
--- ------ - ---- ---- - ---- - - ----------_.-
Personal Computer
Computer Language
Series

Pascal
Compiler

First Edition (August 1981)

Changes are periodically made to the information herein; these
changes will be incorporated in new editions of this
publication.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer Dealer.

A Product Comment Form is provided at the back of this
publication. If this form has been removed, address comment
to: IBM Corp., Personal Computer, P.O. Box 1328, Boca Raton,
Florida 33432. IBM may use or distribute any of the
information you supply in any way it believes appropriate
without incurring any obligations whatever.

© Copyright International Business Machines Corporation 1981

CONTENTS

CHAPTER 1. INTRODUCTION 1-1
IBM Personal Computer Pascal . 1-3

The Pascal Language 1-3
mM Personal Computer Pascal Extensions 1-5

Compiler Directives 1-5
Unit 1-5
Attributes . 1-6
Super Array 1-6
Strings . . . 1-8
Constant Values 1-8
Systems Implementation 1-9

Summary 1-11

CHAPTER 2. COMPILING A PASCAL PROGRAM 2-1
What You Need 2-3
The First Time Through 2-5

Backing Up the Master Diskettes 2-5
Setting Up the Diskettes: PAS 1 and
PAS2

Setting Up the Diskettes: PASCAL. LIB
Starting the Compilation

Starting the Compiler: PAS 1
Continuing the Compilation: PAS2
Linking
Running Your Pascal Program .
Optional PAS 1 Command Lines
Optional P AS2 Command Lines
Optional Link Command Lines
Compiling Large Programs
Com pi1er Listing

2-5
2-5
2-6
2-6

2-10
2-11
2-15
2-15

. 2-16
2-17
2-18
2-20

iii

iv

CHAPTER 3. NOTATION AND TERMINOLOGY 3-1
Pascal Levels 3-4

Metalanguage . 3-4
Standard Pascal " 3-4
Extended Pascal . 3-4
Systems Pascal . . 3-4

Syntax and Vocabulary 3-5
Pascal Reserved Words . 3-6
Attributes 3-7
Directives 3-7
Predeclared Identifiers . 3-7
Comments 3-9
Separators' . . . 3-9

CHAPTER 4. COMPILER COMMANDS
(METALANGUAGE)

Metacommands
Error Conditions

$BRAVE .
$DEBUG .
$ENTRY
$ERRORS
$GOTO
$IF ... $THEN ... $ELSE ... $END
$INCLUDE
$INCONST
$INDEXCK
$INITCK .
$LINE ..
$LINESIZE
$LIST ...
$MATHCK
$MESSAGE .
$NILCK
$OCODE
$PAGE .. .
$PAGE .. .
$PAGEIF ..
$PAGESIZE
$PUSH/$POP
$RANGECK
$RUNTIME.
$SKIP
$STACKCK .
$ SUBTITLE
$SYMTAB
$TITLE .
$WARN ...

4-1
4-4
4-6

· 4-10
· 4-11
· 4-12
· 4-13
· 4-14
· 4-15
· 4-16
· 4-17
· 4-18
· 4-19
· 4-20
· 4-21
· 4-22
· 4-23
· 4-24
· 4-25
· 4-26
· 4-27
· 4-28
· 4-29
· 4-30
· 4-31
· 4-32
· 4-33
· 4-34
· 4-35
· 4-36
· 4-37
· 4-39
· 4-40

CHAPTER 5. IDENTIFIERS AND
CONSTANTS 5-1

Identifiers 5-3
Length Restrictions 5-3
Scope 5-4

Constants 5-7
Numeric Constants 5-7
Strings 5-10
Constant Definition 5-12
Structured Constants 5-12
Notes on Constants . 5-15

CHAPTER 6. DATA TYPES 6-1
Da ta Types in IBM Pascal 6-4
Simple Data Types ... 6-5

Elementary Types . 6-5
Enumerated Types 6-7
Subrange Types 6-8

Structured Types 6-11
Arrays . 6-11
Records 6-20
Sets .. 6-24
Files . . 6-25

Reference Types 6-29
Pointers . . . 6-29
Addresses . 6-31

Procedural Types 6-37
Type Compatibility 6-37
Internal Representation 6-41

CHAPTER 7. VARIABLE DECLARATION
AND USE 7-1

Variable Declarations 7 -3
Attributes 7-3
Rules for Combining Attributes 7-8
The VALUE Section 7-9
Value 7-10

CHAPTER 8. EXPRESSIONS 8-1
Simple Expressions 8-3

Operators and Operands 8-3
Boolean Expressions . . 8-6
Set Expressions 8-8
Other Expression Features 8-10
Function Designators ... 8-11

v

vi

CHAPTER 9. STATEMENTS 9-1
Statement Labels 9-3
Simple Statements 9-4

Assignment Statement 9-4
Procedure Statement 9-6
GO TO Statement ., 9-6
Empty Statement . . 9-9
BREAK, CYCLE, and RETURN Statements. 9-9

Structured Statements 9-12
Compound Statement . 9-12
Conditional Statements 9-13

Repetitive Statements 9-16
WHILE Statement . 9-16
REPEAT Statement 9-16
FOR Statement . . 9-17
WITH Statement 9-19

Sequential Control Operators 9-21

CHAPTER 10. PROCEDURES AND
FUNCTIONS

Procedure and Function Declarations
Procedure and Function Headings
Function Specifics
Data Parameters . . .
Value Parameter . . .
Reference Parameter
Procedural Parameter
Internal Calling Conventions

CHAPTER 11. AVAILABLE PROCEDURES
AND FUNCTIONS

Predeclared Procedures and Functions .
Dynamic Allocation Procedures ..

Data Transfer Procedures and Functions
Arithmetic Functions . . .
Extended Intrinsics Feature
System Intrinsics Feature .
String Intrinsics Feature . .
LSTRING Specific Intrinsics
STRING or LSTRING Intrinsics
Library Procedures and Functions

10-1
10-3
10-4
10-6
10-7
10-8
10-8

.1 0-11

.10-16

11-1
11-3
11-3
11-7
11-9

.11-12

.11-15

.11-17

.11-20

.11-20

.11-21

CHAPTER 12. FILE SYSTEM
Introduction to Files

File Structures . .
File Modes

File System Primitives
Accessing the Buffer Variable

Textfile Input and Output
Extended I/O Feature

Temporary Files . . .
Other File Procedures . . .

File Variables in Headings
System I/O Feature ...
DIRECT Files

CHAPTER 13. COMPILANDS
Programs
Modules
Units ..

APPENDIX A. MESSAGES
Front End Errors

Front End Error List
Back End Errors

Back End User Errors
Back End Internal Errors

File System Errors
Unit U Errors
Pascal File System Error Codes

Other Runtime Errors
2000 .. 2049 Memory Errors . .
2050 .. 2099 Ordinal Arithmetic
2100 .. 2149 Type REAL Arithmetic
2150 .. 2199 Structured Type Errors
2200 .. 2999 Other Errors

APPENDIX B. FILE SYSTEM INTERNALS
The File Control Block

File Structures and Modes
Special Features
Error Handling
FCB Declarations In Detail
DOS Specific Fields
Including the FCB Declaration
DOS Interface Routines
Including the Unit U Declaration

12-1
12-4
12-4
12-5
12-8

.12-12

.12-15

.12-28

.12-30

.12-31

.12-35

.12-35

.12-37

13-1
13-4
13-8

.13-10

A-3
A-4
A-6

· A-36
· A-36
· A-37
· A-38
· A-39
· A-40
· A-42
· A-42
· A-43
· A-45
· A-46
· A-46

B-1
B-2
B-5
B-9

· B-12
· B-14

· . B-22
· . B-22
· . B-23

· B-40

vii

viii

APPENDIX C. COMPILER STRUCTURE
Overview

The Front End
The Back End .

APPENDIX D. RUNTIME STRUCTURE
Overview

Initialization and Termination
Error Handling

Machine Error Context
Source Error Context .
Heap Allocation
Other Runtime Modules

APPENDIX E. PASCAL STANDARD AND
IBM FEATURES

Summary of mM Pascal Features
Syntactic and Pragmatic ..
Data Types and Modes
Operators and Intrinsics ..
Control Flow and Structure
Input/Output and Files ..
IBM Pascal and Standard Pascal

APPENDIX F. IBM PASCAL SYNTAX
Syntax

Primitive Classes (Scanner Portion of
Compiler):

Major Classes (Main Body of Compiler)

INDEX

C-l
C-2
C-3
C-6

D-I
D-2
D-3

· D-II
· D-13
· D-14
· D-16
· D-18

E-l
E-2
E-2
E-3
E-4
E-5
E-6
E-7

F-I
F-2

FA
F-4

X-I

CHAPTER 1. INTRODUCTION

Contents

ffiM Personal Computer Pascal 1-3
The Pascal Language . . . 1-3

ffiM Personal Computer Pascal Extensions 1-5
Compiler Directives 1-5
Unit 1-5
Attributes . 1-6
Super Array 1-6
Strings . . . 1-8
Constant Values 1-8
Systems Implementation 1-9

Summary 1-11

1-1

1-2

IBM Personal Computer Pascal

This document describes IBM Personal Computer Pascal.
We have assumed that you have a general knowledge of
Pascal from such publications as "Pascal User Manual
and Report" by Jensen and Wirth, "Introduction to
Pascal" by Welsh and Elder, or from other sources.

The Pascal Language

Pascal was originally designed by Niklaus Wirth with
two primary goals: to teach programming as a
systematic discipline, and to implement programs in a
reliable and efficient way. But there are other reasons
for the widespread interest in Pascal as a general
purpose programming language and as a system program
implementation language.

• Pascal, a relatively modern language, has benefited
from many earlier languages (such as ALGOL)
and is forming the basis of several new-ones.

• The key emphasis of Pascal is its role as a higher
level language ; that is, a language providing useful
abstract tools for specifying data structures and
algorithms, independent of the underlying
implementation.

• The user need not be concerned with the repre
sentation of data (the number of bytes per
variable, organization of arrays, address size, and
so on).

• The programmer can more accurately specify the
characteristics of variables, such as the range of
values allowed (V AR I: 0 .. 99) or decide whether

1-3

1-4

to trade space for time in accessing variable
components. (PACKED keyword)

IBM has added several goals to this list:

1. IBM Personal Computer Pascal is designed to be
a systems implementation language, especially
suitable for writing compilers, interpreters,
operating systems, and so on.

2. Generating efficient code is paramount. The
various language extensions, and the global
optimizer phase (pass two of the compiler) all
work toward minimizing the time and space
needed by compiled programs.

3. Operations that are done easily in assembly
language should be easy to do in IBM Personal
Computer Pascal.

IBM Personal Computer Pascal generally conforms to
the ISO draft (lSOjTC 97 jSC 5 N595).

IBM's intent is that correct standard programs compile
and run correctly on the IBM Personal Computer
Pascal compiler without changes. Since IBM features
introduce new reserved words and other elements,
both the IBM features and extensions are summarized
in Appendix E.

IBM Personal Computer Pascal Extensions

The extensions· include:

• Compiler directives

• Attributes

• Super array type

• String processing with CONCAT

• Constant values

• Systems implementation extensions

Compiler Directives

Unit

We provide control over generating error checking code,
listing format controls, a construct for conditional
compilation, and a mechanism for inserting other
source files into a compilation. There are 30 of these
"metalanguage" commands available.

Pascal is an excellent language for very large programs
that must be reliable (such as system software applica
tions), and IBM Personal Computer Pascal supports
separtely compiled modules using the concept of a
unit.

A unit is a set of related data types, variables, constants,
procedures, and functions, plus an initialization procedure.
It has two parts: the interface and the implementation.

1-5

Attributes

The interface contains a list of identifiers to export
and their declarations (including proced ure and
function headers).

The implementation contains any local declarations,
procedure and function bodies, and the initialization
code. Some unit routines may be implemented in
assembly code instead of Pascal.

A program (or implementation or other interface) can
use a unit, giving the interface but not the implemen
tation. This method provides a more structured way of
breaking a program into modules than external
procedures and variables.

Attributes for variables, procedures, and functions give
you control at the linker text level.

The attributes include:

• PUBLIC and EXTERN for global identifier
linking

• STATIC and READONL Y for variables and PURE
for procedures and functions.

Super Array

1-6

IBM Personal Computer Pascal provides a super array
type, to let array lengths vary. With the super array
type, the lower bound is given but the upper bound
is undefined.

Although the super array type cannot be used directly
for variables (that is, V AR V = SUPER ARRAY
[0 .. *] of REAL;), it can be used in two important
ways:

• As the type of a formal reference parameter

• As the referent type of a pointer.

In addition, any variable can be given a type derived
from the super array type using a "designator". For
example:

TYPE
VECT = SUPER ARRAY [D .. *] OF REAL;

VAR
PVEC: I\VECT; V1D: VECT (1D);

PROCEDURE SORT (VAR V: VECT);
BEGIN

NEW (PVEC, UPPER (V});

•
•
•

END;

•
•
•

SORT (V1D);

Here VECT is the super array type. PVEC is a pointer
to an instance of the type.

The NEW allocates a new VECT with the upper bound
given in the second parameter, in this case the same
upper bound as the parameter V.

VIO is a variable, an instance of a VECT with an upper
bound of 10. The parameter V can take a variable \
of any type derived from VECT; for example, VI 0
or PVECI\.

The super array concept handles both dynamic and
conformant arrays in a clean and efficient way.

1-7

Strings Strings in standard Pascal are fixed length. However,
the ability to declare a variable of a string type, where
the length of the string can vary, is a key feature of
BASIC and PL/I, and an often-used abstract data type.
The string type is:

SUPER PACKED ARRAY [0 .. *] OF CHAR

where element zero contains the length. We also have
a set of string procedures and functions.

IBM Personal Computer Pascal has a CONCAT
procedure, which takes two string parameters and
concatenates the second to the first.

This makes string processing portable, since all the
procedures and functions can be written in any
Pascal by:

• Declaring the string type to be a fixed length
character array

• Using a variable length string type in a Pascal
with a super array or other conformant array
extension

String assignment, comparison, and READ/WRITE
are done automatically in IBM Personal Computer
Pascal.

Constant VaIues

1-8

Another set of features in IBM Personal Computer
Pascal applies to constant values. Most expressions
with constant values are evaluated at compile time,
so if WORDCOUNT and SYMBOLCOUNT are
constants, another constant TOTALCOUNT =
WORDCOUNT + SYMBOLCOUNT can be defined.

Numbers can be in binary, octal, decimal, or hexa
decimal. This is also supported in READ and WRITE.

There is a string constant concatenation operator, as
well as array and record constants.

A program can contain one or more VALUE sections,
in which variables are given an initial constant value.

Finally, a formal parameter can be preceded by the
keyword CaNST; the effect is the same as V AR,
except that the actual parameter can be a constant
and cannot be modified in the body of a routine.

Systems Implementation

Several extensions are specific to systems implementa
tion work:

• The WORD type

• ADDRESS types

• Input/output capabilities

• Interactive READ

• Random files and file modes

• Intrinsic procedures and functions

The most important is the WORD type; it is really
just a subrange from 0 to 65535 (MAXWORD), just as
the INTEGER type is a sub range from -32767 to
32767 (MAXINT).

Sixteen bit quantities can be treated as either signed or
unsigned, so the range of numbers really goes from
-32768 to 65535.

1-9

1-10

Having both WORD and INTEGER types allows this
range (except -32768) to be used in a Pascal program,
although not with one type.

The unsigned word is often used in system implementa
tion work, as an address, or an integer with a large
maximum, or a set of bits, or just as a memory value
with unknown semantics.

Trying to use the INTEGER type for these purposes
runs into the problems of comparisons (whether
FFFF is greater than # FFFE).

Additional operators, such as AND, OR, XOR, are
also allowed with the WORD type.

We also added an address type, similar to a pointer but
allowing for segmented addressing. This is very useful
for accessing system data areas.

Other features we have added include various input/
output capabilities (I/O error trapping, interactive
READ using "lazy evaluation", random files, file
modes, string READ, etc.) and additional intrinsic
procedures and functions (such as ENCODE and
DECODE, RETYPE, and RESULT).

Summary

IBM Personal Computer Pascal can be used for system
software implementation. It includes many features
useful for creating and maintaining Pascal programs in
a structured way, and/or necessary for common system
programming tasks.

Features of particular note include separate compila
tion units, variable length strings, the super array
type, and machine oriented constructs.

IBM Personal Computer Pascal is more than a tool;
it is a tool maker, designed for writing smart
programs that make our computer easier to use and
more accessible to people.

Note: For the remainder of this manual, the
term IBM Pascal is intended to mean IBM
Personal Computer Pascal.

1-11

1-12

CHAPTER 2. COMPILING A
PASCAL PROGRAM

Contents

What You Need 2-3

The First Time Through 2-5
Backing Up the Master Diskettes 2-5
Setting Up the Diskettes : PAS 1 and PAS2. 2-5
Setting Up the Diskettes: PASCAL.LIB 2-5

Starting the Compilation
Starting the Compiler: PAS 1

Source filename
Object filename
Source listing . .
Object listing . .

Continuing the Compilation: PAS2
Linking
Running Your Pascal Program .
Optional PAS 1 Command Lines
Optional P AS2 Command Lines
Optional Link Command Lines

Compiling Using a Batch File
Compiling Large Programs
Com piler Listing . . .

The Linker Map ..

2-6
2-6
2-7
2-8
2-8
2-9

· 2-10
· 2-11

. .. 2-15
· 2-15

2-16
· 2-17
· 2-18
· 2-18
· 2-20
· 2-28

2-1

2-2

What You Need

To successfully compile Pascal programs on your IBM
Personal Computer, you need:

• Your Pascal package:
- Three 5-1/4 inch master diskettes, one marked

PAS 1, one marked PAS2, and one marked
PASCAL.LIB

• PAS 1 contains the files:
- PASl.EXE
- PASKEY
- FILKQQ.lNC
- FILUQQ.lNC
- ENT6XS.ASM

• P AS2 contains the file:
- PAS2.EXE

• PASCAL. LIB contains the files:
- PASCAL.LIB
- PASCAL

- This manual: the IBM Personal Computer Pascal
reference manual

• A minimum of 128K bytes of machine-resident
memory

• Two diskette drives

• A printer

2-3

2-4

• A display (an IBM Personal Computer Monochrome
Display, a monitor, or a TV with an RF modulator)

• The IBM Personal Computer Disk Operating System
(DOS) reference manual and diskette

• One 5-1/4 inch diskette which we will call the
scratch diskette

The First Time Through

The first time through, you will need:

• Three 5-1/4 inch diskettes to make backup copies
of the master diskettes

Backing Up the Master Diskettes

We recommend that you back up your Pascal master
diskettes as soon as possible by making copies of
PAS1, PAS2, and PASCAL.LIB. We also recommend
that you use these copies for your day-to-day
operations, and put the master diskettes in a safe place.

Setting Up the Diskettes: PAS 1 and PAS2

Now that you have made copies of PASI and PAS2,
you will need to copy COMMAND .COM from the
DOS diskette onto PASI and PAS2. This is because
when PAS I and P AS2 are loaded they overwrite
COMMAND.COM in memory (COMMAND.COM
is loaded when the system is started).

COMMAND.COM will then be automatically reloaded
when either PAS 1 or PAS2 is finished executing and
is in the diskette drive.

Setting up the Diskettes: PASCAL.LIB

Copy the linker, LINK.EXE, from the DOS diskette
to your copy of the PASCAL. LIB diskette.

You are now ready to compile a Pascal program.

2-5

Starting the Compilation

We recommend the following sequence of steps as a
general rule:

1. Format your scratch diskette. See the IBM Personal
Computer Disk Operating System (DOS) reference
manual for information about formatting.

2. Put your program onto the scratch diskette either by
copying it from the diskette it is already on, or by
creating a new program using the line editor (see
"EDLIN" in the IBM Personal Computer Disk
Operating System (DOS) reference manual).

3. Give your program the filename extension
".PAS", for Pascal.

You are now ready to compile your Pascal program.

Note: You may enter compiler commands using
all uppercase letters, all lowercase letters, or a
combination of uppercase and lowercase letters.

Starting the Compiler: PASt

2-6

PAS I is the first pass of the compiler. PAS I reads
your source file and checks it for syntactic correctness.
It generates two intermediate files which are stored
on the scratch diskette in the space not occupied by
your source program. These files are called:

PASIBF .SYM - the symbol table
P ASIBF .BIN - the intermediate binary code

PASI also creates your source listing file. If you have
a printer with your system, we recommend that you
print a copy of the source listing to aid you in
debugging.

Use these steps for the PAS I portion of the
compilation of your program:

1. Change the default drive to B by entering:

B:

2. Put the scratch diskette containing your program
into drive B

3. Put the PASI diskette into drive A

4. Enter:

A:PAS1

PAS I will be loaded into the computer. After a short
time, the compiler will display a heading and the
following prompt:

Source filename LPAS]:_

Source filename is the name of the file in which you have
stored your program. For example:

Source filename [.PAS] :myfile

It is not necessary to enter the .PAS filename extension
because the compiler will look for .PAS automatically.
If you gave your filename a different extension, use
that extension. After you enter your source filename,
you will see this prompt:

2-7

2-8

Object filename [MYFI LE.OBJ] :_

Object filename is the name you want the object
(machine-readable) file to have. If you wish to have
your object file stored under the name MYFILE.OBJ
(or whatever name appears in the brackets), you can
simply press the Enter key, or you may give the file
another name, taking care to add the filename
extension .OBJ. For our example, assume we have
simply pressed the Enter key:

Object filename [MYFILE.OBJ]:

The next prompt will look like this:

Source listing [NUL.LST]:_

Source listing is the name you wish to give to the file
that will contain the compiled source listing. If you
do not want a listing, press the Enter key. This will
give you the default filename NUL.LST, which tells
the compiler not to create a source listing file.

For our example, assume we do want a listing and
enter:

Source listing [NUL.LST] :myfile

Note: The compiler will add the .LST extension.

The last prompt is:

Object listing [NUL.COD]:_

Object listing is the name for the file that will contain
the disassembled object file listing. For our example,
assume we have responded as follows:

Object listing [N U L.eOD] :myfile

Note: The compiler will add the .COD extension.

Here is what the completed screen would look like if
you had used our example filenames:

Source filename [.PAS]: myfile
Object filename [MYFILE.OBJ]:
Source listing [NUL.LST]: myfile
Object listing [N U L.CO 0]: myfile

As soon as you have entered the last of these names, the
compiler will begin its first pass through your program.
If the program contains any syntax errors, the compiler
displays the errors on the screen as well as in the listing
file (see "Compiler Listing" at the end of this chapter).

When it has completed its first pass, the compiler
displays a message with the number of errors and
warnings it has found. The message will look like this
if you sent the source listing to a file:

Pass One No Errors Detected

If there were errors or warnings, they are displayed on
the screen along with one or both of these messages:

Errors Detected.
Pass One Had Warnings.

If the compiler has indeed found errors, you must
locate and fix those problems in your source program

2-9

and rerun PASI before you continue the compilation
with PAS2.

If you have not copied COMMAND.COM onto your
PAS I diskette you will now be asked to insert the DOS
diskette.

Continuing the Compilation: PAS2

2-10

PAS2 is the name of the second pass of the Pascal
compiler. During this second pass, the compiler reads
the .SYM and .BIN files made by PAS I and creates
the two object files, .COD and .OBJ. This is the
optimization pass.

PAS2 creates, writes, reads, and deletes a file called
PASIBF.TMP (the intermediate link text) as well as
reading and deleting P ASIBF .SYM and PASIBF .BIN.

Some programs may compile correctly during PAS I,
but may produce errors during PAS2. These errors
may include:

• Out of memory

• Out of range

• Overflow

When your corrections (if any were necessary) are
completed, and you have run the corrected program
through PAS I again to be sure that no further syntax
errors exist, you are ready to complete the compilation.

Your scratch diskette with the PAS I files on it should
be in diskette drive B.

We recommend the following steps for the PAS2 portion
of the compilation of your program:

I. Take the PAS I diskette out of drive A

Linking

2. Put the PAS2 diskette into drive A

3. Enter:

A:PAS2

PAS2 requires no input from you. It will
generate the object file and listing. When the
compilation is completed, PAS2 will give you a
message similar to this:

Code Area Size = #0116 (278)
Cons Area Size = #005E (94)
Data Area Size = #OOOE (14)

Pass Two No Errors Detected.

The Code Area Size is the total number of bytes
taken up by your program (in our example, 278
bytes). Cons Area Size is the number of bytes
taken up by the constants in your program (arrays,
strings, structures, REALs, etc.). The Data Area
Size refers to the STATIC allocated data. This
area always starts at offset #2. All three sizes
are given in both hexadecimal and decimal.

If errors are detected during the second pass, see
Appendix A, "Messages", in this book, and
correct the errors. Then rerun PAS 1 and P AS2,
if necessary.

We recommend that you read the IBM Personal Computer
Disk Operating System (DOS) reference manual for an
explanation of linking.

Linking should be done using the following steps:

2-11

2-12

1. Take PAS2 out of drive A

2. Put your copy of PASCAL. LIB (the one with the
Linker program copied onto it) into drive A

3. Enter:

A:link

This will lead the Linker and give you this prompt:

Object Modules:

Next to the Object Modules prompt, enter the
name of your object file (not your object listing
file). The .obj extension is not needed here. If
you used our example names, you would enter:

Object Modules: myfile

The next prompt will be:

Run File:

Next to the Run File prompt, enter the name you
want to give to the file containing the executable
code for your program. This filename will be
given the extension .exe and put onto the default
diskette drive (B). For example:

Run File: myfile

The next prompt is:

list File [MYFILE.MAP]:

Pressing the Enter key will cause the Linker to
choose the default filename, MYFILE.MAP. This
file contains the Linker map and goes to the
default drive (B).

Next is:

Libraries []:_

Libraries refers to the runtime routines needed by
Pascal to run your program. All these routines
are included in PASCAL.LIB. In response to
this prompt, you may press the Enter key:

Libraries [] :

When you link a Pascal program, the Pascal library
is brought in automatically. You may, although
it is not required, enter:

a:pascal.lib

The next five prompts are:

Publics [No]:
Line Numbers [No]:
Stack size [Object file stack]:
Load Low [Yes]:
DSAliocation [No]:

If you enter "y" (for yes) for "Publics" and "Line
Numbers", these listings will appear in the file
called MYFILE.MAP.

We suggest that for now you choose the default
values for "Publics" and "Line Numbers" by
pressing the Enter key in response to each of these
two prompts.

2-13

2-14

The compiler will ignore any choice except the
default responses for "Stack size" and
"DSAllocation" (they are set by Pascal).

The linker will set the "Y" response to
DSAllocation automatically, thus allowing Enter
(the default response) as a valid reply.

The reply to "Load Low" must be "Y" which
is the default response, so a reply of Enter is
valid here too.

Here is what this screen of prompts would look like if
you used our example filenames:

B>a:link
IBM Personal Computer linker
Version 1.00 (C) Copyright IBM Corp 1981
Object Modules: myfile
Run File: myfile
list File [MYFllE.MAP]:
li braries [] :
Publics[No] :
line Numbers [No]:
Stack size [Object file stack]:
load low [Yes]:
DSAllocation [No]:

The linker will now begin to link the program. When
linking has been completed, you should have the
Run File stored on your scratch diskette in drive B.
We recommend that you display the diskette directory
for the scratch diskette to confirm that the run
filename is there (it will have the .exe filename
extension). Using our example filename, you would
see myfile.exe listed in the directory.

Running Your Pascal Program

To run your program simply type your run filename,
without the .exe filename extension. For example:

myfile

You may want to copy this file to another diskette
once you are sure that it does what you intended it
to do.

Optional PASt Command Lines

PAS 1 can also be started using the following command
line (substituting, of course, your filenames for the four
files shown):

PAS1 Source File,Object File,Source List,Object List;

If you use this command line, you will not be shown
the PAS 1 prompts described in the PAS 1 section.

Note: You may add any filename extension you
choose to the listing files. In our examples we
use the extension .any to indicate this option.

Certain other variations of this command line are
permitted. For instance, you may specify only:

PAS1 Source File;

Given this command line, the compiler will use the
default names for the remaining files. They are:

Object File.OBJ
NUL.LST
NUL.COD

(no source listing)
(no object listing)

2-15

Another variation is:

PAS1 Source.any,,;

This will produce an object file named Source.OBJ, a
source listing names Source.LST, but no object listing.

Note: Insertion of a comma will override the
default names for the .LST and .COD files, and
give you a listing under the SOURCE filename
with the appropriate extension.

Or you may use the construction:

PAS1 Source",SCODE.ANY;

This will produce a Source.OBJ, a Source.LST, and a
SCODE.ANY file.

Finally, you could specify:

PAS1 Source",;

This will produce the three files: Source.OBJ,
Source.LST, and Source.COD. If you do not give
the Source Filename, then PAS I will ask for one.
If the ";" is not used to end the command line, the
compiler will ask for the remaining files.

Optional PAS2 Command Lines

2-16

PAS2 can be made to pause after being started by
using a parameter after the word "PAS2." For
example:

a: PAS2 /p

After PAS2 had been read in, you will be prompted
with:

Hit lIenter" to begin pass two.

You must now press the Enter key for pass two to
begin.

Optional Link Command Lines

The Linker may optionally use an "Automatic
Response File." To specify this option on the command
line, enter:

Link ARFllE

You must include the drive name for the Automatic
Response File if it is located on a drive other than
the default drive.

For example:

a:link a:ARFllE

Creating an Automatic Response File for the Linker
is described in the IBM Personal Computer Disk
Operating System (DOS) reference manual.

IBM Pascal provides an automatic response file for you
to use. It is on the PASCAL. LIB diskette and is called
PASCAL (no extension). You may use this file, or
modify it as you wish. To use this file, enter:

a:link a:PASCAl

This file will ask you for your object modules, create a
run file called RESULT.EXE, and use the default
values for the rest of the prompts.

2-17

Compiling Using a Batch File

The automatic response capability allows the Linker
to run automatically using a batch file (see the IBM
Personal Computer Disk Operating System (DOS)
reference manual for an explanation of batch files
(.BAT)).

The following is an example of a batch file you
could use:

Pause lnsert PASl in drive A
a:PASl myfile",;
Pauselnsert PAS2 in drive A
a:PAS2
Pause lnsert Linker in drive A
a:LlNK a:PASCAL

If you store this on your scratch diskette in a file called
RUN.BAT, then all you need to do is type:

RUN

You will be prompted for PAS I, PAS2, and the Linker.

Compiling Large Programs

2-18

You may find that there is not enough space on the
scratch diskette to hold all the files produced by the
compiler (an "Out Of Space" error message will be
displayed).

In this event, we recommend that you erase the
compiled source listing from the scratch diskette
before continuing on to PAS2.

It may also, on occasion, be necessary to send the
Source.LST and Object. COD files to the screen (CON
for console), to the printer (LPT1), to an RS232 port
(AUX or COMl), or to suppress them entirely (NUL) to

save space on the scratch diskette for the compiler's
intermediate files.

The special filenames just described can also be used
with other prompts (see "Procedure ASSIGN" in
Chapter 12 for an explanation of these and other
alternate filenames).

In some instances, it may even be necessary to erase
the source itself (first copying it to another diskette,
if necessary), leaving only PAS1BF.SYM and
PAS1BF.BIN on the scratch diskette. This is to provide
PAS2 with sufficient room on the scratch diskette to
crea te P ASIBF. TMP and store it temporarily, and then
create and save the .OBJ and .COD files.

Very large programs can be broken down into smaller
units or modules and compiled separately with PAS 1
and PAS2 (see Chapter 13, "Compilands", in this book,
for information about how units and modules are con
structed and compiled separately). They can then be
joined together by the Linker to create a single run file.

This is done by specifying the object modules for each
file after the Object Modules prompt given by the
Linker:

Object Modules: file1, file2, file3, file4

2-19

~ LISTING FORMAT EXAMPLE
o CHAPTER 2

Page 1
07-27-81
11:09:55

JG IC Line#
00 1

2
00 7

0

10 4
10 ~

~

b

20 7
I

20 8
20 9
30 10
30 1 1

* 31 12
% 31 13

20 14
14

S"y'mtab 14

Source Line IBM Personal Computer Pascal Compiler V1.00
{$title:~LISTING FORMAT EXAMPLE~,$subtitle:~CHAPTER 2'}

Program Nonsense;
Label 10;
Var int,k:integer; finished:boolean;

Procedure Print(var stop:boolean);
I abel 12;
val"" i, j: i ntegeF";

Function Addit(var j:integer):integer;
begi 1"1 (*acidi t *)

if j = 10 then return; {return jump}
int := j + addit(int) <combination of globals}

end; (:«addit*)
----A306 Function Assignment Not Found

Offset Length
4 10
8 2
2 ~':~

Variable - ADDIT
Return offset, Frame length
(function ~eturn)

J
Integer

: Integer VarP

N
I

N
~

Compiler Listing

There are references throughout the following
explanation to the IBM Pascal compiler
metacommands. Refer to Chapter 4 in this
book for a complete description of the
metacommands.

Every page of the Pascal source listing has a header
at the top. In the upper left hand portion of the
page, the first two lines contain the user's choice
of program title and subtitle, set with the $TITLE
and $SUBTITLE metacommands, respectively.

The first three lines in the upper right hand portion
of the page contain the page number, the date, and
the time respectively. The page number can be set
with $PAGE:n, and a new page started with
$PAGE+. The compiler name and version number
appear on the first line below the header, along
with the column labels.

The JG Column Labels

The JG columns are for flag characters
generated for the user's information.

The "J" column contains jump flags which include
the following:

J Flag
+

*

Meaning
Forward jump: GOTO label not
encountered yet, or BREAK.
Backward jump: GOTO a label already
encountered, or CYCLE.
Other jumps: RETURN, etc.

The "G" column flags global variables (not local
to the current procedure or function). This
column can have one of the three following
flags:

GFlag
=

/

%

Meaning
An assignment to a non-local variable.
Passing a non-local variable as a
reference parameter.
Other global references.

9NI'lIdWOJ

~ LISTING FORMAT EXAMPLE
~ CHAPTER 2

Page 1
07-27-81
11:09:55

JG IC Line#
00 1

~
L

00 ~
~

10 4
10 ~

~

6
20 7
20 8
20 9
30 10
30 11

* 31 1~ L

% 31 13
20 14

14

Symtab 14

Source Line IBM Personal Computer Pascal Compiler Vl.00
{$title:~LISTING FORMAT EXAMPLE~~$subtitle:~CHAPTER 2~}

Program Nonsense;
Label 10;
Var int~k:integer; finished:boolean;

Procedure Print(var stop:boolean);
label 12;
v aIr" i, j: integer';

Function Addit(var j:integer):integer;
bf?~gin (*addit*)

if j = 10 then return;
int := j + addit(int)

end; (*addit*)

{return jump}
{combination of globals}

----A306 Function Assignment Not Found

Offset Length
4 10
8 2
2 2

Variable - ADDIT
Return offset~ Frame length
(function return)

J
Integer

: Integer VarP

t;-J
N
W

The IC Column Labels

The IC columns contain the current nesting levels.
The "1" column contains the (scope) level of
identifiers. It changes with procedure and function
declarations, as well as record declarations and the
WITH statement.

The "C" column shows the control statement level.
It changes with BEGIN ... END pairs, CASE ... END
pairs, and REPEAT ... UNTIL pairs. The numbers
in this column can be used to find missing END
keywords.

All these columns are blank if the line is not actively
used by the compiler, so a portion of the source
program that has been accidently commented out
or skipped due to an $IF ... $END pair can be found.

The Line# Column

This column contains the listing line numbers,
which are internally generated. The line
number and the source file name identify runtime
errors if $LINE is on.

Additional Listing Metacommands

Several other metacommands affect the listing.
$LINESIZE:n and $PAGESIZE:n set the width
and height; $SKIP:n skips n lines; $PAGEIF:n
skips to the next page if less than n lines remain;
and, $LIST+ and $LIST - can be used to turn the
listing on or off (errors are always listed).

The metacommands themselves appear in the
listing, except for $LIST -. $SYMTAB+ controls
the listing of data about variables. The symbol
table listing is completely independent of $LIST.

DNI'lIdWOJ

N 20 15 I

N
2:1. 16 ..a;:.. +
21 17
21 18

..... 17
/ 22 19

.. ~>I")
kL 20

20
20

2l. 21
= 21 ~~2

21 23
2:3;

10 24

Symtab 24

PF<INT

begin (*print*)
if k)10 then (stop:=true; goto 12]; {forward jump}
for i := k to 10
begin

-----------------AWarning 172 Insert DO
j := addit(int); {passing a global}
writlen(j)

----------A303 Unknown Identifier Skip Statement
-187 End SkipA

end;
12: k := k + 1; {assign to global}
writeln('Exit Procedure Print for the '~k:1,'th time~}

---------AWarning 238 Assumed OUTPUT
end; (*print*)

Offset Length
,....
..::.. 12
(> ""i ..::..

1.3 2
8 2

Variable - PRINT
Return offset~ Frame length
STOP
I
J

: Baal ean Var"P
: Integer
: Integer

N
N
til

Compiler Messages

Two kinds of compiler messages appear in the
listing: errors and warnings. A compilation with
any errors cannot be used to generate code; one
with only warnings can be used to generate code,
but the result may not execute correctly.

Warnings start with the word "Warning" followed
by a number. Errors start with a number. Errors
and warnings are listed by number in Appendix A
of this book. Warnings can be suppressed with
$WARN-, but we do not recommend it.

Errors and warnings are displayed at the user's
console with $BRA VE+. The location of the error
is indicated by a caret. The message itself may
appear either to the left or to the right of the caret,
and it is preceded by a dashed line.

Sometimes an error in a line is not detected until
the following line has been listed. In this case,
the error message line number will not be in
sequence. Tabs are allowed in the source and
are passed on to the listing unchanged. If the
tab spacing is every eight columns, the error
pointer is generally correct, except for an
occasional error near the end of a line if the
following line has tabs.

Unrecoverable Errors

The compiler may find an error from which
it cannot recover. In this case, it gives the
message: "Compiler Cannot Continue!"

DNliI WO;)

~ LISTING FORMAT EXAMPLE
~ CHA~TER 2

Page 2
07-27-81
11:10:01

JG IC Line#
25

10 26
11 27
11 28

28
11 29
11 30
00 ::~ 1

Symtiab :51

Source Line
{Spage+}

IBM Personal Computer Pascal Compiler V1.00

begin <tmain*>
k := 1;
finished := false,

-------------------AWarning 156 , Assumed ;
10: print(finished);
if not finished then gote 10; {backwards jump}

end. <*main*>

Offset Length
0 8
4 \

L

2 2
6 1

Er-rors Warns
3 3

Variable
Return offset,
V .,

INT
FINISHED

In Pass One

Frame length
: Integer Static
: Integer Static
:Boolean Static

N
I

N
-...J

This can occur at the beginning if the keyword
PROGRAM (or IMPLEMENTATION, or INTERFACE,
or MODULE) is not found, or the program or unit
identifier is missing. It can occur at the end of the
listing if an unexpected end of file is encountered.

It may also be triggered by the detection of too
many errors. The maximum number of errors per
page is set with $ERRORS:n (default is 25). In all
these cases, the compiler lists the rest of the
program with very little error checking.

The Symbol Table

For a complete explanation of the symbol
table, see "SYMTAB" in Chapter 4 of this
book, and "Internal Calling Conventions"
in Chapter 10.

DNI'lIdWOJ

The Linker Map

2-28

Start Stop Length Name Class

OOOOOH OOOF9H OOFAH EXAMPLE CODE
00100H 00425H 0326H MISGnn CODE
00426H OOD63H 093EH ERREnn_CODE CODE
OOD70H OOD70H OOOOH INIXnn CODE
OOD70H OOE36H OOC7H ENTXnn CODE
OOE38H 01EDAH 10A3H FILUnn_CODE CODE
01EDCH 024B6H 05DBH ORDFnn_CODE CODE
024B8H 03504H 104DH FILFnn_CODE CODE
03506H 03533H 002EH MISOnn_CODE CODE
03534H 03DA1H 086EH CODcnn_CODE CODE
03DA2H 03EC2H 0121H UTLxnn_CODE CODE
03EC4H 04254H 0391H STRFnn_CODE CODE
04256H 043BCH 0167H PAsunn_CODE CODE
043BEH 0456EH 01B1H HEAHnn_CODE CODE
04570H 04615H OOA6H MISHnn_CODE CODE
04616H 04705H OOFOH Mlsvnn_CODE CODE
04710H 04710H OOOOH HEAP MEMOR 1

04710H 04710H OOOOH MEMORV MEMOR 1

04710H 0490FH 0200H STACK STACK
04910H 04FE7H 06D8H DATA DATA
04FFOH 056F1 H 0702H CONST CONST
05700H 05700H OOOOH ??SEG

This listing is a map of the executable file. It shows the
relative displacement from the beginning of the file of th
various elements of the program. The publics map and t1
line number map show where the different elements of
these are relative to the beginning of the file.

The partial map given is for the following program:

1 Program Example(output);
2
3 Var first,second,answer:integer;
4
5 Function Addit(i,j: integer): integer;
6 begin
7 addit:= i+j;
8 end;
9

10 begin

11 first:=2; second:=2;
12 answer:=addit(first,second);
13 writeln(first:l,' + ',second:l,' = ',answer: 1);
14 end.

If the linker prompt "Publics [No] ?" is responded to with
a "Y", the following two listings are produced: "Publics
by Name" and "Publics by Value."

The address has the form:

segmen t :offset.

For example:

Address

043B:000FH
0010:0247H
0042:0470H
0010:0265H
024B:0624H
0010:018EH
F570:F242H
0350:0007H
00D7:0000H
0010:0000H
024B:06DAH
0425:0007H
0010:01 F8H

•
•
•
•

Publics by Name

ALLHao.
ASMGaa
ASNEaa
ASNGaa
ASSFaa
AVAGaa
BEGHaa
BEGOaa
BEGXaa
BRTEaa
BUFFaa
BUFUaa
CESGaa

2-29

2-30

Address Publics by Value

0000:0031 H EXAMPLE
0000:0031H ENTGOa
0010:0000H BRTEaa
0010:002BH ERTEOO
0010:003BH MOVEL
0010:0057H MOVER
0010:0074H FILLC
0010:0092H MOVESL
0010:00B6H MOVESR
0010:00DBH FILLSC
0010:00FAH UADDOK
0010:0113H UMULOK
0010:012CH SADDOK
0010:014CH SMULOK
0010:016CH LOCKED
0010:0180H UNLOCK
0010:018EH AVAGaa
0010:01AEH SOVGaa

•
•
•
•

If the linker prompt "Line No [No] :" is responded to
with a "Y", the following map is produced, broken
down by line number. The line numbers listed in the
runtime modules are the original line numbers from when
the modules themselves were compiled.

Here is a sample, partial1isting of the line number map:

Line numbers for EXAMPLE

7 0000:0019H
11 0000: 004E H
13 0000:0068H

8 0000:0027H
12 0000: 005AH
14 OOOO:OOOCH

Line numbers for ERREQQ_COOE

18 0042:0011H
25 0042:0044H
28 0042:0060H

•
•
•

213 0042:090EH

24 0042:0036H
27 0042:004FH
29 0042: 006AH

214 0042:0918H

Program entry point at 0007:0000

Line numbers for FILUQQ_COOE

185 00E3:0013H 186 00E3:0023H

•
•
•

2-31

Low

512
Bytes

High

{

The following diagram illustrates how the link map is
translated during execution time:

DOS
Relative
zero

Pascal
Program

Heap
Stack

Data

Const

DOS

Pascal
Program

Heap

t

t

Low

Relative
zero

available
memory

(of Program
File) re10ca ted to

top of memory

Stack

Data

Executable
at link time

file \ Const Top of
memory

2-32

At execution time

Note at execution time:

1. The code segment:offsets are correct relative to zero
(load point of program just above DOS).

2. The data and constant references use the map offsets
relative to the DS register, not the segment value
displayed in the maps.

CHAPTER 3. NOTATION AND
TERMINOLOGY

..
J:'

Contents

Pascal Levels
Metalanguage
Standard Pascal
Extended Pascal
Systems Pascal .

Syntax and Vocabulary
Pascal Reserved Words
Attributes .. ,. ...
Directives
Predeclared Identifiers

J
Comments

'" Separators

3-4
3-4
3-4
3-4
3-4

3-5
3-6
3-7
3-7
3-7
3-9
3-9

3-1

,

3-2

In this chapter, IBM Pascal notation and terminology
will be discussed in the context of the different
"levels" of Pascal represented in this book. Other
topics covered will be syntax and vocabulary, Pascal
reserved words, attributes, directives, and predeclared
identifiers.

3-3

Pascal Levels

Pascal on your IBM Personal Computer is divided into
four "levels": metalanguage, standard Pascal, extended
Pascal, and systems Pascal.

Metalanguage

The metalanguage is used for compiler option setting
and conditional compilation.

Standard Pascal

All standard ISO Pascal programs are intended to
compile and run correctly using IBM Pascal. All of the
extensions to the language are documented in
Appendix E of this manual.

Extended Pascal

IBM Pascal enhances ISO Pascal by providing relatively
"safe" extensions so that programs can be better
engineered. These extensions include such construction~
as the BREAK statement, UNITs, and structured
constants.

Systems Pascal

3-4

IBM Pascal also provides other more sophisticated
extensions, including those either useful or necessary
for systems programming. These additional
extensions include the address types and the RETYPE
function.

Syntax and Vocabulary

This manual is an informal description of Pascal syntax.
The syntactic examples are intended to aid understand
ing only and do not form the complete grammar. The
syntax for IBM Personal Computer Pascal is described
in Appendix F.

The basic Pascal vocabulary consists of letters, digits,
reserved words, and special characters. Lowercase and
uppercase letters are interchangeable, except in string
literals.

The special characters are grouped by category as
follows:

• Metalanguage

$ is used to prefix metacommands only.

• Standard Pascal

+ - * / = < > () [] . , : ; , { } <> <=
>= : = .. 1\. The" _" (underscore) is allowed in
iden tifiers.

• Substitutes

(* ... *) for C .. } (. for [.) for] .
The? or @ may be substituted for the 1\ to
denote a pointer.

• Higher level substitutes

"#" in integer constants (non-decimal number
feature). "!" comment to the end of the line.
[... J for BEGIN ... END.

• Unused characters

%&"1'"'-"\

3-5

Spaces (blanks), tabs, and form feeds are also part of th(
standard character set. A tab, CHR(9), is treated as a
space and passed on to the listing file. A form feed,
CHR(12), is converted to a new-page metacommand
($PAGE+).

All other characters including CHR(O) to CHR(3l), the
unused characters just listed, and characters from
CHR(127) to CHR(255) generate an error when used in
a source file, unless they appear in a comment or a strin~
literal.

Pairing (. with] or [with .) is allowed (but not
recommended). {must be paired with} and (* with *).

Pascal Reserved Words

3-6

These words are reserved in Pascal:

AND
ARRAY
BEGIN
CASE
CONST
DIV
DO
DOWNTO
ELSE

END
FILE
FOR
FUNCTION
GOTO
IF
IN
LABEL
MOD

NIL
NOT
OF
OR
PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT

SET
THEN
TO
TYPE
UNTIL
VAR
WHILE
WITH

IBM Pascal features add the following reserved words:

FEATURE

Unit Interface

Modules
Extended CASE
Super Array Type
Control Flow

RESERVED WORDS

IMPLEMENTATION
INTERFACE
UNIT
USES
MODULE
OTHERWISE
SUPER
BREAK
CYCLE
RETURN

Attributes

Directives

FEATURE

Extended Operator
Address Type

RESERVED WORDS

XOR
ADR
ADS
VARS

Value Section VALUE

An "attribute" is a keyword used to give a special
characteristic to a variable, procedure, or function. The
following attributes are reserved words:

EXTERN
EXTERNAL

PUBLIC
PURE

READ ONLY
STATIC

A "directive" is a word used in place of a procedure
or function block.

EXTERN EXTERNAL FORWARD

Note: EXTERN is both an attribute and a
directive. EXTERNAL is a synonym for
EXTERN, providing compatibility with a
num ber of other Pascals.

Predeclared Identifiers

The following are predeclared identifiers. They can be
re-defined by the programmer, but doing this is not
recommended. They are:

3-7

• Standard

ARCTAN FALSE OUTPUT SIN
ABS FLOAT PACK SQR
BOOLEAN GET PRED SQRT
CHAR INPUT PUT SUCC
CHR INTEGER READ TEXT
COS LN READLN TRUE
DISPOSE MAXINT REAL TRUNC
EOL NEW RESET UNPACK
EOLN ODD REWRITE WRITE
EXP ORD ROUND WRITELN

• Extended Intrinsics Feature

ABORT EVAL RESULT
BYWORD HIBYTE SIZEOF
DECODE LOBYTE UPPER
ENCODE LOWER

• String Intrinsics Feature

CONCAT POSITN COPYLST
DELETE SCANEQ COPYSTR
INSERT SCANNE

• System Intrinsics Feature

FILLC MOVER FILLSC MOVESR
MOVEL RETYPE MOVESL

• Extended I/O Feature

ASSIGN DISCARD READFN SEQUENTIAL
CLOSE FILEMODES READ SET TERMINAL

• System I/O Feature

FCBFQQ

• WORD Type Feature

MAXWORD WORD WRD

• Su per Array Type Feature

LSTRING NULL STRING

3-8

Comments

Comments are enclosed in { } or (* *) and can span
multiple lines. The use of a "!" will start a comment
which can run to the end of that line. Comments with
the same delimiter cannot be nested.

Separators

A comment, blank, or line boundary must occur
between two adjacent numbers or adjacent reserved
words and identifiers, and cannot be embedded
wi thin them.

IBM Pascal will, in some cases, accept these without a
separator and give no error. For example:

100mod#50
100mod127

is accepted as 100 mod #50
is assumed to be 100, followed by
the identifier mod 127

3-9

3-10

CHAPTER 4. COMPILER COMMANDS
(METALANGUAGE)

Contents

Metacommands 4-4
Error Conditions 4-6

$BRAVE 4-10

$DEBUG 4-11

$ENTRY 4-12

$ERRORS 4-13

$GOTO 4-14

$IF ... $THEN ... $ELSE ... $END 4-15

$INCLUDE . 4-16

$INCONST 4-17

$INDEXCK 4-18

$INITCK 4-19

$LINE 4-20

$ LINESIZE . 4-21

$LIST 4-22

$MATHCK 4-23

$MESSAGE . 4-24

$NILCK 4-25

4-1

4-2

$OCODE .

$PAGE

$PAGE

$PAGEIF ...

$PAGESIZE

$PUSHj$POP

$RANGECK

$RUNTIME

$SKIP

$STACKCK ..

$SUBTITLE .

$SYMTAB ..

$TITLE

$WARN

. 4-26

..... 4-27

· . 4-28

· . 4-29

.... 4-30

... 4-31

... 4-32

· 4-33

· 4-34

· 4-35

· 4-36

· . 4-37

· . 4-39

· . 4-40

This chapter introduces a series of IBM Pascal compiler
commands, called metacommands, because they
function conceptually "between" the compiler and the
user.

There are 30 of these special metacommands in the
metalanguage which allow you to control compiler
debugging, listing file format, and source file
execution.

The remainder of the chapter is devoted to a detailed
look at each of these metacommands and its use.

