
Volume 4, Number 4
IBM PC 3270 Emulation Program Presentation Space
Advanced Program-to-Program Communications
Revisable-Form Text Document Content Architecture
Document Interchange Architecture
IBM Enhanced Connectivity Facilities Introduction
IBM PC Interrupt Sharing Protocol

September 1986

IBM Personal Computer
Seminar Proceedings

The Publication for Independent Developers
of Products

for IBM Personal Computers

Published by International Business Machines Corporation
Entry Systems Division

-~- ------ - - --- _.. ---- -.. ---- - - -~-
___ ., _
_ _... - y -

®

Changes are made periodically to the information herein; any such
changes will be reported in subsequent Proceedings.

It is possible that this material may contain reference to, or
information about IBM products (machines and programs),
programming or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such products, programming or services
in your country.

IBM believes the statements contained herein are accurate as of
the date of publication of this document. However, IBM makes no
warranty of any kind with respect to the accuracy or adequacy
of the contents hereof.

This publication could contain technical inaccuracies or typographical
errors. Also, illustrations contained herein may show prototype
equipment. Your system configuration may differ slightly.
IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation
whatever.

All specifications are subject to change without notice.

Copyright©
International
Business
Machines
Corporation
09/86

Printed in the
United States
of America

All Rights
Reserved

--..- -___
- ------- _.. -. - -.. ---- - - -~-
___ .,. _ _ _,, - . -

®

Contents
Introduction and Welcome . 1
Purpose .. 1
Topics .. 1

IBM PC 3270 Emulation Program Presentation Space API . 2
Functions .. 2
Features . 2
Benefits . 2
Additional API Notes . 3

The PSCAPl.COM Program ... 3
Synchronization Considerations with a Presentation Space API . 3
Differences between the PC 3270 API and the 3270 PC Control Program 3
Transmitting Binary Data to a User Written Host Application . 4
Initiating SEND/RECEIVE File Transfer from an Application Program 5

Summary ... 7

Advanced Program-To-Program Communication for the IBM Personal Computer
(APPC/PC .. 8

The APPC/PC Program ... 8
What You Need . 8
Features Supported . 9
Related Publications . 10
Contents of Programming Guide . 11
SNA and APPC Terminology . 12
APPC/PC for the Transaction Programmer . 13

Understanding Locally Initiated and Remotely Initiated Transactions 13
Supporting Multiple Conversations . 13

APPC/PC for the System Programmer . 14
Understanding Initial Application Subsystem to APPC/PC Interactions 14
Managing Incoming Requests for Conversations . 14

Recommended Tips/Guidelines ... 15
Sample Application Subsystem - Send Side . 16
Sample Transaction Program - Send Side . 20

Revisable-Form Text Document Content Architecture . 25
Introduction ... 25
Semantics and Syntax of the Architecture . 25

Text Elements and Operations . 25
Text Statements . 25
Text Processes . 25
Syntax of the Revisable-Form Text Document 26

Major Organizational Sections . 26
Format Units . 26
Text Units . 26

Constructual Elements . 27
Constructual Elements of the Master Format . 27
Constructual Elements of the Text Unit . 27
Encoding Structured Fields and Parameters . 27
Encoding Controls . 28

Supporting the RFT DCA Document . 28
Interchanging RFT DCA Documents - The Product Transform 28
Round-Tripping RFT DCA Documents . 29
Product-Provided Information . 29
Product Implementation Responsibilities . 29

Summary .. 30

Contents

Document Interchange Architecture (A Solution for Office Information Interchange) 31
Introduction ... 31
DIA Logical Components .. 31
DIA Services . 32

DIA Session Services ... 32
Document Library Services . 33
Document Distribution Services . 33
Application Processing Services . 34

DIA Protocols . 35
DIA Data Stream Structure . 35
Summary .. 36
References . 36

Introduction to IBM Enhanced Connectivity Facilities 37
IBM Enhanced Connectivity Facilities Characteristics 37
Advantages of IBM Enhanced Connectivity Facilities . 38
What You Need ... 38

Program Products . 38
Related Publication . 39

Send Request Function . 39
Parameters Supplied by the PC Requester . 40
Parameters Returned to the PC Requester . 42
Usage Notes . 42

Language Interfaces . 42
Sample PC Requester Program Overview . 42
Pascal Language Interface . 44
Overview . 44
Sample Pascal Requester . 45
Pascal CPRB Mapping . 46
C Language Interface . 46
Overview . 46
Sample C Requester . 47
C CPRB Mapping . 48
Macro Assembler Language Interface . 49
Overview . 49
Sample Macro Assembler Requester . 50
Macro Assembler CPRB Mapping . 53

IBM PC Interrupt Sharing Protocol . 54
Introduction ... 54
Interrupt Sharing Hardware . 54
Interrupt Sharing Software . 55

Interrupt Chaining Structure . 56
ROS Considerations . 57
Interrupt Sharing Precautions . 57
General Implementation Information . 57
Interrupt Sharing Code Examples . 57
Linking Code Example . 58
Interrupt Handler Example . 59
Unlinking Code Example . 60

Summary .. 61

IBM Personal Computer Seminar Proceedings 62

Questionnaire . 66

Contents ii

Introduction and Welcome
These are the Proceedings of the IBM Personal
Computer Seminar, designed for independent
developers of products for IBM Personal
Computers. The purpose of these Proceedings is to
aid you in your development efforts by providing
relevant information about new product
announcements and enhancements to existing
products.

Throughout these Proceedings, the term IBM
Personal Computer and the term family of IBM
Personal Computers address the IBM Personal
Computer, the IBM Personal Computer XT, the IBM
PCjr, the IBM Portable Personal Computer, the IBM
Personal Computer AT and the IBM PC Convertible
(referred to as PC Convertible).

Purpose
What is our purpose in issuing a publication such as
this? It is quite simple.

The IBM Personal Computer family is a resounding
success. We've had a lot of help in achieving this
success, and much of it came from the independent
developers.

As you proceed with your development. do you at
times wish for some bit of information or direction
which would make the job easier? Information
which IBM can provide? This is the type of
information we want to make available to you.

Since we want to be assured of giving you the
information you need, we ask you to complete the
questionnaire which appears at the end of these
Proceedings. Your response to this questionnaire

Introduction and Welcome

will be taken into account in preparing the content
of future issues, as well as the content of seminars
we will present at microcomputer industry trade
shows.

Topics
The following list gives a general indication of the
topics we plan to cover in future seminars and
include in the IBM Personal Computer Seminar
Proceedings:

• Information exchange forum - letters to the
editor format

• Development tools - languages, database
offerings

• Compatibility issues

• New devices - capacities and speeds

• System capacities - disk and memory

• Enhancements in maintenance releases

• Tips and techniques

• New system software

• Hardware design parameters

• Tips on organizing and writing documents for
clear and easy reading

• Changes to terms and conditions

IBM PC 3270 Emulation Program
Presentation Space API
The IBM PC 3270 Emulation Program allows an
IBM Personal Computer to emulate an IBM 3274
Control Unit with an attached IBM 3278/79 Display
Station and an IBM 3287 Printer in varying
configurations, facilitating standalone and network
operation. Its 3270 display device emulator
provides a presentation space, Application
Programming Interface (API), to allow user-written
application programs to interface with the terminal
emulation software running in its primary partition.
With one exception, described under the
"Differences between the APls" section, the PC
3270 Presentation Space API is a subset of the IBM
3270 PC Control Program, Version 2.00 and Version
3.00.

User-written application programs can run either in
the PC 3270 Alternate (or DOS) Field or in a
TopView window. TopView is a separately
purchased program which provides an environment
for running multiple application programs. When
the application program is running in a TopView
window, it can be set up to run even when in the
background.

The PC 3270 Alternate Field is a DOS "window"
provided by the PC 3270 program. When an
application program is running in the PC 3270
Alternate Field, it is suspended whenever it is in the
background.

Functions
The PC 3270 Presentation Space Application
Programming Interface provides the following
functions:

• Copies data from the presentation space (or
display buffer) to an application buffer.

• Copies data from an application buffer to the
presentation space (or display buffer).

• Writes keystrokes to the presentation space.

• Queries the state of the 3270 input inhibited
indicator.

• Inhibits operator keystrokes to the 3270 display
device.

• Queries the current 3270 cursor location.

IBM PC 3270 Emulation Program Presentation Space API

Each function is achieved via an assembly language
interface which defines the actions necessary to
issue an API service request. All requests are
processed in less than a second. No mechanism is
provided to wait for an event to occur before
returning from an API request. For this reason, API
requests must be issued repetitively in order to
determine when an event occurs.

Features
The PC 3270 Presentation Space API has the
following features:

• Assembly language interface.

• Quick copy string algorithm.

• Removable API; API memory is freed when PC
3270 is ended.

• Application-initiated inhibit of operator
keystrokes to the 3270 display device.

• Alternate (or DOS) Field for running user-written
application programs.

• TopView compatibility for running user-written
application programs.

Benefits
The PC 3270 Presentation Space Application
Programming Interface offers the following
benefits:

• Allows a PC programmer to improve or
customize the user interface to existing host
application programs. For example, the API can
take the output (display screen) of a host
program and re-display it in an improved format
on the application program 1 s display screen.

• Allows a PC programmer to automate often
repeated operator procedures. For example, the
API can be used to automate the logon
procedure.

• Allows a PC programmer to communicate with a
user-written host programs in order to transfer
information and data. For example, output from
a spreadsheet can be downloaded to the PC,
processed, and then uploaded back to the host.

2

Additional API Notes
The PSCAPl.COM Program

PC 3270 prc:>vides a removable API. The application
program writer should take care to handle situations
such as the API not loaded or the API removed
while in use. The implementation of the PC 3270
Presentation Space API allows both of these
problems to be handled in a similar way. The PC
3270 PS API has a system extension called
PSCAPl.COM, which is loaded separately from the
rest of the API. It remains resident after it has
terminat.ed and provides the function of taking over
the API interrupt vector and handling API requests
after the API has been removed. When an API
request is made after the API has been removed,
the PSCAPl.COM program returns an "API not
available" return code. User-written application
programs should treat this return code as fatal and
provide an escape mechanism to gracefully exit
from their code.

Even though the PSCAPl.COM program provides
this recovery mechanism, the operator may forget to
run PSCAPI before running the user-written
application program. In anticipation of this, the user
written application program should check the
interrupt vector for non-zero before assuming the
API is available. Even if the interrupt vector is
non-zero, it may not point to the PSCAPl.COM
program. So, in addition to the above check, the
user-written application program also should issue
a valid API request and verify that it returns with a
good return code before assuming the API is
available.

The PSCAPl.COM program takes up very little
memory and has virtually no affect on the memory
left over for running other application programs.

Synchronization Considerations with a
Presentation Space API

Several factors must be considered when waiting
f<:>r host data to arrive in the presentation space (or
display buffer). Is the 3270 display input inhibited?
Has all of the host data arrived? Because
fragmentation occurs when data is sent to a 3270
device, the application program should wait until
input is no longer inhibited and all of the data has
arrived. The user application must be able to handle
input going in and out of the inhibited state several
times before the host data arrives. For a
user-written host application, a check sum or CRC
could be used to determine when all of the host
data h~s arrived. For existing host applications,
searching for a unique character string on the
display is usually sufficient.

IBM PC 3270 Emulation Program Presentation Space API

Differences between the PC 3270 API and the
3270 PC Control Program

The PC 3270 API is a subset of the 3270 PC Control
Program, Version 2.00. with the one exception of
data key handling on the Write Keystroke service
r~quest. More information on this incompatibility is
given below. As long as a user application program
stays within the subset, it can be run on both
products. The following text lists the subset
supported by the PC 3270 API and indicates its
compatibility with the 3270 PC Control Program:

• Only synchronous requests (BX= X' 8020') are
supported. The Get Request Complete service
is not supported.

• The following Supervisor Service is supported:

Name Resolution

Only the gate names SESSMGR,
KEYBOARD, COPY, and OIAM are
supported.

• The following Session Information Services are
supported:

Query Session ID

Only option code X '01 ', which obtains the
session ID of specified short session name
is supported. Only the data code for the '
ASCII character 'E' (X '45 '), which
specifies the short session name is
supported. The long session name is never
returned nor is it ever used by the PC 3270
Emulation Program. Although the 3270 PC
Control Program accepts more options and
sess~on names due to its multiple display
session support, the PC 3270 API only
accepts one due to its single display session
support.

Query Session Parameters

The address of the presentation space is not
returned. The contents of the presentation
space can be obtained and modified using
the Copy String service request. Since PC
3270 only supports one setting of these
parameters, the session type is always
returned as OFT host session. The session
characteristics are always returned indicating
base attributes and no programmed symbols
are supported; the number of rows and
columns are always returned as 24 and 80.

Query Session Cursor

Fully supported

3

• The following Keyboard Services are supported:

- Connect to Keyboard

Fully supported

- Disable Input

Fully supported

- Write Keystroke

Only the non-data (or non-character
generating) keys are supported as
compatible with the 3270 PC Control
Program. Data (or character generating)
keys are supported, but are NOT compatible.
Although data key support is not compatible,
it is similar to that of the 3270 PC Control
Program. Instead of using the 3270 PC
keystroke scan codes, the PC 3270 API uses
ASCII or Device Buffer codes to represent
data keys. These are the same codes as
used by the Copy String service. Two
techniques can be used to write user
programs which are to run on both APls.

- A check can be made to determine which
API is loaded, and an appropriate table
can be used to translate keys for the API
being used. The PC 3270 API is loaded if
an "invalid scan code" return code is
generated when a 3270 PC data key scan
code (versus an ASCII or Device Buffer
code) is passed to the Write Keystroke
service.

- The Copy String service can be used to
perform a function similar to the Write
Keystroke service.

- Enable Input

Fully supported

- Disconnect from Keyboard

Fully supported

• The following Copy Service is supported:

- Copy String

Only supports two source/target pairs: from
application buffer to host session
(presentation space) or from host session
(presentation space) to application buffer.
Supports only the session types for PC
(ASCII translation) and host OFT (3270
Device Buffer translation) in the application

IBM PC 3270 Emulation Program Presentation Space API

buffer. ASCII and 3270 Device Buffer code
is the same representation of character data
as used by the 3270 PC Control Program.

• The following Operator Information Area
Services are supported:

Read Operator Information Area Group

Only group 8 indicators are supported. ·In
group 8, only the following indicators are
supported: machine check, communications
check, program check, and application
program has operator input inhibited. All
other indicators are supported in that if any
is non-zero, input is inhibited for some other
reason.

Transmitting Binary Data to a User Written Host
Application

If the PC 3270 Presentation Space API is to be used
to transmit data between a user-written PC
program and a user-written host program, the type
of data being transmitted must be considered.
Since the presentation space is a representation of
the display screen, it is oriented for character data
and not binary data. Binary data must be translated
to character data before being transmitted across
the link. This means the PC application writer must
encode and decode binary data when copying to
and from the presentation space (or display buffer).
The following items must be considered when
encoding binary data:

• Several values in the 3270 Interface Code are
reserved for control character purposes. These
values are used for field attributes and other
control codes.

• Several values in the 3270 Interface Code are
simply invalid.

• Several values in the 3270 Interface Code
represent different characters depending upon
the language selected at the host and on the PC
3270.

The 3270 1/0 Interface Code for each language can
be found in the 3270 Character Set Reference
(GA27-2837-7). The 3270 1/0 Interface Code is
the code used by the host program. The code used
by the PC program is either ASCII or 3270 Device
Buffer code, depending on the option you select
when the API request is coded.

Several schemes can be used to encode binary data
to character data. The most common and easiest to
implement is one which converts one byte of binary
data to two bytes of character data. In this scheme,
the half-byte binary values from X 10 1 to X 19 1 are

4

converted to the characters C '0' through C '9'.
The half-byte binary values from X' A' to X' F' are
converted to characters C 'A' through C 1 F 1 • There
are more complex and efficient schemes but, as
long as the amount of data to be transmitted is
small, the other schemes will not improve
performance drastically. If large amounts of data
are to be transmitted, interfacing to the
SEND/RECEIVE programs should be considered.

