| o e

MICROSOTFT

05/2
Prammer’s Refeoe

"""

Including Presentation Manager

Microsoft

Programmer’ Reference

Version 1.1

ten, edited, and produce
Microsoft Corporation
ibuted by Microsoft Press

Microsoft

O

2

Information in this document is subject to change without notice and does not represent
a commitment on the part of Microsoft Corporation. The software and/or databases
described in this document are furnished under a license agreement or nondisclosure
agreement. The software and/or databases may be used or copied only in accordance
with the terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual and/or database may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including photocopying,
recording, or information storage and retrieval systems, for any purpose other than the
purchaser’s personal use, without the written permission of Microsoft Corporation.

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

© Copyright Microsoft Corporation, 1989. All rights reserved.

Library of Congress Cataloging in Publication Data

Microsoft OS/2 programmer’s reference.

Includes index.

1. Microsoft OS/2 (Computer operating system) I. Microsoft Press
QA76.76.063078 1989 005.4'469 - 89-2817

ISBN 1-55615-220-5(Vol. 1) \

Printed and bound in the United States of America.
123456789 FGFG32109

Distributed to the book trade in the United States by Harper & Row.
Distributed to the book trade in Canada by General Publishing Company, Ltd.
Distributed to the book trade outside the United States and Canada

by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

Writers: Brad Hastings
" Stan Krute
Donn Morse
Ralph Walden
Dan Weston

The character-set tables in this manual are .reprmted by permission from the IBM
Operating System/2 User’s Reference, © 1987 by Internauonal Business Machines Cor-
poratxon

Microsoft®, MS®, MS-DOS®, and the Microsoft logo are registered trademarks of
Microsoft Corporatlon

IBM®, Personal System/2®, and PS/2® are registered trademarks of International Busx—
ness Machmes Corporation.

Intel® is a registered trademark of Intel Corporation.
PostScript® is a registered trademark of Adobe Systems, Inc. -

Document No. LN0O702A-110-R00-0289

: fil
R R B e S D B R R T SR e

Contents

Part 1 IntroducingMS OS/2.......eane. 3
Chapter 1 Introduction

1.1 OVEIVIEW ceeniiaieiitiieiieiirenieecaeten e e seeeaeesannenenaseaansaennas 7
1.2 About the MS OS/2 Programmer’s Reference........cc........... 7
1.3 How to Use This Manual.......c.coevveiernniiiniiiieniiiennniennnennnes 8
1.4 MS OS/2 and the C Programming Language.......c.cccceuveauenet 8
1.5 MS OS/2 Naming Conventions........cceeuvererereenncriranerennnanne 9
1.6 Notational Conventionsccecuveurrerernervereieesrencensaesesrasenss 11
Chapter 2 MS 0S/2 Overview
2.1 Introduction....cececieiuniiienniiiiuiieniiiiiiet e ea et 15
2.2 MS OS/2 and Presentation Manager..........cccceerevnerennneennnnn. 15
2.3 The Window Managerc.cccevieuiieeiiieniinniieniiinniinciencineennee 17
2.4 The Graphics Programming Interface......ccccccecieiinniiecinnnneee. 19
2.5 System SErIVICES ...ccceuiivuiiiiureiinieiiiiniincieneairrneeenenesanenes 22
2.6 The MS OS/2 System Functions......cceceereeeeerencrcnncacnnennnnne 25
Chapter 3 MS 0S/2 Programming Models
3.1 IntroduCtion.....ccceuiiiieeiieniiiiuierianeteeeerennnaeenaeerrnnaeranennenes 29
3.2 Full-Screen Programs.....cccccceeeiieniercuiisioueesensecnsencneennnnes 29
3.3 Presentation Manager Applicationscccueeeeueceenrrencecnnnnns 30
3.4 The Family Application Programming Interface................... 32
3.5 Using the Command Lin€cc.eeeuruiirnieerennieenueeenuarennenennnns 37
3.6 Using StruUCHUIes....ccovieuerurenrrenerererescrenereivernssenssensrserenses 38
3.7 Using Bit Masksccoiveuiiieiiinniensioiiieieieerenesenerenernereesnnnnes 39
3.8 Sharing ReSOUICESctvieuueiiriuenierirennierreeneeaeerennneeennnanees 40
3.9 C-Language Header Files.......cccoeieriianiciiiiinneninienncnenennnnes 40
Part2 Window Manager...........cen. 47
Chapter 4 Windows
4.1 Introduction......cceeeeiereeuueiieiennirneteineecereeeneareennceereennnanens 51
42 About WIndOWSc.eiiieeniiriiuiiinieiaieiereteneeereaneeneennnnens 51
4.3 System-Modal WindowWs.......cccivueuereuneieicniinrunieeinnereennnenennn. 58
4.4 Using WINAOWS «o.ieuiiiiiiiniriniiriiirncenrecereruecnesnsesesarnnsanns 66

4.5 Summary.....c.ccceeceeceieerreiereneinnns ieenseeresersrarasaneanesanseartasnons 72

iv
B B B B B R e B R R R e e

Chapter 5 Messages and Message Queues

5.1 IntroduCtion...c..ceevicniiaiiiueiiiioninicmiiiniiiniiircera e eaeeanees 79
5.2 About Messages and Message Queuescceeuuriencrnirnennnnns 79
5.3 Using Messages in an Application.......ccceeevvueveenerenniieninnnnnns 86
T TR 1T 1111 T:1 o 20N 89
Chapter 6 Window Classes
6.1 INtroducCHON....veeueieinveieneereeremeeeeenerneeaenereceasnsensasncanearass I3
6.2 About Window Classesccoecvieuiruniiniineiiniiinciniiieniinenens 93
6.3 Using Window Classescccceeurenreurerienneniinirreiiriienieenenennns 98
6.4 SUMMAIY...cceiiiueeniinnrienieerereereereenernneenenrenssanconsereseosrasees 98
Chapter 7 Window Procedures
7.1 INtroductiON.....cicvieieeecierencienieerensencsnsienseaseesecrocrseessassansas 101
7.2 About Window Proceduresc.cceeeucieierirencrueiencnnenrenannne 101
7.3 Using a Window Procedure........coceuucreuicniiniinniennieninnnennn. 103
74 SUMMAIY..ccuiiiiiiiiiiiiiiiriiiaieeiriirai e raeeeaseneseassanens 105
Chapter 8 Mouse and Keyboard Input
8.1 INtroductiON....cccevrecreivenirnrenirueensinnimreniesienieinsnneeimecanenenne 111
8.2 About Mouse and Keyboard Input.....cc.cccoeeeuiviniininnniinnnnn. 111
8.3 Using the Mouse and Keyboard in an Application................ 112
8.4 SUMMAIY..ccuceieirenieiiriereeirenerreerenrennrennsenssacesrneseescaseassons 120
Chapter 9 Frame Windows
9.1 INtroduction.....ceecveeriinniiencearrionirnnerunerensecnnereesocsonsansesnenns 127
9.2 About Frame Windowsccvvvruiiniiuiiniiiniiniieciniinieceinnene, 127
9.3 Using Frame Windowscccceemcieiiioirinnrienironiincicncenninnnenes 139
9.4 SUMMAIY..cccrrurireieirenrenciirariaseesenseesensracsasseiosssssassassesanse 141
Chapter 10 Control Windows
10.1 IntroduCtion......ceeereeieniineinnrnesesreionesnaenesencrnsenseossosensasnnas 145
10.2 About Control Windows......c.cvirerniimunirimaicnnnrienininnseneenenns 145
10.3 Using Control Windows in an Applicationccceeeeeurennnnen.. 146
10.4 Creating a Custom Control Windowccceeevenrinnirinnvinnnnes 146
10.5 SUMMAIY . euireiinereireieieetnreereereresenrenareraesmenrrasesionanssnsesanns 147
Chapter 11 Title-Bar Controls
11,1 Introduction.....ccceeeiereieeeniiaerieereiieeeneeereaeenne et enaeennaes 153
11.2 ° About Title Bars ..c.ccuueiiniieuiiniroiriiieeenceeereae e ieeeacaneanee 153
11.3 Using Title-Bar Controls in Applicationsccocceveuninninnnes 153
11.4 Default Title-Bar Behavior......cccveureneieieearenreniiesenceerecenennns 154

11.5 SUMMAIY..evmiiiiniciiiiiereiericereeeieteeeeeeaeserenaeneseensrenaasenas 155

Chapter 12 Button Controls

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

12.1
12.2
12.3
12.4
12.5

IntrodUCHON. . c.vueeinieiererineecereereresernconenssrassnsessnsssasacaseaens
About Button ControlS.....ccceeeeeeeiiieiieereeeieeeeecncesesacenens
Using Button Controls in an Applicationcccccvvveiinnnnnne.
Default Button Behavior.....ccvcviieiiivereiruiecureeenrereeecenearnennens
SUMMATY..cuiiiiiiiiiiiiiiiri e se e saseraenees

Entry-Field Controls

13.1
13.2
13.3
13.4
13.5

Introduction............ e eeerereinieatiaetre ettt rtearatrtaeneraaraaeneas
About Entry-Field Controlscccccvvruiiinviniiniiiieniiennennn.
Using Entry-Field Controls in an Applicationceoceueeeee.
Default Entry-Field Behavior......ccoccevivieiiiiiiiiiniiiiiiiiennenn.
SUMMATY.cocuiiiiiimiiiiiiiiiirr e

List-Box Controls

14.1
14.2
14.3
14.4
14.5

INtrOdUCHION . et reereetereecneeeracanaarenennnns
ADbBOUL LiSt BOXES c.vuiiiiiiiieiiieieieiiierereieneeencnrosessesnensnsensens
Using a List Box in an Applicationccocevvveuiiuiiiniiiniianne.
Default List-Box Behaviorccvuueveeeieerieeeeervemsieeeeeeenmnnnenes
SUMMATY..euiiiiiiiriiiirieiiier it reetaessasesssnssessnstasenssnsens

Static Controls

15.1
15.2
15.3
15.4
15.5

J £115 (oTe 11To1 4 o)1 U PN
About Static Controls ...uvvveveviiereninereieriresenearencncncecseerens
Using Static Controls in an Application.....c.ceeeeeeereeeeeencnenees
Default Static-Control Behavior......occveveevrveieieceienrerececeennnes

16.1 INtroduction......cceceeeenereuirieireeieeeerenrieeeraesernsesnsensonneencssas
16.2 About Scroll Bars.......ceeuvvenreniieiieiineiivnieiienciiieniacencennenaens
16.3 Using Scroll Bars ...c.c.cveereeiremeeruermacierecrencrancrensresarscaensens
16.4 SUMMAIY..cuiiiiiiiiiiiiiiiiiiiiiiien e cerareeeeneneseeneseseenns
Menus

17.1 Introduction...c.cccecieeiucieereeennssnneessnssronencrnsssnssssnscsensosnossnns
17.2 ADOUt MenuUS .c..ciueiiiiciiiireirinivnncineiineccneecroectnennsanennncnen
17.3 Defining Menu Items in a Resource Filecc..ccccoieennneaeeen.
17.4 Menu Data Structuresccuceviveiirieiniiieecrnienieieineencreeeeeenes
17.5 Using Menus in your Applicationscccceeeeeernereerncsncraseanenns
17.6 SUIMATY..cciiiiuiiiiiiiiiiiiiiiin ettt ssaesesesensssennss

v

vi

A e S B e S S R R R e R e R S R R R R R e

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Accelerator Tables

18.1 INtroduction....ccueeenieerieniinriicieniriuririirtnteriasaaerassnneennne 239
18.2 About Accelerator Tablesc.cceeiveiiiniiiniinniinniininnninnnnne.. 239.
18.3 Accelerator Tables in a Resource-Definition File 239
18.4 Accelerator-Table Data Structures......cc..cceeeuvieniiunieniennennnns 240
18.5 Using an Accelerator Table in an Applicationc.cceeveunee 241
18.6 SUMMATY.c.oiieriiniiiiiiiiiiiiiiiiiitcri et erecaeennees 242
Dialog Windows
19.1 Introduction.....coeecurreeoeiecneennrenicenrecsereseiateennsensensensenes 247
19.2 About Dialog Windowsccceerimmiiiiemiciinniiiniirenniienennienee: 247
19.3 Dialog Data Structuresccceeeuieeiiinirianiicceiieniieniencraeenes 249
19.4 Dialog ReSOUICES. cuuuiuuiiuuiiuiiiuniiiniiiiiiuiiieenieniiasianersesanes 250
19.5 Using Message and Dialog Boxes....cc.ccceuirrnrienirrniiiniinaine, 251
19.6 SUMMATY...ciuiiieriiiiiiiii ittt ree e eeanseenees 258
Painting and Drawing
20.1 Introduction........cecceicumiiuiiiuniiueiiiiciniciieciirii et seaenes 265
20.2 About Painting and Drawingceeeeeieveeiinnieeninnnecennnne 265
20.3 = Strategies for Painting and Drawing........cccceeeveeereereneennrennne. 268
2004 PrintiNg .c.c.cecremiremuiienieeneireeienereaierasaennarnnernseossssssessenssansens 275
20.5 SUMMAIY.cctteiinriiiniiiiitirriatreeenietecaesessenscnscnsssenseasncnnsans 275
Drawing in Windows
21.1 IntroducCtion......ceicceeeeeuerieeneeeenesenensrenuesenensnessernsssenaseneces 281
21.2 Window-Drawing Functionsccceeeereeeeniineencrrinnnecennncnee. 281
21.3 Using Window-Drawing Functionsc...c.ccceuuue. eeeeereenaes 282
214 SUMMATIY.c.iiiiririiairiiniieieeetenateaneerrsesasesssamsesarenseosasnsasenns 285
Mouse Pointers and lcons
22.1 Introduction.............. ereeeeteeeerannneaeataeteenrenaesantannreaeens 289
22.2 ° About Mouse PoInters......cccceeuueivuecrrmenneennennerereierennaenanenns 289
22.3 Using a Mouse Pointer in an Applicationc.ccoeeveeiiennnn. 290
22.4 SUMMATY...cciitiuiiiiiiiniieirereetiretenieertoaeneeesennesernssesssnesnnnnns 291
Cursors
23.1 Introduction......ccceeeiiieereeeceemnerinineeienaeeueseresreesssunsennnsens 297
23.2 ADOUL CUISOIS c.utiiieneiiiinnieciiiiererereeeneererrensneneeerennssenenns 297
23.3 Using Cursors in an Application.......c.eceeerreenereeeeeenreeneennnens 297

234 SUMMALY....cooiiiiiinitiiit ittt 298

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

vii

B T B B e e B B R S R S R

Printing

24.1 Introduction.....cccviieieueriniiniinnieniruerniereriaiariienieaeeneraenneas 303
24.2 About Printingcccecevviivniiiimniiiriniirmiiieniiiieenin e, 303
24.3 Printing .c.ceieeuieeniiiiiuniiiiiiniiniiiereieriiesie s enaesenaeraeans 305
24.4 Special Printing TopICS . .cccuuviiiiemmiiiiiniiiiiiiiiicniiencnnaiaes 313
24.5 SUMMATIY..ciicuiiieuiiiieniiieiaitieanirireerrresereseetssserssrerssennaces 317
Heaps

25.1 INtroduCtiON.....cceceirirenieiimmiiiemiiviinisirinieinneranerneerenenenenes 321
252 AbLOut Heaps ..cccuuiiieniiiiiniiiiiniiiieierieieentranenneneeneseenaes 321
25.3 Using a Heap in an Application........ccceeeeiueereecnerenecenrennnnee. 322
254 SUMMATIY...cieuerrrnreeererenseensssrrenesssansstnnsssemessenssssssssessasssnses 330
Clipboard

26.1 INtroduction......cecccieieiiireuniriueiirieniericneireeiienierenssennsenennes 333
26.2 About the Clipboard.......cccceuviiuirinimiiieiieniiiiiiiiniinenienne. 333
26.3 Using the Clipboard.........ccoccuiiuuiiiiiiiniiiiieiiiniciniiiniieennes 335
26.4 SUIMMATIY.ceueiurrnnrrranrrensrrnnsenesrresrsssianeesonsascsssarsssenssonsssnes 342
Dynamic Data Exchange

27.1 INtroduction......cecoceeemiieeniiireniiiiuiieriirieunieenrereisinneanees 347
27.2 About Dynamic Data Exchange........ccceveveenciinniirnninieninennnes 347
27.3 Using Dynamic Data Exchange......cccccvereeerenrenerrnerencecnnennes 349
27.4 SUMMATIY...ccuuiimiiiiiiiiiiieiriitietierrts e crsssenseraaeeernens 360
Hooks

28.1 IntroducCtion..........ueeueereieiieeeneeniiinniniieiee e s 365
28.2 About HOOKS...ccuviiieruiiiinriiiuiiiieiiieianeineitenernnncnesnnes 365
28.3 Types of HOOKS....cuuuureriiienniiirientniiiiireiiincnenceeninnneennnenee 365
28.4 Using HOOKS ..eoeuirrueieiiiiiiiceeite it 372
28.5 Hook Examplecocuueeiiiiiiiiniiiiiiiiieiicnenitinneeec e, 373
28.6 SUMMAIY...ccuiiiiiiutiiiiiniitiiniiinieeeriis s erse s sraa e e estaeeens 374
Help)

29.1 Introduction......cceeeeeerriemunnierereeneierereennsernennnes P, 379
29.2 About Help F SO 379
29.3 Using Help in an Application.......ccccivvuuirieniieniiiiniirnncennnns 381

204 SUMMATY....eviiiiiiieeiiieiiicereteeteessereseerte e ssete s sns e s nees 386

viii

T S B B R R R P s R R R R e
Part 3 Graphics Programming Interface............ 389
Chapter 30 Presentation Spaces and Device Contexts
30.1 Introduction................... SO TR 393
30.2 About Presentation Spaces and Device Contexts.......c..ceceee.. 393
30.3 Using Presentation Spaces and Device Contexts 399
30.4 SUMMAIY....ciiiiiiiiiniiiiitiiienrieccretreereeneserenrerereneseaneses 400
Chapter 31 Coordinate Spaces and Transformations
' 31.1 Introduction.......cecciveeeeeeneeneeennennans evveeeens eveee e e 405
31.2 About Coordinate Spaces and Transformations................... 405
31.3 Using Coordinate Spaces and Transformations.......c...ccu...... 421
314 Summary....cccccereerrennnnnne R 423
Chapter 32 Line and Arc Primitives
32.1 Introduction........ccceeveiiieiiiiiiiieiisiiinneere e, 427
32.2 About Line and Arc Primitivescceeeereicirneeieieenenrenenennn. 427
32.3 Using Line and Arc Primitivesc...cceeveevicrnnecernenenneranennns 432
32,4 SUMMATY.ccoiiiiriieirieiete et 436
Chapter 33 Fonts and Character Primitives
33.1 Introduction........ cerrereeseiasassaerssssbesaessasassasntanennstanressaresas 441
33.2 About Fonts and Character Primitives........cccceeeeeeeeeeeeennennn. 441
33.3 Using Fonts and Character Primitives......c.cccceueeeunennneennncnnn. 459
33,4 SUMMATIY...ciiiiiiiiiiiiiniiiiicrrteriirreeaeseetreeecanenseranesennsens 462
Chapter 34 Color and Mix Modes
34.1 INtroduction......cececeeeieriiuneirreemncerereneneerrueerreanarsennerannnne 469
34.2 About Color and Mix MOdES.......ceuurveiereenreriinennrreennencenennss 469
34.3 Using Colors and Mix Modescccurennnnns ssanssesasisanananee 474
34.4 SUMMATY..cccitrrmmiiiereirnriiiiieereeriinee e etrease e erssteenens 476
Chapter 35 Paths
35.1 INtrodUCHON.....ceeeereieeerrereesreeeeenreeeesreeeeeeseeeeenssesesasnnserens 481
352 ADOUL Paths...cccucivieiiiiiiieiieieiieieeiiereneereeeeeerenerenneennennnes 481
35.3 Using Paths ...ccouiirviiiieiiiiiiiiieiiirireieniireeeeraecenaeennernnannnns 490
....... 492

354 SUMIMALY....ccmireeriereerreeeeeeeeeseeteseesseesseesseeseeseens

T L e o o U L e e e N S e TR T o

Chapter 36

Chapter 37

Chapter 38

Chapter 39

Chapter 40

Chapter 41

Chapter 42

ix

Area Primitives

36.1 INtroductiOn.....ccccieeniieniieiiesivenirenrimuiiireioniisureanniiennenanens 495
36.2 About Areas and Area Primitives......ccceeeereveenuuereneneeeeneees 495
36.3 Using Areas and Area Primitives......ccccceveviiiiiiiiicinnnnennnnn. 501
36.4 SUMMATIY.eeueuiiiiiiiiiiiininiiiiinieeererni s tereresnieseernsaaes 504
Marker Primitives

37.1 INIrOAUCHON. ..cuveereeerreeteeeraeeeseeaeeesesssesasnsessseeseeenseenssennns 507
37.2 About Marker Primitives et 507
37.3 USIng Markers ..cccecueerrereeeeniierinirenseneseseresesenessesnneesannnne 509
37.4 SUMMATY..cuiiiiiiiiiiiiiiiiiiie ittt eenerreraneanenan e 510
Bitmaps |

38.1 INtroduUCON. ...ccuceiuiiitiiiteiectee st 513
38.2 About Bitmaps...c..ccciiciiuiiiiiiiiiii it 513
38.3 Using Bitmaps....ccoorvriuiireniireniiiuniieiiiicernnenieinencnnnees 520
38.4 SUMMATIY..ccieiiiimiiiiiiiii et e 524
Regions

39.1 Introduction.......ceceeieeicmeiriieirienineeienniriieraeineiaereanenn 529
39.2 AbOut ReZIONS .covereirreruunneerererireaeaniienesiereeseteenenessecesnnnes 529
39.3 Using RegiONS . cceeeiiiiruerereeieeereeiseriieeeeseessnssannaenseesanesnenes 533
30.4 SUMMATY.cccuuriiiiiiiniiiiiiiiieriiii et s e e 537
Clipping |
40.1 INtrodUCHON...ccieiereeieerereereneeeeererrereteeaeeeneaeaeaeeereeenmennnnnnses 541
40.2 About ClpPINg ...cceereiiueiriiiiiteiiiiiiiinniicieiiitece e 541
40.3 Using CHPPING ..eevvunieririniiiieiniritienieceerennirerenieennieenenes 543
40.4 SUMMAIY.cccciiiitriirrereeeireereeeeeererrreteeeeaereeereereesanenrenessnsennes 547
Metafiles

41.1 Introduction......cceecieeiiuioreereenrerarerensermnerenerenecnncensecncennens 551
41.2 About Metafiles........cceuuueiiimunniiiiimnniiiiciiiicee 551
41.3 Using Metafilescvceviiuiviemniiieniiiitinnniiicincenennenen 554
41.4 SUMMATIY...coiitiiriiiiiiiriineiiiriereeeetecareerereeeeee et eeeeeesseaeennas 557
Segments and Retained Graphics

42.1 Introduction.......ccceveiivuiniiiiiiminniiiiiiii e 563
42.2 About Segments and Retained Graphicsc..ccoveuiinvinninnnne. 563
42.3 Using Segments and Retained Drawingsc.c.cocvincinniiniinn. 570

42,4 SUIMIMATY..ceettenrrrennnreaeionnranerenerenesseassmeessmesenseensemnesnnsnsenes 573

X
P o TR s e LA O T e B o L o e e i e e S

Part 4 System Services..........eeeienn. 583
Chapter 43 Processes, Threads, and Sessions
43.1 IntroduCtiOn..ic..ic.ecvesiieereenimuerinnerencennereecasereesennennesmaceseres 587
43.2 About Processes, Threads, and Sessionscccecieevenirncinnnnns 587
43.3 Using Processesc.ceeueiireiiceierinnnenneceeneiennennennen. IO 593
43.4 Using Threads.......ioovieuiriirouriniieniiciireicaarreereeeeeereeneens 597
43.5 SUMMATY....iciuiiiimiiiiniiniiiiiiiirier e st eacaneees 599
Chapter 44 The Memory Manager
44.1 Introduction........... .. 603
44.2 About the Memory Managerc..ccceeceenrenene eessssetenieissisnaats 603
44.3 Using the Memory Managercceeeveueeeeieeneicncecnrenccnnennnes . 604
44.4 SUMMATY.....iccoiriemiiriniiiniiiieniriea e PP 611
Chapter 45 Dynamic Linking
451 Intro'duction..’."....’..............; .. 615
45.2 About Dynamic LinKingeueeeueemeirmerreeirneneraieeeiererencennenens 615
45.3 Building Dynamic-Link Librariescccoeeueereniiinnniraiiainennns 616
45.4 Using Dynamic Llnkmg .. 620
, 45.5 SUMMATY...ictiiiiimiiiiiiiiiiiiiiieii e reresreateranesrasesannanes 620
Chapter 46 The File System
46.1 Introduction.........ccceueeeeeenneierrennerenncieenenanes et 623
46.2 About the File System.........coeevviivirirriniiiiiiiiiiinninnieine.. 623
46.3 Using the File Systemcccocreiiimuiiiuiiruiiiiaieieeecaiereinennes 626
46.4 SUMINATY....coceiireiiiireinimueietniienrieeneeremneacascasruneeanesnesnanns 634
Chapter 47 Video Input and Output
47.1 Introduction....i.cceeeeeveneeereieenennernnesenrennnenns freenrenarerranranes 639
47.2 About Video Input and OQutput.........ceeereierrrmnreennreeinennnnene. 639
47.3 Using Video Input and Output........ccceeerereremmneneeerrennnnaennns 640
47.4 SUMMATY...cietvuuiiiriiiineiiiinieiieeaeeteneeeeeerteneseeennaeestossannnns 644
Chapter 48 Advanced Video Input and Output
48.1 INtroduction......ccccececiuueriiririeieriieeeiiinrereeree e e 649
48.2 About Advanced Video Input and Output........cccevueuereenannnne 649
48.3 Using Advanced Video Input and Output........ccevueeeenreennennns 653

48.4 SUMIMAIY..ceuuuirrirnrniaeraenneereeunereereneaeessunsaessensesessnnsesnnesnns 654

xi

e D G T A B R S R R s R S S S R R R S S e e

Chapter 49 The Mouse

49.1 Introduction.......ccccovernivinevinniennnennnns
49.2 About the Mouse.....cocovvuienieniennnnnee.
49.3 Using the Mouseccoceuucreniiinrnnnnes
49.4 Summary.......cocceereueieieneinieneennin.
Chapter 50 The Keyboard
50.1 Introduction......ceeeeeeerveeeeeseesvennees
50.2 About the Keyboardccccvuneneenne.
50.3 Using the Keyboardc.cccveureneennnnene
50.4 Summary......ccccoeeiiiiiiiiininiiiinnen.
Chapter 51 Interprocess Communication
‘ 51.1 Introduction.....cecccecvicniirciecniienniannes
51.2 About Interprocess Communication...
51.3 Using Interprocess Communication....
51.4 Summary.....ccoceeiveiiiiiiiiiinniineenae.
Chapter 52 Timers
52.1 Introduction.......cececeecreniiuniinnienncnnnns
52.2 About Timerscceeviuniiiniinnienniinnne.
52.3 Using Timers c.ccoceeveencenniniinieniennnnnne
52.4 Summary.....cceeeeieiiiiiiiininniiieniinnnanen,
Chapter 53 Window Timers
53.1 Introduction......cccccceereniienircnrennenens
53.2 About Window Timers......cccceeuneennee
53.3 Using Window Timers.....c...ccevununeeeee
53.4 SUMMArY...cccciimiiniiaiinnirnereiveinaenns
Chapter 54 Device Monitors
54.1 Introduction........cceceeimiiiieniiennnnnna.
54.2 About Device Monitors........cceuueeeen.
54.3 Using Device Monitors.........ccoeeveennns
54.4 Summary.....ccccceceiiiiiiiiiiinineceeannns
Chapter 55 Atom Tables
55.1 Introduction.......cccececvveiiiecieunnniann.
55.2 About Atom Tables.......cceuereereenenne..

55.3 Using Atom Tables in an Application

55.4 Summary......ccceeeereierenieiniiieneinneennans

xii
B B s S R S e R T R R e R R i,

Chapter 56 System Information

56.1 INtroduction......cccceeeieenireuniiineiieniieeeneriseiiimmesiassieeseesenees 717
56.2 About System Informationcceeevreuneriniiirinniiniieeeiennnan. 717
56.3 Using System Informationc.ccceceeeeernnciiriienennieenncrennnnens 724
56.4 SUMMATY.....coiiuiiiiriiiiiiiiitiirt et rrca e eareaaeee 729

SR

Figures

R e R N T B A i

Figure 2.1

Figure 11.1
Figure 12.1
Figure 14.1
Figure 17.1
Figure 17.2
Figure 19.1
Figure 19.2
Figure 20.1
Figure 20.2
Figure 20.3
Figure 20.4
Figure 20.5
Figure 20.6
Figure 21.1
Figure 22.1
Figure 24.1
Figure 24.2
Figure 24.3

Figure 24.4
Figure 24.5
Figure 25.1
Figure 25.2

Figure 25.3

Figure 27.1
Figure 29.1
Figure 31.1
Figure 31.2
Figure 31.3
Figure 31.4
Figure 31.5
Figure 31.6
Figure 31.7

Figure 31.8
Figure 31.9

EHE SR A B RN

A Typical Presentation Manager Window.................
Frame Window with Title Bar........ccocevvviviinennni.
Button Types...ccceveiiieiviieiiiiiiiiiniiniieieeneneeeeann,
Typical List-Box Control.........ccceeevvruiirnniirnniiennnen.
Menu-Bar and Pull-Down Menus........ccccoveiinnninnna.
Submenus.....ccciviiiiiiiiiii
Sample Message BoX.....cccoicueiiiiiiiniiiiiiiiiniinnninnne.
Sample Dialog BOX ...cciveviuiieeiniieniiniieniniiunieninnennee.
Application-to-Device Path......c.ccceovvvrnviniininnininn,
Clip Region and Visible Regionccccovvieiinninenann.
Update Region and Visible Region.....cccocevurennninnene.
Cached-Micro Presentation Spacecceveevuiienninnnnes
Micro Presentation Spaceccoeuvieiuieiniinnnincnnninnne,
Normal Presentation Spacecccoevvvviviiiniinniiinennnn,
Rectangle Typesccoveveneieriiiireieniicirenineieenne.
Bit Values in the AND and XOR Masks........ceuuveeee.
Application to Device Pathccoecvuiiniiniiininnnnnn,
World-Space to Device-Space Translation

Portrait-Mode Pages
in World Space......cooocuiiimiiniiiiiiiriiiiiiniiciieeneee

Landscape-Mode Pages in World Space ...ceeeunrianianes
IBM4201 Page Setup ..cveeerieerreiacennierencreneencaeeneannaens
Heap in Automatic Data Segment......cccceevruieninnnnene.

Back Pointer for Moveable Heap Object
in Automatic Data Segmentcccoveurenereerinrnurenen.

Back Pointer for Moveable Heap Object
in Separate Data Segmentcccoeeeeevreeriececcrenrennnans

Typical DDE Segment......c.ccceeeteienciecinniinniennannes
Help Menu Itemcocvruniieniiinniienireinieinunienciennnes
Device Coordinate Systemcceveverencenireniennnennes
Video Display and Single-Coordinate-Space System...
Diagonal Line in a Single-Coordinate-Space System...
One Rectangle Displayed on Two Different Devices ..
Fixed Value....ccoooviruniiiiiiiiiinininniiniiiecnein e,
Rotating an Object...cccouieimiiiuiiiiiiiiiiiaiiieenrenenns

Subpictures in Four Chained Segments
in World Space.....ccuuceceuieiaieeiianeriiniereeeeneeeenaennns

Two Model Spaces......cceeerenverieiiirieniriniirenncienneen.
Viewing Limit in Model Space.......ccccceevueiennenaennnnee.

xiif

R = e R e

Xiv

A R R R R R R S e R e ﬁ:‘&’m e R S o SR o

Figure 31.10 Retained Subpicture Drawn Using Model

Transformationscveeveiirraneienniineerennereesenenenns 415
Figure 31.11 Clip Path in World Space.........cecevivienireniiinniinnennnns 416
Figure 31.12 Scaling the Clipped Part of a Subpicture

in Model Space......coccuvieuiriniiiiiiniiiiiiiiniiiian. 417
Figure 31.13 Presentation Page in Page Spacec..cccevevvvnnnnnnns. 419
Figure 31.14 Page Viewport in Device Space......cccoovvevreuninnnnnnnen. 419
Figure 31.15 Determining Scaling Factors........cccceuueveunieniniiannnnnes 420
Figure 31.16 Translating the Page Viewport in Device Space......... 420
Figure 32.1 Sample Illustrations Using Line and Arc Functions... 427
Figure 32.2 AICS cirvuuueiiienniiitnirierieerenennsistennnsseenseseeessesnannes 429
Figure 32.3 Transforming the Unit Circle

Using the Arc Parameters......ccooeeueeieiencrenirennnnnnne., 430
Figure 32.4 Line Styles......cccecuiiiriinniiiimimniiiimneiiinieceiiiiannens 431
Figure 33.1 Strokes....ccoccevviiruiirenirinicieninieeisnennnnne resrereenieenaes 441
Figure 33.2 SerifS ..ccccccuiiiieiiemiiiieiiiiiiiiiireiin et e enenaens 441
Figure 33.3 Bold Fontccciiiuiiiiniiiininiiiiiiricntincnieresnscasnaes 442
Figure 33.4 Italic FODt.....ccoovreeiiimniinniiiiiiiniiniiiiiinierenecncennes 442
Figure 33.5 Normal Font......cccccoeeuuviiruniiniiiinniiiieennieinnnennnnne 442
Figure 33.6 Character Cell.....cccccovveuriiiiruuniiiiennniiirnnnieinnninnnees 443
Figure 33.7 Em Heightccccoriuriiiniiiiiiiiiiniiiiiiicicicieiccnniennes 443
Figure 33.8 X Height.....cuiiiioiiiiiiiiiiiiiiiiiiiiciririncnnenneeaes 443
Figure 33.9 Maximum AsScenderccceeeveeiiiinniirnnirinrercncieancanens 444
Figure 33.10 Maximum Descender......c.ccccuuecreneeranireeniercnaenensannne 444
Figure 33.11 Lowercase ASCeNt......ccccevrrerurirerennuirerencerenncennnens 444
Figure 33.12 Lowercase Descentccccereeunerrenrrenearencreeccransanees 445
Figure 33.13 = Internal Leadingc.covevunirinniiieniireniriniennncnniennes 445
Figure 33.14 External Leading.........cccocovvreueiiiimnnniiireniiiennienenens 445
Figure 33.15 Em INCrement.....cccceueeeenieenneeenernuecceancrenceranrennnens 446
Figure 33.16 Maximum Baseline Extent........ccccceuueiiiieninriiencrannnes 446
Figure 33.17 Character SIOpe........cceucverrimuniiiiruniniiiiiniiinnciennene. 446
Figure 33.18 In-line Directioncccveeuniiiuiiiiinninuiininiicicieninnnnen. 447
Figure 33.19 Character Rotationcccceeueiienneiennereneneenerenncennnes 447
Figure 33.20 Superscriptceeeecieimemieieiiiiieneniiinennenieneieenaneens 448
Figure 33.21 SubSCLIPt ceeunienniiriiiieiiiiereeeteeereer e seaneeneeaenas 448
Figure 33.22 Image Font ...cccucviiiemiiiiiimniniiienciiriieneicicenenrennnenens 450
Figure 33.23 Outline Fontcccocevimmiiiiiiiiiiinniiieniiiicienennneens 450
Figure 33.24 Character-Cell Alignmentc.cceceevivenniiiennirennnenn. 450
Figure 33.25 Proportional and Fixed Fontsccccovvrimuuiennnnnnn.ns 450
Figure 33.26 Code Page 437coccvvmemeiiiinriniinnnnieieniriennnneennnees 451
Figure 33.27 Character Shearccccoeeuiiieiiiieiiineeriiecieieenneennin. 453
Figure 33.28 Image Font and Character Shear......ccc.ccceuuverrennnnene. 453
Figure 33.29 Image Font and Character Angleccocevunnunnn. 454

Figure 33.30
Figure 33.31
Figure 33.32
Figure 33.33
Figure 33.34
Figure 35.1
Figure 35.2
Figure 35.3
Figure 35.4
Figure 35.5
Figure 35.6
Figure 35.7
Figure 35.8
Figure 35.9
Figure 35.10
Figure 36.1
Figure 36.2
Figure 36.3
Figure 37.1
Figure 37.2
Figure 38.1
Figure 38.2

Figure 38.3
Figure 38.4
Figure 38.5
Figure 39.1
Figure 39.2
Figure 39.3
Figure 39.4
Figure 39.5
Figure 39.6
Figure 40.1
Figure 40.2
Figure 40.3
Figure 42.1
Figure 42.2
Figure 42.3
Figure 42.4

Figure 42.5 -

Figure 48.1
Figure 48.2

XV

T S S S S S e

Image Font and Three Sizes of Character Box.......... 454
Outline Font and Character Shear.........cccceeevvvnnnneee. 455
Outline Font and Character Anglecceuuuueeeneens 455
Outline Font and Three Sizes of Character Box........ 455
Graph with Outline Font.......c.ccoviiiieinienennininnnnnn, 456
Stroked and Filled Rectanglesc.ccuceeuiveniiinninnnn. 481
Geometric Lines and Normal Lines........ccccccovennnnnee. 484
Stroked Paths.ccciieieeiiieneieeiriineirncnecrrneresencereecsense 484
Filled Paths....ceuuiimeiiuirmeiiiiiincieiiieenienieecencenene 485
Fill MOdES ..cevuriiennirnniieininierienienneeneiirecienneieneens 485
Alternate-Mode Test c.ccuueeneriiiirniiiiiniiieiniieinenn, 486
Winding-Mode Test....ccocoevruiieemnnienniinnernenineeniiennes 486
Triangular Clip Path.......cooveeniennnninnniinieciineeeinnee. 487
Geometric Line Ends .c....covvivrivmeiiieneiiiieniiiienncnaen. 488
Geometric Line JOins .ceeevereveereerenveneneereeneesseeeennee 488
TWO AT€aS..iuiieuiiereieniienrivniieiiinieetreciairenteeersiesnes 495
DiSJOINt ATEa..c..vurrerieiiniienirersresroioriaerarcasiasiossesens 495
Predefined Fill Patterns......ccccovvuiienieniieniranienieannanee 500
Default Marker Set......cccoverrueiuiiinrnniieeieniieennnnennnn, 507
Markers Used in a Graphccoeeeenirenirnniieeniionnnns 508
Bitmap and Image.......ccceeeeevirennnciriinniiiinuiiennnnnnne. 513
Bitmap Shown on Two Displays

with Different Aspect Ratiosc..ccoveveiiniecniiiniininnn. 514
Bits and Pels in a Bitmapped Image...c....ccceeeeeieeeeees 514
A Bitcount and its Associated Color Table 516
Bits and Pels in a Special Bitmapped Image.............. 519
Disjoint Regioncueveerviinniiinieniiieniiininninnennnn.. 529
Region of Two Intersecting Rectanglesccoceuvueeen. 530
Text in Client Area..c.cccoveuieuiieeienireieerinceniencennennnnes 531
Disjoint Clip Region......ccceuueuivrrininierenniiimnnniiennnnees 531
Combining Regions erertsieneeeaareraeenaaeraaras 532
Three Square Regions and Three Fill Patterns 532
Text in an Elliptical Clipping Area......ccceceveuuieennnnen. 541
Valid Clipping Areas.......cciveiieeniireirienirinncinainenns 542
Clipping in Four Coordinate Spacesccoceveuneecnens 543
Combining Subpictures to Create a Floor Plan.......... 564
Chained and Called Segments........ccceeeunireeiinnnnnnnne. 565
Correlation Operationoceeueeievienieiiniiiennnnnnnnnn. 568
Inserting a New Element in a Segment..................... 569
Replacing an Element with a New Element............... 570
2-Byte Character Format........ccvveeuveenicreniiinnieennenes 650
4-Byte Character Format........ccceeevenivieniiiuninnanncnanens 651

xvi
S Bt s e T B e L s

Tables

Table 30.1 Presentation-Space Features and Restrictions 393
Table 38.1 Drawing Modes and Bitmapped Output
Table 38.2 GpiBitBlt Qutputcoceeuuiiiminniiiiiniiiiiniiiiiinnn, 524

Part 1

A& s | =1

A EH@OE

weld TO iy i i,
A

3
B B e L S e A R R R S e R R R

Part 1
Introducing MS 0S/2

Chapter 1 Introductionccocceeeecierenienniniencieireesecn e 5
Chapter 2 MS OS/2 OVEIrVIEW......oeeeviieiirieeicieieeenineneseeeneeaenns 13
Chapter 3 MS OS/2 Programming Modelsc.ccccoevrrernnnrnnee 27

R A S N R e S R R B SR el B P T

Introduction

1.1 OVEIVIEW ceuiiiiiiiiiiiiiiiiiniiiiateniirtaseneneasenaenrisansnsenens 7
1.2 About the MS OS/2 Programmer’s Reference 7
1.3 How to Use This Manual........cccccerrniininiiniininrinieneanen. 8
1.4 MS OS/2 and the C Programming Language.................. 8
1.5 MS OS/2 Naming Conventionsceeeueerenrurenencnennennns 9

1.6 Notational ConventionSvveeeeereireeerernienerieenncenrsenernes 11

Chapter 1: Introduction 7
e T e R Y B S e e R R e R R S R NG S B

1.1 Overview

This manual describes the Microsoft® Operating System/2 (MS® OS/2) system
functions. MS OS/2 is a single-user, multitasking operating system for personal
computers. MS OS/2 system functions let programs use the operating system to
carry out tasks such as reading from and writing to disk files, allocating memory,
and starting other programs.

Part 1, “Introducing MS OS/2,” introduces the MS OS/2 system functions. It
provides a brief description of the Microsoft Operating System/2 Programmer’s
Reference, describes the role of the C programming language in the Program-
mer’s Reference, and gives the calling and notational conventions used in this
manual. The chapters in this part provide a general overview of the MS OS/2
system functions and describe the three MS OS/2 programming models.

Part 2, “Window Manager,” describes the portion of MS OS/2 that lets applica-
tions create and manage windows. The chapters in this part provide detailed _
information about windows, messages, message queues, control windows, dialog
windows, and other window-management topics.

Part 3, “Graphics Programming Interface,” describes the portion of MS OS/2
that lets applications use device-independent graphics. The chapters in this part
provide detailed information about presentation spaces, transformations, device
contexts, graphics primitives, retained graphics, metafiles, and other graphics-
related topics.

Part 4, “System Services,” describes the portion of MS OS/2 that lets applica-
tions use the basic multitasking services of MS OS/2. The chapters in this part
provide detailed information about processes and threads, memory management,
the file system, dynamic linking, keyboard and mouse input, video output, device
control, and other information about the system.

This manual is intended to describe the purpose of the MS OS/2 system func-
tions and to explain the operating-system concepts behind them. It also shows
how the MS OS/2 system functions work together to carry out specific tasks. It
does not show how to write, compile, and link programs containing these func-
tions. For more information on these topics, see Microsoft Operating System/2
Programming Tools.

1.2 About the MS 0S/2 Programmer’s Reference

The Microsoft Operating System/2 Programmer’s Reference, a set of three
volumes, fully describes the MS OS/2 system functions and related data types,
macros, structures, messages, and file formats. The Programmer’s Reference is
the source for specific information about programming for MS OS/2.

This manual, Volume 1 of the three-volume set, describes the purpose of the MS
0S/2 system functions and the concepts and principles behind the functions.
Volume 1 is intended for programmers new to MS OS/2 or learning parts of MS
0S7/2 for the first time. This volume provides the basic information needed for
an understanding of MS OS/2.

8 .~ MS 0S/2 Programmer’s Reference, Vol. 1
B e R P S R T S AR BB S

1.3 How to

Volumes 2 and 3 consist of alphabetical listings of MS OS/2 system functions
and related data types, macros, structures, and messages. These two volumes
define the details of the syntax, parameters, and return values of each MS OS/2
system function. Volumes 2 and 3 are intended to be used by programmers
already acquainted with MS OS/2 and who need only specifics of particular func-
tions.

Use This Manual

This manual describes the MS OS/2 system functions in individual-topic chap-
ters. Each chapter describes the portion of MS OS/2 that lets an application
carry out a specific task or set of related tasks. For example, the chapter on
memory management defines the basic memory management terms, describes
the role of the memory-management functions, and illustrates how to use those
functions.

Each chapter has three parts: a general description, programming samples, and a
summary. The general description contains a thorough discussion of the purpose
and operation of pertinent MS OS/2 functions. The programming samples show
how to use those MS OS/2 functions in applications to carry out useful tasks.
The summary briefly describes each function and message described in the
chapter.

In many cases, the reader must have some basic knowledge of other portions of
MS OS/2 in order to understand the concepts described in the chapter. Each
chapter lists the prerequisite topics.

1.4 MS 0S/2 and the C Programming Language

The C programming language is the preferred development language for MS
OS/2 programs. Many of the programming features of MS OS/2 were designed
with C and other high-level languages in mind. MS OS/2 programs can also be
developed in Pascal, FORTRAN, BASIC, and assembly language, but C is the
most straxghtforward and easiest language to use to access MS OS/2 functions.
For this reason, all syntax and program samples in this manual are written in the
C programming language.

The MS OS/2 system functions use many types, macros, and structures that are
not part of standard C language. These types, macros, and structures have been
defined to make the task of creating MS OS/2 programs simpler and to make
program sources clearer and easier to understand.

All types, macros, and structures discussed in this manual are defined in the MS
OS/2 C-language include files. Programmers may wish to use these include files
when developing MS OS/2 programs in other computer languages such as Pascal
or assembly language. If include files for a given language are not available, a
programmer can translate the definitions by following the guidelines given in
Volumes 2 and 3 of the Programmer’s Reference.

Many chapters in this manual include program examples. These examples show
how to use MS OS/2 system functions to accomplish simple tasks. In nearly all

Chapter 1: Introduction 9
B e 3 S SR R S e S R S R R R B R R

cases, the examples are code fragments, not complete programs. A code frag-
ment is intended to show the context in which a function can be used; it often
assumes that variables, structures, and constants used in the example have been
defined and/or initialized. A code fragment may also use comments to represent
a task instead of giving the actual statements.

Although the examples are not complete, you can use them in your programs by
taking the following steps:

B TInclude the os2.A file in your program.

® Define the appropriate include constants for the functions, structures, and
constants used in the example.

B Define and initialize all variables.
B Replace comments that represent tasks with appropriate statements.
B Check return values for errors and take appropriate actions.

Some examples in this manual combine both MS OS/2 and C run-time functions
to carry out their tasks.

1.5 MS 0S/2 Naming Conventions

In this manual, all parameter, variable, structure, field, and constant names con-
form to MS OS/2 naming conventions. MS OS/2 naming conventions are rules
that define how to create names that indicate both the purpose and data type of
an item used with MS OS/2 system functions. These naming conventions are
used in this manual to help you readily identify the purpose and type of the func-
tion parameters, structure fields, and variables. These conventions are also used
in most MS OS/2 sample program sources to make the sources more readable
and informative.

The following list briefly describes the MS OS/2 naming conventions:

Item Convention

Variable All variable, parameter, and field names consist of up
Parameter to three elements: a prefix, a base type, and a qualifier.
Field The names always consist of at least a base type or a

qualifier. In most cases, the name also includes a prefix.
The base type identifies the data type of the item; the
prefix specifies additional information, such as whether
the item is a pointer, an array, or a count of bytes. The
qualifier specifies the purpose of the item. All letters in
the prefix and base type are lowercase. The letters in
the qualifier are mixed-case (both uppercase and lower-
case). When naming variables, the prefix and base type
are optional for common integer types such as SHORT
and USHORT. ‘

Structure All structure names consist of a word or phrase that
specifies the purpose of the structure. All letters in the
structure name are uppercase.

10 MS 0S/2 Programmer’s Reference, Vol. 1

B B e S B e B e T R R i

Item Convention

Constant All constant names consist of a prefix (derived from the
name of the function associated with the constant) and

a word or phrase that specifies the meaning of the con-

Function

stant in terms of a value, action, color, or condition.
All letters in the constant name are uppercase and an
underscore (_) separates the prefix from the rest of the

name.

All function names consist of a three-letter system
prefix and a word or phrase that describes the action of
the function. Each word in the function name starts
with an uppercase letter. Verb and noun combinations,
such as DosGetDateTime, are recommended.

The following examples show some of the standard prefix and base types you will

see in this manual:

Prefix/Base type

Description

Example

f Boolean flag; TRUE if successful BOOL fSuccess;
ch 8-bit character CHAR chChar;

s 16-bit signed integer SHORT sRate;

l 32-bit signed integer LONG 1Distance;
uch 8-bit unsigned character UCHAR uchScan;
us 16-bit unsigned integer USHORT usHeight;
ul 32-bit unsigned integer ULONG ulWidth;

b 8-bit unsigned integer BYTE bAttribute;
74 Zero-terminated array of characters CHAR szName[];
fb Array of flags in a byte BYTE fbMask;

fs Array of flags in a short USHORT fsMask;
fl Array of flags in a long ULONG flMask;

sel 16-bit segment selector SEL selSegment;
P 32-bit far pointer to a given type PCH pchBuffer;
np 16-bit near pointer to a given type NPCH npchBuffer;
a Array of a given type v CHAR achData[l]:
i Index to an array of a given type USHORT ichIndex;
c Count of items of a given type USHORT cb;

hf Handle identifying a given object HFILE hf;

off Offset USHORT offSeg;
id Identifier for a given object USHORT idSession;

: Chapter 1: Introduction 11
B B R S e A s e A e ST S N S S R e R i R

1.6 Notational Conventions
The following notational conventions are used throughout this manual:

Convention Meaning

bold Bold type is used for keywords—for example, the
names of functions, data types, structures, and
macros. These names are spelled exactly as they
should appear in source programs.

italics Italic type is used to indicate the name of an
argument; this name must be replaced by an
actual argument. Italics are also used to show
emphasis in text.

monospace Monospace type is used for example program-
code fragments.

e R e e N i R s R B S T R R

Chapter

SRR

MS OS/2 Overview

2.1
2.2

2.3

2.4

2.5

2.6

Introductioncccuviuiieiiiniiiiiiiiii e 15
MS OS/2 and Presentation Managercc.eveevevenenrenenns 15
221 Queued Input...ccccciiniuiiiiiiiiiieieiiieninineiiniiienan, 16
2.2.2 Device-Independent GraphiCs......ooveueuvererinrnincnenes 16
2.2.3 Shared ReSOUICES c.vuivininineiiiinenasecasesnressssasasnenes 16
The Window Manager......c..coveuveeviniiiiniincenieninennennn. 17
23,1 WiINAOWS ceuivinieiinieiiiiieiienenieiireneeeentarecaceaeenns 17
232 Menus...cccoriiennnnns ertareceeettie et rireraeaeaes 18
2.3.3 © Dialog WINAOWS c.cceriierereerereeineereacaresennsesannnssas 18
2.3.4 The Message LoOp ..cvuiuiieieiiniininierieiinicesncnenenns 18
The Graphics Programming Interface........ccccoevevnininenen. 19
2.4.1 Presentation Spaces and Device Contexts................ 19
2.42 Graphics Primitivescccceiiieieieieiieeniiinreerinanene. 19
2.4.3 Other Graphics ToOlSccueenieiereneneiernenceieennene. 20
244 Drawilg....cciviereieniiiniiiiieiiiiiieiitiiiiiiiaaes 21
2.4.5 Retained Graphics and Segments.....ccoceiiieiiinninnnnn. 22
2.4.6 Metafiles eetreterneaeereritaeaeerararasasararasanens 22
SyStem SEerviCescvivviuirieuiiiinieiiiiiiieiiiiiieiineiieniiiinn. 22
PRTS S \¥ (1] 15 15: 133 11 V- 22
2.5.2 Dynamic LinKing ...c.cccovuiruiuviniiinieiioiciiiiinienn, 23
2.5.3 Memory Management......coeevereniininecesnracnesieasanas 23
2.5.4 The File Systemccccivvirieriiiiiininininiiecenrnieenns 23
2.5.5 Full-Screen Keyboard, Mouse,

and Video Operationscccvevvnruiiieieiinineeninnne. 24
2.5.6 Interprocess Communication....e.eveeenereeernenseennnnsns 24

The MS OS/2 System Functionscevvvvuviininnininnnns 25

Chapter 2: MS 0S/2 Overview 15
B S e R N S S e R S R S R S s R S R R

2.1 Introduction

This chapter is an overview of the features of Microsoft Operating System/2.
The most important of these features are the graphical user interface and
device-independent graphics provided by the MS OS/2 Presentation Manager
and the multitasking and other system services provided by the MS OS/2 base.
In particular, this overview describes the following:

B MS OS/2 and Presentation Manager
The window manager

The system services

L]
B The graphics programming interface (GPI)
|
B The MS OS/2 system functions

2.2 MS 0S/2 and Presentation Manager

In a multitasking environment, it is important to give all applications some
portion of the screen through which they can interact with the user. One of the
principal goals of MS OS/2 is to provide visual access to most, if not all, appli-
cations at the same time. This access can be granted either by giving selected
applications full use of the screen while other applications wait in the back-
ground or by letting applications share the screen. In MS OS/2, each application
decides which method to use by choosing a “session” to run in. The session dic-
tates whether the application receives complete control of the screen or must
share it with other applications.

When MS OS/2 first starts, it creates the Presentation Manager session. All
applications in this session share the screen. Applications that run in this session
are called Presentation Manager applications, since Presentation Manager is the
portion of MS OS/2 that creates and manages the Presentation Manager session.
When a new application starts, it can direct the system to create a new session
for it. The new session gives complete control of the screen to the application.
Applications that use the full screen are called full-screen applications.

A Presentation Manager application shares the display with other applications by
using a “window” for interaction with the user. Basically, a window is a rectangu-
lar portion of the system display that the system grants to an application. How-
ever, a window is also a combination of visual devices, such as menus, controls,
and scroll bars, with which the user directs the actions of the application.

A Presentation Manager application must create its own window before produc-
ing any output or receiving any input. Once the application creates its window,
MS OS/2 provides the application with detailed information about what the user
is doing with the window and automatically carries out many of the tasks the
user requests, such as moving and sizing the window.

A Presentation Manager application can create and use any number of windows
to display information in a variety of ways. The system manages the screen, con-
trolling the placement and display of windows and ensuring that no two applica-
tions attempt to access the same part of the system display at the same time. (In
the latter case, the system overlaps the window of one application with the win-
dow of the other.) '

16 MS 0S/2 Programmer’s Reference, Vol. 1
R B R B R ai@m%"!?ﬁl*zi&ﬁﬂngf R B e B R R g

2.2.1 Queued Input

In traditional programming environments, a program reads from the keyboard
by making an explicit call to a function (getchar, for example). The function typ-
ically waits until the user presses a key before returning the character code to
the program. A Presentation Manager application does not make explicit calls to
read from the keyboard. Instead, MS OS/2 receives all input from the keyboard,
mouse, and timer into its system queue and automatically redirects the input to
the application by copying it from the system queue to the application queue.
When the application is ready to retrieve input, it reads from its queue and
dispatches the message to the appropriate window.

In Presentation Manager, input from the keyboard and mouse is provided auto-
matically to every window that is created. MS OS/2 provides input in a uniform
format called an input message. This message contains information about the
input that far exceeds the information available in other environments. An input
message specifies the system time, the position of the mouse, the state of the
keyboard, the scan code of the key (if a key is pressed), the number of the
mouse button (if a button is pressed), and the device that generated the mes-
sage. For example, the keyboard message WM_CHAR corresponds to a press
or release of a specific key. In each message, MS OS/2 provides a device-
independent virtual-key code that identifies the key, as well as the device-
dependent scan code generated by the keyboard. The message also specifies
the status of other keys on the keyboard, such as SHIFT, CTRL, and NUMLOCK.
Keyboard, mouse, and timer messages all have the same format and are pro-
cessed in the same manner.

2.2.2 Device-Independent Graphics

In Presentation Manager, you have access to a rich set of device-independent
graphics operations. This means that your applications can easily draw lines,
rectangles, circles, and complex regions, and can use the same calls and data to
draw on a high-resolution graphics display as they use to draw on a dot-matrix
printer.

. MS OS/2 requires device drivers to convert graphics-output requests to output
for a printer, plotter, display, or other output device. A device driver is a special
executable library that an application can load and use to carry out graphics
operations in the “context” of the spec1ﬁc devnce—that is, the device driver, the
output device, and the communications port.

2.2.3 Shared Resources

MS OS/2 is a multitasking system. This means that more than one application
can run at a time. Presentation Manager applications must share the display, the
keyboard, the mouse, and even the CPU with all other applications that are
currently running in the same session. For this reason, MS OS/2 carefully con-
trols these resources and requires applications to use a specific program inter-
face that guarantees this control.

Chapter 2: MS 0S/2 Overview 17

R IR R e el SR B e L el G R R R on i S e A PR R

2.3 The Window Manager

The MS OS/2 window manager consists of the MS OS/2 system functions that
let applications create and manage windows and related elements. These related
elements are primarily menus, dialog windows, and the message loop. The win-
dow manager provides the elements that your applications need to construct a
graphical user interface.

2.3.1 Windows

A window is the primary input and output device of any Presentation Manager
application. It is the application’s only access to the system display, so, since
nearly all Presentation Manager applications interact with the user in some way
through the system display, these applications must use windows.

A window is a rectangle on the system display. A typical window is composed of
a title bar, a menu bar, scroll bars, borders, and other features. You list the fea-
tures you want for a window when you create the window. MS OS/2 then draws
and manages the window. Figure 2.1 shows the main features of a window:

Figure 2.1
A Typical Presentation Manager Window

Menu bar Minimize box
System-menu box Title bar Maximize box

K= N L e Beee

Scroll arrow Border Help key

Work area Scroll bar
Slider

Interestingly, most Presentation Manager user-interface elements are also win-
dows, including menus, title bars, buttons, entry fields, icons, and scroll bars.

Although an application creates a window and technically “owns” it, the manage-
ment of the window is actually a collaborative effort between the application and
the system. The system maintains the position and appearance of the window,
manages the standard window features such as the border, scroll bars, and title,
and carries out many tasks initiated by the user that directly affect the window.

18 MS 0S/2 Programmer’s Reference, Vol. 1
T B e B e R B R T R

HE Ll LR T e e e

The application maintains everything else about the window—in particular, the
client window, in which the application is free to display anything it wants.

To manage this collaborative effort, MS OS/2 advises each window of changes
that might affect it. Every window must have a corresponding window procedure
that receives these window-management messages and responds appropriately.
Window-management messages either specify actions for the function to take or
request information from the function.

2.3.2 Menus

Menus are the principal means of user input for a Presentation Manager applica-
tion. A menu is a list of commands that the user can view and choose from.
When you create an application, you supply the menu name and the command
names. MS OS/2 displays and manages the menus for you, sending a message to
the window procedure when the user makes a choice. This message is the signal
to carry out the command.

2.3.3 Dialog Windows

A dialog window is a temporary window that you can create to let the user sup-
ply more information for a command. A dialog window contains one or more
controls. A control is a small window that has a very simple input or output
function. The controls in a dialog window give the user a means of supplying
filenames, choosing options, and otherwise directing the action of the command.
For example, an entry-field control lets the user enter and edit text.

2.3.4 The Message Loop

Since your application receives input through a message queue, the chief feature
of any Presentation Manager application is the message loop. The message loop
retrieves input messages from the message queue and dispatches them to the
appropriate windows.

For example, MS OS/2 collects hardware input, in the form of messages, in its
system queue. It then copies this input to the appropriate message queue. The
message loop in the application retrieves a message from the message queue and
dispatches it, through the system, to the appropriate window procedure. The
window procedure can respond to an input message by calling MS OS/2 func-
tions to carry out work in the window.

For a more specific example, consider how the system and an application collab-
orate to process keyboard-input messages. The system receives keyboard input
when the user presses and releases a key. The system copies the keyboard mes-
sages from the system queue to the application’s message queue. The message
loop retrieves the keyboard messages, translates them into ANSI-character
WM_CHAR messages, and dispatches the WM_CHAR messages to the appro-
priate window procedure. The window procedure then uses the GplCharStrmg
function to'display the character in the client window.

MS OS/2 sends window-management messages directly to a window (Win) func-
tion. For example, after MS OS/2 carries out a request to destroy a window, it
sends a WM_DESTROY message directly to the window procedure, bypassing
the message queue. The window procedure must then use the WinPostMsg func-
tion to copy a WM_QUIT message into the message queue, signaling the main

Chapter 2: MS 0S/2 Overview 19
e A R e R B B e B RS S R BN R

function that the window is destroyed and that the application should terminate.
When the message loop retrieves the WM_QUIT message, the loop terminates
and the main function exits.

2.4 The Graphics Programming Interface

The graphics programming interface (GPI) consists of the MS OS/2 system func-
tions that let you create device-independent graphics for your applications. The
Gpi functions are used in conjunction with the window manager to draw lines,
shapes, and text in a window. Applications can also use the Gpi functions to
draw graphics output on such devices as raster printers and vector plotters.

2.4.1 Presentation Spaces and Device Contexts

A presentation space is the key to an application’s access to the system display,
to printers, and to other graphics-output devices. Conceptually, a presentation
space is a device-independent space in which you can create and manipulate
graphics for display. The presentation space defines your drawing environment
by specifying the tools you have available to create graphics. These tools include
the graphics primitives granted to every presentation space, as well as the bit-
maps and fonts that your application loads for its exclusive use.

Actually, a presentation space is little more than a data structure whose fields
contain values that define the drawing environment. The values represent the
colors, widths, styles, and other attributes of the graphics you draw. The system
creates the data structure when you create the presentation space and initializes
the structure to default values.

You must create a presentation space to create graphics. You must also create a
device context to display those graphics on a device. A device context is a bridge
from a presentation space to a specific device. You create a device context by
specifying the device you want to access and the type of access you want, such
as direct or queued (for printing). You begin displaying graphics on the device
by associating the device context with the presentation space. Once you have
associated the device context, any lines, text, and images you draw in the presen-
tation space are also displayed on the given device.

Like a presentation space, a device context is a data structure. It contains infor-
mation about the device driver that supports the specified device. The device
driver interprets graphics commands sent to it from the presentation space and
creates the corresponding commands for its device. It then sends the commands
either directly to the device or to the spooler, depending on the type of access
you gave the device context when you created it.

2.4.2 Graphics Primitives

In MS OS/2, graphics primitives are lines, arcs, markers, text, areas, and
images. They are called primitives because you use them as the basic tools to
create the documents, pictures, and other composite graphics that your appli-
cations display to the user.

You draw a primitive by using a Gpi function. For example, to draw a line, you
use the GpiLine function and specify the ending point of the line. The function
uses the current point as the starting point for the line and draws from the

20 MS 0S/2 Programmer’s Reference, Vol. 1

T R B R e R R R B e B e R S e

starting point to the ending point. The current point is simply the ending point of
the last primitive, unless you explicitly set the current point by using a function
such as GpiMove.

A line primitive is a straight line. An arc primitive is a curve. Curves can be arcs
of a circle or of an ellipse, or they can be more complex curves such as splines
and fillets. A marker primitive is a mark or character that you draw at a specific
point. Markers are typically used to plot points in a graph. An area primitive is a
closed figure that has been filled with a pattern. A common use for an area
primitive is to represent a cross-section in a mechanical drawing. An image is a
bitmapped image, with each bit representing the color of a pel (picture element)
on the device. Images are often used for complex pictures that cannot easily be
drawn.

Every primitive has a corresponding set of primitive attributes. The attributes
specify the color, style, size, and orientation of the primitive when your applica-
tion draws it. The primitive attributes are given default values when you create
the presentation space, so you can use the primitives immediately. However, you
can reset the attributes at any time. You have the choice of changing the attri-
butes for individual primitives or changing a specific attribute for all primitives.
For example, you can set the color for all primitives by using the GpiSetColor
function, or you can set it for just the line primitive by using the GpiSetAttrs
function.

2.4.3 Other Graphics Tools

In addition to the graphics primitives, MS OS/2 provides graphics tools that you
can use to draw graphics and to affect how the graphics are drawn. These tools
are paths, bitmaps, clipping areas, transformations, and color tables.

A path is a sequence of lines that you can use to create a filled area, a geometric
line, or a clip path. A path is very much like an area primitive, in that you can
use the path as a closed figure and fill it with a pattern. Unlike an area primitive,
however, a path can be used to create geometric lines, sometimes called wide
lines. Geometric lines are drawn, using a given width and pattern, so that they
follow the outline specified by the path. Geometric lines give you a selection of
line styles and patterns that are not available with the line primitive.

A bitmap is an array of bits that represents an image that you can display on a
raster output device. Bitmaps typically represent scanned images and icons and
are very much like image primitives. Unlike an image primitive, however, a bit-
map can have several different formats, each format specifying color information
that an image primitive cannot contain. Also, bitmaps can be used to create fill
patterns that you can use to fill figures created using paths and area primitives.
Finally, bitmaps can be copied from one presentation space to another or even
from one location to another within the same presentation space.

A font is a collection of characters and symbols that you can use to draw text.
Characters in a font belong to the same typeface and share stroke-width and
serif characteristics. Some common fonts are 12-point Helvetica, 10-point Times
Roman Bold, and 12-point Courier Italic. To use fonts in an application, you
first create a logical font that describes the typeface and other characteristics
that you want. Then you use the local identifier for the logical font to set that
font as the current font for the presentation space. Subsequent text functions
use the current font to draw text.

Chapter 2: MS OS/2 Overview 21
B T B B R e e B T S e e e

Clipping is a process that limits graphics output to a specific region on the
display or on a page of printer paper. You can use clipping with a presentation
space by creating a clipping area. The clipping area is the region where output
can appear. If an application attempts to draw output outside a clipping area, the
system will “clip” the output, preventing it from appearing on the device. You
can create a clipping area for a presentation space by setting the dimensions of
the graphics field and viewing limits or by creating a clip path or clip region. The
final clipping area is the intersection of these four possible clip regions.

A transformation defines how the system should map the points in one coordi-
nate space onto another coordinate space. Since all graphics primitives and
other drawing tools use coordinate spaces, a transformation affects the way all
graphics are drawn by your application. For example, you can use a transforma-
tion to move a figure from one place to another on the display or to rotate or
adjust the size of the figure. Transformations are typically used to give the user
different perspectives on a single drawing or to create rotated or sheared figures
that would be time-consuming for the application to plot and draw.

A logical color table is an array of colors that an application uses when drawing
graphics. Any primitive or other graphic you draw has one of the colors given in
the table. You specify a color by giving a color index. The index identifies the
table entry defining the color you want. Every presentation space has a default
color table when it is created, but you can create a new logical color table to
replace the default table if you need other colors. Creating a new table associ-
ates the color indexes with whatever color you have specified in the correspond-
ing table entry. :

2.4.4 Drawing

You draw graphics by using the MS OS/2 drawing functions. A drawing function
draws a primitive or other graphic, applying the primitive attributes and whatever
information you supply to the function when you call it. For example, when
drawing line primitives, the system applies the current line color and style. The
style determines whether the line is solid or a series of dashes, dots, or both.

Some attributes apply to all graphics primitives. For example, the foreground
and background colors and mix modes affect all primitives. The foreground
color defines the color of the primitive and the background color defines the
color “behind” the primitive. For a line drawn using a dashed style, the dashes
have the foreground color and the gaps between the dashes have the background
color. The mix modes define how the foreground and background colors are
combined with colors already on the display. The mix mode can cause the color
to overpaint the existing color, leave it alone, or mix with it by using a binary
operator such as the exclusive-OR operator.

Some attributes are spemﬁc to a particular graphics primitive. For example, the
arc parameters apply only to arcs. The arc parameters specify a transformation
that maps a circle to another circle, ellipse, or similar shape. When you draw an
arc, the system uses the shape defined by the transformed circle as the shape for
your arc. You supply a multiplier to set the final size of the arc.

A number of drawing functions use loadable resources to draw graphics. For
example, the text-drawing functions, such as GpiCharString and GpiCharString-
Pos, can use a loaded font to draw text. To make a loadable resource available
for these functions, you typically load the resource into memory and create a
local identifier for the resource. For example, to use a font resource, you load it

22 MS 0S/2 Programmer’s Reference, Vol. 1 ‘
T e B e B R e e S R S s

using the GpiLoadFonts function and then set the local identifier by using the .
GpiCreateLogFont function. Once you have a local identifier, you can set the
resource to be the current resource by using a function such as GpiSetCharSet.
Along with the text-drawing functions, the marker and area functions can use
resources when they draw.

2.4.5 Retained Graphics and Segments

MS OS/2 lets you retain the graphics you draw in your application by storing
them in retained segments. You create a retained segment by setting the drawing
mode of the presentation space to DM_RETAIN or DM_DRAWANDRETAIN
and opening the segment. All subsequent graphics are stored in the segment
(and are also drawn on the device, if you specified DM_DRAWANDRETAIN).
You can close the segment at any time and draw the contents by using a function
such as GpiDrawSegment.

Retained segments are useful for storing graphics that result from user input.
Once stored, the graphics can be redrawn or edited at any time. An element
pointer lets the application move to a specific graphics element in a segment.
The element can then be drawn or replaced, or new elements can be inserted.

2.4.6 Metafiles

A metafile, created by using a special device context, is another method of stor-
ing graphics. In this case, you associate the metafile device context with the
presentation space, draw the graphics you want in the metafile, and then disasso-
ciate the device context and close it. Closing the metafile returns a handle that
you can use to save the metafile in a disk file.

Metafiles are a useful way of transferring graphics images from one computer to
another. An application can load a metafile from disk and play it into a presen-
tation space. The presentation space can be associated with any device—display
or printer. The graphics in the metafile are stored as graphics commands, not as
a bitmap, so an application can examine and extract portions of the metafile if
necessary.

2.5 System Services

The system services consist of all the MS OS/2 system functions that let you
create processes and threads, access disk files and devices, allocate memory,
and retrieve or set information about the system. In Presentation Manager appli-
cations, the system-service functions are typically used to carry out tasks for
which no corresponding window-manager or Gpi function exists. In full-screen
programs, system-service functions are used almost exclusively, even to interact
with the user and access the devices of the computer.

2.5.1 Multitasking

Multitasking, one of the principal features of MS OS/2, is the ability of the sys-
tem to manage the execution of more than one program at a time. This ability
helps to optimize use of the computer, since time normally spent by a program
waiting for user input is distributed to other programs that may be printing a
document or recalculating a spreadsheet.

Chapter 2: MS 0S/2 Overview 23
B %ﬁw:@@mmw D du et S SR e e A bt o e N A e AR R R R T

MS OS/2 provides multitasking in the traditional sense of having more than one
program run at a time, and it also extends this concept to permit a single pro-
gram to run more than one copy of itself at the same time.

Every program that has been loaded into memory and is running is called a pro-
cess. Each copy of a process is called a thread. A process always has at least
one thread, called the main thread or thread 1, and can create more threads.
These additional threads are useful for carrying out tasks unrelated to the pro-
cessing of the main thread. For example, a process may create a thread to write
data to a disk file. This frees the main thread so that it can continue to process
user input.

2.5.2 Dynamic Linking

Dynamic linking lets a program gain access at run time to functions that are
not part of its executable code. These functions are contained in dynamic-link
libraries—special program modules that contain executable code but cannot be
run as programs. Instead, programs load the appropriate dynamic-link libraries
and execute the code in the libraries by linking to them dynamically.

Dynamic-link libraries are very common in MS OS/2. In fact, most of the sys-
tem is contained in dynamic-link libraries. The chief advantage of dynamic-link
libraries is that they reduce the amount of memory needed by a program. A pro-
gram loads a library only if it needs to execute a function in the library. Once
the library is loaded, the system also shares it with any other program that needs
it. This means that only one copy of the library is ever loaded at any one time.

2.5.3 Memory Management

Programs can, at any time, allocate additional memory for their own use. MS
OS/2 controls access to system memory through the use of selectors. A selector
is a unique number identifying a specific segment in memory. When a program
allocates a segment, it specifies the size of the segment (in bytes) and receives a
selector for that segment. This selector can then be used to access the memory.

MS OS/2 protects memory from unauthorized use. The process that allocates
memory owns that memory, and no other process can access it. Attempting to
access memory owned by another process causes a protection violation and usu-
ally terminates the process.

If two processes need to share memory, a process can create shared memory
and either pass the selector to the process that is to share the memory or pass
the name of the shared segment to that process. When two processes share a
segment, no protection violation occurs for them, but the memory remains pro-
tected from all other processes. The sharing processes must manage the shared
memory.

2.5.4 The File System

MS OS/2 programs have complete access to the disk files and devices of the
computer. MS OS/2 manages its disk files and its devices in essentially the same
way. For example, a program can use the same functions to open and read from
a disk file as it uses to open and read from a serial port. Each open file or device
is identified by a unique file handle. The program uses the handle in system func-
tions to access the file or device.

24

MS 0S/2 Programmer’s Reference, Vol. 1

[l R et ph U e e -ﬁ'ﬁ'ﬂﬁ-‘i" AR e I -@nﬁf%ﬂ R R R R R R R e

MS OS/2 lets programs create, open, move, and delete files and directories in
the file system. When a process opens a ﬁle, it specifies whether the file can be
shared—that is, whether it can be accessed and possibly modified by other
processes. This sharing also applies to devices that a process may open. Pro-
cesses can open any device directly, including the parallel port, the setial ports,
and the disk drive. MS OS/2 provides a wide range of input-and-output-control
functions that a process can use to access and set the modes of the devices it
has opened.

Ordinarily, the system automatically opens three files when a program starts: the
standard-input, standard-output, and standard-error files. These files correspond
to the keyboard and the full-screen display. The program can use these ﬁles to
read from the keyboard and write to a full-screen display.

2.5.5 Full-Screen Keyboard, Mouse, and Video Operations

For full-screen programs, MS OS/2 provides access to the keyboard, the mouse,
and the video display. A program can open these devices in much the same way
as it opens a file. The MS OS/2 keyboard (Kbd) functions return much more
information about a keystroke than do the standard file-system functions. Also,
the keyboard functions let a program create logical keyboards and manage these
keyboards for the processes in the same screen group.

Similarly, a program can open the mouse and read events from the mouse-event
queue. An event is a mouse motion or button click. The program can also man-
age the mouse pointer, moving it, hiding it, and showing it as necessary.

Any full-screen program can write individual characters and strings directly to a
character-based display. Unlike Presentation Manager applications, which must
write characters to windows, a full-screen program has complete control of the
system display while its session is in the foreground. The program can write both
characters and attributes to the display, read characters from the dlsplay, and
change modes for the display. A program that uses the video functions in a full-
screen session must manage the display for that session.

The keyboard and mouse functions should not be used in Presentation Manager
applications, since the system provides its own mouse and keyboard manage-
ment. Many of the video functions can be used in a special type of Presentation
Manager application called an advanced-video-input-and-output (AVIO) pro-
gram. An AVIO program creates a wmdow but uses the video functions to write
text to the window. .

2.5.6 Interprocess Communication

MS OS/2 provides several methods of interprocess communication: semaphores,
pipes, signals, and queues.

A semaphore is a special variable that a process can use to signal the beginning
and ending of a given operation and to prevent more than one thread within the
process from accessing a specific resource at the same time. A process can
create and use three types of semaphores: system, RAM, and fast-safe RAM.
System semaphores are used between processes to control access to a shared
resource. RAM semaphores are used between threads in the same process to
control a resource or to signal the end of an operation. Fast-safe RAM sema-
phores are used between threads or processes to control a resource. The RAM
semaphores are typically used when semaphore processing must be fast.

Chapter 2: MS 0S/2 Overview 25
S T S S e

A pipe is a Speclal file that two processes can use to transfer data. Although a
pipe is like a file; it does not correspond to a device or a file on disk. Instead,
the pipe is maintained by the system. Two processes use a pipe by opening the
pipe and retrieving two handles: a read handle and a write handle. One process
uses the write handle to write data to the pipe. The other process uses the read
handle to read the data from the pipe.

A signal is a special interrupt that is sent to a process by the system or by
another process. The signal temporarily stops normal execution of the process
and causes the process to execute a signal handler. Signals are typically used to
stop a process and exit. For example, pressing the CTRL+C key combination in a
full-screen session generates a signal that usually stops the current process. The
signal handler defines what a process does when it receives a signal. If a process
does not want default signal handling, it can disable a signal or replace the signal
handler with one of its own.

A queue is a special buffer that a process creates and shares with other pro-
cesses. A queue is a convenient way for one process to channel data from two
or more related processes into a single buffer. Note that this kind of queue is
different from the message queue used by Presentation Manager. The queues are
not related.

2.6 The MS 0S/2 System Functions

The MS OS/2 system functions give applications access to all the features of
MS OS/2. The MS 0OS/2 features, such as windows, device-independent graph-
ics, and multitasking, let you create programs that make optimal use of the com-
puter’s memory, display, and CPU while still meeting the needs of a wide range
of users through either the traditional character-based interface or the graphical
user interface of Presentation Manager.

The MS OS/2 system functions are organized into several distinct groups, as
described in the following list:

Function group Usage

Dev Use the Presentation Manager device (Dev) func-
tions to open and control Presentation Manager
device drivers. These functions let you create
device contexts that you can associate with a
presentation space and use with the Gpi func-
tions to carry out device-independent graphics
operations for displays, printers, and plotters.