4-3

Metacommands

4-4

You can give instructions to the compiler by using any
of a group of specially formatted commands which we
call metacommands. The metacommands are used for
compiler option setting and conditional compilation.

They include all the compiler directives and provide a
limited amount of string processing on the source
document.

One or more metacommands, optionally separated by
commas, can be given only at the start of a comment.
A metacommand imbedded within a comment is
ignored. Blanks, tabs, and line ends between the
elements of a metacommand are also ignored, so
{$PAGE: 12} is the same as {$ PAGE: 12}.

The metacommands can be grouped in three general
categories as follows:

• Debugging and Error Handling:

$BRAVE
$DEBUG
$ENTRY
$ERRORS
$GOTO
$INDEXCK
$INITCK
$LINE
$MATHCK
$NILCK
$RANGECK
$ RUNTIME
$STACKCK
$WARN

• Listing File Format:

$LINESIZE
$LIST
$OCODE
$PAGE
$PAGEIF
$PAGESIZE
$SKIP
$SUBTITLE
$SYMTAB
$TITLE

• Source File Control:

$IF .. $THEN .. $ELSE .. $END
$INCLUDE
$INCONST
$MESSAGE
$POP
$PUSH

Most compiler commands can be changed within a
program. For example, a large program being recom
piled might use $LIST -, with a few sections using
$LIST+ as needed to show those lines where changes
occurred.

The compiler actually processes the metacommands
that follow a symbol before the symbol itself, because
the compiler keeps one lookahead symbol. For example:

CONST Q= 1; {$IF Q $THEN}
{Q is undefined in the $IF}

X : = PA; {$NILCK+}
{NILCK applies to PA here}

Metacommands invoke or set the value of a
meta variab Ie. Metavariables are either:

• TYPELESS: those that are invoked when used,
as in $PUSH.

4-5

• INTEGER: those that can be set to a numeric
value, as in $PAGE: 101.

• ON/OFF: those that can also have a numeric value
such that a value> 0 turns on the switch and a valu
<= 0 turns it off, as in $MATHCK: 1 (+ and - may
also be used).

• STRING: those that take a string literal or string
constant identifer value, as in $TITLE: 'My name'.

Metavariables are set as follows:

COMMAND
$METAVAR+
$METAVAR
$METAVAR:number

$METAVAR:identifier

RESULT
Sets the value to I (on)
Sets the value to 0 (off)
Sets value to literal integer
constant
Sets value equal to constant
identifier

In metacommands only, Boolean and enumerated
constants are changed to their ORD (ordinal) values.
For Boolean, false becomes 0 and true becomes 1.

Although constant expressions are not allowed, the
effect of a constant expression can be obtained by
declaring a constant identifier equal to the expression
and using the identifier in the metacommand.

In the following descriptions, a meta command followed
by + or - is an on/off switch, one followed by an :n is
an integer, one followed by :'text' is a string, and one
without a following item is typeless.

Error Conditions

There are five kinds of error conditions:

4-6

1. Compiletime warnings

2. Compiletime caught errors

Note: An error is caught if the compiler or
runtime system discovers the error and gives
the user a message.

3. ISO Pascal compiletime and runtime errors not
caught

4. Runtime switchable-caught errors

5. Runtime always caught errors

A "warning" is a caught error that the compiler has
fixed so that a source program might run correctly.
These warnings include common substitution errors
and syntax errors.

Compiletime caught errors include all the errors
described in this manual and not otherwise classified;
for example, something which is "invalid," "illegal,"
or "not permitted."

ISO Pascal errors not caught are always identified as
such. They are generally infrequent or very hard to
detect conditions, given as an error in the ISO Standard.

For some runtime errors, checking can be switched on
or off, but this does not guarantee that these errors
are never caught. Due to optimization, an invalid
operation with error checking off may not have the
desired effect. Runtime errors always caught do not
generate extra code, but the switchable ones may.

These runtime errors are always caught:

• Heap overflow during NEW variable allocation

4-7

4-8

• Incorrect variable size in the long form of DISPOSE

• Version number mismatch, using an interface

• REAL number overflow

• Transcendental function errors

• READ an out-of-range value to a subrange variable

The following examples illustrate runtime error messages
as they might appear (see Appendix A, "Messages", in
this book for a complete list of the error messages):

? Error: No Room In Heap
Error Code 2001

PC = 1FOC:199, FP = EAFE, SP = EAF4

The error code number and message appear in Appendix
A. PC is the program counter, FP is the frame pointer,
and SP is the stack pointer. Their values are given in
hexadecimal notation.

Note: Another possible error (but one which
should not occur) is an INTERNAL ERROR. An
internal error means a malfunction has occurred
in the compiler. Report this problem to your
compiler dealer along with a description of the
conditions under which it occurred.

The following is an example of an Internal Error
message:

*** Internal Error #510 ***
Near Line 220
Contact Technical Support

Error: Compiler Internal Error

The following is an alphabetical list of the IBM
Pascal metacommands:

4-9

$BRAVE

Purpose: Causes errors and warnings to be given on the display
screen. If $BRA VE-, errors will not appear at the
display screen, but will still appear in the listing file.

Format: $BRAVE+ (Default is +)

$BRAVE-

4-10

$DEBUG

Purpose: Turns on or off all the runtime debug checking the
compiler can do.

Format: $DEBUG+ (Default is +)

$DEBUG-

Remarks: $DEBUG checking is always on unless turned off. This
includes:

$ENTRY

$INDEXCK

$INITCK

$MATHCK

$NILCK

$RANGECK

$STACKCK

These may also be turned off individually.

4-11

SENTRY

Purpose: Generates procedure entry/exit calls for the debugger.

Format: $ENTRY- (Default is-)

$ENTRY+

Remarks: Gives the name of the procedure or function in which
the error occurred, and displays it on the screen as part
of the runtime error message.

4-12

If $ENTRY - is used after $LINE, then $LINE+ is also
turned off (see $LINE).

$ERRORS

Purpose: Sets the number of errors that will be allowed per page
of the listing.

Format: $ERRORS:n (Default is 25)

4-13

$GOTO

Purpose: Causes each GOTO statement in the listing to be
flagged with a "considered harmful" warning.

Format: $GOTO- (Default is -)

$GOTO+

4-14

$IF ... $THEN ... $ELSE ... $END

Format: $IF constant $THEN ... textl ...
$END

$IF constant $ELSE ... text2 ...
$END

$IF constant $THEN ... text I ...
$ELSE ... text2 ... $END

Remarks: If constant is true (>0), process text I, skip text 2.

Example:

If constant is false «=0), skip text!, process text2.

Constant can be a literal number or a constant identifier.
I t cannot be an expression.

Text is arbitrary, and can include line breaks,
comments, and other metacommands (including
nested $IFs).

Metacommands within skipped text are ignored, except
corresponding $ELSE and $END commands.

{$IF CHIP $THEN}
COOEGEN (FAOCALL,T1) {$ENO}

{$IF OOSYS $ELSE}
IF MYSYS THEN OOITTOIT {$ENO}

4-15

$INCLUDE

Purpose: Switches to source file 'name' after current source line.
Switches back when EOF encountered.

Format: $INCLUDE:'name'

Remarks: Any source file can be $INCLUDEd. It is especially
useful when using UNITs.

'name' is a standard DOS filename.

4-16

$INCONST

Purpose: Prompts user for constant declaration.

Format: $INCONST:identifier

Remarks: The constants in metaconditional statements can be
changed at compile time if the user wishes to compile
different versions of source code.

The source code, then, does not have to be edited for
each change. When the compiler encounters
$INCONST:identifier, it prompts the user to type a
WORD value.

The effect is the same as if a CONST section with the
WORD value had been processed. That value is avail
able for use in expressions, type clauses, etc.

An $INCONST metacommand should appear
somewhere in or after the first program section
(that is, LABEL, CONST).

4-17

$INDEXCK

Purpose: Checks for array index values in range.

Format: $INDEXCK + (Default is +)

$INDEXCK-

Remarks: Includes super array indices. Since array indexing
occurs so often, bounds checking is separate from
other subrange checking.

4-18

$INITCK

Purpose: Generates code to set the value of all uninitialized
integers to -32768 and uninitialized pointers to 1
(if $NILCK is on).

Format: $INITCK - (Default is -)

$INITCK+

Remarks: The following classes are not initialized with $INITCK:

• Variables mentioned in a VALUE section

• Variant fields in a record

• Components of a SUPER ARRAY allocated
with NEW

4-19

$ LINE

Purpose: Generates line number calls for the debugger so the run
time system can report the line number where the
error occurred.

Format: $LINE- (Default is -)

$LINE+

Remarks: If $LINE+, then $ENTRY+ is automatically
generated.

Example: ? Error: No Room In Heap
Error Code 2001
Line 20 In (proc. name) Of (prog. name)

PC = 1 FOC:199, FP = EAFE, SP = EAF4

4-20

$LINESIZE

Purpose: Sets the width of the program listing.

Format: $LINESIZE:n (Default is 79)

Remarks: Useful when changing the printer line length from
80 to 132 characters.

4-21

$LIST

Purpose: Generates the source code listing.

Format: $LIST+ (Default is +)

$LIST-

Remarks: Errors are always listed. $LIST is useful, for
instance, if you want to make a change to a large
program, and you want a listing of only the change.
You can cause the partial listing by placing $LIST+
at the start of the new code and $LIST - after the
end of the new code.

4-22

$MATHCK

Purpose: Detects INTEGER and WORD overflow, and
division by zero.

Format: $MATHCK+ (Default is +)

$MATHCK-

Remarks: Checking for an INTEGER result of exactly
-MAXINT -1 (that is, #8000) is not included.

Turning off $MATHCK does not always disable
overflow checking. Library routines described in
Chapter 11 provide addition and multiplication
functions which always permit overflow.

4-23

$MESSAGE

Purpose: Displays text on the display screen during compilation.

Format: $MESSAGE:'text'

Remarks: Useful when meta conditionals ($IF $THEN $ELSE
$END) are extensively used to indicate, at the
terminal, which version of a program is being compiled.

4-24

$MESSAGE is also useful when using $INCONST to
prompt the user for necessary input.

$NILCK

Purpose: Checks for dereferencing a pointer.

Format: $NILCK + (Default is +)

$NILCK-

Remarks: Checks for dereferencing a pointer whose value is:

• NIL (a value of 0)

• Uninitialized (value of l; only with $INITCK)

• Out of range

• Pointing to a free block

• Odd (valid pointers are even)

Occurs when a pointer is dereferenced or passed to
DISPOSE. No address checking is done.

Note: "Dereferencing" occurs when the value at
the memory address contained in a pointer is
accessed.

4-25

$OCODE

Purpose: Turns on or off the disassembled object code listing.

Format: $OCODE+ (Default is +)

$OCODE-

Remarks: The $OCODE command controls listing the generated
code the way $LIST controls the source code listing.

4-26

The format is basically like an assembly listing, with
code addresses and operation mnemonics. Procedure,
function, and static variable identifiers may be
truncated in the object code listing file.

Due to optimization during PAS2, the $OCODE
meta command may not always take effect in the
desired spot.

$PAGE

Purpose: Sets page number for the next page.

Format: $PAGE:n

Remarks: Does not skip to next page.

4-27

$PAGE

Purpose: Skips to the next page.

Format: $PAGE

Remarks: The line numbers are not reset, as in $PAGE:n.

4-28

$PAGEIF

Purpose: Skips to the next page if less than n lines are left.

Format: $PAGEIF:n (Default is no action)

4-29

$PAGESIZE

Purpose: Sets the page length of the listing in lines.

Format: $PAGESIZE:n (Default is 53)

Remarks: This command must be on the first line of the text,
or it will not take effect until the second page.

4-30

$PUSH/$POP

Purpose: Saves/restores the value of the current metacommands.

Format: $PUSH

$POP

Remarks: Not all metacommands can be recovered with $POP.
For example, if the default value for $LIST is used
(that is, $LIST+ is not explicitly included in a
comment), and then the $PUSH command is used
followed by a $LIST - (for an $INCLUDEd file which
you do not want listed, for example), and $POP is then
used, the $LIST - will still be in effect.

4-31

$RANGECK

Purpose: Checks for subrange validity.

Format: $RANGECK + (Default is +)

$RANGECK-

Remarks: Includes:

4-32

• Assignment to subrange variables (including FOR
control variables and structured constant values)

• The CHR and BYWORD functions

• Super array upper bounds passed to a NEW
procedure

• The SUCC and PRED functions

• Indices in PACK and UNPACK

• LSTRING assignments and value parameters

• Set type assignments and value parameters

• Checking the CASE statement control value
when there is no OTHERWISE clause

$RUNTIME

Purpose: Special switch for Pascal runtime use.

Format: $ RUNTIME- (Default is-)

$RUNTIME+

Remarks: If the $RUNTIME switch is on when a procedure or
function is compiled, the "location of the error"
becomes the point where the procedure or function
was called, not where it occurs within the procedure
or function itself.

This command is the object code counterpart to
$LINE and $ENTRY.

The $RUNTIME switch effects the Stack Pointer (SP),
the Frame Pointer (FP), and the Program Counter (PC).

4-33

$SKIP

Purpose: Skips n lines, or to the end of the page, whichever
occurs first.

Format: $SKIP:n

4-34

$STACKCK

Purpose: Checks for stack overflow at procedure and function
entry, and when pushing parameters larger than four
bytes onto the stack.

Format: $STACKCK+ (Default is +)

$STACKCK-

4-35

$SUBTITLE

Purpose: Sets listing page subtitle to 'text'.

Format: $SUBTITLE:'text'

Remarks: 'text' will appear in the upper left hand corner of
every page of the listing on the second printed line.

4-36

The command must appear on the first line for the
subtitle to appear on the first page.

Maximum length should be ten less than $LINESIZE
for proper alignment to occur.

$SYMTAB

Purpose: Lists the variables for a program, procedure, or
function at the end of the listing.

Format: $SYMTAB+ (Default is +)

$SYMTAB-

Remarks: If $SYMTAB is on at the end of a procedure, function,
or program, the listing contains information about its
variables. The left columns contain the offset to the
variable from the frame pointer (procedures and
functions), or in fixed memory (main program and
STATIC attribute variables).

A leading minus sign indicates a frame offset. This
offset is to the lowest address used by the variable,
since the frame grows from higher to lower addresses.

The first line of the $SYMTAB listing contains the
offset to the. return address (zero for the main program)
and the total length of the frame, including front end
temporaries but excluding code generator temporaries.

For functions, the second line contains the offset,
length, and the type of the returned value.

The remaining lines list the variables including their

4-37

$SYMTAB

4-38

type and keywords indicating various attributes.
These are as follows:

KEYWORD
Public
Extern
Origin
Static
Const
Value
ValueP
VarP
VarsP
ProcP

ATTRIBUTE
Has the PUBLIC attribute
Has the EXTERN attribute
Has the ORIGIN attribute
Has the STATIC attribute
Has the READONLY attribute
Occurs in a VALUE section
Is a value parameter
Is a V AR or CONST parameter
Is a V ARS or CONS parameter
Is a procedural parameter

Note: The entries shown in the symbol table on
your listing are arranged alphabetically within
type and not as they exist in memory. See the
section on "Internal Representation", in
Chapter 6, for more information on the offsets.

$TITLE

Purpose: Sets listing page title to 'text'.

Format: $TITLE: 'text' (Default is no title)

Remarks: 'text' will appear in the upper left hand corner of
every page of the listing on the first printed line.

The command must appear on the first line for
the title to appear on the first page.

Maximum length should be ten less than $LINESIZE
for proper alignment to occur.

Note: The logical line can be longer than one
physical line, allowing several metacommands
to be put on the "first" line.

4-39

$WARN

Purpose: Gives warning messages in the listing file.

Format: $WARN+ (Default is +)

$WARN-

4-40

CHAPTER 5. IDENTIFIERS AND
CONSTANTS

Contents

Identifiers 5-3
Length Restrictions 5-3
Scope 5-4

Identifier . . . 5-4
Procedure or Function 5-5
Field or Tagfie1d . . . 5-5
FO R WARD Directive 5-6

Constants 5-7
Numeric Constants 5-7

Constant Operators and Functions 5-9
Strings 5-10

LSTRING ... 5-11
Constant Definition . 5-12
Structured Constants 5-12
Notes on Constants . 5-15

5-1

5-2

Identifiers

Identifiers denote constants, types, variables, procedures,
functions, programs, and fields and tagfields in records.
Some features also use identifiers; as super array types,
modules, units, and statement labels.

Statement labels are unsigned integers or identifiers,
and have the same scope rules as identifiers; leading
zeros are not significant. An identifier consists of a
letter followed by letters, digits, or _s; the _
(underscore) is significant. Identifiers with _ in
them are allowed, a minor extension to ISO Pascal.
Two _s in a row, or an identifier ending with _, is
permitted.

Length Restrictions

Identifiers can be of any length, but must fit on one
line. Only the first 31 characters of an identifier are
significant. An identifier longer than 31 characters
causes a warning.

The identifiers passed to the linker may also be 31
characters long. These include those identifiers
used for a program, module, or unit which are passed
to the linker, as well as those with the PUBLIC or
EXTERN attitude.

In the disassembled object code, variable and procedure
identifiers may be truncated to six characters if these
identifiers are not used by the linker.

5-3

Scope

5-4

Using identifiers of seven or fewer characters saves space
during compilation.

All external identifiers used by the runtime system are
four alphabetic characters followed by "QQ", therefore
users should avoid this form when making external
names.

Identifier

The scope of an identifier is the same as in ISO Pascal.
An identifier's association must be unique within its
scope.

Basically, the scope of an identifier is the procedure,
function, program, module, implementation, or
interface in which it is defined, including any nested
procedures or functions.

A nested procedure or function can redefine an
identifier only if the identifier has not already been
used (so if M is an integer constant in a program, a
nested procedure cannot do CONST Q = M + 1; M = 4).

However, this error is not caught except when T is
declared as a type identifier, and a nested procedure
or function declares a reference type 1\ T and in the
same TYPE section declares T again.

The meaning of a type 1\ T would be ambiguous. In this
case a warning is given and the T that occurs later in the
TYPE section is used as the referent type of 1\ T.

Procedure or Function

The scope of a procedure or function begins immediately
after the procedure or function identifier, so it includes
the formal parameter list. This means the procedure or
function identifier itself is one level "above" its
parameters, variables, and nested procedure and function
identifiers.

For example, declaring a variable in a function with the
same identifier as the function is permitted, even though
this hides the function identifier so a value cannot be
assigned to it.

A program, module, or unit identifier becomes part of
the level "above" other user identifiers. However, this
level contains the predeclared identifiers, so using a
program identifier like INTEGER or READ produces
a duplicate identifier error.

Field or Tagfield

The scope of a field (or tagfield) of a record is any
field designator or WITH statement using a variable
of the record's type. With $LIST+, the current
identifier level can be seen in the I column of the
listing as one of the 16 identifier levels provided
(see Chapter 2 for an explanation of the compiler
listing symbols).

An identifier must be defined before it is used,
except for program parameters and interface
constituents, and referent types.

5-5

5-6

When a referent type 1\ T (or ADR OF T or ADS OF T)
is defined, the type T it refers to can occur later in the
same J:YPE section, allowing indirect recursion.

FORWARD Directive

The FORWARD directive, described later, allows
indirect recursion for procedures and functions.
Identifiers which are parameters in a procedure or
function heading with the FORWARD directive do
not take effect until the actual procedure or function's
block is encountered.

Iden tifiers used when declaring the parameters of a
procedure or function used as a parameter (for
example, a procedural type parameter) are ignored.

With the unit interface feature, a USES clause defines
a group of identifiers listed in the interface or listed
in the USES clause itself. These identifiers are
"constituents" of a "unit" which is defined in an
"interface" and actually brought about by an
"implementation". Units are discussed in Chapter 13.

For example, USES (IV AR, COLOR, COLORPROC)
defines the three identifiers in the list, which can be
constants, variables, types, super array types,
procedures, or functions.

If COLOR is the enumerated type (RED, BLUE,
GREEN), then these enumerated type constant
identifiers are not automatically defined; they must
be listed in the interface as well. However, the field
identifiers of a constituent record variable or type are
available in a field designator ("."), or WITH
statement as usual.

Constants

Numeric Constants

The usual decimal notation is used for numbers,
which are constants of type REAL or INTEGER or
WORD. The type of a number is REAL if it includes
a decimal point or exponent, and INTEGER or WORD
if it does not.

INTEGER constants can range from -MAXINT to
MAXINT (MAXINT is a predeclared constant equal
to 32767).

WORD constants can range from 0 to MAXWORD
(MAXWORD is a predeclared constant equal to
65535).

A number from -MAXINT to MAXINT becomes type
INTEGER, or else one from MAXINT+ 1 to MAXWORD
becomes type WORD, or else an error occurs.

However, any INTEGER type constant (including
constant expressions and values from -32767 to -1)
automatically changes to type WORD if necessary;
if an INTEGER value is negative, 65536 is added to
it (that is, the 16 bit underlying value is not changed).

As an example, a constant subrange of type WORD
can be declared as WRD(0) .. 127 ; the upper bound is
automatically given the type WORD. The reverse is
not true; constants of type WORD do not change to
type INTEGER automatically. The ORD and WRD
functions can also be used to change the type of an
ordinal constant to INTEGER or WORD. Examples:

o
32768

type INTEGER, could become WORD
type WORD

0 .. 20000
0 .. 50000
0 .. 80000
-1..50000

type INTEGER subrange
type WORD subrange
invalid
invalid, becomes 65535 .. 50000

5-7

5-8

The REAL constant range provides about seven digits of
precision, with a maximum value of about
1.70141200E+38 (for more details see "Internal
Representation" in Chapter 7 of this book).

At least one digit is expected on each side of a
decimal point, or a warning is given.

A real number starting or ending with a decimal point
may be misleading; for example, "(.1 +2.)" is interpreted
as "[1 +2]" since "(''' substitutes for "[" and ".)" for
"]".

Scientific notation in real numbers (as in 1.23E-6 or
4e7) is supported. When an exponent is given, the
decimal point and exponent sign are optional. An
uppercase"E" or lowercase "e" in real numbers is
allowed.

Numbers can have a leading + or -, except within an
expression (so "ALPHA : =+ 1 0" is valid but" ALPHA
+-10" is invalid). Embedded blanks (after the sign, in
the exponent part, etc.) are not permitted.

The compiler truncates any number with more than 31
characters (the same as the identifier length) with a
warning.

The syntax for numbers applies to text files as well as
programs; all numbers are converted by the compiler
using the DECODE function. Examples of numeric
constants:

123
-26.0
17e+3

+12.345
26.0e12
-17E3

0.17 007
-1.7E-IO
leI

The nondecimal number feature supports numbers in
hexadecimal, octal, or binary radix, as well as decimal,

as in 16#FF02, 10#987,8#776, or 2#111100. Leading
zeros are permitted in the radix, as in 008# 147.

In hexadecimal notation, uppercase or lowercase A-F is
permitted. A nondecimal constant without the radix
(such as #44) is assumed to be hexadecimal.

Whether the usual decimal or nondecimal notation is
used, the type of a number is determined as described
above; nondecimal notation does not imply the WORD
type, for example. Nondecimal notation cannot be
used for REAL constants, or numeric statement labels.

Any numeric constant (literal or identifier) can be given
a + or - sign. The constant expression feature allows
ordinal constants to be expressions involving nonreal
numbers, constant identifiers, and some operators and
predeclared functions. With this feature, a constant
expression is allowed anywhere a literal constant
can appear, except in meta commands.

Constants can appear in the CaNST section, expressions,
type clauses, set constants and other structured constants,
and in CASE constants in CASE statements and variant
record tag values.

Constant Operators and Functions

Constant operators with REAL or INTEGER operand:
unary + unary -

Constant operators and functions with INTEGER or
WORD operands:
+ DIV

MOD
* AND

OR
NOT
XOR

HIBYTE()
LOBYTE()
BYWORD()

5-9

Strings

5-10

Constant operators and functions with ordinal type
operands:
< >=
<= =
> <>

ORD()
CHR()
WRD()

LOWER()
UPPER()

Constant operators with Boolean operands:
AND
OR
NOT

Constant functions with an array operand:
LOWER()
UPPER()

Constant functions with any type of operand:
SIZEOF()
RETYPE()

For example:

(100 + ORD{'X')) * 8#100 + ORD{'Y')
(MAXSIZE > 80) OR (INTYPE = PAPERTAPE)

Sequences of characters enclosed in single quotes are
called strings in most Pascal manuals. We call them
string literals, as opposed to string constants (which may
be an expression) or the STRING type.

A string constant can have from 1 to 255 characters.
A string constant longer than one character is of type
PACKED ARRAY [I..n] OF CHAR, also known as
the type STRING (n). A string constant containing
just one character is of type CHAR.

However, the type changes from CHAR to PACKED
ARRAY [1 .. 1] OF CHAR (for example, STRING (1)) if
necessary for assignmen t, parameter passing, etc. A
literal single quote is represented by two adjacent quote~

The null string" is not permitted (but see NULL below)
A string literal must fit on a line. String literals using
" instead of' are recognized, but a warning message is
given.

The constant expression feature permits string
constants made up of concatenations of other string
constants, including string constant identifiers and the
CHR() function. These can span multiple lines, but
are still limited to the 255 character maximum.

The * is the concatenation operator. String constant
expressions are allowed wherever a string literal is
allowed, except in meta commands.

Note: The concatenation operator only works
with constants, not with string variables.

Example of a string expression:

HEADER = 'Now"s the time'
POLITC = HEADER * CHR(13) * 'For all good men'

LSTRING

The LSTRING feature adds the super array type
LSTRING, or length-string. It is similar to PACKED
ARRAY [O .. n] OF CHAR. Element 0 contains the
length of the string, which can vary from 0 to a maximum
of n (n <= 255). LSTRINGs are discussed further in
Chapter 5.

Note that a constant of type STRING (n) or CHAR
changes automatically to type LSTRING if necessary
for assignment, etc.

NULL is a predeclared constant for the null string, with
element 0 (the only element) equal to CHAR(O). NULL
cannot be concatenated, since it is not a STRING. It is
the only constant of type LSTRING; the user cannot
declare a constant of an LSTRING type, even as a
structured constant.

5-11

Constant J)efmition

A constant definition introduces an identifier as a
synonym to a constant. These definitions are in
the CaNST section of a program, procedure,
function, module, interface, or implementation. The
general form is:

constant-identifier = constant

The constant-identifier is not defined until after the
definition is processed, so a constant definition such
as N = (N+ 1) is invalid. The "constant" can be a
constant expression, as defined above. The
$INCONST metacommand also defines a constant
identifier.

Structured Constants

5-12

The structured constant feature permits constant
arrays and records of a particular type, and constant
sets of a particular type or an unnamed implied type
(unnamed type set constants are the same as ISO
Pascal set values with all elements constant).

Structured constants can be used anywhere a structured
value is allowed, as well as in CONST and VALUE
sections.

An array or record constant consists of a type identifier
followed by a list of constant values in parentheses
separated by commas.

A set constant consists of an optional set type
identifier followed by set constant elements in
square brackets separated by commas; a set constant
element is either an ordinal constant, or two ordinal
constants separated by two dots to indicate a range of

constant values. Here are some simple examples:

TYPE TVECT = ARRAY [-2 .. 2] OF INTEGER

CONST VECT = TVECT (5, 4, 3, 2, 1);

TYPE TRECR RECORD
A, B: BYTE;
C, D: CHAR;

END;
CONST RECR = TRECR (#20, 0, 'A',

CHR (20));

TYPE TSETC = SET OF (RED, BLUE, WHITE,
GREY, GOLD);

CONST SETC = TSETC [RED, WHITE .. GOLD];

A constant in an array or record structured constant
must have a type assignable to the corresponding
component type. The value of a constant element
corresponding to a tag field selects a variant, even if
the tag field is empty.

The number of constant elements must equal the
number of components in the structure, except for
super array type structured constants. Nested
structured constants are permitted.

An array or record constant nested within another
structured constant still must have the preceding
type identifier. For this reason and others, a super
array constant can have only one dimension.

The size of the representation of a structured constant
must be from I to 255 bytes.

5-13

5-14

Example of a structured constant:

TYPE R3 = ARRAY [1. .3] OF REAL;

TYPE SAMPLE = RECORD
I: INTEGER;
A: R3;
CASE BOOLEAN OF
TRUE: (S: SET OF 'A' .. 'Z';

P: /\SAMPLE);
FALSE: (X: INTEGER);

END;

CONST Sl = SAMPLE (27, R3 (1.4, 1.4, 1.4);
TRUE, ['A','E','I'] ,NIL);

Constant elements can be repeated with the
"DO n OF constant" phrase, so the above example
could have included "DO 3 OF 1.4" instead of
"1.4, 1.4, 1.4". Set constant expressions (like
['_'] + LETTERS) are not supported, and neither
are file constant expressions.

The STRING (3) constant 'ABC' is equivalent to the
structured constant STRING ('A', 'B', 'C').
LSTRING structured constants are not permitted
(nor are they very useful).

Structured constants (and other structured values,
like variables and values returned from functions)
can be passed by reference using CONST parameters
(see Chapter 10).

There are two kinds of set constants, one with an
explicit type (that is, having a type identifier before
the [) as in CaNST SETC = TSETC[RED, WHITE ..
GOLD] ; and one with an unknown type (that is,
having no type identifier before the [) as in
CaNST RANGE = [20 .. 40]. Either can be used in an
expression or to define the value of a constant
identifier.

The kind with an explicit type can also be passed as a
reference (CaNST) parameter.

Passing sets by reference is generally more efficient
than passing them as value parameters.

Notes on Constants

The identifiers defined in an enumerated type are
constants of that type and cannot be used with
numeric (or string) constant expressions directly.
They can be used with the ORD, WRD, or CHR
functions, however, as in 12 + ORD (BLUE).

TRUE and FALSE are predefined constants of
type BOOLEAN; they can be redefined. As
mentioned, MAXINT, MAXWORD, and NULL are
also predefined. NIL is a constant of any pointer
type; since it is a reserved word in ISO Pascal, it
cannot be redefined by the programmer.

Numeric statement labels have nothing to do with
numeric constants; one cannot use a constant identifier
or expression as a label. All constants (including
string expressions and structured constants) are
limited to an internal representation of 1 to 255 bytes.

5-15

5-16

CHAPTER 6. DATA TYPES

Contents

Data Types

Data Types in IBM Pascal

Simple Data Types ..
Elementary Types

INTEGER
WORD ..
CHAR ..
BOOLEAN

Enumerated Types
Subrange Types .

REAL Type

Structured Types . . .
Arrays

Super Arrays
Parameters
Variables .
STRINGs.
LSTRINGs

Records
Sets
Files

File Control Block
INPUT and OUTPUT

Reference Types .. .
Pointers
Addresses

Restrictions

6-3

6-4

6-5
6-5
6-5
6-5
6-6
6-7
6-7
6-8

6-10

6-11
6-11
6-12
6-13
6-15
6-16
6-18
6-20
6-24
6-25
6-26
6-27

6-29
6-29
6-31
6-35

6-1

6-2

Procedural Types 6-37
Type Compatibility 6-37

Type Identity and Reference Parameters 6-38
Type Compatibility and Expressions 6-39
Assignment Compatibility and

Assignments 6-40
Internal Representation . . 6-41

Procedural Parameters 6-42

Data Types

A data type determines the set of values which
variables of that type can assume and associates an
identifier with the type. Data type definitions are
found in the TYPE section of a program, procedur~,
function, module, interface, or implementation.

A type definition has the general form:

type-identifier = type

The type-identifier is not defined until after the
definition is processed, so a type definition such
as T = ARRAY [0 .. 9] OF T is invalid, with an
exception for reference types.

A super-type determines the set of types which
designators of that super-type can assume and
associates an identifier with the super-type.
Super-type definitions are also in the TYPE section
and have the general form:

super-type-identifier = super-type

Only super array types are available.

6-3

Data Types in IBM Pascal

6-4

The data types in IBM Pascal can be outlined as follows:

SIMPLE TYPE
Ordinal

Elementary
INTEGER -MAXINT .. MAXINT
WORD O .. MAXWORD
CHAR CHR(0) .. CHR(255)
BOOLEAN (FALSE,TRUE)
Enumerated (RED,BLUE,GREEN)
Subrange 100 .. 5000

REAL (max value of 1. 7041200E+38)

STRUCTURED TYPE
Non-file

ARRAY OF type
General (OF any type)

N-dimensional notation
Strings (PACKED ARRAY [...] OF CHAR)

STRING (n) ([I..n])
LSTRING (n) ([O .. n])

Super array types
RECORD

Variant records
SET OF type

FILE OF
General (binary) files
TEXT (like FILE OF CHAR)

REFERENCE TYPE
Pointer type
ADROF type
ADS OF type

for example, 1\ type
relative address
segmented address

PROCEDURAL TYPE (only as parameter type)

Simple Data Types

The term "ordinal type" is any simple, "finite" type,
that is, INTEGER, WORD, CHAR, BOOLEAN,
subrange, or enumerated (any simple type except
REAL).

Elementary Types

There are four elementary data types: INTEGER,
WORD, CHAR, and BOOLEAN.

INTEGER

INTEGER values are a subset of the whole numbers,
ranging from -MAXINT through 0 to MAXINT.
MAXINT is 32767 (2 15

- 1). Note that -32768 is
not a valid INTEGER.

INTEGER type constants change to WORD type if
necessary, but not INTEGER variables. INTEGER
values (variables, constants, or function returns)
change to REAL in an expression if necessary.

The ORD function changes any ordinal type value
to INTEGER type.

WORD

WORD values are used in two ways: as a subset of the
whole numbers from 0 to MAXWORD (65535 or
(2 16

) - 1) and as a group of 16 bits. The motivation for
the WORD type rises from:

• The need for values between 32768 and 65535

• The need to interface with operating systems and
machine architecture

6-5

6-6

• The need to operate on addresses

• And the need to easily get at machine primitives
(like AND) without using the INTEGER type
(and running into the -32768 value).

Assembly language programmers are accustomed to
using numbers from -32768 to 65535 and mapping
a 16 bit quantity to a number in two ways, signed and
unsigned. Having both an INTEGER and a WORD
type permits this in a structured way.

WORD and INTEGER values cannot be mixed in an
expression (unless one is a constant INTEGER), and
are not assignment compatible.

Mixing INTEGER and WORD values results in a
warning instead of an error; the compiler will
arbitrarily use signed or unsigned arithmetic in
the expression.

The WRD function changes any ordinal type value
to WORD type.

CHAR

CHAR values are 8 bit ASCII. SET OF CHAR is
supported. All 256 byte values are in the type
CHAR. Relational comparisons use the ASCII
collating sequence.

The "line-marker" character used in TEXT files
is not part of the CHAR type in ISO-Pascal, but
in IBM Pascal CHR(13), carriage return, is used as
the "line-marker". CHR(26) is used to mark the
end of a text file.

The CHR function changes any ordinal type value
to CHAR type as long as ORD of the value is in
the range 0 .. 255.

BOOLEAN

BOOLEAN values are (FALSE, TRUE). The BOOLEAN
type is a special case of an enumerated type; ORD
(FALSE) is 0, and ORD (TRUE) is 1.

In Pascal, FALSE < TRUE. BOOLEAN, FALSE,
and TRUE can be re-defined by the programmer, but
the old type is implicitly used by the compiler for
things like the IF statement and Boolean expressions.

There is not a function that changes ordinal type values
to BOOLEAN type, but the ODD function for INTEGER
and WORD values and the expression "ORD (value) < >
0" may be useful in some cases.

Enumerated Types

An enumerated type defines an ordered set of values
by enumerating the identifiers for these values, and
which are constants of that type. For example:

TYPE
COLOR = (RED, BLUE, GREEN, YEllOW,

PURPLE, ORANGE, GOLD);
SUITS = (CLUB, DIAMOND, HEART, SPADE);

Identifiers for all enumerated type constants must
be unique within their declaration level.

The ORD value always starts at zero (ORD (RED)
= 0, ORD (BLUE) = 1, and so on).

Conceptually, all ordinal types can be considered
enumerated types. There is not a function to change
other ordinal values to an enumerated type, except
for RETYPE.

6-7

Enumerated types are particularly useful for represen
ting an abstract collection of names, such as names for
operations, kinds of things, commands, and so on.
Modifying a program by adding a new value to an
enumerated type is much safer than using raw numbers;
any arrays indexed with the type or sets based on the
type automatically change. Since enumerated types
are ordered, comparisons like RED < GREEN can
be useful.

Sometimes (in FOR statements, for example) access
to the lowest and highest values of the enumerated
type can be useful; the LOWER and UPPER functions
permit this, as in:

VAR TINT: COLOR;
FOR TINT := LOWER (TINT) TO UPPER (TINT)

DO PAINT (TINT);

Subrange Types

6-8

A subrange of an ordinal type, called the "host type",
can be defined by giving the lower and upper bound
(in that order) of the subrange. The lower bound must
not be greater than the upper bound but they can be
equal.

The subrange type is frequently used as the index type
of an array bound, or the type for variables used to
index an array, or as a set base type. Examples:

100 .. 200
'A' .. 'Z'
RED .. YELLOW

In set constants and set constructors, a sub range clause
substitutes for a list of values, and the extended CASE
constant feature allows CASE statement constants and
variant labels to also use a sub range clause.

The subrange bounds can be constant expressions;
however, the first subrange expression cannot start with
a left parenthesis, because the compiler assumes the
left parenthesis is starting an enumerated type
declaration. For example:

TYPE FEE = (A, B, C);
FIE = M+2*N .. {P-2)*N; {permitted}
FUU = {M+2)*N .. P-2*N; { invalid}

Besides array and set declarations, the subrange type
is particularly useful to guarantee the value of a
variable (especially if $RANGECK is on).

If the logic of a program implies a variable will always
have a value from 100 to 999, declaring the variable
with that sub range insures that the compiler will
detect any value out of that range.

In addition, the compiler may also be able to allocate
less room and use simpler operations with a sub range
type. For example, declaring a type 1..100 (an
INTEGER sub range) means the type can be allocated
in 8 bits instead of 16. This is especially true when
an array is PACKED (see "Internal Representation"
later in this chapter).

Two subrange types are predeclared:

• BYTE = WRD(0) .. 255; {8 bit WORD subrange}

• SINT = -127 .. 127; {8 bit INTEGER subrange}

6-9

6-10

REAL Type

The Real format has a 24 bit mantissa and 8 bit
exponent, giving about 7 digits of precision and a
maximum value of about 1.70141200E+38 (see
"Internal Representation" in this chapter).

The standard REAL runtime unit provides these
21 functions:

SQR
SQRT
SIN
COS
ARCTAN
EXP
LN
TRUNC
ROUND
FLOAT
ENCODE (REAL-to-STRING)
DECODE (STRING-to-REAL)
add
subtract
multiply
divide
negate
absolute
com pare-eq ual
compare-less-than
compare-Iess-or-equal

The standard library provides additional REAL
functions, but these are not predeclared (see
"Arithmetic Functions" in Chapter II).

Structured Types

Arrays

A structured type is characterized by the type(s) of
its components and by its structuring method (array,
record, set, or file). Components of structures can
be structured to "any" level.

Structured types can also be PACKED, but the PACKED
command is used only for type checking and does not
cause bit packing. The PACKED prefix can only be used
preceding one of the structure names ARRAY, RECORD,
SET, or FILE, and cannot be used preceding a type
identifier; for example, if COLORMAP is an unpacked
array type identifier, PACKED COLORMAP is not
accepted.

A component of a PACKED structure cannot be passed
as a reference parameter (with an exception for string
types). Getting the address of a PACKED component
with ADR or ADS is not well defined.

A PACKED prefix only applies to the structure being
defined; any components of that structure which are
also structures are not classified as packed unless
explicitly given the PACKED reserved word in their
definition, except for n-dimensional array notation
(see "Arrays" in this chapter).

The maximum length of any structured type is 32766
(MAXINT -1) bytes.

An array is a structure consisting of a fixed number of
components which are all of the "component type".
The elements of the array are designated by indices,
values of the "index type" (an ordinal type).

6-11

6-12

Arrays in Pascal are, strictly speaking, one-dimensional,
but since a component type can also be an array,
n-dimensional arrays are effectively supported by
using a shorthand notation. Examples:

ARRAY [1 .. 10] OF INTEGER
ARRAY [.. 9] OF ARRAY [0 .. 99] OF 0 .. 999
ARRAY [0 .. 9, O •• 99] OF O .• 999 {same as above}
ARRAY [COLOR] OF (PRETTY, TACKY)

L\.ll of an n-dimensional PACKED array is packed:

PACKED ARRAY [1. .2, 3 .. 4] OF C;

is equivalent to:

PACKED ARRAY [1. .2]
OF PACKED ARRAY [3 .. 4] OF C;

Super Arrays

A "super-type" can be thought of as a set of types or a
parametric type. For example:

TYPE
VECTOR = SUPER ARRAY [1 .. *] OF REAL;
MATRIX = SUPER ARRAY [1 .. *, 1 .. *] OF REAL;

VECT10 = VECTOR (10); MATDEC = MATRIX (100,10£

VAR
ROW: VECT10; COL: VECTOR (10);
ROWP: 1\ VECTO R;

A super array type identifier itself can only be used
after an identifier for a reference parameter, or
following the 1\ in a type clause, or in a type
designator, or in a structured constant.

A super array type designator can be used wherever
a type clause can be used, and is considered a unique

type. In this example, VECTOR and MATRIX are
super array type identifiers; VECTOR (10) and
MATRIX (100, I 00) are called type designators (giving
the upper bound of the super array type identifiers),
and VECTIO and MATDEC are the type identifiers.

ROW[3] or COL[4] would be components in the
normal sense.

The general super-type concept would allow other
"types of types", such as super subranges and super
sets, but the only super types allowed are arrays
with parametric upper bounds.

A super array type clause is an array type clause
prefixed with the keyword SUPER and with every
upper bound replaced with a "*".

Parameters: A tormal reference parameter can be given
a super array type:

PROCEDURE A (VAR S: STRING);

An actual parameter can be:

• A variable of the super array type itself (this
can occur only in a procedure or function (see
the following example) or as a pointer referent)

• A variable or a constant of a type derived from
the super array type

This type of parameter usage is called a "conformant
array" in the Pascal literature.

6-13

6-14

F or exam pIe:

TYPE VECTOR = SUPER ARRAY [1 .. *]
OF REAL;

VAR X: VECTOR (12);
Y: VECTOR (24);
Z: VECTOR (36);
(*X, Y, and Z are derived from
VECTO R, the super array *)

•
•
•

FUNCTION SUM (VAR V: VECTOR): REAL;
(*V, the formal reference parameter,
is the conformant array *)

VAR S: REAL; I: INTEGER;
FUNCTION SUB (VAR V: VECTOR): REAL;
VAR S: REAL; I: INTEGER;
BEGIN (* SUB *)

S := 0;
FOR I := 1 TO UPPER (V) DO
S := S - V [I];
SUB := S;

END; (* SUB *)

BEGIN (* SUM *)
S := 0;
FOR I := 1 TO UPPER (V) DO
S := S + V [I];
SUM := S + SUB (V);
(* V is a super array type being
passed to the nested function SU B *)

END; (* SUM *)

BEGIN (* MAIN *)

•
•
ZERO := SUM (X) + SUM (Y) + SUM (Z);
•
•

END. (* MAIN *)

Note: The statement SUB (V) in the FUNCTION
SUM is allowed because V is assigned an actual
value by the time it is passed.

A pointer to a super array type allows an array of a
particular size allocated on the heap (the actual
upper bound of the array wanted is passed to the
NEW procedure). This is especially useful for
STRINGs and LSTRINGs.

Super arrays allocated with NEW are not initialized
and so give a warning if they contain any files.
This kind of heap variable is sonletimes called a
"dynamic array" in the Pascal literature. For
example:

VAR PST: ALSTRING;
(* PST is a pointer referent type *)

•
•
NEW (PST, 10);
(* Upper bound of LSTRING will be 10 *)

Variables: Variables with super array types can only
exist as formal reference parameters or pointer
reference types. Do not declare a variable with (or
containing) a super array type in the VAR section
or as a value parameter. However, variables or
constants of a type derived from a super array
type are permitted.

For example, the string literal 'abc' is a constant
of type STRING (3), a derived super array type.

Also, variables with a super array type (that is, formal
reference parameters) are not compatible or assignment
compatible with any other variables, even other
variables with the same super array type.

Components of a super array type (for example,
X[3], Y[2], Z[6]) and type designators (for example,
VECTOR (12), VECTOR (24), VECTOR (36) above),
follow the normal type rules; components can be
assigned, compared, passed as parameters, and so on.

6-15

6-16

The UPPER function is used to get the actual upper
bound of a super array parameter or referent (see
Chapter 11, "Extended Intrinsics Feature").

The maximum upper bound of a type derived from a
super array type is limited to the maximum value
of the index type implied by the lower bound
(MAXINT, MAXWORD, etc.), and by the limit of
32766 bytes in any structure. An exception is the
super array type LSTRING which is limited to a
maximum upper bound of 255. The predeclared
super array types are:

STRING = SUPER PACKED ARRAY [1. .*] OF CHAR;
LSTRING = SUPER PACKED ARRAY [0 . . *] OF CHAR;

STRINGs: A constant like 'Pascal' has the type PACKEl
ARRAY [l..n] OF CHAR; "n" in this case is 6. The
super array feature predeclares the super array type
STRING, allowing the use of STRING (n) as identical
to PACKED ARRAY [l .. n] OF CHAR.

There is no default for n. The range of n is limited to
1 .. MAXINT-l. The super array type STRING can also
be used as a formal reference parameter type or pointer
referent type.

The usual super array type restrictions apply; such a
parameter or dereferenced pointer cannot be
compared or assigned as a whole.

The following may be passed to a formal reference
parameter of super array type STRING:

• Any variable or constant of the super array type
STRING (only possible within a function or
procedure)

• A variable declared as type CHAR

• A variable declared as type STRING(n)

• A variable declared as type PACKED ARRAY
[I..n] OF CHAR

• A variable declared as LSTRING(n)

• A variable declared as LSTRING (only possible
within a function or procedure)

Reading a STRING(n) or the super array type STRING
(when used as a formal reference parameter or pointer
referent) inputs characters until the end of a line or the
end of the string is reached; if the end of the line is
reached first, the rest of the string is filled with blanks.
Writing a STRING(n) or STRING writes all of its
characters.

The normal Pascal type compatibility rules are relaxed
for STRINGs; any two variables (or constants) with
type PACKED ARRAY [I..n] OF CHAR or
STRING (n) can be compared or assigned if the
lengths (n) are equal.

Since the length of a STRING super array type may
vary, comparisons and assignments are not allowed.

In ISO Pascal, a problem with strings being PACKED
ARRAY [I..n] OF CHAR is the PACKED prefix,
which normally implies a component cannot be passed
to a reference parameter.

In IBM Pascal, this restriction does not apply (officially
passing a CHAR component of a STRING to a reference
parameter is an "error not caught").

6-18

Also, the index type of a string is officially INTEGER,
but WORD type values can also be used to index a
STRING.

Many string processing applications are expected to
use the LSTRING type, below. Some of the string
intrinsic procedures and functions in Chapter 11 can
be used for STRINGs as well as LSTRINGs.

LSTRINGs: The LSTRING feature allows variable
length strings. LSTRING (n) is a PACKED ARRAY
[O .. n] OF CHAR, but (unlike STRINGs) a variable with
the explicit type PACKED ARRAY [O .. n] OF CHAR
is not "identical" to the type LSTRING (n) even
though they are structurally the same. There is no
default for n. The range of n is limited to 0 .. 255.

Characters in an LSTRING can be accessed with the
usual array notation. The length is in the first element
and can vary from 0 to n.

The length of an LSTRING variable T can be accessed
as T[O] if type CHAR, or as T.LEN if type BYTE.

VAR Y: INTEGER;
X: BYTE;
CH: CHAR

CH := T [0]
Y := ORD (CH);
(* Y will now contain the length *)
X := T.LEN
(* X will also contain the length *)

The word LSTRING was chosen because it contains
an L (length) in front of a STRING.

String constants (of type CHAR or STRING (n))
change automatically to type LSTRING. The
predeclared constant NULL is the empty string,
LSTRING (0).

NULL is the only constant with type LSTRING; there
is no way to define other constants with type
LSTRING.

As with STRINGs, a component of an LSTRING can
be passed as a reference parameter, and WORD as well
as INTEGER values can be used to index an
LSTRING.

Several operations on LSTRINGs work differently
than on STRINGs. Any LSTRING can be assigned
to any other LSTRING as long as the current
length of the source string is not greater than the
maximum length of the destination string; this is
checked if $RANGECK is on.

However, neither side can be the super array type
LSTRING itself; both must be types derived from it.
Any two LSTRINGs can be compared, including a
super array of type LSTRING (the only super array
type comparison allowed).

A READ into an LSTRING inputs characters until
the end of the current line or the end of the LSTRING,
and sets the length to the number of characters read.

WRITE from an LSTRING writes the current length
string. Various predeclared procedures and functions
support LSTRINGs; Chapter 11 describes them.
LSTRING can also be used as a super array type for
formal reference parameters and pointer referents.

A special transformation permits an actual LSTRING
parameter to be passed to a formal reference parameter
of type STRING. The length of the formal STRING
is the actual length of the LSTRING; that is, if LSTR
is of type LSTRING (n) or LSTRING, then it can be
passed to a parameter VAR STR: STRING and
UPPER (STR) is equal to LSTR [0].

6-19

Records

6-20

This means procedures and functions can operate
equally well on STRINGs and LSTRINGs. The only
reason to declare a parameter of type LSTRING is
when the length must be changed.

A record type is a structure consisting of a fixed
number of components, possibly of different types.
The record type definition specifies for each
component, called a "field", its type and an
identifier which denotes it.

The scope of these "field identifiers" is the record
definition itself (so they must be unique within the
definition); they are also accessible within a field
designator (". "), or a WITH statement.

A record can also have several "variants", in which
case a certain field called the "tag field" indicates
which variant to use. The tag field mayor may not
have an identifier and storage in the record.

Some operations (structured constants, the NEW and
DISPOSE procedures, and the SIZEOF function) can
specify a tag value, even if the tag is not part of the
record. Examples:

RECORD
NAME: LSTRING (30);
PHONE: RECORD

AREA, PREFIX, EXTEN: INTEGER
END;

RIPE: BOOLEAN
END;

RECORD
X, Y: REAL;
CASE S: SHAPE OF

SnUARE: (SIZE, ANGLE: REAL);
CIRCLE: (DIAMETER: REAL)

END;

RECORD
CASE BOOLEAN OF

END;

TRUE: (I, J: INTEGER);
FALSE: (CASE COLOR OF

BLUE: (X: REAL);
RED: (Y: LONGINT));

Note that only one variant part of a record is allowed,
and that it must come at the end. However, this
variant part can also have a variant, and so on. All
field identifiers in a given record type must be unique
(even if in different variants).

ISO Pascal requires every possible tag field value to select
some variant, so it is invalid to include "CASE INTEGER
OF" and not include a variant for every possible
INTEGER value; however, this error is not caught in
IBM Pascal.

Full CASE constant options are supported in the variant
clause; that is, a list of constants (and with the
extended CASE constant feature and subranges) can
define a case. An empty variant, like POINT: () is
permitted and frequently useful.

