
Volume 2, Number 11 November 1984

IBM Personal Computer
Seminar Proceedings

The Publication for Independent Developers
of Products

for IBM Personal Computers

Published by International Business Machines Corporation
Entry Systems Division

-~------- - - --- - -- -. ---- - - ------ --_ _..._._

Changes are made periodically to the information herein; any such
changes will be reported in subsequent Proceedings.

It is possible that this material may contain reference to, or
information about IBM products (machines and programs),
programming or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such products, programming or services in
your country.

IBM believes the statements contained herein are accurate as of the
date of publication of this document. However, IBM makes no
warranty of any kind with respect to the accuracy or adequacy of the
contents hereof.

This publication could contain technical inaccuracies or
typographical errors. Also, illustrations contained herein may show
prototype equipment. Your system configuration may differ slightly.
IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation
whatever.

All specifications are subject to change without notice.

Copyright©
International
Business
Machines
Corporation
11/84

Printed in the
United States
of America

All Rights
Reserved

--..- ------ - -.-- --. ---- - ---------~-'-

Contents
Introduction and Welcome . 1
Purpose . 1
Topics . 1

IBM Enhanced Graphics Adapter . 2
Hardware Configurations . 2

System Board Switches . 2
Jumper Descriptions . 2

Adapter Configurations . 3
EGA Memory Options . 6

Feature Connector and Video Jacks . 6
Overview of Architecture . 7

ROM BIOS ... 7
CRT Controller . 7
Sequencer . 7
Graphics Controller . 8
Attribute Controller . 8
Support Logic . 8
EGA Memory Organization . 8

Modes of Operation . 12
New BIOS Calls . 13

Set Palette Registers . 13
Set Single Palette Register . 13
Set Overscan Register . 14
Set Palette and Overscan . 14
Toggle Intensify/Blinking Bit . 14
Character Generator Routines . 17
User Alpha Character Loads . 20
User Graphics Character Loads . 20
Information . 20
Examples . 20

Load ROM Character Set . 20
Load User Character Set . 20

Alternate Select . 23
Write String . 28

EGA Programming Techniques . 30
Pel Scrolling and Panning . 30
Alternate Parameter Tables . 32
Mode Switching . 35
Examples .. 36
Presence Test .. 37
Palette Programming ... 47
Vertical Retrace Interrupt ... 49

Vertical Split Screens . 50

Questionnaire ... 53

Contents

List of Illustrations

Figure 1. 9-Pin Direct Drive Interface Signals . 3
Figure 2. Adapter Configuration Exceptions . 4
Figure 3. EGA Primary Switch Settings . 5
Figure 4. EGA Secondary Switch Settings . 6
Figure 5. EGA extended BIOS Functions 7
Figure 6. EGA read-modify-write functions . 9
Figure 7. Outline of EGA Architecture . 1 O
Figure 8. New EGA Modes . 12
Figure 9. Set Palette Register BIOS Interface AH= 1 Oh 13
Figure 10. Palette Data Definition . 13
Figure 11. IBM Default Color Palette .. 14
Figure 12. Attribute Data Definition 14
Figure 13. Character Generator BIOS Interface AH= 11 h . 17
Figure 14. Character Generator BIOS Interface Continued . 18
Figure 15. Character Generator BIOS Interface Continued . 19
Figure 16. Character Data Example 1 . 21
Figure 17. Character Data Example 2 ... 21
Figure 18. Character Set File Example 21 /22
Figure 19. Alternate Select BIOS Interface AH= 12h ... 23
Figure 20. Write String BIOS Interface AH= 13h ... 28
Figure 21. Horizontal and Vertical Panning .. 32
Figure 22. SAV_PTR Format Listing ... 32/33
Figure 23. Vertical Split Screen . 50

List of Illustrations ii

Introduction and Welcome
These are the Proceedings of the IBM Personal
Computer Seminar, designed for independent
developers of products for IBM Personal Computers.
The purpose of these Proceedings is to aid you in
your development efforts by providing relevant
information about new product announcements and
enhancements to existing products. This issue is
prepared in conjunction with this seminar. The
Proceedings of future siminars for the IBM Personal
Computers also will be published and will cover
topics presented at those seminars.

Throughout these Proceedings, the term Personal
Computer and the term family of IBM Personal
Computers address the IBM Personal Computer, the
IBM Personal Computer XT, the IBM PCjr, the IBM
Portable Personal Computer, and the IBM Personal
Computer AT.

Purpose
What is our purpose in putting out a publication such
as this? It is quite simple.

The IBM Personal Computer family is a resounding
success. We've had a lo.t of help in achieving this
success, and much of it came from the independent
developers.

As you proceed with your development, do you at
times wish for some bit of information or direction
which would make the job easier? Information which
IBM can provide? This is the type of information we
want to make available to you.

Since we want to be assured of giving you the
information you need, we ask you to complete the

Introduction and Welcome

questionnaire which appears at the end of these
Proceedings. Your response to this questionnaire
will be taken into account in preparing the content of
future issues, as well as the content of seminars we
will present at microcomputer industry trade shows.

Topics
The following list gives a general indication of the
topics we plan to cover in future seminars and
include in the IBM Personal Computer Seminar
proceedings:

• Information exchange forum - letters to the
editor format

• Development tools - languages, database
offerings

• Compatibility issues

• New devices - capacities and speeds

• System capacities - disk and memory

• Enhancements in maintenance releases

• Tips and techniques

• New system software

• Hardware design parameters

• Tips on organizing and writing documents for
clear and easy reading

• Changes to terms and conditions

IBM Enhanced Graphics Adapter
The IBM Enhanced Graphics Adapter (EGA) is a new
graphics adapter for the IBM Personal Computer
family with the exception of the IBM PCjr. The
design is based on a bit-plane architecture and
involves concepts and techniques substantially more
complex than its predecessors. It has more function
and flexibility than the IBM Color Graphics/Monitor
Adapter and IBM Monochrome Display and Printer
Adapter. As a result of its enhanced capabilities, the
EGA is a complex subject to understand. The
Options and Adapters Technical Reference manual
provides a complete hardware description and Basic
Input Output System (BIOS) listing for the EGA.

This document aids in understanding the internal
operation and programming of the EGA and it
describes how the new BIOS calls can be used to
support its enhanced capabilities. Also included are
many programming examples and sample code
listings.

Hardware Configurations
System Board Switches

On the IBM Personal Computer's System Board,
switches 5 and 6 of Switch Block 1 must be on when
the IBM Enhanced Graphics Adapter is installed,
regardless of the attached display type. This is true
even if a second display adapter is installed in the
system. Likewise, on the IBM Personal Computer
xrs System Board, switches 5 and 6 of Switch Block
1 must be on when the IBM Enhanced Graphics
Adapter is installed.

There is only one switch on the system board of the
IBM Personal Computer AT. When the only adapter

IBM Enhanced Graphics Adapter

you have is an IBM Color Graphics/Monitor Adapter,
push the switch toward the front of your system unit.
For an IBM Color Graphics/Monitor Adapter with
another adapter, or for any other adapter or
combination of adapters, push the switch toward the
back of your system unit. You can then run the
"Setup" program on the diagnostic diskette to tell
your system what options you have installed.

Jumper Descriptions
There are three jumpers designated P1, P2 and P3,
on the IBM Enhanced Graphics Adapter. When
placed on pins 2 and 3, jumper P1 changes the
function of pin 2 of the direct drive interface to
ground (see Figure 1 on page 3). This selection
supports displays that require four color input
signals such as the IBM Color Display.

When jumper P1 is placed on pins 1 and 2, the least
significant red output is placed on pin 2 of the direct
drive interface (see Figure 1 on page 3). This
selection supports the IBM Enhanced Color Display
which requires six color input signals.

Jumper P2 is for a light pen attachment.

Jumper P3 changes the 1/0 address port of the IBM
Enhanced Graphics Adapter within the system. In its
normal position (on pins 1 and 2), all Enhanced
Graphics Adapter addresses are in the range 3xxh.
Moving jumper P3 to pins 2 and 3 changes the .
addresses to 2xxh. Operation of the adapter in the
2xxh mode is not supported in BIOS.

2

9- PIN DIRECT DRIVE INTERFACE SIGNALS

Signal Name - Description Pin

Ground 1
Secondary Red 2

IBM Enhanced Primary Red 3 Enhanced
Color Primary Green 4 Graphics Adapter
Display Primary Blue 5 (Hi-Res modes)
(model 5154) Secondary Green/Intensity 6

Secondary Blue/Mono Video 7
Horizontal Drive 8
Vertical Drive 9

Signal Name - Description Pin

Ground 1
Ground 2

IBM Color Red 3 Color/Graphics
Display Green 4 Adapter or
(model 5153) Blue 5 (EGA emulation

Intensity 6 modes)
Reserved 7
Horizontal Drive 8
Vertical Drive 9

Figure 1. 9-Pin Direct Drive Interface Signals

Adapter Configurations

Only ONE IBM Enhanced Graphics Adapter can be in
a system at a time. Since the cards are mapped to
the same memory space, two EGAs in the system
simultaneously will cause a conflict when accessing
display memory, 1/0 ports and the Basic Input
Output System (BIOS) stored in Read Only Memory
(ROM).

The only situation when you cannot have an EGA
and an MDPA in the same system is when you use
the EGA configured to drive the Monochrome
Display. This causes an 1/0 and memory conflict
when accessing 1/0 ports at 3Bxh and display
memory at segment BOOOh. If the Power On Self
Test (POST) finds an IBM Enhanced Graphics
Adapter configured to drive the Monochrome
Display, it initializes the IBM Enhanced Graphics
Adapter but ignores the IBM Monochrome Display
and Printer Adapter leaving it uninitialized. Since there is only one 9-pin D-shell connector on

the EGA card, only ONE monitor may be connected
at a time.

An IBM Enhanced Graphics Adapter and an IBM
Monochrome Display and Printer Adapter (MDPA)
(see Figure 2 on page 4) can coexist in the IBM
Personal Computer, IBM Personal Computer XT or
IBM Personal Computer AT systems. In this
configuration the MDPA drives the IBM Monochrome
Display (model 5151) as usual and the EGA drives
either the IBM Color Display (model 5153) or the

When the IBM Enhanced Graphics Adapter is
configured to drive the Monochrome Display, an IBM
Color Graphics/Monitor Adapter (CGMA) or IBM
Professional Graphics Controller (PGC) may be used
to drive their companion color displays.

IBM Enhanced Color Display (model 5154).

IBM Enhanced Graphics Adapter

The IBM Enhanced Graphics Adapter and the IBM
Professional Graphics Controller (PGC) can coexist
with some exceptions. The following chart should
clarify these configurations. In the chart, CGMA =
IBM Color Graphics/Monitor Adapter, and MDPA =
IBM Monochrome Display and Printer Adapter.

3

PGC EGA CGMA MDPA Exceptions

EGA in color mode only
EGA in mono mode only

PGC not in CGMA emulation mode
PGC not in CGMA emulation mode
PGC and EGA cannot both be in CGMA
emulation mode
EGA in color mode, PGC not in
emulation mode
EGA in mono and PGC not in CGMA
emulation mode

Figure 2. Adapter Configuration Exceptions

A PGC cannot be installed in the system unit of an
IBM Personal Computer. However it can be put in an

IBM PC Expansion Unit, an IBM Personal Computer
XT, or an IBM Personal Computer AT.

IBM Enhanced Graphics Adapter 4

EGA MDPA CGMA

sw4 on Primary Secondary -
sw3 off Color Display
sw2 off (40x25)
swl on

sw4 on Primary Secondary -
sw3 off Color Display
sw2 off (80x25)
swl off

sw4 off Primary Secondary -
sw3 on Enhanced Display
sw2 on Emulation Mode
swl on

sw4 off Primary Secondary -
sw3 on Enhanced Display
sw2 on High Resolution
swl off Mode (640x350)

sw4 off Primary - Secondary
sw3 on Monochrome (40x25)
sw2 off
swl on

sw4 off Primary - Secondary
sw3 on Monochrome (80x25)
sw2 off
swl off

Figure 3. EGA Primary Switch Settings

Note: The "primary" adapter is the adapter that the
system defaults to at power-on.

Enhanced Display Emulation Mode means that the

IBM Enhanced Graphics Adapter

5x7 character in an 8x8 box on the IBM Color
Graphics/Monitor Adapter modes will be replaced
with an enhanced 7x9 character in an 8x14 box on
the IBM Enhanced Graphics Adapter.

