
Volume 2, Number 10 November 1984 

IBM Personal Computer 
Seminar Proceedings 

The Publication for Independent Developers 
of Products 

for IBM Personal Computers 

Published by International Business Machines Corporation 
Entry Systems Division 

-~------- - ---- - -- -.. ---- - - --------_ _..._._ 



Changes are made periodically to the information herein; any such 
changes will be reported in subsequent Proceedings. 

It is possible that this material may contain reference to, or 
information about IBM products (machines and programs), 
programming or services that are not announced in your country. 
Such references or information must not be construed to mean that 
IBM intends to announce such products, programming or services in 
your country. 

IBM believes the statements contained herein are accurate as of the 
date of publication of this document. However, IBM makes no 
warranty of any kind with respect to the accuracy or adequacy of the 
contents hereof. 

This publication could contain technical inaccuracies or 
typographical errors. Also, illustrations contained herein may show 
prototype equipment. Your system configuration may differ slightly. 
IBM may use or distribute any of the information you supply in any 
way it believes appropriate without incurring any,obligation 
whatever. 

All specifications are subject to change without notice. 

Copyright© 
International 
Business 
Machines 
Corporation 
11/84 

Printed in the 
United States 
of America 

All Rights 
Reserved 

-~------- __ .... ---. ---- - ---------~-·-® 



Contents 
Introduction and Welcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

IBM PC Professional Graphics Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
IBM Professional Graphics Product Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

The IBM Graphics DevelopmentToolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
The IBM Graphical Kernel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
The IBM Plotting System Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
The IBM Graphical File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
The IBM Graphics Terminal Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
The IBM Professional Controller/Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

IBM Professional Graphics Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
The Graphics Development Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
The VDI Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
The Device Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Linkable Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Reference Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
Drawing Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
The Graphical Kernel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
The IBM Plotting System Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
The Graphical File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
The Graphics Terminal Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

IBM Professional Graphics Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

IBM PC Graphical Kernel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
Workstations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

GKS Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
GKS Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Control Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Output Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Attribute Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Transformation Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Segment Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Input Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
Inquire Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Utility Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

IBM Personal Computer Graphical File System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Metafile - Concepts, Structure and Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Portability/Interchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Creating New Pictures from Old Ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Picture Archiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Contents 



Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Basic Parameter Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Interactive Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Programming Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Initializing and Terminating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 
Picture Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Interpretations Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Workstation Metafile Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Cutting and Pasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 

Prerequisites, Packaging and Installation .................................................................. 11 

IBM Plotting System Library ............................................................................. 13 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

Purpose ................................................................................................ 13 
Package Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
Configuration Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

Creating Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Chart Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Chart Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 
Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

Example .................................................................................................. 15 
Plotting System Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

IBM Professional FORTRAN ............................................................................. 18 
Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Extensions to the ANSI Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 
Code Migration ......................................................................................... 19 
Performance and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
Ease of Use ............................................................................................ 20 
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

Portability and Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
Language Level ............ ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 

DO-Loops .............................................................................................. 21 
Equivalence ............................................................................................ 21 
Hollerith Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Define File ............................................................................................. 21 
Subset FORTRAN 77 ................................................................................... 21 

Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Word Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
Character Data in Other Data Types .................................................................... 21 
Floating Point Arithmetic ............................................................................... 22 

Language Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
Additional Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
Hexadecimal and Octal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Data Management Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
Data Initialization in Type Statements ................................................................... 23 
Compiler Metacommands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
/I Compiler Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Implementation Differences ............................................................................... 24 
Character Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
Records and Files ...................................................................................... 24 
Limits and Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 
SAVE Statement ........................................................................................ 25 
Environmental Differences ............................................................................. 25 

Suggestions When Writing or Converting Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

Contents ii 



IBM PC Data Acquisition and Control Adapter and Software ........................................... 26 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

Two Hardware Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 
Two Software Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

IBM Data Acquisition and Control Adapter ................................................................. 26 
Analog to Digital and Digital to Analog Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Binary Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Timer/Counter Device .................................................................................. 27 
Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
IBM PC DAC Adapter Interface Specifications .......................................................... 27 
Analog Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Analog Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 
Binary Input BIO Through Bl 15 . . . . .. . .. . . .. . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . 28 
Binary Output BOO Through B015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . . . . . . 28 
32-Bit Timer Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
16-Bit Counter Device .................................................................................. 29 
IBM PC DAC Adapter Distribution Panel ................................................................ 29 
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
System Reference Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Operating Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Setting Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

IBM Data Acquisition and Control Adapter Programming Support .......................................... 30 
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Function Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
Analog-Binary-Counters-Delay Functions ............................................................... 30 
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 
Configuration Requirements ............................................................................ 31 
Adapter Dependent Information ........................................................................ 31 

BASIC Sample Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
Wiring the Test Circuit .................................................................................. 32 
Adding the Header ..................................................................................... 32 
Global Variables ........................................................................................ 33 

IBM General Purpose Interface Bus Adapter and Software ............................................ 39 
IBM GPIB Adapter and Programming Support ............................................................. 39 
Introduction ............................................................................................... 39 
GPIB Adapter Features .................................................................................... 39 
Adapter Functional Description ............................................................................ 39 
GPIB Interface Capabilities ................................................................................ 40 

Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
Bus Connection ........................................................................................ 41 
Operating Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
PC Interface ............................................................................................ 41 
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 
Power .................................................................................................. 41 

General Purpose Interface Bus Programming Support ..................................................... 41 
Programming Support Features ........................................................................ 41 
High and Low Level Functions .......................................................................... 41 
GPIB Software Functions ............................................................................... 42 
GPIB Programming Support Utility Programs ............................................................ 42 
The GPIB Configuration Program ....................................................................... 42 
Device Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
Adapter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
The Interface Bus Interactive Control Program .......................................................... 43 
Example Programs ..................................................................................... 43 

Questionnaire ........................................................................................... 45 

Contents iii 





Introduction and Welcome 
These are the Proceedings of the IBM Personal 
Computer Seminar, designed for independent 
developers of products for IBM Personal Computers. 
The purpose of these Proceedings is to aid you in 
your development efforts by providing relevant 
information about new product announcements and 
enhancements to existing products. This issue is 
prepared in conjunction with this seminar. The 
Proceedings of future siminars for the IBM Personal 
Computers also will be published and will cover 
topics presented at those seminars. 

Throughout these Proceedings, the term Personal 
Computer and the term family of IBM Personal 
Computers address the IBM Personal Computer, the 
IBM Personal Computer XT, the IBM PCjr, the IBM 
Portable Personal Computer, and the IBM Personal 
Computer AT. 

Purpose 
What is our purpose in putting out a publication such 
as this? It is quite simple. 

The IBM Personal Computer family is a resounding 
success. We've had a lot of help in achieving this 
success, and much of it came from the independent 
developers. 

As you proceed with your development, do you at 
times wish for some bit of information or direction 
which would make the job easier? Information which 
IBM can provide? This is the type of information we 
want to make available to you. 

Since we want to be assured of giving you the 
information you need, we ask you to complete the 

Introduction and Welcome 

questionnaire which appears at the end of these 
Proceedings. Your response to this questionnaire 
will be taken into account in preparing the content of 
future issues, as well as the content of seminars we 
will present at microcomputer industry trade shows. 

Topics 
The following list gives a general indication of the 
topics we plan to cover in future seminars and 
include in the IBM Personal Computer Seminar 
proceedings: 

• Information exchange forum - letters to the 
editor format 

• Development tools - languages, database 
offerings 

• Compatibility issues 

• New devices - capacities and speeds 

• System capacities - disk and memory 

• Enhancements in maintenance releases 

• Tips and techniques 

• New system software 

• Hardware design parameters 

• Tips on organizing and writing documents for 
clear and easy reading 

• Changes to terms and conditions 



IBM PC Professional Graphics 
Software 

Introduction 
On September 10, 1984 IBM announced a number 
of products intended for use in the engineering and 
scientific communities. Among the new products 
announced were five professional graphics software 
development tools, a high resolution controller and 
display, an IBM PC Professional FORTRAN, and 
hardware and software to address the control and 
instrumentation needs of both the industrial and 
educational engineering/scientific environments. 

This document focuses on the five graphics software 
products and the IBM Professional Graphics 
Controller/Display. The first section gives a product 
summary and overview. More detailed descriptions 
of three of the products are contained in the second 
section and finally, sample program listings, written 
in IBM Professional FORTRAN, are available for your 
information. 

IBM Professional Graphics 
Product Summary 
The five graphics software development tools 
announced for the IBM family of Personal Computers 
are: 

The IBM Graphics Development Toolkit 

This is the foundation product for all of the IBM PC 
Professional Graphics Software products. Included 
in the Toolkit is a Virtual Device Interface (VDI) which 
follows the proposed ANSI X3H33 definition. 

The IBM Graphical Kernel System 

The IBM Graphical Kernel System (GKS) is an 
implementation of the proposed ISO/ANSI GKS level 
mb standard. 

The IBM Plotting System Library 

The IBM Plotting System Library (PSL) is a VDI 
based product intended to provide a tool for the 
development of a variety of presentation level 
graphics. 

IBM PC Professional Graphics Software 

The IBM Graphical File System 

The IBM Graphical File System (GFS) is a tool which 
follows the proposed ANSI Virtual Device Metafile 
(VDM) for the storing, retrieving and the manipulation 
of graphic images. The product provides a 
programming and an interactive interface for 
application developers. 

The IBM Graphics Terminal Emulator 

The IBM Graphics Terminal Emulator provides the 
means to interface with host systems, allowing 
access to sophisticated graphics software products 
from an IBM Personal Computer emulating either the 
Tektronix* 4010 Series terminals or the Lear Siegler 
ADM 3A** terminal. 

The IBM Professional Graphics Controller/ 
Display 

The IBM Professional Graphics Controller and 
display is a high resolution controller/display with 
many built in graphic functions. The controller/ 
display will be useful in many areas including 
computer aided design and manufacturing, CAD/ 
CAM, and other graphics applications requiring high 
resolution graphic images. The new IBM Personal 
Computer AT complements the IBM Professional 
Graphics Controller/Display. 

IBM Professional Graphics 
Overview 
The Graphics Development Toolkit 

The Graphics Development Toolkit (VDI) provides the 
foundation for all of the new IBM PC Professional 
Graphics software products. It is intended for use in 
graphics applications for the PC. It can be used by 
itself or in combination with other IBM PC 
Professional Graphics products. 

This VDI product is intended for use in creating 
simple and complex graphics images and at the 
same time, VDI can provide a standard device 
interface. The application programmer is free to 
design a graphics solution without regard to which of 

2 



the many input/output graphics devices end users 
may use on their particular system. A brief overview 
of the Toolkit follows. 

The VOi Controller 

The Virtual Device Interface Controller is a common 
language interface which allows device-independent 
software and device-dependent drivers to 
communicate. VDI also provides both basic and 
Generalized Drawing Primitives (GDP). 

The Device Drivers 

The drivers communicate directly with the VDI 
Controller and the graphics devices. Each specific 
device will have its own driver and the driver will 
translate all the information exchanges between the 
devi-ce and application program. 

Linkable Libraries 

VDI has a set of linkable libraries for graphics and 
text functions. The VDI functions are grouped into 
eight major functional areas: 

Workstation Control Functions 
Paging Functions 
Pel Functions 
Cursor Control Functions 
General Graphic Functions 
Graphic Functions and Attributes 
Text Functions 
Input Functions 

Reference Material 

Reference material containing specific language 
syntax for each of the supported functions is 
included in the documentation. The address of 
where and how to obtain information about 
redistribution and how to write your own drivers to 
interface with the VDI is: 

IBM Corporation 
Graphics Development Toolkit 
P. 0. Box 1328-A 
Boca Raton, FL 22432 

Drawing Primitives 

Drawing primitives include polyline, polymarker, and 
text models. The polyline primitive draws vectors 
between sequences of end points. The polymarker 
places a marker symbol at each point in the array 
and the text primitive displays text strings at any 

IBM PC Professional Graphics Software 

position with any orientation. Three types of text 
models are supported, alpha, graphic and cursor. 

The VDI also supports raster devices, fill and cell 
array primitives and raster operation or Pel 
functions. The Pel functions move one or more pels 
and can provide for animation and image 
generation. The VDI also provides for inquiry 
operations to aid programmers. 

The Graphics Development Toolkit provides a set of 
device drivers for a variety of IBM devices including 
the PCjr Joystick, several displays, printers and 
plotters. 

Language interfaces include IBM PC BASIC 
Compiler 1.00, IBM FORTRAN Compiler 2.0, IBM PC 
Professional FORTRAN, Pascal Compiler 2.00, 
Macro Assembler and Lattice C 2.0 developed by 
Lattice, Inc. 

The Graphical Kernel System 

The Graphical Kernel System (GKS) is 
implementation of the proposed ANSI standard level 
mb with full 2b segmentation features. GKS 
segmentation is a collection of graphics primitives 
that are dealt with as a single unit. Graphics 
functions including transformation, scaling, and 
highlighting among others can be used in 
conjunction with the respective segment. 

The IBM PC Graphical Kernel System product like 
the VDI product is intended for use by programmers 
and application developers. GKS is designed to 
provide portability among systems that support the 
proposed standard. 

Five input functions locator, string, pick, choice and 
valuator are supported. Also supported are 20 
graphics primitives. Transformation between world, 
normalized device coordinate and device coordinate 
systems are supported. 

Language interfaces with the exception of Pascal 
and Assembler are same as those supported by the 
Toolkit. 

The IBM Plotting System Library 

The Plotting System Library (PSL) provides a set of 
the tools to aid in development of high quality 
graphics. Using the foundation provided by the VDI, 
the Plotting System Library allows the use of a large 
variety of 1/0 devices but without concern for which 
device will actually be used with the application. 

PSL is a collection of 2D graphics subroutines 
including chart types, chart attributes, graphic and 

3 



text annotation, inquiry and other functions. PSL is 
intended for use by experienced and novice users. 

The language interfaces supported in the GKS 
environment are also supported by the Plotting 
System Library. 

The Graphical File System 

The Graphical File System converts and stores 
graphic information in accordance with the 
proposed ANSI Metafile Standard. Through the 
Metafile, the user can retrieve graphic 
information to re-create an image or combine 
information from more than one source to form 
an entirely new image. 

There are two methods of using the Graphical 
File System; one is to interact with the image 
information through a program interface and the 
other is through an interactive session at the PC 
keyboard. The product provides language 
interfaces identical to GKS and PSL. 

The Graphics Terminal Emulator 

The Graphics Terminal Emulator provides the host 
system interface to allow IBM PC users to interact 
with sophisticated graphics applications by 
emulating two terminals common to this 
environment. The terminals emulated are the 
Tektronix* 401 O series and the Lear Siegler 
ADM-3A.** 

The Graphics Terminal Emulator uses the VDI to 
provide access to a wide variety of devices on the PC 
and can operate with the IBM System/370 and non­
IBM systems. An icon driven user interface is 
provided for speed and ease of use. 

The user can upload and download ASCII data 
streams and the data can be examined while 
continuing to operate in the emulator mode. 
Communications between host and emulator are 
conducted through an ASCII RS-232C 
communications port. 

IBM PC Professional Graphics Software 

I BM Professional Graphics 
Requirements 
The Professional Graphics Products have minimum 
system requirements and the publications 
associated with each of the products should be 
consulted for specific information. There are, 
however, some general requirement comments to 
make regarding the graphics products. 

The Professional Graphics Controller/Display can be 
used in all IBM PC models except the PCjr. The 
Controller/Display requires the PC expansion unit on 
the IBM PC and IBM Portable PC. The controller 
requires two adjacent slots because of the card 
configuration. 

The general minimum product requirements are: 

128KB of storage for the Toolkit 
256KB for the other software products 
DOS 2.1 or higher 
A language compiler 
1-360KB diskette drive for the Toolkit/Emulator 
2-360KB diskettes, a 1.2MB diskette drive or a 
hard file for all others 
For the Professional FORTRAN, a 8087 or 80287 
IBM Math Co-Processor. 

The Graphical Kernel System, the Plotting System 
Library, the Graphical File System, and the Graphics 
Terminal Emulator each come with a copy of the VDI 
Controller and Device Drivers elements of the 
Toolkit. Any applications developed using these 
products for distribution require a redistribution 
license from IBM. The. address for information on 
this topic is shown in the Reference Material 
section. 

The following articles provide greater details about 
three of the IBM Professional Graphics Products; the 
Graphical Kernel System, the Plotting System 
Library and the Graphical File System. 

* Tektronix is a trademark of Tektronix, Inc. 
** Lear Siegler ADM-3A is a trademark of Lear 

Siegler, Inc. 

4 



IBM PC Graphical Kernel System 

Introduction 
The IBM Graphical Kernel System (GKS) is a 
powerful and easy to use tool for programmers and 
application developers. It provides a set of functions 
that can be used by the majority of applications that 
produce· computer generated pictures. 

The IBM Graphical Kernel System (GKS) is based on 
proposed ISO/ANSI standards to aid graphics 
application programmers in understanding and using 
graphics methods, and to guide device 
manufacturers on useful graphics capabilities. 

The GKS was designed to provide program 
portability between computer systems, a task 
accomplished by achieving source code 
compatibility that provides a consistent interface in 
high level languages. 

By enabling programmers to work to constant 
standards, programs conforming to GKS 
specifications can be combined with new and more 
sophisticated programs. Any program written to GKS 
standards will work on any system supporting this 
standard. 

The Graphical Kernel System is built upon the VDI 
and benefit from its versatility. It can use the built in 
attributes of a given device, or it can emulate 
functions and provide high level support to less 
sophisticated devices. 

Highlights 
Provides portability of graphics application between 
computer systems that support the GKS standard. 
The level of portability for executing a graphics 
application is dependent on each computers 
functional capabilities and implementation. 

• Provides device independence to graphics 
application. 

• ANSI level mb implementation with full 2B 
segmentation features of the GKS standard. 

• Supports segmentation functions. Segment is a 
collection of graphics primitives that can be dealt 
with as a unit through a range of graphics 
manipulations, including transformation, scaling, 
highlighting, visibility and detectability. 

• Rich set of inquiry functions. 

IBM PC Graphical Kernel System 

• Five different classes of input functions: locator, 
string, pick, choice, and valuator. 

• Support for 20 graphics primitives. 

