
Volume 2, Number 7 September 1984

IBM Personal Computer
Seminar Proceedings

The Publication for Independent Developers
of Products

for IBM Personal Computers

Published by International Business Machines Corporation
Entry Systems Dh·ision

--...- ------ ------ ~--- -.. ---- - - -------- ~ -_ _.. - " -
®

Changes are made periodically to the information herein; any such
changes will be reported in subsequent Proceedings.

It is possible that this material may contain reference to, or
information about IBM products (machines and programs),
programming or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such products, programming or services
in your country.

IBM believes the statements contained herein are accurate as of
the date of publication of this document. However, IBM makes no
warranty of any kind with respect to the accuracy or adequacy
of the contents hereof.

This publication could contain technical inaccuracies or typographical
errors. Also, illustrations contained herein may show prototype
equipment. Your system configuration may differ slightly.
IBM may use or distribute any of the information you supply in any
way it believes appro~riate without incurring any obligation
whatever.

All specifications are subject to change without notice.

Copyright©
I nternationa I
Business
Machines
Corporation
08/84

Printed in the
United States
of America

All Rights
Reserved

--..- ------- - ---- _.. ---- -.. ---- - - ----___ _ _ _... _ ... -
®

Contents
Introduction and Welcome . 1
Purpose .. 1
Topics .. 1

IBM Personal Computer Resident Debug Tool 2
Overview ... 2

Organization . 3
What You Need .. 3

How To Load The Resident Debug Tool .. 4
Resident Debug Tool Display Screen . 6
Resident Debug Tool Command Line Input . 7
Command Line Control Keys . 7
Command Processing . 8
Command Parsing . 8
Expression Evaluation . 8
Resident Debug Tool Windowing . 10
Memory Windowing . 10
Disassemble Windowing . 12
Trace Windowing . 14
Math Co-Processor Windowing . 15
Resident Debug Tool Commands . 16
Register Commands . 16

General Register Commands . 16
Specific Register Commands . 16
Segment Register Commands . 16
Flag Register Commands . 16

Execution Commands . 17
Variable Commands . 17

Breakpoint Variable Commands . 17
Scratchpad Variable Commands . 17

Windowing Commands ... 18
Memory Window Commands . 18
Disassemble Window Commands . 18
Trace Window Commands . 18
Math Co- Processor Window Command . 18

Memory Commands . 19
Memory Block Commands . 19
Find Commands . 19

Input/Output Commands . 19
Disk and Diskette Read/Write Commands . 19
1/0 Port Commands . 19

Debug Environment Commands . 19
Screen Control Commands . 20
Move Display Commands . 20
Reset Commands . 20

Appendix A . 21
Sample ROT Display Screens . 21

Appendix A, Screen 1 . 22
Sample RDT Logo Screen . 22

Appendix A, Screen 2 . 23
RDT Display Screen Layout . 23

Appendix A, Screen 3 .. ~. 24
Sample ROT Initial Entry Screen . 24

Appendix A, Screen 4 . 25
Sample ROT Memory Windowing Screen . 25

Appendix A, Screen 5 . 26

Contents

Sample ROT Disassemble Windowing Screen . 26
Appendix A, Screen 6 . 27

Sample ROT Partial Trace Windowing Screen . 27
Appendix A, Screen 7 . 28

Sample ROT Full Trace Windowing Screen . 28
Appendix A, Screen 8 . 29

Sample ROT Math Co-Processor Windowing Screen . 29

Questionnaire . 30

Contents ii

Introduction and Welcome
These are the Proceedings of the IBM Personal
Computer Seminar, designed for independent
developers of products for IBM Personal
Computers. The purpose of these Proceedings is to
aid you in your development efforts by providing
relevant information about new product
announcements and enhancements to existing
products. This issue is prepared in conjunction with
this seminar. The Proceedings of future seminars
for the IBM Personal Computers also will be
published and will cover topics presented at those
seminars.

Throughout these Proceedings, the term Personal
Computer and the term family of IBM Personal
Computers address the IBM Personal Computer, the
IBM Personal Computer XT, the IBM PCjr, the IBM
Portable Personal Computer, and the recently
announced IBM Personal Computer AT.

Purpose

What is our purpose in issuing a publication such as
this? It is quite simple.

The IBM Personal Computer family is a resounding
success. We've had a lot of help in achieving this
success, and much of it came from the independent
developers.

As you proceed with your development, do you at
times wish for some bit of information or direction
which would make the job easier? Information
which IBM can provide? This is the type of
information we want to make available to you.

Since we want to be assured of giving you the
information you need, we ask you to complete the

Introduction and Welcome

questionnaire which appears at the end of these
Proceedings. Your response to this questionnaire
will be taken into account in preparing the content
of future issues, as well as the content of seminars
we will present at microcomputer industry trade
shows.

Topics

The following list gives a general indication of the
topics we plan to cover in future seminars and
include in the IBM Personal Computer Seminar
Proceedings:

• Information exchange forum - letters to the
editor format

• Development tools - languages, database
offerings

• Compatibility issues

• New devices - capacities and speeds

• System capacities - disk and memory

• Enhancements in maintenance releases

• Tips and techniques

• New system software

• Hardware design parameters

• Tips on organizing and writing documents for
clear and easy reading

• Changes to terms and conditions

IBM Personal Computer Resident Debug
Tool
Overview

This Proceeding describes the IBM Personal
Computer Resident Debug Tool. The Resident
Debug Tool (RDT) is a functional programming tool.

RDT executes on the IBM Personal Computer
processor using the Personal Computer
keyboard/display to interface with the programmer.
The Resident Debug Tool can be used to aid in
software development and maintenance in an IBM
Personal Computer Disk Operating System (DOS)
environment.

A full-screen display and simple command structure
provide a comprehensive but comprehendible view
and control of the processor and its memory. A
wide range of functions are supported by RDT. The
basic functions include:

• Stop/Start program execution

• Single/Multiple step program execution

• Trace program instructions to a buffer while
stepping

• Display I Alter processor registers, memory or
1/0 space

• Address stops (breakpoints)

• Search memory contents to find an
ASCII/EBCDIC/hexadecimal string

• Copy an area of memory from one location to
another location

• Compare one area of memory with another area
of memory

IBM Personal Computer Resident Debug Tool

• Instruction disassembly

• Hexadecimal expression evaluation, with
scratchpad space for evaluated results

• Stop at program request

• Disk/ diskette display, alter, find, verify

• Print memory, instruction trace buffer, or
disassembled instructions

• Print the user program screen or debug tool
screen

• Display math co-processor (8087) state (if
installed)

A very useful user interface has been built around
these basic functions to extend their capabilities.
The RDT full screen display format normally
displays many items of interest so no action need
be taken to view these items. The wide variety of
RDT commands are all two characters in length to
minimize keystrokes and to assist users in
remembering them. The full screen display is, to a
large extent, self prompting; many of the valid
commands and valid terms for a RDT expression are
a part of the normal display.

The Resident Debug Tool operates as an extension
of the Disk Operating System (DOS) and acts as an
interrupt handler to control user program execution.
When one of the interrupts being handled by RDT
occurs, the debug tool is invoked. A programmer
may then enter RDT commands to perform a
desired function. Eventually, the programmer may
resume the program's execution by issuing the
appropriate RDT command. While a user's
program is executing, RDT remains resident waiting
to be invoked by an RDT-handled interrupt.

2

Organization

This Proceeding is intended to provide an
understanding of the capabilities of the IBM
Personal Computer Resident Debug Tool. This
document will:

• List the equipment and software you will need to
use Resident Debug Tool

• Describe what to do to start using the ROT

• Explain how to load ROT and what options are
available to you

• Discuss the ROT display screen format and
explain Resident Debug Tool command line
input

• Describe the Resident Debug Tool windowing
modes, memory, disassemble, trace, and math
co-processor windowing modes

• Provide an overview of the commands available
in the Resident Debug Tool

What You Need

You need the following hardware and software to
operate the Resident Debug Tool:

• An IBM Personal Computer with a minimum of
128K of memory.

• At least one diskette drive.

• An 80-column display (with appropriate IBM
Monochrome or IBM Color/Graphics Display
Adapter).

• IBM Disk Operating System (DOS).

The Resident Debug Tool also supports the
following:

• Both an IBM Monochrome Display and
80-column Color monitor (with appropriate
display adapters).

• IBM Matrix Printer or any compatible printer.

• Math Co-processor option.

IBM Personal Computer Resident Debug Tool 3

How To Load The Resident
Debug Tool

After loading the IBM Disk Operating System
{DOS) on an IBM Personal Computer, Personal
Computer XT or the IBM Portable Personal
Computer, insert the diskette containing the
Resident Debug Tool into a diskette drive and
enter the following command:

<drive:> ROT <options>

where:

'drive:' is the diskette drive in which the
diskette containing the Resident Debug Tool has
been placed

'ROT' is the name of the Resident Debug Tool
'options' may be any of the following ROT
options:

'a' specifies that you want the ROT program to
allocate 4K within the debug tool memory space for
the saving of a full monochrome display buffer or
first 4K of the color display buffer when the user
and the debug tool are sharing the same display.
This enables any alphanumeric display page to be
properly saved and restored while debugging. {'a '
and 'g' are mutually exclusive options.)

'c' specifies that you want the ROT program to
initially use the color display for the ROT display
screen. { 'c' and ' m ' are mutually exclusive
options.)

'g' specifies that you want the ROT program to
allocate 16K within the debug tool memory space
for the saving of a full monochrome display buffer
or full color display buffer when the user and the
debug tool are sharing the same display. This
enables any alphanumeric or graphic display to be
properly saved and restored while debugging. ('a'
and 'g' are mutually exclusive options.)