5

EGA MDPA CGMA

sw4 on Secondary Primary -
sw3 on Color Display
sw2 on (40x25)
swl on

sw4 on Secondary Primary -
sw3 on Color Display
sw2 on (80x25)
swl off

sw4 on Secondary Primary -
sw3 on Enhanced Display
sw2 off Emulation Mode
swl on

sw4 on Secondary Primary -
sw3 on Enhanced Display
sw2 off High Resolution
swl off Mode (640x350)

sw4 on Secondary - Primary
sw3 off Monochrome (40x25)
sw2 on
swl on

sw4 on Secondary - Primary
sw3 off Monochrome (80x25)
sw2 on
swl off

Figure 4. EGA Secondary Switch Settings

EGA Memory Options

The IBM Enhanced Graphics Adapter contains 64K
bytes of storage configured as four 16K byte bit
planes. The Graphics Memory Expansion Card plugs
into the memory expansion connector on the adapter
and adds one bank of 16K bytes to each of the four
bit planes, thus increasing the graphics memory to
128K bytes. The expansion card also provides Dual
In-line Package (DIP) sockets for further memory
expansion. Populating the DIP sockets with the
Graphics Memory Module Kit adds two additional
16K banks to each bit plane, bringing the graphics
memory to 256K bytes.

The IBM Enhanced Graphics Adapter supports
640x350 graphics on the IBM Monochrome Display
and the IBM Enhanced Color Display. Four color
capability is supported on the EGA without the
Graphics Memory Expansion Card (base 64K bytes),

IBM Enhanced Graphics Adapter

and sixteen colors are supported when the Graphics
Memory Expansion Card is added to the EGA (128K
bytes or above).

Feature Connector and Video
Jacks
Signals are provided for custom applications on the
IBM Enhanced Graphics Adapter Feature Connector.
Pin 4 is connected to the auxiliary jack 1 on the card
bracket of the adapter. Pin 5 is connected to the
auxiliary jack 2 on the card bracket of the adapter.
For example, one of these connectors could be used
to receive external sync signals.

Note: The auxiliary jacks are not directly connected
to any logic on the IBM Enhanced Graphics Adapter
but may be connected through use of the Feature
Connector.

6

Overview of Architecture
The basic blocks of the IBM Enhanced Graphics
Adapter are as follows:

• ROM BIOS

• CRT Controller (CRTC)

• Sequencer

• Graphics Controller

• Attribute Controller

• Display Buffer

• Support Logic

The overall architecture is based on bit-mapped
graphics configured as four bit planes. Each bit
plane contains from 16KB to 64KB of Random
Access Memory (RAM). There is a bit in the Map
Mask Register to permit or deny access to each of
the bit-planes. This allows the user to specify the
specific bit plane to be accessed and/or modified.
The base adapter contains 64K bytes of storage, and
the memory expansion options allow up to 256K
bytes of storage.

ROM BIOS

The IBM Enhanced Graphics Adapter contains a
BIOS module that has extended video BIOS
functions as listed in the figure below.

• Set Palette Registers

• RAH Loadable Character Generator

• Alternate Select

• TTY Write String

Figure 5. EGA extended BIOS Functions

Also within the BIOS are extended and enhanced
mode selections to increase the resolution, increase
the number of colors, and provide enhanced
alphanumeric capabilities.

IBM Enhanced Graphics Adapter

The BIOS provides support for both alphanumeric
(A!N) modes and all-points-addressable (APA)
graphic modes. This includes all modes supported
by the IBM Monochrome Display and Printer Adapter
and by the IBM Color Graphics/Monitor Adapter.

One of the EGA's advanced functions is a RAM
Loadable Character Generator. Two character sets
are stored within the EGA's BIOS ROM, one of which
is automatically loaded into bit plane 2 when an
alphanumeric mode is selected. This BIOS call
(AH=1xh) should be used to change the character
generator if desired. (This will be discussed in detail
later.)

CRT Controller

This Large Scale Integrated (LSI) device
generates the horizontal and vertical synchronizing
timings, addressing for the regenerative video buffer,
cursor and underline timings, and refresh addressing
for the EGA's Dynamic Random Access Memories
(DRAM's).

The Cathode Ray Tube Controller (CRTC) contains
numerous Central Processing Unit (CPU) 1/0
programmable registers that allow the user to
program the horizontal and vertical synchronization
timings and cursor type and position. This device
also contains 1/0 registers to program the maximum
number of scan lines per character row, to read the
memory location of the light pen, and a preset row
scan register for smooth scrolling.

A line compare register can aid in setting up a status
area that is immune to scrolling (i.e. a split screen).

Sequencer

This LSI device generates memory timings for the
dynamic RAM's and the character clock for
controlling regenerative memory fetches. It allows
the CPU to access memory during active display
intervals by inserting dedicated CPU memory cycles
periodically between the display memory cycles.
Map mask registers are available to protect entire
memory maps from being changed. A clocking mode
register is used to select the dot clock to be
generated. The character map register is used to aid
the BIOS in selecting which character generator
fonts are to be used.

7

Graphics Controller

The Graphics Controller manipulates the data from
the video memory to the Attribute Controller and the
CPU.

In graphics modes, memory data is sent in serialized
form to the Attribute Controller. In alpha modes the
memory data is sent in parallel form, bypassing the
Graphics Controller.

The Graphics Controller formats the data for use in
compatible modes and provides color comparators
for use in color painting modes. Hardware assists are
provided to allow the CPU to write 32 bits (8 bits per
plane) in a single memory cycle for fast color
presetting of the display areas.

Several read and write modes allow ease in memory
map manipulations. Additional logic allows the CPU
to write data to the display on non-byte boundaries.

Hardware is provided to manipulate data in logical
forms such as AND, OR, XOR, Rotate, and Color
Writes. The Graphics Controller provides an 1/0
register to select the memory mapped location of the
display buffer segment (hex AOOO, BOOO, or B800).

Attribute Controller

The Attribute Controller provides a palette of 16
colors selectable from a possible 64, each of which
may be specified separately. Six color outputs are
available for driving a display (R',G'/l,B'/V,R,G,B).

Note: I is intensity for IBM Color Graphics/Monitor
Adapter and IBM Monochrome Display and Printer
Adapter compatible modes; Vis video data for
monochrome modes.

Blinking and underlining are controlled by this
device. The Attribute Controller takes data from the
display memory and formats it for display on the CRT
screen. Additional hardware has been provided to
assist in horizontal pel panning in both alphanumeric
and all-points-addressable modes.

Support Logic

The remaining logic on the EGA supports the LSI
modules and creates latched buses for the CRTC,
the CPU and the character generator. Two clock
sources (14MHz and 16MHz) provide the desired dot
rate. The clock is multiplexed under CPU 1/0
control. There are four other 1/0 registers on the
adapter that are not part of the LSI devices. These
registers are the Miscellaneous Output Register, the
Feature Control Register, Input Status Register Zero,
and Input Status Register One.

IBM Enhanced Graphics Adapter

EGA Memory Organization

The following discussion is an overview of the EGA
memory organization for the new 16 color graphics
modes ODh, OEh and 1 Oh. The EGA memory
organizations for modes O • 7 are not discussed here
since they are identical to their respective modes on
the IBM Color Graphics/Monitor Adapter and IBM
Monochrome Display and Printer Adapter.

In graphics mode, the memory on the IBM Enhanced
Graphics Adapter is arranged as four planes sharing
a common PC address space. The graphics Very
Large Scale Integration (VLSI) chips contain several
read/write assist registers to manipulate this
memory. Each graphics chip supports two planes,
therefore the EGA card has two graphics chips. In
the following discussion (unless noted otherwise)
this distinction is ignored and both chips are treated
as a single entity.

In graphics mode each pel is mapped to one bit in
the address space. The color or attribute of a given
pel is determined by the four bits on the four memory
planes behind a given bit address.

The IBM Enhanced Graphics Adapter card contains a
latch register for each bit plane (32-bits total). Each
memory read will cause the contents of the
accessed location in each plane to be stored in the
latches. Memory write operations may combine the
source data with the latch contents before storing
into the accessed memory location.

Pixel addressing is achieved by specifying a bit
mask to apply with write operations. The bit
masks specifies whether the stored memory
location receives a given bit from the CPU's
source data or from the latch registers.

Note: In this case writing bits from the latch
registers is intended to preserve the current
contents of the stored location. This will happen only
if the latches have been "primed" by reading the
location to be stored.

The Bit Mask Register selects which pel(s) in the
addressed byte are affected. The bits enabled by the
bit mask will reflect the changes, while the bits not
enabled are unchanged. Thus the bit mask register
provides pel addressability.

The Sequencer Map Mask Register (SMM) selects
which planes are enabled/disabled for CPU writes.
For example, the Sequencer Map Mask register set
to 0011 b disables all writes to maps 2 and 3.

Note: A logical 1 enables the bit plane.

8

The Data Rotate/Function Select (FS) register
selects a read-modify-write function. The EGA card
supports 4 logical read-modify-write functions (see
Figure 6 on page 9) that take place between the
CPU data and the data in the latches during a CPU
write.

• 00 replace

• 01 and

• 10 or

• 11 xor

Figure 6. EGA read-modify-write functions

There are three write modes and two read modes
between the CPU and the memory. This requires
two write bits and one read bit (wwr); see Figure 7
on page 10. The write modes govern how the CPU
data is modified by a CPU write. Because any byte
on the EGA addressed by the CPU contains 32 bits,
two read modes are provided that reduce 32 bits to
the 8 bits returned on the data bus.

• Write mode O

In write mode 0, all enabled memory planes
respond identically to write operations. This
mode responds like normal PC memory, except
that the data is replicated across enabled
planes. This is the BIOS default write mode.

• Write mode 1

Write mod~ 1 provides an on-card 32-bit move
assist. During a CPU write, the current contents
of the latches (which were loaded by a previous
CPU read) are written directly to memory; the
data bus is effectively disconnected in this
mode.

IBM Enhanced Graphics Adapter

• Write mode 2

Write mode 2 is a write color interface. The CPU
data is a color written to the four planes for the
pels enabled by the bit mask register. CPU data
bit 0 is written to map 0, data bit 1 is written to
map 1 , and so on.

Note: Up to 8 pels are written depending on the
bit mask register.

• Read modeO

In read mode 0, the 8 bits in the addressed byte
on the map indicated by the read map select
register are returned. This mode will resemble
normal PC memory, and is the BIOS default.

• Read mode 1

Read mode 1 performs a color compare
operation on the byte addressed. The color
compare value is loaded into the color
equivalence register (Graphics Chip Register
"02). Responding to a mode 1 CPU read, the
EGA card will return a 1 in every bit position that
matched the color compare value.

Figure 7 on page 1 O diagrams the major elements
for a write operation. The latches are first loaded by
a CPU read from the byte (four maps) that is to be
modified. The Bit Mask and SMM registers are
masks that enable/disable changes to each bit in the
memory. The enabled bits are modified with the CPU
data according to the current write mode and
Function Select (FS) i.e read-modify-write mode. The
byte (all four maps) addressed by the address bus is
then replaced with the latch data logically combined
with the source data (as specified by FS).

9

I D I a I t I a I I 8 I u I s I

l
l

l

4 bit
maps

<---
I n t e

L a t

s

r n a 1 M

c h e s M

Figure 7. Outline of EGA Architecture

The following example of code writes the byte
pointed to by ES:SI (8 pels) in color 5 in write mode
0. It is assumed that the graphics chips are already
in write mode 0. This is the write mode used by the
BIOS.

first clear current contents
mov al ,0 this clears 8
mov es: [si]. al ; pels to color O

set map mask to color
mov dx,03C4h
mov ah ,02h
mov al,05h
call out_dx

--- write 8 magenta pels
mov al,OFFh
mov es:[si],al

bit 1
color 5

subroutine to output word to indexed port
out_dx proc near ah=index al=data dx=port

xchg al,ah index
out dx,al set index register
xchg al,ah data
inc dx data register
out dx,al set data register
dee dx restore index register
ret

out_dx endp

IBM Enhanced Graphics Adapter

The next code section writes one pel in the byte
addressed by ES:SI in color 5 in write mode 0. Note
that this code latches the location with a CPU read in
order to apply the bit mask.

select 1 bit to change
mov dx,03CEh
mov al,02h
mov ah,08h
call out_dx

clear current cOfltents
mov al,es:[si]
mov al,O
1ov es:[si]ial

sei map mask to color
mov dx,03C4h
mov ah ,02h
mov al, 05h
call out_dx

--- write 1 magenta pel
llOV al, 02h
mov es:[si],al

bit 1
bit mask register

latch current contents

bit 1
color 5

10

An alternative when writing less than 8 pels is to
make use of write mode 2. This code writes color 4
to pel 1 of the byte addressed by ES:SI in write mode
2. Once again it is assumed that the card is already
in write mode 2.

select l bit to change
mov dx,03CEh
mov al ,02h bit 1
llOV ah,08h bit mask register
call out._dx

--- write 1 red pel
mov ah,es: [si] latch
mov al,04h red
mov es: [si].al

Reading the color of a particular pixel requires a
separate read from each bit plane in read mode O. In
this example, ES:SI points to the desired byte
address and CL is the bit number (O· 7) of the pel to
read. The color value is returned in BL.