An entirely empty record type (RECORD; END),
though not useful, can be declared; however, a
warning is given whenever it is used (and in fact the
compiler does allocate a byte for it).

The ISO standard defines a number of errors having
to do with variant records which IBM Pascal does
not catch.

6-21

6-22

However, in the last example, uses of I cannot be
checked because IBM Pascal does not allocate the
BOOLEAN tagfield. The ISO standard declares that
when a "change of variant" occurs (such as when a
new tag value is assigned) all the variant fields
become undefined.

IBM Pascal does not set the fields uninitialized when a
new tag is assigned and so does not catch the use of
a variant field with an undefined value.

A record variable allocated on the heap with the long
form of NEW has various special restrictions which our
compiler does not enforce (the long form of NEW
only allocates a large enough variable for a particular
variant).

However, the compiler does ensure that an assignment
to such a short record (that is, a record allocated using
the long form of NEW) only modifies the short record
itself.

A record allocated with the long form of NEW can be
released using the short form of DISPOSE with no ill
effects (except that the ISO standard defines this as an
error and it is not caught).

A DISPOSE of a record passed as a reference parameter
or used by an active WITH statement is also an error
in the ISO standard not caught by IBM Pascal.

Variant records do interact in two ways with IBM
Pascal features:

• Declaring a variant containing a file is not safe,
since any change to the file's data using a field
in another variant, even if the file is closed,
may lead to I/O errors.

• Giving initial data to several overlapping variants
in a variable in a VALUE section could have
unpredictable results.

The compiler permits both of these cases, but
generates a warning message.

The explicit field offset feature permits assigning an
explicit byte offset to fields in a record.

It also permits unsafe operations like overlapping
fields, word values at odd byte boundaries, and so on.
lt is not recommended unless necessary for interfacing
considerations.

Examples:

TYPE ABC = RECO RD
NDRIVE [00]: BYTE;
FllENM [01]: STRING (8);
FllEXT [09]: STRING (3);
EXTENT [12]: BYTE;
ABCRES [13]: STRING (20);
RECNUM [33]: WORD;
RECOVF [35]: BYTE;
END;

FOO = RECORD
BYTEAR [00]: ARRAY [0 .. 7] OF BYTE;
WORDAR [00]: ARRAY [0 .. 3] OF WORD;
BITSAR [00]: PACKED ARRAY [0 .. 63]

OF O .. 1;
END;

Note that anything larger than one byte is rounded
up to an even length.

6-23

Sets

6-24

For example:

EXM = RECORD
A [1] : STRING (3)
B[4] : WORD;
END;

An assignment of 'abc' to field A will overwrite the
first byte of B.

If any field is given an offset, all fields should be given
offsets, although the compiler will pick an offset if
none is given. If offsets are used variant fields should
not be used (and may cause errors), but again the
compiler will process such a declaration.

With explicit offsets field overlap can be completely
controlled anyway, but variants provide the long forms
of NEW, DISPOSE, and SIZEOF (the ALLHQQ
function could be used instead to allocate a given
number of bytes directly). Structured constants are
supported for record types with explicit offsets.

A set type defines the range of values which is the
powerset of its "base type", which must be an
ordinal type. The null set, [], is a member of every
set. Examples:

TYPE
COLOR = (RED, YELLOW, GREEN, BLUE);
PALETTE = SET OF COLOR;

VAR
LETTER: SET OF 'A', :Z';
TINT : PALETTE;

Operations on sets are defined in Chapter 8. The
ORD value of the base type can range from 0 to 255,
allowing SET OF CHAR but not SET OF 1942 .. 1984.

Set operations are implemented either by routines in
the set unit or directly by generated code. Sets whose

Files

maximum ORD value is 15 (that is, sets that fit into
a word) are usually more efficient than larger ones
(that is, are done in-line).

The number of bytes allocated for a set is always
even. Set temporaries (intermediate values in set
expressions) are put on the stack.

Also, passing a set as a value parameter will invoke
a routine to check compatibility at runtime, unless
the formal and actual sets have the same type.

The SET OF 0 .. 15 can also be used to test and set
the bits in a word. The set operators are IN, +, and -.
IN tests a bit, + sets a bit, and - clears a bit.

To use the word both as a set of bits and as, for
example, the WORD type requires giving two types
to the word, using a variant record, the RETYPE
function, or an address type.

A file type is a structure consisting of a sequence of
components which are all of the same type. The
number of components, called the length of the file,
is not fixed by the file type definition.

A file with no components is called "empty".
Examples:

TYPE F1 = FILE OF COLOR;
TYPE F2 = FILE OF INTEGER;

In Pascal, a "file" is conceptually another data type,
like an array, but with no bounds and with only one
component accessible at a time.

6-25

6-26

However, in IBM Pascal, a file usually corresponds to a
binary or textual operating system diskette file, or a
device such as a display screen or printer.

This implies a restriction: a FILE OF FILE is invalid,
directly or indirectly (but other structures, like ARRAY
OF FILE or FILE OF ARRAY, are permitted).

Files in record variants or super array types are not
recommended and give a warning. A file variable
cannot be assigned, compared, or passed by value; it
can only be declared and passed as a reference
parameter.

File Control Block

A file variable is implemented as a file control block (FC
record. Fields of this record can be accessed using the
usual record notation; for example, given a file FILEV A]
the error trapping flag is FILEV AR.TRAP, the error
status is FILEV AR.ERRS, and the file's mode as
FILEVAR.MODE.

The record type, FCBFQQ, can be used directly; also,
any FILE type can also be passed to a formal reference
parameter of type FCBFQQ and vice versa, allowing
procedures and functions operating on a file of any
type (see Chapter 12 and Appendix B).

Every file F has an associated buffer variable, FA.
This buffer variable can be referenced (the value
fetched and stored) like any other Pascal variable;
in some cases, accessing the value of a file buffer
variable also causes physical input from the file
(see Chapter 12, "File System").

A file buffer variable can be passed as a reference
parameter or used as a record in a WITH statement;

however, these uses are not valid if the file position is
changed (with GET or PUT) within the procedure,
function, or WITH statement using the buffer variable.
The compiler issues a warning in these cases.

IBM Pascal supports files both as local variables
(allocated on the stack) and as pointer referents
(allocated on the heap). The compiler generates
code to initialize a file when it is allocated and
to close a file when it is deallocated, except for
super arrays containing files.

Files in the program header are assigned a DOS filename
by the user when the program starts (except for INPUT
and OUTPUT). Files can also be given an explicit
filename with the ASSIGN or READFN procedures.

INPUT and OUTPUT

The files INPUT and OUTPUT are predeclared as TEXT
files, and are initially connected to the user's keyboard
and display screen and opened automatically. Except for
this, they can be treated like other files. If they are
redeclared explicitly in a program, the original versions
are still used as the default in I/O procedures.

I t is not necessary to declare them as program param
eters to use them, but a warning is generated each
time an I/O operation is performed.

Files can also be given a mode, to indicate the access
method or other characteristics.

The mode is a value of the predeclared enumerated
type FILEMODES; the modes are SEQUENTIAL,
TERMINAL, and DIRECT.

6-27

6-28

All files are given SEQUENTIAL mode by default,
except for INPUT and OUTPUT which are given
TERMINAL mode.

ISO Pascal defines a standard type TEXT, similar
(but not identical) to FILE OF CHAR. Files of
this type are called "textfiles", each component of
which is of type CHAR, but the sequence of characters
is sub structured into lines with a special "line
marker". Various special functions and procedures
are provided that use this line-division feature.

In IBM Pascal, text files have ASCII structure and all
other files have BINARY structure. No additional
formatting is imposed on DOS files, thus allowing these
files to be generated and used by other system software.

Reference Types

Pointers

A reference to a variable or constant provides an
indirect way to access it. ISO Pascal provides the
pointer type, an abstract type used to create, use, and
destroy variables allocated from an area called the
"heap" .

IBM Pascal also provides two machine-oriented
address types, one for a single 16 bit address and one
for a pair of 16 bit addresses.

Use of pointers is portable, structured, and relatively
"safe"; they are intended for things like list processing,
trees, graphs, and so on.

Use of the address types is machine specific, low level,
and not "safe"; they are intended for hardware and
operating system interfacing.

A pointer type is an "unbounded" set of values
pointing to variables of a given type called the
"reference type". These variables are all dynamically
allocated from an area called the "heap" with the
NEW procedure, as opposed to normal Pascal variables
which are allocated on the stack or at fixed locations.

The only operations defined on pointers are assign
ment, testing for equality and inequality with = and
< >, and passing them as value or reference parameters
(dereferencing is not considered a Pascal operator).

The pointer value NIL belongs to every pointer type.
Pointers are frequently used to create list structures
of records.

6-29

6-30

Examples:

TVPE
TREETIP = !\TREE;
TREE = RECORD

VALVU: INTEGER;
LBRANCH, RBRANCH: !\TREE;

END;

Unlike most type declarations, a pointer type can
refer to the type it is a component of or a type
declared later in the same TYPE section, as in TREE
and TREETIP above. This is called a forward pointer
declaration, and permits recursive and mutually
recursive structures.

Since pointers are so often used in list structures,
forward pointer declarations are often used. The
compiler checks for one ambiguous pointer
declaration.

Suppose the example above was in a procedure nested
in another procedure that also declared a type TREE.
Then the reference type of TREETIP could be the
outer definition or the one following in the same
TYPE section.

In this case the compiler assumes the TREE type
intended is the one later in the same TYPE section,
and gives a warning ("Pointer Type Assumed Forward")

A pointer can have a super array type as a referent
type. The actual upper bounds of the array are passed
to the NEW procedure to create a heap variable of
the correct size. Forward super array type pointer
declarations are not allowed (or needed).

ISO Pascal requires strict compatibility between
pointers; for example, two pointers declared with
different types cannot be assigned or compared even
if they happen to point to the same type.

Addresses

In the example above, a variable of type TREETIP
cannot be assigned to the field LBRANCH. Usually
programs contain only one type declaration for a
pointer to a given type; in the example above, the
type of LBRANCH and RBRANCH would be
TREE TIP instead of 1\ TREE.

However, sometimes it is useful to make sure two
classes of pointer, even if to the same type, are not
used together. For example, given a type RESOURCE
kept in a list, two types OWNER and USER could
both be declared as I\RESOURCE. The compiler will
catch any assignment of an OWNER value to a USER
variable, and vice versa.

Note that pointers have nothing to do with actual
machine addresses.

If $NILCK is on, pointer values can be tested for
various invalid values, like NIL, uninitialized, refering
to a heap item that has been DISPOSEd, or not valid as
a heap reference at all.

A system implementation language needs a method of
creating, manipulating, and dereferencing actual
machine addresses (the pointer type, in theory, is only
applicable to variables in the heap). Two kinds of
addresses are necessary, called relative and segmented.

A relative machine address is a 16 bit quantity, the
offset in the default data segment in the 8088
segmented memory environment.

6-31

6-32

A segmented machine address is a 32 bit quantity,
consisting of a 16 bit relative offset value and a 16 bit
8088 segment register value.

The keywords ADR and ADS refer to the address-of
types; they are both typec1ause prefixes and prefix
operators. ADR is for the relative address type, and
ADS the segmented address type.

As usual, @ (and substitutes? and 1\) are used as a
type clause prefix for pointers and to dereference
pointers; they also dereference addresses.

A variable of type ADR OF some type can also
be used as a record type with one component,
R (relative address) of type WORD.

A variable of type ADS OF some type can be used
with two components, R (relative address) and S
(segment address), both of type WORD.

A variable of type ADS OF can also be used with one
component, usually with either .R or .S notation.
Some examples are shown on the next page:

VAR
P: ADS OF FOO;

(* P is segmented address of type F 0 0 *)

a: ADR OF FOO;
(* a is relative address of type FOO *)

X: FOO;
(* X is some variable of type FOO *)

BEGIN
P := ADS X;

(* assign the address of X to P *)

X := P/\;
(* assign value whose address
is in P to X *)

P := ADS P/\;
(* assign address of value
whose address is in P to P;
P is unchanged by this *)

a := ADR X;
(* assign the relative address of X to Q *)

P := ADS 01\;
(* assign address of variable at Q to P *)

a := ADR P/\;
(* ILLEGAL; cannot apply ADR to <ADS>/\ *)

P.R := 16#8000;
(* assign 32768 to P'S offset field *)

P.S. := 16;
(* assign 16 to P'S segment field *)

a.R := P.R + 4;
(* assign P'S offset plus 4
to be value of Q *)

END;

6-33

6-34

In Pascal, the /\ for component selection is done before
the AD R or ADS unary operators. The /\ selector can
appear after any address variable to produce a new
variable, so it can be used in the target of an assign
ment, a reference parameter, as well as in expressions.

Since ADS and ADR are prefix operators, they are
only used in expressions. They can only be applied
to a variable or constant, not an arbitrary expression
or a procedure identifier.

Two address types are considered the same type if
they are both ADR or both ADS types. This permits
assigning an ADR OF WORD to an ADR OF STRING(2'
for example; in this case it would be easy to wipe out
part of memory by assigning a variable of type
STRING (200) to the 200 bytes starting at the address
of a WORD variable.

If PI is type ADR OF STRING (200) and P2 is any
ADR OF type, the assignment PI/\ := P2/\ generates
fast code with no range checking.

Although not "safe", operating systems and other
systems software sometimes need this capability. ADR
and ADS are not compatible with each other, but if
the .R notation is used this should not be a problem.

The keyword VARS is available as a parameter prefix,
like VAR and CONST, to pass the segmented address
of a variable.

In the 8088 environment, a "default data segment" is
assumed; in this case, a V AR parameter is passed as
the default data segment offset of a variable, and a
V ARS parameter is passed as both the segment value
and offset value. The DS and SS registers contain
the default segment.

Both V ARS parameters and ADS variables have the
offset value in the word with the lower address, and
the segment value in the address plus two.

Note that the address type and pointer type are
entirely distinct. The pointer type, in theory, is just
an undefined mapping from a variable to another
variable.

The address type is machine-oriented; it is always
implemented as a physical machine address. In
summary the pointer type is an abstract data type
which works the same way in all implementations,
but the address type is not at all portable.

Restrictions

Some special facilities using pointer variables are
not allowed with address variables:

• NEW and DISPOSE are only permitted with
pointers.

• NIL does not apply to the address type

• There are no special address values for empty,
uninitialized, or invalid address.

• The type "address of super array type" is not
supported, because an instance of a super array
can only be created dynamically with NEW,
and because a pointer to a supertype contains the
bounds, which conflicts with the segment value
contained in an address.

Getting the address of a super array variable is still
permitted with ADR and ADS (so if a parameter is
VAR S: STRING the expression ADS S is fine) but
unlike a pointer the address does not contain any upper
bounds.

6-35

6-36

There are two predeclared address types:

ADRMEM = ADR OF ARRAY [0 .. 32765] OF BYTE;

ADSMEM = ADS OF ARRAY [0 .. 32765] OF BYTE;

Because they are address of array of byte types, array
notation can be used to get the byte offsets.

For example:

VAR BX : ADRMEM; FOO SOMETYPE;
BEGIN

BX := ADR FOO;
BXI\[O] := BXI\[2];

END;

Procedural Types

Procedural types are not like other Pascal types; one
cannot declare an identifier for a procedural type in
a TYPE section or declare a variable of a procedural
type.

However, they are used to declare the type of a
procedural parameter, and so are part of the Pascal
idea of a type.

A procedural type defines a procedure or function
heading, giving any parameters and (for a function)
the result type.

The syntax of a procedural type is the same as a
procedure or function heading without the identifier
(but including any attributes). There are no
procedural variables in IBM Pascal.

PROCEDURE ZEROPOINT (FUNCTION FUN (X:
REAL):REAL);

The identifiers {such as X above} used for parameters
in a procedural type are ignored; only their type is
important.

Type Compatibility

IBM Pascal uses ISO Pascal type compatibility, with
some additional rules added for super array types,
LSTRINGs, and constant coercions. Type transfer
functions (to defeat the typing rules in some cases)
are available, like ORD and RETYPE.

Two types can be identical, compatible, or incompatible.
An expression mayor may not be "assignment
compatible" with a variable, value parameter, or array
index.

6-37

6-38

Type Identity and Reference Parameters

Two types are identical if they have the same identifier,
or if the identifiers are declared equivalent with a type
definition of the form TYPE TI = T2. "Identical"
types are really identical; there is no difference between
types TI and T2.

The type of some constants will change if necessary.
A constant of type INTEGER will change to type
WORD, a constant of type CHAR to type STRING (1),
and a constant of type STRING (n) to type
LSTRING (n).

Actual and formal reference parameters must be of
identical type, or if a formal reference parameter is
of a super array type, the actual parameter must be
of the same super array type or a type derived from
the super array type.

Two special exceptions apply to reference parameters:

• An actual parameter of type LSTRING or
LSTRING (n) can be passed to a formal
parameter of super array type STRING.

• An actual parameter of any FILE type or the
type FCBFQQ can be passed to a formal
parameter of any FILE type or the identical
type FCBFQQ.

Two record or array types must be identical for
assignment, except as noted for the strings.

STRING (n) is just a shorthand notation for PACKED
ARRAY [l .. n] OF CHAR; the two types are identical.

However, LSTRING (n) is not a shorthand notation
for PACKED ARRAY [D .. n] OF CHAR, because
variables with the type LSTRING are treated specially

in assignments, comparisons, and READ and WRITE;
the two types are not identical or compatible or
assignment compatible.

Type Compatibility and Expressions

Two simple or reference types are compatible if:

• They are identical

• One is a subrange of the other

• Both are subranges of compatible types

• Both are AD R types

• Both are ADS types

Two structured types are compatible if:

• Neither is a FILE or contains a FILE, and
neither is a super array type, and they are
identical

• Both are SET types with compatible base types
and both are PACKED or neither is PACKED

• Both are STRING derived types with equal
upper bounds

• Both are LSTRING derived types

Two values must be of compatible types when com
bined with an operator in an expression (most operators
have additional limitations on the type of their operands,
described later).

A CASE index expression type must be compatible with
all CASE constant values (this is a form of the equality
operator).

6-39

6-40

Assignment Compatibility and Assignments

If T and TE are simple types, then:

VARX: T;
XE: TE;

X:=XE;

XE is assignment-compatible with X if:

• T and TE are identical types

• T and TE are compatible and XE is in the range
ofT

• T is real and TE is compatible with INTEGER

If T and TE are structured types, then:

VAR X: T;
XE: TE;

X:=XE

XE is assignment-compatible with X if:

• T and TE are compatible
- for sets, if every member of XE is in the base

type of T
- if T is LSTRING(m) and TE is LSTRING(n)

and m >= TE.LEN

Besides the assignment statement itself, assignment
compatibility is required for implicit assignments; that
is, value parameters, the READ and READLN
procedures, the control variable and limits in a FOR
statement, super type array bounds, and array indices.

Usually assignment compatibility is known at compile
time, and an assignment generates a simple move
instruction.

However, some set and LSTRING assignments depend
on the value of the expression to be assigned, and
compatibility is checked, with a runtime procedure,
if $RANGECK is on.

Internal Representation

For simple variables and unpacked structures, data
values of simple types have the following internal forms:

INTEGER values are 16 bit two's complement numbers,
but a sub range requiring 8 bits or less (that is, in the range
-127 .. 127) is allocated an 8 bit byte.

WORD values are 16 bit unsigned numbers, but a
WORD sub range in the range 0 .. 255 is allocated
an 8 bit byte.

REAL values always take 4 bytes. REAL numbers
have an 8 bit excess 128 binary exponent, sign, and
24 bit"mantissa; since the high order bit of the mantissa
is always 1, it is not stored in the number (the sign
bit replaces it). This gives an exponent range of about
1 038 and about 7 digits of precision. The maximum
real number is about 1.70141200E+38.

CHAR values and BOOLEAN values take 8 bits. For
BOOLEANs, false is zero and true is one. Enumerated
values take 8 bits if 256 or fewer values are declared,
16 bits otherwise. Values are assigned starting at zero.
Subrange values, as mentioned, take 8 or 16 bits.

POINTER values take 16 bits. A pointer is a DS segment
offset value. A pointer to a super array type includes
the bounds, increasing the length (see below).

6-41

6-42

An address is either a 16 bit data segment offset, or a 16
bit segment register value and a 16 bit offset value. In
memory, the offset value is stored at the lower address,
and the segment value at the higher address. Addresses
are used for address type values, reference parameters,
and temporary WITH record pointers.

Procedural parameters contain a reference to the
procedure or function's location and a reference to
the "upper frame pointer" (a list of stack frames of
statically enclosing routines). The parameter always
contains two words, in one of two formats.

Procedural Parameters

In the first format, the first word contains the actual
routine's address (a code segment offset), and the
second word contains the upper frame pointer or
zero if the actual routine is not nested in a pro
cedure or function and therefore has no upper frame
pointer.

In the second format, the first word is zero and the
second word contains a data segment offset address
to two words in the constant area which contain the
segmented address of the actual routine (there is
never an upper frame pointer in this case).

A 16 bit (or larger) variable or component never crosses
a word boundary; that is, it always has an even byte
address (with one exception: the user can give explicit
field offsets at any boundary).

The 8088 stores a 16 bit value as (low byte, high byte),
that is, the most significant byte is at the higher (or

odd) address. This is generally transparent to the
programmer, unless a 16 bit item is also accessed as
two 8 bit items (for example, using variant records).

The LOBYTE, HIBYTE, and BYWORD functions
access the least significant and most significant bytes
in a word, respectively; not the even and odd
addressed bytes.

An 8 bit variable is also aligned on a word boundary,
but an 8 bit component of a structure is aligned on
a byte boundary; it can be at an even or odd address.
An array of 8 bit values starts on a word boundary if
it is within an unpacked structure.

For unpacked arrays and records, the internal form is
simply the internal forms of the components, in the
same order as in the declaration.

Arrays, records, variants, sets, and files always start
on a word boundary in this case. In any case
variables cannot be allocated more than MAXWORD
(64K) bytes; generally components of a structure
cannot be accessed unless the structure has no more
than MAXINT-l (32K) bytes.

A super array type's representation is similar whether
it is a reference parameter or the referent of a pointer.

First comes the address (reference parameter) or
pointer value, either 2 or 4 bytes long.

Following either of these are the upper bounds, which
are signed or unsigned 16 bit quantities. The bounds
occur in the same order in which they are declared.

Note that a pointer value to a super array type is
longer than other pointers.

6-43

6-44

The number of bytes allocated for a SET variable or
component is 2*((ORD (upperbound) DIV 16) + 1);
the maximum required is 32 bytes. For example, SET
OF 'A' .. 'Z' requires 12 bytes. Note that the size is
always even, and that there are no one-byte sets.

Internally, a set consists of an array of bits, with one
bit for every possible ORD value from 0 to the upper
bound. Bits in a byte are used starting with the most
significant bit.

The occurrence of a given ORD value as an element
of a set implies the bit is 1, and the byte and bit
position of a given ORDvalue of any set is the same.
For example, the ORD value of 'A' is 65, and the
second bit of the eleventh byte in a set is 1 if 'A' is in
the set.

The internal form of a file is complex; see Appendix
B for more information. A FILE type in a program is
a record called a file control block (of type FCBFQQ)
in the file unit.

The FCBFQQ record contains the IBM DOS File
Control Block (FCB) as well as other data. FCBs for
textfiles contain a fixed-length line buffer. FCBs
for other (binary) files contain the current buffer
variable.

Some variables are initialized automatically, whether
they reside in fixed memory, the stack, or the heap.
Files (FCBFQQ records) are initialized by calling
NEWFQQ, passing the size of a textfile line buffer
or binary file component and a Boolean true if
the file is a text file.

Some variables are never initialized: variables found
in a VALUE section, variant fields in a record, and
super arrays allocated in the heap. Note that the
compiler does generate the extra code necessary to
initialize stack and heap variables.

CHAPTER 7. VARIABLE DECLARATION
AND USE

Contents

Variable Declarations 7-3
Attributes 7-3

STATIC 7-4
PUBLIC and EXTERN 7-5
READONLY 7-6
PURE 7-7

Rules for Combining Attributes 7-8
The VALUE Section 7-9
Value 7-10

Entire Variables and Values 7-11
Component Variables and Values 7 -12
Indexed Variables and Values 7-12
Field Variables and Values 7-12
File Buffers and Fields 7-13
Referenced Variables. 7-14

7-1

7-2

Variable Declarations

Attributes

Variable declarations consist of a list of identifiers
denoting the new variables, followed by their type.
They are found in the V AR section of a program,
procedure, function, module, interface, or implementa
tion, or a formal parameter list for a procedure, function,
or procedural type. Those in a VAR section can have any
type clause; those in a parameter list can only have a
type identifier. Examples:

TYPE VECTOR=SUPER ARRAY[1 . . *] OF REAL;
S8=STRING(8);

VAR XT, YT: REAL;
PAINT: ARRAY [1 .. 10] OF COLOR;
VECTXX: VECTOR (10);

PROCEDURE NAME_IT(VAR N:S8);

Every declaration of a file variable F of type FILE OF
T implies the declaration of a "buffer variable" of type
T, denoted by FA. A file declaration also implies the
declaration of a record variable of type FCBFQQ, whose
fields are denoted as F.TRAP, F.ERRS, F.MODE, and so
on. Buffer variables and FCBFQQ fields are discussed
in "File Buffers and Fields," in this chapter.

An attribute gives special information about a variable
or routine to the compiler. A variable declaration or
procedure/function header can have one or more
"attributes" .

Attributes can be given in a VAR section or after a
procedure or function heading, but not in a TYPE
section or a parameter list (except for procedural
types).

7-3

7-4

Procedural as well as variable attributes are discussed
in this section because some attributes apply to both;
procedural attributes are discussed further in
Chapter 10.

Attributes are given in brackets separated by commas.
The brackets can occur in one of four places:

• After the variable identifier in a V AR section (to
apply to that variable only)

• After the V AR reserved word of a V AR section
(to apply to all variables in the section)

• After a procedure or function heading (to apply
to the procedure or function, including a
procedural type declaration in a parameter list)

STATIC

The STATIC attribute gives a variable a fixed location
in memory, as opposed to a normal Pascal variable
which is usually allocated on the stack or the heap.
However, all variables at the program (or module or
unit) level are also assigned a fixed memory location
and given the STATIC attribute.

Every STATIC variable has a unique absolute address
(or data segment offset address). Their use can save
space and time.

Functions and procedures with STATIC variables will
execute recursively, but the programmer must only
use these variables for data common to all invocations.
Files declared in a procedure or function with the
STATIC attribute are initialized when the routine is
entered and closed when the routine terminates like
other files.

Note that some other Pascals call variables allocated on
the stack "static".

Examples:

VAR BASEVECTOR [STATIC]:
ARRAY [0 .. MAXVECT] OF INTEGER

VAR [STATIC] I, J, K: O •• MAXVECT

The STATIC attribute does not apply to procedures and
functions.

PUBLIC and EXTERN

The PUBLIC and EXTERN attributes indicate a variable
accessed by or residing in other loaded modules. PUBLIC
and EXTERN variables are implicitly STATIC.

PUBLIC variables are allocated by the compiler. EXTERN
variables are not allocated by the compiler.

The keyword EXTERNAL is a synonym for EXTERN
(this increases portability since various other Pascals
use one or the other). The identifier is passed to the
linker in the generated code object file.

Examples:

VAR [EXTERN] GLOBIT, GLOBLlT: INTEGER;
VAR BASEPAGE [PUBLIC]: BYTE;

The PUBLIC attribute and EXTERN directive
indicate a procedure or function to be accessed by,
or residing in, other loaded modules. An EXTERN
procedure or function must not be followed by a
block (also true of the FORWARD directive). As
with variables, the keyword EXTERNAL is a
synonym for EXTERN.

Note: EXTERN is an attribute when used with
a variable, but is a directive when used with a

7-5

7-6

procedure or function. Attributes are in brackets
and are separated by commas; a directive takes
the place of a procedure or function block, and
so is separated by a semicolon.

EXTERN is also permitted in an implementation
of a unit for a constituent procedure or function,
although attributes are not permitted. As with
variables, the identifier is passed to the linker.

Any procedure or function with the PUBLIC attribute
or EXTERN directive must be directly nested within
a program or implementation. For example:

FUNCTION HPOWER (X, V: REAL): REAL [PUBLIC];
PROCEDURE ACCESS (KEY: KTYP); EXTERN;

Linkage between Pascal routines can be done in
a safer way with units, described in Chapter 13.

READ ON LY

The READONL Y attribute prevents assignments to
a variable (including READ and FOR-loop control
variables), and also prevents passing the variable as a
V AR (or V ARS) parameter. It can be used with any
of the other attributes.

The CONST parameter automatically gets the
READONL Y attribute; so does the control variable
of a FOR loop within the loop. Giving a variable
the READONL Y attribute along with PUBLIC or
EXTERN in one source file does not mean it is
READONLY when used in another source file (a
way of making assignments). Examples:

VAR INCAME [READONLY]: BYTE;
VAR [READONL V] I, J [PUBLIC]

K [EXTERN]: INTEGER;

The READONLY attribute does not apply to
procedures and functions.

PURE

The PURE attribute only applies to functions (not
procedures or variables). It indicates to the optimizer
that no global variables are modified by the procedure
or function, either directly or indirectly by calling
some other procedure or function which changes
a global variable.

For example:

A := VEC [1*10+7]
B FOO;
C := VEC [1*10+9];

If Faa is PURE, the optimizer will only generate code
to compute 1* 1 0 once. But if Faa is not PURE, it
might modify I so 1* lOis recomputed after the call to
Faa.

Functions are not considered PURE unless the attribute
is given explicitly. A PURE function cannot assign to,
or examine a nonlocal variable, have any V AR (or V ARS)
parameters (the CaNST parameter is allowed), or call
a non-PURE procedure or function; these are not
checked at compile time.

A PURE procedure or function should not modify
the referents of references passed by value (for example,
pointer or address type referents) or do input and
output, although these are not checked. Since the
result of a PURE function with the same parameters
must always be the same, the entire function call may
be optimized away; for example:

HX A * DSNN (P[I,J] *2);
HV B * DSNN (P[I,J] *2);

7-7

If DSNN is PURE then, depending on the optimiza
tion it may only be called once.

Example of PURE declaration:

FUNCTION AVERAGE (CONST TABLE: RVECTOR):
REAL [PURE];

Rules for Combining Attributes

7-8

When declaring variables, the following rules apply
when combining attributes:

• STATIC and READONL Y can always be used.

• Either EXTERN or PUBLIC may be used but
not both.

In procedure and function declarations, the following
rules apply when combining attributes and the
EXTERN directive:

• Any function can be given the PURE attribute.

• Procedures and functions must be directly nested
within a program, module, or implementation to
use any attribute or the EXTERN directive
(except PURE).

• Either EXTERN or PUBLIC may be used but
not both.

In a unit's interface, EXTERN or FORWARD is given
automatically to all constituents, and in a unit's
implementation PUBLIC is given automatically to
all constituents that are not EXTERN.

Since constituents of a unit are only declared in the
interface (not in the implementation), the attributes
are only given in the interface, but the EXTERN
directive can be used in an implementation if all
EXTERN procedures and functions come first.

The VALUE Section

Variables can be given initial values in the VALUE
section of a program, module, implementation,
procedure, or function. Only statically allocated
variables can be initialized in this way; that is, any
variable declared at the program, module, or
implementation level, or a variable with either of the
attributes STATIC or PUBLIC.

Variables with the EXTERN attribute cannot occur
in a VALUE section since they are not allocated by
the compiler.

The VALUE section contains assignments of constants
(including constant expressions and structured
constants) to entire variables or components of
variables. Only one variant in a record should be
given an initial value. Example:

7-9

Value

7-10

TYPE
VECTOR = SUPER ARRAY [1 . . *] OF REAL;
VEC10 = VECTOR (10);
YEAR = (FROSH, SOPH, JNR, SNR);
PTR = 1\ IDREC;

IDREC = RECORD

VAR

NAME: LSTRii\iG (10);
CLASS: YEAR;
NEXT: PTR;
END;

VIVEC : ARRAY [1. .10] OF VEC10;
IDRECORD : IDREC;
I : INTEGER;

VALUE
I := 10;
IDRECORD := IDREC ('ZEUS', JNR, NIL);
VIVEC[4] := VECT10 (DO 10 OF 0);

A denotation of a variable designates either an entire
variable, a component of a variable, or a variable
referenced by a pointer. In IBM Pascal, several features
introduce the idea of a "value" (for example, an
expression factor); a value can be:

• A variable

• A constant

• A function designator

• A component of a value

• The variable referenced by a pointer or address
value

The extended function feature allows a function to
return an array, record, or set, and components of

these returned structures can be denoted with the
same syntax used for variables.

This feature also allows dereferencing a reference type
returned by a function. However, the function
designator cannot be used as a variable, only as a value;
for example, the variable referenced by a pointer or
address type returned by a function cannot be assigned
to directly (that is, cannot be on the left hand side of
an assignment statement).

The structured constant feature allows you to declare
a constant of a structured type, and the components
of a structured constant identifier can be denoted
with the same syntax.

Components of a structured constant clause itself can
be selected; however, since the other components are
never accessed, this is not very useful.

Examples:

TYPE REAl3 = ARRAY [1 .. 3] OF REAL;
CONST PIES = REAl3 (3.14, 6.28, 9.42);

•
•
•

X PIES [1] * PIES [3];
(*X := 3.14 * 9.42*)

Y REAl3 (1.1, 2.2, 3.3) [2];
(*y := 2.2*)

Entire Variables and Values

An entire variable is denoted by its identifier, and an
entire value by a literal constant or constant identifier,
a variable identifier, a function designator, or a
structured constant.

7-11

7-12

Component Variables and Values

A component of a variable or value is denoted by
following it with a selector specifying the component.
The form of a selector depends on the type of
structuring (array, record, file, or reference). For
example:

VICTO R [20,1}
VICTOR [20,1] .COMPONEA
VICTOR [20,1] .COMPONEA.INDY500/\

[12] ['Q', RED] .PHONE

Indexed Variables and Values: A component of an
array is denoted by the array variable or value
followed by an index expression. The index
expression must be assignment compatible with
the index type given in the array type definition. For
example:

ARRICHR ['C']
BETAMAX [12] [-3]
BETAMAX [12,-3] {same as above}
ARYFUNV (A, B) [3, 7];

{selection made on a function
returning an array}

With the LSTRING feature, the current length of
an LSTRING is denoted by the LSTRING variable
followed either by [0] for the length of type CHAR
or .LEN for the length of type BYTE.

Field Variables and Values: A component of a record
is denoted by the record variable or value followed by
the field identifier for the component. In a WITH
statement, the record variable or value is only given
once. Within the statement, its field identifiers can
be used directly. Examples:

PERSON.NAME
PEOPLE.DRIVERS.NAME

WITH PEOPLE.DRIVERS DO ...
NAME. .. {same as above}

RECFUNX ('Alpha'}.BETA
{selection (.BETA) on a function
returning record 'Alpha' is being
passed as a parameter}

Record field notation also applies to files for FCBFQQ
fields, address type values for numeric representations,
and LSTRINGs for the current length.

File Buffers and Fields: Only one component of a file,
determined by the current file position, is accessible at
any time. It is represented by the buffer variable.

Depending on the status of the buffer variable, fetching
the value of a file buffer variable may just copy the
current value, or it may actually input data from an
external device (see Chapter 12).

A file buffer variable passed as a reference parameter
or used as a record of a WITH statement gives a
warning message; after the position of the file is
changed with GET or PUT, the buffer variable's
value may not be correct in these cases.

Examples:

INPUTA
ACeO UNTPAYABLE.FI LEA

Components of the FCBFQQ record corresponding to
a file are denoted using the usual record notation:

FI LEPABINFI LE. TRAP
INPUT.ERRS

7-13

7-14

Referenced Variables

If P is a pointer variable or value pointing to a type T
(or, with the address type feature, an ADR OF T
or ADS OF T variable or value (see Chapter 6)), P
denotes the variable or value and p/\ denotes the
variable of type T referenced by P. Examples:

CURRENTPERSON/\
NEXT/\[J]/\

A component of a constant structure which is a
reference cannot be dereferenced by appending a /\
since the only constant reference value is NIL, and
NIL/\ is an error.

The designator for a function returning a pointer or
address type can also be appended with a /\ to denote
the variable referenced by the value returned. However,
this variable cannot be assigned to or passed as a
reference parameter. Examples:

FU NK (I, J)/\
FUNK (K, l)I\.FOO [2]

If P is of type ADR OF some type then P.R denotes
the address value of type WORD. If P is of type ADS
OF some type, then P.R denotes the offset portion
of the address (and P.S the segment portion of the
address), both of type WORD. For example:

BUFFADR.R
DATAREA.S

CHAPTER 8. EXPRESSIONS

Contents

Simple Expressions
Operators and Operands

1. +, -, *
2. /
3. DIV, MOD .. .
4. AND, OR, XOR, NOT

Boolean Expressions
Set Expressions
Other Expression Features

EV AL Procedure .
RESULT Function
RETYPE

Function Designators
Uses ...
Parameters . . .

8-3
8-3
8-5
8-5
8-5
8-6
8-6
8-8

8-10
8-10
8-10
8-11
8-11
8-12
8-13

8-1

8-2

Simple Expressions

Expressions consist of operators and operands (an
operand is a value; that is, a constant, variable, or
function designator). The rules of composition
specify operator precedence in four classes.

The unary operators have the highest precedence,
followed by the "multiplying" operators, the "adding"
operators, and finally the relational operators.
Parentheses are used to change precedence.

The compiler may rearrange expressions and evaluate
common subexpressions only once to generate
optimized code.

The semantics of the precedence relationships are
retained, but normal associative and distributive laws
are used. For example: 3 * (6 + (X - 2)) might become
X*3+12.

A Pascal expression is either a value or the result of
applying an operator to one or two values. Although
a value can have almost any type, the Pascal operators
only apply to a few types.

The types used with operators are the numeric types
INTEGER, WORD, REAL, the BOOLEAN type, and
the SET types.

For all operators (except the set operator IN), operands
must be compatible. Additional restrictions are given
below.

Operators and Operands

The standard and extended operators are:

8-3

8-4

STANDARD EXTENDED

UNARY NOT

MULTIPLYING *, /, DIV,
MOD, AND

ADDING +,-,OR XOR

RELATIONAL =,<>,<=,
>=,<,>,
IN

As a rule, the operands and result of an operator all
have the same type. However, the type of an operand
will sometimes be changed to the type needed for an
operator.

This occurs on two levels: one for constant operands
only, and one for all operands. INTEGER to WORD
only happens for constant operands. INTEGER to
REAL happens for all operands.

In constant expressions, only INTEGER values will
change to WORD type if necessary. Mixed INTEGER
and WORD constants in expressions should be used
carefully.

For example, if CBASE is CONSTANT #caaa and
DELTA is CONSTANT -1, WRD (CBASE) + DELTA
gives an overflow since DELTA is changed to the
WORD value #FFFF. WRD (ORD (CBASE) + DELTA)
would work, giving INTEGER -16385 which changes
to WORD #BFFF.

Any operand of type INTEGER will be converted to
type REAL if needed by an operator or for an
assignment.

Any operand of type S, where S is a subrange of T,
is treated as if it were type T. Any operand of type

Q, where Q = T, is treated as if it were type T. The
result type of an expression involving these types can
be determined by the following rules:

1. + - * , ,

These operate on INTEGERs and REALs (or a mixture)
or on WORDs. If either operand is REAL, the result
type is REAL or the result type is the type of the
operands (both INTEGER or both WORD). Unary +
and - are supported as well as binary. Unary - on a
WORD type is 2's complement (NOT is l's complement);
since there are no negative WORD values, this always
gives a warning. Note that unary - has precedence
with the adding operators, so (X * -1) is illegal, and
(-256 AND X) is interpreted as -(256 AND X).

2. /

This is a "true" divide, so the result is always REAL.
Operands can be INTEGER or REAL (not WORD).

3. DIV,MOD

These are the integer divide quotient and remainder.
The left operand (dividend) is divided by the right
operand (divisor). Operands must be both INTEGER
or both WORD (not REAL). The sign of the remainder
(MOD) is always the sign of the dividend (as is true of
most signed divide instructions), so:

ABS(I)-ABS(J) < ABS((I DIV J)*J) <= ABS (I)

Also,

I MOD J=I(I DIV J)*J
{ even if I or J negative}

8-5

IBM Pascal does not use the standard semantics for the
MOD operator, with either operand negative. Programs
intending to be portable should not use DIV and
MOD unless both operands are positive.

4. AND, OR, XOR, NOT

These extended operators provide "bit wise" logical
functions. Operands must be both INTEGER or both
WORD (not REAL); result has the same type. NOT
is 1 's complement, so if an INTEGER variable V has
the value MAXINT, NOT V gives the invalid INTEGER
value -32768.

Boolean Expressions

8-6

The Boolean operators in ISO Pascal are NOT, AND,
and OR. IBM Pascal also includes XOR. The relational~
=, <>, <=, >=, <, and> can also be used with
Boolean operands. P <> Q is another way of expressin~
the exclusive-or function. Since FALSE < TRUE,
P <= Q denotes the Boolean operation "P implies Q".

No assumptions should be made as to whether an
operand to AND or OR is evaluated. Consider the
following:

WHILE (I <= MAX) AND
(V [I] < > T) DO
I := 1+1;

In the example above, if array V has an upperbound
MAX, then the evaluation of V [I] for I> MAX is
a runtime error. This evaluation mayor may not
take place; at times in the optimization process both
operands are always evaluated. Sometimes, the
evaluation of one may cause the evaluation of the
other to be skipped (in the latter case either operand
may be evaluated first).

Instead, use a construct like:

WHILE I <= MAX DO IF V[I] < > T THEN
THEN I := 1+1
ELSE BREAK;

In the Boolean expressions after IF, WHILE, and UNTIL,
the sequential control feature can be used to handle
situations like this (see Chapter 10); for example, the
above becomes:

WHILE I <= MAX AND THEN V[l1 < > T DO
I := 1+1;

Also note that the Boolean AND and OR operators have
nothing to do with the WORD and INTEGER operators
of the same name, which are bitwise logical functions.

The relational operators produce a Boolean result. The
types of the operands of a relational (except for IN)
must be compatible, or one is REAL and the other
compatible with INTEGER.

Reference types can only be compared with = and
<>. To use one of the other relationals with an address
type the .R or .S notation must be included.

Files, arrays, and records cannot be compared as a
whole, except for the string types STRING and
LSTRING. Two STRING types must have the same
upper bound to be compared; two LSTRINGs can have
different upper bounds.

In LSTRING comparison, characters past the current
length are ignored and if the current length of one
LSTRING is less than the other, the compiler assumes
the shorter is extended with CHR (0) components.

The six relationals =, <>, <=, >=,<, and> have their
normal meaning when applied to numeric, enumerated,
or string operands.

8-7

Their meaning (along with the relational operator
IN) when applied to sets is discussed in this chapter,
under "Set Expressions."

Two notes on Pascal Boolean expressions:

• The relationals have a lower precedence than
AND and OR. This means the following is
incorrect:

IF I < 10 AND J = K THEN ...

Instead, one must write:

IF (I < 10) AND (J = K) THEN ...

• The numeric types cannot be used where a
Boolean is called for, as in some other languages.
For an integer I, the clause IF I THEN is invalid;
one must use IF I <> 0 THEN instead. The
metalanguage allows $IF I $THEN, however.

Set Expressions

8-8

Pascal uses several operators in a different way when
they are applied to sets:

+

*
= and <>
<= and >=
< and>
IN

is set union
is set difference
is set intersection
test set eq uali ty
test set inclusion
test proper set inclusion
tests set membership

The < and> are extended operators since ISO Pascal
does not support them for sets.

Any operand whose type is SET OF S, where S is a
subrange of T, is treated as if it were SET OF T (T is
restricted to 0 .. 255 or the equivalent ORD values).

When the IN relational is used, the left operand (an
ordinal) must be compatible with the base type of the
right operand (a set).

The expression X IN B is true if X is a member of the
set B, and false otherwise. X can be outside of the
range of the base type of B.

For example, if X = I and B = SET OF 2 .. 9, then
X IN B is always false (I is compatible, but not
assignment compatible, with 2 .. 9).

Expressions involving sets can use the "set constructor,"
which gives the elements in a set enclosed in [] s.

Each element can be an expression whose type is in the
base type of the set or the lower and upper bounds of
a range of elements in the base type. Elements
cannot be sets themselves.

Examples of set expressions:

SETCOLOR := [RED, BLUE .. PURPLE] - [YELLOW]
SETNUMBER [12, J+K, TRUNC (EXP (X)) .. TRUNC
(EXP (X+1))]

Note that the syntax inside the set constructor is
similar to the CASE constant syntax. If X > Y
then [X .. Y] denotes the empty set. [] also denotes
the empty set and is compatible with all sets.

Also, if all elements are constant a set constructor
is the same as a set constant; like other structured
constants, the type identifier for the set can be
included, as in:

CONST COLOR=COLORSET[RED .. BLUE];

8-9

However, a set constructor with variable elements is not
allowed to be given a type in an expression. For
example:

N UMBERSET[I .• J] is invalid.

Other Expression Features

8-10

EV AL Procedure

The EVAL procedure only evaluates its parameters
without actually calling them. EV AL is only useful
for functions with side effects.

For example, a function that advances to the next
item and also returns the item might be called in
EV AL just to advance to the next item.

The same result could be achieved by calling the
function, ignoring the value it returned, and just
using the known side effect.

Examples:

EVAL (NEXTLABEL (TRUE))
EVAL (SIDEFUNC (X, V), INDEX (4), COUNT)

RESULT Function

The RESULT function permits you to access the current
value of a function. Using RESULT is more efficient
than using a separate local variable for the function's
value and assigning this local variable to the function
identifier before returning. An example:

FUNCTION FACTORIAL (I: INTEGER): INTEGER;
BEGIN

FACTORIAL := 1;
WHILE I > 1 DO
BEGIN

FACTORIAL := I * RESULT (FACTORIAL);
I := I - 1;

END;
END;

FUNCTION ABSVAL (I: INTEGER): INTEGER;
BEGIN

ABSVAL := I;
IF 1<0 THEN ABSVAL := -RESULT (ABSVAL);

END;

RETYPE

Occasionally, the type of a value needs to be changed.
IBM Pascal includes the RETYPE "function" to
change the type of a value. If the new type is a
structure, RETYPE can be followed by the usual
selection syntax.

RETYPE must be used with caution. It works on the
memory byte level, and ignores issues like whether
the low order byte of a two-byte number comes first
or second in memory. Examples:

TYPE COLOR={RED,BLUE,GREEN,ORANGE);
VAR X,V: INTEGER; C: COLOR;
X := ORD(ORANGE); (*X will be 3*)
Y := 3;
C := RETVPE{COLOR,Y);
(*C will be ORANGE-acts as inverse of ORD*)

RETYPE{STRING2,I*J+K) [2]
(*effect may vary*)

Function Designators

A function designator specifies the activation of a
function. It consists of the function identifier,
followed by a (possibly empty) list of "actual
parameters" in parentheses.

8-11

8-12

These actual parameters are substituted in place of their
corresponding "formal parameters" defined in the
function declaration. The correspondence is by position
in both lists.

Parameters can be variables, expressions, procedures,
and/or functions. The parameter lists must be
compatible (as defined under "Data Parameters",
in Chapter 10). If the parameter list is empty, the
parentheses must be omitted.

The order of evaluation and binding of the actual
parameters will vary, depending on optimizations
used. For example, when evaluating FUNC (I+J+K,
I+J) the compiler will add I and J, save the result,
add K, PUSH this as the first parameter, then PUSH
the saved value as the second parameter.

Uses

Functions in most languages have two different uses:

1. They are used in the mathematical sense, using
one or more values (called the domain) to
produce a resulting value (called the range). In
this case if the function never does anything
else (like assign to a global variable or do
input/output) it is called a pure function.

2. A function is a convenient way to call a general
procedure and also get some value back. In
this case the function may do anything and is
called impure. The optimizer must assume a
function is impure, unless it is declared with
the PURE attribute.

In some cases, especially those where a function is
doing mathematical calculations, using the PURE
attribute where appropriate can save time and space.

Parameters

There are three kinds of parameters: value parameters,
reference parameters, and procedural parameters.
These are discussed under "Data Parameters" in
Chapter 10, with procedure and function declarations.

• Value parameters are evaluated and their value
copied (assigned) to the corresponding formal
parameters.

• Reference parameters are passed by address and
the corresponding formal parameters represent
them.

• Procedural parameters pass a procedure or a
function as a parameter.

A function can return a simple type or a pointer. A
pointer returned by a function can only be compared,
assigned, or passed as a value parameter.

Functions can also return any assignable type; that is,
any type except a file or super array. The usual
selection syntax for reference types, arrays, and
records is allowed following the function designator.
Examples of function designators:

SIN (X+Y)
NEXTCHAR
NEXTREC (17)/\
NAD.NAME [1]

Note that returning a structure and then only using
one component of it is less efficient than just
returning the component itself.

8-13

8-14

The compiler treats a function returning a structure
sort of like a procedure with an extra V AR parameter
for the result of the function.

Every function designator for a function returning a
structure may allocate (on the stack) an unseen
"variable" to receive the returned value. This adds
to the required memory, so the number of places
at which a function returning a structure is called
should be minimized.

Frequently, the current value of a function is needed
within the function (or a procedure or function nested
within the function). However, one cannot just use
the name of the function as a variable in an expression,
because that would invoke the function recursively.

With the extended intrinsics feature, the RESULT
"function" can be used to get the current value of
a function.

CHAPTER 9. STATEMENTS

Contents

Statement Labels 9-3

Simple Statements 9-4
Assignment Statement 9-4
Procedure Statement 9-6
GOTO Statement .. 9-6
Empty Statement .. 9-9
BREAK, CYCLE, and RETURN Statements. 9-9

Structured Statements 9-12
Compound Statement . 9-12
Conditional Statements 9-13

IF Statement . . 9-13
CASE Statement 9-14

Repetitive Statements 9-16
WHILE Statement 9-16
REPEAT Statement 9-16
FOR Statement . 9-17
WITH Statement 9-19

Sequential Control Operators 9-21

9-1

9-2

Statement Labels

Statements denote algorithmic actions, and are said to
be "executable". They can be prefixed by a label which
can be referenced by a GOTO statement.

A label can be one or more digits (leading zeros are
ignored), or an identifier using the usual rules for
identifiers. Constant identifiers, expressions, and
nondecimal notation cannot be used for labels. All
labels must be declared in a LABEL section.

Example:

LABEL 10,20,INNER,OUTER;

A loop label is defined in this manual as any label
immediately preceding a looping statement (WHILE,
REPEAT, or FOR statement). Also, a BREAK or
CYCLE statement can refer to a loop label.

CASE constants will be described later in this chapter,
under "CASE STATEMENT." For now, note that a
statement can be preceded by both a CASE constant
list and a GOTO label. In this event, they are given in
the following order: first the CASE constants, then the
GOTO label. Example:

321: 123: <statement>
{321 is a CASE value, 123 is a label}

9-3

Simple Statements

A simple statement is a statement no part of which
constitutes another statement. The Pascal simple
statements are the assignment statement, the
procedure statement, the GOTO statement, and the
empty statement. The control flow feature adds
the RETURN statement, BREAK statement, and
CYCLE statement.

