
Volume 3, Number 3 September 1985
IBM Personal Computer C Compiler

IBM Personal Computer
Seminar Proceedings

The Publication for Independent Developers
of Products

for IBM Personal Computers

Published by International Business Machines Corporation
Entry Systems Division

-~- .._ ------ - - --- _,. ---- -. ----- - - _._ _ ___ .., _ _ _.. - . -
®

Changes are made periodically to the information herein; any such
changes will be reported in subsequent Proceedings.

It is possible that this material may contain reference to, or
information about IBM products (machines and programs),
programming or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such products, programming or services
in your country.

IBM believes the statements contained herein are accurate as of
the date of publication of this document. However, IBM makes no
warranty of any kind with respect to the accuracy or adequacy
of the contents hereof.

This publication could contain technical inaccuracies or typographical
errors. Also, illustrations contained herein may show prototype
equipment. Your system configuration may differ slightly.
IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation
whatever.

All specifications are subject to change without notice.

Copyright©
I nternationa I
Business
Machines
Corporation
09/85

Printed in the
United States
of America

All Rights
Reserved

Contents
Introduction and Welcome . 1
Purpose .. 1
Topics . 1

IBM Personal Computer C Compiler .. 2
Overview ... 2

Command Line Processor . 3
Operation of CC ... 3
Prompts · ... 3
Redirected Input . 4
Command Lines . 5

Options ... 5
Memory Model Options (/A) . 5
Code Generation and Optimization Options (/G,/0) . 6
Floating-Point Options (/FP) . 7
Preprocessor Control Options (/D,/E,/l./U) . 7
Language and Compiler Control Options (/S,/W,/Z) . 8
Output File Control Options (/F) . 10
Help Option (/HELP) . 10

Memory Models . 11
Overview .. 11

Memory Models . 11
Small Model . 11
Medium Model . 11
Large Model . 12
Huge Model . 12
Mixed Model Programming . 12
Library Support For Mixed Model . 13
Huge Model Constraints . 13

Error Messages . 14
Overview .. 14

Command Line Error Messages . 14
Compilation Error Messages . 14
Fatal Error Messages . 14
Warning Messages . 14
Nonfatal Error Messages . 14
Errno Values . 15
Math Errors . 17
Run-Time Error Messages . 17
Error Messages Generated by Library Routines . 17
Execution Errors . 18
Floating-Point Exceptions . 18

Other Features and Utilities . 19
MAKE ... 19
Case Dependency . 19
CLINK . 19
Symbolic Debugger . 19

Summary .. 20

IBM Personal Computer Seminar Proceedings . 21

Questionnaire . 25

Contents

Introduction and Welcome
These are the Proceedings of the IBM Personal
Computer Seminar, designed for independent
developers of products for IBM Personal
Computers. The purpose of these Proceedings is to
aid you in your development efforts by providing
relevant information about new product
announcements and enhancements to existing
products. This issue is prepared in conjunction with
this seminar. The Proceedings of future seminars
for the IBM Personal Computers also will be
published and will cover topics presented at those
seminars.

Throughout this Proceedings (3.3), the terms
Personal Computer and family of IBM Personal
Computers address the IBM Personal Computer, the
IBM Personal Computer XT, the IBM Portable
Personal Computer, and the IBM Personal
Computer AT. The IBM Personal Computer
C Compiler is not supported on the IBM PCjr.

Purpose

What is our purpose in issuing a publication such as
this? It is quite simple.

The IBM Personal Computer family is a resounding
success. We've had a lot of help in achieving this
success, and much of it came from the independent
developers.

As you proceed with your development, do you at
times wish for some bit of information or direction
which would make the job easier? Information
which IBM can provide? This is the type of
information we want to make available to you.

Since we want to be assured of giving you the
information you need, we ask you to complete the

Introduction and Welcome

questionnaire which appears at the end of these
Proceedings. Your response to this questionnaire
will be taken into account in preparing the content
of future issues, as well as the content of seminars
we will present at microcomputer industry trade
shows.

Topics

The following list gives a general indication of the
topics we plan to cover in future seminars and
include in the IBM Personal Computer Seminar
Proceedings:

• Information exchange forum - letters to the
editor format

• Development tools - languages, database
offerings

• Compatibility issues

• New devices- capacities and speeds

• System capacities - disk and memory

• Enhancements in maintenance releases

• Tips and techniques

• New system software

• Hardware design parameters

• Tips on organizing and writing documents for
clear and easy reading

• Changes to terms and conditions

IBM Personal Computer C Compiler
Overview

The C language is a powerful, general-purpose
programming language that is capable of generating
efficient, compact and portable code. The IBM
Personal Computer C Compiler (referred to as CC) is
a high function C language compiler designed for
application programmers.

The C Compiler runs under the IBM Personal
Computer Disk Operating System (DOS, Versions
2.10 or later) and can coexist in an IBM Personal
Computer Network environment. In addition, the C
Compiler offers:

• High Performance

• Code Optimization Levels

• Comprehensive Symbolic Debugger

• Interrupt Support for System Calls (DOS and
BIOS)

• Selectable Memory Models (Small, Medium,
Large and Huge)

2

• Floating- Point Emulation

• 8087 /80287 Support

• Overlay Support (at link time)

• Library Manager

• Program Maintenance (MAKE)

• Macro Assembler Support

• 80286 Compile Option

The C language does not provide such standard
features as input and output capabilities and string
manipulation. The IBM Personal Computer C
Compiler provides these features as part of the
run-time library of functions. Because the functions
that require interaction with the operating system
are logically separate from the language itself, the C
language is especially suited for producing portable
code.

IBM Personal Computer C Compiler

Command Line Processor
This section describes the command line processor
and the available options for the IBM Personal
Computer C Compiler. The processor is called 'cc'.