• Provide the following language bindings: 

FORTRAN 2.0 
Professional FORTRAN 
Lattice C 
Basic compiler 

• Supports transformation between world, 
normalized device coordinate and device 
coordinate systems. 

Workstations 
GKS supports four categories of workstations: 

• OUTPUT (Output only). For example: printers. 

• INPUT (Input only). For example: joystick. 

• OUTIN (Output and input). For example: display 
with keyboard can be used to output graphical 
image and input key strokes. 

• WISS (Workstation independent segment 
storage). WISS is a virtual device which allows 
segments to be stored independent of any 
particular physical workstations. 

GKS allows a maximum of three workstations to be 
opened at any one time: one OUTPUT or OUTIN, 
one INPUT, and WISS. 

GKS Operating States 

During processing, GKS is always in one of the 
following five operating states: . 

1 . Kernel System closed 
2. Kernel System open 
3. At least one workstation open 
4. At least one workstation closed 
5. Segment open 

Each GKS routine requires that the system be in a 
certain operating state. If you make a call in the 
wrong operating state, you will receive a 'Kernel 
System not in proper state' error message. 

5 



GKS Routines 
The GKS routines are separated into nine categories 
that group the routines according to the task each 
one performs, including: 

• Control routines. Routines that affect the state 
of the system or of individual workstations. 

• Output routines. Routines that display basic 
graphic images, for example: polylines, 
polymarkers, fill areas, text, ... etc. 

• Attribute routines. Routines that modify the 
appearance of graphic primitives mentioned 
above. 

• Transformation routines. Routines that translate 
primitives between coordinate planes. 

• Segment routines. Routines that create, delete, 
and manipulate segments. 

• Input routines. Routines that make interactive 
graphics applications easy. 

• Inquiry routines. Routines that return data to the 
application, including information about 
workstations, logical input devices, and current 
attribute settings. 

• Utility routines. Routines that pack or unpack 
data records and compose segment 
transformation matrixes. 

• Error handling. Routines that assist the 
application program in logging and handling 
errors. 

Control Routines 
Control routine affect the state of the system or the 
state of the workstation. 

Control routines include: initialize and terminate the 
Kernel System, open, activate, deactivate and close 
workstation, clear workstation, update workstation, 
redraw all segments on workstation, and escape 
routine. 

The escape routine allows you to issue commands 
directly to the device, to take advantage of any non­
standard features available on your particular 
graphics device. 

IBM PC Graphical Kernel System 

Output Routines 
Routines that display basic graphic images, 
including: polylines, polymarkers, fill areas, text, and 
generalized drawing primitives. Generalized drawing 
primitives include: circles, arcs, pie slices, and bars. 

Attribute Routines 
Routines that modify the appearance of graphic 
primitives mentioned above. 

For polylines, you can set the following attributes: 

• Polyline color index. 

• Polyline width scale factor. 

• Polyline type, at least 6 line types are 
guaranteed. 

For polymarkers, you can set the following attributes: 

• Polymarker color index. 

• Polymarker size scale factor. 

• Polymarker type, at least 6 marker types are 
guaranteed. 

For fill areas, you can set the following attributes: 

• Fill area color index. 

• Fill area interior styles, which include: hollow, 
solid, pattern, and hatch 

• Fill area style index, which is a index into the 
pattern table or hatch table. At least 6 hatch 
styles are guaranteed. 

For text, you can set the following attributes: 

• Text color index. 

• Text font and precision. Precision includes: 
string precision and character precision. 

• Character height. 

• Character up vector, the direction of the text 
string. 

• Text alignment, includes 3 possible horizontal 
justifications, and 3 possible vertical 
justifications. 

6 



GKS does not provide attributes explicitly for 
generalized drawing primitives. Each generalized 
drawing primitive assume the current 
attributes of the GKS primitive it most closely 
resembles. Arcs use current polyline attributes, 
Bars, pie slices, and circles use fill area attributes. 

The number of available choices for an attribute are 
sometimes determined by the device capability. For 
example, the number of text fonts available is 
determined by how many hardware fonts the device 
supports and the number of polyline colors available 
is determined by how many colors the device 
supports. 

Transformation Routines 
There are three coordinate systems in GKS. The 
GKS transformation routines perform mapping 
between the three coordinate planes. 

The world coordinate (WC) plane is a user defined 
cartesian coordinate system. You build your 
graphics image in WC coordinates. You define the 
range of WC with the set window routine. 

The Normalized device coordinate (NDC) plane is a 
standardized, virtual plane that provides a uniform 
coordinate system for all workstations. You define 
the range of NDC with the set viewport routine and 
set workstation window. 

The device coordinate (DC) plane is the portion of 
the device surface that will be used to output 
graphics. You set the range of DC with the set 
workstation viewport routine. 

Normalization transformation maps WC to NDC, and 
workstation transformation maps N DC to DC. 

Eight normalization transformation numbers can be 
defined at one time in GKS. Select transformation 
number routine is used to select the effective 
transformation number. 

By default, the normalization transformation number 
O is used to map world coordinate (0.0, 1.0) X (0.0, 
1.0) to NDC (0.0, 1.0) X (0.0, 1.0), and the default 
workstation transformation maps NDC (0.0, 1.0) X 
(0.0, 1.0) to DC using the largest square that will fit 
on the device surface. 

Segment Routines 
When primitives are grouped together in a segment, 
you can perform operations on them as a single 
object. 

IBM PC Graphical Kernel System 

To create a segment, you call create segment 
routine, then calling the output routines to create the 
primitives for the segment. The close segment 
routine is called to define the end of the current 
segment. 

When a segment is created, it is automatically stored 
in all output workstations that are active. To store a 
segment into a workstation, the associate segment 
with workstation routine can be used. 

To delete a segment from all workstations, the delete 
segment routine is used. To delete a segment from 
certain workstations only, the delete segment from 
workstation routine is used. 

Each segment has attributes associated with it. 
Each attribute is set by a segment routine. These 
attributes include: 

• Visibility 

• Detectability 

• Highlighting 

• Segment priority 

• Pick identifier 

As long as a segment is created, it can be 
transformed by the set segment transformation 
routine. These transformations are accomplished by 
a 2X3 transformation matrix, which is calculated by 
the evaluate segment transformation matrix routine. 
The routine accepts fix point, shift vector, rotation 
angle, and scaling factors as input parameters, and 
produce a transformation matrix as an output 
parameter. 

Input Routines 
GKS supports 5 input classes for interactive graphics 
applications, which are locator, choice, string, pick 
and valuator. 

Locator - Used to select a position on the display 
surface by moving a graphics input cursor to the 
desired position. The value returned by locator is a 
point in world coordinates, together with a 
normalization transformation number. 

Choice - Used by the user to make a choice on a 
choice device. The keyboard function keys are 
simulated as a choice device. The choice function 
returns a nonnegative integer value that represents 
a selection from a number of choices. Usually a 
choice device asks an operator to choose among 
fixed alternatives by pressing a button or function 
key. 

7 



String - Used to enter a character string into the 
program. Returns a character string, typically from a 
keyboard. 

Pick - Used to pick a segment on the display surface 
by moving the graphics input cursor over it. The pick 
function returns a segment name, a pick identifier 
and the status. 

Valuator - Used to enter a real number value by 
setting a valuator device, for example, turning a dial 
to the position which represents the value you want. 

Each input function operates in one of two modes, 
sample mode or request mode. 

In request mode, the program operation is held until 
the operator responds with a request mode trigger. 
For example, when request locator is invoked, 
program processing is halted until the user moves 
the cursor to the desired position on the screen and 
presses the enter key on the keyboard or the 
corresponding buttons on the joystick as a trigger to 
terminate request mode. 

In sample mode, the value returned by the logical 
input device is the current measure of the physical 
workstation. For example, the sample locator 
returns the current position of the graphics input 
cursor at the time the routine is called. 

Inquiry Routines 
GKS provides an extensive set of inquiry routines 
that return information to application programs about 
the current operating state, workstation information, 
current setting of primitive attributes, segment 
attributes, device capability ... etc. 

Utility Routines 
GKS provides utility routines for your convenience in 
computing transformation matrixes and handling 
packed data records. 

Error Handling 
GKS provides error handling and error logging 
routines to react to error situations. 

For each GKS routine, a finite number of error 
situation is defined, and can be classified as 
following: 

Class 1 - Errors resulting in a precisely defined 
reaction. For example, viewport rectangle set is 
invalid, GKS reacts by logging an error message in 
the error file of the application program, and ignore 
the function call. 

Class 2 - Errors resulting in an attempt to save the 
results of previous operations. For example, out of 
memory errors or failure to open a workstation, GKS 
reacts by displaying an error message on the 
console, and a transfer of control to the operating 
system console. 

Class 3 - Errors that can cause unpredictable 
results including the loss of information or control. 
For example, hardware failure. 

Prerequisites 
DOS version 2.1 or later 

Fortran 2.0, Professional FORTRAN, Lattice C V2.0 
by Lattice Corporation, or another compatible C 
compiler. 

An IBM Personal Computer, IBM Personal Computer 
XT, IBM Portable Personal Computer, IBM Personal 
Computer AT with a minimum system configuration 
of the following: 

256 K memory 
2 double sided diskette drives 
Graphics display 

Recommended configuration: 

51 2 K memory 
8087 or 80287 Math Co-processor 
IBM Fixed disk and double-sided diskette drive 
Hardcopy device and input device 

Packaging 
The Graphical Kernel System is packaged on four 
double sided diskettes with the Graphical Kernel 
System manuals. Device drivers and selected 
Graphics Development Toolkit modules are included 
on two additional diskettes. 

Publication 
The following publications will be available with the 
software: 

• Programmers Guide 

• Language Bindings, Volumes 1, 2, and 3 

IBM PC Graphical Kernel System 8 



IBM Personal Computer Graphical 
File System 

Introduction 
This article provides an overview of the IBM 
Graphical File System. The key features of the 
product are here. More complete information is 
contained in the publication, IBM Graphical File 
System Programmer's/User's Guide. 

This article covers the following topics: 

• Metafile - Concepts, Structure, and Benefits 

• Encoding 

• Interfaces 

• Pre-Requisites, Packaging, and Installation 

Metafile - Concepts, Structure, 
and Benefits 

Concepts 

The Graphical File System is an implementation of 
the Virtual Device Metafile (VDM) is a standard way 
to save pictures on a disk or diskette. 

Structure 

The overall structure of a metafile consists of header 
and trailer data, and the representation of one or 
more pictures. Each picture consists of header and 
trailer data, the data specific to the picture itself, and 
a set of variable length metafile elements or 
instructions made up of operation codes and various 
parameters. These instructions are processed by a 
program known as a metatile interpreter when the 
picture is to be displayed. 

The structure and definition of the metafile elements 
is consistent with the proposed ANSI X3H33 
standard. The metatile is created by an appropriate 
device driver operating under the Virtual Device 
Interface (VDI) which translates the graphics 
commands issued by an application program to the 
metafile encoding. 

IBM Personal Computer Graphical File System 

When recreating a picture, a metatile interpreter 
program will read the tile, interpret the elements and 
reissue the VDI commands tor execution by the 
output device driver. The output can be directed to a 
printer, plotter or display regardless of the type of 
device originally used for displaying the picture. 

The output can also be directed to a metafile to save 
as a new picture. Thus a metafile containing 
separate pictures of three ships could be combined 
to show all three ships in one picture and the 
resulting picture saved. 

Benefits 

Some of the benefits of the Graphical File System, 
VDM, are described here. Certainly many more will 
be realized by individual developers as they use the 
product. 

Portability I Interchangeability 

Since the pictures are stored in an application and 
device independent manner, they can be ported to 
and shared with other computers and installations 
without recalculation; all that is needed is a metafile 
interpreter. 

Creating New Pictures from Old Ones 

Images can be composed from existing metafile 
images and some rudimentary editing may be 
performed during the composition process. 

Picture Archiving 

Fundamental to the VDM notion is the ability to 
conveniently archive graphic images on commonly 
available storage media. 

Encoding 
A metatile consists of metafile elements, which in 
turn are subdivided into six classes: 

Descriptor Elements 
Control Elements 
Picture Elements 
Graphical Elements 
Attribute Elements 
Escape Elements 

9 



Depending on the number of parameters, the 
elements are characterized as short or long. The 
first 11 bits define the operation code with bits 5 
through 11 defining the operation ID within a class 
with bits 12 through 15 specifying the class. 

Basic Parameter Types 

The two basic parameter type are string and 16-bit 
integers. String consist of an encoded list of 1 byte 
ASCII characters preceeded by a count. In the short 
command form this is 1 byte and in the long form it is 
a 16-bit integer. 16-bit integer data can range from 
-32768 to 32767. All parameters end on the 16-bit 
boundaries and where necessary, strings are padded 
to even byte boundaries. 

The programming interface allows a programmer to 
interrogate each element of the picture as it is read 
from the metafile. Action can be taken depending on 
the class and ID. Chapter 5 of the IBM Graphical File 
System Programmer's/User's Guide together with 
Appendix B provide a detailed description of the 
operation codes and their meaning. 

Interfaces 
The Graphical File System offers two user interfaces: 

Interactive Interface 

Programming Interface 

Interactive Interface 

The interactive interface allows an end user to 
communicate with the Graphical File System through 
an interactive, icon-driven screen display. This 
interface provides a user friendly environment to: 

• Compose and view an image. The user can 
select the area of the screen for viewing and if 
desired, combine multiple images on one screen. 

• Create a new metafile picture for later viewing. 

• Direct the image to an output device such as a 
plotter or printer. 

Other icons permit the user to specify the size of the 
displayed image and to provide editing by erasing 
components of an image. For further details on the 
interactive interface refer to chapter 3 of the 
Graphical File System Programmer's/User's Guide. 

IBM Personal Computer Graphical File System 

Programming Interface 

The programming interface provides functions which 
allow application programmers to write programs to 
control and interpret metafiles: in effect creating 
their own brand of metafile interpreter, or performing 
some rudimentary editing. One simple example 
would be to create a presentation from a set of 
metafile pictures which have been created 
separately by different applications. The functions 
are available as a subroutine package to application 
programmers who create their programs with the aid 
of the following language compilers: 

FORTRAN Version 2.0 
PROFESSIONAL FORTRAN 
LATTICE C Version 2.0 * 
BASIC Compiler 

The subroutine calls are resolved when the compiled 
object modules are linked with the appropriate 
subroutine library, see below: 

Compiler 

FORTRAN Version 2.0 
PROFESSIONAL FORTRAN 
LATTICE C Version 2.0 
BASIC Compiler 

Library Name 

FORM ETA.LIB 
PFMETA.LIB 
CMETA.LIB 
BASMETA.LIB 
and MHEAP.OBJ 

*LATTICE C is a trademark of Lattice Corporation 

The language bindings are described in detail in 
chapter 4 of the Graphical File System 
Programmer's/User's Guide. 

The 15 functions may be classified as follows: 

• Initializing and terminating 

• Picture control 

• Interpretation functions 

• Workstation - Metafile control 

• Cutting and Pasting 

• Error detection 

Initializing and Terminating 

• Open Metafile makes a specified metafile 
available for reading and returns an integer 
identifier to be used on other function calls. 

10 



• Close Metafile is used when interpretation is 
complete. 

• Open Workstation prepares a workstation to 
receive graphic output, including clearing the 
display surface. The workstation is specified by 
using one of the logical workstation names 
("DISPLAY", "PLOTIER", etc.), and the function 
returns an integer identifier (device handle) to be 
used on subsequent calls. 

• Close Workstation is the converse of Open 
Workstation. 

Picture Control 

Once the metafile is opened, an individual picture 
needs to be selected prior to interpretation. This is 
performed by: 

• Open Picture: in which the specific picture is 
identified by an integer. 

• Close Picture: indicates interpretation is 
complete. 

Interpretation Functions 

Two classes of functions are available for 
interpreting: 

• A) Interpret Picture: identifies a complete picture 
for interpretation and also specifies the output 
device on which it should appear. 

• B) Inquire Metafile Item (element) Ler.gth: 
returns the length (in bytes) of the next element 
in the Metafile preparatory to loading it into a 
buffer. (It may be recalled that the metafile 
elements (items) have widely varying lengths) 

• Get Metafile Item: reads the next element into 
the buffer. 

• Interpret Metafile Item: interprets the element in 
the buffer and directs it to the specified output 
device. 

While class A interprets a total picture, class B allows 
the user to proceed through the metafile element (or 
item) by element starting at a given picture. 

Workstation Metafile Control 

This is accomplished by Clear Workstation which: 

• Clears CRT devices. 

IBM Professional Graphical File System 

• Displays all pending graphics on plotters and 
printers. 

• Prompts for new paper on plotters; advances to 
top-of-form on printers. 

• If a metafile is specified, a new picture is 
initiated. 

Cutting and Pasting 

Pictures are defined in a virtual device coordinate 
(VDC) space of 0-32767 on the x and y axes. They 
are portrayed on a viewing surface with (device 
dependent) dimensions restricted to 0-32767 on 
each axis. (Thus the CGA is 32767 by 22500) The 
Graphical File System allows the user to "cut" part of 
a picture by specifying a rectangular area or window 
in the VDC space.This is performed by the Set 
Window function. This "cut" can be "pasted" to any 
rectangular area on the display surface by means of 
the Set Viewport function. These functions provide 
the basic mechanism to superimpose several 
pictures on one image. 

Error Detection 

When each function is utilized, an error situation may 
be determined by using the Inquire Metafile Error 
function. Appendix A of the IBM Graphical File 
System Programmer's/User's Guide lists the error 
codes which may be returned. 

Finally, the Inquire Metafile Version function 
identifies the current version and level of the 
Graphical File System. 

Prerequisites, Packaging, and 
Installation 
Required are: 

• DOS Version 2.1 or later. 

• 256K memory in an IBM Personal Computer, 
IBM Personal Computer XT, IBM Portable 
Personal Computer, or IBM Personal Computer AT. 

• For those wishing to use the programming 
interface: 

- FORTRAN Version 2.0 
- Professional FORTRAN 
- LATIICE C Version 2.0 * 
- BASIC Compiler 

*LATIICE C is a trademark of Lattice Corporation 

11 



The Graphical File System is packaged on five 
diskettes, of which two comprise the underlying IBM 
Virtual Device Interface Controller, Device Drivers, 
and auxillary programs. The remaining three 
diskettes contain the following: 

• 1) Metafile Interpreter, Font tables, and sample 
programs. 

