
March/ April 1986

Hardware
1 Principles of Disks and Diskettes

5 Extended Memory or Expanded Memory

6 Electrostatic Discharge and Computers

Software
7 The IBM PC Network Analysis Program

14 Software on the PCjr

15 Professional Graphics Software

22 APL Graphics Support: A Mystery Story

Device-Independent Graphics for PCs

27 Graphics Development Toolkit

30 The Software Handicap

33 Choosing Educational Software for Children

Random Data
35 Fooling with Boole

39 Passwords : A Serious Matter

Deparbnents
41 New Products

48 Editor's Comments

Exchange of IBM PC Information
--------- -- --- - -- - ---- - - ------ -----·-

Exchange of IBM PC Information is a
monthly publication of the National Dis­
tribution Division, International Business
Machines Corporation, Boca Raton,
Florida, USA.

Managing Editor Michael Engelberg
Technical Editor Bernard Penney
Associate Editor/

Design Director Karen Porterfield
Writer/ Automation

Con$ultant John Warnock
Editorial Assistant Lowell Blackham
Production Greg Klipstein
Automation

Consultant Sherry Reardon
Illustrator Jeff Jamison
User Group

Support Manager Gene Barlow

Exchange of IBM PC Information is distrib­
uted at no charge to registered PC user
groups. To register with us, please write
to:

IBM PC User Group Support
IBM Corporation (4704)
P.O. Box 3022
Boca Raton , FL 33431-0922

To correspond with Exchange, please write
to:

Editor, Exchange
IBM Corporation (4704)
P.O. Box 3022
Boca Raton, FL 33431-0922

POSTMASTER: send address changes to
Exchange of IBM PC Information , IBM
Corporation (4704), P.O. Box 3022, Boca
Raton FL 33431-0922

© 1986 International Business Machines
Corporation.
Printed in the United States of America.
All rights reserved.

IBM cannot be responsible for the security
of material considered by other firms to be
of a confidential or proprietary nature.
Such information should not be made avail­
able to IBM.

IBM has tested the programs contained in
this publication. However, IBM does not
guarantee that the programs contain no
errors.

IBM hereby disclaims all warranties as to
materials and workmanship, either
expressed or implied including without limi­
tation, any implied warranty of
merchantability or fitness for a particular
purpose. In no event will IBM be liable to
you for any damages, including any lost
profits, lost savings or other incidental or
consequential damage arising out of the use
or inability to use any information provided
through this service even if IBM has been
advised of the possibility of such damages,
or for any claim by any other party.

Some states do not allow the limitation or
exclusion of liability for incidental or con­
sequential damages so the above limitation
or exclusion may not apply to you.

It is possible that the material in this publi­
cation may contain reference to. or infor­
mation about, IBM products, programming
or services that are not announced in your
country. Such references or information
must not be construed to mean that IBM
intends to announce such IBM products,
programming or services in your country.

1

Principles of Disks and
Diskettes
Robert A. Flavin
I BM Corporation

This article is about the principles of IBM Personal
Computer disks, diskettes and their corresponding
drives.

Disk Terminology

Before we look at the details of the IBM PC's disk
system, let's review some of the basics of fixed disks
and diskettes.

In a computer disk system, a smooth disk, whether a
fixed disk or a diskette, is coated with a magnetic
material and spun around like a phonograph record.
A head, similar to a small, movable tape recorder
head, sits on (or near) the disk. The head reads and
writes data on the disk that spins underneath it.
Figure 1 illustrates the various parts of a disk.

A phonograph record has one continuous spiral
groove on each side, so the record player's arm moves
toward the center of the record as it plays. In con­
trast, a computer disk consists of a series of concen­
tric circles called tracks. The disk head reads from
and writes to a single track at a time.

Because the amount of data that can be stored on a
track is more than the computer can conveniently
handle, tracks are partitioned into sectors. A sector is
the smallest unit of storage on a disk.

If the disk head were not allowed to move, only one
track of the disk could be used, and the disk would
not be able to store much data. By moving the head
in or out along a radius of the disk, additional tracks,
physically smaller and larger, can be reached. This
increases the amount of data that can be stored on the
disk at the expense of the time needed to move the
head to the desired track and the expense of mechan­
ical complexity. Once the head reaches the right

Hardware

track, it remains in that position until another track
must be accessed.

Both sides of a disk can be coated with magnetic
material to double the storage capacity of the disk.
Rather than requiring the disk to be flipped like a
record, the disk drive can be outfitted with two heads ,
one on each side of the disk. The IBM Personal
Computer family has diskette drives (360KB and
1.2MB) that accommodate double-sided diskettes .

On a fixed disk drive, one set of concentric tracks
resides on a single "platter" that resembles a diskette .
The fixed disk drive actually consists of two such
platters stacked on a single spindle, with one head on
each side of each platter, for a total of four heads.
The fixed disk drives in the IBM Personal Computer
family are capable of storing either 1 OMB, 20MB or
30MB of data.

Because the two platters in a fixed disk drive are
stacked vertically, their tracks also are stacked. Simi­
larly, a double-sided diskette has stacked tracks. In
both cases, one stack of tracks, all of which have the
same radius, is called a cylinder.

Exchange / Mar-Apr 86

2

The concept of a cylinder is important for the sake of
efficiency. One cylinder is the maximum amount of
storage that the disk system can access without
moving the heads.

The four heads in a fixed disk drive, or the two heads
in a double-sided diskette drive, are connected to the
same arm. Like the tracks, the heads are vertically
stacked. The arm moves all the heads in or out at the
same time, and all the heads together access one cyl­
inder.

Numbering schemes are used to refer to each part of a
disk system. The outermost (largest) cylinder is cyl­
inder 0, and cylinders are numbered sequentially.
Heads are numbered from 0, but the order in which
they are numbered does not matter. Tracks are not
numbered, because a track's identity is determined by
the combination of its cylinder number and head
number. Sectors are numbered starting with 1. For
performance reasons, sectors are not physically
arranged in numerical order around the disk (see the
next sectiOn, The Operating System's View).

TOP

''''""."\
I
I

SIDE

I"''"'" :~ : Hl:J
I \\HIT! H h\D~

Figure I . Disk Components

Disks come in a variety of configurations. All disks
were once hard disks , with platters made of rigid alu-

minum coated with magnetic material. Diskettes,
more recently developed, are made of flexible mylar,
then coated. Because they flex , they are called floppy
disks or floppies. The introduction of diskettes made
it necessary to distinguish the old disks by calling
them hard disks. A hard disk that is permanently
mounted in a disk drive is called a fixed disk; other­
wise it is called a removable hard disk.

The Operating System's View
One of the operating system's tasks is to organize the
sectors on the disk into a file system that is conven­
ient for programs to use. To mask the complexities of
dealing with sectors, tracks and cylinders, the oper­
ating system uses sectors in the order of relative
sector number. The operating system begins by using
all sectors on one track ; next, it uses all tracks (heads)
in one cylinder; finally , it uses cylinders from the out­
ermost to the innermost.

The operating system is responsible for managing the
use of sectors, allocating the sectors to files , and
remembering which sectors remain free for future use.
Because it may be inconvenient for a microcomputer
to manage the tens of thousands of sectors on a large
disk, the operating system groups adjacent sectors
into a unit of storage called an allocation unit or
cluster.

In IBM Personal Computer DOS, the numbers of
sectors in a cluster must be a power of 2. The fixed
disk may have two, eight or 16 sectors per cluster,
depending on the size of the disk, whereas a single­
sided diskette has one sector per cluster. Cluster size
is determined at the time the disk is formatted; in the
case of fixed disks, cluster size is affected by the size
of the DOS partition.

Data Recording Techniques
In some pursuits, getting the inside track is an advan­
tage, but it doesn't work that way with disks. The
outer tracks on a disk have larger circumferences than
the inner tracks. Therefore the outer tracks provide
more linear room in which to store data.

Some disk systems change the linear density of data
on a track, depending on the circumference of the
track. This technique squeezes more storage out of
the diskette but increases the complexity of the hard~
ware and software. The IBM Personal Computer
maintains a constant amount of data per track,
making the inner tracks more densely recorded than
the outer ones.

Exchange / Mar-Apr 86

3

The tracks on 5-1 I 4 inch diskettes are physically
spaced at 48 tracks per inch . Each side of the
diskette contains 40 tracks , so the 40 tracks form a
band that takes up less than one inch of the 5-inch
diameter. (The disk itself is 5 inches in diameter; its
protective cover is 5-1 I 4 inches in diameter.) The
band of 40 tracks is located near the outer edge of the
disk because there the tracks can have the largest cir­
cumferences. Tracks with large circumferences make
the least demands on the quality of the magnetic
material and the precision of the head.

Recording density means the linear density of bits
around a track. Early hobby computers recorded data
at a density that has become known as single-density.
The IBM Personal Computer was originally
announced with single-sided diskettes that use
double-density recording-twice the number of bits
per track. Soon thereafter, IBM introduced double­
sided diskettes for the Personal Computer family.
The diskette capacity doubled, but the recording
density remained the same, double-density.

The IBM l .2MB High-Capacity Diskette Drive for
the Personal Computer AT uses quadruple-density
recording, which records at twice the linear density of
the older diskette drives . The 1.2MB drive also has
80 tracks per side, spaced at 96 tracks per inch.

Disk Capacities
The following discussion of disk capacities assumes
the use of DOS 1.10 or higher for formatting
diskettes.

A double-sided diskette can be formatted to store
360KB of data. This storage is calculated as follows:

A double-sided diskette has 40 cylinders-40 posi­
tions to which the heads can move. Each cylinder has
two tracks , one on each side of the diskette. Each
track has nine sectors. Data can be stored so densely
along a track that, in a single sector, 512 bytes can be
stored with room left over.

Multiplying all these numbers together:

40 cylinders per diskette
x 2 tracks per cylinder
x 9 sectors per track
x 512 bytes per sector

equals 368,640 bytes of data. Computer people
define the number 1,024 (2 to the tenth power) as
lK, so 1,024 bytes equals lK bytes, or IKB. To
reduce 368,640 bytes to a manageable number, divide
368,640 bytes/ diskette by 1,024 bytes per KB. The
result is 360KB of storage on a double-sided diskette .

A single-sided diskette has only one track per cyl­
inder, so similar calculations result in l 80KB of
storage.

A 1.2MB high-capacity diskette has 96 tracks per
inch and 80 tracks per side, twice as many as the
older diskettes. Finally, a high-capacity diskette has
15 sectors per track.

Multiplying:

2 sides/diskette
x 80 tracks /s ide
x 15 sectors/track
x 512 bytes/sector

yields 1,228,800 bytes/ diskette. Dividing this by
1,024 bytes/ K yields 1,200KB/ diskette. Next,
l ,024KB equals lMB, so 1,200KB divided by
l ,024K/ MB yields 1.17MB as the amount of storage
on a high-capacity diskette.

One of the operating system's
tasks is to organize the sectors on the

disk ...

Calculations for the lOMB fixed disk drive are as
follows:

306 cylinders per disk
x 4 tracks per cylinder
x 17 sectors per track
x 512 bytes per sector

equals 10,653,696 bytes, or 10,404KB, or 10.16MB
of data .

Exchange / Mar-Apr 86

4

Calculations for the 20MB fixed disk drive are:

615 cylinders per disk
x 4 tracks per cylinder
x 17 sectors per track
x 5 12 bytes per sector

equals 21,411 ,840 bytes, or 20,910KB, or 20.41MB
of data .

Calculations for the 30MB fixed disk drive are :

918 cy linders per disk
x 4 tracks per cy linder
x 17 sectors per track
x 5 12 bytes per sector

equals 31 ,961,088 bytes, or 31 ,212 KB , or 30.48MB
of data.

Disk Overhead
There is a difference between the amount of data that
theoretically can be stored on a track and the amount
that can be stored during actual use. The following
discussion is based on the characteristics of a 360KB,
5-1 I 4 inch diskette drive.

T he IBM Personal Computer file
system ... repackages the basic marvels
of magnetism into a form useful for

storing data in computers.

Recall that a track on a diskette has nine sectors, and
each sector can hold 512 bytes of data . Therefore, a
track actually holds 9 times 512, or 4,608 bytes of
data.

However, the unformatted capacity of that diskette
track is 6,250 bytes, calculated as follows :

The characteristics of the magnetic material and the
head are such that, on the innermost track of a
diskette, where the recording density is highest, the
drive can reliably record 250,000 bits per second.
Also, the diskette rotates at 300 revolutions per
minute, so it takes 0.2 seconds for the disk to rotate
once (0.2 seconds equals 60 seconds per minute
divided by 300 revolutions per minute) .

The amount of data that can be stored on a track is
the amount that can be written during one revolution
of the diskette . In one revolution, which takes 0.2
seconds, the diskette drive can write 0.2
seconds / revolution times 250,000 bits per second,
which equals 50,000 bits per revolution or per track.
These 50,000 bits equal 6,250 bytes per track
(50,000 bits/ track divided by 8 bits/ byte) .

Why is there such a difference between theoretical
capacity of the diskette and the amount of usable
storage? The answer is overhead. Every sector has
some overhead-some space used by the disk system
itself-for control information and to permit the
drive 's electronics to work properly.

Each sector starts with a sector header that identifies
the track, head and sector number. This sector
header is written to the disk when it is formatted and
is never changed (unless the disk is reformatted) .

The sector header is used to confirm to the drive
adapter-the interface electronics between the drive
and the Personal Computer-that the head is on the
right cylinder, that the correct head is active and that
the correct sector is under the head. Immediately pre­
ceding the sector header are some synchronization
signals that allow the drive adapter to get ready to
read the header. Following the header is a Cyclic
Redundancy Code (CRC), which is used to verify
that the sector header was read correctly. All of these
things contribute to sector overhead .

Following the header is a gap in the recording. This
gap gives the electronics time to change between read
mode and write mode. This gap is followed by
another group of synchronization data. Next comes
the actual data itself. Following the data is another
CRC, which verifies that the data was read correctly,
and another, larger gap before the header of the next
sector.

On the IBM 1 OMB, 20MB and 30MB fixed disk
drives , the second CRC is replaced with an Error
Correcting Code (ECC) . Although the ECC is some­
what longer, it is used not only to detect the occur;­
rence of some errors, but also to correct many of the
simple errors that can occur during reading.

The IBM Personal Computer file system is a complex
combination of hardware and software. It repackages
the basic marvels of magnetism into a form useful for
storing data in computers.

Exchange / Mar-Apr 86

5

Extended Memory or
Expanded Memory
Dave Hoagland
Lawrence Livermore National Laboratory

Extended memory and expanded memory are two
terms that often confuse computer users. This is
understandable since both terms describe ways to
append additional memory onto the 640KB maximum
that DOS allows for active memory.

Extended Memory
Extended memory, limited at the moment to the IBM
Personal Computer AT, is memory located above one
megabyte (lMB) . Extended memory can be
addressed either directly (with a different command
processor and the AT running in protected mode) or
by using bank switching techniques.

Bank switching schemes fool the software into
accessing extra "pages" or "banks" of memory just as
if they resided within active memory. Direct
addressing, on the other hand, allows the software to
access extended memory at unique locations outside
of active memory.

Expanded Memory
Expanded memory is constrained to bank switching.
Because memory addressing in the PC and PC XT is
limited to the first 640KB, any extra memory must be
switched in place of a portion of active memory within
the 640KB boundary.

Bank Switching Analogy
To explain the concept of bank switching, it may be
helpful to visualize a stack of books. Each book
represents 64KB of active memory. You are allowed
to stack books on top of each other to a maximum of
ten books, or 640KB. At this point, you cannot add
any more books.

The only way you can use more books in your stack is
by removing one, storing it somewhere else, and
replacing it with another. The switching of the top
book in the stack with other volumes (those for which
there was no room on the stack) could be considered
"bank switching."

In the expanded memory boards currently available,
this bank switching occurs in blocks of either 64KB or
256KB, depending on the manufacturer.

... the PC takes very unkindly to
attempts

to infringe on its space.

Where the System Resides
Since the 8088 and 8086 processors in personal com­
puters are capable of addressing memory up to lMB,
some of you may wonder what goes on in that never­
never land between 640KB and lMB. This is space
reserved for the system itself, including such things as
video memory. Suffice it to say that the PC takes
very unkindly to attempts to infringe on its space.
The table below helps clarify the way DOS utilizes the
lMB available in the PC and PC XT.

Address Name Function

000000- 5 12KB system System board memory
07FFFF board

080000- 128KB 1/0 channel memory - IBM
09FFFF Personal Computer AT

128KB Memory Expansion
Option

OAOOOO- 128KB video Reserved for graphics
OBFFFF RAM display buffer

OCOOOO- 128KB 1/0 Reserved for ROM on 1/0
ODFFFF expansion adapters

ROM

OEOOOO- 64KB Duplicated code assign·
OEFFFF Reserved on ment address FEOOO

system board

OFOOOO- 64KB ROM on Duplicated code assign-
OFFFFF system board ment at address FFOOOO

100000- Maximum 1/ 0 channel memory - IBM
FDFFFF memory 15MB Personal AT 5 l 2KB

Memory Expansion Option

FEOOOO- 64KB Duplicated code assign-
FE FF FF Reserved on ment at address OEOOOO

system board

FFOOOO- 64KB ROM on Duplicated code assign-
FFFFFF system board ment at address OFOOOO

Table 1. PC System Memory Map

Exchange / Mar-Apr 86

Electrostatic
Discharge and
the Computer
Connection
Mark L. Weber
North East Indiana IBM PC Club

We have all walked across a car­
peted room to turn on a light
switch, and been startled by the
stinging sensation of an
electrostatic discharge between
our fingers and the switch. The
shock didn't cause us any harm,
but if this type of discharge were
to occur between pieces of your
computer system, the chances are
good that at least one of the com­
ponents would be damaged.