The general capabilities provided by CC are as
follows:

• Compiles one source file at a time

• Can use several methods for input of filenames
and options:

Prompts

Full command line (may be redirected)

• Access a wide range of options covering such
items as:

Generation of assembly and combined
source/object code listings

Methods for handling floating point
operations

Type of optimization performed

Preprocessor control, including definition of
macro names

Control of search paths for include files

Selection of memory model and target
processor

Emission of debugging information

Operation of CC

Unlike Pascal and FORTRAN, which require the user
to invoke each of the compiler passes separately,
CC handles everything. It takes the information
supplied to it in the form of source, object, source
listing, and object listing filenames and options, and
invokes each of the compiler passes, passing to
them the information needed to correctly execute
the passes in light of the options selected.
However, the interface seen by the user is much the
same as that used by other IBM languages and
utilities such as Pascal, FORTRAN, the linker and
the library manager.

Command Line Processor

CC can gather the information it needs using two
basic methods:

• Prompts

• Command lines (may be redirected)

Each of these methods is described in more detail in
the following sections.

Prompts

This is the default mode of operation for CC.
Typing CC will cause the driver to prompt for the
information it needs in order to compile the
program. There are four basic items of information
which CC will prompt the user for:

• Pathname for the source file to be compiled
(required)

• Pathname for the generated object file (optional,
defaults if omitted)

• Pathname for the generated source listing file
(optional)

• Pathname for the generated object listing file
(optional)

The driver will prompt for each of these items in the
order given above. With the exception of the
source file name, each of the prompts will have a
default file name which will be used unless the user
overrides it by providing a different file or pathname
for that prompt. In addition, each of these items
will have a default filename extension which will be
used unless the user overrides it explicitly. The
prompts will look as follows:

• Source filename (.C):

• Object filename (basename.OBJ):

• Source listing (NUL.LST):

• Object listing (NUL.COD):

3

The source file name is required. If the user does
not give a file name in response to this prompt, an
error message will be displayed and the program
will be terminated. The default filename extension
.C is assumed, so no extension is required for the
filename given. The user may override this by giving
a filename with any extension desired, or by giving a
filename followed by'.' if no extension is desired.

The object filename defaults to the basename of the
source filename given in response to the previous
prompt (the basename is the name minus the
extension). The default extension for the object file
is .OBJ, and it will be used if the user responds to
this prompt with a filename without an extension.
The user may override this by giving a filename with
any extension desired, or by giving a filename
followed by '.' if no extension is desired. The user
may also specify a directory name in response to
this prompt, in which case the object file is created
in the specified directory using the default filename
as defined above. In order to distinguish a directory
name from a filename, the directory name must be
terminated by a' \' (backslash) character.

The source listing filename defaults to NUL.LST,
which means that no source file listing is created. If
a filename with no extension is given in response to
this prompt, the default extension .LST is appended
to the given filename. The user may override this by
giving a filename with any extension desired, or by
giving a filenname followed by '.' if no extension is
desired.

The object listing filename defaults to NUL.COD,
which means that no object listing is created. If a
filename with no extension is given in response to
this prompt, the default extension .COD is
appended to the given filename. The user may
override this by giving a filename with any extension
desired, or by giving a filename followed by '.' if no
extension is desired.

4

Other compilation options may be specified, either
before or after any of the filenames for any of the
prompts. These options are described later in this
document. Typing';' in response to any of the
prompts causes the driver to cease prompting for
the remaining files and use the default values for
those prompts.

Examples:

cc
Source filename [.C] :DEMO;

This causes the program DEMO.C (see sample
program) to be compiled and the default names to
be used for the remaining prompts. This means the
object file is named DEMO.OBJ and no source or
object listing files are created.

cc
Source filename [.C] :SIEVE.C
Object filename [SIEVE.OBJ] :SIV
Source listing [NUL.LST] :SIEVE
Object listing [NUL.COD] :SIV.OUT

This would compile the program SIEVE.C and
generate an object file named SIV.OBJ, a source
listing file named SIEVE.LST and an object code
listing named SIV.OUT.

Redirected Input

Since the compiler must be run under DOS 2.1 (or
higher) and these versions of DOS support
redirection of terminal input, this method
(redirection) is available rather than response files.
The advantage is that CC does not have to open and
read another file to get its input, thus adding code,
but can instead operate independent of whether the
input is actually being read from the terminal or a
file.

Command Line Processor

Command Lines

There is also a command line form which can be used. The syntax for this is as follows:

CC Source-file [, [object-file] [, [source-listing] [, [object-listing]]]] [;]

The source file name is required. This is followed
by optional comma-separated fields giving the
names for the object file, source listing and object
listing file. If ' ; ' is present, it terminates the
command line and causes any omitted fields to be
given the default values as defined above for the
prompting mode. The file names following each
comma also are optional and, if omitted, default file
names are used for each of the omitted names.

The presence of a comma causes the default file
names to be changed to the basename of the
source file with the default extension as defined
above for each field. The user also may specify a
directory name for any of the optional filenames, in
which case the file is created in the specified
directory using the default filename as defined
above. In order to distinguish a directory name
from a filename, the directory name must be
terminated by a ' \ ' (backslash) character. If the
command line is not terminated by ' ; ' and not all of
the fields are given, CC will revert to the prompt
mode for the omitted file names. Options may be
given anywhere a space may occur. This is identical
to the Pascal and FORTRAN compilers.

Options

A wide variety of options are available when using
the C compiler. These options are fully described in
the following sections by their general categories
and are again listed in alphabetical order in the last
section. Options are indicated by either a leading
' I' or ' - ' character.

Command Line Processor

Memory Model Options (/Al

The C compiler has the capability to generate code
for four standard memory modes and has library
support for each of these models.

The memory model is selected via the I A option.
There are four of these:

I AS - Select the 'small ' memory model (default)

I AM - Select the 'medium ' memory model

I AL - Selects the 'large' memory model

I AH - Selects the 'huge' memory model

Programs compiled using the 'small' memory
model can have a maximum of 64K of code and 64K
of data. Programs compiled using the 'medium'
memory model can have up to 1 M (megabyte) of
code and a maximum of 64K of data. Programs
compiled using the ' large' memory model can have
up to 1 M of code and 1 M of data. Limits can be
circumvented to some extent by the use of the near,
far and huge language extensions. Programs
compiled using the 'huge' memory model are
allowed to declare arrays larger than 64K. Only one
memory model option can be selected in a given
compilation.