IBM Enhanced Graphics Adapter

mov
mov
mov
mov
shr
xor

rdl: out
mov
and
shr
shl
or
dee
jge

dx,3CEh ; graphics chip
al,04h ; read map select
ah,3 ; 4 bit maps (3210)
ch,80h 1 bit
ch,cl align pel mask
bl,bl color accumulator
dx,ax select read map
bh,es:[si] read 8 bits on map
bh,ch isolate pel (1 bit)
bh,cl right justify it
bl,l make room
bl,bh set this pel
ah next map (3210)
rdl repeat

11

Modes of Operation
The new modes supported by the IBM Enhanced Graphics Adapter are as follows:

IBM Color Display

Hex Alpha Buffer Box Max. Memory
Mode Type Colors Format Start Size Pages Required(k) Res.

D APA 16
E APA 16

40x25 AOOOO 8x8 2/4/8 64/128/256 320x200
80x25 AOOOO 8x8 1/2/4 64/128/256 640x200

IBM Monochrome Display

Hex Alpha Buffer Box Max. Memory
Mode Type Atr. Format Start Size Pages Required (k) Res.

F APA 4 80x25 AOOOO 8xl4 1/2 64/128 640x350

IBM Enhanced Color Display

Hex Alpha Buffer Box Max. Memory
Mode Type Colors Format Start Size Pages Required (k) Res.

0 A/N 16/64 40x25 B8000 8x14 8
1 A/N 16/64 40x25 B8000 8x14 8
2 A/N 16/64 80x25 B8000 8xl4 8
3 A/N 16/64 80x25 B8000 8x14 8

10 APA 4/64 80x25 AOOOO 8x14 1
10 APA 16/64 80x25 AOOOO 8x14 1/2

Figure 8. New EGA Modes

Note: Modes 0, 1, 2, and 3 are also supported when
using the IBM Color Display. However, BIOS
provides enhanced support for these modes when
the IBM Enhanced Color Display is attached.

IBM Enhanced Graphics Adapter

64 320x350
64 320x350
64 640x350
64 640x350
64 640x350

128/256 640x350

12

New BIOS Calls Set Palette Registers

The IBM Enhanced Graphics Adapter has an on­
board ROM which contains extensions to video BIOS
to support its enhanced capabilities. A discussion of
the new BIOS calls, including examples, follows.

The BIOS call AH= 1 Oh provides a software interface
to the IBM Enhanced Graphics Adapter's color
palette registers. Also included is a BIOS interface
to the Intensify/Blinking attribute for alphanumeric
text modes. The following is a listing of the BIOS
interface for this call as it is published in the Options
and Adapters Technical Reference manual.

AH = lOh SET PALETTE REGISTERS

Set Single Palette Register

AL = 0 SET INDIVIDUAL PALETTE REGISTER
BL = PALETTE REGISTER TO BE SET
BH = VALUE TO SET

AL = 1 SET OVERSCAN REGISTER
BH = VALUE TO SET

AL = 2 SET ALL PALETTE REGISTERS AND OVERSCAN
ES:DX POINTS TO A 17-BYTE TABLE
BYTES 0 - 15 ARE THE PALETTE VALUES, RESPECTIVELY
BYTE 16 IS THE OVERSCAN VALUE

AL = 3
BL = 0
BL = 1

TOGGLE INTENSIFY/BLINKING BIT
ENABLE INTENSIFY
ENABLE BLINKING

Figure 9. Set Palette Register BIOS Interface AH= 1 Oh

There are 16 palette registers on the EGA. Each
palette register can take on 1 of 64 values. For

16/64 color high-resolution mode on the IBM
Enhanced Color Display the register value should
have this format:

7
x

6
x

5 4 3 2
R' G'/I B' R

1
G

Figure 10. Palette Data Definition

Note: For IBM Color Graphics/Monitor Adapter
compatibility modes, G' (bit 4) maps to the intensity
bit (I).

IBM Enhanced Graphics Adapter

0
B

13

The default palette for 16-color high-resolution
mode set up by BIOS is:

Palette Color
Register (in hex) Color

0 0 black
1 1 blue
2 2 green
3 3 cyan
4 4 red
5 5 magenta
6 14 brown
7 7 white
8 38 dark gray
9 39 light blue

10 3A light green
11 38 light cyan
12 JC light red
13 30 light magenta
14 3E yellow
15 3F intensified white

Figure 11. IBM Default Color Palette

For example, to change palette register 1 to light red
we would use the following code:

mov ah, lOh
mov al ,0
mov bl,l ;palette register 1
mov bh,OCh ;light red
int lOh

Set Overscan Register

To set the overscan (border) register use the
following code:

mov
mov
mov
int

ah,lOh
al, l
bh,l
lOh

;blue

Note: The IBM Enhanced Color Display supports
overscan in 200 line modes only.

Set Palette and Overscan

All of the palette registers and the overscan register
may be set in just one BIOS call if a table of 17
values is provided. The following example
demonstrates the loading of all 17 palette registers.

IBM Enhanced Graphics Adapter

code segment public 'code'
assume cs:code,ds:code
org lOOh

start: jmp init
paLtable label byte

db lOh ; table for ...
db llh
db 12h
db 13h
db 14h
db 15h ; the 16 ...
db 16h
db 17h
db 18h
db 19h I

db lAh ; colors of ...
db lBh
db lCh
db lDh
db lEh ; the palette.
db lFh
db 20h ; overscan value

init: mov ah, lOh
mov al,2
push ds ; put the segment of
pop es ; pal_table into es
mov dx,offset paLtable
int lOh
int 20h ; exit to DOS

code ends
end start

Toggle lntensify/Bllnking Bit

The data format for alphanumeric text modes on the
IBM Enhanced Graphics Adapter is the same as its
predecessors the IBM Monochrome Display and
Printer Adapter and IBM Color Graphics/Monitor
Adapter, i.e. a byte of character data followed by a
byte of attribute data.

The attribute data for color A/N modes is as
follows:

7 6 5 4 3 2 0

lslR G sl1IR GB

• bit 7 is blinking (or background Intensity)

• bits 6-4 is background color

• bits 3-0 is foreground color

Figure 12. Attribute Data Definition

14

The interpretation of bit 7 of the attribute byte can be
changed from Foreground Blink to Background
Intensity. This is accomplished on the IBM Color
Graphics/Monitor Adapter and IBM Monochrome
Display and Printer Adapter by changing bit 5 of the
Mode Select Register (3D8h and 3B8h respectively).
When bit 5 is set to 1, attribute bit 7 set to 1 enables
the foreground blink attribute. If bit 5 of the Mode
Select Register is set to 0, attribute bit 7 set to 1
enables background Intensity.

The following program fills the first ten lines of the
screen with character 'E' and an attribute of blink,
white foreground, and blue background. It fills the
next ten lines with character 'G' and an attribute of
no blink, white foreground, and blue background.
When a key is pressed, the BIOS call toggles
attribute bit 7 and waits for another key press. Each
subsequent key press will switch between Blink and
Intensify. To return to DOS, press the Enter Key.

The IBM Enhanced Graphics Adapter provides a
BIOS interface for this attribute mapping, call
AH=10h and AL=3. This BIOS call with BL=O sets
attribute bit 7 to control background intensity, for
BL=1, attribute bit 7 controls foreground Blinking.

Note: Only the top part of the screen toggles,
because its attribute was the only one that had
attribute bit 7 set to a 1.

code segment public 'code'
assume cs:code,ds:code
org lOOh

start: jmp initial

charl
atrl
char2
atr2
msg

check

check

pmsg

pmsg

initial:

IBM Enhanced Graphics Adapter

45h
97h

IE'
blink, white foreground, blue background

db
db
db
db
db

47h I G'
17h ; white foreground and blue background

'Type any key to toggle or <Enter> to return to DOS.'

proc near
cmp al,13 check for <Enter>
j e exit if <Enter> then return to DOS
ret
endp

proc near
mov ah,13h BIOS call to write string
push ds load ES with the
pop es segment of the string
mov bp,offset msg
mov cx,48 number of characters in the string
mov dx,1400h ; set cursor position (20,0)
mov bh,0 page number
mov al,0
mov bl,20h attribute, black on green
int lOh
ret
endp

mov
mov
mov
int
mov
mov
mov
mov
mov

ah,2
dx,O
bh,0
lOh
ah,9
bh,O
cx,800
al,charl
bl,atrl

EGA BIOS call to set cursor position
store row(O) in DH and column(O) in DL
store page in BH

EGA BIOS call to write char and attribute
store page in BH
fill in 10 lines

load AL with char to write
; load BL with attribute

15

int lOh
mov ah,2 set cursor position
mov dx,OaOOh row 10, column 0
mov bh,O page number
int lOh
mov ah,9 write char and attribute
mov bh,0 page number
mov cx,800 write to 10 lines
mov al,char2 char to write
mov bl, atr2 attribute
int lOh
mov ah,2 set cursor position
mov dx, 1400h row 20, column 0
mov bh,O page number
int lOh

loop!: call pmsg print message
mov ah,0 wait for key press
int 16h using BIOS call 16
call check check for <Enter>
mov ax, 1003h AH=lOh, AL=3h
mov bl,O BL=O for intensify
int lOh
call pmsg print message
mov ah,0 wait for key press
int 16h
call check check for <Enter>
mov ax,1003h AH=lOh, AL=3h
mov bl,l BL=l for blinking
int lOh
jmp loo pl

exit: int 20h return to DOS

code ends
end start

IBM Enhanced Graphics Adapter 16

Character Generator Routines either the EGA's on-board ROM or a user specified
file.

The new BIOS call AH=11 h provides a software
interface to the IBM Enhanced Graphics Adapter's
ram-loadable character generator. Through this call
either a graphics or an alpha character set may be
loaded. The source of these character sets may be

The following is a listing of this BIOS interface as it is
published in the Options and Adapters Technical
Reference manual.

(AH) = 11 CHARACTER GENERATOR ROUTINE

IBM Enhanced Graphics Adapter

NOTE : THIS CALL WILL INITIATE A MODE SET, COMPLETELY
RESETTING THE VIDEO ENVIRONMENT BUT MAINTAINING
THE REGEN BUFFER.

AL = 00 USER ALPHA LOAD
ES:BP - POINTER TO USER TABLE

ex - COUNT TO STORE
DX - CHARACTER OFFSET INTO TABLE
BL - BLOCK TO LOAD
BH - NUMBER OF BYTES PER CHARACTER

AL = 01 ROM MONOCHROME SET
BL - BLOCK TO LOAD

AL = 02 ROM 8X8 DOUBLE DOT
BL - BLOCK TO LOAD

AL = 03 SET BLOCK SPECIFIER
BL - CHAR GEN BLOCK SPECIFIER

D3-D2 ATTR BIT 3 ONE, CHAR GEN 0-3
Dl-DO ATTR BIT 3 ZERO, CHAR GEN 0-3

NOTE WHEN USING AL = 03 A FUNCTION CALL
AX = lOOOH
BX = 0712H
IS RECOMMENDED TO SET THE COLOR PLANES
RESULTING IN 512 CHARACTERS AND EIGHT
CONSISTENT COLORS.

Figure 13. Character Generator BIOS Interface AH = 11 h

17

NOTE : THE FOLLOWING INTERFACE (AL=lX) IS SIMILAR IN FUNCTION

IBM Enhanced Graphics Adapter

TO (AL=OX) EXCEPT THAT :
- PAGE ZERO MUST BE ACTIVE
- POINTS (BYTES/CHAR) WILL BE RECALCULATED
- ROWS WILL BE CALCULATED FROM THE FOLLOWING:

INT[(200 OR 350) I POINTS] - 1
- CRT_LEN WILL BE CALCULATED FROM :

(ROWS + 1) * CRLCOLS * 2

- THE CRTC WILL BE REPROGRAMMED AS FOLLOWS:

R09H = POINTS - 1 MAX SCAN LINE
R09H done only in mode 7

ROAH = POINTS - 2 CURSOR START
ROBH = 0 CURSOR END
Rl2H = VERT DISP END

[(ROWS + 1) * POINTS] - 1
Rl4H = POINTS UNDERLINE LOC

THE ABOVE REGISTER CALCULATIONS MUST BE CLOSE TO THE
ORIGINAL TABLE VALUES OR UNDETERMINED RESULTS WILL
OCCUR.