You don't have to be a physics
major to understand the basic
principles of how static electricity
can wreak havoc with your equip­
ment. Indeed, computer users can
take a few simple precautions that
will protect their computer and

6

associated peripherals from
electrostatic discharge.

When objects are isolated from
each other, they tend to gain or
lose electrons. Even the friction
of air passing over an object can
strip electrons from the surface of
that object. Likewise, people
shuffling their feet across a rug
can cause an excess of electrons to
accumulate on their shoes. The
more time that two objects are
isolated from each other, the more
likely it is there will be a differ­
ence in the electrostatic charge of
the two objects. The difference in
electrical potential between iso­
lated objects can easily be as high
as 30,000 electron volts. When
differently charged objects come
physically close to each other,
electrons flow from the object
with the most electrons to the
object with the least electrons.
This flow of electrons lasts only a
split second, yet the rate of the
current flow will be extremely
high .

In a personal computer, the
maximum current flow that micro-

chips can handle is 15 to 30 amps,
depending on the chip involved.
You can imagine what would
happen if an electrostatic dis­
charge of 30,000 electron volts
were to occur between two pieces
of your computer system.

To prevent such a discharge from
occurring the next time you open
or re-connect your computer,
simply plug all components into
the power receptacle before con­
necting them to each other. This
way, any difference in charge
between the devices will result in a
flow of current between the
ground systems of the two compo­
nents . Most connectors used in
interfacing computer systems are
designed to allow the ground con­
nection to be made before the
critical 11 signal 11 lines make
contact. No damage will occur
when you connect your compo­
nents together because the
electrostatic charge in each com­
ponent will be the same. This one
little rule will prevent electrostatic
discharge from ruining any part of
your computer system.

Don't Forget: Park Your
Heads!

power off your PC, the heads are positioned over the
last cylinder your program accessed. Shaking or
jarring the heads while transporting the PC can
damage the oxide surface of the fixed disk. This can
result in disk errors and loss of your data.

Don Scanlon
IBM Corporation

(Editor 's note: Mr. Scanlon is a Service Planning Rep­
resentative for IBM's ISG Service Business Product
Planning.)

II k 11 h Often I find that PC users neglect to par t e
read/ write heads of a fixed disk before they move
their computers. I would like to emphasize that it is
crucial to park the heads.

The read/ write heads on a fixed disk remain where
they were last positioned. Therefore, when you

Exchange / Mar-Apr 86

To park your read/ write heads , use the Diagnostics
diskette that came with your Guide to Operations
manual , or the Diagnostics diskette from the PC
Hardware Maintenance and Service manuals. Insert
the Diagnostics diskette and boot your system. After
the program loads, you will see several options. Select
option 3, Prepare System for Relocation. This option,
which runs in only a few seconds, will park the
read/ write heads.

This short procedure will go a long way toward pre­
venting fixed disk head crashes.

7

The IBM PC Network
Analysis Program
Pat Tittizer
IBM Corporation

The Need for Network Management Tools
The IBM Personal Computer Network is a local area
network (LAN) designed to make personal computer
users more efficient and productive. By connecting
many personal computers together, the LAN lets
users send and receive files, have common disk files ,
and share printers with many users. This increases
the resources available to each user at less overall
cost.

As the size of a local area network increases,
however, a component failure (adapter card or cable)
or resource bottleneck (printer or disk constraint)
within the network becomes more likely.

Supporting the users of the network and planning for
expansion also becomes more difficult. Failure to

Software

correct these situations can result in inconvenience
and expense.

In network management, it is important to avoid these
problems, and keep the users as productive as pos­
sible. Overall, some of the major objectives of
network management are to :

Reduce the time and personnel required to locate
problems.
Improve the availability of the network.
Maintain a list of end-users.
Improve the end-user service.
Provide data for preventative maintenance of the
network.
Maintain an inventory of equipment.
Assist in planning for expansion of the network.
Ensure that change in the network is orderly and
controlled.

Overview of the I BM PC Network
Analysis Program

The IBM PC Network Analysis Program provides a
set of functions to help you manage your Network.

8

The Personal Computer Network Analysis Program
can help you :

Diagnose problem conditions.
Locate performance bottlenecks.
Install new PC Network Adapters on a network.
Maintain an inventory list of adapters and users
on a network.
Check the function of a PC Network Adapter.
Plan the growth of a network.

The program runs stand-alone on one of the PCs in
the network. It monitors the other computers on the
network independently of any software that they are
running.

The PCN Analysis Program is completely menu­
driven, with each menu uniquely numbered . Most of
the menus have on-line help panels. Each menu is
also explained in the User 's Guide. The User 's Guide
index lists the menus by number and by name.

The PCN Analysis Program includes a demonstration
mode to help you become familiar with the product.
The sample data presented in demonstration mode
typifies a network with a number of users, some of
whom are experiencing problems. You can enter or
leave demonstration mode at any time by selecting
"Start or Stop Demonstration Mode" on the Main
Function Selection menu, shown in Figure 1. A PC
Network Adapter is not required for the demon­
stration mode.

IBM PC Ne twork Analys i s Progr a m 1. 0

MAIN FUNCTION SELECTION

- Ne t work Status Monito r

2 - Vi ew o r Convert Log s

3 - De tail Ne t work Activi t y Monito r

4 - Direct o r y Mainte na nce

5 - Local Adap t e r Info rmatio n

6 Change Operating Optio ns

7 - St a rt o r Stop Demo ns tra t ion Mod e

SELECT ===> 1

Figure I. Main Function Selection Menu

Exchange / Mar-Apr 86

Program Highlights
The PCN Analysis Program has five major functions.
You select them from the Main Function Selection
menu.

Network Status Monitor
The major job of the PCN Analysis Program is to
monitor the activity on the network. The
Network Status Monitor does this by polling indi­
vidual adapters on the network and receiving their
status. Polling is done at set intervals. You can
select the polling interval, as well as which
adapters to poll.

T he IBM PC Network Analysis
Program provides a set of functions
to help you manage your network.

You can review the status collected from the
adapters on-line and optionally log it for later
review. The status is also checked against thresh­
olds you specify. When these thresholds are
exceeded, the program generates notices and
optionally logs the information . These notices
may alert you that some action is necessary to
correct an existing problem, or avoid a potential
future problem. You can monitor values
including packet error counts, packet collision
counts, adapters powering on/ off the network,
and overall network utilization .

While monitoring, the Network Status Monitor
adds less than five percent of the traffic on the
IBM PC Network. The actual traffic amount
added to the network is determined by the
number of network adapters monitored and the
polling interval.

View or Convert Logs
This function lets you process status logs and
notices outside of the network status monitor.
You can view logs, or convert the logs to an
ASCII file and process them with your own pro­
grams. The logs are helpful in tracing network
trends and tracking network performance.

The program diskettes contain a sample program
written in BASIC. You can use it as a model

9

when developing your own programs. The User's
Guide contains the formats of the logs, the con­
verted logs, and the directory.

Detail Network Activity Monitor
The Detail Network Activity Monitor investigates
the amount of data traffic between pairs of
adapters, giving an indication of the distribution
of load on the network. This is done by moni­
toring a subset of adapters on the network for
whatever length of time you specify. Data traffic
between this subset of adaprers is then detailed in
an on-line report.

The information provided by the Detail Network
Activity Monitor can help you balance your disk
or print server workload. For example, you can
trace the usage of a disk server by monitoring it
and all of its users . That way you can identify the
end user who place the greatest demand on a disk
server. If the disk server becomes overloaded,
you have the information you need to solve the
overload problem.

Directory Maintenance
The PCN Analysis Program provides you with
tools to create and maintain directories of the
users of the network. Each entry in a directory
contains the identification number of the adapter
and reference name of the personal computer
user. Optional fields are provided for additional
information such as the location and telephone
number of the personal computer user. The
format of a directory entry is in the User's Guide.
An example of the information in a directory
entry is shown in Figure 2.

Four directory functions are available. The
Update Directory function lets you access indi­
vidual directory entries. You can add new
entries, or change or delete existing ones. The
Change Directory Files function lets you specify
the directory that the PCN Analysis Program
uses . Multiple directories can be useful for cus­
tomizing monitoring functions and for analyzing
logs generated on different networks. The Build
Directory function builds an initial directory. The
PCN Analysis Program polls all the powered-on
adapters on the network for their adapter ID's
and creates entries for them in a new directory.
The Create Directory Listing function generates a
directory file in a printable format.

Local Adapter Information
The local network adapter is the one installed in
the PC that is running the PCN Analysis
Program. This function checks the optional set­
tings of an installed network adapter, confirming
the correct usage. Other information is pre­
sented, including the names of the users who are
communicating with the adapter.

T he information provided by the
Detail Network Activity Monitor

can help you balance your disk or
print server workload.

A special diskette, the Local Adapter Information
diskette, can be built to obtain the local adapter
information on any PC. It contains only this
function of the program. It can be run on any PC
in the network, not just the computer which has
the PCN Analysis Program installed.

The Local Adapter Information function can be
used to help install new adapters on the network.
You also can use it to check the operation of a
suspected malfunctioning adapter. If the Local
Adapter Information diskette is used, you can test
the adapter without removing it.

Using the PCN Analysis Program -
A Sample Scenario
The following is a simple scenario which describes
how to use some of the features of the PCN Analysis
Program. Other, more complete scenarios are in the
PCN Analysis Program User 's Guide and in the PCN
Analysis Program Technical Guide.

This scenario assumes that the PCN Analysis Program
has been installed and started. Installation and
starting instructions are in the User's Guide.

The sample menus in this article are some of the
actual screens the PCN Analysis Program displays
when run in demonstration mode. The menus pre­
sented here can be followed while referring to the
actual product.

Exchange / Mar-Apr 86

10

Sam is the network operator. Users call him when­
ever a problem occurs. He has the Main Function
Selection menu displayed on the personal computer at
his desk (see Figure 1) .

Sam receives a call from Julie Baker, stating that she
is unable to send a message to the Department 53
disk. Sam first verifies that both Julie Baker and
Department 53 are on the network. If he has printed
the directory, he can refer to it. Otherwise, he can
select option 4, Directory Maintenance. Within direc­
tory maintenance, he can use option 1, Update Direc­
tory, to verify that Julie Baker and Department 53 are
contained in the directory.

After verifying the reference names of the two
adapters involved with the inquiry, Sam returns to the
Main Function Selection menu and selects option 1,
Network Status Monitoring. This leads to a menu
containing the following three options:

Start Monitoring
This option does the actual status monitoring.

Notice Options
This option allows Sam to customize the limits

Exchange / Mar-Apr 86

that errors are tested against. He can also specify
the name of a file to contain the notice log.

Adapters Monitored and Logged
This option lets Sam select which adapters are to
be monitored and which of the monitored
adapters are to have status statistics saved in a
status log.

Sam first selects option 3 to make sure that the
adapters involved in the inquiry are monitored. The
Adapters Monitored and Logged screen, shown in
Figure 3, is displayed. Both "BAKER, JULIE" and
"DEPT53" are selected for monitoring.

Sam is then ready to begin the Network Status
Monitor. Within this option, the program will collect
adapter network statistics by polling the adapters
selected for monitoring at a regular interval that Sam
specifies. Adapter statistics can be logged to a status
log. If the program detects that a network or adapter
error count has exceeded its permitted threshold, it
generates a notice. Notices can be logged for later
review.

After the initial sample period has elapsed, the
Current Network Status menu is displayed, as shown
in Figure 4.

11

IBM PC Network Analysis Program 1.0
Name: BAKER, JULIE

Entry : 2 of 17
UPDATE DIRECTORY

Directory: NDDEMODR.DIR Adapter ID: 001678
===

TAB to those fields you wish to change and
type a new value. When finished, press ENTER .

REFERENCE NAME ===> BAKER , JULIE

OPTIONAL DATA ===> Phone : 2242
===> Office : 2A36
===>Cable 1 , Line

ENTER=Change
F6=Search for Entry

Figure 2. Update Directory Screen

F7=Previous Entry
FS=Next Entry

Alt+FS=Delete Entry
Alt+F6=Add Entry

ESC=Return

This panel is the main status monitor menu. From
this panel, Sam has an overview of the state of the
network, primarily in the utilization percentage and
the notice count. From here , he also can select one of
the three report types to obtain more detailed infor-

mation regarding the adapters selected for moni­
toring:

Status Log
The status log contains the adapter statistics gath­
ered by the Network Status Monitor. Sam can

IBM PC Network Analysis Program 1 . 0

ADAPTERS MONITORED AND LOGGED

Display Criteria : Monitor = ANY Log = ANY
Logging Option : YES File Name: NDDEMOST.LOG

Entry : 1 of 17

===
TAB to the Monitor or Log Option you wish to change and press the F2 key .

Reference Name Monitor Log
ANDERSON , LARRY ===> YES ===> YES
BAKER , JULIE ===> YES ===> YES
DAVIS , SUSAN ===> YES ===> YES
DEPT22 ===> YES ===> YES
DEPT53 ===> YES ===> YES
FILESERVER 1 ===> YES ===> YES
FILESERVER2 ===> YES ===> YES
FISHER, DAVE ===> YES ===> YES
GOLDEN , ROBERT ===> YES ===> YES
HATHAWAY, MARTIN ===> YES ===> YES

===
F6=Search for Entry Alt+F1=Logging Options Alt+f2=Change Display Criteria

Figure 3. Adapters Monitored and Logged Screen

Exchange/Mar-Apr 86

12

IBM PC Network Analysis Program 1. 0

CURRENT NETWORK STATUS

Utilization:
Response Time Fac t or :

Packets Sent:
Packets Received:

Adapters

Responding :
NOT Responding:
NOT Monitored:

16
1
0

5%
1 . 0

32760
32244

Time of Sample : 10 :14
Sampling Interval: 5

Total Notices : 64

First Notice for
Last Interval : 35

% of Adapters > Threshold

CRC Errors: 25
Al ignment Errors : 25
Collisions : 12
Aborted Transmissions: 0
Retransmissions : 87
Resource Errors : 12

Alt+F8=Status Log Alt+F9=Adapter Reports Alt+F10=Notice Log

Figure 4. Current Network Status Screen

view the statistics for each individual adapter,
sorted by time of occurrence. This log is useful in
spotting trends, such as peak activity time or fre­
quent downtime.

Adapter Reports
The adapter reports contain information related
to the state of the network at the last time the
Network Status Monitor polled the adapters.
There are eleven different reports, each sorted by
a significant network condition (such as an indi­
vidual error rate) .

Notice Log
The notice log contains a list of the notices gener­
ated by the Network Status Monitor. Notices are
generated when the ne :work is not performing
within the limits specified by the network oper­
ator.

After checking the network utilization on the Current
Network Status menu and seeing that the network has
some traffic but is not too busy, Sam checks the state
of the adapters he is interested in by viewing the first
adapter report , All Adapters by Reference Name.
This menu is shown in Figure 5.

Sam finds that the Department 53 adapter is
responding, meaning that it answered the last poll
request from the Network Status Monitor. He tabs to
the line containing "DEPT53" and selects the Current
Status function to find out more information about
the adapter. The program polls the Department 53
adapter agai n and displays the Current Adapter Status
Screen shown in Figure 6.

Sam sees that the adapter still appears to be working
properly. He keys PgDn to look at the adapter's
network name, DEPT53 . Sam then calls Julie back to
ask how she is trying to access the adapter. He dis­
covers that the network name Julie is trying to use is
DEPARTMENT53 . He has her change the name to
DEPT53 and send the message again. This time the
message is sent successfully.

Since Julie Baker's problem has been solved, Sam
exits the Network Status Monitor and returns to his
other duties.

Other examples of network problems are simulated by
the data presented in demonstration mode. These
include an example of an overloaded server and an
adapter turned off. Guidelines in solving these prob­
lems are described in the PCN Network Analysis
Program User's Guide.

Exchange / Mar-Apr 86

13

IBM PC Network Analysis Program 1. 0

ALL ADAPTERS BY REFERENCE NAME Entry : 1 of 17

Reference Name Status
===

ANDERSON, LARRY
BAKER , JULIE
DAVIS , SUSAN
DEPT22
DEPT53
FILESERVER 1
FILESERVER2
FISHER , DAVE
GOLDEN , ROBERT
HATHAWAY , MARTIN
JOHNSON , MARY
MILLER , JOHN
THOMAS , BOB

Responding
Responding
Responding
Responding
Responding
Responding
Responding
Not Responding
Responding
Responding
Responding
Responding
Responding

===
F6=Search for Entry F9=Last Status F10=Current Status

Figure 5. AU Adapters by Reference Name

(1. 1.5)
Name : DEPT53

IBM PC Network Analysis Program 1 . 0

CURRENT ADAPTER STATUS Screen 1 of 2

Contact : Larry Anderson at 2120
Office : 2C 10
Cable 4 , Line 2

CRC Errors :
Alignment Errors:
Collisions :
Abor ted Transmissions :
Retransmiss i ons:
Resource Errors:

Packets Sent:
Packets Received :

Pending Sessions:

0
1

101
0

528
0

2532
2647

2

Sample Time: 10 : 15
Time on Network: 1:14
Status: Responding

Adapter ROM
Remote IPL :

Version : 01 - 23
Disabled

Configured Sessions :
Configured Cmd Blks:
Free Command Blocks :
Max Packet Size :
Number of Adapter Names:

16
8
5

750
1

===
F10=Repeat Current Status

Figure 6. Current Adapter Status Screen

Exchange/ Mar- Apr 86

Software on the
PCjr
Bob Kerns
Indiana IBM-PC Club

The PCjr with l 28K and diskette
drive will run a significant per­
centage of the commercial soft­
ware made for the PC. The main
restriction seems to be the
memory space needed to run the
application. If the PCjr is
expanded beyond 128K, then
perhaps 90-95 % of the available
commercial software will run.
With expanded memory, the main
restriction then becomes the
location of the video memory and
the logic of the software to find it
on the PCjr.

The caveat for buying commercial
software for the PCjr is the same
as with any other computer: if
possible, try it before you buy it.