5

Code Generation and Optimization Options
(/G,/O)

The C compiler can generate code for the
8086/8088, 80186/80188 or the 80286 processor
depending on the target selected. Code generated
for the 8086/8088 will run on any of the
processors. Because the 80186/80188 and 80826
processors use an extended instruction set, code
generated using one of these options cannot be run
on an 8086/8088 processor. However, code
generated for the 80186/80188 will run on an
80286.

The available code generation options are as
follows:

/GO - Generate code for 8086/8088 processor
(default)

/G1 - Generate code for 80186/80188 processor

I G2 - Generate code for 80286 processor

/GS - Suppress generation of stack checking code

/GT - [Number] - Set data size threshold to
number (default is 256 bytes)

The compiler normally generates a call to a stack
checking routine (chkstk) on entry to each
function. This sets up local frame and detects any
possible stack overflow. The I GS option tells the
compiler to suppress this call and set up the stack
frame in line, without checking for possible stack
overflow. This results in faster and smaller code but
is not recommended for routines which have large
stack frames or are heavily recursive. The data size
threshold option, /GT, is used only when compiling
a program in a 'large' or 'huge' model. All
structures and arrays larger than the threshold size
are allocated their own data segments. The default
size is 256 bytes, but this can be changed to any
value desired using the /GT switch. Only one of the
/GO, /G1 or /G2 options may be selected in given
compilation.

The compiler optimizes the generated code by
default. However, it also can be instructed to
disable optimizations or to optimize for either
maximum speed or for minimal code size.

6

The available optimization options are as follows:

/OA - Assume no 'aliasing' during optimization

/OD - Disable optimizations

I OS - Optimize for minimal code size (default)

/OT - Optimize for maximum speed of execution

/OX - Perform maximum optimization (equivalent
to /OA/OS/GS

The I OA option instructs the optimizer to ignore the
possibility of pointer 'aliasing'. Normally, the
compiler assumes that for any variable reference
there also may be a pointer to this variable, which
means that if 'p' is a pointer to an integer and 'i' is
an integer, then '*p' is a possible 'alias' for 'i'. It
also assumes that you may be referencing the
integer directly and indirectly (through the pointer) in
the same routine. Thus, any time there is a store
into the data location referenced by '*p'. you also
may be changing the value of 'i', so any knowledge
about such values is lost at that point. Using the
I OA option instructs the compiler that you do not
reference memory locations using two different
names, and so it can make assumptions about such
values which would not otherwise be true and
produce better code as a result. This is particularly
nice in the case of multiple references to members
of a structure through a pointer to the structure.

The /OD option makes it easier to follow code
during the debugging phase of program
development. It suppresses the optimizations that
perform some code movement and make the code
difficult to follow.

The /OS and /OT options tell the compiler how to
decide which code sequence to generate in cases
where there are two different but functionally
identical code sequences available for an operation.
The I OS option tells the compiler to choose the
sequence which takes the least amount of code
space, whereas the /OT option tells the compiler to
choose the sequence which will execute fastest.

The /OX option is simply a shorthand notation for
·do maximum possible optimization'. It assumes
no aliasing or optimizing for minimum space, and it
suppresses stack overflow checking.

Command Line Processor

The I OA option may be used with the I OS or the
/OT options in the same compilation. If the /OD
option is used, it overrides any other optimization
options given and no optimization is performed. If
the I OX option is given, it overrides any other
optimization options given.

Floating-Point Options (/FP)

The compiler can generate code for handling
floating point operations in either of two ways, and
the resulting object code can be linked in one of
three ways, depending on the options chosen. The
options provide trade-offs between the size of the
final program and the speed of operation, and also
specify whether or not an 8087 I 80287
co-processor is used (if one is present).

The compiler can generate either in-line 8087
instructions or calls to run-time routines which
perform the given operation. If in-line 8087 code is
generated, the program may be linked either with an
8087 emulator or with a special 8087 library. If the
emulator is chosen and an 8087 /80287 is present,
the chip will be used, otherwise the instructions will
be emulated. If the special 8087 library is linked in,
an 8087 /80287 must be present for the program to
run.

If the run-time calls are generated, the program
may be linked with the emulator or the 8087 library,
as above, and the same conditions hold. It also may
be linked with an alternate math library, which is
smaller and faster than the emulator, but gives
slightly less precision in the result.

This is very similar to the options available for
handling floating-point operations in Pascal and
FORTRAN compilers.

Use of any of these options causes library search
records to be emitted into the generated object
module for the appropriate floating-point libraries
for that option. This can be overridden at link time,
and any library compatible with the method chosen
can be used. The search record generation can be
suppressed via the /ZL option (described in a later
section).

Command Line Processor

The available floating point options and their
meanings are as follows:

/FPC - Generate calls to run-time routines and
link with the emulator (default)

/FPC87 - Generate calls to run-time routines an9
link with the 8087 library

/FPI - Generate in-line 8087 instructions and
link with the emulator

/FPl87 - Generate in-line 8087 instructions and
link with the 8087 library

/FPA - Generate calls to run-time routines and
link with the alternate math library

The run-time call interface was chosen as the
default because code compiled under this option
can be linked with any of the floating point libraries
without having to recompile the program.

Preprocessor Control Options (/D,/E,/l,/U)

The C language uses a preprocessor to handle
macro substitution, include files, and conditional
compilation. Although it is treated as if it were part
of the compiler, the preprocessor can be used on
any text file which contains preprocessor directives
and not just source files. (Preprocessor directives
are lines which begin with a #define, #elif, #else,
#endif, #if, #ifdef, #ifndef, #include, #line or #undef
symbol.) CC has a set of options which directly
control the operation of the preprocessor. These
options provide the capability to run the
preprocessor by itself and generate its output in
human-readable form, define macros, and
add/ delete search paths for include files.

