
Volume 3, Number 2 June 1985

IBM Personal Computer
Seminar Proceedings

The Publication for Independent Developers
of Products

for IBM Personal Computers

Published by International Business Machines Corporation
Entry Systems Division

-~- ------- ----- ~ ------ ~ ---- - - ------- ~ -_ _.... - . -
®

Changes are made periodically to the information herein; any such
changes will be reported in subsequent Proceedings.

It is possible that this material may contain reference to, or
information about IBM products (machines and programs),
programming or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such products, programming or services
in your country.

IBM believes the statements contained herein are accurate as of
the date of publication of this document. However, IBM makes no
warranty of any kind with respect to the accuracy or adequacy
of the contents hereof.

This publication could contain technical inaccuracies or typographical
errors. Also, illustrations contained herein may show prototype
equipment. Your system configuration may differ slightly.
IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation
whatever.

All specifications are subject to change without notice.

Copyright©
International
Business
Machines
Corporation
06/85

Printed in the
United States
of America

All Rights
Reserved

----------- - ---- - -- -. ---- - - --------_ _..._,_
®

Contents
Introduction and Welcome . 1
Purpose•................................. 1
Topics .. 1

The BASIC Compiler 2.00 . 2
Licensing Agreement ... 2
Hardware Requirements . 3
Software Requirements . 3

Changes in BASIC Compiler 2.00 . 4
Statements . 5
Functions . 5
New File Type - ISAM . 6
Library Manager . 6

Differences Between the Compiler and Interpreter . 6
Operational Differences . 6
Language Differences . 7
Other Differences . 7

Double- Precision Arithmetic Functions . 7
Double- Precision Loop Control Variables . 7
Expression Evaluation . 7
Input Statements . 8
Integer Variables . 8
Input Editor . 8
Number of Files . 9
Line Length . 9
PEEKs and POKEs . 9
String Length . 9
String Space Implementation . 9

Memory Information ... 10
Memory Map .. 10

Modular Programming Techniques ... 13
Named COMMON Blocks ... 13

Structuring Modular Programs . 13

Using IBM Personal Computer ISAM Files 14
Writing an ISAM Application .. 15

Installing !SAM.EXE .. 16
ISAM Terms and Concepts . 16

File Handles . 16
Data Records . 16
Key Handles . 17
Split Keys . 17
Segmented Records . 18
Record Description . 19
Field Description . 19
Creating A Key Descriptor . 19

Examples . 22

The Library Manager . 25
Command Line Format ... 25
Operators . 26

The IBM Personal Computer Technical Reference Manuals 27

Contents

Card Design Guideline . 28

IBM Personal Computer Seminar Proceedings (Volumes and Topics) 29

Questionnaire . 31

Contents ii

Introduction and Welcome
These are the Proceedings of the IBM Personal
Computer Seminar, designed for independent
developers of products for IBM Personal
Computers. The purpose of these Proceedings is to
aid you in your development efforts by providing
relevant information about new product
announcements and enhancements to existing
products. This issue is prepared in conjunction with
this seminar. The Proceedings of future seminars
for the IBM Personal Computers also will be
published and will cover topics presented at those
seminars.

Throughout these Proceedings, the term Personal
Computer and the term family of IBM Personal
Computers address the IBM Personal Computer, the
IBM Personal Computer XT, the IBM PCjr, the IBM
Portable Personal Computer, and the IBM Personal
Computer AT.

Purpose

What is our purpose in issuing a publication such as
this? It is quite simple.

The IBM Personal Computer family is a resounding
success. We've had a lot of help in achieving this
success, and much of it came from the independent
developers.

As you proceed with your development, do you at
times wish for some bit of information or direction
which would make the job easier? Information
which IBM can provide? This is the type of
information we want to make available to you.

Since we want to be assured of giving you the
information you need, we ask you to complete the

Introduction and Welcome

questionnaire which appears at the end of these
Proceedings. Your response to this questionnaire
will be taken into account in preparing the content
of future issues, as well as the content of seminars
we will present at microcomputer industry trade
shows.

Topics

The following list gives a general indication of the
topics we plan to cover in future seminars and
include in the IBM Personal Computer Seminar
Proceedings:

• Information exchange forum - letters to the
editor format

• Development tools - languages, database
offerings

• Compatibility issues

• New devices - capacities and speeds

• System capacities - disk and memory

• Enhancements in maintenance re.leases

• Tips and techniques

• New system software

• Hardware design parameters

• Tips on organizing and writing documents for
clear and easy reading

• Changes to terms and conditions

The BASIC Compiler 2.00
The BASIC Compiler 2.00 is an optimizing compiler
designed to complement the BASIC Interpreter.
(Optimizing compilers do such things as change the
order of expressions or eliminate common
sub-expressions to either improve performance or
decrease the size of the programs.)

Creating application programs with the IBM
Personal Computer BASIC Compiler 2.00 provides
several benefits, some of which are:

• Networking support (Lock and Unlock
statements)

• Full graphics support

• Full PCjr compatibility

• Increased file capacity (16,775,616 record
maximum- formerly 32,767)

• Increased input string length (32,767 character
maximum- formerly 255 character maximum)

• Full DOS file capability

• Shell commands support

• Line numbers unnecessary

• Separately compiled modules allow creation of
larger programs

• Increased execution speed for most programs
when compared to the interpreter version

• BASIC source code security

The BASIC Compiler 2.00

The BASIC Compiler 2.00 offers a powerful
programming environment in which you can use the
BASIC Interpreter to quickly run and debug
programs and then later compile those programs to
increase their execution speed.

A compiled program is optimized machine code, not
source code. Consequently, compiling substantially
improves execution time and protects your source
program from unauthorized alteration or disclosure.

Licensing Agreement

Application programs that require the runtime
modules BASRUN20.EXE, REBUILD.EXE, or
!SAM.EXE, cannot be distributed without entering
into a license agreement with IBM. A copy of the
license agreement can be obtained by writing to:

IBM Corporation
P.O. Box 2910
Delray Beach, Florida 33444
Attn: Personal Computer Customer Relations

Note, however, that by compiling with the /0
parameter, it is possible to develop programs with
the BASIC Compiler 2.00 that do not use the
BASRUN20.EXE runtime module and, therefore, do
not require the license agreement. This does not
apply to !SAM.EXE or REBUILD.EXE.

2

Hardware Requirements

The hardware necessary to use this product is:

• Any of the following IBM Personal Computers:

IBM Personal Computer

- IBM Personal Computer XT

- IBM Personal Computer AT

IBM Portable Personal Computer

IBM PCjr.

• A minimum of 128K bytes of Random Access
Memory (RAM)

Note-Additional memory can significantly
improve the performance of the BASIC Compiler
2.00 and the Linker when used on all of the
above listed computers

The BASIC Compiler 2.00

• One or two double-sided diskette drives or a
fixed disk

• A printer (highly recommended)

• A display screen

Although various displays can be used, best
results are obtained with an 80-column display.

• Blank, formatted diskettes

Software Requirements

The software necessary to use this product is:

• Disk Operating System (DOS) 2.1 or later
version

3

Changes in BASIC Compiler 2.00

BASIC Compiler 2.00 differs from BASIC Compiler
1.00 in the following areas:

• Improved program control structures allow a
more modular approach to programming.
Enhancements include:

Named subprograms - provides the ability to
call (execute) a routine or subprogram by a
name instead of a line number.