One popular commercial program
available today, Lotus 1-2-3, has a
special PCjr version of the
program using the cartridge
system of the PCjr. This allows
1-2-3 to run on a 128K machine.

However, if you have 256K or
more, you can run the diskette
version as well. Everything will
work fine except the graphics
display on the screen. This is
because the graphics board on the
PC works differently than the one
supplied on the PCjr. Lotus has
made available a diskette which
contains the drivers necessary to
run graphics on the PCjr.

Another popular program is
dBASE IL This program will run
on the PCjr with no problems. If
you have more memory than
128K, it may be advisable to put
the program in RAM memory and

14

use the diskette drive for data on
the same diskette . If you are
entering a lot of data over a long
period of time, you may want to
use the dBASE COLOR
command. This allows you to
change the screen colors. The
command is:

SET COLOR TO n<foreground> ,
m<backgr ound> .

Changing colors every now and
then helps prevent eye fatigue .

Multiplan is another popular
spreadsheet that runs on the PCjr.
Most of the commands are exactly
the same for the PCjr as the PC.
Any differences are noted in the
screen help documentation.

If you enjoy games, the Flight
Simulator runs very well on the
PCjr. The program diskette con­
tains a version just for the PCjr,
and the documentation has a key­
board overlay for the PCjr key­
board. With the PCjr's enhanced
graphics , the 16-color mode may
look a little better than on the PC.

Exchange / Mar-Apr 86

Both word processors I've tried ,
Wordstar 3.3 and pfs: Write, work
very well. These are only two of
many word processors that will
run on a PCjr.

There is one word of caution. If
you work with both a PC and a
PCjr using the same programs,
you will notice that the applica­
tions run slower on the PCjr. This
is because PCjr was not designed
for a business environment and
was not expected to perform the
same job as a PC. The speed dif­
ference is small and does not
interfere with the application. Be
assured there is nothing wrong
with the program or the computer
if it takes a little longer to run on a
PCjr.

(Editor 's note: For further informa­
tion, please see "Memory Intensive
Programs on the PCjr" in the
January/ February 1986 issue of
Exchange.)

15

Professional Graphics
Software

John Warnock
IBM Corporation

Editor's note: This article is adapted from the IBM
Personal Computer Seminar Proceedings.

IBM has a number of personal computer hardware
and software products for the engineering and scien­
tific communities.

The hardware products include:

Professional Graphics Controller
Professional Graphics Display
Data Acquisition and Control (DAC) Adapter
Data Acquisition and Control Adapter Distrib­
ution Panel
General Purpose Interface Bus (GPIB) Adapter

To support these hardware products, IBM has a
number of software products, including:

Four professional graphics software development
tools:

Graphical Kernel System (GKS)
Graphical File System (GFS)
Plotting System (PS)
Graphics Terminal Emulator

A powerful programming language

Professional FORTRAN compiler

Two data and laboratory information acquisition
programs:

Data Acquisition and Control (DAC)
Adapter Programming Support

General Purpose Interface Bus (GPIB)
Adapter Programming Support

This article focuses on the graphics software products.

IBM Personal Computer Professional
Graphics Software
The IBM PC graphics software products give applica­
tion developers a fast, uniform method of creating
graphics-based applications. This method uses a
standard graphics interface that is consistent with
graphics devices. Figure 1 shows the relationships of
the four products listed above.

Note: Figure 1 does not imply that all four software
products co-reside in memory.

IBM Professional Graphics Product Summary
The IBM Engineering/ Scientific Series of graphics
products has adopted the proposed graphics standards
of the International Standards Organization (ISO)
and the American National Standards Institute
(ANSI). These standards allow graphics applications
to support all hardware devices that accept the stand­
ards.

DOS

Device Drivers for Displays,
Prin tcrs, Plotters, etc.

- - - - - - - - - - - - - - - -
VOi Controller

GKS I PS I GFS Graphics
Terminal

Application I Emulator

Figure 1. Relationship of PC Graphics Software

Thus, application programmers need not be concerned
with specific hardware, and can write software that is
easily migrated to other devices.

The Virtual Device Interface (VDI) is the foundation
for all of the IBM PC professional graphics software
products. The VDI includes a VDI Controller that
follows the proposed ANSI X3H3 definition. The
graphics software products use the VDI and its device
drivers to communicate with a variety of displays,
printers, plotters, etc. Should you need to, you can
write your own device drivers for use with the VDI.

The Graphical Kernel System (GKS) is an implemen­
tation of the proposed ISO/ ANSI GKS standard. It
includes graphics functions that can be called by
several popular languages.

Exchange/Mar-Apr 86

16

The Graphical File System follows the proposed ANSI
Virtual Device Metafile (VDM) standard for storing,
retrieving and manipulating graphic images. It pro­
vides a program interface and an interactive interface
for application developers.

The Plotting System is a VDI-based product for devel­
oping presentation graphics. It is a library of common
charting and plotting routines.

The Graphics Terminal Emulator lets a personal com­
puter emulate one of several popular graphics display
terminals. It allows communication with a host com­
puter.

Graphical Kernel System
The IBM PC Graphical Kernel System provides a set
of functions that the majority of applications can use
to produce computer-generated pictures.

The Graphical Kernel System is based on the Virtual
Device Interface and benefits from the VDI's versa­
tility. The GKS uses built-in device attributes of the
VDI Controller and device drivers.

The Graphical Kernel System is based on proposed
ISO/ ANSI standards intended to aid graphics applica­
tion programmers in understanding and using graphics
methods. The resulting programs conform to
ISO/ ANSI standards and can run on any system that
supports the GKS standards. Also, the standards give
device manufacturers guidance about useful graphics
capabilities.

Highlights
The Graphical Kernel System provides program por­
tability between computer systems that support the
GKS standard. Portability is accomplished by pro­
viding a consistent interface in high-level languages.

The Graphical Kernel System is designed to:

Provide device independence to graphics applica­
tions.

Conform to ANSI implementation with full 2B
segmentation features of the GKS standard.

Support segmentation functions . (A segment is a
collection of graphics primitives that can be dealt
with as a unit through a range of graphics manip­
ulations, including transformation scaling, high­
lighting, visibility, and detectability.)

Include a rich set of inquiry functions.

Provide five different classes of input functions:
locator, string, pick, choice, and valuator.

Support 2D graphics primitives.

Provide the following language bindings:

IBM PC BASIC Compiler
IBM PC FORTRAN 2.00
IBM PC Professional FORTRAN
Lattice C compiler by Lattice Corporation

Exchange / Mar-Apr 86

17

Support transformation between device coordi­
nate, normalized device coordinate and world
coordinate systems.

Workstations
In addition, the Graphical Kernel System supports
four categories of workstations:

OUTPUT An example is a printer.

INP UT An example is a joystick.

OUTIN (Output and Input) . An example is a
display with a keyboard used to output
graphical images and input keystrokes.

WISS (Workstation-Independent Segment
Storage) . WISS is a virtual device that
allows segments to be stored independent
of any particular physical workstation.

The IB M PC graphics software pro­
ducts give application developers

a fast, uniform method of creating
graphics-based applications,

GKS Routines
According to the tasks they perform, GKS routines
are separated into nine categories:

Control routines
Output routines
Attribute routines
Transformation routines
Segment routines
Input routines
Inquiry routines
Utility routines
Error handling and logging routines

A discussion of each of these nine routines follows .

Control routines affect the state of the system, or
the state of the workstation . These routines
include:

Initializing and terminating the system.

Exchange / Mar-Apr 86

Opening, activating, deactivating, closing,
clearing and updating the workstation.
Redrawing all segments on the workstation
and escaping. The escape routine lets you
issue commands directly to the device , so you
can take advantage of any non-standard fea­
tures available on your particular graphics
device.

Output routines display the basic and generalized
graphics primitives listed above.

Attribute routines modify the appearance of the
basic graphics primitives. The modifiable attri­
butes include:

For this
Primitive

Polyline

These Attributes
Can be Modified

Color
Width scale factor
Type (minimum of six types of

polylines)

Polymarker Color

Fill Area

Text

Size scale factor
Type (minimum of six types of

polymarkers)

Color interior styles (hollow, solid,
pattern, hatch)

Style index, an index into the pattern
or hatch table (minimum of six
styles)

Color font, string precision and
character precision

Character height
Character up vector, the direction of

the text string
Alignment, including three horizontal

and three vertical justifications

The Graphical Kernel System does not provide
attributes for generalized graphics primitives.
Each generalized graphics primitive assumes the
current attributes of the basic GKS primitive it
most closely resembles. For example, arcs use
current polyline attributes; bars, pie slices, and
circles use fill area attributes.

The number of available choices for an attribute
is sometimes determined by the specific capability
of a device. For example, the number of available
text fonts is determined by how many hardware

18

fonts the device supports, and the number of
available polyline colors is determined by how
many colors the device supports.

Transformation routines perform mapping
between the three coordinate systems available in
GKS.

1. The world coordinate (WC) plane is a user­
defined Cartesian coordinate system. You
build your graphics image in world coordi­
nates, then define the range of world coordi­
nates with the Set Window transformation
routine.

2. The normalized device coordinates (NDC)
plane is a standardized virtual plane that pro­
vides a uniform coordinate system for all
workstations. You define the range of nor­
malized device coordinates with the Set
Viewpoint and Set Workstation Window rou­
tines.

3. The device coordinate (DC) plane is the
portion of the device surface that will be used
to output graphics. You set the range of
device coordinates with the Set Workstations
Viewpoint routine.

Normalization transformation maps WC to NDC ,
and workstation transformation maps NDC to
DC. Eight normalization transformation numbers
can be defined at one time in GKS. The Select
Transformation Number routine is used to select
the effective transformation number.

T he Graphical Kernel System pro­
vides program portability

between computer systems that
support the GKS standard.

By default, the normalization transformation
number 0 maps WC (0.0, 1.0) x (0.0, 1.0) to
NDC (0.0, 1.0) x (0.0, 1.0). The default work­
station transformation maps NDC (0.0, 1.0) x
(0.0, 1.0) to DC using the largest square that fits
on the device surface.

Exchange / Mar-Apr 86

Segment routines are primitives grouped together
so you can operate on them as a single object. To
create a segment, you call the Create Segment
routine , then call the output routines that create
the primitives for the segment. You call the Close
Segment routine to define the end of the current
segment.

When a segment is created, it is automatically
stored in all output workstations that are active.
To store a segment into a workstation, the asso­
ciate segment with workstation routines can be
used.

The Delete Segment routine removes the segment
from all workstations. The Delete Segment From
a Workstation routine is limited to a single work­
station.

The attribute routines can modify the following
attributes of segments:

Visibility
Detectability
Highlighting
Segment priority
Pick identifier

Any existing segment can be transformed by the
Set Segment transformation routine. For input
parameters, this routine accepts fixed point, shift
vector, rotation angle and scaling factors . For the
output parameter, you specify a transformation
matrix. The routine then calls on the Evaluate
Segment Transformation routine to calculate this
matrix.

Input routines support five input classes for inter­
active graphics : locator, choice, string, pick and
valuator.

With the locator routine, you move a graphics
cursor on the screen to select an input posi­
tion. The routine returns the value of the
point in world coordinates, together with a
normalization transformation number.

The choice routine usually asks you to choose
among fixed alternatives by pressing a button
or function key on a device. For example,
the keyboard function keys act as a simulated
device. By pressing the keys, you cause the
routine to return a non-negative integer value
that represents a selection from a number of
choices.

•

19

The string routine lets you enter a character
string into your program. The character string
typically comes from the keyboard.

The pick routine moves the graphics input
cursor over the display screen to pick a
segment on the display surface. It returns a
segment name, pick identifier and the status.

The valuator is a routine used to enter a real
number value. It sets a valuator device. For
example, turning a dial to the position which
represents the value you want.

Each of the five input routines can operate in one
of two modes: request mode or sample mode.

1 . In request mode, execution of the program is
held until you respond with a request mode
trigger. For example, when a locator function
is invoked in request mode, the program stops
until you move the cursor to the desired area
on the screen and terminate the request. You
may terminate the request by pressing the
Enter key on the keyboard or by pressing the
corresponding joystick buttons.

2. In sample mode, program execution is not
held. Input routines under this mode return
the values that are the current measure. of the
physical workstation at the time the routines
are called. For example, the sample mode of
the locator routine returns the current posi­
tion of the graphics cursor at the time the
routine is called.

The Graphical Kernel System provides an exten­
sive set of inquiry and utili ty routines as well.
Using the inquiry routines, your application pro­
grams can ask for the current operating state,
workstation information, current setting of the
primitive attributes, segment attributes and device
capability. The utility routines make it more con­
venient to compute transformation matrices and
to handle packed data records.

Finally, GKS includes error handling and error
logging routines. For each routine listed above, a
finite number of error situations is defined, and
can be classed accordingly:

Class 1 errors result in a precisely defined
reaction. For example, when the viewport
rectangle set is invalid, GKS reacts by logging

an error message in the error file of the appli­
cation program and ignoring the function call.

Class 2 errors result in an attempt to save the
results of previous operations. When a
memory error occurs, or a workstation cannot
be opened, GKS reacts by displaying the
error message on the console and transferring
control to the operating system console.

Class 3 errors are those that cause unpredict­
able results including the loss of information
or control. A hardware failure is an example.

During processing, GKS is always in one of
the following five operating states:

Kernel system closed
Kernel system open
At least one workstation open
At least one workstation closed
Segment open

Each Graphical Kernel System routine requires
the system to be in a certain operating state. If
you make a call in the wrong operating state, you
will receive a "Kernel System not in proper state"
error message.

Fundamental to the Virtual Device
Metafile notion is the ability

to conveniently archive graphic images .. .

Graphical File System
The IBM PC Graphical File System is an implementa­
tion of the Virtual Device Metafile (VDM) . Funda­
mental to the Virtual Device Metafile notion is the
ability to conveniently archive graphic images on
commonly available storage media.

A metafile consists of one or more pictures. Each
picture has its own header and trailer data, data spe­
cific to the picture itself and a set of metafile elements
or instructions made up of operation codes and
parameters. The structure and definition of metafile
elements are consistent with the proposed ANSI
X3H33 standard.

Exchange / Mar-Apr 86

20

The metafile is created by an appropriate device
driver, operating under the Virtual Device Interface
(VDI) , which translates the graphics commands issued
by an application program into the metafile
instructions.

To recreate a picture, a metafile interpreter program
reads the file, interprets the elements and reissues the
VDI commands for execution by the output device
driver. Output can be directed to a printer, plotter or
any supported display, no matter what display was
originally used.

Output also can be directed to a metafile to save as a
new picture. Thus, a metafile containing separate pic­
tures of three ships can be combined to show all three
ships in one picture and the resulting picture can be
saved.

Because pictures are stored in a device-independent
manner , they can be ported to and shared with other
computers and installations without recalculation. All
that is needed is a metafile interpreter to read the file
to the application.

Images can be composed from existing metafile
images and some basic editing may be performed
during the composition process.

Metafile Encoding
There are six classes of elements in a metafile:

Descriptor
Control
Picture
Graphical
Attribute
Escape

Depending on the number of parameters, the ele­
ments are characterized as short or long. The first 11
bits define the operation code, with bits 5 through 11
defining the operation ID. Bits 12 through 15 specify
the class.

The two basic parameter types in a metafile are string
and 16-bit integers. String types consist of a count of
ASCII characters followed by the encoded list of one­
byte ASCII characters. The character count is one
byte in short form or a 16-bit integer in long form.
The 16-bit parameter type is an integer that can
handle data ranging from -32768 to 32767. All
parameters end on 16-bit boundaries and strings are
padded to even byte boundaries where necessary.

The programming interface lets you interrogate each
element of the picture as it is read from the metafile.
You can take action based on the class and ID .

The IBM Graphical File Programmer's/ User's Guide
provides a detailed description of the operation codes
and their meaning.

Interfaces
The Graphical File System offers two user interfaces:

Interactive interface
Programming interface

The interactive interface lets you communicate with
the Graphical File System through an interactive,
icon-driven screen display. This interface provides
the environment for:

Composing and viewing an image. You can select
the area of the screen for viewing and, if desired,
combine multiple images on one screen.

Creating a new metafile picture for later viewing.

Directing the image to an output device such as a
plotter or printer.

Exchange / Mar-Apr 86

21

Other icons let you specify the size of the displayed
image and erase components of an image.

The programming interface functions enable you to
write programs that control and interpret metafiles.
You can perform some rudimentary editing or even
create your own metafile interpreter. A simple
example is to create a presentation from a set of
metafile pictures that were created separately by dif­
ferent applications.

B ecause pictures are stored in a device­
independent manner,

they can be ported to and shared with
other computers ...

These functions are available as a subroutine package
to application programmers who create their programs
using the following language compilers:

Compiler Library Name

FORTRAN Version 2.00 FORMETA.LIB
Professional FORTRAN
Lattice C Version 2.00
BASIC Compiler

PFMETA.LIB
CMETA.LIB
BASMET A.LIB and

MHEAP.OBJ

The language bindings provide 15 functions in the fol­
lowing categories:

1. Initialization and termination, consisting of four
functions :

The Open Metafile function makes a speci­
fied metafile available for reading and returns
an integer identifier to be used with other
function calls.

The Close Metafile function is used when
interpretation is complete.

The Open Workstation function prepares a
workstation to receive graphic output,
including clearing the display surface. The
workstation is specified by using one of the
logical workstation names ("DISPLAY" ,
"PLOTTER", etc.), and the function returns

an integer identifier (device handle) to be
used on subsequent calls.

The Close Workstation function is the con­
verse of the Open Workstation function.

2. Picture control.
Once the metafile is opened, and prior to inter­
pretation, an individual picture must be selected
using the functions:

Open Picture, which identifies a specific
picture by its integer.

Close Picture, which indicates that interpreta­
tion is complete.