The available preprocessor control options and their
meanings are as follows:

I Dname [=string] - define name as a macro during
this compilation

/E

I I directory

/Uname

- preprocess source file and write
to standard output (stdout), with
#line directive the output

- add directory to the search path
for include files

- remove definition of the
predefined macro name

7

The IE option causes the source file to be
preprocessed and the output written to stdout
(normally the console screen, but it may be
redirected). The preprocessor strips comments
from the source. The preprocessor inserts a #line
directive in the source file to aid the compiler in
determining the actual line number for error
messages. The output of the IE option can be
redirected to a file and later resubmitted to the
compiler for continued compilation.

The compiler uses the INCLUDE environment
variable to determine a list of 'standard directories'
in which to look for include files. (The current
directory is used if no INCLUDE environment
variable exists.) This list can be added to using the
/I option.

Macros can be defined on the command line using
the /D option. These macros then act as if they
were defined at the beginning of the source file.
This is extremely useful for 'make' files and
conditional compilation, since it allows the source to
be compiled in a number of ways without having to
edit the source file each time a different definition is
needed. There are three ways that the macro can
be defined:

/Dname

causes name to be defined and given the value 1.
This is equivalent to putting the line

#define name 1

at the beginning of the source file.

/Dname=

causes name to be defined and given a single space
(blank) character as its value. This is equivalent to
putting the line

#define name

at the beginning of the source file.

I Dname=string

causes name to be defined and given the value
specified by string. It is equivalent to putting the
line

#define name string

at the beginning of the source file.

8

CC has several predefined macro names that are
automatically passed to the preprocessor to aid in
creating code which may be ported to a different
environment or which may be compiled in a
different memory model. These names are DOS,
M 186 and M 186xM, where x is replaced by S,
M:L or H depending on the memory model used.
They are defined using the first type of the ID
option shown above (e.g.,/DDOS). The /Uname
option causes the predefined macro name to be
undefined.

Language and Compiler Control Options
(/S,/W,/Z)

These options control the use of language
extensions and how the compiler operates. Such
things as the level of compiler warnings and the
kind of information generated are controlled by
these options. The available options and their
meanings are as follows:

/S - performs syntax checking only on
the source file; no code is generated
and no object file created

/Wnumber - controls the type and amount of
warning messages emitted by the
compiler (/W1 is the default)

/ZD - emits line number and symbol table
information for use by a symbolic
debugger into the object file

/ZE - enables the extended keywords,
near, far and huge

/ZG - generates function declarations for
fonctions defined in the source file
and writes them to stdout

/ZL - suppresses generation of library
search records in the object file

/ZP - forces members of a structure to be
packed

Command Line Processor

The C language allows many type conversions and
statements which are potentially erroneous or
dangerous, but which are legal and may be used
intentionally by an expert programmer. The
compiler will attempt to warn the user about many
of these, without terminating the compilation. The
/W option can be used to control the number and
kind of warnings which are emitted. The number
may range from 0 (suppress all warnings) to 3 (warn
about all questionable constructs). The default
value is set to /W1.

The C compiler has been extended with three
keywords, near, far and huge, to allow the user to
take full advantage of the architecture of the 8088
family of processors and to create arrays larger than
a segment (64K). Since these keywords are not part
of the standard C language, they must be enabled
via the /ZE option in order to be used. If this
switch is not given, they are treated as normal
identifiers in the program and will cause compilation
errors if used as if they were extensions.

The C compiler has tried to anticipate developments
in the C language stemming from the ANSI
standard for C, which is currently under
development. One of these is the ability to declare
the types of the formal parameters of a function and
have the compiler perform type checking on the
actual parameters to these functions. This
capability is implemented in the C compiler.
However, since it is a new feature in C, old
programs do not contain such declarations. To
make it easier to implement such declarations in
new code as well as existing code, the C compiler
can be instructed, via the /ZG option, to generate
such declarations automatically for each function

Command Line Processor

defined in the source file. The source file is lexically
analyzed and the declarations are created and
written to stdout. This output can be redirected into
a file, which can then be included in the source file,
to automatically enable this type checking capability
when the source is subsequently compiled. No
code is generated and no object file is created when
this option is selected.

The compiler normally emits library search records
into each object module for the appropriate
floating-point libraries (see the section on
floating-point options) and the appropriate C library.
The linker reads these records and uses them to
determine which libraries to search for at link time.
This option can be suppressed using the /ZL
option. This is useful when creating objects which
are intended to reside in a user-created library since
the search records are not needed in library
routines. (The objects with which the library is
linked will contain the search records, which is
sufficient to cause the linker to search the specified
libraries.) As a result, the object modules (and thus
the library) will be smaller.

The compiler normally aligns each member of a
structure larger than a byte on a word boundary.
Using the /ZP option forces the compiler to 'pack'
the structure so that each member, regardless of its
size or type, begins on the next byte boundary. This
saves space and also may be useful in accessing
structures which were defined in assembly language
routines; however, this also may result in larger and
slower code when accessing the members of the
structure.

9

Output File Control Options (/F)

The compiler is capable of generating various kinds
of object listing files. The standard object code
listing filename is one of the items which is supplied
to the driver via the prompts. It contains a listing of
the generated object code, with offsets and
machine code listed next to the machine language
instructions. The compiler also is capable of
generating an assembly listing which is acceptable
as input to the IBM Personal Computer Macro
Assembler (/FA). Another option mixes the source
file and the object code listing file into a combined
listing, showing the object code generated for each
source line (/FC). The latter is particularly useful
when debugging large, complex programs.

The available options are as follows:

/FA(filename) - generates an assembly code
listing in the file filename which
can be used as input to the Macro

.Assembler

/FC(filename) - generates a combined source and
object code listing in the file
filename

If more than one option is given, or if one of the
options above is given as well as a response to the
object listing prompt, then the following rules hold:

1. If the /FC option is given, a combined listing is
always produced.

2. If both an assembly listing and a standard object
listing are requested, the standard object listing
will be produced.

