimension of a numeric array is
32767. This dimension limit and the amount of
memory in your machine are the only size restric­
tions for numeric arrays.

• .EXE files produced by BASIC Compiler 2.00 are
larger than those produced by BASIC Compiler 1.00.

• Graphics capabilities are expanded. All graphics
features of the BASIC Interpreter are available.
These include:

VIEW
WINDOW
PMAP
LINE

DRAW
POINT
PAINT

• Access to DOS is expanded. Several new features
of the BASIC Interpreter are available to allow
more flexible use of DOS functions. Statements
affected are:

SHELL
IOCTL
IOCTL$
ENVIRON
ENVIRON$

ERDEV
ERDEV$
MKDIR
RMDIR
CHDIR

• Thefilespec syntax is expanded to allow the speci­
fication of a path for a device or file .

• Redirection of standard input and standard output
is supported.

• Enhanced event trapping is available . This
enhancement affects the following statements:

ON TIMER
ON PLAY
ON KEY

• All advanced features of PCjr BASIC are sup­
ported. The full range of sound and graphics capa­
bilities are available to users of PCjr. Some of the
features include:

PLAY-Multi-voice
PLAY-Volume Control
NOISE
Enhanced SCREEN statement
Enhanced CLEAR statement
PCOPY
User-defined

PALETTE
Additional screen

modes

3

• Compiler termination codes are returned when the
compiler exits. These termination codes can be
tested by the IF batch subcommand of DOS.

• An input editor is included. Input required by your
program can be altered easily on the screen.

• Support is provided for up to five levels of nested
$INCLUDE files.

• When compiling, you must specify the ID parameter
to Ctrl-Break effectively at runtime.

• BASIC library files are searched in the following
order :
I. User-specified directory
2. Current directory
3. PATH directories
4. User-prompted directory.

• Graphics statements now use line clipping instead
of wraparound.

• The OPEN statement has been enhanced to include
file access control.

• Because of the added functions in BASIC Compiler
2.00, you may notice slightly longer compile and
link times.

BASIC Compiler 2 .00 includes the following language
additions :
• Statements

CALLS
Calls and transfers program control to IBM
Personal Computer Macro Assembler routines.

DEF FN, END DEF, EXIT DEF
Designate the beginning and ending of a multiline
function .

LOCK, UNLOCK
Restrict access by other processes to all or part of
an opened file.

REDIM
Changes the space allocated to a dynamic array.

SHARED
Designates variables as global to the subprogram
and the calling program.

STATIC
Designates variables as local to a subprogram or
multiline function.

SUB, END SUB, EXIT SUB
Designate the beginning and ending of a
subprogram.

• Functions
COMMAND$
Returns the parameters from the command line
used to invoke the current program.

LBOUND
Returns the value of the lowest subscript available
(either 0 or l) for any array. This value depends on
the setting of the OPTION BASE statement.

UBOUND
Returns the value of the largest subscript available
for any array.

• New File Type - ISAM
The BASIC Compiler 2 .00 now supports the
indexed sequential access method . These ISAM
files are accessed through the CALL statement.
ISAM files allow for rapid access to large files by
key values. Other features are automatic storage
space management and fast sequential access.

• Library Manager
The IBM Library Manager is included. This utility
enables you to construct and edit object module
libraries. See Appendix E of the BASIC Compiler
Fundamentals manual for details.

Differences Between the Compiler and Interpreter
Differences between the languages supported by the
BASIC Compiler 2.00 and the BASIC Interpreter
must be taken into account when compiling existing
or new BASIC programs.

The differences between the languages supported
by the BASIC Compiler 2 .00 and the BASIC Inter­
preter are described below :

4

Operational Differences
Some BASIC commands and statements used to
operate in the interpreter programming environment
are not acceptable input to the compiler. These are:

AUTO
CONT
DELETE
EDIT
LIST
LUST

LOAD
MERGE
NEW
REN UM
SAVE

Certain statements function similarly in the BASIC
Compiler 2.00 and the interpreter, but require special
parameters to be specified when used with the com­
piler.
• Event trapping: If you use any of the event trapping

statements, you must specify either the IV or the IW
parameter when you start the compiler. The event
trapping statements are:

COM(n)
KEY(n)
ON COM(n)
ON PEN
ON PLAY

ON STRIG(n)
ON TIMER
PEN STOP
PLAY(n)
STRIG(n)

• Error trapping: If you use an ON ERROR state­
ment and some form of a RESUME statement , you
must specify either the IE or the IX parameter
when you start the compiler. If you use only the
RESUME line form, you should specify IE. If you
use RESUME NEXT, RESUME 0, RESUME, or
any combination of those with RESUME line, the
I X parameter must be used instead .

• Debug code (TRON and TROFF): To use TRON
and TROFF, the ID parameter must be specified
when you run the compiler. Otherwise, TRON and
TROFF are ignored and a warning is generated .

Note that using these parameters increases the size
of the .OBJ, and .EXE files. See the BASIC Com­
piler Fundamentals for a detailed explanation of
each of the compiler parameters .

Language Differences
If your machine has a cassette port , the BASIC
Compiler 2 .00 supports cassette 110. However, to
enable cassette 1/0, you must specify the 10 parame­
ter at compile time and then link the IBMCAS.OBJ
module .

Some differences exist among the commands,
statements, and functions of the BASIC Compiler
2.00 and BASIC Interpreter. These differences
are explained in the BASIC Compiler Language
Ref erence manual.

Other Differences
Other differences between the BASIC Interpreter and
the BASIC Compiler 2.00 include the following:
• Double-Precision Arithmetic Functions

If you use double-precision operands for any of the
arithmetic functions, including the transcendental
functions (SIN, COS, TAN, ATN, LOG, EXP, and
SQR), the BASIC Compiler 2 .00 returns double­
precision results. In the interpreter, double-precision
results are returned if the interpreter is invoked
with the ID parameter.

• Double-Precision Loop Control Variables
Unlike the interpreter, the compiler allows the
use of double-precision loop control variables.
This allows you to increase the precision of incre­
ment in loops.

• Expression Evaluation
Mathematical computations have been modified in
the compiler for improved speed and accuracy, so
there may be slight differences in the results of
single-precision or double-precision operations
compared to the interpreter.

Also, the BASIC Compiler 2.00 performs opti­
mization , if possible, when evaluating expressions.

During expression evaluation , the BASIC Com­
piler 2.00 converts operands of different types to
the type of the more precise operand.

QR=1 %+A!+Q#

The above expression causes 1% to be converted to
single-precision and added to A! . This double­
precision result is added to Q#.

The BASIC Compiler 2.00 is more limited than
the interpreter in handling numeric overflow. For
example, when run on the interpreter, the following
statements yield 40000 for M.

1% = 20000
1% =20000
M=I % +1 %

That is , 1 % is added to I %. Because the number
exceeds the 32767 limit for integers, the interpreter
converts the result into a floating-point number.
The result , 40000, is found and saved as the single­
precision number M .

5

The BASIC Compiler 2.00, however, must make
type conversion decisions during compilation. It
cannot defer until actual values are known. Thus,
the compiler generates code to perform the entire
operation in integer mode and arithmetic overflow
may occur. If the ID debug parameter is set, the
error is detected. Otherwise, an incorrect answer is
produced. One possible way to avoid this problem is
to use single-precision numbers instead of integers .

Besides the previous type conversion decisions,
the compiler performs certain valid optimizing
algebraic transformations before generating code.
For example, the following program could produce
an incorrect result when run:

I % =20000
1% =-18000
K % =20000
M %= I %+ J %+ K %

If the compiler actually performs the arithmetic in
the order shown, no overflow occurs.

However, if the compiler performs I%+ K %
first and then adds J % , overflow occurs. The com­
piler follows the rules of operator precedence, and
parentheses may be used to direct the order of eval­
uation . No other guarantee of evaluation order can
be made .

• Input Statements
The compiler limits the number of variables read
by an INPUT or INPUT # statement to 60.

If you try to enter more than 32767 characters in
response to any INPUT or LINE INPUT statement,
the compiler makes the computer sound a beep.

• Integer Variables
The BASIC Compiler 2.00 can make optimum use
of integer variables as loop control variables. To
help the compiler produce faster and more compact
object code, you should use integer variables as
much as possible . For example, the following pro­
gram executes much faster by replacing I , the loop
control variable, with I %, or by declaring I an inte­
ger variable with DEFINT.

100FORI=1TO10
110 A(I) =0
120 NEXT I

It is also advantageous to use integer variables to
compute array subscripts because the generated
code is faster and more compact.

Input Editor
When you respond to an input statement in a com­
piled program, you do not have all the facilities of the
BASIC program editor to use . The BASIC Compiler
2.00 does not allow you to change lines anywhere on
the screen; you may edit only the current line.

The input editor supplied with BASIC Compiler
2 .00 uses a special set of commands to manipulate
the text on the screen. These commands are different
from the commands used by the editor in the BASIC
Interpreter.

Input Editor Commands: All of the editor com­
mands, except Delete, require you to press the con­
trol key (Ctr!) in combination with another key.

Ctrl-B
Ctrl-C
Ctrl-E
Ctrl-F
Ctrl-H

Ctrl-I

Ctrl-K

Ctrl-M

Ctrl-N
Ctrl-R

Ctrl-T

Ctrl-U
Ctr!-]
Ctr!-\
Del

moves cursor back one word.
exits program.
erases to the end of the current line .
moves cursor forward one word.
deletes the character to the left of
the cursor.
inserts spaces from the cursor position up
to the next tab position (tabs are set every
eight spaces). If the editor is in replace
mode, any existing characters will be
overwritten.
moves the cursor to the beginning of the
line.
issues a carriage return and enters the
line.
moves the cursor to the end of the line.
toggles the editor from insert to replace
mode.
toggles the function key display line on
and off.
erases the entire line .
moves the cursor one position to the left.
moves the cursor one position to the right.
deletes the character at the cursor.

The following special program editor keys are not
supported by the compiler:

Home
Ctr!-Home
Cursor Up
Cursor Down
Next Word (Ctrl-Cursor Right)
Previous Word (Ctrl-Cursor Left)
Ctr!-Break.

6

If you try to use any of these keys (with the excep­
tion of Ctrl-Break) in response to an input statement ,
the computer will sound a two-tone beep.

Pressing Ctrl-Break in response to an input state­
ment returns you to DOS.

All files are closed and the following message is
displayed:

STOP in Line xxx of Module
Modulename at Address---:---

Hit any key to return to system

When a key is pressed, the DOS screen mode is
restored .

Number of Files
The maximum number of files that can be
open simultaneously is 15. The default value is 3.
To increase the number of files to be opened simulta­
neously you must have the following in your
CONFIG.SYS file:

FILES=xxx

where :

xxx is the number of files you plan to have open
simultaneously, plus 5, which are used by DOS.
The maximum value for xxx is 20.

Line Length
The interpreter cannot accept lines greater than 254
characters in length. In contrast to the interpreter, the
BASIC Compiler 2 .00 accepts physical lines of up to
32766 characters in length. (A physical line for the
compiler is one that ends in a carriage return-line
feed.) However, you can make the compiler accept
much longer logical lines of input by ending the
physical lines with an underscore character (under­
scores in quoted strings or remarks do not count).
The underscore tells the compiler to ignore the fol­
lowing carriage return, so all it sees in the carriage
return-line feed sequence at the end of the line is the
line feed character. The line feed is the line continua­
tion character understood by the compiler. For exam­
ple, the following two physical lines:

100 INPUT "Values for array A"; A(l),_
A(2), A(3) , A(4) , A(5), A(6) , A(7)

are read by the compiler as a single INPUT statement
that enters seven values into array A.

It is impractical to use this technique with the pro­
gram editor in the BASIC Interpreter because each
line created with the BASIC Interpreter editor must
begin with a number. In addition, BASIC Compiler
2 .00 source programs that use this technique cannot
be debugged using the interpreter.

PEEKs and POKEs
PEEKs and POKEs into the interpreter work area
(such as DEF SEG: POKE 106,0) are interpreter
dependent and do not work for compiled BASIC.

Note: PEEK and POKE for dynamic array ele­
ments work differently than PEEK and POKE for
static array elements. See the PEEK and POKE
statements in BASIC Compiler 2.00 Language
Reference for details.

String Length
Strings can be up to 32 ,767 characters long rather
than 255 characters long. Therefore, any string func­
tion parameters that identify the location in a string
or its length (which can have a maximum value of
255 in the interpreter) can now range to 32,767.

The internal storage format for the string descrip­
tor requires four bytes rather than three bytes (low
byte, high byte of the length, followed by low byte,
high byte of the address). If you use machine lan­
guage subroutines with string arguments, you have to
recode the subroutine to account for this change.

String Space Implementation
The implementation of the string space for the com­
piler differs from its implementation for the inter­
preter. Using PEEK, POKE, VARPTR or assembly
language routines to change string descriptors may
result in a String Space Corrupt error.

The amount of available string space is 64KB.
Because of the string descriptor size and the number
of internal variables used by the compiler, the num­
ber of elements in a string array is less than the
amount available in BASIC Compiler 1.00 or the
BASIC Interpreter. To help maximize the use of
memory space, you can move numeric data into
dynamic arrays that have a separate data area.
Declare string arrays as dynamic and ERASE (reuse)
the same space whenever possible. You also can use
MID$ to help prevent fragmentation of string space.
See the example under "MID$ Function and State­
ment" in the BASIC Compiler 2.00 Language Refer­
ence for details.