3. Interpretation.
Two classes of functions are available for inter­
preting:

The Interpret Picture function identifies a
complete picture to be interpreted and also
specifies the output device on which the
picture should appear.

This class consists of three functions that let
you proceed through the metafile item-by­
item (or element-by-element) starting at a
given picture:

Inquire Metafile Item (Element) Length
function, which returns the length (in
bytes) of the next element in the metafile
before it is loaded into a buffer. (This is
necessary because metafile elements vary
greatly in length.)

Get Metafile Item function, which reads
the next element into the buffer.

Interpret Metafile Item function, which
interprets the element in the buffer and
directs it to the specified output device.

4. Workstation metafile control, performed by the
Clear Workstation function, which:

Clears CRT devices.
Displays all pending graphics on plotters and
printers.
Prompts for new paper on plotters; advances
to top-of-form on printers.
Initiates a new picture if a metafile is speci­
fied .

Exchange / Mar-Apr 86

22

5. Cutting and pasting. Pictures are defined in a
virtual device coordinate (VDC) space of
0-32767 on the x and y axes. They are portrayed
on a viewing surface with device-dependent
dimensions restricted to 0-32767 on each axis.
(Thus the Color Graphics Adapter is 32767 by
22500.)

the display surface. These functions provide the
basic mechanism to superimpose several pictures
on one image.

6. Error and Status Detection. You can determine
the cause of an error by using the Inquire
Metafile Error function . (The error codes are
listed in appendix A, of the IBM Graphical File
System Programmer's / Users Guide.) Also, the
Inquire Metafile Version function identifies the
current version and level of the Graphical File
System.

The Set Window function in the Graphical File
System lets you "cut" part of a picture by speci­
fying a rectangular area or window in the VDC
space. Using the Set Viewport function, this
"cut" can be "pasted" to any rectangular area on

APL Graphics
Support, a
Mystery Story
Anne Ross
Poughkeepsie IBM Microcomputer

Club

When an APL program runs,
output is usually written to the
screen sequentially. When the
screen is full, the information is
scrolled up and the new line
placed at the bottom.

It is also possible to display output
in certain predefined areas of the
screen called windows. In this
case there is no scrolling. The
output can be in the form of char­
acters or images formed of indi­
vidual dots (pixels) . It may be in

color and it is possible to read
input from the screen as well as
write output to it.

Interactive use of the screen as
implemented in APL 1.0 is the
topic of this article. Getting it to
work has been quite an adven­
ture! My first attempt to write
characters in a screen window was
successful but flashed on and off
the screen so fast I didn 't see it. A
delay statement was needed.

The program SETSCR shows in
Figure 1 how these problems were
solved. The first section of the
program shows the creation and
use of a window in character
mode. Lines 10 to 14 establish
communication between an
APL-defined function and the
AP205 full-screen processor. Line

16 clears the screen and sets it to
40-character color mode. Lines
19 and 24 define windows and
establish the new screen format.
Then lines 25 to 30 write a vextor
of characters to the window.

Next I decided to draw a graph
using pixel graphics in high resol­
ution mode. The first point of
confusion was that the window is
defined in terms of the number of
characters it can contain, whereas
the graphics image is formed of
8-by-8 pixels in each character
position. In addition, the size of
the window is limited by the fact
that no APL object can have more
than 32,767 elements. The defi­
nition of this window is shown on
lines 3 2 and 3 7. A boolean vector
is written to this window on lines
38 thru 41.

Printing APL Programs
John Warnock
IBM Corporation

We solved this problem by using our IBM 3812
Pageprinter. Our 3 812 Page printer has two APL
fonts: a 10-pitch font and a 20-pitch font.

The program listing in this article presented an inter­
esting challenge: how to list a program written in APL
and maintain quality output. Personal Computer APL
supports the IBM Graphics Printer which is fine for
daily use, but not for typesetting.

Exchange/Mar-Apr 86

For these fonts, we printed a chart showing the ASCII
values for the special APL characters. Next, using
Personal Editor, we keyed in the programs substi­
tuting the appropriate ASCII values for special
symbols. We then preceded the listing with an
instruction to load the 10-pitch APL font, and to use
character set 2. Finally, we sent the file to the
printer.

'

•

[1]
[2]
[3]
[4]
[SJ
[6]
[7]
[8]
[9]
[10]
[11 J
[12 J
[13]
[14]
[lS]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[2SJ
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[3SJ
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[4SJ
[46]
[47]
[48]
[49]
[SO]
[Sl]
[S2]
[S3]
[S4]
[SS]
[S6]
[S7]
[58]

23

SETSCR[O]
VSETSCR:T;RC;GRAF;C;D;FA
A::

A

A

A

A

A

PROGRAMMER/DATE

SYSTEM

ANNE ROSS 8/6/8S

IBM PC IBM APL DOS 2.0

A::

A A REQUEST TO SHARE VARIABLES WITH AP205, THE FULL SCREEN AUXILIARY
A PROCESSOR. SEE APL REFERENCE BOOK CHAPTER 3 PAGES 10 - 20
RC+205 OSVO 2 lp'CD'
•Cv/RCtl 1)/'+0UT,CT+ODL 10),0pO+''OFFER FAILED'''

A A REQUEST TO SHARE VARIABLES C & D.
RC+OSVO 2 lp'CD'
•(v/RCt2 2l/'+OUT,CT+ODL lOl,OpO+''C & D NOT SHARED'''

A SET THE SCREEN TO 40 CHARACTER COLOR MODE VIA THE CONTROL VARIABLE.
C+O 4
•COtRC+Cl/'+OUT,CT+ODL lOl,OpO+''SCREEN NOT SET TO COLOR 40' ''

A DEFINE A WINDOW ON THE SCREEN.
FA+2 2 1 30 2 2

A ASSIGN A MATRIX OF FIELD DEFINITIONS TO THE DATA VARIABLE.
D+FA+l 6pFA

A ESTABLISH NEW SCREEN FORMAT.
C+l
•COtRC+Cl/'+OUT,CT+ODL lOl,OpO+''FIELD DEFINITION N.G.'''
CHAR+'TEXT IN A WINDOW

A ASSIGN CHARACTER DATA VECTOR TO D.
D+CHAR

A WRITE CHARACTERS TO THE SCREEN.
C+2 1
•(OtRC+l/'+OUT,CT+ODL lOl,OpO+''FIELD 1 N.G.'''
T+ODL 20
C+O 8
•(OtRC+Cl/'+OUT,CT+ODL lOl,OpO+''SCREEN NOT SET TO HI RES'''
FA+2 2 lS 30 2 2
D+FA+l 6pFA
C+l
•(OtRC+Cl/'+OUT,CT+ODL 10l,Op0+''FIELD DEFINITION N.G.'''
GRAF+C240x64lpC240pl),((240x7lp0)
D+GRAF
C+2 1 1
•COtRC+Cl/'+OUT,(T+ODL lOl,OpO+''GRAPHICS DATA N.G.'''
T+ODL 20
C+O 4
•COtRC+Cl/'+OUT,(T+ODL lOl,OpO+''SCREEN NOT SET TO LO RES'''
FA+4 4 8 30 2 1
D+FA+l 6pFA
C+l
•COtRC+Cl/'+OUT,CT+ODL 10l,Op0+' 'FIELD DEFINITION N.G.'''
GRAF+C240x64lpC240pl Ol,CC240x7lp0),C240p0 1J,C240x7lp0
D+GRAF
C+2 1 1
•<OtRC+Cl/'+OUT,CT+ODL lOl,OpO+''GRAPHICS DATA N.G.'''
T+ODL 20

OUT:
O+O 8
RC+C
RC+OSVR 2 lp'CD'
RC+OEX 2 lp'CD'

Figure 1. Sample APL Program

Exchange / Mar-Apr 86

24

Device-Independent
Graphics for PCs
Jim Glass
Rocketdyne Microcomputer Users Group

Device independence means that a graphics system is
programmed to handle the nitty details of pixel
addressing, aspect ratio , etc. so the user does not have
to know the exact characteristics of the hardware that
will draw the graphics. By writing a device­
independent graphics application, you write the
program once and can then use it on a wide range of
devices (screens, plotters, printers, etc.) without
having to recode it.

By programming applications with two concepts in
mind, window and viewport, you can more easily
develop device independent graphics systems.

Viewport: The viewport is the physical area on the
graphics device (e.g., the display screen) which con­
tains the image, the plot, or the picture. If there is
more than one viewport, you can have more than one
picture on the screen simultaneously. You've seen
multiple viewports on network TV shows, usually
during the introduction.

The viewport can be specified either in the "natural"
units of the device (i.e., pixels) or in Normalized
Device Coordinates (NDCs) .

In NOC units , every device has a coordinate space
that covers the range from 0 to 1 in both the X and Y
axes. This means that all possible displayable points
have X and Y coordinates less than one. Because
there are an infinite number of points in the sub-plane
bounded by {(0,0) (0,1) (1,0) (1 ,1)}, the entire
(plane) universe can be mapped onto the NOC space.

This approach requires that an additional mapping be
performed from NDCs to actual hardware pixels.
Tektronix systems use GDUs (Graphic Device Units),
which can be thought of as NDCs that do not use 1.0
as the limiting value of the data range. For instance,
on many Tektronix systems, the GOU range is 0 to
130 in the X direction and 0 to 100 in the Y direction.
This makes the aspect ratio of the display explicit.
Given the ranges mentioned above, the apsect ratio
would be 1.3 .

I

1

•

25

Window: The window defines the range of values in
X and Y that your plot or image will cover. Some­
times the window is called world space or world coor­
dinates . Tektronix calls the units of the window User
Data Units (UDUs) .

If you define a viewport and window limits, you auto­
matically define a mapping from your world onto the
graphics device. You will be providing enough infor­
mation for any competent graphics system to trans­
form coordinates from your units onto the screen or
other display.

Clipping
This feature (in most graphics systems) prevents seg­
ments of the image which fall outside the window
from being displayed. Clipping is a very valuable
feature , because together with the window it permits
zooming in or out of an image to see more or less
detail.

You can explore the use of device-independent
graphics if you have an IBM PC with BASIC version
2.00 or later. BASIC 2.00 or later includes a
WINDOW command and a VIEWport command.

If you 're curious about how the graphic system (or
BASIC) performs the mapping from your units onto
the screen, you might try to derive the transformation
equations yourself. If not, I'll present them here.

User Units to Device Coordinates
Let's assume that the graphics system has been initial­
ized, and that it contains the correct values of the
(internal) variables as shown in Figure 1.

Using these variables, the transformations (in
FORTRAN) from user units into device coordinates
are :

X=1 . +((XSCR- 1 .)/XGDU) * ((X0 - WIND(1)) *
(VIEW(2) - VIEW(1))/ & (WIND(2) ­
WIND(1))) +VIEW(1) *XSCR/ XGDU

and either

Y=YSCR- ((YSCR- 1 .)/YGDU) * ((YO - WIND(3)) *
(VIEW(4) - VIEW(3))/ & (WIND(4) ­
WIND(3))) - VIEW(3) *YSCR/YGDU

or

Y=1 . +((YSCR- 1 .)/YGDU) * ((Y0-WIND(3)) *
(VIEW(4) - VIEW(3))/ & (WIND(4) ­
WIND(3)))+VIEW(3) *YSCR/YGDU

where XO is the desired X coordinate in user units and
YO is the desired Y coordinate in user units, both
multiplied by the scale factor SCALE.

The reason for two Y transformations is that the first
one assumes an " upside-down" device such as the
IBM graphics screen, where the (1, 1) pixel is at top
left. The second assumes a " right side up" device
such as a plotter.

The graphics system also should maintain internal var­
iables LASTX, LASTXO, LASTY and LASTYO.
These REAL variables hold the previous values of the
transformed and untransformed coordinates. This
information is used to perform relative (as opposed to
absolute) point addressing.

Note: The transformations above do not perform
clipping. The system must perform both hard and soft
clipping. Hard clipping assures that pixel or device
coordinates are never generated beyond the physical
limits of the device :

X=AMIN1 (X , XSCR) X=AMAX1 (1 ., X)

Soft clipping clips vectors against the window limits ,
assuring that vectors which extend beyond the
window limits are drawn only to the edge of the
window, and that vectors which lie entirely outside
the window are not drawn at all.

A simple CLIP routine is shown in the following page.
It assumes all variables are in COMMON. The flag
ERRFLG, when true , causes other graphics routines
to return without taking any action, so that the
offending segment is not drawn. The XO and YO vari­
ables again contain the current user coordinates to
which a vector is to be drawn , or to which the graphic
point is to be moved. For fans of structured code, the
reason for all the GOTOs is that this routine was
translated more or less verbatim from BASIC.

Exchange / Mar-Apr 86

26

XGDU the number of GDUs in the X direction

YGDU the number of GDUs in the Y direction

XSCR the number of pixels (or device coordinates) in the X direction

YSCR the number of pixels (or device coordinates) in the Y direction

SCALE the device aspect ratio

WIND(l) the minimum X value of the user's data space (i .e. , the lower X limit of the window)

WIND (2) the maximum X value of the user's data space (i.e., the upper X limit of the window)

WIND(3) the minimum Y value of the user's data space (i.e. , the lower Y limit of the window)

WIND(4) the maximum Y value of the user's data space (i .e. , the upper Y limit of the window)

VIEW(l) the minimum X value of the viewport, in GDUs (i.e., the lower X limit of the viewport)

VIEW(2) the maximum X value of the viewport, in GD Us (i.e. , the upper X limit of the viewport)

VIEW(3) the minimum Y value of the viewport, in GDUs (i.e. , the lower Y limit of the viewport)

VIEW(4) the minimum Y value of the viewport, in GDUs (i.e., the upper Y limit of the viewport)

Figure 1. Variable Listing

SUBROUTINE CLIP
$INCLUDE: ' COMMON.FOR '

LOGICAL CFL
DOUBLE PRECISION XM
ERRFLG= . FALSE .
ERRFLG=(XO . LT. WI ND(1) . AND.

& LASTXO .LT. WIND(1))
ERRFLG=((XO . GT. WIND(2) .AND .

& T.ASTXO .(;'!'. WIND(2)) .OR. ERRFLG)
ERRFLG=((YO .LT. WIND(3) .AND .

& LASTYO . LT. WIND(3)) .OR. ERRFLG)
ERRFLG=((YO .GT . WIND(4) . AND .

& LASTYO .GT . WIND(4)) . OR. ERRFLG)
YP=YO
XP=XO
IF (ERRFLG . OR . . NOT. CLPFLG)

& GOTO 4225
IF (XO . NE. LASTXO) XM=

& (YO-LASTYO)/(XO - LASTXO)
IF (XO . EQ. LASTXO) XM=

& ABS(WIND(4) - WIND(3))/1.E- 30
IF (XM . EQ . 0 . DO) XM=

& ABS(WI ND(2) - WIND(1))/1 . E30
IF (XO . GE. WIND(1)) GOTO 4185
XO=WI ND (1)
YO=XM+ (WIND(1) - LASTXO)+LASTYO
CALL CHCKYO
IF (ERRFLG) GOTO 4225

4185 IF (XO . LE . WI ND(2)) GOTO 4189
XO=WI ND(2)
YO=XM+ (WIND(2) - LASTXO)+LASTYO
CALL CHCKYO
IF (ERRFLG) GOTO 4225

4189 IF (YO . GE . WIND(3)) GOTO 4192
YO=WIND(3)
XO=(WI ND(3) - LASTY0)/XM+LASTXO
CALL CHCKXO
IF (ERRFLG) GOTO 4225

4192 IF (YO .LE . WIND(4)) GOTO 4200
YO=WIND(4)
XO=(WIND(4) - LASTYO) / XM+LASTXO
CALL CHCKXO
IF (ERRFLG) GOTO 4225

4200 CFL= . FALSE .
IF (LASTXO . GE . WIND(1)) GOTO 4205
CFL= . TRUE .
LASTYO=LASTYO+XM* (WIND(1) - LASTX0)
LASTXO=WIND(1)

Exchange / Mar-Apr 86

4205 IF (LAST XO . LE. WIND(2)) GOTO 4209
CFL= .TRUE.
LASTYO=LASTYO+XM+(WIND(2)-LASTXO)
LASTXO=WIND (1)

4209 IF (LASTYO .GE. WIND(3)) GOTO 4213
CFL= .TRUE .
LASTXO=LASTXO+(WIND(3) - LASTYO)/XM
LASTYO=WIND(3)

4213 IF (LASTYO . LE . WIND(4)) GOTO 4217
CFL= . TRUE .
LASTXO=LASTXO+(WIND(4)-LASTYO)/XM
LASTYO=WIND(4)

4217 CONTINUE
IF (.NOT . CFL) GOTO 4225
X=1 . +((XSCR-1 .)/XGDU) * ((LASTXO ­

& WIND(1)) * (VIEW(2)-VIEW(1))/
& (WIND(2)-WIND(2)))+VIEW(1) *
& XSCR/XGDU

X=AMINl(X , XSr.R)
X=AMAXl (X , 1.)
Y=YSCR- 1 .)/YGDU) * ((LASTY0-WIND(3)) *

& (VIEW(4)-VIEW(3))/
(WIND(4) - WIND(3)))-VIEW(3) *

& YSCR/YG DU
Y=AMIN1 (Y , YSCR)
Y=AMAX1(Y,1.)
I=X
J=Y

4225 LASTYO=UP
LASTXO=XP
RETURN
END
SUBROUTINE CHCKYO

$INCLUDE: ' COMMON . FOR '
IF (LASTYO . GE. WIND(3) . AND.

& LASTYO .LE. WIND(4)) RETURN
IF (YO . GE . WIND(3) . AND . YO

& .LE . WIND(4)) RETURN
ERRFLG=.TRUE.
RETURN
END
SUBROUTINE CHCKXO

$INCLUDE : ' COMMON . FOR '
IF (LASTXO . GE . WIND(1) . AND.