10

The filename arguments to these options are
optional and, if left off, the filename defaults to the
basename of the source file with the extension
.ASM (for the /FA option) or .COD (for the /FC
option). Filename also may be the name of a
directory, in which case the listing file is created in
the named directory with the default names as
defined above. If a directory name is given for
filename, it must be terminated with a ' \ '
(bac!<slash) character.

Help Option (/HELP)

This option allows the user to get a listing of
available options (/HELP).

The form of this option is as follows:

/HELP - prints a list of the available options on the
console screen

If this option is given, no compilation is performed,
but a listing of the available options, followed by a
short description of their function, is printed to the
screen.

Command Line Processor

Memory Models
Overview

This section discusses the different C Compiler
memory models available varying for the
8086/8088, 80186/80188 and 80286 processors.

The segmented architecture of the 8088 family of
microprocessors lends itself to a number of possible
methods for handling memory usage in C programs.
All these processors have four segment registers:
CS, DS, ES and SS. The CS register is assumed to
always point to the current code segment; the DS
register is assumed to point to the current data
segment; the SS register is assumed to point to the
current stack segment; and the ES register is the
' extra ' segment register which can be used to point
to an arbitrary segment.

Instructions which involve code segment references,
such as CALL instructions always use the CS
register to determine which segment the code
resides in. This means that to call functions
resident in the current code segment, only a 16-bit
offset value is needed. If the routine resides in
another segment, a ' long call ' is needed. The
' long call ' takes both the new value to be put into
CS as well as the offset of the function within that
segment. This requires more code and takes longer
to execute.

Data references may use either the DS or SS
segment register values, depending on the
addressing mode used. DS is used by most
addressing modes; however, addressing modes
involving either the SP or BP registers use the SS
segment register. Although it is not strictly
required, the memory models used by the C
compiler assume that both SS and DS contain the
same segment value (that is, the stack and the static
data all reside in a single 64K segment).

To access data in other segments, the ES register is
generally used. The segment value of the data is
loaded into ES and the data is accessed by
overriding the default data segment for the
instruction with the ES value.

The register structure imposes some rather tight
constraints on a code generator that tries to
generate small, efficient code for programs with
widely varying code and data requirements. This
structure permits only 64K per segment, and only

Memory Models

four segments are addressable at any given time.
Also, the cost of addressing other segments is fairly
high. As a result of these constraints, four common
memory models have been evolved to handle the
different requirements which may be imposed by
various types of programs.

Memory Models

The 'standard ' memory models are commonly
referred to as the small, medium and large
models. In addition to these models, IBM has
implemented an extended version of the large
model, called the huge model, to handle arrays
larger than 64K.

Small Model

The 'small' model assumes that there is at most
64K (one segment) for code and 64K for data and
stack. This allows the compiler to generate very
efficient code since the segment register values are
fixed at load time and never need to be changed or
overridden. All pointer values in small model C
programs require just 16 bits, to hold the offset of
the code or data value from the base of the code or
data segment. However, programs with very large
amounts of data or code may not fit within these
limits.

Medium Model

The 'medium ' model assumes that there may be
multiple code segments, each up to 64K in size, but
only a single 64K data segment. This requires long
calls to be used for all function calls. (Both segment
and offset of the called routine must be specified.)
Code addresses (function pointers) must be 32 bits
to hold both the segment and offset of the function.
However, data pointers remain 16 bits and all data
references can use only the offset value from the
base of the default data segment. This model
provides a tradeoff between speed of execution
(long calls are slower since the code segment
register is often changed) and code size (since there
usually are far more data references than function
calls).

11

Large Model

The 'large' model assumes that there are multiple
code segments and multiple data segments. This
means that all data and code references require
both a segment and offset, so all addresses are 32
bits long. This is used primarily for programs which
require very large amounts of code and/or data.
Because each data reference must load a segment
value, code generated for this model will generally
be much slower and larger than for the other
models (except Huge). However, it gives the user
the ability to use all of the available memory.

Huge Model

In order to accommodate programs which need to
be able to handle arrays larger than the 64K, the C
compiler has added a new model, called the 'huge'
model. This model is similar to the 'large' model,
but the compiler allows arrays larger than 64K to be
declared and operated on. Because of the way in
which C treats arrays and pointers, pointer
arithmetic, so common in C programs, must
recognize that the item being pointed to may be
larger than 64K and simple offset arithmetic cannot
be used. This causes another increase in the size of
the code and a decrease in the efficiency of the
code involved in both accessing and pointer
arithmetic.

For example, the common C statement

p++;

(where p is a pointer to int, for example) is no longer
a simple increment operation since the increment
may cross a segment boundary.

12

Mixed Model Programming

The IBM C Compiler defines four standard memory
models (small, medium, large and huge) to
accommodate programs with different memory
requirements.

One limitation of the predefined memory model
structure is that pointers for code or data
immediately change size when you change memory
models. To overcome this limitation, the IBM C
Compiler lets you override the default addressing
convention for a given memory model and access
an item with either a near, far or a huge pointer.
This is particularly useful when you have a very large
or infrequently used data item that you want to
access from a small or medium model program.
You can access that item in another segment,
saving space in your default data segment.

The special keywords near, far and huge can be
used to declare near, far and huge data items and
pointers. To use these special keywords in a
program, you must specify the /ZE option at
compile time to enable the keywords. Without the
/ZE option, the compiler will treat near, far, and
huge as ordinary indentifiers, causing program
errors.

The near keyword defines an object with a 16-bit
address. The far keyword defines an object with a
full 32-bit segmented address. Any data item or
function can be accessed with a far pointer.
However, the size of a far data item is restricted to
64K bytes maximum (one segment). The address
arithmetic required to refer to individual elements of
a far item is performed on just 16 bits (the offset
portion) of the address because all elements are
known to reside in the same segment.