7

A Review of IBM PC Storyboard
Bud Thurber
North East Indiana IBM PC Club

lllli! II II II I Ill I

I recently had the opportunity to
use one of the most delightful and
refreshing new business programs
that I have seen in months. It is
IBM 's new PC Storyboard. It is
almost as much fun to use as
gameware, but the resulting out­
put is seriously useful in business.
Business means making sales and
making sales means making pre­
sentations. That's where Story­
board comes in. It assists a
salesperson in making presenta­
tions, even presentations that run
all by themselves.

Most business computer soft­
ware falls into just a few catego­
ries: spreadsheets, word

processors, file managers, and
accounting packages. We find our
favorites in each of these catego­
ries, something that gives us a
nice balance between "easy to
use" and "sophisticated and pow­
erful," and we tend to stick with
these favorites even when some­
thing better comes out. But the
information that these other appli­
cations generate often has to be
integrated into presentations. For
those who make presentations,
PC Storyboard offers four power­
ful programs that help you create
colorful and interesting displays.

Storyboard allows you to create
a series of displays or " pictures"
on the PC screen. It uses a very

high level language, complete
with DISPLAY, GOTO, GOSUB,
and other commands. But you
don't need to know the language.
It is included as part of the pro­
gram called " Story Editor,"
which allows you to select " pic­
tures" stored on disk , put them in
any order, and then use various
methods of presenting them, one
picture at a time. These methods
include vertical , horizontal, and
diagonal screen wipes, plus dis­
solves, explosions, etc. With a
little artistic endeavor, you can
even do limited animation.

The individual pictures are
constructed using another power­
ful program called " Picture
Maker. " Each picture can include
text , graphs and charts, or objects
such as people, cars or buildings.
You can include any combination
of these entities in each picture,
move them around, size them,
and specify what color each
will be .

You select text from several
fonts already included with PC
Storyboard (Bold, Roman , and
others), and each font can be dis­
played in several sizes from tiny
to giant letters. You can then add
shadowing and color. If you don't
see the font you want, you can
create your own.

The graphs and charts include
vertical and horizontal bar charts,
line graphs, and pie charts, which
are easily constructed using your
own values and a few commands.

PC Storyboard includes several
libraries of symbols and objects
including arrows, pointing hands,
people, factories, and even a
whole city. You display the library
screen with the object you want ,

"cut" the object from that screen
and then "paste" it on your own
picture (cut and paste). Using a
ZOOM command, you can resize
the object and then locate it any­
where in the picture.

Perhaps you would rather use
original material from spread­
sheet screens or original graphs
and pictures created by some
other program such as Lotus
1-2-3, or other language such as
BASIC or Pascal. You can do this
with another Storyboard pro­
gram, "Picture Taker," a DOS­
resident program that replaces the
Print Screen function. After load­
ing Picture Taker, you simply run
your program until the material
you want in your presentation
appears on the screen. Then you
press Shift-PrtSc; instead of copy­
ing the screen to the printer, the
screen image is copied to a disk
file . Each screen image or picture
captured in the disk file can then
be further modified and enhanced
with the Picture Maker program
or just included as one picture in
the presentation you create using
Story Editor.

For example, you could pro­
duce a graph with your account­
ing program, save it using Picture
Taker, label it "Factory Output ,"
and then, using Picture Maker,
paste a picture of a little factory
on your graph .

8

Once you have captured screen
images using Picture Taker, cre­
ated and modified your individual
pictures with Picture Maker, and
edited them into a story with
Story Editor, you will use the
fourth program included with PC
Storyboard-Story Teller-to
actually present your story.
Everything you need to tell a story
(or make a sales presentation) can
then be put on a single diskette,
including DOS, the pictures that
make up your presentation, and
Story Teller.

J BM PC Storyboard
could renew home interest
in PCs. It could turn into a
whole new fun-and-profit

hobby all by itself.

Story Teller can tell your story
in several ways: (1) Each picture
can be put on the screen for a
specified period of time and then
automatically advanced to the
next picture. (2) You can specify
that some or all pictures will wait
until a keyboard key is pressed.
(3) You can use the game adapter
and the "fire" buttons on a joy­
stick. The " A" button will
advance your story and the "B"
button will back up just like
the remote buttons on a slide
projector.

The Story Teller program can
be copied onto your distribution
diskette without royalties as long
as you follow the guidelines that
are explained in the manual, such
as putting the proper IBM copy­
right notices on each presentation
diskette.

IBM PC Storyboard can be used
at home. Consider the possibilities:
• Loads of fun for you and the

kids as you create various sto­
ries and presentations.

• You could write additional cut­
and-paste picture files or text
fonts and sell them through
share-ware (similar to selling
spreadsheet templates).

• Make up your own presenta­
tions at home for use at your
business.

• Make classroom presentations.
• Make and sell story diskette/

audio cassette packages for
canned presentations or "talk­
ing books."

• Get a bunch of PCjrs and color
TVs and rent them to store
owners along with customized
video stories announcing cur­
rent sales items in their stores.
This kind of story can be told in
an unattended program loop.

IBM PC Storyboard could
renew home interest in PCs. It
could turn into a whole new fun­
and-profit hobby all by itself.

9

ANSI.SYS ESCape Codes
Steven Mahlum
IBM Corporation

ANSI.SYS is a device driver that comes with DOS
2 .00 and higher. It interprets special character
sequences (ESCape codes), using them to reassign
keyboard key definitions, control the position of the
cursor, and set the mode of operation, such as screen
attributes.

To use the ANSI.SYS commands, you must first
load the ANSI.SYS device driver by adding the fol­
lowing line to your CONFIG.SYS file:

DEVICE=ANSI.SYS

When you start your computer with this command in
the CONFIG.SYS file, DOS loads ANSI.SYS into
memory. Be sure you have the ANSI.SYS file on
your DOS diskette, or, if you are starting from a fixed
disk, specify the path where DOS can find the
ANSI.SYS file. For example,

DEVICE =C: \DOS\ANSI.SYS

If you do not have a CONFIG.SYS file in the root
directory of your DOS disk(ette), create one and put
this command in it. (You may want other commands
in your CONFIG.SYS file . See your DOS Reference
Manual or review R.K. Schmitt's article "The DOS
CONFIG.SYS File" in the August 1985 issue of
Exchange.)

To use the ANSI.SYS ESCape codes, the ESCape
character (ASCII 27) must start the code sequence.
In this article, the characters ESC represent the
ASCII 27 ESCape character.

To create these codes, you can use an ASCII text
editor such as IBM Personal Editor, EDLIN, etc., to
enter the ESCape codes directly into a text file or
BATch file . You also can use the DOS PROMPT
command with the predefined $e macro to represent
the ESCape character. Using the PROMPT command
to enter ANSI.SYS ESCape codes eliminates the
need for a text editor that allows ASCII 27 to be
entered from the keyboard; you can use the DOS
COPY command to create files with ESCape codes
directly from the keyboard.

To take effect, the ANSI.SYS ESCape codes must
be sent to the system output device, usually the dis­
play. To do this, you can:
• Enter the ESCape codes in an ASCII text file and

use the DOS TYPE command to send them to the
display.

• Imbed the ESCape codes in a BATch file and begin
each line containing ANSI.SYS ESCape codes with
either the REM or ECHO command. You can send
the codes to the display by executing the BATch file
or using the DOS TYPE command.

• Use the DOS PROMPT command with the $e
macro . You can enter the PROMPT command
directly from the DOS command line or include it
in a BATch file. However, you must run the BATch
file to send the ESCape codes to the system output
device . ESCape codes in the PROMPT format will
not take effect when TYPEd to the screen.

For a concise listing of all ANSI.SYS ESCape codes,
see the pull-out chart at the center of this issue .

Keyboard Key Reassignment Codes
ANSI.SYS allows you to reassign the keyboard key
definitions. You can reassign a key to issue other
ASCII values, including character strings. The for­
mat for entering key reassignment codes is:

ESC[#; ... ;#p

10

where the first #parameter in the sequence is an
ASCII value specifying which key definition is to be
reassigned . The succeeding# parameters define the
sequence of ASCII values and character strings that
will be generated when the specified key is inter­
cepted. The key reassignment code must always end
with p. For example, to reassign A to become Q,
enter

ESC[65 ;81p

or

PROMPT $e[65 ;8lp

To reassign an extended ASCII code, the first #
parameter must be 0 (null) and the second # parame­
ter will give the extended ASCII value . For example,
to reassign the FlO key to display the directory infor­
mation , enter

ESC[0;68; "dir" ; 13p

or

PROMPT $e[0;68; "dir" ; 13p

To execute a carriage return as part of the new defini­
tion (i.e ., to execute a command without having to
press Enter), be sure that the ASCII value 13 is the
last parameter entered.

To reassign the F9 key to display the DOS TYPE
command , enter

ESC[0;67; "TYPE "p

or

PROMPT $e[0;67 ; "TYPE "p

This causes the TYPE command to appear on the
DOS command line, waiting for you to enter a file
name and press the Enter key.

Figure 1 contains a list of extended ASCII codes,
and the key assigned to each code . You may want to
reassign those key definitions. However, you could
reassign your whole keyboard if you wish to experi­
ment with a different style keyboard , such as the
Dvorak keyboard.

Extended ASCII Codes

Extended
ASCII
Code Definition

3 NUL (null character)

15 Shift tab

16-25 Alt-Q, W, E, R, T, Y, U, I, 0, P

30-38 Alt-A, S, D, F, G, H, J, K, L

44- 50 Alt- Z, X, C, V, B, N, M

59-68 Fl,F2 , F3,F4, F5, F6, F~F8,F9, Fl0

71 Home

72 Cursor Up

73 Page Up

75 Cursor left

77 Cursor right

79 End

80 Cursor down

81 Page Down

82 Insert

83 Delete

84- 93 Shift-Fl, F2, F3, F4, F5, F6, F7, F8, F9, FlO

94- 103 Ctrl- Fl , F2 , F3, F4, F5, F6, F7, F8, F9, FlO

104- 113 Alt-Fl, F2 , F3, F4, F5, F6, F7, F8, F9, FIO

114 Ctrl- PrtSc

115 Ctrl- Cursor left

116 Ctrl- End

117 Ctrl-Cursor down

118 Ctrl- Ins

119 Ctrl-Home

120- 131 Alt- 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -, =

132 Ctrl- PageUp

Figure 1. Extended ASCII Codes

You will probably want to build a BATch file con­
taining all your key reassignments that you can either
run or TYPE to the screen.

The following ESCape codes reassign the
Alt+ function keys.

ESC[O; 113 ; "dir c : "; 13p
ESC[O; 112; "dir b : "; 13p
ESC[O; 111 ; "dir a: "; 13p
ESC[O; 110; "dir /w "; 13p
ESC[O; 109; "chkdsk" ; 13p
ESC[O; 108; "exit "; 13p
ESC[O; 107; "type "p
ESC[O; 106; "diskcopy a: b: "; 13p
ESC[O; 105 ; "copy *. * b: "; 13p
ESC[O ;l04 ;" >prn:";13p

11

When loaded, some programs do not return reas­
signed keys to their default definitions. If you need to
return the keys to their default definitions, enter the
following in another BATch file .

ESC[O; 113;0; 113p
ESC[O; 112 ;0; 112p
ESC[O; Ill ;O; lll p

You can create a file to effect key reassignments
directly from the keyboard using the COPY com­
mand and the PROMPT command. To create a file ,
MYKEY. BAT, from the keyboard that has all the
redefinitions shown above, type the following at the
DOS prompt. <CR> means press the Enter key;
< F6 > means press the F6 key.

COPY CON: A: \MYKEY.BAT <CR>
PROMPT$e[O;ll3;"dirc:" ; 13p <CR>
PROMPT $e[O; ll2 ; "dir b: ";13p <CR>
PROMPT $e[O; lll; "dir a:"; 13p <CR>
PROMPT$e[O;UO;"dir /w";l3p <CR>
PROMPT $e[O; 109; "chkdsk"; 13p <CR>
PROMPT $e[O; 108; "exit" 13p <CR>
PROMPT $e[O; l07 ; "type "p <CR>
PROMPT $e[O; 106; "diskcopy a: b: "; 13p <CR>
PROMPT$e[O; l05 ; "copy *. *b:" ; l3p <CR>
PROMPT$e[O;l04;" >prn:";13p <CR>
PROMPT PG <CR>
<F6> <CR>

When you use the PROMPT command to enter key
definitions, be sure that the last PROMPT command
will give you the DOS prompt you want displayed on
your screen.

Using the ANSI.SYS ESCape codes, you can
temporarily reassign a key to enter a specific char­
acter string that you will have to type often in a
document. If, for example, the phrase "TopView
environment" occurs frequently, you could reassign
the F 10 key (or some other key) to enter the phrase
whenever it is pressed .

ESC[0;68 ; "TopView environment "p

(This type of reassignment works only with those
programs that do not redefine the function keys when
loaded .)

Cursor Control Codes
ANSI.SYS allows you to control the position of the
cursor on the screen . The following ESCape codes
control the cursor position :

• ESC[#;#H Specifies the cursor position by row
and number. For example, to place the
cursor at row I , column 20, you could
enter the following in a text file :

ESC[l,20H

and TYPE it to the screen , or you could
enter it in a BATch file as

ECHO ESC[l ,20H

or

PROMPT $e[l,20H

• ESC[#A Moves the cursor up# rows from its
current position . The default value is I.

• ESC[#B Moves the cursor down #rows from its
current position. The default value is I.

• ESC[#C Moves the cursor forward #columns
from its current position. The default
value is I.