NOTE : THE FOLLOWING INTERFACE IS DESIGNED TO BE
CALLED ONLY IMMEDIATELY AFTER A MODE SET HAS
BEEN ISSUED. FAILURE TO ADHERE TO THIS PRACTICE
MAY CAUSE UNDETERMINED RESULTS.

AL = 10 USER ALPHA LOAD
ES:BP - POINTER TO USER TABLE

ex - COUNT TO STORE
DX - CHARACTER OFFSET INTO TABLE
BL - BLOCK TO LOAD
BH - NUMBER OF BYTES PER CHARACTER

AL = 11 ROM MONOCHROME SET
BL - BLOCK TO LOAD

AL = 12 ROM 8X8 DOUBLE DOT
BL - BLOCK TO LOAD

Figure 14. Character Generator BIOS Interface (Continued)

18

IBM Enhanced Graphics Adapter

NOTE : THE FOLLOWING INTERFACE IS DESIGNED TO BE
CALLED ONLY IMMEDIATELY AFTER A MODE SET HAS
BEEN ISSUED. FAILURE TO ADHERE ~O THIS PRACTICE
MAY CAUSE UNDETERMINED RESULTS.

AL = 20 USER GRAPHICS CHARS INT OlFH (8X8)
ES:BP - POINTER TO USER TABLE

AL = 21 USER GRAPHICS CHARS
ES:BP - POINTER TO USER TABLE

ex - POINTS (BYTES PER CHARACTER)
BL - ROW SPECIFIER

BL = 0 USER
DL - ROWS

BL = 1 14 (OEH)
BL = 2 25 (19H)
BL = 3 43 (2BH)

AL = 22 ROM 8 X 14 SET
BL - ROW SPECIFIER

AL = 23 ROM 8 X 8 DOUBLE DOT
BL - ROW SPECIFIER

AL = 30 INFORMATION
ex - POINTS
DL - ROWS

BH - 0 RETURN CURRENT INT lFH PTR
ES:BP - PTR TO TABLE

BH - 1 RETURN CURRENT INT 44H PTR
ES:BP - PTR TO TABLE

BH - 2 RETURN ROM 8 X 14 PTR
ES:BP - PTR TO TABLE

BH - 3 RETURN ROM DOUBLE DOT PTR
ES:BP - PTR TO TABLE

BH - 4 RETURN ROM DOUBLE DOT PTR (TOP)
ES:BP - PTR TO TABLE

BH - 5 RETURN ROM ALPHA ALTERNATE 9Xl4
ES:BP - PTR TO TABLE

Figure 15. Character Generator BIOS Interface (Continued)

19

User Alpha Character Loads

The calls for AL='Ox' and AL='1 x' both load character
sets for the IBM Enhanced Graphics Adapter's
alphanumeric modes and are quite similar in
function. The main difference is that a mode set is
automatically initiated for AL='Ox', resetting the
video environment and maintaining the contents of
the video buffer.

The AL='1 x' call, designed to immediately follow a
mode set. POINTS, ROWS, CRT_LEN and the CRT
cursor definition are updated.

When AL=03, up to four character sets of 256
characters may be loaded into the EGA's ram. Once
loaded any two of these may be linked together to
form a character set of 512 characters.

Note: Only one block of 256 characters may be
loaded without memory expansion for the EGA. Each
increment of 64K bytes of memory adds memory
space for 1 more 256 character block; up to 4 blocks
with the EGA's memory expanded to 256K bytes.

Note: When using a 512 character set, bit 3 of the
attribute byte selects between the upper and lower
256 character blocks. The redefinition of this bit
causes the loss of 8 foreground colors and the blink
attribute.

User Graphics Character Loads

This call is similar to AL= 'Ox' and AL= '1 x' except it
is used to load character sets for the IBM Enhanced
Graphics Adapter's graphics modes. A COUNT for
this mode may not be specified and a full set of 256
characters must be supplied defining the entire
character set.

Information

This call, AL = 30h, returns information about the
current state of the EGA's character set.

• CX returns POINTS= Bytes/Character.

• DL returns ROWS=
INT[(200 OR 350) I POINTS) - 1.

Note: 200 for 200 line modes. 350 for 350 line
modes. The INT function takes the integer value.

By setting BH, pointers to the current and ROM
character tables may be returned.

IBM Enhanced Graphics Adapter

Examples

Load ROM Character Set

The following code will temporarily load the ROM
BXB Double Dot character set into block zero for
Mode 2:

MOV AX,0002h ; set up call for Mode 2
INT lOh ; make call
MOV AX, 1112h specify 8X8 Character Set load
MOV BL,00 into block zero
INT lOh make call

This code may be imbedded into an application or
loaded with debug. The result will be an 80 by 43
character screen in high-res (350 line) modes or an
80 by 25 character screen in medium-res (200 line)
modes.

Load User Character Set

The following code will temporarily load an axe
Double Dot Character set from a disk file called
UFONT1 .I into block zero for Mode 2:

Note: This character set definition will be maintained
until the next mode set.

title set custom screen and font
code segment para 'code'

org lOOh
assume cs:code,ds:code

begin proc near
jmp start

; - Main Routine -
;~ point to font table
start: mov bp,offset fontl ; 8x8 font

mov cx,256 ; 256 characters
mov dx,O ; 0-FF
mov bx,0800h ; 8 bytes/char· block 0
mov ax,lllOh ; user alpha load
int lOh
ret

begin endp
; ~- 8x8 font specification
fontl label byte

include ufontl.i
limit equ $
code ends

end begin

20

The font file, UFONT1 .I, contains 2048 define bytes
i.e. an 8 byte definition for each of 256 characters.
In general a character set definition file requires the
product of POINTS (bytes/character) and number of
characters to be loaded.

Note: Any number of characters (up to 256 per
block) may be loaded for alpha modes. Graphics
modes require all 256 characters to be loaded.

The following is an example of a character definition
for an 8X8 capital letter A as it would appear in an
assembly language file.

db 030h,078h,OCCh,OCCh,OFCh,OCCh,OCCh,000h ; A D_41

Figure 16. Character Data Example 1

* * 030h

* * * ~.c 078h

* * * * OCCh

*),'c * * OCCh

* * * * ~.c * OF Ch

* * ~.c * OCCh

* * * * OCCh

OOOh

Figure 17. Character Data Example 2

A complete definition file for 256 8X8 characters
would have an entry for each character, including
non-printable control characters which have an entry
of all zeros. Below is an example of how the above
data is transformed into a character.

Note: The numbers in this example are in
Hexadecimal notation.

The following is an example of character set
definition file abbreviated from the ROM 8X8 double
dot font. The complete listing of this file may be
found in the EGA BIOS listing in the Options and
Adapters Technical Reference manual.

; Control characters

; Double Dot
db OOOh,OOOh,OOOh,OOOh,OOOh,OOOh,OOOh,OOOh D_OO
db 07Eh,08lh,OA5h,08lh,OBDh,099h,08lh,07Eh D_Ol
db 07Eh,OFFh,Odbh,OFFh,OC3h,OE7h,OFFh,07Eh D_02
db 06Ch,OFEh,OFEh,OFEh,07Ch,038h,010h,000h D_03
db 010h,038h,07Ch,OFEh,07Ch,038h,010h,OOOh D_04
db 038h,07Ch,038h,OFEh,OFEh,07Ch,038h,07Ch D_05
db 010h,010h,038h,07Ch,OFEh,07Ch,038h,07Ch D_06
db 000h,000h,018h,03Ch,03Ch,018h,000h,000h D_07
db OFFh,OFFh,OE7h,OC3h,OC3h,OE7h,OFFh,OFFh D_08
db 000h,03Ch,066h,042h,042h,066h,03Ch,000h D_09
db OFFh,OC3h,099h,OBDh,OBDh,099h,OC3h,OFFh D_OA
db OOFh,007h,OOFh,07Dh,OCCh,OCCh,OCCh,078h D_OB
db 03Ch,066h,066h,066h,03Ch,Ol8h,07Eh,Ol8h D_oc

***** Section of table omitted for brevity *****
II II II II II II 11 II II

; Start printable ASCII characters

db OOOh,OOOh,OOOh,OOOh,OOOh,OOOh,OOOh,OOOh SP D_20
db 030h,078h,078h,030h,030h,000h,030h,000h ! D_21

(continued on next page)

IBM Enhanced Graphics Adapter 21

db 06Ch,06Ch,06Ch,000h,000h,000h,000h,000h ; II 0_22
db 06Ch,06Ch,OFEh,06Ch,OFEh,06Ch,06Ch,000h ; # 0_23
db 030h,07Ch,OCOh,078h,OOCh,OF8h,030h,OOOh ; $ 0--24
db OOOh,OC6h,OCCh,018h,030h,066h,OC6h,OOOh ; % 0--25
db 038h,06Ch,038h,076h,00Ch,OCCh,076h,000h ; & 0--26
db 060h,060h,OCOh,OOOh,OOOh,OOOh,OOOh,000h ; II 0_27
db 018h,030h,060h,060h,060h,030h,018h,000h ; (0--28
db 060h,030h,018h,018h,018h,030h,060h,000h ;) 0_29
db 000h,066h,03Ch,Offh,03Ch,066h,000h,000h ; * 0_2A
db 000h,030h,030h,OFCh,030h,030h,000h,000h ; + 0_28
db 000h,000h,000h,000h,000h,030h,030h,060h ; I 0_2C
db OOOh I OOOh I OOOh I OFCh I OOOh I OOOh I OOOh I OOOh ; - 0_20
db 000h,000h,000h,000h,000h,030h,030h,000h ; . 0_2E
db 006h,OOCh,018h,030h;060h,OCOh,080h,OOOh ; I 0_2F

db 07Ch,OC6h,OCEh,OOEh,OF6h,OE6h,07Ch,000h ; 0 0_30
db 030h,070h,030h,030h,030h,030h,OFCh,OOOh ; 1 0_31
db 078h,OCCh,00Ch,038h,060h,OCCh,OFCh,000h ; 2 0_32
db 078h,OCCh,OOCh,038h,OOCh,OCCh,078h,000h ; 3 0_33
db 01Ch,03Ch,06Ch,OCCh,OFEh,OOCh,01Eh,OOOh ; 4 0_34
db OFCh,OCOh,OF8h,00Ch,00Ch,OCCh,078h,OOOh ; 5 0_35
db 038h,060h,OCOh,OF8h,OCCh,OCCh,078h,000h ; 6 0_36
db OFCh,OCCh,00Ch,018h,030h,030h,030h,OOOh ; 7 0_37
db 078h,OCCh,OCCh,078h,OCCh,OCCh,078h,000h ; 8 0_38
db 078h,OCCh,OCCh,07Ch,OOCh,018h,070h,000h ; 9 0_39
db 000h,030h,030h,000h,000h,030h,030h,000h ; : 0_3A
db 000h,030h,030h,000h,000h,030h,030h,060h ; ; 0_38
db 018h,030h,060h,OC0h,060h,030h,018h,000h ; < 0_3C
db OOOh,OOOh,OFCh,OOOh,OOOh,OFCh,OOOh,OOOh ; = 0_30
db 060h,030h,018h,00Ch~018h,030h,060h,000h ; > 0_3E
db 078h,OCCh,00Ch,018h,030h,000h,030h,000h ; ? 0_3f

db 07Ch,OC6h,OOEh,OOEh,OOEh,OCOh,078h,OOOh ; @ 0_40
db 030h,078h,OCCh,OCCh,OFCh,OCCh,OCCh,000h ; A 0_41
db OFCh,066h,066h,07Ch,066h,066h,OFCh,OOOh ; 8 0_42
db 03Ch,066h,OCOh,OCOh,OCOh,066h,03Ch,000h ; C 0_43
db OF8h,06Ch,066h,066h,066h,06Ch,OF8h,000h ; 0 0_44
db OFEh,062h,068h,078h,068h,062h,OFEh,000h ; E 0_45
db OFEh,062h,068h,078h,068h,060h,OFOh,000h ; F 0_46
db 03Ch,066h,OCOh,OCOh,OCEh,066h,03Eh,OOOh ; G 0_47

II

***** Section of table omitted for brevity *****
II II It II II II II II II

-------··------------------------------' ; Last entries of character set
;- --- ---- --- --- ,, ... -- ;

I

db 000h,076h,00Ch,000h,076h,00Ch,000h,000h ; O_f7
db 038h,06Ch,06Ch,038h,000h,000h,000h,000h ; O_f8
db 000h,000h,000h,018h,018h,000h,000h,000h ; O_F9
db 000h,000h,000h,000h,018h,000h,000h,000h ; O_FA
db OOFh,00Ch,00Ch,OOCh,OECh,06Ch,03Ch,01Ch ; O_F8
db 078h,06Ch,06Ch,06Ch,06Ch,000h,000h,000h ; O_FC
db 070h,018h,030h,060h,078h,000h,000h,000h ; O_FO
db 000h,000h,03Ch,03Ch,03Ch,03Ch,000h,000h ; O_FE
db OOOh,OOOh,OOOh,OOOh,OOOh,OOOh,OOOh,OOOh ; O_ff

Figure 18. Character Set File Example

IBM Enhanced Graphics Adapter 22

Alternate Select

The new BIOS call AH=12h provides a software
interface status information particular to the IBM

Enhanced Graphics Adapter. An alternate print
screen routine may also be selected through this
call. The following is a listing of this BIOS interface
as it is published in the Technical Reference.