The huge keyword identifies a data object with a full
32-bit segmented address. A huge data item can
exceed 64K bytes. Because elements of a huge
array occupy more than one segment, full 32-bit
address arithmetic is required to refer to individual
elements of the object.

In medium, large and huge model programs, near
lets you access data with just an offset. In small,
medium or large model programs, the huge keyword
lets you declare and access an array spanning more
than 64K bytes (one segment).

Memory Models

When using the near, far and huge keywords to
modify addressing conventions for particular items,
you usually can use one of the standard libraries
(small, medium or large) with your program. The
large model libraries are also used with huge model
programs. However, you must take care when
calling library routines; for example, you cannot
pass far data items to a small model library routine.

Since there is no type-checking between items in
separate source files, the near, far and huge
keywords should be used with great care.

Library Support For Mixed Model

Most C programs make function calls to the
routines in the C run-time library. Library support is
provided for the four standard memory models
(small, medium, large and huge) through three
separate sets of run-time libraries. When you write
mixed model programs, you are responsible for
determining which library (if any) is suitable for your
program and for ensuring that the appropriate
library is used.

When using the near, far and huge keywords to
modify addressing conventions for particular items,
you can usually use one of the standard libraries
with your program. However, you must take care
when calling library routines; for example, you
cannot pass far data items to a small model library
routine.

Huge Model Constraints

In the current definition of memory models for
languages, 'large' model is defined as having
32-bit code pointers and 32-bit data pointers.
Arithmetic involving addresses (array references,
pointer manipulation, etc.) only involves the low
order 16 bits of an address. Thus, data structures
involving address calculations (arrays, unions or
structures) must have a size less than 64K. Huge
model is an attempt to remove this restriction.

For this section, an 'object' is defined as data
structures that can be elements of an array: scalar
objects (integers and floating-point numbers) and
composite objects (structures and unions).

Memory Models

There are a few constraints necessary in defining
huge model. Address arithmetic is more expensive
than in large model, so efficiency is of some
concern. Compatibility with existing languages is
required.

To meet these constraints, huge model has the
following restrictions:

1. Structures and unions are not permitted to cross
segment boundaries.

2. The address space must simulate a linear
address space.

3. Arrays of objects requiring more than a segment
must align to 64K boundaries.

What are the consequences of these restrictions?
No structure or union can be greater than 64K. If an
array is greater than 64K but less than 128K, then it
can be offset within a segment to ensure that the
objects align to the 64K boundry. If the array
requires three or more segments (greater than
128K), then the size of the objects in the array must
be a power of two (this is true for scalar objects;
composite objects will be padded by the compiler).
There are two ways that huge address calculations
can be required: (1) discrete arrays or pointers can
be declared as 'huge' (keywords or attributes), and
(2) all addressing can be declared as 'huge' (huge
model).

What arithmetic is required that involves addresses?
There are pointer increment/ decrement operations
(add/subtract one object size to a pointer) and
static address calculations (static array indexing).
Finally, there are based address calculations (pointer
to structure element, indexing into an array on a
stack frame). The code sequences for each of these
operations are almost the same as long integer
addition except the segment calculations involve
shifting the segment calculation.

The large model libraries are also used for huge
model programs.

13

Error Messages
Overview

This section discusses error messages for warnings
and errors issued by the C compiler, including the
command line processor (referred to hereafter as
'CC'), and by programs which were compiled by
the C compiler.

Several types of error messages may be
encountered when running the C compiler or when
executing programs compiled by the C compiler.
They are:

• Errors issued by the command line processor

• Errors issued by the compiler

• Errors issued at run-time, as the program is
being executed.

Command Line Error Messages

The C compiler will issue both error and warning
messages. When possible, it will issue a warning
and continue, while in other cases it will issue an
error message and terminate the compilation. For
example, if conflicting listing options are specified,
CC will choose one, warn the user that conflicting
options were given and state which one will be
used. However, some conflicts such as giving too
many /D options, may cause CC to terminate the
compilation.

Compilation Error Messages

There are three types of messages which can be
issued at compile time:

• Fatal error messages

• Warning messages

• Nonfatal error messages

14

Fatal Error Messages

Fatal error messages are issued when the compiler
finds it impossible to continue the compilation; for
example, unexpected end-of-file in the source file.
In these cases the compiler issues a message
indicating a fatal error and describing the error; the
compilation is then terminated.

Warning Messages

The compiler issues warning messages when it
encounters questionable or potentially erroneous,
but syntactically legal, constructs in the program
source. These messages are not fatal, and do not
prevent the program from being fully compiled and
an object module created. It is left up to the
individual user to determine if the construct was
written as intended or is indeed, in error. The user
also may control the number and type of warning
messages emitted via the /W command line option.

Nonfatal Error Messages

This section lists and describes the values to which
the errno variable can be set when a error occurs in
a call to a library routine. Note that only some
routines set errno upon error explicitly mention the
errno variable. If no .mention of errno occurs, the
routine does not set errno.

An error message is associated with each errno
value. This message, along with a user-supplied
message, can be printed by using the perror
function ..

The value of errno reflects the error value for the
last call that set errno The errno value is not
automatically cleared by later successful calls.
Thus, you should test for errors and print error
messages, if desired, immediately after a call to
obtain accurate results.

The include file errno.h contains the definitions of
the errno values.

Error Messages

Errno Values

The following list gives only the errno values used under DOS, the system error message
corresponding to each value and a brief description of the circumstances that cause the error.
The list includes the errors produced by math routines. These errors correspond to the
exception types defined in math.hand returned by the matherr function when a math error
occurs.

Value

E2BIG

EACCES

EBADF

EDEADLOCK

EDOM

EEXIST

EINVAL

EM FILE

Error Messages

Message

Arg list too long

Permission denied

Bad file number

Resource deadlock
would occur

Math argument

File exists

Invalid argument

Too many open files.

Description

The argument list exceeds 128K bytes or the space
required for the environment information exceeds 32K
bytes.