• ESC[#D Moves the cursor backward #columns
from its current position. The default
value is I.

• ESC[#;#f Specifies cursor position by line and
column number. The default value for
each parameter is I. If no parameter is
given , the cursor moves to the home
position .

• ESC[#;#R Reports the current cursor position
through the standard input device

• ESC[6n Causes the console driver to output a
cursor position report when a request
for device status report is received . If
this command is entered using the
PROMPT command, it must not be the
last PROMPT command given in the
BATch file or it will cause a continuous
loop, forcing you to restart your
computer.

• ESC[s Saves the current cursor position . It can
be restored using ESC[u .

• ESC[u Restores the cursor to the position last
saved with ESC[s .

• ESC[2J Erases the screen and moves the cursor
to the home position.

• ESC[K Erases from the cursor position to the
end of the line (including the cursor
position) .

12

The cursor control codes allow you to create some
interesting variations of your DOS prompt. Below
are a few examples of customized prompts using the
ANSI.SYS cursor control codes together with the
predefined PROMPT macros.

To have the time appear at the far right of the line
just above the DOS command line and a prompt that
di splays the default drive and current directory, enter

PROMPT $e[s$e[I A$e[75C$thhhh$h
he[upg

If you were in the BIN directory on drive C, the
prompt would appear:

C: \BIN>
18:35

To create a prompt that displays the current direc­
tory on the default drive and that always appears on a
clean screen at line one, you would enter the
following:

PROMPT $e[2J$e[1; 1 fpg

To make the same prompt always appear on line 24
(screen remains uncleared) , enter:

PROMPT $e[24 ; 1 f$p$g

If you were in the BIN directory on C drive, the
prompt would appear on line I or 24 as:

C:\BIN>

Mode of Operation Codes
ANSI.SYS also allows you to set attributes that deter­
mine how your display operates.

Set Graphics Rendition Codes: The first set of
attributes, the Set Graphics Rendition (SGR) codes,
allow you to change foreground and background
color on your color display. It also will allow charac­
ters to be bold , underlined (on IBM Monochrome
Display) , blinking , reversed video, or invisible.

The format for entering the SGR codes is:

ESC[#; ... ;#m

where the values of# parameter correspond to those
show in Figure 2.

#Value

0
I
4
5
7
8

30
31
32
33
34
35
36
37
40
41
42
43
44
45
46
47

Attribute

All attributes off (normal white on black)
Bold on (high intensity)
Underscore on (IBM Monochrome Display only)
Blink on
Reverse video on
Canceled on (invisible)
Black foreground
Red foreground
Green foreground
Yellow foreground
Blue foreground
Magenta foreground
Cyan foreground
White foreground
Black background
Red background
Green background
Yellow background
Blue background
Magenta background
Cyan background
White background

Figure 2. Set Graphics Rendition Pllrameters

For example,

ESC[44m

or

PROMPT $e[44m

would give you a blue background , and

ESC[44 ;33m

or

PROMPT $e[44 ;33m

would set screen attributes to display a blue back­
ground with yellow foreground.

Single words or phrases within text that will be
written to the display can appear bold, blinking,
reverse video, or in a different color. With an ASCII
text editor, you can imbed the SGR codes within text.

Set Mode Codes: The second set of display attribute
codes are the Set Mode (SM) codes. With these
codes, you can set the screen width and type . The
format for entering the SM codes is :

ESC[=#h

where the value of the #parameter corresponds to
those shown in Figure 3.

13

#Value

0

Screen Attributes

1
2
3
4
5
6
7

40x25 black and white
40x25 color
80x25 black and white
80x25 color
320x200 color
320x200 black and white
640x200 black and white
Wrap at end of line (typing past end-of-line

creates a new line)

Figure 3. Set Mode Parameters

For example:

ESC[= lh

or

PROMPT $e[= lh

sets your display as a 40x25 color display.

TopView Questions
and Answers
(Part 1)

Compiled by Top View Development Team
IBM Corporation

The following questions and answers are intended to
assist developers of IBM Personal Computer applica­
tions in evaluating TopView and the TopView Pro­
grammer's ToolKit.

Questions and answers fall into these categories:
• General
• Multitasking
• Windowing
• Data Exchange
• Program Information File
• TopView Programming Conventions
• Language Interface Support
• Mouse Support
• Device Driver Support
• Problem Determination

Reset Mode Codes: The final set of display attribute
codes are the Reset Mode (RM) codes. These codes
are essentially the same as the SM codes, except that
parameter 7 resets the end-of-line wrap (the charac­
ters past end-of-line are thrown away) .

The format for entering RM codes is :

ESC[=#1

or

PROMPT $e[=#l

where the value of the #parameter corresponds to
those shown in Figure 3.

ANSI.SYS is a very versatile device driver. Once
you begin using its capabilities, you will wonder how
you ever got along without ANSI.SYS.

Part 1 covers the General and Multitasking catego­
ries ; Part 2, coming next month , will cover the
remaining categories.

General
01: What does Top View do?
A: TopView provides a multitasking and

windowing operating environment for
applications.

TopView features:
• Switching between co-resident programs.
• Concurrent execution of multiple tasks and

programs.
• Moving , sizing , and scrolling an applica-

tion's windows.
• Display of multiple windows at one time.
• Mouse support.
• Data exchange within and between

ru
applications.

• Ease-of-use features such as pop-up menus ,
Help windows, on-line tutorial , and access
to commonly used DOS facilities.

02:

A:

03:
A:

04:

A:

14

• Support for text applications on both mono­
chrome and color displays, and for graphics
applications on a color display.
Many existing applications can run in the

TopView environment, although they generally
take advantage of only a subset of Top View
facilities. At a minimum, existing applications
permit switching between co-resident applica­
tions. However, all TopView facilities can be
included in applications that are specifically
designed to run with Top View (i.e., pro­
grammed using the Top View Application's
Programming Interface).

Is Top View an operating system? If not ,
what operating system(s) and versions does
TopView require?
TopView is not an operating system. It works
in conjunction with DOS version 2.00 and
higher to provide a multitasking and window­
ing operating environment. Note that under
DOS 3.00 and 3.10, TopView supports only
those functions that are available when running
with DOS 2.00 or 2.10.

What applications will run with TopView now?
Many programs have been designated as
"compatible with TopView" by IBM or the
vendors that wrote them. These programs have
been tested in the TopView environment by the
vendors and can coexist with other programs
running with TopView. However, not all
TopView facilities may be available when
using that program. For example, a program
that writes directly to the video buffer can-
not be windowed and cannot execute while
in the background.

A list of applications that have been tested in
the Top View environment can be found in the
Top View Application Guide for IBM Applica­
tions, and in the TopView Application Guide
for Applications Available from Non-IBM
Sources.

What types of applications are best suited for
the TopView environment?
The types of programs best suited for the
TopView environment include:
• Programs written specifically to use the

TopView I/O facilities .

05:

A:

06:

A:

07:
A:

• Programs that use DOS calls for video dis­
play rather than writing directly to video
memory. Alternatively, programs that use
the Top View INTerrupt 10 convention to
allow TopView to provide the video buffer
address and redraw facilities.

• Programs that do not excessively poll the
keyboard.

• Programs that do not control hardware
devices directly.

• Programs that are moderate in size or that
use overlays so that more programs can be
run under Top View at the same time.

• Programs that close files when the files are
not in use.

How does TopView affect the performance of
compatible applications?
TopView should have very little effect on the
performance of most applications. However,
the performance of an application in the Top­
View environment may vary depending on sev­
eral factors that are not under TopView's
control:
• The number of other applications running

concurrently.
• The coding techniques used for each applica­

tion (e.g. , constant polling of a device versus
waiting for an interrupt) .

• The types of resources being used by each
application (e.g ., compute-bound , heavy I/O
use).

Is there a size limitation for applications run­
ning with TopView?
There are practical limits determined by the
amount of system memory, the size of DOS
plus TopView, and the total size of all applica­
tions running concurrently.

TopView supports up to 640KB of RAM sys­
tem memory. On an IBM PC with 256KB of
system memory, approximately 80KB is avail­
able for the execution of application programs
with DOS 2.00 and 2.10. With DOS 3.00 and
3.10, approximately 68KB is available for
application programs.

What hardware is required to run TopView?
The minimum hardware required to run Top­
View is :
• An IBM Personal Computer AT, IBM Porta­

ble Personal Computer, IBM Personal Com­
puter XT, or IBM Personal Computer.

08:

A:

15

• At least 256KB of RAM system memory.
• Either two double-sided diskette drives or

one double-sided diskette drive and one
fixed disk drive.

• An IBM Monochrome Display, IBM Color
Display, or IBM Enhanced Color Display
(running in emulation mode) , and the appro­
priate adapter for your display.

Optional hardware includes:
• Up to 640KB of RAM system memory

(512KB or more is recommended).
• An IBM or compatible printer with the

appropriate adapter.
• A mouse pointing device.

Does TopView run on the
IBM PCjr?
No . TopView will not
run on the IBM PCjr.

09: Does TopView run

A:

010:

A:

on the IBM 3270 PC?
Yes, TopView will
run on the 3270 PC
with Control Program version 1.20.

Does TopView provide an open Applications
Programming Interface (API) so that any
developer can write applications that take
advantage of the TopView function?
Yes. The TopView Programmer's ToolKit
documents the TopView APL The ToolKit
provides the programming and language
interface tools that the developer needs, and
provides guidelines for the development of
applications that can run in the TopView
environment.

The TopView Programmer's ToolKit
provides:
• Documentation of the TopView Applica­

tions Program Interface (API) .
• The Window Design Aid for creating

windows.
• Several utilities for handling windows built

with the Window Design Aid and for build­
ing a Program Information File .

• Macros and routines for interfacing the
IBM assembly language to TopView.

• A sample interface to IBM Pascal , illustrat­
ing how to write interfaces for higher-level
languages.

011 :

A:

012:

013:

A:

• Two sample higher-level interfaces for the
IBM assembly language and IBM Pascal.

What hardware is required to run the Top­
View Programmer's ToolKit utilities?
Hardware requirements for the TopView Pro­
grammer's ToolKit utilities are the same as
the hardware requirements listed above for
TopView itself, except that a mouse pointing
device is highly recommended.

Does TopView support communications with
other IBM PCs or with a host?
An application that runs with TopView could
support communications with other IBM
PCs or with a host.

It is not the intent of TopView to provide
applications. TopView's primary function is
to provide an environment that has multitask­
ing and windowing facilities. Software devel­
opers can use these facilities to build programs
that are more easily combined into integrated
packages. TopView does include several small
applications that serve as examples of pro­
grams that use multiple windows.

Does TopView support graphics
applications?
Yes. Graphics applications run only in the
foreground (interactively) and use the full
screen. However, TopView does not require
graphics, so users are not required to have a
color monitor, graphics adapter or graphics
software in order to run TopView.

014: Does Top View support BATch files?
A: No.

015:

A:

016:

A:

Who developed TopView and the TopView
Programmer's ToolKit?
TopView and the TopView Programmer's
ToolKit were designed and developed by the
IBM Entry Systems Division in Boca Raton ,
Florida.

Why did IBM develop its own multitasking
and windowing program?
TopView was developed to satisfy the
requirements of those PC users who need
greater productivity than is currently avail­
able in the PC environment.

16

017: Does TopView run on " compatible" personal 0 22: Must each application be added after every
computers? IPL or power-on?

A: TopView was designed, developed and tested A: No. Once you add an application, TopView
to run on an IBM Personal Computer with remembers the information it needs (unless
DOS version 2 .00 and higher. However, IBM the TopView Consolidated Program Informa-
has made no conscious design decisions that ti on File TV. PIF is lost or damaged) .
would preclude TopView from running on a

023: compatible personal computer. TopView has How many applications can be started at one
not been tested on compatible personal time?
computers. A: Theoretically, 255 windows can be managed

at one time . An application uses one or more
Multitasking windows. However, there are practical

018: What is an application? How is it defined to
limits-the size of the applications and the

TopView?
amount of system memory available . Only 23

A: An application is either:
applications can be displayed in the TopView

• A program that currently runs in the DOS
switch menu at one time.

stand-alone mode using DOS version 2.00 024: Is each application really independent of all
or higher.

other applications?
• A program that is aware ofTopView and A: No. Applications running in the TopView

takes advantage of particular TopView fea-
tu res , but also can run as a stand-alone pro-

environment are affected by each applica-
tion's use and access of resources that must

gram under DOS.
be shared. If the recommended programming

• A program that is specifically written to
run with TopView.

techniques are used to access these resources,
TopView protects the application from other

019: Why must an appl ication be added to
applications that also use the TopView facil-

TopView's Start-a-Program menu before it ities. However, all applications are vulnerable

can run with TopView? to other applications that directly access

A: TopView must know the special operating
a resource .

characteristics of your program. This in for-
025: mation is maintained in TopView's Consoli- If applications can run in the background

dated Program Information File. (non-interactive) as well as in the foreground

020:
(interactive), how does TopView determine

What actually is installed when the applica- when to stop executing one application and
tion is added to TopView?

A: TopView uses the information from the appli-
start executing another one?