& LASTXO . LE . WIND(2)) RETURN
IF (XO . GE . WIND(l) . AND . XO

& .LE . WIND(2)) RETURN
ERRFLG=.TRUE .
RETURN
END

•

•

•

27

Graphics Development
Toolkit
John Warnock
IBM Corporation

Editor's note: This article is adapted from the IBM
Personal Computer Seminar Proceedings.

The IBM PC Graphics Development Toolkit (GDT)
and its Virtual Device Interface (VDI) provide
support for graphics applications on a personal com­
puter. The VDI includes device drivers for many IBM
graphics devices plus a VDI controller to communi­
cate with the device drivers . The VDI controller
includes a number of graphics drawing primitives and
functions that simplify programming in a graphics
environment. Graphics Development Toolkit com­
pletes the offering with language bindings that Jet
your application programs use all the features of the
VDI. Figure 1 shows the relationship of the GDT
features.

DOS

Device Drivers for Displays,
Printers, Plotters, etc.

- - - - - - - - - - - - - -
VD! Controller

Language Bindings
- - - - - - - - - - - - - -

Application

Figure 1. Graphics Development Toolkit Features

Using the Graphics Development Toolkit,
your application might call for a circle
via a language binding. The binding

- -

- -

Graphics Standards
In order to define present and future needs for
graphics applications, the International Standards
Organization (ISO) and the American National
Standards Institute (ANSI) have proposed graphics
standards. These standards allow graphics applica­
tions to support all hardware devices that accept the
standards. Thus, application programmers need not
be concerned with specific hardware, and can write
software that is easily migrated to other devices.

ANSI Technical Committee X3H33 established a
definition of the ideal graphics device. Since this
device does not really exist, and most existing devices
emulate part of this 11 ideal, 11 it is called a 11 virtual 11

device.

This virtual device uses a Normalized Device Coordi­
nate (NDC) system. This is an area of 32,767 units
by 32,767 units. These units can represent meters,
inches or any required measurement. Actual physical
devices use all or a subset of these coordinates or
convert them to fit the device.

Virtual Device Interface
The Graphics Development Toolkit (GDT) includes a
Virtual Device Interface (VDI) that follows the

passes the request to the VDI controller,
which recalls the specific steps to produce a
circle and passes those steps to a device driver. 1 j
The device driver takes the instructions and Lil ,,,::1 ,,i;; e

coordinates 11 as is 11 or translates the coordi- = _, ~ j tE ~
nates to fit the limitations of the device. The driver ~pir~ fllJJ!t1

'' ~
sends the data and control codes to the device, which -"~
then draws the circle.

Exchange / Mar-Apr 86

28

proposed ANSI X3H33 definition. This and other
IBM graphics software products use the VDI and its
device drivers which:

Provide a standard device interface.
Enable programmers to design a graphics applica­
tion without being concerned about the partic­
ulars of the many input/ output graphics devices
available.
Can be used to create simple and complex
graphics images.

Device Drivers
The VDI Controller allows communication between
device-independent software and device-dependent
drivers that serve as interfaces between the VDI con­
troller and the graphics devices. Each specific device
has its own driver that translates all the information
exchanged between the device and the application
program. To support a new device, you write a new
device driver instead of changing the application.

T he Graphics Development Toolkit
includes a Virtual Device

Interface that follows the proposed
ANSI X3H33 definition.

The Graphics Development Toolkit provides a set of
device drivers for a variety of IBM devices including:

IBM Enhanced Graphics Display and Adapter
IBM Color Graphics Display and Adapter
IBM PCjr Video Subsystem
IBM Graphics Printer
IBM Color Printer
IBM Compact Printer
IBM Color Plotters
IBM Game Adapter
Metafile Device

The VDI Controller determines the size of the largest
device driver you will be using and allocates space for
it. As you use different devices, the VDI Controller
swaps device drivers within the memory allocated for
that class of driver.

Device drivers are called using the DOS
CONFIG.SYS file. Drivers can be assigned to groups
for swapping or made resident. Only one driver from
each group will be resident in memory at a time.
Memory is allocated according to the largest driver in
each group. You can also describe paper and ribbon
information to the driver at the time it is called.

Devices are referred to by generic names : PRINTER,
PLOTTER, CAMERA, MOUSE, DISPLAY, etc.
You can have multiple devices in the same category
attached to your computer. The DOS SET command
allows you to change between different devices. For
example, your CONFIG.SYS file has drivers for two
different graphics displays.

DEVICE=VDIDY004. SYS /GROUP : DI SPLAY
DEVICE=VDIDY006 . SYS /GROUP : DISPLAY

The first device is the medium-resolution driver. The
second device is the high-resolution driver. The last
driver in any category will become resident when your
system starts, so the high resolution driver is loaded.
To select the medium resolution driver, you type :

SET DISPLAY=VDIDY00 4

VDI Controller
The VDI Controller of the Graphics Development
Toolkit provides many graphics routines that include:

Control functions
Output functions
Attribute functions
Input functions
Inquiry functions
Device specific PEL (Picture Element) functions.

Control functions allow the GDT to start, stop, and
control workstations, devices, text, and graphics
cursors. Your application can request device control
functions without necessarily referring to a specific
device. This lets your program handle a wide variety
of devices.

Output functions draw basic graphics primitives such
as polylines, polymarkers, fill areas and text, and gen­
eralized graphics primitives, including circles, arcs , pie
slices and bars. This makes writing programs faster
and easier because the most common routines already
exist and can be called by the application program.

The polyline primitive draws lines between sequences
of end points, while the polymarker primitive places a
marker symbol at each point in the line.

Exchange / Mar-Apr 86

29

Programming productivity is improved by the easy
way functions are called.

For sophisticated workstations with native graphics
functions, the VDI can access these capabilities
through a Generalized Drawing Primitive (GDP) .
Circles, for example, are described by the location of
the center and the radius.

The text primitive displays text strings at any position
with any orientation in various styles, sizes and colors.
Three types of text models such as alpha, graphic and
cursor are supported. Alpha text is used for chart
labeling. Graphic text allows you to assign style, size,
color, and rotation to device-dependent text. Alpha
and graphic text is addressed by Normalized Device
Coordinates (NDC) . Cursor text places device­
independent text on the screen that can be addressed
by the cursor in row I column mode, or used to create
menus and interactive input. Cursor text is mutually
exclusive with alpha and graphic text.

In addition, the Virtual Device Interface Controller
has bar, arc, and pie slice primitives. The VDI Con­
troller can accommodate the differences in devices to
keep the aspect ratio correct (preserved) . This per­
forms workstation-dependent calculations to keep the
horizontal and vertical scales in proportion. Non­
preserved mode accepts output to devices "as-is" and
does not compensate coordinates.

The attribute functions assign color, style, size, and
pattern to the lines, circles, polygons, and text. Each
primitive (polyline, polymarker, etc.) has its own set
of attributes associated with it. Text can have font,
style, and rotation assigned (subject to device limita­
tions), while lines can be given color, width, and style.
Attributes can also be set for workstations when they
are opened.

Input functions allow you to interact with your appli­
cation. Input can be the cursor position, the dial
setting from a device, a function key or keyboard
entry. Input also can be in request mode where the
application stops and waits for input from the device,
or sample mode where the application will take input
from a device if presented but does not wait.

The VDI also has inquiry operations that program­
mers can use in determining error conditions or device
and attribute status. The application can also inquire
as to whether a device can handle certain functions
before requesting device output.

The VDI supports faster devices and faster operation
or picture-element (PEL) functions. The PEL func­
tions move one or more pels and provide animation
and image generation. Certain paging functions are
also available. These functions tend to be device spe­
cific and should be avoided to achieve true device
independence.

Language Bindings
The GDT has a set of linkable libraries for graphics
and text functions. GDT functions are grouped into
eight major functional areas:

Workstation functions
Paging functions
PEL functions
Cursor control functions
General graphic functions
Graphic functions and attributes
Text functions
Input functions

The documentation includes specific language syntax
for each of the supported functions .

Language interfaces are provided for :

IBM PC BASIC Compiler version 1.00
IBM PC FORTRAN Compiler 2.00
IBM PC Professional FORTRAN

Exchange / Mar-Apr 86

IBM PC Pascal Compiler 2.00
IBM PC Macro Assembler

30

Lattice C 2.00 developed by Lattice, Inc.

Programming graphics is a simple process. Using the
appropriate language binding, you initialize or open
the device. Depending on the device, it may respond
with information on the fonts , coordinates or colors it
can handle. Then you set the attributes (width , size,
style, color, font , etc.) for the particular primitive you
want to use. You then call the graphics primitive to
output to the device and input any status information.
You can then repeat the attribute/ output/ input steps
until you close or terminate the device.

Device Driver Builder's Toolkit
If you want to write your own device driver, you can
order a Device Driver Builder's Toolkit (6277786)
using the form that comes with the GDT Reference
Manual.

The kit includes a reference manual that provides the
information necessary to generate a device driver that
will work with the Graphics Development Toolkit. In
addition, the kit includes four diskettes that contain :

Skeleton device drivers and the necessary code to
be linked with new device drivers

Four sample device drivers for a mouse, display,
plotter and printer
Utilities to build new device drivers
Programs to test new device drivers

Hardware Requirements
The IBM Graphics Development Toolkit requires a
member of the IBM Personal Computer family with :

128KB of memory
A graphics display and appropriate adapter
DOS 2 .10 or higher
A language compiler
One 360KB diskette drive

Any applications using this product that you develop
for redistribution require a redistribution license from
IBM. You can write to IBM for information about
redistributing the Graphics Development Toolkit and
writing your own device drivers to interface with the
VDI. The address is :

Graphics Development Toolkit
IBM Personal Computer
P. 0. Box 1328-A
Boca Raton, FL 33432

The Software
Handicap
Gary J. Bullard
Tulsa Computer Society

If your computer club maintains a
public domain library, try to get
copies and explore the contributed
programs. You will find some val­
uable programs, and a few that
were first efforts-and look like it.

Early computers were short on
memory and used slow cassette
tape storage. This forced pro­
grammers to develop tight coding
techniques. This meant no
remarks, multiple statements per

In the early days of microcom­
puting (less then ten years ago)
there was little good software to
be found anywhere. Indeed, little
software of any kind was to be
found . Computer clubs were
formed to help answer this need,
and members traded their home­
written programs everywhere.
Public-domain software libraries
were accumulated and made avail­
able to club members for the cost
of a cassette tape or diskette.

The evolution of microcomputer
software is particularly interesting.

Exchange / Mar-Apr 86

0

I

line (if their version of BASIC
allowed it) , very short variable
names, and short or non-existent
instructions and prompts. In other
words, a lot of programs were
written that may have been mas­
terpieces. But they were difficult
to use and nearly impossible to
debug or maintain.

Today things are much better.
Memory is cheap, disk drives are
common, and software is abun­
dant. There is no longer any
excuse for writing programs that
do not contain clear instructions
and unambiguous prompts. Soft­
ware houses that sell poorly docu­
mented programs that are difficult
to use soon gain a well-deserved
bad reputation. Thus, most com­
mercially available software can
be expected to perform as prom­
ised.

Of course, there are always
exceptions. Don't buy a program
without asking questions and
receiving a demonstration. Caveat
Emptor applies to software pur­
chases as much as any other trans­
action.

This only points up the fact that
things are better today-but not
perfect. What can be done to
improve software? Many things.
I have a few suggestions below.

The majority of first programming
efforts were games. Early games
were keyboard-controlled due to
the lack of any other method.
Games that required directional
controls used the numeric pad to
signal directions, or some other
combination of keys if there was
no numeric keypad. Using "U"
for up, "D" for down, "L" for
left, and "R" for right soon fell
out of favor. These controls
worked fine for the "I take turn ,
you take turn" games, but when
real-time games appeared
("arcade-style" games), these

31

controls were insufficient-too
slow and too hard to find in a
hurry.

Putting the commands in a block
(for instance, i,j,k,m, for up, left,
right, down on the keyboard)
helped, but even that was dropped
in favor of game paddles and
joysticks. Most software houses
offered the option of paddle or
keyboard control in case you
didn't have the paddles or pre­
ferred the keyboard , which was an
improvement.

Some games require joysticks to
play and have so many features
that the keyboard is frequently
used to select between them.
Again, an improvement, but why
not devote some programming
skills to reducing the number of
controls for a game?

T here is no longer any
excuse for writing pro­

grams that do not
contain clear instructions

and unambiguous
prompts.

I have a game program that uses
the keyboard to enter directional
commands. It uses the left and
right arrow keys on the keyboard
to signal left and right moves , and
the "A" and "Z" keys to signal up
and down. This is fine for me and
I can play this game without
getting confused . My left hand
operates up and down and my
right hand operates left and right.

But I know three people who have
only one hand each . This game is
all but impossible for them. It

Exchange / Mar-Apr 86

would have been so simple to
program the game to use the ''; ''
and" / " keys for up and down,
making the game playable for the
one-handed.

Why two buttons? My one-armed
friends are more fortunate than
many people. Another man I
know is quadriplegic. He operates
his computer with a stick held in
his mouth . He has just enough
control of one arm that he can
hold the shift and control keys
when necessary. Most programs
are difficult or impossible to
operate. But he persists, and does
remarkably well. Some hand­
icapped users cannot do even this
well.

Recently a representative from the
Tulsa Rehabilitation Center came
to a Tulsa Computer Society
meeting and asked the member­
ship to help them write programs
and modify computers for use by
the handicapped. They have
patients who have broken their
necks, suffered brain injuries, or
have severe arthritis. These
people are so limited in their
movements that some of them can
only operate a computer by
blowing or sucking through a
rubber tube.

The Rehabilitation Center
designed and built some switches
that could be activated by sucking
or blowing into a tube. These
sip'n'puff control switches can be
connected to a computer, for
instance the game connector
adapter. Sipping operates button
zero and puffing operates button
one. Both buttons cannot be "on"
at the same time.

The experienced programmers
reading this are already thinking
of possibilities. Computers are
binary machines ; what more
natural than binary controls?
Consider how to make the

program you are currently working
on controllable with a sip'n'puff
control.

For instance, take Pacman. This
game is usually played with a
joystick control, often with a key­
board option. All it needs are four
directional controls. There are no
guns to fire, barrels to leap, or
hyperspace drives to engage. The
major problem is the speed of the
action versus the speed of reaction
of the player. Let's try this sce­
nario: Game starts, giving a
choice of options : keyboard,
joystick, sip'n'puff. Player sips on
his tube , signaling his choice. This
puts the game in the "halt"
mode-Pacman and ghosts move
only while the sip switch is on.
The game starts, with Pacman
heading east. As long as the
player keeps the sip switch on,
Pacman continues in the same
direction and the ghosts are in
pu!'suit. Pacman reaches an inter­
section and the player releases the
switch. All action on the screen
stops, except that Pacman slowly
rotates in ninety degree incre­
ments. As soon as Pacman is
facing the direction he needs to
go, the player sips on the tube
again and action resumes.

Thus a popular arcade-style game
is adapted for play with only one
switch needed. Similar modifica­
tions can be made to other games.
For instance, a pinball game could
be played with two switches (and
usually is) and possibly only one.
The difficulty with pinball games
is that the firing spring must be set
with the game paddle or joystick.

32

How do you get that degree of
control with only on-off switches?
Simple. When it is time to fire a
ball , let the computer move the
spring from its tightest to its
loosest and back again. When the
player sees the spring at the point
he wants, he sips on the tube.

.. there is an extreme lack
of game software that

bedridden people can play
on their computers.

Another type of game that is very
difficult for handicapped people to
play is the adventure game.
Typing is difficult or impossible
for many people. The Tulsa
Rehabilitation Center has several
programs that allow text entry
with the sip'n'puff switches. It is a
slow, tedious process, but it is the
only way some handicapped
people have to communicate with
the rest of the world. These same
techniques can be applied to text
input for the adventure game.

These text programs work in a
variety of ways. Usually, the
program presents an alphabet on
the screen with the first letter
printed in reverse or highlighted in
some way. By sipping on the
tube, the patient moves the
marker down the alphabet to the
chosen letter. Then the patient
puffs into the tube and the com­
puter accepts that letter and adds

Exchange / Mar-Apr 86

it to the word or sentence being
built.

Sip'n'puff text routines can be
added to adventure programs, or
the programs can be written like
the books that allow you to read
several paths to the various
endings. Instead of requiring the
player to enter complete sentences
in hopes of guessing the correct
move, let the program print a
menu of choices. The player may
then sip to a likely choice and puff
il into action.

I have concentrated on games for
examples because there are plenty
of programs for handicapped
people that enable them to print
messages , turn on lights , signal the
nurse, and even change channels
on the television. But there is an
extreme Jack of game software
that bedridden people can play on
their computers. When movement
is so limited, there are few forms
of entertainment in which the
patient can participate. Com­
puters are ideal for this purpose. I
would like to see all software
houses begin to offer sip'n'puff
options for all future programs.

The Tulsa Computer Society is
working with the Tulsa Rehabili­
tation Center to create standards
for sip'n'puff controllers for all
computers. If you have any
questions or suggestions about
standards for hardware or soft­
ware, please write:

HUG (Handicapped Users' Group)
Tulsa Computer Society
P.O. Box 3211
Tulsa, Oklahoma 74101

33

Choosing Educational
Software for Children

Carmen Wagner
Tucson IEEE Computer Society

It's reasonable to say that computers are, and will be,
an integral part of your children's educational envi­
ronment. You can influence the learning process of
your children by helping them make better use of
computers at home, and by choosing the appropriate
software to accomplish different purposes.

Those of you who have high tolerance to frustration ,
and wish to experiment, are encouraged to develop

your own learning programs or games (and a lot of
children are doing just that) . However, if that's not
for you, commercial software is available at a very
low cost from your user group library. Don't let the
price of this software fool you; even though they may
be inexpensive, some of these programs are quite
good. At a higher price, you can purchase software
from many of the electronic publishers. You can also
contact any of the IBM Authorized Dealers or other
software stores in the area.