Dos Use the disk-operating-system (Dos) functions in
full-screen and Presentation Manager sessions to
read from and write to disk files, to allocate
memory, to start threads and processes, to com-
municate with other processes, and to access the
computer’s devices directly. Most functions in
this group can be used in Presentation Manager
applications.

26 MS 0S/2 Programmer’s Reference, Vol. 1

T S S R e B B S R SR B RS
Function group Usage
Gpi Use the graphics-programming-interface (Gpi)

functions to create graphics output for a display,
a printer, or other output devices. The Gpi func-
tions give you a full range of graphics primitives,
from lines to complex curves to bitmaps. You
choose the attributes for the primitives (such as
color, line width, and pattern) and then draw
lines, text, and shapes. The retained-graphics
capability lets you save the drawings in segments
and build complex plctures by drawmg a chain of
segments.

Kbd Use the keyboard (Kbd) functions in full-screen
sessions to read keystrokes from the keyboard,
to manage multiple logical keyboards, and to
change code pages and translation tables. Since
the Presentation Manager session provides its
own keyboard support, Kbd functions are not
needed in Presentation Manager applications.

Mou Use the mouse (Mou) functions in full-screen
sessions to read mouse input from the mouse-
event queue, to set the mouse-pointer shape, and
to manage th¢ mouse for all processes in a ses-
sion. As with the keyboard, the Presentation
Manager session provides its own mouse support,
so Mou functions are not needed in Presentation
Manager applications.

Vio Use the video-input-and-output (Vio) functions in
full-screen sessions to write characters and char-
acter attributes to the screen, to create pop-up
windows for messages, to change video modes,
and to access physical video memory. Vio func-
tions can also be used in advanced-video-input-
and-output (AVIO) applications for the Presenta-
tion Manager session, to write characters and
character attributes in a window. Most Presenta-
tion Manager applications, however, use the
graphics-programming-interface (Gpl) functions
to write text in a window.

Win Use the window-manager (Win) functions to
create and manage windows. Presentation
Manager applications use windows as the main
interface with the user. The Win functions let
you create menus, scroll bars, and dialog win-
dows that let the user choose commands and
supply input. Your application receives all mouse
and keyboard input as messages from the mes-
sage queue. The Win functions let you retrieve
messages from the queue and dispatch them to
the window the input is intended for.

R B R R S R R R R B SP B RN IR SR Y

Chapter

MS OS/2 Programming Models

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction......ceuiieiiiiiiiiieiiiiiic e 29
Full-Screen Programscccovviiivieiiiinniiiiniieinninnianne. 29
Presentation Manager Applications.........cceeveveninvnneeenenns 30
The Family Application Programming Interface............. 32
Using the Command Line.......cccoveviirnnieeiinnicennennnnnn. 37
Using Structurescveuviuiiniiiiniiiiiiniiniinineninieennenes 38
Using Bit Masks....ocoiuiiiiiiiiiiniiniiiiiiiniieiieeieenneneeeans -39
Sharing Resources.......cccovuviiiiuiiiiiieiiniiiiininininnenennn. 40

C-Language Header Files........ccocevveruiiiininieniiennnenennnns 40

Chapter 3: MS 0S/2 Programming Models 29
D e G S S G S S S R ST e NS B

3.1 Introduction

This chapter describes the types of programs that you can develop for MS OS/2
MS OS/2 supports the following program types:

B Full-screen programs

Full-screen programs in a window

Presentation Manager applications ‘

Advanced-video-input-and-output (AVIO) programs

Family-application-programming-interface (FAPI) programs

3.2 Full-Screen Programs

A full-screen program is any MS OS/2 program that does not create a Presenta-
tion Manager message queue. In other words, it is a program that does not rely
on the Presentation Manager mouse and keyboard processing for mput Full-
screen programs typically run in a full-screen session.

Most full-screen programs use the Dos functions to perform input, output,
memory management, and other activities. Full-screen programs also commonly
use the standard-input, standard-output, and standard-error files created for
them when they start.

A full-screen program uses a main function as its starting point and can call as
many other functions as needed to complete its designated task. The following
simple full-screen program copies the line “Hello, world” to the screen:

#include <os2.h>
main()
USHORT cbWritten;

DosWrite(l, "Hello, world\r\n", 14, &cbWritten);

The MS OS/2 system functions use many structures, data types, and constants
that are not part of the standard C language. For example, the data type
USHORT is a special MS OS/2 data type that specifies an unsigned short
integer. In order to use these items, you must include the MS OS/2 header file
0s52.h at the beginning of your program source file. For more information about
the C-language header files, see Section 3.9.

The MS OS/2 system functions are not standard C functions. They use the Pas-
cal calling convention. This means, for example, that the MS OS/2 functions
expect parameters to be passed in left-to-right order instead of the standard
right-to-left order of C functions. To use the MS OS/2 functions in a C-language
program, you must declare them with the pascal keyword, which directs the C
compiler to generate proper instructions for the function call. All MS OS/2
functions are declared this way within the o0s2.h file, so including the file saves
you the trouble of declaring each function individually.

The 0s2.h file also declares the parameter types for each function. Without these
declarations, many function parameters would require type casting to avoid com-
piler errors. For example, the DosWrite function shown in the preceding exam-
ple requires the second parameter to be a complete far (32-bit) address to the

30 MS 0S/2 Programmer’s Reference, Vol. 1

B B e R R B B A B R R

£

given string. Since the 0s2.h file declares the second parameter with this type,
the compiler does the cast for you.

Some full-screen programs can also run in a window in the Presentation Manager
session. Although the program runs in a window, it does not create the window.
Instead, the system creates the window and provides the input and output to the
program just as if it were running in a full-screen session. A full-screen program
can run in a window only if it does not use functions that directly access the
devices that Presentation Manager controls. For example, a program that
attempts to retrieve the address of the video buffer or to change video.modes
may fail.

3.3 Presentation Manager Applications

aAWN =

~N o

A Presentation Manager application is any MS OS/2 program that creates a mes-
sage queue. A window is the only means a Presentation Manager application has
to receive input and display output, so Presentation Manager applications typi-
cally create one or more windows to interact with the user.

All MS OS/2 Presentation Manager applications have essentially the following
structure:

H A main function

B One or more window procedures

B Optional functions to support the main function and/or the window pro-
cedures ;

Since nearly all Presentation Manager applications create and use windows, the
main function carries out the same basic tasks in most applications. The typical
main function does the following, in the order shown:

Initializes the application for Presentation Manager.

Creates a message queue.

Creates a window class.

Creates a window.

Starts the message loop and continues to dispatch messages until the WM_QUIT
message is retrieved.

Destroys the window when finished using it.
Destroys the message queue.
Terminates the application.

Every MS OS/2 Presentation Manager application has at least one thread of exe-

cution. Each thread that calls Presentation Manager functions must register with

the system by calling the WinlInitialize function. This function creates an anchor

lf)lock and returns an anchor-block handle that the thread can use in subsequent
unctions.

An anchor block links a process with the system. The anchor block includes an
instance data segment in which to store the process’s environment and storage
for error messages. The anchor-block handle is used in the call to the

Chapter 3: MS 0S/2 Programming Models 31
B B e e e T S N A R R L R B A il St A IR S e b g e

WinTerminate function that ends the association with the anchor block just
before the application terminates.

The application creates the message queue by using the WinCreateMsgQueue
function. This function returns a queue handle that can be used in subsequent
functions. Once the queue is created, the application can register a window
class, create a window and start the message loop. After the message loop ends,
the application can destroy the window and use the queue handle in the Win-
DestroyMsgQueue function to destroy the queue.

Once the application is initialized and a message queue and window are created,
the application can enter the main message loop. The application waits there
for messages to appear in the queue, retrieves them, and dispatches them, as
appropriate, to its windows. When the user or system chooses to terminate an
application, a WM_QUIT message is used to trigger an exit from the message
loop.

After leaving the message loop, an application carries out various termination
activities, including destroying windows, releasing memory, destroying message
queues, closing files, and severing connections with the shell and other applica-
tions.

The following code fragment from a simple Presentation Manager application
copies the line “Hello, world” to its window:
#define INCL_WIN

#define INCL_DOS
#include <os2.h>

HAB hab; /* anchor-block handle */
HMQ hmgq: /* message-queue handle */
QMSG qmsg:; /* message-queue structure */

MRESULT CALLBACK MyWindowProc (HWND, USHORT, MPARAM, MPARAM);

HWND hwndFrame; /* frame-window handle */

HWND hwndClient; /* client-window handle */

ULONG f1Style = FCF_TITLEBAR | FCF_SYSMENU | FCF_SIZEBORDER |
FCF_MINMAX | FCF_SHELLPOSITION | FCF_TASKLIST;

main ()

*

* Initialize the thread for making Presentation Manager calls and
* create the message queue.
*

hab = WinInitialize(O);
hmq = WinCreateMsgQueue (hab, DEFAULT_QUEUE_SIZE);

/* Register the class, terminate on failure. */
if (!WinRegisterClass(hab, "MyClass",
MyWindowProc, CS_SIZEREDRAW, NULL))
DosExit (EXIT_PROCESS, 0);
/* Create the window, terminate on failure. */
if (! (hwndFrame = WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&flstyle, "My Window!", OL, NULL, O, &hwndClient)))
DosExit (EXIT_PROCESS, 0):
/* Get and dispatch messages. */

while (WinGetMsg(hab, &qmsg, NULL, O, 0))
WinDispatchMsg(hab, &qmsg, NULL, O, 0);

MS 0S/2 Programmer’s Reference, Vol. 1

32
B T e

WinDestroywindow(hwndFréme);

WinDestroyMsgQueue (hmq) ;
WinTerminate (hab) ;

i

T e

o

/* destroy the main window */
/* destroy the message queue */
/* terminate

}

MRESULT CALLBACK MyWindowProc (hwnd, usMessage, mpl, mp2)

HWND hwnd:;

USHORT msg;

MPARAM mpl;

MPARAM mp2;

{ . ‘
HPS hps; /* presentation-space handle */
RECTL rcl; /* rectangle structure */
POINTL ptl; /* point structure */

switch (msg) {
case WM_PAINT:

hps = WinBeginPaint(hwnd

NULL, NULL); /* start painting */
w1nQueryw1ndowRect(hwnd &rcl) /* get window size */
WinFillRect (hps, &rcl, CLR WHITE); /* £ill background */
ptl.x = (rcl.xRight - rcl.xLeft) / 2;
ptl.y = (recl.yTop. - rcl.yBottom) / 2;

GpiMove (hps, &ptl); /* move to center of window */
GpiCharString(hps, 12L, -

"Hello, world"); /* draw string */

WinEndPaint (hps) ; /* end painting */

return (OL):

default:

return (WinDefWindowProc (hwnd, msg, mpl, mp2)):

} s

An advanced-video-input-and-output (AVIO) program is a Presentation Manager
program that uses the advanced Vio functions for text output. These function let
a Presentation Manager application write text to a window just as if it were writ-
ing the text to a full screen. These programs must run in the Presentation
Manager session and must create at least one window for input and output.

3.4 The Family Application Programming Interface

Many MS OS/2 functions can be used in programs intended to be run in real
mode. These functions, collectively called the family application programming
interface (family API, or FAPI), let developers create MS OS/2 programs that
can run in both protected and real modes; that is, they can run under MS OS/2
and under MS-DOS versions 2.x and 3.x.

To use the family API in real-mode programs, you must use only the MS OS/2
functions that belong to the FAPI, and you must observe the restrictions that
apply to these functions when running in real mode. Also, you must bind your
program by using the Microsoft Operating System/2 Bind utility (bind). The
bind utility supplies the code needed to link the MS OS/2 functions to the
corresponding MS-DOS system calls. This code is used only when the program
is run in real mode; that is, a bound program can still run in protected mode.

Not all MS OS/2 functions belong to the FAPI, and some that do belong have
slightly different behavior when used in real mode than when used in protected
mode. The following is a complete list of the FAPI functions. Those functions
marked with a dagger (1) operate differently in real mode than in protected
mode; all other FAPI functions operate identically in both protected and real

modes.

DosAllocHuge §
DosAllocSeg
DosBeep
DosBufReset
DosCaseMap §
DosChDir
DosChgFilePtr
DosClose
DosCreateCSAlias T
DosDelete
DosDevConfig
DosDevIOCtl §
DosDupHandle
DosErrClass
DosError §
DosExecPgm }
DosExit
DosFileLocks
DosFindClose
DosFindFirst {
DosFindNext 1
DosFreeSeg
DosGetCollate 1
DosGetCtryInfo
DosGetf)éteTime
DosGetDBCSEy {
DosGetEnv
DosGetHugeShift
DosGetMachineMode
DosGetMessage t
DosGetVersion
DosHoldSignal t

DosInsMessage
DosMkDir
DosMove
DosNewSize
DosOpen §
DosPutMessage 1
DosQCurDir
DosQCurDisk
DosQFHandState
DosQFileInfo
DosQFileMode
DosQFSInfo
bosQVerit‘y
DosRead | .
DosReailocHuge t
DosReallocSeg 1
DosRmDir
DosSelectDisk
DosSétDateTime
DosSetFHandState
DosSetFileInfo
DosSetFileMode
DosSetFSInfo
DosSetSigHandler
DosSetVec §
DosSetVerify
DosSleep
DosSubAlloc
DosSubFree
DosSubSet
DosWrite
KbdCharln §

Chapter 3: MS 0S/2 Programming Models
B B o e B B B S e B e R e S R e e e TN B

KbdFlushBuffer t
KbdGetStatus'&‘ ’
KbdPeek t
KbdSetStatus §
KbdStringIn?
VioGetBuf
VioGétCurPos
VioGetCurType
VioGetMode
VioGetPhysBuf
VioReadCellStr
VioReadCharStr
VioSerLock 1
VioScrollDn
VioScrollLf
VioScrollRt
VioScrollUp
VioScrUnLock
VioSetCurPos
VioSetCurType
VioSetMode
VioShowBuf
VioWrtCellStr
VioWrtCharStr
VioWrtCharStrAtt
VioWrtNAttr
VioWrtNCell
VioWrtNChar
VioWrtTTY

Note The DosGetMachineMode function is especially useful in FAPI programs, since it
specifies which environment the program is running in: MS 0S/2 or MS-DOS.

33

34 MS 0S/2 Programmer’s Reference, Vol. 1 :
e R R S S R R S i e R B S

Following are the real-mode restrictions and/or differences in operation for the
FAPI functions marked with daggers () in the preceding list:

DosAllocHuge Rounds the usPartialSeg parameter value up to the next para-
graph (16-byte) value. This function copies the actual segment address, not a
selector, to the variable pointed to by the psel parameter.

DosAllocSeg Rounds the usSize parameter value up to the next paragraph (16-
byte) value. This function copies the actual segment address, not a selector, to
the variable pointed to by the psel parameter.

DosCaseMap Provides no method of identifying the boot drive. The system
assumes that the country.sys file is in the root directory of the current drive.

DosCreateCSAlias Returns as a selector the actual segment address of the allo-
cated memory. Freeing either the returned selector or the original selector imme-
diately frees the block of memory.

DosDevIOCtl Restricts the input-and-output-control functions that can be used.
Categories 2, 3, 4, 6, 7, 10, and 11 cannot be used. Also, some control functions
in categories 1, 5, and 8 can be used with MS-DOS 3.x but not with MS-DOS .
2.x. The following input-and-output-control functions can be used in FAPI pro-
grams:

ASYNC_SETBAUDRATE
ASYNC_SETLINECTRL
DSK_BLOCKREMOVABLE
DSK_GETLOGICALMAP

DSK_LOCKDRIVE %
DSK_REDETERMINEMEDIA ¥
DSK_SETLOGICALMAP

DSK_UNLOCKDRIVE t

PRT_GETFRAMECTL
PRT_GETINFINITERETRY
PRT_GETPRINTERSTATUS
PRT_INITPRINTER

PRT_SETFRAMECTL (for IBM Graphics Printers only)
PRT_SETINFINITERETRY (current program only)

1 These input-and-output-control functions can be used only
with MS-DOS versions 3.2 and later.

DosError If the fEnable parameter is HARDERROR_DISABLE, causes all
subsequent int 24h requests to fail, until another call is made to the DosError
function with fEnable set to HARDERROR_ENABLE.

DosExecPgm Allows only the value EXEC_SYNC for the fExecFlags parame-
ter. Other values cause errors. The buffer pointed to by the pchFailName param-
eter is filled with blanks, even if the function fails. The codeResult field of the
RESULTCODES structure receives the exit code for the DosExit function or the
MS-DOS call that terminates the program.

DosExit Exits from the currently executing program, since there are no threads
in the real-mode environment. If the fTerminate parameter is EXIT_THREAD,
the entire process ends, not just a thread.

DosFindFirst Requires the phdir parameter to be HDIR_SYSTEM.
DosFindNext Requires the hdir parameter to be HDIR_SYSTEM.

Chapter 3: MS 0S/2 Programming Models 35
B R B e B S e R R e S S R e B R S B I

DosFreeSeg Does not treat a code-segment selector (created by using the Dos-
CreateCSAlias function) and the corresponding data-segment selector as unique.
Freeing one frees both.

DosGetCollate Provides no method of identifying the boot drive. The system
assumes that the country.sys file is in the root directory of the current drive.

DosGetCtryInfo Provides no method of identifying the boot drive. The system
assumes that the country.sys file is in the root directory of the current drive.

DosGetDBCSEv Provides no method of identifying the boot drive. The system
assumes that the country.sys file is in the root directory of the current drive.

DosGetMessage Provides no method of identifying the boot drive. The system
assumes that the message file is in the root directory of the current drive.

DosHoldSignal Recognizes only the signal-interrupt (SIG_CTRLC) and signal-
break (SIG_CTRLBREAK) signals.

DosInsMessage Provides no method of identifying the boot drive. The system
assumes that the message file is in the root directory of the current drive.

DosOpen Restricts the values that can be used with the fsOpenMode parame-
ter. The parameter can be a combination of the following values:

Value Meaning
OPEN_ACCESS_READONLY Read-only access mode.
OPEN_ACCESS_WRITEONLY Write-only access mode.
OPEN_ACCESS_READWRITE Read/write access mode.

OPEN_SHARE_DENYREADWRITE Deny read/write share mode.
Not available in MS-DOS 2.x.
Available in MS-DOS 3.x only
when the share command has
been used.

OPEN_SHARE_DENYWRITE " Deny-write share mode. Not
available in MS-DOS 2.x.
Available in MS-DOS 3.x only
when the share command has
been used.

OPEN_SHARE_DENYREAD Deny-read share mode. Not
available in MS-DOS 2.x.
Available in MS-DOS 3.x only
* when the share command has
been used.

OPEN_SHARE_DENYNONE Deny-none share mode. Not
available in MS-DOS 2.x.
Available in MS-DOS 3.x only
when the share command has
been used.

OPEN_FLAGS_NOINHERIT Inheritance flag. Not available
in MS-DOS 2.x.

36 MS 0S/2 Programmer’s Reference, Vol. 1
A e e e B T e B R S R R R B R

Value Meaning

OPEN_FLAGS_WRITE_THROUGH Write-through flag. Not avail-
able in MS-DOS 2.x.

OPEN_FLAGS_DASD Direct-access-storage-device
(DASD) flag.

The fail-on-error flag (OPEN_FLAGS_FAIL ON_ERROR) is not available to
real-mode programs.

DosPutMessage Provides no method of identifying the boot drive. The system
assumes that the message file is in the root directory of the current drive.

DosRead Uses the KbdStringIn function whenever the specified file handle
identifies the keyboard device. In real mode, KbdStringIn reads only the number
of characters specified in the call, then beeps to signal the user that no addi-
tional characters can be entered. (In protected mode, the user can enter charac-
ters until the keyboard buffer is full.)

DosReallocHuge Rounds the usPartialSize parameter value up to the next para-
graph (16-byte) value.

DosReallocSeg Rounds the usNewSize parameter value up to the next para-
graph (16-byte) value.

DosSetFHandState Requires that the OPEN_FLAGS_FAIL_ON_ERROR
flag and the OPEN_FLAGS_WRITE_THROUGH flag not be set. Also, the
OPEN_FLAGS_NOINHERIT flag must not be set in MS-DOS 2.x.

DosSetSigHandler Can be used to install signal handlers for only the signal-
interrupt (SIG_CTRLC) and signal-break (SIG_CTRLBREAK) signals. Further-
more, the SIG_CTRLC and SIG_CTRLBREAK signals are treated as the same
signal, so the function accepts only the SIG_CTRLC value when setting a signal
handler.

DosSetVec Does not accept VECTOR_EXTENSION_ERROR as the usVec-
Num value, since this exception is not raised in machines using the 8088 or 8086
MiCroprocessor.

KbdCharIn Does not copy the system time to the KBDKEYINFO structure and
provides no interim character support. This function retrieves characters only
from the default keyboard (handle 0). The fbStatus field can be 0x0000 or
SHIFT_KEY_IN. The hkbd parameter is ignored.

KbdFlushBuffer Ignores the hkbd parameter.
KbdGetStatus Does not support the interim or turnaround character.

KbdPeek Does not copy the system time to the KBDKEYINFO structure and
provides no interim character support. This function retrieves characters only
from the default keyboard (handle 0). The fbStatus field can be 0x0000 or
SHIFT_KEY_IN. The hkbd parameter is ignored.

KbdSetStatus Does not support the interim character or the turnaround char-
acter. Raw input mode with echo mode on is not supported. The hkbd parame-
ter is ignored.

Chapter 3: MS 0S/2 Programming Models 37

B S i R R S e e e R B S S R e e R R RN

KbdStringIn Ignores the hkbd parameter.

VioScrLock Always indicates that the lock was successful.

3.5 Using the Command Line

In standard C-language programs, you can use the argc and argv parameters of
the main function to retrieve individual copies of the command-line arguments.
You can use these parameters in MS OS/2 programs, but you can also retrieve
the entire command line, exactly as the user typed it, by using the DosGetEnv

function.

When it starts a program, MS OS/2 prepares an environment segment for the
program. This segment contains definitions of all environment variables, as well
as the command line. The DosGetEnv function retrieves the segment selector for
this environment segment and the address offset within that segment for the start
of the command line.

You can echo the command line on the screen by using the DosGetEnv function
to get the address of the command line in the environment segment, as shown in
the following sample program:

#define INCL_DOS
#include <os2.h>

main()
{

SEL selEnvironment;
USHORT offCommand;
PSZ pszCommandLine;
USHORT cbWritten:
USHORT i, cch;

DosGetEnv (&selEnvironment, &offCommand)
pszCommandLine = MAKEP (selEnvironment, offCommand) ;

*

* The first string is the program name. The command line is the
* next null-terminated string.
*

for (i = O; pszCommandLine[i]; i++);
/* Find the length of the command-line string. */
for (i++, cch = 0; pszCommandLine[cch + i]; cch++);

DosWrite (1, &pszCommandLine[i], cch, &cbWritten):;
}

The command line has two parts. The first part is the program name; terminated -
by a zero byte. The second part is the rest of the command line, terminated by
two zero bytes. The preceding program echoes the command line by skipping
over the program name and then writing everything up to the next zero byte to
the screen. The first for statement skips over the command name; the second

for statement computes the length of the string. The MAKEP macro creates the
far pointer that is needed to access the command line in the environment seg-
ment.

You can examine your program’s environment by using the selector retrieved by
the DosGetEnv function. The program’s environment consists of the environ-
ment variables that have been declared and passed to the program. Each pro-
gram has a unique environment that is typically inherited from the program that
started it—for example, from the MS OS/2 command processor, cmd.

38 MS 0S/2 Programmer’s Reference, Vol. 1
R s s o R N e S e B S SR

BRI R P e S e e T

You can use the DosScanEnv function to scan for a specific environment vari-
able. This function takes as an argument the name of the environment variable
that you are interested in and copies the current value of this variable to a buffer
that you supply. The following sample program uses DosScanEnv to display the
value of the environment variable specified in the command line:

#define INCL_DOSQUEUES
#include <os2.h>

main()
{

SEL selEnvironment;
USHORT offCommand;
PSZ pszCommandLine;
PSZ pszValue;
USHORT cbWritten;
USHORT i, cch;

DosGetEnv (&selEnvironment, &offCommand) ;
pszCommandLine = MAKEP (selEnvironment, offCommand);

for (i = O; pszCommandLine[i]; i++):
for (i++; pszCommandLine[i] == ' '; i++);

if (!DosScanEnv (&pszCommandLine([i], &pszValue)) {
for (cch = O; pszValue[cch]; cch++);
DosWrite(l, pszValue, cch, &cbWritten):

}

3.6 Using Structures

Many MS OS/2 functions use structures for input and output. To use a structure
in an MS OS/2 function, you first define the structure in your program and then
pass the 32-bit far address of the structure as a parameter in the function call.

For example, the DosGetDateTime function copies the current date and time to
a DATETIME structure whose address you supply. The fields of the DATETIME
structure define the month, day, and year, as well as the time of day (to hun-
dredths of a second). The DATETIME structure, defined in the 0s2.% file, has
the following form:

typedef struct _DATETIME (/* date */
UCHAR hours;
UCHAR minutes;
UCHAR seconds;
UCHAR hundredths;
UCHAR day;
UCHAR month;
USHORT vyear;
SHORT timezone;
UCHAR weekday;

} DATETIME;

To retrieve the date and time, you call the DosGetDateTime function, using the
address operator (&) to specify the address of the DATETIME structure. The
following sample program shows how to make the call:

#include <os2.h>
CHAR szDayName[] = "MonTueWedThuFriSatSun";

CHAR szMonthName[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
CHAR szDate[] = "xx:xx:xx xxx xxx xx, xxxx\r\n";

Chapter 3: MS 0S/2 Programming Models 39
B B T e e e S B e R e R e B R

main()
{

DATETIME date;
SHORT offset;
SHORT 1i;

USHORT usYear;
USHORT cbWritten;

DosGetDateTime (&date); /* address of DATETIME structure */

szDate[0] = (date.hours / 10) + 'O';
szDate[1] = (date.hours ¥ 10) + '0O';
szDate[3] = (date.minutes / 10) + 'O';
szDate[4] = (date.minutes % 10) + 'O';
szDate[6] = (date.seconds / 10) + 'O';
szDate[7] = (date.seconds ¥ 10) + 'O'

offset = date.weekday * 3;
for (L = 0; 1 < 3; i++)
szDate[1 + 9] = szDayName[l + offset]:
offset = (date.month - 1) * 3;
for (L = 0; 1 < 3; 1i++)
szDate[i + 13] = szMonthName[i + offset]:
szDate[17] = (date.day < 10) ? ' ' : (date.day / 10 + '0'):
szDate[18] = (date.day % 10) + 'O';
usYear = date.year;
szDate[21] = (usYear / 1000) + '0O';

usYear = usYear % 1000
szDate[22] = (usYear / 100) + '0O';
usYear = usYear ¥ 100;

szDate[23] = (usYear / 10) + 'O';
szDate[24] = (usYear ¥ 10) + 'O';

DosWrite (1, szDate, 27, &cbWritten);
}

One drawback to using MS OS/2 functions exclusively is that there are no for-
matted output functions, such as the C-language printf function. Therefore, the
preceding program formats the data itself before displaying it. The program uses
the integer-division operators (/ and %) to convert binary numbers to ASCII
characters. The program then copies the ASCII characters to a string and
displays the string by using the DosWrite function.

Some MS OS/2 functions require that you fill one or more fields of the structure
before calling the function. For example, there are some structures whose length
depends on the version of the operating system being used; MS OS/2 requires
that you supply the expected length so that the functlon does not copy data
beyond the end of your structure.

3.7 Using Bit Masks

In MS OS/2, many functions use bit masks. A bit mask (also called an array of
flags) is a combination of two or more Boolean flags in a single byte, word, or
double-word value. In C-language programs, you can use the bitwise AND, OR,
and NOT operators to examine and set the values in a bit mask.

If a function retrieves a bit mask, you can check a specific ﬂag in the bit mask
by using the AND operator, as shown in the following code fragment:

USHORT fsEvent;

if (fsEvent & 0x0004)
/* is the flag set? */

40 MS 0S/2 Programmer"s,Reference, Vo!. 1 N ‘ _ ;
B S S e e e S s e e R R R R R R b ST

You can set a flag in a bit mask by using the OR operator, as shown in the fol-
lowing code fragment:

ULONG flFunctions;

flFunctions = flFunctions | KR_KBDPEEK;

Finally, you can clear a flag in a bit mask by using the AND and NOT opera-
tors, as shown in the following code fragment:

USHORT fsEvent;

fsEvent = fsEvent & ~Ox0004;

3.8 Sharing Resources

Many MS OS/2 functions let you use the resources of the computer, such as the
keyboard, screen, disk, and even the system speaker. Since MS OS/2 is a multi-
tasking operating system and more than one program may be running at a time,
MS OS/2 considers all resources of the computer to be shared resources. As a
result, programs must not claim exclusive access to a given resource.

Consider a simple program that plays a short tune by usinig the DosBeep func-
tion. This function, when called by a single program, generates a tone at the sys-
tem speaker, but if two programs call DosBeep at the same time, the result is
chaotic. For example, try running two or more copies of the following program
at the same time:

#include <os2.h>

#define CNOTES 14
USHORT ausTune[] = {

440, 1000,
480, 1000,
510, 1000,
550, 1000,
590, 1000,
620, 1000,
660, 1000
}:

main()
int §i;

for (i = O; i < CNOTES; i += 2) v
DosBeep (ausTune[i], ausTunef[i + 1]):

¥

The first parameter of the DosBeep function specifies the fr.equenéy of the note.
The second parameter specifies the duration. The array ausTune defines fre-
quency and duration values for each note in the tune.

DosBeep is intended to be used for signaling the user when an error occurs,
such as pressing an incorrect key. Since the system speaker is a shared resource,
a process should use the DosBeep function sparingly.

3.9 C-Language Header Files

The MS OS/2 C-language header file 0s2.h contains the definitions you need to
use the functions, data types, structures, and constants described in the Micro-
soft Operating System/2 Programmer’s Reference.

Chapter 3: MS 0S/2 Programming Models 41
L et e =!§!am R O B S S e S i e SR BN

When you include the 0s2.h file, the C preprocessor automatically defines many,
but not all, of the most commonly used MS OS/2 functions. The 0s2.h header
file is the “master” file of a set of files that contain the MS OS/2 function
definitions. Each file contains definitions for the functions, data types, struc-
tures, and constants associated with a specific group of MS OS/2 functions. To
minimize the time required to process the many header files, each function
group is conditionally processed on the basis of whether a corresponding con-
stant is defined within the program source file. The following is a list of these
constants, with descriptions of the function groups they represent:

Constant Meaning

INCL_AVIO Includes all MS OS/2 version 1.1
AVIO functions.

INCL_BASE Include all MS OS/2 version 1.1 sys-

tem functions (Dos, Vio, Kbd, Mou).
INCL_BITMAPFILEFORMAT Include the bitmap file-header struc-

ture BITMAPFILEHEADER.

INCL_DEV * Include all MS OS/2 version 1.1

h device functions (Dev).

INCL_DEVERRORS Include the Dev-function error con-
stants. ;

INCL_DOS Include all MS OS/2 version 1.1 ker-
nel functions (Dos). ‘

INCL_DOSDATETIME Include the date/time and timer func-
tions.

INCL_DOSDEVICES Include the device and IOPL support

‘ functions.

INCL_DOSDEVIOCTL Include all MS OS/2 version 1.1

B input-and-output control functions
(IOCtls).

INCL_DOSERRORS Include the Dos-function error con-

' stants.

INCL_DOSFILEMGR Include the file-management func-
tions.

INCL_DOSINFOSEG Include the information-segment
functions.

INCL_DOSMEMMGR Include the memory-management

_ functions.

INCL_DOSMISC Include miscellaneous Dos functions.

INCL_DOSMODULEMGR Include the module-manager func-

: ‘ tions.

INCL_DOSMONITORS Include the monitor functions.

INCL_DOSNLS Include national-language-support

functions.

MS 0S/2 Programmer’s R‘eference, Vol. 1
P et e e B D e it i B e e e R R e e R ﬁ?.a‘?m!‘“%%“ B B]

INCL_GPIBITMAPS
INCL_GPICONTROL

INCL_GPICORRELATION

INCL._GPIERRORS

INCL_GPILCIDS

INCL_GPILOGCOLORTABLE

INCL_GPIMETAFILES
INCL_GPIPATHS

INCL_GPIPRIMITIVES
INCL_GPIREGIONS

INCL_GPISEGEDITING

Constant Meaning
INCL_DOSNMPIPES Include named-pipe functions.
INCL_DOSPROCESS Include the process- and thread-
support functions.
" INCL_DOSQUEUES Include the queue functions and
other miscellaneous functions.
INCL_DOSRESOURCES Include the resource-support func-
' tions.
INCL_DOSSEMAPHORES Include the semaphore functions.
INCL_DOSSESMGR Include the session-manager func-
tions.
INCL_DOSSIGNALS Include the signal functions.
INCL_DOSTRACE Include the DosPTrace function.
INCL_ERRORS Include all MS OS/2 version 1.1 error
: constants,
INCL_FONTFILEFORMAT Include the font-file structures.
INCL_GPI Include all MS OS/2 version 1.1

graphics-programming-interface func-
tions (Gpi).

Include the bitmap and pel functions.

Include the basic presentation-space-
control functions.

Include the pick-aperture, boundary,
and correlation functions.

Include the Gpi-function error con-
stants,

Include the physical- and logical-font
functions.

Include the logical-color-table func-
tions.

Include the metafile functions.

Include the path and chppmg func-
tions.

Include the drawing-primitive and
primitive-attribute functions.

Include the region and clipping func-
tions. - '

Include the segment-editing func-
tions.

Chapter 3: MS 0S/2 Programming Models 43

Constant

S S R R S R S R N e e R S S R R R TR S

INCL_GPISEGMENTS
INCL_GPITRANSFORMS
INCL_KBD

INCL_MOU
INCL_NOCOMMON
INCL_PM
INCL_SHLERRORS
INCL_SUB

INCL_VIO

INCL_WIN
INCL_WINACCELERATORS

INCL_WINATOM
INCL_WINBUTTONS
INCL_WINCATCHTHROW

INCL_WINCLIPBOARD
INCL_WINCOUNTRY

INCL_WINCURSORS
INCL_WINDIALOGS
INCL_WINENTRYFIELDS
INCL_WINERRORS

INCL_WINFRAMECTLS

INCL_WINFRAMEMGR

Include the segment-control and
drawing functions.

Include the transformation and
transform-conversion functions.

Include all MS OS/2 version 1.1 key-
board functions (Kbd).

Include all MS OS/2 version 1.1
mouse functions (Mou).

Exclude any function group not
explicitly defined.

Include all MS OS/2 version 1.1
Presentation Manager functions and
structures.

Include the shell error constants.

Include all MS OS/2 version 1.1
video, keyboard, and mouse func-
tions (Vio, Kbd, and Mou).

Include all MS OS/2 version 1.1
video functions (Vio).

Include all MS OS/2 version 1.1 win-
dow functions (Win).

Include the keyboard-accelerator
functions.

Include the atom-manager functions.
Include the button-control functions.

Include the WinCatch and WinThrow
support functions.

Include the clipboard-manager func-
tions.

Include the country-support func-
tions.

Include the text-cursor functions.
Include the dialog-box functions.
Include the entry-field functions.

Include the Win-function error con-
stants,

Include the frame-control (title bar
and size border) functions.

Include the frame-manager functions.

44 MS 0S/2 Programmer’s Reference, Vol. 1
e R = T B T e S L T SR A i A p et e S R L i

Constant Meaning

INCL_WINHEAP Include the heap-manager functions.

INCL_WINHOOKS Include the hook-manager functions.

INCL_WININPUT Include the mouse- and keyboard-
input functions.

INCL_WINLISTBOXES Include the list-box-control functions.

INCL_WINMENUS Include the menu-control functions.

INCL_WINMESSAGEMGR Include the message-management
functions.

INCL_WINPOINTERS Include the mouse-pointer functions.

INCL_WINPROGRAMLIST Include the shell-program-list API
functions.

INCL_WINRECTANGLES Include the rectangle functions.

INCL_WINSCROLLBARS Include the scroll-bar-control func-
tions.

INCL_WINSHELLDATA Include the shell-data functions.

INCL_WINSTATICS Include the static-control functions.

INCL_WINSWITCHLIST Enclude the shell-switch-list API func-
ions.

INCL_WINSYS , Include the system-value and color
functions.

INCL_WINTIMER Include the timer functions.

INCL_WINTRACKRECT Include the WinTrackRect function.

INCL_WINWINDOWMGR Include the general window-

management functions.

To use a function within your program, you simply define the corresponding
constant by using the #define directive before you include the 0s2.A file. For
example, the following code fragment includes definitions for the memory-
management and file-management functions:

#define INCL_DOSMEMMGR

#define INCL_DOSFILEMGR
#include <os2.h>

main()

3

Once you have defined a constant, you can use any function, structure, or data
type in that function group.

Part 2
Window Manager

] 1 i I
YO =

1 BE '

1
—_—

77l
% [

N—

N

&Y

%

_ i
]
IR
L

T S
N
il M o

— i)
{

P

S
N\
NN

.‘
=5~ ‘ Fen e

: . 47
B A R B S T R P S N R S R e R B i

Part 2

Window Manager

Chapter 4 WINAOWS.....ooveerieetirieneeceesieete et seeseiee e sneeaees 49
Chapter 5 Messages and Message Queues........ccoceeviueeneennen. 77
Chapter 6 Window Classesceeeeerirreeicrnirrerecsnirinniienneeesnennns 91
Chapter 7 Window Procedures.........ccoceeviuiiinnnniniiniiiiiecinnan, 99
Chapter 8 Mouse and Keyboard Inputcccevviiniiiiininnnn. 109
Chapter 9 Frame Windowscccccovviiviiniiinininienniiiciiinennne, 125
Chapter 10 Control Windows........cccevvevervmeeerinceriniinnneceinnnneenn. 143
Chapter 11 Title-Bar Controls.........ccoeeueerevicinniicciiiiniiecennnen. 151
Chapter 12 Button Controls...cccccoeeeeieiiiiimmeiereeciiiiiinieeenreniecenen. 157
Chapter 13 Entry-Field Controls.......c.ccccoevveeriicnicrniercicnnneennee. 169
Chapter 14 List-Box Controlsccccceevveveiinieennneieincennnecnnne. 179
Chapter 15 Static Controls......ccceceveereeeenvieerecveeeeininiiereceneeennn. 193
Chapter 16 Scroll-Bar Controls.........cccceevuuirereveieeereirererenesennnee 201
Chapter 17 Menus.....coooveeerieenieriiierecestecee et 213
Chapter 18 Accelerator Tablescccccoverveeriiiriiieeriiicininennne 237
Chapter 19 Dialog Windows......c.ccceeevueeerriecrneereineenseieeeseeenane 245
Chapter 20 Painting and Drawing.........c.ccocceevvcviinnuienncncnennnen. 263
Chapter 21 Drawing in Windowsceceeveeinneinniiinciienennenene. 279
Chapter 22 Mouse Pointers and Icons........ccceceueiivnirercennnnes 287
Chapter 23 CUrSOTS...cooueerieeriiieieieeieette et ee e sve e 295
Chapter 24 Printing.......ccocceeeevviiirieiieeeniieiieeeesrnecre e ereceessneeeee 301
Chapter 25 Heaps ...ccccvevveverieiiiienieeeeerieeeeieee e 319
Chapter 26 ClLpboardccceeveriiiuiriiieeeieirnireeeeeeee e seeenane 331
Chapter 27 Dynamic Data Exchangeccccocvvciieniiininnninne 345
Chapter 28 HOOKS.....oeviiriereeiieeeirecie ettt 363

Chapter 29 Help...ccooveeeriiciiiiiiiecciiiiericce et 377

Bl R e R El i et T R i L e s e

Windows

4.1
4.2

4.3

R A e et B

Introductionccovieieiiiiiiiiiiiiiiiiiieerer e eas 51
AbOout WindowWs....uoueeiiiiiiiieiiiiieieniienieiieenienenannanens 51
42.1 Desktop Windows ...ccevieiiieneiieniiriiieeeninrirenneensas 51
4.2.2 Application Windowsceevririninininiiiiniiinininennns 51
423 Window Creation....coeeeeiierenrioreccerenecancensareecanans 52

423.1 Window-Creation Functionsc..cocoeueen.. 54

42.3.2 Window-Creation Messages......ccvevereaneen.. 94
4.2.4 Window Handlesc.coceviciiiiiininninninnnns reeeenras 54
4.2.5 Window Size and PoSitionccvvvvrveveerieencennnennes 55
42.6 Window Styles c.iiviieieieininenrieniieieecnenrnsaecanennens 55
4277 Window Destructionceveveereivernieineneennsensenaenns 56
4.2.8 Locked WINdOWS ...cuveveivernreinnrieeiniesnrensncraenecens 57
429 Disabled WindOWS...o.ceverirueneieneneninrerenrnenenannenens 58
System-Modal Windowsceceviiiiienieieiiiineninineeinennnns 58
4.3.1 Window Data.....ccveviiiioiiiiieiiiiieiriiecniinnenseneeas 99
4.3.2 Subclassed WindOWScccvueueeereienrnreeeneneneeaenennns 59
4.3.3 Window Relationships ..c.euvueuereninieenecernenenennenenens 60

4.33.1 Parent-Child Relationship........ceeeveveenennnnns 61

4332 OWRErshipP..iveeeerineeenneeeensionnrnerneonennsnss 62

4333 Object WINAOWS euvrnereenrveerenererenenernesnenns 63
434 VASIDHY.ceuveneereeeeeneeeeeeeeeeseeeeeeeeseeereereeesseenns 63
L T S S 64
4.3.6 POSItION..ciuiiiiniiiiniiiiieieenirietrietieerneraenrnrraenenas 64

4.3.6.1 Size and Position Messagesocuvuenrnennnnn. 64
0 T A A) ¢ 1 64
4.3.8 Maximized and Minimized Windowscceevuuenn. 65
439 Redrawing Windowscoevveeeiinineniniennenecinennnens 65
4.3.10 System Commands......oeeeeririereeesoeenrnsnenenecaencnens 65

Chapter

4

LSl e R R B e S e i e S R e

4.4 UsSIing WINAOWS..eouieiierieieninieinieerernetenreeeneceeecscesnsnsonns 66
4.4.1 Creating a Window.......c..c....... Ceerereeireeeteieeaes 66
442 Creating a Frame Windowcceeervenirierinrensnnenns 66
4.4.3 Destroying a WindoWc.ccevvenrininsernraseniniarnsacees 67
4.4.4 Setting and Querying Window Datacocveeinnennen 67
445 Creating a Top-Level Window.......ovvvivienieianacnnnes 67
4.4.6 Creating an Object WindOWccceureeninrnnecrnenense 68
4.4.7 Changing the Parent Window.......c.covveeeeninnacninneen 68
4.4.8 Finding a Parent, Child, or Owner Window 68
4.4.9 Setting an Owner Windowcoeeveuiininrnreneninennnes 69
4.4.10 = Finding a Child or Owned Window..........cccvuuvnnnenee 69
4.4.11 Enumerating Top-Level Windowsccccceuvenennane. 69
4.4.12 Moving and Sizing a WindoW.....c..cccveeeriinreranerennees 70
4.4.13 Moving a Window in a Stack of Windows................ 71
4.4.14 Showing and Hiding a WindoW.......c.ceuvuverurannrnnnne 72
4.4.15 Maximizing, Minimizing, and Restoring a Window 72

4.5 SUMMATY ceuivniriieineiniieieertniercrersernesosrnstonsosnnassannes 72
4.5.1 Window Functions.........c.cccvvivuiniiciieiiiineceiinnnnnne. 72
4.5.2 Standard Window MesSagesccevevveeineanerannennanes 73
4.5.3 Relationship Functionsccoceviveeniiiiiisainnrnnnincnns 74
4.54 Functions for Moving, Sizing, and Changing 74
4.5.5 Messages for Moving, Sizing, and Changing............. 75

. Chapter 4: Windows 51
S S R B R e R R R R e e SR

4.1 Introduction

This chapter describes the portions of MS OS/2 that let you create and use win-
dows; manage relationships between windows; and size, move, and display win-
dows in your Presentation Manager application. You should also be familiar with
the following topics:

B Standard user-interface guidelines

B Application initialization and termination
B Messages and message queues

B Window classes and window procedures

4.2 About Windows

A window is a rectangular area of the screen where an application displays out-
put and receives input from the user. You might think of a window as a “graph-
ics terminal” that shares the screen with other terminals. Only one “terminal”
is active at a time, and when it is, a user can use the mouse and keyboard to.
interact with the application that owns the terminal.

Unlike a graphics terminal, however, a window must be created by an applica-
tion before it can be used. MS OS/2 does not create a window by default. This
means that one of the first tasks of a Presentation Manager application is to
create a window.

4.2.1 Desktop Windows

MS OS/2 automatically creates two windows: the desktop window and the
desktop-object window. The desktop window is the base (bottom-most) window
in the Presentation Manager session. It is the window that paints the background
for this session. It serves as the base for all windows created and displayed by
applications. The desktop-object window is like a desktop window that is never
displayed. It serves as a base for windows that coordinate the activity of other
windows that are not displayed.

4.2.2 Application Windows

Every application creates at least one window, called the main window, to serve
as the “graphics terminal” for the application. The application also creates many
other windows either directly or indirectly to carry out tasks related to the main
window. In fact, most windows used by an application are composed of several
different windows. Each window plays a part in displaying output and receiving
input from the user.

Typically, an application’s main window is made up of several windows acting
together as one. The main window is usually a frame window that contains

a client window and one or more control windows, such as a title bar and a
System menu.

An application can use several types of windows: frame windows, client win-
dows, control windows, dialog windows, message boxes, and menus.

52 MS 0S/2 Programmer’s Reference, Vol. 1
S B R B R B R R B e R S R S R e et

A frame window is a special window that the application uses as the base when
constructing a main window or other composite window. A frame window pro-
vides basic features, such as borders and system-command processing, that a
main window needs to conform to the MS OS/2 user-interface guidelines.

A dialog window is a frame window that contains one or more control windows.
Dialog windows are used almost exclusively for prompting the user for input. An -
application usually creates a dialog window when it needs additional information
to complete a command. It then destroys the dialog window when the requested
information has been entered.

A message box is a frame window that an application uses to display a note, cau-
tion, or warning to the user. Message boxes are commonly used to inform the
user of problems the application encounters while carrying out a task.

A client window is the window in which the application displays the current
document or data. For example, a desktop-publishing application displays the
current page of a document in a client window. Most applications create at least
one client window. The application must process input to the window and then
display output.

A control window is any window used in conjunction with another window to
carry out useful input or output tasks, such as displaying messages or reading
text. MS OS/2 provides several predefined control-window classes that can be
used to create control windows. Control windows include buttons, entry fields,
list boxes, menus, scroll bars, static text, and title bars.

A menu is a control window that presents a list of commands and other menus
to the user. The user chooses commands from the list by using a mouse or key-
board. The application then carries out the chosen task.

Many simple applications create only a main window. The application manages
the client window and allows the frame and control windows to operate as
defined by MS OS/2.

4.2.3 Window Creation

An application creates windows by using a window-creation function, such as
WinCreateWindow, and supplying information about the window to be created.
An application can create one or more windows in any thread for which it has
created a message queue. An application creates a message queue for a thread
by using the WinCreateMsgQueue function after initializing the application for
Presentation Manager by using the WinlInitialize function.

The following information must be supplied when creating a window:

M Window class

B Window name
B Parent window
u

Window position relative to the parent window

R B R

Chapter 4: Windows 53

N O S R R R R e B S R S e IR

Window position relative to its sibling windows (Z order)
Window width and height

Window styles

Owner window

Window identifier

Class-specific data

Every window belongs to a window class. The window class defines how the win-
dow behaves and appears when operating. The chief component of the window
class is the window procedure. The window procedure is a function that receives
and processes all input and requests for action sent to the window by the system.
The window class also defines the class styles. These tell MS OS/2 what initial
window styles to give a window created with this class.

A window can have a name. A window name is a text string that identifies the

window for the user. The window name is typically displayed in the window or

in a title bar within the window. How the name is used depends on the window
class.

Every window created has a parent window. The parent window provides the
coordinate system used for positioning the window and defines the relationship
the new window has with other windows in the system. The parent window also
affects the behavior and appearance of the window. For example, when the
parent window is hidden, the child window is also hidden.

Every window has a position, size, and Z-order position. The position specifies
the location on the screen of the window’s lower-left corner. This position is
relative to the lower-left corner of the parent window (in pels). A window’s size
is the width and height in the window (in pels). A window’s Z-order position
specifies the position of the window in the stack of overlapping windows. The
window at the top of the Z order overlaps all sibling windows (that is, windows
having the same parent window). A window at the bottom of the Z order is over-
lapped by all sibling windows. An application sets a window’s Z-order position
by placing it behind a given sibling window.

Every window can have a style. The window style specifies how the window
behaves or appears. For example, a window style can specify whether the win-
dow is visible or invisible when first created. A few window styles apply to all
windows, but most apply to windows of specific window classes. The window
procedure for that class interprets the style.

A window can be owned by another window. An owner window is similar to a
parent window, but it does not affect the behavior or appearance of the window
in the same way. The owner window usually coordinates the activity of a window
so that it can operate in conjunction with other windows. The window sends
messages about its state to its owner window; the owner window sends messages
about what action to carry out next.

A window can have a window identifier. A window identifier uniquely identifies a
window that operates in conjunction with other windows. A window identifier is
especially useful if a window sends information to the owner window,

54 MS 0S/2 Programmer’s Reference, Vol. 1 :
b I R el e S b e s S D P e P B e PG LSRR D] SR e I et B e 2

A window can have class-specific data. This data further defines how the window
.behaves and appears when first created. The system passes class-specific data to
the window procedure. The window procedure then applies the data to the new
window.

4.2.3.1 Window-Creation Functions

The basic window-creéation function is WinCreateWindow. The WinCreate-
Window function takes window class, style, size, and position information and
creates a new window. All other window-creation functions, such as Win-
CreateStdWindow and WinCreateDlg, supply some of this information by
default and create windows of a specific class or style.

Although WinCreateWindow provides the most direct means of creating a
window, most applications do not use it. Instead, they typically use the Win-
CreateStdWindow function to create a main window and use the WinDIgBox
or WinCreateDlg function to create dialog windows.

The WinCreateMenu, WinLoadMenu, WinLoadDlg, WinMessageBox, and
WinCreateFrameControls functions also create windows. Each of these func-
tions substitutes for one or more calls to the WinCreateWindow function
required to create a given window. For example, you can create a frame window,
one or more control windows, and a client window, all in a single call to Win-
CreateStdWindow.

4.2.3.2 Window-Creation Messages

The system sends messages to the window procedure as it creates a window.
Each window procedure receives a WM_CREATE message, specifying that the
window is being created.

The system also sends a WM_ADJUSTWINDOWPOS message, specifying the
size and position for the window. This message allows the window procedure to
adjust the size and position before they are actually applied to the window.

The system also sends other messages. The number and order of these messages
depend on the window class and style and on the function used to create the
window.

4.2.4 Window Handles

When a window is created, the creation function returns a window handle. A
window handle uniquely identifies the window and can be used in functions to
direct the action of the function to the window. Window handles have the data
type HWND); applications must use this type when declaring the variables that
hold wmdow handles.

There are several special constants that can be used in place of a window handle

_in certain functions. For example, HWND_DESKTOP can be used in the Win-
CreateWindow function to specify the desktop window as the new window’s
parent window. Similarly, HWND_OBJECT represents the desktop-object win-
dow. HWND_TOP and HWND_BOTTOM represent the top and bottom posi-
tions when setting the Z-order position for a window.

Chapter 4: Windows 55
B R B o T R e B S R R S T S e RSl

Although the NULL constant is not a window handle, it can be used in some
functions to specify that no window is affected. For example, NULL can be used
in the WinCreateWindow function to specify that there is no owner window.
Some functions may return NULL, indicating that the given action applies to no -
window.

4.2.5' Window Size and Position

A window’s size and position can be expressed as a bounding rectangle, given in
coordinates relative to its parent window. The window’s size and position can be
explicitly specified when it is created, or the system can use default values. The
window’s size and position can be changed at any time.

The default coordinate system for a window specifies that the point (0,0) is at
the window’s lower-left corner; coordinates increase upward and to the right.

When two sibling windows overlap, the system must specify which window is
displayed in front. This ordering of sibling windows is known as the Z order. For
more information about Z order, see Section 4.3.7.

4.2.6 Window Styles

A window style is a value that specifies how a window behaves or appears in a
given situation. Window styles let applications adapt windows of a given class for
special circumstances. For example, an application can give a window the style
WS_SYNCPAINT to cause it to paint immediately whenever any portion of the
window becomes invalid. A window normally paints only if there are no mes-
sages waiting in the message queue.

An application usually sets the window style when it creates the window. It can
also set the window style after creation by using the WinShowWindow and Win-
SetWindowULong functions. MS OS/2 provides several standard window styles
that apply to all windows. It also provides many styles for the predefined frame
and control windows. The frame and control styles are unique to each pre-
defined window class and can be used only for windows belonging to the
corresponding class.

Initially, the class styles of the window class used to create the window deter-
mine the window styles of the new window. If the window class has the style
CS_SYNCPAINT, all windows created using that class have the style
WS_SYNCPAINT by default.

MS OS/2 has the foliowing standard window styles:
Style : Description

WS_VISIBLE Makes the window visible. MS OS/2 draws
the window on the screen unless overlap-
ping windows completely obscure it. Win-
dows without this style are hidden. If over-
lapping windows completely obscure the
window, the window is still considered to
be visible. Visibility simply means that
MS OS/2 draws the window if it can.

56 MS 0S/2 Programmer’s Reference, Vol. 1
|~§3"“$=hﬁ 'ﬁﬁ&iﬁﬁﬂ’@ﬂ@""&?ﬁ S e o

Style

[ril o L s Bl S e e

Description

WS_DISABLED

WS_CLIPCHILDREN

WS_CLIPSIBLINGS
WS_PARENTCLIP

WS_SAVEBITS

WS_SYNCPAINT

WS_MINIMIZED
WS_MAXIMIZED
WS_GROUP

WS_TABSTOP

4.2.7 Window Destruction

An application can destroy the windows it has created. When a window is de-
stroyed, the system hides the window if it is visible, and then removes any inter-
nal data associated with the window. This invalidates the window handle; it can
no longer be used in functions. An application destroys a wmdow by usmg the
WlnDestromedow function.

Disables mouse and keyboard input to the
window. This style is used to temporarily
prevent the user from using the window.

Prevents a window from painting over its
Chlld windows.

Prevents a window from painting over its
sibling windows.

Prevents a window from painting over its
parent window.

Saves the image under the window as a bit-
map. When the window is moved or hidden,
the system restores the image by copying
the bits.

Causes the window to immediately receive
WM_PAINT messages after a part of the

window becomes invalid. Without this style,

the window receives WM_PAINT messages
only if no other message is waiting to be
processed.

Reduces the window to the minimum size.
Enlarges the window to the maximum size.

Identifies the window as the first dialog item
in a group of dialog items. This style is used
with controls in dialog windows to permit
the user to move among the controls by
pressing the direction keys.

Identifies the window as a tabstop window.
This style is used with controls in dialog
windows to permit the user ‘to ' move to the
control by pressing the TAB key.

Most applications destroy the windows they create soon after creating them.

For example, an application usually destroys any dialog windows as soon as the
application has sufficient input from the user to continue its task. An application
eventually destroys the main window of the apphcanon (before termmatmg) In

general, an application must destroy all the windows it creates.

!

Chapter 4: Windows 57
e i e o o e T e e S S U ST S

Destroying a window does not affect the window class from which the window is
created. New windows can still be created using that class and any exxstmg win-
dows of that class continue to operate.

Destroying a window also destroys that window’s child and-owned windows. The
WinDestroyWindow function sends a WM_DESTROY message to the window,
which in turn sends the same message to all its child and owned windows. Each
child and owned window passes the message on to other child and owned win-
dows. In this way, all descendant windows of the window being destroyed are
also destroyed.

Before destroying a window, an application should save or remove any data asso-
ciated with the window and release any resources. For example, a presentation
space created for the window by the WinGetPS function must be released by
calling the WinReleasePS function. This must be done before calling the Win-
DestroyWindow function. If a presentation space is associated with the device
context for the window, the application should disassociate or destroy the
presentation space by using the GpiAssociate or GpiDestroyPS function before
calling WinDestroyWindow. Failing to release a resource can cause an error.

The WinDestroyWindow function may send several messages to a window. The
following is a list of possible messages sent by WinDestroyWindow:

Message Description

WM_DESTROY Always sent to the window being destroyed after it
has been hidden, but before its child windows
have been destroyed.

WM_ACTIVATE Sent with the first message parameter equal to
FALSE if the window being destroyed is the active
window.

WM_OTHERWINDOWDESTROYED

Sent to all main windows of the window being de-
stroyed and to its descendant windows, if the win-
dow being destroyed has been registered with the
WinRegisterWindowDestroy function.

WM_RENDERALLFMTS

Sent if the clipboard owner is being destroyed and
there are unrendered formats on the clipboard.

If the window being destroyed is the active window, both the active and focus
states are transferred to another window. The window that becomes the active
window is the next window (as defined by the ALT+ESC key combination). The
new active window determines which window has the input focus.

4.2.8 Locked Windows

A window can be locked. An application typically locks a window to prevent it
from being destroyed. This is useful whenever a window needs to access data
that may be lost if the associated window is destroyed. An application can lock a
window by using the WinLockWindow function.

58 MS 0S/2 Programmer’s Referen& , Vol. 1
B S e e B S R e T e R e R e e R e

Each window has a lock count. When a window is created, its lock count is set
to zero, meaning.that the window is unlocked. An application can use the Win-
LockWindow function to increment or decrement the lock count. If the lock
count is greater than zero, the window is locked. If the lock count is zero, the
window is unlocked. The lock count can never be less than zero. An application
can retrieve the current lock count by using the WinQueryWindowLockCount
function. ,

The WinQueryWindow, WinQueryActiveWindow, and WinQuerySysModal-
Window functions also lock a window if specified.

4.2.9 Disabled Windows

A window can be disabled. A disabled window temporarily receives no keyboard
or mouse input. An application typically disables a window to prevent the user
from using the window. For example, the application may disable a push button
in a dialog window to prevent the user from choosing it. An application can
enable a disabled window at any time. Enabling a window restores normal input.
An application enables or disables a window by using the WinEnableWindow
function.

By default, a window is enabled when created. The WS_DISABLED style can
be specified, however, to disable a new window. If an application uses the
WinEnableWindow function to disable an existing window, that window also
loses the keyboard focus. The keyboard focus is set to NULL, meaning no win-
dow has the focus. If a child window or other descendant window has the key-
board focus, the descendant window loses it when the window is disabled.

An application can determine whether a window is disabled by using the Win-
IsWindowEnabled function.

4.3 System Modal Windows

System-modal windows require the user to respond immediately to warnings
about the state of the system. Because the system-modal window receives all
keyboard and mouse input, all other windows are effectively disabled when the
system-modal window is set; the user cannot continue working in other windows
until the system-modal window has been cleared. An application sets and clears
the system-modal window by using the WinSetSysModalWindow function.

Due to its absolute control of input, applications must use care when setting a
system-modal window. Ideally, an application uses a system-modal window only
when there is danger of losing data if the user does not respond to the problem
immediately.

Although an application can destroy a system-modal window, the new active win-
dow will also be the new system-modal window. An application can also make
another window active while the system-modal window exists. Again, the new
active window is also the new system-modal window. In general, once a system-
modal window is set, a system-modal window will continue to exist in the Presen-
tation Manager session until explicitly cleared.

Chapter 4: Windows 59
S s e e e e G S S R T S S S SR S T R s

4.3.1 Window Data

Every window has an associated data structure. The window data structure con-
tains all the information specified for the window when it was created and any
additional information supplied for the window since creation. Although the
exact number and meaning of fields in the window data structure is private to
the system, an application can directly access any of the following fields:

Pointer to window-class data structure
Pointer to window procedure
Parent-window handle

Owner-window handle

Handle of first child window

Handle of next sibling window
Window size and position (expressed as a rectangle)
Lock count

Window style

Window identifier

Update-region handle

Message-queue handle

An application can examine and modify these fields by using functions such as
WinQueryWindowUShort and WinSetWindowUShort. These functions let an
application access fields, such as the lock count, which are stored as 16-bit
integers. Other functions let an application access fields containing 32-bits
integers and pointers. There are several fields that indirectly affect the fields in
the window data structure. For example, the WinLockWindow function modifies
the lock-count field; the WinSubclassWindow function replaces the window-
procedure pointer.

An application can extend the number of available fields in the window data
structure by specifying a count of extra bytes when it registers the corresponding
window class. The window procedure can then use these bytes to store informa-
tion about the window. Functions such as WinQueryWindowUShort and Win-
SetWindowUShort give direct access to the extra bytes.

If a window needs more than a few bytes of storage added to the window data
structure, using extra bytes alone is not the best solution. One common alterna-
tive is to dynamically allocate some memory and then store a pointer to that
dynamic memory in the extra bytes of the window data structure.

4.3.2 Subclassed Windows

A subclassed window is any window whose original window procedure has been
replaced with another window procedure. The original window procedure is
specified by the window class used to create the window. An application typi-
cally subclasses a window (replaces the window procedure) so that it can support

60 MS 0S/2 Programmer’s Reference, Vol. 1
P R R R St S I B H e e PR i) S B S b S TR A e R R e AR B LR o

additional capabilities in a window created with a given class. For example, an
application may subclass a push-button control so that it can add sound when
the user chooses the button. An application subclasses a window by using the
WinSubclassWindow function.

Typically, a window procedure used to subclass a window will pass most (if not
all) messages on to the original window procedure. The usual goal of subclassing
is to add capability. The WinSubclassWindow function returns the address of
the original window procedure, making it easy to call the original function from
the new window procedure. The following code fragment shows the general for-
mat of a window procedure used for subclassing:

PENWP pfnwp;
main () {
/* Subclass in main function or other window procedure. */

pfnwp = WinSubclassWindow (hwnd, MySubClass);

MRESULT CALLBACK MySubClass (hwnd, usMessage, mpl, mp2)
HWND hwnd;

USHORT usMessage;

MPARAM mpl;

MPARAM mp2;

switch (usMessage) {

. /* Process messages. */

}
return (pfnwp(hwnd, usMessage, mpl, mp2)):

Note that the replacement window procedure calls the original window pro-
cedure instead of the WinDefWindowProc function.

An application can subclass only one window at a time. It cannot subclass an
entire class.

4.3.3 Window Relationships

Window relationships define how windows interact with each other on the screen
and through messages. There are parent-child window relationships and owner-
ship relationships.

The parent-child relationship determines how a window looks when drawn on
the screen. It also determines what happens to a window when a related window
is destroyed or hidden. The parent-child rules apply to all windows at all times
and cannot be modified.

Ownership determines how windows communicate using messages. Cooperative
windows define the rules of ownership and then carry them out. Although some
windows, such as windows belonging to the preregistered, public window class
WC_FRAME, have quite complex rules of ownership, the application ordinarily
defines the ownershlp rules.

Chapter 4: Windows 61
B S e T S e R S S S SR SRS s

4.3.3.1 Parent-Child Relationship

Most windows have a parent window. (The exceptions to this rule are the desk-
top and the desktop-object windows. These windows, created by the system
when it first starts, have no parent windows.) An application sets the parent win-
dow when it creates the window; the system uses the parent window to deter-
mine where and how to draw the new window, as well as when to destroy the
window.

A window is drawn relative to its parent window. The coordinates given to
specify the position of a window’s lower-left corner are relative to the lower-left
corner of its parent window. For example, a window whose coordinates are
(10,10) is placed 10 pels left and 10 pels up from the lower-left corner of its
parent window. A window is a top-level window if its parent window is the desk-
top window. Top-level windows are drawn relative to the lower-left corner of the
screen (the desktop window’s lower-left corner).

Windows with the same parent window are called sibling windows. All top-level
windows are sibling windows since they share a common parent window, the
desktop window. Sibling windows can overlap; an application or a user can
arrange the windows so that some appear on top of others. Every sibling window
has a Z-order position that specifies where it lies in the stack of overlapping win-
dows. The parent window for the sibling windows is always at the bottom of the
stack.

A window is clipped to its parent window. This means that no part of a child
window is ever drawn outside of its parent window. If an application creates a
child window that is larger than the parent window or positions a child window
so that some or all of the window extends beyond the edges of the parent win-
dow, the system automatically clips (does not draw) the portion of the child win-
dow that extends beyond the edges. Depending on the window styles for a win-
dow, a window may also be clipped to its child and its sibling windows. When a
window has the style WS_CLIPCHILDREN or WS_CLIPSIBLINGS, the sys-
tem clips the window.

A window is destroyed when its parent window is destroyed. When the parent .
window is destroyed, the system sends WM_DESTROY messages to each child
window. This is convenient for composite windows (for example, the applica-
tion’s main window) since an application needs to destroy only the parent win-
dow; all the related windows, including the client window, are destroyed auto-
matically. The parent window is always the last window to be destroyed. This
allows the parent window to use any data saved or left behind by its child win-
dows. :

While every window has only one parent window, a window can have any num-
ber of child windows. Any child window can have child windows. Each child
window in this chain of windows is a called a descendant window of the original
parent window. Immediate child windows are child windows directly related to
the parent window, not just descendant windows.

An application can change a window’s parent window at any time. Changing the
parent window changes where and how the child window is drawn.

62 MS 0S/2 Programmer’s Reference, Vol. 1
e R R T N Bt T B L e b L B Bl S St s P s e e o e o e

4.3.3.2 Ownership

Any window can have an owner window. An owner is a window, not necessarily
a parent window, that controls some aspect of another window. Applications
typically use ownership to establish a connection between windows so that
together they can carry out useful tasks. For example, the title bar in an appli-
cation’s main window is owned by the frame window. Together they let the user
move the entire main window by clicking the mouse in the title bar. An applica-
tion can set the owner window when it creates the window, or it can set the
owner window at a later time.

Ownership establishes a relationship between windows that is independent of

the parent-child relationship. Unlike parent and child windows, there are no
predefined rules for how the owner and owned windows interact. The window
procedures for the owner and owned windows must carry out any special interac-
tions specified.

The preregistered, public window classes provided by MS OS/2 recognize owner-
ship. Control windows, created with classes such as WC_TITLEBAR and
WC_SCROLLBAR, notify their owners of events; frame windows, created using
the WC_FRAME class, receive and process notification messages from the con-
trol windows they own. For example, a title-bar control sends a notification mes-
sage to its owner when it receives a mouse click. If the owner is a frame win-
dow, the frame window receives the notification message and prepares to move
the frame window and its child windows.

Owner and owned windows must be created by the same thread; that is, they
must belong to the same message queue. Since ownership is independent of the
parent-child relationship, the owner and owned windows do not have to be des-
cendants of the same parent window. This means one window can be a descen-
dant of the desktop window and the other a descendant of the desktop-object
window. This can affect how windows are destroyed. Destroying the owner win-
dow does not necessarily destroy the owned window. An application must expli-
citly destroy any owned window that is not a descendant window of the owner.

Frame windows often have owned windows that are not descendants (they are
sibling windows instead). A frame window has the following special properties:

B Destroys all owned windows, even if they are not descendants, when the
frame window is destroyed.

B Moves owned windows when the frame window moves. The owned windows
that are not descendants maintain their position relative to the upper-left
(not the usual lower-left) corner of the owner window. Any owned window
with the style FS_NOMOVEWITHOWNER does not move.

B Changes the Z-order position of all owned windows when the frame window
changes.

B Hides all owned windows when the frame window is minimized or hidden.
Owned windows hidden in this way are restored when the frame window is
restored.

If an application needs the same special processing for its own window classes,
it must provide that support in the window procedures for those classes.

Chapter 4: Windows 63
e S S e G s lﬂ““ﬁ@msz'mﬁigél#ﬁi.@_ s el P IR S R s e

4.3.3.3 Object Windows

Any descendant of the desktop-object window is called an object window. An
object window is like any other window but it is not displayed. Applications typi-
cally use object windows to provide services for windows. For example, an appli-
cation might use an object window to manage a shared database. The advantage
of using an object window in this way is that a window can request information
from the database by sending a message to the object window and receive a reply
as a message. '

Because object windows are not displayed, the window procedure for an object
window does not have to process input and paint messages. This means that an
application can use object windows just as it would other objects in object-
oriented environments. The object window processes messages that affect the
data belonging to the object.

The rules for parent-child relationship and ownership also apply to object win-

- dows. In particular, changing the parent window of an object window to the
desktop window or to a descendant of the desktop window causes the system to
display the window if it is visible.

4.3.4 Visibility

A window can be visible or invisible. The system displays visible windows on the
screen. It hides invisible windows by not drawing them. If a window is visible,
the user can supply input to the window and view output. If a window is invisi-
ble, the window is effectively disabled. An application sets a window’s visibility
state when it creates the window. Later, a user or the application can change
these initial values.

A window is visible if the style WS_VISIBLE is set for the window. An applica-
tion can set this style when it creates the window. By default, the WinCreate-
Window function creates invisible windows unless the WS_VISIBLE style is
given. After a window is created, an application typically hides a window to hide
the details of operation from the user. For example, an application may keep a
new window invisible while it customizes the window’s appearance.

Even if a window is visible, the user may not be able to see the window on the
screen. Other windows may completely overlap the window or the window may
have been moved beyond the edge of the screen. The window is considered visi-
ble but it cannot be seen.

A visible window is subject to the clipping rules established by its parent-child
relationship. If the window’s parent window is not visible, the window will not
be visible. Since a child window is drawn relative to the parent’s lower-left
corner, if the parent window is moved beyond the edge of the screen, the child
window will also move.

A user may move only part of the parent window containing the child window
off the edge of the screen, so although the window and its parent window are
visible, the user may not be able to see them. An application determines
whether the user can actually see a visible window by checking the window’s
current position.

64 MS 0S/2 Programmer’s Referenbe, Vol. 1

e S S o B B S R R

4.3.5 Size

Every window has a size (width and height) given in pels. The size can be any
initeger value in the range 0 through 65,535. A window can have zero width
and/or height. A window with zero width or height is not drawn on the screen
even though it may be visible.

Although an application can create very large windows, it should consider the
size of the screen when choosing a window size. One way to choose an appropri-
ate size is to use the WinGetMaxPosition function to retrieve the size of the
maximized window. A window that is larger than its maximized size will also be
larger than the screen.

An application can retrieve the current size of the window by using the Win-
QueryWindowRect function.

4.3.6 Position

Every window has a position. The position is specified as the coordinates of the
window’s lower-left corner. The coordinates, sometimes called window coordi-
nates, are always relative to the lower-left corner of the parent window.

To improve drawing performance, a frame window may adjust its horizontal
position so that it is a multiple of 8, relative to the screen origin (the lower-left
corner of the screen). Coordinates that are multiples of 8 correspond to byte
boundaries in the screen-memory bitmap. It is usually faster to draw starting
at a byte boundary. An application can override this action by using the
FCF_NOBYTEALIGN style when creating the window.

4.3.6.1 Size and Position Messages

A window receives messages when it changes size or position. Before a change is
actually made, the system may send a WM_ADJUSTWINDOWPOS message to
allow the window procedure to make final adjustments to the window’s size and
position. This message includes an SWP structure that contains the width,
height, and position requested. If the window procedure adjusts these values in
the structure, the system uses the adjusted values to draw the new window. The
WM_ADJUSTWINDOWPOS message is not sent if the change is a result of a
call to the WinSetWindowPos function and the SWP_NOADJUST constant is
specified. '

After a change has been made to a window, the system sends a WM_SIZE mes-
sage to specify the new size of the window. If the window has the class style
CS_MOVENOTIFY, the system also sends a WM_MOVE message. The
WM_MOVE message includes the new position for the window. The system
sends a WM_SHOW message if the visibility of the window has changed.

4.3.7 Z Order

Every window has a Z-order position. Imagine an axis extends outward from the
screen toward the viewer. A window at the top of the Z order is displayed in
front of its sibling windows when the windows overlap. A window at the bottom
of the Z order is displayed behind its sibling windows when the windows overlap.

Chapter 4: Windows 65
B B S B i Y S e R R R N R S R SR

4.3.8 Maximized and Minimized Windows

A maximized window is a window that has been enlarged so it fills the screen.
Although a window’s size can be set so it exactly fills the screen, a maximized
window is slightly different—the system automatically moves the window’s title
bar to the top of the screen and sets the WS_MAXIMIZED window style.

A minimized window is a window whose size has been reduced so that it is
exactly the size of an icon. Like a maximized window, a minimized window is
more than just a window of a given size. The system typically moves the mini-
mized window to the lower part of the screen and sets the WS_MINIMIZED
style for that window. The lower part of the screen is sometimes call the icon
area. The system moves a minimized window into the first available icon position
in the icon area if no other position is specified.

If a window is created with the styles WS_MAXIMIZED or WS_MINIMIZED,
the system draws the window as a maximized or minimized window.

An application can restore a maximized or minimized window to its previous
size and position.

4.3.9 Redrawing Windows

After the system moves or changes the size of a window, it may invalidate all or
part of the window. If at all possible, the system tries to preserve the contents of
the window and simply copy them to the new position. But if a window’s size has
increased, the window must fill the area exposed by the size change. If a window
has moved from behind an overlapping window, any area that was formerly
obscured by the other window must be drawn. In these cases, the system invali-
dates the exposed areas and the window receives a WM_PAINT message.

An application can require that the system invalidate the entire window for each
move or size change by setting the CS_SIZEREDRAW class style in the corre-
sponding window class. This class style is typically used for applications that use
the window’s current size and position to determine how to draw the window.
For example, a clock application may always draw the face of the clock so that it
exactly fills the window.

An application can also explicitly specify which parts of the window to preserve
during a move or size change. Before any change is made, the system sends a
WM_CALCVALIDRECTS message to windows that do not have the style
CS_SIZEREDRAW. This allows the window procedure to specify what part of
the window to save and where to align it after the move or size change.

4.3.10 System Commands

An application that has a window with a System menu can change the size and
position of that window by sending system commands. The system commands
are usually generated by the user choosing commands from the System menu.
An application can emulate the user action by sending a WM_SYSCOMMAND
message to the window.

66 MS 0S/2 Programmer’s Reference, Vol. 1
B T B e N S S SR B B

Some of the system commands are listed here:

Command Description

SC_SIZE Starts a size command. The user can change
the size of the window by using the mouse or
keyboard.

SC_MOVE Starts a move command. The user can move
the window by using the mouse and keyboard.

SC_MINIMIZE Minimizes the window.

SC_MAXIMIZE Maximizes the window.

SC_RESTORE Restores a minimized or maximized window to
its previous size and position.

SC_CLOSE Closes the window. This command sends a

WM_CLOSE message to the window. The
window carries out any steps needed to clean
up and destroy itself.

4.4 Using Windows

The following sections explain how to create and use windows in an application,
how to manage ownership and parent-child window relationships, and how to
move and size windows.

4.4. 1 Creating a Window
You create windows by using the WinCreateWindow function.

For all windows, the parent-child relationship is set when you create the window
using the WinCreateWindow function or other window-creation function. You
can set the ownership for a window at any time. (Note that a window does not
need an owner window unless you want to establish a relationship other than the
standard parent-child relationship for the window.)

You can specify the initial size and position for a window when you create it.
You can change these settings at any time.

4.4.2 Creating a Frame Window

Although WinCreateWindow can be used to create all windows, most applica-
tions do not call this function. Instead, they use the WinCreateStdWindow func-
tion to create frame windows and the WinDIgBox or WinCreateDlg function to
create dialog windows.

Chapter 4: Windows 67
T e B S o S R R e S R S R s R A S RS

4.4.3 Destroying a Window

You can destroy a window by using the WinDestroyWindow function. The fol-
lowing code fragment shows how to create and then destroy an entry-field con-
trol:

HWND hwndMain; /* application's main window */
HWND hwnd;

hwnd = WinCreateWindow(...)
/* Read from the control. */

WinDestroyWindow (hwnd) ;

4.4.4 Setting and Querying Window Data

You can examine the data associated with a window by using the WinQuery-
WindowUShort and WinQueryWindowULong functions.

Each of these functions specifies a field to examine. The index value can be an
integer representing a zero-based index or a constant (QW_) that specifies a
specific field.

4.4.5 Creating a Top-Level Window

You can create a top-level window by setting the desktop window as the win-
dow’s parent window. Almost all main windows for applications are top-level
windows; the desktop window is frequently given in calls to the WinCreate-
StdWindow function.

The following code fragment creates a top-level window for an application:
/* Set the creation flags. */
ULONG flCreationFlags =

FCE_TITLEBAR | /* title bar */
FCF_SIZEBORDER | /* size border

FECF_MINMAX | /* minimizZe and maximize buttons */
FCEF_MENU | * menu

FCF_SYSMENU | /* System menu */
ECF_HORZSCROLL | /* horizontal scroll bar */
FCF_VERTSCROLL; | /* vertical scroll bar */

*

* Create a frame window with a client window that belongs to the
* window class "MyPrivateClass".
*

hwndFrame = WinCreateStdWLndow(

HWND_DESKTOP, /* owner is desktop window */
oL, /* no styles for frame window */
&flCreationElags, /* frame controls t/
"MyPrivateClass", /* window class for client */
"Sample Window", /* window title */
oL, /* no styles for client */
NULL, /* use application's module */
1, /* resource ID */
&hwndClient) ; /* client handle */

68 = MS 0S/2 Programmer’s Reference, Vol. 1
BT s e e T R B A TR A R @‘JE*' R R R B e L B e S SR I A,

4.4.6 Creating an Object Window

You can create an object window by usmg the WinCreateWindow function and
setting the desktop-object window as the parent window.