Access denied; the file's permission setting does not allow
the specified access. This error can occur in a variety of
circumstances; it signifies that an attempt was made to
access a file (or, in some cases, a directory) in a way that
is incompatible with the file's attributes. For example, the
error can occur when an attempt is made to read from a
file that is not open or to open an existing read-only file
for writing. Under DOS 3.0 and later, EACCES may also
indicate a locking or sharing violation. The error also can
occur in an attempt to rename a file or directory or to
remove an existing directory.

The specified file handle is not a valid file handle value or
does not refer to an open file, or an attempt was made to
write to a file or device opened for read access (or vice
versa).

Locking violation; the file cannot be locked after ten
attempts (DOS Version 3.0 and later only).

The argument to a math function is not in the domain of
the function.

The 0 Creat and 0 EXCL flags are specified when
opening a file, but thenamed file already exists.

An invalid value was given for one of the arguments to a
function; for example, the va'lue given for the origin when
positioning a file pointer is before the beginning of the file.

No more file handles are available.

15

Value

ENO ENT

ENO EXEC

EN OM EM

ENOS PC

ERANGE

EX DEV

16

Message Description

No such file or directory The specified file or directory does not exist or cannot be
found. This message can occur whenever a specified file
does not exist or a component of a pathname does not
specify an existing directory.

Exec format error An attempt is made to execute a file that is not executable
or has an invalid executable file format.

Not enough memory Not enough memory is available. This message can occur
when insufficient memory is available to execute a child
process or when the allocation request in a sbrk or
getcwd call cannot be satisfied.

No space left on device No more space for writing is available on the device (for
example, the disk is full).

Result too large An argument to a math function is too large, resulting in
partial or total loss of significance in the result. This error
also can occur in other functions when an argument is
larger than expected; for example, when the pathname
argument to the getcwd function is longer than expected.

Cross-device link An attempt was made to move a file to a different device
(using the rename function).

Error Messages

Math Errors

The following errors can be generated by the math
routines of the C runtime library. These errors
correspond to the exception types defined in
math.h. and returned by the matherr function when
a math error occurs.

Error

DOMAIN

OVERFLOW

PLOSS

SING

TLOSS

Description

An argument to the function is
outside the domain of the function.

The result is too large to be
represented in the function's
return type.

A partial loss of significance
occurred.

Argument singularity: an argument
to the function has an illegal value
(for example, passing the value
zero to a function that requires a
nonzero value).

A total loss of significance
occurred.

UNDERFLOW The result is too small to be
represented.

Run-Time Error Messages

Because of the nature of the C language and its
historical background, very few run-time error
messages are ever issued. Unlike languages such
as Pascal, the C Language philosophy has been that
errors, such as passing a NULL pointer to a st~ing
handling function need not be caught by the
function but are the province of the user to find.
Such errors may or may not cause the program to
fail because of hardware memory protection, but the
functions are written to assume that arguments
passed to them are valid. This makes the functions
as fast and as small as possible and frees the
careful programmer from forcing run-time checks to
be executed whenever a library function is invoked.

There are three categories of run-time error
messages:

1. Error messages generated by functions in the
run-time library

2. Execution errors

3. Floating-point exception errors

Error Messages

Error Messages Generated by Library Routines

The first category involves messages issued by the
abort, assert, perror and floating-point math
functions (e.g., sin, log, sqrt, etc.). These messages
are unique in that they can be generated only if the
user explicitly calls one of these library functions in
his program.

The abort function is used to force an abnormal
program termination due to some fatal error which
the programmer has detected in his code. This
function is called only when the user explicitly codes
it into his program; none of the other library
functions use it. It issues a message to standard
error (stderr) stating that the program was aborted.

The assert function is similar to the abort function
except it first tests the value of an expression,
provided by the user, and terminates the program
only when the expression is false. This provides the
programmer with a way to test whether certain
assertions hold at various locations in the program.
If an assertion fails, a message is printed to stderr
stating that the assertion failed and giving the name
of the module containing the assertion and the line
within that module containing the failed assertion.
The program is then terminated.

The perror function is informational only; it does not
cause the program to terminate. It is typically used
by the programmer when the program detects; for
example, a failed low level I I 0 function and the user
wishes to print a message indicating the failure and
the reason for it. The function prints both a
message provided by the user as an argument to
perror and a short message indicating the actual
error which occurred (there is a global variable,
errno, in the run-time which is set to a value
indicating the actual error). Since many of these
error codes do not necessarily indicate a fatal flaw
in the program which requires termination, the user
may choose in his program whether to continue and
attempt to recover from that failure, or terminate the
program at that point by some other means.

17

The floating-point math functions use the UNIX
System V method of handling argument errors for
these functions. This method involves printing an
error message to stderr indicating the type of error
and the name of the function in which it occurred.
In addition, the errno variable is set so that the user
may determine the actual error and take steps to
correct it. Errors such as attempting to take the
logarithm of zero or the square root of a negative
number are handled in this manner. As with the
perror messages, it is left to the user to determine
whether to attempt to recover (for example by
returning the square root of the absolute value of
the number instead) or to terminate the program at
that time.

All such errors produce messages indicating the
actual error which occurred.

Execution Errors

This category covers the messages which are
generated when a serious error is detected by the
run-time support functions at execution time.
Unlike the messages in the previous category, the
user has no control over these messages as they are
generated automatically. The errors may indicate
algorithmic flaws or may simply require the program
to be re-linked. There are only three errors in this
category:

1. Floating-point not loaded

2. Stack overflow

3. Null pointer assignment

18

Floating-Point Exceptions

These errors are generated by the 8087 emulator or
the 8087 /80287 chip if one is present. When such
an exception is detected, it is trapped and an error
message is printed to stdout indicating the
exception. There are only five exceptions which can
be generated when using the C compiler and
libraries. The error messages which may be seen
are:

• Floating point error: Divide by O

• Floating point error: Integer overflow

• Floating point error: Invalid

• Floating point error: Overflow

• Floating point error: Stack overflow

Error Messages

Other Features and Utilities

MAKE

Macros can be defined on the MAKE command line
as follows:

MAKE filename macro1 ... macron

where macro. is of the form
I

name=text or name= 'text'

Additionally, macros can be defined in the MAKE
file itself with the above format before the macro is
referenced or the text associated with each
environment variable is available as a macro. The
precedence for macro definitions from highest to
lowest is:

1. Command line definition

2. MAKE file definitions

3. Environment variable definitions

Macros are referenced in the MAKE file using the
following syntax: $(macroname). The text
associated with a macro replaces the macro
reference and the line is reprocessed for other
possible macro substitutions.