IBM PC 3270 Emulation Program Presentation Space API

Initiating SEND/RECEIVE File Transfer from an
Application Program

A user-written application program can use the
SEND/RECEIVE.COM programs to initiate the
transfer of files to the host. This is done by issuing
the DOS function call to load and execute the
SEND.COM or RECEIVE.COM program. Since the
PC 3270 SEND/RECEIVE programs set the DOS
error level, the successful or unsuccessful status of
the file transfer also can be determined. The
following excerpt from a program shows how this
could be done:

5

;--
EXEC COMMAND

' ; This subroutine uses the DOS function call 4BH to execute the command
; pointed to by SI (first byte= length).
;--EXEC COMMAND PROC NEAR
;--
; First move the command to be executed to the COMMAND area
;--

PUSH OS ;Make ES=DS
POP ES ,
MOV AL,' ' ;Clear the command area
MOV CX,COMMAND END - COMMAND
MOV DI,OFFSET COMMAND ,
CLO ;Clear the direction flag
REP STOSB ;Store blanks
XOR CX,CX ,
LODSB ;Get length of command
MOV CL ,AL ; into ex
MOV DI,OFFSET COMMAND ,
REP MOVSB ;Move it to COMMAND below
MOV AL,CR ;Add carriage return
STOSB
SUB DI,OFFSET COMMAND START ;Compute length of command
MOV AX,DI - ;including 'IC' and
MOV COMMAND_LENGTH,AL ;carriage return

;--
; Find out where COMAND.COM is from COMSPEC setting in the environment
;--

FIND C:

FOUND C:

PUSH CS
POP AX
SUB AX,lOH
MOV ES,AX
MOV SI,2CH
MOV AX,ES:WORD PTR [SI]
MOV ES,AX
XOR DI,DI

;Find the Program Segment Prefix
;It starts lOOH bytes before CS:O
• ;ES no points to it
;ES:SI points at environment address

;ES = segment address of environment
;ES,DI is our environment pointer

MOV CX,lOOH ;Limit search
MOV AL,COMSPEC ;AL = C in COMSPEC
REPNE SCASB ;Look for a C
JE FOUND C ;Jump if found C
ERROR 'Cannot find COMSPEC string in environment'

MOV CX,7
MOV SI,1

TEST COMSPEC:

;Length of 'OMSPEC='

- MOV AL , ES: [DI]
CMP AL,COMSPEC[SI]
JNE FIND C
INC DI -
INC SI
LOOP TEST COMSPEC
MOV DX,DT

;Pick next character from enviro
;Compare with next char in 'COMSPE
;Go look for next C if unequal
;Increment
;the pointers
;Go compare next characters
;All equal - ES:DX points to spec.

IBM PC 3270 Emulation Program Presentation Space API 6

;--
; Build parameter list and initialize registers for EXEC function call
;--

MOV AX,OFFSET COMMAND LENGTH
MOV CMD PTR,AX - ;Set command pointer in parameter list
MOV CMD-PTR+2,DS ,
MOV BX,UFFSET EXEC LIST ;DS:BX points att parmeter block
PUSH ES - ;Exchange ES and OS
PUSH OS ;so that
POP ES ;DS:DX points at COMSPEC string and
POP OS ;ES:BX points at parameter block
MOV AX,4BOOH ;EXEC function - load and execute
PUSH OS
PUSH ES
MOV SSREG,SS
MOV SPREG,SP
INT 21H
MOV SP,SPREG
MOV SS,SSREG
POP ES
POP OS
PUSH ES
POP OS
JC EXEC ERROR
MOV AH,4UH
INT 21H
CMP AX,O
JNE EXEC ERROR
RET -

EXEC ERROR:

;Save stack registers

;Call DOS
;Restore stack registers

;Restore OS
' ;Jump if error
;WAIT function (checks ERRORLEVEL}
;Call DOS
;Command completed normally?
;Jump if not
;Return

- ERROR 'The command could not be executed properly'
EXEC COMMAND ENDP
DSEG- SEGMENT PUBLIC 1 DATA 1

;--
; Data areas for EXEC_COMMAND
;--
COMSPEC DB 1 COMSPEC= 1

COMMAND LENGTH DB 97
COMMAND-START DB •;c ·
COMMAND- DB 100 DUP(1 1)

COMMAND END EQU $
SSREG - OW 0
SPREG OW 0

;Saved SS register
;Saved SP register

;--
; Parameter list for the EXEC call
;--
EXEC LIST OW 0
CMD PTR OW 0

FCBl PTR

FCB2 PTR

DSEG ENDS

Summary

ow 0
ow 0
ow 0
ow 0
ow 0

' ;Pointer to the parameter to be ~iven
;to COMMAND.COM, i.e. the /C string
;FCB pointer - not used
' ;FCB pointer - not used

The IBM PC 3270 Emulation Application
Programming Interface (API) allows user written
application programs to interface with IBM System/
370 type hosts. The API provides many functions,
features and benefits which allow the application
programmer to improve his or her own productivity
and the productivity of other terminal users.

IBM PC 3270 Emulation Program Presentation Space API 7

Advanced Program-To-Program
Communication for the IBM
Personal Computer (APPC/PC)
The APPC I PC Program

APPC/PC is a data communications subsystem for
the IBM Personal Computer. APPC/PC provides
Systems Network Architecture (SNA) Advanced
Program-to-Program Communication (APPC) for
application programs that perform distributed
transaction processing.

An application program using APPC/PC can
communicate with application programs on other
systems that support APPC. A transaction program
is an application program that uses APPC/PC
communication functions.

Transaction programs use APPC/PC verb
sequences to communicate with other programs at
other SNA nodes. You can regard this set of verbs
as a programming language in which you can write
conversations. APPC/PC verbs are coded as
records, each having a precisely defined syntax.
Your transaction programs gain access to APPC/PC
facilities by providing verb records to the APPC/PC
application program interface (API) that appears as
an operating system extension of PC DOS.

Whether you write your own application or use an
existing application, you must first set up your IBM
Personal Computer to operate in a computer
network. APPC/PC simplifies setup by providing
configuration menus that help you configure your
IBM Personal Computer for connection to an IBM
Token-Ring Network, or to an SNA Data
Communication Network, using Synchronous Data
Link Control (SDLC) non-switched or switched
facilities, or to both. A simple direct connection
between IBM Personal Computers using SDLC also
is possible.

What You Need

To use APPC/PC you need:

• The APPC/PC program product consisting of
the APPC/PC Installation and Configuration
Guide and two diskettes: the APPC/PC Program
Diskette and the APPC/PC Structures and
Sample Programs diskette.

The Guide describes hardware and software
requirements and provides information on
planning, configuring, and loading APPC/PC.

The APPC/PC Program Diskette contains:

APPC/PC load and unload commands

- The APPC/PC configuration program

- Data Link Control files

A sample type G conversation table.

The APPC/PC Structures and Sample Programs
diskette contains:

- APPC/PC assembler verb structures, which
are used to write application subsystems and
transaction programs

A set of sample programs to illustrate the
design of an application subsystem and the
coding of APPC/PC verbs using the macro
assembler verb structures.

• In addition to the APPC/PC program product,
you need a language to compile your application
subsystem and transaction programs. You can
use any language that supports:

Issuing software interrupts

Setting general registers

Building parameter lists

Providing addressability to sections of code.

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 8

Features Supported
APPC/PC provides the SNA APPC node support as
defined in the SNA Format and Protocol Reference
Manual.

APPC/PC supports an open API including the
following:

• Base APPC (LU Type 6.2/ PU Type 2.1)

• Parallel sessions (when attached to peer PU
Type 2.1 nodes)

• Synchronization level of None or Confirm

• Mapped conversation support (but no data
mapping)

• Peer and boundary function attachment

• Support for conversation and session level
security

• Network Management support for ALERT,
PDSTATS and general NMVTs

• Normal Response Mode SDLC

- Primary point-to-point

Secondary point-to-point or multipoint

- Switched support for manual dial, manual
answer and auto-answer

• IBM Token-Ring Network support, including
connection to S/370 (CICS/VS) via 3725
controller. See April 16, 1986 announcement for
more details.

• Compatibility with CICS/VS Version 1.7

• Operation under IBM PC DOS 3.2.

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 9

Related Pub6cations
The following publications are related to APPC/PC.

• Advanced Program-to-Program Communication
for the IBM Personal Computer Installation and
Configuration Guide contains planning and IBM
PC set-up information for APPC I PC.

• Advanced Program-to-Program
Communications for the IBM Personal Computer
Programming Guide, SX27-3757, contains
APPC/PC verb descriptions and other
information necessary to write application
subsystems and transaction programs for
APPC/PC.

• Introduction to Advanced Program-to-Program
Communication, GG24-1584, contains general
information about APPC.

• Systems Network Architecture Concepts and
Products, GC30-3072, contains basic
information on SNA for those readers wanting
either an overview or a foundation for further
study.

• Systems Network Architecture Technical
Overview, GC30-3073, contains additional
details on SNA, especially on functions and
control sequences; it bridges the gap between
the most elementary overview of SNA and the
detailed descriptions of the formats and
protocols.

• Systems Network Architecture Transaction
Programmer's Reference Manual for LU Type
6.2, GC30-3084, contains reference information
on LU Type 6.2 {APPC) verbs for programmers
writing transaction programs to run on SNA.

• Systems Network Architecture Format and
Protocol Reference Manual: Architecture Logic

for LU Type 6.2, SC30-3269, contains
information for system programmers and others
who need detailed information about SNA LU
Type 6.2 {APPC) to adapt a program to function
within an SNA network.

• Systems Network Architecture Sessions
Between Logical Units, GC20-1868, contains
references on SNA formats and protocols for LU
types other than Type 6.2.

• Systems Network Architecture Reference
Summary, GA27-3136, contains summary
information on SNA formats and sequences.

• IBM SDLC General Information, GA27-3093,
contains supplementary details of Synchronous
Data Link Control.

• IBM Token-Ring Network Introduction and
Planning Guide, GA27-3677, contains planning
information for the IBM Token-Ring Network.

• IBM Token-Ring Network PC Adapter Guide to
Operations, SA27-3710, is the IBM Token-Ring
Network operations guide.

• IBM Token-Ring Network PC Adapter Technical
Reference Manual, SC30-3383, contains
additional reference information for the IBM
Token- Ring Network.

• IBM Token-Ring Network Problem
Determination Guide, SY27-1280, contains
information on problem diagnosis for the IBM
Token-Ring Network.

• IBM Option Instructions for the SDLC
Communication Adapter, supplied with the IBM
SDLC communication adapter, contains adapter
installation and connector information.

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) IO

Contents of Programming Guide
The following is the contents of Advanced
Program-to-Program Communications Guide for
the IBM Personal Computer Programming Guide,
SX27-3757.

Chapter 1, "Introduction to APPC/PC," describes
supported features of APPC/PC and how APPC/PC
fits in the IBM PC relative to other IBM PC
programs. It describes transaction programs and
application subsystem programs and introduces
other terms used throughout the manual.

Chapter 2, "Developing an Application Subsystem,"
describes functions that should be considered when
designing an application subsystem.

Chapter 3, "Developing a Transaction Program,"
describes functions that should be considered when
designing a transaction program.

Chapter 4, "Introduction to APPC/PC Verbs,"
briefly describes verb types and the common verb
format used in chapters 5 through 9.

Chapter 5, "Using Control Verbs," describes the
application program interface (API) to control verbs.
First, the control verbs that the application
subsystem sends to APPC I PC are described,
followed by the control verbs APPC I PC sends to
the application subsystem. Near the end of this
chapter there are examples of activating and
deactivating a node.

Chapter 6, "Using Transaction Mapped
Conversation Verbs," describes the application
program interface for mapped conversation verbs.
Preceding the individual verb descriptions is a
discussion of the conversation states that determine
which verbs can be issued, and a discussion on
understanding mapped conversation return codes.

Chapter 7, "Using Transaction Basic Conversation
Verbs," describes the application program interface
for basic conversation verbs. Preceding the
individual verb descriptions is a discussion of the
conversation states that determine which verbs can
be issued, and a discussion on understanding basic
conversation return codes.

Chapter 8, "Using the Network Management Verb,"
describes the verb used to provide management
services information to a network management
services function.

Chapter 9, "Other APPC/PC Services," describes
other verbs provided by APPC/PC for the
convenience of the programmer. One verb assists

with communication between the application
subsystem and transaction programs. Other verbs
assist with data conversion (ASCII/EBCDIC),
tracing facilities, and disabling and reenabling
APPC/PC to avoid recursion problems in exit
routines.

Chapter 10, "Resolving Error Conditions," describes
three types of error conditions with possible
solutions and ways to avoid them. The types of
errors discussed are return codes, SYSLOG
reported errors, and system deadlocks.

Appendix A, "Verb Operation Codes and Formats,"
lists the operation codes for APPC/PC verbs and
the internal formats for the parameter lists passed
between the application subsystem, or the
transaction program, and APPC I PC.

Appendix B, "Conversation State Matrices," shows
the conversation state transitions that can occur
when a program issues a conversation verb.

Appendix C, "Verb Return Codes," shows the
return codes that APPC/PC can report to a program
through the RETURN CODE parameter of each verb.

Appendix D, "SYSLOG Type Codes," lists the
SYSLOG type codes that represent error conditions;
it includes data errors reported by the transaction
program, link errors, configuration errors and
system protocol errors.

Appendix E, "Sample Programs," describes the
sample programs supplied on the APPC/PC
Structures and Sample Programs diskette. There is
also a listing for a sample CICS program.

Appendix F, "Sample CICS Host Configuration for
APPC/PC," describes sample CICS and VTAM
definitions necessary to use APPC I PC.

Appendix G, "APPC/PC Implementation of the LU
Tpye 6.2 Architecture," describes the optional
functions of APPC architecture supported by
APPC/PC. This appendix also includes a mapping
of APPC/PC verbs and parameters with the verbs
and parameters used in the APPC architecture
documents.

Appendix H, "ASCII/EBCDIC Translation Tables,"
describes translation tables used by the conversion
verb provided by APPC/PC.

Appendix I, "Statement of Service," contains a
discussion of IBM service as related to the
APPC/PC program product.

A glossary and an index follow the appendixes.

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 11

SNA and APPC Terminology
The diagram below illustrates the relationship between the IBM PC hardware and the software
components involved in the operation of APPC/PC.

Appllcatlon Subsystem

-

l
Transaction Programs

Operating System
(PC-DOS) ROM BIOS

Hardware

The application subsystem refers to one or more
programs whose primary function is to provide
services for APPC/PC and transaction programs.
The application subsystem logs errors, manages
incoming conversations, loads transaction
programs, and provides other services. The
transaction programs use APPC/PC communication
services to communicate with a partner transaction
program to perform transactions. The API is the set
of commands that the application subsystem and
transaction programs use to communicate with
APPC/PC. The application subsystem and
transaction programs are provided by the user.

A remote transaction program can request a local
application subsystem to start a local transaction
program so that the programs can exchange data.
The corresponding transaction programs are called
partner transaction programs.

You can choose the type of conversation that your
transaction program uses: a basic conversation or a

(API)

AP PC/PC

Composite
SNA Node

mapped conversation. The type of conversation you
use depends on whether you need full access to the
SNA general data stream (GOS) as provided by
basic conversations. A header field (LLID) precedes
all data that a program sends in the GOS format.
The logical length (LL) portion of the header field
specifies the overall length of the data and the
identification (ID) portion specifies the type of data.

In basic conversations, data passed to and received
from the APPC/PC API must contain at least the LL
fields of the GOS headers. The transaction program
must build and interpret the LL fields but the ID
fields are optional. The ID information is necessary
only if the partner program expects to receive GOS
variables.

In mapped conversations, the data that programs
pass to and receive from the APPC/PC API is
simply user data. A transaction program using
mapped conversations does not require GOS
headers to describe the data; therefore, the program

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 12

does not have to build or interpret these headers.
When the transaction program uses mapped
conversations, APPC/PC builds and interprets GOS
variables.

APPC/PC verbs fall into three general categories:

• Conversation verbs used by a transaction
program to communicate data.

• Control verbs that an application subsystem
uses to request services from or provide services
to APPC/PC.

• System services verbs for tasks such as network
management and ASCII/EBCDIC conversion.

APPC I PC for the Transaction
Programmer

APPC/PC provides a transaction program API and
an interface to the control functions within the
system programmer's application subsystem.

The communication services of APPC/PC extend
the services that the operating system normally
provides. These services include communication
primitives that enable a transaction to use a
conversation to communicate with a partner
transaction. Each conversation is half-duplex, that
is, the transaction program with the right to send
data must give up that right before its partner
transaction program can send data.

Understanding Locally Initiated and Remotely
Initiated Transactions

A transaction can start in one of two ways: by an
action initiated at your IBM PC or by an action
initiated by a remote transaction program. Initially,
the creating transaction program has the right to
send data and the created transaction program does
not have the right to send data. After initialization,
the verb sequences that the programs issue
determine the right to send data.

Supporting Multiple Conversations

A transaction program can have conversations with
several partners simultaneously. However, a
transaction initiated by a remote program is always
a new transaction. Therefore, to have more than
one conversation with remote programs, a local
program must initiate all conversations except the
first one.

Each conversation uses a logical resource called a
session, and the conversation can use this session
for as long as it requires. However, while a
conversation is using a session, no other
conversation can use it. When a transaction
requests APPC/PC to allocate a conversation,
APPC/PC responds by establishing a conversation
and assigning it to a session.