(AH) = 12 ALTERNATE SELECT

Bl = 10 RETURN EGA INFORMATION
BH = 0 - COLOR MODE IN EFFECT <3><D><X>

1 - MONOC MODE IN EFFECT <3><X>
Bl = MEMORY VALUE

0 0 - 064K
1 0 - 192K

CH = FEATURE BITS
CL = SWITCH SETTING

0 1 - 128K
1 1 - 256K

Bl = 20 SELECT ALTERNATE PRINT SCREEN ROUTINE

Figure 19. Alternate Select BIOS Interface AH= 12h

This program hasAH=12h and BL=10h. It returns
information on the EGA.

• CL returns the switch setting of the EGA.

• CH returns the feature bits value.
• BH tells whether the EGA is in color or

monochrome mode. CH is set up with bits 7-4 unused, bits 3 and 2 are
reserved, and bits 1 and 0 are the feature control
bits. The output of bit 1 goes to FEAT1 (pin 17) and
the output of bit 0 goes to FEATO (pin 19).

• BL returns the amount of memory on the EGA.

code segment public 'code'
assume CS:code,DS:code,ES:code
org lOOh

begin: jmp start

mem db
swset
fbits
MEMO
MEMl
MEM2
MEM3
MODEC
MODEM
SWITCH
swmsg
strgl
fmsg

db
db
db
db
db
db
db
db
db
db
db
db

; --- write string
write proc

IBM Enhanced Graphics Adapter

mov
mov
mov
mov

?
'64k of memory on ega'
'128k of memory on ega'
'192k of memory on ega'
'256k of memory on ega'
'color mode in effect'
'monochrome mode in effect'
48,49,50,51,52,53,54,55,56,57,97,98,99,100,101,102

'Switch setting= '
'7 6 5 4 3 2 0'
'The feature bits are:'

near
ah,13h
bh,O
bl,07h
al,1

23

int lOh
inc dh
ret

write endp

; --- print feature bits
print proc near

mov ah,OEh
int lOh
inc dl
mov cx,03h

printl: mov al, ' '
mov ah,Oeh
int lOh
inc dl
loop printl
ret

print endp

clr_screen proc near
mov ax,OFOOh
int lOh
xor ah,ah
int lOh
ret

clr_screen endp

start: call clr_screen
mov dx,OOOOh ;set cursor to 0,0
mov ah, 12h ;EGA BIOS call to.
mov bl,lOh return EGA information
int lOh
mov mem,bl ;save memory value in mem
mov swset,cl ;save switch setting in swset
mov fbits,ch ;save feature bits in fbits

--- check mode
cmp bh,O
je color ;if bh=O then color mode
mov bp,offset modem ;if bh=l then mono mode
mov cx,25 ;save offset and length of string
call write ;write message
jmp la bell

color: mov bp,offset modec ;offset of string
mov cx,20 ;length of string
call write ;write message

-~ check memory amount
labell: cmp mem, 1

memlO:

memll:

IBM Enhanced Graphics Adapter

j e memll
j l memlO
cmp mem,2

;if mem=l then 128k
;if mem=O then 64k

je meml2 ; if mem=2 then 192k
mov bp,offset MEM3 ;256k
mov cx,21
call write
jmp label2
mov bp,offset MEMO ;64k
mov cx,20
call write
jmp label2
mov bp,offset MEMl ;128k

24

mov cx,21
call write
jmp label2

mem12: mov bp, offset MEM2 ;192k
mov cx,21
call write

~ check switch setting
label2: mov ah,2 ;set cursor at 2,0

mov dx,200h
mov bh,O
int lOh
mov bp,offset swmsg ;write
mov ex, 17 switch setting
call write message
mov si,word ptr swset ;move switch setting to SI
and si, Of h ;keep the lower 4 bits
mov ah,Oeh ;write
mov al,switch[si] the setting using
int lOh teletype

~ check feature bits
label3: mov bp,offset fmsg ; write

mov cx,21 feature bits
call write message
mov bp,offset strgl
mov cx,29
mov ah, 13h
mov bh,0
mov bl,9h
mov al,l
int lOh
mov ah,2 ;set cursor to 5,0
mov dx,500h
mov bx,O
int lOh
mov cx,8 ;set loop counter

loopl: push ex ;store loop counter
llOV al,fbits
shl al,1 ; shift left through carry once
mov fbits,al
jc printl ; if carry print out a l
mov al,30h ; if no carry print out a 0
call print
pop ex
loop loopl ;loop if not zero
jmp exit ;end to DOS

printl: mov al,3lh
call print
pop ex
loop loopl ;loop if not zero

exit: INT 20h ; return to DOS

CODE ENDS
END begin

IBM Enhanced Graphics Adapter 25

This program has AH=12h and BL=20h which
selects an alternate print screen routine. This
program sets up 43 lines of text and then sets the
print screen routine to print all 43 instead of just 25.
This BIOS call will set up the print screen routine so
that all the lines of text on the screen will be printed.

Note: This call should be invoked any time ROWS is
changed.

title AH=l2, BL=20

print macro addr
if di f <addr>,<dx>

mov dx,offset addr
endif
mov ah,09
int 2lh
endm

. radix 16
code segment para 'code'

org IOOh
assume cs:code,ds:code

begin proc near
jmp Start

; ~ Parameters
msg8 db ' DOS 2.0+- is required. ',ODh,OAh, '$'
msg7 db ' Error encountered.','$'
msgl db 'BIOS Call AH=l2, BL=20' ,ODh,OAh,'$'
msg2 db ODh,OAh, '$'

db
msgn db
msglO db

db

db
db
db
db
db
db
db

I 1 1 1$1

'0123456789012345678901234567890123456789'
'0123456789012345678901234567890123456789',
ODh,OAh
'LINE #2' ,ODh,OAh
'LINE #3' ,ODh,OAh
'LINE #4' ,ODh,OAh
'LINE #5' ,ODh,OAh
'LINE #6' ,ODh,OAh
'LINE #7' ,ODh,OAh
'LINE #8' ,ODh,OAh

IBM Enhanced Graphics Adapter

db 'LINE #9' ,ODh,OAh
db 'LINE #10',0Dh,OAh
db 'LINE Hll',ODh,OAh
db 'LINE #12',0Dh,OAh
db 'LINE #13' ,ODh,OAh
db 'LINE #14' ,ODh,OAh
db 'LINE #15',0Dh,OAh
db 'LINE #16',0Dh,OAh
db 'LINE #17',0Dh,OAh
db 'LINE #18',0Dh,OAh
db 'LINE #19',0Dh,OAh
db 'LINE #20',0Dh,OAh
db 'LINE #20' ,ODh,OAh
db 'LINE #21' ,ODh,OAh
db 'LINE #22' ,ODh,OAh
db 'LINE #23',0Dh,OAh
db 'LINE #24',0Dh,OAh
db 'LINE #25',0Dh,OAh
db 'LINE #26',0Dh,OAh
db 'LINE #27',0Dh,OAh
db 'LINE #28',0Dh,OAh
db 'LINE #29' ,ODh,OAh
db 'LINE #30' ,ODh,OAh
db 'LINE #31' ,ODh,OAh
db 'LINE #32',0Dh,OAh, '$'

msg21 db 'BIOS TEST for mode AH= 12',0Dh,OAh
db BL= 20',0Dh,OAh, '$'

msg20 db I Alt. print screen routine installed',
ODh,OAh, '$'

msg3 db I I 1 1$1

msg22 db I Press <SHIFT> PrtSc to test' ,ODh,OAh
db I Press any other key to continue ',

'$'

26

help db
db

feature db
switch db
cmode db
cpage db
ncol db

'BIOSTEST AH=l2, BL=20',0Dh,0Ah, '$'
' syntax: A>ahl2a ',ODh,OAh
0
0
0
0
0

db lAh

; - clear screen
cscreen proc

mov
int
xor
int
ret

cscreen endp

near
ax,OFOOh
lOh
ah,ah
lOh

;-Main Routine------------------------------­
; - Check DOS version for 2. O+
Start: nap

mov ah,30h DOS version
int 2lh
cmp al,02h chk pre 2.0
jge btO ge: ok, else
print msg8 apologize
ret

; - Make appropriate BIOS call for the test
btO: call cscreen

print msgl ; say hello
print msg2

- Save current cmode
mov ax,OFOOh
int lOh
mov cmode,al

; - Set up 43 line mode print screen now needs modification
mov ax,1112h
mov bl ,Oh
int lOh

- Print a screen full of data
print msglO

; - BIOS call to set alternate print screen routine to track 43 lines
print msg2
print msg21
print msg2
mov ax,1200h
mov bl ,20h
int lOh
print msg20
print msg22

; - DOS keyboard check
malb: mov ah,OBh

int 21h

IBM Enhanced Graphics Adapter

check input status

27

Write String

cmp al, OFFh
jne
mov
int

malb
ah,07h
2lh

; ~- Restore previous mode

begin

code

mov ah,Oh
mov
int
ret

endp

ends
end

al, cmode
lOh

begin

; no character so loop
; character found so

take character to clear buffer

The new BIOS call AH=13h provides a software
interface to the new TTY Write String function for the
IBM Enhanced Graphics Adapter. The following is a

listing of this BIOS interface as it is published in the
Options and Adapters Technical Reference manual.

(AH) = 13 WRITE STRING
ES:BP - POINTER TO STRING TO BE WRITTEN
ex - CHARACTER ONLY COUNT
DX - POSITION TO BEGIN STRING, IN CURSOR

TERMS
BH - PAGE NUMBER

AL = 0
BL - ATTRIBUTE
STRING - (CHAR, CHAR, CHAR, ...)
CURSOR NOT MOVED

AL = 1
BL - ATTRIBUTE
STRING - (CHAR, CHAR, CHAR, ...)
CURSOR IS MOVED

AL = 2
STRING - (CHAR, ATTR, CHAR, ATTR, ...)
CURSOR NOT MOVED

AL = 3
STRING - (CHAR, ATTR, CHAR, ATTR, ...)
CURSOR IS MOVED

NOTE CHAR RET, LINE FEED, BACKSPACE, AND BELL ARE
TREATED AS COMMANDS RATHER THAN PRINTABLE
CHARACTERS.

Figure 20. Write String BIOS Interface AH= 13h

The following programs show an example of the EGA
BIOS call with AH = 13h. For this call:

• BP should contain the offset of the string to be
written;

• ES should contain the segment of the string to
be written;

• CX should contain the count of characters in the
string;

IBM Enhanced Graphics Adapter 28

• DX should contain the cursor position to start the
string (DH contains the row and DL contains the
column);

• BH should contain the page number.

The following example is of AL=O. This BIOS call
writes the string without moving the cursor. The
cursor will be at the position of the first character
written. BL contains the attribute of the string to be
written.

code

begin

title WRITE STRING AH=13h AL=O
segment para 'code'
org lOOh
assume cs:code,ds:code,es:code
proc near
j mp start

mml
string!

db strgl_end-stringl·l
label byte
db '1234567890ABCDEFGHIJKLMNOPQRSTUVWXYZ'

strgl_end equ $

current_page db OOh

clr_screen proc near
mov ax,OFOOh
int lOh
xor ah,ah
int lOh
ret

clr_screen endp
start:

call clr_screen
mov ax,ds
mov es,ax segment of string
mov bp,offset string! pointer to string
mov bx,offset mml strgLend
mov si ,0
xor ch,ch
mov cl, [bx] character count
inc cl
mov dx,O cursor position
mov bh,O current_page
mov al,O
mov bl,17h attribute
mov ah,13h write string
int lOh

IBM Enhanced Graphics Adapter

RETURN_DOS:
int 20h return to DOS

begin endp
code ends

end begin

When AL is set to a 1, the same thing occurs as
when AL=O except the cursor moves. The cursor will
be at the position after the last character written. BL
contains the attribute of the string.

When AL= 2 or 3, the difference between that and
when AL=O or 1 is that the string is set up with
alternating character and attribute bytes. BL is not
needed since each character is given its own
attribute. For AL=2, the cursor will be at the
position of the first character written. For AL=3, the
cursor will be at the position after the last character
written. CX contains the count of characters only,
not the total length of the string.