• 2) FORTRAN VERSION 2.0 and PROFESSIONAL 
FORTRAN bindings. 

• 3) BASIC Compiler and LATTICE C bindings.* 

*LATTICE C is a trademark of Lattice Corporation 

Installation requires that the DOS procedure files 
CONFIG.SYS and AUTOEXEC.BATare set up 
appropriately.These files are used by DOS during the 
initialization process and must be in the root 
directory. Chapter One of the Graphical File System 
Programmer's/User's guide describes the installation 
process in detail. 

IBM Professional Graphical File System 12 



IBM Plotting System Library 

Introduction 
Purpose of the Plotting System Library 

The purpose of the Plotting System Library is to 
provide a set of 2-dimensional graphics subroutines 
that allow the programmer to create professional­
quality charts. These include area, bar, line, pie, 
scatter, schedule, step, and text-only charts. 

The Plotting System Library provides bindings to 
several major languages. The Virtual Device 
Interface (VOi), although transparent to the 
programmer, is the foundation of this implementation 
of the system. 

Because the Plotting System Library provides a 
comprehensive set of default values, you can create 
charts with a minimum number of steps. A built-in 
chart dimensioning procedure ensures that the 
sizing and spacing of chart components are 
consistent and proportional. Multiple charts or chart 
types can appear on a single display surface. 

Most chart attributes can be changed. These 
include: 

Line Style tor line and step charts 
Fill pattern for area, pie and bar charts 
Color 
Text height and font 
Logarithmic axes 
Axis range 
Tick-spacing 

The Plotting System Library includes facilities for 
both graphic and text annotation. In addition, it 
contains device inquiry capabilities that allow you to 
use device-independent features. You can also 
create interactive graphics applications by using 
input capabilities such as choice, locator and string. 

Package Contents 

The Plotting System Library is distributed on five 
diskettes. Two diskettes are common throughout the 
Professional Graphics Series and contain the VDI 
controller, supported device drivers and related 
code. Three diskettes contain the Plotting System 
Library software. Here are the files contained in the 
package: 

IBM Plotting System 

System Files 

AUTO EXEC.BAT 
CON FIG.SYS 
INIT_VDl.EXE 
LINK.EXE 
VOi.SYS 

BASIC 

BAS PLOT.LIB 
PLOT.LIB 
PHEAP.ASM 
PHEAP.OBJ 
BLINE.BAS 
BBAR.BAS 
BBAR2.BAS 
BPIE.BAS 
BIN PUT.BAS 
BTEXT.BAS 

Lattice C 

CPLOT.LIB 
CLINE.C 
CBAR.C 
CBAR2.C 
CPIE.C 
CINPUT.C 
CTEXT.C 

Professional FORTRAN 

PF PLOT.LIB 
PLOT.LIB 
PFLINE.FOR 
PFBAR.FOR 
PFBAR2.FOR 
PF PIE.FOR 
PFINPUT.FOR 
PFTEXT.FOR 

Description 

FORTRAN Version 2.00 

FOR PLOT.LIB 
PLOT.LIB 
FLINE.FOR 
FBAR.FOR 
FBAR2.FOR 
FPIE.FOR 
FIN PUT.FOR 
FTEXT.FOR 

Font Files 

FONT101 .TBL 
FONT102.TBL 
FONT103.TBL 
FONT104.TBL 
FONT105.TBL 
FONT106.TBL 

VDI Drivers 

VDIDY004.SYS 
VDIDY006.SYS 
VD I DY008.SYS 
VDIDY009.SYS 
VDIDYOOA.SYS 
VDIDYOOD.SYS 
VDIDYOOE.SYS 
VDIDYOOF.SYS 
VDIDY01 a.SYS 
VDIGIJOY.SYS 
VDIMTFIL.SYS 
VDIPLSIX.SYS 
VOi PL TWO.SYS 
VDIPRCOL.SYS 
VDIPRCOM.SYS 
VDIPRGRA.SYS 

The Plotting System Library contains bindings to the 
following languages available tor the IBM Personal 
Computer: 

IBM BASIC Compiler Version 1.00 
IBM Professional FORTRAN by Ryan-McFarland 
IBM FORTRAN Version 2.00 
Lattice c0 

13 



These bindings are supplied in the form of libraries of 
functions which are invoked within the application 
program and linked into the executable module with 
the DOS Link program. The application programmer 
can thus choose any of the four languages in which 
to develop his programs. 

Because of the size of the libraries and the number 
of symbols used, the Link program must be Version 
2.3 or later. 

Contained within each language library are functions 
grouped into the following categories: 

Chart type 
Chart attributes 
Graphic input classes 
Graphic output primitives 
Control 
Data set definition 
Data set attribute definition 
Text definition 
Inquiry 

A detailed list of the functions in each category 
appears at the end of this article. 

Configuration Requirements 

The minimum recommended hardware and software 
configuration for the IBM Plotting System is: 

• IBM Personal Computer AT, XT, PC or Portable 
PC 

• 256KB RAM 

• Two 360KB diskette drives (or 1.2MB diskette 
drive for the IBM Personal Computer AT) 

• Graphics display and appropriate adapter 

• IBM Disk Operating System (DOS) 2.10 or higher 
(IBM Personal Computer AT requires DOS 3.00) 

• One of the following compilers: 

IBM PC BASIC Compiler 1.00 or higher 
IBM PC FORTRAN Compiler 2.00 
IBM PC Professional FORTRAN Compiler 
1.00 
Lattice C Compiler<> 

0This product was developed using the Lattice C 
Compiler, version 2.0, developed by Lattice, Inc. 

IBM Plotting System 

Creating Charts 
The Plotting System Library eliminates many tedious 
programming tasks, without restricting your creativity 
as an application developer. The following features 
give you the means to design virtually any chart with 
speed and ease. 

• Chart dimensioning assures consistent and 
proportional sizing and spacing of chart 
components 

• Chart components and their related attributes 
can be controlled individually with no 
programming order dependency. 

• Default values provide the most appropriate 
choice when a chart component or attribute is 
not specified. 

Chart Dimensioning 

As a graphics user, you rely on chart components to 
represent real-world relationships. The accuracy 
with which related components are sized and 
positioned determines the effectiveness of the 
graphics tool. For this reason, the Plotting System 
takes an interrelated approach to all chart 
dimensioning. Once you decide the height and width 
of a chart's display surface, all other dimensions are 
then set relative to area defined. 

Any portion of the physical device's display surface 
can be specified as the display surface for your 
chart. Within the display surface is the view area. 
The view area contains all chart output and is 
defined as any portion of the display surface. 

Several charts can be created on a single display 
surface by specifying multiple view areas. The 
position and size of chart components are specified 
relative to the view area or to the axis system of the 
chart itself. 

Chart Components 

The Plotting System provides a flexible structure and 
an efficient set of building blocks for chart creation. 
The following chart components and their related 
attributes are controlled individually and can be 
defined in any order. 

• Data sets are numeric data that can be 
translated into graphic data such as bars, lines, 
pies, and so forth. 

14 



• Titles are separate character strings associated 
with a main chart title, chart subtitle, and axis 
titles. The height and font of each title can be 
specified. 

• Labels include the axis tick labels that define 
unit divisions for the vertical and horizontal axes, 
legend labels, and the labels associated with 
each pie slice within a pie chart. The font and 
height of labelling text can be defined. 

• Graphics primitives are lines, markers, circles, 
rectangles, arcs, and arrows added to improve 
the appearance or clarity of a chart. 

• Notation is additional character strings that 
provide remarks about the chart. Notation can 
appear anywhere within the view area and in any 
available font and height. 

• Frames of specifiable thickness can be set to 
enclose the view area or a specific chart area. 

• Gridding can be generated within the area 
defined by chart axes. When turned on, grid 
lines appear at each axis tick mark. 

Programming Considerations 

In most cases the order in which you use the Plotting 
System routines in your programs is unimportant. 
However, the following are exceptions: 

• The Open Plotting System routine must be called 
before any other Plotting System routine. 

• The Close Plotting System routine must be the 
last routine called. 

• An output device must be opened, using the 
Assign Plotting System Output Device routine, 
before any output is attempted. Output occurs 
when the Output Currently Defined Chart 
routine, one of the immediate action graphic 
primitive routines (Arc, Arrow, Circle, Polyline, 
Polymarker, or Rectangle), or one of the Set 
Notation routines is called. 

• An input device must be opened, using the 
Assign Plotting System Input Device routine, 
before graphic input is attempted. (Graphic input 
is accomplished by calling the Request Choice, 
Request Locator, and Request String routines. 
This is the only time an input device must be 
opened.) In addition, the same device that is 
being used for input must be opened as an 

IBM Plotting System 

output device before the input attempt if the 
input is to be echoed, as when using Request 
Locator or Request String. For example, by 
opening the display as both the input and output 
device and calling Request Locator, you 
can use the graphics cursor(+) to position the tip 
and end points of an arrow. 

• When the same device is opened for both input 
and output, the Close Input/Output Device 
routine must be called twice before the Plotting 
System is closed. 

• Any chart attributes must be set before the 
Output Currently Defined Chart routine is called. 

• Any primitive attributes must be set before the 
primitive routine is called, since primitives and 
notation are immediate action routines. For 
example, Set Notation Color must be called 
before Define Notation String and Location if the 
color is to have an effect on the notation string. 

• If primitives are to be used in conjunction with a 
chart, the Output Currently Defined Chart routine 
should be called before the primitive routine. 

Example 
To illustrate the capability of the Plotting System 
Library let's work through an example and build a 
chart. Since there are four different language 
bindings, our example will be written using a kind of 
"pseudocode" which shows the structure and logic 
without forcing us into a language-specific 
im plementaion. 

Suppose a department manager wants to create a 
chart of expenses by department so that it can be 
presented to each of four different departments: 
Engineering, Documentation, Administration and 
Marketing. He decides to plot the data as a bar chart 
with each department represented by a different 
bar. He also wants titles and axis tick labels so that 
each staff can recognize its related bar and cost 
figure. 

The pseudocode example shows how the data 
values are defined for two arrays containing 
coordinates for four data points. XRAY provides X­
axis coordinates and YRAY provides Y-axis 
coordinates. By default, the axis system of this chart 
is just large enough to accommodate the data. 

15 



The example also shows the routines used to create 
the bar chart. The Plotting System is opened and the 
plotter is assigned as the output device. 

DATA XRAY /1.0, 2.0, 3.0, 4.0/ 
DATA YRAY /15.0, 27.0, 20.0, 11.0/ 
Open Plotting System 
Assign Plotting System Output Device 
("PLOTIER") 

Next, we define the title of the chart, the dependent 
axis title, and the axis tick labels. 

Define Title String ("EXPENSES") 
Define Axis Title String (2,"Dollars in 
Thousands") 
Set Axis Labels (1,"/Eng/Doc/Adm/Mkt//") 

The dollar sign labels for the independent axis are 
specified by entering: 

• Two zeros for the parameters related to the 
independent axis 

• "3" to specify dollar signs as the dependent axis 
tick labels 

• "1" to indicate an integer value for the numeric 
data 

The Plotting System ignores the zeros because 
character labels have already been set for the 
independent axis. 

Set Axis Tick Label Type (0, 0, 3, 1) 

The chart area frame and the view area frame are 
specified as visible and 0.1 percent of the horizontal 
view area width. 

Set Existence of Chart Area Frame ( 1, 1) 
Set Existence of View Area Frame (1, 1) 

The data set is defined as a bar chart, the solid fill 
style is chosen, and the chart is sent to the plotter. 
Then the plotter and the Plotting System are closed. 

Define X/Y Data Set (1, 4, XRAY, YRAY) 
Define Data Set Chart Type to be Bar (1) 
Set Output Primitive Style for Date Set (1, 2) 
Output Currently Defined Chart 
Close Input/Output Device ("PLOTIER") 
Close Plotting System 

When this program is translated into the appropriate 
language, compiled and linked with the appropriate 
Plotting System Library, and executed, it will 
produce the chart shown in the figure. 

IBM Plotting System 

A number of default values were provided by the 
Plotting System in this example and they create a 
perfectly acceptable chart. But the programmer 
could have chosen a different fill area style and color 
for the bars, different colors for the axes, different 
color, size, or style for the title text, etc. And of 
course the chart could have been a line graph or pie 
chart (the Plotting System lets you explode a slice of 
pie to highlight it from the rest). Or if more than one 
data set were involved, you might want a stacked-bar 
chart. 

The manuals supplied with the Plotting System 
Library are comprehensive and contain a section on 
how to select the type of chart which best fits your 
data, as well as all the details on each of the 
supplied functions. Also included with the package 
are a set of example charts written in each of the 
four languages to show you quickly how to start 
writing programs of your own. In fact we've just gone 
through one of them in pseudocode. 

As in the other Professional Graphics Series 
packages which use the VDI, you can redirect the 
output of your program to other devices without 
changing any of your code. Simply use the DOS SET 
command to change the output device to a different 
driver. 

Plotting System Functions 

Following is a list of the functions built into the 
Plotting System Library. 

• Chart type - determines basic format 

Text-only 
Bar 
Line 
Scatter 
Schedule 
Step 
Area 
Pie 

• Chart attributes - determines control 

Line/fill style 
Line/bar width 
Bar/pie slice outline 
Text height 
Text font 
Legend 
Multiple charts per page 
Chart and view area 

16 



• Graphic input classes 

Request Locator 
Request String 
Request Choice 

• Graphic output primitives 

Polyline 
Poly marker 
Rectangle 
Circle 
Arc 
Text 
Arrow 

• Control 

Open Plotting System 
Close Plotting System 
Assign output device 
Assign input device 
Close input/output device 
Set display surface units 
Set display surface size 
Set view area extents 
Set foreground color 
Set background color 
Set horizontal or vertical chart 
Set baseline 
Set existence of axis 
Set existence of grid lines 
Set existence of view area frame 
Set existence of chart area frame 
Set axis type 
Set axis indent 
Set axis labels 
Set axis extents 
Set axis tick label type 
Reset entire plot environment to default 
Reset plotting environment 
Output the currently defined chart 

• Data set definition 

Define sequenced data set 
Define X/Y data set 
Define schedule chart data set 
Undefine a data set 

IBM Plotting System 

• Data set attribute definitions 

Name data set 
Set date 
Set visibility of a data set 
Define data set chart type to be bar 
Define data set chart type to be line 
Define data set chart type to be step 
Define data set chart type to be scatter 
Define data set chart type to be schedule 
Define data set chart type to be pie 
Set output primitive style for data set 
Set output primitive color for data set 
Set output primitive width for data set 
Set output primitive outline for data set 
Stack a set of data sets 
Fill between two data sets 
Set explode of pie slice 

• Text definition 

Define title string 
Set title height 
Set title font 
Define sub-title string 
Set sub-title height 
Set sub-title font 
Define axis title string 
Set axis title height 
Set axis title font 
Set legend font 
Set existence and location of legend 
Set legend alignment 
Set notation string and location 
Set notation color 
Set notation font 
Set notation height 
Set notation alignment 

• Inquiry 

Inquire on data set 
Inquire on device 
Inquire on Plotting System error 
Inquire on software system error 

17 



IBM Professional FORTRAN 

Objectives 
The primary objective in offering a new FORTRAN 
compiler for the Personal Computer was to provide a 
language capable of supporting large complex 
engineering and scientific applications, including 
programs already available for mainframe 
computers. Four other objectives were identified as 
being necessary to accomplish this goal: a 
FORTRAN language conforming to the full ANSI 77 
standard; ease of migration from mainframe 
FORTRANs; high performance execution with 
acceptable compile time and high accuracy of 
numeric results; and ease of use. 

The IBM Personal Computer Professional FORTRAN 
Compiler is a full function FORTRAN 77 compiler, 
designed according to the specifications of the ANSI 
Standard X3.9-1978 at the full level and providing 
significant compatibility with larger computer 
FORTRANs. Extensions to the standard ease 
conversion problems from FORTRAN 66 and provide 
heavily used facilities not included in the standard. 
Large programs may be migrated to the IBM 
Personal Computer with little or no change to the 
source code. Professional FORTRAN supports data 
seqments and individual arrays greater than 64KB, 
and program code can be as large as DOS will 
support, as long as no program unit is greater than 
64KB. 

Object code produced by Professional FORTRAN is 
optimized for execution time performance, using the 
same techniques common in mainframe compilers. 
The compiler was designed specifically for use with a 
math Co-processor, further assuring excellent 
performance and accuracy. 

The compiler is easy to install and use. The 
convenience of the user was considered in the 
design of the compiler interface and the 
documentation. A comprehensive interactive debug 
package allows debugging at the source level, a 
feature usually reserved for large system compilers. 

Prerequisites 

• IBM PC, PC XT Portable PC with an IBM 8087 
Math Co-processor or IBM Personal Computer AT 
with an IBM 80287 Math Co-processor for both 
compile and execution 

• 192KB main storage for compile 

• A fixed disk and one double-sided diskette drive 
or two double-sided diskette drives 

IBM Professional FORTRAN 

• At least 64KB main storage and a Math 
Co-processor for execution 

• IBM Personal Computer Disk Operating System 
Version 2.1 or later 

• IBM Personal Computer Linker Version 2.3 or 
later 

Using Debug increases the execution time storage 
requirement by approximately 90K bytes. The 
proper linker is shipped with the compiler. 

Extensions to the ANSI Standard 

Extensions to the ANSI FORTRAN 77 standard were 
provided for the following reasons: to facilitate 
conversion of FORTRAN 66 programs; to 
accommodate popular mainframe extensions to 
FORTRAN 77; and to improve usability of the 
compiler. 

Two extensions aid in the conversion of FORTRAN 
66 programs. A compiler switch causes DO-loops to 
be interpreted in FORTRAN 66 mode, with the loop 
test at the end of the loop. (However, no support is 
provided for extended DO loops.) Hollerith constants 
can be defined and assigned to numeric and logical 
data types. They can appear in DATA statements 
and as arguments in CALL statements, and they can 
be used in format specifications. 