Case Dependency

The burden of resolving case dependencies lies with
the user. The default link method is to ignore case
conflicts in public names. If the user links with
multiply-defined public symbols when case is
ignored, the linker will issue an error. If the user
tries to build a library with object modules that
contain multiply-defined public symbols when case
is ignored, the librarian will issue an error. The IBM
Macro Assembler cannot generate public symbols
with lower case names. To interface IBM Macro
Assembler with C, the case must be ignored at line
time. If the user wants linking to be sensitive to
case differences, he must specify the /ignorecase
switch at link time.

Frror Messages

CLINK

With this linker, a much more advanced overlay
system is supported. The major advantage of this
overlay scheme is that the overlay structure is
specified at link time and requires no change to the
user's source. Overlays are performed implicitly by
modifying the user's program at link time to reflect
the specified overlay structure.

Symbolic Debugger

The IBM Symbolic Debug Utility (SYMDEB) is a
debugging program that helps you test executable
files. You can display and execute program code,
set breakpoints that stop the execution of your
program, change values in memory and debug
programs that use the floating point emulation
conventions. SYMDEB lets you refer to data and
instructions by name rather than by address.
SYMDEB can access program locations through
addresses, global symbols or line number
references, making it easy to locate and debug
specific sections of code. With SYMDEB, you can
debug C programs at the source file level as well as
at the machine level. You can display the source
statements of a program, the disassembled machine
code of the program or a combination of source
statements and machine code. SYMDEB accepts
source line numbers as arguments to commands for
displaying and changing data, setting breakpoints
and tracing execution.

The general capabilities beyond the standard DOS
DEBUG functionality are outlined below.

- Source line display for C, Assembler
- Expanded breakpoint control
- Public symbols can be used instead of addresses
- Line numbers can be used instead of addresses
- Expressions can be used instead of addresses
- Alternate display forms - word, long, floating
- Emulated 8087 instructions recognized
- Procedure traceback and parameter display for C
- Escape to DOS shell and exit back to debugger
- Execute any DOS command in debugger
- Enhance E command to support additional data types
- Support larger symbol files (> 64K total)
- Execute multiple commands at breakpoints

19

DEMO.C

This demo program prints out the parameters on the command line and the DOS environment
settings. It is the same as DEMO.Con the compiler diskettes.

/* Sample program which accepts parameters
* then prints out those parameters and
* any environment variables set
*/

main(argc, argv, envp)
int argc;
char **argv;
char **envp;

{
register char **p;

/* print out the argument list for this program *I

for (p = argv; argc > O; argv--,p++)
{
printf("%s\n", *p);
}

/* print out the current environment settings. Note that
*the environment table is terminated by a NULL entry
*/

for (p = envp; *p; p++)
{
rintf(" %s\n", *p);

exit(O);
}

Summary

The IBM Personal Computer C Compiler will enable
you to develop small, fast C language applications
with a maximum amount of function.

20 Error Messages

IBM Personal Computer Seminar Proceedings

Publication
Number

(G320-9307)

(G320-9308)

(G320-9309)

(G320-9310)

(G320-9311)

(G320-9312)

(G320-9313)

(G320-9314)

(G320-9315)

(G320-9319)

(G320-9316)

(G320-9317)

(G320-9318)

(G320-9320)

(G320-9321)

(G320-9322)

Volume

Vl.1

Vl. 2

Vl. 3

V2.1

V2.2

V2.3

V2.4

V2.5

V2.6

V2.7

V2.8

V2.9

V2 .10

V2.11

V3.1

V3.2

V3.3

IBM Personal Computer Seminar Proceedings

Topic

Contains identical information as Vl.2

DOS 2.0 and 1.1 Comparison
Compatibility Guidelines for Application Development
8087 Math Co-Processor
IBM Macro Assembler

DOS 2.1, 2.0 and 1.1 Comparison
Disk Operation System 2.1
IBM PCjr Architecture
IBM PCjr Compatibility Overview
Cartridge BASIC
IBM Personal Communications Manager-Modem Drivers

Contains identical information as V2.2

IBM Software Support Center
International Compatibility Requirements
IBM Personal Computer Cluster Program

IBM Personal Computer Cluster Program
Sort, Version 1.00
FORTRAN and Pascal Compiler, Version 2.00
PCjr Cartridge Tips and Techniques

IBM Personal Computer AT Architecture
ROM BIOS Compatibility
DOS 3.0
Software Compatibility

IBM PC Network Overview
IBM PC Network Hardware
IBM PC Network BIOS (NETBIOS) Architecture
IBM PC Network Program

TopView

IBM Personal Computer Resident Debug Tool

IBM PC Network SMB Protocol

IBM PC Xenix

IBM PC Professional Graphics Software
IBM PC Graphical Kernel System
IBM PC Graphical File System
IBM Plotting System Library
IBM Professional FORTRAN
IBM PC Data Acquisition & Control Adapter & Software
IBM General Purpose Interface Bus Adapter & Software

IBM Enhanced Graphics Adapter

IBM PC Information Panel (3295 Plasma Display)

IBM BASIC Compiler 2.00

IBM Personal Computer C Compiler

21

Notes

G320-9322

IBM Corporation
Editor, IBM Personal Computer Seminar Proceedings
Internal Zip 4629
Post Office Box 1328
Boca Raton FL 33432

--...- --------- -- --- ~---- -. ------- - - -~---- -- -_ _,, - 't' -

®