To create your own learning materials, you can select
among a range of choices:

l. High-level programming languages (BASIC, C,
Pascal, FORTRAN, etc.) ;

34

2. Authoring languages, a language which facilitates
the programming of interactive educational soft­
ware (PC/ Pilot, Logo, ZES, etc.);

3. Authoring systems, a special program created to
facilitate the programming of educational mate­
rials (the Author+, Pass, Blocks, MHIAS, etc.)

Many programs written in BASIC are available in
educational publications or other computer journals ;
they can provide ideas for programmers. Authoring
systems and languages, on the other hand, are a nice
alternative for parents and children who do not want
to become expert programmers, but wish to exper­
iment a little. Several authoring systems and lan­
guages are presently available; their prices vary
according to their capabilities.

You can influence the learning process
of your children by

helping them make better use of com­
puters at home ...

For game creation, some LOGO-based programs
allow you to work with graphics and create your own
games with animation. The scope of this article does
not allow us to cover all the programming alternatives.

As for commercial software, it is almost impossible to
figure out its educational value just by reading the
advertisement, or the instructions that come with it.
The best way is to access the real thing and try it with
your kids before you actually spend your precious
dollars on it (these programs usually don't cost much,
but it all adds up) . There really is no substitute for
hands-on experience when it comes to any kind of
software, including educational packages.

The following list will help you ask the right questions
when checking out software for educational applica­
tions:

1. First analyze your intentions. What skills do you
want your kids to work on? What concepts do
you want them to learn?

2. Talk to friends, educators, or to other parents in
the club about programs that you are thinking of
buying. They may have had experience with
packages you are considering and may be willing
to share their opinions.

3. As to the program itself, check on how easy it is
to use; evaluate the documentation and
instructions available; check on correctness of
grammar, spelling, and content.

4. Observe your kids' reaction to it. Not all pro­
grams will be interesting to all kids. I believe that
to be effective a program should be interesting
and fun to use.

5. How much control do users have when using the
program? Can users get help easily?

6. Can you modify the program? For instance, with
spelling exercises, you may want to add or delete
words to update the program.

7. How crash-proof is the program? How easily can
you recover from errors?

8. What is the reputation of the supplier and pub­
lisher?

A few additional reminders. If you're considering
word processors as learning tools for small kids, look
at those programs in your club's library. Several ade­
quate programs are in the public domain.

A number of publishers deal with educational soft­
ware; also, many organizations will hold meetings and
seminars which may be of interest to parents who
want to help their kids with computer learning.
Watch for those announcements in your club's news­
letter or check with the local software dealers and
community schools, as well as in your local news­
paper.

Exchange / Mar-Apr 86

35

Fooling with Boole: (IF To
Be AND/OR/NOT To Be
THEN ...)
John Warnock
IBM Corporation

A mathematician named Boole
Developed some logical rules
For testing conditions
With new intuitions,
And gave us some wonder[ul tools.

George Boole was a mathematician who devised a set
of operations to test conditions to see if they are true
of false. This kind of testing is what gives programs
logic, and the ability to "decide" what to do under
certain circumstances. For example, we might write a
checkbook balancing program and say:

IF CHECK > BALANCE THEN BEEP

If the check > (is greater than) the balance then the
computer will beep to let us know. This is a simple
test that produces a simple result. Boolean logic lets
us test for more complex conditions by combining one
or more simple tests together.

Logical Operators
BASIC has a series of Boolean logical operators to
build more complex true/ false logic, and alter
numerical values. These operators work like conjunc­
tions in sentences to build complex IF / THEN
tests in BASIC. Logical operators can also work
with bits to derive a true (1) or false (0) value.
The logical operators are AND, EQY, IMP, NOT
OR, and XOR. Given two values (THIS
and THAT), we will see what each
logical operand does to them.

Random Data

AND
Suppose you want to make sure several things are true
before proceeding. The AND operator performs a
conjunction; that is, THIS and THAT must be true
(1) in order for the result to be true (1) . Given that
requirement, the AND operator will produce the fol­
lowing results:

1AND1 = 1
1AND0 = 0
0 AND 1=0
0 AND 0 = 0

Let's apply this to our checkbook program again.
Suppose we have a savings account that automatically
transfers funds to checking if we run short. Our
statement might read:

IF CHECK > BALANCE AND CHECK >
SAVI NGS THEN BEEP

This statement alerts us only if our check amount
exceeds both the checking and savings balances.

EQV
Suppose we want two conditions to match, either both
right or both wrong. The EQY (equivalence) oper-

Exchange / Mar-Apr 86

36

ator is not concerned with truth as much as sameness.
If THIS and THAT are the same, whether they are
both true (1) or both false (0), then equivalence is
satisfied. Here's how EQV works :

1EQV1 = 1
1EQV0 = 0
0 EQV 1 = 0
0 EQV 0 = 1

Let's get back to our checking program. Suppose we
are reconciling our checkbook against our bank state­
ment. If the amount of the check matches the amount
on the statement, then the checkbook balance should
match the statement balance. If the check amount
doesn't match, the balances also shouldn't match.

T his kind of testing is what gives pro­
grams logic, and the ability

to ' decide ' what to do under certain
circumstances.

While this last condition isn't good, having a matching
balance with mismatched checks or matching checks
and a bad balance probably indicates it is time to find
another bank or a new calculator. The BASIC might
look like this :

IF CHECK = AMOUNT EQV CHECKBOOK
= STATEMENT THEN PRINT
" So f a r, you a nd the bank

a r e about even"

IMP
Actually, you might want to test for one thing before
doing a second test. The IMP (implication) operator
determines the truth of the second value based on the
truth of the first value. We look at the truth of THIS
and what it implies about THAT. When THIS is true
(1), then THAT is is tested to see if it is correct. If
THIS isn 't true (0), then we simply assume THAT is
true (1) . So, IMP produces:

1IMP1 = 1
1IMP0 = 0
OIMPl=l
0 IMP 0 = 1

Back to check reconciliation. Perhaps we can
produce a better test. If the check and the amount on
the statement aren 't equal, we can assume we are out
of balance and not compare our checkbook balance
against our statement balance. We would just go
ahead and print an out-of-balance warning. If the
check matches the statement amount, then we check
to see if the checkbook and statement are out of
balance (not equal:<>), and if true, print the out-of­
balance warning. Here's the BASIC:

IF CHECK = AMOUNT IMP CHECKBOOK
<> STATEMENT THEN PRINT
" Ba l ance Error "

NOT
There may be another way to write that test. The
NOT operator changes something into what it is not.
In other words, not true (1) becomes false (0) , and
not false (0) becomes true (1) . The not operator
reverses existing conditions like this :

NOT 1 = 0
NOT 0 = 1

So, to test to see if two things are not equal could be
written two ways. The second version of the state­
ment looks like this :

IF CHECK = AMOUNT IMP NOT CHECKBOOK
= STATEMENT THEN PRINT
"Balance Error "

OR
The OR operator is concerned with true and false, but
unlike the AND operator, it is much easier to please.
Either THIS or THAT has to be true (1) to satisfy OR.
If both THIS and THAT are true, so much the better.
Only when THIS and THAT are both false (0) does
OR become false. Here 's how OR works:

1OR1 = 1
1OR0 = 1
0 OR 1 = 1
0 OR 0 = 0

We may really want to know when either our checks
don ' t equal the statement amount or our checkbook
balance is out of kilter with our statement. This is
what you might write:

IF CHECK <> AMOUNT OR CHECKBOOK
<> STATEMENT THEN PRINT
"Balance Error "

Exchange / Mar-Apr 86

37

XOR
There is another kind of OR operator we can use.
The XOR (exclusive or) operand is like a fussy OR.
It says THIS or THAT can be true, but they cannot
both be true. So, XOR produces:

1XOR1 = 0
1XOR0 = 1
0 XOR 1 = 1
0 XOR 0 = 0

Suppose we only want to print the balance if it is
going to be a positive or negative value. Zero bal­
ances don't count, so we know the check can either
be more or Jess than the balance.

IF CHECK = AMOUNT XOR CHECKBOOK
= BALANCE THEN PRINT
" Someth i ng ' s r o t ten i n Denma r k "

Bit Twiddlers Tweaking Bits Bag Big Bucks
What we have covered so far is Boolean operators in
simple IF / THEN statements. Boolean operators can
also work on single bytes of information to filter out
or modify single bits. There are practical uses for this,
as we shall see.

Boolean operators are designed to work with l's and
O's to determine true or false. These are the same
kinds of 1 's and O's that make up characters. Taking
the letter "Z," there are eight bits that add up to 90,
its ASCII value. The bit positions are set in powers of
2, so the whole thing looks like this:

POS z

1 0
2 1
4 0
8 1

16 1
32 0
64 1

128 Q

ASCII 90

Excited yet? Well, Jet's compare the lowercase z.

POS z z

1 0 0
2 1 1
4 0 0
8 1

16 1
32 0 1 <---
64 1 1

128 Q Q

ASCII 90 122

The only real difference between the two is that the
bit in position 32 is turned on. If we compare all the
uppercase letters with their lowercase counterparts,
we see the same bit in position 32 making the differ­
ence.

B oolean operators can also work on
single bytes of information

to filter out or modify single bits.

Now we can really put these Boolean operators to
work. Remember that while these operators work for
l's and O's, they can also do groups of them as well.
Let's take the lowercase "Z" and OR the value 32 to
it, which looks like this:

POS z OR z

1 0 OR 0 0
2 1 OR 0 1
4 0 OR 0 0
8 1 OR 0

16 1 OR 0 1
32 0 OR 1 1
64 1 OR 0 1

128 Q OR Q Q

ASCII 90 32 122

In BASIC it might look like this :

1 0 PRINT CHR$ (ASC (" Z") OR ASC (" "))

Exchange / Mar-Apr 86

38

You can produce the same resul t by starting with the
value 223 , the bit-by-bit opposite of 32, and IMPing
the character "Z" to it :

APOS

1
2
4
8

16
32
64

128

• IMP Z

IMP 0
IMP 1
IMP 0
IMP 1

1 IMP 1
0 IMP 0
1 IMP 1
1 IMP Q

ASCII 223 90

z

0
1
0

1
1
1
Q

122

The BASIC statement might read :

10 PRINT CHR$ (ASC("• ") IMP ASC(" Z"))

By the same token, we can convert the lowercase z to
an uppercase Z in a couple of different ways. One
method works by ANDing 223 to the character.

POS z AND •

1
2
4
8

16
32
64

12 8

0
1
0
1
1
1
1
Q

ASCII 12 2

AND
AND
AND
AND
AND
AND
AND
AND

1
0
1
1

22 3

z

0
1
0
1
1
0
1
Q

90

The BASIC statement might look like this:

10 PRINT CHR$ (AS C (" z ") AND ASC("• "))

The nice thing about these three methods is that they
only affect the characters you want to affect. If you
are converting lowercase letters to uppercase, upper­
case characters are left alone. The same is true when
converting uppercase letters to upper case. Adding or
subtracting the value of 32 won't work if the char­
acter is already the way you want it.

Booling Around with Memory
Boolean operators can do more than manipulate char­
acters. You can use them to check or modify memory
in your PC. Using the AND operator, you can PEEK
memory and check if specific bits are turned on .

The byte at address 1047 stores the status of the key­
board shift keys. Each bit of the byte handles a dif­
ferent key. If the first bit is on, it means the right
shift key is pressed. You could check to see if the
other shift key is pressed by the following BASIC
statement :

10 DEF SEG=O: IF PEEK (1047) AND 2
THEN PRINT "Left Shift Pre sse d "

Taking this one step further, you can manipulate the
keys yourself. Let's say you know you want input in
all upper case, or want to allow numeric input from
the numeric keypad. First use PEEK to get the value,
use Boolean operators to change it , then POKE the
value back out. You can use statements similar to
those in Figure 1 to make that happen.

10 DEF SEG=O ' Se t s me mory address
20 POKE 1047, PEEK (104 7) OR 64

' Turn s o n Caps Lock
30 I NP UT " Ente r s ome charac t e r s : "

; A$ ' Sampl e input
40 POKE 10 4 7 , PEEK (10 4 7) AND 19 1

' Tur ns o ff Caps Lock
50 INPUT " Ente r mo r e charac ters :"

; A$ ' Sampl e input
60 POKE 1047 , PEEK (104 7) OR 3 2

' Tu rns o n Num Lock
70 INPUT " Us e t h e keypad numbe r s : "; A

' Samp l e numeri c input
80 POKE 104 7 , PEEK (104 7) XOR 3 2

' Turns o ff Num Lock
90 INPUT " Us e the keyb oard numbe rs :";

A ' Samp l e nume r ic inpu t

Figure I . Sample Statements

In this case, the bit that represents the value 64 con­
trols the Caps Lock, and the bit that represents 32
controls the Num Lock. We OR'ed the value to turn
the bit on. We AND'ed all the bits but 64 to turn the
Caps Lock off, and XOR'ed 32 to shut the Num Lock
off. These were two different ways of doing the same
thing.

As you can see, Boolean operators can do many
useful things. They let you create better logic in your
programs, and give you greater control over your PC.
Just be very careful what you PEEK and POKE.

Exchange / Mar-Apr 86

39

Passwords: A Serious
Matter
James J. Ayres
LAW MUG

Passwords and Computer Security

This article will examine some of the aspects of secu­
rity that a computer user should be aware of. Secu­
rity , as used in the context of a computer, should not
be thought of as denying access to the computer or its
resources, but instead considered as a measure of con­
trolling who may access what and under which cir­
cumstances.

Super Users in the World of Computers
Systems are generally designed so that one user is
capable of accessing all of the system's functions.

0
coo

This "superuser" is usually referred to as the System's
Operator. The system's operator is unrestricted in
capabilities for a very simple mason: someone has to
be able to access functions that may be otherwise
blocked-either by a defective program or a defective
security scheme. In the event of trouble, the system's
operator needs to be able to access the troubled area.

As a simple analogy, consider a system to be your
home. The locks on the doors are designed to limit
access to your premises. If there were a fire in your
home, you would need the key to get into your house
and extinguish the fire . Unlike other "users" of your
premises, you cannot maintain the safety and integrity
of your home if you have to ring the door bell to get
inside and put out a fire. A system's operator cannot
maintain the safety and integrity of the data in the
system if the restrictions placed on other users pre­
vented access to the system.

As a user of a multiuser system, you are generally
asked to supply or use a password. A password
serves one and only one purpose-it verifies that you
are who you say you are. If I were to sign on to
LA WMUG as Paul Bernstein, the system would then
ask me for Paul's password. Bear in mind that I have
already accessed the system. The password is merely
to verify that I am who I say I am. If I fail to give the
correct password, the computer refuses to give me the
rights and privileges granted to the user Paul
Bernstein. Instead, the computer accords me the
rights and privileges anyone would grant an
imposter-it "slams the door in my face." If Paul
Bernstein should call in and correctly identify himself,
then all is forgiven and Paul Bernstein is granted all of
the rights and privileges the system's operator has
accorded him.

As you can see from the above example,
the password is a simple yet fairly effec­
tive means of limiting access to the
system. Once the user is beyond this
level of verification, the system can only
assume that the user is who he says he is.
Although there are more sophisticated
forms of security to verify users, the sys­
tem's operator has to balance the amount
of program overhead, hardware, and
labor involved in implementing the more
sophisticated measures against the desire
to allow easiest access to the system.

Exchange / Mar-Apr 86

40

The system's operator must make a trade-off between
ease of access and security. The overriding concern is
the level of the data's importance and confidentiality.

After a decision has been made to use password secu­
rity on a system, it then becomes the user's burden to
maintain that confidentiality. Unlike forged docu­
ments, someone accessing a computer with your iden­
tification does not leave "hard" evidence of the fraud .

A password serves one and only one
purpose-it verifies

that you are who you say you are.

The only records of the impersonation are the same
records used to verify that the user is valid . Because
these records are digital and contain no unique identi­
fying features , it is almost impossible to prove that the
impersonator wasn't the true user.

Suggested Rules for Computer Security

1. Don't use a logical password that is easy to figure
out. Someone intent on impersonating you will
try the easy password guesses first. For example,
I would never use a password consisting of any
part of my name or a close family member's
name, my address , my auto license, etc. This
information is too easy to obtain, and if an
imposter has targeted you as his "doorway" to
the system, he or she can probably get this infor­
mation. Use a password that is a combination of
letters and numbers that are only meaningful to
you.

2. Change your password often. If your password
remains the same for a long period of time, the
odds that a persistent imposter will hit upon it are
greatly increased. Again, don 't get lazy and
change your password to one that violates the
first rule .

3. Never give your password to another user or enter
it into a system if you are uncertain as to the reason
for the request. Otherwise, you may have given
someone else the irrevocable authority to act on

your behalf. Furthermore, because of the nature
of computer systems, you cannot prove that your
"agent" was not you. You are initially respon­
sible for everything that that person does while
acting as you. There are several methods used by
imposters to acquire a valid password directly
from the user. One method is to use a system's
communications mode to send a message to
another user. This method causes some form of
message to appear on the user's screen indicating
that something technically meaningless has
occurred and the user should re-enter the pass­
word. The imposter then watches what the user
types. Another method involves setting up a
program which follows the same technique as
above, but the program then stores the password
in a file and the imposter will check for a pass­
word later. Another method, recently used, is to
set up a system to collect passwords. This hap­
pened in the Chicago area when a bulletin board
was set up by imposters. It gave the appearance
of legitimacy, but was later used by the imposters
to access other systems because their users had
the same password on several systems. Which
leads to the last rule of password usage:

4. Never use the same password on different com­
puters. Using the key analogy above, if all of the
locks on your personal possessions have the same
key, you wouldn 't entrust that key to anyone.
Why use the same password on several systems?
If you do, you run the risk that someone will get
your password and then use that information to
access all of the systems you access. You will
soon be unwelcome on several systems (if not a
suspect in a computer crime case).