Several extensions match those provided by many 
mainframe FORTRAN compilers. Optional length 
specifications LOGICAL *1, LOGICAL *4, INTEGER*2, 
I NTEGER*4, REAL *4, REAL *8, and COM PLEX*8 are 
provided for use in numeric and logical type 
specifications. Hexadecimal constants can be used 
to represent either numeric or character data. An 
INCLUDE statement allows secondary files to be 
merged with the source. Bit manipulation functions 
are implemented as defined in the proposed 
Industrial Real-Time FORTRAN Standard. Additional 
entry points are provided to maintain compatibility 
with the earlier ANSl/ISA bit function definitions. 

Several extensions were implemented to improve 
compiler usability. Local symbols may contain up to 
31 characters. Lower case characters are 
automatically promoted to upper case except when 
they appear within quotes or in a Hollerith 
specification. Speed of executable code may be 
improved and the size of the program reduced, 
where appropriate, by using a compiler option to 
treat all integer data as INTEGER*2. Conditionally 
compiled statements allow the programmer to 

18 



include statements in his program which are either 
compiled or treated as comments based on a 
compiler switch. Library routines are provided to 
access the processor date and time. 

Code Migration 

Migration of programs from mainframe computers is 
made easier by the implementation of the full ANSI 
77 standard and by including frequently used 
extensions. Extensions to the ANSI standard have 
already been discussed. The implementation of 
compiler options by switches rather than 
metacommands makes it easier to maintain 
programs which run on more than one computer. 

Using the Professional FORTRAN Compiler, it is 
possible to compile and run very large programs on 
the IBM Personal Computer. The design of the 8088 
family of processors requires main storage to be 
accessed in 64KB segments. Code and data are by 
default addressed by different segment registers. 
The restriction does not pose a real problem for code 
segments. While a single program unit cannot 
exceed 64KB, a program can consist of many 
program units accessed by far calls. If 50 bytes of 
generated code per source line are assumed 
(several times the likely amount), a program unit 
could be 1300 lines long without exceeding the 
64KB restriction. That is much too long to conform 
to good programming practice. 

The IBM Professional FORTRAN Compiler supports 
both data areas and individual arrays of greater than 
64KB. Since a maximum of 64KB can be addressed 
using a single segment register, there must be a 
performance penalty for supporting large arrays. A 
compiler switch allows the user to generate code 
capable of accessing large arrays only for routines 
requiring it. The switch applies only to subroutines 
using adjustable or assumed-size arrays. In all other 
cases, the size of an array is known at compile time, 
and the compiler generates appropriate code. 

For further information concerning code migration, 
please see "Portability and Conversion of FORTRAN 
Programs" in this document. 

Performance and Accuracy 

One of the top priorities in designing the IBM 
Professional FORTRAN Compiler was to produce 
efficient enough object code to make migration of 
code from mainframe computers attractive. The 
same optimization techniques used in mainframe 
compilers were used in the Professional FORTRAN 
Compiler: constant arithmetic and constant folding; 
common subexpression elimination; invariant code 
movement; strength reduction; and local 
optimization. Constant arithmetic and constant 

IBM Professional FORTRAN 

folding are operations performed at compile time on 
values which are constant at the point of reference. 
Common subexpression elimination calculates 
temporary values for subexpressions which are used 
in more than one expression. Invariant code 
movement extracts computations from DO-loops if 
they would be performed identically on every loop. 
Strength reduction is the substitution of one 
operation or set of operations for another in order to 
improve performance (for example, adding a number 
to itself instead of multiplying by 2 or using 
successive multiplies instead of the exponential 
function.) 

Local optimization encompasses many techniques 
applying to both the main processor and the math 
Co-processor. Some are common to other compilers, 
but others are designed to take advantage of the 
specific hardware being used. The DO variable is 
stored only when necessary. If possible, code is 
structured so that operands to be accessed more 
than once are maintained in registers, a technique 
which especially applies to the register stack in the 
math Co-processor. The INC and DEC instructions 
and immediate operand forms of instructions are 
used where possible. Since main processor index 
registers are not interchangeable, the choice of 
registers and freeing of registers for particular types 
of operations is very important. 

Use of the math Co-processor assures both fast and 
accurate floating point operations but creates a new 
set of challenges for optimization. For example, 
some floating point operations only apply to the top 
of the floating point stack, making the assignment of 
operands to registers more complex. 

Results produced by the math Co-processor can be 
expected to be as accurate as on the System/370. 
The math Co-processor implements the IEEE floating 
point standard. Because of the way floating point 
numbers are stored in short and long floating point 
format, the math Co-processor can be expected to 
provide slightly more precise results in short format 
(single precision) and slightly less precise results in 
long format (double precision). However, a real but 
unpredictable increase in precision occurs because 
of the extended precision capability of the math 
Co-processor during intermediate calculations. The 
result probably will be overall precision at least equal 
to that of the System/370. The range of single 
precision numbers is smaller using IEEE floating 
point format, but the range of double precision 
numbers is much larger. 

19 



The routines in the intrinsic library make full use of 
the math co-processor, resulting in very fast 
execution. 

Ease of Use 

Three major areas were addressed in making IBM 
Professional FORTRAN easy to use: documentation; 
compiler facilities, including the Debug package; and 
compiler listings. The decision to provide a Library 
Manager as part of the compiler package is an 
additional aid to the user, since it enables him to 
build libraries of common subroutines. 

Two manuals are provided with the compiler: 

Professional FORTRAN Installation and Use 

and 

Professional FORTRAN Reference. 

There is a color-coded "Quick Start" chapter which 
enables a new user to install the compiler and begin 
compiling programs immediately. Although neither 
manual is meant to be a tutorial, every effort has 
been made to present material clearly and in a 
logical manner. Extensions are well documented, 
and there is an appendix providing helpful 
information on converting existing programs and 
writing new programs in such a way that they will be 
portable. Clear explanations are provided for error 
messages, including examples of possible causes. 

The compiler provides several facilities which aid the 
user in debugging his program. Conditionally 
compiled statements may be either compiled or 
treated as comments depending upon a compiler 
option. Default file assignments allow program 
checkout without providing actual file names. The 
Interactive Symbolic Debug Program allows program 
debugging at the symbolic level while the program is 
actually running. 

Any program or subprogram may be compiled with 
the debug option. If a subprogram is to be debugged 
interactively, all program units in its chain of calls 
must also be compiled using the debug option. 
Using the debug option suppresses code 
optimization, inserts calls to debug routines, and 
causes a symbol table to be included in the object 
module. Once a program unit has been compiled 
with the debug option, the user may run the program 
under control of the Debug program, which allows 
him to: set breakpoints to monitor program flow or 
check values of variables; step through the program 
unit statement by statement; examine or change the 

IBM Professional FORTRAN 

values of variables; trace the flow of individual 
statements, a range of statements, or entries to and 
exits from subprograms; log the results of a debug 
session. 
Printed output from the compiler also contributes to 
rapid program checkout. Diagnostics are inline and 
undermarked. Even if the "errors only" compiler 
option is chosen, the line in error is printed before 
the error message or messages. All lines are 
numbered, so that they correspond to the line 
numbers of the original source during editing. Error 
messages are descriptive, and more complete 
explanations are provided in the manual. A cross 
reference can be requested, containing all symbols 
and line numbers and indicating the type of use for 
symbols (definition, reference, or value change.) 

Conclusion 

The original design criteria for the compiler- a full 
ANSI 77 FORTRAN implementation, extensions 
which contribute to portability of mainframe code, 
execution speed and accuracy, and ease of use­
have been met. The resulting product provides a 
suitable vehicle for the design and checkout of a 
wide range of sophisticated engineering and 
scientific FORTRAN applications. 

Portability and Conversion 
If you have an existing library of FORTRAN 
programs, or if the programs you write must run on 
more than one computer, you will have some 
additional concerns about using IBM Professional 
FORTRAN. The following issues affect the portability 
of programs: 

• Differences in language level 

• Differences in hardware (especially word size) 

• Use of language extensions 

• Implementation differences. 

Language Level 
Theoretically, most portability problems can be 
eliminated by following the ANSI standard. However, 
three standards are in common use: FORTRAN 66, 
which is specified by the document ANSI X3.9-1966; 
AND FORTRAN 77 and Subset FORTRAN 77, both 
specified by the document ANSI X3.9-1978. 

20 



Many existing programs were written in variations of 
FORTRAN 66, and these present the biggest 
challenge for conversion to I BM Professional 
FORTRAN. Some features which were part of 
FORTRAN 66 are no longer supported (DEFINE 
FILE, for example). Some common extensions to 
FORTRAN 66 are supported by FORTRAN 77, but 
not necessarily with the same syntax. At least one 
major statement, the DO, looks the same but is 
implemented differently. The following paragraphs 
address several of the commonly encountered 
problems. 

DO· Loops 

In FORTRAN 66, any DO-loop was executed at least 
once, since the implementation put the test at the 
end of the loop. In FORTRAN 77, the test is at the 
front of the loop, and the loop might not be executed 
at all. FORTRAN 66 also allowed extended DO· 
loops; the program could exit from the innermost 
loop and return to the same point. Using the /F 
compiler option causes all DO-loops to be evaluated 
according to the FORTRAN 66 standard. No support 
is provided for extended DO-loops. You must 
restructure any program using that technique, 
perhaps by using an equivalent IF statement. 

EQUIVALENCE 

The FORTRAN 66 standard permitted arrays having 
more than one dimension to appear in 
EQUIVALENCE statements with only a single 
subscript. This is no longer permitted, and no 
conversion aid is provided. 

Hollerith Data 

In FORTRAN 66, Hollerith data could be assigned to 
integer, logical, real, or complex data types. A 
character type is provided in FORTRAN 77, and the 
assignment of character data to other variable types 
is no longer permitted by the current standard. IBM 
Professional FORTRAN provides Hollerith constants 
as an extension. Hollerith constants can appear in 
DATA statements and as arguments in a CALL 
statement. 

DEFINE FILE 

The functions performed by the DEFINE FILE 
statement in FORTRAN 66 are provided by the 
OPEN statement in FORTRAN 77. 

IBM Professional FORTRAN 

Subset FORTRAN 77 

IBM Professional FORTRAN is an implementation of 
the full standard ANSI X3.9·178 with extensions. Any 
program conforming to the subset level as defined 
by the same standard, and not using any extensions, 
should compile properly using the IBM Professional 
FORTRAN compiler. However, it might not run 
properly because of differences in hardware and 
implementation. 

Hardware 
Differences in hardware dictate differences in 
implementation. They are considered here as a 
separate topic because the resulting implementation 
is more a matter of necessity than choice. Hardware 
differences can be internal or external. Internal 
considerations are word size, the number of 
characters in a word, and floating-point arithmetic. 
Since differences in the type and size of external 
storage devices are only one of the factors 
influencing 1/0 implementation, it will be discussed 
under "Implementation Differences." 

Word Size 

The ANSI FORTRAN standards define the length of 
the supported data types in terms of numeric or 
character "storage units" of unspecified size. A real, 
integer, or logical data item, for example, must 
occupy one numeric storage unit, and a double· 
precision data item must occupy two consecutive 
storage units. Considering only integer data, it is 
obvious that a larger number can be stored in a 36· 
bit word as opposed to a 32-bit word, although both 
are acceptable implementations of the integer type. 
If you are moving a program to the IBM Personal 
Computer from a computer having a word size larger 
than 32 bits, you must be sure that integer values 
are between -2**31 and 2**31·1. 

Character Data in Other Data Types 

A problem arises when numeric or logical data types 
are used to store Hollerith data, even though a 
language extension is provided to allow the use of 
that convention. Computers differ in the number of 
characters that can be stored in a word, because of 
both the size of the word and the number of bits 
required to represent a character. 

21 



The ANSI standard does not specify a corres­
pondence between numeric and characters storage 
units. A program that uses a DATA statement to 
store ten 6-bit Hollerith characters in each 60-bit 
word will not compile correctly on the IBM Personal 
Computer, where four 8-bit characters are stored in a 
32-bit word. In some cases, a program can be 
converted by using a larger size variable to store 
Hollerith data; REAL *8 instead of REAL *4, for 
example. 

In the IBM Personal Computer, numbers are stored 
internally with the bytes swapped. For this reason, 
characters cannot be stored in numeric data types 
using a hexadecimal representation and later 
retrieved as characters. The problem can be 
resolved in the general case only by using the 
character data type. You should choose this method 
for new programs. 

Floating-Point Arithmetic 

Not only is the actual length of floating-point 
numbers not defined by the ANSI FORTRAN 
standards, but neither are the number base, 
exponent range, or number of significant digits. The 
range is controlled by the number of bits used for the 
exponent and the chosen base. The IBM 370, for 
example, uses a 7-bit biased exponent and a base of 
16. The exponent always shows 63 (the bias) more 
than the actual value in order to provide a 
representation for negative numbers without using a 
sign. Therefore, the largest positive exponent that 
can be represented is 63 to base 1 6, or 
approximately 76 to base 10 for both single­
precision and double-precision values. 

The IBM Personal Computer with a math 
Co-processor implements the IEEE standard for 
floating-point arithmetic, which defines the exponent 
length as 8 bits biased by 127 for short real (single­
precision) and 11 bits biased by 1023 for long real 
(double-precision) values. The largest possible 
positive exponent is approximately 38 to base 10 
(127 to base 2) for single precision and 308 to base 
10 (1023 to base 2) for double precision. 

A program using single-precision arithmetic might 
produce legitimate results on the 370 that are out of 
range on the IBM Personal Computer. Using double 
precision might cause just the opposite result. There 
is no solution to this problem except to limit 
programs that must be run on more than one 
computer to those for which the expected floating­
point range is valid on all the computers. 

The number of significant digits (or precision) is 
controlled by the number of bits used for the fraction 

IBM Professional FORTRAN 

and by the base. The influence of the base is not 
obvious. It has to do with the fact that there are gaps 
between the numbers that can be represented 
exactly within the computer. The larger the base, the 
larger the gaps. If the number of significant bits is 
the same, the greatest precision is obtained by using 
a base of two. 

You should be aware that a complex program can 
produce different results on one computer than 
another because of differences in internal precision. 
The difference can be minimized, but not necessarily 
eliminated, by using double-precision arithmetic and 
by using numerical methods that tend to retain 
maximum precision. 

Some programs require the base or precision of the 
machine on which they are run as input. This 
applies to some random number generators and to 
programs that use iterative methods to arrive at a 
result, stopping when no significant change would 
result from further iterations. If this is the case, be 
sure that the constants are flagged in a way that they 
can be easily found and changed. 

Language Extensions 
If you are converting an existing program, you will 
find the process more difficult if extensions to the 
ANSI standard were used. If you are writing a new 
program, weigh the utility of extensions to the 
standard against any future portability problems. 
There have been many extensions to the FORTRAN 
language. Some extensions to FORTRAN 66 are 
standard in FORTRAN 77. Some are now 
implemented, but in a different manner. Only a few 
topics can be covered here. 

Additional Data Types 

Many compilers, including the IBM Professional 
FORTRAN compiler, provide extensions to the 
standard data types. Examples would be REAL *8 
and LOGICAL*1. Some of these extensions have 
standard equivalents. DOUBLE PRECISION can be 
substituted for REAL *8, REAL for REAL *4, LOGICAL 
for LOGICAL*4, and INTEGER for INTEGER*4, in 
most cases. 

Data types that are not standard are normally used 
to save time, space, or both. Unless they are made 
equivalent (in an EQUIVALENCE statement) to 
variables of a different type, they can usually be 
converted to the nearest standard data type. BYTE 
and INTEGER*2 become INTEGER, and LOGICAL *1 
and LOGICAL *2 become LOGICAL. 

22 



Hexadecimal and Octal Data 

Most FORTRAN compilers allow variables to be 
initialized with either hexadecimal or octal data. 
Some support both. The syntax used differs widely. 
For example, the same hexadecimal data can be 
entered as Z4FD 1, Z' 4FD 1 ', or '4FD 1 'X, depending 
on the compiler. The compiler may supply zeros on 
the left or blanks on the right as padding, depending 
on the variable type. 

IBM Professional FORTRAN supports hexadecimal 
data only. If you are converting an existing program 
or if your program must run on other computers, you 
might have to adjust to differences in syntax or 
implementation. A possible method is to supply 
comment cards to be transformed by a precompiler 
or text editor. For example: 

CIBMPODATA VAR /Z' 4FD1 '/ 
CIBMVSDATA VAR /Z4FD1/ 

generates the following: 

DATA VAR /Z '4FD1 '/ 
CIBMVSDATA VAR /Z4FD1/ 

for use on the IBM Personal Computer when a text 
editor is used to substitute blanks for all occurrences 
of the characters 'CIBMPC.' 

Data Management Extensions 

The FORTRAN language has been extended in 
almost all compilers to provide additional 1/0 
facilities. Some of these extensions are: 

• Asynchronous 1/0 supported with BUFIN/ 
BU FOUT, or with READ/WRITE ID= 

• Internal files, supported by many vendors with 
ENCODE/DECODE 

• File types other than sequential and direct, such 
as IBM's partitioned and VSAM files, and another 
manufacturer's keyed files 

• Read and write keywords that address a specific 
kind of 1/0 equipment, such as ACCEPT, 
DISPLAY, and TYPE. 

If you are converting programs that use these or 
other extensions, you must become familiar with the 
1/0 facilities provided by each compiler. 

Some functions supported by extensions to 
FORTRAN 66 are standard in FORTRAN 77. Two 
examples are list-directed 1/0 and internal files. The 
support may be similar or identical for list-directed 
1/0. Internal file transfers formerly performed by 

IBM Professional FORTRAN 

DECODE and ENCODE are performed by READ and 
WRITE statements in FORTRAN 77, and you must 
change these statements manually or use a 
preprocessor. 

Converting a program that uses file types other than 
sequential and direct requires a careful analysis of 
the problem. Direct conversion may not be possible. 
IBM Professional FORTRAN does not support 
asynchronous 1/0. If asynchronous 1/0 is not 
necessary, you can use ordinary synchronous 1/0 
statements. Statements using ACCEPT, DISPLAY, 
TYPE, and other similar keywords can be replaced by 
appropriate READ or WRITE statements. 

Data Initialization in Type Statements 

Data initialization in type statements is not 
supported by IBM Professional FORTRAN and must 
be moved to DATA statements. 