Assignment Statement

9-4

The assignment statement serves to replace the
current value of a variable (or function value) with
a new value specified as an expression. The
expression's value must be assignment compatible
with the type of the variable or function.

If the selection of the variable involves the indexing
of an array or the dereferencing of a pointer or
address, these actions nlay be intermixed with the \
evaluation of the expression, depending on the
optimizations performed.

An assignment to a non local variable (including a
function return) gets a = or % in the G column of
the listing (see Chapter 4, "Metacommands").

Within the block of a function, an assignment to the
function's identifier serves to set the value returned
by the function. The assignment to a function F's
identifier may occur either within the actual body
of F, or in the body of a procedure or function
nested within F.

This value is not available to the programmer after
assignment, however, since using the function

identifier in an expression invokes the function
recursively (except as a procedural type parameter).
The RESULT function can be used to access the
current value of a function. It can also be used within
the function's body, or in a procedure or function
nested within the function.

Examples of assignment statements:

A := 8;
SUM := X * (Y + Z);
FUNX := 2 * RESULT (FUNX);

The optimizer considers each section of code not
containing a label or other point which could receive
control as eligible for rearrangement and common
subexpression elimination. It retains the order of
execution when necessary. For example:

X := A + C + 8;
Y := A + 8;
Z := A;

Here A + C + B can become C + (A + B), and the
generated code will get the value of A and save it, add
the value of B and save the result, add the value of C
and assign to X, assign the saved A+B to Y, and assign
the saved A value to Z.

This optimization can only be done if assignments to
X or Y (or getting the value of A, B, or C), are all
independent. If C is a function without the PURE
attribute and A is a global variable, evaluating C might
change A.

In this case, the value of A in the first assignment may
be the old value or the new one, since the order of
evaluation within an expression is not fixed. However,
the value of A in the second and third assignments will

9-5

be the new value, since the order of evaluation among
statements is fixed.

The following will limit the ability of the optimizer
to find common sUb-expressions:

• An assignment to a non-local variable, reference
parameter, or referent to an address variable

• Call to a function without the PURE attribute

• Call to a procedure

The optimizer does allow a single variable to have two
identifiers, perhaps one as a global variable and one as
a reference parameter or address value referent.

Procedure Statement

A procedure statement serves to execute the procedure
denoted by the procedure identifier. The form is the
same as that of a function designator (read Chapter 10
and substitute "function" for "procedure"). Examples:

0011;
READ (lNFILE, I, J, K);

GOTO Statement

9-6

A GOTO statement serves to indicate that further
processing continues at another part of the program
text, namely at the place of the label. Examples:

GOIO 10;
GOIO HAWAII;

A GOTO cannot be used to jump to a "lower level".
Basically, this means it cannot jump into an IF, CASE,
WHILE, REPEAT, FOR, or WITH statement, or to any
statement in another procedure or function at the same
level or lower.

It can jump out of these statements, or to a statement
in a higher level procedure or function as long as the
statement is directly within the body.

GaTOs from one branch of an IF or CASE statement
to another are permitted. The following are some
examples of legal and illegal GaTOs:

9-7

9-8

PROGRAM LABELEX;
LABEL 1, 2, 3, 4;

PROCEDURE ONE;
LABEL 11, 12, 13;

PROCEDURE INONE;
LABEL 21;
BEGIN (*INONE*)

IF TUESDAY THEN GOTO 1 ELSE GOIO 11;
{valid}
21: {no valid G 010 comes here}

END;(*INONE*)
BEGIN (*ONE*)

IF RAINING THEN GOIO 1 ELSE GOTO 11;
{valid}
11: GOTO 21;
{invalid}

EN D;(*ON E*)

PROCEDURE TWO;
BEGIN

GOIO 11; {invalid}
END;

BEGIN {main}
IF SEATTLE THEN

BEGIN
GOTO 2; (*valid*)
4: WRITE ('here');

END
ELSE GOIO 4; {valid}
2: GOIO 3; {invalid}
REPEAT

WHILE MS_BYRON D03: GOTO 2; {valid}
UNTIL DADAIE;
1: GOTO 11; {invalid}

END.{main}

A GOTO from one procedure, function, program, or
implementation to another (within the same source),
or from a nested procedure or function to its host or
to the main program, is permitted. However, they
do generate extra code both at the location of the
GOTO and at the location of the label. The rule of
thumb is that the destination label must be "visible"
from the procedure and function; that is, it must
be at a higher level.

If the $GOTO metavariable is on, every GOTO
statement is flagged with a warning reminding users
that GOTOs are "considered harmful". This is
most useful in an educational environment, or
for finding all GOTOs in a program in order to
locate a bug.

GOTOs are marked in the listing in the J Uumps)
column with a + or * for a GOTO to a label later
in the listing and a - or * for a GOTO to a label
already encountered in the listing.

Empty Statement

The empty statement consists of no symbols and
denotes no action. It is included primarily to permit
the ; to be used after the last statement in a
BEGIN ... END pair.

BREAK, CYCLE, and RETURN Statements

These three statements all belong to the control
flow feature. All are functionally equivalent to a
GOTO statement.

A BREAK statement is a GOTO to the first statement
following a repetitive statement.

A CYCLE statement is a GOTO to an implied empty
statement ending the body of a repetitive statement.
It starts the next iteration of a loop. CYCLE in

9-9

9-10

either a WHILE or REPEAT statement does the
Boolean test in the WHILE or UNTIL clause before
executing the statement again; CYCLE in a FOR
statement goes to the next value of the control
variable.

A RETURN statement is a GOTO to an implied
empty statement following the last statement in
the current procedure or function, or the body of
a program or implementation. In the listing, the
J Gump) column contains a + or * for a BREAK
statement, a - or * for a CYCLE statement, and
a * for a RETURN statement.

BREAK and CYCLE have two forms, one in which
a loop label is given, and one without a loop label.
If a loop label is given, the label identifies the loop
to exit or restart. If no label is given, the innermost
loop is assumed. Example:

OUTER: FOR I := 1 TO N1 DO
INNER: FOR J := 1 TO N2 00

IF A [I, J] = TARGET THEN BREAK OUTER;

In theory, a program using IBM Pascal BREAK and
CYCLE statements does not need to use any
GOTO statements.

A loop label is a normal GOTO label prefixed to a
FOR, WHILE, or REPEAT statement. Since the
control flow feature allows integer or identifier
labels, it is suggested that programmers use
integers for labels referenced by GOTOs and
identifiers for loop labels. Examples:

SEARCH: WHILE I <= ITOP DO
IF PILE [I] = TARGET THEN BREAK

SEARCH ELSE I := I + 1

FOR I := 1 TO N DO
IF NEXT [I] = NIL THEN BREAK

CLIMB: WHILE NOT ITEMALEAF DO
BEGIN

END

IF ITEMALEFT < > NIL
THEN [ITEM := ITEMALEFT;

CYCLE CLIMB];
IF ITEM?RIGHT < > NIL

THEN [ITEM := ITEMARIGHT;
CYCLE CLIMB];

WRITELN ('Very strange node/);
BREAK CLIMB;

9-11

St~ctured State~ents

Structured statements are constructs composed of
other statements. They are divided into four groups:

• Sequential (compound)

• Conditional

• Repetitive

• The WITH statement

In the compiled listing, the C (control) column gives
the control level, which increases the statements
within a compound statement. This feature can be
handy when fixing a program with a missing or
extra END keyword.

Compound Statement

9-12

The compound statement specifies that its component
statements are to be executed in the same sequence in
which they are written. The symbols BEGIN and
END act as statement brackets. The semicolon is
a statement separator (not a statement terminator, as
in some languages). Examples:

BEGIN
TEMP := A [I];
A [I] := A [J]
A [J] := TEMP

END;

BEGIN FOO; ZOO; (*empty statement*) END;

The compiler permits the use of [and] instead of
BEGIN and END. Note, however, that a] alone is
not a substitute for END and cannot be used to match

a BEGIN, CASE, or RECORD keyword. Also,
BEGIN ... END (not [... J) must be used to enclose
the body of a program, implementation, procedure,
or function. Examples:

IF FLAG THEN X:=1 ELSE [X:=-1,Y:=0];
WHILE P.N < > NIL DO

[G:=P; P:=P.N; DISPOSE(G)];
FUNCTION R2 (R: REAL): REAL;
[R2 := R * 2] {illegal}

Conditional Statements

A conditional statement selects for execution a single
one of its component statements. The conditional
statements are the IF statement and the CASE statement

IF Statement

If the Boolean expression following the IF is true,
the statement following the THEN is executed. If
the Boolean expression is false, the statement following
the ELSE, if present, is executed. The Boolean
expression can use the sequential control operators.
Examples:

IF 1>0 THEN 1:=1-1 ELSE 1:=1+1;

IF O<=TOP) AND (ARRI[I] <>TARGET) THEN
1:=1+1;

IF I<=TOP THEN IF ARRI[I]<>TARGET THEN
1:=1+1;

IF C1 THEN IF C2 THEN S1 ELSE S2;
{an ELSE is paired with the closest previous
IF; here S2 is executed if C 1 is true and C2
is false}

9-13

9-14

IF C1 THEN [IF C2 THEN Sl] ELSE S2 {now S2 is
executed if C 1 is false} .

A ";" preceding an ELSE is always incorrect. If
found, it is skipped and a warning is given.

CASE Statement

The CASE statement consists of an expression (the
CASE index) and a list of statements, each statement
preceded by a constant list, called the CASE
constants.

The statement executed has a CASE constant
containing the current value of the CASE index.
The CASE index and all constants must be of
compatible, ordinal types.

The CASE constant syntax is also used in RECORD
variant declarations. In Standard Pascal, a CASE
constant is one or more constants separated by commas.

IBM Pascal allows a range of constants to be sub
stituted for a constant, such as 'A' .. 'Z'. No constant
value can apply to more than one statement.

The CASE statement can also be ended with an
OTHERWISE clause containing additional statements
executed when the CASE index value is not in the
set of CASE constant values.

If no OTHERWISE clause is present and the CASE
index value is not in the set, a runtime error is
generated if $RANGECK is on and the result is
undefined if $RANGECK is off. Examples:

CASE OPERATOR OF
PLUS: X := X + Y;
MINUS: X := X - Y;
TIMES: X := X * Y

END;

CASE NEXTCH OF
'A' . . /Z','_': IDENTIFIER;
'+','_','*','/,: OPERATOR;
OTHERWISE

END;

WRITE {/Unknown Character'};
BREAK SCANNER;

A ";" can appear after the final statement in the list.
A ":" after an OTHERWISE is skipped and a warning
given.

The code generated by a CASE statement may be a
jump table or series of comparisons, depending on
optimization. If the control variable is out of range
and $RANGECK is off, then a jump to an arbitrary
location in memory would occur in the jump table
case. In the series of comparisons case one of the
CASE statement branches will be executed.

9-15

Repetitive Statements

Repetitive statements specify that certain statements
are to be executed repeatedly.

These include the WHILE, REPEAT, and FOR
statements. BREAK and CYCLE can be used to
leave or restart the statements being repeated.

WHILE Statement

The WHILE statement repeats a statement zero or
more times until a Boolean expression becomes
false. The Boolean expression can use the
sequential control operators. Examples:

WHILE P < > NIL DO P ::= NEXT (P);

WHILE NOT MICKY DO
[NEXTMOUSE; MICE:=MICE+1];

REPEAT Statement

9-16

The REPEAT statement repeats a sequence of
statements one or more times until a Boolean
expression becomes true. The Boolean expression
can use the sequential control operators. Examples:

REPEAT
READ (LiNEBUFF);
COUNT:=COUNT +1

UNTIL EOF;

REPEAT GAME UNTIL TIRED;

FOR Statement

The FOR statement indicates that a statement is to
be executed repeatedly while a progression of values
is assigned to a variable called the "control-variable"
of the FOR statement. The general form is:

FOR control-variable := initial TO
final DO statement

or

FOR control-variable := initial DOWNTO
final DO statement

The ISO standard gives very explicit rules about
FOR statements. The control-variable must be of
an ordinal type and must be an entire variable (not
a component of a structure). Also, in ISO Pascal,
the control-variable must be local to the immediately
enclosing program, procedure, or function and
cannot be a reference parameter of the procedure
or function.

In IBM Pascal, the control-variable can also be any
STATIC variable, such as a variable declared at the
program (module, implementation) level. Using a
program-level variable is an ISO Pascal error not
caught.

In addition, no assignments to the control variable
are allowed, either in the repeated statement (this
error is caught), by making the control variable
READONL Y within the FOR statement) or a
procedure or function invoked by the repeated
statement (this is an error not caught). The control
variable cannot be passed as a V AR (or V ARS)
parameter to a procedure or function.

The initial and final values must be compatible with
the type of the control variable. The initial value is
always evaluated first, followed by the final value.

9-17

9-18

They are evaluated only once, before executing the
statement.

The statement following the DO is not executed at
all if initial> final (TO case) or initial < final
(DOWNTO case). If the statement is executed, both
the initial and final values must also be assignment
compatible with the control variable. For example,
if I is type 1..5:

FOR I := 6 TO 5
FOR I := 5 TO 6

is permitted.
is invalid.

The sequence of values given the control-variable
starts with the initial value, and the sequence is
defined with the SUCC function (TO case: increment
the ORD value) or the PRED function (DOWNTO
case: decrement the ORD value), until the last
execution of the statement, when the control-variable
has the final value.

The value of the control-variable after a FOR statement
terminates "naturally" (whether or not the body
executes) is undefined, and may vary due to
optimiza tion.

However, the value of the control-variable after
leaving a FOR statement with a GOTO or a BREAK
is defined as the value it had at the time of exit.
Examples:

FOR I := 1 TO 10 DO
SUM := SUM + VECTOR [1],

FOR CH := 'Z' DOWNTO 'A' DO
WRITE (CH)

To get more efficient code from FOR statements,
keep in mind that the body of a FOR statement may

or may not be executed, so generally if the initial
or final value is not constant an extra test must be
generated.

However, if the control variable has the WORD type
(or a subrange), and the initial value is constant zero,
the body must be executed no matter what the final
value and the test is not generated. (Zero is the
lowest possible WORD value.)

WITH Statement

The WITH statement opens the scope of a statement to
include the fields of a record (or records), so the fields
can be referred to directly. For example:

WITH PERSON DO WRITE (NAME, ADDRESS, PHONE);

is the same as

WRITE (PERSON.NAME, PERSON.ADDRESS,
PERSON.PHONE);

The record given can be a variable, constant identifier,
structured constant, or function result.

It cannot be a component of a PACKED structure.
If it is a file buffer variable, a warning is generated.
A list of records can be given after the WITH, but
these should not be of the same type, since the field
identifiers would only refer to the last instance of
the record with the type. The statement:

WITH record 1, record2 DO statement

is the same as

WITH recordl DO WITH record2 DO statement

9-19

9-20

If any record variable is a component of another
variable, the component is selected before the
statement is executed. Active WITH variables cannot
be passed as VAR (or VARS) parameters, or their
pointers passed to the DISPOSE procedure; however,
these errors are not caught by the compiler.

Assignments to any of the record variables in the
WITH list or components of these variables are
allowed, as long as the WITH record is a variable.

Every WITH statement allocates an address variable
on the stack holding the address of the record.

If the record variable is on the heap, the pointer to
it should not be DISPOSEd within the WITH
statement, except perhaps at the end.

If the record variable is a file buffer, no I/O should
be done to the file within the WITH statement,
except perhaps at the end. Assignments to the
WITH record itself should be avoided in programs
intended to be portable.

Sequential Control Operators

It is often useful in IF, WHILE, and REPEAT statements
to treat the Boolean expression as a series of tests, such
that if one test fails, the remaining tests are not
executed.

The sequential control feature provides two "operators,"
AND THEN and OR ELSE. Each operator is two
keywords:

• X AND THEN Y is false if X is false and Y is
not evaluated

• X OR ELSE Y is true if X is true, and Y is not
evaluated.

If several sequential control operators are used, they
are evaluated strictly from left to right.

These "operators" can only be used in the Boolean
expression of an IF, WHILE, or UNTIL clause, but
not in other expressions. They cannot occur in
parentheses, and are evaluated after all other
operators. Examples:

IF SYMBOL<>NIL AND THEN SYMBOLAVAL<O
THEN NEXT_SYMBOL;

WHILE I<=MAX AND THEN VECT[I] <> KEY DO
1:=1+1;

REPEAT GEN(VAL) UNTIL VAL=O
OR ELSE (aU DIV VAL)=O;

WHILE W AND THEN X OR ELSE Y AND THEN Z DO
SOMETHING;

9-21

9-22

CHAPTER 10. PROCEDURES AND
FUNCTIONS

Contents

Procedure and Function Declarations
Procedure and Function Headings
Function Specifics . .
Data Parameters . . .
Value Parameter ...
Reference Parameter
Procedural Parameter
Internal Calling Conventions

10-3
10-4
10-6
10-7
10-8
10-8

.10-11

.10-16

10-1

10-2

Procedure and Function Declarations

Procedure declarations and function declarations
associate an identifier with a portion of a program so
that the portion can be activated with a procedure
statement or function designator, respectively. The
general form of a procedure or function declaration
is the same as a program, except for the heading. The
form includes the heading, declarations, and body.
For example:

PROCEDURE MODEL (I:INTEGER; R:REAl);
lABEL 123;
CONST ATOP = 199;
TYPE INDEX = D .. ATOP;
VAR ARAY:ARRAY[lNDEX] OF REAL; J:INDEX;

FUNCTION FONE(RX: REAL): REAL;
BEGIN FONE:=RX*I END;

PROCEDURE FOUT(RY:REAl);
BEGIN WRITE ('Output is " RY) END;

BEGIN (* MODEL *)
FOR J:=O TO ATOP DO

IF GlOBAlVAR THEN
FO UT(FONE (R+ARA Y [J]))
ELSE GOTO 123;

123: WRITElN ('Done');
END; (* MODEL *)

The procedure declared above illustrates the general
Pascal form:

1. A heading

2. Declarations for labels, constants, types, and
variables

3. Local procedures and functions

4. The body, which is a BEGIN ... END statement

10-3

The procedure returns when the body finishes execution
(or a RETURN statement is executed).

In Standard Pascal the order of declarations must be
LABEL, CONST, TYPE, V AR, followed by the
procedures and functions.

In IBM Pascal, any number of LABEL, CONST, TYPE,
V AR, and VALUE sections, and procedure and functior
declarations, can be included in any order.

In general the initial value of variables is not defined.
However program, module, implementation, STATIC,
and PUBLIC variables can be explicitly initialized in a
VALUE section.

File variables are always initialized by calling NEWFQQ
in the file unit (see Appendix B in this book). The use
of a procedure identifier in a procedure statement or
function identifier in a function designator within its
declaration implies recursive execution of the procedurE
or function, except for passing it as a procedural type
parameter.

Procedure and Function Headings

10-4

The procedure or function heading specifies the
identifier naming the procedure or function and the
formal parameters (if any).

To allow the call of a procedure or function before it is
defined, permitting indirect recursion where A calls B
and B calls A, a "forward declaration" is given before
any calls to it.

This forward declaration consists of the heading,
followed by the directive FORWARD. Later on, the
actual declaration is given but without repeating the
formal parameter list (or attributes or function return
type). For example:

PROCEDURE ALPHA (0, R: REAL) [PUBLIC]; FORWARD;

PROCEDURE BETA (S, T:REAL);
BEGIN ALPHA (S, 3.14) END;

PROCEDURE ALPHA;
BEGIN BETA (0, 6.28) END;

Attributes, if enabled, can be given to procedures and
functions, and are placed after the heading in brackets
separated by commas (for example, [PUBLIC] in the
above example). The EXTERN directive is also available.

These can only be used on a procedure or function
directly nested in a program, module, or implementation,
or in an interface (that is, the first level of nesting-the
PURE attribute, discussed with functions below, can be
used at any level). This restriction prevents access to
non-local stack variables.

The PUBLIC attribute allows a procedure (or function)
to be called by other loaded code, and cannot be used
with the EXTERN directive.

The EXTERN directive permits a call to some other
loaded code, using the linker. PUBLIC, EXTERN, and
ORIGIN provide a low level way to link Pascal routines
with other routines in Pascal or other languages; the
MODULE and UNIT provide higher level methods of
linking Pascal to Pascal.

A procedure or function declaration with the EXTERN
or FORWARD directive consists only of the heading,

10-5

without an enclosed block. EXTERN routines have an
implied block outside of the program.

FORWARD routines will be fully declared later in the
same program or implementation. The keyword
EXTERNAL is a synonym for EXTERN.

Function S p_ecifics

10-6

Function declarations serve to define parts of a program
which compute a value. Functions are activated by the
evaluation of a function designator which is part of an
expression.

A function declaration has the same form as a procedure
declaration, except that the header also gives the type
of value returned by the function.

Functions are the same as procedures, except that they
are invoked in an expression instead of a statement,
and they return a value.

Within the function's block, either in the function body
itself or a procedure or function nested within the
block, at least one assignment to the function identifier
must be executed to set the returned value.

This is not checked at runtime. However, if there is no
assignment at all to the function identifier, the compiler
will give an error message.

Functions can return any simple, structured, or referenc(
type, except a super array type (a derived type is
permitted) or a structure containing a file; that is, any
type that can be assigned.

A function heading is the same as a procedure heading,
with the type returned by the function added. For
example:

FUNCTION MAXIMUM (I,J:INTEGER):INTEGER [PURE];

The occurrence of the function identifier in an
expression (except for passing the function as a
parameter) invokes the function recursively, rather than
giving the current value of the function.

To use the current value, the function RESULT, which
takes the function identifier as a parameter, is available.

The PURE attribute applies to functions, not
procedures; it is the only attribute that can be used in
nested functions.

The optimizer assumes that the result of a PURE
function is determined by its parameters, and that it does
not modify the global environment in any way (that is,
it leaves unchanged any variables not local to the
function, and does no input/output).

The compiler does not check whether a PURE
function modifies global variables, has any V AR or
VARS parameters (CONST parameter is permitted),
calls any procedures, or calls any functions that are not
PURE.

Data Parameters

There are three types of parameters in procedures and
functions:

• Value parameter

• Reference parameter

• Procedural parameter

10-7

IBM Pascal allows a super array type to be passed as a
reference parameter (from within a procedure or
function), a reference parameter to be declared as
CONST, and explicit segmented reference parameters
(ADR, ADS).

Value Parameter

When a value parameter is passed, the actual parameter
is an expression. The expression is evaluated in the
scope of the caller and assigned to the formal parameter,
which is a variable local to the called procedure or
function.

The actual parameter expression must be assignment
compatible with the type of the formal parameter. A
formal parameter is assumed to be a value parameter
unless otherwise specified.

Passing structured types by value is permitted but is
inefficient since the entire structure must be copied.

A file variable or super array variable cannot be
passed as a value parameter, since it cannot be assigned.
However, a variable with a type derived from a super
array can be passed.

Reference Parameter

10-8

When a reference parameter is passed, the keyword VAR
precedes the formal parameter and the actual parameter
must be a variable. The formal parameter denotes this
actual variable during the execution of the procedure.

Any operation done on the formal parameter is
performed immediately on the actual parameter. This
is done by passing the machine address of the actual

variable to the procedure. This address is an offset into
the default data segment.

If the selection of the variable involves indexing an array
or dereferencing a pointer or address, these actions are
executed before the procedure is executed.

The type of the actual parameter must be identical to
the type of the formal parameter.

In the listing, passing a non-local variable as a V AR
parameter gets a / or % in the G (global) column.

The following cannot be passed as V AR parameters:

• Component of a PACKED structure
(except CHAR of a STRING or LSTRING)

• Any READONLY variable
(includes CaNST parameter, FOR control variable)

• A file buffer variable, or record of a WITH
statement (errors in ISO Pascal not caught by IBM
Pascal)

With the super array type feature a procedure or
function can operate on an array with a particular
component type and index type but with any upper
bounds.

The formal parameter is a reference parameter of the
super array type itself. The actual parameter type must
be a type derived from it, or the super array type itself
(that is, another reference parameter or dereferenced
pointer).

10-9

10-10

For example:

TYPE REALS=ARRAY[O . . *] OF REAL;
PROCEDURE SUMRS(VAR X:REALS; CONST X: REALS);

Super array type parameters cannot be assigned or
compared as a whole, except for a formal parameter
with the super array type LSTRING. Components ofa
super array type can be used normally.

The actual upper bounds (and lower bounds) of the
array are available with the UPPER (and LOWER)
functions. This permits routines that sort an array of
any size, write it out, etc.

Since an actual parameter of an LSTRING type can be
passed to a reference parameter of the super array type
STRING, string handling routines frequently use
STRING reference parameters.

With the constant parameter feature, a formal
parameter can be preceded by the reserved word
CONST, implying that the actual parameter is a read
only reference parameter. This is especially useful for
parameters of structured types which may be
constants, since a time-consuming value parameter
copy is not needed.

The actual parameter can be a variable, function result,
or constant value (including a constant identifier or
structured constant). It cannot be an arbitrary
expression value with operators and non-constant
operands (since there are no operators returning
structured types this is not a serious limitation).

No assignments can be made to the CONST parameter
or any of its components. CONST super array types
are permitted. A CONST parameter in one procedure
cannot be passed as a V AR parameter to another
procedure, but the reverse is permitted.

Example:

PROCEDURE ERROR (CONST ERRMSG: STRING);

With the address type feature, a VAR or CONST
parameter passes an address that is really an offset into
a default data segment.

In some cases, access to objects residing in other
segments is required; to pass these objects by reference,
the compiler must recognize that a segmented address
containing both segment register and offset values is
necessary. To ensure this, the parameter prefix V ARS
is used instead of VAR or CONST. For example:

PROCEDU RE CONCATS(VARS T:STRING);

Procedural Parameter

When a procedure or junction parameter is passed, the
actual identifier is a procedure or function, and the
formal parameter is a procedure or function heading
(including any attributes) preceded by the word
PROCEDURE or FUNCTION.

The actual procedure or function parameter list must
be compatible with the formal procedure or function
parameter list, and a formal function result type must
be identical to an actual function result type.

Two parameter lists are compatible if they contain the
same number of parameters, and for every parameter
both are value parameters of identical (not just
compatible) type, reference parameters of identical
type and identical kind of reference (VAR, CONST,
V ARS), or procedure or function parameters with
compatible parameter lists (and for functions, with
identical result type).

10-11

In addition, the set of attributes for both the formal
and actual procedural type must be the same, except
that the PUBLIC attribute and EXTERN directive are
ignored.

A PUBLIC or EXTERN procedure, or any local
procedure at any nesting level, can be passed to the same
type of formal parameter. However, the PURE
attribute and any calling sequence attributes must match

Any actual procedure or function passed to an EXTERN
procedure or function must itself be EXTERN or
PUBLIC.

Note that a parameterless function identifier used as an
actual parameter can be either a value parameter or a
formal functional parameter, depending on the formal
parameter type.

Examples of procedural parameters:

PROCEDURE ALPHA (FUNCTION FUNI(X,Y:REAL): REAL[PURE]

PROCEDURE PASS (PROCEDURE PARAMETER);

10-12

When a procedure (or function) passed as a parameter
is finally activated, any non-local variables accessed are
those in effect at the time the procedure (function) is
passed as a parameter, not those in effect when it is
activated. Internally, both the address of the routine
and the address of the upper frame (in the stack) are
passed.

IBM Pascal imposes a restriction that some predefined
procedures and functions cannot be passed as
parameters. Procedures and functions which are
compiled in-line and therefore have no actual separate
code cannot be passed.

Also, the READ, WRITE, ENCODE, and DECODE
families are translated into other calls by the compiler

based on the argument types and so cannot be passed
(corresponding routines in the file unit, or encode/
decode unit, can be passed).

Standard level procedures and functions that cannot be
passed are:

• CRR • PACK

• ORD • UNPACK

• SUCC • READ

• PRED • READLN
• NEW • WRITE

• DISPOSE • WRITELN

• ABS

• SQR

• ODD

Procedures and functions in features that cannot be
passed are:

• LOWER • WRD

• UPPER • BYWORD

• LOBYTE • SIZEOF

• RIBYTE • RESULT

• ENCODE • EVAL

• DECODE • RETYPE

10-13

10-14

Example of formal procedure use:

PROCEDURE ALPHA;
VAR I:INTEGER;

PROCEDURE DELTA;
BEGIN END;

PROCEDURE BETA (PROCEDURE XPR);
VAR GLOB:INTEGER;

PROCEDURE GAMMA;
BEGIN GLOB:=GLOB+1 END;

BEGIN (* BETA *)
GLOB:=O;
IF 1=0

THEN [1:=1; BETA(GAMMA)]
ELSE [GLOB:=GLOB+1; XPR]

END; (* BETA *)

BEGIN (* ALPHA *)
1:=0;
BETA(DEL TA)

END; (* ALPHA *)

BEGIN (* main *)
ALPHA;

•
•
•

END. (* main *)

In the example, when ALPHA is called, BETA is called
passing the procedure DELTA. This call creates an
instance of GLOB on the stack, which we'll call GLOB 1.
BETA first clears GLOB 1.

Since I is 0 , BETA is called recursively passing
GAMMA, and at this time the access path to any non
local variables used by GAMMA (that is, GLOBI) is
passed as well.

The second call to BETA also creates another instance
of GLOB, which we'll call GLOB2. GLOB2 is cleared,
and this time I is 1, so GLOB2 is incremented.

Then XPR is called, which is bound to GAMMA, so
GAMMA is executed and increments GLOBI (GLOBI
was in effect when GAMMA was passed). GAMMA
returns, the second BETA call returns, the first BETA
call returns, and ALPHA returns.

Procedural parameters have three general uses:

• Numerical analysis

• Calling some library routines

• Special applications

In numerical analysis a function might be passed to a
procedure or function that finds the integral between
limits, a maximum or minimum value, and so on.

In some libraries, routines take an error handling
procedure or next value function, although none of
the IBM Pascal library routines uses this method.

Finally, there are some interesting algorithms in such
areas as parsing and artificial intelligence which use
procedural parameters.

10-15

Internal Calling Conventions

10-16

Every active procedure or function has a "frame"
allocated on the stack. The frame contains the following
data, listed with higher addresses at the top:

frame pointer-+upper frame pointer, if any
• parameters (values or address), if any
• return address to caller
• saved calfer frame pointer
• local data, temporaries, etc.

The frame pointer is in the BP register. The frame
pointer generally points at the highest address word in
the frame, and is used to access frame data. A procedure
or function nested within another procedure or
function has an upper frame pointer to get at variables
in the statically enclosing frame.

The following process takes place when calling a
procedure or function:

• The caller saves any registers it needs (except the
frame pointer), pushes parameters in the same orde1
as in the source, and does the call.

• Calls to PUBLIC or EXTERN procedures or
functions are 8088 FAR calls; other local calls
are NEAR calls.

• The callee pushes the old frame pointer, allocates
any other stack locations needed, and sets up its
new frame pointer. It can alter any registers
except DS, SS, and BP.

• To return, the callee restores the caller's frame
pointer, releases the entire frame, and returns.

Since the callee must remove any parameters, the
8088 "RET n" instruction is usually used, with
"n" equal to the number of bytes occupied by the
upper frame pointer.

Functions always return their value in registers; for
structured types and pointers to super arrays (no matter
what length), the caller allocates a frame temporary
for the result, passing the address to the function like a
parameter and receiving the address back in a register.
For simple types and other reference types, a single
byte is returned in AL, two bytes in AX, and four
bytes in the pair ES.

The $RUNTIME and $ENTRY /$LINE metacommands
control special calls at the beginning and end of a
routine.

The next example illustrates some of the internal
calling conventions and shows how to read and obtain
information from the PAS2 listing file. The assembler
routine following the example program illustrates how
the offsets in the symbol table are arrived at.

10-17

10-18

Example I:

1 PROGRAM EXAMPLE;
2 VAR I:INTEGER;
3
4 PROCEDURE PROC1;
5 VAR K:INTEGER;
6 PROCEDURE PROC2(VAR J:INTEGER);
7 PROCEDURE PRoe3;
8 BEGIN
9 J:=J+1;

10 K:=J
11 END;

Offset Length Variable - PROC3
2 6 Return Offset, Frame Length

12
13
14

BEGIN
PROC3

END;

Offset Length
4 8
2 2

15 BEGIN

Variable - PROC2
Return Offset, Frame Length
J

16 PROC2(1)
17 END;

Offset Length
o 6
4 2

18 BEGIN
19 1:=1;
20 PROC1
21 END.

Offset Length
o 4
2 2

Variable - PROC1
Return Offset, Frame Length
K

Variable
Return Offset, Frame Length
I

Procedure/Function : PROC3

0000001 PUSH BP
;Push the caller's frame pointer.
0000002 MOV BP,SP
0000004 AOO BP,04H
;Make the caller's SP(top of frame}
;the callee's frame pointer and add
;4 bytes to allow for the upper frame
;pointer and caller's BP.
0000007 SUB SP,0004H
;Set up the SP(top of frame} for the
;callee. Leave room for local variables
;and temporaries.

L9:

•
•
•

L 10:

00001 D MOV OI,[BP] .OOH
;Get the caller's frame pointer
000020 MOV 0 I,FEH [01]
;Get the address of J by adding the
;offset to the frame pointer.
000023 MOV OX,[OI]
;Get the value of J.
000025 MOV SI,[BP] .OOH
;Get the caller's frame pointer.
000028 MOV SI,[SI]
;Get the caller's caller's
;frame pointer.
00002A MOV FCH [SI] ,OX
;Move the value of J to K
;through K's address.
00002D LEA SP,[BP] FCH
;Reset SP(top of frame} to
;point to caller's BP.
000030 POP BP
;Pop the caller's BP.
000031 RET 0002H
;Throw away two bytes
;(the upper frame pointer)
;and return.

10-19

10-20

Procedure/Function : PROC2

000034 PUSH BP
;Push the caller's frame pointer.
000035 MOV BP,SP
000037 ADD BP,06H
;Make the caller's SP
;(top of frame) the callee's
;frame pointer and add 6
;bytes to allow for the
;upper frame pointer,
;the VAR parameter, and the
;saved caller's frame pointer.
00003A SU B SP,0004H
;Set up the callee's SP
;(top of frame) and leave
;room for local
;variables and temporaries.

L 13:

00003E PUSH BP
;Push the caller's BP(frame pointer).
00003F CALL PROC3
;Call PROC3 and push the return address.
000042 LEA SP,[BP] .FAH
000045 POP BP
;Back up the SP to point to BP.
000046 RET 0004H
;Th row away fou r bytes
;(caller's frame pointer
;(upper frame pointer,
;and V AR parameter» and
;return.

Procedure/Function - PROCl

000049 PUSH BP
;Push the caller's frame pointer.
00004A M 0 V BP ,SP
00004C ADD BP,02H
;Make the caller's SP(top of frame) the callee's
;frame pointer and add 2 bytes to allow for the
;push of BP.
00004F SUB SP,0006H
;Set up the SP(top of frame) for the callee.
;leave room for local variables and temporaries.

l16:

000053 PU SH BP
;Push the caller's frame pointer (PROCl is now
;the caller) because this is a nested procedure.
000054 MOV DX,@@I
000057 PUSH DX
;Push the address of I which is a global static
;variable.
000058 CAll PROC2
;Call PROC2 and push the return address.
00005B lEA SP,[BP] .FEH
;Reset the SP(top of frame) to point to the
;caller's BP.
00005E POP BP
00005F RET
;Pop the BP for the caller and return (pop
;the return address).

10-21

Procedure/Function : Example
•
•
•

L 19:

00006F MOV 1,0001 H

L20:

000075 CALL PROCl
;Call PROCl and push the return address.
000078 LEA SP,[BP] .FCH
00007B POP BP
00007C LRET

•
•
•

10-22

Example 2 is an assembler routine callable from Pascal:

;Unsigned Addition

;FUNCTION UADDOK {A, B: WORD; VAR C: WORD
; BOOLEAN;
;set C:=A+B and return TRUE
;if no overflow
;FRAME: VALUE A ;10

VALUE B ;8
ADR C ;6
<RET/BP> ;0

UADDOK PROC
PUSH
MOV
MOV
ADD
MOV
MOV
MOV
JB
INC

UADRET: POP
RET

UADDOK ENDP

FAR
BP
BP,SP
AX,[BP+10]
AX,[BP+08]
BP,[BP+06]
[BP] ,AX
AX,O
UADRET
AX
BP
6

;save frame pntr
;to address parms
;get A
;add B
;adr C
;result
;assume bad
;yes it was
;make good
;get frame pntr
;return pop 6
;bytes

10-23

10-24

CHAPTER 11. AVAILABLE PROCEDURES
AND FUNCTIONS

Contents

Predeclared Procedures and Functions 11-3
Dynamic Allocation Procedures . 11-3

PROCEDURE NEW (Short Form) 11-3
PROCEDURE NEW (Long Form) 11-4
PROCEDURE DISPOSE (Short Form) . 11-5
PROCEDURE DISPOSE (Long Form) 11-6

Data Transfer Procedures and Functions 11-7
FUNCTION TRUNC . . 11-7
FUNCTION ROUND 11-7
FUNCTION FLOAT . . 11-7
FUNCTION ORD 11-7
FUNCTION WRD 11-8
FUNCTION CRR 11-8
FUNCTION ODD 11-8
FUNCTION SUCC 11-8
FUNCTION PRED 11-8
PROCEDURE PACK. . 11-9
PROCEDURE UNPACK 11-9

Arithmetic Functions 11-9
REAL Functions11-11

Extended Intrinsics Feature . .11-12
PROCEDURE ABORT. .11-12
FUNCTION LOWER. . .11-12
FUNCTION UPPER .. .11-13
FUNCTION LOBYTE, FUNCTION

HIBYTE11-13
FUNCTION BYWORD . . .11-13
PROCEDURE EVAL .11-13
FUNCTION RESULT .11-14
FUNCTION SIZEOF . .11-14
ENCODE. . .11-14
DECODE.11-15

11-1

11-2

System Intrinsics Feature . .
RETYPE
PROCEDURE MOVEL
PROCEDURE MOVER
PROCEDURE FILLC

String Intrinsics Feature . .
LSTRING Assignment
STRING Assignment
Comparison
READ LSTRING
T.LEN .,

LSTRING Specific Intrinsics
PROCEDURE CONCAT
PROCEDURE DELETE
PROCEDURE INSERT
PROCEDURE COPYLST

STRING or LSTRING Intrinsics
FUNCTION POSITN . . .
FUNCTION SCANEQ ..,
FUNCTION SCANNE ..,
PROCEDURE COPYSTR .

Library Procedures and Functions .

.11-15

.11-15

.11-16

.11-17

.11-17

.11-17

.11-18

.11-18

.11-18

.11-18

.11-19

.11-20

.11-20

.11-20

.11-20

.11-20

.11-20

.11-20

.11-21

.11-21

.11-21

.11-21

Predeclared Procedures and Functions

Standard procedures and functions are "predeclared"
in Pascal, so they can be re-defined within a program.
IBM Pascal provides additional predeclared
procedures and functions. These should be avoided if
portability is necessary. All parameters to standard
procedures and functions are value parameters unless
otherwise stated.

There is a distinction in IBM Pascal among three kinds
of procedures and functions provided:

• Those which the compiler translates into other
calls or special generated code (for example, ORD,
RETYPE).

• Those, like normal procedures and functions, that
are simply predeclared (for example, SIN, RESET).

• Those not predeclared but part of the IBM Pascal
standard library (for example, TIME, DATE).

File oriented procedures and functions are discussed
separately in Chapter 12.

Dynamic Allocation Procedures

PROCEDURE NEW (V AR P: pointer)

Allocates a new variable V and assigns a pointer to V to
the pointer variable P (a VAR parameter). If V is a
super array type, the long form (below) must be used.
If V is a record type with variants, the variants giving
the largest possible size are assumed, permitting any
variant to be assigned to PA.

11-3

11-4

PROCEDURE NEW (VAR P: pointer; Tl, T2, ... Tn:
tags)

Allocates a variable with the variant specified by the tag
field values TI, T2, ... Tn. The tag field values are listed
in the order of declaration. Any trailing tag fields can
be omitted.

If all tag field values are constant, only the amount of
space required on the heap is allocated, rounded up to a
word boundary. The value of any omitted tag fields is
assumed to be such that the maximum possible size is
allocated.

If some tag fields are not constant values, the compiler
assumes the first non-constant tagfield and all tags
following have an unknown value and allocate the
maximum size necessary for this case.

The programmer should set all tag fields to their
proper values after the call to NEW and never change
them. The compiler does not assign the tag values, or
check that they are initialized correctly, or check that
their value is not changed during execution.

In ISO Pascal, a variable created with the long form of
NEW cannot be used as an expression operand, nor
can it be passed as a parameter or a value be assigned
to it. IBM Pascal does not catch these errors. Fields
within the record can be used normally.

Assigning a larger record to a smaller one allocated with
the long form of NEW would wipe out part of the heap.
This condition is difficult to detect at compile time.

Therefore, any assignment to a record in the heap
which has variants uses the actual length of the record
in the heap, rather than the maximum length.

However, an assignment to a field in an invalid variant
may destroy part of another heap variable or the heap
structure itself. This error is not caught.

The super array type feature allows pointers to super
arrays. The long form of NEW is used as described
above, except that array upper bound values are given
instead of tag values. All upper bounds must be given.

The entire array referenced by such a pointer cannot
be assigned or compared, unless the reference type is
LSTRING. The entire array can be passed as a
reference parameter if the formal parameter is of the
same super array type. Components of the array can be
used normally.

PROCEDURE DISPOSE (VAR P: pointer)

Releases the memory used for the variable pointed at
by P. P must be a valid pointer; not NIL, uninitialized,
or pointing at a heap item that has been DISPOSEd
already (these are checked if $NILCK is on).

P should not be a reference parameter, or a WITH
statement record pointer, but these errors are not
caught.

If the variable is a super array type or a record with
variants, this form can be used safely to release it
regardless of whether a long or short form of NEW was
used to allocate it (using short form DISPOSE on a
heap variable allocated with long form NEW is an
ISO Pascal error not caught).

11-5

11-6

PROCEDURE DISPOSE (V AR P: pointer;
T1, T2, ... Tn: tags)

Can also be used to release the memory pointed at by
P. The size of the variable is checked against the size
implied by the tag field or array upper bound values
Tl, T2, ... Tn, where these are defined as in the NEW
procedure.

See the SIZEOF function, which uses the same array
upper bounds or tag value parameters to return the
number of bytes in a variable.

Data Transfer Procedures and Functions

FUNCTION TRUNC (X: REAL): INTEGER

X is REAL, result INTEGER; truncates toward zero (for
example, TRUNC (1.4) is 1; TRUNC (-1.4) is -1).
Error if ABS (X) > MAXINT.

FUNCTION ROUND (X: REAL): INTEGER

X is REAL, result INTEGER; rounds away from zero
(for example, ROUND (1.6) is 2; ROUND (-1.6) is -2).
Error if ABS (X) > MAXINT.

FUNCTION FLOAT (X: INTEGER): REAL

X is INTEGER, result REAL; converts integer to real.
Normally not needed by the programmer, since
integer-to-real is usually done automatically. Needed by
the run time package, so included in Standard level.

FUNCTION ORD (X: ordinal): INTEGER

X can be any ordinal type; result is INTEGER:
X is INTEGER: return X
X is WORD: if X <= MAXINT, return X else return X

- 2 * (MAXINT+l) (that is, return same 16 bit value)
X is CHAR: return ASCII code for X
X is enumerated type: return position of X in the type

definition, starting with zero.
X can also be a pointer; returns value as INTEGER.

11-7

11-8

FUNCTION WRD (X: ordinal): WORD

X can be any ordinal type; result is WORD:
X is INTEGER: if X >= 0, return X, else return X +

MAXWORD + 1 (that is, return same 16 bit value)
X is WORD: return X
X is CHAR: return ASCII code for X
X is enumerated type: return position of X in the type

definition, starting with zero.
X can also be a pointer; returns value as WORD.

FUNCTION CHR (X: ordinal): CHAR

X can be any ordinal type; result is CHAR: ASCII code
of result is ORD (X);
extension to ISO Pascal (in which X must be INTEGER);
error if ORD (X) > 255 or ORD (X) < 0 (if $RANGECK
on).

FUNCTION ODD (X: ordinal): BOOLEAN

X can be any ordinal type; true if ORD (X) is odd, else
false.

FUNCTION SUCC (X: ordinal): ordinal

X is any ordinal type; result is same type;
returns Y such that ORD (Y) is ORD (X) + 1;
error if out of range, caught if $RANGECK on;
error if overflow, caught if $MATHCK on.

FUNCTION PRED (X: ordinal): ordinal

X is any ordinal type; result is same type;
returns Y such that ORD (Y) is ORD (X) - 1;
error if out of range, caught if $RANGECK on;
error if overflow, caught if $MA THCK on.

PROCEDURE PACK(CONST A:unpack-array;
I:index; VAR Z: packed-array)

Used to move the elements of an unpacked array to a
packed array. If A is an ARRAY [M .. N] OF T and Z
is a PACKED ARRAY [U .. V] OF T then the above call
is the same as:

FOR J := U TO V DO Z [J] := A [J-U+I]

or the equivalent for non-integer indices.

PROCEDURE UNPACK(CONST Z:packed-array;
VAR A:unpack-array; I: index)

Moves from a packed array to an unpacked array, in a
similar way. It is the same as:

FOR J := U TO V DO A [J-U+I] := Z [J]

In both PACK and UNPACK the parameter I is the
initial index within A. The bounds of the arrays and the
value of I must be reasonable; that is, the number of
components in the unpacked array A from I to M must
be at least as great as the number of components in the
packed array Z. The $RANGECK switch controls
checking the bounds.

Arithmetic Functions

All arithmetic functions take a value parameter of type
REAL or a type compatible with INTEGER. ABS and
SQR also take WORD.

All functions on REALs check for an invalid
(uninitialized) value, as well as particular error conditions
given below, and generate a runtime error if an error
condition is found.

For INTEGER and WORD type ABS and SQR
functions, if $MATHCK is on, error conditions
generate a runtime error. If it is off, the result of an

11-9

11-10

error is undefined.

• ABS(X)

• SQR(X)

• SQRT(X)

• SIN(X)

• COS(X)

• ARCTAN(X)

• EXP(X)

• LN(X)

The arithmetic functions are:

Absolute value of X (REAL,
INTEGER, WORD, INTLONG).

Square of X [X * Xl (REAL,
INTEGER, WORD).

Square root; result REAL; error
ifX< O.

Sine of X radians; result REAL.

Cosine of X radians; result REAL.

Arctangent of X returns radians;
result REAL.

Exponential [e to the Xl ; result
REAL.

Logarithm [base e 1 of X; result
REAL; error if X<=O.

Some mathematical functions found in other languages
are not in Pascal, but are relatively simple to do in-line:

• MAX (X, Y) = X + (Y - X) * ORD (X < Y)

• MIN (X, Y) = X + (Y - X) * ORD (X> Y)

• SIGN (X) = ORD (X> 0) - ORD (X < 0)

• POWER (X, Y) = EXP (Y * LN (X)) {X to the Y
for X> O}

These could also be written in Pascal as user functions.
This would be a good place to use the PURE attribute
and $ RUNTIME metacommand. For example:

{$RUNTIME+ }
FUNCTION POWER (A,B:REAL): REAL [PURE];

BEGIN
IF A<=O THEN ABORT('Nonplus real to power',24,O);
POWER :=EXP(B*LN (A));

END;

REAL Functions

The runtime library provides several additional REAL
functions. These must be declared with the EXTERN
directive:

RSIRQQ (A:REAL, B:INTEGER): Returns A **B,
integer power.

RSRRQQ (A,B:REAL): Returns A**B, real power
(A>=O).

MINRQQ (A,B:REAL): Returns minimum of A and B.

MAXRQQ (A,B:REAL): Returns maximum of A and B.

AT2RQQ (A,B:REAL): Returns arctangent of (A / B).

TANRQQ (A:REAL): Returns tangent of A.

ASNRQQ (A:REAL): Returns arcsine of A.

ACSRQQ (A: REAL): Returns arccosine of A.

TNHRQQ (A: REAL): Returns hyperbolic tangent of A.

SNHRQQ (A:REAL): Returns hyperbolic sine of A.

CHSRQQ (A:REAL): Returns hyperbolic cosine of A.

LNDRQQ (A:REAL): Returns logarithm base 10 of A.

ANNRQQ (A:REAL): Returns integral part of A (type
REAL).

AINRQQ (A:REAL): Like ANNRQQ but rounds toward
zero.

11-11

DXPRQQ (A:REAL):INTEGER: Returns decimal
exponent of A. For example, if E is DXPRQQ(A) then
10 to the E-l<=ABS(A)< 10 to the E.

M10RQQ (A:REAL; I: INTEGER): Returns A times 10
to the I.

MP2RQQ (A:REAL; I:INTEGER): Returns A times 2
to the I.

Extended Intrinsics Feature

11-12

The extended intrinsics feature provides the following
procedures and functions:

PROCEDURE ABORT (CONST STRING, WORD,
WORD)

Procedure that stops program execution in the same way
as an internal runtime error. The STRING (or LSTRING)
is an error message; the first WORD is an error code (see
Appendix B for error code allocations), and the second
WORD can be anything, and will appear in a field called
STATUS.

The parameters, and available data about the machine
state (program counter, frame pointer, stack pointer)
and the source position of the ABORT call (if $LINE
or $ENTRY are on) are given to the user in a
termination message.

If $RUNTIME is on, machine state data is for the
location where the first call to a procedure or function
compiled with $RUNTIME on occurred.

FUNCTION LOWER (expression): value

Function with one parameter of one of the following
types: array, set, enumerated, or subrange; returns
respectively the lower bound of an array, lowest
allowable element of a set, first value of an enumerated

type, or lower bound of a subrange, of the appropriate
type; note that only the type (not the value) of the
expression is used; always constant.

FUNCTION UPPER (expression): value

UPPER is similar to LOWER, but returns the upper
bound, etc. of the type of the parameter. UPPER is
constant unless the expression is of a super array type,
in which case the actual upper bound of the super
array type is returned.

FUNCTION LOBYTE (integer-word): integer-word
FUNCTION HIBYTE (integer-word): integer-word

Returns the least significant or most significant byte
(value 0 .. 255), of the parameter with the same type
(INTEGER or WORD) as the parameter; note that the
least significant byte may be the first or second byte of
the word, depending on the target processor.

FUNCTION BYWORD (one-byte, one-byte): WORD;

Takes two parameters, of any ordinal type that fits in
one byte; returns a WORD with the first byte in the
most significant part and the second byte in the least
significant part; note again that the order of the bytes
is by significance and not by address.

PROCEDURE EVAL (expression, expression,
... expression)

Procedure that evaluates its parameters only; used to
evaluate an expression as a statement; any number of
parameters of any type. Can be used to evaluate a
function for its side effects only.

11-13

11-14

FUNCTION RESULT (function-identifier): value

Function used to access the current value of a function;
can only be used within the function itself or in a
procedure or function nested within it.

FUNCTION SIZEOF (variable): WORD
FUNCTION SIZEOF (variable, tag 1 , tag2, .. .tagn):
WORD

Returns the size of a variable, in bytes of type WORD;
tag values or array upper bounds are set as in the NEW
and DISPOSE functions; if the variable is a record with
variants, and the first form is used, the maximum size
possible is returned; if the variable is a super array, the
second form giving upper bounds must be used.