A: TopView uses a complex algorithm (time-
cation's Program Information File or from slicing plus natural program breaks) to deter-
the user to create a record in the Consoli- mine how much time an application receives
dated Program Information File, TV.PIF. and when switching is to occur. Applications
This file contains the operating characteris- are divided into two categories - those that
tics of all programs that can be started . Also, are compute-bound and those that have break
the name of the application is added to the points (e .g ., wait for an 110 operation to
" Start-a-Program" menu so that the user can complete). A program waiting for an 110
start it. event is moved to the top of the dispatch list

when that event occurs, and therefore is dis-
0 21: Can users specify nicknames for applications? patched more quickly than programs that are
A: Yes . When an application is added , the user compute-bound .

can specify the name (up to 30 characters) by
026: which the application is known to TopView. Can the application developer or user deter-

A:
mine or set the dispatching priority?
No .

17

0 27: Can an application developer protect a criti­
cal section of an application from being
interrupted by other applications?

A: Yes. The TopView Applications Program­
ming Interface (API) provides function calls
that can define the beginning and end of a
critical section of code .

0 28:

A:

029:

Can the user find out what applications are
currently started?
Yes. Top View provides a pop-up menu con­
taining a list of all applications that are cur­
rently started. The menu
can be used to switch to ""-\
another application . "

Can an application 1! MEN LJ
determine what other

11

033:

A:

A:
applications are started? (~~

1
~

1
~ 23: 4

..
Indirectly. TopView
does not give applica-
tions a direct facility ~ % -for determining ,., I ~
which applications ·~ :m1~·
are currently started.
However, the application developer can

Is there a difference between a task and an
application?
Yes. An application can have one or more
tasks. A task is defined by creating a window
and supplying a pointer to a portion of code
(the task). If the pointer is 0 (zero), there is
no task associated with the window. Each
task is associated with a window, but the win­
dow may be 0 X 0 in size. Any window can
be updated by any task that knows the handle
address of the window.

Multiple windows can be associated with
the same task. Each task is dispatched sepa­
rately (i.e., each window with an associated
task is dispatched separately).

Tasks are dispatched in a round-robin fash­
ion, the order of which is not predictable or
controllable by the application or the user.

How many tasks can an application have?
An application can have any number of tasks,
subject to a Top View limit of 255 windows (a
task must have one or more windows). In
addition, the number of windows is con­
strained by the amount of system memory
available.

determine if related applications are running
by coding this function in a shared program . 035: Can tasks communicate with other tasks

030:

A:

031 :

A:

Is there any way for an application to deter­
mine whether the printer or communication
ports are being used by another application?
An open and subsequent write to either
owned device will result in a critical error.

Can an application set any global flags that
will affect the operating environment for
other applications?
Yes. Refer to the Top View Programmer's
ToolKit Reference book, Chapter 5, "Win­
dow Manager Command Bytes," for com­
mand bytes that apply to the system as a
whole and not just to the application issuing
the data stream.

0 32: If it becomes necessary to reboot, can Top­
View remember the program variables that
have been set?

A: The basic TopView configuration is remem­
bered (i.e. , the items specified during
Setup) . The applications that were being used
before rebooting are not remembered .

A:

036:

A:

0 37:

A:

under an application?
Yes. TopView provides each task with a mail­
box and a way to send and receive data.
Applications also can use the shared program
facility to commicate with other applications.

What data (application, TopView, DOS) is
saved when TopView switches from one task
to another?
Refer to the TopView Programmer's ToolKit
Reference book, Chapter 8, "Task State
Information Saved by Top View," for a list of
items that are saved and restored on a task
basis.

Does Top View allow use of the same object
by different applications?
Each task can open and use separate objects
from the same object class, but one task can­
not use another task's specific object unless it
can find out the object's handle. Object han­
dles are not provided automatically. They
would have to be communicated from one
application to another via task mailboxes or a
shared program data area.

18

038:

A:

Is the application that is receiving input from
the keyboard or pointing device the only task
that is executing?
No . Top View allows applications to execute
concurrently, whether the application is
interactive (receiving keyboard input) or not.
However, Top View also allows the user to
control which non-interactive applications
are executing (by suspending the applica­
tion) . Also, there is a class of existing appli­
cations that cannot execute except when they
are interactive (e.g., applications that write
directly to the video buffer).

039:

A:

Does Top View support a wait/post mecha­
nism? If so, what can an application wait for?
Yes. An application can wait for OBJECTQ,
MAILBOX , KEYBOARD, POINTER, and
TIMER.

DOS Device
Drivers
(Part 1)

John Warnock
IBM Corporation

Editor's
note: This
is the.first
part of
an article
about writing
device drivers for
DOS. Part I provides an
overview of what device driv-
ers do and how they work. Part 2,
to be published next month, exam­
ines the fun ctions that device dri v­
ers support and explains how to
install and use device drivers.

The IBM Personal Computer
Disk Operating System (DOS)
uses programs called " device
drivers" to communicate with the
devices attached to your com­
puter. DOS has built-in drivers to
support the standard devices that
attach to members of the IBM
Personal Computer family. You
don't have to do anything special
to use these drivers-when one of
your programs reads or writes to
device "A:" or " LPTl: " , DOS
automatically uses the correct
device driver.

040: Can an application wait for more than one
event at a time?

A: Yes, via the OBJECTQ .

041 : Are interrupt handlers interrupted by
Top View?

A: No. First-level interrupt handlers are not
interrupted by TopView.

However, if you want to attach a
special or unusual device to your
computer or change how an exist­
ing device performs, you may
need to supply your own device
driver-a program that translates
DOS 's read and write requests
into the specific commands that
your device understands.

This article describes how to
create device drivers , how to make
them part of your system, and
how to communicate with them
using commands and parameters
available in DOS.

Functions of Device Drivers
Device drivers serve two basic
functions. They act as translators ,
converting the pulses and signals
between the computer and the
device. They also act as emula­
tors , making an unfamiliar piece
of hardware acceptable to the
computer.

Translators modify input and
output to satisfy the requirements
of both the system and the attached
device. Examples of translators
are Dvorak keyboard drivers , file
encryption drivers, foreign lan­
guage keyboards , and graphic dis­
play drivers . A bisynchronous
device driver that converts ASCII
character codes to EBCDIC char­
acters would be a translator.

Emulators enable the computer
to view a device as either a char­
acter device or a block device, the
only two kinds of devices the com­
puter recognizes. Emulation takes
a strange, unsupported device and
makes it appear to the computer
as a familiar, supported device. A
device driver that takes memory
and makes it appear to the com­
puter as a diskette is an example
of an emulator.

Character devices, such as the
keyboard (CON) and printer
(LPTl), send and receive one
character at a time . A character
device driver refers to a specific
device name in its program
header, so it applies only to that
device. Two examples of charac­
ter device drivers are a parallel
printer emulator that uses the
Asynchronous Communications

1 ABC
DEF

~ ..
'

l

DOS 3.10 Reference Chart
Compiled by John Warnock , IBM Corporation

This reference chart may be removed and used for future
reference. It includes the following information:

• DOS 3.10 Commands

• DOS 3.10 Special Characters and Extensions

• DOS 3.10 Special Function Key Assignments and
Device Names

• ANSI.SYS ESCape Codes

DOS 3.10 Reference Chart DOS 3.10 Special Characters and Extensions

.BAT File File with batch commands

.COM File File with memory image of program

.EXE File File with program
%n BA1CH Replaceable parameter (n = 1-9)

·-- BATch Label designator
DOS 3.10 Commands I Piping Redirects input/output to filter

DOS COMMAND OPTIONS TYPE FUNCTION

ANSI.SYS Con fig Keyboard device driver

< Redirector Input source
> Redirector Output destination

ASSIGN x=y External Assign drive name to another drive DOS 3.10 Keys and Devices
ATTRIB + R l-R External Check or change read-only file attribute FUNCTION KEY FUNCTION
AUTO EXEC.BAT File BATch file support on system start-up

Fl Types previous command , one character at a time

BACKUP /SIM/AID External Backup disk(ette) files to disk(ette)
BASIC /F/S/C/M External BASIC language interpreter

ID
BA SICA /F/S/C/M External Advanced BASIC language interpreter

ID
BREAK ON I OFF Internal Enables/disables check for Ctrl-Break
BREAK = ON I OFF Con fig Enables/disables check for Ctrl-Break
BUFFERS= Con fig Allocate disk buffers

F2 Types command up to designated character
F3 Types all of previous command
F4 Deletes command to designated character
F5 Restarts command entry, saving current command
F6 "'Z Generates end of fi le
Del Skips over character in stored command
Esc Restarts command entry
Ins Adds characters to stored command

DEVICE DESCRIPTION
CD Internal Change directory
CH DIR Internal Change directory
CHKDSK /F/V External Check diskette or fixed disk
CLS Internal Clear screen
COMMAND /P/C External Starts second DOS command processor
COMP External Compare files
COM SPEC Set Specify path to reload command processor
CONFIG.SYS File Configuration file Commands
COPY /A/B/V + Internal Copy files
COUNTRY= Con fig Set date & time format, currency symbols
CTTY Internal Substitute III for screen and keyboard

A:, B:, etc. Block devices- input or output
CASI Cassette tape rcdr- input or output
CLOCK$ " Real Time Clock" card- input or output
COM! I st Asynch adapter-input or output
COM2 2nd Asynch adapter- input or output
CON Console keyboard/screen- input or output
KYBD Keyboard- input only
LPTI I st parallel printer device- output only
LPT2 2nd parallel printer device- output or random
LPT3 3rd parallel printer device- output or random
NUL Dummy (nonexistent) device- input or output

DATE Internal Set date
DEB UG External Load , alter, display/execute files
DEL Internal Deletes specified file(s)

PRN !st parallel printer- output only
SCRN Screen- output only

ANSI.SYS ESCape Codes

DEVICE = Con fig Specify device driver program CURSOR CONTROL SEQUENCES
DIR /P/W Internal List directory
DISKCOMP /1 /8 External Compare diskettes
DISK COPY 11 External Copy diskette contents

COMMAND DESCRIPTION

ESC[#;#H Specify cursor position by row and column number. Default 1,1
ESC[#A Move cursor up# rows. Default I

ECHO ON I OFF BATch Controls display of DOS commands
EDLIN External Line editor

ESC[#B Move cursor down #rows. Default I
ESC[#C Move cursor forward# columns. Default I

ERASE Internal Erases specified file(s)
EXE2BIN External Converts .EXE files to .COM format

ESC[#D Move cursor backward #columns. Default I
ESC[#;#f Specify cursor position by line and column number. Default 1,1

EXIT Internal Terminates second DOS session ESC[#;#R Report cursor position (line; column) through standard input device
ESC[6n Console driver outputs a cursor position report when device

FCBS = Con fig Set no. of available file control blocks
FDISK External Partition a fixed disk

status report received.
ESC[s Save the current cursor position.

FILES = Con fig Specify maximum number of open files
FIND /V/C/N Filter Search for stri ng in file
FOR IN DO BATch Iterative execution of DOS commands

ESC[u Restore cursor position saved with ESC[s.
ESC[2J Erase screen, cursor goes to home position.
ESC[K Erase from cursor position to end of line.

FORMAT /Sil /8/Y External Initialize a diskette or fixed disk
/B/4 KEYBOARD KEY REASSIGNMENT

GOTO BATch •Branches to a label
GRAFTARI. F.xtt>i'1bf • .,.,~rl Prn nhir~ r h;ir;irtt>r t;ihl t> l ESC[#;#; ... #p

or ESC["string"p
First parameter is an ASCH code to be mapped .

Remaining ~~are_r~definitions that

~urn.-u"J <Vu ouv"'

GRAFTABL
I /R/B

I Exte1'bt ad graphics character table
GRAPHICS External raphics screen dump MODIFIED for

PrtSc

IF [NOT] BATch Cond itionally executes DOS command

JOIN ID Internal Joins two or more directories

KEYBxx External Load keyboard support program

LABEL

I

I External I Change volume ID of disk or diskette
LASTDRIVE = Con fig Set maximum no . of drives to access
LINK External Link-edit a compiled program for

executable output

MD Internal Create a subdirectory
MK DIR Internal Create a subdirectory
MODE External Set display or printer options
MORE Filter Pause afte r disp lay ing screenfu l

PATH I I Internal I Specify directory paths for programs and
commands

PAUSE I I BATch I Prompt with a wait for a keystroke
PRlNT ID/B/U/M External Print fi les in background

IS/Q/C
/TIP

PROMPT I I Internal Change DOS prompt

RD Internal Remove directory
RECOVER External Recover file
REM BATch Remark
REN Internal Rename a file
RENAME Internal Rename a fi le
RESTORE /SIP External Restore files from disk(ette)

to disk(ette)
RM DIR Internal Remove di rectory

SELECT External Select country support
SET Internal Set or display environment parameters
SHARE /F/L External Install file sharing support
SHELL = Con fig Designates other command processor

versus COMMAND.COM
SHIFT BATch Allows command I ine to exceed 10 variables
SOFT /R/ +n Filter Sort data
SUBST ID Internal Substitutes path string for file
SYS External Transfer DOS to diskette or fixed disk

TIME Internal Set time
TREE IF External Display directory paths
TYPE Internal Display file contents

VDJSK.SYS Con fig Virtual RAM disk device driver
VER Internal Display DOS vers ion
VERlFY ON I OFF Internal Verify data properly written to disk(ette)
VOL Internal Display disk(ette) labe l

or ESC["stnng"p
or ESC[#; "string";#;

#;"string ";#p

Remaining ~~are redetm1t10ns that
are executed when mapped key is intercepted.
If the first parameter is a 0 (null) then

or any other combination
of strings and decimal
numbers

the first and second parameters make up an
extended ASCII code that is redefined by the
succeedi ng parameters .