The following code fragment creates an object window:
hwndObject = WinCreateWindow(

HWND_OBJECT, /* parent is object window */
"MyPrivateClass , . /* window class for client */
"Sample Window", /* window title */
oL, /* no styles for object window t/
o, O, /* lower-left corner */
o, O, /* width and height L4
NULL, /* no owner */
HWND_TOP, /* insert at top of Z order */
1, /* window ID */
NULL, /* no class-specific data */
NULL) ; /* no presentation data */

4.4.7 Changing the Parent Window

You can change a window’s parent window by using the WinSetParent function.
For example, an application that uses child windows to display documents may
want only the active-document window to show a System menu. One way to do
this is to change that menu’s parent window back and forth between the docu-
ment window and the object window when WM_ACTIVATE messages are
received. This is shown in the following code fragment:
case WM_ACTIVATE:

hwndMenu = WinWindowFromID (hwnd, FID_MENU) ;

1f (SHORTLFROMMP (mpl) == TRUE)

WinSetParent (hwndMenu, hwnd, TRUE):;

else
WinSetParent (hwndMenu, HWND_OBJECT, TRUE);

4.4.8 Finding a Parent, Child, or Owner Window

You can determine the parent, child, and owner windows for any window by
using the WinQueryWindow function. The function returns the window handle
of the requested window. It can also lock that window. If a window is locked, it
must be unlocked by using the WinLockWindow function.

The following code fragment determines the parent window of the given window
(it does not lock the parent window):

HWND hwndParent;

hwndParent = WinQueryWindow (hwnd, QW_PARENT, FALSE):

The following code fragment determines the topmost child window and locks it:
HWND hwndChild; :
if (hwndChild = WinQueryWindow(hwnd, QW_TOP, TRUE)) {

/* Lock the child window. */

WinLockWindow (hwndChild, FALSE);

If a given window does not have an owner or child window, the function returns
NULL.

Chapter 4: Windows 69
AR R SRR b e o U el T E e P e R B Sttt A s B S R S

4.4.9 Setting an Owner Window

You can set the owner for a window by using the WinSetOwner function. After
setting the owner, a window typically notifies the owner window of the new rela-
tionship by sending a message.

The following code fragment shows how to set the owner window and send it a

message:

#define NEW_OWNER 1

HWND hwnd; /* window to get new owner */
HWND hwndOwner; /* window to become new owner */

if (WinSetOwner (hwnd, hwndOwner)) {

/* Send a notification message. */

WinSendMsg (hwndOwner, /* send to owner */
WM_CONTROL, control message for notification */
MAKELONG (NEW_OWNER, 1), /* notification code and ID *
NULL) ; /* no extra data */

}

A window can have only one owner, so WinSetOwner removes any previous
owner.

4.4.10 Finding a Child or Owned Window

A parent or owner window can retrieve the handle of a child or owned window
by using the WinWindowFromID function and supplying the identifier of the
child or owned window. WinWindowFromID searches all child and owned win-
dows to locate the window having the given identifier. The window identifier is
set when the application creates the child or owned window.

An owner window typically uses the WinWindowFromID function to respond to
a notification message from an owned window.

The following code fragment retrieves the window handle of the owned window
having the window identifier 1:

hwndOwned = WinWindowFromID (hwndOwner, 1);
WinSendMsg (hwndOwned, WM_ENABLE, MPEROHZSHORT(O TRUE) , NULL):;

You can also retrieve the handle of a child window by using the WinWindow-
FromPoint function and supplying a point in the corresponding parent window.

4.4.11 Enumerating Top-Level Windows

You can enumerate all top-level windows by using the WinBeginEnumWindows
and WinGetNextWindow functions. An application can create a list of all child
windows for a given parent window by using the WinBeginEnumWindows func-
tion. This list contains the window handles of immediate child windows. An
application can retrieve, one at a time, the window handles from the list using
the WinGetNextWindow function. When the application has finished using the
list, it must release it by using the WinEndEnumWindows function.

70 MS 0S/2 Programmer’s Reference, Vol. 1
T T o e B R R R R N I L S e BT i

The following code fragment shows how to enumerate all top-level windows (all
- immediate child windows of the desktop window):

/* Enumerate all top-level windows. */

henum = WinBeginEnumWindows (HWND_DESKTOP) ;

*

* Loop through all enumerated windows, performing the desired task
* on each one.
*/

while (hwnd = WinGetNextWindow (henum)) {
. /* Lock the window. */

ﬁinLockWindov(hwnd, FALSE); /* unlock window when done */

/* Return memory required for enumeration back to the system. */

WinEndEnumWindows (henum) ;

4.4.12 Moving and Sizing a Window

You can move a window by using the WinSetWindowPos function and specifying
the SWP_MOVE constant. The function changes the position of the window to
the specified position. The position is always given as coordinates relative to the
parent window.

The following code fragment moves the window to the position (10,10):
WinSetWindowPos (

hwnd, /* window handle */
NULL, /* not used for moving and sizing */
10, 10 /* new position */
o, O, * not used for moving */
SWP_MOVE): /* move and size */

You can set the size of a window by using the WinSetWindowPos function and
specifying the SWP_SIZE constant. The function changes the width and height
of the window to the specified width and height.

You can combine moving and sizing in a single function call, as shown in the fol-
lowing code fragment:

WinSetWindowPos (

hwnd, /* window handle t/
NULL, /* not used for moving and sizing */
10, 10 /* new position */
200, 200, /* width and height */
SWP_MOVE | SWP_SIZE): /* move and size t/

You can retrieve the current size and position of a window by using the Win-
QueryWindowPos function. This function copies the current information to an
SWP structure.

Chapter 4: Windows 71
B e S N R B R S R I R S R e R R SR B

The following code fragment uses the current size and position to change the
height of the window, but leaves the width and position unchanged:

SWP swpCurrent;

WinQueryWindowPos (hwnd, &swpCurrent):
WinSetWindowPos (

hwnd, /* window handle */
NULL, /* not used for moving and sizing */
o, o, /* not used for sizing */
swpCurrent.cx, * current width */
swpCurrent.cy + 200, /* new height */
SWP_SIZE); /* change the size */

You can also move and change the size of several windows at once by using the
WinSetMultWindowPos function. This function takes an array of SWP struc-
tures. Each structure specifies the window to be moved or changed.

4.4.13 Moving a Window in a Stack of Windows

You can move a window to the top or bottom of the Z order by passing the
SWP_ZORDER constant to the WinSetWindowPos function. You specify where
to move the window by specifying HWND_TOP or HWND_BOTTOM.

The following code fragment uses WinSetWindowPos to reorder a stack of child
windows:

HENUM henum;

HWND hwndParent;

HWND hwndNext;

henum = WinBeginEnumWindows (hwndParent);

while (hwndNext = WinGetNextWindow (henum)) {
WinSetWindowPos (

hwndNext, /* next window to move */

HWND_TOP, /* put window on top */

o, 0, o0, O, /* not used for Z order */

SWP ZORDER) /* change Z order *
WinLockWindow (hwndNext, FALSE); /* unlock window */

. /* Wait a little before doing the next window. */
}

WinEndEnumWindows (henum) ;

You can also specify the window you want the given window to move behind. In
this case, you specify the window handle instead of the HWND_TOP or
HWND_BOTTOM constant.

If you enumerate windows as shown in the previous code fragment, the following
code fragment will reverse the order of every other pair of windows:

hwndExchange = WinGetNextWindow (henum) ;
/* hwndNext has top window, hwndExchange has window under the top */
WinSetWindowPos (

hwndNext, * next window to move *

hwndExchange, /* put lower window on top */

0, 0, 0, O, /* not used for Z order */
*

SWP_ZORDER) ; /* change Z order

72 MS 0S/2 Programmer’s Reference, Vol. 1 o L ‘ .
B e S B N R e I S R B SR B RS

4.4.14 Showing and Hiding a Window

Moving and sizing a window still applies if a window is not visible. The effects of
moving and sizing cannot be seen until the window is visible. You can show and
hide a window by using the WinShowWindow fuiiction. This function changes
the WS_VISIBLE style for a window to the specified setting. You can also use
the WinIsWindowVisible function to check the visibility of a window. The func-
tion returns TRUE if the window is visible.

4.4.15 Maximizing, Minimizing, and Restoring a Window

You can maximize, minimize, or restore a frame window by using the Win-
SetWindowPos function and specifying the constant SWP_MAXIMIZE,
SWP_MINIMIZE, or SWP_RESTORE. Only a frame window can maximize
and minimize by default. For any other window, you must provide support for
these actions in the corresponding window procedure.

The following code fragment shiows how to maximize a frame window:
SWP swpCurrent;

WinQueryWindowPos (hwnd, &swpCurrent);
WinSetWindowPos (

hwnd, /* window handle */
NULL, /* not used to maximize */
swpCurrent.x, :

swpCurrent.y, /* stored for restoring window */
swpCurrent.cx, :
swpCurrent.cy, * stored for restoring window */
'SWP_MAXIMIZE | SWP_SIZE | SWP_MOVE); /* maximize */

4.5 Summary

The following sections l_isi all the functions and messages an application can use
to create, maintain, and destroy windows; to manage window relationships; and
to set, query, and initialize the size, position, and visibility of windows.

4.5.1 Window Functions

The following functions are used by an application to create, maintain, and
destroy windows:

WinCreateWindow . Creates a window. This is the most flexible, general pur-
pose window-creation function. It can be used to create windows of any class.
The function’s parameters let you specify the window class, the parent window,
the owner window, the window size and position, the Z-order position, the win-
dow identifier, general and class-specific window styles; and additional class-
specific data. Other window-creation functions make one or more calls to this
function to create their window(s).

WinDestroyWindow Destroys a window. Related child windows and owned
windows will also be destroyed.

WinEnableWindow Enables or disables a window. A disabled window loses the
focus and ignores input. This function clears or sets the WS_DISABLED style.

: Chapter 4: Windows 73
B B S S R e R A P S R R e s R R

WinlsWindow Determines if a window handle is valid.

WinIlsWindowEnabled Determines whether a window is enabled or disabled.
The function tests the WS_DISABLED style.

WinLockWindow Increments or decrements a window lock count. The lock
count is initialized to zero and must be zero for the window to be destroyed.

WinQuerySysModalWindow Determines the system-modal window. This func-
tion returns the system-modal window handle if successful or NULL if there is
no system-modal window.

WinQueryWindowLockCount Retrieves the window lock count.
WinQueryWindowPtr Examines a pointer in a window data structure.
WinQueryWindowULong Examines a 32-bit field in a window data structure.
WinQueryWindowUShoﬂ Examines a 16-bit field in a window data structure.

WinRegisterWindowDestroy Notifies other applications when the specified win-
dow is destroyed. '

WinSetSysModalWindow Sets a window as the system-modal window or ends
the system-modal state. This function should be called only while processing key- -
board or mouse input.

WinSetWindowBits Sets bits in a 32-bit field in a window data structure.
WinSetWindowPtr Sets a pointer in a window data structure.
WinSetWindowULong Sets a 32-bit field in a window dz_lta structure.
WinSetWindowUShort Sets a 16-bit field a window data structure.

WinSubclassWindow Changes a window procedure. If successful, the function
returns a pointer to the previous window procedure.

4.5.2 Standard Window Messages

The follbwihg are standard window messages:

WML_CREATE Sent to a window during processing of the WinCreateWindow
function, before the window is sized, positioned, or shown.

WM_DESTROY Sent to the window being destroyed. This message is sent
after the window has been hidden on the device but before its child windows
have been destroyed.

WM_ENABLE This message is sent when a window is being enabled.

WM_OTHERWINDOWDESTROYED Sent to all top-level windows when a
window is destroyed.

WM_QUERYWINDOWPARAMS Sent to obtain certain window data. The
data is specified and returned by using a WNDPARAMS data structure.

WM_SETWINDOWPARAMS Sent to set window data.

74 MS 0S/2 Programmer’s Reference, Vol. 1
B B R e R S e g

4.5.3 Relationship Functions
The following functions can be used to manage window relationships:

WinBeginEnumWindows Begins the window-enumeration process. This func- '
tion creates an enumeration list of the immediate child windows of a window and
returns the list handle.

WinEndEnumWindows Ends a window enumeration process. This function
destroys the enumeration list (just the list, not the windows) created by the Win-
BeginEnumWindows function.

WinGetNextWindow Obtains a window handle from a window list created by a
call to the WinBeginEnumWindows function. Each call returns the next window
in the list or NULL at the end of the list. The function locks the window that
has the returned handle. The application must unlock the window after process-
ing. Calling this function after it has returned NULL causes it to wrap around to
the beginning of the list.

WinIsChild Determines if one window is the child of another window.

WinQueryDesktopWindow Obtains a handle of the desktop window
HWND_DESKTOP.

WinQueryObjectWindow Obtains a handle of the desktop-object window
HWND_OBJECT.

WinQueryWindow Retrieves a window’s parent, owner, or child windows. This
function returns the handle of the specified window or NULL if no such window
exists.

WinSetOwner Sets a window’s owner window. Note that you can set the handle
of the owner window to NULL, meaning it has no owner.

WinSetParent Sets a window’s parent window. This allows you to change
object windows to regular windows, descendant windows of top-level windows to
top-level windows, and vice versa..

4.5.4 Functions for Moving, Sizing, and Changing

The following functions can be used to move and change the position of a win-
dow:

WinGetMaxPosition Obtains a window’s maximized size and position. A
window’s maximized size is the size of its parent window plus an adjustment out-
ward in all four directions equal to the size of its border. The adjustment is
made because maximized windows do not show their border.

WinGetMinPosition Obtains an icon location for a minimized window. The
function searches for an icon area, starting at the given point and continuing
with subsequent positions until the next available icon position is found.

WinIsWindowVisible Determines whether a window is visible.

WinQueryWindowPos Determines a window’s current size and position.

Chapter 4: Windows 75
R e e S e B s S R S R NS n R g R

WinQueryWindowRect Determines a window’s bounding rectangle, relative to
its parent window. You can determine the window’s size and position from the
bounding rectangle.

WinSetWindowPos Sets a window’s size, position, and Z order. Position is
specified in window coordinates relative to the parent window’s lower-left
corner. Size is specified in device units. Z order is relative to a window’s sibling
windows.

WinSetMultWindowPos Sets the size, position, and Z order for an array of
windows. This function and the WinSetWindowPos function are the same except
for the number of windows each can affect.

WinShowWindow Makes a window visible or invisible.

4.5.5 Messages for Moving, Sizing, and Changing

The following messages are received by a window procedure when the
corresponding window is moved or changes size or visibility:

WM_ADJUSTWINDOWPOS Sent to a window about to be moved or sized.
This message allows the window to adjust the new size and position before they
take effect. This message is sent, by default, during calls to the WinCreate-
Window, WinSetWindowPos, and WinSetMultWindowPos functions.

WM_CALCVALIDRECTS Sent from the WinSetWindowPos and WinSet-
MultWindowPos functions when a window is about to be resized. Both these
functions determine if there is a rectangular area of the window that can be
preserved across the size change. If such a valid rectangle exists, its bitmap data
can be simply and quickly copied to the new window image. Handlers of this
message can specify the coordinates of the valid rectangle to be preserved, as
well as determine where the valid rectangle will be placed within the resized win-
dow.

WM_MOVE Sent by the system when a window with CS_MOVENOTIFY style
changes its absolute (relative to the screen) position. The window’s new position
can be obtained by calling the WinQueryWindowPos function. :

WM_SHOW Sent by the system after a window’s WS_VISIBLE style bit has
changed. An mpl value of TRUE indicates an invisible window has become visi-
ble. An mpl value of FALSE indicates a visible window has become invisible.
The default window procedure takes no action on this message.

WM_SIZE Sent after a window has changed size, but before any repainting has
been performed. Resizing or repositioning of child windows resulting from the
size change usually occurs during the processing of this message. This message is
not sent when a window is created.

Chapter

B o e e S A RS R S R GRS

- Messages and Message Queues

5.1 Introduction........ccevieiininiiniiiiiiiiiiiiiiiniiieeeniiininrenenes 79
5.2 About Messages and Message Queues.......cocevuvenininnnnen. 79
5.2.1 MeSSAZES .iieiuruenieinenrnenrsarasinisesarasiessrasessssnsnees 79
522 Message QUEUES c.cuuuinrnieineniiirnrsiiecssnsencasnsnesaons 80
523 Message Loop...cveeiiriiiiieiiniiiiniiiiiieniniiieinenn. 81
5.2.4 Messages and Window Proceduresccceevvenensn. 82
5.2.5 Application Messages.....cccevurerenrererenisiserenesssenens 83
52.6 System-Defined Messages........coeuveriineiiianeninenenes 84
5.2.7 Application-Defined Messagescccovevevieriecnennnns 85
5.2.8 Semaphore MeSSages ...ccovvurueriersecerseersncorsesasnnns 85
529 Message Prioritiesccvvnreiinniiaiieniniceriiiecaenineen. 85
5.2.10 Message Filteringcoveervereiininiieresisniiesarenneseens 86
5.3 Using Messages in an Application.......c.ceeeveiiiiicennnnnn. 86
5.3.1 Creating a Message Queue and Message Loop........... 86
5.3.2 Examining the Message Queue........cccevvvniieininnnnnns 87
5.3.3 Posting a Message t0 a WindoW......c.cvuverininraraniesns 88
5.3.4 Sending a Message to a WindoW.......ccceveveeninennnnnns 88
5.3.5 Broadcasting a MesSageceveiiernirinreriarnenscnsnnns 88
5.3.6 Using Message Macroscoceevevurieiniienienieriiinnnnns 89

5.4 SUIMMATIY ...ciiiiiiiiniiiiiiiiiii et ecaeeeaes 89

Chapter 5: Messages and Message Queues 79
N e e B R S S R R S e e IR R e

5.1 Introduction

This chapter describes creating and using messages and message queues in MS
OS/2 Presentation Manager applications. You should also be familiar with the
following topics:

B Windows
B Window procedures
B Threads, processes, and sessions

5.2 About Messages and Message Queues

Unlike traditional applications that take complete control of the computer’s key-
board, mouse, and screen, Presentation Manager applications must share these
resources with other applications running at the same time. Because all applica-
tions run independently, Presentation Manager applications rely on MS OS/2 to
help them manage shared resources. The system manages shared resources by
controlling the operation of each application, communicating with each applica-
tion when there is keyboard and mouse input or when an application must move
and size its windows. The system uses messages to communicate with an applica-
tion and the windows belonging to that application.

A message is information, a request for information, or a request for an action
to be carried out by the application. The system communicates a message to an
application so that the application can use the information or respond to the
request. The system communicates in two ways: posting and sending.

The system posts a message to an application’s message queue if the message
represents information or a request that does not need immediate action. The
message queue is an application-created storage area used to hold messages. The
application can then retrieve and process a message at the appropriate time. The
system posts a message by copying the message data to the message queue.

The system sends a message to an application when it needs an immediate
response from the application. It sends a message by passing the message data
as arguments to the window procedure. The window procedure carries out the
request or lets the system carry out default processing for the message.

The following sections describe messages and message queues in detail.

5.2.1 Messages

All messages contain information that an application uses to carry out tasks.
There are two types of messages: queue messages and window messages. Queue
messages are messages stored in a message queue. Window messages are mes-
sages sent to a window procedure. Although these message types have very
different formats, the information they contain is nearly identical.

Every message contains a message identifier. The message identifier is an integer
value that determines whether the message is information or a request. When an

application processes a message, it uses the message identifier to determine what
to do. '

Every message contains a window handle. The window handle identifies the

80 MS 0S/2 Programmer’s Reference, Vol. 1
R R I RIS e %33,-"“’!.“’1@"&‘@.4 R R

window for which the message is intended. The window handle is important
because most message queues and window procedures serve more than one win-
dow. The window handle ensures that the application processes the message for
the appropriate window.

Messages contain two message parameters. A message parameter is a 32-bit
value that specifies data or the location of data to be used in processing the mes-
sage. The meaning and value of a message parameter depends on the message.
Message parameters can be pointers to structures containing additional data,
integer values, packed bit flags, and so on. Some messages do not use message
parameters and typically set the parameters to zero. An application always
checks the message identifier to determine how to interpret the message parame-
ters. ’

Queue messages also contain the message time and mouse position. The message
time specifies the system time, in milliseconds, when the message was created.
The mouse position specifies the location of the mouse pointer, in screen coordi-
nates, when the message was created.

A queue message is a QMSG data structure that contains six fields representing
the window handle, message identifier, two message parameters, message time,
and mouse position. The time and position are provided because most queue
messages are input messages, representing keyboard or mouse input from the

- user. The time and position help the application identify the context of the mes-
sage. The system posts a queue message by filling the QMSG structure and copy-
ing it to a message queue.

A window message consists of the window handle, the message identifier,-and
two message parameters. A window message does not include the message time
and mouse position because most window messages are requests to carry out a
task that is not related to the current time or mouse-pointer position. The system
sends a window procedure by passing these values as individual arguments to a
window procedure.

5.2.2 Message Queues

Every Presentation Manager application needs a message queue. A message
queue is the only means an application has to receive input from the keyboard or
mouse. Only applications that create message queues can create windows.

A message queue is internal storage reserved by the application for receiving and
holding posted messages. An application creates a message queue by using the
WinCreateMsgQueue function. This function returns a handle the application
can use to access the message queue. After an application creates a message
queue, the system posts messages intended for windows in the application to that
queue. The application can retrieve queue messages by specifying the message-
queue handle in a call to the WinGetMsg function. It can examine messages
without retrieving them by using the WinPeekMsg function. When an applica-
tion no longer needs the message queue, it can destroy it by using the Win-
DestroyMsgQueue function.

Message queues serve all windows created by the application. This means a
queue may hold messages for several windows. Most messages specify the win-
dows to which they belong, so the application can easily apply a message to the
appropriate window. Messages that do not specify a window apply to the entire
application.

Chapter 5: Messages and Message Queues 81
B R S e Bl I R S e i

An application that has more than one thread can create more than one message
queue. The system allows one message queue for each thread. A message queue
created by an application thread belongs to that thread and has no connection to
other queues in that application. When an application creates a window in a
given thread, the system associates the window with the message queue in that
thread. The system then posts all subsequent messages intended for the window
to that queue.

Although multiple messages queues are possible, most Presentation Manager
applications use threads sparingly and so use only one message queue.

Since several windows typically use a message queue, it is important that the
message queue be large enough to hold all possible messages that may be posted
to it. An application can set the size of the message queue when it creates the
queue by specifying the maximum number of messages the queue can hold.

To minimize the queue size, several types of posted messages are not actually
stored in a message queue. Instead, the system keeps a record in the queue of
the message being posted and combines any information contained in the mes-
sage with information from previous messages. Timer, semaphore, and paint
messages are handled in this way. For example, if more than one WM_PAINT
message is posted, the system combines the update regions for each into a single
update region. Although there is no actual message in the queue, the system
constructs one WM_PAINT message with the single update region when an
application uses the WinGetMsg function.

Mouse and keyboard input messages are also not stored in the message queue.
These are stored in the system message queue. The system message queue is a
system-owned queue that receives and holds messages for all mouse and key-
board input. The system does not copy these messages to application message
queues. Instead, the WinGetMsg function searches the system queue for input
messages belonging to the application when there are no other higher-priority
messages in the application’s message queue. The system message queue is usu-
ally large enough to hold all input messages, even if the user is typing or moving
the mouse very quickly. If the system queue does run out of room, the system
ignores the most recent keyboard input (usually beeping to indicate it is ignored)
and collects mouse motions into a single motion.

Every message queue has a corresponding data structure. The data structure
specifies the identifiers of the process and thread that own the message queue
and gives a count of the maximum number of messages the queue can receive.
An application can retrieve the data structure by using the WinQueryQueuelInfo
function.

A message queue also has a current status. The status specifies whether any mes-
sages are available in the queue. An application can retrieve the queue status by
using the WinQueryQueueStatus function. Since this function is very fast, appli-

- cations typically use it to check for messages rather than using the WinPeekMsg
function, which inspects the thread’s message queue.

5.2.3 Message Loop

Every application with a message queue is responsible for retrieving the mes-
sages from that queue. An application can do this by using a message loop. A
message loop is a program loop, usually in the application’s main function, that
retrieves messages from the message queue and dispatches them to the

82 MS 0S/2 Programmer’s Reference, Vol. 1 ,
T S R s R R R R R S R R R e

appropriate windows. The message loop consists of two function calls: one to
the WinGetMsg function, the other to the WinDispatchMsg function. The mes-
sage loop has the following form:

vhile (WinGetMsg(hab, &qmsg, NULL, O, 0))
WinDispatchMsg(hab, &qmsg):;

An application starts the message loop after creating the message queue and at
least one application window. Once started, the message loop continues to
retrieve messages from the message queue and to dispatch (send) them to the
appropriate windows. The WinDispatchMsg function sends each message to the
window specified by the window handle in the message.

Only one message loop is needed for a message queue, even if the queue con-
tains messages for more than one window. Each queue message is a QMSG
structure that contains the handle of the window to which the message belongs,
so the WinDispatchMsg function always dispatches the message to the proper
window. The WinGetMsg function retrieves messages from the queue in first-in,
first-out (FIFO) order, so the messages are dispatched to windows in the same
order they were put in the queue.

If there are no messages in the queue, the system temporarily stops processing
the WinGetMsg function until a message arrives. This means that CPU time
slices that would otherwise be spent waiting for a message can be given to the
applications (or threads) that do have messages in their queues.

The message loop continues to retrieve and send messages until the WinGetMsg
function retrieves a WM_QUIT message. This message causes the function to
return FALSE, terminating the loop. In most cases, terminating the message
loop is the first step in terminating the application. An application can terminate
its own loop by posting the WM_QUIT message in its own queue.

An application can modify its message loop in a variety of ways. For example, it
can retrieve messages from the queue without dispatching them to a window.
This is useful for applications that post messages that do not specify a window
(these messages apply to the application rather than to a specific window; they
have NULL window handles). An application can also direct the WinGetMsg
function to search for specific messages, leaving other messages in the queue.
This is useful for applications that temporarily need to bypass the usual first-in,
first-out order of the message queue.

5.2.4 Messages and Window Procedures

When the system needs an immediate response from an application, it sends a
message to a window procedure. A window procedure is a function that receives
and processes all input and requests for action sent to the window by the system.
Every window class has a window procedure and every window created using
that class uses the window procedure to respond to messages.

The system sends a message to the window procedure by passing the message
data as arguments to the window procedure. The window procedure carries out -
an appropriate action for the given request. Most window procedures check the
message identifier, then use the information specified by the message parameters
to carry out the request. When it has completed processing the message, the
window procedure returns a message result. Each message has a particular set of
possible return values. The window procedure must return the appropriate value
for the processing it carried out. '

Chapter 5: Messages and Message Queues 83
e T B R R B R s e Rl

A window procedure cannot ignore a message. If it does not process a message,
it must pass the message back to the system for default processing. The window
procedure can do this by calling the WinDefWindowProc function. This function
carries out a default action and returns the message result. The window pro-
cedure must return this value as its own message result.

A window procedure commonly processes messages for several windows. It uses
the window handle specified in the message to identify the appropriate window.
Most window procedures process a few types of messages and pass the others
on to the system by calling the WinDefWindowProc function.

5.2.5 Application Messages

Any application can post and send messages. Like the system, an application
posts a message by copying it to a message queue. It sends a message by passing
the message data as arguments to a window procedure. An application can post
a message by using the WinPostMsg function. It can send a message by using
the WinSendMsg function.

Typically, an application posts a message to notify a specific window to carry out
a task. The WinPostMsg function creates a QMSG structure for each message
and copies the message to the message queue corresponding to the given win-
dow. The application’s message loop eventually retrieves the message and
dispatches it to the appropriate window procedure. One message commonly
posted is WM_QUIT. This message terminates the application by terminating the
message loop.

Typically, an application sends a message to notify a specific window procedure
to immediately carry out a task. The WinSendMsg function passes the message
to the window procedure corresponding to the given window. The function waits
until the window procedure completes processing and then returns the message
result. It is very common for parent and child windows to communicate by send-
ing messages to each other. For example, a parent window that has an entry-field
control (as its child window) can set the text of the control by sending the child
window a message. The control can notify the parent window of changes to the
text (carried out by the user) by sending messages back to the parent window.

Occasionally, an application may need to send or post a message to all windows
in the system. For example, if the application changes a system value, it must
notify all windows about the change by sending a WM_SYSVALUECHANGED
message. An application can send or post messages to any number of windows
by using the WinBroadcastMsg function. The options in WinBroadcastMsg
determine whether the message is sent or posted and specify the number of win-
dows to receive the message.

If an application has more than one thread, any thread in the application can
post messages to a message queue, even if that thread has no message queue of
its own. However, only threads that have a message queue can send messages.
Posting or sending messages between threads is relatively uncommon. One rea-
son for this is that it is costly in terms of system performance to send a message.
If you do post messages between threads, it is likely to be for semaphore mes-
sages. Semaphore messages permit window procedures to jointly manage a
shared resource.

An application can post a message without specifying a window. If the applica-
tion supplies a NULL window handle when it calls the WinPostMsg function,

84 MS 0S/2 Programmer’s Reference, Vol. 1
R R B R e e b R e S BT e P e e A ES R Tl STl it BUESE ot bt et it b

the function posts the message that is in the message queue of the thread calling
the function. Because the message has no window handle, the message loop
processes the message. This is one way to create messages that apply to the
entire application instead of to a specific window.

A window procedure can determine whether it is processing a message sent by
another thread by using the WinInSendMsg function. This is useful when mes-
sage processing depends on the origin of the message.

A common programming error is to assume that the WinPostMsg function
always posts a message. This is not true when the message queue is full. An
application should check the return value of the function to see if the message
has been posted. In general, if an application intends to post many messages to
the queue, it should set the message queue to an appropriate size when it creates
the queue. The default message-queue size is ten messages.

5.2.6 System-Defined Messages

There are many system-defined messages. The system uses these messages to
control the operation of applications and to provide input and other information
for applications to process. The system sends or posts a system-defined message
when it communicates with an application. An application can also send or post
system-defined messages. Applications typically use these messages to control
the operation of control windows created using the preregistered window classes.

Each system message has a unique message identifier and a corresponding sym-
bolic constant. The symbolic constant, defined in MS OS/2 header files, typically
states the purpose of the message. For example, the WM_PAINT constant
represents the paint message. The paint message requests a window to paint its
contents.

The symbolic constants also specify the message category. System-defined mes-
sages can belong to several categories; the prefix identifies the type of window
that can interpret and process the messages. The following list gives the prefixes
and related message categories:

Prefix Message category
BM Button-control
EM Entry-field control
LM List-box control
MM Menu

SBM Scroll-bar control
SM Static control
TBM Title-bar control
WM General window

General window messages cover a wide range of information and requests and
include mouse and keyboard-input messages, menu and dialog-input messages,
window-creation and window-management messages, and dynamic-data-exchange
(DDE) messages.

Chapter 5: Messages and Message Queues 85
B O B B S e R RS SRR B iy

5.2.7 Application-Defined Messages

An application can create its own messages to use in its own windows. If an
application creates messages, the window procedure that receives the message
must interpret the message and provide appropriate processing.

MS OS/2 reserves the message-identifier values in the range 0x0000 through
(WM_USER-1) for system-defined messages. Applications cannot use these
values for private messages. Values in the range WM_USER through OxBFFF
are available for message identifiers defined by an application for use in that
application. Values in the range 0xC000 through OXFFFF are reserved for mes-
sage identifiers defined by an application using the atom-manager registration for
use in any application.

5.2.8 Semaphore Messages

The semaphore messages are a way of signaling the end of an event through the
message queue. Applications use these messages like they use MS OS/2 sema-
phore functions to coordinate events by passing signals. Semaphore messages are
often used in conjunction with MS OS/2 semaphores.

There are four semaphore messages: WM_SEM1, WM_SEM2, WM_SEM3, and
WM_SEM4. An application posts one of the semaphore messages to signal the
end of the given event. The window that is waiting for the given event receives
the semaphore message when the message loop retrieves and dispatches the mes-
sage.

Each semaphore message includes a bit flag that can be used to uniquely identify
32 possible semaphores for each semaphore message. The application passes the
bit flag (with the appropriate bit set) as a message parameter with the message.
The window procedure that receives the message then uses the bit flag to identify
the semaphore.

To save space in a message queue, the system does not store semaphore mes-
sages in the message queue. Instead, it sets a record in the queue, indicating the
semaphore message has been received, and then combines the bit flag for the
message with the bit flags from previous messages. When the window procedure
eventually receives the message, the bit flag specifies each semaphore message
posted since the last message was retrieved.

5.2.9 Message Priorities

The WinGetMsg function retrieves messages from the message queue based on
message priority. The function retrieves messages with higher priority first. If it
finds more than one message at a particular priority level, it retrieves the oldest
message first. Messages have the following priority:

Priority Message
1 WM_SEM1
2 Messages posted using WinPostMsg

3 Input messages from the keyboard or mouse

86 MS 0S/2 Programmer’s Reference, Vol. 1
T e B s B S R R R S R s R el

Priority Message

4 WM_SEM?2
5 WM_PAINT
6 WM_SEM3
7 WM_TIMER
8 WM_SEM4

5.2.10 Message Filtering

Applications can choose specific messages to retrieve from the message queue
(ignoring other messages) by specifying a message filter with the WinGetMsg or
WinPeekMsg function. The message filter is a range of message identifiers
(specified by a first and last identifier), a window handle, or both. The functions
use the message filter to select the messages to retrieve from the queue. Message
filtering is useful if an application needs to search ahead in the message queue
for messages that have a lower priority or that arrived in the queue later than
other less important messages.

Any application that filters messages must ensure that a message satisfying the
message filter can be posted. For example, filtering for a WM_CHAR message
in a window that does not have the input focus prevents the WinGetMsg func-
tion from returning. Some messages, such as WM_COMMAND, are generated
from other messages; filtering for them may also prevent WinGetMsg from
returning. ‘

The WM_BUTTONCLICKFIRST and WM_BUTTONCLICKLAST,
WM_MOUSEFIRST and WM_MOUSELAST, and WM_DDE_FIRST and
WM_DDE_LAST constants can be used to filter button, mouse, and DDE
messages.

5.3 Using Messages in an Application

This section explains how to use the message and message-queue functions to
create and manage message queues and to post and send messages between win-
dows.

5.3.1 Creating a Message Queue and Message Loop

Your application needs a message queue and message loop to process messages
for windows. You create a message queue by using the WinCreateMsgQueue
function. You create a message loop by using the WinGetMsg and Win-
DispatchMsg functions. You must create and show at least one window after
creating the queue but before starting the message loop. The window is required
because it is the only way the user can supply input to the message queue.

Chapter 5: Messages and Message Queues 87
e e B e B R R S e R S B

The folldwing code fragment shows how to create a message queue and a
message loop:

HAB hab:; /* anchor-block handle */
HMQ hmq; /* message-queue handle */
QMSG qmsg; /* queue-message structure */

VOID cdecl main()
{

hab
hmq

WinInitialize (NULL) ;
WinCreateMsgQueue (hab, DEFAULT_QUEUE_SIZE);

* Use WinRegisterClass to register your window class.
* Use WinCreateStdWindow to create your window.
*/
while (WinGetMsg(hab, &gmsg, NULL, O, 0))
WinDispatchMsg (hab, &qmsg);
/* Use WinDestroyWindow to destroy your window. */

WinDestroyMsgQueue (hmq) ;
WinTerminate (hab) ;
}

Both the WinGetMsg and WinDispatchMsg functions take a pointer to a QMSG

structure as a parameter. If a message is available, WinGetMsg copies it to the

QMSG structure; WinDispatchMsg then uses the fields of the structure as argu-
- ments for the window procedure.

Occasionally, you may need to process the message before dispatching it. This
can occur, for example, if a window procedure posts a message to the queue for
which a NULL window handle has been specified. Because the WinDispatchMsg
function needs a window handle to dispatch the message, the message loop must
process the message before dispatching it. The following code fragment shows
how the message loop might process messages that have NULL window handles:

while (WinGetMsg(hab, &qmsg, 'NULL, 0, 0)) {
If (qmsg hwnd == NULL) {

. /* Process the message. */

else
WinDispatchMsg(hab, &qmsg);

5.3.2 Examining the Message Queue

You can examine the contents of the message queue by using the WinPeekMsg
or WinQueryQueueStatus function. It is useful to examine the queue if you start
a lengthy operation that additional user input can affect, or if you need to look
ahead in the queue to anticipate a response to user input.

You can use the WinPeekMsg function to check for specific messages in the
message queue. The function is useful for extracting messages for a specific win-
dow from the queue. The function returns immediately if there is no message in
the queue. This function can be used in a loop without requiring the loop to wait
for a message to arrive. The following code segment checks the queue for
WM_CHAR messages:

if (WinPeekMsg(hab, &qmsg, NULL, WM_CHAR, WM_CHAR, PM_NOREMOVE))

88 MS 0S/2 Programmer’s Reference, Vol. 1
R R T ﬁﬂﬁi%ﬁlﬁﬁﬁiﬁiﬂﬁiﬁlﬁl ‘a.,ﬁﬁ*&iﬁ%?m:i e T S S i e e i]

You can also use the WinQueryQueueStatus function to check for messages in
the queue. This function is very fast and returns information about the kinds of
messages available in the queue and which messages have been recently posted.
Most applications use this function in program loops that need to be as fast as
possible.

If you have a very long operation to carry out, you should consider creating a
separate thread for the operation. Despite the MS OS/2 multitasking features,
any application thread having a message queue that does not periodically relin-
quish control by calling the WinGetMsg or WinWaitMsg function risks monopo-
lizing the CPU and seriously degrading system performance.

5.3.3 Posting a Message to a Window

You can use the WinPostMsg function to post a message to a window. The mes-
sage goes to the window’s message queue. For example, the following code frag-
ment posts the WM_QUIT message:

if (!WinPostMsg(hwnd, WM_QUIT, OL, OL))

/* Message was not posted. */

The function returns FALSE if the queue was full and the message could not be
posted.

5.3.4 Sending a Message to a Window

You can use the WinSendMsg function to send a message directly to a window.
Applications typically use this function to send messages to child windows. For
example, the following code fragment directs a button control to draw a check
mark by sending the BM_SETCHECK message to the control:

WinSendMsg (hwndButton, BM_SETCHECK, MPFROMSHORT (1), OL);

WinSendMsg calls the window’s window procedure and waits for that procedure
to handle the message and return a result. A message can be sent to any window
in the system; all that is required is a handle to the window. The message is not
stored in the message queue. The thread making the call must have a message
queue.

5.3.5 Broadcasting a Message

You can send messages to multiple windows by using the WinBroadcastMsg
function. This function is useful after an application changes a system value, for
broadcasting the WM_SYSVALUECHANGED message. The following code
fragment shows how to broadcast this message to all frame windows in all appli-
cations:

WinBroadcastMsg(

hwnd, /* window handle */
WM_SYSVALUECHANGED, /* message ID *y
OL, : /* no message parameters */
OL,

BMSG_FRAMEONLY | BMSG_POSTQUEUE) ; /* all frame windows */

You can broadcast messages to all windows, to just frame windows, or to just
the windows in your apphcatnon

Chapter 5: Messages and Message Queues 89
iR S R R B s Tt g I A el A B H i ot ot SO R R R e e et oo

5.3.6 Using Message Macros

The MS OS/2 include files define several macros that help create and interpret
message parameters.

One set of macros helps you construct message parameters. Macros are useful
for sending and posting messages. For example, the following code fragment

uses the MPFROMSHORT macro to convert a 16-bit integer into the 32-bit mes-
sage parameter: ‘

WinSendMsg (hwndButton, BM_SETCHECK, MPFROMSHORT (1), OL);

A second set of macros helps you extract values from a message parameter.
They are useful for handling messages in a window procedure. The following
code fragment illustrates this:
case WM_FOCUSCHANGE:

fsFocusChange = SHORT2FROMMP (mp2) ;

if (SHORT1FROMMP (mp2))
hwndLoseFocus = HWNDEROMMP (mpl) ;

A third set of macros helps you construct a message result. They are useful for
returning message results in a window procedure. This is illustrated by the fol-
lowing code fragment:

return (MRFROM2SHORT (1, 2));

5.4 Summary

The following are the functions and the message you can use to create and use
message queues and messages:

WinBroadcastMsg Sends or posts messages to one or more windows or posts
messages to all message queues.

WinCallMsgFilter Calls a message-filter hook procedure, passing it a message
and a message-filter control code.

WinCreateMsgQueue Creates a message queue for the current thread and
returns a handle to the queue.

WinDefDIlgProc Carries out default processing for messages sent to a dialog
window.

WinDefWindowProe Carries out default processing for messages sent to a win-
dow.

WinDestroyMsgQueue Destroys a particular message queue. This function
must be called before terminating a thread that has a message queue.

WinDispatchMsg Sends a message to a specified window.

WinGetMsg Retrieves the next message from a message queue, removing that
-message from the queue. This function does not return until a message is avail-
able.

WinInSendMsg Determines whether the current thread is processing a message
sent from another thread.

90 MS 0S/2 Programmer’s Reference, Vol 1
REIEERSE IR ﬁﬁm42‘:1&".‘54%é“’...ﬁ!ﬁfa‘ém.mﬁ@a%}ﬁ?—‘ﬂ%ﬁeﬁ’ﬁmﬁ'}éﬁdﬁ@% (R R T o SR PR IR

WinMsgMuxSemWait Waits for one of a list of semaphores to clear. This func-
tion is similar to the DosMuxSemWait function, except that the thread can con-
tinue to process messages sent to it from other threads.

WinMsgSemWait Waits for a semaphore to clear. This function is similar to
the DosSemWait function, except that a thread can continue to process mes-
sages sent to it from other threads.

WinPeekMsg Copies the next message from a message queue without removing
it from the queue. This function returns immediately, whether or not a message
is available.

WinPostMsg Posts a message to the message queue for a specified window.
After placing the message in the queue, the function returns immediately.

WinPostQueueMsg Posts a message in a speciﬁed message queue in the sys-
tem. The function returns immediately after placing the message in the queue.

WinQueryMsgPos Retrieves the mouse-pointer position (in screen coordinates)
that was stored with a posted message.

WinQueryMsgTime Retrieves the system time (milliseconds since the system
was booted) that the message was posted.

WinQueryQueuelnfo Retrieves information about a message queue.
WinQueryQueueStatus Retrieves status information about a message queue.

‘WinSendDIgltemMsg Sends a message to a control window that belongs to the
specified dialog window.

WinSendMsg Sends a message directly to the window procedure of a specified
window. The function does not return until the message has been processed by
the window procedure.

WinTranslateAccel Translates a WM_CHAR message to a WM_COMMAND
message if there is an entry for the specific character in the accelerator table.

WinWaitMsg Waits until a particular type of message appears in a message
queue.

WM_QUIT Marks the end of message processing for a message queue. This
message causes the WinGetMsg function to return FALSE.

- Chapter

6

B R B e R R R St AR RS

Window Classes

6.1
6.2

6.3

6.4

INtrodUCtiON ...cueunieieei et e e 93
About Window Classes ...ocuveveeirinrerenriininraracesuencecrsnnes 93
6.2.1 Custom Window Classeseeeveeeveenrrnrircnrerecaencnns 93
6.2.2 Class Styles....cceuierueeriiniiiiniienenrierarneneresnccnenns 94
6.2.3 Window Procedures......ccceeviuiieeieienierninenineennennns 95
6.2.4 Public Window Classesoccverereerrnerenarneneerenrasnns 95
6.2.5 Preregistered Window Classes........cceeeueunerneenrannnnn 96
6.2.6 Custom Public Classes......c.vevrreenenrnenenrnenenrneananns 97
6.2.7 Class Data..ccuieeeinineiiennnsenrerenreerenrsoarensaneonsenans 97
Using Window Classesocuveveereiaieniniirnenrnreneeeneenaenans 98
6.3.1 Registering a Private Window Class........cccceveeeeanenn 98
6.3.2 Registering an Imported Window Procedure 98

Chapter 6: Window Classes 93
T e S e i e S S S RS R e

6.1 Introduction

This chapter describes how applications create and use window classes. You
should also be familiar with the following topics:

B Windows
Window procedures

]
B Messages and message queues
W The o0s2.ini file

6.2 About Window Classes

A window class determines the window styles and window procedure given to
windows of that class when they are created. Every window created by an appli-
cation is a member of a window class. Each window class has an associated win-
dow procedure that it shares with all windows of that same class. The window
procedure handles messages for all windows of that class and therefore defines
the behavior and appearance of the window.

When an application creates a window, it must specify a window class. The
WinCreateWindow function requires that the class be given explicitly. Other
window-creation functions use specific classes by default. In all cases, a window
class must be registered before it can be used to create windows. An application
can register its own (private) window classes or use pregistered, public window
classes.

6.2.1 Custom Window Classes

A custom (or private) window class is any window class registered by an applica-
tion. The application defines the window procedure, class style, and window data
size for the class and then registers the class by using the WinRegisterClass
function. The window class is available to the application, but only to that appli-
cation. Classes created in this way are private and cannot be shared by other
applications. When the application terminates, the system removes any data
associated with the private window class and invalidates the class name.

An application can register its own window classes at any time. Typically, an
application registers window classes as part of its initialization, but this is not
required. The only restriction is that no window of a particular class can be
created until that class is registered by the application.

Whgn an application regiéters a window class, it must supply the following infor-
mation:

B Class name

B (Class styles

B Window procedure

B Window data size

The class name identifies the window class. The application uses the class name
when creating a window, specifying the class to use. The class name can be a

94 MS 0S/2 Programmer’s Reference, Vol. 1
B S e e B A S i e R e R R B R

character string or an integer value. The class name must be unique. The system
checks to see if a public class or a class already registered by the application has
the same name. If the class name is not unique, an error is returned.

The class style is one or more values that tell the system what initial window
styles to give a window created with this class. Some class styles (for example,
CS_SYNCPAINT) cause a new window to be given the corresponding window
style when it is created. Styles such as CS_MOVENOTIFY direct the system to
send messages to the window procedure when it ordinarily would not.

The window procedure is a function that receives and processes all messages
sent to the window by the system. It is the chief component of the window class
because it explicitly defines the appearance and behavior of each window created
with the class. The window procedure can be part of the application or part of a
dynamic-link library. In either case, it must be an exported function. When a
window procedure is in a dynamic-link library rather than in the application, the
application must import the window procedure by using an import library when
linking, using the IMPORTS statement in the application’s module-definition file,
or using the DosLoadModule and DosGetProcAddr functions to retrieve the
function address.

The window data size is a value that specifies the number of extra bytes to allo-
cate for each window data structure. The system creates a window data structure
for each window. The extra bytes can be used by an application to store addi-
tional information about a particular window.

Once created, a window-class data structure cannot be changed. However, it is
relatively easy to change the window styles and window procedure of a window
created with that class. An application cannot deregister a window class. Win-
dow classes remain registered and available until the application terminates.

An application that registers a window class can also support its own set of win-
dow styles for windows of that class. Standard window styles—for example,
WS_VISIBLE and WS_SYNCPAINT—still apply to these windows. However,
since a window style is a 32-bit integer and only the high 16 bits are used for the
standard window styles, an application can use the low 16 bits for styles unique
to the custom window.

MS OS/2 has unique window styles for all preregistered window classes. Styles
such as FS_BORDER and BS_PUSHBUTTON are processed by the window
procedure for the corresponding class and not by the system. This means that an
application can build the support for its own window styles into the window pro-
cedure for its custom class. Using a window style des1gned for one window class
will not work with another window class.

If more than one instance of an application is running at the same time, the win-
dow classes in one instance are not available to any other instance. This means a
second instance must register the classes for itself. If an instance of an applica-
tion terminates, the window classes for any other instance of that application
remain unchanged.

6.2.2 Class Styles

Each window class has one or more class styles. A class style tells the system
what injtial window style to give a window created with that class. An application
sets the class styles for a window class when it registers the class. The styles can-
not be changed.

Chapter 6: Window Classes 95
e S B s S S S S B S e e S S S R S S S S S T

When you register a window class, you can specify one or more class styles,

combining them as necessary by using the bitwise OR operator.

An application can examine the class style for any window class by using the
WinQueryClassInfo function. There are ten class styles, as listed below:

Style Description

CS_CLIPCHILDREN Sets the WS_CLIPCHILDREN style for wiﬁ—
dows created with this class.

CS_CLIPSIBLINGS Sets the WS_CLIPSIBLINGS style for win-
dows created with this class.

CS_PARENTCLIP Sets the WS_PARENTCLIP style for win-
dows created with this class.

CS_SAVEBITS Sets the WS_SAVEBITS style for windows
created with this class.

CS_SYNCPAINT Sets the WS_SAVEBITS style for windows
created with this class.

CS_FRAME Identifies windows created with this class as
frame windows.

CS_PUBLIC Creates a public window class.

CS_HITTEST Directs the system to send WM_HITTEST

messages to windows of this class whenever
the mouse pointer moves in the window.

CS_SIZEREDRAW Directs the system to invalidate the entire
window whenever the size of the window
changes.

CS_MOVENOTIFY Directs the system to send WM_MOVE mes-
sages to the window whenever the window is
moved.

6.2.3 Window Procedures

The window procedure for a window class handles the messages sent to windows
of that class. One window procedure is shared by all windows of a class, so
applications must ensure that no conflicts arise when two windows of the same
class attempt to access the same global data. In other words, the window pro-
cedure must protect global data and other shared resources.

6.2.4 Public Window Classes

Although MS OS/2 allows an application to register its own window classes,
most applications rarely register more than one window class. This window class
supports the client window in the application’s main window. For all other win-
dows, the application generally uses public window classes. Public window
classes support frame windows, controls, menus, and dialog windows.

Public window classes are available to all applications. An application does not
need to register a public window class to use it. The window procedure for a
public window class always resides in a dynamic-link library and is accessible to

96 MS 0S/2 Programmer’s Reference, Vol. 1
B S R I R S S SR

R R R R R I R R

all applications. An application does not need to import the window procedure

to use a public window class.

6.2.5 Preregistered Window Classes

MS OS/2 provides several preregistered, public window classes. Applications
can use these public window classes to create frame windows, dialog windows,
menus, push buttons, entry fields, and other controls. The window procedures
for these classes are predefined so the application does not register the class

before using it.

An application uses a preregistered, public window class by specifying its class
in a call to the WinCreateWindow function. The class names for the prereg-
istered, public window classes are integer values represented by the following

constant names:

Class name

Description

WC_FRAME

WC_BUTTON

WC_ENTRYFIELD

WC_LISTBOX

WC_MENU

“WC_SCROLLBAR

WC_STATIC

WC_TITLEBAR

Creates a frame window. Has class
styles CS_FRAME, CS_HITTEST,
CS_SYNCPAINT, CS_PUBLIC, and
CS_CLIPSIBLINGS.

Creates a button control. Has class styles
CS_PARENTCLIP, CS_SYNCPAINT,
CS_SIZEREDRAW, and CS_PUBLIC.

Creates a text-entry control field. Has
class styles CS_PARENTCLIP,
CS_SYNCPAINT, CS_SIZEREDRAW,
and CS_PUBLIC.

Creates a list box. Has class styles
CS_PARENTCLIP, CS_SYNCPAINT,
and CS_PUBLIC.

Creates a menu. Has class styles
CS_SYNCPAINT, CS_SIZEREDRAW,
and CS_PUBLIC.

Creates a scroll bar. Has class styles
CS_HITTEST, CS_PARENTCLIP,
CS_SYNCPAINT, CS_SIZEREDRAW,
and CS_PUBLIC.

Creates a static control. Has class styles
CS_PARENTCLIP, CS_SYNCPAINT,
CS_SIZEREDRAW, CS_HITTEST, and
CS_PUBLIC.

Creates a title bar. Has class styles
CS_HITTEST, CS_PARENTCLIP,
CS_SYNCPAINT, CS_SIZEREDRAW,
and CS_PUBLIC.

Each preregistered, public window class also supports several window styles that
an application can use to customize a window. For example, a window created
with the WC_BUTTON class can have any one of four different behaviors and -

Chapter 6: Window Classes 97
B B B T N B e B e e B R R R S e SRR

appearances. The apphcanon specifies the style (and the behavior and appear-
ance of the window) in the call to the WinCreateWindow function. For a list of
the available styles and more detailed information on each of the preregistered,
public window classes, see Chapter 10, “Control Windows.”

An application must not use the preregistered, public window-class names when
it registers its own window classes.

6.2.6 Custom Public Classes

An application can create its own public window class, but this must be done in
a special manner at system initialization. Only the shell can register a public win-
dow class and only when the system starts. Registering a public window class
requires a special load entry in the 0s2.ini file that instructs the shell to load a
dynamic-link library whose initialization routine registers the window class. Pub-
lic window classes must be registered by using the WinRegisterClass function
and must have the class style CS_PUBLIC. A public window class registered in
this way can have the same name as an existing public window class, but this
replaces the original window class.

If a dynamic-link library replaces a public window class, it can also save the pre-
vious window-procedure address and use it to subclass the original window class.
The dynamic-link library retrieves the original window-procedure address by
using the WinQueryClassInfo function. The new window procedure then passes
unprocessed messages to the original window procedure. All windows created
using this revised public window class will automatically be subclassed.

When subclassing a public window class, the window data size cannot be smaller
than the original window data size. All public window classes defined by MS
OS/2 use four extra bytes for storing a pointer to custom window data. This size
is not guaranteed for public window classes defined by dynamic-link moduies not
belonging to MS OS/2.

6.2.7 Class Data

An application can examine a registered window class by using the WinQuery-
ClasslInfo function. This is useful for checking the class styles of a public win-
dow class. An application can also retrieve the name of the class for a given win-
dow by using the WinQueryClassName function. Using the window class name,
you can then call the WinQueryClassInfo function to retrieve the window class
data.

The WinQueryClassName function retrieves the name of the window class. If
the window is one of the preregistered, public window classes, the window class
name returned is in the form #nnnnn, where nnnnn is up to five digits represent-
ing the value of the window class name constant.

The WinQueryClassInfo function retrieves information about a window class. It
copies the class style, window-procedure address, and window data size to a
CLASSINFO data structure. The CLASSINFO structure has the following form:

typedef struct _CLASSINFO { /* clsi %/
ULONG flClassStyle;
PENWP pfnWindowProc:
USHORT cbWindowData:

} CLASSINEO;

98

MS 0S/2 Programmer’s Reference, Vol. 1
R R T R g S B e N R R R S S SR RS B

6.3 Using Window Classes

The following sections explain how to register and use window classes in your
applications. :

6.3.1 Registering a Private Window Class

You can register a private window class at any time by using the WinRegister-
Class function. You must define the window procedure in your application,
choose a unique name, and set the window class styles for the class. The follow-

ing code fragment shows how to register the window class name “MyPrivate-
Name”. '

WinRegisterClass (hab, /* anchor-block handle */
"MyPrivateName", /* class name */
MyWindowProc, /* far pointer to procedure */
CS_SIZEREDRAW, /* class style *
0): * window data */

6.3.2 Registering an Imported Window Procedure

You do not have to limit window procedures to your application’s code seg-
ments. You can also register a window procedure that is imported from a
dynamic-link library. You can do this in several ways. The easiest way is to
import the window-procedure name by using either the IMPORTS statement in
the application’s module-definition file or by linking with an import library that
contains an import record for the function.

6.4 Summary

An application can use the following functions to register and use window
classes:

WinQueryClassInfo Obtains information about a window class. The class is
specified by name. The function fills a CLASSINFO data structure. This gives
you the long word of the window-class style, a pointer to its window procedure,
and the number of additional words stored as part of the class.

WinQueryClassName Obtains a window class name for a given window. If the
window class is one of the preregistered, public classes, the class name returned
is in the form #nnnnn, where nnnnn is up to five digits representing the value of
the window class name constant.

WinRegisterClass Registers a window class.

P R S SRR R e s e R A ﬁm’%ﬁmf 2l

B AR R e G

Window Procedures

7.1
7.2

7.3

7.4

Introduction.....cceiuieieiiieiiiiiiiii e 101
About Window Procedurescocovvuieinieiiieninninininnn, 101
7.2.1 Structure of a Window Procedurecccvvevenrnnnn. 101

7.2.1.1 Calling Conventioncceeeeeeeeererencenannnns 101

7.2.1.2 ATZUMENLS tuvvruenrnrenrarnsecesesaessrssansrananes 102

7213 Return Value...oouuiirniiiniinniininninnnennennee, 103
7.2.2 Default Window Procedureccceuverureeinnnrnensnes 103
Using a Window Procedurecccvveieinieieicinerninecenncenns 103
7.3.1 Associating a Window Procedure and Classes 104
7.3.2 Processing a Default Window Procedure................. 104
N] 18118 1181 o PN 105
7.4.1 Window-Procedure Syntaxc.ceeeveverninrereranncncnns 105

7.4.2 Messages Processed by the
Default Window Procedurecocevvniniiinnncnenn. 105

Chapter 7: Window Procedures 101
B e S T T e o S e R B R e e R e e e S e e B

7.1 Introduction

This chapter describes window procedures and the default window procedure.
You should also be familiar with the following topics: .
B Standard user-interface guidelines

B Window classes

B Window messages and message queues

u

Dialog windows and dialog procedures

7.2 About Window Procedures

Every window in MS OS/2 is associated with a window procedure that controls
all aspects of the window: its appearance, how it responds to state changes, and
how it processes user input.

Each window class has an associated window procedure, and all windows of that
class use the same window procedure. For example, the system defines a window
procedure for the frame window class, and all frame windows use that window
procedure.

Applications typically define at least one new window class and an associated
window procedure. The application can then create many instances of windows
with that class, all of which use the same window procedure. Note that this
means that the same piece of code may be called from several sources simultan-
eously. Therefore, care must be used when modifying shared resources from a
window procedure.

Dialog procedures have the same structure and function as window procedures.
All material referring to window procedures in this chapter also applies to dialog
procedures. The only real difference between a dialog procedure and a window
procedure is the recommended default procedure and what messages are han-
dled.

The rest of this chapter shows how to write a window procedure and associate it
with a window class.

7.2.1 Structure of a Window Procedure

All window procedures share a common syntax and structure. Because all
messages must use the same calling syntax, the arguments and return value for
window procedures are interpreted differently depending on the message being
handled. The following sections describe the syntax and structure of a window
procedure.

7.2.1.1 Calling Convention

From a programmer’s point of view, a window procedure is a function that takes
four arguments and returns a long word. The function must use Pascal calling
conventions; that is, the arguments are pushed on the stack from left to right in
the function definition and the function must clear the arguments from the stack
before returning. This is different from the normal C-language calling conven-
tion, so the Microsoft C Optimizing Compiler provides the pascal keyword for
defining functions that use the Pascal calling convention.

102 MS 0S/2 Programmer’s Reference, Vol. 1 ,
liﬁW@ﬁﬁi@a&!&%ﬁﬁﬂ%mﬁsi‘E‘ﬁ.&fﬁ%@ﬁizﬁ@ﬁ‘%é%@iﬁ!ﬁ%ﬁ%‘ﬁ’%ﬂﬁ@ﬁ%ﬁ&ﬁﬁf b SR S

You should use the EXPENTRY macro when defining window procedures to
ensure that the functions are declared appropriately.

Finally, you must ensure that the data-segment register is properly set up on
entry to the window procedure. When the system calls the window procedure, it
passes the proper data segment in the ax register. If you are progralnming in
Microsoft C, use the _loadds keyword in your window-procedure definitions.
This causes the compiler to insert the proper prolog and epilog code in your win-
dow procedures so that the data segment is initialized and restored properly. If .
you are programming in assembly language, you should load the ds register from
ax on entry and restore the ds register on exit. If you are using another develop-
ment environment, consult the relevant documentation for the appropriate com-
piler switch.

Because a window procedure can be called recursively, it is probably best to
minimize the number of local variables used in the window procedure. To avoid
overusing local variables and possible stack overflow in deep recursion, you
should call other functions outside your window procedure to process individual
messages.

7.2.1.2 Arguments

A window procedure takes four arguments: The first is a window handle; the
second is a USHORT message designator; and the last two arguments are
declared with the MPARAM data type, which is defined in the include files as a
far pointer to the VOID data type (a generic pointer). The message arguments
often contain information in both the low and high words of the long word.
There are several macros defined in the pmwin.h include file that make it easier
to extract bytes or integers from the MPARAM value. These macros include
Sl%ORTlFROMMP, which extracts the low-order word from an MPARAM
value.

The window-procedure arguments are described in the following list:

Argument Description
hwnd Window handle of the window receiving the message.
msg Message identifier. The message will generally corre-

spond to one of the predefined constants (for example,
WM_CREATE) defined in the system include files. This
argument can also be equal to an application-defined
message identifier. Application-defined messages must be
greater than WM_USER. If a window procedure does
not process a message, it is strongly recommended that it
pass the message to the WinDefWindowProc function.
This allows the default processing for the message to
occur.

mpl Message parameter. Its interpretation depends on the
particular message.

mp2 ‘ Message parameter. Its interpretation depends on the
particular message.

: Chapter 7: Window Procedures 103
e B T R S S e e R B S R e S R B R

7.2.1.3 Return Value

The return value of a window procedure is defined as an MRESULT type. This
is defined in the include files as a far pointer to a VOID data type. The actual
interpretation of the return value depends on the particular message. Consult the
description of each message to determine the appropriate return value.

7.2.2 Default Window Procedure

All windows in MS OS/2 share certain fundamental behavior. This basic
behavior is encapsulated in the WinDefWindowProc function, the default win-
dow procedure. The default window procedure is provided so you can get the
minimal functionality for a window by calling WinDefWindowProc. Control win-
dows defined by the system can also call WinDefWindowProc for default pro-
cessing.

7.3 Using a Window Procedure

The following code fragments show a sample window procedure. It shows how
to use the message argument in a switch statement with individual messages han-
dled by each case statement. Notice that each case returns a value specifically
for that message. Consult the description of each message to determine the
appropriate return value.

The window procedure calls the WinDefWindowProc function for any messages
that it does not handle itself. WinDefWindowProc performs default processing
for essential messages sent to windows.
MRESULT CALLBACK MyWindowProc (hwnd, msg, mpl, mp2)
HWND hwnd:
USHORT msg:;
MPARAM mpl;
MPARAM mp2;
/* local variables */
switch (msg) {

case WM_CREATE:
/* Initialize private window data. */

return OL:

case WM_PAINT:
/* Paint the window. */

return OL;

case WM_DESTROY: .
/* Clean up private window data. */

feturn OL;

default:
break;

}
return (WinDefWindowProc (hwnd, msg, mpl, mp2)):

A dialog procedure is exactly like a window procedure except that it receives a -
WML_INITDLG message instead of the WM_CREATE message. A dialog pro-
cedure should pass all unprocessed messages to the WinDefDlgProc function
instead of passing them to the WinDefWindowProe function.

104 MS 0S/2 Programmer’s Reference, Vol. 1 ,
S T e e B e R S B A B R S S S BB

It is possible to write a window procedure that passes all messages to WinDef-
WindowProc, but the window will have no personality of its own. At the very
least, a window procedure should handle the WM_PAINT message to draw
itself. Typically, it should handle mouse and keyboard messages as well. Consult
the descriptions of individual messages to determine if your window procedure
should handle them.

There are times when you may want to create a window that does. not change
the default window behavior. That window’s. sole purpose is to keep track of its
child windows. Object windows are often used this way. An easy way to create a
window that does not change the default window behavior is to specify the Win-
DefWindowProc function as your window procedure when registering the win-
dow class. The application then does not write a separate window procedure for
windows of this class.

7.3.1 Associating a Window Procedure and Classes

A window procedure is associated with a window class by passing a far pointer
to the window procedure to the WinRegisterClass function. Once registered this
way, the window procedure will be associated with each new window created
with that class.

The following code fragment shows how to associate a window procedure with a
window class:

WinRegisterClass (hab, /* anchor-block handle */
szClassName, /* class name */

. MyWindowProc, /* far pointer to procedure */
CS_SIZEREDRAW, /* class style */

0): /* window data */

Another useful option is to subclass a window of an existing class. This is most
often used to add functionality or to alter the behavior of frame windows.

To subclass a window, call the WinSubclassWindow function. This function
returns a pointer to the window procedure for the window. Subclassing allows
you to process messages using your own window procedure before passing
unprocessed messages to the original window procedure. In this way, you can
use the original window procedure instead of WinDefWindowProc for default
window processing.

7.3.2 Processing a Default Window Procedure

Typically, you call the WinDefWindowProc function for any messages that are
not handled in your window procedure. For each message handled you should
return an explicit value that depends on the particular message. For all other
messages you should return the WinDefWindowProc function. The following
code fragment shows how to structure a window procedure to call the default
window procedure for any unused messages:

switch (usMessage) {

case WM_PAINT:
hps = WinBeginPaint (hwnd, NULL, &rect);
WinFillRect (hps, &rect, CLR_WHITE);
WinEndPaint (hps) ;
return OL;

default:
break;

3 ' :
return (WinDefWindowProc (hwnd, usMessage, mpl, mp2)):;

) Chapter 7: Window Procedures 105
T S R R S e S i S e B B s

You can also call WinDefWindowProc as part of your own processing of a win-
dow message. In these cases, you may want to modify the parameters to the
message before passing it to WinDefWindowProc, or you may want to continue
with the default processing after performing your own operations.

7.4 Summary

This section gives the window-procedure syntax and lists the messages processed
by the default window procedure.

7.4.1 Window-Procedure Syntax
The following shows the syntax for a window procedure:

MRESULT CALLBACK WindowProc(HWND Awnd, USHORT msg,
MPARAM mpl, MPARAM mp2)

7.4.2 Messages Processed by the Default Window Procedure

The following messages are handled by the WinDefWindowProc function. For
each message, the default processing is described; typical reasons for overriding
the default behavior are also given: ‘

WM_BUTTONIDBLCLK The default window procedure passes this message
to the owner window. Processing this message allows you to add functionality to
mouse clicks and to differentiate the three possible mouse buttons.

WM_BUTTONIDOWN The default window procedure activates the window
by calling the WinSetActiveWindow function. Processing this message allows you
to add functionality to mouse clicks and to differentiate the three possible mouse
buttons.

WM_BUTTONI1UP The default window procedure passes this message to the
owner window. Processing this message allows you to add functionality to mouse
clicks and to differentiate the three possible mouse buttons.

WM_BUTTON2DBLCLK The default window procedure passes this message
to the owner window. Processing this message allows you to add functionality to
mouse clicks and to differentiate the three possible mouse buttons.

WM_BUTTON2DOWN The default window procedure activates the window
by calling the WinSetActiveWindow function. Processing this message allows you
to add functionality to mouse clicks and to differentiate the three possible mouse
buttons.

WM_BUTTON2UP The default window procedure passes this message to the
owner window. Processing this message allows you to add functionality to mouse
clicks and to differentiate the three possible mouse buttons.

WM_BUTTON3DBLCLK The default window procedure passes this message
to the owner window. Processing this message allows you to add functionality to
mouse clicks and to differentiate the three possible mouse buttons.

WM_BUTTON3DOWN The default window procedure activates the window
by calling the WinSetActiveWindow function. Processing this message allows you

106 MS 0S/2 Programmer’s Reference, Vol. 1
R e R R B B T S e e e R s e e

to add functionality to mouse clicks and to differentiate the three possible mouse
buttons. »

WM_BUTTON3UP The default window procedure passes this message to the
owner window. Processing this message allows you to add functionality to mouse
clicks and to differentiate the three possible mouse buttons.

WM_CALCVALIDRECTS The default window procedure returns the long-
word value. Processing this message allows you to specify the portion of the
window that is preserved when the window is resized and to specify where the
preserved area is aligned when the window is redrawn. ‘

WM_CHAR The default window procedure passes this message to the window
owner. You can process this message to evaluate incoming keyboard events. In
the case of standard control windows, unused WM_CHAR messages are passed
to the WinDefWindowProc function and passed up the parent- and child-
window hierarchy until reaching a frame or dialog window where default dialog
effects, such as pressing the TAB key to move from control to control, are imple-
mented. »

WM_CLOSE The default window procedure posts a WM_QUIT message to
the queue, which causes the message loop to terminate. Processing this message
allows you to prevent the Close menu item in the System menu from terminating
the program. This is particularly useful with child frame windows in a multiple-
document application.

WM_CONTROLHEAP The default window procedure returns the heap handle
for the heap maintained by the system for the window message queue. You pro-
cess this message if the window maintains a separate heap.

- WM_CONTROLPOINTER The default window procedure returns the mouse
pointer passed in the mp2 parameter, thus allowing the default pointer shape.
This message is sent to the owner of a control window to allow it to change the
shape of the mouse pointer when the pointer is over the control window. You
can return a different mouse-pointer handle to override the mouse pointer
chosen by the control window. For example, a special control that handles its
mouse-movement message by sending a WM_CONTROLPOINTER message to
its owner with its special pointer. The owner window then determines what
pointer to use. The default window procedure would use the control’s special
pointer.

WM_DDE_INITIATE The default window procedure frees the selector in the
mp2 parameter and returns FALSE. You should process this message if your
application supports the dynamic-data-exchange (DDE) protocol.

WM_DDE_INITIATEACK The default window procedure frees the selector
in the mp2 parameter and returns FALSE. You should process this: message if
your application supports the dynamic-data-exchange (DDE) protocol.

WM_FOCUSCHANGE The default window procedure passes the message to
the owner window (if one exists) or to the parent window if no owner exists. If
no owner or parent window exists, the default window procedure does nothing.
Generally, this message is passed up the parent- and child-window hierarchy
until it reaches a frame window, where the appropriate WM_ACTIVATE,
WM_SETSELECTION, and WM_SETFOCUS messages are generated. This
message is the first indication of a focus change.

Chapter 7: Window Procedures 107
E SRR SR e S R R SRR R

WM_HELP The default window procedure passes this message to the parent
window (if one exists). You process this message to provide context-sensitive
help.

WM_HITTEST The default window procedure returns HT_ERROR if the win-
dow is disabled; otherwise, it returns HT_NORMAL. Processing this message to
return HT_NORMAL for a disabled window allows the disabled window to
receive mouse messages.

WM_MENUSELECT The default window procedure returns TRUE, which
means the menu selection should be processed normally. You can process this
message if you want to perform context-sensitive actions—for example, process-
ing explanatory messages, each time a menu item is selected.

WM_MOUSEMOVE The default window procedure sets the mouse pointer to
the arrow pointer. You normally process this message for mouse tracking after a
mouse button-down message. This message is also useful for setting the mouse-
pointer shape, depending on where the mouse is in the window.

WM_PAINT The default window procedure calls the WinBeginPaint and
WinEndPaint functions to empty the update region for the window. If you do
not process this message, the window will not be drawn.

WM_QUERYCONVERTPOS The default window procedure returns the
cursor size and positional data pointed to by the mpI parameter and returns
QCP_CONVERT to signify that the RECTL structure passed was properly con-
verted.

WM_QUERYFOCUSCHAIN The default window procedure performs the
default processing of this message, which defines the focus chain for that win-
dow.

WM_QUERYFRAMECTLCOUNT The default window procedure passes this
message to the parent window until it finds a frame window, where it will be pro-
cessed.

WM_QUERYWINDOWPARAMS The default window procedure sets all win-
dow parameters in the passed structure to zero and returns FALSE to indicate
that the operation was not successful.

WM_SETWINDOWPARAMS The default window procedure does nothing
except return FALSE.

WM_TIMER The default window procedure blinks the cursor for the window
if the timer message has the TID_CURSOR timer ID. You process this message
only if they create their own timers. Applications should pass a WM_TIMER
(TID_CURSOR) message to the WinDefWindowProc function even if the appli-
cation processes its own timers.

WM_TRANSLATEACCEL The default window procedure passes this mes-
sage to the parent window (if one exists). This message is usually passed from a
child window to its parent window until it reaches a frame window, where the
default frame-window procedure calls the WinTranslateAccel function to deter-
mine if the key pressed is a valid accelerator key.

R B R S R P S R S R e

Chapter

Mouse and Keyboard Input

8.1 Introduction........cceveiiniereiiiiniiiniieiiiiniiiiiiiiineeennes 111
8.2 About Mouse and Keyboard Input........c.coceivinininianann. 111
8.2.1 The System Message QUEUEceveriiirrinrnencesasns 111

8.2.2 Mouse Capture.....cevevvernrrerrenrareneeencensenesossansanss 112

82.3 Keyboard FOCUS i.iviviieininirniiiininiiiiiniiesnioeciines 112

8.2.4 Window AcCtiVatiON.....cceuierriiereiierrneneneercncnencnenns 112

8.3 Using the Mouse and Keyboard in an Application.......... 112
8.3.1 Responding to Activation Events......c..ccceeuvuvevunnnnnes 113

8.3.2 Responding to Mouse MeSSagescoeveveenrnenerinnnnens 113
8.3.2.1 Responding to Button Clcksceveinniinnannns 114

8.3.2.2 Responding to Mouse Movemento.eues 114

8.3.3 Changing the Mouse Capture......c..ceeuerreererereenennns 115

8.3.4 Keyboard Messagesvveverunenininrniurureresenenenens 115

8.3.5 Responding to Keyboard Messages........coccevereenannns 116
8.3.5.1 Key-Down or Key-Up Events.....ccccevurrannss 116

8.3.5.2 Repeat-Count EVents.......oceeveeicnerinconacas 117

8.3.5.3 Character Codes...ccovvinireiarnienecarnenenenees 117

8.3.54 Virtual-Key Codes.....ccveieininineenrneencnnnnns 117

8.3.5.5 Scan COAES wiuvverrereraiiarersnienisrsnsonsneenses 118

8.3.5.6 Accelerator-Table Entriesueveeieenenennnns 119

8.3.6 Changing the Keyboard Focus.....c.cvcvvirainnininnrninne. 119

I V11131 1 ;1 o AP 120
8.4.1 FUDCLODS evverererniniineneenrneeneiennennssesnssrenesasnsanss 120

8.4.2 MeSSALES cvuuuiriiiiniiiitiniiiiiiiiietaiie i artaa 121
8.4.2.1 Focus Change and Activation Messages 121

8.4.2.2 MOUSE MESSAZES vvennnrnerneeenreneanrsnnsenconses 122

8.423 Keyboard Message...cceruererneneennrareraenennss 123

Chapter 8: Mouse and Keyboard Input 111
B T e S S S e I e I SR

8.1 Introduction

This chapter describes how to usé mouse and keyboard input in your applica-
tions. You should also be familiar with the following topics:

B Standard user-interface guidelines
M Window messages and message queues
W Accelerator tables

8.2 About Mouse and Keyboard Input

MS OS/2 Presentation Manager applications should support input from both the
mouse and keyboard. The mouse can have either one, two, or three buttons.
Only one window at a time can receive mouse input and only one window at a
time can receive keyboard input. These windows are not necessarily the same,
although they can be.

8.2.1 The System Message Queue

All mouse and keyboard input is routed through a single system message queue.
The system takes input events, such as keys being pressed or mouse movements,
out of the system queue and routes them to the appropriate application. Gen-
erally, mouse input is directed to the application that owns the window in which
the mouse-pointer event occurs. An application can route all mouse input,
regardless of mouse position, to a particular window by setting the mouse cap-
ture window. Keyboard input is sent to the application that owns the “keyboard
focus” window. Keyboard focus and mouse capture are discussed more fully
later in this chapter.

The system takes messages out of the system message queue and places them in
the appropriate application message queue. An application receives input mes-
sages from its own queue by calling the WinGetMsg or WinPeekMsg function.

Mouse and keyboard events in the system queue are strictly ordered so that an
input event cannot be processed until all previous input events have been fully
processed. This is because the destination window of an input event is not
known until all previous input has been processed.

For example, if a user types a command in one window, uses the mouse to
activate another window, and then types another command in the second win-
dow, the destination of the second keyboard command depends on how the
mouse click is handled. An application might not activate its window in response
to the mouse click. The second keyboard event goes to the second window only
if that window becomes active as a result of the mouse click, which also depends
on how the application processes the mouse click.’

Because the input queue is strictly ordered and events cannot be processed until
all previous input has been processed, it is very important that applications pro-
cess input events quickly to avoid slowing user interactions with the system.

112 MS 0S/2 Programmer’s Reference, Vol. 1
R B R S e B e s iy

8.2.2 Mouse Capture

Generally, a mouse message goes to the window under the mouse pointer at the
time the event is read from the system queue. Applications can change this by
setting the mouse capture window, in which case all mouse input is sent to the
mouse capture window until the mouse capture is released or set to another win-
dow. Mouse capture is useful if a window should receive all mouse input even
when the mouse pointer moves outside the window. For example, it is common
to track the mouse-pointer position after a mouse button-down event, following
the mouse pointer until a mouse button-up event is received. If you do not set
the mouse capture to a particular window and the user moves the mouse pointer
outside the window and releases the mouse button, your application will not
receive the mouse button-up message. If you set the mouse capture to a particu-
lar window while tracking the mouse pointer, your application will receive the
mouse button-up message even if the mouse moves outside the window.

8.2.3 Keyboard Focus

Only one window at a time receives keyboard input. The window receiving the
keyboard input is called the keyboard-focus window. Applications can allow the
system to set the keyboard-focus window by default as windows are activated and
deactivated, or an application can specifically set the keyboard focus to a
specific window. If there is no keyboard-focus window specified, the system
sends keyboard input to the currently active frame window.