ENCODE (VAR LSTRING, X:M:N): BOOLEAN

Boolean function that converts expression X to its
external ASCII representation and puts this character
string in to the LSTRING. Returns true unless the
LSTRING is too small to hold the string generated,
in which case returns false and the value of the
LSTRING is undefined.

Works exactly the same as the WRITE procedure,
including the use of M and N parameters (see Chapter
12, "Textfile Input and Output"). X must be type
INTEGER, WORD, enumerated, one of their
subranges, BOOLEAN, REAL, or a pointer (address
types need the .R or .S suffix).

DECODE (CONST STRING, VAR X:M:N): BOOLEAN

Boolean function that converts the character string in the
STRING (or LSTRING) to its internal representation
and assigns this to X.

Returns true unless the character string is not a valid
external ASCII representation of a value whose type is
assignment compatible with X, in which case returns
false and the value of X is undefined.

Works exactly the same as the READ procedure,
including the use of M and N parameters. If X is a
subrange, DECODE returns false if the value is out of
range (regardless of the setting of $RANGECK).

Leading and trailing spaces and tabs in the STRING are
ignored; all other characters in the STRING must be
part of the representation. X must be one of the types
given above for ENCODE.

System Intrinsics F ea ture

The system intrinsics feature provides the following
procedures and functions:

RETYPE (type-identifier, expression)

Generic type escape; function returning expression as
type. The types implied by the type-identifier and the
expression should usually have the same length, but this
is not checked. RETYPE for a structure can be
followed by component selectors (array index, fields,
deference, etc.).

11-15

11-16

RETYPE is a "dangerous" type escape, and may not
work as intended. There are two other ways to change
type:

• One can declare a record with one variant of each
type needed, assign an expression to one variant
and get the value back from another variant (this
can be done in Standard level and is an error not
caught).

• One can declare an address variable of the type
wanted and assign to it the address of any other
variable (using ADR).

These methods have subtle differences and quirks, and
should be avoided whenever possible.

The following procedures take value parameters of type
ADRMEM, but since all ADR types are compatible, the
AD R of any variable or constant can be used as the
actual parameter. They are dangerous, but useful in
some cases.

PROCEDURE MOVEL (S, D: ADRMEM; L: WORD)

Moves L characters (bytes) starting at SA (source) to DA
(destination), starting at the left end of the strings and
continuing to the right. There is no bounds checking,
regardless of the $RANGECK or $INDEXCK setting
(that is, it MOVES bytes starting from the left end of th
source into the left end of the destination).

PROCEDURE MOVER (S, D: ADRMEM; L: WORD)

Like MOVEL but starts at the right end of the strings.

Example:

TYPE S10=STRING(10);
VAR ST:S10;
BEGIN

ST:='1234567890'
MOVER(ADR ST[6] ,ADR ST&1] ,5);
(*result: '6789067890'*)
MOVEL{ADR ST[1] ,ADR ST&1rb.3] ,6);
(*result; '6767676790'*)

END.

PROCEDURE FILLC (D: ADRMEM; L: WORD; C:
CHAR)

Fills D with L copies of the char C; as with MOVEL
and MOVER there is no bounds checking. The
corresponding segmented address versions of these
routines, called MOVESL, MOVESR, and FILLSC,
are also available; they are declared with ADSMEM
instead of AD RMEM parameters.

String Intrinsics Feature

The string intrinsics feature provides a set of procedures
and functions; some operate on STRINGs and LSTRINGs
and some on LSTRINGs only.

The compiler supports STRINGs and LSTRINGs
directly in the following ways:

11-17

11-18

LSTRING Assignment

Any LSTRING value can be assigned to any LSTRING
variable, as long as the maximum length of the target
variable is greater than or equal to the current length
of the source value and neither is the super array type
LSTRING. If the maximum length of the target is
less than the current length of the source, only the
target length is assigned and a runtime error occurs if
$RANGECK is on.

STRING Assignment

A STRING value can be assigned to a STRING
variable, as long as the length of both sides is the same
and neither is the super array type STRING. STRING
assignments always generate relatively fast code.
Passing either kind of string as a value parameter is much
like an assignment.

Comparison

For LSTRINGs, the <, <=, >, >=, < >, and = operators
use the length byte for string comparisons, and the
operands can be of any length. Comparison assumes
the shorter operand is extended with CRR (0)
components. The operands can be of the super array
type LSTRING. For STRINGs, the same relational
operators can be used, but the bounds must be the
same and super array type STRINGs cannot be used.

READ LSTRING

Reads until the LSTRING is filled or the end of a line,
setting the current length to the number of characters
read. Write LSTRING uses the current length. See
also READSET (Chapter 12) which reads into an
LSTRING as long as input characters are in a given SET

OF CHAR. Read STRING pads with blanks if the line
is shorter than the STRING. Write STRING writes all
the characters in the string.

T.LEN

The current length of an LSTRING variable T can be
accessed as T.LEN as well as T[O]. T.LEN has type
BYTE. This notation can be used to assign a new
length as well as get the current length.

The maxim urn length of an LSTRING, as well as the
length of a STRING, can be found with the UPPER
function; this is especially useful to find the upper
bound of a super array reference parameter.

Note that mixed STRINGs and LSTRINGs cannot
be assigned or compared (unless the STRING is
constant). The MOVEL routine can be used to assign
STRINGs to LSTRINGs or vice versa (see also the
COPYSTR and COPYLST procedures below).

LSTRING constants are normal STRING constants,
since constants of type STRING or CHAR change
automatically to type LSTRING if necessary. NULL
(the zero length LSTRING) is the only explicit
LSTRING constant.

In the following descriptions, all STRING parameters
(CONST or V AR) can take either a STRING or an
LSTRING. All LSTRING parameters are V AR
LSTRING and must take an LSTRING variable.

11-19

LSTRING Specific Intrinsics

PROCEDURE CONCAT (V AR D: LSTRING; CONST
S: STRING)

S is appended to the end of D. D length increases by
length of S. Error if upper (D) < length (D) + upper (S:

PROCEDURE DELETE (V AR D: LSTRING; I, L:
INTEGER)

Deletes L characters from D starting with D [I]. D
length decreases by L. Error if length (D) < I + L - 1.

PROCEDURE INSERT (CONST S: STRING; VAR D:
LSTRING; I: INTEGER)

Inserts the string S characters starting just before D [I] .
D length increases by the length of S. Error if upper
(D) < upper (S) + length (D) or length (D) < 1.

PROCEDURE COPYLST (CONST S: STRING; V AR D
LSTRING)

Copies S to D. Error if upper (D) < upper (S). D lengtl
set to S length.

STRING or LSTRING Intrinsics

11-20

FUNCTION POSITN (CONST P: STRING;CONST S:
STRING;I: INTEGER): INTEGER

Returns integer position of the pattern P in S starting
the search at S [I]. Returns 0 if not found or I> up pet
(S); returns 1 if P is the null string. No error conditions

FUNCTION SCANEQ (L: INTEGER; P: CHAR;
CONST S: STRING; I: INTEGER): INTEGER

Scans, starting at S [I], and returns the number of
characters skipped; stops scanning when a character
equal to pattern P is found or L characters have been
skipped; if L < 0, scans backwards and returns a
negative number. Returns L parameter if no characters
equal to pattern P found. Returns 0 if I> upper (S).
No error conditions.

FUNCTION SCANNE (L: INTEGER; P: CHAR;
CONST S: STRING; I: INTEGER): INTEGER

Like SCANEQ, but stops scanning when a character not
equal to pattern P is found.

PROCEDURE COPYSTR (CONST S: STRING; V AR
D: STRING)

Copies S to D. Error if upper (D) < upper (S).
Remaining characters in D set to blanks.

See also the MOVEL, MOVER, and FILLC procedures
with the system intrinsics.

Library Procedures and Functions

The following routines are not predeclared; the user
must declare them using the EXTERN directive.

11-21

11-22

FUNCTION UADDOK(A,B:WORD;VAR C:WORD):
BOOLEAN;
FUNCTION SADDOK(A,B:INTEGER;VAR C:
INTEGER):BOOLEAN;
FUNCTION UMULOK(A,B:WORD;VAR C:WORD):
BOOLEAN;
FUNCTION SMULOK(A,B:INTEGER;VAR C:
INTEGER): BOOLEAN ;

These four functions do 16 bit signed or unsigned
arithmetic without causing a runtime error on overflow
(normal arithmetic may cause a runtime error even if
$MATHCK is off). They all return true if there was
no overflow, or false if there was overflow. They can
be useful when doing extended precision arithmetic,
or modulo 65536 arithmetic, or arithmetic based on
user input data.

FUNCTION ALLHQQ (SIZE: WORD): WORD;

This is the heap allocation routine. It returns zero if the
heap is full, one if the heap structure is in error, or the
pointer value for an allocated variable with the size
requested.

PROCEDURE TIME (V AR S: STRING);
PROCEDURE DATE (VAR S: STRING);

These procedures assign the current time or date to theil
STRING (or LSTRING) variables, as "HH:MM:SS" or
"DD:MM:YY". They are set using DOS.

FUNCTION TICS: WORD;

Returns the value of the DOS timing location, from 0
to 99 hundreths of a second. The timing location is
updated 18.2 times per second. Thus, the value
returned by TICS is in increments of approximately
.055.

PROCEDURE BEGXQQ;

Overall initialization routine; resets the stack and the
heap, initializes the file system, calls BEGOQQ, and
calls the program body. May be useful to restart from
a catastrophic error. Does not close files.

PROCEDURE ENDXQQ;

Overall termination routine; calls ENDOQQ, terminates
the file system closing any open files, and returns to the
target operating system (or whatever called BEGXQQ).
May be useful to end program execution without calling
ABORT from inside a procedure or function.

BEGOQQ and ENDOQQ are called during initialization
and termination, respectively. They could be used to
invoke a debugger, or write customized messages like
time of execution. They may also be used for other
special purposes.

FUNCTION DOSXQQ (COMMAND: BYTE; PARM:
WORD): BYTE;

This function can be used to invoke the IBM Personal
Computer DOS directly.

11-23

11-24

CHAPTER 12. FILE SYSTEM

Contents

The File System

Introduction to Files
File Structures .
File Modes ...

File System Primitives
PROCEDURE GET (V AR F)
PROCEDURE PUT (VAR F)
PROCEDURE RESET (V AR F)
PROCEDURE REWRITE (F)
FUNCTION EOF
FUNCTION EOLN . . .
PROCEDURE PAGE ..

Accessing the Buffer Variable
Lazy Evaluation ...

Textfile Input and Output ...
The Procedure READ
Procedure READ LN .
Procedure WRITE ..
The Procedure WRITELN

Extended I/O Feature
PROCEDURE ASSIGN (VAR F;

CONSTN: STRING)
PROCEDURE CLOSE (V AR F) .
PROCEDURE DISCARD (VAR F) .

Temporary Files

12-3

12-4
12-4
12-5

12-8
12-8
12-8
12-9

.12-10

.12-10

.12-11

.12-11

.12-12

.12-12

.12-15

.12-18

.12-22

.12-22

.12-27

.12-28

.12-28

.12-29

.12-30

.12-30

12-1

12-2

Other File Procedures
PROCEDURE READ SET (V AR F,

V AR L: LSTRING, CONST S:
SETOFCHAR)

PROCEDURE READFN (VAR F, PI,
P2, ... Pn)

File Field Values . .
F.MODE
F.TRAP: BOOLEAN
F.ERRS: 0 . .15 ...
File F Error Codes:

File Variables in Headings
System I/O Feature . . .
DIRECT Files

PROCEDURE GET
PROCEDURE PUT
PROCEDURE REWRITE
PROCEDURE RESET .
PROCEDURE EOF
PROCEDURE SEEK ...
SEEK followed by GET .
SEEK followed by READ,

BINARY files
SEEK followed by READ/READLN,

.12-31

.12-31

.12-31

.12-32

.12-32

.12-33

.12-33

.12-34

.12-35

.12-35

.12-37

.12-38

.12-38

.12-38

.12-38

.12-38

.12-39

.12-39

.12-39

ASCII files 12-40
SEEK followed by PUT 12-40
SEEK followed by WRITE,

BINARY files 12-40
SEEK followed by WRITE/WRITELN,

ASCII files 12-40
EOF in DIRECT Mode 12-41

The File System

The discussion of the file system first describes the file
types, file structures, and file modes. Next is a
discussion of the primitive operations: GET, PUT,
RESET, REWRITE, EOF, EOLN, PAGE, and accessing
the buffer variable.

Then the higher level routines READ, READLN,
WRITE, and WRITELN are described, followed by
the extended I/O feature routines: ASSIGN, CLOSE,
DISCARD, READSET, and READFN, including
temporary files and default file control block fields for
error and mode control.

Finally the system I/O feature is introduced.

12-3

Introduction to Files

In the Pascal language a "file" is, in theory, just
another abstract data type. Of course, most Pascal
implementations connect variables of this type to
actual operating system data files.

IBM Pascal files connect to the normal kinds of files
available in the IBM Personal Computer Disk Operating
System (DOS).

These include video displays, printers, generic stream
devices (like an RS232 port), and disk files with
textual or internal format data that are accessed with
several different methods.

IBM Pascal always uses the DOS to access files and
does not impose additional formatting or structure.

Files come in two basic structures and three modes.

File Structures

12-4

The file structures are BINARY and ASCII.

BINAR Y structure files in IBM Pascal (similar to the
standard Pascal FILE of some type), correspond to
unformatted operating system files.

The primitives GET and PUT transfer a fixed number of
bytes per call equal to the length of one component of
the BINARY file.

ASCII structure files (like the standard Pascal data type
TEXT) correspond to textual operating system files.
The Pascal TEXT type is like a FILE OF CHAR, but
groups of characters are organized into "lines."
Primitives like GET and PUT always operate on a
character basis on these files.

In Pascal, textfiles are divided into lines with a "line
marker," conceptually a character not in the type CHAR.
Although a textfile can in theory contain any value of
type CHAR, in IBM DOS writing a CHAR(l3), carriage
return, terminates the current line (record).

This character value is used as the "line marker" in this
case, and when read always looks like a blank. To the
user every line is followed by a line marker which reads
as a blank.

In a similar way, the character CHR(26) indicates the
end of a text file. This means that writing CHR(26)
ends the file, and an attempt to read CHR(26) is an
error (reading past end of file).

File Modes

The standard file modes are TERMINAL,
SEQUENTIAL, and DIRECT:

• TERMINAL mode files always correspond to an
interactive display/keyboard or printer

• SEQUENTIAL mode files correspond to a
diskette file or other sequential access device

• DIRECT mode corresponds to diskette file or
other random access device

12-5

12-6

Standard Pascal files can have SEQUENTIAL,
TERMINAL, or DIRECT mode. The extended I/O
feature includes the ability to access the mode of a file.

SEQUENTIAL and TERMINAL mode files are opened
for either reading or writing at the beginning of the file,
and records are accessed in order until the end of the
file.

SEQUENTIAL and TERMINAL mode ASCII structure
files have variable length records (lines). All BINARY
structure files have fixed length records (lines or
components).

The declaration for a file in Pascal tells the structure
but not the mode; for example, FILE OF STRING (80)
indicates BINARY structure and TEXT indicates ASCl]
structure.

The assignment F.MODE := SEQUENTIAL sets the rna
for SEQUENTIAL files.

Pascal has two predeclared files, INPUT and OUTPUT.
In IBM Pascal they start out connected to the user's
key board and display and have ASCII structure and
TERMINAL mode, but can be reassigned and/or given
another mode.

TERMINAL mode input operates in different ways
depending on whether the file has ASCII or BINARY
structure. For ASCII structure (type TEXT), entire
lines are read at one time, allowing the usual DOS
inter-line editing (backspace, advance cursor, cancel,
etc.) while the line is being typed and echoing
characters as typed in the usual way.

Since an entire line is read at once, the programmer
cannot read characters as they are typed. However, for
BINARY structure TERMINAL mode (usually type
FILE OF CHAR), the programmer can GET characters

as they are typed; no inter-line editing or echoing is
done. This method permits doing screen editing, menu
selection, and other interactive programming on a
keystroke rather than line basis.

The READ procedure cannot be used to access this
facility. In this TERMINAL/BINARY mode, two
special characters exist to facilitate this operation. The
value CHR(O) as the first byte means that no data is
present. This value cannot be read. The value
CHR(255) cannot be written to a TERMINAL BINARY
file because it means "read a character" to DOS. For
example:

PROGRAM SAMPLE (lNPUT,OUTPUT);
VAR F: FILE OF CHAR;
FUNCTION INKEY: CHAR;

BEGIN

END;

REPEAT GET(F} UNTIL FI\<>CHR{O};
INKEY:=FI\;

VAR C:CHAR;
BEGIN

END.

WRITE LN ('Terminal binary{echo}');
ASSIGN (F,'USER');
RESET (F);
ASSIGN (G,'USER');
REWRITE (G);
REPEAT C:=INKEY; WRITE (G,C); UNTIL

C = " . . ,

This exam pIe program reads and echoes characters
until a "." is encountered. The INKEY function
waits in a loop until a character is available. Special
characters are also read in, like Ctrl-C, Esc, backspace,
etc.

12-7

File System Primitives

12-8

Later descriptions of READ and WRITE procedures
are defined in terms of the primitives GET, PUT, and
buffer variable access. In all descriptions below, F is a
file parameter (files are always reference parameters),
and FA is the buffer variable.

PROCEDURE GET (V AR F)

If there is a next component in the file F, then the
current file position is advanced to the next
component, the value of this component is assigned to
the buffer variable FA, and EOF (F) becomes false.

Advancing and assigning may be deferred internally
using "lazy evaluation" (see below). If no next
component exists, then EOF (F) becomes true and
the value of FA becomes undefined. EOF (F) must be
false before GET (F) since reading past the end of file
gives a runtime error.

If FA is a record with Variants, the variant with the
maximum size is read.

PROCEDURE PUT (V AR F)

If the previous operation on F was a REWRITE or
PUT (or other write procedure) but not a RESET or
GET (or other read procedure), then the value of the
buffer variable FA is written to file F and the value of
FA becomes undefined, or else an error occurs.

EOF (F) must be true before PUT (F). EOF (F) will
always be true after PUT (F).

If F/\ is a record with variants, the variant with the
maximum size is written.

PROCEDURE RESET (V AR F)

Reset the current file position to its beginning and do a
GET (F). If the file is not empty, the first component
of F is assigned to the buffer variable F/\, and EOF (F)
becomes false. If the file is empty, the value of F/\ is
undefined and EOF (F) becomes true.

This is a necessary initialization prior to reading the file
F. A RESET closes the file and then opens it again.

If the filename has not been set (as a program
parameter, with READFN, or with ASSIGN), or the file
cannot be found by the operating system, an error
occurs.

If an error occurs during RESET the file is closed (even
if the file was opened correctly and the error came with
the initial GET). RESET (INPUT) is done
automatically when a program is initialized, but is also
allowed explicitly.

Note that an explicit GET (F) immediately following a
RESET (F) assigns the second component of the file
to the buffer variable. However, a READ (F, X)
following a RESET (F) sets X to the first component
of F, since READ (F, X) is "X := F/\; GET (F)."

A RESET will clear the error trapping flag (set it false).

12-9

12-10

PROCEDURE REWRITE (F)

Reset the current file position to its beginning. The
value of FA is undefined and EOF (F) becomes true.
This is a necessary initializing operation prior to
wri ting the file F.

REWRITE closes the file and then opens it again. If the
file does not exist in the operating system, it is created;
if it does exist, its old value is lost. The filename must
have been set (as a program parameter, with READFN,
or with ASSIGN).

If an error occurs during REWRITE, the file is closed;
an existing file with the same name is not affected.

REWRITE (OUTPUT) is done automatically when a
program is initialized, but is also allowed explicitly.

REWRITE does not do an initial PUT the way RESET
does an initial GET. A REWRITE will clear the error
trapping flag (set it false).

FUNCTION EOF: BOOLEAN
FUNCTION EOF (VAR F): BOOLEAN

EOF tells whether the buffer variable FA is positioned
at the end of the file F for modes SEQUENTIAL and
TERMINAL, so if EOF (F) is true either the file is
being written or the last GET reached the end of the
file. EOF with no parameter is equivalent to EOF
(INPUT).

EOF (INPUT) is generally never true, except when the
terminal character CHR(26) generates an end of file
status (entered as Ctrl-Z), or if INPUT is reassigned to
another file. Calling the EOF (F) function also
accesses the buffer variable FA, causing a GET if no
previous GET was done, because "lazy evaluation"
defers the initial GET.

FUNCTION EOLN: BOOLEAN
FUNCTION EOLN (V AR F): BOOLEAN

Indicates whether the buffer variable FA is positioned
at the end of a line in the textfile F after a GET (F).
Calling EOLN (F) when EOF (F) is true is an error in
ISO Pascal usually caught in IBM Pascal. The file must
have ASCII structure (be of type TEXT) to use EOLN.

If EOLN (F) is true the value of FA is a blank but the
file is positioned at a "line marker." EOLN with no
parameter is equivalent to EOLN (INPUT). Calling the
EOLN (F) function also accesses the buffer variable
FA.

PROCEDURE PAGE
PROCEDURE PAGE (V AR F)

Causes skipping to the top of a new page when the
textfile F is printed. Since PAGE writes to the file,
the initial conditions described for PUT must be true.
The file must have ASCII structure. PAGE with no
parameter is equivalent to PAGE (OUTPUT).

If F is not positioned at the start of a line, PAGE (F)
first writes a line marker to F.

If F has mode SEQUENTIAL, then PAGE (F) writes
a form feed, CRR (12).

If F has mode TERMINAL, then PAGE (F) writes the
following six characters: carriage return, line feed,
form feed, backspace, space, carriage return.

12-11

Accessing the Buffer Variable

12-12

An internal mechanism (generally transparent to the
programmer) is used to handle interactive terminal
input in a natural way.

• "Lazy Evaluation" applies to all ASCII structure
files and is necessary for natural terminal input.

In this case, the compiler generates a runtime call
executed before any use of the buffer variable
(assignment to it, using it in an expression, checking
EOF or EOLN, and so on).

Lazy Evaluation

Lazy evaluation only occurs when reading from a
textfile. The file's buffer variable has a special
status value which can be "full" or "empty."

Two rules apply to any textfile F:

• When F's buffer variable is accessed, if its status
is "empty" the next file component is physically
input; after an access the status is always "full."

• When the GET (F) procedure is called, if its status
is "empty" the next file component is physically
input; after a call to GET, the status is always
"empty."

This effectively defers physical input until actually
needed by a buffer variable access (including the EOLN
and EOF functions). RESET first sets the status "full,"
and calls GET which just sets it "empty" without
doing physical input. Lazy evaluation is permitted in
the ISO standard.

Examples:

{RESET (INPUT); done automatically}
WRITE (OUTPUT, "Enter number: ");
READLN (INPUT, FOO);

The RESET does a GET, which just sets the buffer
variable status to "empty." The first physical action
to the screen/keyboard is the prompt output from the
WRITE.

The READLN does a series of "temp := INPUTA; GET
(INPUT)" operations; in each of these physical input
occurs when INPUT/\ is fetched, and the GET just sets
the status back to "empty." READLN ends with the
sequence:

WHILE NOT EOLN DO GET; GET

This has the effect of skipping trailing characters and the
line marker (that is, the carriage return). The EOLN
function invokes the physical input; when the carriage
return is input, the EOLN status is set.

Both the GET in the WHILE loop and the trailing GET
just set the status back to "empty." The last physical
input in the sequence above is reading the carriage
return.

The Standard Pascal READ procedure is always one
component ahead; it calls GET after setting the target
variable to the buffer variable's value.

The motivation for this is setting the EOF value before
READ to avoid READing the end of file. In Pascal's
original batch processing sequential file environment,
this method is acceptable.

If RESET and READ were used without lazy
evaluation, the user would have to type the first
character of Faa to satisfy the GET in RESET, then
see the prompt, and type the rest of Faa, a carriage
return, and the first character of the next response.

12-13

12-14

IBM Pascal generates an I/O system call when accessing
the buffer variable. However, if the buffer variable is an
actual reference parameter, the procedure or function
using that parameter can do I/O to the same file, and
these special calls cannot be executed.

Passing any buffer variable as a reference parameter is an
error (although only a warning is given), and the effect
of doing GET or PUT on a file in a procedure or function
accessing the buffer variable indirectly through a
reference parameter is undefined. Assigning the address
of a buffer variable to an address type variable has
much the same insecurity.

Textfile Input and Output

Legible input and output in Standard Pascal is done with
textfiles (that is, of type TEXT, with ASCII structure)
that are passed as program parameters to a Pascal
program and in its environment represent some input or
output device such as a display, a keyboard, a line
printer, or a diskette file. The extended I/O feature
permits using additional files not given as program
parameters.

In order to facilitate the handling of textfiles, the four
standard procedures READ, READLN, WRITE, and
WRITELN are introduced in addition to the procedures
GET and PUT.

The new procedures are used with a more flexible
syntax for their parameter lists, allowing for, among
other things, a variable number of parameters.

Moreover, the parameters need not necessarily be of
type CHAR, but can also be of certain other types, in
which case the data transfer is accompanied by an
implicit data conversion operation. In some cases
parameters can have additional formatting values
included which affect the data conversions used.

If the first variable is a file variable, then this is the
file to be read or written. Otherwise, the standard files
INPUT and OUTPUT are automatically assumed
as default values in the cases of reading and writing
respectively. These two files have TERMINAL
mode and ASCII structure and are predeclared as:

VAR INPUT, OUTPUT: TEXT

12-15

12-16

The files INPUT and OUTPUT are treated like other
textfiles. They can be used with ASSIGN, CLOSE,
RESET, REWRITE, and the other procedures and
functions. However, if present as program
parameters, they are not initialized with a filename;
instead they are assigned to the user's keyboard and
display.

RESET or REWRITE, as appropriate, is done
automatically whether or not they are present as
program parameters.

Textfiles represent a special case among file types
insofar as they are sub structured into lines by "line
markers." If, upon reading a textfile F, the file
position is advanced to a line marker (that is, past the
last character of aline), then the value of the buffer
variable FA becomes a blank, and the standard
function EOLN (F) yields the value true.

Advancing the file position once more either causes
EOF (F) to become true (if the end of the file is
reached), or assigns to FA the first character of the
next line and sets EOLN (F) to false (if the next line
is not empty), or assigns a blank to FA and sets
EOLN (F) true again (if the next line is empty).

Line markers, not being elements of type CHAR in the
standard, can in theory only be generated by the
procedure WRITELN. However, an actual character,
CHR(l3), is used for the line marker, and it is
possible to write (but not to read) one.

When a textfile being written is CLOSEd, a final line
marker is automatically appended to the last line if one
is not already present and the file is not empty.

When a textfile being read reaches the end of the file,
if the file is not empty a line marker for the last
line is returned even if one was not present in the file.
Therefore, lines in a textfile file always end with a line
marker.

The set of readable and writeable types is: any simple
type, pointer type, STRINGs, and LSTRINGs. Also
any list of data written by a WRITELN is generally
readable with the same list in a READLN unless an
LSTRING occurs that is not on the end of the list.

There is no provision for formatted reading, although
the effect can be achieved by reading a STRING and
DECODEing it. However, provision for M and N
parameters (see below) in the READ and READLN
procedures has been made for later input format
control.

Data parameters to READ, READLN, WRITE, and
WRITELN with textfiles can always take one of the
following forms:

P P:M P:M:N P::N

The P is a variable for READs and an expression for
WRITEs, as described below.

The M and N values can be considered value parameters
of type INTEGER and are used for input and output
formatting in various ways. The extended I/O feature
permits M and N values for both READs and WRITEs
and permits giving N without M (as in P: :N); using them
in a non-standard way is an "error not caught."

In some cases only M or N, or neither, will be actually
used; unused M and N values are ignored. Omitting M
or N is the same as using the value MAXINT; for
example, WRITE (12 :MAXINT) will use the default
M value (8 in this case). M and N values are not accepted
for BINARY files.

12-17

12-18

Interactive prompt and response is very easy. To have
input on the same line as the response, use WRITE for
the prompt. READLN must always be used for the
response. For example:

WRITE ('Enter command: '); READLN (response);

As mentioned, most of the textfile procedures and
functions will assume the file INPUT or OUTPUT, as
appropriate, if no file is given. For example, if I is type
INTEGER then READ (1) is the same as READ
(INPUT, I). Any variable that is, or contains, a file and
occurs as the first parameter is assumed to be the
explicit file to use.

However, suppose FINT is declared as a FILE OF
INTEGER and one wants to read from INPUT to the
buffer variable of FINT. The call READ (FINTA) will
not work because FINT is assumed to be the file to
READ from; instead the call READ (INPUT, FINTA)
must be used.

The Procedure READ

The following rules hold for the procedure READ:

• F denotes a textfile (type TEXT) and PI, P2, ... Pn
denote variables (with optional M and N values) oj
type CHAR (or a subrange), INTEGER (or a
subrange), or REAL.

• With the extended I/O feature, variables can also t
of type WORD (or a subrange), an enumerated tYI
(including BOOLEAN), a pointer type, STRING,
or LSTRING.

• When a variable of a subrange type is read, the vall
read must be in range or an error occurs, regardles
of the setting of $RANGECK.

The READ process for formatted types (everything
except CHAR, STRING, and LSTRING) first reads
characters into an internal LSTRING and then
DECODEs the string to get the value. Two important
points apply to formatted reads:

• Leading spaces, tabs, form feeds, and line markers
are skipped. For example, when doing READLN
(I, J, K) where I, J, and K are INTEGERs the
numbers can all be on the same line or spread over
several lines.

• Characters are read as long as they are in the set of
characters valid for the type wanted, using the
READ SET procedure. For example, "-1-2-3" is
read as the string of characters for a single
INTEGER, but gives an error in DECODE. This
means items should be separated by spaces, tabs,
line markers, or some character not permitted in
the format.

The procedure READ has the following characteristics:

1. READ (PI, P2, ... Pn) is equivalent to:
READ (INPUT, PI, P2, ., .Pn)

2. READ (F, PI, P2, ... Pn) is equivalent to:
BEGIN READ (F, PI); READ (F, P2); ... READ
(F, Pn) END

3. M and N values in READ are ignored, except as
noted for an N value with enumerated types.

4. If P is of type CHAR, then: READ (F, P) is
equivalent to: BEGIN P := FA; GET (F) END

5. If P is type INTEGER (or WORD) or a sub range
thereof, then READ (F, P) implies reading a
sequence of characters from F which form a

12-19

12-20

number according to the normal Pascal syntax and
assigning the number to P. Non-decimal notation
(16#C007, 8#74, 10#19,2#101, #Face) is accepte l

for both INTEGER and WORD. If P is an
INTEGER type a leading + or - sign is accepted. If
P is a WORD type decimal numbers up to
MAXWORD are accepted (that is, from 32768 to
65535).

6. IfP is type REAL, then READ (F, P) implies
reading a sequence of characters from F which
form a number of the appropriate type and assignin
the number to P. Non-decimal notation is not
accepted. When reading a REAL value, a number
with a leading or trailing decimal point (not both
of course) is accepted, even though this form gives
a warning if used as a constant in a program.

7. If P is an enumerated type or BOOLEAN, a
number is read as a WORD sub range and a value
assigned to P such that the number is the ORD of
the enumerated type's value. In addition, if P is
type BOOLEAN, reading one of the character
sequences 'TRUE' or 'FALSE' cause true and
false, respectively, to be assigned to P. The
number read must be in the range of the ORD
values of the variable identifiers.

8. Should P be a pointer type, a number is read as a
WORD and assigned to P, in an implementation
defined way such that writing a pointer and later
reading it yields the same pointer value. The
address types should be read as WORDs using .R
or .S notation.

9. If P is a STRING (n), then the next n characters
are read sequentially into P. Preceding line marker:
spaces, tabs, or form feeds are not skipped.

When the line marker is encountered before n
characters have been read, the remaining characters
in P are set to blanks and the file position remains
at the line marker.

If the STRING is filled with n characters before
the line marker is encountered, the file position
remains at the next character. P can be the super
array type STRING (for example, a reference
parameter or pointer referent variable).

READ (STRING) is handy when reading numbers
packed together without spaces; for example,
reading a line in a FORTRAN format as "(2014)"
can be done by repeatedly reading into a STRING
(4) and then calling DECODE to get the integer
value of the STRING.

I O. If P is an LSTRING (n), then next n characters
are read sequentially into P, and the length of the
LSTRING is set to n. Preceding line markers,
spaces, tabs, or form feeds are not skipped.

When the line marker is encountered before n
characters have been read, the length of the
LSTRING is set to the number of characters
read and the file position remains at the line
marker.

If the LSTRING is filled with n characters before
the line marker is encountered, the file position
remains at the next character. P can be the super
array type LSTRING (for example, a reference
parameter or pointer referent variable).

READ (LSTRING) is handy when reading entire
lines from a textfile, especially when the length of
the line is needed. For example, the easiest way to
copy a textfile is by using READLN and WRITELN
with an LSTRING variable.

12-21

12-22

Note: Points 5 through 8 also apply to the
function DECODE.

The procedure READ can also be used to read from a
file which is not a textfile (that is, BINARY mode).
In this case,

READ (F, X) is equivalent to: BEGIN X := FA;
GET (F) END

The form READ (F, PI, P2, ... Pn) can be used, as above.
Normally the M and N values are not accepted in
BINARY reads.

Procedure READ LN

READLN (PI, P2, ... Pn) is equivalent to:
READLN (INPUT, PI, P2, ... Pn)

READLN (F, PI, P2, ... Pn) is equivalent to:
BEGIN READ (F, PI, P2, Pn); READLN (F) END

READLN (F) is equivalent to: BEGIN WHILE NOT
EOLN (F) DO GET (F); GET (F) END

READLN is used to skip to the beginning of the next
line. It can only be used with textfiles (ASCII mode).

Procedure WRITE

The following rules hold for the procedure WRITE:

• F denotes a textfile (type TEXT) and PI, P2, ... Pn
denote expressions (with optional M and N values)
of type CHAR, INTEGER, REAL, BOOLEAN, or
STRING.

• With the extended I/O feature, expressions can
also be of type WORD, an enumerated type, a
pointer type, or LSTRING.

The procedure WRITE has the following characteristics:

1. WRITE (PI, P2, .. Pn) is equivalent to:
WRITE (OUTPUT, PI, P2, ... Pn)

2. WRITE (F, PI, P2, ... Pn) is equivalent to:
BEGIN WRITE (F, PI); WRITE (F, P2); ... WRITE
(F, Pn) END

3. In WRITE the M value can always be used as the
number of characters to write, taIled the field
width. In ISO Pascal, M must/be greater than zero,
and if the expression being written requires less
than M characters it is padded on the left with
spaces.

M can also be negative or zero; if negative, the
absolute value of M is used but padding occurs on
the right instead (this is officially an error not
caught). If the representation of the expression
cannot fit in ABS (M) character positions, then
extra positions are used as needed for numeric
types, or the value is truncated on the right for
string types.

If M is omitted or equal to MAXINT, a default
value is used (see below). The N value only applies
if P is type REAL (for the number of decimal
places); INTEGER, WORD, or pointer (for the
output radix); or enumerated (to choose the
numeric or identifier value).

4. If P is of type CHAR, default M is I, and WRITE
(F, P) is equivalent to: BEGIN FA := P; PUT (F)
END

12-23

12-24

5. If P is type INTEGER (or WORD) or a subrange
thereof, the decimal representation of P is written
on the file.

If P is positive, first a leading blank is written,
unless the M value is less than zero indicating flush
left output.

If P is negative, a leading minus sign is always
written; of course WORD values are never negative.
The default value of M is 8. If ABS (M) is smaller
than the representation of the number, additional
character positions are used as needed.

N is used to write in hexadecimal, decimal, octal,
or binary using N equal to 16, 10,8, or 2; an
extension to ISO Pascal. Omitting N or setting N
to MAXINT implies decimal. WORD decimal
numbers from 32768 to 65535 are written
normally (not their negative integer equivalents).

All values written should be separated by spaces or
some other character not valid in numbers, so they
will be read as separate numbers.

6. If P is of type REAL, a decimal representation of
the number P, rounded to the specified number of
decimal places, is written on the file.

If the N is missing or equal to MAXINT, a
floating-point representation of P is written to the
file, consisting of a coefficient and a scale factor.

If N is included, a rounded fixed point representa
tion of P is written to the file, with N digits after
the decimal point. If N is zero, P is written as a
rounded integer, with a decimal point.

The exact representation used is described in ISO
Pascal.

The default value of M for REAL values is 14. If
ABS (M) is smaller than the representation of the
REAL value, additional character positions are
written as needed. Some examples:

WRITE (123.456)
, 1.2345600E+02'

WRITE (123.456:20)
, 1.2345600000000E+02'

WRITE (123.456::3)
123.456'

WRITE (123.456:2:3)
, 123.456'

WRITE (123.456:-20:3)
'123.456

7. Should P be an enumerated type and N omitted or
equal to MAXINT, then ORD (P) is written on the
file, as if it were a WORD.

If P is of type BOOLEAN, then one of the strings
'TRUE' or 'FALSE' (depending on the value of P)
is written on the file, as a STRING. The default
value of Mis 6 for BOOLEANs. The ORD value
is never written for BOO LEANs as it is for
enumerated types.

8. If P is a pointer type, it is written as a WORD
(above) in an implementation defined way such
that writing the value and later reading it yields
the same pointer value. The address types should
be written as WORDs using .R or .S notation.

12-25

12-26

9. If P is of type STRING (n), then the value of P is
written on the file. The default value of M is the
length of the STRING, n.

Should ABS (M) be less than the length, only the
first ABS (M) characters are written; if M is zero
nothing is written. The right portion of the
STRING is always truncated, even if M is negative.

10. With the extended I/O feature, if P is of type
LSTRING (n) then the value of P is written on the
file. The default value of M is the current length
of the string, P .LEN.

If ABS (M) is less than the current length only the
first ABS (M) characters are written; if M is zero
nothing is written. The right portion of the
LSTRING is always truncated, even if M is negative.

If ABS (M) is greater than the current length, space~
fill the remaining positions (not characters past the
length in the LSTRING). Note that a string of M
blanks can be written with NULL:M.

Note: Points 5 through 8 also apply to the
function ENCODE.

The procedure WRITE can also be used to write onto
a file which is not a textfile (that is, BINARY). In this
case:

WRITE (F, X) is equivalent to: BEGIN FA := X;
PUT (F) END

The form WRITE (F, PI, P2, ... Pn) can be used, as
above. Normally the M and N values are not accepted
in BINARY writes, but may be available in customized
versions of the compiler.

The Procedure WRITELN

WRITELN (PI, P2, ... Pn) is equivalent to:
WRITELN (OUTPUT, PI, P2, ... Pn)

WRITELN (F, PI, P2, ... Pn) is equivalent to:
BEGIN WRITE (PI, P2, ... Pn); WRITELN (F) END

WRITELN (F) appends a line marker to the file F.

WRITELN is used to write a line marker (end a line).
It can only be used with textfiles (ASCII mode).

12-27

Extended I/O Feature

12-28

PROCEDURE ASSIGN (VAR F; CONST N: STRING)

This procedure assigns a DOS filename in a STRING
(or LSTRING) to a file F. ASSIGN always truncates
any trailing blanks, and overrides any filename set
previously.

A filename must be set (during program parameter
initialization, with READFN, or with ASSIGN) before
the first RESET or REWRITE on a file. ASSIGN on
an open file (after RESET or REWRITE but before
CLOSE) produces an error. ASSIGN on the files
INPUT and OUTPUT is allowed, but since they are
opened automatically they must be CLOSEd first.

The filename takes the fa Bowing form:

[drive:] filename [.ex t]

Filename can be 1-8 characters and the optional
extension ext can be 1-3 characters. The drive
specification (such as A:) can also be given.

Filename can be CHR(O)-tempfile.

Filename can be one of a number of special DOS
names for non-buffered I/O:

• PRN and LPT1 for the line printer

• CON for the console

• NUL for the dummy device

• COM1 or AUX for an RS232 port

Filename can be one of two special IBM Pascal
names for non-buffered I/O:

• USER for the console

• LINE for an RS232 port

Note: Specifying CON for input is not
recommended because DOS buffers 512
characters before they become available
to IBM Pascal. USER should be used for
non DOS-buffered console I/O.

PROCEDURE CLOSE (V AR F)

CLOSE does a DOS close on a file, ensuring that the
file access is correctly terminated.

This is especially important for file variables allocated
on the stack or the heap; these files must be closed
before a RETURN or DISPOSE releases the file control
block. Therefore, these files are closed automatically
when a RETURN or DISPOSE releases stack or heap
file variables. Files allocated statically (in fixed
memory) are closed automatically when the program
terminates.

Note that some runtime errors might cause loss of
control by the Pascal runtime system; in these cases
files being written may not be closed, and the
information in them may be lost.

If necessary, any DOS buffers associated with a file
being written are emptied (however, the Pascal buffer
variable is not PUT).

12-29

If the file is of type TEXT, was being written, and the
last non-empty line did not end with a line marker, one
is added to the end of the last line.

If the file has the mode SEQUENTIAL and was being
written, an end-of-file is written. A CLOSE on a file
that is already closed or never opened (no RESET or
REWRITE) is permitted. CLOSE is not ignored if
error trapping is on and there was a previous error.
CLOSE turns off error trapping for the file, and clears
the error status if no errors were found.

PROCEDURE DISCARD (VAR F)

Discard closes and deletes an open file. It is much like
CLOSE, except that the file is deleted.

Temporary Files

12-30

Sometimes a program needs a "scratch" file for
intermediate data only. To use the program without
needing to give the scratch file a name in the correct
format, IBM Pascal provides a feature called a
temporary file. To create a temporary file, ASSIGN
the name CRR (0); for example, ASSIGN (F, CRR
(0)). The file system will create a unique name for
the file.

Temporary files get deleted when they are CLOSEd,
either explicitly by the programmer or implicitly when
the file gets de-allocated. RESET and REWRITE do
not delete the file.

Other File Procedures

PROCEDURE READ SET (V AR F, V AR L: LSTRING,
CONST S: SETOFCHAR)

READSET reads characters and puts them into L as long
as the characters are in the set S and there is room in L.
If no file parameter is given INPUT is assumed, as in
READ and WRITE.

Leading spaces, tabs, form feeds, and line markers are
always skipped. Reading ceases whoo the line marker
is encountered, since it is never in the CHAR type.

This procedure is used, along with ENCODE, by the
runtime system to do the formatted READ procedures,
as well as to read filenames wtih READFN (below).
It is handy when reading and parsing input lines for
simple command scanners.

PROCEDURE READFN (VAR F, PI, P2, ... Po)

READFN is the same as READLN with two
exceptions: l) the file parameter F should be present
(INPUT is assumed but a warning is given), and 2) if a
parameter P is of type FILE, a sequence of characters
forming a valid filename is read from F and assigned
to P in the same manner as ASSIGN. Parameters
of other types are read in the same way as the READ
procedure.

Note that READFN (unlike READLN) does not read
a line marker. If the first parameter in a READFN
call is a file of any type, it is assumed to be the textfile
to read characters from (it is not assumed that the file's
name should be read using INPUT as the default source).

12-31

12-32

READFN is used internally to read a program's
parameters. It is handy when reading a filename
(perhaps from the user) and assigning the filename to
some file in one operation.

File Field VaIues

A file variable is really a record called a file control
block of type FCBFQQ. A few standard fields in this
record can be used to handle file modes and error
trapping. Additional fields and the record type
FCBFQQ itself can be used as described below.

The normal record field syntax is used to access a
file's FCB fields. For a file F, the fields available are
F.MODE, F.TRAP, and F.ERRS. These fields can
be examined or changed at any time.

F.MODE This field contains the mode of the file.
These values are constants of the predeclared
enumerated type FILEMODES. The MODE field is
only used by the file system during RESET and
REWRITE, so changing the MODE field of an open
file has no effect (but it is not recommended).

A file's mode is SEQUENTIAL by default, except for
INPUT and OUTPUT which have mode TERMINAL.

F.TRAP: BOOLEAN This field is initially false; if set
true, it turns on error trapping for file F so that if an
input/output error occurs the program does not end
and the error code can be examined. If the field is
false and an I/O error occurs, the program ends.
Closing the file will set the trap to false.

Note: RESET and REWRITE close the file.

F.ERRS: 0 .. 15 This field contains the error code for
file F; zero means no error, and values from I to 15 (see
the list below) imply an error condition. If a file
operation (except CLOSE and DISCARD) is attempted
for file F and F.ERRS is not zero, and if F.TRAP is
true, the operation is ignored (the program does not
end). If F.TRAP is false, the program immediately
ends.

CLOSE and DISCARD do not examine the initial
value of F .ERRS, so they are never ignored and do not
cause an immediate termination. However if CLOSE
or DISCARD themselves generate an error condition,
F.TRAP is used as above to determine whether to
trap the error or end.

An operation that is ignored because of an error
condition does not change the file itself, but it may
change the buffer variable or READ procedure input
variables.

12-33

12-34

File F Error Codes:

CODE ERROR

o No error
1 Reserved
2 Reserved
3 OPERATION-invalid operation: GET if

EOF, RESET a printer, etc.
4 Reserved
5 Reserved
6 Reserved
7 FILE NAME-invalid syntax, name too long,

no temp names, etc.
8 DEVICE FULL-disk full, directory full,

all channels allocated
9 Reserved

10 FILE NOT FOUND-file itself not found
11 Reserved
12 Reserved
13 FILE NOT OPEN-file closed, I/O to unopen

FCB
14 DATA FORMAT-data format error, decode

error, range error
15 LINE TOO LONG-buffer overflow, line too

long

File Variables in Headings

A file variable may be placed in the heading of a Pascal
program as a program parameter, and declared as a file
in a V AR section. At runtime, the runtime system will
obtain the filename from the user at the keyboard.

The filename here has the same format as in the ASSIGN
function.

Example:

PROGRAM FILES(FILE1,FILE2);

VAR FILE1: FILE OF REAL;
FILE2: TEXT;

BEGIN
•
•
•

END.

When FILES is started, the program will attempt to
read the program parameters from the command line.
If the program cannot find them there, it will prompt
for them. Thus, starting the program FILES with
the files NUMBERS.DAT and LINES.DAT might look
something like this:

A>files numbers.dat lines.dat
or

A>files numbers.dat
FILE2: lines.dat

or
A>files
FILE1: numbers.dat
FILE2: lines.dat

(Remember, each line ends with Enter.)

System I/O Feature

The system I/O feature allows procedures and functions
with a formal reference parameter of any file type or the
type FCBFQQ to be called with an actual parameter of
the identical FILE type or the identical FCBFQQ type.

12-35

12-36

FCBFQQ is the underlying record type used to
implement the file type.

Usually the interface for the FCBFQQ type (and
any other types needed) is brought in with an
$INCLUDE file, and the clause "USES FILKQQ"
(FILKQQ is the name of the unit containing the
FCBFQQ type).

This FCBFQQ declaration is included on the PAS I
diskette in the file FILKQQ.lNC.

Procedures and functions with reference FCBFQQ
parameters can be called with any file type, including
predeclared procedures and functions like CLOSE
and READ. An FCBFQQ type variable can be
passed to procedures like READLN and WRITELN
that require a textfile.

This permits, for example, calling the file system
interface routines directly, and other file system
activities.

Doing this requires a thorough knowledge of the file
system. Appendix B describes the file system
interface and file control block in detail. Using this
information, one could write the file system interface
for another operating system, for example.

DIRECT Files

To use a DIRECT file, the mode field must be set to
DIRECT before the file is opened with RESET or
REWRITE.

If the file is actually read or written sequentially, the
usual READ and WRITE procedures can be used, and
READ and WRITE can be used normally on textfiles
(ASCII structured files). However, due to the way
Pascal files are defined, BINARY structure files
generally need GET and PUT instead of READ and
WRITE.

READ, in particular, always reads ahead one
component in Standard Pascal, which does not produce
the desired effect when used with IBM Pascal's SEEK
procedure.

The following apply to DIRECT mode files:

• They are always opened for both reading and
writing.

• Records can be accessed randomly by record
number.

• The line length for ASCII structured files sets the
record length, given as a constant in parentheses
after the word TEXT. Examples:

VAR SMALLBUF:TEXT(2);
DEFAUl TX:TEXT;
RANDOMTXT:TEXT(132);

Usually, the line length declaration is for DIRECT
mode files but it may be used for other TEXT files.

• For DIRECT ASCII files, the line length, whether
explicitly set or set by default, is the record length
used when reading or writing.

12-37

12-38

PROCEDURE GET (V AR F)

When using GET(F), the value of EOF(F) before GET(F:
can be true or false, since DIRECT mode permits repeate
GETs at the end of file.

PROCEDURE PUT (V AR F)

When using PUT(F), the value of EOF(F) before PUT(F)
can be true or false.

PROCEDURE REWRITE (V AR F)

REWRITE will allow either reading or writing and the
file will be created if it did not already exist. If it did
exist, its old value is not lost.

PROCEDURE RESET (V AR F)

RESET will allow either reading or writing but the file
will not be created automatically. The initial GET
reads record number one.

PROCEDURE EOF (V AR F)

If EOF(F) is true, either the last operation was a WRITE
(the file mayor may not be positioned at the end in this
case) or the last GET reached the end of file. See "EOF
in DIRECT Mode" later in this chapter.

PROCEDURE SEEK (VAR F; N:WORD)

The record number parameter N can also be of type
INTEGER or WORD. For textfiles (ASCII structure),
records are lines; for other files (BINARY structure),
records are components. Record numbers start at one
(not zero). F must have a mode of DIRECT.

SEEK modifies a field in F so that the next GET or
PUT applies to record number N.

If F is an ASCII file, SEEK sets the lazy evaluation
status "empty."

DIRECT mode must be set explicitly before RESET
or REWRITE to use the SEEK procedure on a file.

SEEK followed by GET

If component N exists in the file F, then the current
file position is advanced to this component, the value
of this component is assigned to the buffer variable
FA, and EOF(F) becomes false. Advancing and
assigning may be deferred internally (see above).

If the component N does not exist, the value of FA
becomes undefined. SEEK is usually followed by use
of the buffer variable value or READ/READLN for
ASCII files. SEEK is not usually followed by READ
for BINARY files.

SEEK followed by READ, BINARY files

Since READ(F ,B) is "B :=FA; GET(F)", using READ
results in assigning the current buffer variable (whatever

12-39

12-40

it may be) to B and reading the record following record
N. Since this action has nothing to do with value of
record N, it should be avoided.

SEEK followed by READ/READLN, ASCII files

This works as one would expect, thanks to lazy
evaluation. SEEK(F,N) sets the status to "empty"
so the buffer variable access implied by READ actually
causes record N to be read to the internal line buffer
before any characters are processed by the READ.

SEEK followed by PUT

The value of the buffer variable FA is written to file F
at record number N, the value of FA becomes undefinec
and EOF(F) is set true. SEEK followed by PUT is
usually preceded by a setting of the buffer variable
value.