MODE OF OPERATION

Set Graphics Rendition (SGR)

ESC[#; . .. ;#m Set character att ribute, #,according to the following table:
#Val ue Attribute

0 All att ributes off (normal white on black)
I Bold on (h igh intensity)
4 Underscore on (IBM Monochrome Display only)
5 Blink on
7 Reverse video on
8 Canceled on (invi sible)

30 Black foreground
31 Red foregrou nd
32 Green fo reground
33 Yellow foreground
34 Blue foreground
35 Magenta foreground
36 Cyan fo reground
37 White foreground
40 Black background
41 Red background
42 Green background
43 Yellow background
44 Blue background
45 Magenta background
46 Cyan background
47 White background

Set Mode (SM)

ESC[=#h Set screen type and width, #,according to the fo llowing table
or ESC[=h
or ESC[=Oh
or ESC?7h

#Value Screen attributes

0 40x25 black and white
I 40x25 color
2 80x25 black and white
3 80x25 color
4 320x200 color
5 320x200 black and white
6 640x200 black and white
7 Wrap at end of line

(Typing past EOL creates a new line)

Reset Mode (RM)

ESC[=# I Same as Set Mode (SM) except parameter 7 resets wrap at end-
or ESC[= I of-line mode (characters past end-of- line are thrown away.)
or ESC[=OI
or ESC[?71

•

J

"

•

Adapter and a serial printer, and a
console emulator that uses the
Asynchronous Communications
Adapter and a remote terminal to
control the computer.

Block devices, such as diskette
drives A and B, send and receive
several characters at a time . Block
device drivers do not refer to a
specific device name, but are
generic in nature . A block device
driver defines the number of de­
vices it handles, and DOS assigns
device names accordingly. One
disk device driver, for example,
could handle drives A, B, C and D.

To make use of a virtual disk in
system memory, you need a block
device driver. If a system uses a
virtual disk device driver that
handles three devices , DOS will
ass ign the next available letters to
these new drives. For example, on
a system with two diskette drives
but no fixed disk drives , the three
virtual drives would be C, D, and E.

DOS 3.00 and DOS 3.10 accept
up to 26 block devices; DOS 2.00
accepts 16; and DOS 2.10 accepts
63. Once DOS 2.10 assigns the 26
letters of the alphabet, it resorts to
ass igning characters by collating
sequence . You can expect devices
named " !","@", " & ",and soon.

DOS 2.10 VDSK
You can see a sample virtual disk
dev ice driver called VDSK on
pages 3-27 through 3-34 of the
DOS 2 .10 Technical Reference
manual . VDSK defines a single
180KB virtual disk. The size of
the disk and sector s ize are fixed .
A more advanced version of the
program can be found on the sup­
plemental program disk of DOS
3.00 and 3.10 which we will dis­
cuss later.

19

OFFSET LENGTH

+00 3 bytes

+03 8 bytes

+ 11 2 bytes

+ 13 I byte

+ 14 2 bytes

+ 16 I byte

+ 17 2 bytes

+ 19 2 bytes

+21 I byte

+22 2 bytes

+24 2 bytes

+26 2 bytes

+28 2 bytes

Figure 1. BIOS P-arameter Block

The DOS 2.10 VDSK block
device driver is an assembly lan­
guage program for a device called
VDSK. This device driver shows
how the header references are
organized , and because it is a block
device, it contains a character
device name which is ignored. (In
fact , DOS sets the first byte to the
number of devices handled by the
driver.) The VDSK block device
driver has a function table, device
strategy routine, device interrupt
routine, function subroutines and
common exit code. It also con­
tains a BIOS Parameter Block
(shown in Figure 1) and virtual
disk information, neither of
which is used for character
devices).

The BIOS Parameter Block
contains media forma t informa­
tion for devices with removable
media. For example, if you remove
a single-sided diskette and insert a
double-sided diskette , your driver

DESCRIPTION

NEAR JUMP to boot code

Orig inal Equipment Manu facturer
name and version

Number of bytes per sector

Sectors pe r allocation unit
(must be a power of2)

Reserved sectors (start ing at
logical sector zero)

Number of FATs
(Fi le Allocation Tables)

Number of root di rectory entries
(maximum allowed)

Number of sectors in logical
image (total sectors in media,
including boot and di rectory
sectors)

Media descriptor byte

Number of sectors occupied by a
single FAT

Number of sectors per track

Number of heads

Number of hidden sectors

should update the BIOS parameter
block to reflect these changes.

In the BIOS Parameter Block,
the media descriptor byte accom­
modates several media types. This
byte is crit ical when you write to a
removable media device whose
media formats can change. DOS
requests the driver to perform a
media check. If the driver responds
that the media has been changed,
DOS requests the driver to build a
new BIOS Parameter Block. Infor­
mation for the new block is taken
from the boot sector of the media
and includes a media descriptor byte.

The four high-order bits in the
media descriptor byte should
always equal hex F. Only the low
three bits change.

Common values fo r the media
descriptor byte are shown in Fig­
ure 2. (Figure 2 contains informa­
tion for all versions of DOS.)

20

DISK #OF SEC10RS DESCRIJYfOR
TYPE SIDES /TRACK

5 '.4" l 9
5 'A" 2 9
5'.4" 1 8
5'.4" 2 8
Fixed
5 'A" 2 15
8" 1 26

8 " 2 26

8" 2 8

Figure 2. Media Descriptor Byte

Figure 2 shows two instances
where different media use the
same media descriptor byte (FEH,
FDH). This is not an error. In
some instances, media of different
physical sizes share common
characteristics. Because DOS
communicates directly with only
the device driver, the device
driver must concern itself with
physical size. Also, it is unlikely
that you would write one driver
for two different media.

In the case of the two 8-inch
diskettes sharing the FEH descrip­
tor byte, the device driver should
test for media. If the device driver
gets an error when trying to read a
single density address mark , the
media should be considered dou­
ble density. An error on reading
from the second read /write head
would indicate single-sided media .

DOS 3.00/3.10 VDISK
The DOS 3.00 and 3.10 program
diskettes contain VDISK , a much
more extensive virtual disk device
driver. YDISK lets you set the disk
size, sector size, the number of
directory entries, and the use of
extended memory (starting address
at !MB). You can access this
driver through a DEVICE state-

VALUE COMMENTS

FCH Single-sided DOS 2.00+
FDH Double-sided DOS 2.00+
FEH Single-sided DOS 1.00+
FFH Double-sided DOS 1. 10+
F8H Non-removable media
F9H High-capacity DOS 3.00 +
FEH IBM 3740 fo rmat : single-

sided, si ngle-density
FDH IBM 3740 fo rmat: double-

sided, single-density
FEH Double-sided, double-

density, 1024 byte sectors

ment in a CONFIG. SYS file.
Each additional copy of the
VDISK driver you call uses 800
bytes of overhead.

The VDISK device driver con­
tains not only the common header
for device drivers but also indi­
vidual headers for each type of
request (read, write, etc.). With
many explanatory comments, it
shows how to set up a table to
direct these requests to the appro­
priate routine in the driver.

NAME LENGTH

Pointer to 4 bytes
next device

Att ribu te word 2 bytes

Device strategy 2 bytes
routi ne pointer

Device interrupt 2 bytes
rout ine pointer

Name of character 8 bytes
device or number I byte
of block devices

Figure 3. Device Header

(An assembly listing of the
YDISK program is available on
the DOS 3.00 and DOS 3.10 sup­
plemental programs diskette in
the fi le VDISK.LST. To print it ,
use the DOS PRINT command;
you will get 59 pages in com­
pressed print mode.)

The VDISK driver in DOS 3.00
and 3.10 contains headers and rou­
tines similar to the VDSK driver
in DOS 2.10. Through its code and
comments, YDISK gives substan­
tial information about how disk
and diskette drives work. The
VDISK device driver also pro­
vides routines for using the
extended memory of the IBM Per­
sonal Computer AT and the new
instructions and error codes of
DOS 3.00 and 3.10.

Designing a Device Driver
A device driver is a program with
either an origin of zero (ORG 0)
or no origin at all. The program
begins with the device header, as
shown in Figure 3.

NOTES

Usually - 1 (FFFFFFFF) fo r one
dev ice driver in the fil e

A I in each bit enables:
Bit 0 = standard input
Bit I = standard output
Bit 2 = nul dev ice
Bit 3 = clock device
Bit 11 = open/close

removable media supported
(DOS 3.00 and 3. 10)

Bit 13 = non-IBM fo rmat
Bit 14 = 10-CTL used
Bit 15 = character device
(A ll other bits must be off)

Defined by device driver
Retu med by DOS

•

The device header is followed
by data and functional code. The
code requires both a device strat­
egy routine and a device interrupt
routine because DOS approaches
the device driver twice to handle
one request. The device strategy
routine receives the first request
from DOS and saves a pointer to
the request header. The strategy
routine enqueues the request,
complete with parameters for the
interrupt routine. When the strat­
egy routine returns to DOS, DOS
immediately places a second re­
quest to the interrupt routine which
actually performs the request and
returns its status to DOS.

The device interrupt routine
should set the ES and BX registers
with these instructions before
returning control to DOS:

MOY
MOY

ES,CS:RH_SEG
BX ,CS:RH_OFF

Any functions not used by your
device driver should return the
status error code for an unknown
command:

STATUS DONE , ERROR,
0003H

JMP EXIT

Your device driver must sup­
port the command codes shown in
Figure 4 in order to work properly
with DOS.

The way you implement these
command functions will be unique
to the device and the device driver.
The IOCTL functions are particu­
larly useful if your device will
accept them . They allow control
information to be exchanged with
a device without actually doing a
read or write. Thi s is useful for
setting baud rates, type fonts and
other control information .

21

CMD NAME CHARACTER BLOCK

0 Init x x
1 Media Check x
2 Build BIOS Parameter Block x
3 IOCTL Input x x
4 Input x x
5 Nondestructive Input No Wait x
6 Input Status x
7 Input Flush x
8 Output Write x x
9 Output Write with Verify x x

10 Output Status x
11 Output Flush x
12 IOCTL Output x x
13 Device Open (DOS 3.00, 3.10) x x
14 Device Close (DOS 3.00, 3.10) x x
15 Removable Media (DOS 3.00, 3.10) x

Figure 4. Device Driver Command Codes

OFFSET LENGTH DESCRIPTION

+00 I byte Length of header + data

+01 I byte Unit code (block devices only)

+02 I byte Function code (command code)

+ 03 2 bytes Status code (set by device)

+05 8 bytes Reserved for DOS

+13 1 byte+ Function data

Figure 5. Request Header

BITS DESCRIPTION

15 Error bit set when low 8 bits carry error

14- 10 Reserved

9 Busy bit for Status and Removable Media

8 Done bit-set to I by driver when task is completed

7- 0 Error code-valid only when bit 15 is on
00 = Write protect violation
OJ = Unknown unit
02 = Device not ready
03 =Unknown command
04 = CRC error
05 = Bad drive request structure length
06 = Seek error
07 =Unknown media
08 = Sector not found
09 = Printer out of paper
OA = Write fault
OB = Read fault
OC = General failure
OD = Reserved
OE = Reserved
OF = Invalid disk change

Figure 6. Status Code Word Bit Configuration

22

Three Basic Operations • Act upon the request. The fourth field of each request
header is a two-byte status code . Your device driver program

should contain command func­
tions that perform three basic
operations:

• Return the requested informa­
tion to DOS in the device inter­
rupt routine. Your device driver must set that

status when it completes its task .
The bit configuration of the status
code word is shown in Figure 6.

• Read the request header and
data in the device strategy
routine.

The request header is a particular
kind of function header. It is
shown in Figure 5.

Customize Your
DOS Prompt
Jerry Schneider
Capital PC User Group

Are you tired of seeing the DOS prompt, A>, glar­
ing at you from your display screen? When you use
subdirectories, do you ever forget what subdirectory
you are currently working in? Would you like the
time displayed with the prompt? These problems can
be easily remedied by using the DOS PROMPT
command.

The PROMPT command lets you specify what will
appear on your screen as the prompt. You can specify
text as your prompt , such as Good Morning , or, by
using special DOS predefined meta-strings, you can
customize prompts to display the date, time, sub­
directory, or a variety of other features.

The DOS predefined meta-strings are in the format
$x, where x can be one of the following characters:

Character Display at Prompt

$
t
d
p
v
n
g
I
b
I
h

e

The $ character
The time
The date
The current directory of the default drive.
The DOS version number
The default drive letter
The > character
The < character
The : character
The = character
A backspace; the previous character of the
prompt is erased
The ESCape character
The CR LF sequence (go to beginning of a
new line on the display screen).

For example, if you wanted to display a message in
addition to the usual default drive letter and familiar
> character, you could enter:

PROMPT Good Morni ng, Jerry ng

and your prompt becomes

Good Morning , Jerry A>

If you want your prompt to di splay the date and
time, as well as the default drive and > character,
enter :

PROMPT $d $t ng

and the following prompt is displayed:

Sat 9-28-1985 15: 38:49.16 A>

The following example sets the DOS prompt to
display the current directory of the default drive plus
the > character:

PROMPT pg

If the default drive is A and the current directory of
drive A is \JERRY\FW, the DOS prompt would dis­
play:

A:\JERRYIFW>

If you wanted the prompt to display just the time
(wi thout the seconds) on one line, and the drive let­
ter, current directory of the default drive, and the
= >characters on a second line, you would enter:

PROMPT thhhhhh_npqg

which would display the following two-line prompt :

15: 38
A: IJERRYIFW= >

After you have experimented with the PROMPT
command and decided how you want your prompt to
look , enter the PROMPT command (with parame­
ters) as part of your AUTOEXEC.BAT file, where it
will automatically be executed whenever you start up
your system .