'k' specifies that you want the ROT program to
gain control whenever an Interrupt 5 {print-screen
interrupt) is issued. ROT will save the current
Interrupt 5 vector and replace it with one which
causes entry into the debug tool. This is normally
the 'print-screen' interrupt and is issued from the
BIOS keyboard handling routine. This option will
allow the user to pass control to the debug tool
when using keyboard I I 0 which makes use of the
BIOS code. The user presses 'Shift-PrScr' in this
case to have the debug tool take control. When
ROT is handling this interrupt, it makes the
necessary adjustments to the state of the machine

IBM Personal Computer Resident Debug Tool

so that the user state appears just as it did before
going off to service the interrupt. The Interrupt 5
should only be issued from BIOS when making use
of this option! When using this option, never place
an 'I NT 5' instruction in your program, as this will
have unpredictable results.

'm' specifies that you want the ROT program to
initially use the monochrome display for the ROT
display screen. ('c' and 'm ' are mutually exclusive
options.)

'n' specifies that you want the ROT program to
handle soft Interrupt 2' s (non-maskable interrupts),
such as those caused by an Interrupt 2 instruction or
a math co-processor exception condition.

'p' specifies that you want the black and white
attribute set to be the default color attributes when
the Resident Debug Tool is using the color I graphics
adapter to display the ROT screen. This makes the
ROT normal color attribute to be white on black,
ROT highlight color attribute to be intense white on
black, and the ROT reverse color attribute to be
black on white. This option is primarily intended for
those who use a two-color monitor with the
color/graphics adapter, such as the IBM Portable
Personal Computer.

't size' specifies the size of the ROT instruction
trace buffer to be included in the debug tool where
the size is the number of instructions in
hexadecimal. For DOS 1.1, the minimum size which
can be specified is hexadecimal '20' (32 decimal)
and the maximum size which can be specified is
hexadecimal ' DO' (208 decimal). For DOS 2.0 and
above, the minimum size which can be specified is
hexadecimal '20' (32 decimal) and the maximum
size which can be specified is hexadecimal '924'
(2340 decimal).

'x' specifies that the user wishes to not have to
press any key to continue when the IBM logo screen
is displayed. This enables the invocation of ROT to
be contained in a batch EXEC along with invocation
of the program being debugged without having any
human intervention required.

If neither the 'm ' nor 'c' options are specified
when the ROT program is loaded, the current
display screen is used for the ROT display screen.
The Resident Debug Tool uses the 80x25 display
mode for either the monochrome or color display. If
ROT and the user's program being debugged use
the same display monitor, ROT contains code to
support 'swapping' the display states as necessary
while debugging user programs. In addition, if ROT
and the user's program are on the same display, an
'a' or 'g ' option specified, and the user's
program in an appropriate mode (alphanumeric for

4

1 a 1 , alphanumeric or graphics for 1 g 1), the user 1 s
program display screen is saved by ROT upon entry
to the tool and restored upon resuming execution of
the user 1 s program.

If no trace buffer size option is specified, a default
buffer size for 32 instructions (hex 1 20 1) is created
within ROT. Twenty-eight bytes are required for
each instruction within the ROT trace buffer.
Therefore, a trace buffer capable of holding 32
instruction will require 896 bytes. Likewise, the
maximum DOS 2.0 trace buffer of 2340 (hex 1924 1)

instructions requires 65,520 bytes.

When the Resident Debug Tool is loaded and all
options specified are valid, an IBM logo screen will
appear on the selected (or default) debug tool
display (see Appendix A, Screen 1 for an example of
the ROT logo screen). The user will be asked to
press any key to continue. After having pressed a
key (or after a few seconds if the 1 x&s sq.
option was specified), the IBM Personal Computer
Resident Debug Tool is made a resident extension
of DOS. From this point on, the Resident Debug
Tool will reside in low memory just above DOS. The
user 1 s programs can then be loaded, just as they
normally are. DOS will load these programs above
the Resident Debug Tool.

The amount of space occupied by ROT is
determined by the options specified when the tool is
loaded. If no options are specified, the size of the
debug tool is approximately 42K. The 1 c 1 , 1 k 1 ,

1 m 1 , 1 n 1 , and 1 x 1 options have no effect on this
base 42K amount. The 1 m 1 and 1 g 1 options are
mutually exclusive. No more than one of these
should be specified. The 1 m 1 option requires an
additional 4K within ROT. The 1 g 1 option requires
an additional 16K within ROT. The 1 t size 1 option
requires from OK-63K additional depending on the
size requested. When all of these options are
considered, the amount of memory occupied by the
Resident Debug Tool will range from approximately
42K to 121K.

When ROT is made a resident extension of DOS, it
saves the user 1 s Interrupt 2 vector and then
modifies the Interrupt 3 (breakpoint interrupt) vector
and the Interrupt 2 (non-maskable interrupt) vector
(and optionally the Pr-Ser interrupt vector if the 1 k 1

option was specified) to point to ROT interrupt
handlers. ROT will then act as an interrupt handler
to control user program execution. These vectors
return control to the debug tool via an interrupt. An
Interrupt 3 is triggered by either a user requested
breakpoint set by the debug tool or by an INT3 (hex
1 CC 1) instruction within code being executed by
the IBM Personal Computer. An Interrupt 2 can be
classified as either hard or soft. A hard Interrupt 2
is issued by the system when a memory parity error
or I I 0 channel check occurs, or by the user
pressing the NMI button on the card which can be

IBM Personal Computer Resident Debug Tool

used with ROT and releasing after one to two
seconds. A soft Interrupt 2 is triggered by either an
INT 2 (hex 1 CD02 1) instruction within code being
executed by the IBM Personal Computer or by a
math co-processor exception condition.

This description of ROT Interrupt 2 handling is
primarily intended for those may wish to have their
own Interrupt 2 routines handle math co-processor
exception conditions. The Resident Debug Tool
always handles hard Interrupt 2 1 s. ROT will,
however, only handle soft Interrupt 2 1 s if the user
requests that it do so, either by an 1 n 1 load-time
option or with the 1 SN 1 command. When an
Interrupt 2 occurs, ROT determines whether or not
to handle it. If ROT is not to handle soft Interrupt
2 1 s, it must determine whether or not a soft
Interrupt 2 has in fact occurred. If the Interrupt 2 is
soft, ROT will jump to the user 1 s Interrupt 2 routine
so that it may handle the interrupt condition. The
address of this interrupt routine is determined from
the user 1 s Interrupt 2 vector, which was saved
when ROT was first made resident and may have
been since modified. When the user resumes
program execution (via the 1 EX 1 command) a check
is made to determine whether or not the Interrupt 2
vector still points to the ROT Interrupt 2 handler. If
it does not, this vector is saved as the user 1 s new
Interrupt 2 vector by ROT and the Interrupt 2 vector
in low memory is modified to point to the ROT
Interrupt 2 handler. If the user 1 s program modifies
the Interrupt 2 vector, the user should return control
to ROT by one of the other Interrupts ROT handles
(such as I NT3) so that ROT may save the new user
Interrupt 2 vector and replace it with a vector
pointing to the ROT interrupt handler when user
program execution resumes.

A good practice for users writing programs which
might be debugged using the Resident Debug Tool
is to place an INT3 instruction at the beginning of
the program. This will cause control to be returned
to the debug tool immediately after DOS has loaded
the program. The user may then set breakpoints in
their program or use any of the other facilities of the
debug tool. In normal operation, when no debug
tool is present, DOS ignores the INT3 instructions
so there is no need to worry about removing them
from the code. code (unless the one byte used for
an INT3 is of concern).

The following are three examples of commands that
might be entered to load the Resident Debug Tool,
and what result the command will have:

1 ROT 1 - will cause the Resident Debug Tool to
be loaded from the current default drive; ROT will
initially use the current display for the debug tool
display; ROT will retain control of the Interrupt 3
and Interrupt 2 vectors, and will handle all Interrupt

5

3 'sand hard Interrupt 2' s; the trace buffer size will
be 32 (hex '20') instructions; no ROT user display
buffer area will be allocated; when ROT is loaded,
an I.BM logo screen will appear, and wait for any key
to be pressed before continuing.

'B:RDT NA C' - will cause the Resident Debug
Tool to be loaded from the 'B' drive; ROT will
initially use the color display for the debug tool
display; ROT will retain control of the Interrupt 2
(NMI) ;md Interrupt 3 vectors and will handle all
Interrupt 2' s and Interrupt 3 's; the trace buffer size
will be 32 (hex '20') instructions; a 4K ROT user
display buffer area will be allocated; when ROT is
loaded, an IBM logo screen will appear, and wait for
any key to be pressed before continuing.

' ROT N G M K T 100 X' - will cause the
Resident Debug Tool to be loaded from the current
default drive; ROT will initially use the monochrome
display for the debug tool display; ROT will retain
control of the Interrupt 2 (NMI), Interrupt 3, and
Interrupt 5 (Print Screen) vectors and will handle all
Interrupt 2 's, Interrupt 3' s, and interrupt 5 's; the
trace buffer size will be 256 (hex ' 100')
instructions; a 16K ROT user display buffer area will
be allocated; when ROT is loaded, an IBM logo
screen will appear for a few seconds before
continuing.

Resident Debug Tool Display Screen

The Resident Debug Tool full screen display can be
viewed as being five separate areas (see Appendix
A. Screen 2 for an example of the ROT display
screen layout). The first line displays the release
and version number and the release date of the
Resident Debug Tool. Lines 2-9 display the
address stops, variables, and processor registers.
Line 10 is the command line. Line 11 is the
message line. Lines 12-25 are the windowing area
of the ROT display.

The cursor may be placed anywhere in the input
area of the command line, or it may be moved to
selected parts of the windowing area. The
command line is used for entering all of the ROT
commands, while the windowing area is used to
display I alter memory, display I alter disassembled
instructions, display the trace buffer, or display the
math co-processor state (if installed).

This section will concentrate on the first four areas
of the ROT display screen, since these remain the
same no matter which of the windowing modes you
are in. The following two sections (4 and 5) explain
Resident Debug Tool command line input and the
different Resident Debug Tool windowing modes
and their operation.