SEEK followed by WRITE, BINARY files

Since WRITE(F,B) is "FA:=B; PUT(F)", using WRITE
after a SEEK call results in writing B to record N, as
one would expect. However, since READ after SEEK
doesn't work for BINARY files, users may wish to
avoid WRITE after SEEK for BINARY files to
preserve syntactic consistency.

SEEK followed by WRITE/WRITELN, ASCII files

This works as one would expect, writing characters to
record N. As a general rule, ASCII DIRECT file I/O
works as one would expect, but BINARY DIRECT
file I/O should use GET and PUT instead of READ and
WRITE.

EOF in DIRECT Mode

Once a file is updated (or created) in DIRECT mode,
the end-of-file is not exact. Thus the EOF can't be
used to detect the true end-of-file in DIRECT mode.

In addition, the file's exact EOF will no longer be
detectable in sequential mode.

In ASCII-structured files, some data may be
inaccessible using SEQUENTIAL mode, if the file was
updated using DIRECT mode and re-accessed using
SEQUENTIAL.

12-41

12-42

CHAPTER 13. COMPILANDS

Contents

Programs

Modules.

Units ..
Interface Division
The Implementation Division

13-4

13-8

.13-10

.13-14

.13-15

13-1

A "compiland" is a source file compiled by the
compiler. IBM Pascal permits three kinds of compilands:
programs, modules, and implementations of units. Each
of these can contain interfaces to units as well.

13-3

Programs

13-4

A Pascal program has the form of a procedure
declaration, except for its heading, and the period at
the end (see "Procedure and Function Declarations" in
Chapter 10). The statements between the BEGIN
and END are called the body of the program. For
example:

PROGRAM ALPHA (OUTPUT, AFILE, PARAMETER);
VAR AFILE: TEXT; PARAMETER: STRING(10};
BEGIN

REWRITE (AFILE); WRITELN (AFILE,PARAMETER);
END.

After compilation and linking, the following program
can be run in any of the ways shown. Assume the
program ALPHA exists in the file ALPHA.EXE:

A>ALPHA
AFILE: DATA.FIL
PARAMETER: ABCDEFGHIJ

or

A>ALPHA DATA.FIL
PARAMETER: ABCDEFGHIJ

or

A>ALPHA DATA.FIL ABCDEFGHIJ

(Remember you must press Enter after each line.)

ALPHA is the program identifier, and it becomes the
identifier for a parameterless PUBLIC procedure at a
static level "above" all the other identifiers in the
program. As a result, a program identifier can be
re-declared wi thin a program and the usual scoping rules
apply.

Since the program identifier is at the same level as the
predeclared identifiers (for example, INTEGER or
READ), to use an identifier like INTEGER would
produce a duplicate identifier error.

The example program is also given the PUBLIC
identifier ENTGQQ which is called during initialization
to start program execution. The program body can be
called as a PUBLIC procedure from another compiland
using the program identifier or ENTGQQ, although
this is not recommended.

The program's parameters are the means by which it
communicates with its environment. In standard
level, variables of FILE type should be parameters
since there is no other way for the variable to be
assigned an operating system filename.

Program parameters are not at all like procedure
parameters. They are not passed to the body of the
program, and must be declared in the variable
declaration part of the block constituting the program.

ASSIGN and READFN can be used to assign filenames
without the need for them to appear as program
parameters.

If there are no program parameters, and the files
INPUT and OUTPUT are not used, the form
"PROGRAM identifier;" can be used.

The two predeclared files, INPUT and OUTPUT, get
special treatment as program parameters. Their value
is not set like the other program parameters. They
should always be present as program parameters,
whether they are used explicitly or implicitly, to
suppress a compiler warning if they are used and not
presen t as program parameters.

INPUT and OUTPUT can be redefined, but the textfile
I/O procedures and functions will assume the original
definition. RESET(lNPUT) and REWRITE(OUTPUT)
are automatically generated.

13-5

13-6

Every program parameter variable (except INPUT and
OUTPUT) gets a value during program initialization
by doing a READFN of one form or another.

Each parameter must be of a type acceptable to
READFN; that is, a simple type (INTEGER, WORD,
CHAR, BOOLEAN, enumerated, their subranges,
REAL), a pointer type, STRING, LSTRING, or a
FILE type. Program parameters must be entire
variables; no component selection (including .R and
.S address types) is permitted.

The READFN call for program parameters internally
uses the file INPUT. But before every parameter is
read, a special call to the routine PPMFQQ causes
READFN to actually get characters returned from the
DOS interface routine called PPMUQQ. PPMUQQ gets
them from the command line that started the program.
Both routines are passed the program's identifier, for
use as a prompt, if necessary.

An ambiguity exists when specifying an LSTRING
as a program parameter. Assume the following
program exists:

PROG RAM PARMS(ln);
VAR In:LSTRING(10)

•
•
•

END;

If, after compilation and linking, the user starts the
program as follows:

A>parms

it is not clear whether the user is entering an LSTRING
of length 0, or wishes to be prompted for the LSTRING.
IBM Pascal assumes the latter, and will always prompt
if an LSTRING appears to be omitted.

For the application programmer who wishes to use
advanced command line processing, the Unit U
procedure PPM provides this capacity. To use PPM,
do not specify any parameters in the program
statement.

13-7

Modules

13-8

Using a modules is a quick way to combine several
compilands into one program. A module is a program
without a body.

The module header gives the module identifier, which
has the same scope as a program identifier. A module
has no body and no parameters. The compiland ends
with "END.". Here is a sample module:

MODULE BETA [PUBLIC];
VAR X:INTEGER;

PROCEDURE GAMMA;
BEGIN
X := 1;

END;
FUNCTION DELTA: WORD;
BEGIN
DELTA 123;

END;
END.

If no explicit attributes are given, [PUBLIC] is
assumed, so [] must be used if no attributes are wanted

Although there is not a module body, a module
becomes a parameterless procedure which can be called
from other compilands using the module identifier.

In some cases the compiler generates module
initialization code which should be executed by the
module procedure. This should be done if the module
declares any FILE variables, or if the module USES
any interfaces that need initialization. The compiler
will give a warning "Initialize Module" if it finds either
of these while compiling the module. The module
should also be initialized if it declares any module
variables, such as X above, and uses them in the
module.

In these cases, the module should be declared as a
parameterless EXTERN procedure in the program
compiland and this procedure should be called only
once, before the module procedures are used. Example:

PROCEDURE MODULNAME; EXTERN;

Module variables are not automatically given any
attributes and are the same as program variables, except
for initialization of FILE variables as indicated.

Module procedures can be called as EXTERN
procedures-without a module initialization call if the
above cases do not apply.

13-9

Units

13-10

A unit contains constants, types, super types, variables,
procedures, and functions which are declared in the
unit's interface. An interface can be used by any
compiland or by another interface.

An implementation compiland contains the bodies of
the procedures and functions in a unit. By separating
th~ interface from the implementation, a program can
be written and compiled before the implementation is
written, or loaded with several implementations (for
example, one in Pascal, one in machine language, etc.).

A large Pascal program is best organized as a main
program and a number of units. However, only a
program, module, interface, or implementation may use
a unit, not an individual procedure or function.

A compiland using an interface must start with the
source code for the interface, generally a separate file
brought in with an $INCLUDE metacommand. This
form is more reliable and easier, than putting the
interface physically in front of every compiland using
it, because there is only one master copy of the
interface.

A list of all identifiers exported from the unit is
required in the unit clause (optional in a USES
clause) to avoid identifier conflicts. Special internal
code initializes units and controls interface versions.

A Pascal source file consists of zero or more unit
interfaces, separated by semicolons, followed by a
program, a module, or an implementation, followed by
a period. Each of these is called a "division."

A unit consists of the unit identifier, followed by a list
of identifiers in parentheses, called "constituents" of
the unit. The identifiers in parentheses are provided
by the unit or required by a program, interface, or
implementation.

The unit is preceded by the keyword UNIT for a unit
provided, and USES for a unit required. All unit
identifiers in a source file must be unique. The identifiers
in parentheses can be different in the providing and
req uiring divisions.

Correspondence between provided and required
identifiers is by position in the list (similar to formal
and actual parameters in procedures). The list is
optional in a USES clause, and if not given, the list
in the UNIT clause will be used. Naming different
identifiers in USES clauses can resolve identifier
conflicts between interfaces. Multiple USES clauses
such as "USES A; USES B; USES C;" can be combined
with the form "USES A, B, C;."

13-11

13-12

For example:

Program file:
(*$INCLU D E:'G RAPH 1'*)
PROGRAM PLOTBOX (INPUT, OUTPUT);
USES GRAPHICS (MOVE, PLOT);
BEGIN (*G RAPHICS*)

MOVE (0, 0);
PLOT (10, 0); PLOT (10,10);
PLOT (0, 10); PLOT (0, 0);

END.

Interface file GRAPHI:
INTERFACE;

UNIT GRAPHICS (BJUMP, WJUMP);
PROCEDURE BJUMP (X, Y: INTEGER);
PROCEDURE WJUMP (X, Y: INTEGER);
BEGIN
END;

Implementation file:
(*$INCLUD E:'G RAPH 1'*)
(*$IN CLU DE:'BASEPL'*)
IMPLEMENTATION OF GRAPHICS;

USES BASEPLOT; (*identifiers below*)
PROCEDURE BJUMP;

BEGIN DRAWLINE (BLACK, X, Y) END;
PROCEDURE WJUMP;

BEGIN DRAWLINE (WHITE, X, V) END;
BEGIN

DRAWLINE (BLACK, 0, 0)
END.

Interface file BASEPL:
INTERFACE;

UNIT BASEPLOT (BLACK, WHITE,
DRAWLlNE);

TYPE RAINBOW = (BLACK, WHITE,
RED, BLUE, GREEN);

PROCEDURE DRAWLINE (C: RAINBOW;
H, V: INTEGER);

END;

Implementation file:
(*$INCLUDE: 'BASEPL'*)
IMPLEMENTATION OF BASEPLOT

A USES clause can only occur directly after a program,
module, interface, or implementation header. When a
USES clause is encountered, all constituent identifiers
(from the UNIT clause and the USES clause itself) are
entered in the symbol table, and those associated with
variables, procedures, and functions are associated with
the corresponding identifiers in the interface, which
become external references for the loader.

In the above example, when the program is compiled,
every reference to the procedure PLOT generates an
external reference to WJUMP. References to
DRA WLINE, however, use the same identifier for the
external reference.

Constants and types (including any super array types)
in the interface are simply entered in the program's
symbol table (with the new identifier, if any) so a
type in the interface is identical to the corresponding
type in the USES clause.

Record field identifiers are automatically the same in
the program, interface, and implementation when the
record name is given. Enumerated type constant
identifiers must be given explicitly if needed; they are
not automatically implied by the enumerated type
iden tifier.

Labels cannot be provided by an interface, since the
target label of a GO TO must occur in the same division
as the GOTO.

The interface facility could almost be handled by an
$INCLUDE. In place of the USES clause would be a
file which declares everything EXTERN. The
corresponding "implementation" file would declare
everything as PUBLIC.

13-13

13-14

However, the UNIT method has several advantages over
the $INCLUDE:

• The identifiers can be changed to avoid conflicts.

• Constants, types and procedures, and function
parameters are only given in the interface, avoiding
what would be an undetectable mismatch.

• The interface is generally cleaner.

$INCLUDE is useful for combining one or more
interfaces in front of a program or implementation.

Interface Division

The interface section starts with the keyword
INTERF ACE, an optional version number in
parentheses, and a semicolon. Next comes the UNIT
keyword, the unit identifier, the parenthesized list of
exported (constituent) identifiers, and another
semicolon.

Any other units required by this interface come next,
in USES clauses. Then come the actual declarations for
all identifiers given in the interface list, using the usual
CONST, TYPE, and V AR sections and procedure and
function headings, in any order. No LABEL or VALUE
sections are permitted.

Attributes can be given to variables, procedures, and
functions. Since the PUBLIC or EXTERN attributes
or EXTERN directive is given automatically, attributes
which may conflict must not be used.

Normally, the only identifiers declared are the
constituents, but declaring other identifiers is permitted
If the interface will need a call to initialize the unit, the

keyword BEGIN causes it to be generated. The interface
ends with the reserved word END and a semicolon. For
example:

INTERFACE (3);
UNIT KEYFILE (FINDKEY,INSKEY,DELKEY,KEYREC);

USES KEYPRIM (KFCB,KEYREC);

PROCEDURE FINDKEY (CONST NAME: LSTRING;
VAR KEY: KEYREC; VAR REC: LSTRING);

PROCEDURE INSKEY (CONST REC: LSTRING;
VAR KEY: KEYREC);

PROCEDURE DELKEY (CONST KEY: KEYREC);
PROCEDURE NEWKEY (CONST KEY: KEYREC);

BEGIN
END;

In this example, KFCB is part of the KEYPRIM unit,
but is not exported by the KEYFILE unit, which is
allowed. NEWKEY is defined in the interface, but not
exported by the KEYFILE unit, also allowed, but
pointless since NEWKEY will be unknown in any
USES of-the unit and in the unit's IMPLEMENTATION.

The hnplementation Division

An implementation of an interface starts with the
reserved words IMPLEMENTATION OF, the unit
identifier, and a semicolon. Next comes a USES clause
for units it needs only for its own use; then the usual
LABEL, CONSTANT, TYPE, V AR, and VALUE
sections, and all procedures and functions mentioned
as constituents (which must be in the outer block), or
used internally, in any order.

The VALUE and LABEL sections can be used in the
implementation, although they are not permitted in
the interface.

Labels must only have GOTOs from the body itself (if
any), not from procedures and functions within the
implementation.

13-15

13-16

Constants, variables, and types declared in the
interface are not re-declared in the implementation,
but other "private" ones can be declared.

Procedures and functions that are constituents of the
unit do not have their parameter list (it is implied by
the interface), or any attributes.

The PUBLIC attribute is given automatically, unless the
EXTERN directive is given explicitly.

All procedures and functions in the INTERFACE must
be defined in the IMPLEMENTATION; however they
can be given the EXTERN directive so several
IMPLEMENTATIONS (or an IMPLEMENTATION and
assembly code, etc.) can implement a single
INTERFACE.

All procedures and functions using the EXTERN
directive must appear first; the compiler checks for
this.

Units can also be implemented in other languages, such
as FORTRAN, or by a mixture of languages. If the
interface is not implemented in Pascal, the proper
calling sequence attribute must be used in the interface,
and of course the user must be familiar with calling
sequences and internal representation of parameters.

Several runtime units are implemented partially in
Pascal and partially in assembly language. As
mentioned, any implementation section that does not
implement all interface procedures and functions
must declare those not implemented with the EXTERN
directive at the start of the implementation.

An implementation, like a program, can have a body;
the body is executed when the program using the unit
is invoked, so any initialization needed by the unit can
be done.

This incl udes internal initialization, such as file variable
initialization, as well as user initialization code. If the
source file contains several units, each implementation
body is called in the order their USES clauses are
found in the source file. The body, as in a program, is
a BEGIN ... END statement.

At initialization time, the version number of the
interface that the implementation was compiled with is
compared against the version number of the interface
that the program was compiled with. The two must
be the same. This prevents trying to run a program
with obsolete implementations of the units it uses. If
no version number is given zero is assumed. For
example:

IMPLEMENTATION OF KEYFllE;
USES KEYPRIM (KBlOCK, KEYREC);

VAR KEYTEMP: KEYREC;

PROCEDURE FINDKEY;
BEGIN {code for F~NDKEY} END;

PROCEDURE INSKEY;
BEGIN {code for INSKEY} END;

PROCEDURE DElKEY;
BEGIN {code for DElKEY} END;

PROCEDURE NEWKEY (CONST KEY: KEYREC);
BEGIN {code for NEWKEY} END;

END.

The implementation division ends with a period.

13-17

13-18

APPENDIXES

Contents

APPENDIX A. MESSAGES

Front End Errors
Front End Error List

Overflow Errors
Common Substitution Mistakes
Missing Symbol

Back End Errors
Back End User Errors
Back End Internal Errors

File System Errors
Uni t U Errors
Pascal File System Error Codes

Other Runtime Errors
2000 .. 2049 Memory Errors . .
2050 .. 2099 Ordinal Arithmetic
2100 .. 2149 Type REAL Arithmetic
2150 .. 2199 Structured Type Errors
2200 .. 2999 Other Errors

APPENDIX B. FILE SYSTEM INTERNALS

The File Control Block
File Structures and Modes
Special Features
Error Handling
FCB Declarations In Detail
DOS Specific Fields
Incl uding the FCB Declaration
DOS Interface Routines
Including the Unit U Declaration

A-3

A-4
A-6
A-9

· A-II
· A-II

· A-36
· A-36
· A-37

· A-38
· A-39
· A-40

· A-42
· A-42
· A-43
· A-45
· A-46
· A-46

B-1

B-2
B-5
B-9

· B-12
· B-14
· B-22
· B-22
· B-23
· B-40

A-I

A-2

APPENDIX C. COMPILER STRUCTURE

Overview
The Front End
The Back End .

APPENDIX D. RUNTIME STRUCTURE .

Overview
Initialization and Termination

Error Handling
Machine Error Context
Source Error Context .
Heap Allocation
Other Runtime Modules

APPENDIX E. PASCAL STANDARD AND
mM FEATURES

Summary of IBM Pascal Features
Syntactic and Pragmatic
Data Types and Modes
Operators and Intrinsics
Control Flow and Structure
Input/Output and Files ..
IBM Pascal and Standard Pascal

APPENDIX F. mM PASCAL SYNTAX

Syntax
Primitive Classes (Scanner Portion of

Com piler) :
Major Classes (Main Body of Compiler)

C-l

C-2
C-3
C-6

D-l

D-2
D-3

· D-ll
· D-13
· D-14

. . D-16
· D-18

E-l

E-2
E-2
E-3
E-4
E-5
E-6
E-7

F-l

F-2

F-4
F-4

APPENDIX A. MESSAGES

Error conditions may be undetected, detected by the
compiler, or detected by the runtime system. This
appendix gives error messages and codes for errors
detected by the compiler and runtime system.
Compiler errors are divided into front end (pass one)
errors and back end (pass two) errors; runtime errors
are divided in to file system errors and all other errors.

A-3

Front End Errors

A-4

Front end error and warning messages include a number
as well as a message. Most contain a row of dashes and
an arrow to the location of the error, but three (128,
129, and 130) occur after the body in the $SYMTAB
listing area. The front end recovers from most errors,
but a few are called "panic" errors and the front end
only lists the rest of the program. These panic errors
also give the message:

Compiler Cannot Continue

and occur in the following conditions:

• Error count set by $ERRORS exceeded

• End of file occurs when not expected

• Identifier scopes nested too deeply

• Cannot find PROGRAM, MODULE, or
IMPLEMENTATION keyword

• Cannot find PROGRAM, MODULE, or
IMPLEMENT ATION identifier

The word "Warning" before a message indicates the
intermediate code. files produced by the front end are
correct, and the condition is not severe or is just
considered "unsafe." Other messages indicate true

errors; writing to the intermediate files stops, and these
files are discarded when the front end is finished.

The error message "Compiler" refers to an internal
consistency check which failed; no matter what source
program is compiled, there should not be a way to get
one of these messages.

A-5

Front End Error List

A-6

101 Invalid Line Number
Line number above 32767; too many lines in
source file.

102 Line Too Long Truncated
Source lines are limited to 142 characters.

103 Identifier Too Long Truncated
Any identifier longer than the maximum is
truncated.

104 Number Too Long Truncated
Numeric constants are limited to the identifier
length.

105 End Of String Not Found
The line ended before the closing quote was found.

106 Assumed String
A double quote is assumed to enclose a string; use
single quote.

107 Unexpected End Of File
End of file in a number, metacommand, etc. (while
scanning).

108 Meta Command Expected Command Ignored
A $ at the start of a comment was not followed by
an identifier.

109 Unknown Meta Command Ignored
A metacommand identifier was unknown, or
invalid.

110 Constant Identifier Unknown Or Invalid
Assumed Zero
Setting a metacommand to a constant identifier
(as in $DEBUG: A) and the identifier is unknown
or not constant of the right type.

111 [unassigned]

112 Invalid Numeric Constant Assumed Zero
Setting a metacommand {o a numeric constant.
The constant has the wrong format or is out of
range.

113 Invalid Meta Value Assumed Zero
Setting a metacommand to neither a constant or
identifier.

114 Invalid Meta Command
One of +, -, or : is expected following a
metacommand.

115 Wrong Type Value For Meta Command Skipped
The metacommand expects a string but an integer
was given, or vice versa.

116 Meta Value Out Of Range Skipped
The $LINESIZE integer value was below 16 or
above 160.

117 File Identifier Too Long Skipped
The $INCLUDE string value for the filename was
too long.

A-7

A-8

118 Too Many File Levels
Too many $INCLUDE file nesting levels.

119 fuvalid Initialize Meta
A $POP metacommand has no corresponding
$PUSH metacommand.

120 CONST Identifier Expected
A $INCONST metacommand was not followed by
an identifier.

121 Invalid INPUT Number Assumed Zero
The user input invoked by $INCONST was invalid
in some way.

122 Invalid Meta Command Skipped
A $IF and its value was not followed by $THEN
or $ELSE.

123 Unexpected Meta Command Skipped
A $ THEN was found unrelated to any $ IF
metacommand.

124 Unexpected Meta Command
The metacommand was not in a comment; it was
processed anyway.

125 Reserved

126 fuvalid Real Constant
A type REAL constant with a leading or trailing
decimal point.

127 Invalid Character Skipped
Source file character is not acceptable in program
text.

128 Forward Proc Missing
The procedure or function given in the message
was declared FORWARD but not found (message
occurs in $SYMTAB area).

129 Label Not Encountered
The label given in the message was declared or used
in a GOTO, BREAK, or CYCLE but not found
(message occurs in $SYMTAB area).

130 Program Parameter Bad
The program parameter given in the message was
never declared or has the wrong type for READFN
(message occurs in $SYMTAB area).

131 [unassigned]

132 [unassigned]

Overflow Errors can occur in several con texts:

133 Type Size Overflow
The data type implies a structure bigger than
32766 bytes.

134 Constant Memory Overflow
Constant memory allocation has gone above
65534 bytes.

135 Static Memory Overflow
Static memory allocation has gone above 65534
bytes.

A-9

A-I0

136 Stack Memory Overflow
Static frame memory allocation has gone above
65534 bytes.

137 Integer Constant Overflow
A type INTEGER signed constant expression out
of range.

138 Word Constant Overflow
A type WORD or other unsigned constant
expression out of range.

139 Value Not In Range For Record
Record tag value not in range of variant, in a
structured constant, long form NEW jDISPOSEj
SIZEOF, or other application.

140 Too Many Compiler Labels
The compiler needs internal labels; program is too
big.

141 Compiler

142 Too many identifier levels
Identifier scope level is over 15 (panic error).

143 Compiler

144 Compiler

145 Identifier Already Declared
An identifier can only be declared once in a given
scope level.

146 Unexpected End Of File
End of file in statement, declaration, etc. (while
parsing).

Common Substitution Mistakes: Get their own special
messages, and are corrected with just a warning.

147 : Assumed =
148 = Assumed :
149 := Assumed =
150 = Assumed :=
151 [Assumed (
152 (Assumed [
153) Assumed]
154] Assumed)
155 ; Assumed,
156 ,Assumed;
157 [unassigned]
158 [unassigned]
159 [unassigned]
160 [unassigned]
161 [unassigned]

Missing Symbol: If a particular symbol is expected in
the source but not found, it may be inserted and one
of the following messages given:

162 Insert Symbol
163 Insert,
164 Insert;
165 Insert =
166 Insert: =

A-II

A-12

167 Insert OF
168 Insert]
169 Insert)
170 Insert [
171 Insert (
172 Insert DO
173 Insert:
174 Insert.
175 Insert ..
176 Insert END
177 Insert TO
178 Insert THEN
179 Insert *
180 [unassigned]
181 [unassigned]
182 [unassigned]
183 [unassigned]
184 [unassigned]

If a particular sym bol is expected in the source but is
found after some invalid symbols, the invalid ones are
deleted with the following two messages:

185 Invalid Symbol Begin Skip
186 End Skip

187 End Skip
The previous error message ended with the phrase
"Begin Skip"; this message marks the end of skippE
source text.

188 Section Or Expression Too Long
Com piler limit; try re-arranging the program or
breaking up an expression with assignmen ts to
intermediate values.

189 Invalid Set Operator or Function
For example, MOD operator or ODD function with
sets.

190 Invalid Real Operator or Function
For example, MOD operator or ODD function with
reals.

191 Invalid Value Type For Operator or Function
For example, MOD operator or ODD function with
enumerated type.

192 [unassigned]

193 [unassigned]

194 Type Too Long
Use of a variable or type with greater than 32766
bytes.

195 Compiler

t 96 Zero Size Value
Use of the empty record "RECORD END" as if it
had a size.

197 Compiler

198 Constant Expression Value Out Of Range
Array index, sub range assignment, other sub range
check.

A-13

A-14

199 Integer Type Not Compatible with Word Type
Common error indicates confusing signed and
unsigned arithmetic; either change the positive
signed value to unsigned with WRD 0 or change
the unsigned value « MAXINT) to signed with
ORDO.

200 [unassigned]

201 Types Not Assignment Compatible
Assignment statement or value parameter.

202 Types Not Compatible In Expression
Expression mixing incompatible types.

203 Not Array Begin Skip
Variable followed by a left bracket (or parenthesis)
is not array.

204 Invalid Ordinal Expression Assumed Integer Zero
The expression has the wrong type or a type that is
not ordinal.

205 Invalid Use of PACKED Components
A component of a PACKED structure has no
address (it may not be on a byte boundary); it
cannot be passed by reference.

206 Not Record Field Ignored
Variable followed by a dot is not record, address,
or file.

207 Invalid Field
Record variable and dot not followed by a valid
field.

208 File Dereference Considered Harmful
When the address of a file buffer variable is
calculated, the special actions normally done with
buffer variables (that is, lazy evaluation for
textfiles or concurrency for binary files), cannot
be done; the buffer variable at this address may
not be valid.

209 Cannot Dereference Value
Variable followed by an arrow is not pointer,
address, or file.

210 Invalid Segment Dereference
Variable resides at segmented address, but a default
segment address is needed; may need to make local
copy of variable.

211 Ordinal Expression Invalid Or Not Constant
A constant ordinal expression was expected.

212 [unassigned]

213 [unassigned]

214 Out of Range For Set 255 Assumed
An element of a set constant must have an ordinal
value <= 255.

215 Type Too Long Or Contains File Begin Skip
A structured constant must have 255 or fewer
bytes; also, it cannot be, or contain, a file type or
an LSTRING type.

A-IS

A-16

216 Extra Array Components Ignored
An array constant has too many components for
the array type.

217 Extra Record Components Ignored
A record constant has too many components for
the record type.

218 Constant Value Expected Zero Assumed
A value in a structured constant is not constant.

219 [unassigned]

220 Compiler

221 Components Expected For Type
A structured constant needs more components for
its type.

222 Overflow 255 Components In String Constant
A string constant must have 255 or fewer bytes.

223 Use NULL
The predeclared constant NULL must be used
instead of two quotes.

224 Cannot Assign With Supertype LSTRING
A super array LSTRING cannot be source or
target of assignment.

225 String Expression Not Constant
String concatenation with the asterisk only applies
to constants.'

226 String Expected Character 255 Assumed
Somehow a string constant had no characters,
perhaps using NULL.

227 Cannot Assign To Function
Assignment to the function is not in the scope of
the function.

228 Cannot Assign To Variable
Assignment to READONLY, CaNST, or FOR
control variable.

229 Cannot Use As CONST Parameter Or Address
Assumed Zero
The expression has no address and cannot be
reference parameter.

230 Unknown Identifier Assumed Integer Begin Skip
Unknown identifier, for which the address is
needed.

231 V AR Parameter Or WITH Record Assumed Integer
Begin Skip
Invalid identifier, for which the address is needed.

232 Cannot Assign To Type
Target of assignment is a file or otherwise cannot
be assigned.

233 Invalid Procedure Or Function Parameter Begin
Skip
Error in use of intrinsic procedure or function,
such as:

A-17

A-18

• NEW or DISPOSE first parameter not pointer
variable

• Long form NEWjDISPOSEjSIZEOF record
tag value not found

• Long form NEW jDISPOSEjSIZEOF super
array, too many bounds

• Long form NEWjDISPOSEjSIZEOF super
array, not enough bounds

• NEW or SIZEOF super array without giving
bounds

• ORD or WRD on a value that is not of an
ordinal type

• LOWER or UPPER on an invalid value or type

• PACK or UNPACK on super array, array of
files, or mis-packed

• RETYPE first parameter not a type identifier

• RESULT parameter is not a function identifier

234 Type Invalid Assulued Integer
Parameter for READ, WRITE, ENCODE, or
DECODE is not of type INTEGER, WORD, REAL,
BOOLEAN, enumerated, a pointer; or, for READ
and WRITE, type CHAR, STRING, LSTRING; or,
for READFN, type FILE.

235 Assumed File Input
First READFN parameter is not a file, so INPUT
is assumed.

236 Not File Assumed Text File
The first parameter to READ or WRITE (or
READLN or WRITELN) was assumed to be the
file but this assumption was not correct; please
give INPUT or OUTPUT explicitly to avoid this
message.

237 Assumed Input
INPUT was not given as a program parameter.

238 Assumed Output
OUTPUT was not given as a program parameter.

239 LSTRING Expected
Target of a READSET, ENCODE, or DECODE
must be an LSTRING.

240 [unassigned]

241 Invalid Segment Variable
Variable resides at segmented address, but a
default segment address is needed. May need to
make local copy of variable.

242 File Parameter Expected Skip Statement
READSET expects a textfile parameter.

243 Character Set Expected
READSET expects a SET OF CHAR parameter.

A-19

A-20

244 Unexpected Parameter Begin Skip
EOF, EOLN, and PAGE do not take more than
one parameter.

245 Not Text File
EOLN, PAGE, READLN and WRITELN only
apply to textfiles.

246 [unassigned]

247 Invalid Function
[not applicable]

248 Size Not Identical
Warning given in RETYPE; mayor may not work a
intended.

249 Procedural Type Parameter List Not Compatible
The parameter lists for formal and actual
procedural parameters are not compatible; number
of parameters is different, function result type or
parameter type is different, or attributes wrong.

250 Reserved

251 Unexpected Parameter Begin Skip
Procedure or functional has no parameters, but left
parenthesis was found.

252 Cannot Use Procedure or Function As Parameter
Intrinsic procedure or function cannot be passed
as parameter.

253 Parameter Not Procedure Or Function Begin Skip
Procedural parameter expected, need procedure or
function here.

254 Supertype Array Parameter Not Compatible
Actual parameter is not same or derived super type
as formal.

255 Compiler

256 V AR Or CONST Parameter Types Not Compatible
Actual and formal reference parameter types must
be identical.

257 Parameter List Size Wrong Begin Skip
Too few or too many parameters; only skips if too
many.

258 Invalid Procedural Parameter To EXTERN
The actual procedure or function is invoked with
intra-segment calls, and so cannot be passed to an
external code segment. Give the PUBLIC attribute
to the procedure or function to fix this.

259 Invalid Set Constant For Type
Set not constant, base types not identical, or
constan t too big.

260 Unknown Identifier In Expression Assumed Zero
The identifier is undefined (misspelled?) in an
expression.

A-21

A-22

261 Identifier Wrong In Expression Assumed Zero
General identifier error in an expression; for
example, file type ID.

262 Assumed Parameter Index Or Field Begin Skip
After error 260 or 261, anything in parenthesis
or square brackets, or a dot followed by an
identifier, is skipped.

263 [unassigned]

264 [unassigned]

265 Invalid Numeric Constant Assumed Zero
Decode error in an assumed INTEGER (or WORD)
literal constant.

266 [unassigned]

267 Invalid Real Numeric Constant
Decode error in an assumed type REAL literal
constant.

268 Cannot Begin Expression Skipped
Symbol cannot start an expression, so it has been
deleted.

269 Cannot Begin Expression Assumed Zero
Symbol cannot start an expression, so zero has
been inserted.

270 Constant Overflow
DIV or MOD by the constant zero (INTEGER or
WORD).

271 Word Constant Overflow
Unary minus on a WORD operand (try NOT word
+ 1).

272 Word Constant Overflow
WORD constant minus WORD constant giving
negative result.

273 [unassigned]

274 [unassigned]

275 Invalid Range
Lower bound of subrange is greater than upper
bound (for example, 2 .. 1).

276 CASE Constant Expected
Expecting a constant value for CASE statement or
record variant.

277 Value Already in Use
In CASE statement or record variant, value has
already been assigned (as in CASE 1 .. 3: XXX;
2: YYY; END).

278 Reserved

279 Label Expected
In a BREAK, CYCLE, or GOTO statement, or
starting a statement, or in a LABEL section, the
expected label was not found.

280 Invalid Integer Label
Non-decimal notation (for example, 8#77) is not
allowed in labels.

A-23

A-24

281 Label Assumed Declared
This label did not appear in the LABEL section.

282 [unassigned]

283 Expression Not Boolean Type
The expression following IF, WHILE, or UNTIL
must be BOOLEAN.

284 Skip To End Of Statement
Skipping an unexpected ELSE or UNTIL clause.

285 Compiler

286 ; Ignored
A semicolon before ELSE is always an error and is
skipped.

287 [unassigned]

287 [unassigned]

288 : Skipped
A colon after OTHERWISE is always an error and
is skipped.

289 Variable Expected For FOR Statement Begin Skip
A variable identifier must come after FOR.

290 [unassigned]

291 FOR Variable Not Ordinal Or Static Or Declared
In Procedure
The FOR statement control variable must not be:

• Type REAL or other non-ordinal type

• The component of an array, record, or file
type

• The referent of a pointer type or address type

• In the stack or heap, unless locally declared

• Non-locally declared, unless in static memory

• A reference parameter (V AR or V ARS
parameter)

292 Skip To : =
In a FOR statement, the assignment is expected
here.

293 Reserved

294 GOTO Considered Hannful
The $GOTO metacommand is on, and here is a
GOTO.

295 [unassigned]

296 Label Not Loop Label
The BREAK or CYCLE label is not before a FOR,
WHILE, or REPEAT.

A-25

A-26

297 Not In Loop
The BREAK or CYCLE statement is not in a FOR,
WHILE, or REPEAT.

298 Record Expected Begin Skip
A WITH statement expects a record variable.

299 [unassigned]

300 Label Already In Use Previous Use Ignored
This label has already appeared in front of a
statement.

301 Invalid Use of Procedure Or Function Parameter
A procedure parameter used as a function, or vice
versa.

302 [unassigned]

303 Unknown Identifier Skip Statement
The identifier is undefined (misspelled?) starting
statement.

304 Invalid Identifier Skip Statement
General identifier error starting statement; that is,
file type ID.

305 Statement Not Expected
A MODULE or uninitialized IMPLEMENTATION
with a main BEGIN ... END.

306 Function Assignment Not Found
Somewhere in the function's body, its value must
be assigned.

307 Unexpected END Skipped
END was unexpected; perhaps a missing BEGIN,
CASE, or RECORD.

308 Compiler

309 Attribute Invalid
Attribute only for procedures and functions given
for variable or vice versa, or invalid attribute mix
like PUBLIC and EXTERN.

310 Attribute Expected
Left bracket indicated attributes, but this is not
an attribute.

311 Skip To Identifier
This symbol was skipped to get to the identifier
which follows.

312 Identifier Expected
List of identifiers expected, but this is not an
iden tifier.

313 Reserved

314 Identifier Expected Skip To ;
A new identifier to be declared was expected but
not found.

A-27

A-28

315 Type Unknown Or Invalid Assumed Integer Begin
Skip
Parameter or function return type not identifier,
undeclared, or value parameter or function return
with file or super array.

316 Identifier Expected
No identifier after PROCEDURE or FUNCTION
in parameter list.

317 [unassigned]

318 Compiler

319 Compiler

320 Previous Forward Skip Parameter List
The parameter list and function return type are not
repeated when a forward (or interface) procedure
or function is defined.

321 Reserved

322 Reserved

323 Invalid Attribute In Procedure Or Function
Nested procedure or function cannot have attributE
or be EXTERN.

324 Compiler

325 Already Forward
FORWARD cannot be used twice for the same
procedure or function.

326 Identifier Expected For Procedure Or Function
Keywords PROCEDURE or FUNCTION must be
followed by an identifier.

327 Invalid Symbol Skipped
FORWARD or EXTERN directives are never used
in interfaces.

328 EXTERN Invalid With Attribute
An EXTERN procedure cannot have the PUBLIC
attribute.

329 Ordinal Type Identifier Expected Integer Assumed
Begin Skip
An ordinal type identifier is evnected for a record
tag type.

330 Contains File Cannot Initialize
A file in a record variant, while allowed, is
considered unsafe and is not initialized
automatically with the usual NEWFQQ call.

331 Type Identifier Expected Assume Character
General message; this identifier is not a type
iden tifier.

332 Reserved

333 Not Supertype Assumed String
This looks like a super array type designator but
type identifier is not a super array type so STRING
super array type is assumed.

A-29

A-30

334 Type Expected Integer Assumed
General message; a type clause or type identifier
is expected.

335 Out Of Range 255 For LSTRING
An LSTRING designator cannot have an upper
bound over 255.

336 Cannot Use Super type Use Designator
Super array type must be reference parameter or
pointer referent.

337 Supertype Designator Not Found
All upper bounds must be given in a super array
designa tor.

338 Contains File Cannot Initialize
A super array of a file type, while allowed, is
considered unsafe and is not initialized
automatically with the usual NEWFQQ call.

339 Supertype Not Array Skip To ; Assumed Integer
The keyword SUPER is always followed by
ARRAY in a type clause.

340 Invalid Set Range Integer Zero To 255 Assumed
The base type of a set must be within the subrange
0 .. 255.

341 File Contains File
A file type cannot contain a file type, directly or
indirectly.

342 PACKED Identifier Invalid Ignored
The PACKED keyword must be followed by one
of ARRAY, RECORD, SET, or FILE; it cannot
be followed by a type identifier.

343 Unexpected PACKED
The PACKED keyword only applies to structured
types (above).

344 [unassigned]

345 Skip To ;
Semicolon expected at end of declaration (not at
end of line).

346 Insert;
Semicolon expected at end of declaration (at end
of line).

347 Reserved

348 UNIT Procedure Or Function Invalid EXTERN
In an IMPLEMENTATION, any interface procedures
and functions not implemented must be declared
EXTERN at the beginning of the
IMPLEMENTATION, but this EXTERN occurs
later.

349 [unassigned]

350 Not Array Begin Skip
Variable in VALUE section followed by square
bracket not array.

A-31

A-32

351 Not Record Begin Skip
Variable in VALUE section followed by dot is not
a record type.

352 Invalid Field
In VALUE section identifier assumed to be field is
not in record.

353 Constant Value Expected
In VALUE section variable can only be initialized
to constant.

354 Not Assignment Operator Skip To ;
The assignment operator was not found in a
VALUE section.

355 Cannot Initialize Identifier Skip To ;
Symbol in VALUE section is not variable declared
at this level in fixed (STATIC) memory or has
EXTERN attribute.

356 Cannot Use Value Section
Put a VALUE section in the IMPLEMENTATION,
not the INTERFACE.

357 Unknown Forward Pointer Type Assumed Integer
The identifier for the referent of a reference type
declared earlier in this TYPE (or V AR) section was
never declared itself.

358 Pointer Type Assumed Forward
In this TYPE section, a pointer or address type
occurred in which the referent type was already
declared in an enclosing scope, but the identifier fo
the referent type was declared again later in the
same TYPE section. For example:

For example:

TYPE A=WORD; PROCEDURE B; TYPE C=I\A;
A=REAL;

Message says the forward type is used in this case
(for example, REAL).

359 Cannot Use Label Section
Put a LABEL section in the IMPLEMENT A TION,
not the INTERFACE.

360 [unassigned]

361 Constant Expression Expected Zero Assumed
In a CONST section, the expression is not constant.

362 Attribute Invalid
In a VAR section, PUBLIC with EXTERN.

363 [unassigned]

364 Contains File Initialize Module
File variables must be initialized, so when a file
variable is declared in a module, the module must
be called (as a parameterless procedure) to initialize
these files.

365 Reserved

366 UNIT Identifier Expected Skip To ;
USES was not followed by the identifier of a unit.

A-33

A-34

367 Initialize MODULE to Initialize UNIT
A USES clause triggers a unit initialization call, but
to invoke this call, the module must be called as a
procedure.

368 Identifier List Too Long Extra Assumed Integer
In a USES clause with a list of identifiers, more
identifiers were found in the list than are
constituents of the interface.

369 End Of UNIT Identifier List Ignored
In a USES clause with a list of identifiers, fewer
identifiers were found in the list than are
constituents of the interface.

370 [unassigned]

371 UNIT Identifier Expected
After the phrase INTERFACE; UNIT an identifier
was not found.

372 Compiler

373 Identifier In UNIT List Not Declared
One of the identifiers in the interface UNIT list was
not declared in the body of the interface.

374 Program Identifier Expected
No identifier after PROGRAM or MODULE
keyword (panic error).

375 UNIT Identifier Expected
No unit identifier after IMPLEMENTATION OF
(panic error).

376 Program Not Found
PROGRAM, MODULE, or IMPLEMENTATION
OF keywords not found (panic error). Can occur
if source file is not a Pascal compiland.

377 File End Expected Skip To End
The assumed end of compiland was processed, but
there is more.

378 Program Not Found
The main body of a PROGRAM or initialized
IMPLEMENT ATION, or final END of a
MODULE or other IMPLEMENTATION, was not
found.

A-35

Back End Errors

There are two kinds of errors given by the back end
(optimizer and code generator): user errors and internal
errors. There are very few user errors; all are concerned
with limitations that cannot be detected by the front
end.

A large number of internal consistency checks are done
in the back end, but naturally these should always be
correct and never give an internal error. Both user and
internal back end errors cause an immediate stop. Both
give an error number and approximate listing line
number.

Back End User Errors

A-36

1. Attempt to divide by zero.
For example: A DIV O.

2. Overflow during integer constant folding.
For example: MAXINT + A + MAXINT.

3. Expression too complex/Too many internal labels.
Try breaking up expression with intermediate value
assigns.

Back End Internal Errors

These errors have the format:

*** Internal Error NNN

NNN is the internal error number, which ranges from I
to 999. There is little that can be done when an internal
error occurs, except report it to your authorized IBM
Personal Computer dealer. Perhaps try changes to the
program near the line where the error occurred.

A-37

File System Errors

A-38

Errors caught at runtime can be divided into file system
errors and all other errors. File system errors will be
described first. File system error codes range from 1000
to 1999. Codes from 1000 to 1099 are for operating
system errors (from unit U), and 1100 to 1199 for
Pascal file system errors (from unit F). Unit F errors
are given below.

File system errors all have the format:

error type error in file filename

followed by the error code.

The error type field is based on the ERRS field of the
file control block. The letters in parentheses show which
units (U and F) can generate the error (see Appendix B).
The error codes are as follows:

CODE CONDITION

o No error
1 Reserved
2 Reserved
3 Operation (UF)
4 Reserved
5 Reserved
6 Reserved
7 File name (UF)

CODE CONDITION

8 Device full (U)
9 Reserved

10 File not found (U)
11 Reserved
12 Reserved
13 File not open (F)
14 Data format (F)
15 Line too long (UF)

Unit U Errors

1000 Write Error When Closing File

1001 Reserved

1002 Filename Extension With More Than 3 Characters

1003 Error During Creation Of New File

1004 Error During Opening Of Existing File

1005 Filename With More Than 8 Or Zero Characters

1006 Reserved

1007 Total Filename Length Over 12 Characters

1008 Write Error When Advancing To Next Record

1009 File Too Big (over 65535 logical sectors)

1010 Write Error When Seeking To Direct Record

A-39

Pascal File System Error Codes

A-40

1100 ASSIGN Or READFN Of Filename To Open File

1101 Reference To Buffer Variable Of Closed File

1102 Textfile READ OR WRITE Call To Closed File

1103 READ When EOF Is True (Sequential Mode)

1104 READ To REWRITE File, OR WRITE to RESET
File (Sequential Mode)

1105 EOF Call To Closed File

1106 GET Call To Closed File

1107 GET Call When EOF is True (SEQUENTIAL
Mode)

1108 GET Call To REWRITE File (SEQUENTIAL
Mode)

1109 PUT Call To Closed File (SEQUENTIAL Mode)

1110 PUT Call To RESET File (SEQUENTIAL Mode)

1111 Line Too Long In DIRECT Textfile

1112 Decode Error In Textfile READ BOOLEAN

1113 Value Out Of Range In Textfile READ CHAR

1114 Decode Error in Textfile READ INTEGER

1115 Decode Error in Textfile READ SINT (Integer
subrange)

1116 Decode Error in Textfile READ REAL

1117 LSTRING Target Not Big Enough in READSET

1118 Decode Error In Textfile READ WORD

1119 Decode Error In Textfile READ BYTE

1120 SEEK Call To Closed File

1121 SEEK Call To File Not In DIRECT Mode

1122 Encode Error (Field Width>255) In Textfile
WRITE BOOLEAN

1122 Encode Error (Field Width>255) In Textfile
WRITE INTEGER

1122 Encode Error (Field Width>255) In Textfile
WRITE REAL

1122 Encode Error (Field Width>255) In Textfile
WRITE WORD

A-41

Other Runtime Errors

Non-file system error codes range from 2000 to 2999.
In some cases metacommands control whether errors
are checked; in other cases they are always checked.
The metacommand controlling a check, if any, is given
in the list below.

2000 .. 2049 Memory Errors

A-42

Since the stack and the heap grow toward each other,
these errors are all related; for example, a stack overflow
can cause a "Heap Is Invalid" error if $ ST ACKCK is off
and the stack overflows.

2000 Overflow
While calling a procedure or function, the stack
(frame) ran out of memory. Checked if
$ ST ACKCK +, and in some other cases.

2001 No Room In Heap
While in the NEW (GETHQQ) procedure, not
enough room was found in the heap for a new
variable. Always caught.

2002 Heap Is Invalid
While in the NEW (GETHQQ) procedure, the
allocation algorithm discovered the heap structure
is wrong. Always caught.

2003 Reserved

2031 NIL Pointer Reference
DISPOSE or $NILCK+ found a pointer with a
NIL (for example, 0) value.

2032 Uninitialized Pointer
DISPOSE or $NILCK + found an uninitialized
(value 1) pointer. Pointers will only get this
value if $INITCK is on.

2033 Invalid Pointer Range
DISPOSE or $NILCK + found a pointer that does
not point into the heap or is otherwise invalid.
Might have pointed to DISPOSEd block which was
removed from heap and given back to system.

2034 Pointer To disposed V AR
DISPOSE or $NILCK + found a pointer to a heap
block that has been disposed. Calling DISPOSE
twice for same variable is invalid.

2035 Long DISPOSE Sizes Unequal
When the long form of DISPOSE was used, the
actual length of the variable did not equal the
length based on the tag values given.

2050 .. 2099 Ordinal Arithmetic

2050 No CASE Value Matches Selector
In a CASE statement without an OTHERWISE
clause, none of the branch statements had a
CASE constant value equal to the selector
expression value. Checked if $RANGECK is on.

A-43

A-44

2051 Unsigned Divide By Zero
WORD value divided by zero; checked if
$MATHCK+.

2052 Signed Divide By Zero
INTEGER value divided by zero; checked if
$MATHCK+.

2053 Unsigned Math Overflow
WORD result outside O .. MAXWORD; checked
if $MATHCK+.

2054 Signed Math Overflow
INTEGER result outside -MAXINT .. MAXINT;
checked if $MATHCK+.

2055 Unsigned Value Out Of Range
Assignment or value parameter in which the
source value is out of range for the target value;
target can be a subrange of WORD (including
BYTE), or CHAR, or an enumerated type. Can
also occur in SUCC and PRED functions, and
when the length of an LSTRING is assigned.
These are checked with $RANGECK+. Also
occurs when an array index is out of bounds and
the array has an unsigned index type; this is
checked with $INDEXCK +.

2056 Signed Value Out Of Range
As above, but applies to INTEGER type and its
subranges.

2100 .. 2149 Type REAL Arithmetic

2100 REAL Divide By Zero
REAL value divided by zero; always checked.

2101 REAL Math Overflow
REAL value too large for representation; always
checked.

2102 SIN Or COS Argument Range
SIN or COS function argument is too large to
get a meaningful result.

2103 EXP Argument Range
EXP function in which argument is too large for
result to fit in representation.

2104 SQRT Of Negative Argument
Square root function on argument < zero; always
caught.

2105 LN of Non-Positive Argument
Natural log function on argument <= zero;
always caught.

2106 TRUNC/ROUND Argument Range
Converting a REAL outside the range of
INTEGER; always caught.

2131 Tangent Argument Too Small
TANRQQ function argument so small result
invalid; always caught.

A-45

2132 Arcsin Or Arccos Of REAL> 1.0
ASNRQQ or ACSRQQ argument greater than one;
always caught.

2133 Negative Real To Real Power
RSRRQQ function with first argument below zero;
always caught.

2150 .. 2199 Structured Type Errors

2150 String Too Long In COPYSTR
COPYSTR intrinsic source string is too large for
target string; always caught.

2151 LSTRING Too Long In Intrinsic Procedure
Target LSTRING is too small in INSERT,
DELETE, CONCAT, or COPYLST intrinsic
procedure; always caught.

2180 SET Element Greater Than 255
Value in constructed set above maximum; always
caught.

2181 SET Element Out Of Range
Value in set assignment or set value parameter
too large for target set; checked if $RANGECK
is on.

2200 .. 2999 Other Errors

2400 Reserved

A-46

2450 Unit Version Number Mismatch
During UNIT initialization, the user (one with
the USES clause) and implementation of an
interface were discovered to have been compiled
with unequal interface version numbers; always
caught.

A-47

A-48

APPENDIX B. FILE SYSTEM INTERNALS

B-1

The File Control Block

B-2

IBM Pascal is designed to be easily interfaced with the
IBM Personal Computer DOS operating system. This
Appendix describes this common interface in detail.

The interface consists of a file control block (FCB)
declaration, and a set of procedures and functions
(named "unit U") called from the runtime to do I/O.

This interface supports three access methods, referred
to as terminal, sequential, and direct.

Every file has an associated FCB (file control block).
The FCB record type begins with a number of
standard, operating system independent fields, the
last of which is the name of the file.

Following these standard fields are operating system
dependent fields. Included here are buffers, DOS
control blocks, and so on, generally all operating
system data for the file.

The advanced Pascal user can access FCB fields directly
as explained below.

Two special FCBs are always available in Pascal,
corresponding to the user console input and output.
These files are usually ASCII structure TERMINAL

mode. However, there are also the Pascal predeclared
files INPUT and OUTPUT which the user can reassign
and generally treat like any other files. The Pascal files
are called INPFQQ and OUTFQQ.

For Pascal files, the FCB ends with the buffer variable,
conceptually the current file component. This means
the length of a Pascal file is the length of the fixed
portion plus the buffer variable length.

Pascal file variables can occur in static memory, on
the stack as local variables, or in the heap as heap
variables. Pascal generated code initializes FCBs when
they are allocated and CLOSEs them when they are
de-allocated. An FCB can be created or destroyed;
however, one is never moved or copied.