Compiler Metacommands 

If the program you are converting contains any 
compiler directives, you must either remove them or 
modify them to conform to the requirements of the 
new compiler. The only compiler directive supported 
by IBM Professional FORTRAN is the INCLUDE 
command. If your program uses an INCLUDE 
statement, you must be sure that the syntax is 
correct and that only a single level is used. Other 
compiler directives are supported by compiler 
options. For example, the function of the $D066 
metacommand in IBM Personal Computer FORTRAN 
V2.00 is performed by the /F or:tion in IBM 
Professional FORTRAN. 

/I Compiler Option 

In IBM Professional FORTRAN, characteristics of 
integer data can be controlled by the /I compiler 
option. The use of the /I option can significantly 
increase program speed while maintaining 
portability. It can cause portability problems if 
integer data is made equivalent to non-integer data, 
or if integer data is passed to subroutines. There are 
three types of integer data: 

• INTEGER*2 

• INTEGER 

• INTEGER*4. 

These will be abbreviated as 1*2, I, and 1*4 
respectively. 

23 



Two new intrinsic functions have been added: HFIX 
and JFIX. They operate like INT or IFIX, but always 
return 1*2 or 1*4 type respectively. INT and IFIX are 
actually mapped into HFIX or JFIX, depending on the 
/I option. 

Intrinsic functions with non-integer arguments that 
return an integer type, return the type of INTEGER. 
That is, the type varies with the setting of the /I 
option. 

Intrinsic functions with a single integer argument, 
return the same type as their input. There is only 
one such function: ABS or IABS. 

Intrinsic functions with multiple integer arguments, 
have all their arguments converted to the type of the 
largest argument. This is the result type as well, 
except for AMAXO and AMINO, which return type 
REAL. 

Integer constants in the range: 

±2**15 (-32,768) to 2**15±1 (32,767) 

are typed 1*2. Integer constants outside that range, 
but within: 

±2**31 (±2,147,483,648) to 2**31-1 (2,147,483,647) 

are typed 1*4. Integer constants outside that range 
are in error. If an 1*4 constant is scanned when the /I 
option is on, a warning message is produced, but the 
constant is still typed 1*4. 

Integer constants passed as arguments are 
converted to 1*4 if the /I option is off. Otherwise, 
they are passed as described above. The HFIX or 
JFIX functions can override the integer constants. 
However, the use of HFIX and JFIX will cause 
portability problems. 

Implementation Differences 
Many differences among FORTRAN compilers arise 
because ANSI standards do not define such things 
as: 

• Range or precision of numbers 

• Character coding and collating sequence 

• Physical properties of records and files 

• Limits imposed by the implementation. 

The range and precision of numbers is discussed 
earlier under "Hardware." The other items are 
discussed in this section. 

IBM Professional FORTRAN 

Character Coding 

The ANSI standard for FORTRAN 77 only specifies 
a full collating sequence for the lexical intrinsic 
functions LGE, LGT, LLE, AND LL T, which must use 
the collating sequence described in ANSI X3.4-1977 
(the American National Standard Code for 
Information Interchange, or ASCII). Otherwise, the 
only requirement is that the letters A-Zand the 
numbers 0-9 are ordered in the normal manner 
without intermixing, and that the blank character is 
less than both A and zero. 

The IBM Personal Computer uses an 8 bit ASCII 
character representation and the ASCII collating 
sequence. Many other computers use 6 bit ASCII or 
8 bit Extended Binary Coded Decimal Interchange 
Code (EBCDIC). If you are converting programs that 
compare character data using the relational 
operators .LE, .GT., and so on, you must be sure that 
the code logic is preserved. Also, you might need to 
convert character data created by other programs to 
ASCII before you process it on the IBM Personal 
Computer. This can be done by a simple table 
lookup. 

Records and Files 

The physical storage of records and files is 
determined by the available storage media, the 
operating system, and the implementer. Often it is 
not possible to use a file created on one computer as 
input to a program on another, or even on the same 
computer if more than one operating system or 
compiler is involved. 

Some problems are caused by incompatible media. 
Examples of diskette differences are: 

• Physical size (8-inch or 5-inch) 

• Same physical size but formatted differently 

• Data density. 

The only solution to this type of problem is to 
transmit the data directly from one computer to the 
other. Differences in word size made the exchange 
of unformatted data impractical. Generally, files that 
will be used on other computers must be formatted, 
and conversion from EBCDIC to ASCII (or vice-versa) 
might be required. Different record formats can be 
used by different compilers, especially on 
microcomputers. 

Note: The /R compiler option must be used at 
runtime if records greater than 1024K bytes are 
to be read or written. This restriction is imposed 
by the record transfer implementation. 

24 



Limits and Restrictions 

The ANSI standards do not define "correct" 
implementation for such items as the number of 
continuation cards allowed by the compiler, the 
number of nested DO-loops supported, or the 
number of labels the compiler can handle without 
overflowing its internal table. See Appendix D, 
"Limits and Ranges," in the Professional FORTRAN 
Reference manual for more information about the 
decisions that are left to the implementer. Most 
programs will not violate any of the implementation 
limits. 

SAVE Statement 

The SAVE statement is not implemented by IBM 
Professional FORTRAN, since all storage is treated 
as static. However, if you want your programs to be 
portable, you should use the SAVE statement 
(preferably without a list) as if it were fully 
implemented. 

Environmental Differences 

The FORTRAN implementation is affected by the 
underlying computer hardware, the operating 
system, and the linker. The following two examples 
illustrate the types of considerations you might have: 

1. Some systems clear storage before loading a 
program. Some, such as DOS, do not. You must 
initialize every variable before using it. 

2. In the IBM Professional Computer, or.ly 64K can 
be addressed at one time using a single segment 
register. This imposes restrictions on how a 
program can be structured. For example, no 
single module containing more than 64K or code 
can be compiled on the IBM Professional 
FORTRAN compiler. Good programming 
practice suggests that each module should 
perform a single well-defined function. Thus, you 
should not be affected by this restriction when 
writing new code, but you might have to 
restructure a program you are converting. If you 
have subroutines with adjustable or assumed­
size arrays, you must compiler them using the /B 
compiler option, if they will ever be passed 
arrays greater than 64K bytes in length. This will 
process all adjustable and assumed-size arrays 
to be larger than 64K bytes. 

IBM Professional FORTRAN 

Suggestions When Writing or 
Converting Programs 
If you are writing new programs and are concerned 
about portability, consider the following suggestions: 

1. Use only features that conform to the ANSI 
FORTRAN 77 standard. 

2. If you are using more than one type of 
microcomputer, determine whether you need to 
restrict your code to the FORTRAN 77 subset 
standard. 

3. If you use any language extensions, mark them 
clearly. 

4. Flag any machine-dependent constants or 
parameters such as base or precision. 

5. Use standard naming conventions (integer 
names begin with 1-N, and so on) so that default 
sizes can be changed easily by the IMPLICIT 
statement. 

6. When possible, use the /I compiler option 
instead of defining variables as INTEGER*2. 

7. Initialize all variables before use. 

a. Avoid hardware-dependent code. 

If you are converting existing programs, use the 
following guidelines: 

1. Become familiar with both compilers and 
systems before attempting conversion. 

2. Consider writing a precompiler if you have many 
programs to convert. 

3. Make use of the global change facility in a good 
text editor. 

4. If time allows, make any changes that will 
simplify conversion the next time, following the 
suggestions for writing new programs. 

25 



IBM PC Data Acquisition and Control 
Adapter and Software 

Introduction 
Personal computers have become common tools in 
business and industry over the past few years. 
These computers have begun to be integrated into 
workstations to allow more creative and productive 
use of them in the laboratories of scientists and 
engineers. In order to aid these users, IBM has 
developed hardware and software products resulting 
in the IBM PC Engineering/Scientific Series. These 
products allow the user to customize a PC into a 
personal, versatile, productive tool that can be used 
in both the laboratory and the office. 

Two Hardware Products 

Two products allow direct connection of IBM 
Personal Computers to instrumentation, sensors and 
control signals. 

The IBM PC Data Acquisition and Control (DAG) 
Adapter provides the capability to control and 
monitor processes within a sensor based system. 
Also available as an option for use with the DAG 
Adapter is a DAG Adapter Distribution Panel. 

The General Purpose Interface Bus (GPIB) Adapter 
which allows access to and control of instruments 
and devices that are compatible with the IEEE-488 
standard. 

Two Software Products 

A programming support product is also provided for 
the DAG and GPIBAdapters to enable efficient 
application development. 

The IBM PC Data Acquisition and Control Adapter 
Programming Support provides an easy to use 
interface for accessing the analog and digital 1/0 
onboard and expansion capabilities of the DAG 
Adapter. 

The IBM PC General Purpose Interface Bus Adapter 
Programming Support provides appropriate levels of 
capability for both primitive functions that handle 
GPIB activities and high level functions that 
contribute to ease of use. The result can be a highly 
efficient workstation that can help improve accuracy 
and productivity in even complex testing or 
measurement systems using the GPIB Adapter. 

IBM PC Data Acquisition and Control Adapter and Software 

The IBM PC DAG and GPIB Adapters and their 
programming support products enable engineers, 
scientists and technicians to use personal 
computers from IBM in both process and instrument 
control. The capabilities of the adapters and the real 
time software coupled with the open architecture 
and versatility of the line of IBM Personal 
Computers, offer new opportunities for designing 
workstations that can support data acquisition, 
control, analysis and quality control testing activities 
in the lab, the pilot plant or the full-scale production 
line. In addition to the ease of use of obtaining data 
and automating the laboratory through the IBM PC 
DAG and GPIB Adapters, the user can utilize the 
power of the IBM PC family for data analysis and 
data base management. 

The remainder of this article will be dedicated to a 
description of the IBM PC Data Acquisition and 
Control Adapter and its software suuport. The next 
article will describe more fully the IBM PC General 
Purpose Interface Bus Adapter and its software 
support. 

IBM Data Acquisition and 
Control Adapter 
The engineering/scientific workstation can use the 
IBM PC DAG Adapter to interface the digital 
computer with analog laboratory testing and process 
control equipment. Using a single adapter and 
appropriate software enables the IBM PC to monitor 
and control analog and discrete signals. Four DAG 
Adapters can be used with a single IBM Personal 
Computer. 

Data is acquired and processes controlled by the 
DAG Adapter which integrates analog, binary and 
time/counter devices on a single adapter card, which 
plugs into any full length slot in an IBM PC AT, IBM 
PC XT, IBM PC or IBM Portable PC. Generally, the 
information being read by the computer is analog in 
nature. In order for the computer to be able to 
process this information it must first be translated 
into digital data. This is the function of the analog-to­
digital (A/D) converter. The digital-to-analog (D/A) 
converter and binary 1/0 devices allow the user to 
control the operation of any process. 

26 



Analog-To-Digital and Digital-To-Analog 
Conversion 

An analog-to-digital conversion subsystem or analog 
input will convert voltages over a given range to 
digital values. The three selectable ranges allowed 
are: 

-5 to +5 volts /-1 Oto +10 volts I 0 to +1 O volts 

The digital-to-analog subsystem or analog out 
converts digital values to the selectable values 
referenced above. 

Binary Input/Output 

A binary 1/0 device consists of two subsystems, one 
for input and one for output. The device has a 16-bit 
input port, a 16-bit output port, 1/0 handshaking 
capabilities and optional external clocking/ 
triggering. This device will sense the state of 
discrete signals and control devices that require 
control signals. 

Timer/Counter Device 

The 8253-5 timer/counter device which can be 
programmed includes three 16-bit timer/counters: 0, 
1 and 2. These timer/counters are used to provide 
pulses, count events when pulsed and, through 
software, generate interrupts to the DAC Distribution 
Panel. Counters O and 1 are cascaded together to 
perform internal clocking functions. Counter 2 is 
used as a countdown timer. 

Additional Features 

IBM PC DAC Adapter Interface Specifications 

The Data Acqusition and Control Adapter utilizes 
IBM PC 1/0 channels as described in the Technical 
Reference Manuals PN 6025005 and PN 6936808. 

Analog Input Characteristics 

• Resolution is 12 bits 

• Input channels: 4 differential 

• Input ranges: Switch Selectable Oto +10 volts 
(unipolar), -5 to +5 volts (bipolar), -1 Oto +10 
volts (bipolar) 

• Digital coding: unipolar: binary: offset binary 

• Safe input voltage:+/- 30 volts minimum input 
voltage (power on or off) 

• Input current:+/- 4 milliamps at maximum input 
voltage 

• Common mode input range:+/- 11 volts 
maximum 

• Common mode rejection: 72 db minimum ratio 
(signal within common mode range) 

• Differential linearity error: +/- LSB maximum 

• Differential linearity stability:+/- 5ppm/degree C 
maximum, guaranteed montonic 

• Gain error:+/- 0.1 % maximum between ranges: 
any range adjustable to zero 

• Gain stability: +/- 32 ppm/degree C of FSR 
Additional user features of the DAC Adapter include: maximum 

• A sytem reference voltage. 

• Optional screw terminal DAC Distribution Panel 
for easy access to 1/0 signals. 

• Diagnostic wrap connector for easy installation 
verification and ongoing reverification of 1/0 
signal levels. 

• Up to four IBM DAC Adapters in a system. 

The DAC Adapter features an exspansion bus 
interface that consists of two 34-pin transition 
connectors and provides a full 16-bit parallel data 
path and addressing for up to 253 exspansion 
devices. 

IBM PC Data Acquisition and Control Adapter and Software 

• Unipolar offset error: adjustable to zero 

• Unipolar offset stability:+/- 24 ppm/degree C of 
FSR maximum 

• Bipolar offset error: adjustable to zero 

• Bipolar offset stability:+/- 24 ppm/degree C of 
FSR maximum 

• Input resistance: 100 megohms minimum 

• Input capacitance: 200 picofarads maximum 
measured at the distribution panel connector 

27 



• Input leakage current:+/- 300 nanoamps 
maximum 

• Settling time: channel acquisition: 20 
microseconds maximum to within +/- 0.1 % of 
the input value 

• Conversion time: 35 microseconds maximum 

• Throughput to memory: 15,000 conversion/ 
second minimum 

• AID CE input impedance: one LS TIL load plus 
10 kilohm pull-up resistor 

• AID CO fanout: 1 0 LS TIL loads or 2 standard 
TILloads 

Analog Output Characteristics 

• Resolution: 12 bits 

• Output channels: 2 

• Output ranges: switch selectable: 0 to +10 volts 
(unipolar) -5 to +5 volts (bipolar) -10 to +10 
volts (bipolar) 

• Digital coding:unipolar:binary;bipolar:offset 
binary 

• Output load current:+/- 5 milliamps minimum 

• Output load capacitance: 0.5 microfarads 
maximum for stability 

• Output protection: protected for short to 
common 

• Output impedance: 2 ohms maximum at 
distribution panel connector 

• Differential linearity error:+!- 1/2 LSB 
maximum, guaranteed monotonic 

• Gain error:+/- 0.1 % maximum between ranges; 
any range adjustable to zero 

• Gain stability:+/- 35 ppm/degree C of FSR 
maximum 

• Unipolar offset error:+/- 3.25 millivolts 
maximum 

• Unipolar offset stability:+/- 8 ppm/degree C of 
FSR maximum 

• Bipolar offset error: adjustable to zero 

IBM PC Data Acquisition and Control Adapter and Software 

• Bipolar offset stability:+/- 24 ppm/degree C of 
FSR maximum 

• Power supply rejection: +/- 1 /2 LSB maximum 
change in full-scale calibration 

• Throughput from memory: 25,000 conversions/ 
second maximum 

• Dynamic characteristics for a+!- 10 volt step 
with less than +/- 5 milliamps and less than 
1 000 picofarad load 

• Overshoot: +/- 1 % of FSR maximum 

• Settling time: 10 microseconds maximum to 
within +/-0.1 % FSR 

Binary Input BIO Through Bl15 

• Input impedance: one LS TIL load plus 10 
kilohm pull-up resistor 

• Throughput to memory: 25,000 operations/ 
second minimum 

Bl Hold 

• Input impedance: two LS TIL loads plus one 10 
kilohm pull-up resistor 

Bl STROBE 

• Input impedance: one LS TIL load plus one 10 
kilohm pull-up resistor 

BICTS 

• Fanout 10 LS TIL loads or 2 standard TIL loads 

Binary Output BOO Through B015 

• Fanout: 28 LS TIL loads or 7 standard TIL loads 

• Throughput from memory: 25,000 operations/ 
second minimum 

BO GATE 

• Input impedance: two LS TIL loads plus one 10 
kilohm pull-up resistor 

BOCTS 

• Input impedance: one LS TIL load plus 10 
kilohm pull-up resistor 

BO STROBE 

• Fanout: 1 O LS TIL loads or 2 standard TIL loads 

28 



32-Bit Timer Device (Counters 0 and 1) 

COUNTER 0 

• CLK 0 Frequency: 1.023 MHz 

RATE OUT 

• Fanout: 10 LS TTL loads or 2 standard loads 

COUNTER 1 DELAY OUT 

• Fanout: 10 LS TIL loads or 2 standard TIL loads 

16-Bit Counter Device 

COUNT IN 

• Input impedance: one LS TIL load plus 1 O 
kilohm pull-up resistor 

• Input frequency: DC -2 MHz (50% duty cycle) 

COUNT OUT 

• Fanout: 10 LS TIL loads or 2 standard TIL loads 

IBM PC DAC Adapter Distribution Panel 

• Optional accessory for easy access to 1/0 
signals, voltages and ground of the adapter 

• Printed circuit board contains 4 barrier-type 
screw terminal strips for a total of 88 
terminations 

• Permanently attached shielded flat cable with 
60-pin connector 

• Cable and board assembly are housed in a metal 
enclosure with a slot for easy entry and exit of 
user cabling 

• Meets FCC Class B requirements 

Diagnostics 

A diagnostic program to test the functionality and 
installation of the hardware is provided with each 
IBM PC DAC Adapter. The diagnostic requires a wrap 
connector which is provided with the adapter. 

Power Requirements 

• +5 volts+/- 5% at approximately 1 amp typical 
(1.5 amps maximum) 

IBM PC Data Acquisition and Control Adapter and Software 

System Reference Voltage 

• Output voltage: + 10 volts 

• Accuracy:+/- 1.2% 

• Output load current:+/- 2 milliamps maximum 

• Output load capacitance: 0.5 microfarads 
maximum at stability 

• Output protection: protected for short to 
common 

• Output impedance: 2 ohms maximum at 
distribution panel connector 

Dimensions 

• Length: 335.3mm (13.2in.) 