Named COMMON blocks - can be used for
intermodule communication without
chaining. Items listed in blank COMMON
can be accessed by another chain file.

User-defined multiline functions - permits a
function definition to occupy more than one
program line. It must begin with a DEF FN
statement and end with an END DEF
statement.

Ability to branch to alphanumeric labels - it
is no longer necessary to use only line
numbers; now meaningful statement labels
may be used (example: GOTO TOTALS).

Separately compiled BASIC subprograms.

• Larger programs can be compiled. The use of a
memory model that separates the instruction
space from the data space allows this, as well as
allowing more than twice as much symbol table
space. Please note, however, that the data
segment has a maximum upper limit of 64K
bytes. In addition, allocated string space is also
limited to a maximum of 64K bytes.

• Large dynamic arrays are supported. The
maximum index for any dimension of a numeric
array is 32767. This dimension limit and the
amount of memory in your machine are the only
size restrictions for numeric arrays.

• .EXE files produced by BASIC Compiler 2.00 are
larger than those produced by BASIC Compiler
Version 1.00.

The BASIC Compiler 2.00

. • Graphics capabilities are expanded. All graphics
features of the BASIC Interpreter are available.
These include the following statements:

VIEW

WINDOW

PMAP

LINE

DRAW

- POINT

PAINT

• Access to DOS is expanded. Several new
features of the BASIC Interpreter are available to
allow more flexible use of DOS functions.
Statements affected are:

- SHELL

- IOCTL

- IOCTL$

- ENVIRON

- ENVIRON$

- ERDEV

- ERDEV$

- MKDIR

- RMDIR

- CHOIR

• The filespec syntax is expanded to allow the
specification of a path for a device or file.

• Redirection of standard input and standard
output is supported.

• Enhanced event trapping is available. This
enhancement affects the following statements:

- ON TIMER

- ON PLAY

- ON KEY

4

• All advanced features of PCjr BASIC are
supported. The full range of sound and graphics
capabilities are available to users of PCjr. Some
of the features include:

PLAY - Multi-voice

- PLAY - Volume Control

NOISE

Enhanced SCREEN statement

- Enhanced CLEAR statement

PCOPY

User-defined PALETTE

Additional screen modes

• Compiler termination codes are returned when
the compiler exits. These termination codes can
be tested by the IF batch subcommand of DOS.

• An input editor is included. Input required by
your program can be altered easily on the
screen.

• Support is provided for up to five levels of
nested $INCLUDE files.

• When compiling, you must specify the /D
parameter to Ctrl- Break effectively at runtime.

• BASIC library files are searched in the following
order:

1. User-specified directory

2. Current directory

3. PATH directories

4. User-prompted directory.

• Graphics statements now use line clipping
instead of wraparound.

• The OPEN statement has been enhanced to
include file access control.

The BASIC Compiler 2.00

• Because of the added functions in BASIC
Compiler 2.00, you may notice slightly longer
compile and link times.

BASIC Compiler Version 2.00 includes the following
language additions:

Statements

CALLS Calls and transfers program control to
IBM Personal Computer Macro
Assembler routines.

DEF FN, END DEF, EXIT DEF
Designate the beginning and ending of
a multiline function.

LOCK, UNLOCK
Restrict access by other processes to all
or part of an opened file.

REDIM Changes the space allocated to a
dynamic array.

SHARED Designates variables as global to the
subprogram and the calling program.

STATIC Designates variables as local to a
subprogram or multiline function.

SUB, END SUB, EXIT SUB

Functions

Designate the beginning and ending of
a subprogram.

COMMAND$
Returns the parameters from the
command line used to invoke the
current program.

LBOUND Returns the value of the lowest
subscript available (either 0 or 1) for any
array. This value depends on the
setting of the OPTION BASE statement.

UBOUND Returns the value of the largest
subscript available for any array.

5

New File Type - ISAM

The BASIC Compiler 2.00 now supports the indexed
sequential access method. These ISAM files are
accessed through the CALL statement. ISAM files
allow for rapid access to large files by key values.
Other features are automatic storage space
management and fast sequential access.

Library Manager

The IBM Library Manager is included. This utility
enables you to construct and edit object module
libraries. See Appendix E, of the BASIC Compiler
Fundamentals Manual for details.

Differences Between the
Compiler and Interpreter

Differences between the languages supported by
the BASIC Compiler 2.00 and the BASIC Interpreter
must be taken into account when compiling existing
or new BASIC programs.

The differences between the languages supported
by the BASIC Compiler 2.00 and the BASIC
Interpreter are described below:

Operational Differences

Some BASIC commands and statements used to
operate in the interpreter programming environment
are not acceptable input to the compiler. These are:

AUTO

CONT

DELETE

EDIT

LIST

LUST

The BASIC Compiler 2.00

LOAD

MERGE

NEW

REN UM

SAVE

Certain statements function similarly in the BASIC
Compiler 2.00 and the interpreter, but require
special parameters to be specified when used with
the compiler.

• Event trapping: If you use any of the event
trapping statements, you must specify either the
IV or the IW parameter when you start the
compiler. The event trapping statements are:

COM(n)

KEY(n)

ON COM(n)

ON PEN

ON PLAY

ON STRIG(n)

ON TIMER

PEN STOP

PLAY(n)

STRIG(n)

• Error trapping: If you use an ON ERROR
statement and some form of a RESUME
statement, you must specify either the IE or the
IX parameter when you start the compiler. If
you use only the RESUME line form, you should
specify IE. If you use RESUME NEXT,
RESUME 0, RESUME, or any combination of
those with RESUME line, the IX parameter
must be used instead.

• Debug code (TRON and TROFF): To use
TRON and TROFF, the ID parameter must be
specified when you run the compiler.
Otherwise, TRON and TROFF are ignored and a
warning is generated.

Note that using these parameters increases the size
of the .OBJ, and .EXE files. See the BASIC
Compiler Fundamentals for a detailed explanation
of each of the compiler parameters.

6

Language Differences

If your machine has a cassette port, the BASIC
Compiler 2.00 supports cassette I I 0. However, to
enable cassette I I 0, you must specify the /0
parameter at compile time and then link the
IBMCAS.OBJ module.

Some differences exist among the commands,
statements and functions of the BASIC Compiler
2.00 and BASIC Interpreter. These differences are
explained in the BASIC Compiler Language
Reference manual.

Other Differences

Other differences between the BASIC Interpreter
and the BASIC Compiler 2.00 include the following:

Double-Precision Arithmetic Functions

If you use double-precision operands for any of the
arithmetic functions, including the transcendental
functions (SIN, COS, TAN, ATN, LOG, EXP, and
SQR), the BASIC Compiler 2.00 returns
double-precision results. In the interpreter,
double-precision results are returned if the
interpreter is invoked with the /D parameter.

Double-Precision Loop Control Variables

The compiler, unlike the interpreter, allows the use
of double-precision loop control variables. This
allows you to increase the precision of increment in
loops.

Expression Evaluation

Mathematical computations have been modified in
the compiler for improved speed and accuracy, so
there may be slight differences in the results of
single-precision or double-precision operations
compared to the interpreter.

Also, the BASIC Compiler 2.00 performs
optimization, if possible, when evaluating
expressions.

During expression evaluation, the BASIC Compiler
2.00 converts operands of different types to the
type of the more precise operand.

The BASIC Compiler 2.00

QR=J%+A!+Q#

The above expression causes J % to be converted
to single-precision and added to A!.

This double-precision result is added to 0:#.