IBM Personal Computer Resident Debug Tool

Appendix A, Screen 3 illustrates an example of what
the ROT display may look like when first returning
control to the debug tool by way of an ' I NT3 '
instruction encountered while executing a user's
program. As Screen 3 demonstrates, all of the
processor registers are displayed in the top portion
of the screen ,along with the address stops (Sn) and
variables (Vn). The 8088 processor flag register is
displayed in both hexadecimal and binary forms.
The 8088 segment registers are displayed in 20-bit
'real-address' representations. A segment
register is only 16 bits long, which corresponds to
the first 4 characters of the segment register's
displayed value. But since most calculations using
the segment registers involve their real 20-bit
values, a '0' is appended to the 16-bit segment
register content. The center of the screen contains
the command line, followed by the status (or
message) line. Initially, ROT is in memory
windowing mode. In the memory windowing mode,
the bottom portion of the screen contains the
memory window area; line numbers, addresses, and
hexadecimal representations appear on the left side
while character (EBCDIC or ASCII) representations
appear on the right side.

When it is the initial entry into the Resident Debug
Tool, none of the breakpoints or variables have been
set, so they appear simply as dots. Since no
windowing activity has taken place, the first line of
the memory windowing area contains the
hexadecimal address '00000' Initially there is only
one ' memory window' ; it is 14 lines long, each line
displaying 16 bytes of the PC's memory. The
values displayed for the 8088 processor general
purpose registers are those which were present
when the user program issued the INT3 instruction.
The EX field is a pseudo 20 bit program counter
which is maintained by ROT; it contains the sum of
the CS and IP registers, and is followed by a
one-to-seven byte hexadecimal memory display of
the next instruction to be executed. Above the
hexadecimal display is a disassembled
representation of the instruction. If the instruction
has an Operand which references memory, the
20-bit memory address is calculated (segment
register+ displacement + base/index register(s))
and displayed as the OP: variable. If the instruction
has an operand which references a particular byte or
word in memory, this byte or word is displayed
under the OPerand location. The undisplayed
variable IL (Instruction Length) contains the length
of the instruction. The Flag Register (FL) has
several bits that are architecturally undefined, but
the fact that the OF, DF, TF, SF, AF, and CF bits are
zero and the IF, ZF, and PF bits are one is displayed
both in binary form and in 16 bit (F246) form. The
default step count (CT) is set to one.

6

The 'D1 ' in the upper right part of the display
indicates that this is RDT Display Screen number
1. The Resident Debug Tool supports 9 debug
display screens. Some variables are common to all
9 displays and some variables are unique to each
display. For example, the Processor registers and
memory contents are common for all display
screens while the displayed variables (V1 -V9,
S1-S9, L 1-L9, M1-M5) are unique to each of the 9
displays. A useful debug technique is to use a
different display for each of the user code sections
which is being debugged.

Resident Debug Tool Command Line Input

This section describes cursor motion and general
capabilities of the command line. The command
line is used for entering all of the commands to the
Resident Debug Tool.

Command Line Control Keys

When the Resident Debug Tool is first loaded, all
command line alphabetic input is upper case,
regardless of the shift key position. numeric and
special character keys always have dual case
capability. The F3 key may be used to change from
single case alphabetic input to dual case alphabetic
input and back again; the cursor must be on the
command line for the F3 key to cause this change.

Outboard keys and inboard keys other than data
keys function are as follows:

• Enter key (f----J) : moves the cursor to the
beginning of the command line and executes the
commands on the command line. This key
performs this function regardless of the cursor
position on the screen.

• CAPS LOCK key: moves the cursor down into
the window area of the screen (if possible for
the current window mode)

• Up arrow : same as CAPS LOCK

• Down arrow : same as CAPS LOCK

• Right arrow : moves the cursor right one
position unless the cursor is at the end of the
command line.

• Left arrow : moves the cursor left one position
unless the cursor is at the beginning of the
command line.

• Tab key (-----...i) : moves the cursor to the next
command on the command line. The tab key
actually moves the cursor to the position

IBM Personal Computer Resident Debug Tool

following the next semi-colon; if there are no
semi-colons to the right of the cursor, the cursor
is moved to the beginning of the command line.

• INSert Key (or F4) : changes between the
insert/ overstrike input keying modes. A blinking
asterisk at the beginning of the command line
indicates that insert mode is active.

• Delete key (DEL) : deletes the character over
the cursor and shifts the remainder of the
command line left one character.

• Backspace key(~) : moves the cursor left
one position, removes the character over the
new cursor position, and, if insert mode is
active, shifts the remainder of the command line
left one position.

• HOME key : moves the cursor to the beginning
of the command line. This key performs this
function regardless of the cursor position on the
screen.

• END key : moves the cursor to the position
following the last non-blank character on the
command line. If the command line is blank, the
cursor is placed on the first input position of the
command line.

• Shifted Print-Screen Key (PrtSc): causes the
native tool screen to be printed.

• Control key (CTRL) : ignored for command line
input.

• F1 : same as HOME key.

• F2: does a Find ASCII, or Find EBCDIC,
depending on the setting of the 'DISPLAY'
variable, using the command line as the Find
command input parameters; what is passed to
the Find command is a string which begins at
the beginning of the command line and ends one
character before the cursor position. If the
cursor is at the beginning of the command line,
searches memory for the previous search
argument used in a Find command.

• F3 : changes between the single/dual case
alphabetics input keying modes.

• F4 : same as INSert key.

• F5 : erases the entire command line and places
the cursor at the beginning of the command line.

• F6 : erases the command line beginning at the
cursor position continuing to the end of the
command line.

7

• F7 : restore the user command line which has
been saved with the 'F7' command to the
command line. If no command has been saved
this key has no effect.
·1

• F8 : restore the user command line which has
been saved with the ' F8' command to the
command line. If no command has been saved
this key has no effect.

• F9 : restore the user command line which has
been saved with the 'F9' command to the
command line. If no command has been saved
this key has no effect.

• F10 : retrieves the previously 'Entered'
commands to the command line. First
depression of the F10 key will restore the most
previously 'Entered' command. Second
depression of the key will restore the next most
previously 'Entered' command, and so on. The
command retrieve area is a 10-deep circular
queue. Up to the 10 most previously 'Entered'
commands will be saved.

Command Processing

When the ENTER key is pressed, the command line
is processed. Command processing begins with the
first (leftmost) command on the command line and
continues with the remaining commands.
Commands are separated by semi-colons.
Command line processing stops when a command
does not return with a zero return code to the
command line processor (normally when the
command encounters an error).

When command line processing finishes, the cursor
moves to the beginning of the command line. The
command line is cleared unless the first character of
the command line is a slash (/) or unless an error
was encountered. The sole function of the slash at
the beginning of the command line is to preserve
the command line after command line processing is
finished.

As many commands may be placed on the
command line as will physically fit. Commands may
be preceded and/or followed by as many or as few
blanks as desired. There is only one restriction
concerning commands which may I may not be used
in a multiple command sequence. If the 'F7 ', 'F8'
and 'F9' (Store User Command) commands appear
in a command line, they will be the last command
executed on that line (as the rest of the line will be
saved as the stored user command).

IBM Personal Computer Resident Debug Tool

Command Parsing

The nominal command line format is as follows:

I cmd = opnd ; cmd = opnd ; cmd = opnd ; ...

The slash at the beginning of the command line is
optional. If it is present, the command line will not
be erased when command line processing is
finished (after the ENTER key is pressed).

Commands are always two characters in length.
The last command may be followed by a
semi-colon. This trailing semi-colon does not
affect command line processing, but it may make it
easier to use the TAB key to position the cursor
after the last command in the event the user wishes
to add another command.

The blanks as well as the '=' sign between the
'cmd' and the 1 opnd' are optional. The syntax is
not pretty, but many users save unnecessary
keystrokes by using the format:

cmdopnd ;cmdopnd ;cmdopnd; ...

The syntax of the Resident Debug Tool defines the
operand as beginning with the first non-blank
character (other than '=')following the command
and continuing to the last non-blank character
preceding the semi-colon or the end of the
command line. If there are no non-blank characters
following the command, the operand is considered
to be null.

Expression Evaluation

The operand of most commands is an expression.
An expression is defined here as one or more terms
which are added together. A term may be
self-defining hexadecimal, one of the processor
registers, or one of the Resident Debug Tool
variables.

Terms are always added together. The unary signs
'+' and ' - ' may be used to precede terms. The
unary '+' sign performs no useful function, but can
improve operand readability. The unary ' - ' sign
negates the term before the addition is performed.
Multiple unary signs may precede a term if desired.

Blanks may be used freely between terms in an
expression. Blanks may also appear between a
unary sign and its term.

8

Terms which are processor registers or RDT
variables are always 2 characters in length.
Self-defining hexadecimal terms are variable in
length. A blank, unary sign, or end of operand must
follow a hexadecimal term to delimit the end of the
term; there is no such requirement for register or
variable terms.

The following is intended to exemplify expression
syntax:

AX = V1 - BX + 4A + AX
AX=V1-BX+4A+AX
AX V1-BX 4A AX
AXV1 - BX4A AX

The above commands are equivalent. The RDT
variable V1, the negative value of processor register
BX, hexadecimal 4A, and the processor register AX
are added together with the result being placed into
the AX processor register. The first example
illustrates optimum readability. The second
example removes the optional blanks following the
command and between terms. The third example
removes the optional '=' sign and '+' unary signs.
The fourth example removes optional blanks. The
fourth example is not very readable, but many users
prefer it because of the savings in keystrokes.

The following are the valid processor register and
Resident Debug Tool variable terms which may be
used in an expression:

AH CL DL LC S1-S9
AL co DS L1-L9 V1-V9
AX cs DX M1-M9 W1-W9
BH CT ES OP X1-X9
BL ex EX SI Y1-Y9
BP DH FX SP Z1-Z9
BX DI IL SS
CH

IBM Personal Computer Resident Debug Tool

·------ ·--·---··----...