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 13

APPC I PC for the System
Programmer

The system programmer provides an application
subsystem that uses the defined APPC I PC
interface. The primary function of the application
subsystem is to provide services for APPC I PC, but
the system programmer can also use the application
subsystem to provide services for the transaction
programs.

The application subsystem manages the services of
the communication node not managed by
APPC/PC. These services include:

• Defining the logical characteristics of the node,
including the Physical Unit (PU), the Logical
Units (LUs), the partner LUs, and the desired
number of sessions with each partner

• Activating the adapters

• Handling logged error messages

• Providing LU-LU passwords (if security features
are required)

• Validating and loading a remotely initiated
transaction program (if the capability for remote
initiation is required)

• Managing cancellation of a transaction program
(optional).

In addition to the application subsystem services,
the system programmer can provide other services
to the transaction program, as appropriate.

The interface between the application subsystem
and APPC I PC consists of two parts:

• A verb interface to establish the PU and the LUs
and to define partner LUs, session limits and
other communication parameters.

• A set of exit routines to manage incoming
transaction requests, log errors and provide
LU-LU passwords.

Understanding Initial Application Subsystem to
APPC/PC Interactions

The application subsystem must issue verbs to
define the capabilities of the communication node.
An ATTACH PU verb establishes the PU and an
ATTACH LU verb establishes each LU. These
verbs provide information such as the LU name,
processing capabilities, and a method of handling
incoming requests for conversations. The
application subsystem issues verbs so that the
transaction programmer does not need to be
concerned with the system definition.

For example, the system programmer may want to
provide, as part of the application subsystem,
predefined utility routines to execute attachment
sequences for particular system configurations.

Managing Incoming Requests for Conversations

The application subsystem must manage requests
for conversations (incoming ALLOCATEs) from
other transaction programs. The system
programmer must decide, for each LU, the best way
to manage these incoming ALLOCATEs. Three
options are available:

• The application subsystem can reject incoming
ALLOCATEs entirely

• The application subsystem can provide an exit
procedure that APPC/PC can call when an
incoming ALLOCATE arrives (asynchronous
option).

• You can direct the LU to queue the incoming
ALLOCATEs until the application subsystem
requests them (synchronous option)

To process an incoming ALLOCATE, the application
subsystem must validate the request, load and/or
initiate the requested transaction program, and
provide the transaction program with the
parameters it must have to issue APPC/PC
conversation verbs.

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 14

Recommended Tips/ Guidelines
• Keep the application subsystem separate from

the transaction program to minimize the changes
when you add new transaction programs.

• If you are writing transaction programs in a high
level language, use a separate routine to
interface to APPC/PC. This will help the
separation of assembler related instructions.

• If possible, use Mapped Conversation verbs for
your transaction program.

• Use 1 Kor larger records for Token-Ring
connections to improve performance. Use
256-byte records for SDLC connections.

• Avoid using Pacing count of zero.

• Be careful with the use of traces in an IBM PC
DOS environment. Enough trace options are
available, like trace output to storage, display,
file or printer. At least, one will be suitable for
your environment. Always run trace in a
controlled environment.

• Use PASSTHROUGH verb to communicate
between the application subsystem and the
transaction program.

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 15

Sample Application Subsystem -
Send Side
The sample program demonstrates how to code an
application subsystem. The sample program does
not have all the code. It is illustrating some portions
of a sample application subsystem. A diskette with
a more detailed sample application subsystem
comes with the product.

·**
:* *
~= SAMPLE APPLICATION SUBSYSTEM - SEND SIDE :

:* Purpose: This program acts as the sample application subsystem for the :
:* SEND transaction program. It demonstrates some of the functions
:* to be provided by a full function APPC/PC application subsystem. **
:*
'·* * Process:
:* 1. Verify that APPC/PC has been installed. :
:* 2. Translate ASCII names to EBCDIC :. * 3. Set up Pass-through mechanism
:* 4. Initialize SNA session with the following sequence of APPC/PC **
:* verbs:
:*) - ATTACH PU (activate the Physical Unit
~= -ATTAC.r-LU (activate the Logical Unit)

- ACTIVATE DLC (open the adapter)
:* - CNOS - (initialize for single session)
~= 5. Define portion of memory to be used by sample program.

*
*
*
*
*
* :* 6. Load & Execute sample SEND Transaction Program to issue:

:* - TP INITIATE(local) (Application Subsystem unique verb) *
'·* - AL[OCATE (attach to remote partner TP) *

(conversation verbs) *
:* - DEALLOCATE (detach session with partner TP) *
:* - TP ENDED (End the Transaction Program) *
:* 7. After termination of the sample TP, take down the session with * :. * '·* the following sequence of APPC/PC verbs:

- CNOS (set number of sessions to zero) *
:* - DETACH LU (take down the LU) *
:* - DETACH-PU (take down the PU) * :. * 8. Reset the Pass-through mechanism.
'·* * 9. Exit to DOS
:* *
:** t

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 16

·** ,
·* Stack Seament - STACKSEG *
=** ,
;* Note:
stackseg

The size of the stack is used in step 5.
segment para stack 1 stack 1

db 32 dup ("Stack ... ")
stackseg ends

·**********~~i~** ,
·* Data Structure Definitions *
=** ,
·* =• Include the necessary APPC/PC verb structure definitions. =· ,
include
include
include
include
include
include

attachpu.str
attachlu.str
act dlc.str
cnos.str
convert.str
detachlu.str

ATTACH PU Data Structure
ATTACH-LU Data Structure
ACTIVATE DLC Data Structure
CNOS Data Structure
CONVERT Data Structure
DETACH LU Data Structure

=· =• Data area for saving stack pointer across Load & Execute (DOS) Request.
Note: The reason for placing it here (rather than in the data segment), =· =• is so that it is addressable off of the CS register.

,
saved ss
save(::SP

dw
dw

0
0

Saved SS;SP

=** ,
·* DOS entrv ooint. *
=**********w*~*** ,
send as proc far

·* =• Initialize the stack for a return to DOS. =• On entry, DS & ES point to the Program Segment Prefix (PSP). =· ,
push
xor
push

ds
ax,ax
ax

Use the Se~ment value of PSP
Offset of Return to DOS"

request (INT 20) in the PSP

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 17

·*
!* Point OS and ES to the data segment.
!*
'

·*

mov
mov
mov
mov
push
mov
pop
assume

ax,dataseg
ds,ax
bx,offset env ;
tp_parmblK.env_addr,bx
es
es,ax
prefix
es:dataseg

AX = Segment value of dataseg
Put it in OS

(save envirmonment address in
parameter block, see step 6)

Put it in ES too
Save PSP address (see step 5)
Inform assembler about ES

!* 1. Verify that APPC/PC is installed.
!*
' push ds

xor ax,ax
mov ds,ax
mov si ,4 * appc int
lds si ,¢si I -
sub si,9
mov di ,offset signature
cld
mov cx,7

rep cmpsb
pop ds
je translate
display SNAmissing
jmp exit

·*

Save OS (i.e., dataseg)
Clear AX
OS points to low memory
SI points to APPC/PC interrupt vector
DS;SI now points to APPC/PC entry point
Point DS;SI to APPC/PC signature
DI points to expected value
Clear the direction flag
Length of signature
Is the APPC/PC signature present?
Restore OS
Is APPC/PC installed?

No - display message
& exit to DOS

~= 2. Translate ASCII names to EBCDIC (e.g., TP NAMES)
' ; Inform user of what we are doing translate: display xlate_msg

; First translate all the 8 character fields
conv cb.convert length,8 mov

mov
mov
mov
mov
appc_pc

word-ptr conv co.convert source+2,ds
word ptr conv-cb.convert-source,offset att_pu_cb.attachpu_netid
word ptr conv-cb.convert-target+2,ds
word ptr conv=cb.convert=target,offset att_pu cb.attachpu_netid
251,conv_cb ; Translate PU Net ID to EBCDIC

' mov word ptr conv cb.convert source,offset att pu cb.attachpu puname
mov word ptr conv-cb.convert-target,offset att-pu-cb.attachpu-puname
appc_pc 251,conv_cb - ; Translate PU Name to-EBCDIC -

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 18

·*

mov word ptr conv cb.convert source,offset att lu cb.attachlu luname
mov word ptr conv-cb.convert-target,offset att-lu-cb.attachlu-luname
appc_pc 251,conv_cb - ; Translate LU Name to-EBCDIC -

mov
mov
appc_pc

• word ptr conv cb.convert source,offset prt lu cb.part lu pluname
word ptr conv-cb.convert-target,offset prt-lu-cb.part-lu-pluname
251,conv_cb - ; Translate Partner LU-Name to EBCDIC

• mov word ptr conv cb.convert source,offset mode cb.mode modename
mov word ptr conv-cb.convert-target,offset mode-cb.mode-modename
appc_pc 251,conv_cb - ; Translate Mode Name to EBCDIC-

• mov word ptr conv cb.convert source,offset cnos cb.cnos pluname
mov word ptr conv-cb.convert-target,offset cnos-cb.cnos-pluname
appc_pc 251,conv_cb - ; Translate Partner LU Name to EBCDIC

• mov word ptr conv cb.convert source,offset cnos cb.cnos modename
mov word ptr conv-cb.convert-target,offset cnos-cb.cnos-modename
appc_pc 251,conv_cb - ; Translate Mode Name to EBCDIC-

• mov word ptr conv cb.convert source,offset tp info.luname
mov word ptr conv-cb.convert-target,offset tp-info.luname
appc_pc 251,conv_cb - ; Translate LU Name to EBCDIC

mov
mov
mov
appc_pc

• conv cb.convert length,64
word-ptr conv co.convert source,offset tp info.tpname
word ptr conv-cb.convert-target,offset tp-info.tpname
251,conv_cb - ; Translate TP Name to EBCDIC

!* 3. Set up Pass-through mechanism.
!* •

·*
!*
!* •

push
push
pop
mov
appc_pc
pop

ds
cs
ds
dx,offset
255
ds

passthru

Save OS

DS:DX -> Passthru routine
SET PASSTHROUGH request
Restore OS

4. Initialize SNA session using APPC/PC verbs

display att pu msg
appc pc 1,att pu cb 4a. ATTACH PU
printrc att pu co.attachpu rc,RC 4
or re att-pu-cb.attachpu-rc,RC-4
cmp ah,U - - Zero Return Code?
je do attlu Yes - Do the ATTACH LU
jmp reset_pt No - Terminate the-Subsystem

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 19

Sample Transaction Program -
Send Side
The sample program demonstrates how to code a
transaction program for a simple conversation. The
sample program does not have all the code. It is
illustrating some portions of the Send Side of a
sample transaction program. A diskette with a more
detailed sample transaction program comes with the
product.

·**
!* *
!* SAMPLE TRANSACTION PROGRAM - SEND SIDE *
!* *
~= Purpose: This program is executed by the sample send side application *

subsystem to demonstrate a simple conversation. *
!* *
~= Note: It makes use of a verb implemented in the application subsystem :
!* (via the PASSTHROUGH mechanism) called TP_INITIATE. *

:*Process: (i.e., APPC/PC & Application Subsystem verbs issued) *
:* 1. Translate ASCII names to EBCDIC *
:* 2. TP INITIATE(local) (Application Subsystem unique verb) *
:* 3. AL[OCATE (attach the remote TP) *
:* 4. SEND DATA (send some data to the other TP) *
:* 5. DEAL[OCATE (terminate the conversation) *
:* 6. TP ENDED (bring down TP) *
:* 7. ExTt to DOS (and Application Subsystem) *
!* *
:**
'
·**
' ·* Stack Seament - STACKSEG *
:**
' stackseg segment para stack 'stack'

db 32 dup ("Stack ... ")
stackseg ends

page

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 20

·**
' ;* Data Structure Definitions *
·**
'
·*
:* Include the necessary APPC/PC verb structure definitions.
!*
' include
include
include
include
include
include

·*

allocate.str
convert.str
dealloca.str
senddata.str
tp ended.str
tp:=init.str

!* Macro used to invoke APPC/PC
!* Note: AX & DX are modified.
:*
' appc_pc macro

ifnb

ALLOCATE
- , CONVERT

DEALLOCATE
SEND DATA
TP ENDED
TP-INITIATE

Data
Data
Data
Data
Data
Data

Structure
Structure
Structure
Structure
Structure
Structure

mov
end if
mov
int
endm

request,ctrl blk
<ctrl blk>
dx,offset ctrl_blk

ah,request
appc_int

OS:DX points to APPC/PC control block

APPC/PC Function Request
APPC/PC Interrupt Request

·*
;* Macro

orrc

on the screen.
OR this byte into AH

to display a message
or ah,al
loop or loop
ret -
endp

' ; AH = OR'd value of all the bytes

:**
' ;* DOS entrv point. *
·**********.***
'
send_tp proc far

·*
!* Initialize the stack for a return to DOS.
:*On entry, OS & ES point to the Program Segment Prefix (PSP).
:*
' push

xor
push

ds
ax,ax
ax

Use the Se~ment value of PSP
Offset of Return to DOS"

request (INT 20) in the PSP

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 21

·*
!* Point OS and ES
!*
' mov

mov
mov
assume

·*

to the data

ax,dataseg
ds,ax
es,ax
es:dataseg

segment.

AX = Se~ment value of dataseg
Put it in OS & ES

Inform assembler about ES

~= 1. Translate ASCII names to EBCDIC (e.g., TP NAMES)
' translate: display xlate_msg ; Inform user of what we are doing

·*

mov
mov
mov
mov
mov
appc_pc

' conv buf.convert length,8 ; Translate all the 8 character names
word-ptr conv bur.convert source+2,ds
word ptr conv-buf.convert-source,offset alloc buf.allocate plunam
word ptr conv-buf.convert-target+2,ds - -
word ptr conv-buf.convert-target,offset alloc buf .allocate plunam
251,conv_buf - ; Translate Partner LU name to EBCDIC -

' mov word ptr conv buf.convert source,offset alloc buf .allocate modnam
mov word ptr conv-buf.convert-target,offset alloc-buf .allocate-modnam
appc_pc 251,conv_buf - ; Translate Mode Name to EBCDIC -

mov
mov
appc_pc

mov
mov
mov
appc_pc

mov
mov
appc_pc

' word ptr conv buf.convert source,offset
word ptr conv-buf.convert-target,offset
251,conv_buf - ; Translate LU Name

'

tpinit buf.tp init luname
tpinit-buf.tp-init-luname
to EBCITIC - -

conv buf.convert length,64 ; Now translate the 64 character name
word-ptr conv bur.convert source,offset alloc buf.allocate tpname
word ptr conv-buf.convert-target,offset alloc-buf .allocate-tpname
251,conv_buf - ; Translate TP Name to EBCDIC -

' word ptr conv buf.convert source,offset
word ptr conv-buf.convert-target,offset
251,conv_buf - ; Translate TP Name

tpinit buf .tp init tpname
tpinit-buf .tp-init-tpname
to EBCUIC - -

!* 2. TP INITIATE(local)
!*

(Application Subsystem unique verb)
' display

appc pc
printrc
or re
cmp
je
jmp

inittp msg ; Inform user of what we are doing
7,tpinTt buf ; TP INITIATE(local) (Application Subsystem)v
tpinit buf .tp init rc,RC-4
tpinit-buf .tp-init-rc,RC-4
ah,O - - - Zero return code?
do alloc Yes - Continue with ALLOCATE
exTt No - Continue no further

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 22

·*
!* 3. ALLOCATE
!*

(attach the remote TP)

' do alloc:
alTo_loop:

copystr tpinit buf.tp init tpid,alloc buf.allocate tpid,8
display alloc msg - - ; Inform user of what we are doing
appc pc 2,alloc buf ; ALLOCATE the remote TP
cmp - alloc buf.allocate pri rc,0300h ; Primary RC = 0003?
jne alloc-rc - ; No - continue
push es ; Save ES
les dx,alloc buf.allocate sec re
mov ax,es - ;-:AX-= Secondary Return Code
pop es Restore ES
or dx,dx Is secondary RC = 00000005 ?
jne alloc re No
~mp ax,05UOh Maybe
Jne alloc re Yes - Retry the ALLOCATE?
display alloc-err
mov ax,OCU7h - Ask the user retry_chk:
int dos int
cmp al,'CR

(clear keyboard & wait for key)

err_retry:

alloc re:

·*
'

je allo loop
cmp al,ESC
jne err retry
jmp end-tp
display retry err
display retry-msg
jmp short-retry chk

Retry requested

Exit requested

printrc alloc buf.allocate pri rc,RC 6
or re alloc-buf.allocate-pri-rc,RC-6
cmp ah ,0 - - ; Zero return code?
jne end_ tp No - End the TP

;* 4. SEND DATA
·*

(send some data to the remote TP)

copystr tpinit buf.tp init tpid,send buf.senddata tpid,8
copystr alloc ouf .allocate-conv id,send buf .senddata conv id,4
display send msg ; Inform user of what we-are doing
display data=msg+2 ; Display the message being transmitted
appc pc 2,send buf ; Send the message
printrc send_buf .senddata_pri_rc,RC_6

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC) 23

·*
!* 5. DEALLOCATE
=*

(terminate the conversation)
' copystr tpinit buf .tp init tpid,deall buf.dealloca tpid,8

copystr alloc ouf .allocate-conv id,deall buf .dealloca conv id,4
display deallocmsg - ; Inform user of what we are doing
appc pc 2,deall buf ; Deallocate the conversation
printrc deall buf .dealloca_pri_rc,RC_6

·*
' ;* 6. TP ENDED
·*

(bring down TP)
' end_tp: copystr tpinit buf .tp init tpid,tpend buf .tp ended tpid,8

display tp end-msg - - ; Inform user of-what we are doing
appc pc 4,tpena buf ; TP ENDED verb
printrc tpend_buf .tp_ended_rc,RC=4

·*
=* 7. Exit to DOS
=*

(and Application Subsystem)
'

' exit: ret ; See notes at program entry point

send tp endp
codeseg ends

end send_tp

Advanced Program-To-Program Communication for the IBM Personal Computer (APPC/PC). 24

Revisable-Form Text Document
Content Architecture
Introduction
The Revisable- Form Text Document Content

·Architecture (RFT DCA) specifies how IBM office
systems encode office documents for intersystem
document interchange. More specifically, it
describes how a document in a revisable state can
be uniformly interpreted and understood by any
office system supporting the architecture. Both
functional richness and the interchange of this
function are goals of the architecture but, of these
two goals, functional interchange is more important.