• Height: 99.1 mm (3.9in.) 

Operating Environment 

• Operating temperature:+ 15.6 to 32.2 C (+60 to 
+90 F) 

• Relative humidity: 8 to 80 % (non-condensing) 

• Altitude: 2187m (7000 ft.) maximum 

Setting Interrupts 

Interrupts can be set via dips switches on the DAG 
Adapter. You have the ability to select interrupt 
request levels IRQ3 through IRQ7. 

Requirements 

The IBM PC DAC Adapter may be used with an IBM 
Personal Computer AT, the IBM PC XT,the IBM PC or 
the IBM Portable PC. The IBM DAC Adapter 
Programming Support requires the IBM Disk 
Operating System (DOS) 2.00 or higher and the IBM 
PC DAC Adapter. The IBM Personal Computer AT 
requires DOS 3.00. 

29 



IBM Data Acquisition 
and Control Adapter 
Programming Support 
The IBM PC DAG Adapter Programming Support 
provides an easy-to-use interface for accessing the 
onboard and expansion analog and digital 1/0 
capabilities of the adapter. The support operates 
under the IBM Disk Operating System (DOS) 2.00 or 
higher, and provides a device driver enabling the 
user of IBM PCs to configure the workstation. For 
development, there are sample programs in 
Interpretive BASICA, Compiled BASIC, Lattice C, 
FORTRAN 2.0 and IBM Professional FORTRAN. 

Included are many useful programming support 
features through the use of function calls. Entire 
arrays of data that are input or output can be 
accomplished by one function call. Such functions 
are provided for analog input/output, binary input/ 
output and for counter input. There are scanning 
functions that can scan a range of analog input 
channels, sampling functions that can be specified in 
samples per second, and full support of the 
expansion capabilities of the adapter. Examples in 
each of the supported languages for each of the 
functions are available in the DAG Adapter 
Programming Support manual. 

Functions 

When programming, three types of functions can be 
used: 

• Input Functions collect input data and move it to 
memory 

• Output Functions move data from memory to an 
external device 

• Utility Functions control counters/timers and 
program execution 

The software performs these functions according to 
rate or frequency. These functions may be further 
classified into: 

• SIMPLE FUNCTIONS. Also called non­
interactive functions. These execute only once. 

• MULTIPLE FUNCTIONS. These iterative 
functions execute according to the number of 
times specified by a count argument in the 
function. A rate argument governs the rate of 
execution. 

IBM PC Data Acquisition and Control Adapter and Software 

• SCANNING FUNCTIONS. Scans are sets of 
single inputs collected from a range of 
consecutively numbered channels. These 
samples are taken as close together as the 
device allows. 

Function Names 

Function names reflect the function type and the 
device involved. The first letter signifies the type of 
device: 

• A analog device 

• B binary device 

• BIT a binary function that works with only a 
single bit of a binary word 

• C counter device 

The next two letters indicate the input output: 

• IN Input function 

• OU Output function 

The last letters show the rate types: 

• S simple function 

• M multiple function 

• SC scanning instruction 

Analog - Binary - Counters - Delay Functions 

The analog 1/0 functions are: 

• AINM Analog Input Multiple. Inputs values from 
the adapter, device and channel at the specified 
rate. 

• AINS Analog Input Simple. Inputs a single value 
from the adapter, device and channel. 

• AINSC Analog Input Scan. Input values from 
multiple channels on the input device at the rate 
specified. 

• AOUM Analog Output Mulitple. Outputs a range 
of variables to the adapter, device and channel 
at the rate specified. 

• AOUS Analog Output Simple. Outputs a single 
variable to the adapter, device and channel. 

30 



The Binary 1/0 Functions are: 

• BINM Binary Multiple. Inputs selected 
states of the binary input word at the rate 
specified. 

• BINS Binary Input Simple. Inputs a single binary 
word from the adapter and device. 

• BITINS Binary Input Bit Simple. Inputs the state 
of a bit in the binary input word. 

• BITOUS Binary Bit Output Simple. Outputs the 
state of a bit in the binary output word. 

• BOUM Binary Output Multiple. Outputs selected 
binary state variables at the rate specified. 

• SOUS Binary Output Simple. Outputs the 
contents of the data variable as a binary word. 

The Counter Functions are: 

• CINM Counter Input Multiple. Reads counter 
values from the adapter at the rate specified. 

• GINS Counter Input Simple. Reads the adapter 
counter value. 

• CSET Counter Set. Initializes the adapter 
counter. 

The Delay Functions is: 

• DELAY Delay execution. Delay application 
program execution. 

Performance 

The user can extend device driver performance 
through the use of the extended execution mode 
operation. The following data rates can be achieved: 

AINM 

AOUM, BINM, BOUM 

CINM 

15 K Samples/ 
Second 

17 K Samples/ 
Second 

12 K Samples/ 
Second 

IBM PC Data Acquisition and Control Adapter and Software 

Configuration Requirements 

The minimum configuration allowed includes: 

Machine Requirements 

• An IBM PC with a minimum of 64 KB of memory 
(BASIC, C, FORTRAN compilers require 
additonal) 

• At least one 320 KB diskette drive 

• An IBM monitor 

• The DAG Adpater 

• Any cables necessary to connect the adapter to 
the device it is to interface. 

Programming Requirements 

• IBM PC Disk Operating System, Version 2.00 or 
later 

• IBM PC DAG Adapter Programming Support 

• Any of the following optional languages: 

IBM PC BASICA Interpreter 

IBM PC BASIC Compiler 

IBM FORTRAN Compiler Version 2.00 

IBM PC Professional FORTRAN Compiler 

C Lattice Compiler Version 2.0 

Adapter Dependent Information 

The adapter switches are set to give the computer 
and software the following values: 

• Interrupt level 

• Adapter number 

• Analog input and output ranges. 

31 



Setting interrupts 

Unlike some Personal Computer peripherals, the 
DAC Adapter and Programming Support uses a 
shared interrupt system. While you can use vectored 
and shared interrupt devices in the same system, no 
vectored interrupt can have the same priority as that 
of the adapter. The adapter can use interrupt request 
levels IRQ3 through IRQ7. 

Assigning adapter numbers 

Each adapter has a number that identifies it to the 
system. This is the adapter number.This number is 
included in the argument list of any function call that 
uses the adapter. Before installing the adapter, set 
the switches to assign the number (0-3). 

Setting analog ranges 

Adapter switches govern the voltage range of the 
analog input and analog output devices. To 
accurately compute analog 1/0 values, you must 
know the full-scale range of your analog 1/0 
hardware. These ranges are: 

-5 to 5 volts 

-1 0 to 1 0 volts 

-0 to 1 0 volts 

BASIC Sample Program 
The following paragraphs contain the sample 
program description and the Interpretive BASICA 
code to demonstrate the programming of selected 
1/0 function calls supported by the DAC Adapter 
Programming Support software. Each section of the 
BASIC sample program illustrates the use of one 
analog 1/0 function. The program begins with a 
header and concludes with brief error-handling and 
data-plotting routines. The header executes first.The 
program pauses, displaying a prompt until you press 
the Enter key. Then Section 1 runs. Sections 2 
through 5 work in the same way. 

Requirements 

The BASIC sample program requires the 
following: 

• Analog input and analog output ranges set to -5 
to +5 volts 

• 1/0 address for the adapter set to 0 

IBM PC Data Acquisition and Control Adapter and Software 

• Color monitor for Sections 4 and 5 

• Test circuit 

• Distribution Panel. 

Wiring the Test Circuit 

The sample program requires a test circuit. You use 
this to run the sample program without connections 
to external devices. The circuit provides analog 
input signals which it derives from internal voltages 
on the adapter. It also allows you to see, by varying 
the intensity of an LED, the effect of changing 
analog output voltage. 

The test circuit components required are: 

• A 100 Kohm potentiometer. 

• A standard Light Emitting Diode (LED) with a 10 
Kohm resistor ballast. 

• Three clip leads. 

• 24 inches of 17 gauge insulated, stranded wire. 
Use this wire to make six 4-inch jumpers, 
stripped 1 /2-inch at each end. 

Wire the test circuit to the DAC Adapter Distribution 
Panel as specified in the following table. 

From To 
D/AO Pot end 
D/AO LED+ (red) 
DIA 1 Pot end 
AGND LED - (black) 
AGND AID 0-
AGND AID 1-
A/DO BOB 
A/D1 Pot wiper 

Adding the Header 

The BASICA program requires a header supplied on 
the DAC Adapter Programming Support Distribution 
Diskette. This header is a pre-written section of 
BASICA code. It must appear at the beginning of 
each program. The header code is not included in 
the sample program listing. 

After the header executes, every DAC Adapter 
software function is accessible as a real variable. 

32 



Global Variables 

The sample program sections use global variables 
of their own. You must initialize them as shown here: 

120 ADAPT% = 0 
140 'use on-board analog I/O device 
150 DEVICE%= 9 
160 'and DIMension a 640-point array 
170 'to be used in sections 3,4, and 5 
180 DIM RAWDATA% (639) 

For the purposes of these samples, assign address 
Oto the adapter. 

All of the sample program sections deal with the on­
board analog 1/0 device. Because of this, the 
programs set DEVICE%=9. They also DIMension an 
integer array that will hold 640 data points. The 
number 640 is somewhat arbitrary. The simple data 
plotting routine used by several of the samples has 
a 640-point horizontal resolution.In actual practice, 
you will probably need to dimension all types of 
arrays at various points in the program. To provide a 
clear sample, these programs use a single array, 
named RAWDATA%. This array stores all data read 
and written by multiple analog 1/0 functions (AINM, 
AINSC, and AOUM). 

Section 1: A Simple Analog Output from Two 
Channels 

This section uses the function AOUS (Analog Output 
Simple) to: 

• output voltages of +5 Volts to analog output 
channel 1 

• output -5 Volts to analog output channel 0. 

These voltages serve as the source of the analog 
signals that are used in the subsequent sections. 

The first step is to assign values for the remaining 
arguments of AOUS (ADAPT% and DEVICE%, 
remember, have been assigned already). 

1070 CTRL% = 0 
1080 STAT%= 0 
1090 LOVOLT% = 0 
llOO HIVOLT% = 4095 
1110 LOCHAN% = 0 
1120 HICHAN% = 1 

The first call to AOUS sets the output voltage at D/A 
channel 0 (LOCHAN%) to -5 Volts (LOVOL T%). 

IBM PC Data Acquisition and Control Adapter and Software 

1140 CALL AOUS (ADAPT%, DEVICE%, LOCHAN%, 
CTRL%, LOVOLT%, STAT%) 

Note: You must set CTRL% (the expansion 
device control argument) to 0 when accessing 
the on-board devices. 

Following this call (and all calls to the adapter) 
functions take the time to execute a test and 
conditional jump to a brief error-handling routine. 

The program sets the execution status variable 
(STAT%) to 0 before each call.Immediately after each 
call, it tests STAT%. If STAT% is non-zero, it then 
sets the variable LNUM% equal to the line number in 
which the error occurred. The error handler then 
comes into play, as shown below: 

1160 IF STAT%<> 0 THEN LNUM% = ll40 : GOTO 6000 

The error handler looks like this: 

6000 '****** Error handler begins here******* 
6010 I 

6020 'on error, print message, number, and exit 
6030 PRINT "Execution Error#" ;STAT%; "in line 
number "; LNUM% 
6040 PRINT "Program Terminated' 
6050 END 

If an error occurs, the line and error numbers print, 
enabling you to determine from the status code what 
went wrong. 

The program then continues, setting D/A channel 1 
(HICHAN%) to +5 Volts (HIVOL To/o). 

1180 CALL AOUS (ADAPT%, DEVICE%, HICHAN%, CTRL%, 
HIVOLT%, STAT%) 

After testing STAT% again, the program prints a 
message on the screen and waits for you to press 
the Enter key. 

1230 PRINT "Output voltages set." 
1240 PRINT "D/A 0 terminal is -5 Volts" 
1250 PRINT "D/A I terminal is +5 Volts" 
1260 I 

1270 I 

1280 INPUT "PRESS ENTER TO RUN SECTION 2", C$ 
1290 CLS 
1300 I 

When you press the Enter key, the screen clears and 
Section 2 begins. 

33 



Section 2: A Simple Analog Input from a Single 
Channel 

Section 2 uses AINS (Analog Input Simple) in a loop 
to continuously read channel 1 of the on-board 
analog input device of adapter 0. Channel 1 
connects through the potentiometer to +I- 5 volts. 
By twisting the shaft of the potentiometer, you can 
modulate the amount of the +5 volt signal that 
reaches analog input channel 1. 

As in the section 1, the first step is to assign values 
for the arguments of the function. 

2060 CHANNEL% = 1 
2070 CTRL% = 0 
2080 STAT%= 0 

Note: Economical programming standards 
probably dictate a simple reuse of the variable 
HICHAN% for the channel number argument. 
However, the program explicitly re-specifies a 
CHANNEL% variable here; this emphasizes that 
all variables used by the CALL statement must 
be assigned before the program performs the 
call. 

The actual sampling takes place under the control of 
a WHILE ... WEND structure. This takes a sample, 
displays it as a voltage, and checks for a halt request 
from the keyboard. As long as no key has been 
pressed, the adapter samples channel 1 
continuously. 

2100 HALT$="" 
2110 LOCATE 25, 1 
2120 PRINT "Press any key to stop sampling." 
2130 WHILE HALT$ = '"' 
2140 'get a sample 
2150 CALL AINS (ADAPT%, DEVICE%, CHANNEL%, CTRL%, 
V%, STAT%) 
2160 'if status non-zero, set line and go 
to error handler 
2170 IF STAT%<> 0 THEN LNUH% 2150 : GOTO 6000 
2180 'convert raw A/D value to vol ts 
2190 VOL TS = V%/ 409. 6-5 
2200 'print time of day 
2210 LOCATE 1, 1, 0 
2220 PRINT TIME$ 
2230 'print voltage 
2240 LOCATE 4, 1, 0 
2250 PRINT USING "Channel 1 input 
voltage is##.##; VOLTS 
2260 LOCATE 4,27 ,0 
2270 'test for halt request 
2280 HALT$ = INKEY$ 
2290 WEND 

IBM PC Data Acquisition and Control Adapter and Software 

The conversion-to-volts equation in line 2190 
converts the 12-bit values (in the range 0 to 4095) 
returned by the analog input device. It becomes a 
representation of input voltage in the range 
+I- 5 Volts. If the analog input system were 
configured to a different range, you would have to 
change this equation accordingly. 

The general form of this equation is: 

VOLTAGE= ((CODE* RANGE/2n)- OFFSET) 

where 

• CODE is the raw AID value. 

• RANGE is the AID. 

• Reference voltage span is in volts. 

• n is the number of bits of resolution of the AID 
converter (exponent of 2). 

• OFFSET is the negative offset of the AID range.A 
0 to 1 OV range, for example, uses the equation 
VOL TS = V%1409.6 (there is no negative offset). 
Similarly, if you were using an expansion device 
of different resolution, you would have to change 
n to reflect the resolution of that device. 

During execution of this program section you turn 
the shaft of the potentiometer from one stop to the 
next, varing the fraction of the +l-5V signal supplied 
to analog input channel 1. The changing voltage is 
displayed on the screen. 

Section 3: Multiple Analog Inputs From a Single 
Channel 

This program uses AINM to input 640 analog values 
into a one-dimensional array. Unlike the single· 
sample (AINS) loop used in Section 2, AINM acquires 
signals at precisely-timed intervals. Since the input 
signal measured (the voltage modulated by the pot) 
does not fluctuate very rapidly, you can use a slow 
sampling rate of 200 samples-per-second. The first 
lines of this program assign values to the arguments 
of Al NM.Remember, the program has already 
DIMensioned the RAWDATA% array to include 640 
elements. 

3060 CHANNEL% = 1 
3070 CTRL% = 0 
3080 MODE% = 0 
3090 STOR% = 0 
3100 COUNT = 640 
3110 RATE = 200 
3120 STAT%= 0 

34 



In this program, COUNT and RATE are real, rather 
than integer, variables. They are the only non­
integer variables for arguments to the functions. 

The variable COUNT must not exceed the amount of 
storage available in the target array. AINM acquires 
count sample, so a statement of the form: 

DIM ARRAY% (COUNT - 1) 

allocates the correct number of array elements. 

Often, timed sampling of this sort works in 
conjunction with a triggering structure. Otherwise, 
you run a risk that the function will sample while no 
data is being generated. In this example, Pressing 
the Enter key triggers the function. 

3170 INPUT "Press ENTER to begin sampling.", C$ 
3180 'beep and print "sampling" message, then do AINM 
3190 BEEP : CLS 
3200 PRINT "Sampling analog input channel 1 ... " 
3210 CALL AINM (ADAPT%, DEVICE%, CHANLO%, CTRL%, 
MODE%, STOR%, COUNT, RATE, RAWDATA%(0), STAT%) 

When the sampling is started the shaft of the 
potentiometer back and forth to vary the input 
signal. Once the program collects 640 data points, it 
jumps to a graphing routine. The routine plots the 
data, then waits for you to press Enter before moving 
to the next section. 

3240 ' 
3250 'graph points in RAWDATA% 
3260 GOSUB 10000 
3270 I 

Section 4: An Analog Input Scan of Multiple 
Channels 

Section 4 uses the function AINSC (Analog Input 
Scan) to input 320 analog values from each of two 
channels into a two-dimensional array. This section 
is in most respects identical to Section 3. It first 
executes a brief subroutine that outputs a binary low 
voltage (around 0 volts) to analog input channel 0. 
This simply provides a second data value for the 
scan to record. If connected to analog input channel 
0, it "floats" to an unpredictable value. By driving it 
low with a binary output, you guarantee that it 
returns a constant value near 0 volts. 

A simple GOSUB statement in line 4050 jumps to the 
following subroutine. 