8.2.4 Window Activation

Because there can be many windows belonging to many applications on the
screen at the same time, MS OS/2 provides a way to arbitrate input among win-
dows and applications. There is at most one active application at any time in the
Presentation Manager screen group. The active application usually has only one
active frame window, although it is possible to have more than one active frame
window. For example, an application with a multiple-document interface can
have several child frame windows.

The activation state of a window is important when an application responds to
mouse clicks. It is also important because activation and keyboard focus are
closely related window attributes.

The WinQueryActlvéWmdow function returns the currently active frame win-
dow. Note that a client window is never returned by this function. Activation of
the client window is an attribute of frame windows.

8.3 Using the Mouse and Keyboard in an Application

An application that uses the mouse and keyboard for input must respond to
activation, mouse, and keyboard events. The following sections descrlbe how to
handle these three related topics.

Chapter 8: Mouse and Keyboard Input 113
S R R B e B R R S RS B B R

8.3.1 Responding to Activation Events

A client window receives a WM_ACTIVATE message when its parent frame
window is being activated or deactivated. The activation or deactivation message
is usually accompanied by messages to set or lose the keyboard focus. There-
fore, applications should not use the WM_ACTIVATE message to change the
keyboard focus.

The low word of the first message parameter is TRUE if the window is activated,
and FALSE if the window is deactivated.

One use for the WM_ACTIVATE message is to toggle the state of an
application’s private variable that tells whether a window is active or not, as
shown in the following code fragment:

case WM_ACTIVATE:

fActivated = (BOOL) mpl;
return (OL) ;

It is important to know the activation state of a window in order to correctly
handle mouse-button clicks.

8.3.2 Responding to Mouse Messages

Mouse messages occur when a user presses or releases one of the mouse buttons
(a click) and when the mouse is moved. All mouse messages contain the x- and
y-coordinates of the mouse-pointer hot spot (relative to the window coordinates
of the window receiving the message) at the time the event occurs.

The system sends a WM_HITTEST message to the window that is about to
receive a mouse message. The window can determine if it should actually receive
the mouse message or not. The default processing of this message in the Win-
DefWindowProc function is to return HT_NORMAL if the window is enabled
and HT_ERROR if the window is disabled. If the return value is HT_ERROR,
the system does not send the mouse message to the window. Most applications
pass WM_HITTEST messages on to the WinDefWindowProc function by
default so disabled windows do not receive mouse messages. Windows that
ts)peciﬁcally respond to WM_HITTEST messages can change this default
ehavior,

Because windows process WM_HITTEST and mouse messages, an application
can ignore hit-test code in a mouse message unless the application returns. spe-
cial values for hit-test code. One possible use for hit-test code is to react
differently to a mouse click in a disabled window.

The contents of the mouse-message arguments (mpl and mp2) are listed below:
W The x-position is in low word of mpl.

B The y-position is in high word of mp1.
B The hit-test code is in low word of mp?2.

114 MS 0S/2 Programmer’s Reference, Vol. 1 v
s L Rt e b b e o IR P e B o e et | SRR L S ety B THE dIeE o i Et e i £ B0

8.3.2.1 Responding to Button Clicks

Applications typically respond to mouse button-down events differently depend-
ing on whether the window is currently active. The first button-down event in an
inactive window should activate a window. A subsequent button-down event in
an active window produces an application-specific action.

Typically, an application processes mouse clicks in the client window of a stan-
dard frame window. Because the activated/deactivated status of a window is a
frame-window characteristic, the system does not provide an easy way to deter-
mine if the client window is active. That is, the window handle returned by the
WinQueryActiveWindow function is the active frame-window handle rather than
the client window owned by the frame.

The following are two typical methods for determining if a client is an active
frame window:

B Call the WinQueryActiveWindow function and compare the window handle
it returns with the frame window that contains the client window, as shown
in the following code fragment:

fActivated = (WinQueryWindow(hwndClient, QW_PARENT, FALSE) ==
WinQueryActiveWindow (HWND_DESKTOP, FALSE))

B Maintain a private variable for the client window that is set and cleared when
processing WM_ACTIVATE messages. Each time the frame window is
activated, the client window receives a WM_ACTIVATE message with the
low word of the first parameter equal to TRUE. When the frame window is
deactivated, the client window receives a WM_ACTIVATE message with a
FALSE activation indicator. The following code fragment shows how to use
activation messages to toggle a private-status variable:
case WM_ACTIVATE:

fActivated = (BOOL) mpl;
return (OL);

Depending on the method used to determine if a client window is active, a
mouse button-down message is passed to the WinDefWindowProc function if the
window is not active at the time of the message. The default processing activates
the window and its frame.

A common problem for an application processing WM_BUTTON1DOWN or
similar messages is the failure to activate or set the window focus. If the window
processes character messages, the window procedure should call the WinSet-
Focus function to make sure the window receives the input focus and is
activated. If the window does not need the keyboard focus, an application
should call the WinSetActiveWindow function.

8.3.2.2 Responding toiMouse Movement

The system sends mouse-move messages to the window under the mouse pointer
or the current mouse-capture window, if any, whenever the mouse pointer

- moves. This is useful for tracking the mouse pointer and changing its shape
based on its location in a window. For example, the mouse pointer changes
shape when it passes over the size border of a standard frame window.

All standard control windows use mouse-move messages to set the mouse-
pointer shape. If your application handles WM_MOUSEMOVE messages in

’

Chapter 8: Mouse and Keyboard Input 115
T B e R R T R S R e R

some situations but not others, unused messages should be passed to the Win-
DefWindowProc function to change the shape of the mouse pointer.

8.3.3 Changing the Mouse Capture

Mouse messages are usually routed to the window under the mouse pointer.
Applications can call the WinSetCapture function to process all mouse messages
by a specified window. This is particularly useful when an application is tracking
the mouse pointer after a button-down message.

For example, in a paint application that uses a button-down message to start a
drawing operation, the application tracks the mouse using mouse-move messages
until a button-up message is received. If a user drags the mouse pointer outside
the window and releases the button, the button-up message will not go to the
original window unless the application has called the WinSetCapture function
for that window.

Some applications must receive a button-up message to match a button-down
message. When processing a button-down message, these applications call the
WinSetCapture function to set the capture to their own window, and then they
call the WinSetCapture function with a NULL window handle to release the
mouse capture when processing a matching button-up message.

8.3.4 Keyboard Messages

All keyboard messages come to a window as WM_CHAR messages. The system
reads the keyboard and collects keyboard events in the system queue. It then
routes these messages to the appropriate windows depending on the current
keyboard-focus window at the time the message is sent. WM_CHAR messages
are sent to the window that has the keyboard focus. If no window has the key-
board focus, then WM_CHAR messages are posted to the active frame-window
queue. The following are two typical situations where applications receive
WM_CHAR messages:

B An application has a client window or custom control window, each of
which can have the keyboard focus. If a window procedure for the client or
control window does not process characters, it should pass them to its owner
window, which can be accomplished by passing them through to the Win-
DefWindowProc function. This is especially true for dialog-control items, as
this is how the TAB and direction-key control processing is implemented in
the user interface.

B An application window owns a control window that handles some, but not
all WM_CHAR messages. This is common in dialog windows. If a control
window that has the focus in a dialog window cannot process a WM_CHAR
message, it can call the WinDefWindowProc function to send the message to
its owner, which is usually a dialog-frame window. The application dialog
procedure then receives the WM_CHAR message. This is also the case
when an application client window owns a control window.

116 MS 0S/2 Programmer’s Reference, Vol. 1
T T B B e i R e I S R R S i R R

8.3.5 Responding to Keyboard Messages

A WM_CHAR message may represent a key-down or key-up transition. It may
contain a character code, a virtual-key code, or a scan code. This message also
contains information about the state of the SHIFT, CONTROL, and ALT keys.

Each time a user presses a key, at least twvo WM_CHAR messages are gen-
erated: one when the key is pressed down, and one when the key is released. If
the key is held down long enough to trigger the keyboard repeat, multiple
WM_CHAR key-down messages are generated.

If the keyboard repeats faster than the application can retrieve the events

from the event queue, the system combines repeating character events into

one WM_CHAR event representing multiple-key events for the same key.
WM_CHAR messages contain a count byte indicating the number of keystrokes
represented by the message. Generally, this byte is set to 1, but it should be
checked every time a WM_CHAR message is processed to avoid missing key-
strokes.

A control may ignore the repeat count; for example, it may ignore the count on
direction keys. If the system is slow, it may be more aesthetic to have a cursor
move slowly than to see it jump 40 characters.

Applications decode WM_CHAR messages by examing individual bits in the
flag word contained in the low word of the first argument passed with every
WM_CHAR message. These bits may be set in various combinations. For
example, a WM_CHAR message can have the KC_KEYDOWN, KC_CHAR,
KC_SCANCODE, and KC_SHIFT attribute bits all set at the same time.

The mpl and mp2 parameters that are part of the message contain different
information depending on the nature of the keyboard event, as follows:

B The flag word is in low word of mpI.

B The repeat-key count is in low byte of high word of mpl.
B The scan code is in high byte of high word of mpl.

B The character code (ASCII) is in low word of mp2.

B The virtual-key code is in high word of mp2.

An application window procedure should return TRUE if it processes a particu-
lar WM_CHAR message, or FALSE otherwise. Typically, applications respond
to key-down events and ignore key-up events.

The following sections describe the different types of WM_CHAR messages.
Generally, decoding these messages consists of layers of conditional statements
to eliminate and discriminate the different combinations of attributes that can
occur in a keyboard message.

8.3.5.1 Key-Down or Key-Up Events

Generally, the first attribute that an application checks in a WM_CHAR: mes-
sage is the key-down or key-up events. The distinction between a key-down and a
key-up event is found by examining the KC_KEYUP bit of the low word of the
first message parameter. If this flag bit is set, then the message is from a key-up
event. If the bit is clear, then the message is from a key-down event. The follow-
ing code fragment shows how to decode a message for this information:

Chapter 8: Mouse and Keyboard Input 117
S B R S R R IS AR B e S e

case WM_CHAR:
fs = SHORT1EROMMP (mpl) ;

1f ((fs & KC_KEYUP))

/* this is a key-up event */
else

/* this is a key-down event */

return TRUE;

8.3.5.2 Repeat-Count Events

Applications should always check the key repeat-count part of a WM_CHAR
message to see if the message represents more than one keystroke. The count is
greater than one if the keyboard is sending characters to the system queue faster
than the application can retrieve them. If the system queue fills up, the system
combines consecutive keyboard events for each key in a single WM_CHAR mes-
sage with the repeat count set to the number of combined events. The repeat
count is in the low byte of the high word of the first message parameter.

8.3.5.3 Character Codes

The most typical use of WM_CHAR messages is to extract a character code
from the message and display the character on the screen. When the KC_CHAR
bit is set in the WM_CHAR message, the low word of the second message
parameter contains a character code based on the current code page. Generally,
this value is a glyph code (typically an ASCII code) for the character for the key
that was pressed.

The following code fragment shows how to respond to a character message:
fs = SHORT1FROMMP (mpl) ;
if (fs & KC_CHAR) {
/* CHAR is in SHORT1FROMMP (mp2) */
/* handle the key character */

return (TRUE) ;
}

Note that if the KC_CHAR bit is not set, the SHORT1IFROMMP(mp2) parame-
ter may still contain useful information. If either the ALT or CTRL key, or both,
are down, the KC_CHAR bit will not be set when the user presses another key.
For example, pressing the a key when the ALT key is down, the low word of mp2
will contain a 0x0041, the KC_ALT bit will be set, and the KC_CHAR bit will
be clear. If the translation does not generate any valid characters, the char field
is set to zero.

8.3.5.4 Virtual-Key Codes

WM_CHAR messages often contain virtual-key codes that correspond to various
function keys and direction keys on a typical keyboard. These keys do not cor-
respond to any particular glyph code but are used to initiate operations. When
the KC_VIRTUALKEY bit is set in flag word of a WM_CHAR message, the
high word of the second message parameter contains a virtual-key code for the
key.

118 MS 0S/2 Programmer’s Reference, Vol. 1 ,
B B B B S A B B B R S e R S R R O R

i

Note that some keys, such as the ENTER key, have both a valid character code
and a virtual-key code. WM_CHAR messages for these keys will contain charac-
ter codes for newline characters (ASCII 11) and virtual-key codes
(VK_ENTER).

The following code fragment shows how to decode a WM_CHAR message con-
taining a valid virtual-key code:

fs = SHORT1FROMMP (mp1l) ;
if (fs & KC_VIRTUALKEY) {
/* virtual key is in SHORT2FROMMP (mp2) */

switch (SHORT2FROMMP (mp2)) {
case VK_TAB:

/* handle the TAB key */
return (TRUE):

case VK_LEFT:
/* handle the LEFT key */
return (TRUE);

case VK_UP:
/* handle the UP key t/
return (TRUE);

case VK_RIGHT:
/* handle the RIGHT key */
return (TRUE);

case VK_DOWN:
/* handle the DOWN key */

return (TRUE) ;

éefault:
return (FALSE)

}
}

- 8.3.5.5 Scan Codes

A third possible value in a WM_CHAR message is the scan code for the key
pressed. The scan code represents the value generated by the keyboard hardware
when a key is pressed. An application can use the scan code to identify the
physical key pressed, as opposed to the character code represented by the same
key. The byte-length value for the scan code is in the high byte of the high word
of the first message parameter.

All WM_CHAR messages that are generated by the keyboard have valid scan
codes. WM_CHAR messages that are posted by other applications may or may
not have valid scan codes. The following code fragment shows how to extract a

Chapter 8: Mouse and Keyboard Input 119
S B B e e S R R T S e Rl

scan code from a WM_CHAR message:
fs = SHORT1FROMMP (mpl) ;
if (fs & KC_SCANCODE) {
/* scan code is in HIBYTE (HIWORD (mpl)) */

return (TRUE);

8.3.56.6 Accelerator-Table Entries

The system checks all incoming keyboard messages to see if they match any
existing accelerator-table entries, either in the system queue or in the
application-message queue. The translation first checks the accelerator table
associated with the active frame window, and if no match is found, it uses the
accelerator table associated with the message queues. If the keyboard event
corresponds to an accelerator-table entry, the WM_CHAR message changes to a
WM_COMMAND, WM_SYSCOMMAND, or WM_HELP message, depending
on the attributes of the accelerator table. The original WM_CHAR message is
not processed by the application.

Accelerator tables should be used to implement keyboard shortcuts in applica-
tions rather than translating command keystrokes. For example, if an application
uses the F2 key to save a document, a keyboard accelerator entry for the F2 vir-
tual key should be created so that it generates a WM_COMMAND message
rather than a WM_CHAR message.

8.3.6 Changing the Keyboard Focus

Applications can change the keyboard focus window by calling the WinSetFocus
function for the new focus window.

The WinSetFocus function causes the following events to occur:

B If a window currently has the focus, it receives a WM_SETFOCUS message
indicating the loss of focus.

B If a window currently has the focus, it receives a WM_SETSELECTION
message indicating that it should deselect the current selection.

W If changing focus causes a change in the active window and there is a
currently active window, a WM_ACTIVATE message is sent to the active
window indicating the loss of active status.

B A new active window, new focus window, and the active application are
established.

B If the active window is changing, a WM_ACTIVATE message is sent to the
new main window indicating the acquisition of active status.

120 . MS 0S/2 Programmer’s Reference, Vol. 1
e B A T e B R R R s S S R e

B The new focus window is sent a WM_SETSELECTION message indicating
that it should select the current selection.

B The new focus window is sent a WM_SETFOCUS message indicating the
acquisition of focus.

Using the WinQueryActiveWindow or WinQueryFocus function while processing
the WinSetFocus function causes the previous active and focus windows to be
returned until new active and focus windows are established. In other words,
even though WM_SETFOCUS and WM_ACTIVATE messages with the fFocus
parameter equal to FALSE may have been sent to the previous windows, those
windows are considered active and have the focus until the system establishes
new active and focus windows.

If the WinSetFocus function is called during the WM_ACTIVATE message pro-
cessing, a WM_SETFOCUS message with the fFocus parameter equal to
FALSE is not sent because no window has the focus.

8.4 Summary

The following sections describe the functions and messages associated with
activation and keyboard/mouse input.

8.4.1 Functions

The following are the functions associated with activation, keyboard, and mouse
input:

WinEnablePhysInput Enables or disables mouse and keyboard input, depend-
ing on the fEnable argument. Because this call affects the system queue, it is
important that any application that disables input should enable it again as soon
as possible.

WinFocusChange A version of the WinSetFocus function that allows more
control over messages generated for the old and new focus windows. For exam-
ple, if an application sets the focus to a new window without deselectmg text in
the old focus window, this function should be used.

WinGetKeyState Used to determine whether a specified virtual key is up,
down, or toggled. A key, such as the CAPSLOCK key, is toggled if it has been
pressed an odd number of times. This function can also be used to obtain the
state of the mouse buttons that use the VK_BUTTONI, VK_BUTTONZ and
VK_BUTTONS virtual key codes.

WinGetPhysKeyState Returns information about the asynchronous (interrupt
level) state of a specified virtual key. This function returns the physical state of
the key; it is not synchronized to the processing of input and is not affected by
calls to the WinSetKeyboardStateTable function.

WinlsPhysInputEnabled Returns the status, on or off, of mouse and keyboard
input.

WinQueryCapture Returns the window handle of the window currently holding
the mouse capture. If the fLock argument is TRUE, the window is returned
locked and remains locked until it is unlocked by calling the WmLockadow
function with fLock set to FALSE.

Chapter 8: Mouse and Keyboard Input 121
B B S T S e S S R S S SR T s s

WinQueryFocus Returns the keyboard focus window, or NULL if no focus
window exists. If the fLock argument is TRUE, the window is returned locked
and remains locked until it is unlocked by calling the WinLockWindow function
with fLock set to FALSE.

WinSetCapture Sends all mouse messages to a specified window, Specnfymg a
NULL window handle releases the mouse capture so that mouse mput is sent to
the window beneath the mouse pointer.

WinSetFocus Sets the focus window to the specified window, or to no window
if a NULL window is specified for the hwndSetFocus argument. This function
can cause activation and deactivation messages to go to the current and new
focus windows. The window losing focus receives WM_SETFOCUS(FALSE)
and WM_SETSELECTION(FALSE) messages. The frame window losing the
focus receives a WM_ACTIVATE(FALSE) message, and by default passes it to
its FID_CLIENT window. The frame window receiving the focus receives a
WM_ACTIVATE(TRUE) message, which it passes to its FID_CLIENT
window by default. The window receiving the focus receives the
WM_SETSELECTION(TRUE), and WM_SETFOCUS(TRUE) messages.

WinSetKeyboardStateTable This function receives or sets the keyboard-state
table. To change the state of one virtual key, call the WinSetKeyboardState-
Table function with the fSet argument set to FALSE to copy the current state
table into a 256-byte table (pointed to by the pKeyStateTable argument). It is
then possible to modify a virtual-key entry in the table and call the WinSet-
KeyboardStateTable function using the same table and fSef argument set to
TRUE. This call does not change the physical state of the keyboard. It affects
the result of subsequent calls to the WinGetKeyState function, but not the result
of calls to the WinGetPhysKeyState function.

8.4.2 Messages

The following sections describe the messages associated with focus change,
activation, the mouse, and the keyboard.

8.4.21 Focus Change and Activation Messages
The following messages are associated with focus change and activation:

WM_ACTIVATE Sent to a window when it is activated or deactivated. This
function can be used for tracking the activation state of a client window.

WM_FOCUSCHANGE Sent to a window when the focus is changing. Most
applications pass this message to the WinDefWindowProc function, which sends
it to the parent frame window. The frame window uses this message to generate
appropriate WM_ACTIVATE, WM_SETFOCUS, and WM_SETSELECTION
messages for the old and new focus windows.

WM_QUERYFOCUSCHAIN Used to define the focus chain (that is, to keep
from hard wiring the focus chain to the parent-window relationship).

WM_SETFOCUS Sent to a window when it is losing or receiving the keyboard
focus. A typical response is to display a text-insertion cursor when receiving the
focus and hide the cursor when losing the focus.

WM_SETSELECTION - Sent to a window when it is receiving or losing the key-
board focus. A typical response is to highlight the currently selected text when
receiving the focus and unhighlight the selection when losing the focus.

122 MS 0S/2 Programmer’s Reference, Vol. 1
B S e S e S R T R e R A

8.4.2.2 Mouse Messages
The following messages are associated with mouse events:

WM_BUTTONIDBLCLK Sent to the window under the mouse pointer or the
current mouse capture window, if any, when the user clicks the first mouse but-
ton twice in a system-specified time limit. The amount of time between clicks
necessary to make the action a double-click is a system parameter that a user
can set using Control Panel. The application receives a WM_BUTTON1DOWN
and WM_BUTTON1UP message for the first click of a double-click.

WM_BUTTONIDOWN Sent to the window under the mouse pointer or the
current mouse capture window, if any, when the user presses the first mouse but-
ton. A

WM_BUTTONIUP Sent to the window under the mouse pointer or the current
mouse capture window, if any, when the user releases the first mouse button.

WM.BUTFONZDBLCLK Like WM_BUTTONI1IDBLCLK but for the second
mouse button.

WM_BUTTON2DOWN Like WM_BUTTON1DOWN but for the second
mouse button. :

WM_BUTTON2UP Like WM_BUTTONI1UP but for the second mouse button.

WM_BUTTON3DBLCLK Like WM_BUTTONIDBLCLK but for the third
mouse button. '

WM_BUTTON3DOWN Like WM_BUTTON1DOWN but for the third mouse
button.

WM..BUTTON3UP Like WM_BUTTONT1UP but for the third mouse button. .

WM_HITTEST This message occurs when an application requests a message
by calling the WinPeekMsg or WinGetMsg function. If the message represents a
mouse event, it is sent to the the window under the mouse pointer or to the
current capture window, if any, to determine whether the message is destined for
the window. The default window procedure returns HT_ERROR if the window
is disabled; otherwise, it returns HT_NORMAL. The handling of this message
determines whether a disabled window can process mouse clicks.

WM_MOUSEMOVE Sent to the window under the mouse pointer or the win-
dow with the mouse capture, if any, when the mouse pointer moves. The system
generates this message only as often as the application requests new messages.
The distance the mouse pointer moves before this message is posted depends on
how fast the application executes its message loops.

Chapter 8: Mouse and Keyboard Input

123

B S T B o B S e S T s i S S S R S S S R T e s

8.4.2.3 Keyboard Message

The following message is associated with keyboard events:

WM_CHAR Posted to the current focus window whenever there is a keyboard
event. The message contains a flag word that indicates the composition of the
message. The following list of flag values can be used to test the flag word to
determine the nature of a message:

Flag

KC_ALT

KC_CHAR

KC_COMPOSITE

KC_CTRL

KC_DEADKEY

KC_INVALIDCHAR
KC_INVALIDCOMP

KC_KEYUP

KC_LONEKEY

KC_PREVDOWN

The ALT key was down when this message was
generated.

The message contains a valid character code
for a key. Typically, this code is an ASCIT

code.

In combination with the KC_CHAR flag this
flag bit means that the character code is a
combination of the key that was pressed and
the previous dead key. This is used to create
characters with diacritical marks.

The CONTROL key was down when this mes-
sage was generated.

In combination with a KC_CHAR flag this flag
bit means that the character code represents a
dead-key glyph (such as an accent). An appli-
cation displays the dead-key glyph and does
not advance the cursor. Typically, the next
WM_CHAR message is a KC_COMPOSITE
message containing the character associated
with the dead-key character.

The current character is not valid for the
current translation tables.

The current character is not valid in combina-
tion with the previous dead key.

The message was generated when the user
released the key. If this flag bit is clear, the
message was generated when the user pressed
the key. Use this bit to determine key-down
and key-up events.

No other key was pressed while this key was
down. Typically used to indicate that the user
pressed the ALT key by itself.

In combination with a KC_VIRTUALKEY
flag this flag bit means that the virtual key was
previously down. If this flag bit is clear, the
virtual key was previously up.

124 MS 0S/2 Programmer’s Reference, Vol. 1

PR A R Rl SR R R

Flag

R R B R R e R R R e R e AR

Meaning

KC_SCANCODE

KC_SHIFT

KC_TOGGLE

KC_VIRTUALKEY

The message contains a valid raw scan code
generated by the keyboard when the key is
pressed. The scan code is used by the system
to identify the character code in the current
code page, therefore, most applications do not
need the scan code unless they cannot identify
the key that was pressed. WM_CHAR mes-
sages generated by actual user keyboard

input generally have a valid scan code, but
WM_CHAR messages posted to the queue by
other applications might not contain a scan
code.

The SHIFT key was down when this message
was generated.

The KC_TOGGLE bit toggles “on” and “off”
every time the key is pressed. For example, it
is set “on” every odd number of presses and
“off” every even number of presses. This is
important for keys like NUMLOCK, which have
an on or off state.

The message contains a valid virtual-key code
for a key. Virtual keys typically correspond to
function keys.

S R S R e T R R R

Chapter

SRR

Frame Windows

9.1
9.2

9.3

9.4

INtrodUCtionc.vuvveveiieniiieiie i e v ereeneenenenns 127
About Frame Windowscceiviiiiiiiiiiiniiiieniiinieennennnn. 127
9.2.1 Main WiIndoW ..ocuiiiiiiiiiinereiinerernresrnseceennsecennens 127
9.2.2 Frame Controls .cuouveeueeerreereieeennrenseronresasensarenees 128
9.2.3 Client WINAOW ..uiieeninirrieririrenerierersessincennennsnns 128
9.2.4 Sizing Border and Minimize and Maximize Buttons.... 129
9.2.5 Frame-Control Identifiersc.ecvveveveiirrineeennrennen. 129
9.2.6 Frame-Window Creationeceevvieeenrrenereneennnnns 129
9.2.7 Frame-Control Flags.......ccceciviiieiiiniiiiiniinnnninnnns 130
9.2.8 Frame-Window Styles.......cceviieiiiiniiiiiiiiiiecninennnns 132
9.2.9 Frame-Window ReSOUICES ..ouvveririirrinrinrenneasienennes 133
9.2.10 Frame-Window Class Dataceeevvveiiiinereinnnenennnes 134
9.2.11 Frame-Window Data.......cevueieeeneenrenerrsieneeneeneenes 135
9.2.12 Frame-Window Operationccceoevieeirrenensnnnennnes 135
9.2.13 Nonstandard Frame WindowWS.......veeeveeereensennneeness 136
9.2.14 Default Frame-Window Behavior.....cccevvvvveiennnnnens 137
Using Frame Windowscoveviiiiiiininiiieiiinnencinnneen. 139
9.3.1 Creating a Main WindoW......c..coeveieiuinininnnnrnnnennns 139
9.3.2 Retrieving Frame Handlesccoveveiinniininninannns 141
SUMMATY ceuviiii i een e eaeeneneenenns 141
0.4.1 FUNCHONS .evviiniieiiiineiireniiieiesersentesasesesscensonsenee 141

9.42 Messages...... Nt tereerereetsareteentttereteaeartaaannananraans 141

Chapter 9: Frame Windows 127
e e T A i e S R S R R S S S T S S S e e

9.1 Introduction

This chapter describes creating and using frame windows in Presentation
Manager applications. You should also be familiar with the following topics:
B Standard user-interface guidelines

Windows

Window relationships

Control windows

Messages and message queues

Resources and using the MS OS/2 Resource Compiler (rc)

9.2 About Frame Windows

A frame window is the basic window used by most Presentation Manager appli-
cations. A frame window provides a base for the application’s main window, dia-
log windows, and message boxes. Although applications rarely use frame win-
dows alone, applications nearly always start with a frame window to create a
composite window that consists of the frame window, several frame controls,
and a client window. The frame window coordinates the actions of the other
windows, allowing the composite window to act as if it were a single unit.

A frame window is a window of the preregistered, public-window class
WC_FRAME. The frame-window class, like the preregistered control classes,
defines the appearance and behavior of the frame window. The appearance and
behavior of a frame window are designed to match the standard user-interface
guidelines for MS OS/2 Presentation Manager applications, including applica-
tions that use the multiple-document interface. This means that applications that
use frame windows have a quick and efficient way to create the “standard” win-
dows recommended by the user-interface guidelines.

Although frame windows are an important part of dialog windows, dialog win-
dows are not described in this chapter. For a complete description of dialog win-
dows, see Chapter 19, “Dialog Windows.”

9.2.1 Main Window

An application’s main window is typically made up of a frame window with con-
trol windows such as a title bar, System menu, menu bar, and scroll bar. The
main window also typically includes a client window.

The frame window is sometimes under other windows. Although it is not visible,
it provides the standard services the user expects from the window—for exam-
ple, moving, sizing, minimizing, and maximizing. The frame window receives
input from the control windows (called frame controls). It sends messages to the
frame controls and to the client window: to tell what action is needed next.

128 MS 0S/2 Programmer’s Reference, Vol. 1
B R e S B g T R B e e S e A EiaS

9.2.2 Frame Controls

When an application creates a frame window, it can specify that one or more
control windows be created as child windows of the frame window. A frame win-
dow can have a title-bar, System-menu, menu, and scroll-bar controls. Each is a
unique window created from a preregistered control-window class.

These frame controls provide a particular aspect of the user interface for a
“standard” application window. A title bar appears at the top of the window and
displays the application and/or window title. A System menu appears at the left
end of the title bar. It contains the commands used to move, size, and close the
window. A menu appears below the title bar and contains the commands the
user can choose to carry out work with the application. The scroll bars appear at
the right edge and bottom of the frame window. These let the user scroll the
contents of the client window.

Although all frame controls are optional, most, if not all, application main win-
dows use the title-bar and System-menu controls. These provide the minimum
functionality for a window that meets the user-interface guidelines.

Each frame control is a child window of the frame window. Each frame control
is owned by the frame window. That is, the frame window is the owner as well
as the parent window for each frame control. Because the main role of a frame
window is to coordinate the activities of other windows, ownership of the frame
controls is very important. Ownership gives the frame controls a way to send
notification messages to the frame window. Notification messages tell the frame
window what the user does with the frame control.

For example, a user can move a window by clicking the title bar and then drag-
ging the window to a new position using a mouse. The title bar responds to the
click by sending a message to the frame window notifying it of the user’s request
to move the window. The frame window can then track the mouse motion and
move the frame window and all its child windows to the new position.

An application can add frame controls to a frame window by specifying the
FCF_TITLEBAR, FCF_SYSMENU, FCF_MENU, FCF_VERTSCROLL, and
FCF_HORZSCROLL styles. Frame controls are described in separate chapters.
For a general discussion of controls, see Chapter 10, “Control Windows.”

9.2.3 Client Window

Every main window has a client window. The client window is the part of the
main window where the application displays output and receives mouse and key-
board input. What an application displays in the client window, how it displays
it, and how it interprets input to the window is controlled entirely by the applica-
tion.

An application creates the client window when it creates the frame window. The
client window is specific to the application; it is nearly always created by using a
private window class (a class registered by the application). Like frame controls,
the client window is a child window and an owned window of the frame window.
This means, for example, that the client window moves when the frame window
moves, that the client window is clipped to the frame-window size, and that the

client window is destroyed when the frame window is destroyed.

i

B o S D e B R R R B S G B

Chapter 9: Frame Windows 129

The relationship between the frame window and the client window allows the
frame window to pass messages from other frame controls to the client window
and vice versa. For example, a scroll-bar control notifies the frame window when
the user requests scrolling; the frame window then sends a message to the client
window. The client window requests that the frame window change the window
title; the frame window sends a message to the title-bar control.

9.2.4 Sizing Border and Minimize and Maximize Buttons

Although the sizing border and minimize and maximize buttons are not frame
controls, they act very much like controls for the frame window. However, they
are different than frame controls because the frame window draws and maintains
these items; frame controls draw and maintain themselves.

The sizing border, enclosing the frame window, lets the user change the size of
the window by using a mouse. The minimize button, at the rlght end of the title
bar, lets the user shrink the frame window to an icon. The maximize button,
next to the minimize button, lets the user enlarge the window so that it fills the
screen. An application can add these items to a frame window by using the
FCF_SIZEBORDER, FCF_MAXBUTTON, and FCF_.MINBUTTON (or the
FCF_MINMAX) styles. (The FCF_MINMAX style adds both a minimize and a
maximize button.)

9.2.5 Frame-Control Identifiers

A frame window uses a set of standard constants to identify the frame controls
and the client window. The frame-control identifiers all begin with the prefix
FID_ and can be used in functions such as WinWindowFromID to uniquely
identify a given control or the client window. The frame controls also use these
identifiers in notification messages they send to the frame window. The following
are the frame-control identifiers:

FID_CLIENT

FID_HORZSCROLL

FID_MENU

FID_MINMAX

FID_SYSMENU

FID_TITLEBAR

FID_VERTSCROLL

9.2.6 Frame-Window Creation

An application can create a frame window by using the WinCreateWindow func-
tion and specifying the WC_FRAME window class. This creates the frame win-
dow but does not add the frame controls and client window that accompany
most frame windows in applications. To add these additional windows, the appli-
cation can continue to call the WinCreateWindow function, specifying the origi-
nal frame window as the parent and owner window for each frame control and
for the client window. Or the application can call WinCreateStdWindow, which
automatically carries out the individual calls to WinCreateWindow.

130 MS 0S/2 Programmer’s Reference, Vol. 1
S S s S N B S R R R SIS B U

Frame windows are also used to create dialog windows. In this case, the frame
window contains control windows but no client window. An application can
create a dialog window by using the WinLoadDlg or WinCreateDlg function.
These functions require an appropriate dialog template from the application’s
resources on disk or from memory. The dialog template specifies the styles and
dimensions for the frame window and the control windows that make up the dia-
log window.

9.2.7 Frame-Control Flags
An application can specify both the frame-window style and the frame controls

for a frame window by using the frame-control flags with the WinCreateStd-
Window function. The following are the frame-control flags:

Flag

Description

FCF_TITLEBAR
FCF_SYSMENU
FCF_MENU

FCF_MINBUTTON
FCF_MAXBUTTON
FCF_MINMAX

FCF_VERTSCROLL
FCF_HORZSCROLL
FCF_SIZEBORDER
FCF_BORDER

FCF_DLGBORDER

FCF_SHELLPOSITION

FCF_TASKLIST

Creates a title bar.
Creates a System menu.

Creates a menu. This flag loads
a menu from the application’s
resources on disk.

Creates a minimize button.
Creates a maximize button.

Creates both a minimize and a max-
imize button.

Creates a vertical scroll bar.
Creates a horizontal scroll bar.

Creates a sizing border. A sizing
border lets the user adjust the size
of the window.

Creates a border. Use this flag for
windows that must not change size.

Creates a dialog border. Use this
flag for dialog windows.

Directs the frame window to request
an initial size and position from
Start Programs.

Adds the window title to the switch
list of Task Manager. If the process
creating a frame window already has
an entry in the switch list, the win-
dow title is appended to the previ-
ous entry.

Chapter 9: Frame Windows 131
B T S T e o B R o B e R e S S B T B

Flag Description

FCF_NOBYTEALIGN Enables the frame window to be
moved to any position on the
screen. If this flag is not given, a
frame window always adjusts its
position so that the x-coordinate of
its left edge is a multiple of 8. Using
this flag affects how quickly the sys-
tem can draw the frame window.

FCF_NOMOVEWITHOWNER Enables the frame window to main-
tain its position even if its owner
window moves. This applies only to
frame windows that are not child
windows of the owner. If this flag is
not given, the frame window moves
when the owner window moves.

FCF_ICON Loads an icon from the applica-
tion’s resources on disk. The icon is
used whenever the frame window is
minimized.

FCF_ACCELTABLE Loads an accelerator table from the
application’s resources on disk. The
accelerator table is used for all key-
board input to the frame window.

FCF_SYSMODAL Creates a system-modal frame win-
dow. Setting this flag is the same as
using the WinSetSysModalWindow
function.

FCF_SCREENALIGN Aligns the initial position of the
frame window relative to the screen
origin instead of to the parent win-
dow.

FCF_MOUSEALIGN Aligns the initial position of the
frame window relative to the mouse
position instead of to the parent
window. An application can use this
flag to position the default button in
a dialog window under the mouse
pointer.

FCF_STANDARD Combines the FCF_TITLEBAR,
FCF_SYSMENU, FCF_MENU,
FCF_SIZEBORDER,
FCF_MINMAX, FCF_ICON,
FCF_ACCELTABLE,
FCF_SHELLPOSITION, and
FCF_TASKLIST styles.

132 ° MS 0S/2 Programmer’s Reference, Vol. 1 :
S B R e B R R S R R T R e I S RS

When the WinCreateStdWindow function is called without any of these flags set,
the standard window is created invisible, behind all its sibling windows, in Z
order, with a width and height of zero, positioned at the lower-left of its parent
window. When WinCreateStdWindow returns, you can call WinSetWindowPos
to change the window’s size, x- and y-positions, Z-order position, and visibility.

When WinCreateStdWindow is called with the FCF_SHELLPOSITION frame-
control flag, the window is created in front of its sibling windows, in Z order,
with a standard size and x- and y-positions obtained from the shell program.

9.2.8 Frame-Window Styles

The frame-window class, like other preregistered window classes, provides many
class-specific window styles that applications can use to adapt the appearance
and behavior of a frame window. The frame-window styles, specified as con-
stants starting with the FS_ prefix, can be combined with the standard window
styles when creating a frame window. The following are the frame-window styles:

Style Description

FS_ACCELTABLE Loads an accelerator table from the
application’s resources on disk. The
frame window uses the accelerator table
to translate keyboard input.

FS_BORDER Creates a single-line border. Use this
style when the window must not change
size.

FS_SIZEBORDER Creates a sizing border. Use this style to
let the user adjust the size of the win-
dow.

FS_DLGBORDER Creates a double-line dialog border. Use
this style for dialog windows.

FS_ICON Loads an icon from the application’s
resources on disk. The frame window
draws the icon when the window is
minimized.

FS_SCREENALIGN Aligns the initial position of the frame
window relative to the screen origin
instead of to the parent window.

FS_MOUSEALIGN Aligns the initial position of the frame
window relative to the mouse position
instead of to the parent window. An
application can use this style to position
the default button in a dialog window
under the mouse pointer.

Chapter 9: Frame Windows 133
T T B T B e e S B T e R R e G B

Style Description

FS_NOBYTEALIGN Enables the frame window to be moved
to any position on the screen. If this
style is not given, a frame window
always adjusts its position so that the x-
coordinate of its left edge is a multiple
of 8. Using this style affects how quickly
the system can draw the frame window.

FS_NOMOVEWITHOWNER Enables the frame window to keep its
position even if its owner window
moves. This applies only to frame win-
dows that are not child windows of the
owner window. If this style is not given,
the frame window moves when the
owner window moves.

FS_SHELLPOSITION Directs the frame window to request an
initial size and position from Start Pro-
grams.

FS_SYSMODAL Creates a system-modal window. Using

this style is the same as calling the Win-
SetSysModalWindow function for the
frame window.

FS_TASKLIST Adds the window title to the switch list
of Task Manager. If the process creat-
ing a frame window already has an entry
in the switch list, the window title is
appended to the previous entry.

FS_STANDARD Combines the FS_ICON,
FS_ACCELTABLE,
FS_SHELLPOSITION, and
FS_TASKLIST styles.

The FS_ window styles are rarely used. Although the constants are useful for
creating a frame window without also creating frame controls, most applications
use frame controls and therefore use the FCF_ constants to specify the frame-
window styles. For each FS_ constant there is an equivalent FCF_ constant. For
more information, see the following section.

9.2.9 Frame-Window Resources

If the FCF_MENU, FCF_ICON, FCF_ACCELTABLE, FCF_STANDARD,
FS_ICON, FS_ACCELTABLE, or FS_STANDARD style is specified when
creating the frame window, the application must provide the appropriate
resources to support these styles. Depending on the style, a frame window may
attempt to load one or more resources from the application’s resources on disk.

134 MS 0S/2 Programmer’s Reference, Vol. 1
e R T S e O B B R S B R O I e S DR B B

You can use Resource Compiler to add icon and accelerator-table resources to
the application’s executable file. Each resource must have a resource identifier
that matches the resource identifier specified in the FRAMECDATA structure
passed to the WinCreateWindow function or in the idResources parameter of the
WinCreateStdWindow function.

The following list gives the frame-control flags and styles that require resources
and describes what the resource should be:

Style Resource

FCF_ICON Requires an icon resource. The frame win-

FS_ICON dow draws the icon whenever the window is
minimized.

FCF_MENU Requires a menu-template resource. A

frame window uses the menu template to
create a menu containing the commands
and menus specified by the resource.

FCF_ACCELTABLE Requires an accelerator-table resource. The

FS_ACCELTABLE frame window uses the accelerator table to
translate WM_CHAR messages to
WM_COMMAND, WM_SYSCOMMAND,

‘ or WM_HELP messages.
FCF_STANDARD Requires a menu template, an accelerator
FS_STANDARD table, and an icon resource.

The application must specify the module containing the resources (typically the
application’s executable file) when it creates the frame window. The resources
must have the same resource identifier and the application must supply this
identifier when creating the window. :

9.2.10 Frame-Window Class Data

An application can specify class-specific data for a frame window by passing a
FRAMECDATA structure to the WinCreateWindow function. The class-specific
data contains the frame-control flags, resource-module handle, and resource
identifier to be used when creating the frame window.

Frame-control flags specify what controls to create for the frame window and
what window styles to apply to the frame window. The frame-control flags
are the same flags (FCF_S) used in the WinCreateStdWindow function. The
resource-module handle and the resource identifier specify where to find
resources for the frame window.

Supplying class-specific data with WinCreateWindow is similar to using the Win-
CreateStdWindow function without creating a client window.

Chapter 9: Frame Windows 135
B T e S L B e e B R e e e e T i B

9.2.11 Frame-Window Data

Frame-window data specifies the state of the frame window at a given time.
An application can retrieve the frame-window data by calling the WinQuery-
WindowUShort function. A frame window has the following state flags:

Flag Description

FF_ACTIVE The frame window is activated.

FF_DLGDISMISSED A frame window that is a dialog win-
dow has been dismissed by a call to
the WinDismissDIg function.

FF_FLASHHILITE The frame window is flashing and its
flash state is TRUE.

FF_FLASHWINDOW The frame window flashes as the result

FF_NOACTIVATESWP

FF_OWNERHIDDEN

FF_OWNERDISABLED

FF_SELECTED

FI_FRAME
FI_OWNERHIDE

FI_ACTIVATEOK

of a call to the WinFlashWindow func-
tion or a WM_FLASHWINDOW mes-

sage. _
The system should do no Z ordering
on this frame window.

The frame window’s owner window is
hidden or minimized so the frame win-
dow is also hidden.

For a frame window that is a dialog
window, this flag indicates whether the
owner window was enabled or disabled
when the dialog window was loaded.

The frame window has selection
turned on.

The window is a frame window.

The frame window should be hidden
or shown as a result of its owner win-
dow being hidden, shown, minimized,
or maximized.

The window can be activated.

FI_NOMOVEWITHOWNER The window should move when its
owner window moves.

9.2.12 Frame-Window Operation

The frame window maintains the size, position, and visibility of itself, its frame
controls, and its client window. It responds to user requests to move, size,
minimize, maximize, and redraw the window. It also responds to requests to
close (destroy) the window and to change the focus and activation.

136 MS 0S/2 Programmer’s Reference, Vol. 1
R R R T N R SR A B B S S SR

When moving or sizing a frame window, all owned windows maintain their posi-
tion relative to owner window’s upper-left corner.

Whenever the frame window redraws itself (for example, after moving or sizing),
it draws the frame controls first, then lets the application draw the client win-
dow. This order ensures that the rapidly drawn frame controls are drawn before
the relatively slowly drawn client window.

The order in which the frame controls are drawn depends on the Z-order posi-
tion of the controls. Because the frame controls are sibling windows, the Z-order
position of one is relative to the others. The following list specifies the Z-order
position of the frame controls (from top to bottom):

FID_SYSMENU
FID_TITLEBAR
FID_MENU
FID_VERTSCROLL
FID_HORZSCROLL
FID_CLIENT .

Although an application can change the Z-order position of any window, chang-
ing the relative positions of frame controls is not recommended.

When a frame window receives a request to minimize the window, it locates an
available icon space in the lower part of the screen, hides all frame controls and
the client window, and draws its icon. If the frame wmdow has no icon (that is,
the window was created without the FCE_ICON style), the frame window hides
all but the client window. The client window must then draw the minimized win-
dow. An application can determine the size of a minimized frame window by
calling WinQueryWindowUShort and spemfymg the QWS_XMINIMIZE and
QWS_YMINIMIZE indexes.

When a frame window is maximized, it grows to the size of its parent window,
plus an additional amount on each of its four sides equal to the width of its siz-
ing border. Because a window is always clipped to its parent window, a maxi-
mized standard frame window does not show its sizing border.

Frame controls owned by a frame window or windows owned By child windows
of a frame window are automatically destroyed when the frame window pro-
cesses the WM_DESTROY message.

9.2.13 Nonstandard Frame Windows

Although most applications use frame windows to create main window and dia-
_ log windows, they are not limited to frame windows. Applications can create
nonstandard frame windows and still use the standard frame controls, such as
the title bar and System menu, within the nonstandard windows. One reason for
creating nonstandard frame windows is to expand the capability of the frame
window to support special features such as the multiple-document interface.

There are two ways to create nonstandard frame windows: subclass a frame win-
dow or create a private frame-window class. An application that subclasses a
frame window can intercept the messages sent to the window and process them

b e e SR S R U S B R RS

Chapter 9: Frame Windows

137

T e R S N e SRR e B B e e el

in new ways. An application that creates private frame-window classes essentially
rewrites the frame-window procedure. In either case, the application gains much
more control over the placement of frame controls in the frame window by

creating nonstandard frame windows.

The messages WM_FORMATFRAME, WM_UPDATEFRAME, and
WM_CALCVALIDRECTS control the arrangement of frame controls for appli-
cations that subclass. By intercepting these messages, an application can rear-
range the placement of frame controls in a frame window.

For applications that create private frame-window classes, the WinCreate-
FrameControls, WinCalcFrameRect, and WinFormatFrame functions provide
much the same capability as frame windows to maintain the size and position of

frame controls.

9.2.14 Default Frame-Window Behavior

This section describes all the messages specifically handled by the predefined

frame-window class.

Message Description

WM_ACTIVATE Sent to a title bar or sizing border
so its highlight state matches the
frame window’s activation state.

WM_BUTTON1DOWN If the frame window is minimized,
captures the mouse. If the window
is not minimized, activates the win-
dow.

WM_BUTTON2DOWN Activates the frame window.

WM_BUTTON3DOWN Activates the frame window.

WM_BUTTON1UP Processes messages from minimized
window frames.

WM_BUTTON2UP Not processed.

WM_BUTTON3UP Not processed.

WM_BUTTON1DBLCLK If the frame window is minimized,
posts a WM_SYSCOMMAND mes-
sage to itself. Otherwise, activates
the frame window and any control
clicked.

WM_BUTTON2DBLCLK Not processed.

WM_BUTTON3DBLCLK Not processed.

WM_HITTEST If the frame control is minimized,

returns HT_ERROR if the window
is disabled; otherwnse, returns
TF_MOVE.

138 MS 0S/2 Programmer’s Reference, Vol. 1
é@:ﬁ:ﬁﬁﬁ‘@sﬂ%ﬁ-’&fﬁ:&ﬁé&@@agﬁt.;&a%'ﬁ'ﬁ’:’xﬁEﬁiﬁ%@ﬁﬁ!ﬁ-ﬁﬁ@@ﬁﬁ%ﬁ'ﬁ%@m Earl S SR B i

Message Description

WM_CALCVALIDRECTS If there is no client window or
the client window has the style
CS_SIZEREDRAW, returns
CVR_REDRAW to invalidate
the entire window.

WM_CLOSE If there is a client window, passes
this message to it; otherwise, this
message returns WinDefWindow-
Proc.

WM_CONTROLHEAP Attempts to allocate a heap for the
: frame controls. Returns a handle if
successful; otherwise, returns -
NULL.

WM_CREATE Creates specified frame controls by
calling WinCreateFrameControls.
Also creates any accelerator tables,
loads icons, and adds itself to the
switch list in Task Manager. These
actions depend on the frame win-
dow and frame-control styles
specified for the window.

WM_DESTROY If the focus is held by a child

: ' window of the frame window, sets
the focus-to the frame window’s
parent window. Destroys any win-
dows owped by the frame window.
Destroys any child windows. Frees
any control heaps. Destroys any
icon created with the FS_ICON
style. Destroys any accelerator
table created with the
FS_ACCELTABLE style.

WM_ENABLE Returns WinDefWindowProc.

WM_ERASEBACKGROUND Sent by the frame window to itself
during WM_PAINT processing.
Returns TRUE, signaling that the
window should erase the client-
window area.

WM_FORMATFRAME Calls WinFormatFrame and Win-
SetMultWindowPos to format and
position the frame controls.

WM_MINMAXFRAME If there is a client window, passes a
message to it; otherwise, passes a
message via the WinDefWindow-
Proc function.

Chapter 9: Frame Windows 139

R e S R S R R S

Description

WM_MOUSEMOVE

WM_PAINT

WM_QUERYTRACKINFO

WM_SHOW
WM_SIZE

WM_SYSCOMMAND

WM_UPDATEFRAME

9.3 Using Frame Windows

Determines the correct mouse
pointer to use and returns Win-
DefWindowProc.

If the frame window is minimized,
sends WM_QUERYICON and
WM_ERASEBACKGROUND
messages to itself and draws

the icon. Otherwise, paints

all of its controls, sends a
WM_ERASEBACKGROUND
message to the client window, and
paints the client window.

Obtains the default tracking infor-
mation.

Returns WinDefWindowProc.

Sends a WM_FORMATFRAME
message to itself.

If the mouse is captured, ignores
the system command. Otherwise,
uses one of the following com-
mands: SC_RESTORE, SC_SIZE,
SC_MOVE, SC_CLOSE,
SC_TASKMANAGER,
SC_NEXT, SC_NEXTFRAME,
SC_SYSMENU, SC_APPMENU.

Calls WinFormatFrame to format
the frame controls.

The following sections detail creating and using frame windows in your Presenta-

tion Manager applications.

9.3.1 Creating a Main Window

You can create a main window by using the WinCreateStdWindow function. The
following code fragment creates a typical main window: a frame window that has
a System menu, title bar, menu, vertical and horizontal scroll bars, minimize
and maximize buttons, and a sizing border:

140 ~ MS 0S/2 Programmer’s Reference, Vol. 1

e e e B S e

S R i R R T RN R R R

/* Create a main window. */

ULONG flFrameControlFlags =
FCE_SYSMENU | FCF_TITLEBAR | ECE_SIZEBORDER
FCF_MENU | ECF_MINMAX | FCE_HORZSCROLL

FCE_VERTSCROLL;

HWND_DESKTOP,
oL,

hwndFrame = WinCreateStdWindow (
/*

frame-window parent
/* no window styles

&flErameControlElags, /* frame-control flags

"MyClass",
"Main Window"
OL, -

NULL,

1,
&hwndClient) ;

You can also create a “standard”

/* client-window class
/* window title

/* no client-window styles
/* app module has resources

/* resource ID)
/* client-window handle

e 1ol
Lo

FE

iR

g

main window for an application by creating a

frame window with the FCF_STANDARD style. You create the frame window
using the WinCreateStdWindow function. The following code fragment creates

the window:

/* Set the frame-control flags. */

ULONG flFrameControlFlags = FCF_STANDARD;

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, ...,

Another way to create a main window and its frame controls is by calling the

&hwndClient) ;

WinCreateWindow function to create the frame window and the frame controls
and then calling WinCreateWindow to create the client window. One advantage
of this approach is that you can specify an initial size and position of the frame
window when you create it. The following code fragment illustrates this:

FRAMECDATA fcdata;

fcdata.cb = sizeof(fcdata);

fcdata.flCreateFlags
fcdata.hmodResources
fcdata.idResources

FCF_STANDARD;
NULL;
idErame;

hwndFrame = WinCreateWindow(

HWND_DESKTOP,
WC_FRAME,
"Main window",
oL,

o, o0, o0, O,
NULL,
HWND_TOP,
idFrame,
&fcdata,
NULL) ;

/*

frame-window parent
frame-window class
window title
initially invisible
size and position = O
no owner

top Z-order position
frame-window ID

pointer to class-specific data

no presentation parameters

hwndClient = WinCreatew1ndow(

hwndErame, /* client-window parent

"My Class", /* client-window class

NULL, /* no title for client window

oL, /* initially invisible

o, 0, 0, O, /* size and position = 0

hwndFrame, /* owner is frame window

HWND_BOTTOM, /* bottom Z-order position

FID_CLIENT, /* standard client-window ID

NULL, /* no class-specific data

NULL) ; /* no presentation parameters
/* ... continue initialization ... */

WinShowWindow (hwndErame, TRUE);

Chapter 9: Frame Windows 141
B T T e B S R S S S S e S I B g

9.3.2 Retrieving Frame Handles

You can easily retrieve a frame-control handle by using the WinWindowFromID
function. The following code fragment retrieves the control handle of the title
bar:

hwndTitleBar = WinWindowEFromID (hwndFrame, FID_TITLEBAR)

Given a frame-control handle, you can retrieve its parent frame-window handle
by using the WinQueryWindow function:

hwndFrame = WinQueryWindow (hwndTitleBar, QW_PARENT, FALSE);

By using identifiers to identify frame controls rather than window classes, you
can create your own controls to replace the predefined controls.

9.4 Summary

The following sections list the messages and functions you can use to create and
use frame windows.

9.4.1 Functions
The following functions are used to create and use frame windows:
WinCreateStdWindow Creates a standard frame window.
WinCreateWindow Creates a standard frame window.
WinCreateFrameControls Creates standard frame controls for a given window.

WinFormatFrame Calculates the size and position of frame controls within a
frame window. This function is typically used by applications that require a non-
standard frame-window layout.

WinCalcFrameRect Determines the size of a frame window or its client win-
dow.

WinGetMinPosition Obtains a frame window’s minimized position.
WinGetMaxPosition Obtains a frame window’s maximized position.

WinFlashWindow Starts or stops frame-window flashing.

9.4.2 Messages
The following messages are used to create and use frame windows:

WM_ERASEBACKGROUND Sent to the client window when the background
needs to be redrawn.

WM_FLASHWINDOW Sent to a frame window as a result of a call to the
WinFlashWindow function.

142

MS 0S/2 Programmer’s Reference, Vol. 1

i e e e e R R e e S D e B s R e R R e e

WM_FORMATFRAME Sent to a frame window to calculate the sizes and
positions of its component windows.

WM_MINMAXFRAME Sent to a frame window when it is about to be mini-
mized, maximized, or restored.

WM_NEXTMENU Sent to the owner window (the frame window) to obtain
the next or previous menu window.

WM_QUERYACCELTABLE Sent to a frame window to obtain the
accelerator-table handle.

WM_QUERYBORDERSIZE Sent to the frame window to determine the size
of the window border.

WM_QUERYFRAMECTLCOUNT Sent to the frame window to determine
the maximum number of frame controls that can exist for a frame window.

WM_QUERYFRAMEINFO Sent to determine the following things about the
frame window: whether the window is a frame window; whether the window can
be activated; whether the window should move as a result of its owner being
moved; whether the window should be hidden or shown as a result of its owner
window being hidden, shown, minimized, or maximized.

WM_QUERYICON Sent to the frame window to obtain the icon handle.

WM_QUERYTRACKINFO Sent to the window procedure of the owner (the
frame window) of a title-bar control at the start of track-move processing.

WM_SETACCELTABLE Sent to the frame window to set the accelerator-
table handle.

WM_SETICON Sent to the frame window to set the icon the frame-window
uses when it is minimized. '

WM_TRACKFRAME Sent to the frame window to start the tracking opera-
tion for a frame window.

WM_TRANSLATEACCEL Sent to the focus window (the frame window) to
allow for accelerator-translation of the WM_CHAR message.

WM_UPDATEFRAME Sent after frame controls have been added or removed
from the frame window to notify the frame window to update the appearance of
the window.

S i R e e B T RS R B R TR R A

Chapter

G RIRER e

Control Windows

10.1
10.2

10.3
10.4
10.5

Introduction.......cccceeiiiiiiiiiiiiiiiiiiiiiiii e, 145
About Control Windowscccceevvevruieniinieienninnencinninn, 145
10.2.1 Control-Window Features.......cccccevriiniinininenennann. 145
Using Control Windows in an Application.................... 146
Creating a Custom Control Windowccceeuvueeninnnnn. 146
SUMMATY et ces e resaaeses 147
10.5.1 Predefined Control-Window Classesc...ccueuenen. 147
10.5.2 Messages Sent to a Control Window......c.cocevevnrnnnns 148

10.5.3 Messages from a Control Window
to an Owner Windowccocuvvinivinniniinninininninan, 148

Chapter 10: Control Windows 145

e B B e R B e B R R R R e e m Rt

10.1 Introduction

10.2 About

This chapter describes the functions that allow you to use control windows in
your applications. You should also be familiar with the following topics:

B Standard user-interface guidelines

B Resources and using the MS OS/2 Resource Compiler (rc)

B Window Frames and creating standard frame windows

B Window messages and message queues

Control Windows

Control windows are predefined window classes that applications use for input
and output. Control windows are typically used as part of a dialog window and
are defined in the dialog template. Applications can also create control windows
by calling the WinCreateWindow function with the appropriate window-class
specification. The following control-window classes are predefined in MS OS/2:

Control Description

Button Buttons or boxes that the user selects by clicking or
i using the keyboard. Several button types are available,
including push buttons, radio buttons, and check boxes.

Entry field A single line of text that the user can edit.

Static Text, icons, or bitmaps that do not respond to user
input.

List box A window containing a list of items, usually text strings,

- from which the user may scroll and make selections.

Menu A list of items, either text or bitmaps. The items in a
menu may be displayed horizontally across the top of a
frame window, as in a menu bar, or vertically, in a
menu. Menus typically provide the command interface
for an application.

Scroll bar A bar that allows a user to scroll the contents of a win-
dow. Scroll-bar controls contain directional arrows and
an absolute-position indicator called the slider.

Title bar A title or caption displayed across the top of a frame
window. They can be used by a user to move the win-
dow, by dragging the title-bar control.

10.2.1 Control-Window Features

Control windows are always owned by other windows, usually dialog windows or
application frame windows. The ownership relationship is important because a
control window sends notification messages to its owner whenever an action
occurs in the control window. A control-window position is also expressed in the
coordinate space of its owner.

Control windows are like other predefined window classes in that they respond

146 MS 0S/2 Programmer’s Reference, Vol. 1 ,
il B SE s R b e R e e A e T e e PR L] s e TSl et L P i s U Bt 521

to standard window management messages and functions, such as the Win-
SetWindowText and WinShowWindow functions.

Control windows are usually painted synchronously. This means that a control
window is redrawn as soon as any part of it becomes invalid.

All control windows have a window ID. This ID is set either in a dialog template
or when the control is created by the WinCreateWindow function. The ID is
used when the control window sends notification messages to its owner. Care
must be taken to make sure that the control ID for a particular window is not
duplicated. Note that the control-window ID should not be the same as the com-
mand ID associated with individual menu items.

All control-window classes have a set of specific messages that they send and
receive. The summary at the end of this chapter lists the messages that all con-
trol windows have in common. : :

10.3 Using Control Window_s in an Application

Control windows can be used in dialog windows and standard-frame or client
windows.

To use a control window in a dialog window, an application defines the control.
A dialog template typically includes several control windows as part of the dialog
template in its resource file. Then, when the dialog resource is loaded and
displayed, control windows are automatically displayed as part of the dialog win-
dow. The application can then send messages to the control window to change
its state. The dialog-window procedure defined by an application receives
notification messages from the control window. The nature of these messages
depends on the specific type of control window.

To use a control window in a non-dialog window, an application must call the
WinCreateWindow function using the appropriate window-class specification.
An application usually specifies one of its client windows as the owner of the
control window. Therefore, the client-window procedure receives notification
messages from the control window. In some cases where a control is owned by
the frame window (such as a menu control), the notification messages to the
frame are passed on to the client window.

10.4 Creating a Custom Control Window

MS OS/2 provides several predefined control-window classes. You can create
custom-control windows to fit specific purposes in an application by doing the
following:

B Using the user-drawn buttons, list boxes, and menus

B Subclassing an existing control-window class
B Registering and implementing a window class from scratch’

Buttons, list boxes, and menus have an optional style designation that marks
them as “user-drawn.” This means that the owner window of the control with
this style receives a message whenever the control must be drawn. (If the owner
window is a frame window, it sends owner-drawn messages to its client windows,
which should be handled by the client-window procedure.) This allows you to

Chapter 10: Control Windows 147

Bl s e s R P e L e b i e R L e e A e

alter the appearance of a control window. For buttons, the owner-drawn style
affects the drawing of the entire control. For menus and list boxes, the owner
draws the individual items within the control, and the system draws the external
outline of the control.

Subclassing an existing control window is an easy way to make custom controls.
When you subclass an existing control window, you only alter those behaviors
you want to change, letting all other messages through to the original control-
window procedure.

The techniques for defining a custom control window are the same as those used
in creating a client-window class. However, if you are creating your own
custom-control window class, be sure it can send and receive the messages listed
in Section 10.5.

If you create a custom control-window class by subclassing a control class or by
creating a window class from scratch, you can use its class name in the dialog
template just like a predefined window-class constant. For example, if you define
and register a window class called “MyControlClass” in an application, you can
define a dialog window containing a control window using the following resource

- definition:
DLGTEMPLATE IDD_CUSTOM_TEST
BEGIN
DIALOG "", IDD_CUSTOM_TEST, 1, 1, 126, 130, FS_DLGBORDER, O
BEGIN
CONTROL "This is Text", IDD_TITLE,
37, 107, 56, 12,
WC_STATIC,
SS_TEXT | DT_CENTER | DT_TOP | DT_WORDBREAK
| WS_VISIBLE
CONTROL "Custom Control", IDD_CUSTOM,
33, 68, 64, 13,
"MyControlClass",
WS_VISIBLE
CONTROL "“Okay", DID_OK,
57, 10, 24, 14,
WC_BUTTON,
BS_PUSHBUTTON | BS_DEFAULT | WS_TABSTOP | WS_VISIBLE
END
END

10.5 Summary

The following sections describe the predefined control-window classes and the
messages common to all control windows.

10.5.1 Predefined Control-Window Classes
These the predefined control-window classes in MS OS/2:

WC_BUTTON A button control, including push buttons, radio buttons, and
check boxes.

WC_ENTRYFIELD An entry-field control that allows single-line text editing.
WC_STATIC A static control that displays text, icons, or bitmap data.
WC_LISTBOX A list box that displays a list of items that can be scrolled.
WC_MENU A menu, including a menu bar and menus.

148 MS 0S/2 Programmer’s Reference, Vol. 1
A s R T T S e e e R R S R R R e S R SR

WC_SCROLLBAR A scroll bar that allows a user to scroll the contents of a
window.

WC_TITLEBAR The title of a window at the top of the frame that allows a
user to reposition a window on screen.

10.5.2 Messages Sent to a Control Window
All types of control windows receive the following messages:

WM_ADJUSTWINDOWPOS Sent to the control window by the WinSetWin-
dowPos function to allow the control to modify its position. The message con-
tains a pointer to an SWP structure that specifies the new control size and posi-
tion. The control can modify the data in the SWP structure before the control is
actually displayed or moved. For example, the dimensions of an entry-field con-
trol define the limits of the area that can be edited (not the border). The entry-
field control modifies the fields of the SWP structure, specifying the size and
position, including the border. List-box controls also modify their size and posi-
tion, including any borders, and they can adjust their height to display all list
items. :

WM_QUERYDLGCODE Sent to the control window by the system to deter-
mine the kinds of messages the control processes. The control window returns a
dialog code that is a combination of bit flags describing the messages the control
responds to.

10.5.3 Messages from a Control Window to an Owner Window
The following are messages sent from a control window to an owner window:

WM_COMMAND Posted to the owner-message queue by menus and buttons.
The owner window receives this message when the user selects a push button or
chooses a menu item. This message also includes information about its source.

WM_CONTROL Sent (with the WinSendMsg function) to the owner of the
control window. This message includes the control-window ID and other infor-
mation specific to the type of control and nature of the message.

WM_CONTROLHEAP Sent by the control to its owner window when it needs
a handle to a heap to allocate memory. For example, entry-field controls allocate
memory to hold text associated with a control window. Generally, an application
ignores this message, passing it on to the default window procedure that returns
a handle to a heap.

WM_CONTROLPOINTER Sent to an owner window when the mouse pointer
moves over the control window. The owner sets the mouse pointer to a different
shape, if desired. The control passes an HPOINTER to a mouse pointer as part
of this message. The owner can alter the default pointer shape by passing a
different HPOINTER back. Applications that use the default should pass the
same HPOINTER back as the result of this message or just pass the message on
to the WinDefWindowProc function.

WM_HELP Posted by controls with the appropriate style. This message is like
the WM_COMMAND message. The owner window receives this message and

responds with help information, depending on the context information included
in the message.

Chapter 10: Control Windows 149
B e B B T S R R Sl

WM_SYSCOMMAND Posted by controls with the appropriate style. This mes-
sage is like the WM_COMMAND message. It is not passed from a frame win-
dow to a client window. Generally, the only control sending this message is the
system menu in a frame window.

R e S N R A

Title-Bar Controls

11,1 Introduction.......cceeeieiiiiniiiniiiiiiieiiiiircreea e 153
112 ADOUL Title BArS...vuvvvsverecreceesessersssesssssessssesnsesenenns 153
11.3 Using Title-Bar Controls in Applications.............cccuvenee 153

11.3.1 Altering Dragging Actioncccevevuvernrecrecncenesanss 154
11.4 Default Title-Bar Behavior................. ereresriecesieeteretenes 154

11.5 SUMMATY c.iviiiiiieiiriirie i rce e rerereeeeenrenenraranansnnas 155

Chapter 11: Title-Bar Controls 153
T e e i S R B T R S S S R S St e st

11.1 Introduction

This chapter describes creating and using title-bar control windows. The title-bar
control window is part of a standard frame window. You should also be familiar
with the following topics:

B Standard user-interface guidelines

B Standard frame windows
B Window messages and message queues

11.2 About Title Bars

A standard frame window is made up of several overlapping control windows
that give the window its distinctive look and behavior. This chapter discusses
one of these control windows: the title bar. Menus and scroll bars, the other
control-window types that can be part of a frame window, are discussed in other
chapters in this manual. Figure 11.1 shows a standard frame window with its title
bar:

Figure 11.1 ;
Frame Window with Title Bar

Title bar

-ZTC sl i
Edit Fi=Help

The title bar in a standard frame window performs four functions. First, it
displays the title of the window across the top of the frame. Second, it changes
its highlight appearance to show whether the frame window is active or not. Nor-
mally, the topmost window in a screen display is the active window. Third, the
title bar responds to the user—for example, when the user drags the frame win-
dow to a new location on the screen. Finally, the title bar flashes (as a result of
the WinFlashWindow function).

Title-bar control windows, like all control windows, must be owned by another
window. Title-bar controls are owned by the frame window. A title-bar control
sends messages to its owner when the control receives user input.

11.3 Using Title-Bar Controls in Applications

Typically, you need not be too concerned with the title-bar control. The default
behavior of the title-bar control follows the standard user-interface guidelines.
Most applications allow the title-bar control to operate according to these guide-
lines.

" To include a title-bar control in a standard frame window, the application must
compare (by using the OR operator) constants representing each control type

154 MS OS/2 Programmer’s Reference, Vol. 1
B S o e R e T A R e e R R R B

&

and pass the resulting value to the WinCreateStdWindow function. The follow-
ing code fragment shows the creation of a standard frame window with a title
bar, a minimum/maximum control, a size border, a System menu, and an appli-
cation menu. (The System menu and application menu are considered frame
controls. For more information about frame controls, see Chapter 9, “Frame
Windows.”) :

ULONG 1ControlStyle = FCF_TITLEBAR | FCF_SIZEBORDER | FCF_MINMAX |
FCF_SYSMENU | FCF_MENU;

hwndFrame = WinCreateStdWindow (HWND_DESKTOP,
WS_VISIBLE | FS_ACCELTABLE,
&lCornitrolStyle,
szClassName,
szClassName,
OL, NULL,
ID_MENU_RESOURCE,
&hwndClient) ;

Once the frame controls are in place in the frame window, most applications can
ignore them. The system handles the frame controls. In some cases, the applica-
tion may take control of the title bar by sending messages to the title-bar control
window.

To get the window handle of a title-bar control in a frame window, the applica-
tion calls the WinWindowFromID function with the frame-window handle and a
constant identifying the title-bar control, as shown in the following code:

hwndTitleBar = WinWindowFromID (hwndFrame, FID_TITLEBAR) ;

To change the text of a title bar, the application sets the window text of the
frame window by calling the WinSetWindowText function. The frame window
passes the message to the title bar. This changes the title-bar text.

11.3.1 Altering Dragging Action

‘When the user clicks in the title-bar control, the title bar sends its owner (the
frame window) a WM_TRACKFRAME message. The frame window also sends
a WM_QUERYTRACKINFO message to itself to fill in a TRACKINFO struc-
ture that defines the tracking parameters and boundaries. To modify the default
behavior, you must subclass the frame window and intercept the message
WM_QUERYTRACKINFO and modify the TRACKINFO structure. If you
return TRUE for the WM_QUERYTRACKINFO message, the tracking infor-
mation proceeds according to the information in the TRACKINFO structure. If
you return FALSE, no tracking occurs.

11.4 Default Title-Bar Behavior

This section describes all the messages specifically handled by the predefined
title-bar control class.

Message Description

WM_CREATE Sets the window text for the con-
: trol. Returns FALSE if creation
succeeds.

Chapter 11: Title-Bar Controls 155
T B e i G S S B S S SR S T s

Message Description

WM_DESTROY Frees the window text for the con-
trol.

WM_QUERYWINDOWPARAMS Returns the requested window

: parameters.

WM_SETWINDOWPARAMS Sets the specified window parame-
ters.

WM_PAINT Draws the title bar.

WM_HITTEST Always returns HT_NORMAL, so

the title bar does not beep when it
is disabled (it is disabled when the
frame window is maximized).

WM_BUTTON1DOWN Sends the WM_TRACKFRAME
message to the owner (typically a
frame window) to start tracking.

WM_BUTTON1DBLCLK Restores the window if the owner
window is minimized or maxi-
mized. If the window is neither,
maximizes the window.

WM_ADJUSTWINDOWPOS Returns FALSE. Process this
message to prevent the WinDef-
WindowProc function from send-
ing the size and show messages.

WM_QUERYDLGCODE Returns the predefined constant
DLGC_STATIC. A user cannot
use the TAB key to move to this
window in a dialog box.

TBM_QUERYHILITE Returns the highlight state of the
title bar.

TBM_SETHILITE Sets the highlight state of the title
bar, repainting it if the state is
changing.

115 kSummary

The following messages are associated with frame-control windows:

TBM_SETHILITE Sets the highlight state of the title bar to TRUE or FALSE.
The system usually sends this message to a title bar to show whether or not the
frame window containing the title bar is active.

TBM_QUERYHILITE Returns the highlight state (TRUE or FALSE) for a
title-bar control window.

[R R e T S A G T

Chapter

AT A S At

Button Controls

12.1
12.2
12.3

12.4
12.5

INErOdUCHON . vveeeveeeeeeeeeieeteeeeeereeeeeeereeenseeeneeeens leveras 159
About Button Controlscoceeeveiiiieiiiiieiiiininininininnne. 159
Using Button Controls in an Application..................... 160
12.3.1 Buttons in a Dialog WindoW.....cceveveevereacneneenenennns 160
12.3.2 Buttons in-a Client WindoWccceveereeneeneneenrecnns 162
12.3.3 Responding to a Button-Notification Message 162
12.3.4 Changing the Button Statecccevvniniveinininenennn. 163
12.3.5 Owner-Drawn Buttons......cecveeeiiieeieniiinrienareenennns 163
Default Button Behavior..........covviiiiiiieninieiicininnenenenn.. 164
SUMMATY .ot i e a e 165
12.5.1 Button Styles co.iveieiieiiiiiiniiiiiiiiiiiiiiiiriiincnieniens 166
12.5.2 Messages Sent to Button ControlS........c.vevueveenennnnn. 167

12.5.3 Messages Sent from Buttons to Owner Windows........ 167

Chapter 12: Button Controls 159

B S i T S e S S S S S e e e

12.1 Introduction

12.2 About

Figure 12.1
Button Types

This chapter describes how to use button-control windows in your applications.
You should also be familiar with the following topics:

B Standard user-interface guidelines

B Resources and using the MS OS/2 Resource Compiler (rc)
® Window messages and message queues

Button Controls

A button control is a window that represents a button that a user can select
using the mouse or keyboard. Buttons can appear by themselves or in groups,
and can appear with or without label text. A user can select a button by clicking
it with the mouse or pressing the ENTER key when the button window has the
keyboard focus. Buttons typically change appearance when selected.

There are four main types of buttons: push buttons, radio buttons, check boxes,
and three-state check boxes. The appearance and behavior of button controls is
determined by the style of the button. Figure 12.1 shows the different types of

button controls.

= crhaek Box
[3 State Button

@® Radio Button

Push Button

Radio buttons, check boxes, and three-state check boxes are used to control
attributes of an operation. Push buttons are used to initiate operations. For
example, a user might indicate paper size, print quality, and printer type in a
print-command dialog window containing an array of radio buttons and check
boxes. Once the user sets each option, a push button can be used to tell an
application that printing should begin (or be canceled). The application queries
the state of each radio button and check box to determine the printing parame-
ters.

Push buttons are rounded-corner rectangular windows containing text strings.
Push buttons become highlighted when they are selected by a user. They
return to an unhighlighted state when the user releases the mouse button or
the SPACEBAR. Push buttons are typically used to start or stop operations. A
push button posts a WM_COMMAND message to its owner window.

Radio buttons are windows with text displayed to the right of a small, circular
indicator. A radio button toggles between selected and unselected, each time
the user selects it. The button retains the state until the next selection. Radio

160 MS 0S/2 Programmer’s Reference, Vol. 1 _
B e e R S R S R R RaEE

buttons usually appear in groups with only one button selected at a time. Radio
buttons are appropriate where an exclusive choice is required from a group of
related options. A radio button sends a WM_CONTROL message to its owner
window.

Check boxes are similar to radio buttons except that they are used by themselves
instead of in groups. They also toggle on or off application features. A check
box sends a WM_CONTROL message to its owner window.

Three-state check boxes are similar to check boxes except that they can be
displayed in halftone as well as selected or unselected. A three-state check box
sends a WM_CONTROL message to its owner window.

In addition to the four predefined button-control types, an application can create
buttons that appear defined by the owner window. Buttons using this style send
BN_PAINT messages to their owner windows when they must be drawn or
highlighted.

Button-control windows are always owned by other windows, typically by

an application client window or a dialog window. A button control posts
WM_COMMAND messages or sends WM_CONTROL notification messages
to its owner when a user selects the button. Owner windows can also send
messages to button controls to query or set states.

12.3 Using Button Controls in an Application

The most common way to use button controls is in a dialog window. An applica-
tion defines one or more button controls in the dialog template in the resource
file, and processes button messages in the dialog-window procedure.

Buttons can be associated in groups in dialog windows. A user-can move from
one button in a group to another button in the same group by pressing the direc-
tion keys. The TAB key moves from one group to the next. Groups are estab-
lished by setting the WS_GROUP style bit for the first member of each group in
the dialog template.

You can also use button controls in standard client windows. For these windows,
create a button-control window by calling the WinCreateWindow function with a
window class of WC_BUTTON. Specify the client window as the owner of the
button window. The owner window receives messages from buttons and can send
messages to the buttons to alter their control state. The control state includes
highlighting control text, button position, and the enabled/disabled state.

Applications can create custom buttons that appear to be controlled by the
application. The BS_USERBUTTON style, used in conjunction with other but-
ton styles, creates a button that notifies the application whenever the button
must be drawn, allowing the application to draw the button.

12.3.1 Buttons in a Dialog Window
: Buttons are typically used in dialog windows. An application can define buttons

as part of a dialog-template resource file, as shown in the following sample
Resource Compiler source-code fragment:

Chapter 12: Button Controls 161

N T R R e i R A R R S S ie ‘Z.é:ﬁz&.‘%iiéﬁ%&} Fe R R AR R

DLGTEMPLATE IDD_BUTTON
BEGIN
DIALOG "", 2, 64, 9, 235, 130
BEGIN .) .
AUTORADIOBUTTON "R~adiol", ID_RADIO1l, 15, 20, 40, 12, WS_GROUP
AUTORADIOBUTTON "Ra“"dio2", ID_RADIO2, 15, 40, 40, 12
AUTORADIOBUTTON "Rad“io3", ID_RADIO3, 15, 60, 40, 12
AUTORADIOBUTTON "R“adio4", ID_RADIO4,15, 80, 40, 12

PUSHBUTTON "Button 1", ID_PUSH1, 100, 50, 14, WS_GROUP
PUSHBUTTON "Button 2", ID_PUSH2, 75, 100, 50, 14, WS_GROUP
PUSHBUTTON "Button 3", ID_PUSH3, 130, 100, 60, 14, WS_GROUP

CHECKBOX "Check Box 1", ID_CHECK1, 150, 20, 58, 12, WS_GROUP
CHECKBOX "no toggle", ID_CHECK2, 150, 40, 58, 12

AUTOCHECKBOX "Check Box 3", ID_CHECK3, 150, 60, 58, 12, WS_GROUP
DEEPUSHBUTTON "OK", DID_OK, 75, 26, 46, 20, WS_GROUP
END
END

Each button item in a dialog window has an ID (for example, ID_RADIOL1) that
allows an application to identify the source of the WM_COMMAND and
WM_CONTROL messages. The ID is also used to retrieve the button-window
handle using the WinWindowFromID function.