The variables OP and IL may be used as command
operands. For example, the command L 1 =OP may
be used to display the contents of memory at the
instruction operand address. The command
/IP=IP+IL may be used to disassemble a program
line-by-line without actually executing the program.
{Since the program is not actually executing, the
processor registers are not being updated and the
OP variable is probably not useful.)

The value of the variables L 1-L9 and M1 -MS
depend upon which of the RDT windowing modes
you are in. While in disassemble windowing mode,
these variables take on the sum of their respective
disas.semble window line's CS and IP values. You
will find that this is an especially nice feature when
setting breakpoints. While in all other RDT
windowing modes, the L 1-L9 and M 1 - MS variables
take on the values they assume in the memory
windowing mode. For more on windowing modes,
refer to Resident Debug Tool Windowing.

9

Resident Debug Tool Windowing

One of the most powerful features of the IBM
Personal Computer Resident Debug Tool is it's
extensive windowing capabilities. The user has the
choice of using the windowing area of the ROT
screen to display and alter of memory windows,
display of windows of disassembled instructions
and alter of their hex representations, display of
ROT' s instruction trace buffer, which contains
instructions which have been saved in the trace
buffer while stepping according to user specified
trace options, or display the state of the math
co-processor if one is installed.

The 'WINDOW' variable on Line 4 of the Resident
Debug Tool shows the current windowing mode.
This variable could be 'MEMORY' for memory
windowing mode, 'DISASM ' for disassemble
windowing mode, 'TRACEP' for partial trace
windowing mode, 'TRACEF' for full trace
windowing mode, or 'COPROC' for math
co-processor windowing mode. The 'MW'
(Memory Windowing), 'DW' (Disassemble
Windowing), 'TW' (Trace Windowing), and 'CW'
(Co-processor Windowing) commands are used for
switching from one windowing mode to another.
The facilities which each of these windowing modes
offer will now be discussed.

Memory Windowing

Memory windowing enables the user to perform
memory display (hex and EBCDIC or ASCII), alter,
and scrolling functions.

If the user is not already in memory windowing
mode, the ' MW' (Memory Windowing) command
may be used to place ROT in memory windowing
mode. ROT being in memory windowing mode is
reflected by the setting of the 'WIN DOW' variable
on line 4 of the screen to 'MEMORY' (see
Appendix A, Screen 4 for an example of the ROT
display screen while in memory windowing mode).

While in memory windowing mode, the Down
Arrow or Up Arrow keys may be used to move the
cursor off the command line to the memory window
area of the display. With the cursor in the memory
window area of the display screen, the user may
perform the memory display, alter and scrolling
functions.

Each memory window line consists of a line
number, address, and a hexadecimal representation
on the left side and a character (EBCDIC or ASCII)
representations on the right side. Each memory
display line displays 16 bytes of memory. The
EBCDIC or ASCII formats may be either filtered or

IBM Personal Computer Resident Debug Tool

unfiltered. When the EBCDIC or ASCII display is
filtered, only the alphamerics (letters and numbers)
are displayed; all other hexadecimal codes are
displayed as dots. When the EBCDIC or ASCII
display is unfiltered, all hexadecimal codes are
displayed. The F3 key (with the cursor in the
.memory window display area) is used to change
between the filtered and unfiltered display modes.

A memory display window is defined as one or
more memory display lines that generally display a
contiguous block of memory. A memory display
window is as small as one line or as large as the
entire memory edit display (14 lines).

A memory window is created by entering a new
address for a given line; the new address may be
entered by overtyping the old address or by one of
the L 1-M5 variable commands while in memory
windowing mode. When an address is keyed on
any given memory display line, ROT defines that line
as being the first line of a memory display window.
An asterisk is displayed at the left of the memory
address to indicate that the line begins a new
display window. The length of the window is
determined by the next line which defines the
beginning of another window. The Resident Debug
Tool will create a new memory display window
when a new address is entered. A memory window
is destroyed (combined with the previous window)
by pressing the DELete key with the cursor
anywhere in the window or by one of the L 1-M5
variable commands while in memory windowing
with a null operand.

Memory may be altered with hexadecimal, EBCDIC,
or ASCII input. Altering is performed by moving the
cursor to the appropriate byte (hex, EBCDIC, or
ASCII) and overtyping the data that is displayed.
Each keystroke results in a modification of memory;
a nibble within a byte is modified for each
hexadecimal digit entered, and one full byte is
modified for each EBCDIC or ASCII character
entered. To prevent unintended memory patching,
ROT will not move the cursor from the memory
address display area to the hexadecimal memory
display area when a character key is pressed. One
of the cursor motion keys (or space bar) must be
used to move the cursor into the hexadecimal,
EBCDIC, or ASCII display area.

A previous and current display of memory may be
achieved by displaying the same area of information
on two different (normally adjacent) lines. As the
keystrokes are entered on one line, memory is
updated and that display line reflects the updated
memory. The second memory display line is not
updated at that time, however, and therefore may
be used to see what memory was before it was
patched.

IO

A concept known as indefinite windows has been
implemented for memory patching. When the last
byte of a memory display segment has been
modified, ROT automatically scrolls the memory
display window right one byte to display the next
memory location and make it available for
modification. The user may therefore patch a string
of bytes (hex, EBCDIC, or ASCII) of indefinite length
without entering a new address. The space bar and
backspace key also cause automatic scrolling of the
memory display window. If the user wishes to
move the cursor without causing automatic
scrolling, he must use one of the 4 cursor motion
keys or the tab or carrier return (CAPS LOCK) keys.

The following keys may be used to control cursor
motion and scrolling when the cursor is in the
memory window area:

• Enter key (~) : returns the cursor to the
beginning of the command line and executes the
command line.

• CAPS LOCK key : moves the cursor to the
beginning of the next line down. When the
cursor reaches the bottom line, the cursor is
moved next to the command line.

• Up Arrow : moves the cursor up one line.
When the cursor reaches the top of the memory
window display area, it wraps around to the
bottom line.

• Down Arrow : moves the cursor down one line.
When the cursor reaches the bottom of the
memory window display area, it wraps around to
the top line.

• Right Arrow : moves the cursor right to the next
available position into which keystrokes may be
entered. When the cursor reaches the end of a
line, it wraps to the beginning of the next line.

• Left Arrow : moves the cursor left to a position
into which keystrokes may be entered. When
the cursor reaches the beginning of a line, it
wraps to the end of the previous line.

• Tab Key(~) : moves the cursor right to the
next memory display column. When the cursor
is in the rightmost column (the EBCDIC/ ASCII
display area), the Tab key moves the cursor to
the beginning of the next line.

• Backspace Key (f--) : functions similarly to
the Left Arrow, except that it causes automatic
scrolling when the beginning of a memory
display window is reached.

• Shifted Print Screen Key (PrtSc): causes the
ROT display screen to be printed.

IBM Personal Computer Resident Debug Tool

• Space Bar : functions similarly to the Right
Arrow, except that the space bar is a valid data
key when entering EBCDIC or ASCII data and
will cause automatic scrolling when the end of a
hexadecimal memory display window is reached.

• HOME key (or F1) : returns the cursor to the
beginning of the command line.

• F3 : changes between filtered and unfiltered
display modes when displaying EBCDIC or
ASCII translations.

• F7 : restore the user command line which has
been saved with the ' F7 ' command to the
command line. If no command has been saved
this key has no effect.

• FS : restore the user command line which has
been saved with the ' FS' command to the
command line. If no command has been saved
this key has no effect.

• F9 : restore the user command line which has
been saved with the ' F9' command to the
command line. If no command has been saved
this key has no effect.

• F10 : retrieves the previously ' Entered '
commands to the command line. First
depression of the F10 key will restore the most
previously ' Entered' command. Second
depression of the key will restore the next most
previously ' Entered' command, and so on. The
command retrieve area is a 10-deep circular
queue. Up to the 10 most previously 'Entered'
commands will be saved.

• Up Arrow (CTRL' ed): Scrolls the memory
display window up one line. (The cursor may be
located anywhere within the memory display
window which is to be scrolled.)

• Down Arrow (CTRL' ed): Scrolls the memory
display window down one line.

• Right Arrow (CTRL' ed): Scrolls the memory
display window right one byte.

• Left Arrow (CTRL' ed): Scrolls the memory
display window left one byte.

• Tab Key (CTRL' ed): Moves the cursor to the
beginning of the next EBCDIC or ASCII display
area.

• Page Up (PgUp): Scrolls the memory display
window up by the size of the window.

• Page Down (PgDn): Scrolls the memory display
window down by the size of the window.

11

Disassemble Windowing

Disassemble windowing enables the display of
disassembled instructions in the windowing area of
ROT display screen and altering of the instructions 1

hex representations or the bytes or words
referenced in memory by the instructions.

If the user is not already in disassemble windowing
mode, the 1 OW 1 (Disassemble Windowing)
command may be used to place ROT in disassemble
windowing mode. ROT being in disassemble
windowing mode is reflected by the setting of the
'WINDOW' variable on line 4 of the screen to
1 DISASM ' (see Appendix A, Screen 5 for an
example of the ROT display screen while in
disassemble windowing mode).

While in disassemble windowing mode, the
windowing area of the ROT display screen contains
one or more 'disassemble windows 1 • A
disassemble window is defined as one or more lines
of program instructions disassembled from a
contiguous block of memory. A disassemble
window may be as small as one instruction or as
large as the entire windowing area (14 instructions).
Each disassemble window line consists of a label
(L1-M5), a CS (code segment) value, an IP
(instruction pointer) value, disassembled
hexadecimal and character representations of the
disassembled instruction pointed to by the
combination of the CS and IP values, and may
contain an operand or jump location, and a byte or
word val.ue if the instruction disassembly indicates
that they exist for the referenced instruction.