IBM PC Data Acquisition and Control Adapter and Software 

7040 BDEVICE% = 8 
7050 'usebit8 
7060 BIT%= 8 
7070 'set bit output low 
7080 LO%= 0 
7090 STAT%= 0 
7100 CALL BITOUS (ADAPT%, BDEVICE%, BIT%, LO%, STAT%) 
7110 IF STAT%<> 0 THEN LNUM% = 7037 : GOTO 6000 
7120 RETURN 

This subroutine sets up the required arguments for 
BITOUS (binary Bit Output Simple); it sets the value 
of bit 8 to 0. Note that you must use a different 
variable name, as well as a different number, to 
specify the device. Simply re-assigning DEVICE%, 
causes subsequent analog 1/0 calls to attempt to 
access device 8. This condition results in an error 
indication being returned in the status variable. 

Next, the program assigns values to the arguments 
of AINSC. Note that there are two channel 
arguments: CL%, specifying the low channel (the first 
channel in the scan) and CH%, specifying the high 
channel (the last channel in the scan). For each scan 
specified by the COUNT, AINSC inputs a sample 
from every channel in the range CL% to CH%, 
starting with CL% and ending after CH%. In this 
case, each scan consists of an input from channel 0 
followed by an input from channel 1. 

4080 CL%= 0 
4090 CH%= 1 
4100 CTRL% = 0 
4110 MODE%= 0 
4120 STOR% = 0 

Since each scan can acquire multiple samples, be 
sure to reserve enough array space for the data by a 
scanning input function such as AINSC. When 
DIMensioning arrays filled from scans, you may wish 
to use a statement of the type: 

DIM ARRAY% (COUNT*((CH - CL)+l)) 

In the case of this section, you'll find it most 
convenient to simply reduce the count. 

4150 COUNT = 320 
4160 RATE = 200 
4170 STAT%= 0 
4180 I 

This section uses a triggering structure identical to 
the one used in Section 3. The only difference is in 
the data acquisition function itself. 

35 



4210 INPUT "Press ENTER to begin scan.", A$ 
4220 'beep and print "scanning" message, then 

do AINSC 
4230 BEEP: CLS 
4240 PRINT "Scanning analog inputs 0 and 1 ... " 
4250 CALL AINSC (ADAPT%, DEVICE%, CL%, CH%, CTRL%, 
MODE%, STOR%, COUNT, RATE RAWDATA%(0), STAT%) 

As in Section 3, press Enter and turn the shaft of the 
potentiometer. After AINSC has input 320 scans, the 
program jumps to the plotting subroutine and 
displays the data. 

4280 I 

4290 'display data 
4300 GO SUB 10000 
4310 I 

Section 5: Multiple Analog Outputs From a 
Single Channel 

The final section uses the function AOUM (Analog 
Output Multiple) to reverse the data acquisition 
process. This outputs the contents of an array 
(RAWDATA%), via D/A channel 1, as a varying 
voltage - an analog signal. When you run this 
section, the contents of RAWDATA% are output to 
analog output channel 0. The LED, connected from 
DIA channel 0 to analog ground (AGND), glows with 
a varying intensity as the output voltage changes. 

The arguments of AOUM first assume these values: 

5070 CHANNEL%= 1 
5080 CTRL% = 0 
5090 MODE% = 0 
5100 STOR% = 0 
5110 COUNT = 640 
5120 RATE= 200 
5130 STAT%= 0 

Now print a message and call AOU M. 

5160 PRINT "Outputting data acquired in Section 4." 
5170 I 

5180 'and do AOUM 
5190 CALL AOUM (ADAPT%, DEVICE%, CHANNEL%, CTRL%, 
MODE%, STOR%, COUNT, RATE, RAWDATA%(0), STAT%) 

BASIC Example Program Listing 

' PROGRAM: BASIC Example Program for the 
2 ' IBM Data Acquisition And Control Adapter 
3 I 

100 'initialize global variables used in all sections 
110 'adapter number 0 
120 ADAPT% = 0 
140 'use on-board analog I/0 device 
150 DEVICE%= 9 

IBM PC Data Acquisition and Control Adapter and Software 

160 'and DIHension a 640-point array 
170 'to be used in sections 3,4, and 5 
180 DIM RAWDATA% (639) 
190 I 

200 ' clear the screen and run the'first section 
210 CLS 
215 KEY OFF 
220 INPUT "PRESS ENTER TO RUN SECTION l", C$ 
300 I 

1000 '***** Section 1 ******* 
1010 'this routine sets analog output channel #1 
1020 'to +5 Vol ts and analog output channel #2 
1030 'to -5 Volts. 
1040 I 

1050 'assign values to the arguments of AOUS 
1060 '(ADAPT% and DEVICE% were initialized above) 
1070 CTRL% = 0 
1080 STAT%= 0 
1090 LOVOL T% = 0 
1100 HIVOL T% = 4095 
1110 LOCHAN% = 0 
1120 HICHAN% = 1 
1130 'set voltage to -5 at channel 0 
1140 CALL AOUS (ADAPT%, DEVICE%, LOCHAN%, CTRL%, 
LOVOLT%, STAT%) 
1150 'if status non-zero, set 1 ine and go to error handler 
1160 IF STAT%<> 0 THEN LNUM% = 1140 : GOTO 6000 
1170 'set voltage to +5 at channel 1 
1180 CALL AOUS (ADAPT%, DEVICE%, HI CHAN%, CTRL%, 
HIVOLT%, STAT%) 
1190 'if status non-zero, set line and go to error handler 
1200 IF STAT%<> 0 THEN LNUM% = 1180 : GOTO 6000 
1210 I 

1220 'print message 
1230 PRINT "Output voltages set." 
1240 PRINT "D/A 0 terminal is -5 Volts" 
1250 PRINT "D/A 1 terminal is +5 Volts" 
1260 I 

1270 I 

1280 INPUT "PRESS ENTER TO RUN SECTION 2", C$ 
1290 CLS 
1300 I 

2000 '******* Section 2 ************* 
2010 'this routine continuously inputs and 
2020 'displays as a voltage the analog value 
2030 'from channel 1 of the on-board device 
2040 I 

2050 'assign values for the arguments of AINS 
2060 CHANNEL% = 1 
2070 CTRL% = 0 
2080 STAT%= 0 
2090 ' then set up for the loop 
2100 HALT$="" 
2110 LOCATE 25, 1 
2120 PRINT "Press any key to stop sampling." 
2130 WHILE HALT$ = II II 

2140 'get a sample 
2150 CALL AINS (ADAPT%, DEVICE%, CHANNEL%, CTRL%, 
V%, STAT%) 
2160 'if status non-zero, set line and go to error handler 
2170 IF STAT%<> 0 THEN LNUM% = 2150 : GOTO 6000 

36 



2180 'convert raw A/D value to vol ts 
2190 VOLTS V%/409.6-5 
2200 'print time of day 
2210 LOCATE 1,1,0 
2220 PRINT TIME$ 
2230 'print voltage 
2240 LOCATE 4, 1, 0 
2250 PRINT USING "Channel 1 input 
voltage is##.##"; VOLTS 
2260 LOCATE4,27,0 
2270 'test for ha! t request 
2280 HALT$ =NKEY$ 
2290 WEND 
2300 CLS 
2310 I 

2320 INPUT "PRESS ENTER TO RUN SECTION 3", C$ 
2330 CLS 
2340 I 

3000 '**********Section 3 ************** 
3010 'this program takes 640 samples from 
3020 'channel 1 of the on-board analog input device 
3030 'and stores them in a one-dimensional array 
3040 I 

3050 'assign values to the arguments of AINM 
3060 CHANNEL% = 1 
3070 CTRL% = 0 
3080 MODE% = 0 
3090 STOR% = 0 
3100 COUNT = 640 
3110 RATE=200 
3120 STAT%=0 
3130 I 

3140 I 

3150 'set up a structure that allows the user to 
3160 'start sampling by pressing the ENTER key 
3170 INPUT "Press ENTER to begin sampling.", C$ 
3180 'beep and print "sampling" message, then do AINM 
3190 BEEP : CLS 
3200 PRINT "Sampling analog input channel I ... " 
3210 CALL AINM (ADAPT%, DEVICE%, CHANNEL%, CTRL%, 
MODE%, STOR%, COUNT, RATE, RAWDATA%(0), STAT%) 
3220 'if status non-zero, set line and go to error handler 
3230 IF STAT%<> 0 THEN LNUM% = 3210 : GOTO 6000 
3240 I 

3250 'graph points in RAWDATA% 
3260 GOSUB 10000 
3270 ' 
3280 I 

3290 I 

3300 I 

3310 INPUT "PRESS ENTER TO RUN SECTION 4", C$ 
3320 SCREEN 0, 0, 0 
3330 WIDTH 80 
3340 CLS 
3400 I 

4000 '***** Section 4 ***** 
4010 'this routine takes 50 samples each from 
4020 'channels 0 and I of the analog input device 
4030 'and stores them in a two-dimensional array 
4040 'Start by driving analog input 0 low 
4050 GOSUB 7000 

IBM PC Data Acquisition and Control Adapter and Software 

4060 I 

4070 'assign values to the arguments of AINSC 
4080 CL%= 0 
4090 CH%= 1 
4100 CTRL% = 0 
4110 MODE%= 0 
4120 STOR% = 0 
4130 'note that the count must be 320, rather than 640, 
4140 'since each scan acquires two samples 
4150 COUNT= 320 
4160 RATE= 200 
4170 STAT%= 0 
4180 I 

4190 'set up a structure that allows the user to 
4200 'start sampling by pressing the ENTER key 
4210 INPUT "Press ENTER to begin scan.", A$ 
4220 'beep and print "scanning" message, then do AINSC 
4230 BEEP: CLS 
4240 PRINT "Scanning analog inputs 0 and 1 ... ;, 
4250 CALL AINSC (ADAPT%, DEVICE%, CL%, CH%, CTRL%, 
MODE%, STOR%, COUNT, RATE, RAWDATA%(0), STAT%) 
4260 'if status non-zero, set line and go to error handler 
4270 IF STAT%<> 0 THEN LNUM% = 4250 : GOTO 6000 
4280 I 

4290 'display data 
4300 GOSUB 10000 
4310 I 

4320 INPUT "PRESS ENTER KEY TO RUN SECTION 5", C$ 
4330 SCREEN 0, 0, 0 
4340 WIDTH 80 
4350 CLS 
4360 I 

5000 '********Section 5************ 
5010 ' This example outputs the contents of 
5020 ' RAWDATA% to the analog output channel #1 
5030 ' An LED connected from channel 1 to channel 0 
5040 ' changes intensity as the output voltage changes 
5050 I 

5060 'assign values to the arguments of AOUM 
5070 CHANNEL%= 0 
5080 CTRL% = 0 
5090 MODE%= 
5100 STOR%=0 
5110 COUNT = 640 
5120 RATE= 200 
5130 STAT%= 0 
5140 ' 
5150 'print message 
5160 PRINT "Outputting data acquired in Section 4." 
5170 ' 
5180 'and do AOUM 
5190 CALL AOUM (ADAPT%, DEVICE%, CHANNEL%, CTRL%, 
MODE%, STOR%, COUNT, RATE, .RAWDATA%(0), STAT%) 
5200 'if status non-zero, set line and go to error handler 
5210 IF STAT%<> 0 THEN LNUM% = 5190 : GOTO 6000 
5220 LOCATE 10, 1, 0 
5230 PRINT "End of the Sample Program." 
5240 END 
5250 I 

5260 I 

5500 I 

37 



6000 '****** Error handler begins here ******* 
6010 I 

6020 'on status error, print message, error number, and exit 
6030 PRINT "Execution Error#" ;STAT%; "in line 
number "; LNUM% 
6040 PRINT "Program Terminated" 
6050 END 
6100 I 

7000 '*******Binary output subroutine begins here ******** 
7010 'Set up to drive analog input 0 low using BITOUS 
7020 'initialize variables 
7030 'use binary device 8 
7040 BDEVICE% = 8 
7050 'usebit8 
7060 BIT%= 8 
7070 'set bit output low 
7080 LO= 0 
7090 STAT%= 0 
7100 CALL BITOUS (ADAPT%, BDEVICE%, BIT%, LO%, STAT%) 
7105 'if status non-zero, set line and go to error handler 
7110 IF STAT%<> 0 THEN LNUM% = 7037 : GOTO 6000 
7120 RETURN 
8000 ' 
9000 ' ********* Plotting Routine begins here ************ 
9999 ' 
10000 ' Name: SIMPLOT 
10010 I 

IBM PC Data Acquisition and Control Adapter and Software 

10020 ' Arguments: LENGTH%= number of points to plot 
10030 ' RAWDATA%(.) =array to be plotted 
10040 ' Affects: The screen is left in mode 2. All 
10050 ' variables ending in .GRF are reserved. 
10060 I 

10070 ' This subroutine plots the elements of the array 
10080 ' RAWDATA%(.) on a color display. The elements are 
10090 ' windowed to the range specified by MAXVAL .GRF and 
10100 ' MINVAL.GRF. THe number of points plotted must be 
10110 ' passed as an argument in the variable LENGTH%. 
10120 ' The screen clears upon each execution of SIMPLOT. 
10130 I 

20000 MAXVAL. GRF = 4095 ' maximum value to be plotted 
20005 LENGTH% = 640 
20010 MINVAL.GRF = 0 'minimum value to be plotted 
20020 I 

20030 SCREEN 2 
20040 CLS 
20050 I 

20060 VIEW (100,50) - (600,150),,1 
20070 WINDOW (0, MINVAL. GRF) - (LENGTH% - I, MAXVAL. GRF) 
20080 I 

20090 FOR I. GRF% = 0 TO LENGTH% - 1 
20100 PSET (I.GRF%, RAWDATA%(I.GRF%)) 
20110 NEXT I. GRF% 
20120 I 

20130 RETURN 

38 



IBM General Purpose Interface Bus 
Adapter and Software 

IBM GPIB Adapter and 
Programming Support 

Introduction 
The IBM Personal Computer General Purpose 
Interface Bus Adapter and the Programming Support 
products enable engineering and science 
professionals to use IBM Personal Computers IBM to 
access and control over 2,000 different instruments 
or devices designed to the IEEE-488 standard. Each 
personal computer can accommodate up to four 
GPIB Adapters and provide software support for up 
to 48 devices. 

The IBM PC, equipped with the GPIB Adapter, cable, 
and programming support software can be a talker, 
listener, or controller. A talker is able to send data, a 
listener is able to receive data, and a controller can 
address and trigger specific instruments as well as 
perform bus management functions. The GPIB 
Adapter also provides capabilities for cost-effective 
data transfer between workstations, and the 
connection of several computers for sharing 
instruments or peripheral 1/0 devices. 

GPIB Adapter Features 
IBM PC GPIB Adapter features include: 

• Half-size card that can be conveniently installed: 
even in an IBM Portable Personal Computer. 

• FCC Class B certification. 

• Up to 20K bytes/second programmed 1/0 data 
rate. 

• Up to 300K bytes/second programmed OMA 
data rate. 

• Complete IEEE-488 controller, talker and listener 
capability. 

• Adapter designed to the IEEE-488 Standard, 
1975/78, including the 488A-1980 supplement. 

• Up to 14 devices or instruments on the GPIB. 

IBM General Purpose Interface Bus Adapter and Software 

• User-selectable Direct Memory Access channel 
for enhanced performance. 

• User-selectable interrupt level. 

• Extensive diagnostics provided to aid in 
hardware configuration and problem 
determination. 

Adapter Functional 
Description 
The IBM GPIB Adapter can be thought of as a bus 
translator, converting messages and signals present 
on the IBM PC 1/0 Channel into appropriate GPIB 
messages and signals. Expressed in IEEE-488 
terminology, the adapter implements GPIB interface 
functions for communicating with the IBM PC central 
processor and memory. From the point of view of the 
IBM PC, the GPIB Adapter is an interface to GPIB 
devices. 

The GPIB Adapter bus interface consists of the 
following major functions: 

• Address Decoding 

• Buffering and Data Routing 

• Interrupt Arbitration 

• OMA Arbitration 

• Configuration Switches/Jumpers 

• GPIB Adapter logic -Talker/Listener/Controller 

ADDRESS DECODING monitors the address lines to 
recognize when the GPIB 1/0 address is present on 
the IBM PC 1/0 channel and enables read and write 
access to the GPIB Adapter. 

BUFFERING AND DATA ROUTING handles data 
transfer between the IBM PC 1/0 Channel and the 
GPIB Adapter through a bidirectional internal data 
bus. 

INTERRUPT ARBITRATION recognizes when 
interrupts have been enabled or disabled and passes 
or inhibits them accordingly. 

39 



DMA ARBITRATION recognizes when DMA 
operations are enabled or disabled, and when 
the last transfer has taken place, it also routes 
the DMA request and acknowledge signals to the 
selected DMA channels. 

CONFIGURATION SWITCHES/JUMPERS 
determine the 1/0 port address, the DMA channel 
pair used, and the interrupt request line used. 

The UPD7210 GPIB Adapter logic implements 
virtually all of the IEEE-488 interface functions to 
interact with other devices on the GPIB. Within 
the GPIB Adapter are 21 program registers which 
are used to configure, control, and monitor the 
interface functions and to pass commands and 
data to and from the GPIB. Special-purpose, 
multi-function transceivers interface the GPIB 
Adapter to the GPIB. 

The capabilities of the GPIB Adapter below are in 
terms of the codes in Appendix C of the IEEE-488 
Standard. 

GPIB Interface Capabilities 
IEEE Code 

• SH1 

• AH1 

• T5 

• TES 

• L3 

Description 

Complete source handshake 
capability. 

Complete acceptor handshake 
capability DAC and RFD holdoff on 
certain events. 

Complete talker capability: 
Basic talker 
Serial poll 
Talk only mode 
Unaddressed on MLA 
Send END or EOS 
Dual primary addressing 

Complete extended talker 
capability: 

Basic extended talker 
Serial poll 
Talk only mode 
Unaddressed on MSA and 

TPAS 
Send END or EOS 

Complete listener capability: 
Basic listener 
Listen only mode 
Unaddressed on MTA 
Detect END or EOS 
Dual primary addressing 

IBM General Purpose Interface Bus Adapter and Software 

• LE3 

• SR1 

• PP1 

• C1-5 

• E1/2 

Complete extended listener 
capability: 

Basic listener 
Listen only mode 
Unaddressed on MSA and 

LPAS 
Detect END or EOS 

Complete service request 
capability. 

Remote parallel poll configuration. 