The string for AL=2 and AL=3 is set up as follows:

string2 label
db
db
db
db
db
db
db
db

byte
'1' ,0lh, '2' ,02h, '3' ,03h, '4' ,04h, '5' ,05h

11 61 ,06h, '7' ,07h, '8' ,08h, '9' ,09h, '0' ,0lOh
'A' ,OlAh, 'B' ,OBh, 'C' ,OCh, 'D' ,OlDh, 'E' ,OEh
'F' ,OFh, 'G' ,OlOh, 'H' ,02lh, 'I' ,032h, 'J' ,043h
'K' ,054h, 'L' ,065h, 'M' ,076h, 'N' ,087h, '0' ,098h
'P' ,OA9h, 'Q' ,OBAh, 'R' ,OCBh, 'S' ,ODCh, 'T' ,OEDh
'U' ,OFEh, 'V' ,OOFh, 'W' ,020h, 'X' ,030h, 'Y' ,040h
'Z' ,050h

This will print the same string, '1-Z', with each
character having a different attribute.

29

EGA Programming
Techniques

Pel Scrolling and Panning

The EGA card supports smooth scrolling (pel
scrolling or panning) in both the horizontal and

CRTC OC/OD
13
08

ATTR 13

In general, panning is a two-step process. First the
CRTC is configured for a larger memory size than is
displayable at one time. This is accomplished with
the offset register, which specifies the logical screen
width (normally set greater than or equal to the
physical width). The start address register is loaded
with the address of the upper left corner of the
display screen (see Figure 23 on page 50.).

To actually pan or scroll the screen, the upper left
corner position is updated in sync with the vertical
retrace. Panning repositions the physical display
window on the logical screen; moving the display
window to the right appears to move the picture to
the left.

• Moving the display horizontally

The start address register specifies the byte
(8 pels) of the upper left corner of the display
screen; the pel panning value tunes the position
to an individual pel. The horizontal pel panning
register is used to move it a fraction of a byte
(0-7 pels).

• Moving the display vertically

Vertical scrolling is dependent on whether the
EGA is in an alphanumeric or graphic mode.

In graphic modes the start address register
points to the start of the row of pixels that make
up the top of the display screen.

In alphanumeric modes, the start address
register points to the first character of the text

IBM Enhanced Graphics Adapter

vertical directions. This function is provided by the
CRT Controller and the attribute VLSI chip and
operates in both alphanumeric and graphic modes.

The following registers on the EGA card are used in
panning:

start address register
offset register
preset row scan register
horizontal pel panning register

line at the top of the display, and the preset row
scan register specifies the starting row scan
(how many scan lines into the character cell) at
which to start the actual display.

The preset row scan register should be set to
zero for graphics applications.

Because the CRTC supports character cells up
to 32 scan lines, the preset row scan register
typically varies from 0 to the current character
height (see maximum scan line register CRTC
register #09).

The CRTC latches the start address register at the
start of vertical retrace. The preset row scan register
is also referenced at this time. These values should
be loaded during active video time. The attribute
chip uses the current horizontal pel panning value;
this register should be loaded during vertical retrace
to avoid an unpredictable display.

As an example, consider a logical screen size of 800
pels horizontally and 600 lines vertically. This
requires 480,000 pels, which at 4 bits/pel translates
to 235K (the EGA card supports up to 256K) or
60,000 bytes per map. If the EGA card is configured
for 320 by 200 16-color graphics mode, there are
three full screens vertically and 2 1/2 screens
horizontally, A width of 800 pels is an offset of 100
bytes. The offset register would be loaded with the
value 50.

The logical screen size is limited by a 64K segment
(the 800 by 600 example uses 59K). Because the
memory requirements of alphanumeric modes are
much less than graphics modes, much larger logical
screens can be used in alphanumeric modes.

30

The following assembly language subroutine pans
the screen to a specified pel coordinate. The
coordinate system used assumes the origin is the
upper left corner of the display. The x and y
coordinates are passed in CX and AX respectively.

screen_width dw 100

pan proc near

Note: The variable SCREEN_ WIDTH contains the
logical width of the buffer in bytes, not pels.

800 pels wide

; ~- convert coordinate to byte address, pel value
mul screen._width ; offset to scan line
mov
mov
shr
shr
shr
add
and

bx,ax
ax,cx
ax,l
ax,l
ax,l
bx,ax
cl,07h

offset into scan line
bx is start address
cl is pel panning value

--- get in sync w/ vertical retrace
mov
cl i

pal: in
test
jz

pa2: in
test
jnz

dx,03DAh

al,dx
al,OOOOlOOOb
pal
al,dx
al,OOOOOOOlb
pa2

disable interrupts
video status
look for retrace
off: try again
video status
look for active
retrace: try again

~- during active video- set start register
mov dx,03DAh
mov al,OCh ; start address high
mov ah,bh
out dx,ax
mov al,ODh
mov ah,bl
out dx,ax

--- wait for vertical retrace
mov dx,03DAh

pa3: in al,dx
test al,OOOOlOOOb
jz pa3

start address low

video status
look for retrace
off: try again

in vertical retrace- set pel pan
mov dx,03C0h
mov al, 33h pel pan reg (w/ video enable)
out dx, al
mov al, cl pel pan count
out dx, al
sti
ret

pan endp

enable interrupts

Figure 21 on page 32 shows a logical view of the
upper left corner of the display on a pel boundary.
The line indicates the exclusive boundary of the
displayable screen. In this example the horizontal

pel panning register would be set to 4 and the preset
row scan register would be 3. The start address
register would point to the byte which contains the
character code for "A".

IBM Enhanced Graphics Adapter 31

0 2345670 2 3 4 5 6 7

* * * * * * * * 0

)',c)',c * * * * * * * *
)',c * 2

)',c *)',c * * * * * * 3

>'· .. * * * ~c * * * * 4

* * * * * * * * 5
.,.

>:C * * * * * * * * ...
6

7

Figure 21. Horizontal and Vertical Panning

Alternate Parameter Tables words (28 bytes) that BIOS uses to maintain various
tables and save areas. The following is a listing of
the saveptr definition as it is published in the
Options and Adapters Technical Reference manual.

SAVE_PTR is a double word pointer at low memory
address 04ABh. It points to a structure of 7 double

org
save_ptr

04A8h
label dword

save_ptr is a pointer to a table as described as follows:

dword_l
dworct_2
dword_3
dword_4
dworct_5
dworct_6
dworct_7

dword_l

video parameter table pointer
dynamic save area pointer
alpha mode auxiliary char gen pointer
graphics mode auxiliary char gen pointer
reserved
reserved
reserved

Parameter Table Pointer
Initialized to BIOS EGA parameter table.
This value MUST exist.

(continued on next page)

Figure 22. SAV_PTR Format Listing

IBM Enhanced Graphics Adapter 32

dword_2

dword_3

dword_4

(continued from previous page)

Parameter Save area pointer
Initialized to 0000:0000, this value is optional.
When non-zero, this pointer will be used as pointer
to a RAH area where certain dynamic values are to
be saved. When in EGA operation this RAH area will
hold the 16 EGA palette register values plus
the overscan value in bytes 0-16d respectively.
At least 256 bytes must be allocated for this area.

Alpha Mode Auxiliary pointer
Initialized to 0000:0000, this value is optional.
When non-zero, this pointer is used as a pointer
to a tables described as follows:

byte bytes/character
byte block to load, should be zero for normal

operation
word count to store, should be 256d for normal

operation
word character offset, should be zero for normal

operation
dword pointer to a font table
byte displayable rows

if 'FF' the maximum calculated value will
be used, else this value will be used

byte consecutive bytes of mode values for which
this font description is to be used.
The end of this stream is indicated by a
byte code of 'FF'

Graphics Mode Auxiliary pointer
Initialized to 0000:0000, this value is optional.
When non-zero, this pointer is used as a pointer
to a table described as follows:

byte displayable rows
word bytes per character
dword pointer to a font table
byte consecutive bytes of mode values for which

this font description is to be used.
The end of this stream is indicated by a
byte code of 'FF'

dword_5 thru dword_7
Reserved and set to 0000: 0000.

Figure 22. SAVPTR Format Listing (continued from previous page)

By changing SAVLPTR to point to a different table,
other sets of parameters may be made resident in

BIOS. For example, the 8X8 character set that gives
a 43-line screen could be made resident.

IBM Enhanced Graphics Adapter 33

The following program shows how to make this
43-line screen resident for mode 2.

Note: Modification of video parameters may cause
unpredictable results such as loss of video
synchronization.

title set 43 line screen and 8X8 font
code segment para 'code'

org lOOh
assume cs:code,ds:code

begin proc near
j mp Start

; --- save pointer tables
mark db 'set43' ,lFh, 'resident' ,0,0
table dw 14 dup (0)
old dw 14 dup (0)

; --- alpha mode auxiliary pointer
alpha db 8 byte/character

db 0 load block 0
dw 256 256 characters
dw 0 0-FF
dw font!, 0 font pointer
db 43 43 rows on screen

mode db 2 this is for mode 2
db -1 end of mode list

; - Main Routine -------~-------------~-------------~
;--- copy current save pointer table
Start: xor ax, ax video BIOS

mov ds,ax data segment
mov bx ,4A8h save_ptr
Ids Si, [bx] current table
push si current offset
mov di,offset old old table copy
mov ex, 14d 14 words

rep movsw copy
pop si current offset
mov di.offset table local table
mov ex, 14d 14 words

rep movsw copy
push cs re-establish
pop ds local segment

--- change alpha block pointer
mov bx.offset table
mov word ptr [bx+8],offset alpha
mov word ptr [bx+OAh],cs
mov bx,offset alpha ; alpha table
mov word ptr [bx+8],cs ; font segment

--- change video parameters pointer
mov bx,offset table
mov word ptr [bx+OOh],offset parms
mov word ptr [bx+02h],cs

IBM Enhanced Graphics Adapter 34

; -~ update pointer to new table
xor ax,ax BIOS video
mov ds, ax data segment
mov bx, 4A8h save_pt r
cli disable interrupts
mov word ptr [bx] ,offset table
mov word ptr [bx+-2],cs
sti ; enable interrupts

; --- disable cursor emulation
mov bx,487h ; info byte
or byte ptr bx,l ; turn off emulation

; ~- mark resident label string
push cs re-establish
pop ds local segment
mov bx,offset mark label string
mov [bx+-14],0F5F3h ; 35 ebcdic

; ~ enable changes
mov al,mode mode
mov ah,OOh set mode
int lOh

; ~ terminate & remain resident
mov dx,offset limit ; resident size
int 27h

begin endp

; ~ 8x8 font specification
fontl label byte

include ufontl.i
parms label byte

include vparms.i
limit equ $

code ends
end begin

Note: The file VPARMS.I is a file that contains the
listing for vparms as published in the BIOS listing in
the Options and Adapters Technical Reference
manual. The file UFONT1 .I is the same as in the
example in the section on Mode 11 h.

Mode Switching

Switching between modes is slightly more
complicated with the IBM Enhanced Graphics
Adapter since there are several new modes. In order
to maintain compatibility with programs designed for
the IBM Color Graphics/Monitor Adapter and the
IBM Monochrome Display and Printer Adapter, bits 5
and 6 of the equipment flag (low memory 041 Oh)
must be set properly for the respective mode.

IBM Enhanced Graphics Adapter

Upon installation of the EGA card, the display
switches (5 and 6 of the system configuration DIP
switch SW1 on the system board of the I BM Personal
Computer PC and IBM Personal Computer X1) are
both set to ON. The Power On Self Test tests the
system to determine what display adapters are
installed. If an EGA is found, the POST reads the
DIP switches on the EGA to determine what kind of
display is attached and whether or not the EGA is the
primary display. If a color mode is primary, bits 5 and
6 of the equipment flag are set to ON OFF for
80-column color and OFF ON for 40-column color. If
a monochrome mode is primary, these bits are set to
OFF OFF.

In order to switch modes between adapters reliably,
the equipment flag must be set for the destination
adapter before BIOS is called.

35

Examples

The following code is an example of switching
between Color mode 3 and Monochrome mode 7.

title goto 1onochrome mode 7
code segment para 'code'

org lOOh
assume cs:code,ds:code

begin proc near
jmp Start

; - Main Routine -
;- set equipment flag
Start: push es

xor ax,ax
mOV es,ax
mOV bl,030h
mov bh,es:410h
and bh,not 30h
or bh,bl
mov es:410h,bh

;- perform BIOS mode set
mov ax,07h
int !Oh
pop es
ret

begin endp

code ends
end begin

The following code is an example of switching
between Monochrome mode 7 and Color mode 3.