23

DOS Filter Commands
John Warnock
IBM Corporation

DOS versions 2.00 and higher contain several filter
commands and operations that you can use to cus­
tomize file listings. Filters are programs that take
input from files , programs or other devices and mod­
ify the information before sending it on to another
program or device . Filters usually require no user
prompts. You can write your own filters , even in
BASIC.

By using filtering processes, you can:
• Use all or part of the information available in a file.
• Modify the information you have selected.
• Redirect the modified information to an output file ,

output device, or additional filter.

The DOS filter commands are FIND, MORE and
SORT. These are all external commands, so they
must be in the current disk directory or else have a
path specified when they are called . The filter opera­
tions use Piping (:)and Input/Output Redirection
(<and>).

Piping and 110 Redirection
The Piping and Input/Output (1/0) Redirection oper­
ations specify where information comes from and
where it goes to.

The Piping(:) operation should be entered
between two DOS commands. It specifies that the
output of the first command is the input for the sec­
ond command . For example:

DIR :soRT

tells DOS to send the output of the DIRectory com­
mand as input to the SORT command.

If the SORT input does not come from another
DOS command, or if the SORT output goes to a file
or device, then an 1/0 Redirection operation is neces­
sary. For example, to SORT the file IN to the file
OUT, the syntax is :

SORT <IN >OUT

Getting Started

The character 11 < 11 precedes the input file or device,
and the character 11 > 11 precedes the output file or
device .

1/0 Redirection lets you redirect normal DOS or
application output to files and communication lines
as well. The command :

DIR> LISTING

puts a directory listing into a file called LISTING.
The file can then be printed with the DOS PRINT
command or used by a word processing program that
accepts ASCII text files. The instruction :

DIR> COMI :

redirects the directory listing to a serial printer
attached to your communications adapter card.

24

Filter Commands
FIND command: This command locates lines that
contain a specified character string or excludes lines
that contain the specified character string. The
format is:

FIND [IV][IC][IN] "string" [d :][path]
[filename[.ext] .. . 1

where

IV displays lines that do not contain the string

IC displays a count of how many lines contain
the string

I N displays the relative line number where the
match occurred

"string" is the phrase or text you are trying to
match, enclosed in double quotes

[d:][path][filename[.ext] . ..] lets you specify
consecutive input files to search with standard
input. Piping omits the file.

For example, look for the string "to be" in the file
TEXTl.TXT, type:

FIND "to be" TEXT 1. TXT

To extend the search to include files TEXT2.TXT
and TEXT3. TXT, type:

FIND "to be" TEXTl.TXT
TEXT2. TXT TEXT3. TXT

To find all lines not containing the string "to be" , and
to display the relative line number of all lines found
not containing "to be", type:

FIND IV IN "to be" TEXTl.TXT
TEXT2. TXT TEXT3. TXT

MORE command: This command is similar to the
TYPE command, but MORE allows you to read the
information in the file one screenful at a time. When
the screen fills , MORE stops scrolling and issues the
message:

-More-

When you finish reading the information on the
screen , you press any key to continue.

For example, to display the file ASM.LST so that
you can read each screen, type:

MORE< ASM.LST

The MORE command requires an 1/0 Redirection
or Piping operation. To use the MORE command
with the TREE command, the DOS manual suggests
typing:

TREE: MORE

SORT command: This command, as its name
implies, reorders information before writing it back
out. Its format is:

SORT [IR][/+n]

where

IR designates sorting information in reverse
order

I + n designates sort ing information by the char­
acters starting in column n

Like the MORE command, SORT relies on 1/0
Redirection and Piping operations to tell it where the
information can be found and where it should go.

Using Filter Commands
You can combine several filter commands and DOS
commands. The followi ng examples illustrate the
filter commands and operations combi ned with the
DIR command.

To alphabetically sort a directory listing and have
the sorted list pause when the screen fills up, type,

DIR : SORT : MORE

You may want to keep an alphabetical directory list
with each diskette in order to find files more easily.
To send an alphabetically sorted directory listing to
the printer, type:

DIR : SORT >lptl:

To display an alphabetical listing of subdirectories
only, type:

25

DIR : SORT : FIND " <DIR> "

or

DIR : FIND " <DIR>" : SORT

To display a li sting of files sorted by extension and
excluding subdirectories, type:

DIR : SORT / + 10 : FIND IV" <DIR> "

or

DIR : FINDIV " <DIR>" : SORT / +10

The IV tells FIND to omit lines containing <DIR> ;
the I + 10 tells SORT to begin sorting according to the
character found in column 10, the first position of the
extension .

To list files in the subdirectory D:\SAMPLE from
largest to smallest, type:

DIR D:\SAMPLE : SORT /R I + 14

The I + 14 is the starting position of the file size,
and /R tells SORT to list the results in reverse
(descending) order.

To get a printout by date of a ll the fil es with exten­
sion .COM , you can sort by month or year, but not
both . To sort by month , the SORT command should
begin sorting at column 24 :

DIR *.COM : SORT / + 24

To sort by year, the sort should begin at column 30.
You can use the output director > to send the output
to the printer. Type:

DIR *.COM : SORT / +30 >LPTl :

Filters also can be used outside of DOS. BASIC
3.00 includes a new command called SHELL, which
lets you perform DOS commands from within
BASIC. When combined with the SORT command ,
the SHELL command lets you sort and display a file
you create in BASIC. The foll owing is a sample pro­
gram that perfo rms this function:

10 REM SAVE "SAMPSORT.BAS "
20 DEFINT A-Z
30 CLS

The fo llow ing section creates a fi le called ONE, and
prompts fo r input. The length of 25 is arbitrary.

40 OPEN "ONE " FOR OUTPUT AS #1
LEN = 25

50 PRINT "Enter the items you want to sort "

The next section increases the item count by l and
displays the new count, waiting fo r input. If there is
some input, the section prints the input in file ONE;
otherwise it skips to the next section.

60I=I+l
70 PRINT STR$(I);
80 LINE INPUT ". ";N$
90 IF N$ < > "" THEN PRINT #1 ,N$ ELSE

GOTO 110
lOOGOTO 60

This section clears the screen, te ll s you it is calling
SORT, and closes the ONE file so SORT can use it.

llO CLS
120 PRINT "Entry ended . Calling SORT. "
130 CLOSE #1

The SHELL command call s fo r a SORT from fil e
ONE to file TWO.

140 SHELL "SORT <ONE >TWO "

The fo llowing section tells you the SORT is fi nished
and readies the two files fo r reading .

150 CLS : I = O
160 PRINT "Sort Completed . Results:"
170 OPEN "ONE" FOR INPUT AS

#1 LEN=25
180 OPEN "TWO " FOR INPUT AS

#2 LEN = 25

This section checks if the first fil e is not empty, reads
both files, prints the results and repeats the cycle .

190 WHILE NOT EOF(I)
200 INPUT #l ,A$
210 INPUT #2 ,B$: I = I + I
220 PRINT STR$(I); ". ";TAB(7) ;A$;

TAB(35);B$
230WEND

Th is section closes the fil es and ends the program.

240 CLOSE #1, #2
250 END

Watch W here You
Copy Toi
Michael Engelberg
IBM Corporation

26

If you use a fixed-disk-based Personal Computer and
have divided your fixed disk into several subdirectories,
you probably move files across directories by first
copying files from one subdirectory to another and
then erasing the files from the original subdirectory.

In the DOS COPY command, you specify the
names of both the "from" and " to" subdirectories. If
you misspell the name of the " to" subdirectory, and
no other subdirectory has the misspelled name, the
file will be copied somewhere else and will be given
the name you mispelled .

For example, if you want to copy a file TRY. IT
from subdirectory ONCE to subdirectory TWICE,
you would normally type:

COPY \ONCE\TRY.IT \TWICE

Suppose you made a mistake typing in the command
and you actually typed:

COPY \ONCE\TRY.IT \TRICE

If you have no subdirectory named TRICE, DOS still
returns the message " I file(s) copied", even though
the file has not been copied into the subdirectory you
intended. DOS first searched for a subdirectory
named TRICE. Not finding a TRICE subdirectory,
DOS treated \ TRICE as the path to the root directory
(\)followed by a new file name, TRICE. DOS then
copied file TRY. IT from subdirectory ONCE into the
root directory and gave the copied file the new name
TRICE. Issuing the DIR command from the root
directory would verify that the TRICE file has been
added there.

Now suppose your final step is to erase the file
TRY.IT from subdirectory ONCE. After you erase it ,
you change to subdirectory TWICE, look for file
TRY.IT, and find it isn' t there. At this point it isn't in
subdirectory ONCE, either.

But all is not lost. If you saw the message
" I File(s) Copied" , DOS has made a copy of
TRY.IT somewhere . The copied file may be a bit dif­
ficult to find because you don't know its name (unless
you remember your misspelling) , but eventually you
will find it. Usually it will be in the directory level
that is immediately above the level you are in.

If ONCE and TWICE are second-level subdirecto­
ries under first-level subdirectory HOWOFTEN, and
you incorrectly enter the command:

as

COPY \HOWOFTEN\ONCE\ TRY.IT \
HOWOFTEN\ TWICE

COPY \HOWOFTEN\ONCE\TRY.IT \
HOWOFTEN\ TRICE

the COPY command will copy file TRY.IT from the
second-level subdirectory ONCE into the first-level
subdirectory HOWOFTEN, and will give the copied
file the name TRICE. To locate the misspelled file
name, change to the subdirectory HOWOFTEN and
issue a DIR command.

Suggestion: After you copy a file from one sub­
directory to another, use the DIR command to verify
that the copied file exists in the target subdirectory
before you erase it from the original subdirectory.

27

Defining the Upper 128
ASCII Characters
Greg Gruse
IBM Corporation

Suppose you want to generate a graphics character
and use it in animated sequences in games or presen­
tations. The IBM Personal Computer ASCII charac­
ter set does not normally include graphics characters,
so you must keep track of every dot on the 200 x 320
display screen in order to create graphics. For exam­
ple, if you want to create a man and move him across
the screen, you will have to write all the necessary
dots to the screen, move them to new positions, and
erase the dots in the old positions. After you do this
for a while, you will wonder if there is a better way­
and there is.

In the graphics screen modes, it is relatively easy to
define any or all of the uppermost 128 ASCII charac­
ters so that they become your own customized graph­
ics characters . Once you have transformed an ASCII
character into your own graphics character, you can
easily manipulate it on your display screen, and you
can create animated sequences simply by writing the
new characters to the screen.

8 4 2 \ 8 4 2

Defining an ASCII Character

7E hex

81 hex

42 hex

3C hex

24 hex

24 hex

24 hex

C3 hex

In text screen modes (0, 1, 2, 3 and 7) , you cannot
redefine any ASCII characters because they are all
previously defined by a hardware chip on both the
Monochrome Display and Printer Adapter and the

Random Data

Color/Graphics Monitor Adapter. However, in
graphics screen modes (4, 5 and 6) that use a color
display, only the first 128 characters (0 through 127)
are previously defined in the BIOS. You can define
any or all of the upper 128 characters (128 through
255) and then point to them so they can be used in
your programs.

An ASCII character consists of an 8-bit x 8-bit
grid. (Each point in the grid represents a dot on the
screen.) You can define all eight rows of the grid
using two hexadecimal numbers to define each row.
The following grid shows a pattern you can use to
make an ASCII character that looks like a man .

J n the graphics screen modes,
it is relatively easy to define any

or all of the uppermost 128 ASCII
characters so that they become your own

customized graphics characters.

The hex numbers at the right define the ASCII
character. In row 1, for example, hex number 7E is
required in order to turn on all bits except the left­
most and rightmost bits. Similarly, the required dot
pattern determines each of the other hex numbers.
Each hex number takes up 1 byte ; all eight hex num­
bers, and therefore the complete ASCII character,
require eight bytes.

At this point you have defined only one of the
upper 128 ASCII characters in graphics mode .
Through a similar process of creating a grid pattern
and determining the hex number for each row in the
grid, you can define more, perhaps all, of the upper
128 ASCII characters. If you define all 128 charac­
ters , they will occupy 1,024 bytes (8 x 128) .

Once you have defined your ASCII graphics char­
acters, it will be much easier to control what appears
on the screen , because you have defined the screen as
a collection of characters rather than dots. You now
have to control only 2,000 characters (consisting of
80 columns per row and 25 rows) instead of 64,000
dots (200 x 320).

28

Assembly Language Program Defines
Our Character
Following is the explanation of how to construct an
assembly language subroutine that defines ASCII
character number 128, the first of the upper 128 char­
acters. This subroutine first defines the character
using the "man" pattern shown above, and then it
resets the upper character set pointer to point to the
new character.

The subroutine shown below also provides an
example of the syntax you will need in order to link
the subroutine with a BASIC program.

Note : IBM has written and tested the programs
contained in this article . However, IBM does
not guarantee that the programs contain no
errors.

The first two lines of code define the segment. The
'CODE' is necessary for adding this subroutine to
BASIC's CODE segment.

CODE SEGMENT
ASSUME

'CODE'
CS:CODE

The next two lines define the procedure that is called
from the compiled BASIC program.

LOADER
PUBLIC
PROC

LOADER
FAR

The next statement jumps over the actual character
definition which is not executable code.

JMP OYERDEF

Next is the data definition statement that defines the
new character.