The BASIC Compiler 2.00 is more limited than the
interpreter in handling numeric overflow. For
example, when run on the interpreter, the following
statements yield 40000 for M.

1%=20000
J%=20000
M=l%+J%

That is, J % is added to I%. Because the number
exceeds the 32767 limit for integers, the interpreter
converts the result into a floating-point number.
The result, 40000, is found and saved as the
single-precision number M.

The BASIC Compiler 2.00, however, must make
type conversion decisions during compilation. It
cannot defer until actual values are known. Thus,
the compiler generates code to perform the entire
operation in integer mode and arithmetic overflow
may occur. If the /D debug parameter is set, the
error is detected. Otherwise, an incorrect answer is
produced. One possible way to avoid this problem
is to use single-precision numbers instead of
integers.

Besides the previous type conversion decisions, the
compiler performs certain valid optimizing algebraic
transformations before generating code. For
example, the following program could produce an
incorrect result when run:

1%=20000
J%=-18000
K%=20000
M%=1%+J%+K%

If the compiler actually performs the arithmetic in
the order shown, no overflow occurs.

However, if the compiler performs 1%+K% first and
then adds J % , overflow occurs. The compiler
follows the rules of operator precedence, and
parentheses may be used to direct the order of
evaluation. No other guarantee of evaluation order
can be made.

7

Input Statements

The compiler limits the number of variables read by
an INPUT or INPUT# statement to 60.

If you try to enter more than 32767 characters in
response to any INPUT or LINE INPUT statement,
the compiler makes the computer sound a beep.

Integer Variables

The BASIC Compiler 2.00 can make optimum use of
integer variables as loop control variables. To help
the compiler produce faster and more compact
object code, you should use integer variables as
much as possible. For example, the following
program executes much faster by replacing I, the
loop control variable, with I%, or by declaring I an
integer variable with DEFINT.

100 FOR l=l TO 10
110 A(l)=0
120 NEXT I

It is also advantageous to use integer variables to
compute array subscripts because the generated
code is faster and more compact.

Input Editor

When you respond to an input statement in a
compiled program, you do not have all the facilities
of the BASIC program editor to use. The BASIC
Compiler 2.00 does not allow you to change lines
anywhere on the screen; you may edit only the
current line.

The input editor supplied with BASIC Compiler 2.00
uses a special set of commands to manipulate the
text on the screen. These commands are different
from the commands used by the editor in the BASIC
Interpreter.

Input Editor Commands: All of the editor
commands, except Delete, require you to press the
control key (Ctrl) in combination with another key.

Ctrl-B moves cursor back one word.

Ctrl-C exits program.

Ctrl-E erases to the end of the current line.

The BASIC Compiler 2.00

Ctrl-F

Ctrl-H

Ctr I-I

Ctrl-K

Ctrl-M

Ctrl-N

Ctrl-R

Ctrl-T

Ctrl-U

Ctrl-]

Ctrl- \

Del

moves cursor forward one word.

deletes the character to the left of the
cursor.

inserts spaces from the cursor position
up to the next tab position (tabs are set
every eight spaces). If the editor is in
replace mode, any existing characters
will be overwritten.

moves the cursor to the beginning of
the line.

issues a carriage return and enters the
line.

moves the cursor to the end of the line.

toggles the editor from insert to replace
mode.

toggles the function key display line on
and off.

erases the entire line.

moves the cursor one position to the
left.

moves the cursor one position to the
right.

deletes the character at the cursor.

The following special program editor keys are not
supported by the compiler:

Home
Ctrl-Home
Cursor Up
Cursor Down
Next Word (Ctrl-Cursor Right)
Previous Word (Ctrl-Cursor Left)
Ctrl-Break.

If you try to use any of these keys (with the
exception of Ctrl-Break) in response to an input
statement, the computer will sound a two-tone
beep.

Pressing Ctrl-Break in response to an input
statement returns you to DOS.

8

All files are closed and the following message is
displayed:

STOP in Line xxx of Module
Modulename at Address - - - :- - -

Hit any key to return to system

When a key is pressed, the DOS screen mode is
restored.

Number of Files

The maximum number of files that can be open
simultaneously is 15. The default value is 3. To
increase the number of files to be opened
simultaneously you must have the following in your
CONFIG.SYS file:

FILES=xxx

Where:

xxx is the number of files you plan to have
open simultaneously, plus 5, which are
used by DOS. The maximum value for
xxx is 20.

Line Length

The interpreter cannot accept lines greater than 254
characters in length. In contrast to the interpreter,
the BASIC Compiler 2.00 accepts physical lines of
up to 32766 characters in length. (A physical line
for the compiler is one that ends in a carriage
return-line feed.) However, you can make the
compiler accept much longer logical lines of input
by ending the physical lines with an underscore
character (underscores in quoted strings or remarks
do not count). The underscore tells the compiler to
ignore the following carriage return, so all it sees in
the carriage return-line feed sequence at the end of
the line is the line feed character. The line feed is
the line continuation character understood by the
compiler. For example, the following two physical
lines:

100 INPUT "Values for array A"; A(l),
A(2), A(3), A(4), A(5), A(6), A(7) -

are read by the compiler as a single INPUT
statement, that enters seven values into array A.

It is impractical to use this technique with the
program editor in the BASIC Interpreter because
each line created with the BASIC Interpreter editor
must begin with a number. In addition, BASIC
Compiler 2.00 source programs that use this
technique cannot be debugged using the interpreter.

The BASIC Compiler 2.00

PEEKs and POKEs

PEEKs and POKEs into the interpreter work area
(such as DEF SEG: POKE 106,0) are interpreter
dependent and do not work for compiled BASIC.

Note-PEEK and POKE for dynamic array elements
work differently than PEEK and POKE for static
array elements. See the PEEK and POKE
statements in BASIC Compiler 2.00 Language
Reference for details.

String Length

Strings can be up to 32767 characters long rather
than 255 characters long. Therefore, any string
function parameters that identify the location in a
string or its length (which can have a maximum
value of 255 in the interpreter) can now range to
32767.

The internal storage format for the string descriptor
requires four bytes rather than three bytes (low
byte, high byte of the length, followed by low byte,
high byte of the address). If you use machine
language subroutines with string arguments, you
have to recode the subroutine to account for this
change.

String Space Implementation

The implementation of the string space for the
compiler differs from its implementation for the
interpreter. Using PEEK, POKE, VARPTR or
assembly language routines to change string
descriptors may result in a String Space Corrupt
error.

The amount of available string space is 64K bytes.
Because of the string descriptor size and the
number of internal variables used by the compiler,
the number of elements in a string array is less than
the amount available in BASIC Compiler Version
1.00 or the BASIC Interpreter. To help maximize
the use of memory space, you can move numeric
data into dynamic arrays that have a separate data
area. Declare string arrays as dynamic and ERASE
(reuse) the same space whenever possible. You
also can use MID$ to help prevent fragmentation of
string space. See the example under MID$
Function and Statement in the BASIC Compiler 2.00
Language Reference for details.

9

Memory Information
Memory Map

This section contains illustrations of runtime
memory maps for programs linked to the two
runtime libraries: BASRUN20.LIB and
BASCOM20.LIB.