IBM Enhanced Graphics Adapter

title goto color 1ode 3
code segment para 'code'

org lOOh
assume cs:code,ds:code

begin proc near
jmp Start

; - Main Routine ----­
;- set equipment flag
Start: push es

xor ax,ax
mov es,ax
mov bl,020h
RIOV bh,es:410h
and bh,not 30h
or bh,bl
RIOV es:410h,bh

save es
clear ax
point to low 1emory
set flag data
read equipment flag
clear these 2 bits
set these 2 bits
change bits

set up for mode 7
make BIOS call
restore es

save es ·
clear ax
point to low 11e1-0ry
set flag data
read equiP11ent flag
clear these 2 bits
set these 2 bits
change bits

36

;--- perform BIOS mode set
mov ax,03h
int lOh

; set up for mode 3
; make BIOS call

pop es ; restore es
ret

begin endp

code ends
end begin

Presence Test

The following procedure is only one of many ways to
determine the presence of IBM video adapters. It
should be used as a guideline in writing the
appropriate presence test for a specific application.

General Procedure:

1. Determine if EGA is present.

There are many ways to do this. One way is to
read the Equipment Flag (40:10) in low System
RAM. Then test bits 5 and 6 for '00'. If '00', then
either the EGA is installed or no display adapter
is attached.

2. Making the assumption that bits 5 and 6 are '00'
and that the EGA is present, read the low RAM
byte called 'INFO' (40:87) to determine which
mode the EGA is in. This is done by testing bit 1.
If bit 1 = 0, the EGA has a color display attached;
if bit 1 = 1, the EGA has a monochrome display
attached.

3. After determining which type of display is
attached, look for the opposite type adapter.
Example: If the EGA has a monochrome display
attached, look for a color display adapter.

4. If the EGA is not present, look for other IBM
display adapters. An easy way to determine if a
non-EGA adapter is present is to write and read

IBM Enhanced Graphics Adapter

the cursor registers on the card. If the data read
is equal to the data written, the card is present.
Care should be used to store the present value
before the test is performed. The registers used
in the sample program are 3D4h = OFh for Color
and 3B4h = OFh for monochrome.

5. Which adapter is active?

Using EGA video BIOS call (AH) = OFh, the
current state of the adapter is returned. The
value is returned in AL and is always the current
(active) mode.

To determine if the EGA is the active display,
read the low system RAM byte called 'INFO'
(40:87), and test bit 3. If bit 3 = 0, the EGA is the
active monitor; if bit 3 = 1, the EGA is not active.

6. Which adapter is primary and/or secondary? To
determine if the EGA is the primary display, use
the video BIOS call AH = 12h (Alternate Select)
with BL = 1 Oh. The return information is in CL,
which contains the EGA switch settings. If the
value in the CL register is 5 or less, the EGA is
the secondary adapter. If the value in the CL
register is more than 5, the EGA is the primary
adapter.

Note: When an EGA is not present in the system and
two adapters are present, it is always assumed that
the IBM Monochrome Display and Printer Adapter is
primary.

37

title PRESTEST

print macro addr
ifdif <addr>,<dx>
mov dx,offset addr

endif
mov ah,09h
int 2lh
endm

.radix 16
code segment para 'code'

org lOOh
assume cs:code,ds:code

begin proc near
jmp start

; -~ Parameters
msg8 db i PRESTEST requires DOS 2.0+' ,ODh,OAh,'$'
msg7 db ' Error encountered. ' , '$'
msgl db ' PRESTEST ',ODh,OAh, '$'
msg2 db ODh,OAh, '$'

db
msgn db
cmsgp db
crlf db

db
db
db

mmsgp
pgcp

'Color/Graphics Monitor Adapter is Present' ,ODh,OAh,'$'
OOH ,OAh, '$'

' Monochrome Display Adapter is Present' ,ODh,OAh, '$'
' Professional Graphics Controller is Present'
ODh,OAh, '$'

' Press any key to continue ','$'
' Enhanced Graphics Adapter is Present','$'

db ' is the Primary Display' ,ODh,OAh, '$'

msgwait db
egap db
prim_msg
secn_msg
active_msg
not_active_msg
help db

db
db

feature db
db

switch db
db

corm db
db

mem db
cmode db
cpage db
ncols db
ecount db

db

base dw

IBM Enhanced Graphics Adapter

db ' is the Secondary Display' ,ODh,OAh,'$'
db ' and is Active' ,ODh,OAh,ODh,OAh, '$'
db ' and is Not Active',ODh,OAh,ODh,OAh, '$'

I PRESTEST I ,ODh,OAh, '$'
' syntax: A>PRESTEST ',ODh,OAh
' feature .. '
0

' switch .. '
0

' corm .. '
0

' mem .. '
0
0
0
0
0

lAh

10 decimal

38

Subroutines

- clear screen
cscreen proc

IOV

int
xor
int
ret

cscreen endp

near
ax,OFOOh
lOh
ah,ah
lOh

;-Cll.CURSOlt.REG

This routine tests the cursor to verify the presence
of the adapter.

INPUT: DX = port address of card (3?4h, where
B= monochrome and D=color)

OUTPUT: AL= l if present

·-----------------------
'
clLcursor _reg proc near

mov al,OFh ; set crtc addr to cursor reg
out dx,al
inc dx
in al,dx save original value
mov bh,al
mov al,5Ah set test value
out dx,al
jmp $+2
jmp $+2
jmp $+2
in al,dx
Clp al,5Ah
llOV al,bh ; restore original value
out dx,al
jne clLcursor_reg_not_present
mov ax, l
ret

clLcursor_reg_not_present:
xor ax,ax
ret

clLcursor_reg endp

get_equip_value proc near
push es
xor ax,ax
mov es,ax
mov si,0410h
mov al,es:[si]
and al,030h
pop es
ret

get_equip_value endp

IBM Enhanced Graphics Adapter

point into low memory
offset to equipment flag
get data
mask off display bits

39

Presence test for the professional graphics controller
procedure:

memory write to C600:03D4h
1/0 read from port 304
compare if identical then PGC is emulating CGA

porL3D4
pgcLseg
test_pattern

equ
equ
equ

03D4h
OC600h
028h

CGA/PGC common port
PGC ram segment
test data for PGC test

pres_test_PGc_emulator proc near
push es
push ax
push dx
push bx
mov dx,pgcl_seg
mov es, dx set PGC segment pointer
mov bx,port_3D4 point to PGC memory location
nop save the current contents
mov ah,byte ptr es:[bx]
nop ; write test data
mov byte ptr es:[bx],test_pattern
mov dx,port_3D4 point to i/o mem wrap
in al ,dx get current contents
mov es:[bx],ah restore PGC memory location
pop bx
pop dx
cmp al,test_pattern compare written to read
pop ax
pop es
ret

pres_test_PGc_emulator endp

get_info
push
xor
mov
mov
mov
pop
ret

get_info

IBM Enhanced Graphics Adapter

proc near
es
ax,ax
es,ax
si, 0487h
al,es:[si]
es

endp

point into low memory
offset to EGA Info byte
get data

40

Presence test for the professional graphics controller
procedure:

memory write to C600:03DBh
memory read from port 3D4h
compare if identical then PGC is present

·------------------------
'
pgc_pres_test

push
push
IROV

lllOV

mov
mov
mov
lllOV

cmp
mov

proc near
ax
es
ax;Oc600h
es,ax
si, 3dbh
bh,byte ptr es:[si]
byte ptr es:[si],5ah
al,byte ptr es:[si]
al, 5ah
byte ptr es:[si],bh

pop es
pop ax
jne pgc_not_present

save original value
set test value

restore original value

mov bx, l return a l in bx if PGC is present
ret

pgc_not_present:
xor bx, bx return a 0 in bx if PGC is not present
ret

pgc_pres_test endp

;--Main Routine-------------------

This test is designed to determine the hardware
configuration and state of video display hardware in the
IBM Personal Computer, IBM Personal Computer XT, and
IBM Personal Computer AT. Valid devices for this test
include the IBM Monochrome Display and Printer Adapter,
IBM Color/Graphics Monitor Adapter, IBM Enhanced Graphics
Adapter, and IBM Professional Graphics Controller. Other
configurations of non-IBM display adapters are not
supported and may cause this program to return erroneous
results. This should not be used as a test for
compatibility for other display devices.

·--------------------------
'

; -- Check DOS version for 2.0+
start: nop

mov ah, 30h DOS version
int 21h
cmp al,2 chk pre 2.0
jge ptO ge: ok, else
print msg8 apologize
ret

IBM Enhanced Graphics Adapter 41

; --- Make appropriate BIOS call for the test

ptO: call
print
print

cscreen
msgl
msg2

--- Save current cmode
mov ax,OFOOh
int lOh
mov
mov
mov

cmode,al
ncols,ah
cpage,bh

clear screen
Say hello

get present video mode
video interrupt
save mode
save number of columns
save active page

-~ Test for enhanced BIOS Functions
This assumes that only ax will return modified if EGA BIOS is present

mov ax, 1200h
mov bl,lOh
mov bh,OFFh
mov cl ,OFh
int lOh

-~ Store returned values

mov
mov
mov

corm,bh
mem,bl
switch,cl

Set ax for BIOS call (Alternate Select)
Set bl for Return EGA Information
Load BH with invalid info for test
Load CL with reserved switch setting
Call video BIOS

Save color or mono bit
Save memory size bits
Save EGA switch setting

--- Test for impossible values

cmp cl,OCh test reserved switch settings
jl pt2
inc ecount increment error count
mov al,switch

pt2: cmp bh,Olh check info range 0-1
jle pt3
inc ecount increment error count
mov al,corm

pt3: cmp bl,03h check range 0-3
jle pt4
inc ecount increment error count
mov al,mem

pt4: nop
mov al,ecount check error total

cmp ecount,Oh If no errors, we have found an EGA
j ne NEGA no EGA present
jmp VEGA EGA present

IBM Enhanced Graphics Adapter 42

;--NOEGA

No EGA was found in the system
Check for other display adapters

NEGA: nop

mov
call
cmp
jz
print
call
cmp
j ne
print

nega._prim_m:
mov
int
cmp
j ne

dx,3B4h
ck...cursor _reg
ax,O
l k... for _col or
1msgp
geLequip_value
al ,030h
nega._prim._m
prim.._msg

ah,OFh
lOh
al,07h
MON(LNOLACTIVE

print active_msg
jmp LK....FOR.._COLOR

MON(LNOT_ACTIVE:
print NOT_ACTIVE.._MSG

lk...for_color:
mov
call
call

dx,304h
ck...cursor _reg
pgc_pres_test

cmp ax,O

; is a mono adapter in
; check presence using cursor register
; was it active

no, look for color type adapter
yes, print monochrome present
get equipment flag from low RAM
was it set for monochrome
no.continue elsewhere
yes, print active message

get current video state
video interrupt
is it a monochrome 1ode
no, continue elsewhere
yes,
go look for color type adapter

print monochrome adapter not active

is a color type adapter in the system
check using cursor register
check to see if PGC is present

jz no_color no color adapter is found
call pres_tesLPGc__emulator ; if active verify adapter is

; not a professional graphics
je pgc_present if PGC is present print message
print cmsgp print color adapter present
mov ah,OFh get current video mode
int lOh video interrupt
cmp
je
print
cmp
jz
print
print
jmp

nega._nactive:
print
jmp

ex:
jmp

pgc_present:
print
print
jmp

IBM Enhanced Graphics Adapter

al,07h
nega._nactive
active_msg
bx,O
ex
pgcp
pgc_graphic
exit

noLactive_msg
chk...pgc

exit

pgcp
pgc_emulate
exit

print color active
see if PGC is present
exit if not present
PGC is present
and in graphics mode

print color not active

PGC present
and in emulate mode

43

no_color:
Clp
jz
print
print
j1p

bx,O
ex
pgcp
pgc_graphic
ex

check to see if PGC is present
if not, then exit
if yes, then in graphics mode

;-YESEGA,-------------------

An EGA was found in the system
Check for other video adapters

VEGA: nop
print egap ; print EGA present
cmp switch,5 ; check EGA switches for primary
jbe ega_secondary_adapter ; EGA is secondary display
print pri11_1sg print EGA is primary display
call get_info test low RAM byte Info for active state
and al I 08h Mask off di_splay bits
cmp al ,Oh if ega active monitor bit 4 = (0)
jne yega_ex bit 4 = l
print active_1sg bit 4 = 0 EGA active
jmp yega_contl continue elsewhere

yega_ex:
print not_active_msg EGA not active
j11p yega_contl continue elsewhere

ega_secondary_adapter:
print secn._msg print EGA secondary adapter
call get_info test low RAM Info for active state
and al,08h Mask off display bits
CllP al,Oh if ega active monitor bit 4 = (0)
jne yega_cont bit 4 = l ; EGA not active
print active_msg bit 4 = 0 print EGA active
jmp yega_CONTl continue elsewhere

yega_cont:
print not_active_1sg print EGA not active

yega_contl:
test color or mono bit

cmp corm,Oh is EGA set for color
jnz look_Jor _color no,look for color type card
IROV dx,384h yes, look for monochrome adapter
call ck....cursor_reg use cursor register for presence
cmp ax,Oh
jz chk....pgc check for a PGC
print mmsgp print monochrome adapter present also

yega_next:
llOV ah,OFh get current video mode
int lOh video interrupt
cmp al,07h is monochrome mode active
jne look....no_more no , print not active
print active_1sg yes, print monochrome is active

chk....pgc:
call pgc_pres_test
cmp bx,O
jz exl exit if no PGC
print pgcp a PGC is present and in graphics mode
print pgc_graphic
jmp exit