The first line of the windowing display area always
defines the beginning of a disassemble window
while in disassemble windowing mode. A new
disassemble window is created by moving the
cursor down to any given window area line and
overtyping the CS or IP value, or by entering one of
the label (L 1 - M5) commands specifying and new
CS and IP pair for a given window area line. An
asterisk is displayed at the left of the CS and IP
values to indicate that the line begins a new
disassemble window. The size of the disassemble
window is determined by the next line which
defines the beginning of another window (or the
bottom of the display screen window area). A
disassemble window is displayed by taking the CS
and IP values for the window area line which begins
a window, and disassembling instructions from this
start location until another window begins or the
bottom of the window area is reached. The address
of each successive instruction in a window is taken
as the address of the previous instruction address
plus the length of the previous ·instruction (returned

IBM Personal Computer Resident Debug Tool

from the disassembler routine). A disassemble
window is destroyed (combined with the previous
window) by pressing the 1 Delete 1 key with the
cursor anywhere in the window or by entering one
of the label (L 1-M5) commands with a null operand
while in disassemble windowing mode.

Disassemble windowing allows the programmer the
powerful capability of interactively modifying
instructions in a disassemble window. This is
accomplished by moving the cursor off of the
command line by using the Down Arrow or Up
Arrow keys, to the hexadecimal representation of
the instruction desired to be changed, and
overtyping the hexadecimal nibbles. As the new
hexadecimal nibble is typed, the entire window in
which the instruction appears is immediately
updated to reflect the modified instruction. Also,
instructions which reference bytes or words in
memory may have these operand values modified
by moving the cursor to the byte or word within the
disassemble window instruction and overtyping the
hexadecimal nibble with the new value.

One of the most powerful features of disassemble
windowing is the ability to scroll the disassemble
windows down, left, or right. This is accomplished
by pressing the 1 Ctrl 1 key in combination with the
down, left, or right arrow keys, with the cursor
anywhere in the window to be scrolled. Scrolling
down causes the current IP value at the top of the
disassemble window to be replaced with the value
the value of what would be the next instruction in
the window, and the entire window is updated to
reflect the scroll operation. Similarly, scrolling left
or right causes 1 to be subtracted from or added to,
respectively, the window beginning IP value, and
the window updated.

Using the 1 Page Down 1 key, and disassemble
window may be scrolled down by entire size of the
window. The last instruction in the window is
found, its IP value retrieved, its length determined,
this value added to the retrieved IP value, and the
result made the IP value of the first instruction in the
disassemble window.

Another helpful feature built into the disassemble
windowing technique is the idea of the 1 current 1

disassemble window. When in disassemble
window mode, the first disassemble window
(beginning with the first line in the window area) is
always updated, after entry into ROT from user
program execution, to display the next user
instruction(s) to be executed.

There exists an alternative way of displaying a
disassembled instruction 1 s memory location in a
disassemble window line. If the user has set up an
code origin (CO) value using the 1 CO 1 command,
and the combination of the CS value and IP value

12

for a particular disassemble window line are not
more than 64K greater than the CO value, instead of
displaying the CS and IP values for the line, the CO
and a pseudo-location counter (LC) value are
displayed. This allows a disassemble window to
appear just like a program assembler listing with
the pseudo-LC value matching that which appears
on the listing. If the disassemble line is being
displayed in this format, a dollar sign ('$') is
displayed to the left of the line. The rules for
updating the instruction 's hexadecimal
representation and operands remain the same.
However, for a line in this format, the user cannot
type over the CS and IP values for the disassemble
window line. He or she instead can update the
pseudo-LC value displayed for the line by typing
over the displayed value. A new disassemble
window is created by moving the cursor to any
given window area line and overtyping the LC value,
or by entering one of the label (L 1-M5) commands
specifying and new LC for a given window area line.
The effect this new value has on the disassemble
window line's CS and IP values is exactly the same
as the effect the ' LC' command from the command
line has on the real CS and IP values.

The following keys may be used to control cursor
motion and scrolling when the cursor is in the
disassemble window area:

• Enter key (~) : returns the cursor to the
beginning of the command line and executes the
command line.

• CAPS LOCK key : moves the cursor to the
beginning of the first valid input field for the next
disassemble line down. When the cursor
reaches the bottom line, the cursor is moved
next to the command line.

• Up Arrow : moves the cursor up one line. If the
new location of the cursor is no a valid input
position for a particular disassemble window
line, the cursor continues to move up. When the
cursor reaches the top of the disassemble
window display area, it wraps around to the
bottom line.

• Down Arrow: moves the cursor down one line.
If the new location of the cursor is no a valid
data input position for a particular disassemble
window line, the cursor continues to move
down. When the cursor reaches the bottom of
the disassemble window display area, it wraps
around to the top line.

• Right Arrow : moves the cursor right to the next
available position into which keystrokes may be
entered. When the cursor reaches the last valid
input position of a given disassemble window, it
wraps to the beginning of the first valid input
field on the next disassemble window line.

IBM Personal Computer Resident Debug Tool

• Left Arrow : moves the cursor left to a position
into which keystrokes may be entered. When
the cursor reaches the first valid input position
of a given disassemble window, it wraps to the
end of the last valid input field on the previous
disassemble window line.

• Tab Key (-+P : moves the cursor right to the
next valid disassemble window display input
field. When the cursor is in the rightmost valid
input field for a disassemble window line, area),
the Tab key moves the cursor to the first valid
input field in the next disassemble window line.

• Backspace Key(~) : functions same as the
Left Arrow.

• Shifted Print Screen Key (PrtSc): causes the
RDT display screen to be printed.

• Space Bar : functions same as the Right Arrow.

• HOME key (or F1) : returns the cursor to the
beginning of the command line.

• F7 : restore the user command line which has
been saved with the ' F7 ' command to the
command line. If no command has been saved
this key has no effect.

• F8 : restore the user command line which has
been saved with the 'F8' command to the
command line. If no command has been saved
this key has no effect.

• F9 : restore the user command line which has
been saved with the ' F9' command to the
command line. If no command has been saved
this key has no effect.

• F10 : retrieves the previously 'Entered'
commands to the command line. First
depression of the F10 key will restore the most
previously ' Entered' command. Second
depression of the key will restore the next most
previously ' Entered' command, and so on. The
command retrieve area is a 10-deep circular
queue. Up to the 10 most previously 'Entered'
commands will be saved.

• Down Arrow (CTRL' ed): Scrolls the
disassemble display window down one
instruction (or line). (The cursor may be located
anywhere within the disassemble display
window which is to be scrolled.)

13

• Right Arrow {CTRL' ed): Scrolls the disassemble
display window right one byte.

• Left Arrow (CTRL' ed): Scrolls the disassemble
display window left one byte.

• Page Down (Pg On): Scrolls the disassemble
display window down by the number of
instructions in the window.

Trace Windowing

Trace windowing enables the display, in the
windowing area of the ROT display screen, of
instructions which have been placed in the ROT
trace buffer while stepping, according to user
specified trace options using the 'TR ' command.

If the user is not already in trace windowing mode,
the 'TW' (Trace Windowing) command may be
used to place ROT in either partial or full trace
windowing mode. ROT being in a trace windowing
mode is reflected by the setting of the 'WINDOW'
variable on line 4 of the screen to either 'TRACEP',
for partial trace windowing, or 'TRACEF ', for full
trace windowing.

While in partial trace windowing mode (see
Appendix A, Screen 6 for an example of the ROT
display screen while in partial trace windowing
mode), the windowing area of the ROT display
screen contains 14 trace buffer entries, one to a
line, each of which, if not empty, show both the
hexadecimal and disassembled representation of an
instruction which has been placed in the ROT trace
buffer, preceded by the CS and IP register value
which, when combined, determine the address of
the instruction in memory (when it was placed into
the trace buffer).

While in full trace windowing mode (see Appendix
A, Screen 7 for an example of the ROT display
screen while in full trace windowing mode), the
windowing area of the ROT display screen contains
3 trace buffer entries, each 3 lines in length, and
each of which, if not empty, show a line identical to
that which would be shown if partial trace
windowing. In addition, each entry consists of two
lines which show all of the 8088 processor registers
at the time the instruction was stepped.

While in either trace windowing mode, the 'TB'
variable for each trace buffer buffer entry shows the
relative position of the instruction in the ROT trace
buffer. The value of the 'TB ' variable is the hex
offset from the end of the ROT trace buffer for that
trace entry. For example, an entry with the 'TB '
variable of hex '0000' is the last instruction which

IBM Personal Computer Resident Debug Tool

was placed in the trace buffer, and an entry with the
'TB' variable of hex '0001 ' is the second to last
instruction which was placed in the trace buffer, and
so on. While in a trace windowing mode, the TB
variables increase in value moving from the bottom
of the windowing area to the top. This enables
instructions which have been placed in the trace
buffer to be viewed in a natural top to bottom
fashion, with the latest instruction in the trace
window appearing at the bottom of the screen.

The user has the ability to change the view of the
trace window area to the limits of the size of the
ROT trace buffer. This is accomplished by moving
the cursor off of the command line, using the Down
Arrow or Up Arrow keys. This action moves the
cursor to the bottom 'TB' variable of the trace
windowing area. The user may then change the
window view of the trace buffer in either of two
ways. The first method is by scrolling the trace
buffer window. This is accomplished by holding the
'Control ' key down in combination with either the
'Up' or 'Down' arrow keys or by pressing the
'Page Up' or 'Page Down' keys (which scroll by
the size of the window instead of by only one line).
This causes the window to be scrolled in the
respective direction, to limits of the trace buffer. An
alternative method is by overtyping the 'TB '
variable directly with the cursor on the nibble to be
changed. ROT will only change this bottom 'TB'
variable if the new value will permit all of the 'TB'
variables in the windowing area to assume a value
within the valid ROT trace buffer size range.