Refer to the IBM Personal Computer Technical
Reference manual for information that is not in this
publication or in BASIC Compiler 2.00 Language
Reference manual.

s==================,..--- Top of memo~

Memory Information

space for .EXE loader

BASRUN20.EXE

LNA Heap

Top of user space:
Communications buffers,
Large Numeric Array Heap.
Paragraph - aligned

Top of string space (dynamic
boundary, can not exceed
64K from OS:)

Bottom of string space
(dynamic boundary)

1----------.---- Top of user stack

User stack
(default - 768 bytes)

1----------.---- Bottom of user stack
ec_os
BC_CN
BC_FT

BC_ DATA
(user variables)

DATA
CONST

COMMON (BLANK)

DSEG

(DATASG)

CODE

Data statements
Numeric and string constants
Floating-point temporaries

BASIC program variables

Optional data area for
other-language subprograms

COMMON area (varies with program)

Runtime module data and constants
(fixed size - approx. 6K)

DS,ES,SS:OOOO
Other-language subprograms

<modnam1>_CODE
(compiled program)

Separately compiled BASIC
subprograms (no size restriction)

~============== .. --- Bottom of user area
DDS area

Interrupt vectors

10

Memory Map continued ...

Memory Information

spice for .EXE loader

LNA Heap

Top of memory

Top of user space:
Communications buffers,
Large Numeric Array Heap.
Paragraph - aligned

Top of string space (dynamic
boundary, can not exceed
64K from OS)

Bottom of string space
(dynamic boundary)

---------~---- Top of user stack

User stack
(default - 768 bytes)

---------~---- Bottom of user stack
ec_os
BC_CN
BC_FT

BC_ DATA
(user variables)

DATA
CONST

COMMON (BLANK)

RUN (opt.)

DSEG

(OATASG)

CODE

<modname>_CDDE
(compiled program)

DDS area

Interrupt vectors

Data statements
Numeric and string constanis
Floating-point temporaries

BASIC program variables

Optional data area for
other-language subprograms

COMMON area (varies with program)

.EXE file loader data (64 bytes)

Runtime module data and constants
(fixed size - approx. 6 K)

DS,ES,SS:OOOO
Other-language subprograms

Separately compiled BAS IC
subprograms (no size restriction)

Bottom of user area

00000000

11

PCjr Memory Map continued ...

Note 2:
See Note 2 For PCjr <128K

screen buffer._.,..1=========*"t---- Top of memory

Memory Information

64K past
DS:OOOO

Note 1:
For PCjr >128K
screen buffer
if device driver
is installed.

space tor .EXE loader

Stack

File buffers

dynamic array heap

RUN (opt.)

BLDS
BLCN
BC_FT

BLDATA
(user variables)

DATA
CONST

(assembly Language)

COMMON

DATA
CONST

(runtime_ RT_DATA)

Free memory

CODE

BC CODE -
(compiled program)

See Note I

Interrupt vectors

DOS area

.EXE file loader data
(64 bytes)

Data statements
Numeric and string constants
Floating point temporaries

Basic program variables

Optional data area
for assembly language
subprograms

COMMON area
(size varies)

Runtime module data
and constants
(fixed size-approx. 3K)
DS, ES, SS:OOOO

..-- (if available)

Botton of user area
complied BASIC code

(64K maximum)

0000:0000

12

Modular Programming Techniques
The ability to compile modules independently and
then link them together allows the development of
larger, more easily maintainable programs.

Named COMMON Blocks

The BASIC Compiler 2.00 supports named
COMMON blocks. Named COMMON blocks are
declared by using the blockname option with the
COMMON statement.

Named COMMON blocks differ from unnamed
(blank) COMMON statements-where blockname is
not specified-in one key respect. Items (variables
and/or arrays) in named COMMON blocks are not
accessible to separate files that are chained through
the use of the CHAIN statement to the module in
which they are named.

Items that are declared in the named COMMON
blocks of independent modules are accessible by
each module if the modules communicate through
the CALL statement. Therefore, named COMMON
blocks can be used for intermodule communication
without chaining. Items that are listed in the blank
COMMON statement with no specified blockname
can be accessed by another chained file.

See the CHAIN and COMMON statements in BASIC
Compiler Language Reference for details on
statement syntax.

If the same blockname is used in more than one
module, the items in the item lists must be the same
type and size and listed in the same order.
However, the names of the variables may be
different. For example, the lists A,B,C(2) and
E,F,G(2) would be valid, but E,F(2),G would not be
valid. ·

Structuring Modular Programs

The separate compilation capability of the BASIC
Compiler 2.00 allows a flexible environment for
structuring large programs through the subprogram,
module and named COMMON block capabilities.

Modular Programming Techniques

These structures make it possible to construct
libraries of compiled IBM BASIC modules, with
each module within a library consisting of one or
more subprograms. Parameters passed with the
CALL statement and named COMMON blocks
provide communication among modules.

Modular programming has three major benefits:

1. Comprehensibility - Each subprogram or
module has a specific task that it performs on a
small number of parameters or common
variables. This can make the overall program
much easier to understand.

2. Independence - Because the communication
paths among the subprograms are isolated and
well-defined, a given subprogram is dependent
on another subprogram only in a controlled
manner. This allows the subprograms to be
developed independently, even by different
programmers. It also permits the reuse of
subprograms across several related applications.

3. Flexibility - If the dependencies among
subprograms are minimized, a given subprogram
may be completely rewritten or replaced by one
with a better algorithm-as long as its overall
results do not change. Such modularity can also
enhance the overall flexibility of the application
program by allowing it to be tailored for another
system or user (for example, by recompiling a
single module and relinking the program).

Libraries of subprograms can be structured in two
different ways. First, a single module can contain all
the subprograms that together perform some set of
functions. The second method is to use a library of
modules where each module usually contains only
one subprogram. In either case, each subprogram
linked must have a unique name. If two modules
are invoked thaf have a subprogram with the same
name, a Linker error is generated.

13

Using IBM Personal Computer ISAM Files
The Indexed Sequential Access Method (ISAM) is a
library of subroutines that allows access to files
both sequentially and by index. The files used with
ISAM have a special format.

Normally, BASIC supports two types of data files;
sequential files and random access files. These two
types are sufficient for most applications. The
major limitation of these two file types, however,
is that they do not allow you to access the records
in the file according to their content. You must
either search the entire file until the desired record
is found, or, you must know the number of the
desired record.

With the addition of ISAM, you can access data
based on the content of your records. If, for
example, you want to read the record that contains
information about product number 34056-J, delete
any records with information on employee T. R.
James, or update the record containing information
on the price and availability of marble, ISAM
provides a fast way to do so.

Before discussing ISAM in detail, a few basic terms
need to be defined.

DATA TYPE A data type is the type of value
that is stored in a particular
variable. BASIC ISAM supports
five data types: integer, string,
numeric, single-precision and
double-precision.

DATA RECORD A data record is the basic unit of
data in an ISAM file. Most
ISAM subroutines operate on
one record at a time. Generally,
there will be a record in your
ISAM file for each employee,
spare part, or whatever
information you are storing. An
ISAM file can contain any
number of records.

Using IBM Personal Computer ISAM Files

FIELD

KEY FIELD

KEY VALUE

A field is part of a data record. It
contains a single value of a
particular data type. For
example, an ISAM file may
contain records that are
composed of fields for name,
address and phone number. A
data record can consist of any
number of fields.

A key field is a special kind of
field. It contains the value that
ISAM uses to determine where a
record goes in the file.

A key value is the value stored in
a key field. For example, the key
field might be 20 bytes reserved
for employee name, and the
name stored there may be John
Doe. John Doe is the key value
for that key field.