The dialog template also specifies the text for each button, which is displayed in
a rectangular box. If the button text is too long to fit in the button, it is clipped
to the rectangle. For radio buttons and check boxes, text is displayed to the right
of the button. A user selects the button by clicking either the button or the text
itself.

The WS_GROUP attribute identifies the beginning of each new group of but-
tons. In the example above, the first four auto-radio buttons are in the same
group, the following push buttons are in their own group, and the following two
check boxes are in their own group. The auto-radio buttons in the first group can
only be selected one at a time. An application must see that only one check box
in a group is selected at a time. The group can wrap around from the end of the
item list to the beginning.

Notice the DEFPUSHBUTTON style with the DID_OK identification number in
the code fragment above. It is customary to include an OK button with this ID
in most dialog windows to provide a uniform user interface. The DEFPUSH-
BUTTON style draws a thick border around a button and allows a user to select
the button by pressing the ENTER key.

The dialog-window procedure for a dialog window containing buttons must
respond to WM_COMMAND and WM_CONTROL messages. A common stra-
tegy is to use auto-radio buttons and auto-check boxes to allow a user to set a
list of attributes for a command, and execute it by choosing the OK button. In
this case, the dialog-window procedure ignores all WM_CONTROL messages
that come from auto-radio buttons and auto-check boxes. These controls select
and deselect themselves. When the dialog-window procedure receives a
WM_COMMAND message for the OK button, it should query the auto-radio
buttons and auto-check boxes to determine which options have been selected
before proceeding with the operation.

162 MS 0S/2 Programmer’s Reference, Vol. 1
s S T T e e B R R e R S Y

12.3.2 Buttons in a Client Window

Applications can also use buttons in non-dialog windows. An application can
create a button window using an application client window as the owner, as
shown in the following code fragment:

/* Create a button window. */

hwndButton = WinCreateWindow (hwndClient, /* parent */

WC_BUTTON, /* class */
"Test Button", /* text */
WS_VISIBLE | BS_PUSHBUTTON, /* style ry
10, 10, /* x, ¥ */
60, 70, /* ex, cy */
hwndClient, /* owner */
HWND_TOP, /* behind t/
ID_PBWINDOW, /* ID +y
NULL, /* control data */
NULL) ; /* parameters */

Once created in the client window, the button posts a WM_COMMAND mes-

. sage, or sends a WM_CONTROL message to the client-window procedure. The
window procedure should examine the message ID to determine the button that
sent the message.

Applications that have client-window buttons may move and size the buttons
when the window receives a WM_SIZE message. This message indicates that
the window is changing size. Buttons can be moved and sized using the WinSet-
WindowPos function. You can obtain a window handle for a button by calling

- the WinWindowFromID function using the parent window and the window
ID for each button.

12.3.3 Responding to a Button-Notification Message

A button control sends a message to its owner window when a user selects
the button, by either using the mouse or the keyboard. Buttons created

with the BS_PUSHBUTTON or BS_USERBUTTON styles generate a
WM_COMMAND message each time they are selected (this can be altered by
specifying the BS_HELP or BS_SYSCOMMAND style when the button is
crleated). All other button styles generate WM_CONTROL messages when
selected.

A push button is automatically highlighted when a user selects it using the
mouse. The button tracks the mouse until the user releases the mouse button.
The highlight is turned off if the mouse moves outside the button boundaries.
The push button does not generate any messages to its owner window until the
user releases the mouse button, and then only if the mouse button is released
inside the push-button boundary. When the owner window receives a
WM_COMMAND message from a push button, the low word of the first
parameter in the message contains the button window 1D, as specified in the
dialog template or when the button was created.

You should avoid duplicating IDs in menu commands and buttons because they
both send IDs to owner windows as WM_COMMAND messages. However,

it is possible to tell whether a WM_COMMAND message came from a menu
or a push button by looking for the value CMDSRC_PUSHBUTTON or
CMDSRC_MENU in the low word of the second parameter of the message.

Chapter 12: Button Controls 163
G S T o S e e e e e e S e e e e e R R T R B

Button types other than push buttons generate WM_CONTROL messages when
selected. Applications can examine the low word of the first parameter in the
message to find the button ID and the high word of the first parameter to deter-
mine the notification code for the control message. The notification code tells
the application whether the control message originated from the user clicking or
double clicking, or if the button needs to be drawn.

When a check box or radio button is selected, it sends a WM_CONTROL mes-
sage with a notification BN_CLICKED code to the owner window. The owner
window responds by sending a message back to the button to toggle its state.

In the case of auto-check boxes and auto-radio buttons, an application need not
respond because these buttons toggle themselves in response to the mouse. The
application still receives WM_CONTROL messages each time the button is
selected. Most applications that use this default for radio buttons and check
boxes should also use the automatic versions of these buttons and ignore any
WM_COMMAND messages. '

12.3.4 Changing the Button State

An application can query and set the highlight and checked state of its buttons
by sending messages to button windows. The window handle for a button can be
obtained by calling the WinWindowFromID function using the parent window
and the window ID of the button. In the case of a dialog window, the parent
would be the dialog window and the ID would be the button item ID from the
dialog template.

Button-window text is stored as window text, and is accessible by using the
- WinSetWindowText and WinQueryWindowText functions. The size, position,
and visibility of a button are set using standard window functions.

12.3.5 Owner-Drawn Buttons

An application can create custom buttons by using the BS_USERBUTTON
style in combination with other styles. For example, an application can create
a custom auto-radio button that works like an auto-radio button but whose
appearance is controlled by the application. The owner window receives
WM_CONTROL messages for these buttons whenever they must be drawn,
highlighted, or disabled.

When a button must be drawn, the owner window receives a WM_CONTROL
message with the low word of the first parameter equal to BN_PAINT. The
second parameter is a pointer to a USERBUTTON structure that contains neces-
sary information the application needs to draw the button. The USERBUTTON
structure is shown below.

typedef struct _USERBUTTON {
HWND hwnd;
HPS hps:
USHORT fsState;
USHORT fsStateOld;
} USERBUTTON;

An application uses the hwnd field in this structure to find the bounding rect-
angle for the button. The hps field is used as a presentation space for any draw-
ing. The high byte of the fsState field contains flags that tell an application how

164 MS 0S/2 Programmer’s Reference, Vol. 1
T e o R S S R B SR B S

to draw the button: highlighted, unhighlighted, or disabled. The high byte of the
fsStateOld field contains flags describing the current highlighted, unhighlighted,
or disabled state of the button.

12.4 Default Button Behavior

This section describes the messages specifically handled by the predefined
button-control window class.

Message Description
WM_CREATE Validates the requested button
style and sets the window text.
WM_DESTROY Frees the memory containing the
) window text.
WM_PAINT Draws the button according to its
: style and current state.
WM_SETFOCUS Creates a cursor if receiving the
focus, destroys the cursor if losing
the focus.
WM_BUTTONIDOWN Sets mouse capture for the button
‘ window.
WM_MOUSEMOVE Sets the default mouse pointer. If

the button has the mouse capture,
the button highlight state changes
as the mouse pointer moves in and
out of button area.

WM_BUTTON1UP If the button has mouse capture,
releases the mouse capture and
sends notification message to the
owner window if the mouse pointer
is inside the button when the
mouse button is released. If the
button is a BS_PUSHBUTTON,
a WM_COMMAND message is
posted, otherwise a
WM_CONTROL message with
the BN_CLICKED code is sent.

WM_BUTTON1DBLCLK Marks the button, sending a
BN_DBLCLICKED notification
code when the button-up message
arrives.

WM_CHAR Sets mouse capture when the
SPACEBAR is pressed, releases
capture when the SPACEBAR is
released. Passes other key mes-
sages to the default window
procedure.

B S S

Chapter 12: Button Controls 165

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

WM_ENABLE
WM_MATCHMNEMONIC

BM_QUERYCHECKINDEX

BM_CLICK

BM_QUERYCHECK

BM_SETCHECK

BM_QUERYHILITE

BM_SETHILITE

BM_SETDEFAULT

12.5 Summary

The following section lists the available styles for buttons and the messages asso-

ciated with button controls.

R e S B e B R e B e e B S B B
Message Description
WM_QUERYDLGCODE Returns DLGC_BUTTON com-

bined using the OR operator with
the appropriate bits to designate
the particular button type.

Returns the requested window
parameters.

Sets the requested window param-
eters and redraws the button,
including the cursor, if the window
has the focus.

Draws the button.

Returns TRUE if mpl matches a
button mnemonic.

Returns the zero-based index to
the selected item in the same
group as the button. Returns -1 if
no button in the group is selected
or if the button receiving the mes-
sage is not a radio button or auto-
radio button.

Sends a WM_BUTTON1DOWN
and WM_BUTTON1UP message
to itself to simulate a uscr—button
selection.

Returns the checked state of the
button.

Sets the checked state of the but-
ton, returns the previous checked
state.

Returns the highlight state of the
button.

Sets the highlight state of the but-
ton, returns the previous highlight
state.

Sets the default button state,
redraws the button.

166 MS 0S/2 Programmer’s Reference, Vol. 1
e S e e S s S e S S R B ?:?&*’f'@lizh’%@@iﬁ:ﬁ“‘sﬂ ZEnbRa e S

12.5.1 Button Styles

The following are available button styles:

BS_3STATE Similar to a check box, except that it toggles between selected,
unselected, and halftone states. The owner window receives a WM_CONTROL
message and changes the state of the three-state check box when it is selected.

BS_AUTO3STATE Similar to a three-state check box, except it changes its
state when selected.

BS_AUTOCHECKBOX Similar to a check box, except that it automatically
changes its state when selected. An auto-check box sends a WM_CONTROL
message to its owner window.

BS_AUTORADIOBUTTON Similar to a radio button, except that it automati-
cally responds to a selection by changing its state and the state of all other radio
buttons in its group.

BS_CHECKBOX A check box is a small square window that is empty when

it is unselected, and contains an “x” when selected. Check-box text is dis-
played to the right of the check box. The owner window is notified with a
WM_CONTROL message when the check box is selected and is respons1ble for
changing the check-box state.

BS_DEFAULT A button with this style is outlined with a heavy black border.
A user can select this button by pressing the ENTER key. This is useful for allow-
ing a user to quickly select the most likely option, the default option, by pressing
the ENTER key.

BS_HELP A button with this style posts a WM_HELP message when selected.
BS_NOBORDER A button with this style is drawn without a border.

BS_NOPOINTERFOCUS A button with this style does not receive the focus
when selected.

BS_PUSHBUTTON A push button. The button posts a WM_COMMAND
message to the owner window when selected.

BS_RADIOBUTTON Similar to a check box, except that it is used in
groups of mutually exclusive choices. The owner window is notified with a
WM_CONTROL message when a radio button is selected, and changes the
state of the selected radio button and all other buttons in the group.

BS_SYSCOMMAND A button with this style posts a WM_SYSCOMMAND
message when selected.

BS_USERBUTTON An application-defined button. This style, used in con-
junction with other styles, allows the owner window to draw the button control
in a highlighted, unhighlighted, enabled, or disabled state. The owner window
receives a BN_PAINT message when the button must be drawn.

Chapter 12: Button Controls 167
e T T B e e B S e R e B S R R B B R

12.5.2 Messages Sent to Button Controls
The following messages are sent to button controls:

BM_CLICK The button responds as if it were selected using the mouse or the
keyboard. This is useful when simulating a user selection for a particular button.

BM_QUERYCHECK Sent to a check box and radio button. Returns 0 if the
button is unselected, 1 if the button state is selected, and 2 if the button state is
indeterminate (for example, the grayed state for three-state buttons).

BM_QUERYCHECKINDEX The button responds to this message by setting
the result to the zero-based index of the selected radio button in the same group
as the sender. Returns -1 if no button in the group is selected or the receiver is
not a radio button, or if the radio button has no parent window.

BM_QUERYHILITE For push buttons, returns TRUE if the button is cur-
rently highlighted, FALSE otherwise. Returns FALSE if the button receiving the
message is not a push button.

BM_SETCHECK Sets the state to unselected, selected, or indeterminate (for

three-state buttons) for check boxes and radio buttons. If the button receiving

the message also has the style BS_USERBUTTON, a WM_CONTROL message
" is sent to the button owner telling it to select or unselect the button.

BM_SETDEFAULT Sets or removes the BS_DEFAULT style bit in the
receiving button.

BM_SETHILITE Sent to a push button. Sets the state of the button to
highlighted or unhighlighted, depending on the parameters supplied with the
message. If the button receiving the message has the BS_USERBUTTON style,
a WM_CONTROL message is sent to the button owner telling it to highlight or
unhighlight the button.

12.5.3 Messages Sent from Buttons to Owner Windows

The following messages are sent from buttons to their owner windows:

WM_COMMAND Posted from a push button to its owner window when a user
selects the button. Additional parameters in the message indicate whether the
selection was done using the mouse or the keyboard, although applications gen-
erally do not track how the button was selected.

WM_CONTROL Sent from a button control to its owner to indicate that a
user has selected the button or when the owner must draw the button. Included
in the message is one of the following notification codes:

Code Description

- BN_CLICKED A user selected the button.
BN_DBLCLICKED A user double-clicked the button.
BN_PAINT Sent from a BS_USERBUTTON button to the

owner window instructing it to draw the button
control. The WM_CONTROL message con-
tains a pointer to a USERBUTTON structure.

168 MS 0S/2 Programmer’s Reference, Vol. 1
o R S 3 S e e e R L S PR B B

WM_HELP Posted instead of the WM_COMMAND message from a push
button to its owner window when the button has the BS_HELP style.

WM_SYSCOMMAND Posted instead of the WM_COMMAND message
from a push button to its owner window when the button has the style
BS_SYSCOMMAND.

R S B A e R e e R R R S s

Chapter

FRIEGIHE A R

Entry-Field Controls

13.1
13.2
13.3

13.4
13.5

Introductioncceuviuiiniiiiinniiiiiiinn e 171
About Entry-Field Controlsccoceeeviniiiiiininiinininnnnen, 171
Using Entry-Field Controls in an Application................ 171
13.3.1 Entry-Field Controls in a Dialog Window 172
13.3.2 Entry-Field Controls in a Client Window................. 172
13.3.3 Responding to a Message

from an Entry-Field Control........c.cocvvveieiinennnennnnns 173
13.3.4 Changing the State of an Entry-Field Control 173
13.3.5 Communicating with the System Clipboard.............. 174
Default Entry-Field Behavior.........ccccoiiiiiiiiiiinininnnaen, 174
SUMMATY ceviiieiiiiiiireecrr e reereeierrere e raeeearenanenas 176
13.5.1 Entry-Field Control Stylesccceveirrienniniienenenenns 176
13.5.2 Messages Sent to Entry-Field Controls 177

13.5.3 Messages Sent from an Entry-Field
to an Owner Windowcccvvivinieiininnniininieninnnee. 178

S

Chapter 13: Entry-Field Controls 171

S R S R R R SR S R T R R e R e

13.1 Introduction

13.2 About

This chapter describes the functions that allow you to use entry-field control win-
dows in your applications. You should also be familiar with the following topics:

B Standard user-interface guidelines

B System clipboard

B Resources and using the MS OS/2 Resource Compiler (rc)
B Basic concepts of window messages and the message queue

Entry-Field Controls

An entry-field control is a rectangular window that displays a single line of text a
user can edit. When the entry-field control has the focus, it displays a flashing
bar to mark the current insertion point. It also allows a user to select text by
dragging the mouse or by using the keyboard. Entry-field controls allow applica-
tions to provide standard-interface text editing to users for short selections.

Users can select a range of text in an entry-field control. Many text-editing
operations on the contents of an entry-field control affect the current selection
rather than the entire text.

Entry-field controls are typically used in dialog windows, although they may be
used in non-dialog windows as well. Entry-field control windows are always
owned by other windows. The entry-field control window sends notification mes-
sages to its owner when it gains or loses the focus, or when its contents change
or are scrolled.

Entry-field control windows have style bits that determine whether the text is
left, center, or right-justified in the window, and whether the text automatically
scrolls horizontally, showing the current insertion point. Style bits also control
whether entry-fields have borders. These styles are set when the control is
created.

13.3 Using Entry-Field Controls in an Application

Entry-field controls can be used in dialog windows and regular client windows.
As part of a dialog window, the entry-field control is defined as part of the dia-
log template in the application resource file. In a client window, the application
creates a window with the window class WC_ENTRYFIELD.

Once created, the contents, font, and selection range of the entry-field control
can be changed by sending appropriate messages to the entry-field control win-
dow. Entry-field controls hold up to 32 characters by default, but applications
can expand or reduce this limit, depending on memory limits, once the control is
created. Applications can query the current contents or the current selection in
an entry-field control.

172 MS 0S/2 Programmer’s Reference, Vol. 1
R B B i B e e T R R A BT R

Applications can also transfer text and data between the entry-field control and
the system clipboard by using cut, copy, clear, and paste operations. This facility
is useful for moving text from an entry-field control to another window or pro-
cess. '

13.3.1 Entry-Field Controls in a Dialog Window

Entry-field controls are typically used in dialog windows. The dialog window
serves as the parent and owner window for the entry-field control. The applica-
tion dialog procedure receives notification messages from entry-field controls.
Generally, a dialog window includes a button that signals that the user wants to
carry out an operation. The application ignores most notification messages from
an entry-field control, allowing default text editing to occur. When the user
selects the button that indicates an operation should begin, the application
queries the contents of the entry-field control and proceeds with the operation.

To include an entry-field control in a dialog window, include a definition for an
entry-field control item in the dialog-template definition in the resource file. The
definition sets up the initial text, window ID, size, position, and style of the
entry-field control. A sample dialog template containing an entry-field control is
shown below.

DLGTEMPLATE IDD_SAMPLE
{
DIALOG "Sample Dialog", 50, 7, 7, 253, 145, FS_DLGBORDER,O

DEFPUSHBUTTON "~Ok", DID_OK, 8, 151, 50, 23, WS_GROUP
ENTRYFIELD "Here is some text", ID_ED1, 42, 46, 68, 15,
ES_MARGIN | ES_AUTOSCROLL

}

Once created as part of a dialog window, the entry-field control sends
notification messages to the dialog window. An application handles these mes-
sages in its dialog-window procedure.

An application communicates with an entry-field control in a dialog window by
sending messages to the entry-field control window. The handle of the entry-field
control window is obtained by calling the WinWindowFromID function (using
the dialog window as the parent window and the window ID for the entry-field
control as defined in the dialog template).

13.3.2 Entry-Field Controls in a Client Window

To have an entry-field control in a non-dialog window, an application calls the
WinCreateWindow function with the window class WC_ENTRYFIELD. An
application client window owns the entry-field control. The client-window pro-
cedure receives notification messages from the entry-field control. The following
code fragment shows how to create an entry-field control window in a client

window:

hwndEntryField = WinCreateWindow(hwndClient, /* parent */
WC_ENTRYFIELD, /* class +/
"initial text contents", /* text */
WS_VISIBLE | ES_AUTOSCROLL | ES_MARGIN, /* style Y
xPos, yPos, /* x, ¥ */
xSize, ySize, /* ex, cy */
hwndClient, : /* owner */
HWND_TOP, /* behind */
hwndEntryField, /* win ID */
(PVOID) NULL, /* ctl data */

(PVOID) NULL):; /* reserved */

Chapter 13: Entry-Field Controls 173
R e D e S A A E R P e U N S s et sl Bl SR B e b L

The entry-field control created in the preceding example has a 32-character
default limit. An application can change this limit by sending an
EM_SETTEXTLIMIT message to the control window. The limit can be set
to a non-default value at creation by supplying a pointer to an ENTRYFDATA
structure as the ctldara parameter to the WinCreateWindow function.

The other fields of the ENTRYFDATA structure can be set to specify the selec-
tion length and the first visible character at the left edge of the control window.
Entry-field control attributes can also be changed by sending messages to the
control after it is created. It is not necessary to provide this information in the
ENTRYFDATA structure for creation to occur.

13.3.3 Responding to a Message from an Entry-Field Control

An entry-field control communicates with its owner by sending WM_CONTROL
messages. These messages contain notification codes that specify the exact
nature of the message. Typically, an application does not respond to notification
messages from an entry-field control for default text-editing. For more special-
ized uses, an application uses notification messages to perform input filtering.

For example, if an application has an entry-field control that is intended for
entering a number, it can use the EN_CHANGED message to check the con-
tents after each new character is entered. This tells a user that an inappropriate
character has been entered.

On a deeper level, an application can use the EN_SETFOCUS and
EN_KILLFOCUS messages to toggle the input filtering that occurs before the
character messages are sent to the entry-field control. An application can

use conditional code in its main-event loop to filter incoming WM_CHAR
messages whenever the entry-field control has the focus. By intercepting
WM_CHAR messages before they are dispatched using the WinDispatchMsg
function, an application can prevent inappropriate characters from reaching the
entry-field control. You might also want to apply special interpretation to certain
keystrokes, such as the ENTER key, as long as the entry-field control has the
focus.

13.3.4 Changing the State of an Entry-Field Control

You can set or retrieve text in an entry-field control window by calling the Win-
SetWindowText or WinQueryWindowText function. To retrieve the text for the
current selection, an application first calls the WinQueryWindowText function to
retrieve the contents, and then sends an EM_QUERYSEL message to retrieve
the offsets to the first and last character of the text selection. These offsets are
used to retrieve selected text from the entire text.

Edit fields containing numerical values can be set or queried by calling the Win-
SetDlgItemShort or WinQueryDlgItemShort function and passing the entry-field
ID and the parent window. The WinSetDlgItemShort function converts a signed
or unsigned integer into a text string and sets the field text with it. The Win-
QueryDIgItemShort function converts the entry-field text to a signed or unsigned
integer and returns the value in a specified variable.

An application can set or query the selection range, although the entry-field con-
trol automatically handles selection changes in response to user input in keeping

174 MS 0S/2 Programmer’s Reference, Vol. 1
R e S S B e S R S R B R R R R R G e g R sl

with the standard user-interface guidelines. However, it can be useful to have an

application select the entire text prior to cutting or pasting to the system clip-

board.

13.3.5 Communicating with the System Clipboard

Entry-field controls respond to messages designed to simplify transferring data to

and from the system clipboard. These messages support the standard cut, copy,

clear, and paste operations defined by the standard user-interface guidelines. All
clipboard messages for entry-field controls use the CF_TEXT clipboard-data for-

mat. See the summary section at the end of this chapter for a description of

each message.

13.4 Default Entry-Field Behavior

This section describes all the messages specifically handled by the predefined

entry-field control-window class.

Message

Description

WM_CREATE
WM_DESTROY

© WM_BUTTON1DOWN
WM_BUTTONIDBLCLK

WM_BUTTON1UP
WM_BUTTON2DOWN

WM_BUTTON3DOWN
WM_PAINT

WM_CHAR

Validate the requested style and
set the window text.

Free the memory used for the win-
dow text.

Set the mouse capture and key-
board focus to the entry-field and
prepare to track the mouse during
WM_MOUSEMOVE messages.

Set the mouse capture and key-
board focus to the entry-field and
prepare to track the mouse during
WM_MOUSEMOVE messages.

Release the mouse capture.

Return TRUE to prevent this mes-
sage from being processed further.

Return TRUE to prevent this mes-
sage from being processed further.

Draw the entry-field control and
text.

Handle key events according to the
standard user-interface guidelines.

Chapter 13: Entry-Field Controls 175
bt s s e e i e ELE S T e N R R e e eSS Sl A B B o D

Message : Deséription

WM_SETSELECTION Invert the current selection range.

WM_SETFOCUS If gaining the focus, create a cur-
sor and send to the owner window
a WM_CONTROL message with

the EN_SETFOCUS control code.
If losing the focus, destroy the
current cursor and send to the
owner window a WM_CONTROL
message with the control code

‘ EN_KILLFOCUS.
WM_QUERYDLGCODE Return the predefined constant
DLGC_ENTRYFIELD.
WM_QUERYWINDOWPARAMS Return the requested window
parameters.
. WM_SETWINDOWPARAMS Set the specified window param-

eters, redraw the control, and send
to the owner window a
WM_CONTROL message with the
EN_CHANGED control code.

WM_MOUSEMOVE If the mouse button is down, track
the text selection. If the mouse
button is up, set the mouse pointer
to the default arrow shape.

WM_ENABLE Invalidate the entire entry-field
control window, causing a
WM_PAINT message to be
sent to the control.

WM_TIMER Blink the insertion point if the

control has the focus. Scroll the
text, if necessary, while extending
a selectlon to text not visible in the
window.

WM_ADJUSTWINDOWPOS Change the rectangle for the con-
trol size to adjust for the margin if
the control has the ES_MARGIN
style.

EM_QUERYFIRSTCHAR Return the offset to the first char-
acter visible at the left edge of the
control window.

EM_SETFIRSTCHAR Scrolls the text so that the charac-
ter at the specified offset is the first
character visible at the left edge
of the control window. Returns
TRUE if successful, or FALSE if
it is not.

176 MS OS/2 Programmer's Reference, Vol. 1
b IR s R S U P R R R R BB R el i U Rl e e e

Message Description

EM_QUERYCHANGED Returns TRUE if the text
has changed since the last
EM_QUERYCHANGED mes-
sage.

EM_QUERYSEL Returns a long word that contains

the offsets for the first and last
characters of the current selection
in the control window.

EM_SETSEL Sets the current selection to the
‘ specified character offsets.
EM_SETTEXTLIMIT Allocates memory from the con-

trol heap for the specified max-
imum number of characters,
returning TRUE if it is successful,
FALSE if it is not. Failure causes
a WM_CONTROL message with
the EM_MEMERROR conatrol
code to be sent to the owner
window.

EM_CUT Copies the current text selection to
the system clipboard in CF_TEXT
format and deletes the selection
from the control window.

EM_COPY Copies the current text selection to
the system clipboard in CF_TEXT
format.

EM_CLEAR Deletes the current text selection
from the control window.

EM_PASTE Copies the current contents of the

system clipboard that have
CF_TEXT format, replacing the
current text selection in the con-
trol.

13.5 Summary

The following sections describe the styles and messages associated with entry-
field controls.

13.5.1 Entry-Field Control Styles

The following style constants, specified when the entry-field control is created,
determine its behavior and appearance:

ES_AUTOSCROLL Scrolls text horizontally to show the current insertion
point. '

ES_CENTER Displays text centered within the control window.

Chapter 13: Entry-Field Controls 177
R S T O N I R TR R iy ,'E S e R S o L T it LA R A S

ES_LEFT Displays text on the left within the control window.

ES_MARGIN Paints a wide border around the control window. The border is
one-half characters wide and one-fourth characters high. Without this style, no
border is drawn around the control window. The entry-field window rectangle is
inflated (outset) on all sides by this margin. After an ES_MARGIN style entry-
field is created, the WinQueryWindowRect function returns a larger rectangle,
with a different origin than the one specified at creation because it now includes
this margin. Note this when moving or sizing an entry-field control or it will
become larger after each move or size operation.

ES_RIGHT Displays text on the right within the control window.

13.5.2 Messages Sent to Entry-Field Controls ‘
This section describes the messages that are specific to entry-field controls:
EM_CLEAR Deletes the current selection in the entry-field control.

EM_COPY Sends the current selection to the system clipboard in CF_TEXT
format.

EM_CUT Sends the current selection to the system clipboard in CF_TEXT
format and then deletes the selection from the entry-field control.

EM_PASTE Replaces the current selection (or inserts text if the current selec-
tion is an insertion point) with text from the system clipboard. No replacement
occurs if the clipboard does not contain any CF_TEXT data.

EM_QUERYCHANGED Returns TRUE if the contents of the entry-field con-
trol have changed since last receiving a WM_QUERYWINDOWPARAMS or
EM_GETCHANGED message; it returns FALSE if the contents have not
changed.

EM_QUERYFIRSTCHAR Returns the zero-based byte offset of the first char-
acter visible at the left edge of the control window.

EM_QUERYSEL Returns the offsets for the first and last characters of the
current selection as the low and high word of the function return value.

EM_SETFIRSTCHAR Displays a character, specified by its zero-based byte
offset, as the first character visible at the left edge of the control window,
scrolling the text if necessary.

EM_SETSEL Sets the selection range between the supplied first and last char-
acter positions. If the first-character position is zero and the last-character posi-
tion is greater than the number of characters in the control window, the entire
text is selected.

EM_SETTEXTLIMIT Sets the maximum number of characters that the entry-
field control can hold. It returns TRUE if the operation is successful, or FALSE
if there was not enough memory.

178 MS 0S/2 Programmer’s Reference, Vol. 1
i R E ot o R gl B R e e o ST T A ST o L s e B D el S

13.5.3 Messages Sent from an Entry-Field to an Owner Window

The following section describes messages that an entry-field control sends to its
owner window:

WM_CONTROL Notifies the owner window of a significant change in the con-
trol. The low word of the first parameter contains the window ID of the entry-
field control window. The high word of the first parameter contains one of the
following notification codes:

Control code Description

EN_CHANGE Contents of the entry-field control have
changed and the change is displayed on
screen.

EN_KILLFOCUS Entry-field control loses the keyboard focus.

EN_MEMERROR Entry-field control cannot allocate enough

memory to perform the requested opera-
tion, such as extending the text limit.

EN_SCROLL Entry-field control is about to scroll hor-
izontally. This happens when a user enters
text beyond the edge of the entry-field con-
trol boundary, requiring the text to scroll to
continue displaying the insertion point.

EN_SETFOCUS Entry-field control receives the keyboard
- focus.

RIS e e b T B ke P T A e R T

C

st-Box

14.1
14.2
14.3

14.4
14.5

Chapter

IR

Controls

Introduction.....ccceceuieiinieiiiniiiiiincn 181
About List BOX€S....cccviviininiiiiiiiiiiiiiiniiiincinneenn, 181
Using a List Box in an Application.......cc.cecveveveienennnene. 181
14.3.1 Creating a List-Box Window....coccvveeeeiiainireioninnnn, 182
14.3.2 List Boxes in Dialog Windowsc.cocvevereearennnenn. 183
14.3.3 Adding and Deleting an Item in a List Box.............. 183
14.3.4 Responding to a User Selection in a List Box........... 184
14.3.5 Handling Multiple Selectionsc.cvvvrerinriararnenennes 185
14.3.6 Owner-Drawn List ItemS....coeveieerivreieinreeenneneannnns 185
Default List-Box Behaviorcccovvviuviniiniiiinniniininin, 187
SUMMATY ettt eeeaes 189
14.5.1 List-Box Styles...ccciviiiiiiieicieionninieniiincieniiinene. 189
14.5.2 Messages Sent from a List Box

to an Owner Windowcceevurieieninieiiiinrnneenann. 190
14.5.3 Messages Sent to a List BOX..o.viveiiiiiniiinnininiiennnnn, 191

R Y

Chapter 14: List-Box Controls 181
i=EE ekt e P Al el S e S i Rl e o T R e R A T SR

14.1 Introduction

14.2 About

Figure 14.1

This chapter describes creating and using list-box control windows in your appli-
cations. You should also be familiar with the following topics:

B Standard user-interface guidelines
B Resources and using the MS OS/2 Resource Compiler (rc)
B Window messages and message queues

List Boxes

A list box is a control window contammg a list of items. Each item contains a
text string and a handle. The text string is usually displayed in the list-box win-
dow. The handle is available to the application to reference other data associ-
ated with the list item.

A list-box window must be owned by another window. This ownership relation-
ship is important because the owner window receives messages from the list box
when events occur—for example, when a user selects an item from the list box.
Typically, the owner window is a client window of an application frame window
or a dialog window. The client-window procedure or the dialog-window pro-
cedure defined by an application responds to messages sent from the list box.

A list box always contains a scroll bar. If the list box contains more items than
can be displayed in the list-box window, the scroll bar is enabled. Otherwise, the
scroll bar is disabled. The list box responds to clicks in the scroll bar by scroll-
ing the list.

The maximum number of items in a list box is 32,767. This limit on list-box
items is controlled by the 64K heap-size limit used in storing the list-box items.

Figure 14.1 shows a typical list-box control.

Typical List-Box Control

ActiveBorder
ActiveTitle
AppWorkspacs -
|Background
|HelpBackground
HelpHilite
HelpText
|inactiveBorder

14.3 Using a List Box in an Application

An application uses a list-box control to display a list in a window. List boxes
can be displayed in standard application windows, although they are more com-
monly used in dialog windows. Either way, notification messages are sent from
the list box to the owner window, allowing the application to respond to user
actions in the list. In practice, if a list box is owned by a dialog window, mes-
sages are handled in dialog-window procedures. If the list box is owned by a
client window, notification messages are handled in the client-window procedure.

182 MS 0S/2 Programmer’s Reference, Vol. 1
R O B B S R e R R R T min

Once a list box is created, the application controls inserting and deleting list
items. Items can be inserted at the end of the list, automatically sorted into the
list, or inserted at a specified index position. Applications can turn list drawing
on and off to speed up the process of inserting numerous items into a list.

The window procedure of the owner window of the list box receives messages
when a user manipulates the list-box data. Most default list actions (for example,
highlighting selections and scrolling) are handled automatically by the list box
itself. The application controls the responses when the user chooses an item in
the list, either by double-clicking the item or pressing ENTER after an item is
highlighted. The application is also notified whenever the selection changes or
when the list is scrolled.

Normally, list items are text strings drawn by a list box. An application can also
draw and highlight the items in a list. This allows customized lists containing
graphics or special fonts to be created. When an application creates a list box
with the LS_OWNERDRAW style, the owner of the list box receives a
WM_DRAWITEM message for each item that should be drawn or highlighted.
This is similar to the owner-drawn style for menus, but unlike menus, the
owner-drawn style applies to the entire list rather than to individual items.

14.3.1 Creating a List-Box Window

List boxes are WC_LISTBOX class windows and are predefined by the system.
Applications can create list boxes by calling the WinCreateWindow function,
using WC_LISTBOX as the window-class parameter.

A list box passes notification messages to its owner window, so an application
uses its client window, rather than the frame window, as the owner of the list.
The client-window procedure receives the messages sent from the list box.

For example, to create a list box that completely fills the client area of a frame
window, an application would make the client window the owner and parent of
the list-box window and make the list-box window the same size as the client
window. This is shown in the following code fragment:

/* How big is the client window? */
WinQueryWindowRect (hwndClient, &rect):

/* Make a list-box window. */

hwndList = WinCreateWindow(hwndClient, /* parent */
WC_LISTBOX, /* class */
llll’ /* name i/
WS_VISIBLE | LS_NOADJUSTPOS, /* style *y
0, O, ' /X,y */
rect.xRight, rect.yTop, /* ex, cy */
hwndClient, /* owner */
HWND_TOP, /* behind */
ID_LISTWINDOW, /* ID t/
NULL, /* control data */
NULL) : /* parameters */

Because the list box draws its own border and a frame-window border already
surrounds the client area of a frame window (because of the adjacent frame con-
trols), the effect is a double-thick border around the list box. To change this,
call the WinInflateRect function to overlap the list-box border with the surround-
ing frame-window border. This results in one list-box border.

Chapter 14: List-Box Controls 183
B R e e e R S R S e B DR

Notice that the code specifies the list-box window style LS_NOADJUSTPOS.
This ensures that the list box is created in exactly the size specified. If the
LS_NOADJUSTPOS style is not specified, the list-box height is rounded down,
if necessary, to make it a multiple of the item height. Allowing a list box to
automatically adjust its height is useful for preventing partial items from being
displayed at the bottom of a list box.

14.3.2 List Boxes in Dialog Windows

List boxes are most commonly used in dialog windows. A list box in a dialog
box is a control window, like a push button or an entry field. Typically, the
application defines a list box as one item in a dialog template in the resource-
definition file, as shown in the following Resource Compiler source-code frag-

ment:
DLGTEMPLATE IDD_OPEN
BEGIN
DIALOG "Open...", IDD_OPEN, 35, 35, 150, 135,
FS_DLGBORDER, FCF_TITLEBAR
BEGIN
LISTBOX IDD_FILELIST, 15, 15, %0, 90
PUSHBUTTON "Drive", IDD_DRIVEBUTTON, 115, 70, 30, 14
DEFPUSHBUTTON "Open", IDD_OPENBUTTON, 115, 40, 30, 14
PUSHBUTTON "Cancel", IDD_CANCELBUTTON, 115, 15, 30, 14
END ‘
END

Once the dialog resource is defined, the application loads and displays the dialog
box as it normally would. The application should insert items into the list when
processing the WM_INITDLG message. The dialog-window procedure gets the
window handle for the list box by calling the WinWindowFromID function using
the list-box ID given in the dialog template. The following code fragment from a
dialog-window procedure illustrates this: ,

case WM_INITDLG:
hwndList = WinWindowFromID(hwndDialog, IDD_FILELIST);

. /* Now use hwndList to send LM_INSERTITEM messages. */

return OL;

It is very common for a dialog window with a list box to have an OK button.
The user may select items in the list and then indicate a final selection by
double-clicking, pressing ENTER, or clicking the OK button. When the dialog-
window procedure receives a message that the user has clicked the OK button,
it should query the list box to determine the current selection (or selections

if the list allows multiple selections) and then respond as if it received a
WM_CONTROL message with the LN_ENTER notification code.

14.3.3 Adding and Deleting an Item in a List Box

Applications can add or delete items in a list box by sending LM_INSERTITEM
and LM_DELETEITEM messages to the list-box window. Items in a list are
specified with a zero-based index (beginning at the top of the list). A new list js
always created empty. The application must initialize the list by inserting it~

The application specifies the text and position for each new item. J*
an absolute-position index or one of the following predefined i~ -

184 MS 0S/2 Programmer’s Reference, VoI 1

R IR S e O Lo s e e L (PR]
Value - Meaning
LIT_END Insert item at end of list. -
LIT_SORTASCENDING Insert item alphabetically ascending
into list.

LIT_SORTDESCENDING Insert item alphabetically descending
into list.

The application must send an LM_DELETEITEM message and supply the abso-
lute index position of the item when deleting items from a list. The
LM_DELETEALL message deletes all items in a list.

One way an application can speed up the process of inserting list items is to
suspend drawing in the list while inserting items. The list is redrawn after the
insertion process is finished. This is a particularly valuable approach when using
a sorted insertion process, when inserting one item can cause rearrangement of
the entire list. List drawing is turned off by calling the WinEnableWindow-
Update function with FALSE for the enable parameter, and then calling the
WinShowWindow function. This forces a complete update when insertion is
complete. The following code fragment illustrates this concept:

/* Disable updates while filling the list. */
WinEnableWindowUpdate (hwndFileList, FALSE):

. /* Send LM_INSERTITEM messages to insert all new items. */

/* Now cause the window to update and show the new information. */

WinShowWindow (hwndFileList, TRUE):

Note that this optimization is not necessary if adding list items when processing
a WM_INITDLG message because the list box is not visible and the list-box rou-
tines are internally optimized.

14.3.4 Responding to a User Selection in a List Box

The primary notification an application receives when a user chooses an item in
a list is a WM_CONTROL message with the LN_ENTER control code sent to
the owner window of the list. The owner window is an application client window
or a dialog window. Within the window procedure for the owner window, the
application responds to the LN_ENTER control code by querying the list box
for the)current selection (or selections, in the case of an LS MULTIPLESEL
list box

The LN_ENTER control code notifies the application that the user has selected
a list item. A WM_CONTROL message with an LN_SELECT control code is
sent to the list-box owner whenever a selection in a list changes, such as when a
user moves the mouse pointer up and down a list while pressing the mouse but-
ton. In this case, items are selected but not yet chosen. An application may
ignore LN_SELECT control codes when the selection changes, responding only
when the item is actually chosen. An application might use the LN_SELECT
control code to display context-dependent information that changes rapidly with
\ each selection made by the user.

. Chapter 14: List-Box Controls 185
ot R e e e e B e e B T e R (S R b B e i S R e R e ek)

14.3.5 Handling Multiple Selections

When a list box has the style LS_MULTIPLESEL, more than one item may be
selected at a time. An application must use different strategies when working
with this type of list. For example, when responding to an LN_ENTER control
code, it is not sufficient to send a single LM_QUERYSELECTION message
because that message will find only the first selection. To find all current selec-
tions, an application should continue sending LM_QUERYSELECTION mes-
sages, using the return index of the previous message as the starting index of the
next message, until no items are returned.

14.3.6 }Owner-Drawn List ltems

To draw its own list items, an application must create a list that has the style
LS_OWNERDRAW. The owner window of the list box must respond to the
WM_MEASUREITEM and WM_DRAWITEM messages.

When the owner window receives a WM_MEASUREITEM message, it must
return the height of the list item. All items in a list must have the same height
(greater than or equal to 1). The WM_MEASUREITEM message is sent only
once, when the list box is created. You can change the item height by sending an
LM_SETITEMHEIGHT message to the list-box window.

The owner window receives a WM_DRAWITEM message whenever an item in
an owner-drawn list should be drawn or highlighted. The owner window returns
FALSE if the list box must draw the text of the item. The owner window returns
TRUE if it actually draws the item: This tells the list box not to draw the item.
This is useful if the owner window alters the appearance of certain items, allow-
ing other items to be drawn by the list box.

Although it is quite common for an owner-drawn list to draw items, it is less
common to override the system-default method of highlighting. (The system-
default highlighting method inverts the rectangle that contains the item.) Do not
create your own highlighting unless the system-default method is unacceptable to
you.

The WM_DRAWITEM message contains a pointer to an OWNERITEM data
structure. The OWNERITEM data structure contains the window ID for the list
box, a presentation-space handle, a bounding rectangle for the item, the position
index for the item, and the application-defined item handle. This structure also
contains two fields that determine if a message draws, highlights, or removes the
highlighting from an item. The OWNERITEM data structure has the following
form:

typedef struct _OWNERITEM {
HWND hwnd:;
HPS hps;
USHORT fsState;
USHORT fsAttribute;
USHORT fsStateOld;
USHORT fsAttributeOld;
RECTL rclltem;
SHORT idItem;
ULONG hitem;

} OWNERITEM;

When ihe item must be drawn, the owner window receives a WM_DRAWITEM
message with the fsState field set differently than the fsStateOld field. If the
owner window draws the item in response to this message, it returns TRUE,

186 MS 0S/2 Programmer’s Reference, Vol. 1
R S T B s S S P M G Rt

telling the system not to draw the item. If the owner window returns FALSE,
the system draws the item using the default list-item drawing method.

You can get the text of a list item by sending an LM_QUERYITEMTEXT mes-
sage to the list-box window. You should draw the item using the hps and rclltem
arguments provided in the OWNERITEM structure.

If the item being drawn is currently selected, then the fsState and fsStateOld
fields will both be TRUE; they will both be FALSE if the item is not currently
selected. The window receiving a WM_DRAWITEM message can use this infor-
mation to highlight the selected item at the same time it draws the item. If the
owner window highlights the item, it should leave the fsState and fsStateOld
fields equal to each other. If the system provides default highlighting for the item
(by inverting the item rectangle), the owner window should set the fsState field
to 1 and the fsStateOld field to 0 before returning from the WM_DRAWITEM
message.

The owner window also receives a WM_DRAWITEM message when the
highlight state of a list item changes. For example, when a user clicks an item,
the highlighting must be removed from the currently selected item and the new
selection must be highlighted. If these items are owner-drawn, then the owner
window receives one WM_DRAWITEM message for each unhighlighted item
and one message for the newly highlighted item. To highlight an item, the fsState
field must equal TRUE and the fsStateOld field must equal FALSE. In this
case, the application should highlight the item and return the fsState and fs-
StateOld fields equal to FALSE. This tells the system not to highlight the
item. The application can also return the fsState and fsStateOld fields with
two dlf;’erent values (not equal) and the list box will highlight the item (the
default

To remove highlighting from an item, the fsState ficld must equal FALSE and
the fsStateOld field must equal TRUE. An application can remove the highlight-
ing and return both the fsState and fsStateOld fields as FALSE, or it can return
the fsState field with a value that is not equal to the fsStateOld field and the sys-
tem will remove the highlighting (the default).

The following code fragment shows these selection processes:
case WM_DRAWITEM:
/* Test to see if this is drawing or highlighting/unhighlighting. */

1f (((POWNERITEM) mp2)->fsState I=
((POWNERITEM) mp2) ->fsState0ld) {

/* This is either highlighting or unhighlighting. */
i1f (((POWNERITEM) mp2)->fsState) {

. /* Highlight the item. */
} else {

: /* Remove the highlighting.*/

Chapter 14: List-Box Controls 187
T B S B S S e R S S R R B S S S e e

/* Set fsState = fsStateOld to tell system you did it. */

((POWNERITEM) mp2)->fsState =
((POWNERITEM) mp2)->fsStateOld = O;

return (TRUE); /* Tells list box you did the highlighting. */
} else {
. /* Draw the item. */

/* Check to see if item is selected. */
if (((POWNERITEM) mp2)->fsState) {
. /* Highlight the item. */

/* Set fsState = fsStateOld to tell system you did it. */

((POWNERITEM) mp2)->fsState =
((POWNERITEM) mp2) ->fsStateOld = O;

return (TRUE); /* Tells list box you did the drawing. */

14.4 Default List-Box Behavior

This section lists all the messages handled by the predefined list-box window-
class procedure.

Message Description

WM_CREATE Creates an empty list box with a
scroll bar.

WM_DESTROY Destroys the list and deallocates
any memory allocated during its
existence.

WM_PAINT Draws the list box and its items.

WM_CHAR Processes virtual keys for line

and page scrolling. Sends an
LN_ENTER notification code for
the ENTER key. Returns TRUE if
the key is processed; otherwise,
passes the message to the Win-
DefWindowProc function.

WM_SETFOCUS If gaining the focus, creates a cur-
sor and sends an LN_SETFOCUS
notication code to the owner
window. If losing the focus, des-
troys the cursor and sends an
LN_KILLFOCUS notification
code to the owner window.

MS 0S/2 Programmer’s Reference, Vol. 1
E Pl e T PN T R e o

Message

LR k= i R et e e P R B e B R o R TR T T

Description

WM_ADJUSTWINDOWPOS

WM_ENABLE

WM_TIMER

WM_BUTTON2DOWN

WM_BUTTON3DOWN

WM_MOUSEMOVE

WM_VSCROLL

LM_QUERYITEMCOUNT

LM_INSERTITEM

LM_SETTOPINDEX

LM_QUERYTOPINDEX

LM_DELETEITEM

LM_SELECTITEM

If the list box has the style
LS_NOADJUSTPOS, makes no
changes to the SWP structure

and returns FALSE. Otherwise,
adjusts the height of the list box so
that a partial item is not shown at
the bottom of the list. Returns
TRUE if the SWP structure is
changed.

Enables the scroll bar if there are
more items than can be displayed
in a list window.

Uses timers to control automatic
scrolling that occurs when a user
drags the mouse pointer outside

the window.

Returns TRUE; the message is
ignored.

Returns TRUE; the message is
ignored.

Sets the mouse pointer to the
arrow shape and returns TRUE to
show that the message was pro-
cessed.

Handles scrolling indicated by the
list-box scroll bar.

Returns the number of items in the
list.

Inserts a new item in the list
according to the position informa-
tion passed with the message.

Shows the specified item as the top
item in the list window, scrolling
the list as necessary.

Returns the zero-based index to
the item currently visible at the top
of the list.

Removes the specified item from
the list, redrawing the list as neces-
sary. Returns the number of items
remaining in the list.

Selects the specified item. If the
list is a single-selection list,

Chapter 14: List-Box Controls 189
A S e e e S e R R S N S S T S S SR e s

Message Description

deselects the previous selection.
Sends a WM_CONTROL message
(with the LN_SELECT code) to
the owner window.

LM_QUERYSELECTION For a single-selection list box,
returns the zero-based index of
the currently selected item. For
multiple-selection list boxes,
returns the next selected item or
LIT_NONE if no more items are

selected.

LM_SETITEMTEXT Sets the text for the specified item.

LM_QUERYITEMTEXTLENGTH Returns the length of the specified
item text,

LM_QUERYITEMTEXT Copies the specified item’s text to
a buffer supplied by the message
sender.

LM_SETITEMHANDLE Sets the specified item handle.

LM_QUERYITEMHANDLE Returns the specified item handle.

LM_SEARCHSTRING Searches the list for a match to the
specified string.

LM_SETITEMHEIGHT Sets the item height for the list.
All items in the list have the same
height.

LM_DELETEALL Deletes all items in the list.

14.5 Summary

List boxes are control windows that have style bits and that can send and receive
messages. These styles and messages are listed in the following sections.

14.5.1 List-Box Styles

The style of a list box determines how it displays its items and how it responds
to user input. The following styles are used by list boxes:

LS_MULTIPLESEL Allows more than one list item to be selected at a time.

LS_NOADJUSTPOS Automatically adjusts the list-box height (by default) so
that it is a multiple of the item height. This is done so that a list box will not
display a partial item at the bottom of the list. The size of the list box can be
different than the size specified by the application that created it. The style
LS_NOADIJUSTPOS tells the list box not to adjust the height of window in
response to a WM_SIZE message. Applications that need absolute control over
list-box size should use the LS_NOADJUSTPOS style (for example, when a list
box needs to completely fill a client area). This style may cause items at the bot-
tom of the box to be displayed partially.

190 MS 0S/2 Programmer’s Reference, Vol. 1
B N S B S R e S R R R B R

e EE

LS_OWNERDRAW Causes the owner window to receive a WM_DRAWITEM
message each time an item must be drawn or highlighted.

14.5.2 Messages Sent from a List Box to an Owner Window

Messages sent from a list box to an owner window notify the owner of events in
the list box, such as when a user selects an item. The following messages are
sent from list boxes to owner windows:

WM_CONTROL Sent to the owner window of the list box when a user event
occurs in the list box. This message contains a control code that notifies the
owner that an event occurred and indicates the type of event. The following are
possible control codes:

Code Description

LN_ENTER Sent to the owner window when the user presses
ENTER or double-clicks an item while the list box
has the focus. This code indicates that the user has
chosen an item. The owner window may then query
the current selection and respond accordingly.

LN_KILLFOCUS Sent to the owner window when the list box loses

the focus. '
LN_SCROLL Sent to the owner window when the list box scrolls.
LN_SELECT Sent to the owner window when a different item in

the list is selected. The owner window can use this
code to query the current selection and respond
accordingly.

LN_SETFOCUS Sent to the owner window when the list box
receives the focus.

WM_DRAWITEM Sent to the owner window of a list box with the style
LS_OWNERDRAW each time an item must be drawn. The owner window
should return TRUE if it actually draws the item; otherwise, it should return
FALSE. If the item contains text, the owner window can return FALSE and the
list box will draw the item. This message allows the owner window to draw the
item or allows default text drawing by the list box. This message contains a struc-
ture with a presentation space and a bounding rectangle in which to draw the
item. It is also sent when an item must be highlighted. The owner window can
handle the highlighting or indicate that the list box should handle this process.

WM_MEASUREITEM This message is sent to the owner window of a list box
that has the style LS_OWNERDRAW. The owner window returns a value that is
the height of an item in the list. Note that all items in a list must have the same
height and that this must be greater than or equal to 1. It is not necessary to
specify the width of an item since the item is clipped to the width of the list box
when drawn.

- Chapter 14: List-Box Controls 191
B s e S T e e S S S S R e S S e S R S et

14.5.3 Messages Sent to a List Box

Messages sent to a list box set or query the list data. The following messages are
sent to list-box controls:

LM_DELETEALL Deletes all items in the list.
LM_DELETEITEM Deletes a specified item from the list.

LM_INSERTITEM Inserts an item in the list box. Items can be inserted at a
specified index, at the beginning or the end, or sorted in ascending or descend-
ing order.

LM_QUERYITEMCOUNT Returns the number of items in the list box.
LM_QUERYITEMHANDLE Returns the item handle for the specified item.

LM_QUERYITEMTEXT Copies the text for a specified item into a buffer pro-
vided by the caller. The size of the required buffer can be determined by sending
an LM_QUERYITEMTEXTLENGTH message for the item.

LM_QUERYITEMTEXTLENGTH Returns the length of the text for a speci-
fied item in the list.

LM_QUERYSELECTION Returns the index of the selected item in the list or
LIT_NONE if no item is selected. In a multiple selection list, this message
returns the first selected item, starting at a specified index.

LM_QUERYTOPINDEX Returns the index of the item currently displayed at
the top of the list-box window or LIT_NONE if the list is empty.

LM_SEARCHSTRING Searches the list for a match with the specified string,
returning the first matching item. Match criteria can be set using flags for case
sensitivity and substring matching. Another parameter allows the search to start
at a specified index, allowing iterative searches to start from the previous match-
ing item.

LM_SELECTITEM Sets the selection state of a specified item. If the list box
allows only a single selection, the previous selection is deselected. An index of
LIT_NONE deselects all items in the list. Sending an LM_SELECTITEM mes-
sage with LIT_NONE set to a multiple-selection list box does not deselect any-
thing. However, it does remove the cursor.

LM_SETITEMHANDLE Sets the item handle for the specified item.

LM_SETITEMHEIGHT Sets the height of all items in the list, redrawing the
list box and all visible items.

LM_SETITEMTEXT Sets the text of a specified item in the list.

LM_SETTOPINDEX Displays a specified item at the top of the list box, scroll-
ing the list as necessary.

T A e S R T R S N e N S e

Static Controls

15.1 Introduction......cccceveiveviuiiereneineeiecaeennnns
15.2 . About Static Controls.......cccevvenne.. eerenees

15.3 Using Static Controls in an Application
15.3.1 Static Controls in a Dialog Window

15.3.2 Static Controls in Client Windows......

15.3.3 Changing the Static-Control Handle

15.4 Default Static-Control Behavior................

15.5 Summary ...cccovviviiniiiiiiiniii e
15.5.1 Static-Control Stylesccevveevivanannns
15.5.2 Messages Sent to Static Controls.......

Chapter

15

Chapter 15: Static Controls 195

B 8 e B e S e R R e N R R S e S B Rt B

15.1 Introduction

This chapter describes how to use static control windows in your applications.
You should already be familiar with the following topics:

B Standard user-interface guidelines

B Resources and using the MS OS/2 Resource Compiler (re)

B Window messages and message queues

15.2 About Static Controls

Static controls are simple text fields, bitmaps, or icons that can be used to label,
enclose, or separate other control windows. Static controls do not accept user
input and they do not send notification messages to their owners.

Static controls have style bits that determine whether the control displays text,
draws a simple box containing text, displays an icon or a bitmap, or shows
framed or unframed colored boxes. The various styles for static controls are dis-
cussed individually in Section 15.5.

Static text controls are most commonly used in dialog windows as labels. Iconic
and bitmap static controls can be used to provide graphic objects in dialog win-
dows. One advantage of static controls is that, once created, they provide labels
and graphics and require little attention from an application.

Static controls never accept the keyboard focus. When a static control receives a
WM_SETFOCUS message, or when a user clicks a static control, that control
advances the focus to the next sibling window that is not a static control. If there
are no sibling windows to the static control, the focus is given to the owner of
the static control.

15.3 Using Static Controls in an Application

15.3.1 Static

Static controls can be used in dialog windows and client windows. There is usu-
ally very little interaction between an application and the static control once the
control is created. However, an application can change the state of the static
control.

Static controls also are associated with a long-word handle which may be set and
queried by an application. By default, icon and bitmap static controls use this
handle to contain a handle to their display object. Applications can modify this
handle by using the SM_SETHANDLE and SM_QUERYHANDLE messages to
change static-control appearance.

Controls in a Dialog Window

Static controls are most commonly used as labels and separators in dialog win-
dows. As such, they are defined as part of a dialog template in the application
resource file. Once the dialog window is displayed, the static controls do not
interact with the application unless the application changes their state. Typically,
an application might change the text or position of a static control. These opera-
tions are achieved by using the WinSetWindowText and WinSetWindowPos
functions.

196 MS 0S/2 Programmer’s Reference, Vol. 1
B R B s B S R i S e B

When defining icon or bitmap static controls in a dialog template, the text for
the control is interpreted as the resource ID of the bitmap or the icon. There
are two ways that the text can be interpreted. If the first byte is *#’, the rest
of the text is assumed to be an ASCII decimal representation of the icon-or
bitmap-resource ID. If the first byte of the text is 0xFF, the second byte is the
low byte of the resource ID, and the third byte is the high byte of the resource
ID. The following are two sample Resource Compiler definitions:

CONTROL "#256",ID_ICON1, 140, 20, O, O, WC_STATIC,
SS_ICON | WS_VISIBLE

CONTROL OxEF000100, ID_ICON2, 140, 20, O, O, WC_STATIC,
SS_ICON | WS_VISIBLE

Each definition specifies an SS_ICON static control that uses an icon with
resource ID 256 (0x0100). The icon is assumed to be in the current application
resource file.

The window handle for a static-control window can be obtained by calling the
WinWindowFromID function using the dialog-window handle and the window ID
of the static control as defined in the dialog template.

15.3.2 Static Controls in Client Windows

Applications can create static-control windows in non-dialog windows by calling
the WinCreateWindow function with a WC_STATIC window class. The appear-
ance of the control is defined by the style parameter to the WinCreateWindow
function.

If the application creates a control with SS_ICON or SS_BITMAP style, it must
ensure that the resource ID specified by the window text corresponds to an
actual resource in the application resource file or the static control will not be
created.

Once created, the static-control window can be moved and sized just like any
other child window. An application can obtain the window handle of the static
control by calling the WinWindowFromID function, supplying the parent window
and the window ID of the static control.

15.3.3 Changing the Static-Control Handle

The static-window handle contains a handle to an icon or bitmap. Applica-
tions can query and set this handle by using the SM_QUERYHANDLE and
SM_SETHANDLE messages. Setting the handle causes the static item to be
redrawn, so the handle must be a valid icon or bitmap handle.

For non-icon and non-bitmap static-control items, the handle is available for
use by the application and has no effect on the appearance of the control.

Chapter 15: Static Controls 197
B B S e R e e e R T e R B

15.4 Default Static-Control Behavior

This section describes all the messages specifically handled by the predefined
static-control class.

Message

Description

WM_PAINT

WM_CREATE

WM_DESTROY

WM_ADJUSTWINDOWPOS

WM_QUERYWINDOWPARAMS

WM_SETWINDOWPARAMS

WM_ENABLE

WM_QUERYDLGCODE

WM_MOUSEMOVE

WM_SETFOCUS

SM_SETHANDLE

SM_QUERYHANDLE

Draws the static control based on
its style attributes.

Sets the window text for static-
text controls. Loads the bitmap
or icon resource for the bitmap
or icon static controls. Returns
TRUE if the resource cannot be
loaded.

Frees the text for static-text con-
trols. Destroys the bitmap or icon
for the bitmap and icon static
controls. The icon for a sysicon
static control is not destroyed,
because it belongs to the system.

Adjusts the SWP structure so
that the new window size matches
the bitmap, icon, or sysicon
dimensions associated with the
control.

Returns the requested window
parameters.

Allows the window text to be set
for static-text controls only.

Invalidates the entire control win-
dow, forcing it to be redrawn.

Returns the predefined constant
DLGC_STATIC.

Sets the mouse pointer to the
arrow pointer and returns TRUE.

Sets the focus to the next sibling
window that can accept the focus,
or if no such sibling exists, it sets
the focus to the parent window.

Sets the handle associated with
the static control and invalidates
the control window, forcing it to
be redrawn.

Returns the handle associated
with the static-control window.

198 MS 0S/2 Programmer’s Reference, Vol. 1
R N S e B B g R e S T e R TR R TR Sl

Message Description

WM_MATCHMNEMONIC Returns TRUE if the mnemonic
passed in the mpl parameter
matches the mnemonic in the
control-window text.

WM_HITTEST Returns HT_TRANSPARENT
for the following static control
styles:

SS_GROUPBOX,
SS_FGNDRECT,
SS_HALFTONERECT,
SS_BKGNDRECT,
SS_FGNDFRAME,
SS_HALFTONEFRAME,
SS_BKGNDFRAME.

For other styles, returns the Win-
DefWindowProc function.

15.5 Summary

The following sections describe the styles and messages associated with static-
control windows.

15.5.1 Static-Control Styles

The following styles are associated with static-control windows:

SS_BITMAP Draws a bitmap. The resource ID for the bitmap resource is
determined in the same way as for SS_ICON controls. The bitmap resource is
assumed to be in the current application resource file.

SS_BKGNDFRAME Draws a rectangular frame with the current background
color.

SS_BKGNDRECT Draws a filled rectangle with the current background color.

SS_FGNDFRAME Draws a rectangular frame with the current foreground
color.

SS_FGNDRECT Draws a filled rectangle with the current foreground color.

SS_GROUPBOX Draws a box with control text in the upper-right corner of
the box. This style is useful for enclosing groups of radio buttons or check boxes
in a box.

SS_HALFTONEFRAME Draws a rectangular frame with a halftone pattern in
the current foreground color.

Chapter 15: Static Controls 199
B T e L B e S S e e S R R e R B R

SS_HALFTONERECT Draws a filled rectangle with a halftone pattern in the
current foreground color.

SS_ICON Draws an icon. The text of the control is interpreted as the resource
ID of the icon. The bytes that make up the text can be interpreted as numeric
values or as ASCII representations of numbers, depending on the value of the
first byte. If the first byte is ’#’, the remaining text is assumed to be an ASCII
decimal representation of the icon resource ID. If the first byte of the text is
OxFF, the second byte is the low byte of the resource ID and the third byte is
the high byte of the resource ID.

SS_SYSICON Displays a system pointer icon. The ID of the icon is extracted
from the control text, as in the SS_ICON style. To display this icon, the system
calls the WinQuerySysPointer function with the specified ID.

SS_TEXT Allows various formatting options to be combined with the
SS_TEXT style to produce formatted text in the boundaries of the control. The
formatting option flags are the same as those used for the WinDrawText func-
tion.

15.5.2 Messages Sent to Static Controls
The following messages are associated with static-control windows:

SM_QUERYHANDLE—Returns the private handle for the static control. For
controls with SS_ICON, SS_BITMAP, or SS_SYSICON style, the handle of the
icon or bitmap is returned. For all other types of static controls, the handle is
available for application-defined purposes.

SM_SETHANDLE—Sets the private handle for the static control. Static con-
trols with SS_ICON, SS_BITMAP, or SS_SYSICON style automatically use this
handle to store the icon or bitmap when the control is created. An application
can change the appearance of these controls by setting the handle. For all other
types of static controls, the handle is available for application-defined purposes.

R S S e T e S e R S S SR T TG

bl

Scroll-Bar Controls

16.1
16.2

16.3

16.4

Introduction.....cocveiiiiiiiieiiiiniiii e 203
About Scroll Barsceveveiiiiiiiiiiiiiiiiiiiiiiin e 203
16.2.1 Scroll-Bar Creationeeeeeeeririaeneenenareasienacansans 203
16.2.2 Scroll-Bar Range and Positionccccvvevrninennnnnns 204
16.2.3 Scroll-Bar Notification MesSagesccveveverneneneannns 204
16.2.4 Scroll Bars and the Keyboardccccveveverneninennnns 206
Using Scroll Barscccovvuieiiniiiiniiiiiiiiiiiinnninnninee, 207
16.3.1 Creating Scroll Barsc.cceveueevnrueunnerceceneeecenenees 208
16.3.2 Retrieving a Scroll-Bar Handle......... eeeeeereerienenaaas 208
16.3.3 Using the Scroll-Bar Range and Position................. 209
SUMMATY c.ovieiiiiiiiiiiiiir e, 210
16.4.1 MeSSAZES .uturirnurniuenrncnrnesriesesaciontorsrsasasssonsnonsns 210

16.4.2 System Values......coiiieiiiiiiiniiiiiiiniiiniiniinennennn, 210

Chapter 16: Scroll-Bar Controls 203
R R S R N R e S I RIS e

16.1 Introduction

This chapter describes creating and using scroll bars in Presentation Manager
applications. You should also be familiar with the following topics:

B Standard user-interface guidelines

Windows

Frame windows

Messages and message queues

Control windows

16.2 About Scroll Bars

Scroll bars are control windows that convert mouse and keyboard input into
integer values. Applications typically use scroll bars to control scrolling the con-
tents in a client window.

A scroll bar has several parts: the bar, arrows, and the slider. These are found
on vertical and on horizontal scroll bars. Arrows are located at each end of a
scroll bar. The left scroll arrow, on the left side of a horizontal scroll bar, lets
the user scroll toward the left in a document. The right scroll arrow lets the user
scroll toward the right. The upper scroll arrow lets the user scroll upward in the
document. The lower scroll arrow lets the user scroll downward.

The slider, a hollow box, lies between the two scroll arrows. The slider position
in the scroll bar the reflects current value of the scroll bar. When the slider is
against the left or top scroll arrow, the scroll-bar value is at a minimum; when
the slider is against the right or bottom arrow, the scroll-bar value is at a max-
imum. The area between the scroll arrows is called the slider background.

Scroll bars monitor the slider position and send notification messages to the
owner window when the slider position changes through mouse or keyboard
input.

Scroll bars are often used in frame windows. A frame window automatically
places scroll bars at the right and bottom sides of a window, depending on the
scroll-bar style. The frame window automatically passes scroll-bar messages on
to its client window. The client window handles these messages by adjusting the
display. The client window can also send messages directly to the scroll bar,
directing the scroll bar to adjust its range so that it will map to the data scrolling
in the client window.

An application can use scroll bars as stand-alone controls in any size or shape,
at any position, in any sort of window. Scroll bars can be used as parts of other
controls—for example, list-box controls use a scroll bar to let the user view
items when the list box is too small to display all the items.

16.2.1 Scroll-Bar Creation

An application creates a scroll bar by using the preregistered window class
WC_SCROLLBAR. The application can create a scroll bar by using the Win-
CreateWindow function. There are two scroll-bar styles: SBS_HORZ and
SBS_VERT. The style SBS_HORZ creates a horizontal scroll bar; SBS_VERT

204 MS 0S/2 Programmer’s Reference, Vol. 1
e R S B B R R g

creates a vertical scroll bar. Although most applications specify an owner when
creating a scroll bar, an owner is not required. If no owner is specified, the
scroll bar does not send notification messages. An application can retrieve the
scroll bar’s current slider position by sending the SBM_QUERYPOS message to
the scroll bar.

An application can specify class-specific data when creating a scroll bar. The
SBCDATA structure specifies the initial range and slider position for the scroll
bar.

If a scroll bar is a descendant of a frame window, its position relative to the
parent window may change when the frame window’s position changes. Frame
windows draw scroll bars relative to the upper-left corner of the frame win-
dow (rather than the lower-left corner). The frame window may adjust the y-
coordinate of the scroll-bar position. This is desirable when the scroll bar is an
immediate child window of the frame window, but may be undesirable if the
scroll bar is not an immediate child window.

16.2.2 Scroll-Bar Range and Position

Every scroll bar has a range and a slider position. The range specifies the max-
imum and minimum values for the slider position. As the user moves the slider
in the scroll bar, its position is reported as an integer value in the range. If the
slider position is the minimum value, the slider is at the top of a vertical scroll
bar or at the left end of a horizontal scroll bar. If the slider position is the max-
imum value, the slider is at the bottom or right end of the vertical or horizontal
scroll bar, respectively.

An application can adjust the range to convenient integer values by using the
SBM_SETSCROLLBAR message (or initially, by using the SBCDATA struc-
ture). This makes it easy to translate the slider position to a value that corre-
sponds to the data being scrolled. For example, an application that has 260 lines
of text to display in a window that can show only 16 lines at a time can set the
vertical scroll-bar range to 1 through 244. When the slider is at position 1, the
first line is at the top of the window. When the slider is at position 244, the last
line is at the bottom of the window.

To keep the scroll-bar range in useful relationship with the data, an application
must adjust the range whenever the data or the size of the window changes. This
means an application should adjust the range as part of processing WM_SIZE
messages.

An application must move the slider in the scroll bar. Although the user makes
a request for scrolling in the scroll bar, the scroll bar does not update the slider
position. Instead, it passes the request to the owner window. The owner window
must scroll the data and update the slider position by using the SBM_SETPOS
message. Because the application controls the slider movement, it can move the
slider in increments that work best for the data being scrolled.

16.2.3 Scroll-Bar Notification Messages

The scroll bar sends notification messages to the scroll-bar owner whenever the
user clicks the scroll bar. The WM_VSCROLL and WM_HSCROLL messages
are the notification messages for vertical and horizontal scroll bars, respectively.
If the scroll bar is a frame-control window, the message is passed by the frame
window to the client window.

Chapter 16: Scroll-Bar Controls 205
B e e B R e S A P R T S S e e R e R R R el

Each notification message includes the scroll-bar identifier, the specific scroll-
bar command code that corresponds to the user’s action, and, in some cases,
the current position of the slider. If a scroll bar is created as part of a frame-
control window, the scroll-bar identifier is one of the predefined constants
FID_VERTSCROLL or FID_HORZSCROLL. Otherwise, it is the identifier
given in the WinCreateWindow function.

The scroll-bar command codes specify the action the user has taken. The code
specifies where the user has clicked the mouse. MS OS/2 user-interface guide-
lines recommend certain responses for each action. The following is a list of the
command codes and the recommended responses. In each case, a “unit” is
defined by the application and should be appropriate for the given data. For
example, when scrolling text vertically, the unit is typically a line.

Command code Description

SB_LINEUP User clicked the top scroll arrow. Decre-
ment the slider position by one and scroll
toward the top of the data by one unit.

SB_LINEDOWN User clicked the bottom scroll arrow. Incre-
ment the slider position by one and scroll
toward the bottom of the data by one unit.

SB_LINELEFT User clicked the left scroll arrow. Decre-
) ment the slider position by one and scroll
toward the left end of the data by one unit.

SB_LINERIGHT User clicked the right scroll arrow. Incre-
ment the slider position by one and scroll
toward the right end of the data one unit.

SB_PAGEUP User clicked the scroll-bar background
above the slider. Decrement the slider posi-
tion by the number of data units in the win-
dow and scroll toward the top of the data by
the same number of units.

SB_PAGEDOWN User clicked the scroli-bar background
below the slider. Increment the slider posi-
tion by the number of data units in the win-
dow and scroll toward the bottom of the
data by the same number of units.

SB_PAGELEFT User clicked the scroll-bar background to
the left of the slider. Decrement the slider
position by the number of data units in the
window and scroll toward the left end of the
data by the same number of units.

SB_PAGERIGHT User clicked the scroli-bar background to
the right of the slider. Increment the slider
position by the number of data units in the
window and scroll toward the right end of
the data by the same number of units.

206

MS 0S/2 Programmer’s Reference, Vol. 1

R R e e e e R R R B e e

Command code Description

SB_SLIDERTRACK User is dragging the slider. Applications
that draw data quickly can set the slider to
the position given in the message and scroll
the data by the same number of units the
slider has moved. Applications that can-
not draw data quickly should wait for the
SB_SLIDERPOSITION code before mov-
ing the slider and scrolling the data.

SB_SLIDERPOSITION User released the slider after dragging it.
Set the slider to the position given in the
message and scroll the data by the same
number of units the slider has moved.

SB_ENDSCROLL User released the mouse after holding it on
an arrow or in the scroll-bar background.
No action is necessary.

If the scroll-bar command code is either SB_SLIDERPOSITION or
SB_SLIDERTRACK, indicating that the user is moving the scroll-bar slider, the
notification message also contains the current position of the slider.

The owner window can send a message to the scroll bar to read its current value
and range or to reset its current value. The owner window can adjust data con-
trolled by the scroll bar to reflect any changes in the state of the scroll bar.

An application can disable a scroll bar by using the WinEnableWindow function.
A disabled scroll-bar window ignores the user’s actions, sending out no notifi-
cation messages when the user tries to manipulate it. If an application has no
data to scroll or all data fits in the client window, it should disable the scroll bar.

Scroll bars have their own system color, SYSCLR_SCROLLBAR. This color is
used to paint the scroll-bar background. Other system colors are used in other
parts of the scroll bar.

16.2.4 Scroll Bars and the Keyboard

When a scroll bar has the keyboard focus, it generates notification messages for
the following keys:

Key Command code

uUP SB_LINEUP or SB_LINELEFT

LEFT SB_LINEUP or SB_LINELEFT
DOWN SB_LINEDOWN or SB_LINERIGHT
RIGHT SB_LINEDOWN or SB_LINERIGHT
PAGE UP SB_PAGEUP or SB_PAGELEFT

PAGE DOWN SB_PAGEDOWN or SB_PAGERIGHT

Chapter 16: Scroli-Bar Controls 207

B e R D S e R R S R S e R e e R G Y

If an application uses scroll bars to scroll data but does not give the scroll bar
the input focus, the window with the focus should process keyboard input itself.
The window can generate scroll-bar notification messages or carry out the indi-
cated scrolling. The following list gives the keys a window should process and

what action to take for each:

Key Command

up SB_LINEUP

DOWN SB_LINEDOWN

PAGE UP SB_PAGEUP

PAGE DOWN SB_PAGEDOWN

CONTROL+HOME Sl_B_ZSLIDER’!'I.{ACK with slider set to
minimum position

CONTROL+END SB_§LIDER'I:13ACK with slider set to
maximum posmon

LEFT SB_LINELEFT

RIGHT SB_LINERIGHT

CONTROL+PAGE UP SB_PAGELEFT

CONTROL+PAGE DOWN SB_PAGERIGHT

HOME S]-3_.SLIDER'I.‘1.{ACK with slider set to
minimum position

END SB_SLIDERTRACK with slider set to

maximum position

Vertical scroll bars that are part of list boxes have the following keyboard inter-

face:

Key

Command

CONTROL+UP

CONTROL+DOWN

F7
F8

SB_SLIDERTRACK with slider set to
minimum position

SB_SLIDERTRACK with slider set to
maximum position

SB_PAGEUP
SB_PAGEDOWN

The application must implement the suggested scroll-bar/keyboard interface.
This can be accomplished by appropriate handling of WM_CHAR messages.

16.3 Using Scroll Bars

This section explains how to create and use scroll bars in an application. Scroll
bars are most often used in frame windows to let the user scroll data in the

corresponding client window.

208 MS 0S/2 Pkogrammer’s Reference, Vol. 1
B R e e S e R P R R R R e

Bt]

£

16.3.1 Creating Scroll Bars

You can add scroll bars to a frame window by using the FCF_HORZSCROLL
flag, the FCF_VERTSCROLL flag, or both flags when creating the frame win-
dow with the WinCreateStdWindow function. This adds a horizontal and/or a
vertical scroll bar to the frame window. Because the frame window owns the
scroll bars, it passes notification messages from these controls to the client win-
dow.

The following code fragment adds scroll bars to a frame window:
/* Set flags for a main window with scroll bars. */

ULONG ulFrameControlFlags =
FCF_STANDARD | FCF_HORZSCROLL | FCF_VERTSCROLL;

/* Create the window. */

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&ulFrameControlFlags, szClientClass, szFrameTitle,
OL, NULL, OL, &hwndClient);

Scroll bars created this way have the window identifier FID_HORZSCROLL or
FID_VERTSCROLL. The frame window determines the size and position of the
scroll bars. A frame window uses the standard size specified by the system
values SV_CXVSCROLL and SV_CYHSCROLL. The position is always the
right and bottom edges of the frame window.

Another way to create scroll bars is by using the WinCreateWindow function.
This is most common for stand-alone scroll bars. Creating scroll bars in this way
lets you set the size and position of the scroll bars. You can also specify the win-
dow to receive notification messages.

The following code fragment creates a stand-alone scroll bar:
HWND hwndScroll; /* scroll-bar handle */

hwndScroll = WinCreateWindow(
hwndClient /* scroll-bar parent *
*

WC_SCROLLBAR, /* preregistered scroll-bar class */
NULL,- /* no window title */
SBS_VERT | WS_VISIBLE, /* vertical style and visible */
10, 10, /* position */
20, 100, /* size */
hwndClient, /* owner &

HWND_TOP, /* Z-order position */
1, /* scroll-bar ID */
NULL, /* no class-specific data */
NULL) : * no presentation parameters *

16.3.2 Retrieving a Scroll-Bar Handle

If you create a scroll bar as a child window of the frame window by using the
WinCreateStdWindow function, you need a way to retrieve the scroll-bar handle.
One way is to use the WinWindowFromID function, the frame-window handle,
and a predefined identifier (such as FID_HORZSCROLL or
FID_VERTSCROLL) to retrieve the scroll-bar handle:

hwndHorzScroll = WinWindowFromID (hwndFrame, FID_HORZSCROLL) ;
hwndVertScroll = WinWindowFromID (hwndFrame, EID_VERTSCROLL):

Chapter 16: Scroll-Bar Controls 209
R R e B B e S S R S SR e R B Rals

If the standard frame window includes a client window, you can use that handle
to access the scroll bars. The idea is to retrieve the frame-window handle first,
then the scroll-bar handle. This is illustrated by the following code fragment:

/* Get a handle to the horizontal scroll bar. */
hwndScroll = WinWindowFromID(

WinQueryWindow (hwndClient, QW_PARENT, FALSE),
FID_HORZSCROLL) :

16.3.3 Using the Scroll-Bar Range and Position

You can initialize a scroll bar’s current value and range to nondefault values by
sending the SBCDATA structure with class-specific data for a call to the Win-
CreateWindow function:
SBCDATA sbcd;
/*‘Set up scroll-bar control data. */
sbcd.posFirst = 200;
sbcd.posLast = 400;
sbcd.posThumb = 300;
/* Create the scroll bar. */
hwndSeroll = WinCreateWindow (hwndClient, WC_SCROLLBAR, NULL,
SBS_VERT | WS_VISIBLE,
10, 10, 20, 100,
hwndClient, HWND_TOP, 1,

&sbcd, /* class-specific data */
NULL) ;

You can adjust a scroll-bar value and range by sending it an
SBM_SETSCROLLBAR message:

/* Set the scroll-bar value and range. */
WinSendMsg (hwndScroll, SBM_SETSCROLLBAR,

MPFROM2SHORT (300, 0),
MPEROM2SHORT (200, 400)) ;

You can read a scroll-bar value by sending it an SBM_QUERYPOS message:
USHORT usSliderPos;
/* Read the scroll-bar value. */

usSliderPos = (USHORT) WinSendMsg(hwndScroll,
SBM_QUERYPOS, NULL, NULL):

Similarly, you can set a scroll-bar value by sending an SBM_SETPOS message:
/* Set the vertical scroll-bar value. */

WinSendMsg (hwndScroll, SBM_QUERYPOS, MPFROM2SHORT (300, O), NULL);

210 - MS 0S/2 Programmer's Reference, Vol. 1
e B B B e R B ﬁ.mr“’ﬁi‘ﬁmﬁr%‘m%ﬁ&%ﬁw

You can read a scroll-bar range by sending it an SBM_QUERYRANGE mes-
sage:

MRESULT mr;
USHORT iMinimum, iMaximum;

/* Read the vertical scroll-bar range. */
mr = WinSendMsg (hwndScroll, SBM_QUERYRANGE, NULL, NULL):

iMinimum = SHORT1FROMMR (mr); /* minimum in the low word */.
iMaximum = SHORT2FROMMR (mr); /* maximum in the high word */

16.4 Summary

This section lists the messages and system values that applications use to create
and control scroll-bar control windows.