A straight-forward method is used to achieve
consistency of function and the interchange of this
function. The method provides a single specification
of the revisable document in transit in the network.
This single specification gives detailed and explicit
descriptions of all elements of the document in its
revisable state. It separates the document layout
from its content and allows for imbedding of format
and text manipulation controls within the user's text.
The specification must make as few implications as
possible about the receiver's use of the document.
The semantic detail of the data stream is equally as
important as the precision of the syntax used in
encoding the data stream.

Several IBM products, including those in the
DisplayWrite family use the RFT DCA. It is also
supported by a number of non-IBM products. The
RFT DCA is described in two publications. The
Off ice Information Architectures: Concepts
(GC23-0765) contains an overview of the RFT DCA
while the Document Content Architecture:
Revisable- Form Text Reference (SC23-0758) is a
guide to the details of the architecture.

Semantics and Syntax of the
Architecture

The RFT DCA is a set of text elements, a set of text
statements, and descriptions of the output of
processing the text statements. An RFT DCA
document is actually a "snapshot" of a text
document at some stage in its overall creation or
revision. It is in this context that the RFT Document
is to be interpreted.

Revisable-Form Text Document Content Architecture

Text Elements and Operations

An understanding of the semantics of the
Revisable-Form Text Document Content
Architecture requires first a familiarity with all those
parts of a text document that are utilized or
identified when creating and modifying the
document, such as characters, words, lines, pages,
paragraphs, headers, margins, footnotes and
indices, to name a few. These parts, or text
elements, are precisely defined in order to avoid
ambiguities when they are used. In a text document,
the "character" is the basic element of text.
Characters are then grouped into "words" which, in
turn, are grouped into "lines.'' "Pages" are formed
by grouping lines together, and so the definition
process goes, until all text elements are defined.

The next step is to understand the actions, or text
operations, that can be carried out on the text
elements for document creation and change. A
sampling of some of the text operations includes
underscore, overstrike, keep, insert, move, adjust,
align, release, establish, locate, begin, erase and
print.

Text Statements

Text statements are directives, or commands,
formed by associating a specific text operation with
selected text elements. For instance, the text
element "word" could be associated with the text
operator "underscore" to get the statement
"underscore this word". However, the association
of "underscore" with "leading margin" to get
"underscore the leading margin" is of little use, with
current document editors. It is from the set of
relevant combinations of text elements and
operations - referred to here as text statements -
that the semantics, or meaning, of the RFT DCA
evolves.

Text Processes

Text processes are defined to carry out the
directives of text statements. Simple text processes
are those that support a single text statement.
These can be identified, indirectly, from the
descriptions of the controls defined in the
architecture, such as BEGIN OVERSTRIKE,
RETURN TO MASTER FONT, END KEEP or PRINT
PAGE IMAGE NUMBER. Complex text processes
use several processes (simple and complex) to carry
out their task. The input to these processes is more

25

extensive and in some cases involves elements
outside the document. The architecture also
describes the output of some of these complex
processes. Text editor functions, such as Line
Adjust, Page Imaging and Pagination, are examples
of complex text processes. The description of the
output from processors of text statements is the
basis for understanding the RFT DCA semantics.
The clarity and precision of this description
determines the effectiveness of the architecture for
functional interchange.

Syntax of the Revisable-Form Text Document

The syntactical description of the RFT DCA.
determines how the document is encoded so that
the text elements and statements can be identified
and related for input to the text processes.

Major Organizational Sections
The document, in its encoded form, is referred to as
a data stream. The document must be presented
for processing in a definite sequential order with its
parts properly identified and the correct relationship
of elements and statements maintained. The
complete RFT DCA document consists of three
major sections: the Format Units, the Text Units and
the End Unit. Relative to the other two sections, the
End Unit is trivial. Its sole function is to identify the
end of the document in its encoded form. As a
minimum, an RFT DCA document requires at least
two Format Units, one Text Unit and the End Unit.
Format Units always appear first, followed by Text
Units, with the End Unit always the last unit in the
document.

Format Units

The RFT DCA document must contain at least two
Format Units (Format Unit 1 and Format Unit 2);
third (Format Unit 3) is optional. Format Unit 1 will
always be the first unit is the RFT DCA document;
Format Unit 2 will always be the next unit in the
document. If Format Unit 3 is present, it must
follow Format Unit 2 before any Text Units are
specified.

Format Units consist of several sets of statements
used to define the initial values of all parameters to
be used by the text processes. They are primarily
used to establish formatting states, but they may
identify theresources to be used when processing
the text. Format Unit 1 contains the Document
Parameters (a required set) and other optionally
specified parameter sets, such as Character
Replacement values and Punctuation Formats for
data inserts.

Revisable-Form Text Document Content Architecture

Format Unit 2 and Format Unit 3 are used to
establish all the formatting values needed for the
document. Format Unit 2 (containing the Primary
Master Format) is required. Format Unit 3
(containing the Alternate Master Format) may be
defined optionally. Each of these contain sets of
statements that establish the intial values needed
when the text is presented in its intended format or
layout. Each Master Format contains sets of
statements to establish the Page Image, Lines,
Tabs, Page Numbering, Line Numbering, Notation
Formats, Table of Contents, Index, Print Medium or
Operator Messages. Following the Master Format
in the Format Unit is an optional Margin Text
Declaration that is used to establish Margin Text
layout and positioning, as well as to define the text
content for the headers and footers.

Text Units

As stated earlier, every RFT DCA document must
contain at least one Text Unit. The Text Unit, or
units, must always follow all defined Format Units.
The Text Unit represents the text document element
called a "page," which may not necessarily match a
page on a printer. It is on Text Unit boundaries that
such page format elements as headers, footers and
page numbers are applied, as is the resetting of
several counters associated with such elements on
the page as line numbers and footnote references, if
requested by the user.

The Text Unit consists of two major divisions: an
optional Format Change section at the beginning,
and the required Body Text section. The Format
Change section allows the user to change the active
format optionally. It allows either the Primary or
Alternate Master to be established as the active
format, returning to a previously-defined Master or
just changing the content of the current format. If
format changes are specified, they become the
active format values for this text unit and any
subsequent text units until again changed by a later
Format Change specification in a Text Unit.

The Body Text section consists of one or more Body
Text Units. The Body Text Units carry the actual
text of the document. Up to this point, all previous
units contained definitions, range values, initial
settings, identifiers and other statements, all of
which described the format, or layout, to be used
when the text is presented for display or print.
Because several formatting, or presentation, states
apply to document elements within the page, a
method is needed to identify when to perform
presentation changes to these elements without
relying on page boundaries to make changes. This
is the function of the RFT DCA controls. Controls
may be included in the user's text to make changes

26

on character, word or line boundaries, such as
changing typestyle for selected words or phrases or
keeping specified lines together on the same page.

ConstructualElernents
The RFT DCA uses several methods to encode the
data stream. The primary method is structured
fields. The entire encoded document is contained in
consecutive structured fields. Several structured
fields may be grouped together into structures. To
accomodate the encoding of text statements within
these structured fields, controls are used for those
text statements that occur within the text of the
document, such as margin text or body text. If the
structured field or control must contain several
pieces of information, this information is encoded
using either self-identifying parameters or
positional parameters.

Each format unit that is defined consists of a Format
Unit Prefix (FUP) immediately followed by the
format unit itself. FUPs are encoded as separate
structured fields. Format Unit 1 consists of a
structured field for the document parameters, a
structured field for the character replacement table
(if it is used), and 0-99 structured fields for any
defined punctuation formats. Each of these
structured fields consists of one or more
self-identifying or positional parameters, except for
the FUP which has no parameters with it. There are
no structures or controls in any of this initial
encoding of the RFT DCA document.

Constructual Elements of the Master Format

The encoding of Format Units 2 and 3 is more
complicated than Format Unit 1. Structures are
employed since the information they carry is more
extensive. As in Format Unit 1, each unit is first
preceded by a FUP structured field. This is followed
by the Primary Master Format structure in Format
Unit 2 or the Alternate Master Format Structure in
Format Unit 3, which is then followed by the 1-6
structured fields that could be used to provide the
Margin Text Declaration. Since the allowable
content of Format Units 2 and 3 are both the same,
a description of one also covers the other.

Format Unit 2 consists of a FUP, followed by the
Primary Master Format (PMF) structure which, in
turn, may be followed by the Margin Text
Declaration structu.red fields. The PMF structure is
composed of three required structured fields, which
must be the first three in the structure in a specified
order, and up to seven additional, optional
structured fields. The three required structured
fields are Page Image Parameters, Line Parameters
and Tab Parameters, and they must appear in this
order in the structure. Each of these structured

Revisable-Form Text Document Content Architecture

fields contain several positional parameters. The
optional structured fields may be in any order. The
optional structured fields are Tab Parameters
(Right-to-left), Line Numbering, Page Image
Numbering, Page Format Parameters, Print Medium,
Operator Message, Auto-Outline Parameters and
Note Format Parameters. The parameters in each
of these are self-identifying.

Margin Text Declarations consist of two to six
structured fields each; the actual number depends
on how the margin text is to be defined. If the
same text is to appear only on the top or on bottom
of each page, then one structured field for the
Margin Text Parameters and one for the Margin
Text itself is all that is needed. If different text
appears on the top and bottom and on odd and
even pages, then all six structured fields are
required.

Constructual Elements of the Text Unit

Each Text Unit defined in the document is preceded
by a Text Unit Pr-efix (TUP) structured field. This
prefix introduces the Text Unit and contains a
unique name for the unit. The name is formed from
numeric characters, and each Text Uunit in the
document must be in proper order, that is, each
succeeding Text Unit has a higher 'name' than the
Text unit immediately preceding it.

The TUP is followed by any optional Change Format
Declaration structures or structured fields that may
be defined. The structured fields that may be
present are Establish Primary Master, Establish
Alternate Master or Return To Master Format.
These are simple structured fields with no
parameters. The structure that may be defined is
the Text Unit Format Change. Its content is the
same as previously described for Format Unit 2
following the FUP. Its purpose is to keep the same
previously established master as the active format,
but to change selected parameters in the format,
including the margin text declaration.

The rest of the Text Unit consists of one more Body
Text Units. Each of these units is a structured field.
The only requirement for the content of the Body
Text Unit is that the last, or only, Body Text unit
must contain a Page End control (a single byte
control) as the last byte in the last Body Text Unit.

Encoding Structured Fields and Parameters

Structured fields and structures always begin with a
5-byte field represented by the letters LLCTF (a
letter for each byte of this "introducer''). The LL is
a 2-byte length value that gives the entire length of
this structured field. This length value includes the
2 bytes occupied by the length field itself. The C
byte is a CLASS value, the T byte is a TYPE value

27

and the F byte is a FORMAT value. These three
bytes together are used to determine which
structured field it is. All the structured fields
defined by the RFT DCA have unique CTF values.
Structures, as stated, consist of one or more
structured fields. The introducer for a structure is
encoded in the same format as that for a structured
field and is also assigned a unique CTF value to
differentiate it from other structures or structured
fields. The LL value in the structure introducer
would be for all the elements in the structure,
including any structured fields it contains.

Positional parameters are the simplest method of
encoding parametric values for structured fields or
multibyte controls. They are identified by their
position in relation to the start of the containing
construct or the preceding positional parameter.
Self-defining parameters (SIPs), may occur in any
position within the containing construct. Each SIP
contains a 2-byte introducer which consists of a
1-byte length field and a 1-byte TYPE identifier.
The length value includes the entire length of the
parameter, including the the 2-byte introducer.
Since the length value is restricted to 1 byte,
self-identifying parameters are restricted to a
maximum length of 255 bytes.

Encoding Controls

Controls are text statements that occur in-line with
the user's text. Controls may appear in body text,
margin text, footnote text and the formatted text for
outline entries, footnote references, index and table
of contents entries, are anywhere the text of the
document might appear while the document is still
an RFT DCA document.

Single byte controls are code points reserved for
control purposes rather than characters. In any of
the code pages used by the architecture, the range
of code values from X'OO' through X' 40' is
considered the control code range. Some examples
of single byte controls are BS (backspace), CRE (an
adjustable carrier return), HT (horizontal tab) and
INX (index). Each is assigned a code point that is
the same for all code pages. The Page End (PE)
control that is required as the last byte in the last
Body Text Unit in a Text Unit is a single byte
control. The single byte value of X'2B' is the
encoded value in the data stream that identifies the
start of a multibyte control.

Multibyte controls always start with a X'2B' value.
This is always followed by three more bytes called
the CL T bytes, where the C represents the CLASS
byte, L represents a 1-byte length value of the
control and T is the TYPE byte. For each multibyte
control defined in the RFT DCA, there is a unique C
and T combination assigned to it. The length value
is the count of bytes following the C byte that are

Revisable-Form Text Document Content Architecture

part of this multibyte control. This allows for
encoding the positional or self-defining parameters,
that are associated with this particular control. For
example, if the multibyte control BEGIN
OVERSTRIKE (BOS) was encoded in the data
stream, it would be identified by a X'2B' followed
immediately by a X'D40872'. The 04 and 72
together identify this as the BOS control. The 08
indicates there are 6 bytes of parameters that follow
the T byte (the LT bytes are included in the the
length value). The BOS Control has three required
positional parameters - 4 bytes for the GCID, 1 byte
for the overstrike character and 1 byte for bypass
options. Assume that the remaining 6 bytes of the
control are encoded as X'006E01006100'.
Therefore, the Character Set and Code Page (GCID)
to use are Character Set 110 and Code Page 256.
The character to use for overstriking is the "/"
(code point X'61' on code page 256). The final
X'OO' indicates nothing is to be bypassed while
overstriking. Therefore, when the text that follows
this control is presented for viewing (if it is
WYSIWYG) or formatted for print, all characters
and most character positions on the line will be
overstruck by a slash until an END OVERSTRIKE
control is processed. Other details that should be
known before this control is actually implemented
are discussed in the Reference Guide, (SC23-0758).

Supporting the RFT DCA
Document
Several IBM products and a number of non-IBM
products, support the RFT DCA document. Each
has different total functional capabilities, different
methods of interfacing to their users and different
hardware requirements to support their functions.
How, then, will all of these apparently dissimilar
products operate in the same office network and
interchange their documents without tailoring the
transmission to fit the capabilities of receivers?

Interchanging RFT DCA Documents - The
Product Transform

In a network, a revisable-form text document can
carry text documents for revision purposes as well
as documents in final-form. For presentation
purposes. The RFT DCA has evolved to provide this
single document type for text documents. All office
products interchanging documents should provide a
document transform as part of the product. The
transform is the product interface to the network,
supporting only the RFT DCA-defined document on
the network side and the product-specific or
internal form of the document on the product side.
Now the product is loosely coupled to the
architecture, and the transform acts as an effective
buffer between the product and its implementation

28

and the RFT DCA and its definitions. Each product
now 'talks' to a single entity, the RFT DCA, for
functional capabilities in the interchange realm.