Final Caveat
Finally, be an observant user. Most systems indicate
the last date you signed on or off. If that date isn't
correct, you can begin to suspect that someone may
be using your identification on the system. Imme­
diately do two things: contact the system's operator
and change your password .

Although the subject of computer security is generally
the problem that concerns the system's operators and
designers , they can't prevent the user from foolishly
giving away the key. Users have to play an important
role . Following the few suggestions above, you can.
help prevent others gaining access to systems by using
your good name.

Exchange / Mar-Apr 86

Hardware

I BM RT Personal
Computer System
Overview

The IBM RT Personal Computer
System provides new, high­
performance workstation and multi­
user computing solutions to meet the
requirements of the
engineering/ scientific, academic, and
computer-aided design I computer­
aided manufacturing (CAD/ CAM)
communities.

The IBM RT Personal Computer
Advanced Interactive Executive
(AIX) Operating System is a multi­
user, multitasking, virtual memory
operating system designed to take
advantage of the IBM RT Personal
Computer's 32-bit architecture. The
system is complemented by the
announcement of several system
support programs, software develop­
ment tools, and personal productivity
applications.

Combined with the IBM 5085 Model
1 or Model 2 Graphic Processing Unit,
the IBM RT Personal Computer forms
a workstation with either standalone
or host-connected CAD/ CAM ability .

IBM 6150 RT Personal
Computer Models 020, 025,
and A25

IBM 6151 RT Personal
Computer Model 010

IBM announces a powerful and
extendible workstation-oriented
system for the personal computing
requirements of the technical profes­
sional. The IBM RT Personal Com­
puter, an addition to the family of

41

New Products

Personal Computer-related products,
features a 32-bit reduced instruction
set microprocessor with virtual
memory, and optional Personal Com­
puter compatibility for both programs
and hardware attachment. The system
is designed to satisfy computing needs
typical of the academic,
engineering/ scientific, and
CAD/ CAM environments, with
discipline-specific applications for
personal-productivity.

IBM 6153 Advanced
Monochrome Graphics
Display

IBM 6154 Advanced Color
Graphics Display

IBM 6155 Extended
Monochrome Graphics
Display

Three new displays are announced for
the IBM RT Personal Computer. The
6153 is a 12-inch, medium-resolution,
black and white display. The 6154 is
a 14-inch, medium-resolution, color
display and the 6155 is a 15-inch,
high-resolution , black and white
display. The three units can display
both text and all-points-addressable
graphics and provide a range of
display functions .

IBM 6157 Streaming Tape
Drive

The IBM 6157 Streaming Tape Drive
is a 1/ 4-inch tape drive for attach­
ment to the IBM RT Personal Com­
puter and IBM System/ 36. The 6157
provides fast , convenient,
save/ restore, and data interchange
capabilities for each of the product
families . Data interchange between
the RT Personal Computer and the
System/ 36 is not supported.

Exchange / Mar-Apr 86

IBM 5080 Graphics System
Features for IBM RT
Personal Computer
Attachment

The 5080 Graphics System connected
to a properly configured RT Personal
Computer (IBM 6150 Model 020,
025, or A25) forms a high-function
graphics workstation that operates in
either a stand-alone or host-connected
environment. The new 5080 features
required for the connection include:

RT Personal Computer Attach­
ment (#6150) for the IBM 5085
Model 1 and SOl

Graphics Keyboard (#4651) for
the IBM 5085 Model 1 and SOI

Serial Link Enhancement
(#9150) on IBM 5088 Models 1,
2, and lR with serial numbers
below 4000.

The 5085 Model lA and 5085 Model
2 also can be connected to the RT
Personal Computer 6150 Models 020,
025, and A25 without the above fea­
tures.

IBM 5085 Graphics
Processor Model 2

The 5085 Graphics Processor Model 2
brings significant improvements and
functional enhancements to the 5080
Graphics System. High performance
CAD/ CAM applications in both
mainframe interactive and standalone
(when attached to the IBM RT Per­
sonal Computer Model 20, 25, or
A25) configurations may be processed
by 5080 systems using the 5085
Model 2. Included in the 5085 Model
2 are more standard features : a larger
base systems memory; larger systems
memory increments; a full-screen
tracking cursor; a 64-bit by 64-bit

programmable tracking cursor; the
ability to visually detect overlapped
geometry; faster pixel write and area
fill speeds; 2D/ 3D performance
improvements; and a range of other
improvements.

IBM 5083 Tablet Model 12

The 5083 Tablet Model 12 is a thin,
compact, flat surfaced unit for user
interaction with the image on the IBM
5080 Graphics System's 5081 Display.
With an 11.5-inch by 11.5-inch active
area and 500-line-per-inch resolution,
the Model 12 is an attractive periph­
eral addition to the 5080 system. It
also can attach to the IBM RT Per­
sonal Computer.

An optional Stylus (#6351) and
4-button Cursor (#1511) are available
for users who prefer a pen-like device
or who require a hand-held unit with a
fine crosshair for precise alignment
and four buttons for application use.

IBM 5081 Display Model 11

The 5081 Display Model 11 provides
a brighter monochrome display image
for IBM 5080 Graphics System users.
The new display uses new phosphors,
a 60Hz screen refresh rate (non­
interlaced), and circuit changes to
provide enhanced black-and-white
images.

IBM 6180 Color Plotter

The IBM 6180 Color Plotter is aver­
satile, high-quality, desktop output
device that produces high-resolution
presentation graphics charts, engi­
neering drawings, graphs, and dia­
grams on paper and transparency film.

The IBM 6180 Color Plotter uses
eight pens, and features automatic pen
changing and faster plotting.

42

Software

IBM RT Personal Computer
Advanced Interactive
Executive Operating System
and Virtual Resource
Manager

The IBM RT Personal Computer
Advanced Interactive Executive
(AlX) Operating System is a multi­
user, multitasking, virtual memory
operating system. It can operate as a
single-user or multiuser system for up
to eight concurrent terminal users. A
multiple virtual terminal interface
allows task switching.

The AIX Operating System provides a
broad range of capabilities, including a
user interface with menus and a
command bar, virtual memory man­
agement, device-independent
input/ output, menu-driven
installation/ configuration procedures,
and an upwardly compatible UNIX
System V environment.

The Virtual Resource Manager
licensed program is designed to
provide device independence and
system expandability. It consists of a
collection of processes, device drivers,
and runtime routines that combine to
support a virtual machine interface to
an operating system such as the IBM
RT Personal Computer AIX Oper­
ating System. The Virtual Resource
Manager is included as part of the
AlX Operating System, but it also is
available as a separate licensed
program. As a separate program, the
Virtual Resource Manager is intended
for use by customers who are planning
to develop programs that will not use
the IBM RT Personal Computer AIX
Operating System.

IBM RT Personal Computer
INmail/INnet/File Transfer
Program

IBM RT Personal Computer
INmail / INnet/File Transfer Program
extends the capability of the IBM RT
Personal Computer AIX Operating
System INed editor by providing for

Exchange/Mar-Apr 86

the queued transfer of files and for
interactive entering of commands to
be executed on remote systems.

IBM RT Personal
Computer /Personal
Computer AT Coprocessor
Services
IBM RT Personal Computer/ Personal
Computer AT Coprocessor Services
provides the capability for many IBM
Personal Computer AT programs to
run on the IBM RT Personal Com­
puter without modification or recom­
pilation.

IBM RT Personal Computer
3278/79 Emulation

IBM RT Personal Computer 3278/ 79
Emulation increases the flexibility of
the IBM RT Personal Computer
system as an intelligent workstation
for interactive use. It provides 3270
emulation and file transfer capability
via attachment to an IBM 3274
Control Unit or to an IBM 4361
Display/ Printer Adapter or Work
Station Adapter. A subset of the
functions of a 3278 Display Station
Model 2 or a 3279 Color Display
Station Model 2A or Model S2A are
emulated.

IBM RT Personal Computer
Structured Query
Language/RT Data Base
IBM RT Personal Computer Struc­
tured Query Language/ RT
(SQL/ RT) Data Base is a relational
data-base management system with
both programmer and end-user facili­
ties. It includes an implementation of
the SQL data language and provides
interactive facilities to enter, retrieve,
modify, and display or print relational
data.

IBM RT Personal Computer
Data Management Services

IBM RT Personal Computer Data
Management Services extends the
IBM Advanced Interactive Executive
(AIX) Operating System file and
directory system, providing a multi­
user data storage structure and access

to a wide variety of applications. It
provides record management services,
field management services, multiple
indexing of files, multiple-request data
sharing across files, and file utilities.

IBM RT Personal Computer
Languages - FORTRAN 77,
BASIC, Pascal
IBM RT Personal Computer
FORTRAN 77 , an implementation of
the FORTRAN 77 language with
enhancements, was developed by IBM
and INTERACTIVE Systems Corpo­
ration. It includes a compiler and
runtime libraries. The Extended
FORTRAN Language and Rational
FORTRAN structured preprocessors
for FORTRAN are also provided.

The IBM RT Personal Computer
BAS! C Compiler and Interpreter pro­
vides a level of function comparable
to that of IBM Personal Computer
BASIC 1.1 Interpreter Advanced
Version plus extensions.

The IBM RT Personal Computer
Pascal provides a level of function
comparable to the IBM Personal
Computer Pascal Compiler Version 1
plus extensions. The user can select a
Personal Computer mode, which is
similar to IBM Personal Computer
BASIC or Pascal, or a native mode,
which provides additional IBM RT
Personal Computer capabilities.

IBM RT Personal Computer
Professional Graphics Series

The IBM RT Personal Computer Pro­
fessional Graphics Series consists of
four licensed programs that provide
support for graphics program develop­
ment as well as for end-user inter­
faces.

IBM RT Personal Computer Graphics
Development Toolkit provides a set of
graphic device drivers for printers,
plotters, and displays to provide
device independence for programs. It
also includes a set of graphics primi­
tives that can be called by high-level
languages to perform functions , such
as displaying pie slices and drawing
lines, polygons, and circles using the

43

IBM RT Personal Computer virtual
device interface.

IBM RT Personal Computer Graphics
Terminal Emulator allows the IBM
RT Personal Computer to emulate the
Tektronix 4010 and 4100 protocols as
well as the Lear Siegler ADM-3A pro­
tocol.

IBM RT Personal Computer Plotting
System is a subroutine library of func­
tions designed to assist the user in
developing programs to produce
various types of charts and to develop
interactive graphics applications.

IBM RT Personal Computer Graph­
ical File System is designed to facili­
tate the standardized retrieval,
storage, and portability of two­
dimensional graphics information. A
metafile interpreter allows the
retrieval of encoded graphic pictures
that have been created in a virtual
device metafile format and their
routing to alternate devices.

Professional CADAM

Professional CADAM is a two and
one-half dimensional, interactive
computer-aided design system for
designers, draftsmen, engineers and
other technical professionals that runs
on the IBM RT Personal Computer
5080 Graphics System. Professional
CADAM functions are nearly iden­
tical to those of CADAM Interactive
Design Version 2. This licensed
program may be used for a variety of
applications that require two and one­
half dimensional drafting capabilities.
It fulfills the requirements of a wide
variety of industries that require
drafting in their operations. Profes­
sional CADAM may be operated in a
stand-alone mode or connected to a
host computer with CADAM Release
19.2 or later installed.

IBM RT Personal Computer
Personal GraPHIGS

The IBM RT Personal Computer Per­
sonal graPHIGS licensed program is
an advanced graphics programming
interface that is based upon the pro­
posed ANSI standard for the Pro-

Exchange / Mar-Apr 86

grammer's Hierarchical Interactive
Graphics System (PHIGS) and is
designed to simplify the programming
of graphics applications, particularly
for CAD I CAM.

Personal graPHIGS, with over 250
graphics functions, may be used with
programs written in FORTRAN,
Pascal, and C to create graphics appli­
cations for the IBM RT Personal
Computer with a 5085 Graphics
Processor.

The Personal graPHIGS application
programming interface is the same, in
most respects, as the
GDDM/ graPHIGS interface under
IBM mainframe operating systems.

Computer-Integrated
Electrical Design
Series/Design Capture

Computer-Integrated
Electrical Design
Series/ Design Capture for
IBM Personal Computer AT

Computer-Integrated
Electrical Design
Series/Design Capture for
IBM RT Personal Computer

IBM Computer-Integrated Electrical
Design Series (CIEDS) is a set of
application programs that assist users
in performing computer-aided elec­
trical engineering on IBM 30XX,
43XX, IBM RT Personal Computer,
and IBM Personal Computer AT
systems. CIEDS/ Design Capture
program supports hierarchical devel­
opment of logic designs on a host­
attached IBM 5080. It provides
functions that allow engineers to
create, edit, and list schematics,
symbols, and information associated
with a design. CIEDS/ Design
Capture supports multi-window inter­
active graphics, netlist manipulation,
and hierarchical design expansion.
Interfaces are available to other auto­
mated design tools, including the IBM
Circuit Board Design System (CBDS).

The CIEDS family of programs offers
a range of capability on a variety of
IBM workstation products. Users of
the IBM 5080 Graphics System, RT
Personal Computer and Personal
Computer AT workstations are sup­
ported with a consistent application
interface and common data base capa­
bility. This can minimize training as
users move from one design environ­
ment to another and also allows a bal­
ancing of performance, function,
capacity, and cost.

UNIRAS for the IBM RT
Personal Computer

UNIRAS, UNlversal RAster System,
is the collective name of a set of soft­
ware programs based on a raster tech­
nique for graphics display and
manipulation of pictures in color.
These programs consist of graphic
utilities, FORTRAN subroutine
libraries and interactive programs.

UNIRAS raster display technology
provides mapping (contour, thematic
and demographic) , seismic plotting,
image processing, business and scien­
tific charting, hidden surface removal,
and visible surface shading capabili­
ties .

The individual products include:

UNIRAS-RASP AK
UNIRAS-RASPAK SOLIDS
UNIRAS-UNIMAP
UNIRAS-GEOP AK
UNIRAS-GEOINT
UNIRAS-KRIGPAK
UNIRAS-GIMAGE
UNIRAS-SEISP AK
UNIRAS-UNIGRAPH
UNIRAS-BIZP AK
UNIRAS-UNIEDIT

Workstation Publishing
Software for the IBM RT
Personal Computer

Workstation Publishing Software by
lnterleaf is a document-preparation
package. It consists of three main
parts : text entry and edit, a diagram-

44

ming and drawing tool, and a charting
tool. lnterleaf has combined these
three tools into one package with a
common user interface. Also included
are interfaces for handling with
external ASCII files and plot files .

SAMNA+ for the IBM RT
Personal Computer

SAMNA+ is a text processing
package that includes a spreadsheet
function. It provides features found
on dedicated word processors,
including hyphenation, automatic pag­
ination, math functions , column mode
and left/ right justify. It also includes
Word Base Manager, a function that
provides a word/ phrase
search/ abstract creation capability
sometimes found in host environ­
ments.

SAMNA+ addresses the word proc­
essing needs of technical, secretarial,
and business professionals . It includes
a mail list merge, spelling verification
feature, math/ Greek characters, three
levels of HELP, and a user interface
that simplifies operations.

SOLOMON III for the IBM
RT Personal Computer

SOLOMON III is designed to be a
high-function, integrated accounting
package. It has a set of twelve appli­
cations. The individual products
include:

SOLOMON III General Ledger
SOLOMON III Accounts Receiv­
able
SOLOMON III Accounts Payable
SOLOMON III Payroll
SOLOMON III Purchasing
SOLOMON III Order
Entry / Invoicing
SOLOMON III Job Costing
SOLOMON III Fixed Assets
SOLOMON III Sales Analysis
SOLOMON Ill Inventory
SOLOMON III Address and Mail
List
SOLOMON III Database
Reporter

Exchange/Mar-Apr 86

Applix IA for the IBM RT
Personal Computer

Applix IA is an integrated application
package that combines text, graphics,
spreadsheet, and database information
within a single document. This docu­
ment retains its ability to be edited.
This package has been designed to
accommodate information sharing by
concurrent terminal users. Other key
applications include Freehand
DRAW, Business GRAPHICS, Per­
sonal DAT ABASE, Personal TIME
MANAGER, Electronic
MAIL/ MESSAGES, and CAL­
ENDAR (meetings and resource
scheduling) .

IMSL Problem Solving
Systems for the IBM RT
Personal Computer

The IMSL Problem Solving Systems
consist of the following five packages:

The IMSL Library is a collection of
over 500 FORTRAN subprograms
that offer diverse mathematical and
statistical problem-solving capabilities.
These subprograms permit users to
select tested subprograms rather than
writing their own.

The SFUN / LIBRARY is a collection
of 180 subprograms that evaluate
special functions that arise in applied
mathematics, physics, engineering,
and other technical fields .

MA TH/ PROTRAN is a problem­
solving system that supports math
programming efforts.

ST AT / PROTRAN is a problem­
solving system that supports linear
programming efforts.

LP / PROTRAN is a problem solving
system provided to support program­
ming efforts for linear programming
problems.

High-level PROTRAN procedures,
help files, and error checking are P.ro­
vided to enhance productivity for
many problems.

RS/ 1 for the IBM RT
Personal Computer

RS/ I is an easy-to-use, versatile, and
fully integrated software system
designed to meet the unique data
management and analysis needs of
technical professionals. With RS/ I ,
analysts have direct control of their
data and analysis without writing pro­
grams.

RS/ I may be used in a wide variety of
applications - from integrated circuit
wafer mapping to environmental anal­
ysis, laboratory automation to product
design, and from basic research to
quality control.

IBM 3278 Emulation via the
IBM Personal Computer for
the IBM System/ 36

IBM 3278 Emulation via the IBM
Personal Computer is a feature of
System/ 36 System Support Programs.
It consists of two components. One
component executes on the
System/ 36; the second executes on
the IBM Personal Computer. 3278
Emulation via the IBM Personal Com­
puter allows users of the IBM Per­
sonal Computer, IBM Personal
Computer XT, IBM Portable Personal
Computer, and IBM Personal Com­
puter AT to emulate an IBM 3278
Display Station Model 2 or 3279
Color Display Station Model 2A or
S2A when using the System/ 36 3270
Device Emulation feature in an SNA
network.