16.4.1 Messages
Applications use the following messages to create and control scroll bars:
SBM_QUERYHILITE Sent to a scroll bar to obtain its highlight state.

SBM_QUERYPOS Sent to a scroll bar to obtain the current value of the
scroll bar.

SBM_QUERYRANGE Sent to a scroll bar to obtain the scroll-bar range.
SBM_SETHILITE Sent to a scroll bar to set the highlight state.
SBM_SETPOS Sent to a scroll bar to set the current value of the scroll bar.

SBM_SETSCROLLBAR Sent to a scroll bar to set the current value and
range.

WM_HSCROLL Sent by a horizontal scroll bar to its owner window when the
user changes the state of the scroll bar. The high word of the second parameter
(mp2) contains a scroll-bar command code.

WM_VSCROLL Sent by a vertical scroll bar to its owner window when the
user changes the state of the scroll bar. The high word of the second parameter
(mp2) contains a scroll-bar command code.

16.4.2 System Values
Applications use the following system values to create and control scroll bars:

SV_CXHSCROLLARROW Width (in pels) of the scroll-arrow area in a hor-
izontal scroll bar.

SV_CXVSCROLL Width (in pels) of a standard vertical scroll bar.
SV_CYHSCROLL Height (in pels) of a standard horizontal scroll bar.

Chapter 16: Scroll-Bar Controls 211
e L B B N e B R T R S e e e s

SV_CYVSCROLLARROW Height (in pels) of the scroll-arrow area in a verti-
cal scroll bar.

SV_FIRSTSCROLLRATE Initial rate at which a scroll bar sends notification
messages when the user clicks the scroll arrows or scroll-bar background.

SV_SCROLLRATE Similar to SV_FIRSTSCROLLRATE, this is the rate at
which the scroll bar sends messages.

SYSCLR_SCROLLBAR Color for drawing scroll-bar backgrounds.

TID_SCROLL Timer ID for a reserved scrolling timer. This timer is used for
sending notification messages when a scroll arrow or scroll-bar background is
clicked.

S R R R R R s R R e

Menus

17.1
17.2

17.3
17.4

17.5

17.6

Chapter

ARGHIS RS

Introduction......cccoeeiiiiiiiiiiiiiiiiiiiii 215
About Menusc.coeuveviiniiniiiiiiiiiieiii 215
17.2.1 Menu-Bar and Pull-Down Menuscccocveeennnenennns 215
17.2.2 System Ment...evveieieiieneenininrrereranenennsensnncasanss 216
17.2.3 Menu-Item Styles.......ccovviieieieniiiiiieiiiiinicnininenae. 217
17.2.4 Menu-Item Attributes........cccoevviiiiniiiininiiieiiininnn. 217
Defining Menu Items in a Resource File..........ccceevenen.. 217
Menu Data Structurescccveveiiiiiiiiiiiiiiinneninn., 219
17.4.1 Menu Templatecoeeieeieneieieianeeinieernraeeesraecnnas 220
Using Menus in your Applications.........cceveieieieincenenenn. 221
17.5.1 Including a Menu in a Standard Window................. 222
17.5.2 Adding Menus to a Dialog Windowccceveuennen. 223
17.5.3 Accessing the System Menuccveveniiineniienenenenenn. 223
17.5.4 Responding to a User’s Menu Choiceccuenen.. 223
17.5.5 Using Menus with the Keyboard......c.cccevuininnnennnn. 224
17.5.6 Using Keyboard Acceleratorseeeverenrnsasenenrensnes 225
17.5.7 Help Item in the Menu Bar.......cocevvvevieiiennennnnnnnn. 226
17.5.8 Setting and Querying Menu-Item Attributes 226
17.5.9 Setting and Querying Menu-Item Contents............... 227
17.5.10 Adding and Deleting Menu Itemscccoveenininenene. 227
17.5.11 Owner-Drawn Menu Items........ccceeeeieninenenienennnn. 230
SUMMATY ceviiiiiiic e 232
17.6.1 Menu-Item Styles.....ccovuruiiiiiierieicriennieiieencannn, 232
17.6.2 Menu-Ttem Attributes.....ocueeeereiieenereninenrnenenenene. 233
17.6.3 Menu Functions........cceveuiereiininniiineieniniieienininnne. 233
17.6.4 Messages Sent from a Menu to an Owner Window..... 234

17.6.5 Messages Sent t0 @ MENU ...vveverninernenernrenennennrnenns 235

Chapter 17: Menus 215
S T B R B R T R S R e ey

17.1 Introduction

This chapter describes how to use menus in your applications. You should also
be familiar with the following topics:

M Standard user-interface guidelines

Resources and using the MS OS/2 Resource Compiler (rc)

Accelerator tables

Creating standard frame windows

Window messages and message queues

17.2 About Menus

Menus are windows that contain a list of items. These items can be text strings,
bitmaps, or images drawn by the application. Menus allow the user to use the
mouse or keyboard to choose from a predetermined list of choices. When a user
makes a choice from a menu, the menu posts a message containing the item’s
unique menu-item identifier to the menu’s owner window.

Typically, an application defines its menus by using Resource Compiler and
associates the menus with an frame window when the window is created. Appli-
cations can also create menus by filling in menu-template data structures and
then creating windows with the WC_MENU class. Either way, applications can
dynamically add, delete, or change menu items by sending messages to menu
windows.

Menu windows are always owned by another window; this is important because
a menu sends messages to its owner whenever a menu item is highlighted or
chosen by the user. Owner windows send messages to menus to add, delete, or
change menu items.

17.2.1 Menu-Bar and Pull-Down Menus

Typically, an application uses a menu-bar menu and several pull-down sub-
menus. The menu bar is a child window in the parent window frame. The sub-
menus are normally hidden and become visible when the user makes selections
in the menu bar. Figure 17.1 shows a typical menu-bar and submenu layout in a
standard frame window:

216 MS 0S/2 Programmer’s Reference, Vol. 1)
T B B B S R S R e e R S T R e e e

Figure 17.1

Menu-Bar and Pull-Down Menus

Pull-down menu

B 758 Stant Programs &
Add...
Change...
Deiete...

Copy...
|_Hinimize on Run |
File System
0872 tull-screen cnmm.n__d prompt

[<]

8.
Page Setup Test

¢

There are two main types of menu items: command items and submenu items.
When the user chooses a command item, a command message is immediately
posted to the parent window. When the user selects a submenu item, a pull-
down menu is displayed from which the user may choose another command
item. Since a pull-down menu window can also contain a submenu item, pull-
down menus can originate from other pull-down menus. An item in the menu
bar may be a command item or a submenu item.

When a command item is selected, either from the menu bar or from a
pull-down menu, the menu system posts a WM_COMMAND, WM_HELP, or
WM_SYSCOMMAND message to the owner window, depending on the menu
item’s style bits. '

The menu bar is a child window of the frame window; the menu-bar window
handle is the key to communicating with menus. The handle of the menu-bar
window can be obtained by calling the WinWindowFromID function with the
handle of the parent window and the FID_MENU frame-control identifier. Most
messages for menus and submenus can be sent to the menu-bar window. Flags in
the messages tell the window whether to search submenus for requested menu
items.

17.2.2 System Menu

The System menu in the upper-left corner of a standard frame window is
different from the menu-bar and pull-down menus defined by the application.
The System menu is controlled and defined almost exclusively by the system.
Your only decision about the System menu is whether or not to include it when
creating a frame window. (It is unusual for a frame window not to include a Sys-
tem menu.) The System menu generates WM_SYSCOMMAND messages
instead of WM_COMMAND messages. Most applications simply allow the
default behavior for WM_SYSCOMMAND messages.

Chapter 17: Menus 217
B B S e A B R S M e e S S S S SR e S e s

If necessary, you can obtain the handle of the System menu by calling the
WinWindowFromID function with the handle of the parent (frame) window and
‘the FID_SYSMENU frame-control identifier. The application can add, delete,
and change System-menu entries.

17.2.3 Menu-ltem Styles

All menu items have a combination of style bits that determine what kind

of data the item contains and what kind of message it generates when it is
chosen by the user. For instance, a menu item can have the MIS_TEXT,
MIS_BITMAP, or other styles, specifying what kind of display object visually
represents the menu item on the screen. Other styles determine what kinds of
messages the item sends to its owner window and whether the owner window
draws the item. Menu-item styles typically do not change during program
execution, but they can be queried and set by sending MM_SETITEM and
MM_QUERYITEM messages to the menu with the identifier of the item. The
possible menu-item styles are described in Section 17.6.1.

17.2.4 Menu-Item Attributes

Menu items have attributes that determine how they are displayed and whether
or not the user can choose them. Menu-item attributes can be set and queried by
sending MM_SETITEMATTR and MM_QUERYITEMATTR messages with the
identifier of the item to the menu-bar menu window. If the specified item is in a
submenu, you must set a flag in the message so that submenus are searched for
the item. The possible attributes of a menu item are listed in Section 17.6.2.

17.3 Defining Menu Items in a Resource File

A menu resource consists of command items and submenu items. One menu
resource typically represents the menu bar and all its submenus. An application
can specify the identifier of the menu resource when creating a standard window,
or it can load the menu resource directly by using the WinLoadMenu function.
A menu-item definition is organized as follows:

MENUITEM item text, item identifier, item style, item attributes

The menu resource-definition file specifies the text of each item in the menu,
unique identifier, its style and its attributes, and whether it is a command item or
a submenu item. Following is sample source code that defines a menu resource
for Resource Compiler. The code defines a menu with three submenu items in
the menu bar (File, Edit, and Fonts) and a command item (Help). Each sub-
menu has several command items, and the Fonts submenu has two other sub-
menus within it.

218

ek R e R R e

MS 0S/2 Programmer’s Reference, Vol 1

MENU ID_MENU_RESOURCE

BEGIN
SUBMENU "*File"
BEGIN
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM

END
SUBMENU "~Edit",
BEGIN
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM
MENUITEM
END
SUBMENU "Font",
BEGIN

IDM_FILE

"~o en. 11
"”Close\tE3"
"~Quit"

"~About Sample",
IDM_EDIT

"~Undo"
nn

" ~é“t " ,
"C.'QPY" .
"~Paste",
"C~lear",

IDM_FONT

b e

SUBMENU "Style",
BEGIN
MENUITEM
MENUITEM
MENUITEM
END
SUBMENU "Size",
BEGIN
MENUITEM
MENUITEM
MENUITEM

"Plain",
"Bold",

"Italic",

"10"
I!12'l4
"14“:

END

ND
MENUITEM "F1=Help"

END

0x00, MIS_TEXT

jit S A

IDM_FI_OPEN
IDM_FI_CLOSE,
IDM_FI_QUIT
IDM_FI_SEP1, MIS_SEPARATOR
IDM_FI_ABOUT

MIS_DISABLED

IDM_ED_UNDO, O, MIA_DISABLED
IDM_ED_SEP1, MIS_SEPARATOR
IDM_ED_CUT

IDM_ED_COPY

IDM_ED_PASTE

IDM_ED_CLEAR

IDM_FONT_STYLE

IDM_FONT_STYLE_PLAIN
IDM_FONT_STYLE_BOLD
IDM_FONT_STYLE_ITALIC

IDM_FONT_SIZE
IDM_FONT_SIZE_10

IDM_FONT_SIZE_12
IDM_FONT_SIZE_14

| MIS_BUTTONSEPARATOR | MIS_HELP

Figure 17.2 shows how the submenus within a Delete submenu are displayed.

Figure 17.2
Submenus

= | O Bro
ile tions

Save entry
Add

Fl=Help
h 3

bout Bmwzcr
PM_Fonts i
PM_ProgramList000 4
PM_ProgramListo01 3

e d
Delete Delete all keywords
elete selected ke

l m\de:ktog\menu.m

You can indicate a mnemonic keystroke for the menu item by preceding that
character in the item text with a tilde, as in “"File”. The user can choose that
_item by pressing the mnemonic key when the menu is active. (The menu bar is
active when the user presses and releases the ALT key, and the first item in the

menu bar is highlighted. A pull-down menu is active when it is open.)

In addition to mnemonics, a menu item can have an associated keyboard
accelerator. Accelerators are different from mnemonics, in that the menu does
not have to be active for the accelerator key to work. If a menu item has a key-
board accelerator associated with it, the corresponding menu item should display

Chapter 17: Menus 219
S S S S i S S S R S S SR S e et

the accelerator to the right of the menu item. This is done by placing a tab char-
acter (\t) in the menu text before the characters that should be displayed on the
right. For example, if the Close item had the F3 function key as its keyboard
accelerator, the text for the item would be “Close\tF3”. For more information
on accelerators, see Section 17.5.6.

Each entry that defines a menu item specifies the text for the item, its identifier,
and the style and attributes of the item. A menu item that has no specification
for style or attributes has the default style of MIS_TEXT and all attribute bits
off, indicating that the item is enabled. The MIS_SEPARATOR style identifies
nonselectable lines between menu items.

To define a menu item with the MIS_BITMARP style, an application should use a
tool such as Icon Editor to create a bitmap, include the bitmap in the applica-
tion’s resource-definition file, and define a menu in the file (as shown in the fol-
lowing code fragment). The text for the bitmap menu items is an ASCII repre-
sentation of the resource identifier of the bitmap resource to be displayed for
that item.

/* Bring externally created bitmaps into the resource file. */

BITMAP 101 button.bmp
BITMAP 102 hirest.bmp
BITMAP 103 hizoom.bmp
BITMAP 104 hired.bmp

/* Connect a menu item with a bitmap. */

SUBMENU "~Bitmaps", IDM_BITMAP
BEGIN
MENUITEM "#101", IDM_BM_Ol1, MIS_BITMAP
MENUITEM "#102", IDM_BM_O2, MIS_BITMAP
MENUITEM "#103", IDM_BM_0O3, MIS_BITMAP
MENUITEM "$#104", IDM_BM_0O4, MIS_BITMAP
END

17.4 Menu Data Structures

There are two main data structures that define the contents of a menu: the
menu-item structure and the menu-template structure. The menu-item structure
defines a single menu item, and the menu-template structure contains alil the
menu items that make up a menu resource, including the menu bar and all its
pull-down menus,

A single menu item is defined by the MENUITEM data structure. This data
structure is used with the MM_INSERTITEM message to insert items into a
menu, or to query and set item characteristics with the MM_QUERYITEM and
}VIM_SETITEM messages. The MENUITEM data structure has the following
orm:

typedef struct _MENUITEM {
SHORT iPosition;
USHORT afStyle;
USHORT afAttribute;
USHORT id;
HWND hwndSubMenu;
ULONG hItem;

} MENUITEM;

220 MS 0S/2 Programmer’s Reference, Vol. 1
Pk S S T B PR i e R S e ot o T TR S Sl e e A i o L e

The values of most of the fields in the data structure can be derived directly
from the resource-definition file shown in Section 17.3. The last field in the
structure, hitem, depends on the style of the menu item.

The iPosition field specifies the ordinal position of the item within its menu win-
dow. If the item is part of the menu bar, iPosition gives its relative left-to-right
position, with zero being the leftmost item. If the item is part of a submenu,
iPosition gives its relative top-to-bottom and left-to-right position, with zero
being the upper-left item. An item with the MIS_LBREAKSEPARATOR style
in a pull-down menu will cause a new column to begin.

The afStyle field contains the style bits of the item. The afAttribute field con-
tains the attribute bits.

The id field contains the identifier for the menu item. The identifier should be
unique but does not have to be. When multiple items have the same identifier,
they post the same command number in the WM_COMMAND, WM_HELP,
and WM_SYSCOMMAND messages. Also, any message that specifies a menu
item with a nonunique identifier will find the first item that has that identifier.

The hwndSubMenu field contains the window handle of a pull-down menu win-
dow (if the item is a submenu item). The hwndSubMenu field is NULL for com-
mand items.

The hltem field contains a handle to the display object for the item, unless the
item has the MIS_TEXT style, in which case hItem is NULL. For example, a
menu item with the MIS_BITMAP style has an hItem field that is equal to its
bitmap handle.

17.4.1 Menu Template

A menu template is a variable-length data structure that represents the entire
menu, including all items and submenus. A menu template is made up of a
series of variable-length records. Each record represents a single menu item. If
the item is a submenu, the template that describes the submenu is nested after
the submenu item record.

The menu template is a representation of the menu as it is defined in the
resource-definition file. Typically, applications require information about the
internal structure of a menu template only when creating a menu template
without using a resource-definition file.

A template is defined as shown in the following code fragment:
typedef struct _MT {

USHORT cb; /* length of template in bytes */
USHORT version; /* version; set to zero */
USHORT codepage; /* code page */
USHORT ilInputsize; /* length of input field for host terminals */
USHORT cMti: /* count of items *
MTI rgMti (cMti) ;

} MT;

Chapter 17: Menus 221
e B S S S e s S S S A S S R R N S e

MS OS/2 version 1.1 sets the version, code-page, and input-size fields to zero,
and ignores the contents of these fields if set by an application. The cMti field
specifies the number of menu-template items that follow. Each menu-template
item describes one item in the menu. Since each menu item can require a dif-
ferent amount of storage, the following variable definition of a menu-template
item is used:

typedef struct _MTI {
USHORT afStyle;
USHORT afAttribute;
USHORT idItem:;
i1f (afStyle AND MIS_BITMAP)
CHAR szlItemString ? ;
if (afStyle AND MIS_ OWNERDRAW)
VoI
if (afStyle AND MIS_TEXT)
CHAR szItemString ?
if (aStyle AND MIS SEPARATOR)
VOID;
if (afStyle AND MIS_SUBMENU)
MT MenuTemplate;
} MTI;

The first three fields of a structure for a menu-template item specify the style,
attributes, and identifier of the item. The data that follows these fields is deter-
mined by the style of the item. The cases can be summarized as follows:

If the afStyle field is MIS_TEXT, the data that follows the idItem field is a null-
terminated string representing the menu-item text.

If the afStyle field is MIS_BITMAP, the data that follows idItem is a null-
terminated string that can represent one of three things:

B If the first byte is NULL, then no bitmap resource is defined; the application
provides a bitmap handle for the item.

B If the first byte is “#”, subsequent characters make up the decimal represen-
tation of the bitmap resource-identifier.

W If neither of the previous cases apply, the handle is set to NULL, and the
application must set it manually. .

If the afStyle field is MIS_OWNERDRAW or MIS_SEPARATOR, there is no
data following the idItem field.

If the afStyle field is MIS_SUBMENU, a complete menu-template structure for
the submenu follows the idItem field.

17.5 Using Menus in your Applications

Typically, an application that uses menus defines them in a resource-definition
file and includes them in a standard frame window. During program execution,
the application’s window procedure receives messages generated by the menu
windows in response to user input, either from the mouse or the keyboard. The
application responds to these messages by using the identifier of the menu item
that is contained in each menu message.

222 MS 0S/2 Programmer’s Reference, Vol. 1
B S e S S S e T e R S S R R R B R e R R e

The application can also load menu resources at run time and associate them
with a particular owner window. This is useful for putting menus in windows
other than the standard frame window.

The user-interface guidelines specify that a user should not be required to have
a mouse to operate an MS OS/2 application. Applications can define keyboard
equivalents to menu items to aid users without mice.

It is also suggested that all applications have a Help item in their menu bar. This
presents a standard interface for the novice user across all applications. The
Help item is defined with a particular style, attributes, and position in the menu,
as shown in the resource-definition file in Section 17.3. The Help command item
generates a WM_HELP message when chosen by the user, allowing the applica-
tion to respond appropriately. For more information on the help system, see
Chapter 29, “Help.”

Applications can change the attributes, style, and contents of menu items, and
insert and delete items at run time, to reflect changes in the command environ-
ment. An application can also add or delete items from the menu bar or sub-
menus. For example, an application might maintain a menu of the currently
available fonts in the system. This application would use Gpi calls to determine
which fonts were available, and then insert a menu item for each font into a sub-
menu. Furthermore, the application might set the “checked” attribute of the
menu item for the currently chosen font. When the user chooses a new font, the
application would remove the check-mark attribute from the previous choice and
add it to the new choice.

An application can also draw a menu item itself by setting the attribute

MIS_OWNERDRAW for the menu item. Typically, this is done by specifying

the MIS_OWNERDRAW attribute for the menu item in the resource-definition

file, but it can also be done at run time. When the application draws a menu

{)tem, it must respond to messages from the menu each time the item needs to
e drawn.

17.5.1 Including a Menu in a Standard Window

If you have defined a menu resource in a resource-definition file, you can include
the menu in a standard window. You include the menu by using the FCF_MENU
attribute flag and specifying the menu resource identifier in a call to the Win-
CreateStdWindow function, as shown in the following code fragment:

ULONG 1ControlStyle = FCF_MENU | FCF_SIZEBORDER |
FCE_TITLEBAR | FCF_ACCELTABLE;

hwndFrame = WinCreateStdWindow (HWND_DESKTOP,
WS_VISIBLE,
&lControlStyle,
szClassName,
szClassName,"
OL, NULL,
ID_MENU_RESOURCE,
&hwndClient) ;

Chapter 17: Menus 223
B O i s S e O e G S S S R G S i T e

After you make this call, MS OS/2 automatically includes the menu in the
window, drawing the menu bar across the top of the window. When the user
chooses an item from the menu, the menu posts the message to the frame win-
dow. The frame window passes any WM_COMMAND messages to the client
window. (The frame window does not pass WM_SYSCOMMAND messages to
the client window.) WM_HELP messages are posted to the focus window. The
WinDefWindowProc function passes WM_HELP messages to the parent win-
dow. If a WM_HELP message is passed to a frame window, the frame window
calls the HK_HELP hook. Your client window procedure should process these
messages to respond to the user’s actions. The details of responding to menu
selections are shown in Section 17.5.4.

17.5.2 Adding Menus to a Dialog Window

You may want to use menus in windows that were not created by using the
WinCreateStdWindow function. For these windows, you can load a menu
resource by using the WinLoadMenu function and specify the parent window for
the menu. WinLoadMenu assigns the specified menu resource to the parent win-
dow. To see the menu in the window, you must send a WM_UPDATEFRAME
message to the parent window after loading the menu resource. This strategy is
especially useful for adding menus to a window created as a dialog window, but
it can be used no matter what type of window is specified as the parent window.

17.5.3 Accessing the System Menu

Although most applications do not alter the System menu, you can obtain the
handle of the System menu by calling the WinWindowFromID function with a
frame-window handle (or dialog-window handle) and the FID_SYSMENU
identifier. Once you have the handle of the System menu, you can access the
individual menu items by using predefined constants. For example, the following
code fragment shows how to disable the Close menu item in the System menu of
a window:

HWND hwndSysMenu;
hwndSysMenu = WinWindowFromID(hwndFrame, FID_SYSMENU) ;

WinSendMsg (hwndSysMenu, MM_SETITEMATTR,
MPFROM2SHORT (SC_CLOSE, TRUE),
MPFROM2$HORT(MIA_DISABLED MIA DISABLED))

17.5.4 Responding to a User’s Menu Choice

When a user chooses a menu, item your client window procedure receives a

WM_COMMAND message with the low word of the mpI parameter equal to

the menu identifier of the selected item. Your application should use the menu

identifier to guide its response to the selection. Typically, the code in the client
- window procedure resembles the following code fragment:

case WM_COMMAND:

DoMenuCommand (hwnd, LOUSHORT (mpl)):;
return O;

224 MS 0S/2 Programmer’é Réfere’nce, Vol. 1

FEC S R et S S R R S R R e R e e s e e B e e e R A

The function that translates the menu identifier into an action typically resembles
the following code fragment:

VOID DoMenuCommand (hwnd, usItemlD)

HWND hwnd;

USHORT usItemlID;
{

/* Test the menu item. */

switch (usItemID) {
case IDM_FI_NEW:
DoNew (hwnd) ;

break;

}

The menu system sends a WM_MENUSELECT message every time the menu
selection changes. The low word of the mpl parameter contains the identifier of
the item that is changing state and the high word is a 6-bit Boolean value that
describes whether or not the item is chosen; the mp2 parameter contains the
handle of the menu.

If the Boolean value is FALSE, the item is selected but not chosen—for exam-
ple, the user may have moved the cursor or mouse pointer over the item while
the button was down. An application can use this message to display help infor-
mation at the bottom of the application window. The return value is ignored.

If the Boolean value is TRUE, the item is chosen—that is, the user pressed
ENTER or released the mouse button when an item was selected. If the applica-
tion returns FALSE, the menu does not generate a WM_COMMAND,
WM_SYSCOMMAND, or WM_HELP message, and the menu is not dismissed.

17.5.5 Using Menus with the Keyboard

MS 0OS/2 is designed to work with or without a mouse or other pointing device.
The system provides default behavior to allow a user to interact with menus
without using a mouse. The following are the keystrokes that produce this
default behavior:

Keystroke Action

ALT Toggles into and out of menu mode.

ALT, SPACEBAR Shows the System menu. , ‘

ESC Backs up one level. If a pull-down menu is

displayed, it is canceled. If no pull-down menu
is displayed, this keystroke exits from menu
mode.

LAt A SR et

Keystroke

Chapter 17: Menus 225

I S B e e e S R R R e R s R R R e Bl

Action

RIGHT

LEFT

UP or DOWN

ENTER

Alphabetic characters

Cycles to the next menu-bar item. If the
selected item is at the far-left side of the
menu bar, the menu code sends a
WM_NEXTMENU message to the frame.

The default processing by the frame is to cycle
between the application and System menus.
(An application can modify this behavior by
subclassing the frame window.) If the selected
item is in a pull-down menu, the next column
in the pull-down menu is selected or the next
menu-bar item is selected; this key may also
send or process a WM_NEXTMENU message.

Works like the RIGHT key, except in the oppo-
site direction. In pull-down menus, this key-
stroke backs up one column, except when the
currently selected item is in the far-left
column, in which case the previous pull-down
menu is selected.

Activates a pull-down menu when in the menu
bar. This keystroke selects the next or previ-
ous item when in a pull-down menu.

Activates a pull-down menu and highlights the
first item if an item has a pull-down menu
associated with it; otherwise, this keystroke
chooses the item as if the user released the -
mouse button while the item was selected.

Selects the first menu item with the specified
character as its mnemonic key. A mnemonic is
defined for a menu item by placing a tilde (7)
before the character in the menu text. If the
selected item has a pull-down menu or second-
ary menu associated with it, the menu is
displayed and the first item is highlighted; oth-
erwise, the item is chosen.

An application does not need to support this default behavior with any unusual
code. The application receives a message when a menu item is chosen by using
_ the keyboard just as if it had been chosen by using a mouse.

17.5. 6 Using Keyboard Accelerators

Applications can define accelerator tables to make user interaction with menus
more efficient. Accelerator tables are resources that associate keystrokes with
menu command items. For example, an application can define an accelerator
table resource that makes the F8 key generate a WM_COMMAND message that
is identical to the message generated when the user chooses the Quit item from
the File menu. Accelerator tables provide a shortcut for proficient users that
allows them to work more quickly with the application.

226 MS 0S/2 Programmer’s Reference, Vol. 1 _,
T e R Y R A e R el SR AR R e NE b e e B e S e s B B e R R DA SRl Bt

A sample resource-definition file for an accelerator table is shown in the follow-
ing code fragment:
ACCELTABLE ID_ACCEL_RESOURCE
BEGIN
VK_F8, IDM_FILE_QUIT, VIRTUALKEY

VK_F3, IDM_SEARCH_FIND, VIRTUALKEY
VK_F1, NULL, VIRTUALKEY, HELP

The resource-definition file associates keystrokes with menu-item command
identifiers. Notice that the definition uses virtual-keystroke definitions that are
independent of the particular scan codes generated by different keyboard
hardware.

In order to use an accelerator table with a window, the window should be
created with the FS_ACCELTABLE style, and the resource identifier of the
accelerator table must be the same as the identifier of the window’s menu. Alter-
natively, you can associate an accelerator table with a frame window after the
window is created, by calling the WinSetAccelTable function.

For more information on keybbard accelerators, see Chapter 18, “Accelerator
Tables.”

17.5.7 Help Item in the Menu Bar

The user-interface guidelines suggest that all applications have a Help menu item
at the far-right end of the menu bar. The item should read “F1=Help”, have an
identifier of zero, and have the MIS_BUTTONSEPARATOR or MIS_HELP
item style. The Help menu item should be the last item in the menu template,

so that it is displayed at the far-right end of the menu bar.

- The user can use either a mouse or the F1 key to select the Help menu item, if
the application uses the system default accelerator table. (For more information
on the system default accelerator table, see Section 17.5.6.) The Help item gen-
erates a WM_HELP message instead of a WM_COMMAND message.

17.5.8 Setting and Querying Menu-ltem Attributes

Menu-item attributes are represented in the afAttribute field of the MENUITEM
data structure. Typically, attributes are set in the resource-definition file of

the menu and changed at run time as required. Applications can use the
MM_SETITEMATTR and MM_QUERYITEMATTR messages to set and query
attributes for a particular menu item. One of the most common uses of these
messages is to check and uncheck menu items to let the user know what option
is currently selected. For example, if you have a menu item that should toggle
between checked and unchecked each time it is chosen, you could use the fol-
lowing code to change the checked attribute. You first send an
MM_QUERYITEMATTR message to the menu item to obtain its current
checked attribute, then use the exclusive OR operator to toggle the state,

and then you send the new attribute-state back to the item by using an
MM_SETITEMATTR message.

Chapter 17: Menus 227
B T R R B e S B B R B R S P A B R e e B

usAttrib = (SHORT) WinSendMsg(hwndMenu, /* submenu window */
MM_QUERYITEMATIR, * message */
MPFROMSHORT (itemlID), /* identifier of item */
MPFROMSHORT (MIA_CHECKED)) ; /* attribute mask */
usAttrib “= MIA_CHECKED; /* XOR to toggle checked attribute */
WinSendMsg (hwndMenu, /* submenu window */
MM_SETITEMATTR, /* message */
MPFROMSHORT (itemID) , * jdentifier of item */

MPFROM2SHORT (MIA_CHECKED, usAttrib)); /* attribute mask, value */

There are two methods for manipulating individual menu items in submenus.
The first is to send MM_SETITEMATTR and MM_QUERYITEMATTR mes-
sages to the menu-bar menu, specifying the identifier of the item and setting a
flag so that the message searches all submenus for the item. The handle of the
menu-bar window can be obtained by calling the WinWindowFromID function
with the handle of the frame window and the FID_MENU frame-control iden-
tifier.

The second method, which is more efficient if you want to work with more than
one item in a submenu or set the same item several times, involves two steps:

1 Sending an MM_QUERYITEM message to the menu-bar window with the iden-
tifier of the submenu. The updated MENUITEM structure contains the window
handle of the submenu.

2 Send an MM_QUERYITEMATTR (or MM_SETITEMATTR) message to the
submenu window, specifying the identifier of the item in the submenu.

17.5.9 Setting and Querying Menu-ltem Contents

Applications can change the contents of a menu item dynamically by sending
messages to the menu. For MIS_TEXT items, an MM_SETITEMTEXT message
sets the text. The MM_QUERYITEMTEXT message queries the item’s text.

For nontext menu items, the hitem field of the MENUITEM data structure
typically contains a handle of a display object, such as a bitmap handle for
MIS_BITMAP menu items. You can change the hltem field for a menu item by
sending an MM_QUERYITEM message to the menu to fill in the MENUITEM
structure, changing the relevant fields, and then sending the structure back to the
menu with an MM_SETITEM message.

17.5.10 Adding and Deleting Menu Items

An application can add and delete items from its menus dynamically by sending
MM_INSERTITEM and MM_DELETEITEM messages to the menu window.
Any item, including those in submenus, can be deleted by sending a message to
the menu-bar window. Messages to insert items in submenus must be sent to the
submenu’s pull-down menu window (rather than to the menu-bar window).

The handle of the pull-down menu window can be obtained by sending an
MM_QUERYITEM message to the menu-bar window and specifying the

228

LG i b L e g Rl e e

MS OS/2 Programmer’s Reference, Vol. 1

e R s A B S R R S R I BN

identifier of the submenu item for the submenu, as shown in the following code
fragment:

/* IDM_MYMENUID is the ID of the submenu containing the item. */
MENUITEM mi;
hwndActionBar = WinWindowFromID (hwndFrame, FID_MENU):

WinSendMsg (hwndActionBar, /* handle of menu bar */
MM_QUERYITEM, /* message */
MPFROM2SHORT (IDM_MYMENUID, TRUE), /* submenu identifier */
(MPARAM) &mi); /* pointer to MENUITEM */

hwndpulldown = mi.hwndSubMenu; /* handle to submenu */

Once the application has the handle of the pull-down menu window, it can insert
an item by filling in a MENUITEM structure and sending an MM_INSERTITEM
message to the pull-down menu. For text-menu items, the application must send

a pointer to the text string as well as to the MENUITEM structure.

mi.iPosition = MIT_END;
mi.afStyle = MIS_TEXT;
mi.afAttribute = O;

mi.id = IDM_MYMENU_FIRST;
mi.hwndSubMenu = NULL:
mi.hItem = NULL;

WinSendMsg (hwndpulldown, MM_INSERTITEM, (PMENUITEM) &mi,
(MPARAM) szNewItemString):

To delete an item, the application sends an MM_DELETEITEM message to the
menu-bar window, specifying the identifier of the item to delete. For example, to
clear all the items following IDM_MYMENU_FIRST in a submenu in which the
items are numbered sequentially, you would use the following code fragment:

/* Clear all the items in MYMENU. */

hwndActionBar = WinWindowFromID (hwndFrame, FID_MENU);

usItemNum = IDM_MYMENU_FIRST;

while (WinSendMsg(hwndActionBar, MM_DELETEITEM,
MPFROM2SHORT (usItemNum++, TRUE), (MPARAM) OL));

Adding a complete submenu to the menu bar is a more complicated procedure
than shown in the previous examples. There are two strategies. The recom-
mended technique is to define all possible submenus in your resource-definition
file and then selectively remove and insert the submenus as needed as your pro-
gram runs.

For example, assume that your program has a submenu that you want to be
displayed only when a particular application tool is in use. You define the sub-
menu as part of the main menu resource in your resource-definition file, so that
the system reads in the resource menu template and creates the submenu win-
dow along with the rest of the menu. You can then remove the submenu from
the menu bar, saving the title of the submenu and the MENUITEM data struc-
ture that defines the submenu, as shown in the following code fragment:

Chapter 17: Menus 229

T i R e S S e R e R R B R e B

HWND hwndActionBar;
MENUITEM mi;
CHAR szMenuTitle [MAX_STRINGSIZE]:

/* Remove a submenu so that you can replace it later. */
/* Obtain the handle of a menu menu. */

hwndActionBar = WinWindowFromID (WinQueryWindow (hwnd, QW_PARENT, FALSE),
FID_MENU) ;

/* Obtain information on the item to remove. */

WinSendMsg (hwndActionBar, MM_QUERYITEM,
MPFROM2SHORT (IDM_MENUID, TRUE), /* TRUE to search submenus */
&mi) ;

/* Save the text for the submenu item. */

WinSendMsg (hwndActionBar, MM_QUERYITEMTEXT,
MPFROM2SHORT (IDM_EONT, MAX_STRINGSIZE),
szMenuTitle) ;

/* Remove the item, but retain mi and szMenuTitle. */

WinSendMsg (hwndMenu, MM_REMOVEITEM,
MPFROM2SHORT (IDM_FONT, TRUE), NULL);

It is important to use the MM_REMOVEITEM message to remove the item,
rather than the MM_DELETEITEM message; deleting the item destroys the sub-
menu window but removing it does not destroy the submenu. The submenu
should remain intact so that you can insert it later.

To reinsert the submenu, send an MM_INSERTITEM message to the menu
bar, passing the MENUITEM structure and menu title that you saved when you
removed the item. The following code fragment shows how to insert a submenu
that was removed by using the previous code example:

/* Put the submenu back in and obtain the handle of the menu bar. */

hwndMenu = WinWindowFromID (WinQueryWindow(hwnd, QW_PARENT, FALSE),
FID_MENU) ;

/* Use the information that you saved when you removed the menu. */

WinSendMsg (hwndMenu, MM_INSERTITEM, &mi, szMenuTitle);

The other technique that you can use to insert a submenu in the menu bar is to
build up a data structure as a menu template in memory and use that template
and the WinCreateWindow function to create a submenu window. The result-
ing submenu window handle is then placed in the hwndSubMenu field of a
MENUITEM structure and the menu item is sent to the menu bar with an
MM_INSERTITEM message.

You also can create an empty submenu window by using the WinCreateWindow
function. Pass NULL for the pCtiData and pPresParams parameters, instead of
building the menu template in memory. Then insert a new menu item into the
menu bar by using the MM_INSERTITEM message, setting the style
MIS_SUBMENU, and putting the window handle of the created menu into the
hwndSubMenu parameter. Then use the MM_INSERTITEM message to insert
the items into the new pull-down menu.

230 MS 0S/2 Programmer’s Reference, Vol. 1
T S R D R S SR B S B S

17.5.11 Owner-Drawn Menu Items

Applications can customize the appearance of an individual menu item by
setting the MIS_OWNERDRAW style bit for the item. MS OS/2 sends two
different messages to an application that includes owner-drawn menu jtems:
WM_MEASUREITEM and WM_DRAWITEM. Both messages include a
pointer to an OWNERITEM data structure, as shown in the following code frag-

ment:

typedef struct _OWNERITEM {
HWND hwnd; /* handle of menu window */
HPS hps; /* presentation space in which to draw */
USHORT fsState; /* requested style */
USHORT fsAttribute; /* requested attribute */
USHORT fsState0Old; /* current style */
USHORT fsAttributeOld; /* current attribute */
RECTL rclltem; /* bounding rectangle of item */
SHORT idItem; /* item identifier */
ULONG hItem; /* handle of item-display object %/

} OWNERITEM:

The WM_MEASUREITEM message is sent only once for each owner-drawn
item, when the menu is initialized. The message is sent to the menu’s owner
window (typically, a frame window), which forwards the message to its client
window. Typically, the client window procedure processes the message
WM_MEASUREITEM by filling in the yTop and xRight fields of the RECTL
structure specified by the rclltem field of this OWNERITEM structure; this
specifies the size of the rectangle needed to enclose the item when it is drawn.
The code fragment shown below responds to a WM_MEASUREITEM message.
If your owner-drawn menu contains text, you should compute the size of the
items from the height of the system font or some other system characteristic.
case WM_MEASUREITEM:

(POWNERITEM) mp2->rcllitem.xRight = 26;

(POWNERITEM) mp2->rcllItem.yTop = 10;
return ((MRESULT) O);

If a menu item has the MIS_LOWNERDRAW style, the owner window receives a
WM_DRAWITEM message every time the menu item needs to be drawn. You
should process this message by using the hps and rclltem fields of the OWNER-
ITEM structure to draw the item. There are two situations in which the owner
window receives a WM_DRAWITEM message:

B The item needs to be completely redrawn.
8 The item needs to highlighted or unhighlighted.

You can choose to handle one or both of these situations. Typically, you handle
the drawing of the item. The system default behavior of inverting the item rect-
angle to show that the item is selected is often acceptable, however, so you may
not want to do this yourself.

The two situations in which a WM_DRAWITEM message is received are
detected by comparing the values of the fsAttribute and fsAttributeOld fields of
the OWNERITEM structure that is sent as part of the message. If the two fields
are the same, you should draw the item. When drawing the item, you can also
check the attributes of the item to see if the item has the MIA_CHECKED,
MIA_FRAMED, or MIA_DISABLED attribute. You should draw the item
according to the settings of the attribute bits.

Chapter 17: Menus 231

T S S B S R S S e e B R S s R e S B AR

For example, when the checked attribute of a owner-drawn menu item changes,
the system sends a WM_DRAWITEM message to the item so that it can redraw
itself and either draw or remove the check mark. If you want the system default
check mark, simply draw the item and leave the fsAttribute and fsAttributeOld
fields unchanged the system will draw the check mark, if necessary. If you draw
the check mark yourself, clear the MIA_CHECKED bit in both fsAttribute and
fsAttributeOld, so that the system does not attempt to draw a check mark.

If the fsAttribute and fsAttributeOld fields of the OWNERITEM structure in a
WM_DRAWITEM message are not equal, the highlight showing that an item
is selected needs to change. The MIA_HILITED bit of the fsAttribute field is
set if the item needs to be highlighted and is not set if the item needs to be
unhighlighted. If you do not wish to provide your own, you should ignore any
WM_DRAWITEM message in which fsAttribute and fsAttributeOld are not
equal. If you do not alter these two fields, the system performs its default
highlighting operation, which is to invert the bits within the item rectangle. If,
however, you wish to provide your own visual cue that an item is selected, you
should respond to a WM_DRAWITEM message in which fsAttribute and
fsAttributeOld are not equal by providing the cue and then clearing the
MIA_HILITED bit of both fsAttribute and fsAttributeOld before returning
from the message.

Likewise, the MIA_CHECKED and MIA_FRAMED blts of the fsAttribute and
fsAttributeOld fields can either be used to perform the corresponding action or
can be passed on unchanged so that the system performs the action.

The following code fragment shows how to respond to a WM_DRAWITEM
message when you want to draw the item and also be responsible for its
highlighted/unhighlighted state:

case WM_DRAWITEM:

POWNERITEM poi;
RECTL rcl;

poi = (POWNERITEM) mp2;

*

* If the new attribute equals the old attribute,

* redraw the entire item.
*/

if (poi->fsAttribute == poi->fsAttributeOld) {

/*
* Draw the item in poi->hps and poi->rclitem,

* and check the attributes for check marks. If you

* produce your own check marks, use this line of code:

* poi->fsAttributeOld = (poi->fsAttribute &= ~“MIA_CHECKED;
*

/* Else the item should be highlighted or unhighlighted. */

} else if ((poi->fsAttribute & MIA_HILITED) !=
(poi->fsAttributeOld & MIA_HILITED)) {

*

* Set bits the same so that the menu system does not make
*/the item highlighted or unhighlighted.
*

poi->fsAttributeOld = (poi->fsAttribute &= “MIA_HILITED)

}
return TRUE; /* TRUE means item is drawn */

232

MS 0S/2 Programmer’s Reference, Vol. 1
G e b] S R T e e

R N B SRR R R

S R

17.6 Summary

This section describes the styles, attributes, functions, and messages associated
with menus.

17.6.1 Menu-Item Styles

Menu item styles determine what kind of data a menu contains (text, bitmap,
etc.), how the menu is displayed (whether or not it is drawn by the owner),

and what kind of message it generates when chosen (WM_COMMAND,
WM_SYSCOMMAND, or WM_HELP). Menu-item styles are set when the
menu item is created and are not typically changed at run time. Menu item attri-
butes, described in the next section, are used for the aspects of a menu item that
change frequently while a program is running.

MIS_BITMAP The menu-display object is a bitmap.
MIS_BREAK The item begins a new row or column.

MIS_BREAKSEPARATOR Same as MIS_BREAK, except that it draws a
separator between rows or columns.

MIS_BUTTONSEPARATOR The item cannot be selected by using the cursor
keys, but it can be selected by using the mouse or the appropriate accelerator
key. A menu bar can have zero, one, or two button-separator items. They are
always placed at the right side of the menu bar or at the bottom of a pull-down
menu.

MIS_HELP A command item with this style notifies its owner window
_that it has been chosen by using a WM_HELP message rather than a
WM_COMMAND message.

MIS_OWNERDRAW The item is drawn by the owner window. The menu
sends WM_DRAWITEM and WM_MEASUREITEM messages to the owner
window to draw the item and specify its size.

MIS_SEPARATOR This item is a horizontal dividing line in a pull-down
menu. It cannot be checked, disabled, or selected.

MIS_STATIC The item is for information only. It cannot be selected by using
the mouse or keyboard.

MIS_SUBMENU The item is a submenu item. When the user selects a sub-
menu item, a pull-down menu window is displayed from which the user can
choose a command item.

MIS_SYSCOMMAND A command item with this style notifies its owner win-
dow that it has been chosen by using a WM_SYSCOMMAND message, rather
than a WM_COMMAND message.

Chapter 17: Menus 233
R e o B R N R S R R TS S R S e SR R e iR R el

MIS_TEXT The menu-display object is a text string. This is the default menu-
item style.

The following menu-item styles are mutually exclusive; they may not be specified
in combination with each other:

MIS_BITMAP
MIS_OWNERITEM
MIS_SEPARATOR
MIS_TEXT

Likewise, the following menu-item styles are mutually exclusive:

MIS_HELP
MIS_SYSCOMMAND

17.6.2 Menu-ltem Attributes

Menu-item attributes specify changing display aspects of a menu item, such as its
highlighted, and checked state. Attributes are set when the item is created and
typically can change frequently as the program executes and the user interacts
with the menus.

MIA_CHECKED Set to produce a check mark to the left of the item.

MIA_ENABLED Set when the item can be selected by the user. If not set, the
item is drawn grayed and cannot be selected by the user. An application should
disable a menu item when choosing it would be inappropriate—for example, a
Save menu item should be disabled when there have been no changes since the
last save operation.

MIA_FRAMED Set when a submenu item in the menu bar is framed by verti-
cal lines to the left and right when its pull-down menu is displayed. This is typi-
cally handled by the system; an application does not usually have to set this
attribute.

MIA_HILITED Set only when the item is currently selected. The application
rarely sets this attribute directly, relying instead on the default processing of user
input to set the highlighted state of an item.

17.6.3 Menu Functions

Most applications will not use the menu functions listed below, relying instead
on the automatic association of menus and frame windows provided by menu
resources and the WinCreateStdWindow function. These menu functions are
useful if you want to use menus in a nonstandard way.

WinCreateMenu Creates a menu window from a menu-template data structure,
assigning ownership to the specified window. This function is like the WinLoad-
Menu function, except that the menu data is stored as a menu template in
memory, rather than in a resource-definition file.

WinLoadMenu Loads a menu resource from the specified resource-definition
file (NULL for the current application’s resource file) and assigns ownership

to the specified window. The menu is owned by the specified window and is
displayed when the owner window receives a WM_UPDATEFRAME message.

234 MS 0S/2 Programmer’s Reference,‘ Vol. 1
e B B S S A L R S R A R S R S

17.6.4 Messages Sent from a Menu to an Owner Window

These messages are sent from a menu to an owner. If the owner window is a
standard frame window, the messages are passed to the client window’s window
procedure. All applications that use menus must respond to WM_COMMAND
messages. Other messages in this section are appropriate for applications that
use the more advanced features of menus.

WM_COMMAND Notifies the owner window when the user chooses a menu
item. Applications must respond to this message to use menus.

WM_SYSCOMMAND Notifies the owner window when the user chooses a
System menu item; this is equal to the WM_COMMAND message except that
the menu item has the MIS_SYSCOMMAND style. The frame window
usually does not pass this message to the client window. To process a
WM_SYSCOMMAND message, the application must subclass the frame
window.

WM_HELP Notifies the owner window when the user chooses a Help menu
item; equal to the WM_COMMAND message except that the menu item has the
MIS_HELP style. This message is usually generated by the “F1=Help” command
item in the menu bar. Applications should respond to this message with a help
dialog-box or by using the help-hook facility.

WM_INITMENU Notifies the owner window that the menu or submenu is
about to be displayed. This message allows an application to change the state of
a menu before the menu is displayed.

WM_MENUSELECT Notifies the owner window each time a menu item is
selected. Applications do not need to handle this message to obtain the
default menu behavior. For example, an application receives multiple
WM_MENUSELECT messages when a user moves the mouse pointer up .and
down in a menu while the mouse button is pressed. This message allows an
application to perform some other action coincident with the selection of a
menu item, such as displaying a context-appropriate message in another part of
the window. This message is also sent when the user actually chooses a menu
item. If the application returns FALSE in response to this message when the
user chooses a menu item, the command associated with the menu item is not
posted, and the menu is not dismissed.

WM_MENUEND Notifies the owner window when exiting from menu mode.

WM_DRAWITEM Notifies the owner window when an item with the style
MIA_OWNERDRAW needs to be drawn. Applications with owner-drawn menu
items must respond to this message. The message contains a pointer to a data
structure containing a presentation space handle and a rectangle in which to
draw the item.

WM_MEASUREITEM Allows the owner window to specify the dimensions
of an owner-drawn menu item. Applications with owner-drawn menu items must
respond to this message.

WM_QUERYFOCUSCHAIN Temporarily sets the focus to the menu bar
while in menu mode. This message is routed to the window from which the
menu took the focus.

Chapter 17: Menus 235
e A A B s e R e s SRS R S R R s e R R

WM_FOCUSCHANGE Exits from menu mode, if the menu is losing the
focus. If the exit operation fails, this message sets the state and is passed to
the window that had the focus before menu mode was started.

WM_SETFOCUS Posts an MM_STARTMENUMODE message to initiate
menu processing, if receiving the focus. If losing the focus, call the WinDef-
WindowProc function.

WM_QUERYDLGCODE Returns DLGC_MENU or DLGC_STATIC to indi-
cate that this is a menu control and that the menu should not receive the focus
when the user presses the DIRECTION keys or the TAB key.

WM_PAINT Draws the menu.
WM_CREATE Creates a list of items from the menu-template structure.

WM_DESTROY Destroys the menu and all its submenus and any display
objects associated with the menu items.

WM_ENABLE Invalidates the window rectangle, causing it to be redrawn.
WM_ADJUSTWINDOWPOS Reformats the contents of the menu window.

WM_CONTROLHEAP Notifies the owner of a menu that a control needs the
handle of a heap from which memory will be allocated.

WM_CONTROLPOINTER Notifies the owner of a menu that the mouse
pointer is over the window.

WM_BUTTON1DOWN Begins processing a user’s menu choice.
WM_MOUSEMOVE Sets the default mouse pointer (arrow cursor).
WM_BUTTON2DOWN Activates the menu window.
WM_BUTTON3DOWN Activates the menu window.

WM_QUERYCONVERTPOS Determines whether or not to begin double-
byte character set (Kanji) conversion. Menus in MS OS/2 version 1.1 return
QCP_NOCONVERT, which indicates that the menu code does not set up

the rectangle pointed to by the mpl parameter with the cursor bounding rect-
angle and that conversion should not be performed. Edit controls return
QCP_CONVERT and fill in a RECTL structure with the cursor boundaries.
(Programs can use this rectangle to position a Kanji window next to the cursor.)

17.6.5 Messages Sent to a Menu

The messages in this section are sent to menus, either by the system or by appli-
cations. Many of these messages are for manipulating the data that represents
the state of menu items. Applications will find these messages useful for dynami-
cally adjusting menus to reflect the current processing environment. Other mes-
sages in this section control the display of menu items during menu selection;
these typically are sent automatically by the system, although an application can
send them to control its menus more directly and override the default behavior.

MM_QUERYITEMCOUNT Returns the number of items in the menu. For the
menu bar, this is the number of items in the menu bar. For a submenu, this is
the number of items in the submenu.

236

MS 0S/2 Programmer’s Reference, Vol. 1

B B L R B S R R i R S R S e R e S R U R AT T g

MM_STARTMENUMODE Starts menu-selection processing, including mouse
tracking for menu-item selection.

MM_ENDMENUMODE Exits from menu mode and hides any active sub-
menus.

MM_INSERTITEM Insert the specified menu item in the menu.

MM_DELETEITEM Removes the specified item from the menu and destroys
any resources and data structures for that item (such as display objects or sub-
menus).

MM_REMOVEITEM Same as the MM_DELETEITEM message, except that
it does not destroy associated submenus or display objects.

MM_SELECTITEM Selects the specified item; and if the fDismiss flag is set,
posts a WM_COMMAND, WM_SYSCOMMAND, or WM_HELP message.

MM_QUERYSELITEMID Returns the identifier of the currently selected
item.

MM_QUERYITEM Copies information about a specified item into a caller-
supplied MENUITEM data structure.

MM_QUERYITEMTEXT Copies the text for a specified menu item into a
caller-supplied buffer.

MM_QUERYITEMTEXTLENGTH Returas the length of the text, not includ-
ing the NULL terminator, for a specified item.

MM_SETITEMHANDLE Sets the menu-ltem handle for a nontext item and
forces the item to be redrawn.

MM_SETITEMTEXT Sets the text for a menu item and forces the item to be
redrawn.

MML_ISITEMVALID Returns TRUE if item can be selected.

MM_SETITEM Sets the state of an item, based on the data in a MENUITEM
structure, and forces the item to be redrawn.

MM_ITEMPOSITIONFROMID Returns the position of a menu item in a
menu window, searching submenus if requested.

MM_ITEMIDFROMPOSITION Returns the identifier of the menu item at the
specified position in the menu window.

MM_QUERYITEMATTR Returns the current attributes of a menu item.
MM_SETITEMATTR Sets the specified attributes of a menu item.

Er e e s e S R e Lottt e

Accelerator Tables

18.1 IntroducCtion.....cceieeeeeininreieeieeniireimoncrierncnenraraceensenns 239
18.2 About Accelerator Tablesc.cccevuverinirniicininencenennen.. 239
18.3 Accelerator Tables in a Resource-Definition File............ 239
18.4 Accelerator-Table Data Structurescecevevvniaieninnenn. 240
18.5 Using an Accelerator Table in an Application............... 241
18.5.1 Including an Accelerator Table in a Frame Window... 241
18.5.2 Modifying an Accelerator Table.......cccevevnineenennnnen 242
18.6 SUIMMATY .cciviniiiiiiiinieieniiirenrnereetierresieesenenensasnssaces 242
18.6.1 TFUNCLIONS .evieiirniiiereneecnersenesancansesnsessnsenaessascsns 242
18.6.2 Accelerator-Item Stylescoveiviiiieiniiiiiiiiininnnn, 243

18.6.3 MeESSAZES cuuuruinrnrnrniornernsniaceracnsnsasstossnsescasesasns 243

Chapter 18: Accelerator Tables 239
e e R B T S R R S N e R g e

18.1 Introduction

This chapter describes how to use accelerator tables in your applications. You
should also be familiar with the following topics:

B Standard user-interface guidelines

Resources and using the MS OS/2 Resource Compiler (re)

Menus '

Creating standard frame windows

Window messages and the message queue

18.2 About Accelerator Tables

Accelerators are keystrokes that generate command messages for an application;
they elicit the same behavior as choosing a menu item. Menus provide an easy
way to learn an application’s command set, but accelerators provide quicker
access to those commands. '

Accelerators filter keyboard input. Accelerator keystrokes are translated into
command messages before they reach the application. When an accelerator
is used, the application receives a command message rather than a keyboard
message.

Accelerators function differently from the usual keyboard-to-menu interface. By
default, a user can use the ALT key to access submenus and the arrow keys to
move along the menu bar. Accelerators provide single keystrokes that generate
command messages without the visual effects of pulling down menus or stepping
from one item to another.

Like menu items, accelerators can generate WM_COMMAND, WM_HELP,
and WM_SYSCOMMAND messages, depending on the setting of the accel-
erator’s style bits. Although accelerators are normally used to generate com-
mands that already exist as menu items, they can also send commands that have
no equivalent menu items.

An accelerator table contains an array of accelerators. Accelerator tables exist
at two levels within MS OS/2. MS OS/2 maintains a single accelerator table for
the system queue and individual accelerator tables for application windows.
Accelerators in the system queue apply to all applications—for example, the F1
key always generates a WM_HELP message. Having accelerators for individual
application windows ensures that an application can define its own accelerators
without interfering with other applications. An accelerator for an application
window overrides the accelerator in the system queue. An application can mod-
ify both its own accelerator table and the system accelerator table.

18.3 Accelerator Tables in a Resource-Definition File

An application that uses accelerators typically creates an accelerator table
resource-definition file containing its accelerators and associates that resource
with a standard frame window when the window is created.

240 MS 0S/2 Programmer’s Reference, Vol. 1
B i R S R R G e

The resource-definition file of an accelerator table is a list of accelerator items.
Each item defines the keystroke that triggers the accelerator, the command that
the accelerator generates, and the accelerator’s style. The style bits specify
whether the keystroke is a virtual key, a character, or a scan code, and whether
the message that is generated is WM_COMMAND, WM_SYSCOMMAND, or
WM_HELP. (WM_COMMAND is the default message.)

A resource-definition file for an accelerator table is shown in the following code

fragment:

ACCELTABLE ID_ACCEL_RESOURCE

BEGIN
VK_ESC, IDM_ED_UNDO, VIRTUALKEY, SHIFT
VK_DELETE, IDM_ED_CUT, VIRTUALKEY
VK_F2, IDM_ED_COPY, VIRTUALKEY

VK_INSERT, IDM_ED_PASTE, VIRTUALKEY
END

This accelerator table has four accelerator items. The first one is triggered when
the user presses SHIFT+ESC; it sends a WM_COMMAND message (the default)
just as if the IDM_ED_UNDOQO menu item had been chosen.

The accelerator table resource-definition file has a resource-identification number
that is usually the same as the identifier of the application’s menu resource; this
allows the accelerator table to be associated with a standard frame window when
the frame window is created. You can also define accelerator-table resources
with other identification numbers and associate them with windows after the win-
dows are created.

18.4 Accelerator-Table Data Structures

Applications that manipulate accelerator tables can refer to them with a 32-bit
handle (HACCEL). Using this handle allows an application to make most API
function calls for accelerators without needing to account for the internal struc-
tures that define the accelerator table. To use accelerator tables in the default
manner, it is sufficient to define the table in the resource-definition file and asso-
ciate it with a standard frame window when creating the window. When an appli-
cation needs to dynamically create or change an accelerator table, it must use
the ACCEL and ACCELTABLE data structures.

An accelerator table is made up of individual accelerator items. Each item is
represented by an ACCEL data structure that defines the accelerator’s style, key-
stroke, and command identifier. The ACCEL structure has the following form:
typedef struct _ACCEL {

USHORT fs;

USHORT key:

USHORT cmd;
} ACCEL;

Typically, an application defines the aspects of the accelerator in the resource-
_definition file for the accelerator, but the data structure can be built in memory
at run time, if necessary.

Chapter 18: Accelerator Tables 241
HHA et e TR SR e e e e P L AR

oS R L R e e

&

St EE A

An accelerator table is made up of one or more accelerator items and informa-
tion that specifies the number of accelerator items in the table and the code page
used for the keystrokes in the accelerator items. The ACCELTABLE structure
has the following form:

typedef struct _ACCELTABLE {
SHORT cAccel;
USHORT codepage;
ACCEL aaccel[1l];

} ACCELTABLE;

Notice that the array of accelerator items is defined as having only one member.
Applications that use accelerator-table data structures directly must allocate
sufficient memory to hold all the items in the table.

18.5 Using an Accelerator Table in an Application

An application can automatically load an accelerator table resource-definition
file when creating a standard frame window, or it can load the resource indepen-
dently and associate it with a window or with the entire system.

An application can set and query the accelerator tables for a specific window
or for the entire system. For example, an application could query the system
accelerator table, copy it, modify the copied accelerator-table data structures,
and then use the modified copy to set the system accelerator table. An applica-
tion that does this should maintain the original accelerator table and restore it
when the application terminates. An application can also modify its window’s
accelerator table at run time to respond more appropriately to the current
environment.

18.5.1 Including an Accelerator Table in a Frame Window

An application can add an accelerator table to a frame window either by using
the WinSetAccelTable function or by defining an accelerator-table resource and
creating a frame window with the FCF_ACCELTABLE frame style. The second
method is shown in the following code fragment:

ULONG 1lControlStyle = FCF_MENU | FCF_SIZEBORDER
| FCE_TITLEBAR | FCF_ACCELTABLE;

hwndFrame = WinCreateStdWindow (HWND_DESKTOP, WS_VISIBLE,
&l1ControlStyle, szClassName, szTitle, OL, NULL, ID_MENU_RESOURCE,
&hwndClient) ;

Note that if you set the IControlStyle parameter to FCF_STANDARD you must
define an accelerator-table resource, because FCF_STANDARD includes the
FCF_ACCELTABLE flag.

If the window being created also has a menu, the menu resource and the accel-
erator resource must have the same resource identifier; this is because the Win-
CreateStdWindow function has only one input parameter to specify the resource
ID of menus, accelerator tables, and icons. If an application creates a resource-
definition file for the accelerator table and then opens a standard frame window,
as shown in the preceding example, the accelerator table is automatically
installed in the window’s input queue and keyboard events are translated during

242 MS 0S/2 Programmer’s Reference, Vol. 1
T B B B e e S M I R N R S S

normal events-processing. The application responds to WM_COMMAND,
WM_SYSCOMMAND, and WM_HELP messages; it does not matter whether
they come from a menu or from an accelerator.

An application can also add an accelerator table to a window by calling the Win-
SetAccelTable function with an accelerator-table handle and a frame-window
handle. The application can call either the WinLoadAccelTable function to
retrieve an accelerator table from a resource file or the WinCreateAccelTable
function to create an accelerator table from an accelerator-table data structure
in memory.

18.5.2 Modifying an Accelerator Table

An application can modify an accelerator table, either for its own windows or
for the system, by retrieving the handle of the accelerator table, using the handle
to copy the accelerator-table data to an application-supplied buffer, changing the
data in the buffer, and then using the data in the buffer to create a new accelera-
tor table. The application can then use the new accelerator-table handle to set
the accelerator table, either for a window or for the system. This process is out-
lined in the following list:

1 Call the WinQueryAccelTable function to retrieve an accelerator-table handle.

Call the WinCopyAccelTable function with a null buffer handle to determine
how many bytes are in the table.

3 Allocate sufficient memory for the accelerator-table data.
4 Call the WinCopyAccelTable function with a pointer to the allocated memory:

5 Modify the data in the buffer (assuming it has the form of an ACCELTABLE
data structure).

6 Call the WinCreateAccelTable function, passing a pointer to the buffer with the
modified accelerator-table data.

7 Call the WinSetAccelTable function with the handle returned by the Win-
CreateAccelTable function.

18.6 Summary

This section summarizes the functions, styles, and messages related to accelera-
tor tables.

18.6.1 Functions

The following functions allow your application to use accelerator tables:

WinCopyAccelTable Copies the specified accelerator table to an application-
provided ACCELTABLE data structure.

WinCreateAccelTable Creates an accelerator table using an ACCELTABLE
data structure. This is similar to the WinLoadAccelTable function except that
this function does not use resources.

WinDestroyAccelTable Destroys the specified accelerator table.

Chapter 18: Accelerator Tables 243
e R R SRR P e e T

WinLoadAccelTable Loads a specified accelerator table from a specified
dynamic-link module (the module handle is NULL for the current application)
and returns a handle of the accelerator table.

WinQueryAccelTable Returns the accelerator-table handle for the specified
window, or for the system if the window handle is NULL.

WinSetAccelTable Sets the accelerator table for the specified window, or for
the system if the window handle is NULL. WinSetAccelTable will remove an
existing accelerator table if the accelerator-table handle is NULL.

WinTranslateAccel Translates a WM_CHAR message into a
WM_COMMAND, WM_SYSCOMMAND, or WM_HELP message by using the
specified accelerator table. This function is normally called automatically by the
WinGetMsg or WinPeekMsg function when a WM_CHAR message is received.

18.6.2 Accelerator-ltem Styles

The following accelerator-item styles are specified in the fs field of the ACCEL
structure:

AF_ALT Means the ALT key must be held down when the key is pressed.

AF_CHAR Means the keystroke is a translated character, using the code page
for the accelerator table. This is the default style.

AF_CONTROL Means the CTRL key must be held down when the key is
pressed.

AF_HELP Means the accelerator generates a WM_HELP message instead of a
WM_COMMAND message.

AF_LONEKEY Means no other key is pressed while the key is down. This
style is typically used with the ALT key to specify that simply pressing and releas-
ing the ALT key triggers the accelerator.

AF_SCANCODE Means the keystroke is an untranslated scan code from the
keyboard.

AF_SHIFT Means the SHIFT key must be held down when the key is pressed.

AF_SYSCOMMAND Means a WM_SYSCOMMAND message is generated by
the accelerator, instead of a WM_COMMAND message.

AF_VIRTUALKEY Means the keystroke is a virtual key—for example, the F1
function key.

18.6.3 Messages
The following messages are used in the management of accelerator tables:

WM_QUERYACCELTABLE Sent to a frame window by the WinQuery-
AccelTable function.

WM_SETACCELTABLE Sent to a frame window by the WinSetAccelTable
function.

WM_TRANSLATEACCEL Sent to a frame window by the WinTranslate-
Accel function.

b R A R i S R e

Dialog Windows

19.1
19.2

19.3

19.4
19.5

19.6

Introduction.....ccecevveiiiiniiniiieiieiiin 247
About Dialog Windowsccveeeiiiiirineienenriieinenenenns ceeen 247
19.2.1 Modal and Modeless Dialog Windows 247
19.2.2 Dialog Items...ccccveiierniierairareiionereeenenaseesnecncnenns 247
19.2.3 Dialog-Control Groupscceeuverirerarnrnrararasecenenes 248
19.2.4 Message BOXeSecvuiiniiiiniuiinnieiieiiininieneianenne. 248
Dialog Data Structures.......coceieuiiiiiininieninieiininnennnn.. 249
19.3.1 Dialog Coordinates.........covueuieieierinrnenincirnenracanas 250
Dialog RESOUICES ..ovuieiiinieniuniiniiiiiiinieiieiceerieenenense 250
Using Message and Dialog Boxesccecevviniiniinianenninns 251
19.5.1 Message BOXeS..civevuenrnrnrennenininicniosiinennensacnennnns 251

19.5.1.1 System-Modal Message BOXeSvuvvueennennnns 252
19.5.2 Dialog BOXES civiuiuiniriieiesrenrninrieriessiniriresasarosos 253

19.5.2.1 Modal Dialog BOXES...vurerrrrrnrinienenennennnnns 253

19.5.2.2 Modeless Dialog BOXES ..vvvvvenrvnreneneanennnnes 254

19.5.2.3 Initializing a Dialog BOX .c.evevvenrenecnnenennen. 255

19.5.2.4 Menus in Dialog BOX€S.....evveiererenrneaeenennnn 255

19.5.2.5 Dialog Procedurecccveuevnerenrenrenseeneannns 256

19.5.2.6 Manipulating Dialog Ttems.....ccccvuevernennnnen. 257
SUMMATY cuuvniiiiiiiiiiiiiiieeeieitirrieierenenreernscanesearneens 258
19.6.1 Dialog-Window Styles.......oeveeieeieruineenreenernrnenenen 258
19.6.2 Message-Box Styles ...cevvuiieiuiicnrniniieniinriiiiieneninns 258
19.6.3 Message-Box Return Values.....c.ceeveuernineninnnnnnnnn. 259
19.6.4 Functionsceeeueereiueriienenenimnenenenenenrenraranenenns 260

19.6.5 Messages Sent to Dialog Boxes and Dialog Items 261

Chapter 19: Dialog Windows 247

O B B B B e R R e B R R RS e Rl

19.1 Introduction

19.2 About

This chapter describes creating and using dialog windows and message boxes in
your applications. You should also be familiar with the following topics:

® Standard user interface guidelines

® Resources and using the MS OS/2 Resource Compiler (rc)

B Control windows

B Window messages and message queues

Dialog Windows

A dialog window (also called a dialog box or a dialog) is a window that contains
one or more child control windows and is typically used to display messages to
and gather input from the user. It is often a temporary window that an applica-
tion creates to gather specific input, destroying the window immediately after
use.

Dialog windows provide a high-level method for applications to display and
gather information. MS OS/2 contains many functions and messages that help

~ manage the control windows that make up a dialog window, thus easing the bur-

19.2.1 Modal

den of maintaining complex input and output systems.

and Modeless Dialog Windows

Dialog windows can be modal or modeless. A modal dialog window requires that
the dialog window be dismissed before the user can activate other windows in
the same application. Generally, an application uses a modal dialog window to
get essential information from the user before proceeding with an operation. A
modeless dialog window allows the user to activate other windows without
dismissing the dialog window.

Both modal and modeless dialog windows allow the user to activate windows in ‘
another application before responding to the dialog window. For more informa-
tion, see Section 19.2.4.

Modal dialog windows are simpler for an application to manage because they are
created, perform their task, and close, all in a single function call.

Modeless dialog windows require more attention from the application because
they exist until explicitly dismissed. Modeless dialog windows provide a more
flexible interface, however, by allowing the user to move to other windows in the
application before responding to the dialog window.

19.2.2 Dialog Items

A dialog item is a child window of the dialog window. The dialog window is usu-
ally a window of class WC_FRAME. MS OS/2 provides many predefined win-
dow classes, called control windows, that are used as dialog items. Predefined
control windows include static display boxes, text-entry fields, buttons, and list
boxes. Customized window classes can also be used as dialog items.

248 MS 0S/2 Prdgrammer’s Reference, Vol. 1
il b e i e e R e b L S E e e et Rl A s e R e

Because dialog items are windows, they can be manipulated by all window-
management functions relating to size, position, and visibility. Dialog items are
always owned by the dialog frame window. Most predefined control-window
classes send notification messages to their owners when the user interacts with
their control windows. The dialog frame window receives these notification mes-
sages and passes them on to the application through the application-defined dia-
log procedure.

19.2.3 Dialog-Control Groups

Items within a dialog window can be organized into groups. When items are
arranged in a group, the user can move from one item to another in the same
group by using the direction keys. When the user presses a direction key, the
focus moves from one item in a group to the next item of the same group, but
not to items of other groups within the dialog window.

Arranging items in groups is useful for radio buttons. Although other control
types can also be displayed this way, entry-field controls cannot; they process
direction keys themselves.

The first item in a dialog-control group has the WS_GROUP window style. All
subsequent items in the dialog template are considered part of that group until
another item is given the WS_GROUP style, which begins a new group.

The WS_TABSTOP style is often used along with the WS_GROUP style. This

style marks the items that can receive the focus when the user presses the TAB
key. Each time the user presses the TAB key, the focus moves to the next item
that has the WS_TABSTOP style. Generally, the WS_GROUP and
WS_TABSTOP styles are defined together for the first item of each group in the
dialog template. This makes it possible for a user to press the TAB key to move
between groups of items and to use the direction keys to move between items
within a group.

The WS_TABSTOP style should not be used for radio buttons because the sys-
tem automatically maintains a tabstop on any selected item in a radio-button
group; the focus will always be on the currently selected item when pressing the
TAB key in a group of radio buttons. :

The WS_GROUP and WS_TABSTOP styles are also useful for preventing the
user from moving to a particular button when using the keyboard. For example,
if the dialog window has an OK and a Cancel button, you should put them in the
same group, with the OK button as the first item in the group. The user can
press the TAB key to select the OK button, but not the Cancel button. To move
to the Cancel button by using the keyboard, the user must first press the TAB key
to move to the OK button, and then press a direction key to move the focus to
the Cancel button. For more information on how to deﬁne groups and tabstops
in dlalog windows, see Section 19.4.

19.2.4 Message Boxes

Message boxes are dialog windows predefined by the system and used as a sim-
ple interface for applications without creating dialog-template resources or dialog
procedures. An application can call the WinMessageBox function and specify
the type of message box and message text. The system displays the message and

Chapter 19 Dialog Windows 249
e B S e B S S T I i G S S S R S S S g

waits for the user to dismiss the message box by selecting a button in the mes-
sage box. The system then returns a result code to the application, indicating
which button the user selected.

Message boxes are best for short notification messages that require a simple
acknowledgment or choice by the user. Applications do not specify a dialog
procedure for message boxes, so they cannot readily change the action of a
message box. There are many predefined message-box styles. Figure 19.1 shows
a sample message box.

Figure 19.1
Sample Message Box

Message boxes can be application-modal or system-modal. Application-modal
means that the user cannot activate another window in the current application
before responding to the message box, but can switch to another application
before responding. System-modal means that the user cannot activate another
window in any application while the message box is present. A system-modal
message box should be used only to display urgent error messages (running out
of memory, for example).

19.3 Dialog Data Structures

A dialog-window item is a control window that is owned by the dialog window.
Each dialog-window item is described by a DLGTITEM data structure. The
DLGTITEM structure is rarely accessed directly by an application. Most manipu-
lation of dialog items is handled by system functions. Applications that create
dialog items that are not defined as part of a dialog-template resource must
create dialog-window-item structures in memory. The format of a DLGTITEM
structure is as follows:

typedef struct _DLGTITEM {

USHORT fsItemStatus;
USHORT cChildren;
USHORT cchClassName;
USHORT offClassName;
USHORT cchText;
USHORT of fText;
ULONG flStyle;
SHORT x;

SHORT Y

SHORT cx;

SHORT cy;

USHORT id;

USHORT of fPresParams;
USHORT offCtlData;

} DLGTITEM;

250 MS 0S/2 Programmer’'s Reference, Vol. 1
B R S R R B T R R s I ATl

Because a dialog window can have many items, a DLGTEMPLATE data struc-
ture consists of header information followed by an array of dialog-window items.
Applications that create dialog windows without using dialog resources must
create a dialog template in memory and then call the WinCreateDlg function.
The format of a DLGTEMPLATE structure is as follows:

typedef struct _DLGTEMPLATE {

USHORT cbTemplate;
USHORT type:

USHORT codepage;

USHORT offadlgti;
USHORT fsTemplateStatus;
USHORT " 1iItemFocus;
USHORT coffPresParams;
DLGTITEM adlgti[l]:;

} DLGTEMPLATE:

19.3.1 Dialog Coordinates

Coordinates in a dialog template are specified in dialog coordinates and are
based on the size of the system font. A horizontal unit is one-fourth of the
system-font-character average width; a vertical unit is one-eighth of the system-
font-character average height. The origin of the dialog template is the lower-left
corner of the dialog window. MS OS/2 provides the WinMapDIgPoints function
for converting dialog coordinates into window coordinates.

19.4 Dialog Resources

Most applications define dialog templates in resource files rather than construct-
ing template data structures in memory at run time. The dialog-resource file
defines the size and style of the dialog-window frame and specifies each control
item.

The following source-code fragment creates a dialog template. Notice that the
WS_GROUP and WS_TABSTOP style designations are given for the first item
in each group. The dimensions and position for each item are given in dialog
coordinates rather than in window coordinates.

DLGTEMPLATE IDD_ABOUT
BEGIN
DIALOG "", IDD_ABOUT2, 10, 10, 150, 110, FS_DLGBORDER, O
BEGIN

CONTROL "Attributes:", 100,
10, 30, 100, 70,
WC_STATIC,
SS_GROUPBOX | WS_VISIBLE

CONTROL "Highlighted",b 101,
20, 80, 58, 12,
WC_BUTTON,
WS_GROUP | WS_TABSTOP | BS_AUTOCHECKBOX | WS_VISIBLE

CONTROL "Enabled", 102,
20, 60, 58, 12,
WC_BUTTON,
BS_AUTOCHECKBOX | WS_VISIBLE

CONTROL "Checked", 103,
20, 40, 58, 12,
WC_BUTTON,
BS_AUTOCHECKBOX | WS_VISIBLE

CONTROL "Okay", DID_OK,

© 10, 10, 50, 14,
WC_BUTTON,
WS_GROUP | WS_TABSTOP | BS_PUSHBUTTON | BS_DEFAULT | WS_VISIBLE

Chapter 19: Dialog Windows 251
B S e s S S e e S S RS R B S S s e AT s

CONTROL "Cancel", DID_CANCEL,
80, 10, 50, 14,
WC_BUTTON,
BS_PUSHBUTTON | WS_VISIBLE
END
END

Figure 19.2 shows the dialog box created by the previous dialog-template
resource definition:

Figure 19.2
Sample Dialog Box

Regquired

Program title | |
Path and fils name |]

Optioneal
Parameters []
9 directory . .| H|

((Add) (Cancel) ((Help)

19.5 Using Message and Dialog Boxes

The simplest dialog window is the message box. Most message boxes present
simple messages and offer the user one, two, or three responses (represented by
buttons). A message box is easy to use and is appropriate when an application
requires a clearly defined response to a static message. However, message boxes
lack flexibility in size and placement on the screen, and they are limited in the
choices they offer the user. Applications that require more control over size,
position, and content should use regular dialog boxes instead of message boxes.