The next matter to resolve is how to optimize the
actual function that each product can interchange
with its partners in the office system network. The
solution is simple to state, but it is probably the
most difficult to achieve. First, all the products
must use the RFT DCA document for interchange.
Any function a product wishes to interchange has
supporting text elements and text statements
defined in the architecture so that each product has
the necessary encoding values to support its
function. Once the architecture is in place, the
function can be sent and received in the RFT DCA
documents it interchanges. It is clear, however, that
for the function to be supported by other products
in the system, they must add that function to their
support. History tells us that products change in
their own way and in their own time. Functionally
enhancing an office system of several different
products can be a demanding and frustrating task;
however, it is not impossible. With the RFT DCA as
the single focal point for setting functional content
for interchange, uniform product support can be
achieved.

Round-Tripping RFT DCA Documents

When a product of greater functional capability
transforms and sends its document on the network
and to be received and transformed by a product of
lesser function, a problem can occur. What is the
receiving product to do with those RFT DCA
elements it does not support or even recognize?

The RFT DCA has a standing rule for all receivers of
an RFT DCA document. Simply stated, the receiver
is not to quit but is to make every effort to preserve
the unrecognized or unsupported piece of the RFT
DCA document. The product should make known
to the user that an exception to normal processing
has occurred, and to proceed under the assumption
that some product in the network understands and
supports this part of the RFT DCA document.
Granted, each product will be limited as to how
much it can preserve. It is also understood that
while processing the document this information may
be edited out or dropped for presentation.
However, if the document is later sent back out on
the network, the preserved pieces must flow back
into the RFT DCA document in the original form (as
preserved) and in the same relative position in the
data stream.

Revisable-Form Text Document Content Architecture

Product-Provided Information

In addition to preserving elements, the architecture
states that the product will make a "best can-do"
substitution of values it does support and note that
these values were added and are not the original
values.

For example, all products are expected to fully
support Code Page 256. However, some products
use other code pages as well as CP256. If a
product receives an RFT DCA document in which
code pages other than 256 are used, that product is
expected to preserve the original code page value
and substitute as best it can for its form of the
document. Since this actually is an exception
action, it is the products way of continuing
processing after the exception condition is detected
(the unsupported code page). Similar situations
exist with range values on line lengths, page
dimensions, amount of margin text, dictionary IDs,
page number numerals, print date formats and
many other elements that offer ranges for
parameter values or have several optional
parameters values that may be used.

Product Implementation Responsibilities

The following is a list of the major areas a product
needs to address when implementing support for
the RFT DCA document:

1. Strive to maximize functional capability based on
the function offered by other office products in
the office network that would be your document
interchange partners.

2. Provide exception flagging and exception action
to allow processing of the document to
continue.

3. Preserve, wherever possible, those RFT DCA
elements you do not support or do not
recognize. Return the preserved elements to the
RFT DCA form of the document when it is
interchanged.

4. Use substitution of values as an exception action
in conjunction with preserving elements for
processing the product form of the RFT DCA
document.

5. Conform to the architecture for all encodings of
the RFT DCA data stream.

29

Sumnary
The revisable-Form Text Document Content
Architecture is both a semantic description of a
document in a revisable form and a syntactic
definition of this document in its data stream form.
Office editors and word processors that utilize this
structure for document interchange and conform to
the support requirements when receiving and
sending documents in the office network will
achieve maximum functional interchange among
otherwise independent and dissimilar office
products.

Revisable-Form Text Document Content Architecture 30

Document Interchange Architecture
(A Solution for Office Information
Interchange)
Introduction
Office systems may differ in several ways-each
offers different capabilities and answers the needs
of different users. The thread that ties these
systems together is information interchange. The
goal is to allow dissimilar office systems to
communicate with one another in an understandable
manner.

To achieve this goal one requirement is a
comprehensive and standardized method for
conveying both the information and the intended
use of this information in an office systems
network. This is the purpose of IBM's Document
Interchange Architecture (DIA).

DIA is a process-to-process communications
architecture that defines how information and
requests for processing functions are communicated
in an office systems network. Essentially, DIA
specifies the rules and data structure that establish
the discipline for unambiguous interchange of
information and processing requests between office
systems.

Document Interchange Architecture can be viewed
as consisting of:

• A set of logical components

• A set of processing services

• A set of protocols

• A data stream structure

Together these four areas form the foundation for
information interchange.

DIA Logical Components
A network of office systems based on DIA is a set
of interrelated logical components that lie within the

framework of the physical components of a
network. The logical components are defined by
DIA and are implemented as processes executing in
the physical components of the communications
network. The nodes defined by DIA are:

• Source Node

A source node provides one or more users with DIA
services, that initiate and control the interchange of
information with recipients.

• Recipient Node

A recipient node provides one or more recipients
with DIA services that control and receive
information sent by source nodes.

• Office System Node (OSN)

An office system node provides DIA services that
receive, store, route and deliver information from
source nodes to recipient nodes. An office node
also can interact with an appropriately configured
network to distribute information to other office
system nodes.

Source nodes, recipient nodes and office system
nodes interchange information using the common
transport services of the network. The logical
components of a DIA office systems network are
shown in Figure 1.

All nodes must be uniquely identified within the
network. Specifically, a source node is identified by
a source address and a recipient node by a recipient
address. An office system node is identified by
either an originating node address, when the OSN is
supporting a source node, or a destination node
address when, the OSN is supporting a recipient
node. The nodes provide the services for the control
and information exchange within the network.

Document Interchange Architecture (A Solution for Office Information Interchange) 31

SOURCE
NODE

ORIGINATING
OSN

DESTINATION
OSN

RECIPIENT
NODE

Figure 1. Logical Components of a DIA Network

DIA Services
DIA consists of a set of defined services performed
by peer communication processes in the network
nodes. Each DIA service carries out specific
functions requested by the users. Users, in this
context, can be application programs, devices or a
person and, they represent the source or receiver of
information flowing through the network.

The services defined by DIA are analogous to the
functions performed in today's office. These
services can be categorized into the following
general areas:

• DIA Session Services

• Document Library Services

• Document Distribution Services

• Application Processing Services

COMMAND COMMAND DESCRIPTION

SIGN-ON Establishes a DIA session
processes.

SIGN-OFF Terminates a DIA session.

ACKNOWLEDGE A general replying command

DIA Session Services

DIA processes use DIA session services to establish
a logical connection, called a DIA session, through
which they may exchange information. A DIA
session is established by a dialog of DIA commands
between two nodes in the network. A command
represents a functional unit of work to be performed
by the receiving DIA process. For DIA sessions
services, this set of commands is shown in Figure 2.

A DIA session exists after two DIA processes
identify themselves and agree on the scope of work
that is to be performed. While DIA defines a wide
range of office system function, most office
systems require only a subset of these functions for
their operations. Therefore, the DIA session
agreement mechanism provides the vehicle for
defining the proper scope of function or work for
each DIA session.

DIA commands are grouped into function sets that
identify the scope of work for a DIA session. These
function sets have been defined so that each set
contains the commands required for a well defined,
usable and complete set of functions for a given
category of services.

between two DIA

informing a DIA
process of successful or unsuccessful
completion of a request.

Figure 2. DIA Session Services Commands

Document Interchange Architecture (A Solution for Office Information Interchange) 32

Document Library Services

Document library services are used for storing and
retrieving information electronically. These
functions are analogous to manually filing and
retrieving of paper documents in an office.

However, document library services can also
perform activities that are cumbersome in a manual
system. For example, when a document is
electronically filed in a document library (electronic
filing cabinet) a set of descriptors called a document
profile is filed with it. The profile contains
parameters that identify the contents of the
document, such as the name under which it is filed,
the authors, the subject, the date it was filed and
other information pertinent to the management of
the document in the library.

These document profiles can be used in searching
for documents in a library. As an example, a user
can ask the office system to search for all
documents about a particular subject and by a
certain author recieved by the library between any
two dates. On completing the search, the office
system produces a list of the documents that meet
the user's search criteria. The user can then ask the
office system to retrieve a specific document on the
list from the library and deliver it to the user for
printing or viewing. The set of commands provided
by DIA library services are shown in Figure 3.

COMMAND COMMAND DESCRIPTION

FILE Files the identified document and
associated document profile parameters
in the document 1 ibrary.

RETRIEVE Returns a copy of the identified 1 i brary
document to an authorized document
requester. This command can also be used to
request delivery of descriptors of
documents found by a prior search command.

DELIVER Sends a library copy of a document to the
requester as a result of a retrieve request.

SEARCH Locates the documents in the library that
match search criteria specified by the
requester of the search. Return of
descriptors of the documents found can be
requested by this command.

DELETE Removes access to the identified document
for the delete requester. When all owners
of the document have been deleted, the
document is removed from the 1 ibrary.

Figure 3. DIA Library Services Commands

Document Distribution Services

Document distribution services send information
such as messages or documents from one user to
others in an office systems network. Documents
and messages can be distributed between source
and recipient nodes through office system nodes for
later delivery to each recipient (deferred delivery) or
sent directly from a source node to a recipient node
(immediate delivery).

When documents or messages are delivered
through an office system node, document

distribution services in the source node do not
establish a direct DIA session with document
distribution services in the recipient node. Instead,
a DIA session is established between the source
node and the originating office system node. The
originating office system node then queues the
distribution request for later delivery to the specified
recipients. If the recipient node is located on a
different office system node, the information is sent
through the network to the proper destination office
system node, where the distribution is enqueued for
later delivery. This deferred delivery alleviates the

Document Interchange Architecture (A Solution for Office Information Interchange) 33

problem of having all of the network's physical
components available to the sender of a distribution
request.

When the recipient node establishes a DIA session
with its office system node, it can obtain a summary
list of documents and messages. It also can receive
any or all the documents or messages, or it can
cancel delivery of any or all the information queued
for the recipient at the destination office system
node.

This concept is analogous to a postal system where
the destination of information can be viewed as the
flow of mail in the system and the OSN recipient
queues as mail boxes. The set of commands shown
in Figure 4 provides the functions for this
distribution system view.

Additionally, the sender of a document or message
can specify a distribution priority for it relative to
other distribution requests. That is, senders can
request information to be delivered to recipients
faster. The sender also can request notification of
delivery of a document or message to its recipients.
This notification is called a confirmation-of-delivery
message.

Document distribution services allow users to send
a document or message to a distribution list defined
in an office system node. The office system node
will queue a copy of the document or message to
each recipient defined on the distribution list. Each
recipient can then take delivery of an individual copy
of the document or message.

COMMAND COMMAND DESCRIPTION

REQUEST- Sends document and/or messages from a
DI STR I BUTI ON source node to an office system node for

delivery to specified recipient nodes.

OBTAIN Requests delivery of one or more documents
and/or messages scheduled for delivery to
a recipient node.

DELIVER Sends a document and/or message from an
office system node to a source or recipient
node.

LI ST Provides a list of documents and messages
queued for delivery on an office system
node for the requesting recipient node.

STATUS-LIST Notifies the recipient node that one
more documents and/or messages are

or

available.

CANCEL- Cancels distribution status information
DISTRIBUTION or cancels the delivery of distributed

documents and/or messages.

Figure 4. DIA Document Distribution Service Commands

Application Processing Services

Application processing services define commands
that request an office system node to perform
several additional functions. These additional
functions allow users to manipulate document
profiles associated with a document (for example, to

add or delete keyword descriptors used for
searching the library), to invoke a program to
process documents, and to invoke user application
programs, procedures or processes. A summary of
the functions in DIA application processing services
is shown in Figure 5.

Document Interchange Architecture (A Solution for Office Information Interchange) 34

COMMAND COMMAND DESCRIPTION

EXECUTE Requests an office system node to schedule
the named process for execution.

FORMAT Requests an office system node to invoke a
specified formatting process using the
identified document as the source.

DELIVER Sends the document produced as a result of
the format operation to the requesting
recipient node.

MODIFY Requests an office system node to revise
document control information fields.

Figure 5. DIA Application Processing Services Commands

DIA Protocols

Information exchanged between DIA processes
consists of commands and user information. To
achieve this information exchange, DIA defines a
request/reply command protocol. To illustrate the
DIA request/ reply command protocol, consider the
following scenario: Process B sends a request to

Process A to retrieve a document from Process A's
document library; Process A interprets the request,
retrieves the document from the library, and delivers
the document to the requester (Process B).

PROCESS B
RETRIEVE

DELIVER

The above scenario illustrates the basic DIA
request/reply protocol. The RETRIEVE command is
the function request and the DELIVER command is
the reply to the function request.

This scenario also illustrates that the server (Process
A) responds on demand to the requestor (Process
B). The on demand request/ reply protocol is one of
the command classes defined by DIA to perform a
unit of work desired by the requestor at the server.
The on demand command class is called the
Synchronous Reply Required (SRR) command class,
that is, the command execution and the command
reply is processed synchronously between the
requester and the server. Other command classes
in DIA are the No Reply Required (NRR) and the
Asynchronous Reply Required (ARR) command

DIA defines Process B as the requestor of a service
and Process A as the server of the request. These
are the logical roles performed by DIA processes.

PROCESS A

classes. The NRR command class is used by the
requestor when the function does not require a
replying command by the server. The ARR
command class is used by the requestor when the
function requested does not need to be performed
synchronously but can be deferred for later
processing by the server.

DIA Data Stream Structure

DIA defines a data stream structure called a
Document Interchange Unit (DIU) to exchange
requests and replies between a requestor and a
server. Figure 6 illustrates the major DIU
components.

Document Interchange Architecture (A Solution for Office Information Interchange) 35

DIU COMMAND DATA UNIT DOCUMENT UNIT
PREFIX SEQUENCE

Figure 6. DIA Document Interchange Unit

The DIU consists of the following components:

• The DIU prefix introduces and identifies the
information that follows in the data stream as a
Document Interchange Unit.

• The command sequence contains the DIA
command that specifies the function to be
performed.

• The data unit contains command operand
information. This component is optional and is
present when defined by the command.

• The document unit contains the document
profile and the document content. This
component is optional and is present only when
a document is sent from one DIA process to
another.

• The DIU suffix specifies the end of the DIU and
indicates the normal or abnormal completion of
the DIU request.

These data stream components are further
composed of substructures called subcomponents.
Examples of subcomponents are command
operands and document profiles. All DIU
components and their associated subcomponents
begin with a structured field called an introducer.
The introducer uniquely identifies the components
and subcomponents and defines its length. The
introducer provides for an extendable, self
describing, variable length data stream.

Summary
Document Interchange Architecture supports a
logical view of an office systems network that
enables users to interchange information in the
network. Specifically, this architecture provides:

DIU
SUFFIX

• Document library services

These services let users file, retrieve and delete
documents and other information from a document
library and to search the library for documents that
meet user-specified criteria. Document library
services provide the ability to organize, manage, and
control information assets.

• Document distribution services

These services let users electronically distribute
correspondence, reports, contracts, proposals and
other information in an office systems network.
Document distribution services provide timely, cost
effective and efficient dissemination of information
among users.

• Application processing services

These services let users change documents, change
the search descriptors of stored documents and
invoke user-written programs to accomplish
specific functions. Applicatin processing services
provide for the flexible placement of office system
applications in the network.

References
• Office Information Architectures: Concepts,

GC23-0765, IBM Corporation, March 1983.

• Document Interchange Architecture: Technical
Reference, SC23-0781, IBM Corporation, May
1985.

• Document Interchange Architecture:
Interchange Document Profile Reference,
SC23-0764, IBM Corporation, May 1985.

• Document Interchange Architecture:
Transaction Programmers Guide, SC23-0763,
IBM Corporation, May 1985.

Document Interchange Architecture (A Solution for Office Information Interchange) 36

Introduction to IBM Enhanced
Connectivity Facilities
IBM Enhanced Connectivity Facilities are a set of
programs for interconnecting IBM Personal
Computers and IBM System/370 host computers
operating with the MVS/XA or VM/SP
environment. The goal of IBM Enhanced
Connectivity is to provide a consolidated approach
to PC-to-host communication. IBM Enhanced
Connectivity Facilities provide a single interface that
allows applications programmers to write personal
computer and host applications that run on a variety
of communications connections. The interface is
designed to shield an application from the
underlying systems' communication environment.

IBM Enhanced Connectivity
Facilities Characteristics
Figure 1 on page 38 identifies the characteristics of
the IBM Enhanced Connectivity Facilities described
below:

• A consistent interface for application programs
in a personal computer to request services, data
or both from a host. The requesting program is
referred to as the requester.

• A consistent interface for programs in a host to
reply to requests for services, data, or both from
personal computers. The program that services
the request is referred to as the server.

Introduction to IBM Enhanced Connectivity Facilities

• A consistent interface for handling
communications between requesters and
servers. The program, provided in both personal
computers and hosts is referred to as the
router. The routers provide a new
Server-Requester Programming Interface
(SRPI) : a request interface for requesters, and a
reply interface for servers. This interface
isolates requesters and servers from the
underlying communications environment.