The IBM Personal Computer can be
attached locally via twinax cable to all
models of the System/ 36 or attached
remotely via the 5294 Remote
Control Unit with Expansion Feature
A, feature 360 I , to the System/ 36
5360 and 5362 System Units.

The System/ 36 System Support
Feature 608 Program supports the
5360, and 5362 processors.

The System/ 36 System Feature 609
Support Program supports the 5364
processor.

45

IBM Enhanced 5250
Emulation Program, Version
2.1

The Enhanced 5250 Emulation
Program Version 2. I enables attach­
ment of the IBM Personal Computer,
IBM Personal Computer XT, IBM
Portable Personal Computer, or the
IBM Personal Computer AT to the
IBM System/ 34, IBM System/ 36, or
IBM System/ 38.

Enhancements include Host Graphics
Support, 5292-2 subset, table-driven
printer support, keyboard enhance­
ments, serial printer attachment
support, Enhanced Graphics Adapter
(EGA) support, and Professional
Graphics Controller (PGA) support.
Current licensees of the Enhanced
5250 Emulation Program will be
offered an upgrade to the Enhanced
5250 Emulation Program Version 2. I
for an upgrade charge.

I BM 3812 Pageprinter
Font Management
System

The IBM 38 I 2 Pageprinter Font Man­
agem~nt System lets you customize
the 38 I 2 fonts shipped with the
printer, change power-on option
defaults, add fonts from other
diskettes, and create and maintain
exclusive fonts for the printer that
include special logos, signatures, and
graphics. Fonts and graphics are
designed by turning on or off every
picture element (pel) in a matrix of up
to 600 by 600 pels. Other menu­
driven options let you copy and main­
tain a library of fonts, and create or
duplicate 38 I2 Pageprinter system
diskettes.

The IBM 38I2 Pageprinter Font Man­
agement System requires an IBM Per­
sonal Computer, IBM Personal
Computer XT or IBM Personal Com­
puter AT with 5I2KB memory, one
double-sided diskette drive, a fixed
disk drive, an IBM Color Display,
IBM Enhanced Graphics Display, or

Exchange / Mar-Apr 86

IBM Professional Graphics display
with the appropriate adapter. An IBM
Personal Computer AT with the above
features and a high capacity diskette
drive is necessary to maintain the
38 I 2 Pageprinter system diskette.

Sonoran Serif Typographic
Fonts for the 3812
Page printer

Sonoran Sans Serif
Typographic Fonts for the
3812 Pageprinter

Pi and Specials Fonts for the
3812 Pageprinter

The Sonoran Serif Typographic Fonts
for the 38 I 2 Pageprinter are the func­
tional equivalent of Monotype Times
New Roman (a trademark of the
Monotype Corporation, Ltd.). The
Sonoran Sans Serif Typographic Fonts
for the 38I2 Pageprinter are the func­
tional equivalent of Monotype Arial (a
trademark of the Monotype Corpo­
ration, Ltd.). Typographic fonts were
digitized by the Monotype Corpo­
ration at 240-by-240 picture elements
per square inch.

The Sonoran Serif and Sonoran Sans
Serif Fonts are available in four type
faces : Roman medium, Roman bold,
Italic medium, and Italic bold. Each
typeface is available in 6, 7, 8, 9, IO,
I I, I2 , I4 , I6 , I8 , 20, 24, 30, and 36
point sizes. Fifty six fonts are avail­
able in all. Each font contains 238
characters to support I I national lan­
guages.

The Pi and Specials Fonts for the
38 I 2 Pageprinter contain both serif
and sans serif versions of Pi fonts in
medium and bold typefaces, each in 6,
8, 10, and I2 point sizes. Each font
contains I 89 characters. 24 and 36
point Sonoran Display fonts are
included with 8 I characters. There is
also a 4 point Sonoran Petite font with
13 3 characters.

The fonts require an IBM Personal
Computer, IBM Personal Computer
XT, IBM Portable Personal Com­
puter, with DOS 2.00 or later, or an
IBM Personal Computer AT with
DOS 3.00 or later; the appropriate
display and display adapter; and the
IBM 3812 Pageprinter and appro­
priate serial adapter. The IBM 3812
Font Management System is strongly
recommended for font downloading,
otherwise you must supply func­
tionally equivalent programming. In
addition, the IBM Personal Computer
AT is recommended if fonts are to be
added to the 3812 Pageprinter system
diskette.

IBM Personal Decision
Series Reports+ Training
Edition

The REPORTS+ Training Edition is a
computer-based training package that
introduces the REPORTS+ Edition of
the IBM Personal Decision Series. It
is an interactive educational workbook
that teaches how to create a printed
report with the REPORTS+ Edition.

The Directory Adds 14
Programs

The Directory of Personally Developed
Software has developed 14 new low­
cost programs. Ranging from $19.95
to $99.95 in price, most of these new
programs cost $24.95 and less. Infor­
mation about the new programs
appears in the 1986 Spring Supple­
ment (Volume 2, Number 1) of The
Directory. You can order The Direc­
tory or the programs by calling:

1-800-IBM-PCSW

or writing to:

Personally Developed Software
P. 0. Box 3280
Wallingford, CT 06494-3280

The 14 new programs are described
below.

46

Communications Family

PC Network Remote Control
PC Network Remote Control lets you
operate a remote personal computer
as if it were your own. It lets you link
multiple personal computers on a
network to display a presentation on
multiple PCs at the same time, or
provide help to someone by watching
what they do and typing the correct
input from your system. PC Network
Remote Control works on any
network that is NETBIOS-compatible.

Productivity Family

Daily Organizer
Daily Organizer projects, tracks, dis­
plays, and prints your calendar and
appointments on a daily, weekly,
monthly, or yearly basis. It can store
information for dates spanning more
than half a century and remind you of
appointments even when another
program is running. It handles
reminders for single and multiple
dates, as well as periodic reminders
such as mortgage payments. Daily
Organizer also can run under
Top View.

Introductory Editor
Introductory Editor lets you create,
display, edit, and print ASCII files.
Start-up is fast and simple because of
the online help screen for each
command. You can copy, move, and
delete blocks of lines. Introductory
Editor lets you split and join lines, and
save and recall long sequences of key­
strokes and information by pressing
key combinations. You can search for
and locate strings of characters.

JustEdit
JustEdit is a compact, yet flexible full­
screen text file editor that resembles
editors used on many mainframes.
JustEdit shows an entire line on the
screen, avoids horizontal scrolling,
and automatically does vertical
scrolling. It uses simple commands for
quick text changes, and lets you
re flow paragraphs easily . You can
insert, split, join, and delete lines,
rename files, and load a new file
within an existing file. You can also
search, replace, and repeat strings of
text.

Exchange/Mar-Apr 86

Programming Family

Source Maintenance System
Source Maintenance System helps you
maintain and change programming
source code across many files without
duplicate effort. It lets you place
single or multiple changes in Update
Control files, which are then applied
against existing source files to create
new source files . Source Maintenance
System produces a log of all changes
to give you a history of your work.

Education Family

Aeromathics
Aeromathics combines the fun of a
puzzle with the learning of flash cards
to teach math to children ages 7 to 14.
Each game begins with an aircraft
picture hiding a math problem. You
use cursor keys or a joystick to
uncover the problem. When enough
of the problem is visible, you race the
clock to find the answer. You can
select from six problem types at four
levels of difficulty, and play for bonus
points.

Countries, Capitals, and More!
Countries, Capitals, and More!
teaches geography through three dif­
ferent games. The Select game lets
you choose the correct name currency,
or capital of a country or geographical
feature. The Compare game lets you
choose the country with the larger
area, population, or population
density. The Locate game tests your
knowledge by having you point to
specific countries on a map using a
joystick or cursor keys.

Electronic Grammar (Parts of Speech)
Electronic Grammar (Parts of Speech)
teaches eight different parts of speech
(nouns, verbs, etc.) to children and
adults. It lets you select which part of
speech to study; shows you examples,
definitions, and explanations; quizzes
you on each topic; and keeps a
running score of your progress. You
can proceed at your own pace, and
page backward for review of the mate­
rial. You can also refer to help
screens as needed .

Memory House
Memory House helps children ages 3
to 7 years of age improve their
retention ability. The object of each
game is to match shapes, colors, or
animals in the doorway of the house
with those shown in the four windows.
Memory House uses simple menus
that reduce the need for help from
adults .

Multipurpose Authoring Language
Multipurpose Authoring Language lets
you create unique teaching programs
that track student responses . Multi­
purpose Authoring Language lets you
use ASCII graphic characters to create
pictures and animate objects as part of
lessons. You can use text to create
captions or ask questions. Multipur­
pose Authoring Language also lets
you add optional equipment (cassette
recorder, speech synthesizer, compo­
nent monitor, and video laser disc
player) to add new dimensions to
lessons.

47

Lifestyle Family

Plan-A-Year
Plan-A-Year tabulates your income
and expenses totals and shows how
much you can spend and still reach
your financial goal. It helps you stay
within budget by displaying your total
income and expenses, financial gain,
spending money, and any money you
have in special accounts. It lets you
track 75 expense items, 15 income
items, and 20 special accounts. Plan­
A-Year is designed for the new com­
puter user.

SOLITAIRE
SO LIT AIRE is the classic card game
you used to save for rainy days. Using
function keys, you play the
"Klondike" version of Solitaire. You
even have an option to help you win
in difficult situations. You can choose
single or multi-pass options to go
through the deck of cards.

Exchange / Mar-Apr 86

1985 Tax Template
1985 Tax Template provides a fast
and flexible way for most people to
complete their 1985 tax returns. It
contains nine 1040 schedules and ten
other frequently used forms as Lotus
1-2-3 templates. All forms except the
1040 are currently accepted by the
IRS as computer printouts. The tem­
plates reduce calculation errors and
allow automatic transfer of amounts
between forms as required. When fin­
ished, simply print and submit the
forms to the IRS.

Entertainment Family

Side-Swipe
Side-Swipe requires quick thinking
and reflexes as you guide your men
through a maze of corridors with fixed
and moving escape hatches and deadly
creatures. You win points and men
for each successful escape. You can
adjust difficulty and speed levels to
suit your skills. Joysticks or cursor
keys let you control play.

How to Obtain
Exchange
Frequently we are asked how to
obtain Exchange.

Exchange is circulated primarily
through IBM Personal Computer
user groups. We distribute
Exchange at no charge to several
hundred PC user groups that have
registered with us for our support.
In turn , these user groups dis­
tribute Exchange at their group
meetings. Therefore, one way to
obtain Exchange is to become an
active member of a PC user group.
In addition to receiving Exchange,
you will undoubtedly reap other
benefits, because user groups
provide focal points for PC infor­
mation, support and camaraderie.
If you are interested in locating an
existing PC user group, registering
your existing group with us, or
forming a new user group, please
contact us on 1-800-IBM-PCUG.

48

Editor's Comments

Exchange also is available at a
nominal cost through the IBM
Distribution Center in
Mechanicsburg, Pennsylvania. To
order through Mechanicsburg,
readers who are not IBM
employees should contact the
librarian at an IBM branch office.
IBM employees should submit
their orders directly to
Mechanicsburg.

Individual issues of Exchange
should be ordered using the ITPS
Publications Order Form. Form
numbers for individual issues are :

Issue
June 1985
July 1985
August 1985
September 1985
October 1985
Nov/ Dec 1985
Jan/ Feb 1986
Mar I Apr 1986

Form Number
G320-0842
G320-0843
G320-0844
G320-0845
G320-0846
G320-0847
G320-0848
G320-0849

Exchange / Mar-Apr 86

Subscriptions to Exchange should
be ordered using the System
Library Subscription Service
(SLSS) form . Under Order
Number, specify GBOF-1229 . To
receive all back issues, check the
Ship Initial Library option.

Please note that we in Boca Raton
are unable to handle requests for
individual issues or subscriptions
to Exchange. We distribute
Exchange only in bulk to IBM PC
user groups and the IBM Distrib­
ution Center.

I'd like to close by thanking all of
you for your interest in Exchange
and for your kind comments and
encouragement.

Michael Engelberg
Managing Editor

Copyrights, Trademarks and Service Marks

ADM is a trademark of Lear Siegler, Inc.

AIX is a trademark of AT&T Bell Labora­
tories.

Applix is a trademark of Applix Incorpo­
rated.

CADAM is a trademark of CADAM, Inc.

ColorPlus is a trademark of Plantronics
Corporation.

CompuServe is a trademark of
CompuServe, Incorporated.

Corporate MBA is a trademark of Context
Management Systems.

CP / M is a registered trademark of Digital
Research, Incorporated.

CP / M-86 is a trademark of Digital
Research, Incorporated.

Data Encoder and its associated documen­
tation are under the U.S. Department of
State Munitions list, Category XIII(b) and,
as such, must be licensed by the U.S.
Department of State prior to export from
the United States.

dBASE is a registered trademark of
Ashton-Tate.

DIF is a trademark of Software Arts,
Incorporated.

Dow Jones News/ Retrieval Service is a
registered trademark and Dow Jones is a
trademark of Dow Jones & Company,
Incorporated.

EasyWriter is a trademark of Information
Unlimited Software, Incorporated.

Framework is a trademark of Ashton-Tate,
Incorporated.

Home Word is a trademark of Sierra
On-Line, incorporated.

IBM is a registered trademark of interna­
tional Business Machines Corp.

IMSL is a trademark of iMSL Incorpo­
rated.

IN/ ix, INmail , INnet, and !Ned are regis­
tered trademarks of Interactive Systems
Corporation.

INTERACTIVE and IS/ 5 are trademarks
of Interactive Systems Corporation.

Interleaf is a trademark of Interleaf, Inc.

Lattice is a registered trademark of Lattice,
Inc.

Logo is a trademark of Logo Computer
Systems Incorporated.

Lotus and 1-2-3 are trademarks of Lotus
Development Corporation.

Managing Your Money is a trademark of
MECA (TM). MECA is a trademark of
Micro Education Corporation of America,
Incorporated.

Microsoft and the Microsoft logo are regis­
tered trademarks of Microsoft Corpo­
ration.

Multiplan is a U.S. trademark of Microsoft
Corporation.

NEC is a trademark of Nippon Electric
Co., Ltd.

PCjr is a trademark of International Busi­
ness Machines Corp.

PC Mouse is a trademark of
Metagraphics/ Mouse Systems.

Peachtext is a trademark of Peachtree Soft­
ware Incorporated, an MSA company.

Perfect Writer is a trademark of Perfect
Software Incorporated.

Personal Computer AT is a trademark of
International Business Machines Corp.

Personal Computer XT is a trademark of
International Business Machines Corp.

pfs: is a registered trademark of Software
Publishing Corporation.

PlannerCalc is a trademark of Comshare.

Professional CADAM is a registered trade­
mark of CADAM, Inc.

RS / l is a trademark of Bolt, Beranek and
Newman, Inc.

SAMNA is a trademark of SAMNA Cor­
poration .

SMARTMODEM is a trademark of Hayes
Microcomputer Products, Inc.

SOLOMON III is a trademark of TLB
incorporated.

Supercalc is a trademark of Sorcim Corpo­
ration.

Symphony is a trademark of Lotus Devel­
opment Corporation.

Synonym information in PCWriter and
Word Proof is based on the American Her­
itage Dictionary Data Base, Roget's IT, The
New Thesaurus, owned by Houghton
Mifflin Company and used with permis­
sion. Copyright 1982 by Houghton Mifflin
Company.

Tektronix is a trademark of Tektronix, Inc.

Teletype is a trademark of Teletype Corpo­
ration.

The Learning Company reserves all rights
in the Rocky, Bumble, Juggles and
Gertrude characters and their names as
trademarks under copyright law. Rocky's
Boots, Bumble Games, Bumble Plot,
Juggles' Butterfly, Gertrude's Puzzles,
Gertrude's Secrets and The Learning
Company are trademarks of The Learning
Company.

THE SOURCE is a service mark of Source
Telecomputing Corporation, a subsidiary
of The Reader's Digest Association , Incor­
porated.

Time Manager is a trademark of The Image
Producers, Incorporated.

Top View is a trademark of International
Business Machines Corp.

UCSD, UCSD p-System and UCSD Pascal
are trademarks of the Regents of the Uni­
versity of California.

UNIRAS is a trademark of UNIRAS Incor­
porated.

UNIX is a trademark of AT&T Bell Labo­
ratories.

VisiCalc is a trademark of VisiCorp.

Visi On is a trademark of VisiCorp.

Volkswriter is a trademark of Lifetree Soft­
ware Incorporated.

Word Perfect is a trademark of Satellite
Software International.

WordStar is a trademark of MicroPro
International Corporation.

Workstation Publishing Software is a trade­
mark of Interleaf, Inc.

XENIX is a trademark of Microsoft Cor­
poration.

The IBM Personal Computer file system ... repackages
the basic marvels of magnetism into a form useful for
storing data in computers. (page 4)

... the PC takes very unkindly to attempts to infringe
on its space. (page 5)

The IBM PC Network Analysis Program provides a
set of functions to help you manage your network.
(page 7)

Fundamental to the Virtual Device Metafile notion is
the ability to conveniently archive graphic images ...
(page 19)

Because pictures are stored in a device-independent
manner, they can be ported to and shared with other
computers ... (page 20)

You can influence the learning process of your chil­
dren by helping them make better use of computers at
home ... (page 33)

The Graphics Development Toolkit includes a Virtual
Device Interface that follows the proposed ANSI
X3H33 definition. (page 27)

Boolean operators can also work on single bytes of
information to filter out or modify single bits. (page 3 7)

G320 -0849 - 00