IBM Enhanced Graphics Adapter 44

loolLno_more:
PRINT NOT_ACTIVE._MSG
jmp chlLpgc

loolLfor _color:
dx,3D4h
clLcursor _reg
pgc_pres_test
ax,O

color I/0 address
check cursor register for presence
check for a PGC

mov
call
call
cmp
jz
call
je
print
call
cmp
jne
print

no_colorl no color adapter is found
pres_test_pgc_emulator ; verify PGC not in color emulation
yega_pgc_present

exl:

cmp
jz

print
print

JMP
yega_here:

CALL
cmp
jne
print

yega_next_l:
mov
int
cmp
je
print
jmp

yega_ex_l:
PRINT

cmsgp
get_equip_value
al,OlOh
yega...here
active_msg

bx,O
exl

pgcp
pgc_graphic

EXIT

GELEQUIP_VALUE
al,Olh
yega_next_l
active_msg

ah, OFh
lOh
al,07h
yega_ex_l
active_msg
chlLpgc

NOLACTIVE._MSG
jmp chlLpgc

yega_pgc_present:
print pgcp
print pgc_emulate
jmp exit

no_colorl:
cmp
jz
print
print
jmp

IBM Enhanced Graphics Adapter

bx,O
exit
pgcp
pgc_graphic
exit

print Color/Graphics adapter present
get low RAM equipment flag
test for color 80x25

print color active

see if PGC is present
exit if not present

PGC is present
and in graphics mode

get low RAM equipment flag
test· for color 40x25

print color active

get current video mode

PGC present
and in emulate mode

check for a PGC
if no, then exit
if yes, then jn graphics mode

45

; - DOS keyboard check

Exit: print msgwait
kbwait: mov ah,OBh

int 2lh
cmp al,OFFh
jne kbwait
mov ah,07h
int 2lh

-~ Restore previous mode
mov ah,Oh
mov al,cmode
int lOh
ret

begin endp

code ends
end begin

IBM Enhanced Graphics Adapter

check input status
return back to DOS

no character so loop
character found so
take character to clear buffer

do a video mode set
set to previous mode
video interrupt

46

Palette Programming

The following program is an example of palette
loading. It uses mode 1 Oh and requires 128k of
memory on the IBM Enhanced Graphics Adapter and
a IBM Enhanced Color Display. The screen is
cleared and 16 boxes of different colors are drawn
using write mode 2. The palette registers are

code segment public 'code'
assume cs:code,ds:code
org lOOh

start: jmp begin

bar_pos label word
column + row"'80

bar_size

dw 0+140"'80
dw 5+140"'80
dw 10+140"'80
dw 15+140"'80
dw 20+140"'80
dw 25+140*80
dw 30+140*80
dw 35+140*80
dw 40+140"'80
dw 45+140*80
dw 50+140"'80
dw 55+140"'80
dw 60+140"'80
dw 65+140*80
dw 70+140"'80
dw 75+140*80

label word
; width in columns + height in rows*256

dw 5 +30*256

updated during vertical retrace. The palette is
continually being changed, which gives the
impression of the boxes moving. Any key press will
return control to DOS.

Note: It is assumed that the EGA is initialized to
mode 1 Oh. The boxes are only drawn once.

dpa1-table label byte ; default palette
db O,l,2,3,4,5,14h,7,38h,39h,3Ah,3Bh,3Ch,3Dh,3Eh,3Fh,O

pa1-table label byte
db 0,36,52,54,22,18,3,9,1,8,13,5,36,52,54,22,0 palette 1
db 0,52,54,22,18,3,9,1,8,13,5,36,52,54,22,18,0 palette 2
db 0,54,22,18,3,9,1,8,13,5,36,52,54,22,18,3,0 palette 3
db 0,22,18,3,9,1,8,13,5,36,52,54,22,18,3,9,0 palette 4
db 0,18,3,9,1,8,13,5,36,52,54,22,18,3,9,1,0 palette 5
db 0,3,9,1,8,13,5,36,52,54,22,18,3,9,1,8,0 palette 6
db 0,9,1,8,13,5,36,52,54,22,18,3,9,1,8,13,0 palette 7
db 0,1,8,13,5,36,52,54,22,18,3,9,1,8,13,5,0 palette 8
db 0,8,13,5,36,52,54,22,18,3,9,1,8,13,5,36,0 palette 9
db 0,13,5,36,52,54,22,18,3,9,1,8,13,5,36,52,0 palette 10
db 0,5,36,52,54,22,18,3,9,1,8,13,5,36,52,54,0 palette 11

clr_screen proc near
mov ax,OFOOh
int lOh
xor ah, ah
int lOh
ret

clr_screen endp

IBM Enhanced Graphics Adapter 4 7

graphics_colorbar proc
push di
push si
mov al, 05h
mov dx,03CEh
out dx,al
mov al,02H
mov dx,03CFh
out dx,al
xor si, si
mov al,Oh

bar_loop:
mov bx,bar_size
push si
push ax
mov ax,02h
mul si
mov si,ax
mov bp,bar_pos[si]
pop ax
pop si
mov cx,OAOOOh
mov es,cx

xor dx,dx
mov dl,bl

bar _fill:
mov cx,dx
mov di,bp
rep stosb
mov di,bp
add bp,80d
dee bh
jnz bar_fill
inc Si
inc al
cmp Si I 16d
jc bar _loop

pop si
pop di
ret

graphics_colorbar endp
begin: call clr_screen

near
save DI
save SI

graphics write mode register

change to write mode 2

initialize SI

move bar size to be displayed

move multiplicand into AX
multiply SI for table· indexing
move index value to SI
get bar position using index
recover value

load regen area into ex
set seg reg to video buffer area

clear DX
load row

use as counter

call graphics_colorbar
mov bx,O initialize pointer to palette

vert:
mov dx,3DAh check
in al ,dx for
and al I 08h vertical retrace
jz vert not in retrace, check again

vert2: mov dx,3DAh wait for
in al,dx
and al, 08h next occurrence
cmp al,08h
je vert2 of not in retrace

IBM Enhanced Graphics Adapter 48

mov ah, lOh
mov al,02h
push ds
pop es
mov dx,offset pal_table

set palette
add dx,bx
int lOh
add bx, 17
cmp bx,170
jle keychk
mov bx,O

point to next palette
see if at last palette
if no, go to keychk
if yes, point to first palette

; ~ DOS keyboard check
keychk: mov ah,OBh check input status

int 2lh
cmp al,OFFh
j ne vert
mov ah,07h
int 2lh

no character so load palette
character found so

exit: mov ah,lOh
mov al,02h
push ds
pop es
mov dx,offset dpal_table

exit

int lOh ; restore default palette

call clr _screen

int 20h return to DOS
code ends

end start

Vertical Retrace Interrupt

The EGA card supports a Vertical Retrace Interrupt.
Applications that require synchronization with
vertical retrace (for example blinking) can make use
of the Vertical Retrace Interrupt to handle those
tasks asynchronously. The Vertical Retrace Interrupt
is on IRQ2 (INT OAh).

The CRTC must be programmed to generate an
interrupt at Vertical Retrace. Bit 5 of the Vertical
Sync end register (11 h) enables/disables the vertical
interrupt. Bit 4 of the same register clears the
interrupt at the CRTC. This bit is set to zero to clear
the Vertical Retrace Interrupt at the CRTC. It must
be programmed to a one to permit interrupts to
occur. Bits 3-0 of the Vertical Sync end register are
mode dependent and must have the correct values.

The following assembly language program skeleton
shows the steps involved in a vertical retrace
interrupt handler.

Note: The value 04h used to clear the vertical
interrupt is the value for 200 line alphanumeric
modes.

IBM Enhanced Graphics Adapter

; -~ field vertical retrace interrupt
cli ; interrupts off
push ax
push dx

; -~ perform function in vertical retrace

; ~- clear vertical interrupt at CRTC
mov dx, 3D4h
mov al,llh
mov ah,04h clear vertical
out dx,ax
or ah,lOh re-enable
out dx,ax

; ~ service 8259 priority interrupt controller
mov al,20h ; non specific EOI
out 20h, al

; ~- restore registers
pop dx
pop ax
iret

49

Note: Interrupts were disabled at the start of
the interrupt handler. This assures that any
operations that are to take place during the
Vertical Retrace are not interrupted and delayed
past the Vertical Retrace interval.

In some hardware environments more than one
device may make use of IRQ2. The EGA card does
not support hardware chaining (more than one
device sharing IRQ2) of interrupts. When more
than one device can issue an IRQ2 and Vertical
Interrupts are enabled, the Vertical Retrace bit
of the input status register (3DAh) will return
the IRQ2 (from the system bus) state rather than
the Vertical Retrace state of the EGA.

The Vertical Retrace feature of the EGA must be
used with care in these situations.

Vertical Split Screens
The IBM Enhanced Graphics Adapter card supports
split screening in both alphanumeric and graphic
modes. Split screening dynamically merges two
areas of the regen buffer on the display; the regen
buffer is unchanged by this operation.

The following registers on the EGA card are used in
split screening:

CRTC 18
07

line compare register
overflow register

During normal operation (no split screen) the line
compare value should be set to the maximum value
(1 FFh).

At the start of Vertical Retrace, the CRTC latches the
start address register value as the address of the
first line of the display. When an internal horizontal

IBM Enhanced Graphics Adapter

scan counter equals the line compare value, the CRT
memory address is cleared to OOOOh. Thus the
CRTC always splits the start of the regen buffer
(address OOOOh) onto the screen buffer at the line
indicated by the line compare register. Operations
that take place on either of the buffers (for example
scrolling) proceed independently. Thus the lower (or
upper) "window" will appear immune to any changes
in the upper (or lower) window.

The line compare register contains the low 8 bits of
the line compare value; the overflow register, bit 4,
contains the ninth bit. The line compare and overflow
registers should be written during Vertical Retrace.
The split screen window can be smoothly scrolled
onto the display by continuously updating these
registers in sync with Vertical Retrace.

In Figure 23 on page 50 a sample split screen is
shown. The video page at offset 8000h into segment
B800h is the current BIOS display page. At line 150
the CRTC splits the video page at offset OOOOh onto
the screen.

B800h:8000h

B800h:OOOOh

Display
Screen

Split
Screen

Figure 23. Vertical Split Screen

<line 0

<line compare 150

<line 199

50

The following assembly language subroutine loads
the line compare and overflow registers during a
Vertical Retrace. The number of lines to split onto
the screen is passed in CX, and the video mode is
assumed to be a 200-line mode. Note that the

overflow register is used by several other CRTC
registers. Whatever values are programmed into the
other overflow bits for the current mode must be
preserved by the split screen routine.

; - convert H lines to CRTC parameters
split proc near neg ax

sub ax,200 9 bit line co111pare value
mov cl,al
mov ch,Olh overflow <256
test ah,Olh
jz Spl
or ch,lOh ; set if >255

- get in sync w/ vertical retrace
spl: mov dx,030Ah

cli disable interrupts
sp2: in al ,dx video status

test al,OOOOOOOlb look for active
jnz sp2 retrace on: try again

sp3: in al,dx video status
test al,00001000b look for retrace
jz sp3 off: try again

- in vertical retrace, set CRTC
mov dx,030Ah
mov al,18h ; line compare
mov ah, cl
out dx, ax
mov al, 07h overflow
mov ah,ch
out dx,ax
sti enable interrupts
ret

split endp

The following code will smoothly scroll a 50 line window onto the display:

maxsplit dw 50
temp dw 0

mov temp,1
sp4: mov ax.temp

inc temp
cmp ax, maxsp 1i t
jge sp5
call split
j1Rp sp4

sp5: continue

IBM Enhanced Graphics Adapter 51

I BM Corporation
Editor, IBM Personal Computer Seminar Proceedings
4629
Post Office Box 1328
Boca Raton FL 33432

---....- -----___
---. ---- - ... ------ --_ _..._' -

@