19.5.1 Message Boxes

Message boxes provide an easy way for applications to display simple messages
without creating dialog templates or writing dialog procedures. Message boxes
are intended mainly for conveying information to users, although they do have
limited input capabilities.

There are several different kinds of predefined message boxes. There are three
parts to a message box: the icon, the message, and buttons. Applications specify
the icons and buttons using message-box style constants. Message text is
specified by a null-terminated string.

To create a message box, the application calls the WinMessageBox function,
‘which displays the message box and processes user input until the user selects a
button in the message box. The return value of the WinMessageBox function
indicates which button was selected.

The following code fragment illustrates how to create a message box with a
default Yes button, a No button, and a question-mark (?) icon. This exam-
ple assumes that you have defined a string resource with the identifier
MY_MESSAGESTR_ID in the resource file.

252 MS 0812 Programmer’s Reference, Vol. 1
B B B B e B e R S R R e,

CHAR szMessageString[255]:
USHORT cch;
USHORT usResult;

cch = WinLoadString(hab,
(HMODULE) NULL,
MY_MESSAGESTR_ID,
sizeof (szMessageString),

szMessageString) ;

usResult = WinMessageBox (hwndFrame, /* parent */
hwndFrame, /* owner */
szMessageString, /* text */
(psz) " /* caption */
MY_MESSAGEWIN, /* window ID */
MB_YESNO |
MB_ICONQUESTION |
MB_DEFBUTTON1) ; /* style */

if (usResult == MBID_YES)

/* dovyes case */
else

/* do no case */

The WinMessageBox function returns predefined values indicating which button
has been selected. These values are listed in Section 19.6.3.

Note that strings for message boxes should be defined as string resources to
facilitate program translation for other countries. However, there is a danger in
using string resources in message boxes that are called in low-memory situations.
Loading a string resource in these situations could cause severe memory prob-
lems and cause an application to fail. One way to solve this problem is to
preload the string resource and make it nondiscardable so it will be available
when the message box must be displayed.

19.5.1.1 System-Modal Message Boxes

Message boxes are always modal. The default style for a message box is
application-modal. With this style, a user cannot select another window in the
same application until the message box is dismissed. However, the user can
switch to a different application.

It is possible to create a message box that is system-modal. A system-modal mes-
sage box prevents a user from selecting another window in the current applica-
tion or switching to a different application until responding to the message box.
A system-modal message box is useful when displaying a warning to the user that
there may be serious problems with the system, such as insufficient memory.

There are two levels of modality for system-modal message boxes—soft modal
and hard modal. A soft-modal message box does not allow keystrokes or mouse
input to reach any other window, but does allow other messages, such as deac-
tivation and timer messages, to reach other windows. A hard-modal message box
does not allow any messages to reach other windows. A hard-modal message box
is appropriate for serious system warnings.

A hard-modal message box is created by combining the MB_LICONHAND
style with the MB_SYSTEMMODAL style. A soft-modal message box is
created by using the MB_SYSTEMMODAL style with any style other than
MB_ICONHAND. The MB_SYSTEMMODAL icon is always in memory and
is available even in low-memory situations.

Chapter 19: Dialog Windows 253
A S e e R B S B R S S R T R

19.5.2 Dialog Boxes

When using dialog boxes, an application must load the dialog box, process user
input, and destroy the dialog box when the user finishes the task. The process
for handling dialog boxes varies, depending on whether the dialog box is modal
or modeless. A modal dialog box requires the user to dismiss the dialog box
before activating another window in the application. However, the user can
activate windows in different applications. A modeless dialog box does not
require an immediate response from the user. It is similar to a frame window
containing control windows. The following sections discuss how to use both
types of dialog boxes.

19.5.2.1 Modal Dialog Boxes

Modal dialog boxes present users with information and questions in such a way
that they must respond before proceeding with other operations in the applica-
tion.

The easiest way to use a modal dialog box is to define a dialog template in the
resource file and then call the WinDlgBox function, specifying the dialog-box
resource ID and a pointer to the dialog procedure. The WinDIlgBox function
loads the dialog-box resource, displays the dialog box, and handles all user input
until the user dismisses the dialog box. The dialog procedure receives messages
when the dialog box is created (WM_INITDLG) and other messages when the
user interacts with each dialog item, such as entering text in entry fields or
selecting buttons.

You must specify both the parent and owner windows when loading a dialog
box using the WinDlgBox function. Generally, the parent window should be
HWND_DESKTOP and the owner should be a client window in your applnca-
tion.

Dialog boxes typically contain buttons that send WM_COMMAND messages
when selected by the user. WM_COMMAND messages passed to the Win-
DefDIgProc function result in the WinDismissDlg function being called, with the
window ID of the source button as the return code. Dialog boxes with OK or
Cancel as the only buttons can ignore WM_COMMAND messages, allowing
them to be passed to the WinDefDlgProc function. The WinDefDIgProc func-
tion calls the WinDismissDIlg function to dismiss the dialog box and returns the
DID_OK or DID_CANCEL code.

Passing WM_COMMAND messages to the WinDefDIgProc function means that
all button presses in the dialog box will dismiss the dialog box. If you want par-
ticular buttons to initiate operations without closing the dialog box or if you want
to perform some processing without closing the dialog box, you should handle
the WM_COMMAND messages in the dialog procedure.

If you handle WM_COMMAND messages in the dialog procedure, you must call
the WinDismissDIg function to dismiss the dialog box. Your dialog procedure
passes the DID_OK code to the WinDismissDIg function if the user selects the
OK button or the DID_CANCEL code if the user selects the Cancel button.

When you call the WinDismissDIlg function or pass the WM_COMMAND
message to the WinDefDIgProc function, the dialog box is dismissed and the
WinDIgBox function returns the value passed to the WinDismissDIg function.
This return value identifies the button selected.

254 MS 0S/2 Programmer’s Reference, Vol. 1
B S i e S R R R R T R R e R S R R R i

An alternative to using the WinDIgBox function is to call the individual func-
tions that duplicate its functionality, as shown in the following code fragment:
dlg = WinLoadDlg(.

result = WinProcesleg(dlg)
WinDestroyWindow (dlg) ;

After calling the WinProcessDIg function, your dialog procedure must call the
WinDismissDlg function to dismiss the dialog box. Although the dialog box is
dismissed (hidden), it still exists. You must call the WinDestroyWindow function
to destroy a dialog box if it was loaded using the WinLoadDlg function. The
WinDIgBox function automatically destroys a dialog box before returning.

If you want to manipulate individual items in a dialog box or add a menu after
loading the dialog box (but before calling WinProcessDlg), it is better to make
individual calls rather than calling the WinDIgBox function. Individual calls are
also useful for querying individual dialog items, such as the contents of an entry-
field control after a dialog box is closed but before it is destroyed. Destroying a
dialog box also destroys any dlalog-ltem control windows that are child windows
of the dialog box.

19.5.2.2 Modeless Dialog Boxes

A modeless dialog box, unlike a modal dialog box, does not require user interac-
tion to activate another window in the current application.

To use a modeless dialog box in an application, you should create a dialog tem-
plate in the resource file, just as for a modal dialog box. Because modeless dia-
log boxes share the screen equally with other frame windows, it is a good idea to
give modeless dialog boxes a title bar so they can be moved around the screen.
The following Resource Compiler source fragment shows a dialog template for a
dialog box with a title bar, a System menu, and a Minimize Box.
DLGTEMPLATE IDD_SAMP
BEGIN

DIALOG "Modeless Dialog", IDD_SAMP, 80, 92, 126, 130,

WS_VISIBLE | FS_DLGBORDER,

FCF_TITLEBAR | FCF_SYSMENU | FCE_MINIMIZE
BEGIN

/* Put control-window definitions here. */

END
END

The application loads the dialog resource from the resource file by using the
WinLoadDIg function, receiving in return a window handle to the dialog box.
The application treats the dialog box as if it were an ordinary window. Messages
for the dialog box are dispatched through the event loop the application uses for

its other windows. In fact, an application can have a modeless dialog box as its
only window.

The resource for a modeless dialog box is just like that used for a modal dialog
box. The difference between modal and modeless dialog boxes is in the way
applications handle input to each box. For a modal dialog, the WinDIgBox and
WinProcessDIg functions handle all user input to the dialog box; preventing
access to other windows in the application. For a modeless dialog box, the appli-
cation does not call these functions, relying instead on a normal message loop to
dispatch messages to the dialog procedure.

Chapter 19: Dialog Windows 255
e R R i e T e IO E h h Fes IE E HE R e I SIS N R A e i e o

The main difference between a modeless dialog box and a standard frame win-
dow with child control windows is that for a modeless dialog box, an application
can define child windows for the dialog box in a dialog template, automating the
creation process of the window and its child windows. The same effect can be
achieved by creating a standard frame window, but the child control windows
must be created individually.

It is important that an application keep track of all open modeless dialog boxes
so that it can destroy all open windows before terminating.

19.5.2.3 Initializing a Dialog Box

Generally, an application defines a dialog template in its resource file and loads
the dialog box by calling the WinLoadDlIg function or the WinDIgBox function
(which itself calls WinLoadDlg). The dialog box is created as an invisible win-
dow unless the window style WS_VISIBLE is specified in the dialog template. A
WM_INITDLG message is sent to the dialog procedure before the WinLoadDlg
function returns. As each control defined in the template is created, the dialog
procedure may receive various control notifications before the function returns.
A dialog window can be destroyed by using the WinDestroyWindow function.
The WinLoadDlg function returns a handle to the dialog window immediately
after creating a dialog box.

In general, it is a good idea to define a dialog box as invisible since this allows
for optimization. For example, an experienced user may rapidly type ahead,
anticipating the processing of a dialog-box command. In such a case, there is no
need to display the dialog box because the user has finished the interaction
before the window can be displayed. This is how the WinProcessDIg function
works—it does not display a dialog box while there are still WM_CHAR mes-
sages in the input queue. It allows these messages to be processed first.

As control windows in a dialog box are created from the template, strings

in the template are processed by the WinSubstituteStrings function. Any
WM_SUBSTITUTESTRING messages are sent to the dialog procedure before
the WinLoadDIg function returns.

When child windows of a dialog window are created, the WinSubstituteStrings
function is used so child windows can make substitutions in their window text. If
any child-window text string contains the percent sign (%) substitution character,
the length of the text string is limited to 256 characters after it is returned from
the substitution.

19.5.2.4 Menus in Dialog Boxes

To create a menu bar and menus in a dialog box, an application should first load

- the dialog box to get a handle to the dialog-frame window. The dialog-frame win-
dow can be associated with a menu resource by calling the WinLoadMenu func-
tion. This function requires arguments specifying the menu ID and handle of the
parent window for the menu. Finally, the dialog-frame window must incorporate
the menu by sending a WM_UPDATEFRAME message to the dialog box. The
following code fragment illustrates these operations:

/* Get the dialog resource. */
hwndDialog = WinLoadDlg(...):;
/* Get the menu resource and attach it to the dialog. */

hwndMenu = WinLoadMenu (hwndDialog, ...);

256 MS 0S/2 Programmer’s Reference, Vol 1
B e S S R e e A R e R B B R S R R P

/* Inform the dialog that it has a new menu. */
WinSendMsg(hwndDialog, WM_UPDATEFRAME, OL, OL);
Applications can create menus in modal and modeless dialog boxes. The code
fragment above can be used for either type of dialog box. In the case of a modal
dialog box, your application should call the WinProcessDIlg function to handle
user input until the dialog box is dismissed. For a modeless dialog box, your
application should call the WinShowWindow function to display the dialog box,
allowing the message loop to direct messages to the dialog box.

19.5.2.5 Dialog Procedure

The main difference between a dialog procedure and a window procedure is that
a dialog procedure does not receive WM_CREATE messages. Instead, a dialog
procedure receives WM_INITDLG messages, which are sent after a dialog box
is created but before it is displayed. The WM_INITDLG message can be used to
do the same type of initialization tasks that are handled by WM_CREATE mes-
sages.

For example, if a dialog box contains a list box, you should use the message
WM_INITDLG to fill the list box with items. This procedure can also be used to
enable or disable buttons in a dialog box, depending on your application.

You can also call the WinSetDlgItemText or WinSetDIgItemShort function dur-
ing dialog initialization to set up text items that reflect the current conditions in
your application.

Another typical task for the WM_INITDLG message handler is centering a dia-
log on the screen or within its owner window. The following code fragment illus-
trates how to center a dialog box on screen using the WM_INITDLG message:

case WM_INITDLG:
/* Center the dialog box and get the screen rectangle. */

WinQueryWindowRect (HWND_DESKTOP, &rclScreenRect):;
/* Get the dialog-box rectangle. */
WinQueryWindowRect (hwnd, &rclDialogRect);
/* Get the dialog-box width. */
sWidth = (SHORT) (rclDialogRect.xRight - rclDialogRect.xLeft):
/* Get the dialog-box height. */
sHeight = (SHORT) (rclDialogRect.yTop - rclDialogRect.yBottom):;
/* Set the lower-left corner horizontal coordinate. */
sBLCx = ((SHORT) rclScreenRect.xRight - sWidth) / 2;
/* Set the lower-left corner vertical coordinate. */
sBLCy = ((SHORT) rclScreenRect.yTop - sHeight) / 2:;
/* Move, size, and show the window. */
WinSetWindowPos (hwnd,
HWND_TOP,
sBLCx, sBLCy,
o, O, /* ignores size arguments */

SWP_MOVE) ;

return OL;

[

Chapter 19: Dialog Windows 257

B e e i B e e R R R S R S e e B N RE R

The dialog procedure receives notification messages from each control-window
item in a dialog box whenever a user clicks an item or enters text in an entry
field. Most dialog procedures wait for the user to select one or more dialog-
window buttons to signal that he or she has finished with the dialog box. When
the dialog procedure receives one of these messages, it should call the Win-
DismissDlg function, as shown in the following code fragment. The second argu-
ment to the WinDismissDlg function is the value returned by the WinDlgBox or
WinProcessDlg function. Generally, the ID of the button that was pressed is
returned.

MRESULT FAR PASCAL SampDialogProc (hwnd, usMessage, mpl, mp2)

HWND hwnd:;

USHORT usMessage:

MPARAM mp1;
MPARAM mp2;

switch (usMessage) {
case WM_COMMAND:
switch (SHORT1FROMMP (mpl)) {
case DID_OK:
*

* Final dialog-item queries,
* dismiss the dialog.

*/
WinDismissDlg (hwnd, DID_OK);
return OL;

break;

}
return (WinDefDlgProc (hwnd, usMessage, mpl, mp2)):

Other dialog-box items send notification messages specific to the type of control
window. Your dialog procedure should respond to notification messages from
each dialog item. Any messages that a dialog procedure does not handle should
be passed to the WinDefDIgProc function for default processing. The default
dialog procedure is exactly the same as the default frame-window procedure.

The WM_COMMAND message from the OK button indicates that the user has
selected the OK button and is finished with the dialog box. If the dialog box has
other controls, such as entry fields or check boxes, your dialog procedure should
query the contents or state of each control when it receives a message from the
OK button. Before dismissing a dialog box, your dialog procedure should collect
input from each dialog-box control before closing the dialog box.

19.5.2.6 Manipulating Dialog items

Dialog items are control windows, and as such they can be manipulated using
standard window-management function calls. The window handle is obtained for
each dialog item by calling the WinWindowFromID function and passing the
window handle for the dialog box and the window ID for the dialog item as
defined in the dialog template. For example, the following Resource Compiler
source-code fragment should be included in your dialog template:

DLGTEMPLATE IDD_ABOUT

BBGIgIALOG ** IDD_ABOUT, 80, 92, 126, 130, ES_DLGBORDER, ©O
BEGI;USKBUTTON "My Button", ITEMID_MYBUTTON, 37, 107, 56, 12
/* Other item definitions ... */
END

END

258 MS 0S/2 Programmer’s Reference, Vol. 1
A e e e B e B S R S B ‘Hﬂ&@?"‘@a&gﬁ*ﬁﬁw@f@naéﬁmﬁi

Based on the above code fragment, your application will receive the button-item
handle by initiating the following call to the WinWindowFromID function:

hwndItem = WinWindowFromID(hwndDialog, ITEMID_MYBUTTON)

Applications often change the contents, enabled state, or position of dialog
items at run time. For example, in a dialog box that contains a list box of
filenames and an Open button, the Open button should be disabled until the user
selects a file from the list. To do this, the button should be defined as disabled
in the dialog resource so that it is disabled when the dialog box is first displayed.
At run time, the dialog procedure receives a notification message from the list
box when the user selects a file. At that time, the dialog procedure calls the
WinEnableWindow function to enable the Open button.

Applications can also change the text in static dialog items and buttons. This is
done by calling the WinSetWindowText function and using the window handle of
particular dialog item.

19.6 Summary

The following sections summarize the styles, functions, and messages associated
with dialog windows and message boxes.

19.6.1 Dialog-Window Styles

The following style constants can be used to specify the border and alignment of
a dialog box:

FCF_DLGBORDER Draws the dialog window with a double border that
identifies it as a dialog box.

FCF_MOUSEALIGN Draws the dialog window using the x- and y-position
relative to the mouse position at the time the dialog window is created. The dia-
log window position is modified to keep it within the screen boundaries, if pos-
sible. The dialog window can be drawn with the OK button under the mouse
pointer by using negative x- and y-position values in the dialog template.

FCF_SCREENALIGN Draws the dialog window using the x- and y-position
relative to the coordinates of the entire screen rather than using the default coor-
dinates of the owner window.

19.6.2 Message-Box Styles

The following style constants can be used to specify the type of message box
created by calling the WinMessageBox function:

MB_ABORTRETRYIGNORE Creates a message box that has Abort, Retry,
and Ignore buttons.

MB_APPLMODAL Creates an application-modal message box. A user cannot

select other windows in the current application, but can switch to other applica-
tions.

MB_CANCEL Creates a message box that has a Cancel button.
MB_DEFBUTTON1 Defines the first button in a message box as the default

Chapter 19: Dialog Windows 259
T e L L e e e S B s e e R B e B e R B R R RB E

button. All message boxes have this style unless MB_DEFBUTTON?2 or
MB_DEFBUTTONS is specified.

MB_DEFBUTTON2 Defines the second button as the default button.
MB_DEFBUTTON3 Defines the third button as the default button.
MB_ENTER Creates a message box that has an Enter button.

MB_ENTERCANCEL Creates a message box that has Enter and Cancel but-
tons.

MB_HELP Creates a message box that has a Help button.
MB_ICONASTERISK Creates a message box that has an asterisk (*) icon.

MB_ICONEXCLAMATION Creates a message box that has a exclamation-
point (!) icon.

MB_ICONHAND Creates a message box that has the hand icon. This icon is
always in memory and should be used when displaying message boxes in low-
memory situations.

MB_ICONQUESTION Creates a message box that has a question-mark (€))
icon.

MB_MOVEABLE Creates a message box that a user can move by using the
mouse. '

MB_NOICON Creates a message box that has no icons.
MB_OK Creates a message box that has an OK button.
MB_OKCANCEL Creates a message box that has OK and Cancel buttons.

MB_RETRYCANCEL Creates a message box that has Retry and Cancel but-
tons.

MB_SYSTEMMODAL Creates a system-modal message box. A user cannot
select any other window in the current application or switch to another applica-
tion until this message box is dismissed. This style is used in combination with
MB_ICONHAND to prevent any messages from being sent to other windows or
applications. This is useful in situations where the system is damaged or there
are other serious problems.

MB_YESNO Creates a message box that has Yes and No buttons.

MB_YESNOCANCEL Creates a message box that has Yes, No, and Cancel
buttons.

19.6.3 Message-Box Return Values

The following are predefined values returned by the WinMessageBox function,
indicating which button is pressed to dismiss the message box:

MBID_ABORT Abort button dismisses the message box.
MBID_CANCEL Cancel button dismisses the message box.
MBID_ENTER Enter button dismisses the message box.

260 MS 0S/2 Programmer’s Reference, Vol. 1
it e R RS R ey e e A s s R e B R R S e b RIS R B]

MBID_ERROR An error has occurred in processing the message box.
MBID_HELP Help button dismisses the message box.
MBID_IGNORE Ignore button dismisses the message box.
MBID_NO No button dismisses the message box.

MBID_OK OK button dismisses the message box.

MBID_RETRY Retry button dismisses the message box.

MBID_YES . Yes button dismisses the message box.

19.6.4 Functions

The following functions are used with dialog windows and message boxes:

WinAlarm Creates an audible signal. The type of sound is specified by one of
three predefined constants: WA_WARNING, WA_NOTE, and WA_ERROR.
The actual sound emitted for these styles varies, depending on the hardware
capabilities.

WinCreateDlg Functions similarly to the WinLoadDIg function except that the
WinCreateDlg function dialog template is in memory rather than in a resource
file. This function returns a handle to the dialog window.

WinDefDIgProc Creates the default dialog procedure that processes dialog
messages (messages that the application dialog procedure does not process).
This action is identical to that produced by the WinDefWindowProc function for
frame windows.

WinDestroyWindow Destroys the dialog window and all its child control win-
dows. This function uses the dialog-window handle.

WinDismissDlg Hides the dialog box and causes the WinProcessDIg or
WinDIgBox function to return a specified result. Applications call this function
from a dialog procedure when a user selects a button indicating the interaction
with the dialog box is finished.

WinDIgBox Loads and processes a modal dialog box and returns the result
generated by the WinDismissDlg function. This function makes the dialog box
visible when the message queue is empty. This means that a dialog box defined
as invisible will not become visible as long as there is input for it. This allows
a user to type ahead and even dismiss the dialog box before the dialog box
becomes visible, thus saving the time needed to draw the dialog box. The Win-
DIgBox function is equivalent to the following code fragment:

dlg = WinLoadDlg(...):;

result = WinProcesleg(dlg)

WinDestroyWindow(dlg) ;
return (result);

WinEnumDIgltem Searches dialog-box child windows for the next control win-
dow that fits a specified characteristic. An application can specify a child win-
dow from which to start the search; this facilitates repeated linear searches for
the next occurrence of a particular type of child window. This function allows an
application to identify the next tabstop or group item.

Chapter 19: Dialog Windows 261
B A B R e e g S S S e e B B R R S P S R s B B

WinLoadDlg Loads a dialog resource from a specified resource-file module
(NULL indicates the current application’s executable file). The parent and
owner window of the new dialog box must specified, as well as a pointer to the
dialog procedure for the application. This function returns a handle to the dialog
window.

WinMapDIgPoints Converts dialog coordinates into window coordmates and
vice versa.

WinMessageBox Creates a modal message box with specified caption, icon,
buttons, and text. The WinMessageBox function maintains control until the user
selects one of the message-box buttons. The return value is a predefined con-
stant that indicates which button is selected.

WinProcessDlg Processes messages for a modal dialog box, making the dialog
box visible when the message queue is empty. This means that a dialog box
defined as invisible will not become visible as long as there is input for it. This
allows a user to type ahead and even dismiss the dialog box before the dialog
box becomes visible, thus saving the time needed to draw the dialog box. This
function does not return until the dialog procedure calls the WinDismissDlg
function.

WinQueryDlgltemShort Translates the text of a specified dialog item into a
short integer.

WinQueryDIigltemText Retrieves the window text of a specified dialog item.

WinSendDIgltemMsg Sends a message to a child window in the specified dialog
box. This function is used for child windows in standard frame windows.

WinSetDigltemShort Sets the text of the specified dialog item to the text
representation of the specified short integer.

WinSetDIgltemText Sets the window text for a specified dialog item.

WinSubstituteStrings Performs a substitution process on a text string, replacing
certain marker characters with application-supplied text. When the string %n
(where “n” is a number from 0 through 9) is encountered in the source string, a
WM_SUBSTITUTESTRING message is sent to a specified window. This mes-
sage returns a text string that replaces the characters %n in the destination
string, which is an exact copy of the source string. This function is important for
dialog boxes because the WM_SUBSTITUTESTRING message is received by
the dialog procedure, allowing an application to make string substitutions in dia-
log items that reflect the current environment.

19.6.5 Messages Sent to Dialog Boxes and Dialog Items

The following messages are sent to dialog boxes and dialog items:

WML_INITDLG Sent to a dialog procedure after a dialog box is created but
before it is shown. This allows an application to perform run-time initialization
for the dialog box, such as filling in default text for entry fields, static-text con-
trols, or list boxes. If any control window in a dialog box requires text substitu-
tion, the dialog box receives a WM_SUBSTITUTESTRING message before the
WML_INITDLG message. The WM_INITDLG message also contains a window
handle of the control window in the dialog box that receives the keyboard focus

262 MS 0S/2 Programmer’s Reference, Vol. 1
S O o B e S e S P B R e

when the dialog box is shown. An application can change the focus by calling
the WinSetFocus function for another control window and then returning
TRUE. To leave the focus as is, it should return FALSE.

WM_QUERYDLGCODE Sent by the system to control windows in a dialog
box to determine the capabilities of the control. Most applications ignore this
message unless they are creating custom control windows. The following are
predefined result codes for the WM_QUERYDLGCODE message:

Code ‘ Meaning

DLGC_BUTTON Button item

DLGC_CHECKBOX Check box

DLGC_DEFAULT Default push button

DLGC_ENTRYFIELD Entry-field item, handles EM_SETSEL
messages

DLGC_MENU Menu

DLGC_PUSHBUTTON Non-default push button
DLGC_RADIOBUTTON Radio button
DLGC_SCROLLBAR Scroll bar
DLGC_STATIC Static item
DLGC_TABONCLICK Next-on-tab control

WM_SUBSTITUTESTRING Sent to a dialog box when it is created (before
the WM_INITDLG message is sent) when the system encounters the characters
%n (where n is a number from 0 through 9) in the window text of a dialog con-
trol window. This message allows an application dialog procedure to make text
substitutions. For example, an application can define dialog-box entry-field text
as the characters %1, substituting context-appropriate text in the response to the
WM_SUBSTITUTESTRING message.

1Y

§

e B e R S B S e R S B R SR

Chapter

R

Painting and Drawing

20.1
20.2

20.3

20.4
20.5

Introduction.....ccceevevieiniiininiiiniiiinianenennnes ST 265
About Painting and Drawingc.ceeeeveiiieneiininininenenen. 265
20.2.1 Presentation Spaces and Device Contexts................ 265
20.2.2 Window Regions...c.vceveiiiiieiniirnianiiaisennensersonasnns 266
Strategies for Painting and Drawing......cccceevvvuvereiennnnnn. 268
20.3.1 When to Draw in 2 Windowcceevveienneneninnenenn. 268
20.3.2 The WM_PAINT MeSsage.....cuvueeceeeriornenineenennnns 269

20.3.2.1 Drawing the Minimized View........ecevverrnnen. 270
20.3.3 Drawing Without the WM_PAINT Message............. 270
20.3.4 - Three Kinds of Presentation Spacesc.cuvue. 270

20.3.4.1 Cached-Micro Presentation Spaces............... 271

20.3.4.2 Micro Presentation SPaces......eeveeeereeeneenens 272

20.3.4.3 Normal Presentation Spacescoeeveeeaeenesns 274
Printing coueuiuieieieiiiiniiiniiiirceecenieneerirsestneeensssnsans 275
SUMIMATY ...oeeeeeeeieeeeeeeeeeeeeeeresrererteerererersessa e eeeees 275
20.5.1 Window Styles for Paintingc.ccocvevueniiiiernininnnnn. 275
20.5.2 Functionscceceennns et treereeieet i reaeaaaas 276

B R

Chapter 20: Painting and Drawing 265

e S e e A e AN S S R S R R R R R L R R

20.1 Introduction

This chapter describes presentation spaces, device contexts, and window
regions, and how an application uses them for painting and drawing. (For infor-
mation on functions that are specifically designed for graphics production, see
Chapter 21, “Drawing in Windows,” and Part 3, “Graphics Programming Inter-
face.”) You should also be familiar with the following topics:

B Standard user-interface guidelines
Standard frame windows

n

B Window messages and message queues
¥ Presentation spaces and device contexts
]

Graphics programming interface (GPI)

20.2 About Painting and Drawing

An application typically maintains an internal representation of the data that it is
manipulating. The information displayed by a screen, window, or by printed
copy is a visual representation of some portion of that data. MS OS/2 provides a
rich environment for displaying information in a variety of ways. This chapter
introduces concepts and strategies necessary to make your application function
smoothly and cooperatively in the MS OS/2 display environment.

20.2.1 Presentation Spaces and Device Contexts

Figure 20.1

A presentation space is a data structure maintained by the operating system that
describes the drawing environment for an application. An application can create
and hold several presentation spaces, each describing a different drawing envi-
ronment. All drawing in an MS OS/2 application must be directed into a presen-
tation space.

Each presentation space is associated with a device context that describes the
physical device where graphics commands are displayed. The device context
translates graphics commands made to the presentation space into commands
that cause the physical device to display information. Typical device contexts
are the screen (windows), printers and plotters, and off-screen memory bitmaps.
Figure 20.1 shows how graphics commands from an application go through a
presentation space, to a device context, and then to the physical device.

Application-to-Device Path

= el

> Presentation Device Device
Application space - context -

o

jeX 2B

266 MS 0S/2 Programmer’s Reference, Vol. 1
R B L L A

By creating presentation spaces and associating them with particular device con-
texts, an application can control where its graphics output appears. Because a
presentation space and device context isolate the application from the physical
details of displaying graphics, the same graphics commands can typically be used
for many types of displays. This virtualization of output can reduce the amount
of display code that an application needs to support.

This chapter discusses how an application sets up its presentation spaces and
device contexts before drawing and how to use window-drawing functions. Other

chapters in this manual discuss the individual graphics routines available in
MS 0S/2.

20.2.2 Window Regions

A window and the presentation space associated with it have three regions that
control where drawing takes place in the window. These regions ensure that the
application does not draw outside the boundaries of the window or intrude into
the space of an overlapping window.

Region Description

Update region This region represents the area of the window
that needs to be redrawn. This region changes
when overlapping windows change their Z order
or when an application explicitly adds an area to
the update region to force a window to be
painted.

Clip region This region and the visible region determine
where drawing takes place. Applications can
change the clip region to limit drawing to a
particular portion of a window. Typically, a
presentation space is created with a clip region
equal to NULL, which means that there is no
clipping supplied by this region.

Visible region This region and the clip region determine where
drawing takes place. The system changes the visi-
ble region to represent the portion of a window
that is visible. Typically, the visible region is used
to mask out overlapping windows. When the
application calls the WinBeginPaint function in
response to a WM_PAINT message, the system
sets the visible region to the intersection of the
visible region and the update region to produce a
new visible reglon Applications cannot change
the visible region directly.

Whenever drawing occurs in a window’s presentation space, the output is
clipped to the intersection of the visible region and the clip region. Figure 20.2
shows how the intersection of the visible region and the clip region of a window
that is behind another window prevents drawing in the back window from intrud-
ing into the front window. The clip region includes the overlapped part of the

Chapter 20: Painting and Drawing 267
R S R S e S e S RS e R R

back window, but the visible region excludes that portion of the back window.
The system maintains the visible region to protect other windows on the screen
and the application maintains the clip region to specify the portion of the win-

dow in which it draws. Together, these two regions provide safe and controllable
clipping.

Figure 20.2
Clip Region and Visible Region

= lele = [olo

Clip region

Visible region

The update region is manipulated by both the system and the application to
further control drawing. For example, if the windows shown in Figure 20.2
switch positions front to back, several changes occur in the regions of both win-
dows. The system adds the lower-right corner of the new front window to that
window’s visible region. The system also adds that corner area to the window’s
update region, as shown in Figure 20.3. Adding an area to this window’s update.
region causes the window’s window procedure to receive a WM_PAINT mes-
sage. During the processing of the WM_PAINT message, the system sets the
new visible region to be the intersection of the previous visible region and the
update region. With this restricted visible region, only the appropriate part of
the window is redrawn—the lower-right corner.

Figure 20.3
Update Region and Visible Region

= [ele = [ele
= [ele = [ole

Update region Visible region

268 MS 0S/2 Programmer’s Reference, Vol. 1 :
e R R e N R A g

bil

20.3 Strategies for Painting and Drawing

The following sections discuss drawing strategies for an MS OS/2 application.
Because an application shares the screen with other windows and applications,
drawing must not interfere with other applications and windows. When these
strategies are followed, your application will coexist with other applications and
still take full advantage of the graphics capabilities of MS OS/2.

20.3.1 When to Draw in a Window

Ideally, all drawing in a window should be done during the processing of the
WM_PAINT message. Applications maintain an internal representation of what
should be displayed in the window, such as text or a linked list of graphics
objects, and use the WM_PAINT message as a cue to display a visual represen-
tation of that data in the window.

To route all display output through the WM_PAINT message, an application
should not draw on the screen at the time its data changes. Instead, the applica-
tion should update the internal representation of the data and then call the
WinlInvalidateRect or WinInvalidateRegion function to invalidate the portion of
the window that needs to be redrawn. Of course, it is often much more efficient
to draw directly in a window without relying on the WM_PAINT message—for
example, when drawing and redrawing an object for a user who is dragging or
sizing with the mouse.

If the window has the WS_SYNCPAINT or CS_SYNCPAINT style, invalidating
a portion of the window causes a WM_PAINT message to be sent to the window
immediately. Because sending a message is essentially like making a function
call, the actions corresponding to the WM_PAINT message are carried out
before the call that caused the invalidation returns—that is, the painting is syn-
chronous.

If the window does not have the WS_SYNCPAINT or CS_SYNCPAINT style,
invalidating a portion of the window causes the invalidated region to be added to
the window’s update region. The next time the application calls the WinGetMsg
or WinPeekMsg function when there are no other messages in the queue and the
update region for the window is not empty, the application is sent a WM_PAINT
message. If there are many messages in the queue the painting occurs after the
invalidation—that is, the painting is asynchronous. Painting for windows that do
not have the WS_SYNCPAINT or CS_SYNCPAINT style is a low-priority
operation; all other messages are processed first. Because a WM_PAINT mes-
sage is not posted to the queue in this case, all invalidation operations since the
last WM_PAINT message are consolidated into a single WM_PAINT message
the next time the application has no messages in the queue.

There are advantages to both synchronous and asynchronous painting. Windows
that have simple painting routines should be painted synchronously. Most of the
system-defined control windows, such as buttons and frame controls, are painted
synchronously because they can be painted quickly without interfering with the
responsiveness of the program. Windows with more time-consuming painting

Chapter 20: Painting and Drawing 269
S SR e S R B R R e

operations should be painted asynchronously so that the painting can be initiated
only when there are no other pending messages that might otherwise be blocked
while waiting for the window to be painted. Also, windows that use an incremen-
tal approach to invalidating small portions of the window should usually allow
those operations to consolidate into a single asynchronous WM_PAINT mes-
sage, rather than a series of synchronous WM_PAINT messages.

If necessary, an application can call the WinUpdateWindow function to cause
an asynchronous window to update itself without going through the event loop.
WinUpdateWindow sends a WM_PAINT message directly to the window if the
window’s update region is not empty.

20.3.2 The WM_PAINT Message

A window receives a WM_PAINT message whenever its update region is not
NULL. A window procedure should respond to a WM_PAINT message by call-
ing the WinBeginPaint function, drawing to fill in the update areas, and then
calling the WinEndPaint function.

The WinBeginPaint function returns a handle to a presentation space that is
associated with the device context for the window and that has a visible region
equal to the intersection of the window’s update region and its visible region.
This means that only those portions of the window that need to be redrawn are
drawn. Attempts to draw outside this region are clipped and do not appear on
the screen.

If the application maintains its own presentation space for the window, it can
pass that handle of the presentation space to the WinBeginPaint function, which
modifies the visible region of the presentation space and passes the handle of the
presentation-space back to the caller. If the application does not have its own
presentation space, it can pass a NULL presentation-space handle and the sys-
tem will return a cached-micro presentation space for the window. In either
case, the application can use the presentation space to draw in the window.

The WinBeginPaint function takes a pointer to a RECTL structure that it fills in
with the coordinates of the rectangle enclosing the area to update. The applica-
tion can use this rectangle to optimize drawing, by drawing only those portions
of the window that intersect with the rectangle. If an application passes a NULL
pointer for the rectangle argument, the application draws the entire window and
relies on the clipping mechanism to filter out the unneeded areas.

After the WinBeginPaint function sets the update region of a window to NULL,
the application does the drawing necessary to fill the update areas. If an applica-
tion handles a WM_PAINT message and does not call WinBeginPaint or other-
wise empty the update region, the application continues to receive WM_PAINT
messages as long as the update region is not empty.

Once the application has finished drawing, it should call the WinEndPaint func-
tion to restore the presentation space to its former state. When a cached-micro
presentation space is returned by the WinBeginPaint function, the presentation
space is returned to the system for reuse. If the application supplies its own
presentation space to WinBeginPaint, the presentation state is restored to its
previous state.

270 MS 0S/2 Programmer’s Reference, Vol. 1 '
R R R e i B R e ey

20.3.2.1 Drawing the Minimized View

When an application creates a standard frame window, it has the option of
specifying an icon that the system will use to represent the application in its
minimized state. Typically, if an icon is supplied, the system draws the icon in
the minimized window and labels the icon with the name of the window. If the
application does not specify the FS_ICON style for the window, the window
receives a WM_PAINT message when it is minimized. The code in the window
procedure that handles the WM_PAINT message can determine if the frame
window is currently minimized and then draw accordingly. Notice that because
the WS_MINIMIZED style is relevant only for the frame window, not for the
client, the window procedure checks the frame window rather than the client
window. The following code fragment shows how to draw a window in the
minimized state and the normal state:

case WM_PAINT:
hps = WinBeginPaint (hwnd, NULL, &rect):

/* See if the frame window (client's parent) is minimized. */

ulStyle = WinQueryWindowULong(WinQueryWindow (hwnd, QW_PARENT,
FALSE), QWL_STYLE);

if (ulStyle & WS_MINIMIZED) {

. /* paints the minimized state */

else {

. /* paints the normal state */

b4
WinEndPaint (hps) ;
return OL;

20.3.3 Drawing Without the WM_PAINT Message

20.3.4 Three

An application can draw in a window’s presentation space if it has not received
a WM_PAINT message. As long as there is a presentation space for the win-
dow, an application can draw into the presentation space and avoid intruding
into other windows or the desktop. Applications that draw without using the
WM_PAINT message typically call the WinGetPS function to obtain a cached-
micro presentation space for the window and call the WinReleasePS function
when they have finished drawing. An application can also use any of the other
types of presentation spaces described in the following sections.

Kinds of Presentation Spaces

All drawing must take place within a presentation space. MS OS/2 provides
three kinds of presentation spaces for drawing: the normal presentation space,
the micro presentation space, and the cached-micro presentation space.

Chapter 20: Painting and Drawing 271
e S B s R S S R R S R B P et S BN R M

The normal presentation space provides the most functionality, allowing access
to all the graphics functions of MS OS/2 and allowing the application to draw to
all device types. The normal presentation space is more difficult to use than the
other two kinds of presentation spaces and it uses more memory. It is created by
using the GpiCreatePS function and it is destroyed by using the GpiDestroyPS
function.

The micro presentation space allows access to only a subset of the MS OS/2
graphics functions, but it uses less memory and is faster than a normal presenta-
tion space. The micro presentation space also allows the application to draw to
all device types. It is created by using the GpiCreatePS function and destroyed
by using the GpiDestroyP$ function.

The cached-micro presentation space provides the least functionality of the three
kinds of presentation spaces, but it is the most efficient and easiest to use. The
cached-micro presentation space draws only to the screen. It is created and des-
troyed by using either the WinBeginPaint and WinEndPaint functions or the
WinGetPS and WinReleasePS functions.

The following sections describe each of the three types of presentation spaces in
detail and discuss strategies for using each type in an application. (For more
information, see Chapter 30, “Presentation Spaces and Device Contexts.”) All
three kinds of presentation spaces can be used in a single application. Some win-
dows, especially if they will never be printed, are best served by cached-micro
presentation spaces. Other windows may require the more flexible services of
micro or normal presentation spaces.

20.3.4.1 Cached-Micro Presentation Spaces

The cached-micro presentation space provides the simplest and most efficient
drawing environment. It can be used only for drawing on the screen, typically in
the context of a window. It is most appropriate for application tasks that need
simple window-drawing functions that do not need to be printed. Cached-micro
presentation spaces do not support retained graphics.

After an application draws to a cached-micro presentation space, the drawing
commands are routed through an implied device context to the current display.
The application does not need information about the actual device context, since
it is assumed to be the display. This process makes cached-micro presentation
spaces easy for applications to use. Figure 20.4 illustrates this process:

Figure 20.4
Cached-Micro Presentation Space
= [ole
Cached-micro Implied Devi
Application - presentation - device - evice
space context
Q o 1o

272 MS 0S/2 Programmer’s Reference, Vol. 1
S S e I A R S R e e B R R SR ey

There are two common strategies for using cached-micro presentation spaces in
an application. The simplest is to call the WinBeginPaint function during the
WM_PAINT message, use the resulting cached-micro presentation space to draw
in the window, and then return the presentation space to the system by calling
the WinEndPaint function. By using this method, the application only interacts
with the presentation space when it needs to draw in the presentation space.
This method is most appropriate for simple drawing, A disadvantage of this
method is that the application must set up any special attributes for the presenta-
tion space, such as line color and font, each time a new presentation space is
obtained.

A second strategy is for the application to allocate a cached-micro presentation
space during initialization, by calling the WinGetPS function and saving the
resulting presentation-space handle in a static variable. The application can then
set attributes in the presentation space that persist for the life of the program.
The presentation-space handle can be used as an argument to the WinBeginPaint
function each time the window gets a WM_PAINT message; the system modifies
the visible region and returns the presentation space to the application with its
attributes intact. This strategy is appropriate for applications that need to cus-
tomize their window-drawing attributes.

A presentation space that is obtained by calling the WinGetPS function should
be released by calling WinReleasePS when the application has finished using it.
(Typically, this will be during program termination.) A presentation space that is
obtained by calling the WinBeginPaint function should be released by calling the
WinEndPaint function, typically as the last part of processing a WM_PAINT
message. ‘

20.3.4.2 Micro Presentation Spaces

The main advantage of a micro presentation space over a cached-micro presenta-
tion space is that it can be used for printing as well as for painting in a window.
An applications that uses a micro presentation space must explicitly associate it
with a device context. This makes the micro presentation space useful for paint-
ing to a printer, plotter, or an off-screen memory bitmap.

A micro presentation space does not support the full set of MS OS/2 graphics
functions. Unlike a normal presentation space, a micro presentation space does
not support retained graphics.

An application that needs to display in a window and print to a printer or plotter
typically maintains two presentation spaces: one for the window and one for the
printing device. Figure 20.5 shows how an application’s graphics output can be
routed through separate presentation spaces to produce a screen display and
printed copy:

[

Figure 20.5

Chapter 20: Painting and Drawing 273

i R T R B R S R B R B B R R SR S R R Ry

Micro Presentation Space

Micro Devi
’ evice .
presentation - context > Device
= lele space
, Q o [KJ
Application
Micro ‘ m
. D, : :
presentation | wi co‘;"t’:z > .
space e
g Device

An application creates a micro presentation space by calling the GpiCreatePS
function. Because a device context must be supplied at the time the micro
presentation space is created, an application typically creates a device context
and then a presentation space. The following code fragment demonstrates this
by obtaining a device context for a window and associating it with a new micro
presentation space:

hdc
hps

WinOpenW1ndowDC(

)i
GpiCreatePS (. hdc,...,

non

GPIA_ASSOC) ;

To create a micro presentation space for a device other than the screen, replace
the call to the WinOpenWindowDC function with a call to the DevOpenDC
function, which obtains a device context for a device that is not the screen. The
device context that is obtained by this call can be used as an argument to the
GpiCreatePS function.

An application typically creates a micro presentation space during initialization
and uses it until termination. Each time the application receives a WM_PAINT
message, it should pass the handle of the micro presentation space as an argu-
ment to the WinBeginPaint function; this prevents the system from returning a
cached-micro presentation space. The system modifies the visible region of the
supplied micro presentation space and returns the presentation space to the
application. This method allows the application to use the same presentation
space for all drawing in a specified window.

Micro presentation spaces created by using the GpiCreateP$S function should
be destroyed by calling the GpiDestroyPS function before the application termi-
nates. Do not call the WinReleasePS function to release a presentation space
obtained by using the GpiCreateP$ function. Before terminating, applications
should also use the DevCloseDC function to close any device contexts opened
by using the DevOpenDC function. No action is necessary for device contexts
obtained with the WinOpenWindowDC function, since the system automatically
closes these device contexts when destroymg the associated windows.

274 MS 0S/2 Programmer’s Reference, Vol. 1
R R B s N B B S S S R S e R R S e

20.3.4.3 Normal Presentation Spaces

The normal presentation space supports the full power of MS OS/2 graphics,
including retained graphics. The main advantages of a normal presentation space
over the other two presentation-space types are its support of all graphics func-
tions, including retained graphics, and its ability to be associated with many
kinds of device contexts.

A normal presentation space can be associated with many different device con-
texts. Typically, this means that an application creates a normal presentation
space and associates it with a window device context for screen display. When
the user asks to print, the application associates the same presentation space
with a printer device context. Later, the application can reassociate the presenta-
tion space with the window device context. A presentation space can be associ-
ated with only one device context at a time, but the normal presentation space
allows the application to change the device context whenever necessary. Figure
20.6 shows how an application typically routes graphics through one normal
presentation space into another device context:

Figure 20.6
Normal Presentation Space
Device Device
context S
=] [e[e |
Normal e o A
Application - presentation
space
->
Device
context

A normal presentation space can be associated with a device context when the
normal presentation space is created, or association can be deferred to a later
time. The GpiAssociate function associates a device context with a normal
presentation space after the presentation space has been created. An application
typically associates the normal presentation space with a device context when
calling the GpiCreatePS function and later associates the presentation space
with a different device context by calling GpiAssociate. To obtain a device con-
text for a window, call the WinOpenWindowDC function. To obtain a device
context for a device other than the screen, call the DevOpenDC function.

An application typically creates a normal presentation space during initialization
and uses it until termination. Each time the application receives a WM_PAINT
message, it should pass the handle of the normal presentation space as an argu-
ment to the WinBeginPaint function; this prevents the system from returning a
cached-micro presentation space. The system modifies the visible region of the

Chapter 20: Painting and Drawing 275
A S T T S B B R e Bl R R R S B R Rl e

supplied normal presentation space and returns the presentation space to the
application. This method allows the application to use the same presentation
space for all drawing in a specified window.

Normal presentation spaces created by using the GpiCreatePS function should
be destroyed by calling the GpiDestroyPS function before the application ter-
minates. Do not call the WinReleasePS function to release a presentation space
obtained by using the GpiCreateP$S function. Before terminating, applications
should also use the DevCloseDC function to close any device contexts opened
by using the DevOpenDC function. No action is necessary for device contexts
obtained with the WinOpenWindowDC function, since the system automatically
closes these device contexts when destroying the associated windows.

20.4 Printing

Although a detailed discussion of printing is beyond the scope of this chapter,
printing should be seen as a variation of screen painting. To draw in a window,
an application issues graphics calls to a presentation space associated with a
screen device context. To print, the application makes graphics calls to a presen-
tation space associated with a printer device context. In an application that sup-
ports a what-you-see-is-what-you-get window display, the printing code should be
the same as or very similar to the window-display code, as though the printed
page were an 8'2-by-11-inch window. (Of course, many applications will optimize
printing code to take advantage of such properties of the output device as high-
resolution page-description languages.)

An application achieves greater device-independence if it does not use pels as its
drawing unit. For example, if an application does all its drawing into a presenta-
tion space with PU_LOENGLISH units (.01 inch), a 100-unit line is certain to
be one inch long on any printing device. The presentation space and device con-
text automatically scale a drawing to compensate for the resolution of the output
device.

20.5 Summary

This section summarizes the window styles related to window painting; the func-
tions that control presentation spaces, device contexts, and window regions; and
the messages related to window painting.

20.5.1 Window Styles for Painting

Most of the styles relating to window drawing can be set either for the window
class (CS prefix) or for an individual window (WS prefix). The following styles
control how the system manipulates the window’s regions and how the window is
notified to paint itself:

WS_CLIPCHILDREN, CS_CLIPCHILDREN All of the child windows of a
window with this style are excluded from the window’s visible region. This style
protects child windows but more time is required when calculating the visible
region. This style is normally not necessary, since if the parent and child overlap

276 MS 0S/2 Programmer’s Reference, Vol. 1
R i B B S S B B R R i

and are both invalidated, the parent is drawn before the child. If the child is
invalidated independently from the parent, only the child is redrawn. If the
update region of the parent does not intersect the child, drawing the parent
should not disturb the child.

WS_CLIPSIBLINGS, CS_CLIPSIBLINGS Any windows that have the same
parent as a window with this style and that are in front of the window are
excluded from the window’s visible region. This style protects windows with the
same parent from being drawn in accidentally but requires more time when cal-
culating the visible region. This style is appropriate for windows that overlap and
that have same parent.

WS_PARENTCLIP, CS_PARENTCLIP The visible region for a window with
this style is the same as the visible region of the parent window. This style sim-
plifies the calculation of the visible region but is potentially dangerous, since the
parent window’s visible region is usually larger than the child window. Windows
with this style should not draw outside their boundaries.

WS_SAVEBITS, CS_SAVEBITS The system saves the bits underneath a win-
dow with this style when the window is displayed. When the window moves or is
hidden, the uncovered bits are simply restored by the system; there is no need to
add the area to the uncovered window’s update region. Because this operation
can consume a great deal of memory, it is recommended only for transient win-
dows such as menus and dialog boxes, not for main application windows.

WS_SYNCPAINT, CS_SYNCPAINT Windows that have this style receive
WM_PAINT messages as soon as their update regions are not empty and are
updated immediately (synchronously). For more details on synchronous painting,
see Section 20.3.1.

CS_SIZEREDRAW A window with this class style receives a WM_PAINT
message and is completely invalidated whenever the window is resized, even if it
is made smaller. (Typically, only the uncovered area of a window is invalidated
when a window is resized.) This class style is useful when an application scales
graphics to fill the current window.

20.5.2 Functions

The following functions control presentation spaces, device contexts, and win-
dow regions:

DevCloseDC Closes a device context created by using the DevOpenDC func-
tion. Do not use this function to close a device context that was created by using
the WinOpenWindowDC function.

DevOpenDC Creates a device context for a specified device type.

GpiAssociate Creates an association between a presentation space and a device
context. Any subsequent drawing to the presentation space goes to the specified
device. This function is typically used only with normal presentation spaces,
since micro presentation spaces must be associated with a device context during
the call to the GpiCreateP$S function.

GpiCreatePS Creates a handle of a normal or micro presentation space. The
presentation space can be associated with a specified device context at the time
of creation (this is mandatory for micro presentation spaces), or it can be associ-
ated later by using the GpiAssociate function.

Chapter 20: Painting and Drawing 277
Y R B B S e B R TS R R B Sl

GpiDestroyPS Destroys a presentation space. Do not attempt to destroy a
cached-micro presentation space by using this function.

WinBeginPaint Returns a handle of a presentation space that has a visible
region equal to the intersection of the window’s update region and the visible
region of the window’s presentation space. This function is called when a
WM_PAINT message is received. If the hps parameter is a valid presentation-
space handle, the visible region of the presentation space is modified and the
handle is returned. If the Aps parameter is NULL, the system returns the handle
of a cached-micro presentation space. The update region of the window is set to
NULL by this function because the system assumes that the caller will do all
drawing necessary to fill the invalid region of the window.

WinEnableWindowUpdate Sets the window-visibility state for subsequent draw-
ing, without causing any visible change to the window. This function can be used
to defer drawing when making a series of changes to a window.

WinEndPaint Indicates that a drawing operation that was started by using the
WinBeginPaint function is finished. The hps parameter is the presentation-space
handle returned by WinBeginPaint. A cached-micro presentation space is
returned to the system for reuse and the drawing environment of a previous
presentation space is restored.

WinExcludeUpdateRegion Removes the update region from the clip region of
the specified window. This can be useful for optimization, since it prevents draw-
ing in the update region. The application must restore the clip region when the
exclusion is no longer needed.

WinGetClipPS Returns a clipped presentation space for the specified window.
The type of clipping depends on the flag settings of the function’s parameters.
The presentation space should be released by using the WinReleasePS function.

WinGetPS Returns the handle of a cached-micro presentation space for the
specified window. The presentation space should be released by using the Win-
ReleasePS function.

WinGetScreenPS Returns a presentation-space handle that can be used to draw
anywhere on the screen.

WinInvalidateRect Adds the specified rectangle to the update region of the
window. If the specified window has the WS_SYNCPAINT style, it receives a
WM_PAINT message before WinInvalidateRect returns. This function can be
used to force part of a window to be repainted. If the fIncludeChildren parame-
ter is TRUE, any child windows that intersect the invalid rectangle are also
invalidated.

WinlInvalidateRegion Adds the specified region to the update region of the
specified window. If the window has the WS_SYNCPAINT style, it receives a
WM_PAINT message before WinInvalidateRegion returns. This function can be
used to force a portion of a window to be repainted. If the flncludeChildren
parameter is TRUE, any child windows that intersect the invalid region are also
invalidated.

WinLockWindowUpdate Prevents updates to the specified window and its child
windows. This is useful if you need to delay updating during incremental data
changes, such as adding items to a list box. Calling WinLockWindowUpdate

278 MS 0S/2 Programmer’s Referenbe, Vol. 1
BT e B B B e S e e S R R e R]

with NULL for the hwndLockUpdate parameter invalidates the windows that
were previously locked and causes WM_PAINT messages to be sent to those
windows.

WinLockVisRegions Locks or unlocks the visible regions of all windows on the
screen. This function is useful to threads because it prevents the visible regions
of windows from changing while the thread performs a screen operation, such as
copying screen pels into a memory bitmap.

WinOpenWindowDC Returns a device-context handle for the specified win-
dow. Attempting to open more than one device context for a given window is an
error. The returned device context is automatically closed when the window is
destroyed; it must not be closed by using the DevCloseDC function.

WinQueryUpdateRect Returns the coordinates of the smallest rectangle that
encloses the window’s update region.

WinQueryUpdateRegion Obtains the update region of the specified window.

WinQueryWindowDC Returns the device-context handle associated with the
specified window.

WinReleasePS Releases the handle of a cached-micro presentation space that
was obtained by using the WinGetPS or WinGetClipPS function. This function
should not be used for presentation-space handles that are not cached—that is,
WinReleasePS should not be used for presentation spaces obtained by using the
GpiCreatePS function.

WinValidateRect Removes the specified rectangle from the update region of
the window. This function can be used to avoid duplicate drawing, by signaling
that part of the window has been drawn without using the WM_PAINT message.

WinValidateRegion Removes the specified region from the update region of
the window. This function can be used to avoid duplicate drawing, by signaling
that part of the window has been drawn without using the WM_PAINT message.

WinWindowFromDC Returns the handle of the window associated with the
specified device-context.

20.5.3 Messages for Painting
The following message is used in the management of window painting:

WM_PAINT This message is sent when some portion of the window needs to
be repainted. The window procedure should respond to the message by painting
the relevant portion of the window.

Chapter

A e B R e N B e e R R R e RIS

Drawing in Windows

A W R 15 e Y 11 Tt s 10 ¥ WU 281

21.2 Window-Drawing Functionsc.ceeveevenenennnnearnennnens 281
21.2.1 Points and Rectangles........ccccveeuruennnnns eseseerasares 281
21.3 Using Window-Drawing Functions......c..cccceevvuvenenianenen.. 282
21.3.1 Working with Points and Rectanglesccccvuveee. 282
21.3.2 Scrolling Window Contents.........cceceeeeninreneencnnnn. 283
21.3.3 Drawing Bitmapscccoveeeeeenienerereereernnennensensnnns 284
21.3.4 Drawing TeXt...ccoiveeriiierrnereieniererercnsaseenesasncnnas 285

21,4 SUININATY ce0iviininiirninireeienenreresasinreernrassssaneasnssosesnss 285

. Chapter 21: Drawing in Windows 281
iR R L Rl R R b At e P T P b IR S IR e BN S R N R R b e ek e

21.1 Introduction

This chapter describes the functions that are specifically designed to help you
draw in windows. (For information on the complete set of drawing functions, see
Part 3, “Graphics Programming Interface.”) You should also be familiar with the
following topics: .

B Standard user-interface guidelines

B Standard frame windows '

B Presentation spaces and device contexts
W Graphics programming interface (GPI)

21.2 Window-Drawing Functions

The functions described in this chapter overlap the functionality of similar draw-
ing functions provided by the GPI sections of MS OS/2. The difference between
the Gpi drawing functions and these window-drawing functions is that the func-
tions described in this chapter are designed specifically for drawing in windows.
Because these window-drawing functions are less general than the Gpi functions,
they are somewhat easier to use, but they also offer fewer capabilities than the
complete set of Gpi functions. The functions described in this chapter offer a
quick and easy way to create simple graphics. Programmers seeking more func-
tionality should use the Gpi functions of MS OS/2.

21.2.1 Points and Rectangles

All drawing in a window takes place in the context of the window’s coordinate
system. Locations in the window are described by POINTL structures that con-
tain an x- and a y-coordinate for the location. The lower-left corner of a window
always has the coordinates (0,0). The POINTL structure has the following form:

typedef struct _POINTL {
LONG x;
LONG

} POINTL:;

The RECTL structure defines a rectangular area in a window. This structure is
made up of two points that define the lower-left and upper-right corners of the
rectangle. The RECTL structure has the following form:

typedef struct _RECTL {
LONG xLeft;
LONG yBottom;
LONG xRight;
LONG yTop:
} RECTL;

An empty rectangle isa rectangle that has no area: the right coordinate is less
than or equal to the left coordinate or the top coordinate is less than or equal to
the bottom coordinate.

282 MS 0S/2 Programmer’s Reference, Vol. 1
B R B B B o T A R e e R R

There are two types of rectangles in MS OS/2: inclusive-exclusive and inclusive-
inclusive. In inclusive-exclusive rectangles the lower-left coordinate of the rect-
angle is included in the rectangle area while the upper-right coordinate is
excluded from the rectangle area. In an inclusive-inclusive rectangle, both the
lower-left and the upper-right coordinates are included in the rectangle. Figure
21.1 shows both types of rectangles:

Figure 21.1
Rectangle Types
{5,5) (5,5)

(0,0) (0,0)

Inclusive/inclusive Inclusive/Exclusive

The dimensions of an inclusive-exclusive rectangle can be calculated as follows:

cx = rcl.xRight - rcl.xLeft;
ey = recl.yTop - rcl.yBottom;

The dimensions of an inclusive-inclusive rectangle can be calculated as follows:

cXx

zrcl.xklght - rcl.xLeft) + 1;
cy

rcl.yTop - rcl.yBottom) + 1;

In general, graphics operations involving device coordinates (such as regions,
bitmaps and bit blits, and window management) use inclusive-exclusive rect-
angles. All other graphics operations, such as Gpi functions that define paths,
use inclusive-inclusive rectangles.

21.3 Using Window-Drawing Functions

The functions described in this chapter are intended for simple drawing. The
rectangle functions manipulate and combine rectangles. The drawing and
scrolling functions perform within a presentation space’s coordinate system.
For more advanced drawing you should use the Gpi functions of MS OS/2.

21.3.1 Working with Points and Rectangles

MS 0S/2 includes many functions for manipulating rectangles. Many of these
functions change the coordinates of a rectangle. Other functions draw in a
presentation space, using a rectangle to position the drawing operation.

Chapter 21 Drawing in Windows 283
e B e S e S S R e e s

The WinFillRect function fills a rectangle with a specified color. For example, to
fill an entire window with blue in response to a WM_PAINT message, you could
use the following code fragment, which is taken from a window procedure:
case WM_PAINT:

hps = WinBeginPaint (hwnd, NULL, NULL);

WinQueryWindowRect (hwnd, &rect):

WinFillRect (hps, &rect, CLR_BLUE);

WinEndPaint (hps) ;
return OL;

A more efficient way of painting a client window is to pass a rectangle to the
WinBeginPaint function. The rectangle will be set to the coordinates of the rect-
angle that encloses the update region of the window. Drawing in this rectangle
updates the window; this can make drawing faster if only a small portion of the
window needs to be painted. This method is shown in the following code frag-
ment. Notice that the WinFillRect function uses the presentation space and a
rectangle defined in window coordinates to guide the paint operation.
case WM_PAINT:

hps = WinBeginPaint (hwnd, NULL, &rect):

WinFillRect (hps, &rect, CLR_BLUE);

WinEndPaint (hps) ;
return OL;

Of course, you can draw the entire window during the WM_PAINT message, but
the graphics output will be clipped to the update region.

The default method of indicating that a particular portion of a window has been
selected is for the WinInvertRect function to invert the rectangle’s bits.

The rest of the rectangle functions are mathematical and do not draw. They are
used to manipulate and combine rectangles to produce new rectangles, which
can then be used for drawing operations.

The WinMapWindowPoints function converts the points from one window-
coordinate space to another window-coordinate space. If one of the specified
windows is HWND_DESKTOP, then screen coordinates are used. This function
is useful for converting from window coordinates to screen coordinates and back
again.

21.3.2 Scrolling Window Contents

An application normally responds to a click in a scroll bar by scrolling the con-
tents of the window. This operation typically has three parts. First, the applica-
tion changes its internal data-representation state to show what portion of the
image should now be in the window. Next, the application moves the current
image in the window. Finally, the application draws in the area that has been
uncovered by the scrolling operation.

For example, a simple text editor may display a small portion of several pages of
text in a window. When the user clicks the down arrow of the vertical scroll bar,
the application should move all the text up one line and display the next line at
the bottom of the window.

284 MS 0S/2 Programmer’s Reference, Vol. 1
T R B e e N B B i e R RS e R R R

When the user clicks the down arrow of the vertical scroll bar, the client window
of the frame window that owns the scroll bar receives a message. The applica-
tion responds to this message by changing its internal data-representation state to
show which line of text is topmost in the window, scrolling the text in the win-
dow up one line, and drawing the new line at the bottom of the window. There is
normally no need to completely redraw the entire window, because the scrolled
portion of the image remains valid.

The WinSecrollWindow function allows applications to scroll the contents of
their windows. WinScrollWindow scrolls a specified rectangular area of the
window by a specified x- and y-offset (in window coordinates). By setting the
SW_INVALIDATERGN flag for this function, the areas uncovered by the
scroll are automatically added to the window’s update region, causing a
WM_PAINT message to be sent to the window for those areas.

For example, in the simple text editor described earlier, the following call scrolls
the text up one line (assuming that iVScrolllnc is the height of the current font)
and adds the uncovered area at the bottom of the window to the update region.

/* Scroll, adding new area to update region. */

WinScrollWindow (hwnd, /* window */
o, * x-displacement */
-(ivscrolllnc), /* y-displacement */
NULL, /* scroll rectangle is entire window */
NULL, /* clip rectangle is entire window */
NULL, /* update region *
NULL, /* update rectangle */
SW_INVALIDATERGN)}; /* flags */

When the uncovered area at the bottom of the window is added to the window’s
update region, a WM_PAINT message is sent to the window. When the message
is received, the window draws the line of text at the bottom of the window. If
the window has the WS_SYNCPAINT style, the WM_PAINT message is sent to
the window before the WinScrollWindow function returns.

To optimize scrolling speed for repeated scrolling operations, you can omit the
SW_INVALIDATERGN flag from the call to the WinScrollWindow function.
This prevents WinScrollWindow from adding the invalid region uncovered by
the scroll to the window’s update region. If the SW_INVALIDATERGN flag is
omitted, you must pass a region or rectangle to WinScrollWindow. The rectangle
or region will contain the area that needs to be updated after scrolling.

21.0.1 Drawing Bitmaps

The WinDrawBitmap function draws a bitmap, specified by a bitmap handle, in
a specified rectangle. This function allows you to shrink or enlarge the bltmap
from the source rectangle to the destination. WinDrawBitmap can also draw in
several different copy modes, including using the OR operator to combine
source and destination pels.

Chapter 21: Drawing in Windows 285
R T e o S e S B S S S R e S s T e

21.3.4 Drawing Text

There are many ways to draw text in a window in an MS OS/2 application. The
simplest way is to use the WinDrawText function, which draws a single line of
text in a specified rectangle, using a variety of alignment methods.

The WinDrawText function allows you to set a flag so that the function does not
draw any text; instead, it returns the number of characters in the string that will
fit in the specified rectangle. For a section of running text, an application could
alternate between computation and calls to WinDrawText to draw successive
lines of text. The DT_WORDBREAK flag in the WinDrawText function can be
set, when performing this kind of repetitive operation, to put line breaks on
word boundaries rather than between arbitrary characters.

21.4 Summary

The following functions are provided specifically for drawing in windows and
manipulating rectangles:

WinCopyRect Copies the coordinates of one rectangle to another.

WinDrawBitmap Draws a bitmap in a rectangle, scaling the bitmap to fit, if
necessary.

WinDrawBorder Draws a rectangle.
WinDrawText Draws a single line of formatted text in a specified rectangle.

WinEqualRect Returns TRUE if two rectangles have the same coordinates or
FALSE if the coordinates are different.

WinFillRect Fills a rectangle with a specified color.

WinInflateRect Enlarges or shrinks the rectangle horizontally and vertically by
the specified amounts. If the specified values are negative, the rectangle is inset.

WinIntersectRect Calculates the intersection of two source rectangles and
returns the result in a destination rectangle, or returns FALSE if the result is an
empty rectangle.

WinlInvertRect Inverts the pels in a rectangle.

WinIsRectEmpty Returns TRUE if the rectangle is empty (that is, if the right
coordinate is less than or equal to the left coordinate or if the top coordinate is
less than or equal to the bottom coordinate).

WinMapWindowPoints Converts points from one window-coordinate system to
another.

WinOffsetRect Changes the left and right coordinates of a rectangle by the
specified offsets.

286 . MS 0S/2 Programmer’s Reference, Vol. 1
S e B O S O B e e

WinPtInRect Returns TRUE if the point is inside the rectangle or FALSE if it
is not.

WinScrollWindow Scrolls the contents of a rectangular area of a window. If
the proper flags are set, the area uncovered by scrolling is added to the window’s
update region, causing a WM_PAINT message to be sent. The application can
then respond to the message by drawing in the invalidated region of the window.

WinSetRect Sets the rectangle’s coordinates.
WinSetRectEmpty Sets the coordinates of a rectangle to (0,0,0,0).

WinSubtractRect Subtracts the coordinates of one rectangle from those of
another rectangle. This function returns FALSE if the result is an empty rect-
angle.

WinUnionRect Calculates a rectangle that encloses two source rectangles. This
function returns FALSE if the result is an empty rectangle.

B e A R R Rl R e e S S R S

Chapter

bt R

Mouse Pointers and Icons

22.1
22.2

22.3

22.4

Introduction.....coieveniiiiiiiiiiiiiiic e 289
About Mouse Pointerscccoveviviiiiiniiiiiininieninainen. 289
22.2.1 Mouse Pointers and Icon Bitmaps......c..ccevveeenrenennns 289
22.2.2 Mouse-Pointer HOt SPOtccevveiniireenrnrnerencneenenans 290
Using a Mouse Pointer in an Application 290
22.3.1 Creating or Loading a Mouse Pointer...........cc...uuuue 290
22.3.2 Changing the Mouse Pointer.......cc.ccceuveenveeecanenennns 290
22.3.3 Drawing an ICON....ccevreiiriniuninieiiiieniianiiinieennens 291
22.3.4 System Bitmaps......ccecvereieniaieiciineceisntenseianiacens 291
SUMMATY coviiiiiiiiiiiiiiiire et reera s anseaneenaans 291
22.4.1 Predefined Mouse PoInters......oeeeveenerennenenrenanennns 292

v Chapter 22: Mouse Pointers and Icons 289
S e B B S e B N R R B R R S e S S e

22.1 Introduction

This chapter describes how to use mouse pointers and icons in your applica-
tions. You should also be familiar with the following topics:

M Standard user-interface guidelines

B Resources and using the MS OS/2 Resource Compiler (rc)
B Window messages and message queues

B Bitmaps

22.2 About Mouse Pointers

Mouse pointers are special bitmaps that MS OS/2 uses to show a user the
current location of the mouse on the screen. The mouse pointer moves around
the screen in response to user manipulation.

Mouse pointers are also used to draw icons on the screen, such as graphics in
message boxes and icons that represent minimized windows on the desktop. The
data structures for mouse pointers and icon bitmaps are identical.

22.2.1 Mouse Pointers and Ilcon Bitmaps

Mouse pointers and icons are made up of monochrome bitmaps that MS OS/2
uses to paint an image of the pointer or icon on the screen. A monochrome bit-
map is a series of bytes. Each bit corresponds to a single pel in the image (the
bitmap representing the display typically has four bits for each pel).

A mouse pointer or icon bitmap is always twice as tall as it is wide. The top half
of the bitmap is an AND mask, where the bits are combined using the AND
operator with the screen bits where the pointer is being drawn. The lower half of
the bitmap is the XOR mask, which is combined using the XOR operator with
the destination screen bits.

The combination of the AND and XOR masks results in four possible colors in
the bitmap. The pels of an icon or pointer can be black, white, transparent (the
screen color beneath the pel), or inverted (inverting the screen color beneath the
pel). Figure 22.1 shows the relationship of the bit values in the AND and XOR
masks:

Figure 22.1
Bit Values in the AND and XOR Masks

AND mask o] o) 1 1
XOR mask o] 1 (o} 1

Result Black White Transparent Inverted

290 MS 0S/2 Programmer’s Reference, Vol. 1
e e T N e R R S S SR B R R R

22.2.2 Mouse-Pointer Hot Spot

Each mouse pointer has a hot spot defined as an x- and y-offset from the lower-
left corner of the mouse-pointer bitmap. The hot spot defines the single point
that represents the mouse-pointer location. For the arrow-shaped pointer, the
hot spot is at the tip of the arrow. For the cross-hairs pointer, the hot spot is at
the center of the cross. Each pointer has its own hot spot.

22.3 Using a Mouse Pointer in an Application

Applications typlcally use mouse—pomter resources to control the appearance of
the mouse pointer and to draw icons in windows. The following sections show
how to use mouse pointers in applications.

22.3.1 Creating or Loading a Mouse Pointer

Before an application can use a mouse pointer, it must first receive a handle to
the pointer. Most applications load mouse pointers from the system or their own
resource file. MS OS/2 maintains many predefined mouse pointers that an appli-
cation can use by calling the WinQuerySysPointer function. System mouse
pointers include all the standard mouse-pointer shapes and message-box icons.

You can also load mouse pointers that are defined in the resource file for your
application. Typically, you define the mouse-pointer resource using Icon Editor
or a similar program. The resulting mouse pointer or icon can then be included
in your resource file. This is done by pulling the Icon Editor data file into your
resource file using the key word POINTER, a resource ID number, and a
filename for the mouse-pointer data created by the Icon Editor. When the
mouse-pointer resource is included in the resource file, you can use it by calling
the WinLoadPointer function, specifying the pointer-resource ID and the
resource-module handle. Typically, the resource resides in the executable file of
the application, so you can supply NULL for the module handle to indicate the
current application resource file.

Finally, you can create mouse pointers at run time by constructing a bitmap for
the pointer and calling the WinCreatePointer function. The bitmap must be
twice as tall as it is wide, with the first half defining the AND mask and the
second half defining the XOR mask. You also must specify the hot spot when
you create a mouse pointer. The handle returned can be used to set or draw the
mouse pointer,

22.3.2 Changing the Mouse Pointer

Once you create or load a mouse pointer, you can change its shape by calling the
WinSetPointer function. The following are three main situations where an appli-
cation typically changes the shape of the mouse pointer:

B When an application receives a WM_MOUSEMOVE message, there is an
opportunity to change the mouse pointer based on its location the window.
If you want the standard arrow pointer, pass this message on to the Win-
DefWindowProc function.

B When an application is about to start a time-consuming process during which
it will not accept user input, the application should display the “system-wait”

Chapter 22: Mouse Pointers and Icons 291
B S S S e a‘f’:&fl&&liﬁ-@mxﬂ*ﬁ:ﬁ%&‘}@&iﬁz&% I S AT A R b, e e T DR

mouse pointer. This pointer is shaped like an hourglass, indicating that the
user must wait. Once this process is complete, the application should reset
the mouse pointer to its former shape.

B The following code fragment shows how to save the current mouse pointer,
set the hourglass pointer, and then restore the original mouse pointer.
Notice that the hourglass pointer is also saved in a global variable so that
the application can return it when responding to a WM_MOUSEMOVE
message during a time-consuming process.

/* Get current pointer. */
hptrO0ld = WinQueryPointer (HWND_DESKTOP) ;
/* Get wait mouse pointer. */
hptrWait = WinQuerySysPointer (HWND_DESKTOP, SPTR_WAIT, FALSE);
/* Save wait pointer to use in WM_MOUSEMOVE processing.*/
hptrCurrent = hptrWait;
/* Set mouse pointer to wait pointer.*/
WinSetPointer (HWND_DESKTOP, hptrWait):
/* Do time-consuming operation; restore original mouse pointer.*/
WinSetPointer (HWND_DESKTOP, hptroO1ld);
B The mouse pointer can be used to indicate the current operational mode of
an application. For example, a paint program with a palette of drawing tools

should change the mouse pointer shape to indicate which drawing tool is
currently in use.

22.3.3 Drawing an Icon

You can use mouse-pointer resources to draw icons. The WinDrawPointer func-
tion draws a specified mouse pointer in a specified presentation space. Many of
the predefined system mouse pointers are standard icons displayed in message
boxes.

22.3.4 System Bitmaps

In addition to mouse pointers and icons defined by the system, you can use stan-
dard system bitmaps by calling the WinGetSysBitmap function. This function
returns a bitmap handle that is passed to the WinDrawBitmap function or one of
the Gpi bitmap calls. The system uses standard bitmaps to draw portions of con-
trol windows such as the system menu, the minimize/maximize box, and scroll-
bar arrows.

22.4 Summary

The following sections describe the system mouse pointers and the functions
available for mouse pointers, icons, and system bitmaps.

292 MS 0S/2 Programmer’s Reference, Vol. 1
T B O g s R e R S R R B

22.4.1 Predefined Mouse Pointers

MS OS/2 provides many predefined mouse-pointer shapes. You receive a handle
to these pointers by using one of the following constants as an argument to the
WinQuerySysPointer function:

SPTR_APPICON Square icon.
SPTR_ARROW Arrow that points to the upper-left corner of the screen.

SPTR_ICONERROR Icon containing an exclamation point, used in a warning
dialog box.

SPTR_ICONINFORMATION Octagon-shaped icon containing the image of a
human hand, used in a warning dialog box.

SPTR_ICONQUESTION Icon containing a question mark, used in a queryk'
dialog box.

SPTR_ICONWARNING Icon containing an asterisk, used in a warning dialog
box.

SPTR_MOVE Four-headed arrow, used when dragging an object or window
around the screen.

SPTR_SIZENESW Two-headed diagonal arrow that points from the upper-
right (northeast) window border to the lower-left (southwest) window border,
used when sizing a window.

SPTR_SIZENS Two-headed arrow that points from top to bottom (north to
south), used when sizing a window.

SPTR_SIZENWSE Two-headed diagonal arrow that points from the upper-left
(northwest) window border to the lower-right (southeast) window border, used
when sizing a window.

SPTR_SIZEWE Two-headed arrow that points from left to right (west to east),
used when sizing a window. '

SPTR_TEXT Text-insertion and selection pointer, often called the I-beam
pointer.

SPTR_WAIT Hourglass, used to indicate that a time-consuming operation is in
progress.

MS OS/2 contains a second set of predefined mouse pointers that are used as
icons in Presentation Manager. The resulting mouse pointer must be explicitly
destroyed using the WinDestroyPointer function before the application ter-
minates. These icons are available for application use by supplying one of the
following constants to the WinQuerySysPointer function:

SPTR_FILE Icon representing a single file (in the shape of a single sheet of
paper). It must be explicitly destroyed before the application terminates.

SPTR_FOLDER Icon representing a file folder. It must be explicitly destroyed
before the application terminates.

SPTR_ILLEGAL Circular icon containing a slash,ﬁy used to indicate an illegal
operation. It must be explicitly destroyed before the application terminates.

Chapter 22: Mouse Pointers and Icons 293
e B S B e R S R e e R S S S e T e e B B R

SPTR_MULTFILE Icon representing multiple files. It must be explicitly
destroyed before the application terminates.

SPTR_PROGRAM Icon representing an executable file. It must be explicitly
destroyed before the application terminates.

22.4.2 Mouse-Pointer Functions
The following mouse-pointer functions can be used in your application:
WinCreatePointer Creates a mouse pointer from a bitmap.

WinDestroyPointer Destroys a pointer or an icon. A pointer can only be
destroyed by the thread that created it. This function decrements the use count
of processes that have accessed the pointer. The pointer is deleted when the use
count reaches zero.

WinDrawPointer Draws the specified mouse pointer (or icon) in a presentation
space.

WinGetSysBitmap Returns a handle to one of the standard bitmaps provided
by the system. The bitmap returned can be used for any routine bitmap opera-
tions. The WinGetSysBitmap function returns a new copy of the system bitmap
each time it is called.

The following bitmaps are available:

Bitmap

Description

SBMP_BTNCORNERS
SBMP_CHECKBOXES

SBMP_CHILDSYSMENU

Push-button corners.

Check-box or radio-button check
mark.

Smaller version of the system-menu
bitmap, used in child windows.

SBMP_DRIVE Symbol used by File System to indicate
a disk drive.