DEF DB 7EH,81H,42H,
3CH,24H ,24H ,
24H,OC3H

The next section resets the pointer to the upper 128
ASCII characters so that it points to our new charac­
ter set. The pointer is located at segment 0, offset
7CH . We will first reset the offset pointer, then the
segment pointer.

The following three lines set up the DS register to
point to our data.

OYERDEF : PUSH
MOY
MOY

DS
AX,CS
DS,AX

To reset the offset pointer, we move 7CH into BX and
0 into ES.

MOY BX ,7CH
MOY AX,O
MOY ES,AX

Into AX we place the offset to our new characters.

MOY AX,OFFSET DEF

Now we can actually set the offset value .

MOY ES: [BX],AX

The segment pointer is located at the next word in
memory (7E hex). The value we need is found in the
current DS register.

MOY
MOY
MOY

We can now finish the subroutine .

LOADER
CODE

POP
RET
ENDP
ENDS
END

BX ,7EH
AX,DS
ES:[BX],AX

DS

After you link this routine with a compiled BASIC
program, you can call it with the following statement:

CALL LOADER

In your BASIC program you can now make your
" man" character appear on the screen simply by
using the statement :

PRINT CHR$(128) ;

and, after he moves, you can erase him using the
statement:

PRINT CHR$(32) ;

which replaces the man with a blank character.

29

BASIC Program Animates Our Character
The following BASIC program gives an example of
how to move the character we have defined above.
The first line defines any variable that starts with a
letter to be an integer.

10 DEFINT A-Z

Lines 20 and 30 set up the two variables that we will
use to control our character's position. Xis the cur­
rent row and Y is the current column.

20X = l
30Y = 1

Next we call the assembly language routine
LOADER:

40 CALL LOADER

In line 50 we set our screen mode to 320 by 200
graphics:

50 SCREEN 1,0,0,0

The following code (the heart of the program)
executes every time the character is moved. The
LOCATE statement moves the cursor to the position
at which we will write the character. The PRINT
statement then prints the character that we defined in
the assembly language subroutine .

100 LOCATE X,Y
110 PRINT CHR$(128) ;

This program assumes you will move the character
using the keyboard's arrow keys. Lines 120 and 130
continually poll the keyboard to see if a key is
pressed. Once it is pressed , the program checks to
see if the key pressed was the Escape key, which sig­
nals the end of the session.

120 KEYED$=INKEY$
130 IF KEYED$= II II THEN GOTO 120
135 IF KEYED$ =CHR$(27) THEN END

If you press an arrow key, two characters are
returned , because the arrow keys produce extended
ASCII codes. (A list of these codes appears in the
Appendix of the BASIC manual.) Line 140 checks to

see if a two-character code has been sent ; if not , the
program jumps back to the key test.

140 IF LEN(KEYED$) < > 2 THEN
GOTO 120

The next section checks to see if the up arrow key
was pressed . If not , the program jumps to the next
test. If yes, the program checks to see if the character
is at the top of the screen. If yes, the program con­
siders this a no-operation and jumps back to test for
another key. However, if the character is not at the
top of the screen, the program first blanks out the
current position and subtracts 1 from the current row ;
then the program jumps to the instruction that dis­
plays the character in its new position.

200 IF MID$(KEYED$,2,l) < > CHR$(72)
THEN GOTO 300

210 IF X = 1 THEN GOTO 120
220 LOCATE X,Y
230 PRINT CHR$(32) ;
240 X = X- 1
250 G01D 100

Similarly, the next section tests for a left arrow key.
For this key the program decrements the column
rather than the row.

300 IF MID$(KEYED$,2,l) < > CHR$(75)
THEN G01D 400

3 10 IF Y = 1 THEN G01D 120
320 LOCATE X, Y
330 PRINT CHR$(32) ;
340 y = y - l
350 G01D 100

-

L

30

The next section handles the right arrow key. It incre­
ments the column unless the column was already 40,
the right edge of the screen .

530 PRINT CHR$(32) ;
540X = X + 1
550 G010 100

400 IF MID$(KEYED$,2 ,l) < > CHR$(77) This BASIC program is intended to be compiled
by the BASIC Compiler. After you have entered the
program using an editor, you can compile it with the
following command:

THEN G010 500
410 IF Y=40 THEN G010 120
420 LOCATE X, Y
430 PRINT CHR$(32) ;
440Y = Y + 1
450G010 100

BASCOM GAME/O;

The next section checks for the down arrow key. If
another key was pressed, control is returned to the
key test routine . If the down arrow key was pressed ,
the row is incremented unless it was already 25.

The /0 specifies that you won't be using the BASIC
Runtime Module.

Now let's assume you have given the name
LOAD.ASM to the assembly language subroutine
listed above, and that you have assembled it using the
Macro Assembler.

500 IF MID$(KEYED$,2,l) < > CHR$(80)
THEN G010 100

After you finish your BASIC compilation , you can
link the two programs with the command :

510 IF X =25 THEN GOTO 120
520 LOCATE X, Y LINK GAME+ LOAD;

Robot Simulation in BASIC Using the DRAW Command

John Schnell
New lVrk Personal Computer, Inc.

The BASIC ORA W command
and the joystick interface provide
advanced interactive graphics
capabilities. To demonstrate this,
I have written a graphics program
that uses the joystick for interac­
tive control of a "robot arm." The
positions of the upper arm, lower
ann and hand are moved by push­
ing the joystick left or right. Each
arm part can be selected to articu­
late individually by pressing the
top joystick fire-button. You clear
the screen by pressing the front
fire-button. The articulating arm
segment is drawn in yellow, and

each move of the arm leaves a trail
of previous positions in green.

You can change individual
program variables to have the
robot arm do different things; for
instance, you can change the length
of each arm section, or change the
color variable BAK = 0 so that
the old arm position is erased
after each move. In fact, simply
by changing a few variables and
program lines, this simulation can
be converted into a nice program
for generating graphics patterns.

Editor's note: ~have placed
Mr. Schnell's BASIC program
ROBUI'ARM.BAS on the IBM PC
User Group Support Electronic
Bulletin Board System in the
< F> iles section. For informa­
tion about accessing our bulletin
board system and downloading
these files, see the article "IBM
PC User Group Support Elec­
tronic Bulletin Board System" in
the August 1985 issue of Exchange.
Dial (305) 998-EBBS. If you do
not have a modem, ask your
group librarian to download the
ROBU/'ARM.BAS file and make it
available in your user group's
library.

Keyboard Input for
BATch Files
Neil Rubenking
San Francisco PC Users Group

31

A very simple, very tiny program (8 bytes) that you
can construct using DOS DEBUG will allow your
BATch files to act upon keyboard input immediately.
This allows easy creation of convenient DOS-level
menu systems. I read about Jacques Bensimon's
GETKEY.COM file in the March 19, 1985 "User­
to-User" column in PC Magazine and immediately
applied it to my office's hard-disk menu system.

A> debug getke).COm
File not found (Ignore this message)
- alOO
- xxxx:OIOO l\IOV AH,00 < CR >
- xxxx:OI02 INT 16 < CR >
- xxxx:OI04 MOV AH,4C < CR >
- xxxx :0106 INT 21 < CR >
- xxxx: OI08 < CR >
- rcx < CR >
0000
:0008 < CR >
- w < CR >
Writing 0008 bytes
- q < CR >
A>

Figure 1. DEBUG Script to Create GETKEY.COM
(Reprinted from PC Magazine, March 19, 1985, Copyright 1985,
Ziff- Davis Publishing Company.)

Using IF ERRORLEVEL
The unexplored BATch command that is exploited
here is "IF ERRORLEVEL ##". This condition is
true if## is less than or equal to the ERRORLEVEL.
And there is a DOS function that will set the
ERRORLEVEL to a given number.

Follow the DEBUG script in Figure l to create
GETKEY.COM . The first two lines take a keystroke
and put its ASCII value in register AL, and the sec­
ond two put the contents of AL into the
ERRORLEVEL. (But you don't even have to under­
stand that to create the program .)

Type in the highlighted text. <CR> means press
Enter.

Rules for Menus
Figure 2 shows an example of a BATch file menu
using GETKEY. There are a few important points to
follow when constructing such a menu :

l. There should be a label name, such as CHOOSE,
just before the call to GETKEY, and another label ,
like BEGIN, at a point just before the menu choices
are displayed.

2 . The IF ERRORLEVEL statements must be in
descending numerical order and shou ld ideally be
a continuous sequence. If they cannot be contin­
uous, fill in the " holes" with IF ERRORLEVEL ##
GOTO CHOOSE.

3. Put a statement just before the highest in the
sequence that says "IF ERRORLEVEL (highest
number+ 1) GOTO CHOOSE". This traps any
"irrelevant" keys that are higher in ASCII value
than the real choices.

4. Put a statement just after the sequence that simply
says " GOTO CHOOSE". This catches irrelevant
keys that lower ASCII values.

5. Each segment of code that you transfer control to
should end with "GOTO BEGIN" (except the seg­
ment that exists to DOS) .

Of course, any segment of your BATch file can
itself be another menu-as many levels as you like .

ECHO OFF
CLS
:BEGIN
ECHO GAME.>-~~~~~

ECHO l SPACE PERVADERS
ECHO 2 PUNK MAN
ECHO 3 SCAR TRAK
ECHO 4 EXIT TO DOS
ECHO Press any number key to choose
ECHO
:CHOOSE
GETKEY
IF ERRORLEVEL 53 GOTO CHOOSE
IF ERRORLEVEL 52 GOTO EXIT
IF ERRORLEVEL 51 GOTO TRAK
IF ERRORLEVEL 50 GOTO PUNK
IFERRORLEVEL49GOTOSPACE
GOTO CHOOSE
:SPACE
BASICA PERVADERS
GOTO BEGIN
:PUNK
PUNKMAN
GOTO BEGIN
:TRAK
BASIC SCARTRAK
GOTO BEGIN
:EXIT
CLS

Figure 2. Sample GETKEY Menu

32

Trapping Function Keystrokes
This is a major boon , but it wasn't quite enough
for me, so I extended GETKEY.COM into
GETFUN.COM . GETFUN catches all the key­
strokes that GETKEY doesn't-mainly the
FUNction keys.

If an ordinary key is pressed , it returns 255. Figure
3 shows the DEBUG script to create G ETFUN. COM ,
and Figure 4 shows a list of the values returned for
various keys. Since you can use each function key
" straight" or with < Ctrl > , <Alt> , or <Shift > ,
a function key menu could easily have 40 different
choices!

Type in the highlighted text. <CR> means press
Enter.

A > dehug getfun.com
File not found
- alOO
- xxxx :OIOO \IOV
- xxxx :Ol02 l'\T
- xxxx :OI04 (\IP
- xxxx :Ol06 JZ
- xxxx :Ol08 J\IOV
- xxxx :OIOA J:\IP
- xxxx :OIOC \IO\
- xxxx :OIOE \IO\
- xxxx :OllO I'\ 1
- xxxx :0 112 < (R >
- rcx < LR >
0000
:0012 < CR >
- " < LR >
Wri ti ng 0012 bytes
- q < CR >
A>

AH,00 < CR >
16 < (R >
.\L,00 < lR >
OIOC < lR >
AL. Fl < CR >
OlOt < CR >
AL,.\H < CR >
.\HAC < CR >
21 < CR >

(Igno re this message)

Figure 3. DEBUG Script to Create GETFUN.COM

Fl F JO
Fl FlO
Fl F IO
Fl FJO

Home
Up

Pg Up
Le ft

Right
End

Down
PgDn

Ins
Del

Function Keys
(unshifted)
< shift>
<Ctrl>
<Alt>

Keypad Keys
(unshifted)

71
72
73
75
77
79
80
81
82
83

<Alt> + Regular Key

59 68
84 93
94103

104 ll3

(Ctr!)
119

132
115
116
ll7

118

QWERTYUIOP 16 25
ASDFGHJKL 30 38

ZXCVBNM 44 50
1234567890- = 120 131

Figure 4. Special Keyboard Codes

Once you 've created your GETFUN.COM file,
you can build BATch files with menus that prompt for
and act on user input, similar to the one shown in
Figure 2 . With the GETFUN.COM file , the
ERRORLEVELs you specify can include the ex­
tended ASCII codes. Keep in mind that the same rules
apply to BATch files that use the GETFUN.COM
program as apply to BATch files that use the
GETKEY.COM program .

IBM Personal Computer AT Serial Port Pin Configuration

Steven Mahlum
IBM Corporation

The Serial/Parallel adapter for the
IBM Personal Computer AT has a
standard 1/0 parallel port, but the
serial port is a new nine-pin male
connector. The standard RS-232
cables for serial devices cannot be
connected to the Serial/Parallel

adapter without first converting
the new configuration to the
RS-232 configuration.

Following is a diagram of the
pin assignments for both ends of a
conversion cable:

Personal Computer AT Serial
Conversion Cable

PCAT
9pin RS-232

.---"arrier Detect
Receive Data

Transmit Dat
Data Terminal Ready

Signal Ground
Data Set Ready
Request to Send

.---")ear to Send
Ring Indicator

Puzzler
l#Jlter Penney
Capital PC User Group

" It's an interesting problem;'
said Al, straightening up from the
flow chart he had been working
on . " This may not be the best way
to go about it, but it ought to get
the answer-at least to four deci­
mal places:'

"What problem is this?"
asked John.

"Well, it's part of the home­
work in our programming course.
We have to find the range of N for
which [N] + [N~2] = [N~3],

where [N] is the greatest integer
in N. Here's how I'm going to go
about solving it;' Al said, point­
ing to the flow chart.