Writing to the SRPI enables applications to be
used in a number of communication
environments. The SRPI provides a consistent
interface for programs in personal computers to
obtain services, data or both from different
hosts.

Requester applications on the PC use the SRPI by
issuing the Send Request function. Invocation of
the Send Request function is analogous to a main
routine "calling" a subroutine. The host server
assumes the role of a subroutine and "returns" data
to the requester. The Send Reply function is used
by the host server to "return" the data to the PC
requester. The details associated with reliably
transmitting the requester data to the host server
are handled by the PC Router and the Host Router.
The same is true for host server data returned to the
PC requester.

37

IBM PC S/370

REQUESTER
APPLICATION

SE
APP

RVER
LICATION

SRPI

PC

s
H

RP l-------1

OST
SRPI

ROUTER

REQUEST

t REPLY

Figure 1. SRPI Flow Overview

Advantages of IBM Enhanced
Connectivity Facilities

IBM Enhanced Connectivity Facilities:

• Provides a consolidated host attachment
solution for a variety of physical connections
supported by:

s
RO

j

- IBM PC 3270 Emulation Program, Version
3.00

- IBM 3270 Control Program, Version 3.00

RPI
UTER

• Shields applications from communications layers

• Simplifies distribution of personal computer and
host data to personal computer applications

• Simplifies access to customer-written personal
computer software

• Improves programmer productivity, when the
SRPI is used to develop distributed applications

• Reduces communications expertise required in
developing distributed applications

• Simplifies access to host facilities by personal
computer applications.

Introduction to IBM Enhanced Connectivity Facilities

What You Need

Program Products

IBM offers a group of Enhanced Connectivity
program products for selected IBM systems. The
following IBM PC program products provide the
SRPI function required by PC requesters:

• IBM PC 3270 Emulation Program, Version 3.00
(59X9969) (DOS 3.1 or 3.2 prerequisite)

Hardware Supported

- PC

PC XT

- PC AT

• IBM 3270 PC Control Program, Version 3.00
(58X9968) (DOS 3.1 or 3.2 prerequisite)

Hardware Supported

3270 PC (except 5271 models 24 and 26)

3270 PC AT (all models)

On the host, the SRPI function is provided for
servers by the following IBM program products:

38

• TSO Extensions (TSO/E), Release 3, with the
MVS/XA feature includes the the IBM
Enhanced Connectivity support (5665-285)

• VM/System Product, Release 4 includes the
IBM Enhanced Connectivity support (5664-167)

Related Publication

The following book describes the functions of the
Enhanced Connectivity Facilities.

• Introduction to IBM System/370 to IBM
Personal Computer Enhanced Connectivity
Facilities (GC23-0957)

The following book explains how to write PC
requesters using the SRPI.

• IBM Programmer's Guide for the
Server-Requester Programming Interface for the
IBM Personal Computer and the IBM 3270-PC
(SC23-0959)

The following book explains how to write and install
servers using MVSSERV, the host router for MVS.
It is intended for application designers and
programmers who design and write servers and
server initialization/termination programs; and
system programmers who install MVS/XA systems.

Introduction to IBM Enhanced Connectivity Facilities

• IBM TSO Extensions Programmer's Guide to the
Server-Requester Programming Interface for
MVS Extended Architecture (SC28-1309)

The following book explains how to write and install
servers in a VM/SP system. It is intended for
application designers and programmers who design
and write servers and server
initialization/termination programs; and system
programmers who install VM/SP systems.

• IBM Programmer's Guide to the
Server-Requester Programming Interface for
VM/System Products (SC24-5291)

Send/Request Function
The Send Request function is the mechanism
used by a PC requester to ship data and parameters
to a host server. As described earlier, issuing a
Send Request is analogous to "calling" a
subroutine, and thus it provides a synchronous
interface for the requester. When the server returns
the results of its processing, control is returned to
the PC requester.

39

PC REQUESTER PC HOST HOST SERVER
ROUTER ROUTER

.,.send_Request..,.

Server Name
Function ID
Request Parms _.. Function ID
Request Data _.. Request Parms

Request Data

SEJER
PROCESSES
REQUEST

i
.,.send_Reply..,.

Server RC
Router RC ..._ Reply Parms
Server RC Reply Data
Reply Parms ..._
Reply Data

J 1
(Requester} (Server}

Figure2. Requester /Sener Flow

The requester selects a server by providing a Server
Name. The requester optionally may provide a
Function ID, which may be used to specify a
particularserver function.

In addition to the Server Name and the
Function ID, the requester may send up to 32,763
bytes of parameters and up to 65,535 bytes of data
to the host server program with a single
Send Request. To send up to 32, 763 bytes of
parameter information to the server, the requester
supplies the parameter length in bytes and a pointer
to a buffer containing the parameters. Similarly, to
send up to 65,535 bytes of data to the server, the
requester supplies the data length in bytes and a
pointer to a buffer containing the data.

The requester also specifies the maximum number
of parameters and amount of data it is willing to

Introduction to IBM Enhanced Connectivity Facilities

receive from the server. The requester may receive
up to 32, 763 bytes of reply parameters and 65,535
bytes of reply data from the server. The requester
must supply the buffer(s) required to receive the
parameters and/or data from the server.

The parameters associated with the Send Request
function are described in greater detail on the
following pages.

Parameters Supplied by the PC Requester

Figure 3 describes the various parameters supplied
by a PC requester using the Send Request
function. The parameters which have default values
can be initialized to their default values by using the
appropriate initialization procedure provided with
each of the language interfaces supplied by IBM.

40

Name of Required/ Default Description
Parameter OJ!.tional Value

Server Required None The name of the S/370 server must be 8 bytes long
(PC/ ASCII), left justified, and padded with blanks. Leading
blanks, embedded blanks and a name consisting of all blanks
are invalid. Valid characters (for an English system) consist
of A to Z (upper and lower case) and three special characters
(#. $ and (@J.

Function ID Optional 0 A 2-byte binary number that specifies the server function
being requested. Values of 0 to 65,535 are valid for
S_Q_ecification ~a re_g_uester.

Request Optional 0 A 2-byte unsigned binary length that specifies the byte
Parameters length of the request parameters to be passed to the server.
Buffer Length Values of 0 to 32, 763 are valid. A value of 0 indicates that

there are no re_g_uest_ru!rameters to be sent to the server.
Request Optional None The 4-byte address of the parameters, if any, to be passed
Parameters to the server. A non-zero value in the request parameters
Buffer buffer length indicates that there are parameters to be

_Q_assed.
Request Data Optional 0 A 2-byte unsigned binary length that specifies the byte
Buffer Length length of the request data to be passed to the server. Values

of 0 to 65,535 are valid. A value of 0 indicates that there is
no r~uest data to be sent to the server.

Request Data Optional None The 4-byte address of the data, if any, to be passed to the
Buffer server. A non-zero value in the request data buffer length

indicates that there is data to be...Q..assed.
Reply Optional 0 A 2-byte unsigned binary length that specifies the byte
Parameters length of the reply parameter buffer supplied by the
Buffer Length requester. Values of 0 to 32, 763 are valid. A value of 0

indicates that no reply parameters are expected from the
server.

Reply Optional None The 4- byte address of the reply parameter buffer. Its
Parameters presence is indicated by a non-zero Reply Parameters Buffer
Buffer Len_g_th.
Reply Data Optional 0 A 2-byte unsigned binary length that specifies the number of
Buffer Length bytes in the reply data buffer supplied by the requester.

Values of 0 to 65,535 are valid. A value of 0 indicates that
no re_Qjy_data is ex...Q..ected from the server.

Reply Data Optional None The 4-byte address of the reply data buffer. Its presence is
Buffer indicated b__y_a non-zero re_Qjy_data buffer len_g_th.

Figure 3. Requester Supplied Parameters

Introduction to IBM Enhanced Connectivity Facilities 41

Parameters Returned to the PC Requester

The following parameters are returned to the PC requester when processing of the
Send_Request function is complete.

Name of Description
Parameter

PC Router A 4-byte return code indicating the results of the Send_Request execution. An
Return Code OK return code indicates the host server was successfully invoked. See Appendix A

of "IBM Enhanced Connectivity Facilities Programmer's Guide for the Personal
Computer and the 3270 Personal Computer, SC23-0959-0"for a complete
descriQtion of return codes.

Server Return The return code returned from the host server. The content and the format of the
Code server return code are defined by the individual host server. The server return code

is alwa_y_s 32 bits.
Replied A 2-byte unsigned binary length that specifies the number in bytes of the
Parameter parameters returned from the server. The value will be less than or equal to the
Lerm_th value ~ecified ~the re_g_uester in the re_QJy__Q_arameters buffer len_g_th.
Replied Data A 2-byte unsigned binary length that specifies the number in bytes of the data
Length returned from the server. The value will be less than or equal to the value specified

in the re_Qjy_ data buffer len_g_th.

Figure4. Requester Returned to PC Requester

Usage Notes

Notes: The PC Router Return Code should be
examined first by the requester application. If the
PC Router Return Code is not successful, the
following fields are undefined:

• Server Return Code

• Replied Parameter Length

• Replied Data Length

This means that these fields may or may not have
been altered by the PC Router. Therefore, the
calling application should not expect these fields to
be either maintained or altered across any
unsuccessful call to the SRPI.

The Server Return Code is application data
generated by the host server.

routines supplied by IBM support the following
languages.

1. IBM Pascal Compiler, Version 2.0

2. IBM C Compiler, Version 1.0

3. IBM Macro Assembler, Version 1.00 and
Version 2.00

By using the IBM Macro Assembler support, users
can write their own interface routines to other
high-level languages. The interface routines are
included on the product diskette(s) for:

• IBM PC 3270 Emulation Program, Version 3.0

• IBM 3270 PC Control Program, Version 3.0

Sample PC Requester Program Overview

The server name is translated from ASCII into an
EBCDIC representation prior to transmission to the
host router.

Language Interfaces

Three sample requester program segments are
provided in the following sections, one for each of
the language interfaces provided by IBM. Each
sample program builds a version of the Connectivity
Programming Request Block (CPRB). The CPRB is
the control block used to issue the Send Request

IBM provides interface routines to support
requesters written in three languages. The interface

Introduction to IBM Enhanced Connectivity Facilities

function. -

42

A programmer using Pascal or C will use a logical
representation of the CPRB, while the Macro
Assembler programmer will use a CPRB mapping
which matches the physical control block mapping.
A file for each of the three CPRB mappings is
provided on the product diskette(s):

Pascal - UUPCPRB.INC
C COMPILER - UUCCPRB.H
Macro Assembler - UUMCPRB.INC

Each sample requester performs the same function.
A Send_Request is sent to the host with:

Function ID set to "READ"
Server name set to 11 IBMabase 11

The request parameter buffer containing a flag set to 11 COMMIT 11

The hypothetical server reads a record from
the database, and returns the record in the reply
data buffer. The database record returned
from the server contains:

Customer name
Customer address
Customer balance

The sample programs continue with normal
processing if the customer balance returned in the
reply data buffer is positive. The following
high-level algorithm describes the processing:

- Initialize the request parameters buffer
- Initialize default values in CPRB, using send req init procedure

Set server name in CPRB - -
- Set function ID in CPRB
- Set request parameter buffer address and length in CPRB

Set reply data buffer address and length in CPRB
Issue Send Request function
If SRPI router return code OK

If server return code OK
If customer balance positive

- Continue processing

Introduction to IBM Enhanced Connectivity Facilities 43

Pascal Language Interface

Overview

This section is for programmers interested in
writing a requester in Pascal. To assist the
programmer, the following files are included
on the program product diskette(s):

UUPINIT.OBJ - Subroutine to initialize the Pascal CPRB.
UUPSENDR.OBJ - Sendrequest subroutine.
UUPCPRB.INC - Pascal CPRB record definition and return code mappings.
UUPPROCS.INC - External routine declarations.

By linking UUPINIT.OBJ and UUPSENDR.OBJ with
the compiled Pascal requester program, the
programmer can easily access the SRPI function.

The parameters on the Send Request function are
grouped in a single Pascal record structure of type
UERCPRB. The init send req parms procedure
can be used to initialize all the default sendrequest
parameters in the structure of type UERCPRB.

Introduction to IBM Enhanced Connectivity Facilities

The Pascal procedure which implements the
Send Request function is called "send request''.
The sendrequest procedure has a single parameter,
which is the 32-bit address of a UERCPRB record.
The UERCPRB record contains the server name, the
Function ID, and pointers to the parameters and
data to be sent to the server. The UERCPRB record
also contains pointers to buffers to receive
parameters and data from the host server.

44

Sample Pascal Requester

program psample;
(*$INCLUDE:
(*$INCLUDE:

'UUPCPRB.INC'*)
'UUPPROCS.INC'*)

const

type

type

con st

var

1; fun cl
rcok
server

= #00000000,
= 'IBMabase

custrec = record
cusname
cusaddr
cusbal

end;

parms = record
flags

end;

qpacom

cprbads
retcode
pcprb
pqparms
prcustrec

= #02;

[00]: string(25);
[25]: string(25);
[50]: real;

[OOJ: byte;

UERCP RBPTR;
integer4;
uercprb;
parms;
custrec;

begin
pqparms.flags := qpacom;
cprbads := ADS pcprb;
init_send_req_parms(cprbads);

pcprb.uerserver := server;
pcprb.uerfunct := funcl;

pcprb.uerqparml := sizeof(pqparms);
pcprb.uerqparmad := ADS pqparms;

pcprb.uerrdatal := sizeof(prcustrec);
pcprb.uerrdataad := ADS prcustrec;

retcode := sendrequest(cprbads);
if retcode = UERERROK then
begin

if pcprb.uerservrc = rcok then
begin

if prcustrec.cusbal > 0 then
begin

(* CONTINUE PROCESSING
end;

end;
end;
end;

Introduction to IBM Enhanced Connectivity Facilities

(* Read record *)
(* Server RC OK *)
(* Server name *)

(* Customer record *)
(* Customer name *)
(* Customer address *)
(* Balance *)

(* Request Parms *)
(* Flags *)

(* Commit *)

(* CPRB address *)
(* Return Code *)
(* CPRB record *)
(* Request parms *)
(* Customer record *)

(* Set Request Parms *)
(* !nit CPRB record *)

(* Set server name *)
(* Set function ID *)

(* Set request parms length *)
(* Set request parms addr *)

(* Set reply data length *)
(* Set reply data address *)

(* Issue send request *)
(* If RC ok *)

(* If server RC ok *)

(* Check balance *)

*)

(* endproc *)

45

Pascal CPRB Mapping

The following mapping is defined in UUPCPRB.INC.

(**
* CPRB Record *
**)
TYPE

UERCPRBPTR = ADS of uercprb;
uercprb = RECORD

uerserver string(8);
uerfunct word;

uerqparml
uerqparmad
uerqdatal
uerqdataad

uerrparml
uerrparmad
uerrdatal
uerrdataad

uerretcode
uerservrc
uerrepldplen
uerreplddlen

end;

word;
adsmem;
word;
adsmem;

word;
adsmem;
word;
adsmem;

integer4;
integer4;
word;
word;

C Language Interface

Overview

This section is for programmers interested in
writing a requester in C. To assist the
programmer, the following files are included
on the program product diskette(s):

{ ASCII name of server
{ Function ID

{ Request Parameters Length
{ Request Parameters Address
{ Request Data Length
{ Request Data Address

{ Reply Parameters Length
{ Reply Parameters Address
{ Reply Data Length
{ Reply Data Address

{ Return Code
{ Server Return Code
{ Replied Parameters Length
{ Replied Data Length

UUCINIT.OBJ - Subroutine to initialize the C CPRB.
UUCSENDR.OBJ - Send request subroutine.

}
}

}
}
}
}

}
}
}
}

}
}
}
}

UUCCPRB.H C CPRB record definition and return code mappings.

By linking UUCINIT.OBJ and UUCSENDR.OBJ with
the compiled C requester program, the programmer
can easily access the SRPI function.

The parameters on the send request function are
grouped in a single C structure of type UERCPRB.
The init send req parms procedure can be
used to mitializeall the default send request
parameters in the structure. The C send_request

function has a single parameter which is the 32-bit
address of a structure of type UERCPRB. The
UERCPRB structure contains the server name,
Function ID and pointers to the parameters and data
to be sent to the server. The UERCPRB record also
contains pointers to buffers to receive parameters
and data from the host server.