Each ISAM file is physically two files: a data file
and a key file. A key is a data field that has been
identified and described to ISAM. Using ISAM, you
can access records in the data file according to the
value contained in the key field. Both files must be
present to use ISAM.

File names cannot exceed 8 characters.
Conventionally, data file names end with a .DAT
extension and key file names end with a .KEY
extension.

14

The data file consists of data records and, usually, a
data dictionary. The data dictionary, which resides
at the beginning of the data file, contains binary
descriptions of records in the file. Whenever you
create an ISAM file, you give ISAM information
about how your data is formatted, such as where
data fields start and end, what type of data is
contained in a field, and if it is acceptable to have
the same value in a given field of more than one
record. This information is stored in the data
dictionary.

The key file contains the indexing information that
ISAM uses to access the data in the data file. ISAM
gets this information (where the fields are, what
type of data they contain) from the data dictionary,
in the data file. The indexing is in the form of
8-trees. 8-trees are a special kind of index that
points to the records in the data file. There is one
tree in the key file for each key that you specify.

Whenever you access an ISAM file, ISAM
automatically obtains the information it needs from
each file. For example, when you write a record to
an ISAM file, ISAM writes the data record to the
data file and the key information to the key file.

When choosing the key for a file, it is a good idea to
make the value of that key unique for each record in
the file. This may help to avoid any confusion when
searching the records in the file for a particular key
value. For example, social security number is a
good field to use as a key because everyone has a
unique social security number.

There is a special type of key, called a split key, that
contains more than one field. Components of a split
key can be adjacent or nonadjacent fields of the
same or different data types, and may or may not
be keys themselves. Split keys are explained further
in the Split Keys section of this document.

There are two types of ISAM data records:
nonsegmented and segmented. Record types
cannot be mixed in one file.

Nonsegmented records are the type most often
used. They contain key fields that have fixed sizes.
They may, however, contain one field that is
variable in length, as long as that field is the last
field in the record.

Using IBM Personal Computer ISAM Files

The second type of record, called a segmented
record, supports key fields that can vary in size.
Segmented records are usually used to contain
variable-length strings.

You can use variable-length strings without using
segmented records, by setting the length of your
string field long enough to hold the longest string
you are using.

Note-It is strongly recommended that you use
segmented records only if it is very important to
minimize the amount of storage space used for
variable-length fields.

Segmented records are further described in the
Segmented Records section later in this
Proceedings.

Writing an ISAM Application

The ISAM interface is designed to make access to
ISAM files as simple as possible. In general, ISAM
file access is similar to random 1/0 procedures.
Specific ISAM subroutines are called to open and
close ISAM files, to find records within a file and to
read, write, delete or rewrite data.

Note-The demonstration program included on the
ISAM diskette, MAIL.BAS, is designed as an aid in
developing your own ISAM programs.

There are six basic steps in creating and using ISAM
files:

1. Install ISAM.EXE in memory.

2. Open an ISAM file.

3. Seek to (search for) some location in the file.

4. Operate on the data.

5. Check the results.

6. Close the ISAM file.

15

Installing !SAM.EXE

!SAM.EXE is a file containing the assembly
language subroutines that make up ISAM. It must
be loaded into memory before you can call any
ISAM subroutines. If you try to use any ISAM
subroutine and ISAM is not loaded, an error code of
27 is returned.

To install ISAM in memory, enter:

ISAM

The following message appears on the screen:

Installing IBM Personal Computer ISAM
(C)Copyright IBM Corp 1984, 1985 Version 2.00
(C)Copyright Microsoft Corp 1984, 1985

Because the ISAM routines take up memory space,
you may want to remove them from memory when
your program is finished. To do this, enter:

ISAM /F

No message appears when ISAM is removed.

You can also control the amount of buffer space
that the ISAM routines can use while your program
is running. To do this, entering the following when
you install ISAM:

I SAM /S: xxxxx

xxxxx is the number of bytes of buffer space
to be allocated. This number can range
from 10000 to 65536.

If you do not use the /S option or you specify a
number less than 10000, the buffer space defaults
to 10000. ISAM performance improves as buffer
space increases; however, this decreases the
amount of memory available to your BASIC
compiled program.

Using IBM Personal Computer ISAM Files

ISAM Terms and Concepts

This section explains some of the terms and
concepts used in ISAM.

File Handles

The file handle is a number used by ISAM to refer
to a specific ISAM file. Although an ISAM file is
physically two files (a data file and a key file), there
is only one file handle for each data file/key file
pair. ISAM returns the file handle each time you
open a file.

Data Records

ISAM files are similar, in some ways, to BASIC
random files.

When using random files in BASIC, the FIELD
statement is used to allocate buffer space for the
output data. This data buffer contains the variables
that make up the data records in the file. For
example:

FIELD #1, 10 AS NAME$, 25 AS ADDR$

This establishes a data buffer of 35 bytes; 10 for
NAME$ and 25 for ADDR$. Because the space for
this data buffer is allocated at compile time, NAME$
and ADDR$ are stored consecutively in memo,.Y.

To write a record to the file, you store the proper
values into NAME$ and ADDR$, (using LSET and
RSET), and write the buffer to the file. To write
another record, you change the values in the data
buffer and write it out again to the file.

When using ISAM files, you must also establish a
data buffer. Two methods are given here to
accomplish this:

• Using the FIELD statement

• Using the COMMON statement .

16

Using the FIELD Statement: The following
example establishes the same buffer for an ISAM
file:

OPEN "NUL" AS #9 LEN=35
FIELD #9, 10 AS NAME$, 25 AS ADDR$

The OPEN statement is necessary because a file
must be open before you can allocate the data
buffer with the FIELD statement. The file is opened
as NUL because the buffer is written to the ISAM
file, not the BASIC file.

To get the pointer to this data record, you can use
the following procedure:

1. Insert the following function definition into your
program.

DEF FNSADD!(VPTR)
FNSADD!=PEEK(VPTR+3)*256.0 + PEEK(VPTR+2)
END DEF

This function accepts the pointer to a string
descriptor as input and returns the address of
the string. You must include this function in
your program if you use the FIELD statement to
establish the data buffer.

2. Execute the following:

PDATREC!=FNSADD!(VARPTR(NAME$))

This places the address of the data record into
PDATREC!.

Using the COMMON Statement: If your data
record contains only numerical values, you can
establish the data buffer using a COMMON
statement. For example, if the data record consists
of IDNUM and PHONENUM!, the following
statement establishes the data buffer:

COMMON /DATA.REC/IDNUM,PHONENUM!

Once this is done, you can get a pointer to the data
record with the following:

PDATREC!=VARPTR(IDNUM)

Using IBM Personal Computer ISAM Files

Note-Remember, you can use this form only if
your data record consists solely of numerical values.

Key Handles

The key handle is a number used by ISAM to refer
to a specific key in an ISAM file. The key handle is
assigned by the programmer in the field description
when the ISAM file is created.

Key handle values range from 1 to n, where n is the
number of keys. There does not have to be any
physical relationship between the key handle values
and the record layout, but it is a good idea to assign
key values from the lowest to highest part of the
record.

Split Keys

A split key is a key that is made up of more than
one field. The component fields of a split key may
or may not be adjacent; may be the same or
different data types; and may be nonkey fields, keys
or split keys. All the components of one split key
must have the same key handle.

If a component field of a split key is also a key, that
field's description must be given twice: once to
describe it as a key field and once to group it with
the other components of the split key. This type of
field also has more than one key handle: one
handle of its own and one handle that is the same
as the other components of the split key.