" The required range of N will
then be from A to B; ' Al went on.

John studied it a few moments .
" It looks good, but I don't think it
will do what you expect;' he said.

"Why not? If I work up from l,
which is too small, I ought to hit
the lower limit , and ifl work down
from 2, which is too large, I ought
to hit the upper limit. Right?"

"Perhaps, but I think you 're in
for a disappointment: '

What is wrong?

' UO!lnJOS ;:Hp

JO lJBd lOU ;uu £JO lOOJ ;:iqnJ ;:lljl

puB z: JO lOOJ ;:JJBnbs ;:i4l U;:J;:JMl;:Jq

U! s;:inJBA ;:i4.L "r JO lOOJ ;:iqnJ

;:i4l Ol JBnb;:i N Ol £JO lOOJ ;:iqnJ

;:i4l Ol lBnb;:i N WOJJ puu ' z:JO lOOJ

;:i1unbs ;:i4l Ol JBnb;:i N Ol z: JO lOOJ

;:iqnJ ;:i4l Ol JBnb;:i N WOJJ ' SlJBd

OMl U! S! ,;:i~UBJ , p;:iJ!nb;:iJ ;:i4.L

Ja(ZZlld Ol UO!lOJOS

33

A= 1.0000

Yes
[A] + [A2] = [A3] ?

No

Print A A= A+ .0001

B = 2.0000

No Yes
[B] + [B2

] = [B3] ?

B = B - .0001 Print B

IBM
Product
Upgrades
John Warnock
IBM Corporation

IBM offers upgrade kits for six
Personal Computer software
products. These offers let owners
of existing IBM products get
newer versions at less cost. The
following products are available
for upgrade:
• Interactive Executive (PC/IX)

1.00 to PC/IX 1.10
• BASIC Compiler 1.00 to BASIC

Compiler 2 .00
• DisplayWrite 2 to DisplayWrite 3
• Disk Operating System (DOS)

3.00 to DOS 3.10
• DOS 2 .10 and DOS 3.00

Technical Reference Manual to
DOS 3.10 Technical Reference
Manual

• Personal Decision Series (PDS)
Plans Edition to PDS Plans+
Edition

34

New Products

Order forms are available through
Authorized IBM PC Dealers,
Authorized IBM PC Software
Dealers and IBM Marketing Rep­
resentatives. All six upgrades
require fees (plus sales tax) and
proof of license of your current
software. Order envelopes must
be postmarked on or before their
expiration dates. Details are
included in the following descrip­
tions of each upgrade .

Interactive Executive (PC/IX)
1.00 Upgrade to Version 1.10
PC/IX 1.10 includes all the fea­
tures of PC/IX 1.00 plus support
for the IBM Personal Computer
AT in compatibility mode. To
obtain the upgrade, you must
complete the order form and mail
the original Maintenance Diskette
[LY20-6261-0] as proof of license,
along with $40, to the address on
the form. Orders must be post­
marked no later than
December 31, 1985.

BASIC Compiler 1.00 Upgrade
to 2.00
Owners of BASIC Compiler 1.00
can upgrade to version 2.00.
BASIC Compiler 2.00 includes
all the features of version 1.00,
plus :

• Better program control
structures

• Expanded graphics capabilities
• Larger program compilation

through separate data/
instruction spaces

• Support for large numeric
dynamic arrays

• File locking and unlocking
• Indexed Sequential Access

Method (ISAM) files
• Enhanced event trapping for

timer, play and key instructions
• Path specification for devices

or files
• Separately compiled BASIC

subroutines
• Alphanumeric labels for

branching (line numbers no
longer required)

To obtain the upgrade, com­
plete the order form and mail the
original beige-colored inside front
cover of your BASIC Compiler
manual [6172246] as proof of
license, along with $195 to the
address on the form. Orders
must be postmarked no later than
April 30, 1986.

DisplayWrite 2 Upgrade to
DisplayWrite 3
If you own either version 1.00 or
1.10 of DisplayWrite 2, you can
upgrade to DisplayWrite 3. Dis­
playWrite 3 includes the following
enhancements:
• Helps facility for keys, com­

mands and menus
• Use of the Spell Aid during

creation and revision
• Footnote typing and resolution
• Automatic outlining facility
• Keystroke programming to store

and replay keystrokes
• Merging PC DOS ASCII files

into text for repetitive
documents

• Vertical and horizontal cursor
drawing

To obtain the upgrade, com­
plete the order form and mail the
original purple-colored inside
front cover of your DisplayWrite 2
version 1.00 Reference manual
[6361282] or the original purple­
colored inside front cover of your
DisplayWrite 2 version 1.10 Refer­
ence manual [6361822] as proof
of license, along with $50, to the
address on the form . Orders must
be postmarked no later than
November II, 1985.

35

Disk Operating System (DOS)
3.00 Upgrade to 3.10
Owners of DOS 3.00 can upgrade
to version 3.10 in order to add sup­
port for the IBM Personal Com­
puter Network. To obtain the
upgrade, complete the order form
and mail the blue-colored inside
front cover of the Disk Operating
System (DOS) 3.00 Reference
manual [6322666] as proof of
license, along with $30, to the
address on the form. Orders must
be postmarked no later than
December 31, 1985.

DOS 2.10 or 3.00 Technical Ref­
erence Manual Upgrade to 3.10
The DOS 3.10 Technical Refer­
ence manual includes all the
information covered in the DOS
2 .10 and DOS 3.00 Technical ref­
erence manuals plus information
about DOS 3.10. The new manual
also includes an operational
Update Information Service to
keep your manual up-to-date
automatically.

Send in the upgrade order form
plus either the beige-colored
inside front cover of the DOS 2.10
Technical Reference manual
[1502346] or the blue-colored
inside front cover of the DOS 3.00
Technical Reference manual
[6322677] , along with $65, to the
address on the form. Orders must
be postmarked no later than
December 31, 1985.

Personal Decision Series (PDS)
Plans Edition Upgrade to
Plans+
PDS Plans+ Edition is an
enhanced version of PDS Plans
Edition that adds :
• Advanced functions for finan­

cial, statistical and engineering
analysis

• Enhanced modeling and
programming capabilities

• Consolidation or deconsolida­
tion of spreadsheets

• New arithmetic, logic and
control functions

To get Plans+ Edition, com­
plete the order form, provide the
Plans Edition serial number, and
send the purple-colored inside
front cover of the Plans Edition
manual [SH20-9549] and the
Plans 1 diskette [SV30-0536],
along with $150, to the address on
the form . Orders must be post­
marked no later than April 30, 1986.

Editor 's note: Upgrade announce­
ments will appear periodically in
Exchange to keep readers
informed of the latest offerings.

User-Written
Articles in
Exchange

Reprinting Articles
Several user groups have asked us
for permission to reprint articles
from Exchange in their own group
newsletters.

To satisfy these requests, we
are placing selected user-written
articles onto our PC User Group
Electronic Bulletin Board System
(EBBS) on a timely basis after
they appear in Exchange. Articles
that we place on our EBBS will be
those that were written by mem­
bers of user groups for their own
group newsletters and then pub­
lished in Exchange. You may
freely copy and reproduce any
articles we place on our EBBS.

Articles in Exchange that were
written by IBM will not be placed
onto the EBBS, and will appear
only in printed form in Exchange,
which is a copyrighted publication .
Please respect the copyright and
do not reproduce IBM-written articles
in your own group newsletters.

36

Editor's Comments

A Call for Fresh Articles
We are placing user-written artic­
les onto our EBBS in order to sat­
isfy user group newsletter editors
who need material to publish.
Whereas this helps satisfy a need ,
the result may be that many user
group newsletters will carry the
same material , and user group
members will not be encouraged
to write fresh articles for their
group newsletters.

In recent months we have seen
a decrease in the number of fresh
articles in user group newsletters
we have been receiving. The vital­
ity and continuing success of news­
letters-both your own group's
newsletter and Exchange-depends
on a continual flow of new artic­
les. We in IBM will continue to
write our own new material for
Exchange, but to attain a proper
balance, we need new material
from user group newsletters
as well.

This is a call for fresh articles
about IBM Personal Computer
hardware and software . I encour­
age you to develop and publish
good and valuable PC articles and
information for your own group
newsletter. Then , please be sure
that your group is sending us its
newsletter, so that we can see your
article.

We would like to receive news­
letters from user groups that are
not yet sending newsletters to us.
We make this request for two rea­
sons: (1) We are confident that
user group newsletters we do not
yet receive will contain fresh
articles equally as good as those
we have received thus far. (2) We
are considering distributing
Exchange to only those user groups
that send us their newsletters.

Please send your newsletters to
us at:

IBM PC User Group Support
IBM Corporation (2900)
P. 0. Box 3022
Boca Raton , FL 33431-0922

Thank you.

Michael Engelberg
Editor

"

Copyrights, Trademarks and Service Marks

ColorPaint by Marek and Rafa! Krepec
Incorporated.

Color Plus is a trademark of Plantronics
Corporation.

CompuServe is a trademark of Compu­
Serve. Incorporated.

CP/M is a registered trademark of Digital
Research, Incorporated.

CP/M-86 is a trademark of Digital
Research, Incorporated.

Data Encoder and its associated docu­
mentation are under the U.S. Department
of State Munitions list, Category XIII(b)
and. as such, must be licensed by the
U.S. Department of State prior to export
from the United States.

DIF is a trademark of Software Arts,
Incorporated.

Dow Jones News/Retrieval Service is a
registered trademark and Dow Jones is a
trademark of Dow Jones & Company.
l ncorporated .

EasyWriter is a trademark of Information
Unlimited Software. Incorporated .

Electric Poet is a registered trademark of
Control Color Corporation.

Fact Track is a trademark of Science
Research Associates. Incorporated.

Home Word is a trademark of Sierra
On-Line, Incorporated.

IBM is a registered trademark of
International Business Machines Corp.

INTERACTIVE and IS/5 are trademarks
of Interactive Systems Corporation.

Jumpman is a trademark ofEPYX,
Incorporated.

King's Quest is a trademark of Sierra
On-Line, Incorporated.

Logo is a trademark of Logo Computer
Systems Incorporated.

Lotus and 1-2-3 are trademarks of Lotus
Development Corporation.

Managing Your Money is a trademark of
MECA (TM).

MECA is a trademark of Micro
Education Corporation of America,
Incorporated.

Microsoft and the Microsoft logo are
registered trademarks of Microsoft
Corporation.

Multiplan is a U.S. trademark of
Microsoft Corporation.

NEC is a trademark of Nippon Electric
Co., Ltd.

PCjr is a trademark of International
Business Machines Corp.

PC Mouse is a trademark of
Metagraphics/Mouse Systems.

Peachtext is a trademark of Peachtree
Software Incorporated, an MSA company.

Personal Computer AT is a trademark of
International Busi ness Machines Corp.

Personal Computer XT is a trademark of
International Business Machines Corp.

pfs: is a registered trademark of Software
Publishing Corporation.

PlannerCalc is a trademark of Comshare .

REALCOLOR is a trademark of Micro
Developed Systems, Inc.

SHAMUS is a trademark of SynSoft(TM).

SMARTMODEM is a trademark of
Hayes MicroComputer Products, Inc.

Synonym information in PCWriter and
Word Proof is based on the American
Heritage Dictionary Data Base, Roget's
II, The New Thesaurus, owned by
Houghton Mifflin Company and used
with permission. Copyright 1982 by
Houghton Mifflin Company.

The Learning Company reserves all
rights in the Rocky, Bumble, Juggles and
Gertrude characters and their names as
trademarks under copyright law. Rocky's
Boots, Bumble Games, Bumble Plot.
Juggles' Butterfly, Gertrude's Puzzles.
Gertrude's Secrets and The Learning
Company are trademarks of The Learn­
ing Company.

THE SOURCE is a service mark of
Source Telecomputing Corporation,
a subsidiary of The Reader's Digest
Association, Incorporated.

Time Manager is a trademark of The
Image Producers, Incorporated .

Top View is a trademark of International
Business Machines Corp.

UCSD, UCSD p-System and UCSD
Pascal are trademarks of the Regents of
the University of California.

UNIX is a trademark of AT&T Bell
Laboratories.

VisiCalc is a trademark of VisiCorp.

Visi On is a trademark of YisiCorp.

WD212-X is a trademark ofWolfdata, Inc.

Word is a U.S. trademark of Microsoft
Corporation.

WordStar is a trademark of MicroPro
International Corporation.

XENIX is a trademark of Microsoft
Corporation .

Z-80 is a registered trademark of Zilog.

IBM's new PC Storyboard is
almost as much fun to use as
gameware, but the resulting
output is seriously useful in
business. (page 7)

You can tell what subdirectory
you are in and what time it is by
customizing the DOS PROMPT
command. (page 22)

In BASIC Compiler 2 .00, you can use the
BASIC Interpreter to run and debug programs
and later compile those programs to increase
their execution speed. (page 1)

IBM PC Storyboard could renew home interest
in PCs. It could turn into a whole new fun-and-
profit hobby all by itself. (page 8)

Since you can use each
function key " straight" or
with <Ctrl> , <Alt>, or
<Shift>, a function key menu
could easily have 40 different
choices! (page 32)

You can create a file to effect key reassignments
directly from the keyboard using the COPY
command and the PROMPT command. (page 11)

In the graphics screen modes, it is relatively
easy to define any or all of the uppermost 128
ASCII characters so that they become your own
customized graphics characters. (page 27)

G320-0845-0