The IBM Pascal compiler front end must know the
length of an FCB. It reads this value during
initialization from a special file called PASKEY, which
resides on the PAS I diskette. Every reference to a
Pascal file buffer generates a call to a unit U routine.

As mentioned, unit U refers to the operating system
interface routines. The IBM Pascal specific file
routines are called unit F.

Generated code has calls to unit F, which in turn calls
unit U routines.

B-3

B-4

The IBM Pascal system uses a naming convention for
IBM Personal Computer Linker names. The compiler
and run time system use the same conventions.

All linker globals are six alphabetic characters, ending
with QQ (this avoids conflicts with user program global
names).

The fourth letter indicates a general class, so xxxFQQ
is always part of the generic Pascal file unit, and
xxx UQQ is part of the operating system interface unit.

File system error conditions may be detected at the
lower unit U level, detected at the higher unit F level,
or undetected.

When a unit U routine detects an error, it sets a flag
in the FCB and returns with a non-zero result.

When unit F detects an error, or discovers unit U has
detected one, either an immediate runtime error
message and program termination occur, or if the user
has set error trapping by setting the TRAP flag (in the
FCB), unit F just returns to the calling program.

Unit F will not pass a unit U routine a file with an
error condition.

This condition (also called an "error not caught") has
undefined results. Runtime errors which cause a
program termination, use the standard IBM Pascal error
handling system, which gives the context of the error

and provides entry to the debugging system which can
be turned on with the $DEBUG metacommand.

File Structures and Modes

Files come in two basic structures, and three modes.
The structures are ASCII (Pascal TEXT type with
CHAR components), and BINARY (Pascal FILE OF
some type).

The TXTF field in the FCB is true for ASCII files, and
false for BINARY files. In theory, an ASCII file can
contain any 8 byte character, but in practice, IBM
Pascal preempts two character values, CHR(l3) for
end-of-line and CHR(26) for end-of-file.

The modes supported are SEQUENTIAL, TERMINAL,
and DIRECT (these values are of Pascal type
FILEMODES).

TERMINAL mode is for display/keyboard and printers;
SEQUENTIAL mode means a diskette file with variable
length records accessed serially, and DIRECT mode
means a disk file with fixed length records accessed by
logical record numbers.

SEQUENTIAL mode is the default, and TERMINAL
mode is set automatically if a file is opened to the
display /keyboard or a printer device.

B-5

B-6

The Pascal user can set DIRECT or any other mode by
setting the file's MODE field (for example
'filevariable.MODE := SEQUENTIAL').

The six kinds of files implied by two structures and
three modes are often grouped as follows:

• ASCII structure SEQUENTIAL mode

• ASCII structure TERMINAL mode

• ASCII structure DIRECT mode

• BINARY structure SEQUENTIAL mode

• BINARY structure TERMINAL mode

• BINARY structure DIRECT mode

Files with mode TERMINAL usually have ASCII
structure, but BINARY structure is also permitted.

When reading in TERMINAL mode with ASCII
structure, the user types an entire line before it is
processed, allowing the usual line editing features
(such as backspace or cancel) before the Enter key
is pressed.

When reading in TERMINAL mode with BINARY
structure, keystrokes are returned directly, without
waiting for a carriage return or echo.

This TERMINAL/BINARY combination is very useful
for non-echoed input (since the user is responsible for
any echoing) and one character responses to prompts
(see GET versus READ).

Files with SEQUENTIAL or TERMINAL mode and
ASCII structure contain records (called lines in Pascal)
with a variable number of characters from zero (empty)
upward.

There are no particular limits on the set of 8 bit bytes
allowed as characters, except DOS uses two characters
to terminate records making these byte values
impossible to read (CHR(13) for end-of-line and
CHR(26) for end-of-file). ASCII record and file
boundaries are called "hard," that is, boundary
information is always present in the file in some form.

Files with SEQUENTIAL or TERMINAL mode and
BINARY structure contain records with fixed length
in Pascal (that is, the file's component type size). The
boundaries between BINARY SEQUENTIAL records
are detectable (hard), and the length of a record read
must be the same as the length of the same record
written or an error occurs.

In Pascal, once a SEQUENTIAL or TERMINAL file
is opened for reading (RESET) or writing (REWRITE),
only read and write operations (respectively) are
permitted, and an EOF is written when a file opened
for writing is CLOSEd.

B-7

B-8

Files with mode DIRECT contain records with a fixed
length, so generally there is no difference between an
ASCII record and a BINARY record and any byte value
can be used as data.

The Pascal user sets the record size of a BINARY
DIRECT file implicitly as the length of one file
component. The record size of an ASCII DIRECT file
is set with the special type declaration "TEXT(nnn)."

The Pascal user sets the record number with SEEK
(file,n). If no record number is given, the next higher
record number is used.

IBM Pascal automatically extends a DIRECT file when
a record is written with a new highest record number.

It is an error to read a record that has never been
written, but this error is not caught if the record
number is below the maximum allocated. Reading a
record with a number above the maximum is an end
of file condition.

It is an error to write a DIRECT file with one size and
read it with another.

Reading or writing past the declared size of a record is
an error caught; reading or writing less than a full record
is permitted, and, if writing, unit F will blank pad for
ASCII records and affect the rest of the record in an
undefined way for BINARY records.

Special Features

The various I/O related operations in a Pascal program
are compiled into calls to routines in the generic file
unit, referred to as unit F.

Although not recommended, unit F or unit U routines
can be called directly in a Pascal program, by declaring
them EXTERN.

In Pascal, a variable with any FILE type is identical
to an FCB record, and in fact any FILE variable can be
treated as having the record type FCBFQQ.

For example, if FREAL is declared type FILE OF
REAL, in addition to accessing the current buffer
variable as FREALA the file error trapping flag can be
accessed as FREAL.TRAP. An actual parameter of any
FILE type or the type FCBFQQ can be passed to a
formal V AR parameter of the identical FILE type or
the identical FCBFQQ type.

A partial version of the record type FCBFQQ is
pre-declared, but the full version can be re-declared in
a user program (or within a procedure, etc.).

B-9

B-IO

However, as with all IBM Pascal VAR or CaNST
parameters, if both the formal and actual parameters
have the type identifier FCBFQQ these must be the
same type.

Generally Pascal users who redeclare the type FCBFQQ
will $INCLUDE the INTERFACE and a USES clause
for unit FILKQQ which contains the standard
declaration code.

This technique must be used with caution (see
Chapter 12, "File System "). The includable interface
file (FILKQQ.INC) is resident on the PAS 1 diskette
for the user's convenience.

The FCB fields available to the Pascal user with the
default FCBFQQ type are the error trapping flag TRAP,
the error status ERRS, and the filemode MODE.

TRAP can be set true to enable error trapping; if true
when an error is detected, no further unit U calls
(except CLSUQQ and CLDUQQ) using the FCB are
executed, unless the user first clears ERRS.

If TRAP is false a file error invokes the usual runtime
error termination. ERRS is a standard user-oriented
error code from 0 to 15 (see "Error Handling" in this
chapter).

The file is defined to be in an error condition if ERRS
is non-zero. Although the Pascal user can set ERRS
to zero to re-enable unit U calls using the file, the
status of a file in error is undefined.

Clearing ERRS will allow recovery from format errors
in TERMINAL file input, the most important case.
(See "Error Handling" in this chapter.) MODE can be
set to the filemode wanted.

When RESET or REWRITE are called, MODE is copied
to CMOD, OPNUQQ is called to open the file (which
may change CMOD), then CMOD is copied back to
MODE. Changing the MODE field of an open file has
no effect.

IBM Pascal also supports temporary files, in that a file
assigned the name CHR (0) is given a unique temporary
file name with a call from REWRITE (REWFQQ) to the
special routine TFNUQQ.

A temporary file is deleted when it is closed. The FCB
field TMPF is true for a temporary file, false for all
other files.

Of course, a temporary file can be created by
REWRITE, written, then RESET and read, but any
implicit or explicit CLOSE (including program
termination) will delete it.

The IBM Pascal system uses a method called lazy
evaluation to facilitate interactive terminal input.
This means input data is not evaluated until it is
needed.

Unit F applies lazy evaluation to all ASCII files,
transparent to unit U (it does no harm with non
TERMINAL ASCII files).

B-ll

It uses the FCB field FULL, as follows:

• GET (really GETFQQ) advances to the next
character only if FULL is false, and always returns
FULL false.

• BUFFQQ (see below) advances to the next character
only if FULL is false, and always returns FULL true.

• Unit F calls BUFFQQ to make sure FULL is true.

In addition, the generated code has a call to BUFFQQ
before every reference to a textfile buffer variable.

Pascal also contains the concept of a "program
parameter;" these look like parameters to the main
program in a Pascal source file.

Program parameter values are received from the operating
system with a call to PPMUQQ, described below. Its
corresponding unit U routine is EOFUQQ.

Error Handling

B-12

Errors may be detected in either the Pascal runtime
(unit F), or operating system interface routines (unit U).

However, an error condition is never processed by unit
U; these routines just pass an error code back to unit F.

The Pascal user may indicate that I/O errors should be
trapped by setting FILE.TRAP:=TRUE for a file.

When an error occurs, if error trapping is on additional
I/O to a file stops and the user program is expected to
handle (or ignore) it. If error trapping is off, unit F
will end the run by calling the standard error handler
ABORT (EMSEQQ).

Within unit F, if ERRS is or becomes non-zero, no
unit U routines involving the file except CLSUQQ,
CLDUQQ, and ENDUQQ are called, although the
buffer variable and/or user input variables may be
changed in undefined ways.

Therefore, on entry to any unit U routine (except
those mentioned), there should never be any error
conditions present in the FCB.

If an error occurs in a unit U routine, it sets ERRS to
an error status code (1. .15, below), and ESTS to any
WORD value (such as the operating system return
code).

The unit F routines are responsible for producing an
error message if error trapping is off for the file, or not
invoking any unit U routines again (except those
mentioned above) if error trapping is on and ERRS
remains non-zero. Unit U routines should never look
at ERRS or ESTS.

The run time error message is produced by calling
EMSEQQ, passing ERRC, ESTS, and a message
containing the filename and a short description based
on ERRS.

The error code ERRS is available as a general operating
system independent code (see Appendix A).

FeB Declarations in Detail

B-14

FNLUQQ=21-CONST length of a DOS filename

SCTRLNTH=512-CONST length of disk sector

DOSEXT-Type

This is the extended portion of the DOS FCB. Not used
by Pascal but provided for the advanced machine
language user.

DOSFCB-Type

The FCB used by DOS to do actual I/O.

DEVICETYPE-Type

The type of device that the file resides on. LDEVICE
is the RS232 port.

FILEMODES-TYPE Enumerated

Used to describe the mode of a file. New modes can be
added on the end. Current constant values are
SEQUENTIAL, TERMINAL, and DIRECT with the
ordinal values 0, 1, and 2 respectively.

FCBFQQ-TYPE Iue control block; fields:

TRAP-error trap flag. Set true by the user to enable
error trapping, or false (default) to cause normal error
termination. See "Error Handling" discussed
previously.

ERRS-Pascal error status. If zero, no error; values
from 1 to 15 indicate the general class of error. Can be
set to zero to re-enable I/O on a file. See "Error
Handling" discussed previously.

MODE-Pascal user filemode. Set by the user to indicate
a filemode wanted before calling RESET or REWRITE;
set by unit F to indicate the mode actually obtained. To
avoid mistakes by casual users, MODE does not contain
the actual filemode value; it is in CMOD.

B-lS

B-16

MISC-unused (reserved).

ERRC-generic error code. This error code is part of the
standard error code range used generally by Pascal.
Invalid unless ERRS is non-zero; see "Error Handling,"
discussed previously. Write-only in units F and U;
given in runtime error message.

F or 110 errors the code ranges from 1000 to 1999.
(See Appendix D, "Runtime Structure" for more
information.)

• 1000 .. 1099: unit U errors

• 1100 .. 1199: unitFerrors

• 1200 .. 1999: unused

ESTS-unused (reserved).

CMOD-current file mode. Actual mode of the file,
used by all units; value is SEQUENTIAL (0),
TERMINAL (1), or DIRECT (2). Must be set before
OPNUQQ call, which may change it from SEQUENTIAL
to TERMINAL. Does not change as long as file is open.

Set indirectly by Pascal user by setting MODE before
RESET or REWRITE.

TXTF -current structure. Actual structure of the file,
used by all units; true if ASCII, false if BINARY. Must
be set before OPNUQQ or NEWUQQ. Does not change
as long as file is open. Set indirectly by type of file,
TEXT or FILE OF type.

Pascal generated code calls NEWFQQ when a file is
allocated passing TXTF (and SIZE) as parameters.

SIZE-record size. For DIRECT mode, the size of a
record in bytes, excluding any DOS overhead (such
as record terminator). Must be set before OPNUQQ
or NEWUQQ. Does not change as long as file is open.

Known at compile time from component length
(BINARY) or TEXT(nnn) type (ASCII); passed (along
with TXTF) in a generated call to NEWFQQ when- the
file is open.

Also applies to SEQUENTIAL and TERMINAL
modes, as the component size of a BINARY file.

MISB-unused (reserved).

B-17

B-18

OLDF -existing iue flag. True if file must already exist
when OPNUQQ called; false if a new file can be
created. For Pascal, set true for RESET, false for
REWRITE.

INPT -input/output flag. True if reading, false if
writing. Set true by RESET and false by REWRITE.
For Pascal files with SEQUENTIAL or TERMINAL
modes, is only changed when file is closed. Files with
DIRECT mode can change the INPT value at any time.
Always true for GETUQQ call; always false for
PUTUQQ, PERUQQ, and PCCUQQ calls.

Used by OPNUQQ to open file initially for reading or
writing; used by IOCUQQ to change from writing to
reading or vice versa; used by FBRUQQ and CLSUQQ
to write end-of-file if was writing. Maintained by unit
F.

RECL, RECH-DIRECT record number. Value from
1 to (2 16)-1; high order bit of RECH always zero. Set
by Pascal user with SEEK. Unit F will call SEKUQQ
in these cases. If not set explicitly, automatically
incremented by GET or PUT after a call to PERUQQ
(in which case SEKUQQ is not called). Undefined
value unless filemode is DIRECT. Changed only by
Unit F and SEKUQQ in Unit U.

USED-current record byte counter. Number of bytes
read or written in current record; applies to all
filemodes. Can range from zero to SIZE.

Can be used by unit U as offset to next byte to read or
write. If zero, indicates a new DIRECT file record
number. Changed only by unit F.

Because Pascal BINARY records are always of length
SIZE and read or written with one call to GET or
PUT, USED is set to zero before the GET/PUT
call and set to SIZE afterwards. If USED is zero,
EORF should be true, and vice versa.

LINK-next FeB in list. Used by unit F to maintain
a list of open files. Head of list is global variable
HDRFQQ. If zero, last FCB in list. Ignored by unit U.

BADR-ADRMEM. Address of buffer variable at the
end of the FCB.

TMPF -Pascal temporary file. Set indirectly by the
Pascal user by ASSIGN (file,CHR(O)); only set true
during REWRITE, in which case TFNUQQ is called
to set a temporary filename.

Causes the file to be deleted (by calling CLDUQQ)
when the user explicitly CLOSEs it or at program
termination; file is not deleted within a later RESET
or REWRITE.

B-19

B-20

FULL-buffer status. Lazy evaluation status for textfile
read; true if evaluated, false if evaluation deferred.
BUFFQQ always returns with FULL true; if it was
false, unit F goes to the next character. GETFQQ
always returns with FULL false; if it was already false,
unit F goes to the next character.

MISA-unused (reserved).

OPEN-open flag. If true, file is open. Maintained by
unit F only; ignored by unit U. Set true after calling
OPNUQQ and false after calling CLSUQQ/CLDUQQ.

FUNT -unused.

ENDF -unused.

REDY -unused (reserved).

BeNT -byte count from GET. Number of bytes in
current record copied to the target address by
GETUQQ. Ranges from zero to the target length
requested.

GETUQQ may copy additional bytes beyond the
current record to a maximum of the target length
requested, but these are not counted in BCNT and will
be returned by a later GETUQQ call.

Unit F adds BCNT to USED after every GETUQQ call.
No defined value if writing file. Could be used by unit
U in this case.

EORF -end of record flag. Only applies to ASCII
SEQUENTIAL/TERMINAL files. If true, file is at
record boundary, either start of file or end of record.

Set true by GETUQQ if end of record encountered
(in which case BCNT is less than length wanted), else
set false by GETUQQ.

Also set true by OPNUQQ, PERUQQ, FBRUQQ, and
IOCUQQ; and set false by PUTUQQ and PCCUQQ.
Also used by unit F for DIRECT and/or BINARY
files; must not be used by unit U in this case. If EORF
is true, USED should be zero, and vice versa.

EOFF -end of file flag. Set true by GETUQQ if end of
file read. Causes GETUQQ to do nothing if true on
entry. Set false by OPNUQQ when opening file to
read; if file is empty, first GETUQQ will set it true. Set
true by OPNUQQ call if opening for write and remains
true as long as file being written.

Set true by IOCUQQ if INPT false (switch read-to-write),
but not changed if switching write-to-read. Set false by
FBRUQQ if INPT is true. Set true by TFDUQQ.

B-21

DOS Specific Fields

This area is designed to contain the operating system's
file data: buffers, counters, flags, and so on, as well as
any variables needed by unit U.

It starts on a word boundary and should end on a word
boundary. During the time a file is opened, an FCB
is never moved or copied, so the operating system can
use addresses of these fields safely.

BUFF -Pascal File Buffer

Current file buffer variable in Pascal; can be accessed
by the Pascal user as filevar. The length is always
SIZE bytes.

Including the FeB Declaration

B-22

The following is an example of how the FCB declaration
can be implemented:

{&INCLUDE: 'A:filkqq.inc'}
PROGRAM EXAMPLE(OUTPUT);

USES FILKOO;
VAR F:TEXT;
BEGIN

ASS. G N (F ,'F I L E. D AT') ;
REWRITE(F);
IF F.TXTF<>TRUE THEN

WRITE('Something is wrong');
END.

DOS Interface Routines

Interface routines in unit U can be divided into several
groups.

First are the overall initialization and termination
routines, INIUQQ and ENDUQQ.

Next described are the file initialization and
termination routines, OPNUQQ, CLSUQQ, and
CLDUQQ.

Then come the data transfer and position routines,
GETUQQ, PUTUQQ, PERUQQ, PCCUQQ, and
SEKUQQ.

Last in the group are the terminal access routines,
PTYUQQ, GTYUQQ, and PL YUQQ; and the filename
routines, PFNUQQ and GFNUQQ. Pascal also uses
the routines BUFUQQ, NEWUQQ, TFNUQQ, and
PPMUQQ.

The declaration for these interface routines can be
included in the same fashion as the FCB declaration
described above. They are contained in a file on the
PAS I diskette called FILUQQ.INC.

B-23

B-24

INIUQQ: Initialization

The entry point for any Pascal load module is BEGXQQ,
in the module ENTX. The ENTX module source is on
the PASl diskette for the user's study. It gives various
entry points, data areas, and a general memory layout,
and is in the file ENTX6S.ASM. BEGXQQ initializes
some runtime static variables, initializes the heap, calls
INIUQQ to initialize unit U, calls BEGOQQ (the user
initial escape routine) and calls the main Pascal program,
which has the entry point ENTGQQ. A Pascal main
routine calls INIFQQ to initialize unit F.

INIUQQ must also set the filename of the user console
input device in INPUQQ and the filename of the user
console output device in OUTUQQ. These are eight
character strings, and will be used in a PFNUQQ call
with any trailing blanks truncated.

FNSUQQ must be initialized to the set of characters
allowed in a filename, to be used when the user reads
a filename via READFN or as a program parameter.

FNSUQQ is represented as a 32 byte (256 bit) area,
with each bit on if the corresponding character is
allowed (the high order bit of the first byte
corresponds to CHR(O)). These three variables may
be set at load time with a VALUE section or the
equivalent instead of within INIUQQ at run time.

After calling INIUQQ, INIFQQ will open the user
console input and output FCBs, which are statically
allocated variables named INPFQQ and OUTFQQ.

ENDUQQ: Tennination

When a Pascal program terminates (either normally or
from EMSEQQ due to an error), it calls ENDXQQ,
which calls ENDYQQ to close all open files and delete
any temporary files, using the linked list of FCBs
(including the console files). ENDYQQ is
conceptually part of unit F. ENDYQQ then calls
ENDOQQ (the user escape termination routine), and
finally ENDUQQ.

ENDUQQ might do a file system reset, or whatever is
required by DOS. ENDUQQ mayor may not return;
that is, it can be a normal procedure and return, or it
can itself exit to the operating system.

Note that all files are closed when ENDUQQ is called.

OPNUQQ: File Open

OPNUQQ does the actual DOS file open. CMOD
contains the intended filemode: SEQUENTIAL,
TERMINAL, or DIRECT.

If the file or device opened is really a terminal or
printer but CMOD is not TERMINAL, OPNUQQ should

B-25

B-26

change it to TERMINAL if it was SEQUENTIAL, or giv(
an error if it was DIRECT.

The Pascal user sets the MODE field before calling
RESET or REWRITE, which is copied to CMOD before
calling OPNUQQ and copied back again afterwards.
Note that unit U routines always use CMOD, never
MODE.

TXTF is true for an ASCII file, and false for a BINARY
file; it is probably of no use to OPNUQQ (users
sometimes want to write a file with one structure and
later read it with another). SIZE contains the length
of a DIRECT file record, and for Pascal the length of a
buffer variable.

When OPNUQQ opens a DIRECT file, if the record size
of the opened file is not equal to SIZE this is an error
condition.

OPNUQQ must examine the OLDF field to determine
whether the file should be present.

If OLDF is true and the file is not found, this is an
error (some unit U's may always create the file and not
catch this error).

If OLDF is false the file will be created. This could
mean creating a file that did not exist before or
overwriting an existing file. OLDF is set true for any
RESET, false for any REWRITE.

INPT is true for an open to read-only (RESET mode
SEQUENTIAL or TERMINAL), and false for an open
to write or read-and-write (other calls; REWRITE
mode SEQUENTIAL or TERMINAL is write-only).

The user sets the filename using ASSIGN, READFN,
or for a file program parameter as part of program
initialization (another form of READFN); it must be
set before calling RESET or REWRITE.

The Pascal user can assign a "name" of CHR(O) to
indicate a temporary file, in which case REWRITE
will set TMPF true and call TFNUQQ to get a
tern porary filename.

If an error occurs during OPNUQQ, the file is assumed
to be closed, so if an error is discovered after the file
has been opened it is up to OPNUQQ to close it.

OPNUQQ must initialize some fields used by GET and
the PUTs. It sets BCNT to zero and EORF true
indicating a record boundary.

If writing (lNPT false), set EOFF true; if reading, set
EOFF false.

CLSUQQ, CLDUQQ: File Close

To close or delete an open file, the user can call CLOSE
or DISCARD. Files allocated on the stack or the heap

B-27

B-28

are automatically CLOSEd when the file variable is
de-allocated (and deleted if TMPF is true).

When a program terminates, all open files are
automatically closed by ENDYQQ. CLSUQQ closes an
open file, and CLDUQQ closes and deletes an open file.

If an error occurs, the file is assumed to be closed. For
CLSUQQ, if INPT is false and CMOD is
SEQUENTIAL the user was writing a sequential file
and an end-of-file record must be generated.

GETUQQ: Read Bytes

GETUQQ reads bytes from a file; on entry INPT is true.
Some of its actions are common to all files, and some
depend on the mode and structure. It is passed the
address and length of a buffer into which bytes are
copied. The address is segment-plus-offset. This length
is called the "buffer length" or "length requested"
below. If EOFF is true on entry, or the length
requested is zero, just return (these are not unit U error
conditions).

If all the file's bytes have been transferred, set EOFF
true and return (but see additional notes below on
setting EOFF). A newly opened empty file has EOFF
false after OPNUQQ; the first GETUQQ call must set
it true (since there are no records in the file GETUQQ
does not need to return once with EORF set).

Otherwise bytes are transferred from the file to the
buffer until the requested length is transferred, an error
occurs, or the end of record or end of file is
encountered. The number of bytes transferred must
be set in BeNT, which can range from zero to the
buffer length.

Putting meaningless bytes into the buffer at positions
from BCNT + I to the buffer length is allowed; changing
bytes past the buffer length is not allowed.

For SEQUENTIAL and DIRECT files, return with
the bytes actually transferred.

For ASCII structure SEQUENTIAL and TERMINAL
files, every record (induding the last one) must have a
"hard" record boundary, described here as an end of
record "mark." EORF is set true by GETUQQ for
ASCII structure SEQUENTIAL and TERMINAL mode
files if the end of record "mark" is read and false if it is
not.

If the last byte of the record is the last byte of the
length requested, EORF is set false and BCNT is the
buffer length; on the next GETUQQ call EORF is set
true and BCNT is set to zero. If a record is empty
BCNT is set to zero and EORF to true.

If the last byte of the file is transferred, EORF must be
returned true before EOFF is returned true, so if this

B-29

B-30

last byte fills the buffer GETUQQ will return once with
BeNT equal to the buffer length and both EORF and
EOFF false; then once with BeNT zero, EORF true,
and EOFF false; and finally once with BeNT arbitrary,
EORF unchanged, and EOFF true.

Note that if GETUQQ returns with BeNT less than the
length requested, EORF must be true; transferring less
than the length requested when additional bytes remain
in the record (such as up to a physical record boundary)
is not allowed.

Note that if the returned BeNT is less than the length
requested then GETUQQ has either reached a "hard"
record boundary or the end of the file.

In the end of file case, if any bytes are returned EOFF
must be returned false; the next GETUQQ call returns
with EOFF true.

The USED field contains the number of bytes
transferred so far in the current record. GETUQQ's
callers always set USED to zero if they are starting
a new record and add BeNT to USED if they are
continuing a read of the current record.

Therefore USED is available as a byte offset from the
start of the current record to the next byte to transfer
as well as a count of bytes already transferred.

If CMOD is DIRECT, RECH/RECL contain the current
record number. If USED is zero and EORF is true, this
record number has been incremented, or, if SEKUQQ
was called, it has been changed. If USED is not zero
and EORF is false, these fields have not changed. If
USED is zero and EORF is not true, or USED is
non-zero and EORF is true, there is an inconsistency
error.

The SIZE field is used by unit F such that no more than
SIZE data bytes will ever be requested from a record;
for example, USED plus the buffer length will never be
greater than SIZE. This is why GETUQQ never sets
EORF true for DIRECT mode reads. Note that unit U
never changes RECH/RECL, SIZE, or USED.

TERMINAL input always implies reading from a user
keyboard, but actions depend on the setting of TXTF.
If TXTF is true, GETUQQ does a "high level" read
from the terminal.

DOS standard intra-line editing applies. To properly
support intra-line editing, a call to GETUQQ should
read an entire user line into an internal buffer, waiting
for the Enter key or the equivalent.

However, if line buffering is too difficult for unit U,
bytes can be transferred directly into the caller's
buffer, using BCNT as the current index for backspace
and other edits. If the buffer length is reached before
Enter is pressed, GETUQQ returns with EORF false.
GETUQQ calls with a buffer length of one are common.

B-31

B-32

For TERMINAL files with BINARY structure, GETUQC
does a "low level" read a character at a time from the
keyboard, if possible without echo or intra-line editing
or waiting for an entire line.

This raw input mode permits the program to interpret
keystrokes as commands or do its own special editing
features. Usually in this case the requested length will
be one.

PUTUQQ: Write Bytes

PUTUQQ writes bytes to a file; on entry INPT is false.
It is passed the address and length of a buffer from
which bytes are copied. The address is segmented; the
length may be zero. The entire length of the buffer
is written, unless an error occurs. The bytes are always
written to the current record.

On entry the USED field contains a count of bytes
already written to the record; as in GETUQQ this can
be used as an offset within the record to the next byte
position to write.

EORF must be set false for SEQUENTIAL and
TERMINAL files with ASCII structure, and must not
be changed in other cases. BCNT and EOFF are not
needed by PUTUQQ. EOFF will be true. BCNT is
not used by unit F when writing so it could be used
internally by unit U.

If CMOD is DIRECT, RECH/RECL contain the current
record number. If USED is zero and EORF is true on
entry, position the file to this record before writing
data if necessary; the record number has either been
incremented or SEKUQQ was called to change it.
If USED is not zero and EORF is false, the record
number has not changed.

The SIZE field is used by unit F such that no more than
SIZE data bytes will ever be written to a record; for
example, USED plus the buffer length will never be
greater than SIZE. Note that unit U never changes
RECH/RECL, SIZE, or USED.

Except for DIRECT record positioning, PUTUQQ
operates the same way with all file modes and
structures.

PERUQQ: End Record

PERUQQ writes an end of record "mark" to a file; on
entry INPT is false. Since SEQUENTIAL and
TERMINAL mode ASCII structure files have "hard"
record boundaries, PERUQQ must mark the end of the
record for SEQUENTIAL files and TERMINAL files.

Note that for TERMINAL files, PCCUQQ will always
be called next. In this case PERUQQ can send a
carriage return, and PCCUQQ can send 0, 1, or 2 line
feeds to the terminal or printer.

B-33

B-34

However, in some cases PERUQQ could send carriage
return instead (see PCCUQQ below). DIRECT mode
and BINARY structure files may have "hard" or "soft"
record boundaries, so PERUQQ may mark the end of the
record or do nothing.

EORF must be set true for SEQUENTIAL and
TERMINAL files with ASCII structure, but must not be
changed in files with DIRECT mode or BINARY
structure.

USED always contains the number of bytes in the
record. Empty record (USED zero) can occur, except
with ASCII DIRECT files.

For ASCII DIRECT mode, USED will always equal
SIZE since unit F has padded the record with blanks,
but for BINARY DIRECT mode, USED may be from
zero to SIZE (if less than SIZE, the content of the rest
of the record is undefined).

RECH/RECL still contains the DIRECT file record
number. PERUQQ will always be called after one or
more PUTUQQ calls for all file modes and structures
to end every record, including before the file is closed
with CLSUQQ.

PCCUQQ: Put Carriage Control

PCCUQQ corresponds to the PAGE procedure. On
entry, INPT is false. It may be called for any file
mode or structure, but must ignore all of them except
for ASCII TERMINAL files. Also it can only occur
at the start of a record, so USED is zero and EORF is
true.

Unit F calls PERUQQ and then PCCUQQ at the end of
a line.

The one character argument is ' , for single space and
'1' for a new page. The effect of other character values
is undefined (generally do a PUTUQQ of the character).
Unit Fuses '1' for the PAGE command, and' ,
otherwise.

Pascal PAGE calls to non-TERMINAL files just write
a form feed to file with a PUTUQQ call.

B-35

'B-36

SEKUQQ: DIRECT File Position

SEKUQQ is passed a new DIRECT file record number
(RECH/RECL pair). The file is at a record boundary,
so EORF is true. SEKUQQ is only called when the
user changes the record number explicitly with SEEK.

Normally, after a PERUQQ call to a DIRECT file, the
FCBs record number is automatically incremented to
the next record number, and in this case SEKUQQ is
not called. SEKUQQ can either actually do the
positioning, or internally set a flag so that the next
GETUQQ or PUTUQQ call does the positioning.

Unit F sets the record number RECH/RECL to 1 when
the file is opened, before the OPNUQQ call.

PTYUQQ: Console Output

Direct user console output routine; does not use any
FCB. PTYUQQ is passed the length and segment-plus
offset of a string of characters to write to the console.
If the length is zero, ends the line on the console (that
is, writes carriage return and line feed).

There is no error return, so if any error occurs it is up
to unit U to handle it somehow (PTYUQQ is called by
the error message output routine EMSEQQ).

GTYUQQ: Console Input

Direct user console input routine; does not use any FCB.
GTYUQQ is passed the length and segment-plus-offset
of a buffer for an input string of characters; it returns
the number of characters actually read, up to a maximum
of the buffer length. The buffer length may be zero.
As in GETUQQ, the contents of the buffer after the
characters read up to the maximum length is undefined
and can be changed. It always reads an entire user
input line; any characters typed beyond the end of the
buffer length should be ignored.

As with PTYUQQ, there is no error return, so any errors
must be handled in unit U somehow.

PLYUQQ: End of Line

This function is very similar to PERUQQ but it writes
an end of line to the user's display. It is used in
conjunction with PTYUQQ and GTYUQQ.

PFNUQQ: Set the Filename

Passed the location and length of a filename to be
assigned to the file. The file is guaranteed closed by
unit F. This will be the filename to use for all future
OPNUQQ calls; note that the file may be closed and
re-opened with this same filename, or the filename may
be reset with a PFNUQQ (or TFNUQQ) call between
the CLSUQQ and the OPNUQQ.

B-37

B-38

There is no error return from PFNUQQ; if an error can
be detected, set the ERRS field and return non-zero
from the up command OPNUQQ call.

GFNUQQ: Get the Filename

Function passed the location and length of a buffer to
receive the filename; returns the length of the filename
(up to the maximum of the length of the buffer).
GFNUQQ is only called for error messages, so returning
zero (that is, not returning a filename) is permitted if
it is difficult to obtain the filename.

NEWUQQ: New FeB

When a file variable is allocated, NEWFQQ is called,
which sets the initial standard FCB fields and calls
NEWUQQ. SIZE and TXTF are set (and will not
change), but other FCB field values are undefined.
NEWUQQ will not often be needed; most initialization
work should be done in OPNUQQ.

A call to NEWFQQ is generated by the compiler at the
start of the program for statically allocated files (after
the INIFQQ/INIUQQ call but before program
parameters assigning file names are read), at the start of
a procedure or function for local stack file variables,
and after a NEW for heap file variables.

TFNUQQ: Temp Filename

Create a new temporary filename, and assign it to the
FCB like a PFNUQQ call. If no unique name can be
created, set ERRS to 7.

PPMUQQ: Program Parameter

Used to get program parameter values. Expected to fill
an LSTRING with the parameter value. Parameter
values are just text; does not decode integers, check
filename syntax, etc.

If the parameter string is longer than expected, return
a non-zero error code and unit F will reprompt directly
to the display.

Called once per parameter requested, in order, which
means the unit U may need a parameter counter
variable (initialized in INIUQQ). Can always just return
a non-zero value to make unit F write the prompt and
read the response itself. This is very useful for reading
a command line which might contain an LSTRING
of length O.

Note: The first two parameters of this function
are unused and reserved.

B-39

Including the Unit U Declaration

{$INCl UD E:' A: FllKnO.INC'}
{$INCl U DE:' A: FllunO.INC'}

B-40

PROGRAM EXAMPLE:
USES FllUOO.lNC;

VAR l:lSTRING(255);
ERROR:WORD;

BEGIN
ERROR:=PPMUOO(O, ADR NUll, l);
WRITElN('This is on the command line:',l)

END.

APPENDIX C. COMPILER STRUCTURE

C-l

Overview

C-2

The IBM Pascal compiler is divided into the "front
end" and the "back end." The front end reads the
Pascal source program, and writes the listing file,
symbol table file, and intermediate code file. The
back end is divided into three parts: the optimizer,
code generator, and link text emitter.

The optimizer reads the symbol table and intermediate
code files, and optimizes the intermediate code.

The code generator transforms the intermediate code
to target machine code, and writes this code to the
intermediate binary file.

The link text emitter reads the intermediate binary file
and writes the final object file for later input to a
linker.

The back end also writes a listing of the generated code;
this listing is sometimes written by a "disassembler"
module called by the code generator and sometimes by
the link text emitter.

Both the front end and the back end are written in
Pascal, in a source format that can be transformed into
either relatively standard Pascal or System level IBM
Pascal. All three intermediate files are Pascal record
types.

The front and back ends include a common constant
and type definition file called P ASCOM, which defines
the intermediate code and symbol table types. The
back ends use a similar file for the intermediate binary
file definition.

The symbol table record is relatively complex, with a
variant for every kind of identifier (assorted data types,
variables, procedures and functions, and so on). The
intermediate code (or [code) record contains an Icode
number, opcode, and up to four arguments; an
argument can be the Icode number of another Icode
to represent expressions in tree form, or something
else (such as a symbol table reference, constant, or
length).

The intermediate binary code record contains several
variants for absolute code or data bytes, public or
external references, label references and definitions,
and so on.

The Front End

The front end can be divided into the scanner; low level
utilities; intermediate level utilities for identifiers,
symbols, Icodes, memory allocation, and type
compatibility; and finally three high level sections for
processing expressions, statements, and declarations.

C-3

C-4

The front end is driven by recursive descent syntax
analysis, using a set of procedures such as EXPRESS
(for expressions), STATEMT (for statements),
TYPEDEC (for type declarations), and so on.

The front end maintains one lookahead symbol; while
not absolutely necessary for parsing correct programs,
it is very useful in error recovery. Syntax errors are
processed by a procedure which forces the current
symbol to one of a set of symbols legal at a given
point.

If the current symbol is wrong but the following one
is correct, the current symbol is deleted; if not, the
correct symbol is inserted. However, common
substitution mistakes, such as confusing "=" and ":=",
merely give a warning message.

The scanner is relatively large, since it must process the
compiler directives (the metalanguage) and produce a
listing with error messages, data about variables, and
other information for the user.

Intermediate code is written to the Icode file as soon as
it is generated; there is no reason to keep it around.
The symbol table is built as a binary tree for identifiers
with pointers to semantic records; at the end of every
block all new semantic records are written to the
symbol table file.

As soon as an error is detected, all writing to
intermediate files stops, since the code may not be
acceptable to the back end (detecting a warning
does not invalidate the intermediate files).

The front end reads the file PASKEY (on the PAS 1
diskette) to initialize the predeclared identifiers, like
INTEGER, READ, MAXINT, and SIN. PASKEY
can be divided into four sections:

• The first contains special information, in
particular the number of bytes in a file control
block and primitive type identifiers.

• The second lists all the intrinsic procedure and
function identifiers (those that are transformed
by the front end in special ways).

• The third section contains constants, types, and
external procedures and functions using normal
IBM Pascal syntax.

• The fourth contains one or more
INTERFACE and USES clauses for predeclared
procedures and functions.

C-5

The Back End

C-6

The optimizer reads the interpass files in a different
order: first the symbol table for a block is read, then
the intermediate code for the block.

Optimization is performed on the basis of a "basic
block," that is, either a block of intermediate code up
to the first internal or user label, or up to a fixed
maximum number of Icodes, whichever comes first.
Within this block the statements and expressions can
be reordered and condensed, as long as the intent of
the programmer is unchanged. For example:

A [J, K] := A [J, K] + 1;
(* J := J - 1; *)

IF A [J, K] = MAX THEN PUNT;

The array address A [J, K] need be calculated only once.
However, if the commented-out assignment to J is in
the program, the array address in the IF statement
must be partially re-calculated. This optimization is
called common sUb-expression elimination. The
optimizer will also re-order expressions so that the
most complicated parts are done first, when more
registers for temporary values are available.

It does several other optimizations, such as constant
folding missed by the front end, strength reduction
(changing multiplies and divides to shifts when possible)
peephole optimization (removing add of zero, multiply
by one, etc.), and changing A:=A+ I to an internal
increment memory Icode.

The optimizer works by building a tree out of the
intermediate codes for every statement, and transform
ing the list of statement trees in various ways. There
are seven internal passes per basic block:

1. Build statement trees out of the Icode stream.

2. Preliminary transforms, set address/value flags.

3. Length checking and type coersions.

4. Constant and address folding, expression reorder.

5. Peephole and strength reduction optimizations.

6. Machine dependent transforms (e.g. pointer to
ADR).

7. Common subexpression elimination.

Finally, the optimizer calls the code generator to
translate the basic block from tree form to target
machine code.

The code generator must translate these trees into actual
machine code. It uses a series of templates to generate
more efficient code for special cases.

C-7

C-8

For example, there is a series of templates for the add
operator. The first one checks for an add of the
constant one; if found, it generates an increment. If it
gives up, the next template gets control; it checks for an
add of any constant, and if found generates an add
immediate.

The final template in the series must handle the general
case; it gets the operands into registers (by recursively
calling the code generator itself), then generates an add
register instruction. There is a series of templates for
every operation.

The code generator must also keep track of register
contents, keep track of several memory segment
addresses (code, static, variables, constant data, etc.),
allocate temporary variables, and so on.

APPENDIX D. RUNTIME STRUCTURE

D-1

Overview

D-2

A successful Pascal compilation produces an "object"
file, which can be linked with other object files to
produce an "executable" file. Object files can be
derived from user Pascal programs, modules, or
implementations; user code not written in Pascal; or
routines in standard runtime modules that support
facilities such as error handling, heap variable allocation,
or input/output.

The most important runtime module has to do with
initialization and termination; also important is the
runtime error handling module. The remaining
runtime modules are concerned with particular
facilities such as reals, sets, files, and so on. File
system runtime information is in Appendix B of this
book.

Pascal runtime entry points and variables conform to
a naming convention: all names are six characters,
and the last three are a unit identification letter
followed by the letters "QQ". The current unit
identifier letters are:

A Not used
B Compile time utilities
C Encode/decode
D Not used (reserved)
E Error handling

F Pascal file system
G Generated code helpers
H Heap allocator
I Generated code helpers
J Generated code helpers
K FeB definition
L String/LSTRING
M Not used (reserved)
N Not used (reserved)
o Miscellaneous "other" routines
P Not used (reserved)
Q Not used (reserved)
R Real (single precision)
S Set operations
T Not used (reserved)
U DOS file system
V Not used (reserved)
W Not used (reserved)
X Initialize/terminate
Y Special utilities
Z Not used (reserved)

Initialization and Termination

Every executable file contains one and only one starting
address. As a rule, when Pascal object modules are
involved, this starting address is at the entry point
BEGXQQ in module ENTX. A Pascal program (as
opposed to a module or implementation) has a starting
address at the entry point ENTGQQ. BEGXQQ calls
ENTGQQ.

In the discussion below, the assumption is made that a
Pascal main program along with other object modules

D-3

is loaded and executed. However, one can also link a
main program in machine language with other object
modules in Pascal, in this case some of the initialization
and termination done by the ENTX module may need
to be done elsewhere.

When a user program is linked with the runtime library
and execution begins, several levels of initialization are
required. First comes machine oriented initialization,
then Pascal runtime initialization, then user program
and unit initialization.

Machine Level Initialization

D-4

The entry point of a Pascal load module is the routine
BEGXQQ, in the module EXTXQQ. BEGXQQ does
the following:

• Set the stack pointer. The initial stack pointer is
put into public variable STKBQQ, and used to
restore the stack pointer after an inter-procedure
GOTO to the main program.

• Set the frame pointer, always initially zero.

• A number of public variables must be initialized
to zero or NIL. These include:

- RESEQQ, machine error context (user stack
pointer)

- CSXEQQ, source error context list header

- PNUXQQ, initialized unit list header

- HDRFQQ, Pascal open file list header

• Set any other machine dependent registers, flags,
etc.

• Set the heap control variables. BEGHQQ and
CURHQQ are set to the lowest address for the
heap, and the word at this address is set to a heap
block header for a free block the length of the initial
heap. ENDHQQ is set to the address of the first
word after the heap. The length of the initial
heap is two bytes. The stack and the heap grow
together, and public variable STKHQQ is set to the
lowest legal stack address, which is ENDHQQ plus
a safety gap.

• Call INIUQQ, the DOS specific file unit initializer.
If the file unit is not used and the user does not
want it loaded, a dummy INIUQQ entry point
must be loaded which just returns.

• Call BEGOQQ, the escape initializer. In a normal
load module, a default BEGOQQ is included which
just returns. However, this call provides an escape
mechanism for any other initialization. For
example, it could initialize tables for an interrupt
driven profiler, or a runtime debugger.

• Call ENTGQQ, the entry point of the user's Pascal
program.

D-5

Program Level Initialization

D-6

The user's main program continues the initialization
process. First the file system is called, INIFQQ.

Next, if $ENTRY was on ENTEQQ is called to set the
source error context. Then comes the static data
initialization. This includes VALUE section
initialization and $INITCK initialization. Static data
is initialized by the load process directly.

At the same time every file at the program level gets
an initialization call to NEWFQQ.

Next comes unit initialization. Every USES clause in
the source, including those in INTERFACEs, generates
a call to the initialization code for the unit, in the
order that the USES clauses are encountered.

Finally any program parameters are read (or otherwise
initialized), and the user program begins.

PPMFQQ is called for every parameter (except INPUT
and OUTPUT) to set the parameter's string value as
the next line in the file INPUT.

Then one of the READFN routines "reads" and decodes
the value into the parameter. PPMFQQ is passed the
parameter's identifier to be used as a prompt.

PPMFQQ first calls PPMUQQ to get any command line
parameter text; if PPMUQQ gives an error return
PPMFQQ does the prompting and reads the response
directly.

User unit initialization is much like user program
initialization; an ENTEQQ call if $ENTRY was on,
variable initialization, unit initialization for every USES
clause, and finally the user's unit initialization code. A
call to initialize a unit may come from several other
units.

The unit interface has a version number, and every
initialization call must check that the version number
in effect when the unit was used in another compilation
is the same as the version number in effect when the
unit implementation itself was compiled.

Except for this, unit initialization calls after the first
one should have no effect; that is, a unit's initialization
code should be executed only once.

D-7

D-8

Both version number checking and single initial code
execution are handled with code automatically
generated at the start of the body of the unit, which
has the effect of:

IF INUXnn (useversion, ownversion) THEN RETURN

The interface version number used by the compiland
using the interface is always passed as a value parameter
to the implementation initialization code. This is passed
as the "useversion" to INUXQQ. The interface version
number in the implementation itself is passed as
"ownversion" to INUXQQ.

INUXQQ gives an error if the two are unequal. It also
maintains a list of every unit initialized. INUXQQ
returns true if the unit is found on the list, or else
puts the unit on the list and returns false. The list
header is PNUXQQ, and a list entry contains a way to
identify the unit plus a pointer to the next entry.

User modules also have initialization code, the same
as a program and unit implementations (variables,
USES units), but without user initialization code or
INUXQQ calls. However, the module's initialization
call cannot be issued automatically. When the
module is compiled, a warning is given if an
initialization call will be required; that is, if there are any
files declared, or USES clauses.

To initialize a module, declare the module name as an
external procedure and call it at the beginning of the
program.

Termination

Program termination occurs in one of three ways:

• The program may terminate normally, in which
case the main program returns to BEGXQQ, and
BEGXQQ transfers control to ENDXQQ.

• The program may end due to an error condition,
either with a user call to ABORT, or a runtime
call to an error handling routine; in either case an
error message, error code, and error status are
passed to EMSEQQ, which does whatever error
handling it can and calls ENDXQQ.

• ENDXQQ can be declared an external procedure
and be called directly.

1. ENDXQQ calls ENDOQQ, the escape
terminator, which normally just returns.

2. ENDXQQ calls ENDYQQ, the generic file
system terminator. ENDYQQ closes all open
files, using the file list headers HDRFQQ and
HDRVQQ.

3. ENDXQQ calls ENDUQQ, the operating
system specific file unit terminator.

D-9

D-IO

ENDUQQ need not return; for example, it can exit to
the operating system. If ENDUQQ returns, ENDXQQ
exits to the operating system. As with INIUQQ,
INIFQQ, and INIVQQ, users who do not require any
file handling will need to declare empty parameterless
procedures for ENDYQQ and ENDUQQ.

As mentioned, the main initialization and termination
routines are in module ENTX. Stubb procedures for
BEGOQQ, ENDOQQ, and other miscellaneous entry
points are in module MISY.

Error Handling

Runtime errors are detected in one of four ways:

• By the user program, which calls ABORT
(EMSEQQ).

• By a runtime routine, which calls EMSEQQ.

• By an error checking routine in the error module
itself, which calls EMSEQQ.

• By an internal helper routine, which calls an error
message routine in the error unit, which calls
EMSEQQ.

Handling an error detected at runtime usually involves
telling the user the type and location of the error and
terminating the program. The error type has three
components: a message to the user, an error number,
and an error status.

The message describes the error, and the number can
be used to look up more information in a manual.

The error codes themselves can be found in Appendix
A. They are assigned as follows:

D-ll

D-12

1.. 999 Available for use with the ABORT procedu:
1000 .. 1099 Unit U file system errors
1100 .. 1199 Unit F file system errors
1200 .. 1999 Reserved
2000 .. 2049 Heap, stack, memory
2050 .. 2099 Ordinal arithmetic
2100 .. 2149 Real arithmetic
2150 .. 2199 Structures; sets and strings
2200 .. 2399 Reserved
2400 .. 2449 Reserved
2450 .. 2499 Other internal errors
2500 .. 2999 Reserved

The error location has two parts: the machine error
context, and the source program context.

The machine error context is the program counter,
stack pointer, and frame pointer at the point of the
error. The program counter is always the address
following a call to a runtime routine (for example, a
return address).

The source program context is optional, controlled by
metacommands. If $ENTRY is on, it consists of the
source filename of the com piland containing the
error, the routine name in which the error occurred
(program, unit, module, procedure, or function), and
the line and page number of the routine in the listing
file. If $LINE is also on, the line number of the
statement containing the error is also given. Setting
$LINE also sets $ENTRY.

Machine Error Context

Runtime routines are always compiled with $RUNTIME
set. This causes special calls to be generated at entry
and exit points of the runtime routine, which save the
error context: frame pointer, stack pointer, and
program counter at the point where a runtime routine
is called that leads to an error.

Runtime routines may call other runtime routines, but
the error location is always in the user program; for
example, in a program that was not compiled with
$RUNTIME set.

The runtime entry helper, BRTEQQ, is passed the
offset to the saved caller frame pointer as a value
parameter.

First it examines RESEQQ; if this value is not zero,
the current runtime routine was called from another
runtime routine and the error context has already been
set, so it just returns. If RESEQQ is zero, however,
the error context must be saved. The caller's stack
pointer is determined from the current frame pointer
and stored in RESEQQ.

The address of the caller's saved frame pointer and
return address (program counter) in the frame is
determined from the offset passed to BRTEQQ. Then
the caller's frame pointer is saved in REFEQQ. The
caller's program counter (for example, BRTEQQ's
caller's return address) is saved; the offset in
REPEQQ and the segment (if any) in RECEQQ.

D-13

The runtime exit helper, ERTEQQ, has no parameters.
It determines the caller's stack pointer (again, from the
frame pointer) and compares it against RESEQQ. If
they are equal, the original runtime routine called by
the user's program is returning, so RESEQQ is set back
to zero.

EMSEQQ uses RESEQQ, REFEQQ, REPEQQ, and
RECEQQ to display the machine error context. The
machine error context is always displayed, and there is
little extra overhead in keeping track of it.

Source Error Context

D-14

Giving the source error context involves extra overhead
since source location data must be included in the objec
code in some form. This is done with calls which set
the current source context as it occurs.

These calls could also be used to break program
execution as part of the symbolic debug process. The
overhead of source location data, especially line numbe:
calls, can be significant. Routine entry and exit calls,
while having more overhead, are much less frequent
and so the overhead is less significant.

The procedure en try call to ENTEQQ passes two V AR
parameters: the first is an LSTRING containing the
source filename; the second is a record containing the
line number and page number (both words) and
procedure or function identifier (an LSTRING).

The filename is that of the compiland source; that is, the
main source filename, not the names of any $INCLUDE
files. The procedure identifier is the full identifier used
in the source, not the linker name. If one name is given
in an INTERFACE and another in a USES clause, the
USES identifier is used.