When key values are compared (to determine the
order of records or to determine if values are equal)
the split key components are compared according to
the order in which they were declared in the key
description. If the two components have equal
values, the next component in the split key is
compared. This is repeated until a difference is
found.

Split keys cannot be used with segmented records.

17

Se'gmented Records

ISAM data files contain either segmented or
nonsegmented records. These record types cannot
be mixed in one file.

The address of a key field is given by a segment
number and an offset. For nonsegmented records,
the segment number is 1, In segmented records,
the segment number acts as an index to a segment
table, which must be inserted in front of each
record. The segment table is an array of 16-bit
offsets; this offset is the number of bytes from the
start of the record to the start of the segment.

For a given key n, the address of the key is the
address in the nth entry in the segment table, plus
any offset within the segment itself. A field length
of zero indicates that the field length equals the
length of the entire segment.

The number of segments, the segment table and
offsets within segments must be supplied in the
record and field descriptions when the file is
created. The segment table must be maintained by
the application programmer. For this reason, it is
strongly recommended that segmented records be
used only if variable-length key fields are needed.
Often, all fixed-size record fields are placed in the
first segment, and each variable-length string field
is placed in its own segment. The following
diagram illustrates a three-segment record with
three keys:

• Key 1 is fixed-length, begins at offset 10 into
the segment with a length of 4.

• Key 2 is in segment 2, begins at offset 0 and
occupies the entire segment.

• Key 3 is in segment 3, begins at offset 0 and
occupies the entire length of the segment.

Using IBM Personal Computer ISAM Files

6

Segment Table 20

35

Other fields
Segment #1

Key #1

Segment#2 Key#2

Segment#3 Key#3

If a data file contains segmented records, it is not
necessary for each record to contain the same
number of segments. All segments that contain
keys, however, must be present in each record. If a
segment that contains a key is missing from a
record, the status code, ixstat = 10 (key not found),
is returned.

Segmented records cannot contain split keys.

18

Record Description

The record description tells how many keys are in
the record, if the record is segmented or
nonsegmented and the minimum record allocation.
This information is given to ISAM as the array Rdes.

Rdes(1) = number of fields

The number of fields declared in the field descriptor
array.

Note-This includes both key and nonkey fields
and components of split keys.

Rdes(2) = segment-flag

If the record is nonsegmented, segment-flag = 0. If
the record is segmented, segment-flag =1.

Rdes(3) =minimum record allocation

If Rdes(3) = 0, then the minimum record allocation
defaults to eight bytes: five bytes of data and three
bytes overhead.

When a record is rewritten over a record that is too
small to contain the new record, ISAM makes the
old record into an indirection record. The indirection
record points to the location of the new, larger
record. By using indirection records, ISAM avoids
having to change every key that pointed to the old
record location. To make sure that every record is
big enough to hold an indirection record, the
minimum record allocation defaults to eight bytes.

Field Description

Whenever you create an ISAM file, you must
describe each key field that you are using; this is the
information used to build key files. You also can
describe nonkey fields. ISAM puts this information
in the data dictionary, at the beginning of the data
file. Whenever a file is opened, its data dictionary is
loaded into memory from the data file.

Using IBM Personal Computer ISAM Files

If you are using files created by IBM Personal
Computer SORT Version 1.00, you should be aware
that some of these files do not have a data
dictionary. When using these files, you must
specify the field description each time you open the
file.

It is recommended that you describe each field in
the record when you create an ISAM file. This
provides an easy way to identify each file and its
contents. Complete field descriptions can also be
used by other utilities to access field information.

Creating A Key Descriptor

Field descriptions are given to ISAM as a
nine-integer array, Kdes. The parameters that you
must supply for each field you describe are
explained below.

Kdes(1) =pointer-to-field-name

A pointer to a buffer that contains the name of the
field. The field name must be less than or equal to
40 characters. If no field name is supplied, this
pointer must be null. Field names can be used by
utilities, such as general file dump utilities, to access
fields in a data file.

Kdes(2) = 0

A reserved word area. It must be initialized to zero.

Kdes(3) =data-type

The data type of the field. The data type is set by
supplying one of the following words: INTEGER,
STRING, NUMERIC, SINGLE, DOUBLE.

Note-You must use the $INCLUDE metacommand
to include the file !SAM.INC in your program to set
these values. Once this file is included, you can set
Kdes(3) as in the following example:

KDES(3) = INTEGER

19

Kdes(4) = segment-number

The number of the segment containing the field.
For nonsegmented records, this number is always 1.

Segments are numbered from 1 ton where n is the
number of segments. Segment 1 is the first
segment in the record and segment n is the last.
Each segment can contain many fields but no field
can span more than one segment.

Kdes(5) =field-position

This is the position from the beginning of the
segment to the beginning of the key field (the offset
of the field in the segment). The first byte in the
segment is numbered 1.

Together, Kdes(4) and Kdes(5) comprise the field
address.

Kdes(6) =field-length

The length of the field in bytes. A zero length field
indicates that the field size is from the field segment
position to the end of the segment. If the field
length is variable, this number should always be
zero.

Kdes(7) =key-handle

Any value between 1 and n where n is the number
of keys. The convention is to assign key handles
beginning with 1 and starting with the leftmost byte
in the record. Using this convention makes it easier
to r.:emember key handles. Key handles can be
determined at run time by using the IGETKD
procedure to fetch key field descriptions.

Note-If you are defining a nonkey field, this
number is 0.

Kdes(8) [high byte] =duplicates-a/lowed flag,
descending flag, and case-insensitive flag

The duplicates-allowed flag = 1, the descending
flag = 2, and the case-insensitive flag = 4.

Using IBM Personal Computer ISAM Files

Add the values of the desired flags together and
enter that number as the high byte. For example, to
set the duplicates-allowed and case-insensitive
flags, use:

Kdes(8) = (256 * (1 + 4)) +field-mode

duplicates-a/lowed flag

A flag indicating whether duplicate values are
allowed for this particular field.

descending-flag

A flag inverting the meaning of comparisons
performed on this field. The result is that the
records are inserted into the key set in
descending instead of ascending order. It is
most useful with split keys where the ordering
of the different components might need to be
inverted.

case-insensitive-flag

A flag causing string-based data types to
ignore differences in case (for example, the
values 'FiRst' and 'first' would be equal).

Kdes(8) [low byte] =field-mode

Tells if the field is a key. If it is a key, it tells if it is a
split key.

If the field is a nonkey field, field-mode=O. If the
field is a nonsplit key field, field-mode=1. If the
field is a component of a split key, field-mode=2.