Complete controller capability: 
System controller 
Send IFC and take control 
Send REN 
Respond to service request 
Send interface messages 
Receive control 
Pass control 
Parallel poll 
Take control synchronously or 
asynchronously. 

Three-state bus driver with 
automatic switch to open collector 
with parallel poll. 

The GPIB Adapter has complete source and 
acceptor handshake capability. The Adapter can 
operate as a basic talker or extended talker and can 
respond to a serial poll. It becomes unaddressed to 
talk when it receives its listen address. The interface 
can operate as a basic listener or extended listener. 
It becomes unaddressed to listen when it receives its 
talk address. The GPIB Adapter has full capabilities 
for requesting service from another controller. The 
ability to place the GPIB Adapter in local mode is 
included but the interpretation of remote versus local 
mode is software dependent. Full parallel poll 
capability is included into the interface. Device clear 
and trigger capability is included in the interface but 
the interpretaion is software dependent. All 
controller functions as specified by the IEEE-488 
standard are included in the adapter. These include 
the capability to: 

• Be programmed to be the system controller for 
the purposes of initializing the GPIB interfaces of 
other devices and placing those devices in 
remote or local program mode. (It may also be 
programmed not to be the system controller so 
that the IBM PC can be used on a GPIB with 
another controller which is the system 
controller.) 

• Send multiline interface messages or commands 
to other devices. 

40 



• Detect when other devices are requesting 
service and conduct serial or parallel polls. 

• Pass control to other controllers and receive 
control from them. 

• Go to standby to allow the addressed talker to 
send data to addressed listeners, and to take 
control again synchronously or asynchronously. 

Dimensions 

Length: 114.30mm (4.500in. ± .002) 
Height: 106.?0mm (4.200in. ± .002) 

Bus connection 

An IEEE-488 compatible cable is required and is not 
a part of the IBM Personal Computer GPIB Adapter 
offering. 

Operating environment 

Operating temperatures: +15.6 to +32.2 C (+60 to 
+90 F) Relative humidity: 8 to 80% (non-condensing) 
Altitude: 2187m (7000 ft.) maximum. 

Requirements 

The IBM Personal Computer GPIB Adapter may be 
used with and IBM Personal Computer AT, IBM PC 
XT, IBM PC, or IBM Portable PC. The IBM PC GPIB 
Adapter Programming Support requires the IBM Disk 
Operation System (DOS) 2.00 or higher, and the IBM 
PC GPIB Adapter. The IBM Personal Computer AT 
requires DOS 3.00. 

PC interface 

The adapter connects to the 62-pin IBM PC bus and 
is 1/0 mapped. It supports both OMA and Interrupts. 

Performance 

Programmed 1/0 data rate up to: 20K bytes/second 
OMA data rate up to: 300K bytes/second Number of 
device loads: 14 (maximum) 

Power 

Power requirements: 5 volts DC± 5% 
Current: 450 milliamps (typical) 
Power: 2.25 watts 

IBM General Purpose Interface Bus Adapter and Software 

General Purpose Interface Bus 
Programming Support 

Programming support features 

The IBM PC GPIB Adapter Programming Support 
offers you a flexible way to control large instrument 
and measurement systems accurately and 
productively. The software includes a loadable 
device driver, interactive configuration and control 
programs and a high-level language subroutine 
library to support the adapter. IBM PC GPIB Adapter 
software features include: 

• Menu-driven interactive configuration program 
for easy software/hardware configuration. 

• Interactive control program that permits user 
control and monitoring of devices for immediate 
verification of a selected configuration. 

• High-level functions for direct device control that 
make GPIB management complexities 
transparent to the user. 

• Low-level functions for direct application 
software control of all adapter interface 
commands. 

• Support for application development in 
Interpretive BASICA, Compiled BASIC, 
FORTRAN 2.00, IBM PC Professional FORTRAN, 
and Lattice C languages. 

• Use of symbolic device names. 

• Two device drivers: one supports two adapters 
and a total of 16 devices; the other supports four 
adapters and a total of 48 devices. 

• Examples of programming techniques for GPIB 
functions, and sample programs for each 
supportedlanguag~ 

High and Low Level Functions 

The Programming Support software provides a 
comprehensive set of high level and low level 
functions for communicating with and controlling 
devices on the GPIB. The high level device related 
functions automatically execute all of the several 
operations needed to perform certain activities on 
the GPIB, like reading from and writing to devices 
and polling them for status. These functions are 
designed to free the user from having to know the 
specific GPIB protocol or bus management details 
involved in specific operations. They are called high 
level because they are easy to learn and to use. Low 

41 



level adapter related functions, by contrast, 
perform rudimentary or primitive operations that 
generally require more extensive knowledge of 
GPIB protocol in order to be used properly. They 
are needed, however, because the high level 
functions may not be sufficient in all 
applications. In these cases, the low level 
functions provide flexibility and versatility in 
controlling the GPIB so that any application 
problem can be solved. 

GPIB Software Functions 

FUNCTION DESCRIPTION 
IBBNA 
IBCAC 
IBCLR 
IBCMD 
IBCMDA 
IBDMA 
IBEOS 

IBEOT 

IBFIND 

IBGTS 
IBIST 
IBLOC 
IBONL 
IBPAD 
IBPCT 

IBPPC 
IBRD 
IBRDA 
IBRDF 
IBRPP 
IBRSC 
IBRSP 
IBRSV 

IBSAD 
IBSIC 
IBSRE 
IBSTOP 
IBTMO 

IBTRG 
IBWAIT 
IBWRT 
IBWRTA 
IBWRTF 

Specify device access adapter 
Reactivate controller 
Clear device 
Send commands 
Send commands asynchronously 
Enable or disable DMA 
Change or disable EOS termination 
method 
Enable or disable end termination 
message 
Return adapter or device unit 
descriptor 
Active controller to standby 
Sets or clears individual status bit 
Local mode 
Place device on or offline 
Change primary address 
Pass GPIB controller-in-charge to a 
device 
Parallel poll configure 
Read data 
Read data asynchronously 
Read data from GPIB into file 
Conduct a parallel poll 
Request or release system control 
Conduct serial poll 
Request service from the GPIB 
controller-in-charge 
Change or disable secondary address 
GPIB interface clear 
Set or clear remote enable line 
Stop asynchronous operation 
Change or disable a device timeout 
limit 
Trigger device 
Wait for selected event 
Write data 
Write data asynchronously 
Write data from file 

IBM General Purpose Interface Bus Adapter and Software 

GPIB Programming Support Utility Programs 

Two utility programs are provided to aid the user in 
bringing up a system. These programs are: 

• The GPIB Configuration Program 

• The Interface Bus Interactive Control Program 

The GPIB Configuration Program 

The purpose of the configuration program is to 
describe all of the devices and adapters in the 
system so that the user does not have to remember 
their key features or characteristics when writing an 
application program. The configuration program is 
used to pass the key features of the GPIB devices to 
the device support software. These features include 
each device's GPIB address, read and write 
termination mode, 1/0 timeout limit, and controlling 
GPIB Adapter. In the application program, it is only 
necessary to refer to the device by a symbolic name, 
and the device driver takes care of the detail. The 
following list of characteristics are passed to the 
device driver via the configuration program. The first 
group are characteristics of devices. The second 
group are adapter related. 

Device Characteristics 

• The symbolic name of each device on the GPIB 
(such as "VMETER"). 

• The access adapter for each device. 

• The primary and, if used, the secondary address 
for each device. 

• The time limit that is to be imposed when 
executing device 1/0 functions. 

• How 1/0 transmissions to and from the device 
terminate. 

Adapter Characteristics 

• The symbolic name of each adapter in the 
system. 

• The adapter's computer 1/0 or port address. 

• If the adapter is the system controller of the 
devices on its bus. 

• The time limit during execution of adapter 1/0 
functions. 

42 



• How 1/0 transmissions to and from the adapter 
terminate. 

• What OMA channel, if any, the adapter uses. 

• Whether it uses high speed or normal timing 
when transmitting data to a device. 

Once this information has been identified and 
passed to the device driver specified using the GPIB 
Configuration Program, the device driver may be 
installed in the operating system. 

The Interface Bus Interactive Control Program 

The interactive control program allows the user to 
perform any function (reading, writing, polling, etc.) 
from the terminal. The program can control the GPIB 
devices independent of an application program, 
providing the user with a powerful software 
development and troubleshooting tool. It can be 
used to learn how to program GPIB devices, to 
measure how system performance varies with 
different program sequences, to debug an 
application program one step at a time, or to locate a 
malfunctioning device on the GPIB. 

The Interface Bus Interactive Control Program allows 
the user to learn about the GPIB software, his 
instrument, about his system, and trouble shoot 
problems on the bus. The software is designed with 
built in error checking and where appropriate checks 
or.i the validity of arguments that the user passes. 
The user may make run-time function calls to change 
the configuration values such as a device's primary 
address. Errors are detected quickly and are 
reported as soon as they occur. This means that the 
user does not propagate the error until some 
situation is reached where he cannot decipher what 
is going on. Built into the software is time-out 
support. Unless specifically requested by the user 
not to, the software will time-out certain operations 
on the bus so that there is no case where the 
processor or the bus will hang-up indefinitely. 

Example Programs 

Two GPIB example programs written in Interpretive 
BASICA are listed below. The first uses low level 
adapter function calls and the second uses high 
level device function calls. The primary objective of 
each example is to acquire a voltage reading from 
the digital volt meter DVM. These examples 
demonstrate GPIB programming techniques using 
selected functions supported by the IBM GPIB 
Adapter Programming Support software. 

IBM General Purpose Interface Bus Adapter and Software 

BASICA Example Program (Adapter) 

This sample program illustrates adapter level 
programming techniques using the BASICA 
language interface. 

100 REM IBM BASIC • Using adapter function calls 
101 REM Merge this code with the BASICA header 
102 REM 
110 ADNAME$ "GPIBO" 
115 REM 
120 REM Assign a unique identifier to adapter 0 
130 REM and store in variable GPIBO% 
135 REM 
140 CALL IBFIND (ADNAME$, GPIB0%) 
145 REM 
150 REM Check for error on IBFIND call 
152 REM 
155 IF GPIBO% < 0 GOTO 2000 
160 REM 
165 REM Send the IFC (Interface Clear) message 
170 REM to all devices. 
175 REM 
180 CALL IBSIC (GPIB0%) 
190 REM 
200 REM Check for an error on each GPIB call 
210 REM to be safe. 
215 REM 
220 IF IBSTA% < 0 THEN GOTO 3000 
230 REM 
240 REM Turn on the REN (Remote Enable) signal. 
245 REM 
250 V% = 1 : CALL IBSRE (GP IBO%, V%) 
260 IF IBST A% < 0 THEN GOTO 3000 
270 REM 
280 REM Inhibit from panel control with the LLO 
290 REM (local lockout) command, place the DVM 
300 REM in remote mode by addressing it to 
310 REM listen, send the DCL (device clear) 
320 REM message to clear internal device 
330 REM functions, and address the GPIB Adapter to 
340 REM talk. 
345 REM 
350 CMD$ = CHR$(&Hll)+ "#" +CHR$ (&Hl4)+ "@" 
360 CALL IBCMD (GPIBO%,CMD$) 
370 IF IBSTA% < 0 THEN GOTO 3000 
380 REM 
390 REM Write the function, range, and trigger 
400 REM source instructions to the DVM. 
405 REM 
410 WRT$ = "F3R7T3" : CALL IBWRT (GPIBO%,WRT$) 
420 IF IBSTA% < 0 THEN GOTO 3000 
430 REM 
440 REM Send the GET message to trigger a 
450 REM measurement reading. 
455 REM 
460 CMD$ = CHR$(&H8) : CALL IBCMD (GPIBO%,CMD$) 
470 IF IBSTA% < 0 THEN GOTO 3000 
480 REM 
490 REM Wait for the DVM to set SRQ or for a 
500 REM timeout; if the current timeout limit 

43 



510 REH is too short, use IBTHO to change it. 
515 REH 
520 HASl\j; = &H5000 
525 CALL IBWAIT (GPIBO%, MASl\j;) 
530 IF (IBSTA% AND &HCOOO) <> 0 GOTO 3000 
540 REH 
550 REH Since neither a timeout nor an error 
560 REH occurred, IBWAIT must have returned 
570 REH on SRQ. Next do a serial pol I. 
580 REH First unaddress bus devices and send 
590 REH the SPE (Serial Poll Enable) command, 
600 REH then send the DVH's talk address and 
610 REH the GPIB Adapter listen address (ASCII 
620 REH space). 
625 REH 
630 CHO$= "?_" + CHR$(&Hl8) + "C " 
640 CALL IBCMD (GPIBO%,CHD$) 
650 IF IBSTA% < 0 THEN GOTO 3000 
660 REH 
670 REH Now read the status byte. If it is 
680 REH &HCO, the DVH has valid data to send; 
690 REH otherwise, it has a fault condition 
700 REH to report. 
705 REH 
710 RD$= SPACE$(1) : CALL IBRD (GPIBO%,RD$) 
720 IF IBSTA% < 0 THEN GOTO 3000 
730 IF ASC(RD$) <> &HCO THEN GOTO 4000 
740 REH 
750 REH Complete the serial poll by sending 
760 REH the SPD (Serial Poll Disable) message. 
765 REH 
770 CMD$ = CHR$(&Hl9) : CALL IBCMD (GPIBO%,CHD$) 
780 IF IBSTA% < 0 THEN GOTO 3000 
790 REH 
800 REH Since the DVM and GPIB Adapter are 
810 REH still addressed to talk and listen, 
820 REH the 11easurement can be read as follows. 
825 REH 
830 RD$= SPACE$(16) : CALL IBRD (GPIBO%,RD$) 
840 IF IBSTA% < 0 THEN GOTO 3000 
850 REH 
860 REH To close out a programming sequence, 
870 REH send IFC to initialize the bus and 
880 REH call the IBONL function to place the 
890 REH GPIB Adapter on line. 
895 REH 
900 CALL IBSIC (GPIB0%) 
910 V% = 0 : CALL IBONL (GPIBO%, V%) 

2000 REH A routine at this location would 
2010 REH notify the user that the IBFIND 
2020 REH call failed, and refer him to 
2030 REM the driver software configuration 
2040 REM procedures. 

3000 REM An error checking routine at this 
3010 REH location would, among other things, 
3020 REH check IBERR to determine the exact 
3030 REH cause of the error condition and 

IBM General Purpose Interface Bus Adapter and Software 

3040 REH then take action appropriate to 
3050 REH the application. For errors during 
3060 REM data transfers, IBCNT may be 
3070 REH examined to deter11ine the actual 
3080 REH number of bytes transferred. 
4000 REH A routine at this location would analyze 
4010 REH the fault code returned in the DVH' s 
4020 REM status byte and take appropriate 
4030 REH action. 
4040 STOP 
5000 END 

BASICA Example Program (Device) 

This sample program illustrates device level 
programming techniques using the BASICA 
language interface. 

100 REH IBM BASIC - Using device function calls 
101 REH Merge this code with the BASICA header 
110 REM Assign a unique identi tier to device 
120 REH and store in variable DVH%. 
125 REH 
130 DEV$ = "DVH" 
140 CALL IBFIND (DEV$ ,DVH%) 
145 REH 
150 REH Check for error on IBFIND call 
155 REH 
160 IF DVH% < 0 THEN GOTO 2000 
170 REH 
180 REH Clear the device 
185 REH 
190 CALL IBCLR (DVH%) 
195 REH 
200 REH Check tor an error on each GPIB call 
210 REH to be safe. 
215 REH 
220 IF IBSTA% < 0 THEN GOTO 3000 
230 REM 
240 REM Write the function, range, and trigger 
250 REM source instructions to the DVH. 
255 REM 
260 WRTS = "F3R7T3" : CALL IBWRT (DVM%,WRT$) 
270 IF IBSTA% < 0 THEN GOTO 3000 
280 REH 
290 REH Trigger the device. 
295 REH 
300 CALL IBTRG (DVM%) 
310 IF IBSTA% < 0 THEN GOTO 3000 
320 REH 
330 REH Wait for the DVH to set RQS or tor a 
340 REH timeout; if the current timeout limit 
350 REH is too short, use IBTHO to change it. 
355 REM 
360 HASKj; = &H4800 : CALL IBWAIT (DVH%, MASl(j;) 
370 IF (IBSTA% AND &HCOOO) <> 0 THEN GOTO 3000 
380 REM 
390 REH Since neither a timeout nor an error 

44 



400 REM occurred, IBWAIT must have returned 2000 REM A routine at this location would 
410 REM on RQS. Next, serial poll the device. 2010 REM notify the user that the IBFIND 
415 REM 2020 REM call failed, and refer him to 
420 CALL IBRSP (DVM%,SPR%) 2030 REM the driver software configuration 
430 IF IBSTA% < 0 THEN GOTO 3000 2040 REM procedures. 
440 REM 3000 REM An error checking routine at this 
450 REM Now test the status byte (SPR%). 3010 REM lo cat ion would, among other th in gs, 
460 REM If SPR% is &HCO, the DVM has valid 3020 REM check IBERR to determine the exact 
470 REM data to send; otherwise, it has a 3030 REM cause of the error condition and 
480 REM fault condition to report. 3040 REM then take action appropriate to 
485 REM 3050 REM the application. For errors during 
490 IF SPR% <> &HCO THEN GOTO 4000 3060 REM data transfers, IBCNT may be 
500 REM 3070 REM examined to determine the actual 
510 REM If the data is valid, read the 3080 REM number of bytes transferred. 
520 REM measurement. 4000 REM A routine at this location would analyze 
525 REM 4010 REM the fault code returned in the DVM' s 
530 RD$= SPACE$(16) : CALL IBRD (DVM%,RD$) 4020 REM status byte and take appropriate 
540 IF IBSTA% < 0 THEN GOTO 3000 4030 REM action. 
550 REM 4040 STOP 
560 REM To close out a programming sequence, 5000 END 
570 REM reset the device. 
575 REM 
580 CALL IBCLR (DVM%) 

IBM General Purpose Interface Bus Adapter and Software 45 





IBM Corporation 
Editor, IBM Personal Computer Seminar Proceedings 
4629 
Post Office Box 1328 
Boca Raton FL 33432 

--...- ------ - - ---- - -- -. ---- - - -------------·-® 