An asterisk next to a trace buffer entry line in the
trace window display area indicates that one or
more instructions may be missing from the trace
buffer. Each of these instructions is a MOV or POP
into a segment register. Hardware limitations on
certain Intel 8088 processors cause the 'Trap Flag'
to not be recognized immediately after a MOV or
POP into a segment register. This will cause one or
more instructions to appear to be skipped when
single stepping through a MOV or POP into a
segment register. What really happens though is
the instructions are executed but control does not
return to ROT until two instructions past the MOV
or POP instruction (if one instruction past the MOV
or POP is not itself a MOV or POP into a segment
register). ROT places an asterisk on the trace buffer
line to indicate the possible missing instruction(s)
immediately following the asterisked instruction.

The following keys may be used to control cursor
motion and scrolling when the cursor is in the
disassemble window area:

• Enter key (f----1) : returns the cursor to the
beginning of the command line and executes the
command line.

14

• Right Arrow : moves the cursor right to the next
available position into which keystrokes may be
entered. When the cursor reaches the last valid
input position of the 'TB' input field, it moves
no further.

• Left Arrow : moves the cursor left to a position
into which keystrokes may be entered. When
the cursor reaches the first valid input position
of the 'TB' input field, it moves no further.

• Tab Key !--+I) : moves the cursor to the
beginning of the 'TB' input field, which in the
last trace buffer line displayed in the ROT trace
windowing area.

• Backspace Key {f--) : functions same as the
Left Arrow.

• Shifted Print Screen Key {PrtSc): causes the
ROT display screen to be printed.

• Space Bar : functions same as the Right Arrow.

• HOME key (or F1) : returns the cursor to the
beginning of the command line.

• F7 : restore the user command line which has
been saved with the ' F7 ' command to the
command line. If no command has been saved
this key has no effect.

• F8 : restore the user command line which has
been saved with the 'F8' command to the
command line. If no command has been saved
this key has no effect.

• F9 : restore the user command line which has
been saved with the 'F9' command to the
command line. If no command has been saved
this key has no effect.

• F10 : retrieves the previously 'Entered'
commands to the command line. First
depression of the F10 key will restore the most
previously ' Entered ' command. Second
depression of the key will restore the next most
previously ' Entered ' command, and so on. The
command retrieve area is a 10-deep circular
queue. Up to the 10 most previously 'Entered'
commands will be saved.

• Up Arrow (CTR L' ed): Scrolls the ROT trace
buffer display window up one trace buffer entry,
to the limits of the ROT trace buffer.

• Down Arrow (CTRL' ed): Scrolls the ROT trace
buffer display window down one trace buffer
entry, to the limits of the ROT trace buffer.

IBM Personal Computer Resident Debug Tool

• Page Up {PgUp): Scrolls the ROT trace buffer
display window up by the number of trace buffer
entries displayed in the window to the limits of
the ROT trace buffer.

• Page Down {Pg On): Scrolls the ROT trace
buffer display window down by the number of
trace buffer entries displayed in the window to
the limits of the ROT trace buffer.

Math Co-Processor Windowing

Math co-processor windowing enables the display,
in the windowing area of the ROT display screen, of
the state of the math co-processor if one is
installed.

If the user is not already in math co-processor
windowing mode, the 'CW' {math Co-processor
Windowing) command may be used to place ROT in
math co-processor windowing mode. ROT being in
math co-processor windowing mode is reflected by
the setting of the 'WINDOW' variable on line 4 of
the screen to 'COPROC' (see Appendix A. Screen
8 for an example of the ROT display screen while in
math co-processor windowing mode),

While in math co-processor windowing mode, the
windowing area of the ROT display screen contains
the current state of the math co-processor. This
state includes a display of the math co-processor's
control word, status word, exception pointers, and
register stack. The control word and status word
are displayed in their hexadecimal representations,
as well as having the individually defined bits for the
two words displayed in a binary format. For more
information on the content of the math
co-processor control word, status word, exception
pointers, or register stack, the user should refer to
their IBM Technical Reference manual.

One note on the Resident Debug Tool's handling of
math co-processor exceptions. When an exception
occurs within the math co-processor, if interrupts
are enabled for the math co-processor, and if the
exception condition is not masked off within the
math co-processor, an Interrupt 2 {NMI interrupt)
occurs on the main processor (8088). If the user
has directed ROT to handle soft NMI interrupts,
either by way of the 'n' load-time option or the
'SN' (Set NMI) command, ROT contains the logic
required to handle the math co-processor
exception. ROT can distinguish a software or math
co-processor NMI interrupt from other types of
NMI interrupts, such as an NMI switch depression,
memory parity error, or 1/0 channel check. If ROT
is handling NMI interrupts, a math co-processor is
installed, and a software or math co-processor
exception NMI interrupt occurs, ROT is immediately
placed in math co-processor windowing mode. In
this case, when the ROT display appears, there will

15

be a message on the message line indicating the
type of NMI interrupt and the math co-processor
state will be displayed in the windowing area of the
ROT display screen. This will enable users to
immediately see the math co-processor exception
which occurred, if any, by checking the exception
bits of the status word. When handling the
interrupt, ROT will also clear the exception
condition, so that after the initial display of the math
co-processor state, any subsequent display of the
math co-processor state will show that the
exception has been cleared.

If the user is debugging a math co-processor
exception handler, the user should not instruct ROT
to handle NMI interrupts, so that the user's
exception handler will be invoked when an NMI
occurs.

Resident Debug Tool Commands

This section presents an overview of the commands
available within the Resident Debug Tool. The
commands are divided into seven functional groups.
This section is not meant to be a user's guide, but
rather to give a flavor of the wide variety of
commands available.

Register Commands

These register commands alter the contents of each
of the 8088 processor general registers, specific
registers, segment registers and flag register. The
command line is used to enter commands to set the
individual registers to a specific hex value or the
value of a single or multiple term expression.

General Register Commands

Each 8088 general register appears on the Resident
Debug Tool display and has associated ROT change
commands:

AX BX
AL BL
AH BH

ex DX
CL DL
CH DH

The register commands (AX, BX, CX, DX) alter the
registers in their entirety while the remaining
commands (AL, BL, CL, DL, AH, BH, CH, DH) alter
the high or low byte in the respective general
purpose register.

IBM Personal Computer Resident Debug Tool

Specific Register Commands

Each 8088 general register appears on the Resident
Debug Tool display and has an associated.ROT
change command:

SI Source Index register command

DI Destination Index register command

SP Stack Pointer register command

BP

IP

Base Pointer register command

Instruction Pointer register command

These registers are altered in the same manner as
the AX, BX, CX, and DX registers.

Segment Register Commands

Each 8088 segment register appears on the
Resident Debug Tool display and has an associated
ROT change command:

CS Code Segment register command

DS Data Segment register command

SS Stack Segment register command

ES Extra Segment register command

These registers are altered using 20-bit values
which represent the 16 bits to actually be placed
into the segment register appended with 4 zero bits;
this is consistent with the way ROT displays
segment registers as 20-bit quantities which
represent their true 8088 memory addressing value.

Flag Register Commands

The 8088 Flag register appears on the Resident
Debug Tool display in both its 16-bit value and in
the one-bit values of the individual flag bits. The
Flag register can be altered bit-by-bit, in its entirety
and zeroed using these commands:

FL Flag register command

AF Auxiliary Flag command

CF

DF

Carry Flag command

Direction Flag command

16

IF Interrupt Flag command

OF Overflow Flag command

PF Parity Flag command

SF Sign Flag command

TF Trap Flag command

ZF Zero Flag command

The FL command alters the contents of the entire
flag register. The other flag commands set the
respective flag bit to 1 or 0.

Execution Commands

These commands are used to resume user program
execution:

EX

ST

EXecute command

STep command

CT step CounT command

The EX command passes control to the user
program. Execution begins at the instruction
determined by the sum of the CS and IP registers.
An EX command parameter may be used to set the
IP value before execution begins.

The ST command executes a specified number of
user program instructions. The number of
instructions executed is determined by the ST
command parameter or, if none is specified, by the
step count (CT).

The CT command is used to modify the default step
count.

Variable Commands

Within the Resident Debug Tool, variable
commands are used to set and clear variables which
specify breakpoints or scratchpad results. In the
top portion of the Resident Debug Tool display
appears the variables V1 -V9 and S1 -S9. These
variables are used to display breakpoints or
scratchpad results.

The S1-S9 variables are initially used as breakpoint
variables. They are reserved for breakpoint values
but may be deactivated and used as scratchpad
variables.

IBM Personal Computer Resident Debug Tool

The V1 -V9 variables are initially used as scratchpad
variables. They are reserved for scratchpad values
but may be activated and used as breakpoint
variables. In addition, there are a large number of
non-displayed variables which may be used to store
scratchpad results.

Breakpoint Variable Commands

The variables V1-V9 and S1-S9 in the top portion
of the Resident Debug Tool display are used to
display breakpoints or scratchpad results.

The following vector commands may be used to set
or clear breakpoints in the V1 -V9 and S1 -S9
variables:

so to set or clear all S1 -S9 variables

S1-S9 breakpoint (or scratchpad)

VO set or clear all V1 -V9 variables

V1-V9 breakpoint (or scratchpad)

Scratchpad Variable Commands

The following vector commands may be used to set
or clear scratchpad results in the variables which
may be used as scratch pad variables:

SO to set or clear all S1-S9 variables

S1-S9 scratchpad (or breakpoint)

VO to set or clear all V1-V9 variables

V1-V9 scratchpad (or breakpoint)

WO to set or clear all W1 -W9 variables

W1-W9 scratchpad variable commands

XO to set or clear all X1 -X9 variables

X1-X9 scratchpad variable commands

YO to set or clear all Y1 -Y9 variables

Y1 -Y9 scratch pad variable commands

ZO to set or clear all Z1 -Z9 variables

Z1-Z9 scratchpad variable commands

17

The W1-W9, X1-X9, Y1-Y9, and Z1-Z9 variables
are not displayed on the Resident Debug Tool
display. They are used to store away scratchpad
results. They may be used to save displayed V1-V9
or S1-S9 values and later restore these values to
the displayed variables.