20

Kdes(9) =filler

A reserved word area. It must be initialized to zero. The following example shows typical
record and key descriptors:

DIM RDES(3), KDES(9)
'$INCLUDE: 'ISAM.INC'
RDES(l) = 1
RDES(2) = 0
RDES(3) = 8
FI ELDNAME$= II ID NUMBER II
KDES(l) = VARPTR(FIELDNAME$)
KDES(2) = 0
KDES(3) = INTEGER
KDES(4) = 1
KDES(S) = 1
KDES(6) = 2
KDES(7) = 1
KDES(8) = (1*256) +1
KDES(9) = 0

Using IBM Personal Computer ISAM Files

'1 Key field
'Nonsegmented
'Minimum record length

'Field name pointer
'Reserved-Set to zero
'Data type-Integer
'Segment 1
'Position 1
'Length of field in bytes
'Key number is 1
'Duplicates allowed-Nonsplit key
'Reserved-Set to zero

21

Examples

This example shows how to use a string
variable as a key:

I FILENAME = EX3.BAS

I $LINESIZE: 132

DEFINT A-Z

DIM RDES(3)
DIM KDES(9)

COMMON SHARED /ISAM/ IXSTAT,IOSTAT

COMMON /DATA.RECORD/ ENAME$,ID$

'$INCLUDE: 'ISAM.INC'

'Record Descriptor
'Key Descriptor

'Isam Status Variables

DEF FNSADD!(VARPOINTER) ' get the address of a string
' given the varpointer of the string

FNSADD! PEEK(VARPOINTER + 3)*256.0 + PEEK(VARPOINTER + 2)

END DEF
I

OPEN "NUL" AS #9 LEN=27

FIELD #9,
20 AS ENAME$,
7 AS ID$

'Open needed for FIELD

'Key field
'ID field

' Below we set up the record descriptor

ROES (1) = 1
RDES(2) = 0
RDES(3) = 0

FIELDNAME$ "EMPLOYEE NAME"

' Below we set up the key descriptor

KDES(l) = VARPTR(FIELDNAME$)
KDES(2) = 0
KDES(3) = STRING
KDES(4) = 1
KDES(5) = 1
KDES(6) = 20
KDES(7) = 1
KDES(8) = (0 * 256) + 1
KDES(9) = 0

Using IBM Personal Computer ISAM Files

'1 field declared
'Not segmented
'Default record allocation

'Field Name

'Field name pointer - first key
'Reserved - Set to 0
'Data type - String
'Segment 1
'Position 1
'Length of field
'Key number is 1
'Single, nonsplit key
'Reserved - Set to 0

22

FN$ = "EX3.DAT"

PRECDESC! = VARPTR(RDES(l))
PKEYDESC! = VARPTR(KDES(l))
PDATDESC! = FNSADD!(VARPTR(ENAME$))

KEYNUM = 1
KEYLEN = 20
RECSIZE = 27

'Data file name

'Pointer to the record descriptor
'Pointer to the key descriptor
'Pointer to the data descriptor

'Length of data record

' Below we open the file in create mode

CALL IOPEN(VARPTR(FN$), 3, PRECDESC!, PKEYDESC!, FILENUM)

IF IXSTAT <> 0 THEN PRINT "OPEN FAILED":STOP

INPUT "ENTER EMPLOYEE NAME AND ID# (0 TO QUIT)";NAME$,1$
WHILE VAL(I$) <> 0

LSET ENAME$ = NAME$
LSET ID$ = 1$
CALL IWRITE(FILENUM,PDATDESC!,RECSIZE)
IF IXSTAT = 13 THEN PRINT "RECORD NOT WRITTEN - DUPLICATE KEY"
PRINT
INPUT "ENTER EMPLOYEE NAME AND ID# (0 TO QUIT)";NAME$,1$

WEND

CALL ICLOSE(FILENUM)
IF IXSTAT <> 0 THEN PRINT "AFTER CLOSE, IXSTAT =";IXSTAT:GOTO DONE

CALL IOPEN(VARPTR(FN$), 2, PRECDESC!, PKEYDESC! FILENUM)
IF IXSTAT <> 0 THEN PRINT "AFTER OPEN, IXSTAT =~;IXSTAT:GOTO DONE

PRINT
INPUT "ENTER EMPLOYEE NAME FOR RECORD YOU WANT TO CHANGE";

NAME$
LSET ENAME$ = NAME$

CALL ISEEK(FILENUM, KEYNUM, PDATDESC!, KEYLEN, 2) ' GET EQUAL RECORD
IF IXSTAT = 10 THEN PRINT ENAME$;"NOT IN THE FILE":GOTO DONE
IF IXSTAT <> 0 THEN PRINT "SEEK FAILED - IXSTAT = ";IXSTAT:GOTO DONE

PRINT
INPUT "ENTER NEW EMPLOYEE NAME AND ID NUMBER" ;NAME$, 1$
LSET ID$ = I$
LSET ENAME$ = NAME$
CALL IREWRITE(FILENUM,PDATDESC!,RECSIZE)

IF IXSTAT <> 0 THEN PRINT "AFTER IREWRITE,IXSTAT = '';IXSTAT

DONE:
CALL ICLOSE(FILENUM)
IF IXSTAT <> 0 THEN PRINT "AFTER CLOSE #2, IXSTAT =";IXSTAT

CALL ICLOSE(FILENUM)

END

Using IBM Personal Computer ISAM Files 23

This program opens the file created with the previous example and prints out all the data
records.

Note that we don't have to assign values to the record and key descriptors, because we
are using a file that has already been created.

I FILENAME = EX4.BAS

I $LINESIZE: 132

DEFINT A-Z

COMMON SHARED /ISAM/ IXSTAT,IOSTAT 'Isam Status Variables

Def FNsadd!(varpointer) ' get the address of a string
' given the varpointer of the string

FNsadd! = peek(varpointer + 3)*256.0 + peek(varpointer + 2)

end def
I

Open "nul" as #9 Len=27 'Open needed for FIELD

Field #9,
20 as ENAME$, 'Key field
7 as ID$ 'ID field

FN$ = "EX3.DAT" 'Data file name
NULL! = 0

PRECDESC! VARPTR(NULL!)
PKEYDESC! = NULL!
PDATDESC! = FNSADD!(VARPTR(ENAME$)) 'Pointer to the data descriptor

KEYLEN = 20

RECSIZE = 27 'Length of data record

' Below we open the file in read/write mode

CALL IOPEN(VARPTR(FN$), 2, PRECDESC!, PKEYDESC!, FILENUM)
IF IXSTAT <> 0 THEN PRINT "AFTER OPEN #3, IXSTAT =";IXSTAT:GOTO DONE

PRINT: PRINT "THIS IS THE ENTIRE FILE : ":PRINT
CALL ISEEK(FILENUM, KEYNUM, PDATDESC!, KEYLEN, 0) ' GET EQUAL RECORD
AGAIN:
CALL !READ (FILENUM,PDATDESC!,RECSIZE)
IF IXSTAT <> 0 THEN PRINT "READ FAILED - IXSTAT =";IXSTAT
PRINT ENAME$,ID$
CALL INEXT(FILENUM,KEYNUM)
IF IXSTAT = 0 THEN GOTO AGAIN ' else the file is done

DONE:

CALL ICLOSE(FILENUM)

END

Using IBM Personal Computer ISAM Files 24

The Library Manager
The IBM Library Manager allows you to construct and edit object module libraries. Object files
and other library files can be added to a library and object modules can be removed and
erased from a library.

Command Line Format

The format of the command line is:

LIB [library-file[pagesize] operations [, [list-file]][, [newlib]][;]]

library-file

page size

is the name of a library file.

is an optional switch of the form,

"/pagesize:N" or "/p:N"

where N equals:

16, 32, 64, 128, 256 or 512.

By default, libraries under IBM DOS
are always multiples of 512 byte
blocks. Object modules always start
at the beginning of a new block. A
block is also called a page. If the
size of the object module is less
than a block, the rest of the block is
filled with null bytes.

When you specify value for page
size in the command line, the library
being created or modified contains
N byte pages.

The size of the library that you are
creating or modifying can increase
when you specify larger values for
page size. However, the time it
takes to link the library decreases
when you use larger page size
values.

The default value for the page size
switch is 512 if the library file is
being created, or the current page
size if the library file is being
modified.