Introduction to IBM Enhanced Connectivity Facilities 46

Sample C Requester

#include <uuccprb.h>

char

main()
{

cserver[9] = "IBMabase";

UERCPRB ccprb;
struct {

char
char
float
}

cusname[25];
cusaddr[25J;
cusbal;
ccustrec;

struct {
char qpaflags;

#define QPACOM Ox02
} cqparms;

#define FUNCl 1
#define RCOK OxOOOOOOOO

long int retcod;

cqparms.qpaflags = QPACOM;

init_send_req_parms(&ccprb);

ccprb.uerserver = cserver;
ccprb.uerfunct = FUNCl;

ccprb.uerqparml = sizeof cqparms;
ccprb.uerqparmad = &cqparms;

ccprb.uerrdatal = sizeof ccustrec;
ccprb.uerrdataad = &ccustrec;

retcod = send_request(&ccprb);

if (retcod == UERERROK)
{

}
}

if (ccprb.uerservrc == RCOK)
{

}

if (ccustrec.cusbal > 0)
{

/* CONTINUE PROCESSING
}

Introduction to IBM Enhanced Connectivity Facilities

/* Server Name

I* CPRB structure
/* Customer Record Structure
/* Customer Name
/* Street Address
/* Balance

*/

*/
*/
*/
*/
*/

/* Request Parameters Struct */
/* Processing Flags */
/* Commit transaction */

/* Fune Code: Get Record */
/*Server Return Code OK */

/* SRPI router return code */

!* PROC (MAIN) *I
/* SET PROCESSING OPTION = */
/*COMMIT TRANSACTION */
/* INITIALIZE CPRB STRUCTURE */

/*MOVE SERVER NAME & FUNCTION*/
/* INTO CPRB STRUCTURE */

/* SET CPRB REQUEST PARAMETER *I
/* BUFFER INFORMATION */

/* SET CPRB REPLY DATA BUFFER */
/* INFORMATION */

/* SEND REQUEST TO SERVER

/* SRPI router RC is good

*/

*/

/* SERVER RETURN CODE IS GOOD * /

/* ACCNT BALANCE IS POSITIVE */

/* ENDIF
/* ENDIF
/* ENDIF
/* ENDPROC (MAIN)

*I
*/
*/
*/
*/

47

C CPRB Mapping

The following mapping is defined in UUCCPRB.H.

/***/
/* CPRB Structure *I
/***/

typedef struct {

/* supplied parameters -- not changed by Send_Request */

char far *uerserver; /*ASCII name of server */
unsigned int uerfunct; /* Function ID */

/* request parameters and data */

int
char far
unsigned
char far

uerqparml;
*uerqparmad;

int uerqdatal;
*uerqdataad;

/* Request Parameters Length */
/* Request Parameters Address */
/* Request Data Length */
/* Request Data Address */

/* reply parameters and data */

int
char far
unsigned
char far

uerrparml;
*uerrparmad;

int uerrdatal;
*uerrdataad;

/* returned parameters */

/* Reply Parameters Length
/* Reply Parameters Address
/* Reply Data Length
/* Reply Data Address

*/
*/
*/
*/

long int uerretcode; /* Return Code */
long int uerservrc; /* Server Return Code */
int uerrepldplen; /*Replied Parameters Length */
unsigned int uerreplddlen; /* Replied Data Length */
} UERCPRB;

/***/
/* Interface Routines *I
/***/

extern void init send req parms(UERCPRB far*);
extern long int send_request(UERCPRB far*);

Introduction to IBM Enhanced Connectivity Facilities 48

Macro Assembler Language Interface

Overview

This section is for programmers interested in
writing a requester in Macro Assembler. To
assist the programmer, the following files are
included on the program product diskette(s):

UUMINFAC.MAC - Various macros to build CPRB and Send Request (Source).
UUMCPRB.INC - Macro Assembler CPRB mapping. -

The programmer issues a Send Request via a set
of IBM supplied macros. The programmer must
insure that the ES:DI registers point to the CPRB
whenever invoking any of the macros.

application should not issue the send request verb
until all fields in the CPRB have been set to their
intended values.

All macro parameters are positional. The macros
may be invoked with null parameters. When a
parameter is null, the corresponding field in the
CPRB is not accessed. All parameters are optional
in terms of invoking macros. The requester

The following macros are provided to assist the
programmer in building the CPRB, issuing the
Send_Request and obtaining the returned
parameters.

SEND_REQ_INIT - Sets default values in the CPRB

- EXAMPLE: SEND_REQ_INIT

SET_REQ_PARMS - Sets server name and function ID.

- EXAMPLE: SET_REQ_PARMS SERV_NAM,FUNCT

SET REQ BUFFERS - Sets the values
of the request data and request parameters
buffers and the corresponding lengths.

- EXAMPLE: SET REQ BUFFERS QPARM BUF,QPARM LEN,QDATA BUF,QDATA LEN
- EXAMPLE: SET=REQ=BUFFERS ,,QDATA_BUF,QDATA_LEN - -

SET REPLY BUFFERS - Sets the values of the reply data and reply
parameters buffers and the corresponding lengths.

- EXAMPLE: SET_REPLY_BUFFERS PARM_BUF,PARM_LEN,DATA_BUF,DATA_LEN

SEND_REQUEST - Executes the send_request by issuing an interrupt.

- EXAMPLE: SEND_REQUEST

GET REPLY - Retrieves the parameters returned when a send_request
has-been processed.

- EXAMPLE: GET_REPLY RET_CODE,SERV_RC,REP_PARM_LEN,REP_DATA_LEN

Introduction to IBM Enhanced Connectivity Facilities 49

Sample Macro Assembler Requester

INCLUDE uuminfac.mac
INCLUDE uumcprb.inc

;--
SUBTTL 'Customer Record Mapping'

mcustrec STRUC
mcusname db
mcusaddr db
mcusbal dd
mcustrec ENDS

25 dup (?)
25 dup (?)
?

;name
;street address
;balance

;--
SUBTTL 'Request Parameters Mapping'

mqparms
mqpaflags
mqparms
•

STRUC
db
ENDS

? ;Processing flags

;Equates for processing flags defined in STRUC mqparms
mqpacom equ 02H ;Commit the transaction
·---•
rnwork
mdabuf

SUBTTL 'mWORK - Work Area Segment'
SEGMENT 'data'

• mdabuf@
• mdabufl
• mqprmbuf
• mqprmbuf@
• mqprmbufl

mserver_l$
;
mserver
mserver_len$

mfuncl
mrcok

mretcode

mrclow
mrchigh

mservrc

msrvrclow
msrvrchigh
mwork

db SIZE mcustrec dup (?) ;Allocate buffer

dd

equ

db

dd

equ

equ

db
equ

equ
equ

dd
org

dw
dw

dd
org

dw
dw
ENDS

mdabuf

SIZE mcustrec

for customer records
;Vector to customer
record buffer

;Length of a customer
record

SIZE mqparms dup (?) ;Allocate a buffer

mqprmbuf

SIZE mqparms

$
1 IBMabase 1

$-mserver_l$

1
OOOOH

?
mretcode-mwork

?
?

?
mservrc-mwork

?
?

for request parms
;Vector to request
parameters buffer

;Length of a request
parameters

;First character of
server name

;Server name
;Length of server name

;Fune code: Get Record
;Return Code: OK

;SRPI router RC

;Low word of return code
;High word of return code

;Server Return Code

;Low word of return code
;High word of return code

·--• mcprbseg
mcprb

SEGMENT 'data'
db SIZE uercprb dup (OFFH) ;Allocate space

• for CPRB
mcprbseg ENDS
;--

Introduction to IBM Enhanced Connectivity Facilities 50

ms tack SEGMENT stack 'stack'
dw 255 dup (OFFFFH) ;Allocate a stack

mstaktop dw OFFFFH ;First stack entry
ms tack ENDS
;*******************-END DEFINITIONS-****************************

SUBTTL 'Main procedure'
msampl segment 'code'

assume cs:msampl
;**********************w**-PROCEDURE*****************************
;/ PROC (MAIN)
mentry:
;/

;/

;/

;
;/

;/

;/

;/
;&

;/
;&

;/
;&

;!
;&

;/

;/

assume
mov
mov
mov

assume
mov
mov

assume
les

mov

assume
mov
mov
mov

1. ESTABLISH A STACK
ss:mstack
ax,seg mstack
ss,ax
sp,offset mstaktop

1. SET DS TO POINT TO WORK AREA
ds:mwork
ax,seg mwork
ds,ax

1. GET ADDRESS OF REQUEST PARAMETERS
es:mwork
di,mqprmbuf@ ;ES:DI -> request

parameters buffer
1. SET PROCESSING OPTION = COMMIT

BYTE PTR es:[di+mqpaflags],mqpacom
1. GET ADDRESS OF CPRB INTO ES:DI

es:mcprbseg
ax,SEG mcprbseg
es,ax
di,OFFSET mcprb ;ES:DI -> CPRB

SEND_REQ_INIT
2. INITIALIZE THE CPRB <SEND_REQ_INIT>

2 .. MOVE SERVER NAME AND FUNCTION (GET
RECORD) INTO CPRB <SET REQ PARMS>

SET_REQ_PARMS mserver,mfuncl - -
2 .. SET CPRB REQUEST PARAMETERS BUFFER

INFORMATION <SET REQ BUFFERS>
SET REQ BUFFERS mqprmbuf@,mqprmbufl - -

- - 2 .. SET CPRB REPLY DATA BUFFER INFORMATION
<SET REPLY PARMS>

SET REPLY BUFFERS ,,mdabuf@,mdabufl
- - 2. SEND THE REQUEST TO THE SERVER

<SEND_REQUEST>
SEND_REQUEST

2 .. GET SRPI ROUTER RC AND SERVER RC
GET REPLY mretcode,mservrc

cmp
je
jmp

- 2 .. IF SRPI ROUTER RC IS GOOD
mrchigh,uererrokeq
goodrcl
end

;exit label is >127
; bytes away

Introduction to IBM Enhanced Connectivity Facilities

*
*

*

*

*

*

*

*

*

*

*

51

goodrcl:
;/

cmp
je
jmp

goodrc2:
cmp
jne

;!
mov

mov
mov
sub
jl
jg
cmp
je

continue:

3 ... IF THE SERVER RETURN CODE IS GOOD
msrvrchigh,mrcok ;Compare high word of server re
goodrc2 ;exit label is >127
end ; bytes away

msrvrclow,mrcok
end

;Compare low word of server re

4 IF THE ACCOUNT BALANCE IS POSITIVE
si,WORD PTR mdabuf@ ;get offset of data buf,

DS:SI -> data buffer
[si+mcusbal] ;Get low word of balance
[si+mcusbal+2J ;Get high word of balance

;Subtract zero from the high word
;Negative balance, quit

ax,WORD PTR
dx,WORD PTR
dx,O
end
continue
ax,O
end

;Positive balance, continue
;Is low word zero?
;Yes-zero balance, quit

' CONTINUE PROCESSING
end:

*

*

;! 1. RETURN TO DOS
ax,4COOH

*

msampl

mov
int

END

21H
ENDS

men try

Introduction to IBM Enhanced Connectivity Facilities

;Return to DOS with
;return code zero

52

Macro Assembler CPRB Mapping

··** , ,
· ·* CPRB MAPPING *
~~** , ,
uercprb
uerrbsiz
uerversion
;uerversnum

uerretcode

uerverbtyp
;uersendreq

uerfunct

uerqparml
uerqparmad

uerqdatal
uerqdataad

uerrparml
uerrparmad

uerrdatal
uerrdataad

uerservrc

uerrepldplen
uerreplddlen

uerwkarea

uersrvnml
uerserver
uercprb
,
uerversnum
uersendreq
uersubfunct
uerinterrupt

STRUC
dw
dw
EQU

dd

db
EQU

db

dw

dw

dw
dd

dw
dd

dw
dd

dw
dd

dw

dd

dw
dw

db

dw
db
ENDS
Field
EQU
EQU
EQU
EQU

?
?
OlOOH

?

?
1

?

?

?

?
?

?
?

?
?

?
?

?

?

?
?

46 dup(?)

?
8 dup(?)

Definitions
OlOOH
1
0103H
07FH

Introduction to IBM Enhanced Connectivity Facilities

;Size of CPRB in bytes
;Version Number
;Current version value

;Return Code

;Verb Type
;Send_Request

;Reserved

; Function ID

;Reserved

;Request Parameters Length
;Request Parameters Address

;Request Data Length
;Request Data Address

;Reply Parameters Length
;Reply Parameters Address

;Reply Data Length
;Reply Data Address

;Reserved

;Server Return Code

;Replied Parameters Length
;Replied Data Length

;Work Area

;Server Name field length
;Server Name

;Current version value
;Send Request
;Sub runction (register AX)
;Call/Return interrupt value

53

IBM PC Interrupt Sharing Protocol

Introduction

This article defines and establishes an Interrupt
Sharing protocol that enables multiple hardware
adapters on the PC Bus to share a single interrupt
request line. This protocol allows an interrupt
request line to be used either by multiple sharing
adapters or exclusively by one nonsharing adapter.
Sharing and nonsharing adapters cannot be
physically intermixed on the same interrupt request
line.

In Interrupt Sharing, the shared interrupt hardware
allows the interrupt line to float high, and each
interrupting device requiring service is allowed to
momentarily pulse this line low. The protocol
permits only one interrupt to be serviced at any
given time, with other adapters required to retain
the status of pending interrupts.

Each adapter must provide an Interrupt Status bit
and an Interrupt Enable bit that can be set, reset or
interrogated by system software. The adapter sets
the Interrupt Status bit when it has an interrupt
pending and the bit is reset by software only after
the interrupt has been serviced. Since only one
adapter is serviced at any given time, this bit when
set ensures that the device requiring interrupt
service eventually will be serviced. The Enable bit is
set/reset by software to enable/disable the
adapter's interrupting capability. The interrupt
handler software resets this bit, before unlinking
from the chain of interrupt handlers, to ensure that
adapters do not cause system lockups by
interrupting when the handler is unlinked. The
Enable bit defaults to a disabled state following a
system initialization or reset.

A multitasking operating system environment needs
a software scheme that allows tasks to link their
interrupt handler onto a chain of interrupt handlers,
share the interrupt line while the task is active, and
then unchain their interrupt handler from the chain
once the task is completed. Interrupt handlers for
all adapters sharing an interrupt request line must
be linked to the chain of interrupt handlers while the
task is active.

This Interrupt Sharing protocol is also documented
in the last release of the PC AT Technical Reference
Manual (P/N 6280070) dated September 1985.
Corrections or additions to the information in the
PC AT Technical Reference Manual are indicated by
the "vertical change bar" in the left margin.

IBM PC Interrupt Sharing Protocol

Interrupt Sharing Hardware

Figure 5 illustrates a typical hardware
implementation for controlling an adapter's interrupt
request output in order to share an interrupt request
line. An interrupt originating from the adapter
(Interrupt Status bit) is AND'ed with the adapter's
Interrupt Enable bit, and the result is used to
activate the interrupt request pulse generating
circuits unless an interrupt pulse is already active on
the I RQ line.

The adapter's interrupt pulse, propagated through
the pulse generating circuits, must be between 125
and 1000 nanoseconds. The high-to-low transition
of the pulse is used to arm the Interrupt Controller,
while the low-to-high transition causes the
Interrupt Controller to recognize the interrupt. All
adapters, including the requesting adapter, must
latch the interrupt pulse on the I RQ line to disable
their pulse generating circuits. Disabling the pulse
generating circuits prevents adapters from
generating interrupts while an existing interrupt is
being serviced. Therefore, all adapters sharing an
interrupt level are required to monitor the I RQ line.

It is the responsibility of the interrupt handler to
rearm the interrupt sharing logic on the adapters
after the interrupt has been serviced. Only after a
Global Rearm (reset of latched condition) is issued
can an adapter once again place its request on the
IRQ line. This global rearm is accomplished by an
I I 0 Write to address 02FXH or 06FXH, depending
upon the interrupt level. (The X in the address
equates to the interrupt level being serviced; i.e.,
02F2H for level 2 or 9, 02F7H for level 7, 06F2H for
level 10, 06F7H for level 15.) An adapter is required
to decode the least significant 11 address bits for
this rearm.

An adapter must reissue its interrupt if its Interrupt
Status bit is set when the interrupt sharing logic is
rearmed. Since only one adapter can be serviced at
any given time, this prevents lost interrupts when
multiple adapters have interrupts outstanding.

Interrupts must never be generated when an
interrupt handler is not available to service the
adapter card's interrupt. This prevents the
possibility of locking up an interrupt level. All
designs for adapter cards must ensure that their
interrupts can be disabled and not allowed to
remain active after their application has terminated.

The Interrupt Status bit and Interrupt Enable bit
must be reset during a system reset condition.