Windowing Commands

The Resident Debug Tool's extensive windowing
capabilities are among its most powerful features.
Commands which may be used to take advantage
of these capabilities are separated into four groups
according to the four types of windowing: memory,
disassemble, trace, and math co-processor.

Memory Window Commands

Memory windowing allows the display and alter of
memory in the windowing area of the Resident
Debug Tool display. The following vector
commands are used to control memory windowing:

MW Memory Window command

AS AScii format command

EB EBcidic format command

LO to set or clear the L 1-L9 variables

L1-L9 windowing variable command

MO to set or clear the M 1-M5 variables

M1-M5 windowing variable command

The MW command places the Resident Debug Tool
in memory windowing mode.

The AS and EB commands determine whether the
character representations of memory are displayed
in ASCII or EBCDIC.

The L 1-L9 and M 1 - M5 commands set and clear
memory windows.

Disassemble Window Commands

Disassemble windowing allows the display of
disassembled instructions in the windowing area of
the Resident Debug Tool display and alter of the
instructions' hex representations. The following
commands are used to control disassemble
windowing:

IBM Personal Computer Resident Debug Tool

DW Disassemble Window command

L 1-L9 windowing variable command

M1-M5 windowing variable command

PD Print Disassemble command

The DW command places the Resident Debug Tool
in disassemble windowing mode.

The L 1-L9 and M 1-M5 commands set and clear
disassemble windows.

The PD command is used to print instructions
disassembled from a contiguous block of memory.

Trace Window Commands

Trace windowing allows the display of instructions
which have been placed in the Resident Debug Tool
trace buffer while STepping a user program. The
following commands are used to control trace
windowing:

TW Trace Window command

TR TRace options command

TC Trace Clear command

PT Print Trace command

The Trace command (TR) is used to select the
desired trace options. These options determine
what instructions are to be put in the trace buffer
while a user steps (ST) through a program. The
trace buffer is displayed while in trace windowing
mode (TW). At any time, the trace buffer may be
printed (PT) or cleared (TC).

Math Co-Processor Window Command

Math co-processor windowing allows the display of
the state of the 8087 math co-processor in the
windowing area of the Resident Debug Tool display,
if a math co-processor is installed. The following
command is used to place the Resident Debug Tool
in math co-processor windowing mode:

CW Math Co-processor Window command

18

Memory Commands

In addition to the memory display and alter
capability provided while in memory windowing
mode, there are several commands which enhance
the user's ability to access memory.

Memory Block Commands

The following commands perform operations on
blocks of memory:

CP CoPy Memory Command

CM Compare Memory Command

PM Print Memory Command

The CP command copies a block of memory from
one location to another. The size of the copy can be
as small as one byte or as large as 64K-1 bytes.

The CM command compares two blocks of
memory, and displays differences which exist.

The PM command prints the contents of a specified
size block of memory.

Find Commands

Find commands allow for the search of memory for
a specified ASCII, EBCDIC or hexadecimal search
string. The following are the commands which
perform the find function:

FA Find Ascii command

FE Find Ebcdic command

FX Find heXadecimal command

Input/Output Commands

The input/ output commands are used to access
disks, diskettes, and 1/0 ports.

IBM Personal Computer Resident Debug Tool

Disk and Diskette Read/Write Commands

The following commands allow reading from and
writing to disks and diskettes:

RD Read Disk or Diskette Command

WO Write Disk or Diskette Command

The RD command reads a specified number of
sectors from a disk or diskette and places the
results at a specified location in memory.

The WD command writes a specified number of
sectors to a disk or diskette using the data which
begins at a specified location in memory.

1/0 Port Commands

The following commands are used to input and
output bytes and words from 1/0 ports:

IB Input Byte Command

IW Input Word Command

OB Output Byte Command

OW Output Word Command

A command parameter entered determines the 1/0
port to be input or output. A value read with an
input command (IB, IW) is placed in the displayed
V1 variable. The value in V1 is used to write out for
an output command (OB,OW).

Debug Environment Commands

There are several commands which are used to
further control the Resident Debug Tool
Environment. These commands are divided into
screen control, move display, and reset commands.

19

Screen Control Commands

These commands alter the appearance of the
Resident Debug Tool display screen:

CD Color Display command

MD Monochrome Display command

CA Color Attributes command

PR Print user screen command

SC toggle user screen command

The CD and MD commands allow the debug tool to
be dynamically switched from one display to
another when a user has both types of displays
attached.

The CA command allows the user to modify the
foreground and background colors used for the
debug screen when on a color display.

The PR command may be used to print the users
screen.

The SC command toggles between the user
program display screen and the debug tool display
screen when both are on the same display.

Move Display Commands

The Resident Debug Tool supports nine display
screens. These commands are used to switch from
one display screen to another:

D1-D9 display screen command

Each display screen has its own unique set of
breakpoints, displayed scratchpad variables, and
window variables. Portions of a user's program
may be monitored on separate screens with
separate breakpoints and variables.

IBM Personal Computer Resident Debug Tool

Reset Commands

These commands are used to alter the initial
Resident Debug Tool load options:

RK

SK

RN

SN

SR

Reset ' K' load option command

Set ' K' load option command

Reset ' N ' load option command

Set ' N ' load option command

System Reset command

The SK and RK commands set and reset the
keyboard interrupt option.

The SN and RN commands set and reset the
non-maskable interrupt option.

The SR command performs a system reset by
exiting the Resident Debug Tool and transferring
control to the BIOS entry point to reboot the
system.

20

Appendix A

Sample ROT Display Screens

This appendix contains sample ROT display screens.

IBM Personal Computer Resident Debug Tool 21

Appendix A, Screen 1 Sample ROT Logo Screen

- - --- - -- - - ---.,
Personal Computer

Resident Debug Tool
Version 1.00

•

(C) Copyright IBM Corp 1983, 1984
Written by

Anthony D. Hooten,
John M. Van Buren and Gordon W. Arbeitman

Preas any key to continue

IBM Personal Computer Resident Debug Tool 22

Appendix A, Screen 2 ROT Display Screen Layout

~ : =~~ Penonal Computer

Display Line

1

2-9

10

11

12-25

Release Number , Title , Release Date

Breakpoints and Scratchpad Variables

Processor Registers and Current
Instruction Disassembly

Command Line

Message Line

Windowing Area

Memory, Disassemble, Trace Partial,
Trace Full or Math Coprocessor

IBM Personal Computer Resident Debug Tool 23

Appendix A, Screen 3 Sample ROT Initial Entry Screen

Rel 1.00 IBM PERSONAL COMPUTER RESIDENT DEBUG TOOL D1 07/01/84
Y1: ..•.. Y2: .•.•• Y3: ..••. Y4: .•.•• Y5: •..•. Y8: Y7: .•... Y8:• YI: ••••.
81:..... 82:..... 83:..... 84:..... 85:..... H:..... 87:..... 88:..... 89: .••••

DISPLAY: ASCII WINDOW: MEMORY
AX: 0000 BX: 0000 CX: OOFF DX: 1111 TR:OO .•.•• - •••••
SP: 0200 BP: 0000 SI: 0000 DI: 0100 FL:F248 OF:O DF:O F: 1 TF:O
CS: 112EO DB: 111EO 88: 112FO ES: 111EO 8F:O ZF: 1 AF: 0 PF: 1 CF:O

LC: INT 3 OP:
IP: 0000 EX: 112EO cc STEP CT: 0001 CO: .••..

••>
L1 • 00000 43311300 3F017000 71040!08 C3040e08 •c1 ..•• p.q .•..•.••• •
L2 00010 3F017000 CC040EOB 23FFOOFO 23FFOOFO • .• p ••.•.••••.••. - • .
L3 00020 A5FEOOFO H070EOB 23FFOOFO 23FFOOFO
L4 00030 23FFOOFO 800700C8 57EFOOFO 3F017000 w p .. .
L5 00040 85FOOOFO 4DF800FO 41F800FO 580200C8 •e ••• M ... A ..• Y .•.. •
LS 00050 39E700FO 59F800FO 2EE800FO D2EFOOFO ••••• y ••••••••••••••

L7 00080 OOOOOOF8 880100C8 8EFEOOFO 38017000 • ••••.••• n ••• 8.p .. •
L8 00010 4BFFOOFO A4FOOOFO 22050000 OOOOOOFO •K •••••••••••••••••• .
L9 00080 FBOBE300 80014205 8C024205 99024205 • .•.•.. B .•• B ... a .. •
M1 00090 E2044205 D414E300 21151300 E727E300 • ••• B ••••.••••••••• •
M2 OOOAO 070CE300 28017000 00000000 00000000 • ...•... p ..•....... •
113 00080 00000000 00000000 80034205 00000000 • . . •• . •• •• m.B .•.•. .
114 oooco EA080CE3 00000000 00000000 00000000
115 OOODO 00000000 00000000 00000000 00000000

IBM Personal Computer Resident Debug Tool 24

Appendix A, Screen 4 Sample ROT Memory Windowing Screen

5 : :;~~ Personal Computer

Rel 1.00 IBll PERSONAL COMPUTER RESIDENT DEBUG TOOL D1 07/01/84
Y1:..... Y2:... . . Y3:. . . • . Y4:..... Y5:.. . . . Ye:..... Y7:..... YI:..... Y9:
S1:.. . . . S2:. S3:..... 84:.... . S5:... . • se:..... S7:..... SI:..... S9:

DISPLAY: ASCII WINDOW: llEllORY
AX: 0000 BX: 0000 CX: OOFF DX: 111E TR:OO• - •....
SP: 0200 BP: 0000 SI: 0000 DI: 0100 FL:F248 OF:O DF:O IF: 1 TF:O
CS: 112EO DS: 111EO SS: 112FO ES: 111EO BF:O ZF:1 AF:O PF:1 CF:O

LC: ..•. INT 3 OP:
IP: 0000 EX: 112EO cc STEP CT: 0001 CO: .•.•.