Note--Version 2.30 of the Linker is
included with this version of the
BASIC Compiler 2.00. Previous
versions of the Linker cannot

The Library Manager

operations

list-file

new lib

recognize page size values less than
512. Therefore, you should always
use the latest version of the Linker.

is a list of operations to perform.
This list contains an operator plus
the name of the file you are adding.
The default is an empty list; no
changes occur. See 'Operators,'
later in this section, for a description
of the operators.

is a filename where a cross
reference listing will be placed. No
default extensions are used.

The default for [,list-file] is no list
file; a cross reference is not
generated. You are asked for this
entry if it is left empty.

defines the name of a library file to
be created with the changes
specified by the operations. The
default is the same name as the
library file. If you use the default,
the original file is renamed to have
the extension ' BAK' instead of
'LIB'.

The command line can be broken by a carriage
return at any point. You are asked for the remaining
parts of the command line. If a semicolon ends any
field after the library file name, the remaining fields
take on its default value. If you just specify LIB, you
are asked for all entries.

Note-You can have a device identification before
any of the entries that you specify in the command
line.

25

Operators

The operators recognized by the Library Manager
are:

+

*

Add the contents of an object file or a library
file.

Erase an object module.

Retrieve an object module and copy it into a
file whose name is the specified module name
plus the extension .OBJ.

These individual operators can be combined to
perform more complex operations. For example:

-+ Replace an object module with the contents
of the object file of the same name (plus
.OBJ).

-* Remove an object module and at the same
time erase it.

Many operations may be performed at once. If you
want to specify operations on more than one line,
follow your last operation with an'&' and a carriage
return.

The operations are performed in the following order:

1. Erasures and removals

2. Additions

Erasures and removals are performed in the order in
which the specified object modules occur in the
library. Additions are performed in the order you
specify.

Examples:

To add the file TEST.OBJ to the library BASIC.LIB
without producing a cross reference, type:

LIB BASIC.LIB+TEST.OBJ;

The Library Manager

Note that the following is the same as the preceding
example:

LIB BASIC+TEST;

Extensions are optional, and they default to .OBJ if
omitted. If you are using a library file that is in the
operations list, you must specify the . LIB extension.

To erase TEST from BASIC; LIB, type:

LIB BASIC-TEST;

To replace TEST in the library with a newer version,
type:

LIB BASIC-+TEST;

Note that the following also have the same effect:

LIB BASIC-TEST+TEST.OBJ;

LIB BASIC+TEST-TEST;

If you want to make the same change but put the
changes in a new library called BASNEW.LIB, any
of the following work:

LIB BASIC-+TEST,,BASNEW

LIB BASIC-TEST+TEST,,BASNEW

LIB BASIC+TEST-TEST,,BASNEW

If you want to create a library of object modules,
type:

LIB MYSUBS+FILE1.0BJ+FILE2.0BJ

. .. +FILEN.OBJ.

You are asked for the listing file.

26

The IBM Personal Computer Technical
Reference Manuals
The IBM Personal Computer Technical Reference
Manuals were redesigned after publication of the
revised manuals for the IBM PC and the IBM PCXT
in June 1984.

Common pages covering I I 0 devices and adapters
were removed from each manual and placed in an
Options and Adapters Reference Manual
(OARM). Now there is only system information in
each manual, thus creating a System Technical
Reference Manual.

This set of technical reference manuals consists of
two publications:

• One of the following System Technical
Reference Manuals (STRM):

6322507 IBM Personal Computer STRM or

6322508 IBM Personal Computer XT and
IBM Portable Personal Computer STAM

AND

• The Technical Reference Options and Adapters,
Volumes 1 and 2

6322509 OARM

A subscription service (Update Information Service)
is included with the Options and Adapters
Reference Manual. An enrollment card is placed
under the shrink wrap of the manual. When the
card is filled out and sent to IBM, technical
information updates are provided through June 30,
1985. In August 1984, the PCAT STRM (1502243)
IBM Personal Computer AT System Technical
Reference Manual was also added to this
subscripton service.

The IBM Personal Computer Technical Reference Manuals 27

Card Design Guideline
Advances in technology make it difficult to expect
items designed today to be totally adaptable to
future systems.

Consider the advances in system processors which
have gone from 8-bit to 16-bit. The increased
capability allows wider data paths and results in
continuing changes in system bus architecture and
physical layout.

With Very Large Scale Integration (VLSI)
technology, system units can be made even smaller,
and smaller units could restrict the physical size of
the adapter cards. This could require the cards to
be re-mapped for a future system. Processor
speed is another important consideration. Adapter
cards designed for slower processors may not run
on faster processors and vice versa because of
timing considerations.

There are, however, some general criteria which can
be followed in designing adapter cards to operate
across the family of IBM Personal Computers:

• 8-bit bus architecture*

• PC/PCXT physical card dimensions*

• Do not extend card area below the top of the
bus connector

Cards designed according to these criteria will
operate in the IBM PC, the IBM PC XT and the IBM
Personal Computer AT, except those cards which
have unique timing considerations.

If a developer wishes to take advantage of the IBM
Personal Computer bus, then change the bus design
but leave the other parameters the same. If more
space is needed than the PC I PCXT card dimension
allows, then a larger form factor is allowed for the
IBM Personal Computer AT. This, however, will
make the adapter card usable only in the IBM
Personal Computer AT.

* Adapter data available in technical reference
manuals

Card Design Guideline 28

IBM Personal Computer Seminar Proceedings
Volumes and Topics

V1 .1 Contains identical information as V1 .2

V1 .2 DOS 2.0 and 1 .1 Comparison
Compatibility Guidelines for Application Development
8087 Math Co- Processor
IBM Macro Assembler

V1 .3 DOS 2.1, 2.0 and 1 .1 Comparison
Disk Operation System 2. 1
IBM PCjr Architecture
IBM PCjr Compatibility Overview
Cartridge BASIC
IBM Personal Communications Manager-Modem Drivers

V2.1 IBM Software Support Center
International Compatibility Requirements

V2.2 IBM Software Support Center
International Compatibility Requirements
IBM Personal Computer Cluster Program

V2.3 IBM Personal Computer Cluster Program
Sort, Version 1.00
FORTRAN Compiler, Version 2.00
Pascal Compiler Tips and Techniques

V2.4 IBM Personal Computer AT Architecture
ROM BIOS Compatibility
DOS 3.0
Software Compatibility

V2.5 IBM PC Network Overview
IBM PC Network Hardware
IBM PC Network BIOS (NETBIOS) Architecture
IBM PC Network Program

V2.6 TopView

V2.7 IBM Personal Computer Resident Debug Tool

V2.8 IBM PC Network SMB Protocol

V2.9 IBM PC Xenix

V2.10 IBM PC Professional Graphics Software
IBM PC Graphical Kernel System
IBM PC Graphical File System
IBM Plotting System Library
IBM Professional FORTRAN
IBM PC Data Acquisition and Control Adapter and Software
IBM General Purpose Interface Bus Adapter and Software

V2.11 IBM Enhanced Graphics Adapter

V3.1 IBM PC Information Panel (3295 Plasma Display)

V3.2 IBM BASIC Compiler 2.00

IBM Personal Computer Seminar Proceedings 29

Notes

I BM Corporation
Editor, IBM Personal Computer Seminar Proceedings
4629
Post Office Box 1328
Boca Raton FL 33432

--....- ------ ------- - -- -. ---- - - ------ --_ _.._ .. _
®