Entry and exit calls are also generated for the main
program, unit initialization, and module initialization,
in which case the identifier is the program, unit, or
module respectively.

The procedure exit call to EXTEQQ does not pass any
parameters. It pops the current source routine context
off a stack maintained in the heap.

The line number call to LNTEQQ passes a line number
as a value parameter. The current line number is kept
in public variable CLNEQQ. Since the current routine
is always available ($LINE implies $ENTRY), the
compiland source filename and routine containing the
line are available along with the line number.

Line number calls are generated just before the code
starting a statement which is the first statement starting
on the line. The statement can, of course, be part of a
larger statement. The $LINE+ metacommand should be
placed at least a couple of symbols before the start of
the first statement intended for a line number call
($LINE- also takes effect "early").

D-15

Most of the error handling routines are in module ERRE
The source error context entry points ENTEQQ,
EXTEQQ, and LNTEQQ are in module DEBE.

Heap Allocation

D-16

Variables allocated with the NEW or ALLHQQ calls
come from an area of memory called the heap. These
variables are not moved once allocated (permitting
address references to them), but can be deallocated
using the DISPOSE call.

A heap variable resides in a heap "block." A heap
block contains a header word followed by data words.
The header word low order bit is one if the block is
free and zero if it is allocated; the rest is the even length
in bytes without the header. Length zero blocks are
permitted.

Three pointers to locations in the heap, referring to
header words, are maintained by the heap allocator:

BEGHQQ: start of the heap «=CURHQQ,<ENDHQQ)

CURHQQ: current heap block
(>=BEGHQQ,<#ENDHQQ)

ENDHQQ: end of the heap (> BEGHQQ, >CURHQQ)

The heap is a contiguous area of memory starting at
BEGHQQ of length ENDHQQ - BEGHQQ. Memory
at address ENDHQQ is never accessed by the heap
allocator.

The Pascal procedure NEW generates a call to GETHQQ,
which is passed the number of bytes wanted and returns
a pointer to the allocated variable. GETHQQ just calls
ALLHQQ (which has the same calling sequence);
ALLHQQ returns zero if the heap is full or one if the
heap structure is in error, and GETHQQ calls an error
procedure if one of these errors occurs.

Heap allocation in ALLHQQ is basically first fit, roving
pointer. If the block at CURHQQ is allocated, advance
CURHQQ. If it is free and big enough, return a pointer
to the block, and free any extra space at the end. If it
is free but too small, advance CURHQQ, but if the
following block is free, collapse them into one free
block. IfCURHQQ ever goes above ENDHQQ, the
heap structure is in error and ALLHQQ returns one.

If CURHQQ is equal to ENDHQQ, the first time this
happens, restart from BEGHQQ. However, if the topmos
block in the heap was free CUTHQQ is called first to
permit releasing this ending free block, usually making
this area available to the stack. The second time
CURHQQ equals ENDHQQ the current heap is full. In
this case GROHQQ is called, which may extend the
heap by increasing ENDHQQ or decreasing BEGHQQ in

D-17

a system dependent way. Then CURHQQ is reset to
BEGHQQ and a third search made. If this is not
successful, ALLHQQ returns zero.

Heap deallocation (DISPOSE) is done in-line or with a
helper by setting the low order bit of the header.
BEGXQQ does heap initialization by setting BEGHQQ,
CURHQQ, and ENDHQQ. The generic heap routines
ALLHQQ and GETHQQ are in module HEAH. The
routines GROHQQ and CUTHQQ are in module
MISHM.

Other Runtime Modules

D-18

Code Generator Helpers

Some operations considered "primitive" by a code
generator may generate too much inline code to be
practical; in this case a call to a runtime entry point gets
generated instead. These code generation "helpers"
can be thought of as increasing the power of the
machine; they generally do not use the standard calling
sequence.

The module MISG contains all the code generator
helpers.

Ordinal Encode jDecode

The encoding and decoding routines are all called
EN?CQQ or DE?CQQ, where the "?" is a letter indicati:

the type. For the types INTEGER (letters I and J),
WORD (letters Wand X), enumerated (letters E and F),
and BOOLEAN (letter B) these routines are in module
CODC. Some of these are written in IBM Pascal.

Real Number Support

The module REAR provides the primitives to add,
subtract, multiply, divide, negate, absolute, and do
comparisons. All other modules are written to be
independent of the actual real number internal format.

These are UTLR (two utilities), CNVR (integer/real
conversion), TNSR (transcendental functions), REAC
(encode and decode), and RIOF (read and write). The
additional transcendental functions are in module
RFAR.

Set and String Operations

Those set operations that require runtime support are
in module SETS, which is written in IB'M Pascal. One
exception: the IN operator's entry point CINSQQ is
found in MISG.

STRING and LSTRING operations that require runtime
are in module LSTL, also written in IBM Pascal. Most
of these are implemented by using the MOVE and FULL
routines, which are in assembly language.

D-19

D-20

APPENDIX E. PASCAL STANDARD AND
IBM FEATURES

E-l

Summary of IBM Pascal Features

This list summarizes the extensions added to Standard
Pascal.

Syntactic and Pragmatic

E-2

• Metalanguage
- Metacommands:

$BRAVE
$DEBUG
$ENTRY
$ERRORS
$GOTO
$IF .. $END
$ INCLUDE
$INCONST
$INDEXCK
$INITCK

• Extra Listing

$LINE
$LINESIZE
$LIST
$MATHCK
$MESSAGE
$NILCK
$OCODE
$PAGE
$PAGEIF
$PAGESIZE

$PUSH/$POP
$RANGECK
$ RUNTIME
$SHIP
$STACKCK
$SUBTITLE
$SYMTAB
$TITLE
$WARN

Flags for Jumps, Globals, Identifier level, Control
level header, trailer, general listing format textual
error and warning messages.

• Syntactic Shorthand
- "!" as comment to end of line
- [...] equivalent to BEGIN ... END

• Nondecimal Number
- Numeric constants with #, 2#, 8#, 10#, 16#
- DECODE/READ takes #, ENCODE/READ with

Nof2,8,10,16

• Extended CASE range

Applies to CASE statements and record variants;
OTHERWISE for all other values; A .. B for range
of values.

Data Types and Modes

• WORD type; WRD function; MAXWORD constant

• Address types ($SYSTEM level)
- AD R and ADS types and operators
- V ARS parameter

• SUPER array types

• STRING pre-declared type

• LSTRING super type
- NULL constant
- .LEN field

• Explicit byte offsets in records

E-3

• CONST parameter

• Structured (array, record, and set) constants

• Extended functions returning any assignable type;
variable selection on values returned from
functions

• Attribu tes:

PUBLIC
EXTERN

EXTERNAL
STATIC

READ ONLY
PURE

Operators and Intrinsics

E-4

• Extended Operators:
- Bitwise Logical: AND OR NOT XOR
- Set Operators: < and>

• Constan t Expressions:
- Numeric, Ordinal, Boolean expressions in type

clauses
- String Constant concatenation with * operator
- Other Constant functions LOWER, UPPER,

SIZEOF, RETYPE

• Extended Intrinsics:

RESULT
EVAL
SIZE OF
LOWER

UPPER
LOBYTE
HIBYTE
BYWORD

DECODE
ENCODE
ABORT

• System Intrinsics:

•

•
•

MOVEL
MOVER

FILLC
RETYPE

String Intrinsics:

- STRING or LSTRING:
POSITN SCANNE
SCANEQ COPYSTR

- LSTRING type only:
CONCAT DELETE
INSERT COPYLST

REAL library functions

Pascal library functions:

UADDOK ALLHQQ
SADDOK TIME
UMULOK DATE
SMULOK

Control Flow and Structure

• Control flow statements:

MOVESL
MOVESR

TICS
BEGXQQ
ENDXQQ

BREAK, CYCLE, and RETURN

• Sequential control operators:

AND THEN and OR ELSE in FOR, WHILE,
REPEAT

• VALUE section to initialize static variables

E-5

• Mixed order and multiple CONST, TYPE, V AR,
VALUE sections allowed

• UNIT INTERFACE and IMPLEMENTATION:
- Interface version numbers, version checking
- Guaranteed unique unit initialization

Input/Output and Files

E-6

• Extended I/O:
- Textfile line length declaration, TEXT (nnn)
- READ Boolean, pointe~, STRING, LSTRING
- WRITE pointer, LSTRING
- Negative M value to justify left instead of right
- Temporary files
- DIRECT mode files, SEEK procedure
- ASSIGN, CLOSE, DISCARD, READSET,

READFN procedures
- FILEMODES type and constants, F.MODE

access
- Error trapping, F.TRAP and F.ERRS access

• System I/O:

Full FCBFQQ type equivalent to FILE types.

IBM Pascal and Standard Pascal

ISO Pascal defines many error conditions; however,
an implementation can "handle" an error by stating in
the documentation that the error is not caught. These
errors "not caught," and other differences between
ISO Pascal and IBM Pascal, are in this Appendix. The
following should be noted concerning the Standard
level of IBM Pascal and the ISO/ANSI/IEEE Pascal
standard:

• IBM Pascal allows "@" as a substitute for the "/\" - a
minor extension.

• The underscore" _" is allowed in identifiers, a
minor extension.

• In some cases a separator is not required between
a number and an identifier or keyword; for example,
"lOOmod" is accepted as "100 mod" without error.

• Normally a component of a PACKED structure
cannot be passed as a reference parameter, but we
specifically permit passing a CHAR element of a
PACKED ARRAY [l .. n] OF CHAR as a reference
parameter (passing other packed components gives
the usual error).

E-7

E-8

• The textfile linemarker character is not supposed
to be in the set of CHAR values, but we permit all
256 8-bit values as CHAR values.

• IBM Pascal permits a variant record declaration in
which not all tag values are given; for example,
RECORD CASE INTEGER OF I: (a:b) END. In
the standard a variant must be given for all possible
tag values.

• In general we ignore the error of using an
identifier and then re-declaring it in the same scope.
For example, CONST X=Y; VAR Y:CHAR; has
two meanings for Y in the same scope. IBM
Pascal generally uses the latest definition for an
identifier. However, there is one ambiguous case;
if a type Faa is declared in one scope and an
inner scope declares TYPE P = Faa; Faa = type;
then Faa has two meanings and the programmer
intent is ambiguous. In this case the later
definition of Faa is used and a warning generated.

• Some standard procedures and functions cannot
be passed as parameters; this is allowed in the
standard. A new directive EXTERN is allowed;
new directives are permitted in ISO Pascal. Also,
a new predeclared function FLOAT is allowed;
new predeclared functions are permitted in ISO
Pascal.

• In the WRITE and WRITELN procedures, the
field width "M" can be less than zero; in ISO
Pascal this is an error; in IBM Pascal, M < a is
treated as if M = ABS(M) but field expansion takes
place from the iigh t rather than the left. All
textfile READ(LN) and WRITE(LN) parameters
can take both M and N parameters; if not needed
they are ignored. The form "V: :N" is allowed.
When writing an INTEGER, the N parameter sets
the output radix.

• The standard does not allow a variable created with
the long form of NEW to be assigned, used in an
expression, or passed as a parameter, but this is
difficult to check for at compile time and expensive
to check at runtime. We allow assignments to
these variables using the actual length of the target
variable, and the ISO Pascal error is not caught.

• The short form of DISPOSE may be used on a
structure allocated with the long form of NEW.
The standard does not allow this; a variable
allocated with the long form of NEW should only
be released with the long form of DISPOSE, and
all tag fields should never change between the calls.

E-9

E-IO

• The ISO standard defines a number of errors having
to do with variant records which we do not catch.
The ISO standard declares that when a "change of
variant" occurs (such as when a new tag value is
assigned) all the variant fields become undefined,
but we do not set the fields uninitialized when a
new tag is assigned and so we ignore the use of a
variant field with an undefined value.

• A DISPOSE of a record passed as a reference
parameter or used by an active WITH statement is
an error in the ISO standard not caught by our
compiler. Also, passing a record used by an active
WITH statement as a reference parameter is not
caught. Finally, changing the position of a file
while its buffer variable is an active WITH record 01

reference parameter is an error not caught.

• When using the default files INPUT and OUTPUT
in READ, READLN, WRITE, and WRITELN, if a
list of data items is given, the first item cannot
contain a file, as in READ (OUTPUT/\).

• IBM Pascal semantics for DIV and MOD do not
agree with the ISO standard. Programs intending
to be portable should not use DIV and MOD unless
both operands are positive.

• Super arrays provide much the same function as
the conformant array concept.

• ISO Pascal requires the control variable of a FOR
loop to be local to the immediate block. Our
compiler does not detect an assignment to the
control variable if the assignment occurs in a
procedure or function called within the FOR loop.

• We allow CHR to take any ordinal type. ISO
requires the CHR argument to be INTEGER.

E-ll

E-12

APPENDIX F. IBM PASCAL SYNTAX

This is the formal definition of IBM Pascal syntax, as
well as documentation of the recursive descent structure
of the compiler.

F-l

Syntax

F-2

Syntax is described with the following metasyntax:

• Words in upper case, and special characters not
used in the metasyntax stand for themselves. Note
that none of the special characters used in the
metasyntax are also used in Pascal program syntax.

Examples: PROGRAM V AR BEGIN END + - []

• Words in lower case stand for a syntactic class.
Usually they are also identifiers for procedures or
functions in the compiler that parse the syntactic
class.

Examples: identifier constant term expression

• The left brace and right brace enclose a group of
items. If a plus follows the right brace, the items
can be repeated but at least one must appear. If a
minus follows the right brace, the item is optional
but cannot be repeated. If a star follows the right
brace, the item is optional and can also be repeated.

Note that the plus, minus, or star occur right
next to the right brace; spaces between the right
brace and a special character mean the special
character is part of the program syntax.

This gives four possibilities:

{item} Item must appear once (exactly one
time)

{item} + Item list must appear (one or more
times)

{item} - Optional single item (zero or one time)

{item} * Optional, list items (zero or more
times)

Examples:

{VAR} {digit} + {+I-} - {letter} *

The vertical bar between items shows alternate
choices. Examples:

• The vertical bar between items shows alternate
choices. Examples:

program 1 module 1 implementation

• An item followed by a backslash and a special
character stands for one or more items separated
by the character. Note that the separator character
only appears between items, and not after the
final item. Examples:

identifier\, statement\; constant\,

F-3

Primitive Classes (Scanner Portion of Compiler)

These classes do not identify compiler routines. A
letter is one of the 52 upper and lower case alphabetics.
A digit is one of the digits 0 .. 9, or letters A .. F or a .. f.
A char is one of the 256 characters, except for' (quote).

ident::= letter{letter I digit I _}*

string: :='{char I ' '}+'

number: :={ {digit}+ # }-{digit}

realnm::={digit}+ . {digit} {{E I e}{+ I-}-{digit}+}:'"

Major Classes (Main Body of Compiler)

F-4

[main] ::= {getintf mainhed getuses {head body} +}

getintf: :={INTERFACE{(number)}- ;
UNIT ident(ident\,) ;
getuses{declare I header}*
{BEGIN}-END;}-

mainhed: :=PROGRAM ident{(ident\,)}-;I
MODULE ident; I
IMPLEMENTATION OF ident;

getuses: :={USES{ident{(ident\,)}- ;}+ } *

head: :={declare header}

declare: :={LABEL{getlabI}\ , ; I
CONST{ident = express}\; ; I
TYPE {ident = typedec}\; ; I
VAR getattr
{ {ident getattr }\, : typedec}\; ; I
VALUE {ident
{{[ordcons\,]} I {jdent}}*
:= express}\; ;}*

ordcons::= express

getlabl: :={ident I number}

getattr: :={ [{ attrsl ordcons
{: ordcons}- }\,] }-

attrsl: :={PUBLIC I EXTERN I EXTERNAL I
STATIC I PURE I READ ONLY}

typedec: :={A I ADR OF I ADS OF}
{{ident{(number \ ,)}-} I
{ordtype} I
{SUPER}-{PACKED}- I
{ARRAY [{ordtsub I {ordcons .. *}\,]
OF typedec} I
{RECO RD fieldls END} I
{SET OF ordtsub} I
{FILE OF typedec}} I

ord tsu b: : = ord type

ordtype::= ident I (ident \ ,) I
ordcons .. ordcons

F-5

F-6

fieldls: :={ident\, {[ordcons]}
: typedec { ;}-} *
{ CASE {iden t { [ord cons] } -
:}- ident
OF{ordlist (fieldls)}\;}
{;}-

ordlist: :={ {ordcons{ .. ordsubr} }\, :}

ordsubr: : = ordcons

header: :={ {PROCEDURE I FUNCTION} ident formals;
{{FOWARD I EXTERN I EXTERNAL} ;}-}-

formals: :={({{VAR I CONST I VARS}
ident\, : ident}
I {{PROCEDURE I FUNCTION}
ident formals}}\;)}-
{: ident}- getattr

body: :={END I {BEGIN statemt END} ;}{. I ;}

statemt: :={ {ident I number} : }*
ident selectp := express I
ident actuals I
BEG IN statem t \ ; END I
[statemt \ ;] I
IF boolexp THEN statemt{ELSE statemt} - I
WITH {ident selectp}\, DO statemt I
FOR{STATIC} ident := express

{TO I DOWNTO} express DO statemt I
REPEAT statemt \ ; UNTIL boolexp I
WHILE boolexp DO statemt I
{BREAK I CYCL}{getlabl}- I
GOTO getlabl I
RETURN I

CASE ordexpr OF
{ordlist statemt}\;{;}
{OTHERWISE statemt\;{;}-} END I
{}

boolexp: :={express{ {AND
THEN lOR ELSE} express}*}

ordexpr::= express

selectp::= [ordexpr\,] I. ident 1/\

express::= simple { {< I <= I> I >= I = I <> I
IN} simple}*

simple: :={+ I-}- term{ {+ I - lOR I
XOR} term}*

term::= factor { {* I / I
DIV I MOD I AND} I factor}*

factor: :={ident I
ident actuals I
chrcons I strcons I
ident setcons I
number I realnm I
(express) I
NOT factor I
NIL I
ADR ident I
ADS ident I

F-7

F-8

INDEX

Special
Characters

$BRAVE 4-9
$DEBUG 4-10
$ENTRY 4-11
$ERRORS 4-12
$GOTO 4-13
$IF .. $END 4-14
$INCLUDE 4-15
$INCONST 4-16
$INDEXCK 4-17
$ INITCK 4-1 8
$LINE 4-19
$LINESIZE 4-20
$LIST 4-21
$MATHCK 4-22
$MESSAGE 4-23
$NILCK 4-24
$OCODE 4-25
$PAGE 4-26
$PAGE (skip) 4-27
$PAGEIF 4-28
$PAGESIZE 4-29
$PUSH/$POP 4-30
$RANGECK 4-31
$RUNTIME 4-32
$SKIP 4-33
$STACKCK 4-34
$SUBTITLE 4-35
$SYMTAB 4-36
$TITLE 4-38
$WARN 4-39
@ 6-32

A
ABORT procedure 11-12
address file types 6-31
address types, predeclared 6-36
ADRMEM 6-36
ADSMEM 6-36
arithmetic functions 11-9

definitions 11-9
functions not provided 11-10
runtime library, real

functions 11-11
arithmetic functions not

provided 11-10
arithmetic runtime library,

real functions 11-11
arrays 6-11

dimension 6-11
ASSIGN procedure 12-27
assignment statement 9-4

assignment
compatibility 9-4
non1ocal variable 9-4
within a function 9-4

attribute, PURE 10-7
attribute, PUBLIC 10-5
attributes 1-6, 3-6
attributes, rules for

com bining 7-8
VALUE section

contents 7-9

X-I

B
back end errors A-35

internal errors A-36
user errors A-36

back end internal errors A-36
back end user errors A-36
backing up PAS I, PAS2, and

P ASCAL.LIB 2-5
BREAK, CYCLE, and

RETURN statements 9-9
buffer variable, accessing

the 12-11
BYWORD function 11-13

c
calling conventions ,

internal I 0-16
CASE constant 9-3
CASE statement 9-14
CHR function 11-8
CLOSE procedure 12-29
command lines, optional

(PAS!) 2-15
comments (syntax) 3-9
com pilands 12-41
compilation steps, PAS I 2-7
compilation steps, P AS2 2-10
compilation, getting

started 2-6
compiler directives 1-5
compiler listing 2-20
compiler runtime

structure D-I
error handling D-IO
initialization and

termination D-3
other runtime modules D-18

compiler structure C-I
back end C-6
front end C-3
overview C-2

compiling large programs 2-18

X-2

compiling Pascal, what you
need 2-3

compound statement 9-12
compound

[..] for BEGIN ... END 9-1
begin ... end 9-12
statement separator 9-12

CONCAT procedure 1-8
11-20 '

concatenation, string
constant 1-9

concatenation, strings 1-8
conditional statements 9-13
conformant array 6-13
CONST keyword 1-9
constant definition 5-11

form 5-12
$INCONST 5-12

constant values 1-8
alternate radix numbers 1-8
CONST keyword 1-9
constant expressions 1-8
string constant

concatenation 1-9
value section 1-9

constants 5-6
constants, structured 5-12
continuing the compilation:

PAS2 2-10
errors 2-10
PAS2 compilation

steps 2-10
control operators,

sequential 9-20
AND THEN and OR

ELSE restrictions 9-21
conventions, internal

calling 1 0-16
COPYLST procedure 11-20
COPYSTR procedure 11-21

D
data parameters 10-7

parameters 10-7
procedural 10-11

reference 10-8
Value 10-8

procedural parameter 10-11
reference 10-8
value 10-8

data transfer procedures and
functions 11-7

CRR 11-8
FLOAT 11-7
ODD 11-8
ORD 11-7
PACK 11-8
PRED 11-8
ROUND 11-7
SUCC 1-8
TRUNC 11-7
UNPACK 11-9
WORD 11-7

data type 6-3
assignment compatibility

and assignments 6-39
chart of data types 6-4
internal representation 6-41
super-type definition 6-3
type compatibility 6-37
type compatibility and

expressions 6-39
type definition 6-3
type identity and reference

parameters 6-37
data types, elementary 6-5
declaration and use,

variables 6-45
declarations, procedures and
functions 10-3

definition, constant 5-11
DELETE procedure 11-20
DIRECT files 12-37

EOF in DIRECT mode 12-41
procedure SEEK 12-39
procedures 12-38

procedure EOF 12-38
procedure GET 12-38
procedure PUT 12-38
procedure RESET 12-38
procedure REWRITE 12-38

iirectives 3-7

DISCARD procedure 12-30
diskette, P ASCAL.LIB

setup 2-5
diskettes, PAS 1 and PAS2

setup 2-5
DISPOSE procedure (long

form) 11-5
DISPOSE procedure (short

form) 11-5
dynamic allocation

procedures 11-3

E
elementary data types 6-5
empty statement 9-9
enumerated types 6-7

restrictions 6-7
EOF function 12-10
EOLN function 12-11
error conditions 4-6

caugh terrors 4-7
errors always caught 4-7
errors not caught 4-7
switchable caught

errors 4-7
warning 4-7

errors, back end A-35
errors, back end internal A-36
errors, back end user A-36
errors, file system A-37
errors, operating system A-39
errors, other runtime A-41
errors, Pascal file system A-40
errors, PAS 1 2-9
errors, P AS2 2-10
EVAL procedure 11-13
examples, internal calling

conventions 10-18
explicit field offset 6-23
explicit field offset field

restrictions 6-23 .
expressions 7-14

+ - * 8-5
/ 8-5
AND, OR, XOR, NOT 8-6

X-3

Boolean 8-6
DIV, MOD 8-5
EVAL procedure 8-10
function designators 8-11
operators and operands 8-3
RESULT function 8-10
RETYPE 8-11
SET 8-8
simple 8-3

expressions, operators and
operands 8-3

Boolean
files, arrays, and

records 8-7
LSTRING comparison 8-7
notes on Boolean

expressions 8-8
reference types 8-7
relational operators 8-7

function designators
form 8-11
parameters 8-13
uses 8-12

operators and operands
constan t expressions 8-4
integer expressions 8-4

SET
operators 8-8
set constructor 8-9
the IN relational 8-8

extended intrinsics 11-12
function ENCODE 11-14
function BYWORD 11-13
function DECODE 11-15
function LOBYTE/

HIBYTE 11-13
function LOWER 11-12
function RESULT 11-14
function SIZEOF 11-14
function UPPER 11-13
procedure ABORT 11-12
procedure EVAL 11-13

extended Pascal 3-4
EXTERN directive 10-5
external identifiers 5-4

X-4

F
F.ERRS 12-33
F .MODE 12-32

F.TRAP 12-32
FCB B-2
FCB record 6-26

mode
sequential, terminal, and

direct 6-27
textfile

structure 6-28
FCB structure B-2
features, IBM Pascal E-2

control flow and structure
mixed order E-5
sequential operators E-5
statements E-5
UNIT, INTERFACE, and

IMPLEMENT A TION E-6
VALUE section for static

variables E-5
data types and modes

address types E-3
attributes E-4
CONST parameter E-3
explicit byte offsets in

records E-3
extended functions E-4
LSTRING super type E-3
STRING predeclared

type E-3
structured constants E-4
super array E-3
WORD type E-3

I/O and files
extended I/O E-6
system I/O E-7

operators and intrinsics
constant expressions E-4
extended operators E-4
extended intrinsics E-4
Pascal library

functions E-5
REAL library

functions E-5

STRING intrinsics E-5
system intrinsics E-5

syntactic and pragmatic
extended CASE range E-3
extra listing E-2
metalanguage E-2
nondecimal number E-2

field values, files 12-32
file access methods B-2
file control block B-2

DOS fields B-2l
DOS interface routines B-23

CLSUQQ, CLDUQQ B-27
ENDUQQ B-25
GETUQQ B-28
GFNUQQ B-38
GTYUQQ B-36
INIUQQ B-23
NEWUQQ B-38
OPNUQQ B-25
PCCUQQ B-34
PERUQQ B-33
PFNUQQ B-37
PLYUQQ B-37
PPMUQQ B-39
PTYUQQ B-36
PUTUQQ B-32
SEKUQQ B-35
TFNUQQ B-39

error handling B-12
FCB declaration B-14
file access methods B-2
including the FCB

declaration B-22
linker conventions B-4
PASKEY B-3
structure B-2

file structures and modes B-5
file system errors A-37

operating system errors A-39
Pascal file system errors A-40

filename 12-28
DOS handled 12-28

AUX 12-29
COMI 12-29
CON 12-28

LPTI 12-28
NUL 12-29
PRN 12-28

special IBM Pascal
names 12-29

LINE 12-29
USER 12-29

files 6-25,12-3
accessing the buffer

variable 12-11
lazy evaluation 12-12

buffer variable 6-26
concept 6-25
DIRECT files 12-37
error codes 12-34
extended I/O feature 12-27

procedure ASSIGN 12-27
procedure CLOSE 12-29
procedure DISCARD 12-30

field values 12-32
F.ERRS 12-33
F.MODE 12-32
F.TRAP 12-32

file control block record 6-26
input and output 6-27
local variables 6-27
mode 6-27
modes 12-5
other file procedures 12-30

procedure READFN 12-31
procedure

READ SET 12-3 1
pointer referents 6-27
primitives 12-7

function EOF 12-10
function EOLN 12-11
procedure GET 12-8
procedure PAGE 12-11
procedure PUT 12-8
procedure RESET 12-9
procedure REWRITE 12-9

restrictions 6-26
structures 12-4

ASCII 12-4
BINARY 12-4

system I/O feature 12-35

X-5

textfi1e 6-28
textfi1e input/output 12-14

procedure READ 12-18
procedure READLN 12-22
procedure WRITE 12-22
procedure WRITELN 12-26

variables in headings 12-35
files, DIRECT 12-37
files, other procedures 12-30
files, temporary 12-30
FILLC procedure 11-17
FLOAT function 11-7
FOR statement 9-16

control variable 9-17
initial and final values 9-17

front end errors A-3
missing symbol A-II
overflow errors A-9
substitution mistakes A-II

function declarations 10-3
form

initial value of
variables 10-4

order of declarations 10-4
function DECODE II-IS
function ENCODE 11-14
function headings 10-4

headings
forward declaration 10-4

function result 10-7
function RETYPE II-IS
function specifics 10-6
function, arithmetic 11-9
functions and procedures,

library 11-21
date and time

procedures 11-22
four unsigned arithmetic

functions 11-22
heap allocation

function 11-22
initialization function 11-23
invoking DOS 11-23
opsys timing function 11-22
termination function 11-23

X-6

functions, data transfer 11-7
functions, predeclared 11-3
functions, recursive 10-7

G

GET procedure 12-8
GOTO statement 9-6

$GOTO metacommand 9-9
capabilities 9-7
compiler symbols 9-9
nested 9-9
restrictions 9-6

H

headings, procedures and
functions 10-4

HIBYTE function 11-13
host type 6-8

array 6-8
constant expressions 6-8
guarantee variable

value 6-9
predeclared 6-9

byte 6-9
sint 6-9

set constants 6-8
set constructors 6-8

I

IBM Pascal extensions 1-4
attributes 1-6
compiler directives 1-5
constant values 1-8
super array 1-6
super packed array of

CHAR 1-8
systems implementation 1-9
unit 1-5
variable length strings 1-7

IBM Pascal features E-2
control flow and

structure E-5
data types and modes E-3
I/O and files E-6
IBM and standard

Pascal E-7
operators and intrinsics E-4
syntactic and pragmatic E-2

IBM Pascal metacommands 4-9
IBM Pascal syntax F-l

major classes F-4
primitive classes F-3

IBM personal computer
Pascal 1-3

identifiers 5-3
external identifiers 5-4
length restrictions 5-3
scope 5-4
significant characters 5-3
suggestions for use 5-3

identifiers, scope 5-4
IF statement 9-13
implementation 13-15

form 13-15
body of 13-17
procedures and

functions 13-16
USES clause 13-15
VALUE and LABEL

sections 13-15
including the unit U

declaration B-39
input/output, extended

feature 12-27
input/output, system

feature 12-35
input/output, textfile 12-14
INSERT procedure 11-20
interface 13-14

attributes 13-14
interface routines, DOS B-23

console input B-36
console output B-36
DIRECT file position B-35

end of line B-37
end record B-3 3
file close B-27
file open B-25
GET the filename B-38
initialization B-23
new FCB B-38
program parameter B-39
put carriage control B-34
read bytes B-28
set the filename B-37
temporary filename B-39
termination B-25
write bytes B-32

internal calling
conventions 10-16

internal calli~g conventions
calling process 10-16
frame pointer 10-16
return registers 10-1 7

internal calling conventions,
examples 10-18

intrinsics, extended
feature 11-12

intrinsics, LSTRING 11-19
intrinsics, STRING

feature 11-17
intrinsics, STRING or

LSTRING 11-20
intrinsics, systems

feature 11-15
ISO Pascal 1-4

K
keyword, const 1-9

L

large programs,
compilation 2-18

lazy evaluation 12-12
length restrictions,

identifiers 5-3

X-7

levels, Pascal 3-3
library procedures and

functions 11-21
line marker 6-6
linker map 2-28
linker, optional command

lines 2-17
linking 2-11

P ASCAL.LIB 2-13
listing, compiler 2-20
LOBYTE function 11-13
LOWER function 11-12
LSTRING assignment 11-17

STRING assignment 11-18
Istring in trinsics 11-1 9

procedure CONCAT 11-20
procedure COPYLST 11-20
procedure DELETE 11-20
procedure INSERT 11-20

Istrings 6-18
access to length 6-18
null 6-18
range 6-18
read into Istrings 6-19
special operations 6-19
special transformation 6-19
string constants 6-18
write from 1strings 6-19

M
map, linker 2-28
messages A-I

front end errors A-3
other runtime errors A-41

memory errors A-42
ordinal arithmetic A-43
other errors A -46
REAL arithmetic A-45
structured type errors A-46

metacommands 4-3, 4-4
debugging and error

handling 4-4
listing file format 4-4
metacommands 4-4

X-8

debugging and error
handling 4-4

listing file format 4-4
source file control 4-5

metavariables 4-5
source file control 4-5

metacommands, de bugging and
error handling 4-4

metacommands, IBM
Pascal 4-9

metacommands, listing file
format 4-4

metacommands, source file
control 4-5

metalanguage 3-4
metavariables 4-5

how they are set 4-6
integer 4-5
on/off 4-6
string 4-6
typeless 4-5

missing symbols A-II
modes, files 12-5, B-5

modes
direct 12-5
sequential 12-5
terminal 12-5

modules 13-8
modules, programs, and

units 12-41
MOVEL procedure 11-16
MOVER procedure 11-16

N
NEW procedure (long

form) 11-3
NEW procedure (short

form) 11-3
Niklaus Wirth 1-3
numeric constants 5-7

constant size
limitations 5-15

INTEGER 5-7
MAXINT 5-7

range 5-7
subranges 5-7

real 5-8
CONST section 5-9
constant operators 5-9
exponentiation 5-8
leading + or - 5-8
leading or trailing

decimal point 5-8
non decimal number 5-8
scientific notation 5-8
signed numbers 5-9
truncation 5-8

word 5-7
maxword 5-7

o
object filename 2-8
object listing 2-8
ODD function 11-8
operating system errors A-39
operators and operands,

expressions 8-3
operators, sequential

control 9-20
optional link command

lines 2-17
optional PAS 1 command

lines 2-15
optional P AS2 command

lines 2-16
ORD function 11-7
ordinal type 6-4
other runtime errors A-41
OTHERWISE clause, CASE

statement 9-14
overflow errors A-9

p

PACK procedure 11-8
PAGE procedure 12-11
parameters, procedures and

functions 10-7

Pascal file system errors A-40
Pascallevels 3-3

extended Pascal 3-4
metalanguage 3-4
standard Pascal 3-4
systems Pascal 3-4

Pascal metacommands 4-9
$BRAVE 4-9
$DEBUG 4-10
$ENTRY 4-11
$ERRORS 4-12
$GOTO 4-13
$IF .. $END 4-14
$INCLUDE 4-15
$INCONST 4-16
$INDEXCK 4-1 7
$INITCK 4-18
$LINE 4-19
$LINESIZE 4-20
$LIST 4-21
$MATHCK 4-22
$MESSAGE 4-23
$NILCK 4-24
$OCODE 4-25
$PAGE 4-26
$PAGE (skip) 4-27
$PAGEIF 4-28
$PAGESIZE 4-29
$PUSH/$POP 4-30
$RANGECK 4-31
$RUNTIME 4-32
$SKIP 4-33
$STACKCK 4-34
$SUBTITLE 4-35
$SYMTAB 4-36
$TITLE 4-38
$WARN 4-39

Pascal reserved words 3-6
attributes 3-6
directives 3-7
Pascal features 3-6

address type 3-6
control flow 3-6
extended case 3-6
extended operator 3-6
modules 3-6
super array type 3-6

X-9

unit interface 3-6
value section 3-6

predeclared identifiers 3-7
PASCAL.LIB 2-13
Pascal, extended level 3-4
Pascal, metalanguage 3-4
Pascal, running a program 2-14
Pascal, standard level 3-4
Pascal, systems level 3-4
Pascal, vocabulary and

syntax 3-4
Pascal, what you need to

compile a program 2-3
PAS 1, compilation steps 2-7
PAS 1 ,errors 2-9
PAS 1, starting the

com piler 2-6
PAS 1, warnings 2-9
PAS2, compilation steps 2-10
PAS2, continuing the

compilation 2-10
PAS2, errors 2-10
PAS2, optional command

line 2-16
pointers 6-29

compatibility 6-30
declarations 6-30
nil pointer 6-29
operations on 6-29
relationship to machine

address 6-3 1
POSITN function 11-20
PRED function 11-8
predeclared identifiers 3-7

extended I/O feature 3-8
extended intrinsics

feature 3-8
IBM Pascal 3-8
string intrinsics feature 3-8
super array type

feature 3-8
system I/O feature 3-8
system intrinsics

feature 3-8
word type feature 3-8

x-to

predeclared procedures and
functions 11-3

dynamic allocation 11-3
procedure DISPOSE

(long form) 11-5
procedure DISPOSE

(short form) 11-5
procedure NEW (long

form) 11-3
procedure NEW (short

form) 11-3
procedure DISPOSE (long

form) 11-5
procedure DISPOSE (short

form) 11-5
procedure NEW (long

form) 11-3
procedure NEW (short

form) 11-3
primitives, file system 12-7
procedural parameter 10-11

compatibility 10-11
parametedess function 10-12
procedures and functions

not passed 10-13
uses, procedural

parameters 10-15
procedural types 6-36

definition 6-37
identifiers 6-37
syntax 6-37

procedure and function
declarations 10-3

form 10-3
function specifics 10-6

PURE attribute 10-7
result function 10-7

headings 10-4
EXTERN directive 10-5
PUBLIC attribute 10-5

internal calling
conventions 10-16

procedure DISPOSE (long
form) 11-5

procedure DISPOSE (short
form) 11-5

procedure NEW (long
form) 11-3

procedure NEW (short
form) 11-3

procedure statement 9-6
procedure

form 9-6
procedures and functions, data

transfer 11-7
procedures and functions,

headings 10-4
procedures and functions,

library 11-21
procedures and functions,

parameters 10-7
procedures and functions,

predeclared 11-3
procedures, dynamic

allocation 11-3
program entry 2-6
programs 13-4

form 13-4
parameter acceptability 13-6
parameter value 13-6
parameters 13-5
predeclared files 13-5

programs, modules, and
units 12-41

com piland 12-41
modules 13-8

body 13-8
FILE variables 13-8
header 13-8
variables 13-9

programs 13-4
unit 13-9

PUBLIC and EXTERN
attributes 7-5

PUBLIC attribute 10-5
PURE attribute 7-7, 10-7
PUT procedure 12-8

R
READ LSTRING 11-18
READ procedure 12-18

READFN procedure 12-31
READLN procedure 12-22
READONL Y attribute 7-6
READ SET procedure 12-31
real type 6-9

format 6-10
standard functions 6-10

record variable 6-22
dispose procedure 6-22
new procedure 6-22

records 6-20
explicit field offset 6-23
fields 6-20
record variable 6-22
tag field 6-20
variants 6-20

case constant options 6-21
restrictions 6-21

recursive functions 10-7
reference parameters 10-8

reference
restrictions 10-9
var keyword 10-8
with super arrays 10-9

reference types 6-28
addresses 6-31

ADR clause 6-32
ADS clause 6-32
default data segment 6-34
DS and SS registers 6-34
pointer symbol 6-32
pointer syntax 6-34
predeclared address

types 6-36
relative address 6-31
restrictions 6-35
segmented address 6-31

pointers 6-29
VARS keyword 6-34

REPEAT statement 9-16
repetitive statements 9-15
reserved words, Pascal 3-6
RESET procedure 12-9
RESULT function 10-7,11-14
return registers, procedures

and functions 10-1 7
REWRITE procedure 12-9

X-II

ROUND function 11-7
rules for combining

attributes 7-8
running Pascal 2-14
runtime structure, compiler D-l

error handling
heap allocation D-16
machine error context D-12
source error context D-14

initialization and
termination

machine level
initialization D-4

program level
initialization D-6

termination D-9
other runtime modules

code generator helpers D-18
ordinal encode/decode D-18
real number support D-19
set and string

operations D-19
overview D-2

s
sample compiler listing 2-20
sample linker map 2-28
SCANEQ function 11-21
SCANNE function 11-21
scope, identifiers 5-4

scope
forward directive 5-5
$LIST+ 5-5
definition 5-5
enumerated type 5-6
nested functions 5-4
nested procedures 5-4
program, module, unit

identifiers 5-5
tagfield 5-5
UNIT interface 5-6
uses clause 5-6
variable declaration 5-5

scratch diskette 2-6
SEEK procedure 12-39
X-12

procedure SEEK
followed by GET 12-39
followed by PUT 12-40
followed by READ

(BINARY files) 12-40
followed by READ/

READLN(ASCII
files) 12-40

followed by WRITE
(BINARY files) 12-40

followed by WRITE/
WRITELN (ASCII
files) 12-41

sequential control operators 9-:
and then and or else 9-21

set opera tors 6-25
sets 6-24

base type 6-24
compatibility 6-25
set operations 6-24

setting up PASI and PAS2
diskettes 2-5

setting up the PASCAL. LIB
diskette 2-5

significant characters 5-3
simple expressions 8-3

simple classes 8-3
simple statements 9-3
simple types 6-4

assignment 9-4
elementary types 6-5

BOOLEAN 6-6
CHAR 6-6
enumerated types 6-7
INTEGER 6-5
subrange types 6-8
WORD 6-5

empty 9-9
GOTO 9-6
procedure 9-6
real 6-9

SIZEOF function 11-14
source filename 2-7
source listing 2-8
source listing file 2-6
specifics, functions 10-6

function specifics
form 10-6
purpose 10-6
recursion 10-7
result 10-6

standard Pascal 3-4
starting the compilation 2-6
starting the compiler:

PASI 2-6
compiler filenames 2-7

object filename 2-8
object listing 2-8
source filename 2-7
source listing 2-8

errors 2-9
optional command lines 2-15
PAS I compilation steps 2-7
source listing file 2-6
warnings 2-9

statement, assignment 9-4
statement, BREAK, CYCLE

and RETURN 9-9
statement, CASE 9-14

OTHERWISE clause 9-14
statement, compound 9-12
statement, conditional 9-13
statement, empty 9-9
statement, FOR 9-16
statement, GOTO 9-6
statement, IF 9-13
statement, procedure 9-6
statement, REPEAT 9-16
statement, repetitive 9-15
statement, simple 9-3
statement, structured 9-11
statement, WHILE 9-16
statement, WITH 9-19
statements 9-3

CASE constant value 9-3
simple 9-3
statement labels 9-3

loop label 9-3
STATIC attribute 7-4
STRING comparisons 11-18
STRING constant,

concatenation 1-9

STRING intrinsics 11-17
comparison II-I 8
LSTRING assignment 11-17
READ LSTRING 11-18
STRING assignment 11-18
T.LEN 11-18

STRING or LSTRING
intrinsics 11-20

function POSITN 11-20
function SCANEQ 11-21
function SCANNE 11-21
procedure COPYSTR 11-21

strings 5-10, 6-16
constant expression 5-11
LSTRING feature 5-11
NULL constant 5-11
NULL string 5-10
STRING constant 5-10
string literals 5-10
strings

as parameters 6-16
compatibility 6-17
index type 6-1 7
range 6-16
reading 6-1 7
restrictions 6-1 6

strings, variable length 1-7
CONCAT procedure 1-8

structure, compiler C-I
structured constants 5-12

array or record 5-12
do n of constant 5-14
in a structured constant 5-13

components 5-13
elements 5-13

notes on 5-15
passed by reference 5-14
set 5-12

explicit 5-14
unknown 5-14

size 5-13
structured statement 9-11

compound 9-12
conditional 9-13

CASE statement 9-14
if statement 9-13

X-13

repetitive statement 9-15
FOR 9-16
REPEAT 9-16
WHILE 9-16
WITH 9-19

structured type, maximum
length 6-11

structured types 6-1 0
arrays 6-11
components 6-11
maximum length 6-11
packed structures 6-11
super arrays 6-12

formal reference
parameter 6-13

actual parameter 6-13
allocated with NEW 6-15
compatibility 6-15
components 6-15
conformant array 6-13
max upper bound 6-16
pointer to 6-14
predeclared super

arrays 6-16
type designator 6-12
type identifier 6-12
upper bound operator 6-13
UPPER function 6-16
variables 6-15

structures, files 12-4, B-5
substitution mistakes A-II
substitutions, syntax 9-12
SUCC function 11-8
summary, IBM· Pascal 1-10
super array 1-6
super arrays 6-12

lstrings 6-18
strings 6-16

super packed array of
CHAR 1-8

syntactic substitutions 9-12
syntax and vocabulary 3-4

comments 3-9
metalanguage 3-5

higher level
substitutes 3-5

X-14

IBM Pascal 3-5
metalanguage 3-5
substitutes 3-5
unused characters 3-5

syntax, IBM Pascal F-l
systems implementation 1-9
systems intrinsics 11-15

procedure FILLC 11-17
procedure MOVEL 11-16
procedure MOVER 11-16
RETYPE function 11-15

systems Pascal 3-4

T
T.LEN 11-18
tag field 6-20
temporary files 12-30
the Pascal language 1-3

extensions to Pascal 1-4
goals 1-4
ISO Pascal 1-4
Niklaus Wirth 1-3
summary 1-10

TRUNC function 11-7
type compatibility 6-37

compatible 6-37
identical 6-37
incompatible 6-37
internal representation

address values 6-41
arrays 6-43
BOOLEAN values 6-41
CHAR values 6-41
enumerated values 6-41
files 6-44
INTEGER values 6-41
LOBYTE, HIBYTE, and

BYWORD 6-43
pointer values 6-41
procedural parameters 6-42
real values 6-41
sets 6-43
variable alignment 6-43
WORD values 6-41

type compatibility and
expressions

CASE index expression
simple 6-39
structured 6-39
values 6-39

type identity and reference
parameters
special exceptions 6-38

type, arrays 6-11
type, data 6-3
type, files 6-25
type, procedural 6-36
type, real 6-9
type, records 6-20
type, reference 6-28
type, sets 6-24
type, structured 6-10

u
UNIT 1-5, 13-9

consists of 13-10
identifier

correspondence 13-11
keyword UNIT 1 3-11
UNIT

$INCLUDE 13-10
division 13-10
implementation 13-10

USES clause 13-11
unit U declaration

$INCLUDE B-39
units, programs, and

modules 12-41
UNPACK procedure 11-9
UPPER function 11-13
USES clause 13-11

advantages over
$INCLUDE 13-13

constants and types 13-13
labels 13-13

6-39

record field identifiers 13-13

v
value 7-10

component variables and
values

field variables and
values 7-12

file buffers and fields 7-1 ~
indexed variables and

values 7-12
value

component of a value 7-10
constant 7-10
extended function 7-10
function designator 7-10
structured constant 7-11
variable 7-10
variable referenced by a

pointer 7-10
value parameters 10-8
value section 1-9
variable declaration and use 7-:3

var section 7-3
buffer variable 7-3
file variable 7-3
parameter list 7-3

attributes 7-3
form 7-4
PUBLIC and EXTERN 7-5
PURE 7-7
READ ONLY 7-6
rules for combining 7-8
STATIC 7-4

component variables and
values 7-11

entire variables and
values 7-11

form 7-3
referenced variables 7-13
value 7-10
VALUE section 7-9

variable length strings 1-7
variables in headings,

files 12-35
varian ts 6-20
vocabulary and syntax 3-4

X-IS

w
warnings, PAS 1 2-9
what you need to compile

Pascal 2-3
prerequisites 2-3
program entry 2-6
scratch diskette 2-6

WHILE statement 9-16
Wirth, Nik1aus 1-3
WITH statement 9-19

restrictions 9-19
WORD function 11-7
WRITE procedure 12-22
WRITELN procedure 12-26

X-16

Product Comment Form

PASCAL

The Personal Computer
Software Library

6172272

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ______________________________________ _

Address __________________________________ __

Ci ty ______________ _ S ta te ________________ ---:-

Zip Code _____ __

111111

, BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa4 PIO:::!

aldelS lOU Op ase91d

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

Product Comment F orffi

PASCAL

The Personal Computer
Software Library

6172272

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ______________________________________ _

Address __________________________________ ___

City ______________ _ State _______________ _

Zip Code ____ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa4 PIO::!

aldelS lOU op aseald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

Product Comment Form

PASCAL

The Personal Computer
Software Library

6172272

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ______________________________________ _

Address __________________________________ __

Ci ty ___________ _ State ________________ _

Zip Code ____ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa4 Pia:::!

aldelS lOU 00 aSealrl

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

Product Comment Form

PASCAL

The Personal Computer
Software Library

6172272

Your comments assist us in improving our products.
IBM may use and distribute any of the information
you supply in anyway it believes appropriate without
incurring any obligation whatever. You may, of
course, continue to use the information you supply.

Comments:

If you wish a reply, provide your name and address in
this space.

~ame ______________________________________ _

Address __________________________________ ____

City _______ _ State ________________ _

Zip Code ____ _

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 123 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER
SALES & SERVICE
P.O. BOX 1328-C
BOCA RATON, FLORIDA 33432

aJa4 PIO~

aldelS lOU op aseald

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

adel.

:=ontinued from inside front cover

;OME STATES DO NOT ALLOW THE
~XCLUSION OF IMPLIED
"II ARRANTIES, SO THE ABOVE
~XCLUSION MAY NOT APPLY TO
(OU. THIS WARRANTY GIVES YOU
;PECIFIC LEGAL RIGHTS AND YOU
v1AY ALSO HAVE OTHER RIGHTS
XTHICH VARY FROM STATE TO
;TATE.

BM does not warrant that the functions
ontained in the program will meet your
equirements or that the operation of the
)rogram will be uninterrupted or error
ree.

iowever, IBM warrants the diskette(s) or
assette(s) on which the program is fur
lished, to be free from defects in materials
nd workmanship under normal use for a
)eriod of ninety (90) days from the date of
lelivery to you as evidenced by a copy of
'our receipt.

JIMIT ATIONS OF REMEDIES

BM's entire liability and your exclusive
emedy shall be:

. the replacement of any diskette(s) or
cassette(s) not meeting IBM's "Limited
Warranty" and which is returned to
IBM or an authorized IBM PERSONAL
COMPUTER dealer wi th a copy of your
receipt, or

~. if IBM or the dealer is unable to deliver a
replacement diskette(s) or cassette(s)
which is free of defects in materials or
workmanship, you may terminate this
Agreement by returning the program
and your money will be refunded.

N NO EVENT WILL IBM BE LIABLE
ro YOU FOR ANY DAMAGES,
NCLUDING ANY LOST PROFITS,
JOST SAVINGS OR OTHER
NCIDENT AL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE SUCH
PROGRAM EVEN IF IBM OR AN
AUTHORIZED IBM PERSONAL
COMPUTER DEALER HAS BEEN
ADVISED OF THE POSSIBLITY OF
SUCH DAMAGES, OR FOR ANY
CLAIM BY ANY OTHER P ARTY.

SOME STATES DO NOT ALLOW THE
LIMITATION OR EXCLUSION OF
LIABILITY FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES SO
THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO
YOU.

GENERAL

You may not sublicense, assign or
transfer the license or the program
except as expressly provided in this
Agreement. Any attempt otherwise to

sublicense, assign or transfer any of the
rights, duties or obligations hereunder is
void.

This Agreement will be governed by the
laws of the State of Florida.

Should you have any questions
concerning this Agreement, you may
contact IBM by writing to IBM Personal
Computer, Sales and Service, P.O. Box
1328-W, Boca Raton, Florida 33432.

YOU ACKNOWLEDGE THAT YOU
HA VE READ THIS AGREEMENT,
UNDERSTAND IT AND AGREE TO
BE BOUND BY ITS TERMS AND
CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE
AND EXCLUSIVE STATEMENT OF
THE AGREEMENT BETWEEN US
WHICH SUPERSEDES ANY
PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY
OTHER COMMUNICATIONS
BETWEEN US RELATING TO THE
SUBJECT MATTER OF THIS
AGREEMENT.

--.- ------ - ---- ---- - ---- - - ---
==-=~=®

International Business Machines Corporation

P.O. Box 1328-W
Boca Raton, Florida 33432

6172272
Printed in USA