54

ENABLE BIT
STATUS BIT

SYS CLK

+5v

GLOBAL
REARM -o A

N
RESET -o D

r +5v
0

PRE
D Q

~CLK Q o NC

CLR

r +5v
0

PRE
D Q NC

~CLK Q 0 A
N

CLR D

Figure 5. SHARED INTERRUPT HARDWARE LOGIC

Interrupt Sharing Software

Interrupt Sharing software operating in a
multitasking environment must support the linking
of a tasks interrupt handler to a chain of interrupt
handlers, the sharing of the interrupt level while the
task is active, and the unlinking of the interrupt
handler from the chain once the task is complete.

To link an interrupt handler, the newly activated
task's interrupt handler replaces the interrupt vector
in low memory with a pointer to its own interrupt

IBM PC Interrupt Sharing Protocol

r +5v
0

PRE +5v
D Q NC I

--, 2.2K
--,

~CLK Q 0

CLR IRQ

GND

handler. (Refer to the section "ROS
Considerations" for interrupt handlers stored in
ROS). The interrupt handler must preserve the
interrupt vector it is replacing and use it as a
forward pointer to the next interrupt handler in the
chain. This old interrupt vector must be stored at a
fixed offset from the entry point of the new task's
interrupt handler.

When the system acknowledges an interrupt
request, each interrupt handler must determine
whether it is the appropriate interrupt handler for
the adapter presenting the interrupt request. This is
accomplished by the handler reading the contents of
its adapter's Interrupt Status register.

55

If the handler's device caused the interrupt, the
handler must service the interrupt, reset the
Interrupt Status bit, clear the interrupts (CU), issue a
nonspecific End of Interrupt (EOI), issue a Global
Rearm (1/0 Write to address "02FX" or or "06FX")
and then execute a Return From Interrupt (IRET).

If the handler's device did not cause the interrupt,
the handler passes control to the next interrupt
handler in the chain via the use of the previously
stored forward pointer.

To unlink an interrupt handler from a chain, the task
first locates its handler's position within the chain.
By starting at the interrupt vector in low memory
and using the offset of each handler's forward
pointer to locate the entry point of each handler, the
chain can be searched until the task finds its own
handler. Each interrupt handler's signature (424BH)
(Refer to the Section "Interrupt Chaining Structure")
must be checked to ensure that a valid forward
pointer exists. The task's forward pointer replaces
the forward pointer of the previous handler in the
chain, thus removing the handler from the chain.
NOTE: If the interrupt handler can not locate its
position in the chain, the interrupt handler can not
unlink.

An application-dependent unlinking error-recovery
procedure must be incorporated into the unlinking
routine for those situations where the unlinking
routine discovers that the interrupt chain has been
corrupted (an interrupt handler is linked but does
not have a valid signature). All Interrupt Sharing
handle.rs, except those in ROS (refer to the section
"ROS Considerations"), must use 424BH as the
signature to avoid corrupting the chain.

During a system reset condition, a short routine for
each interrupt handler must be executed with the
AUTOEXEC.BAT to disable interrupts from their
responsible devices.

ENTRY: JMP SHORT PAST
FPTR DD 0
SIGNATURE ow 424BH

FLAGS DB 0
FIRST EQU 80H
JMP SHORT RESET

Interrupt Chaining Structure

The Interrupt Sharing software chaining structure is
in a 16-byte format containing a 4-byte forward
pointer (FPTR), a 2-byte signature and 8 reserved
bytes (RES_BYTES) as depicted in the following
coding example. It begins at the third byte from the
interrupt handler's entry point. The first instruction
of every handler is a short jump around the
structure, placing the structure at a known offset
from the beginning of the handler routine. Since the
position of each interrupt handler's chaining
structure is known (except for the handlers on
adapter ROS), the FPTRs can be updated when
linking and unlinking.

The FIRST flag is used to determine the handler's
position in the chain when linking and unlinking for
shared interrupt levels 7 and 15 only. The RESET
routine, an entry point for the operating system,
must disable the adapter's interrupt and return
(FAR) to the operating system.

Jump around structure
Forward Pointer
Used when unlinking to identify
compatible interrupt handlers

Flags
Flag for being first in chain

RES BYTES DB DUP 7(0) ;Future Expansion
PAST: ;Actual start of code

IBM PC Interrupt Sharing Protocol 56

ROS Considerations

Adapters with interrupt handlers in ROS must
implement chaining by storing the 4 byte forward
pointer (FPTR) in on-adapter latches or ports. If the
adapter is sharing interrupt levels 7 or 15, it must
also store the FIRST flag that indicates whether it is
positioned first in the chain of interrupt handlers.
Storage of this information is required because it
can not be guaranteed that handlers in ROS will
always link first and never unlink. The ROS handler
must contain the signature OOOOH beginning at the
seventh byte from the handler entry point since the
forward pointer in ROS handlers is not stored at the
third byte from the handler entry point.

Interrupt Sharing Precautions

The following precautions should be taken before
implementing Interrupt Sharing:

• The defined Interrupt Sharing protocol is
intended to run only in the Real Address Mode
(i.e. 80286 Real Address Mode). It is not
intended to run in the Virtual Address Mode.

• Interrupts must be disabled before control is
passed to the next handler on the chain.
Disabling of the interrupts allows the next
handler to receive control as if a hardware
interrupt had caused it to receive control.

• The interrupts must be disabled before the
nonspecific EOI is issued and not reenabled in
the interrupt handler to ensure that the IRET is
executed (at which point the flags are restored
and the interrupts reenabled before another
interrupt is serviced, protecting the stack from
excessive build up).

• All interrupt handlers must have a short routine
that can be executed with the AUTOEXEC.BAT
at power-on reset to disable their adapters'
interrupts. Execution of this routine, along with
a reset of the Interrupt Sharing hardware,
ensures that adapters are deactivated if the user
reboots the system.

• Interrupt handler implementations must store
data in memory in Intel format (i.e. word 424BH
is stored as 4B42H in memory).

IBM PC Interrupt Sharing Protocol

General Implementation Information

Information about the 8259A Programmable
Interrupt Controller can be found in any recent
edition of the Intel Microprocessor and Peripherals
Handbook. In the IBM PC family, the Interrupt
Mask Register lies at 1/0 Port 21 H. Specific End of
Interrupt (EOI) values for the various interrupt levels
are listed (67H for level 7). The Specific EOI is
accomplished by issuing an OUT to the 8259A's
operational control register using Operational
Control Word 2 (OCW2) (an OUT to 1/0 Port 20H
on the PC family). A Nonspecific EOI is
accomplished by issuing an OUT of 20H to the
operational control register.

Interrupt Sharing Code Examples

The following are coding examples of a Linking
Structure, an Interrupt Handler and an Unlinking
Structure implementing the Interrupt Sharing
concept.

57

Linking Code Example

PUSH ES
CLI ;Clear interrupts

;Set forward pointer to value of interrupt vector in low memory
ASSUME CS:CODESEG,DS:CODESEG
PUSH ES
MOV AX,350FH
INT 21H

;DOS get interrupt vector

MOV SI,OFFSET CS:FPTR

MOV
MOV

;Get offset of your forward pointer
; in an indexable register

CS:[SI]tBX ;Store the old interrupt vector
CS:[SI+2],ES ; in your forward pointer for

; chaining
CMP ES:BYTE PTR[BX],CFH ; Test for IRET
JNZ SETVECTR
MOV CS:FLAGS,FIRST ;Set up first in chain flag

SETVECTR: POP ES
PUSH OS

;Make interrupt vector in low memory point to your handler

;Unmask

Notes:

MOV DX,OFFSET ENTRY ;Make interrupt vector point to

MOV
MOV
MOV
INT
POP

(enable)
IN
JMP
AND
OUT
MOV
JMP
OUT
STI
POP

; your handler
AX,SEG ENTRY ;If OS not = CS, get it and
DS,AX ; put it in OS
AX,250FH ;DOS set interrupt vector
21H
OS

interrupts for your
AL,IMR
$+2
AL,07FH
IMR,AL
AL,SPC EOI
$+2 -
OCR,AL

ES

level
;Read interrupt mask register
; IO delay
;Unmask interrupt level 7
;Write new interrupt mask
;Issue specific EOI for level 7
; to allow pending level 7 interrupts
; (if any) to be serviced
;Enable interrupts

1. The operating system must ensure that the SEG :OFF points to a valid interrupt handler or
to an IRET (CFH) for Levels 7 and 15.

2. If your adapter card ROS installs your interrupt handler on Levels 7 or 15 during
ROMSCAN (before the operating system is loaded), you must test the SEG :OFF for OOOOH
or FOOOH as well as for an IRET to determine if it is first. The IRET test applies to linking
only after the operating system is loaded.

IBM PC Interrupt Sharing Protocol 58

Interrupt Handler Example

YOUR CARD EQU xx xx ;Location of your card's interrupt
; control/status register

!SB EQU xx ;Interrupt bit in your card's

REARM EQU 2F7H
; interrupt control/status register
;Global Rearm location for

SPC EOI EQU 67H
; interrupt level 7
;Specific EOI for 8259's interrupt
; level 7

EOI EQU 20H ;Non-specific EOI
OCR EQU 20H ;Location of 8259 operational

; control register
!MR EQU 21H ;Location of 8259 interrupt mask

; register
MYCSEG SEGMENT PARA

ASSUME CS:MYCSEG,DS:DSEG
ENTRY PROC FAR

JMP SHORT PAST ;Entry point of handler
FPTR DD 0 ;Forward Pointer
SIGNATURE DW 424BH ;Used when unlinking to identify

; compatible interrupt handlers
FLAGS DB 0 ;Flags
FIRST EQU 80H
JMP SHORT RESET
RES BYTES DB DUP 7(0) ;Future expansion
PAST: STI ;Actual start of handler code

PUSH ;Save needed registers
MOV DX,YOUR_CARD ;Select your status register
IN AL,DX ;Read the status register
TEST AL, ISB ;Your card caused interrupt?
JNZ SERVICE ;Yes, branch to service logic
TEST CS:FLAGS,FIRST ;Are we the first ones in?
JNZ EXIT ;If yes, branch for EOI and Rearm
POP ;Restore registers
CLI ;Clear interrupts
JMP DWORD PTR CS:FPTR ;Pass control to next guy on chain

SERVICE: ;Service the interrupt
EXIT:

CLI ;Clear the interrupts
MOV AL,EOI
OUT OCR,AL ;Issue non-specific EOI to 8259
MOV DX,REARM ;Rearm the cards
OUT DX,AL
POP ;Restore registers
IRET

RESET: ;Disable your card
RET ;Return FAR to operating system

ENTRY ENDP
MYCSEG ENDS
END ENTRY

IBM PC Interrupt Sharing Protocol 59

Unlinking Code Example

;Are we

PUSH
PUSH
CLI
MOV
INT
MOV

the first
MOV
CMP

JNE
CMP

DS
ES

AX ,350FH
21H
CX,ES

handler in the
AX,CS

chain?

BX,OFFSET ENTRY

UNCHAIN A
AX,CX -

;Clear interrupts
;DOS get interrupt vector
;ES : BX points to first of chain
;Pickup segment part of interrupt vector

;Get code seg into comparable register
;Interrupt vector in low memory
; pointing to your handler's offset?
;No, branch

JNE UNCHAIN A

;Vector pointing to your handler's
; segment?
;No, branch

;Set interrupt vector in low-memory to point to the handler pointed to
; by your pointer

PUSH
MOV
MOV
MOV
INT
POP
JMP

UNCHAIN A: ; BX
CMP

JNE
LDS
CMP

JNE
MOV
CMP

=

DS
DX,WORD PTR CS:FPTR
DS,WORD PTR CS:FPTR[2]
AX,250FH ;DOS
21H

set interrupt vector

DS
UNCHAIN X
FPTR offset, ES =
ES: [BX+6] ,4B42H

exception
SI,ES:[BX+2]
Sl,OFFSET ENTRY

UNCHAIN B
CX,DS -
AX,CX

FPTR segment, CX = CS
;Is handler using the appropriate
; conventions (is SIGNATURE present in
; the interrupt chaining structure)?
;No, invoke error exception handler
;Get FPTR's segment and offset
;Is this forward pointer pqinting to
; your handler's offset?
;No, branch
;Move to compare

JNE UNCHAIN B

;Is this forward pointer pointing to
; your handler's segment?
;No, branch

;Locate your handler in the chain
MOV AX,WORD PTR CS:FPTR ; Get your FPTR's offset
MOV ES:[BX+2],AX ;Replace offset of FPTR of handler

MOV
MOV

; that points to you
AX,WORD PTR CS:FTPR[2J ; Get your FPTR's segment
ES:[BX+4J,AX ;Replace segment of FPTR of handler

AL,CS:FLAGS
AL ,FIRST

; that points to you
; Get your flags MOV

AND
OR
JMP

ES: [BX+6] ,AL
UNCHAIN X
BX,SI -

;Isolate FIRST flag
;Set your first flag into prior routine

UNCHAIN B: MOV
- PUSH

PUSH
JMP

UNCHAIN X: STI
- POP

POP

IBM PC Interrupt Sharing Protocol

DS
ES
UNCHAIN A

ES
DS

;Move new offset to BX

;Examine next handler in chain
;Enable interrupts

60

Summary
The IBM PC Interrupt Sharing protocol is a useful
enhancement to the PC Bus. This protocol defines
both the hardware and software requirements
necessary to ensure an orderly sharing of the same
interrupt level. Interrupt sharing will ease the task
of configuring a system by allowing multiple
adapters (that have implemented interrupt sharing)
to share the same interrupt level.

IBM PC Interrupt Sharing Protocol 61

IBM Personal Computer Seminar Proceedings
Publication
Number Volume Topic

Vl.1
(G320-9307) Vl.2

(G320-9308) Vl.3

(G320-9309) V2.1
(G320-9310) V2.2

(G320-9311) V2.3

(G320-9312) V2.4

(G320-9313) V2.5

(G320-9314) V2.6-1

(G320-9315) V2.7

(G320-9319) V2.8-1

(G320-9316) V2.9

(G320-9317) V2.10

(G320-9318) V2.11-1

(G320-9320) V3.1

(G320-9321) V3.2

(G320-9322) V3.3

(G320-9323) V3.4

(G320-9324) V3.5

(G320-9325) V4.1

(G320-9326) V4.2

IBM PC Interrupt Sharing Protocol

Contains identical information as V1.2
IBM PC DDS 2.D and 1.1 Compar1son - -­
Compatibility Guidelines - Application Development
8087 Math Co-Processor
IBM Macro Assembler

IBM PC DOS 2.1 & Comparison to DOS 2.0 and 1.1
IBM PCjr Architecture & Compati bi 1 i ty
Cartridge BASIC
IBM Personal Communications Manager-Modem Drivers

Contains identical information as V2.2
IBM Software Support Center - -­
International Compatibility Requirements
IBM Personal Computer Cluster Program

IBM Personal Computer Cluster Program
Sort, Version 1.00
FORTRAN and Pascal Compiler, Version 2.00
PCjr Cartridge Tips and Techniques

IBM Personal Computer AT Architecture
ROM BIOS Compatibility & Software Compatibility
IBM PC DOS 3.0

IBM PC Network Overview, Hardware & Program
IBM PC Network BIOS (NETBIOS) Architecture

TopView

IBM Personal Computer Resident Debug Tool

IBM PC Network SMB Protocol

IBM Personal Computer XENIX, Version 1.00

IBM PC Professional Graphics Software
IBM PC Graphical Kernel & File Systems
IBM Plottin~ System Library
IBM Profess1onal FORTRAN
IBM PC Data Acquisition & Control Adapter & SW
IBM General Purpose Interface Bus Adapter & SW

IBM Enhanced Graphics Adapter

IBM PC Information Panel (3295 Plasma Display)

IBM BASIC Compiler 2.00

IBM Personal Computer C Compiler

IBM Asynchronous Communications Server Protocol

IBM Personal Computer Voice Communications Option

IBM Personal Computer XENIX, Version 2.00

IBM Personal Computer System Extensions:
- IBM Topview, Vl.10
- IBM Graphics Development Toolkit Program,
- IBM PC Local Area Network Program, Vl.10
- IBM PC 3270 Emulation Program, V2.00
IBM Personal Computer Enhanced Keyboard

Vl.10

62

{6320-9327) V4.3

{6360-2697) V4.4

IBM PC Convertible

IBM PC 3270 Emulation Prog. Presentation Space API
Advanced Program-to-Program Communications (APPC/PC)
Revisable-Form Text Document Content Architecture
Document Interchange Architecture
Introduction to IBM Enhanced Connectivity Facilities
IBM PC Interrupt Sharing Protocol

IBM Personal Computer Seminar Proceedings 63

Notes

G360-2697

IBM Corporation
Editor, IBM Personal Computer Seminar Proceedings
Internal Zip 3636
Post Office Box 1328
Boca Raton, Fl 33429-1328

--... - ------ --- ------ _.. ---- -... ----- - - ------- -_ _.. - ., --
®