==>
L1 •00000 4331E300 3F017000 71040E08 C3040E08 ·c1 . ?-p. q
L2 00010 3F017000 CC040E08 23FFOOFO 23FFOOFO •? p =·

= L3 00020 A5FEOOFO 99070E08 23FFOOFO 23FFOOFO
L4 00030 23FFOOFO 900700CI 57EFOOFO 3F017000
LS *05040 00000000 00000000 00000000 00000000
L6 05050 00000201 01010002 70000COO 83010205 •EI c o I f 3 •
L7 05060 OOBD0370 OOFD007D 42E30000 00000000 • =•56FY I
LS 05070 00000000 00000000 00000000 00000000
L9 05010 00000000 00000000 00000000 00000000
111 *05390 FF3696EE 9A030059 088DISISF4 5DCA0800 : .. 112 053AO 558BECl3 C50881EC 0800C808 C6F320C6 "C1'1r.? p. q

113 05380 08C7F320 C608C8F3 20C608C9 F320C608 •? p =· .
114 053CO CAF320C6 08CBF330 C746F808 00837EOO •N = wn ::? p .. .
MS 05300 00743583 7EF8017C 2FB90AOO 88460033 • • I ...J l'\J r < U +. •

IBM Personal Computer Resident Debug Tool 25

Appendix A, Screen 5 Sample ROT Disassemble Windowing Screen

i : :;'f~ Personal Computer

Rel 1.00 IBM PERSONAL COMPUTER RESIDENT DEBUG TOOL D1 07/01/84
V1:..... V2:..... V3:..... V4:..... V5:..... V8:..... V7:..... VS:..... V9: •••••
S1: •.•.• S2: •.••. S3: ••••• 84: ••••• S5: ••••• S8: ••••• 87: ••••• SS: ••••• S9: •••••

AX: 0100 BX: 0000 CX: 0007
SP: OBBS BP: 0000 SI: 004C
CS: OOE30 DS: OOE30 SS: OOE30

LC: ••.•• CALL 047FA
IP: 3988 EX: 047BS ES3FOO

==>
L 1: * OOE30:39SS ES3FOO
L2: OOE30:39SB 72F7
L3: OOE30:39SD 28SA05
L4: OOE30:3990 3CFF
L5: OOE30:3992 74FO
L8: * OOE30:2994 4A
L7: OOE30:2996 4A
LS: OOE30:2998 D3E2
L9: OOE30:299S OAD3
111: OOE30:299A 28C3580B
112: OOE30:299E 59
113: OOE30:299F C3
114: * OOE30:39AO 1201
115: OOE30:39A2 33F8

IBM Personal Computer Resident Debug Tool

DX:
DI:
ES:

CALL
JB
llOV
CllP
JZ
DEC
DEC
SHL
OR
ADD
POP
RET
ADC
XOR

DISPLAY: ASCII WINDOW: DISASll

007F TR:01 00000 - 00000
01AA FL:F248

OOE30 SF:O

STEP CT: 0001

047FA
04784
AL,ES:(DI)
AL,FF
04784
DX
DX
DX,CL
DL,BL
DX,ES:(BP+OB)
ex

AL,DS:(BX+DI)
Sl,SI

OF:O DF:O IF: 1 TF:O
ZF:1 AF:O PF: 1 CF:O

CO: •••••
OP: 047FA

047FA
04784
OOFDA:81

04784

OOE38:8F20

OOFDA:81

26

Appendix A, Screen 6 Sample ROT Partial Trace Windowing Screen

~ : =~-:;:-~ Personal Computer

Rel 1.00 IBM PERSONAL COMPUTER RESIDENT DEBUG TOOL D1 07/01/84
V1: ••••• V2: ••••• V3: ••••• V4: ••••• V5: ••••• V8: ••••• V7: ••••• V8: ••••• V9: •••••
S1: ••••• S2: ••••• S3: ••••• 84: S5: ••••• S8: ••••• S7: ••••• S8: ••••• S9: •••••

DISPLAY: ASCII WINDOW: TRACEP

AX: 0100 BX: 0000 CX: 0007 DX: 007F TR:01 00000 - 00000
SP: OBB8 BP: 0000 SI: 004C DI: 01AA FL:F248 OF:O DF:O IF: 1 TF:O
CS: OOE30 DS: OOE30 SS: OOE30 ES: OOE30 SF:O ZF:1 AF: 0 PF: 1 CF:O

LC: •••• CALL 047FA OP: 047FA
IP: 3988 EX: 04788 E83FOO STEP CT: 0001 CO: •••••

==>
TB: OOOD OOE30:3094 CD28 INT 28
TB: oooc OOE30:0C07 CF IRET
TB: OOOB OOE30:30H 9D POPF
TB: OOOA OOE30:3097 C3 RET
TB: 0009 OOE30:357F 74FB JZ 043AC 043AC

TB: 0008 OOE30:357C E819FB CALL 03EC8 03EC8
TB: 0007 OOE30:3098 53 PUSH BX
TB: oooe OOE30:3099 33DB XOR ax.ax
TB: 0005 OOE30:309B E87CEF CALL 02E4A 02E4A

TB: 0004 OOE30:201A 18 PUSH SS

TB: •0003 OOE30:201B 1F POP DS
TB: 0002 OOE30:201D 57 PUSH DI

TB: 0001 OOE30:201E E88819 CALL 04787 04787

TB: 0000 OOE30:3987 50 PUSH AX

IBM Personal Computer Resident Debug Tool 27

Appendix A, Screen 7 Sample ROT Full Trace Windowing Screen

i : =:i~i: Personal Computer

Rel 1.00 IBM PERSONAL COMPUTER RESIDENT DEBUG TOOL D1 07/01/84
V1:..... V2:..... V3:..... V4:..... V5:..... V8:..... V7:..... VS:..... V9: •••••
S1: •...• S2: ••••• S3: •••.• 84: ••••• S5: ••••• S8: ••••• S7: ••••• SS: ••••• S9: •••••

DISPLAY: ASCII WINDOW: TRACEF

AX: 0100 BX: 0000 CX: 0007 DX: 007F TR:01 00000 - 00000
SP: OBB8 BP: 0000 SI: 004C DI: 01AA FL:F248 OF:O DF:O IF: 1 TF:O
CS: OOE30 DS: OOE30 SS: OOE30 ES: OOE30 SF:O ZF:1 AF: 0 PF: 1 CF:O

LC: .••. CALL 047FA OP: 047FA
IP: 3988 EX: 047B8 E83FOO STEP CT: 0001 CO: •••••

==>
CS: OOE30 OS: OOE30 ES:OOE30 SS: OOE30 AX:0100 BX: 0000 CX:0007 DX: 007F
IP: 201D SI: 004C DI: 01AA SP: OBBE BP: 0000 FL: F248 EX:02E4D
TB: 0002 OOE30:201D 57 PUSH DI

CS: OOE30 OS: OOE30 ES:OOE30 SS: OOE30 AX:0100 BX: 0000 CX:0007 DX: 007F
IP: 201E SI: 004C DI: 01AA SP: OBBC BP: 0000 FL: F248 EX:02E4E

TB: 0001 OOE30:201E E88819 CALL 04787 047B7

CS: OOE30 DS: OOE30 ES:OOE30 SS: OOE30 AX:0100 BX: 0000 CX:0007 DX: 007F

IP: 3987 SI: 004C DI: 01AA SP: OBBA BP: 0000 FL: F246 EX:047B7

TB: 0000 OOE30:3987 50 PUSH AX

IBM Personal Computer Resident Debug Tool 28

Appendix A, Screen 8

El : =~'If~ Personal Computer

Sample ROT Math Co-Processor Windowing
Screen

Rel 1.00 IBM PERSONAL COMPUTER RESIDENT DEBUG TOOL D1 07/01/84
V1:..... V2:..... V3:..... V4:..... VS:..... V8:..... V7:..... VB:..... V9: •••••
S1: S2: ••..• S3: .••.• 84: ••••. SS: •••.. S8: •.••• S7: ••••. SB: ••••• 89: •••••

DISPLAY: ASCII WINDOW: COPROC

AX: 0000 BX: 0000 CX: OOFF DX: 11BE TR:OO ••••• - •••••
SP: FFFE BP: 0000 SI: 0100 DI: 0100 FL:F248 OF:O DF:O IF: 1 TF:O
CS: 11BEO DS: 11BEO SS: 11BEO ES: 11BEO SF:O ZF:1 AF: 0 PF: 1 CF:O

LC: •••• WAIT OP:
IP: 010B EX: 11CE8 9B STEP CT: 0001 CO: •••••

==> MATH COPROCESSOR STATE

CONTROL WORD: 03FF IC:O RC:OO PC: 11 IEM: 1 PM: 1 UM: 1 OM: 1 ZM: 1 DM: 1 IM: 1
STATUS WORD: 4100 B:O CC:1001 ST:OOO IR:O PE:O UE:O OE:O ZE:O DE:O IE:O

SIGN EXPONENT SIGNIFICAND TAG

ST 0 0000 0000 0000 0000 0000 11
EXCEPTION POINTERS ST (1) 0 0000 0000 0000 0000 0000 11

ST (2) 0 0000 0000 0000 0000 0000 11

INSTRUCTION ADDRESS : 11 D02 ST(3) 0 0000 0000 0000 0000 0000 11
INSTRUCTION OPCODE : D9EE ST(4) 0 0000 0000 0000 0000 0000 11

OPERAND ADDRESS : 00000 ST (5) 0 0000 0000 0000 0000 0000 11
ST(8) 0 0000 0000 0000 0000 0000 11
ST (7) 0 0000 0000 0000 0000 0000 11

IBM Personal Computer Resident Debug Tool 29

Notes

IBM Corporation
Editor, IBM Personal Computer Seminar Proceedings
4629
Post Office Box 1328
Boca Raton FL 33432

--..- ------ - - --- --- -.. _._._
- - - ------- -_ _.... - ... -

®