SBMP_FILE Symbol used by File System to indicate
a file.

SBMP_FOLDER Symbol used by File System to indicate
subdirectories.

SBMP_MAXBUTTON - Maximize button.

SBMP_MENUATTACHED Symbol used to indicate that a menu
item has an attached, hierarchical
mentl,

SBMP_MENUCHECK Menu check mark.

SBMP_MINBUTTON Minimize button.

SBMP_PROGRAM Symbol used by File System to indicate

SBMP_RESTOREBUTTON

that a file is an executable program.
Restore button.

MS 0S/2 Programmer’s Reference, Vol. 1 :
bl b e R e R S e e e It R g S s S

Bitmap

Description

SBMP_SBDNARROW
SBMP_SBLFARROW
SBMP_SBRGARROW
SBMP_SBUPARROW
SBMP_SIZEBOX

SBMP_SYSMENU
SBMP_TREEMINUS

SBMP_TREEPLUS

Scroll-bar down arrow.
Scroll-bar left arrow.
Scroll-bar right arrow.
Scroll-bar up arrow.

Symbol used to indicate an area of a
window that a user can click to resize
the window.

System menu.

Symbol used by File System to indicate
that an entry in the directory tree is

empty.
Symbol used by File System to indicate

that an entry in the directory tree con-
tains more files.

WinLoadPointer Loads a pointer resource from a resource file into the system
and returns a mouse-pointer handle. A new copy of the pointer is created each
time this function is called. Once used, the pointer created by this function must
be explicitly destroyed by using the WinDestroyPointer function.

WinQueryPointer Returns a mouse-pointer handle for the current mouse
pointer and can be used to restore the mouse pointer after any temporary
changes.

WinQueryPointerInfo Retrieves information about a specific mouse pointer,
including its bitmap and its hot-spot coordinates.

WinQueryPointerPos Retrieves the current mouse-pointer position in screen
coordinates.

WinQuerySysPointer Returns a handle to the specified system mouse pointer.
You can specify whether you want a handle to the system’s copy of the mouse
pointer or if you want a separate copy for modification.

WinSetPointer Sets the current mouse pointer.
WinSetPointerPos Sets the mouse-pointer position in screen coordinates.

WinShowPointer Shows or hides the mouse pointer.

s et E R e R ek s R

Cursors

23.1
23.2
23.3

23.4

Chapter

(CHEHETHE R A o

Introduction......ccceeveiiiiiiiiiniiiiniii 297
ADbDOUL CUTSOTS...cuiuieiiiiiiiiiiiiiiiiiiiiieiei e 297
Using Cursors in an Application.......ccceeeveveniniaiinianenne. 297
23.3.1 Creating @ CUISOT ..cuiviiceeeestiesnsersetsesnsannsscnsnsenns 297
23.3.2 Destroying a CUursSOr.....cceieeniurrencesereesresasosacncnnes 298
23.3.3 Showing the Cursorcceeeeiiurureiereieiiinenenennnnn. 298
23.3.4 Positioning the CUISOr ...ccvvvreruinrrsercerarseecenrsenns 2908

SEmEE

Chapter 23: Cursors 297

e e E R PR B e D ot e i A Sl e e B

23.1 Introduction

23.2 About

This chapter describes the functions that allow you to use cursors in your appli-
cations. You should also be familiar with the following topics:

B Standard user-interface guidelines
B Window activation and deactivation
B Keyboard focus

Cursors

A cursor is a rectangle that can be shown at any location in a window. It is usu-
ally used to mark a text-insertion point or to indicate when a control window has
the keyboard focus. For example, entry-field controls use a flashing vertical bar
to show the insertion point when the control has the keyboard focus. A button
control, on the other hand, appears as a halftone rectangle the size of the button
when the button has the keyboard focus. MS OS/2 draws and flashes the cursor,
freeing the application from handling these details. Note that the cursor has no
direct relationship with the mouse pointer.

23.3 Using Cursors in an Application

Typically, applications use cursors to mark the text-insertion point in a text win-
dow or to indicate that a window has the keyboard focus.

There can be only one cursor in use by the system at one time, so windows
must create and destroy cursors as they gain and lose the keyboard focus.
The following code fragment shows how an application should respond to a
WM_SETFOCUS message when using a cursor in a particular window:

case WM_SETFOCUS:
if (SHORT1FROMMP (mp2)) {

/* gain focus */

WinCreateCursor (.

WinShowCursor(hwnd TRUE)
} else {

/* lose focus */

WinDestroyCursor (hwnd) ;

return OL;

23.3.1 Creating a Cursor

An application creates a cursor by calling the WinCreateCursor function. Gen-
erally, this is done when a window gains the keyboard focus. An application
specifies the window in which the cursor will be displayed. This window may be
HWND_DESKTOP, an application window, or a control window.

An application specifies the cursor position, in window coordinates, and the cur-
sor height and width. It also specifies whether the cursor rectangle should be
filled, framed, flashing, or halftone.

298 MS 0S/2 Programmer’s Referenée, Vol. 1
A e B g S R B T M S A B

The cursor width is usually zero (nominal border width is used) for text-insertion
cursors. This is preferable to a value of 1, since such a fine width is almost
invisible on a high-resolution monitor. The cursor width may also be related to
the window size; for example, when a button control uses a dotted-line cursor
around the button text to indicate focus.

Finally, an application can specify a clipping rectangle, in window coordinates,
that controls the cursor clipping region. Typically, the most efficient strategy is
to specify NULL, causing the rectangle to clip the cursor to the window rect-
angle.

23.3.2 Destroying a Cursor

Applications should destroy cursors by calling the WinDestroyCursor function
when they lose the keyboard focus. It is important that they be destroyed when
they lose the focus. Manipulating two cursors in MS OS/2 s1multaneously can
have unpredictable results and affect other applications.

23.3.3 Showing the Cursor

MS OS/2 maintains a “show level” for the cursor. The cursor is visible when the
show level is zero. Each time the cursor is hidden, its show level is incremented.
Each time the cursor is shown, its show level is decremented. Because the
show/hide relationship is one for one, the show level can never go below zero.

An application should show the cursor when it is first created since the cursor is
created with a show level of 1.

MS OS/2 automatically hides the cursor when the WinBeginPaint function is
called, and shows the cursor when the WinEndPaint function is called. There-
. fore, there is no conflict with the cursor during WM_PAINT processing.

23.3.4 Positioning the Cursor

An application can set the position of an existing cursor by calling the Win-
CreateCursor function with the CURSOR_SETPOS flag set. This function can
also be used to move a cursor around a window. Position arguments are given in
window coordinates. To change the cursor size, destroy the current cursor and
then create a new one with the desired size.

23.4 Summary

The following section summarizes the functions related to cursor management.

WinCreateCursor Creates a new cursor or changes the position of an existing
cursor. The cursor is created when the window gains the keyboard focus
(receives a WM_SETFOCUS message with the fFocus parameter set to TRUE).

WinDestroyCursor Destroys the cursor. The cursor is destroyed when the win-
dow loses the keyboard focus (receives a WM_SETFOCUS message with the
fFocus parameter set to FALSE).

WinShowCursor Shows or hides the cursor. The cursor is visible if its show
level is zero. Hiding the cursor increments its show level. Showing the cursor

Chapter 23: Cursors 299
R R G R S R N R S R R S e R L

decrements the show level. The show level cannot go below zero (so the cursor
can be shown an infinite number of times).

WinQueryCursorInfo Fills in a supplied CURSORINFO data structure with
information about the cursor, including its size, position, and current show level.

S R e R R R R R R e R e R i R R

Printing

24.1
24.2

24.3

24.4

24.5

sratEbai b Rt

INtroductionveuieiiniiniieiiiiiiiieiiir e 303
About Printingccceevviiiniiiiiiiiiiiiiiiiinin e, 303
24.2.1 The Print Queue and the Spooler.......ccevuvurerarannenn. 304
Printingcccovviiiiiiiiiiiiiiiniiiinc e 305
24.3.1 Specifying the Default Printer.......ccceeeernrneenenennnns 305
2432 Opening a Device Context for a Printer 306
24.3.2.1 Logical Addresscoeuvuenreeeeensennenaencnconns 306
24322 Printer-Driver Name....ccocoeevurnieenreresnensans 307
243.2.3 The Driver-Data Field.......ocouvuiniiineninnnne. 307
24.3.2.4 The Data-Type Fieldc.cvvvneeennrnrnenennnnn. 307
24.3.2.5 Using the Print QUeU€.......cevveernrneneenenennns 307
243.2.6 Creating a Device COntext...c.oveeeruenrnrneennn 308
24.3.3 Starting a Print Job....cciieiiiriiiieniiiiiiiirnnenanen. 308
24.3.4 Associating a Presentation Space.........cceoevieinnennn. 309
24.3.5 Drawing for Printingccoeveiiiiiiiiieinininecninenenn, 310
24.3.5.1 Determining Page Siz€ccvverenreernrncnnns 310
243,52 Printing a Page...c.ccoeeiiiiiieieiiiiinininenennas 312
24.3.53 Finishing a Print JOb ..ccvvviniinieiennnennennnenns 312
24.3.6 Destroying the Printer Device Contextcceueeen.. 312
Special Printing TOpIiCs....ovvvverenieiiinreiienieniniieenenninnen. 313
24.4.1 Page SetUP...ccciuerreceneniereenrennnenenserssarcncesnsnrens 313
24.42 Using a Thread to Printccovevuveiinininininininininen.. 315
2443 Printing to @ File...ucveiiiiiiiiiiiniiiiienriinenninenennnnns 315
24.4.4 Printing a Bitmapcueuviieieieiinieirciiiieninennenenn. 316
24.4.5 Optimizing Printing for a Particular Printer.............. 317
SUMIMATY 1.vniiiiiieeireicre e eerae e e ee e ensanensaeansanes 317

B A B B R B B R R R B B T

Chapter 24: Printing 303
GERLE

24.1 Introduction

24.2 About

Figure 24.1

This chapter describes how to print graphics and text to printers and plotters.
You should also be familiar with the following topics:

® Standard user-interface guidelines
Device contexts and presentation spaces

Graphics programming interface (GPI)

|

® Window painting

|

B Extracting information from the o0s2.ini file

Printing

The graphics model in MS OS/2 is based on presentation spaces and device con-
texts. Applications draw in a presentation space by using Gpi graphics functions.
The presentation space is associated with a device context that translates graph-
ics commands into device-specific operations that display graphics on a device.
By associating a presentation space with different device contexts, an application
can direct output to different devices, ranging from screen displays to printers
and plotters.

The central concept when printing in MS OS/2 is device independence. The
same graphics commands used to draw on the screen can be used to draw graph-
ics. For example, a word processor can display its text in a window by calling
Gpi character and string-drawing functions. When printing, the same application
can use the same Gpi functions to draw the text, the only difference being that
the presentation space is associated with a printer instead of with a window.
Printing can be thought of as drawing in a window the size of a sheet of paper.
Figure 24.1 shows how output goes through a presentation space to a device con-
text and finally to an output device.

Application to Device Path

= lels

’ Presentation Device Device
Application space ->»- context | =P

%0]

Choosing the appropriate presentation-space units is an important considera-
tion in achieving device independence for an application. If you use device-
independent units, such as LOENGLISH, HIENGLISH, LOMETRIC, or
HIMETRIC, your graphics commands will produce nearly the same results on
all devices. If you use the PELS unit, you must explicitly allow for the pel size
and aspect ratio of the output device.

304 MS 0S/2 Programmer’s Reference, Vol. 1
B T R e e S T

For example, if you use LOENGLISH units (each unit is 0.01 inch), a call to the
GpiBox function asking for a 100-unit box produces a 1-inch box on any output
device, regardless of the pel size or aspect ratio. In contrast, if you issue the
same command using the PELS unit, the box will be one size on the screen
(approximately 72 pels per inch) and much smaller on a laser printer (300 pels
per inch). Additionally, the box will not be square on an EGA dlsplay because
its pels are not square.

Of course, there are limits to the device-independence of MS OS/2 graphics,
depending on the physical limitations of the output device. Output typically
looks better on a laser printer with 300 pels per inch than on a dot-matrix printer
with lower resolution. The value of device independence is that you do not have
to be concerned with the different capabilities of each device. Instead, images
are drawn in a virtual page and the device context makes the best use of the
available resolution.

If you use the PELS units, you can do scaling by querying the device context to
determine the horizontal and vertical resolution. But it is much better to use a
device-independent measurement unit and allow MS OS/2 to scale your drawings
to the selected device.

24.2.1 The Print Queue and the Spooler

"MS OS/2 provides the means for applications to spool printing jobs so that
applications do not wait for printing to finish before proceeding with other pro-
cessing. The main components of the spooling capability of MS OS/2 are the
spooler (pmspool.exe) and the queue processor (pmprint.qpr). When an applica-
tion submits a queued printing job, the graphics commands that comprise the
print job are output in a device-independent metafile format. The queue proces-
sor takes the metafile output and sends it to the printer, translating the contents
into printer-specific commands. (The queue processor calls the printer driver to
help translate the metafile commands into printer-specific commands.)

The spooler may or may not be involved in this process. If it is active, the
spooler manages the metafile output as a spool file and coordinates a queue of
spool files waiting to be processed by the queue processor. If the spooler is not
active, the metafile is passed directly from the application to the queue proces-
sor. The spooler is an optional intermediary between the application and the
queue processor.

It is irrelevant to an application whether or not the spooler is active. The user
determines if the spooler is running by using Control Panel. An application
should always queue its printing output because this takes advantage of the
device-independent features of metafiles and the queue processor. If the spooler
is active, the queued output will be managed by the spooler. If the spooler is not
active, the spooled output will go directly to the queue processor. An apphcatlon
might need to wait longer before printing finishes when the spooler is not active.

Chapter 24: Printing 305
A R i R MQE'%"'.W:@? B e R B R R R R SR S R e Rl

24.3 Printing

The following sections describe the typical steps for printing from an MS OS/2
application. The procedures described here allow you to print to the widest
range of output devices. Special printing strategies are described later in this
chapter. The following topics will be discussed:

Specifying the default printer

Opening a device context for a printer

Starting a print job

Associating a presentation space for printing

Drawing the print job in the presentation space

Finishing a print job

Destroying the printer device context

24.3.1 Specifying the Default Printer

A user specifies each printer attached to a particular system by making choices
in Control Panel that is part of the user shell. A user can install new printer
drivers and associate printers with print queues. Information about available
printers can be found in the os2.ini file. You can access this information by call-
ing the WinQueryProfileString function, specifying the appropriate sections and
keywords.

An application should not set the default printer directly. Applications should
use the printer specified as the default in the os2.ini file.

Before using a printer with an application, you should know its driver name and

the logical address. To find this information, find the name of the default printer
by calling the WinQueryProfileString function for the “PM_SPOOLER” section

and the “PRINTER” keyword, as shown in the following code fragment:

/* Get the default printer name, for example, "PRINTER1." */

cb = WinQueryProtileString(hab

"PM_SPOOLER", /* section name */
"PRINTER", /* keyname */
", /* default */
szPrinter, /* profile string */
32); /* maximum characters */
szPrinter [cb-2] = O; /* remove terminating ";" */

The call to the WinQueryProfileString function fills the supplied string

variable with the name of the installed printer. A typical printer name is
“PRINTER1”. You use this name of the printer as the keyword specifier and
“PM_SPOOLER_PRINTER? as the section name, and then call the WinQuery-
ProfileString function again to get a string, called the “printer details,” contain-
ing several substrings. The substrings contain the name of the printer driver and
the name of the logical port that the printer is attached to. The following code
fragment shows how to use the WinQueryProfileString function to extract this
information. The code fragment assumes that the name of the default printer in

306 MS 0S/2 Programmer’s Reference, Vol. 1
R T B B e R B e e R R i e

the variable szPrinter has been filled in by a call to WinQueryProfileString.

/* Get the printer details.
* Fill in a supplied string with substrings:
<physical Port> <driver name>; <queue port>;<network params>;

*

+ typically "LPT1;IBM4201;LPT1Q:;"

*

b = WinQueryProfileString(hab,
"PM_SPOOLER_PRINTER", /* section name */
szPrinter, /* keyname */
", /* default */
szDetalils, /* profile string */
256) ; /* maximum characters #*/

Once you extract the long string of substrings from 0s2.ini, you must parse the
string to find the substrings. The string contains four substrings: the name of the
physical-printer port (for example, LPT1), the name of the printer driver (for
example, IBM4201), the name of the logical port (for example, LPT1Q), and
network information (if any). Each substring is separated from the next by a
semicolon (;), so you can use the library function strchr to search for semi-
colons and return pointers to the positions in the string.

There can be more than one driver name. For example, the string might look
like the following:

LPT1;IBM4201,PSCRIPT;LPT1Q:

When more than one name is included, the first name is the default name. You
should always check for a comma (,) in the driver name to make sure only one
name is returned. Control Panel sometimes appends other information to the
driver name. You should always parse the driver name and strip off text begin-
ning at the period.

Once you determine the name of the driver and the logical address of the
printer, you can open a device context and a presentation space for the printer.

24.3.2 Opening a Device Context for a Printer

Calls to the WinQueryProfileString function to produce the name of the
installed-printer driver and logical address. Using this information, you can open
a device context for a printer. The main role of the device context is to translate
graphics calls from an application into device-specific operatlons The device
context is associated with a presentation space. All drawing in the presentation
space is directed. to the device rather than to the screen.

You open a device context for a printer by calling the DevOpenDC function and
passing it a pointer to a DEVOPENSTRUC data structure. There are eight
pointers in DEVOPENSTRUC, but typically only the first four fields must be
filled (the logical address, the prmter-drlver name, driver data, and data type) to
open a device context.

24.3.2.1 Logical Address

The logical address of a printer is the destination for the print data. Gener-

ally, you use the third substring of the printer-detail string returned by the
WinQueryProfileString function, as explained earlier in this chapter. You can
also print directly to a physical port, such as LPT1, by specifying the name of
the physical port as the logical address You can also supply a filename to direct
prmt output to a file.

Chapter 24: Printing 307
e i R B B R R S s R Rl

24.3.2.2 Printer-Driver Name

The printer-driver name identifies the driver that controls the printing device.
The printer-driver name is usually extracted from the printer-detail string in the
0s2.ini file, as explained earlier in this chapter. MS OS/2 adds a filename exten-
sion (.drv) to the name you supply.

24.3.2.3 The Driver-Data Field

The driver-data field points to a printer-specific data structure that describes
aspects of the page, such as the page layout (portrait or landscape) and the
default data format (PM_Q_STD or PM_Q_RAW). If you set this field to
NULL, the printer driver uses the default settings established by the user when
the printer driver was installed with Control Panel. The user can also use Con-
trol Panel at any time to change printer settings.

If NULL is passed for the driver-data pointer, the settings most recently set in
Control Panel will be used. Because Control Panel is always available, it is not
necessary for an application to provide the means to change these settings. How-
ever, it is possible to change the driver data for a particular print job from an
application by calling the DevPostDeviceModes function.

24.3.2.4 The Data-Type Field

The data-type field is a string that specifies the print-data format. The two possi-
bilities supported by MS OS/2 version 1.1 are PM_Q_STD and PM_Q_RAW.
You can supply NULL for this field to obtain the default data type for the
printer.

B The PM_Q_STD format contains data generated by Gpi graphics calls,
including graphics calls to draw text. This format is generally used and is the
most versatile and printer-independent.

® The PM_Q_RAW format contains a printer-specific data stream generated
by the application rather than by the translated graphics commands of the
PM_Q_STD format. You should use the PM_Q_RAW format only if you
know the exact capabilities of the printer. For example, this format might be
useful for an application that produces its own PostScript output directly
rather than relying on Gpi commands to be translated by the device context.
It might also be useful for sending a text stream to a printer that does not
support graphics. If you use the PM_Q_RAW format, you can send the data
to the printer by calling DevEscape with the DEVESC_RAWDATA control
code.

24.3.2.5 Using the Print Queue

One of the arguments to the DevOpenDC function specifies the type of device
context to open. The possibilities that are applicable to printing-device contexts
are OD_QUEUED, OD_DIRECT, and OD_INFO. Generally, OD_QUEUED
is used to take advantage of the spooling capabilities of MS OS/2. If a user has
the spooler turned on, graphics calls are captured as a spool file and placed in
the print queue. The spooler passes the spool file to the queue processor for
actual printing. Once a queued file has been written to its spool file, the applica-
tion is free to continue with other tasks. This means that a user can continue
working without waiting for a document to print.

308 MS 0S/2 Programmer’s Reference, Vol. 1
i i e R R R e e i

et L i e e R R ey

Even if the spooler is turned off, you should use a OD_QUEUED device con-
text. If the spooler is absent, printing data is passed directly from the application
to the queue processor where it is processed for final output to the device. It
does not matter if the spooler is running or not. You should always queue your
printing output, except when you want to bypass the print queue or when you
want to open a device context for information only. You can use OD_DIRECT
when you want to bypass the print queue, such as when printing to a file.

You can use OD_INFO to open a device context for information only, such as
during program initialization when determining the page size of the current
printer. Knowing the page size of the printer can be used to provide on-screen
pagination information. However, an application should always check the page
dimensions before printing because the user may have changed the default
printer.

24.3.2.6 Creating a Device Context

Once the device-specific information described earlier in this chapter is
obtained, you can open the device context. In the DEVOPENSTRUC structure,
the first three fields point to the driver name, the logical-address name, and the
DRIVDATA structure, respectively. The device-context type is set to
OD_QUEUED so that the output will be queued. The following code fragment
shows how to open a device context, assuming that the printer-driver name and
the logical-address name have been obtained:

/t
* Fill in the DEVOPENSTRUC structure
*

* The name of the driver and logical address were obtained by calling
*/NinQueryProfileString. The driver data came from DevPostDeviceModes.
*

DEVOPENSTRUC dop;
PSZ pszDriverName;
PSZ pszLogAddress;

*

* Use WinQueryProfileString to fill in pszDriverName
* and pszLogAddress.
*/

dop.pszDriverName = pszDriverName; /* from os2.ini */
dop.pszLogAddress = pszLogAddress; /* from os2.ini */
dop.pdriv = NULL;

dop .pszDataType = "PM_Q_STD";

/* Now open the device context. */

hdecPrinter = DevOpenDC (hab,
QD_QUEUED,
"an

4L,I /* use first four fields */
{PDEVOPENDATA) &dop,
(HDC) NULL) ;

24.3.3 Starting a Print Job

Once a device context is successfully opened using a printer driver, a “start doc”
message must be issued to the device context to tell it a new document is start-
ing. The start-doc escape call includes a string that is displayed by the queue

Chapter 24: Printing 309

B S R R R R T R R R R R R ke A I e S

manager as the print-job name. Typically, a filename is supplied as the document
name, as shown in the following code fragment:

LONG 1rc;
/* Start a document. */

lrc = DevEscape (hdcPrinter,
DEVESC_STARTDOC,
strlen (pszDocName) ,
pszDocName,
NULL,
NULL) ;

24.3.4 Associating a Presentation Space

The device-context handle returned by the DevOpenDC function is used to
create a presentation space for drawing. You specify zero for the x- and y-
dimensions of the presentation space so that the system can make the presenta-
tion space large enough to include a single page using the specified device con-
text. You cannot use a cached-micro presentation space for printing. If you use
an absolute-measurement environment—for example, PU_LOENGLISH or
PU_HIMETRIC, graphics will automatically be the same size on screen and
when printed. If you use PU_PELS, you must scale the graphics commands to
match the different resolutions of the screen and the printer.

SIZEL sizl;

sizl.cx = OL;
sizl.cy = OL;

hpsPrinter = GpiCreatePS (hab, hdcPrinter, &sizl,
PU_LOENGLISH | GPIF_DEFAULT | GPIT_NORMAL | GPIA_ASSOC);

Another strategy is to use for printing the same presentation space used for win-
dow painting. This saves creating a new presentation space. In this case, the
presentation space must be a GPIT_NORMAL presentation space. The presen-
tation space must first be disassociated from the device context that it has been
associated with (usually a window device context), and then associated with the
printer device context, as shown in the following code fragment:

GpiAssociate (hpsWindow, NULL); /* disassociate first */

CGpiAssociate (hpsWindow, hdcPrinter); /* associate with printer */

You must be cautious of the WM_PAINT message during printing operations if
you use the same presentation space for printing and window drawing. The
presentation space cannot be used to respond to the paint message while the
presentation space is associated with the printer device context. For more infor-
mation, see Section 24.4.2.

Once a printer device context has been associated with a presentation space,
graphics functions can be called to draw each document page.

310 MS 0S/2 Programmer’s Reference, Vol. 1 ,
T s B e B R R R S S T e e i R

24.3.5 Drawing for Printing

Application data images are usually expressed in “world space.” This is the
coordinate system in which all graphics commands are expressed. The units

of the world space are typically application-convenient units, such as 0.01-inch
(LOENGLISH). Images are drawn in windows by expressing graphics commands
in convenient units. The system scales and converts these units to the device-
specific units of the display so that the image appears correct in the window.

If an image is larger than a window, a matrix translation is used to slide the
coordinate system of the world space to match the coordinate system of the win-
dow. Figure 24.2 illustrates how a translation might be used to map a portion of
the world space to a window display space.

Figure 24.2
World-Space to Device-Space Translation

World space \

Device space —

The central idea behind drawing for printing is that it is very similar to drawing
for a window that is the size of a piece of paper. The system performs the same
scaling transformation to convert world-space units to device units. This
automatic scaling allows the same imaging code to draw for both a 72-dot-per-
inch impact printer and a 300-dot-per-inch laser printer.

243.5.1 Determining Page Size

In order to print images to a printer or plotter, the page size must be expressed
in convenient units. For example, if you do all your drawing in 0.01-inch
(LOENGLISH) units, you will need the page size in 0.01-inch units rather than
in device units (PELS). To determine the page size, call the DevQueryCaps
function for the given device to get the width and height of the device page in
device units. These units can be converted to presentation-space units by calling
the GpiConvert function, as shown in the following code fragment:

Chapter 24: Printing 311

T B R e A B S R S R s e S S R R e e R e

Figure 24.3

SIZEL sizl;

/* page size */

DevQueryCaps (hdcPrinter, CAPS_WIDTH, 2L, (PLONG) &sizl);

GpiConvert (hpsWindow, CVTC_DEVICE, CVTC_WORLD, 1L, (PPOINTL) &sizl);

Once the page size has been determined, the image can be divided and drawn

into pages for printing. Figure 24.3 shows how a multiple-page document might

be broken into pages, assuming a user has selected portrait mode during printer
setup. The figure shows how the page size is used to divide the world space into

pages.

Portrait-Mode Pages in World Space

Figure 24.4

The page size returned reflects either portrait or landscape mode, depending on
what the user selects in Control Panel. Figure 24.4 shows how these same pages
are divided for landscape mode. Notice that no additional page rotation or extra
support work must be done for landscape mode. As long as you use the x- and
y-sizes returned by the DevQueryCaps and GpiConvert functions, a document
will be correctly paginated.

Landscape-Mode Pages in World Space

312 MS 0S/2 Programmer’s Reference, Vol. 1
T e o e S R e RS S B e R e e

24.3.5.2 Printing a Page

Each page of a print job is drawn by making Gpi calls to the world space of the
presentation space. If a document consists of only one page, then the origin of
the world space probably corresponds to the origin of the device page, so no
translation is necessary. To print a multi-page document, you must translate
world-space coordinates so that they line up each page with the origin before
drawing.

For example, to print page 2 in Figure 24.4, you would apply a translation on the
x- and y-axis to slide the desired page so that its lower-left corner sits at the ori-
gin. Assuming that a SIZEL structure holds the horizontal and vertical dimen-
sions of the page, a call to the GpiSetDefaultViewMatrix function slides page 2
down and over to the origin. Notice that first you call the GpiQueryDefault-
ViewMatrix function to fill in the other values of the nine-element matrix, then
the x- and y-translation fields are filled in, then the matrix is set.

MATRIXLF matrix; ’
SIZEL sizl; /* size of page, in world units */

/* First get the current transformation matrix. */
GpiQueryDefaultViewMatrix (hps, 9, &matrix);
/* Change the x- and y-translation elements. */

matrix.1M31 = -sizl.cx;
matrix.lM32 = -sizl.cy:

/* Call GpiSetDefaultViewMatrix to translate image to page. */

GpiSetDefaultViewMatrix (hps, 9, &matrix, TRANSFORM_REPLACE) ;

For a multi-page document, you must call the DevEscape function with the
DEVESC_NEWFRAME escape at the end of each page to begin a new page. It
is not necessary to send a DEVESC_NEWFRAME escape after the last page.

24.3.5.3 Finishing a Print Job

After printing all pages in a print job, you must call the DevEscape function
with the DEVESC_ENDDOC code telling the queue processor that the print job
is finished.

24.3.6 Destroying the Printer Device Context

Once drawing is finished, the presentation space should be disassociated from
the prmter device context. If a special presentation space was created for print-
ing, it can be destroyed along with the device context, as shown in the following
code fragment:

GpiAssociate (hpsPrinter, NULL);

DevCloseDC (hdcPrinter)
GpiDestroyPS (hpsPrinter) ;

However, if an existing presentation space was used for printing, you should
disassociate the presentation space from the printing device context, reassociat-
ing the presentation space with its original window device context.

Chapter 24: Printing 313

S i S L e B S S S S R ST R R S T s

24.4 Special Printing Topics

The following sections describe special printihg techniques.

24.41 Page Setup

Figure 24.5

One of the fields in the DEVOPENSTRUC structure, used when opening a
device context, is pDriverData, a pointer to a DRIVDATA structure. This struc-
ture contains device-specific information about the page configuration (landscape
or portrait), page size, default font, and other page-configuration details. The
size and contents of the DRIVDATA structure depend on the printer being used.
Typically, a user specifies the default configuration information from Control
Panel. Control Panel stores this information for each printer in the o0s2.ini file. If
NULL is supplied for the driver data when opening the device context, the
printer driver retrieves the system-wide default driver data from 0s2.ini and uses
it to configure page characteristics.

An application can always use the page configuration specified by the user in
Control Panel. If more control is required, calling the DevPostDeviceModes
function displays a dialog window that can be used to specify new page charac-
teristics for individual print jobs. Driver data retrieved by this dialog window
applies to the current print job. It does not change the system default settings.

Figure 24.5 shows a dialog window that fills in the DRIVDATA structure for an
IBM4201 printer.

IBM4201 Page Setup

Current Form
[- Standard l
Defined Forms
Standard (1]
I ~Form Feed Control
O None
3 O Compulsory
@ Conditional
Forms -
[‘ Add) @hongs] (Deiete)] O Portrait
Defauit Spool File Type @ Landscape
PM_Q_STD i
PM_G_RAW] rPrint Quality
3 | Oorant
[0 Near Letter Quality

The DevPostDeviceModes function displays the page-setup dialog window. Any
changes in page setup are reflected in the DRIVDATA structure and passed to
the DevOpenDC function to obtain a device context matching the page charac-
teristics. .

314

MS 0S/2 Programmer’s Reference, Vol. 1

B B e S S B S R R R e R T R R B R IR R

e

LA

i

The following code fragment shows how to call the DevPostDeviceModes func-
tion to fill the DRIVDATA structure. You call it first with a NULL structure
pointer to determine the size of the device-specific structure. Using the size
value returned, it is possible to allocate memory and pass a far pointer to the
DevPostDeviceModes function, which in turn fills the device information in the

structure.

ULONG ulSize;
PDRIVDATA pdriv;

ulSize = DevPostDeviceModes (hab,

NULL, /* NULL for data size only
pszDriverName, /* driver name

NULL, /* device name

szPrinter, /* printer name

OL) ; /* not used here

/* Now allocate some memory. */
usResult = DosAllocSeg(ulSize, &sel, O);
pdriv = MAKEP (sel, 0);

ulSize = DevPostDeviceModes (hab,

A

*/
*/
*/
*/

pdriv, /* buffer for drivdata */
pszDriverName, /* driver name */
NULL, /* device name */
szPrinter, * printer name *

OL) : /* Display dialog. Do not change o0s2.ini. */

Notice that the last argument to the DevPostDeviceModes function is a long
word that determines whether or not the function changes the contents of the

os2.ini file. The following values are valid:

Value Meaning

0 Displays a dialog window for driver data without chang-
ing the defaults in the 0s2.ini file. This is appropriate for
an application that configures a single print job without

changing system-wide settings.

1 Displays a dialog window for driver data and writes the
new driver data, which becomes the default, to the
0s2.ini file. This is appropriate for Control Panel because
the new default settings affect the entire system. Gen-
erally, applications should not change the driver data for

the entire system.

2 Does not display a dialog window; returns the default-
driver data from the o0s2.ini file. This is useful for saving
default-driver data with a particular document.

If you use the DevPostDeviceModes function to set up the driver data for an
individual document, you should save the driver data along with the document so
that the settings are available to the user when the document is reopened. Be
sure the printer driver is the same as it was when the driver data was created

because the data format is unique to each printer driver.

Chapter 24: Printing 315
e S L S o S S S T ST S R T S s

24.4.2 Using a Thread to Print

An MS OS/2 application should not be unresponsive to user input for an
extended period of time. Any operation that takes longer than 1 second should
be carried out in a separate thread, allowing the user-interface thread to con-
tinue to respond to user input.

Printing typically begins when a user chooses a command from a menu in an
application. A client window receives a WM_COMMAND message from the
menu and begins the printing operation. No further mouse clicks or keystrokes
are processed until the application calls the WinGetMsg or WinPeekMsg func-
tion again. Therefore, the user cannot interact with an application menu or
switch to another application until one of these two functions is called.

The following are two basic ways to allow an application to remain responsive
during a lengthy printing operation:

B Call the WinGetMsg or WinPeekMsg function at regular intervals during
printing to handle user input.

B Create a separate thread to handle printing. The main thread can continue to
call the WinGetMsg function while the printing thread executes.

Handling user input during printing can cause many problems with data integ-
rity and synchronization. For example, should a user be allowed to modify a
document while it is printing? Semaphores should be used to protect shared
resources whenever there are potential conflicts.

One simple solution to the data synchronization problem is to create a thread for
printing and display a message box in the main thread that allows a user to can-
cel printing. The printing thread could periodically check a semaphore con-
trolled by a message box to determine if printing has been cancelled. This way a
user cannot modify data in an application while it is printing, but can switch to
another application while printing continues.

Another possible problem when handling messages during printing is receiving
WM_PAINT messages. Because printing and window drawing typically use the
same drawing functions and the same data, drawing routines must be reentrant.
If the same presentation space is used for window painting and printing, an
application should not draw in the window when the presentation space is associ-
ated with the printer device context.

24.4.3 Printing to a File

Some printer drivers allow data to be sent to a file rather than to a device.

In particular, a PostScript device driver and a plotter device driver direct

print data to files if a filename is supplied in the pszLogAddress field of the
DEVOPENSTRUC structure when opening a device context for printing. All out-
put from printing is sent to this file. If the file already exists, its data is overwrit-
ten. If the file does not exist, the device driver creates it. These two device

316 MS 0S/2 Programmer’s Reference, Vol. 1
B S B N S S S R e R R R R B s

drivers support this feature because their data stream is ASCII text. The
IBM4201 device driver, which sends mostly binary data to the printer, does not
support printing to a file.

You should open an OD_DIRECT device context when iprinting to a file.

24.4.4 Printing a Bitmap

Printing a bitmap requires that the bitmap be converted from its original format,
which is usually compatible with the video display, to a format for the current
printing device. The GpiSetBitmap function converts bitmaps from one device
format to another.

You must perform the following steps to print a bitmap on a printer:

1 Create a device context and a presentation space for the screen.

2 Create a memory device context for the screen and associate it with a presenta-
tion space.

3 Create a bitmap and attach it to the memory presentation space and device con-
text using the GpiSetBitmap function.

4 Draw the bitmap from the screen presentation space and device context to
the memory presentation space and device context using the GpiBitBIt or
GpiWCBItBIt function.

‘5 Create a device context and presentation space for the printer.

6 Create a memory device context for the printer and associate it with a presenta-
tion space.

7 Convert the bitmap from the display-memory presentation space and device con-
text to the format of the printer-memory presentation space and device context.

8 Attach it to the printer-memory presentation space and device context by calling
the GpiSetBitmap function.

9 Draw the bitmap from the printer-memory presentation space and device context
to the printer presentation space and device context by using the GpiBitBIt or
GpiWCBItBIt function. Do any scaling necessary to correct for resolution
differences between the display and the printer.

The GpiSetBitmap function converts the different device formats, such as color
to monochrome, but does not correct for differences in pel resolution between
devices. For example, if you are printing a screen bitmap (typically about 72 pels
per inch to a laser printer with 300 pels per inch, you must scale the image when
converting from the printer-memory device context to the device context. You
can determine the differences in pel resolution by calling the DevQueryCaps
function for each device.

Chapter 24: Printing 317
B g T e e e e g S T R e S R s R i e

24.4.5 Optimizing Printing for a Particular Printer

You can optimize printing for certain printers not usually available through the

" API by using the DevEscape function. Escape calls are sent to the device driver,
which must interpret them. The DevEscape function signals the beginning and
end of documents of single pages, and sends printer-specific binary data to a
printer.

24.5 Summary

The following functions can be used in setting up a printing operation:
DevCloseDC Closes a device context opened by the DevOpenDC function.

DevEscape Sends escape codes to the specified device. Starts and stops print-
ing, signals the end of a page, and sends printer-specific binary data to a printer.

DevOpenDC Opens a device context for a printing device.

DevPostDeviceModes Displays a dialog window for a user to specify various
printer configuration information.

DevQueryCaps Returns information about a specific device, such as the width
and height of a page.

GpiAssociate Associates a presentation space with a device context for a par-
ticular printer, or disassociates the presentation space from its current device
context if a NULL device context is specified.

GpiConvert Converts device units to world coordinates from one coordinate
system to another.

GpiCreatePS Creates a presentation space that can be associated with a
printing-device context.

GpiDestroyPS Destroys a presentation space created by the GpiCreatePS func-
tion.

GpiQueryDefaultViewMatrix Queries the current viewing transformation matrix
and fills in a supplied MATRIXL structure. This function retrieves the current
viewing transformation matrix so that the x- and y-translation elements can be
changed.

GpiSetBitmap Connects a bitmap with a presentation space that is associated
with a memory device context, converting a bitmap from one device format to
another, such as converting between the screen and a printer.

GpiSetDefaultViewMatrix Sets the viewing transformation matrix so that the x-
and y-translation values can be used to move portions of a world-space image to
the origin for printing.

WinQueryProfileString Retrieves the name of the current default printer and
printer driver from the o0s2.ini file.

A R R R S B S R R R SRR

Heaps

Chapter

it A A RS

25.1 Introduction.....cccceuieiiuieniniiiiniinininiiniriciieniieneennenenes 321

25.2 About Heaps....coiveiieeiiiieiiiiiiiiineiiiiiseiiriieeraenenes 321

25.3 Using a Heap in an Application.........cocevevinveiininiaennnns 322

25.3.1 Creating @ Heap ..c.ocvveieenerniieienntiorrinnncansaasensans 322

25.3.2 Heaps in a Separate Data Segment.........ccccuvuenennnn. 323

25.3.3 Moveable Heap ObjJectS...ccveuinierinrerienenenrnenenennens 324
25.3.3.1 Moveable Heaps in an

Automatic Data Segmentcceeveenrnenennns 326

25.3.3.2 Moveable Heaps in a Separate Data Segment... 326

25.3.4 Allocating Memory from Heapsccevvvureernennenenes 328

25.3.5 Deallocating Memory from a Heapc.ceeevuvnenennn. 328

25.3.6 Using Dedicated Free ListS....ocuveerieneerenenrnneaennnns 329

25.3.7 Destroying Heaps......cocveeeeeinreeriaenenrnneonsnnnennns 329

25.4 SUIMMATY ceeuuiniiiinrenriirriirentuereneieresrenseseesansensassncenss 330

s

Chapter 25: Heaps 321

A S e e B R R R R S S S e e R

25.1 Introduction

25.2 About

Figure 25.1

This chapter describes the functions that allow you to use heaps for memory
management in your applications. You should also be familiar with the following
topic:

® Memory management in MS OS/2

Heaps

A heap is a memory segment containing other memory-block objects that are
allocated and deallocated by the functions of the heap manager (the group of
functions that manage heaps in MS OS/2). The heap functions are provided to
supplement, and in some cases replace, the basic memory-management functions
of MS OS/2. The heap functions provide more functionality than the basic
memory-management functions, including moveable objects within a segment
and faster allocation implementation.

A heap exists within a memory segment. The segment can be the automatic data
segment of an application or: dynamic-link module, or it can be another segment
that has been allocated explicitly by using the DosAllocSeg function. Typically,
the heap is part of an automatic data segment, and it shares that segment with
the application’s static data and stack. The combined size of the heap, static
data, and stack cannot be larger than 64K—this is the maximum segment size in
MS OS/2. Heaps in separate segments also cannot be larger than 64K.

Figure 25.1 shows how a heap can share an automatic data segment with the
static data and stack:

Heap in Automatic Data Segment

Stack

Static data

322 MS 0OS/2 Programmer’s Reference, Vol. 1
R R e S S B e S R B B RS

A heap typically contains many memory-allocation objects. Each object is
accessed by an offset (near pointer) from the beginning of the segment. Notice
that the beginning of the heap is not necessarily at the beginning of the segment.
For heaps in the automatic data segment, the application or dynamic-link
module can use the near pointer to the memory object directly, because the
data-segment selector is implicit. For heaps allocated in separate segments, the
near pointer must be combined with the segment selector to make a far pointer.

A heap can be created so that objects within the heap are moveable. This allows
the system to rearrange objects on the heap to make more free memory available
and avoid heap fragmentation.

MS OS/2 attempts to make the heap larger if a memory-allocation request can-
not be filled by using the existing heap. This growth is controlled by setting
growth limits when the heap is created.

25.3 Using a Heap in an Application

Applications typically create a heap, allocate and deallocate memory blocks in
the heap as needed, and destroy the heap when terminating. A heap can be
created using many different memory sources and it can have moveable or non-
moveable memory objects. The following sections discuss how to use heaps in
applications and dynamic-link libraries.

25.3.1 Creating a Heap

Applications and dynamic-link libraries create a heap by calling the Win-
CreateHeap function. The heap is created within an automatic data segment or
in a separate segment, depending on the values of the selHeapBase and cbHeap
parameters of WinCreateHeap. The possible values of these parameters are
summarized in the following list:

selHeapBase cbHeap Meaning

Zero Zero The calling process is an application that
places the heap at the end of its automatic
data segment.

Selector Nonzero The calling process is either a dynamic-link
library that places a heap at the end of its
automatic data segment, or an application or
dynamic-link library that has explicitly allo-
cated a segment and places the heap at the end
of the segment.

Selector Zero The calling process is either an application or
dynamic-link library that has explicitly allo-
cated a segment and places a heap in that seg-
ment.

Zero Nonzero The calling process is either an application or
dynamic-link library that places a heap of a
specific size in a separate segment but does
not call the DosAllocSeg function.

Chapter 25: Heaps 323
T S e B S B R R S e e BB

In addition to the characteristics of the heap described by the preceding list, the
creator of the heap may specify whether the heap contains moveable objects and
whether the functions should check the validity of certain arguments to heap-
manager functions. The HM_MOVEABLE attribute specifies that the heap can
contain moveable objects. The HM_VALIDSIZE attribute, which can be used
only in conjunction with HM_MOVEABLE, specifies that the heap manager
should check the validity of size arguments in heap-deallocation calls. Moveable
heap objects allow a more flexible memory-management scheme for applications
with heavy memory requirements. :

You must specify the minimum amount the heap will grow each time it enlarges
to satisfy a memory request. The default minimum is 512 bytes.

The cbMinDed and cbMaxDed parameters of the WinCreateHeap function
define how many dedicated free lists the heap manager should maintain for the
heap. Dedicated free lists can make the allocation of fixed-size blocks signifi-
cantly faster, but they are not essential to the operation of the heap. Zeros can
be passed as values for these parameters to generate the default heap behavior
without using dedicated free lists. More information about dedicated free lists is
given later in this chapter.

For more information on the WinCreateHeap function, see the Microsoft
Operating System/2 Programmer’s Reference, Volume 2.

The following code fragment shows how to create a heap with the default
behavior and the moveable attribute:

hHeap = WinCreateHeap (O, /* uses automatic data segment */
o, * uses HEAPSIZE from .def file */
1024, /* minimum size to grow heap *
o, /* minimum size of dedicated free list */

o, /* maximum size of dedicated free list */
HM_MOVEABLE) ;

The ability to share a heap depends upon the sharing attributes of the segment
containing the heap. Heaps in an application’s data segment are private to that
application. Segments explicitly allocated with the DosAllocSeg function are
shared or private, depending upon the value of the fsAlloc parameter. Segments
allocated by using the WinCreateHeap function are shareable. Because shared
segments cannot shrink, heaps within a shared segment also do not shrink.

The heap manager does not prevent multiple threads from calling the heap
manager with the same heap handle. The calling process must ensure that this
does not occur.

25.3.2 Heaps in a Separate Data Segment

One of the options you can specify when creating a heap is that the heap will be
created in a data segment that is separate from the automatic data segment. You
might choose this option if there is insufficient space in the automatic data seg-
ment for the static variables, the stack, and the heap. A heap in a separate data
segment can occupy up to 64K.

MS 0S/2 Programmer’s Reference, Vol. 1
e T S e R T B e S R N S S R S st

The pointer returned by the WinAllocMem function is an offset value that
locates the allocated memory block relative to the beginning of the segment
that contains the heap. If the heap is in a separate segment, you must use far
pointers to access memory blocks that are allocated on the heap. You can deter-
mine the far pointer to a heap object by using the heap’s segment selector and
the offset. The WinLockHeap function returns a far pointer to the beginning of
a specified heap. You can combine the selector from this far pointer with the
offset to a memory block on the heap to produce a far pointer to the heap
object, as shown in the following code fragment:

HHEAP hHeap:;

SEL selHeap:

NPBYTE npbObject:;

PBYTE pbObject;
PVOID pvHeap:

/* Allocate a heap in a separate segment. */

hHeap = WinCreateHeap (0, /* uses a separate segment */
32+%1024, * allocates 32K for heap */
1024, /* minimum size to grow heap */
0, /* minimum size of dedicated free list */

0, /* maximum size of dedicated free list *
HM_MOVEABLE) ;

/* Allocate an object and retrieve a near pointer. */
npbObject = WinAllocMem(hHeap,...):;

/* Retrieve a far pointer to the start of the heap. */
pvHeap = WinLockHeap (hHeap) ;

/* Make a far pointer to the heap object. */

pbObject = MAKEP (SELECTOROF (pvHeap), npbObject):

25.3.3 Moveable Heap Objects

A moveable heap allows the memory objects within the heap to move in order to
reclaim fragmented heap space. All heaps are moveable in the sense that a seg-
ment that contains a heap can move as a result of the mapping of selectors to
physical addresses that is provided by MS OS/2. Moveable heaps differ from
regular heaps in that individual objects within a movable heap can change their
positions relative to the beginning of the segment. The moveable-heap attribute
is specified when the heap is created and lasts until the heap is destroyed.

Allocated memory blocks in a moveable heap have a header structure that is
attached to the beginning of the block. This header structure contains a pointer
to the variable holding the pointer to the memory block and a field containing
the size of the block (not including the header structure). The near pointer
returned by the WinAllocMem function points to the first byte after the block-
header words. The C definition of the header structure is as follows:
typedef struct _MOVBLOCKHDR {

NPBYTE ‘*ppmem;

USHORT cb;
} MOVBLOCKHDR;

Chapter 25: Heaps 325
s e B S S e R B R R N R S R e B s

The size parameter of the WinReallocMem and WinFreeMem functions is
ignored for objects in a moveable heap and the value of the size word is used
instead. However, if the HM_VALIDSIZE option is specified in the Win-
CreateHeap function when the heap is created, the WinReallocMem and
WinFreeMem functions verify that the passed size matches the current size
and return an error if it does not.

Objects in a moveable heap can move whenever the WinAvailMem function is
called. Because this function is also called by WinAllocMem and WinRealloc-
Mem, objects can also move when these functions are called. WinReallocMem
and WinAvailMem move blocks that have a back pointer. Allocated objects
whose back pointer is zero are considered fixed and do not move.

When allocating memory blocks within a moveable heap, the calling process
specifies that the block is moveable by altering the back pointer (ppmem) field
of the header structure so that it points to the variable holding the pointer
returned by the WinAllocMem function. When WinAllocMem creates a block on
a moveable heap, it clears the back pointer to zero. As long as the back pointer
remains zero, the heap manager cannot move the block. If the application alters
the value of the back pointer so that it points to a valid variable address within
the same segment (by using an offset from the beginning of the segment), the
heap manager will move the block, when necessary, to compact the heap. When-
ever the heap manager moves the moveable block it also updates the variable
pointed to by the back pointer so that the variable points to the new location of
the block. The back pointer ensures that the application’s reference to the move-
able block is updated when the block moves.

Note that MS OS/2 alters only the variable pointed to by the back pointer when
it moves a moveable block. If the application has made copies of this variable,
those copies will be invalid if the memory object moves.

The SETMEMBACKPTR macro sets the back pointer of a moveable block. (It
is assumed that the MOVBLOCKHDR data structure described above is also
defined.) SETMEMBACKPTR uses the variable that holds the pointer returned
by the WinAllocMem function and sets the back pointer of that block to point to
the variable. The SETMEMPACKPTR macro is shown below. Note that it
should not be used on nonmoveable heaps.

#define SETMEMBACKPTR (npb) (((PMOVBLOCKHDR) npb) -1) -> ppmem = &npb

The back pointer of a moveable block should point to the variable that holds the
pointer returned by the WinAllocMem function. Since the back pointer is a near
pointer, the variable pointed to must be in the same data segment as the heap. If
the heap is in the automatic data segment (the default case), you can use a static
or stack-based variable to hold the pointer. If the heap is in a separate data seg-
ment, you must allocate space for the pointer variable as a nonmoveable block =
on the heap.

Using moveable blocks allows an application to use memory more efficiently and
to avoid most memory-fragmentation problems. Using moveable heap objects,
however, requires that the pointer references to the objects remain valid even
when the objects move. The back pointer allows MS OS/2 to handle updating
an application’s pointer variables, but the application must use the macro
SETMEMBACKPTR to set the original link between the moveable block and its
pointer variable.

326 MS 0S/2 Programmer’s Reference, Vol. 1
Mﬁ@.-@%‘%ﬁa&i e T e S S R B S i BB R

25.3.3.1 Moveable Heaps in an Automatic Data Segment

Figure 25.2 shows the relationship of the pointer returned by the WinAllocMem
function and the back pointer of the memory-block header when the heap is in
the automatic data segment:

Figure 25.2
Back Pointer for Moveable Heap Object
in Automatic Data Segment

Moveable heap object
T pprem ™ = "] Heap
Stack
> pobject Static data

The following code fragment shows how to allocate a block and then make it
moveable by altering the value of the back pointer. This code works only if the
heap is in the automatic data segment (the default case for most applications).

static NPBYTE pObject;

/* Allocate the block for the object. */°

pObject = WinAllocMem(hHeap, sizeof (YOUR_OBJECT_TYPE)):
/* Make the block moveable. */

SETMEMBACKPTR (pObject) ;

You should avoid placing a pointer to a moveable heap object on the stack—that
is, making it a local variable—if the heap object will continue to exist after the
function has ended and the local variable has been cleared from the stack. This
is dangerous because the heap manager could attempt to update the pointer vari-
able, using the back pointer, and inadvertently write into the stack frame of
another function.

25.3.3.2 Moveable Heaps in a Separate Data Segment

The variable pointed to by the back pointer must be in the same segment as the
moveable block. For most applications, in which the heap is in the application’s
-automatic data segment, the pointer variable can be in the application’s static-
data area. If the heap is'in a separate segment, the variable must also be allo-
cated on the same heap, and it must be in a nonmoveable block.

Chapter 25: Heaps 327
B A e s e e P M S B S s

Figure 25.3 shows the relationship of the pointer returned by the WinAllocMem
function and the back pointer of the memory-block header when the heap is in a
separate data segment:

Figure 25.3
Back Pointer for Moveable Heap Object"
in Separate Data Segment

Automatic Data Segment Heap Data Segment

Moveable

Nonmoveable
heap object

Static ppobject pobject

data

Figure 25.3 shows a variable in the application’s static-data area that points to
the nonmoveable block containing the pointer to the moveable memory block.
The variable that the application uses in its static-data area is a pointer to a
pointer. Since the pointer to a pointer is pointing to another data segment, it
must be a far pointer, consisting of the selector of the heap’s data segment and
the offset within that segment.

The following code fragment shows how to allocate a block in a heap in a
separate data segment and then make the block moveable by altering the value
of the back pointer. The ppObject variable is declared with the static storage
class so that it will be in the static area of the automatic data segment, rather
than on the stack.

static NPBYTE FAR *ppObject;

*

* Allocate nonmoveable space for the pointer to the object

* and make a far pointer to the pointer.
*/

ppObject = MAKEP (SELECTOROF (WinLockHeap (hHeap)),
WinAllocMem (hHeap, sizeof (NPBYTE))):

/* Allocate the block for the object. */
*ppObject = WinAllocMem (hHeap, sizeof (YOUR_OBJECT_TYPE))
/* Make the block moveable. */

SETMEMBACKPTR (*ppOb ject) ;

328 MS 0S/2 Programmer’s Reference, Vol. 1
S i e e B B R T e R T S R I RIS

Once the pointer to a pointer is set up correctly and the back pointer is initial-
ized, the ppObject variable should be dereferenced twice whenever the moveable
memory block is accessed, as shown in the following example:

/* Put a value into the moveable block. */

**ppObject = 2;

25.3.4 Allocating Memory from Heaps

Once an application or dynamic-link library has created a heap, it can allocate
blocks on the heap by calling the WinAllocMem function. The value returned by
this function is a near pointer to the memory block, or NULL if the function is
unsuccessful.

All pointers to memory objects within-a heap are 16-bit offsets from the start of
the heap’s segment. All memory objects in the heap are aligned on a 32-bit-word
boundary—this means that the contents of the 2 low-order bits of a returned
pointer are unused. The WinAllocMem function clears these bits. (The Win-
ReallocMem and WinFreeMem functions require that they be zero.) The appli-
cation can use these two bits for any purpose. The HEAP_MASK constant can
be used to clear the bits when passing a parameter for a memory-block pointer
to WinReallocMem or WinFreeMem.

If the heap is created with the HM_MOVEABLE attribute, the size argument
" for the allocation is retained in the size word of the allocated block’s header.
The returned address is the address of the first byte after the header.

The heap manager searches the heap for the first free block large enough to
fulfill the allocation request. If the free block that is found is larger than what is
needed to satisfy the request, the extra space is added to the appropriate dedi-
cated free list. If no free block is found that is large enough, the heap manager
attempts to combine free blocks by calling the WinAvailMem function. If this
call does not generate a large enough free block, the heap manager attempts to
enlarge the heap segment by the combined values of the size of the request and
the minimum-growth parameter specified in the call to the WinCreateHeap func-
tion. If this attempt fails, the WinAllocMem function returns NULL, indicating
that it could not allocate the memory block.

25.3.5 Deallocating Memory from a Heap

Memory blocks on the heap can be deallocated by calling the WinFreeMem
function. The calling process must specify the heap handle, the pointer to the
block, and the size of the block. The size argument must be accurate because
the heap manager does not normally validate this argument. Passing an incorrect
size argument to WinFreeMem can damage other blocks on the heap.

The WinFreeMem function returns NULL if it successfully deallocates the
memory block. The return value is NULL for success because of the following
idiom for deallocating a memory block and invalidating the variable that contains
the pointer to the block, all in one line of code:

pMem = WinAllocMem(...);
/* Code that uses the block. */

pMem = WinFreeMem (pMem) ;

Chapter 25: Heaps 329
B R e s R B T e R S I R R SR e B i R

For nonmoveable heaps, the heap manager has no way to check the size of
blocks that it deallocates. For moveable blocks on a heap created with the
HM_MOVEABLE and HM_VALIDSIZE attributes, the heap manager checks
the size argument against the size specification in the moveable block’s header
and returns the pointer (instead of NULL) if the size parameter is invalid.

25.3.6 Using Dedicated Free Lists

A dedicated free list is a linked list of free blocks of a particular size on the
heap. For example, the heap manager might maintain a dedicated free list of
memory blocks that are 1024 bytes in length. It is much faster to search for a
memory block in a dedicated free list than to do a straight linear search of all
blocks on the heap. Thus, dedicated free lists are very useful if your application
allocates many blocks with the same size.

The size of memory blocks that should be maintained in dedicated free lists is
specified when the heap is created. Two arguments to the WinCreateHeap func-
tion specify the minimum block size and the maximum block size to put into
dedicated free lists. All memory sizes between the minimum and maximum
sizes, in four-byte increments, are maintained in separate lists.

For example, if you specify 1024 for the minimum size and 2048 for the max-
imum size, the heap manager creates dedicated free lists for memory blocks of
1024 bytes, 1028 bytes, 1032 bytes, and so on, through 2048 bytes. The cost of
each dedicated free list is an additional two bytes in the heap-control block for
each size of memory block that is maintained in the list.

Blocks that are not within the size limits of existing dedicated free lists are main-
tained in a single nondedicated free list. The heap manager first looks in the
dedicated free lists, starting with the list whose memory-block size is greater
than or equal to the requested size. It continues to look in the dedicated free
lists until it either finds the smallest block that is greater than or equal to the
requested size or it exhausts the dedicated free lists. If no block is found on the
dedicated free lists that is large enough, the heap manager does a linear search
of the nondedicated free list for the first block that satisfies the request. (This
may not be the smallest free block that would satisfy the request, since the order
of the nondedicated free list is implementation-dependent.) Dedicated free lists
are organized in last-in, first-out (LIFO) order.

To produce dedicated free lists in a heap, pass nonzero arguments for the
cbMinDed and cbMaxDed parameters of the WinCreateHeap function.

25.3.7 Destroying Heaps

The WinDestroyHeap function destroys a heap that was created by using the
WinCreateHeap function. If WinCreateHeap calls the DosAllocSeg function to
allocate space for the heap, then WinDestroyHeap calls DosFreeSeg to free the
allocated segment. Otherwise, WinDestroyHeap frees only the heap handle that
is passed to it.

The return value is zero if the WinDestroyHeap function is successful. Other-
wise, the return value is the heap handle that is passed to the function. (A rea-
son this function could fail is if the heap handle is invalid.) This function is not
affected by allocated memory objects within the heap.

330 MS 0S/2 Programmer’s Reference, Vol. 1
R S B R e e R R o

The return value is zero for success because of the foliowing idiom for destroy-
ing a heap and invalidating the variable that contains the handle to the heap, all
in one line of code:

hHeap = WinCreateHeap(...):
/* Code that manipulates the heap. */

hHeap = WinDestroyHeap (hHeap) :

25.4 Summary

The following functions allow your application to manage heaps:

WinAllocMem Returns a near pointer to a memory block of the specified size
on the heap. Returns NULL if the memory cannot be allocated.

WinAvailMem Returns the largest free block of memory on the heap.
WinCreateHeap Creates a heap that can be used for memory management.
WinDestroyHeap Destroys a heap. All memory objects on the heap are lost.

WinFreeMem Frees a memory block that was allocated by using the WinAlloc-
Mem function.

WinLockHeap Returns a far pointer to the beginning of the segment containing
the heap and locks the heap. This is useful for a heap allocated in a separate
segment. ‘

WinReallocMem Reallocates a heap memory block to a new size. If the new
size is larger than the previous size, a new block is allocated by using the Win-
AllocMem function and the previous block is copied to the new block.

R S R B e R B N RS R

Chapter

A ppl i PR

Clipboard

26.1
26.2

26.3

26.4

Introductionccuvvevenieniiiiiiiiiiiiiiiiiiii e 333
About the CLpboard.....c..ccvvvveveireieniciiiinieniiiiennenninen. 333
26.2.1 Cutting, Copying, and Pasting Datacccccvuennen. 333
26.2.2 Clipboard-Data Formatsccecvevureeeerninnennrenenns 334
26.2.3 Shared Memory and the Clipboard.....cccoueuvuiuiunnnens 334
Using the Clipboard......c.coceviniiniiieiiiininiiiiininiinnnen. 335
26.3.1 Putting Data on the Clipboard.........ccccevvvinininininnnes 335
26.3.2 Retrieving Data from the Clipboard..........ccccevvunenen 336
26.3.3 Becoming the Clipboard ViewWeroevevevienenenns 337
26.3.4 Becoming the Clipboard OwWnercc.ccceeveeeenennnns 339
26.3.5 Custom Clipboard FOormats........c.coeuvurereennaiecnnnenes 340

26.3.5.1 Assigning a Unique Format ID.....cccvuvuenenns 341

26.3.5.2 Display FOrmats ...ccoeereneeeenenenreneennnenns 341
26.3.6 Delayed Rendering ... 341
SUMMATY cvivieieiiiiiiieiiiiiirieiaeeesereeterasnsesiresasasnsasassnes 342
26.4.1 Standard Chpboard Formatsccocvueenenennnnnnennnnnn. 342
26.4.2 Clipboard Functionsc.cceveereeeneenenecesnecncnsnnens 342

26.4.3 Clipboard MessSages .c.uueereiiaririereroninssssesssncosencnes 343

Chapter 26: Clipboard 333
R e B e S R S e e I IS M

26.1 Introduction

This chapter describes how to use the clipboard to transfer data between appli-
cations. You should also be familiar with the following topics:

B Standard user-interface guidelines
B Window messages and message queues
® MS OS/2 memory management and shared memory

26.2 About the Clipboard

The clipboard is a set of functions that can be used by Presentation Manager
applications for exchanging data. In particular, the clipboard provides support
for the generalized cut, copy, and paste user-interface common to Presentation
Manager applications. The clipboard supports data formats common to most
applications, as well as allowing individual applications to define new formats for
special purposes.

The data on the clipboard is maintained in memory only. Clipboard data is lost
when the computer is turned off.

Data exchange on the clipboard is controlled by the user. An application should
not perform any clipboard operations unless the user explicitly initiates them.
Other MS OS/2 features, such as pipes, queues, and shared memory should be
used when data exchange is needed without the knowledge of the user. For
example, an application that continuously passes remotely collected data to a
data-analysis application should not use the clipboard. Such an application
should use the other interprocess data communication capabilities of MS OS/2
instead.

26.2.1 Cutting, Copying, and Pasting Data

- All Presentation Manager programs should support the cut, copy, and paste data
exchange in a single application and between applications. These are all user-
initiated operations. Typically, a user selects data in an application, called the
“current selection.” The application should provide visual feedback, such as
inverting the data display, to indicate the current selection. The user can then
initiate a cut, copy, or paste operation on the current selection.

The standard cut, copy, and paste operations are summarized below:

Operation Descripiion

Cut Copies the current selection to the clipboard and deletes
the current selection from the application document. The
previous contents of the clipboard are destroyed.

Copy Copies the current selection to the clipboard. The
current selection remains unchanged. The previous con-
tents of the clipboard are destroyed.

Paste Deletes the current selection and replaces it with the
contents of the clipboard. The contents of the clipboard
are not changed.

334 MS 0S/2 Programmer’s Reference, Vol. 1

S e R R R S R s e
Operation Description
Clear Deletes the current selection without putting the data on
the clipboard. The contents of the clipboard are not
changed.

26.2.2 Clipboard-Data Formats

The clipboard accepts data in several formats. MS OS/2 supports three standard
formats: text, bitmap, and metafile. Applications can use these predefined for-
mats or create their own formats.

Typically, all formats on the clipboard are simply different representations of the
most recent selection on the clipboard. For example, a word processor that sup-
ports multiple fonts might write a selection to the clipboard in three formats:
straight text, rich text, and metafile. Another application (pasting from the clip-
board) could then choose the format most applicable to its own capabilities. All
of these formats refer to the same data.

26.2.3 Shared Memory and the Clipboard

Because data on the clipboard can be accessed by different applications, it is
important that it be stored in shared memory. The clipboard uses two types of
memory: selectors for shareable segments (allocated by the DosAllocSeg func-
tion), and Presentation Manager objects such as bitmaps and metafiles. Clip-
board functions use two flag values, CFI_SELECTOR and CFI_HANDLE, to
distinguish each memory type.

When an application writes either a bitmap or a metafile to the clipboard, it
passes a bitmap or metafile handle to the clipboard. The clipboard functions
make the object “shareable.” The application cannot access the object once it
closes the clipboard. Once an object is passed to the clipboard, it can no longer
be used in the application. Likewise, when an application requests a bitmap or
metafile from the clipboard, it receives a handle to a bitmap or metafile object
that is good only until the application closes the clipboard. Typically, the appli-
cation either uses the object immediately before closing the clipboard, or it
copies the object to local memory for future use, then closes the clipboard.

To give a selector to the clipboard, an application must put data into a segment
allocated by using the DosAllocSeg function with the SEG_GIVEABLE attri-
bute. Once an application passes the selector for that segment to the clipboard
and closes the clipboard, the clipboard owns the segment. The application can-
not access the shared segment. When an application requests a selector from the
clipboard, the clipboard gives the segment to the application. An application
must use the selector before closing the clipboard or it must copy the data from
the shared segment to a local segment before closing the clipboard.

An application must use a shared segment when writing text to the clipboard.
An application must also use shared segments for any application-defined clip-
board formats. In this case, it is important to specify the CFI_SELECTOR flag
when sending data to the clipboard.

Chapter 26: Clipboard 335
R S T S S S e S R e e S S

26.3 Using the Clipboard

Applications should use the clipboard when cutting, copying, or pasting data.
Typically, an application places data on the clipboard for cut and copy opera-
tions and removes data from the clipboard for paste operations. An application
can use the standard clipboard-data formats or create its own formats. An appli-
cation that uses custom clipboard formats often becomes the clipboard owner,
assuming control of drawing or freeing data on the clipboard.

Clipboard data does not need to be generated, or rendered, when it is placed on
the clipboard. Instead, an application can delay rendering, waiting until the data
is requested by another application.

Finally, an application can become the clipboard viewer, showing the clipboard
contents, and receiving messages when the clipboard contents change.

26.3.1 Putting Data on the Clipboard

To put data on the clipboard, an application must first call the WinOpenClipbrd
function to verify that other applications are not trying to retrieve or set clip-
board data. The WinOpenClipbrd function does not return if another thread has
the clipboard open. The WinOpenClipbrd function waits until the clipboard is
free or there is a message in the calling thread’s message queue. In practice, this
means that the WinOpenClipbrd function waits until the clipboard is available
or until the calling application responds to a message. If the clipboard cannot
be opened before a message arrives, the application receives the message and
the WinOpenClipbrd function continues to try to open the clipboard. The Win-
OpenClipbrd function does not return until the clipboard is open. However,

the application continues receiving messages.

Once an application successfully opens the clipboard, it should remove any pre-
viously stored data on the clipboard by calling the WinEmptyClipbrd function.
Although the clipboard supports many data formats, all the formats on the clip-
board should represent the same data at any one time. For this reason, it is
important to clear the clipboard of old data before writing new data. If the clip-
board is not cleared, writing a format that already exists on the clipboard will
replace the old data with the new data.

When the clipboard is cleared, an application should write its data to the clip-
board in as many standard formats as possible. For each format, the application
should pass the data to the clipboard by calling the WinSetClipbrdData func-
tion, specifying the data format. Because the clipboard is not cleared when a
new format is written to the clipboard, all new data formats coexist with each
other until the clipboard is cleared by the next clipboard user.

Data passed to the clipboard can take many forms, depending on the format of
the data. For text data, the data handle is a selector to a shared segment con-
taining the text. For bitmap data, the data handle is a bitmap handle. For a
metafile format, the data handle is a metafile handle. If an application passes
NULL for the data handle, it renders the data on request.

Once an application passes a selector or a handle to the clipboard, the applica-
tion 'should not alter the contents of that segment or handle. The clipboard owns
that data from then on.

336

MS 0S/2 Programmer’s Reference, Vol. 1

R R S e R R S P T R iy

Finally, when an application finishes writing the clipboard data, it should release
the clipboard by calling the WinCloseClipbrd function so that other applications
can use the clipboard.

The following code fragment shows how an application places text data on the
clipboard, how it opens the clipboard, copies the text to a shared segment, emp-
ties the clipboard, and passes the selector to the clipboard:

if (WinOpenClipbrd(hab)) {

*

* Allocate a shareable segment for the data szClipString in the
* application's copy of the text.
*/

if (usSuccess = DosAllocSeg(strlen(szClipString) + 1,
&sel, SEG_GIVEABLE)) {
/* Make a far pointer (selector:0) out of the selector. */
pszDest = MAKEP (sel, 0);
/* Set up the source pointer to point to text. */
pszSrc = &szClipString[O];
/* Copy the string to the segment. */
whiie (*pszDest++ = #*pszSrc++);
/* Clear old data from the clipboard. */
WinEmptyClipbrd (hab);

*
* Pass the selector to the clipboard in CF_TEXT format. Note
* that the selector must be a ULONG value.

*/
fSuccess = WinSetClipbrdData(hab, (ULONG) sel,
CE_TEXT, CFI_SELECTOR);

/* Close the clipboard. */
WinCloseClipbrd (hab) ;

}
}

26.3.2 Retrieving Data from the Clipboard

To retrieve data from the clipboard, an application must first call the WinOpen-
Clipbrd function to verify that no other applications are trying to retrieve or set
the clipboard data.

Once an application successfully opens the clipboard, it should call the Win-
QueryClipbrdData function, specifying a preferred format. If that format is not
available, indicated by a NULL return from the WinQueryClipbrdData function,
the application should repeat calls to the WinQueryClipbrdData function for
other possible formats until it either receives the data or runs out of format
choices.

If the clipboard contains one of the requested formats, the WinQueryClipbrd-
Data function returns a 32-bit integer, the meaning of which depends on the par-
ticular format. For text data, the return value is a selector (in the lower 16 bits
of the long integer) to a shareable segment containing the text. For bitmap data,

Chapter 26: Clipboard 337
R I SR e R e S R R e LR s e i R R R B S RS R S R Y

the return value is a bitmap handle. For metafile data, the return value is a
metafile handle.

Whatever the format, the handle or selector returned is valid only while the clip-
board remains open. An application can use the data while the clipboard is open
or copy the data to its own memory and use it after the clipboard is closed.

It is important that an application close the clipboard as soon as possible so that
other applications can access it.

The following code fragment shows how to open the clipboard, retrieve data in
the requested format, copy the data to a local segment, and close the clipboard:

if (WinOpenClipbrd(hab)) {
if (hText = WinQueryClipbrdData (hab, CF_TEXT)) {

/* Turn the selector into a pointer. */

pszClipText = MAKEP ((SEL) hText, O);

/* Copy text from the selector segment to a local segment. */
while (*pszLocalText++ = *pszClipText++);

}
WinCloseClipbrd (hab) ;

26.3.3 Becoming the Clipboard Viewer

A window can become a clipboard viewer and display the current contents of
the clipboard. The clipboard viewer is informed whenever the clipboard contents
change. Typically, the clipboard viewer is a window that can draw the standard
clipboard formats. The clipboard viewer is a convenience for the user; it does
not have any effect on the data-transaction functions of the clipboard.

To create a clipboard viewer, an application calls the WinSetClipbrdViewer
function, specifying the window in which the clipboard data will be displayed.
This is usually the client window of an application. There can only be one clip-
board viewer at any time in the system, so setting a clipboard viewer replaces
any previous clipboard viewer. The WinQueryClipbrdViewer function receives
the handle to the current clipboard viewer so that the application can reset it
when finished with the clipboard viewer.

Once a window becomes the clipboard viewer, it receives
WM_DRAWCLIPBOARD messages whenever the contents of the clipboard
change. The window should respond to these messages by drawing the contents
of the clipboard.

The clipboard viewer displays all the standard formats and should process
CFI_OWNERDISPLAY items by sending the appropriate clipboard message to
the clipboard owner.

Three special formats exist for of the clipboard viewer: CF_DSPTEXT,
CF_DSPBITMAP, and CF_DSPMETAFILE. Applications that write data to
the clipboard in private formats should also write the data in one of these for-
mats. These DSP formats should be a representation of the private formats. If
the clipboard viewer does not find one of the standard formats (CF_TEXT,
CF_BITMAP, or CF_METAFILE), it can search for one of the DSP formats.
Display strategies for these formats are the same as for the corresponding stan-
dard formats.

338 MS 0S/2 Programmer’s Reference, Vol. 1
T B B B B S R e R RS R R R S et R it

The following code fragment shows how a sample clipboard viewer responds to
the WM_DRAWCLIPBOARD message, drawing text and bitmap data in its win-
dow. Note that the code uses the data retrieved from the clipboard before clos-
ing the clipboard. An alternate strategy would be to copy the data to a local seg-
ment and then close the clipboard. In any case, the original data from the clip-
board cannot be used after the clipboard is closed.
case WM_DRAWCLIPBOARD:

if (!WinOpenClipbrd (hab))

return OL:;

if (hText = WinQueryClipbrdData(hab, CEF_TEXT)) {
pszText = MAKEP ((SEL) hText, O);

hps = WinGetPS (hwnd) ;
WinQueryWindowRect (hwnd, &rect);

WinDrawText (hps,

OxFFFF, /* null-terminated string */
pszText, /* the string *
&rect, /* where to put the string */
CLR_BLACK, /* foreground color */
CLR_WHITE, /* background color */
DT_CENTER | DT_VCENTER | DT_ERASERECT) ;

WinValidateRect (hwnd, (PRECTL) NULL, FALSE);
WinReleasePS (hps) ;

}

else if (hBitmap = WinQueryClipbrdData(hab, CE_BITMAP)) {
hps = w1nGetPS(hwnd),
ptlDest.x ptlDest.y = O;
NanuerlendowRect(hwnd &rect):
WinFillRect (hps, &rect, CLR_WHITE);
WinDrawBitmap(hps,

hBitmap,

{(PRECTL) NULL, /* draws entire bitmap */
&ptilDest, /* destination L¥4
CLR_BLACK, /* foreground color */
CLR_WHITE, /* background color */
DBM_NORMAL) ; /* bitmap flags */
WinValidateRect (hwnd, (PRECTL) NULL, FALSE);
WinReleasePS (hps) ;
}
WinCloseClipbrd (hab) : /* closes the clipboard */

return OL;

The clipboard viewer uses a similar sequence of calls to get chpboard data when
responding to a WM_PAINT message.

The clipboard viewer is also responsible for sending messages to the clipboard
owner when clipboard data has the attribute CFI_OWNERDISPLAY. Typically,
an application sets the attribute CFI_OWNERDISPLAY only for private clip-
board formats and not for any standard formats. The clipboard viewer must send
messages to the clipboard owner when the clipboard owner does not provide a
standard clipboard format in addition to its private formats. In this case, the
viewer sends messages to the clipboard owner of a CFI_OWNERDISPLAY for-
mat to draw, scroll, and resize the clipboard-image data.

The clipboard viewer determines the attributes of a particular clipboard format
by calling the WinQueryClipbrdFmtInfo function. The identity of the current
owner can be found by calling the WinQueryClipbrdOwner function.

Chapter 26: Clipboard 339

e R A S e R e R RS e e R

26.3.4 Becoming the Clipboard Owner

The clipboard owner is any application window that is connected to the clip-
board data. To become the clipboard owner, an application must call the Win-
SetClipbrdOwner function. The following are situations in which an application
should call the WinSetClipbrdOwner function to become the clipboard owner:

The application calling the WinSetClipbrdData function passes a NULL
selector or handle to the clipboard, indicating that the application renders
the data in a particular format on request. As a result, the system sends
rendering requests to the current clipboard owner.

The application calling the WinSetClipbrdData function passes data with the
attribute CFI_OWNERFREE, indicating that the application frees memory
for data when the clipboard is emptied. As a result, the system sends
owner-free requests to the current clipboard owner.

The application calling the WinSetClipbrdData function passes data with the
attribute CFI_OWNERDISPLAY, indicating that the owner application
draws the data in the clipboard viewer. As a result, the clipboard viewer
sends drawing-related requests to the current clipboard owner.

The window specified in the call to the WinSetClipbrdOwner function should
respond to the following messages:

Message Description

WM_RENDERFMT Sent by the system to the clipboard
owner when a particular format with
delayed rendering must be rendered.
The receiver should render the data in
the specified format and pass it to the
clipboard by calling the WinSet-
ClipbrdData function. For more infor-
mation, see Section 26.3.6.

WM_RENDERALLFMTS Sent by the system to the clipboard
owner just before the owner applica-
tion terminates. The receiver should
render the clipboard data in all for-
mats on the clipboard with delayed
rendering. It should pass the data for
each format to the clipboard by calling
the WinSetClipbrdData function. For
more information, see Section 26.3.6.

WM_DESTROYCLIPBOARD Sent by the system to the clipboard
owner when the clipboard is cleared
by another application calling the
WinEmptyClipbrd function. The
receiver should free the memory occu-
pied by any clipboard formats using
the attribute CFI_OWNERFREE.

WML_SIZECLIPBOARD Sent by the clipboard viewer to the
clipboard owner when the clipboard
contains the data handle with the attri-
bute CFI_OWNERDISPLAY and

340 MS 0S/2 Programmer’s Reference, Vol. 1

Description

WM_VSCROLLCLIPBOARD

WM_HSCROLLCLIPBOARD

WM_PAINTCLIPBOARD

when the clipboard-viewer changes
size. When the clipboard viewer is
being destroyed or reduced to an icon,
this message is sent with the coordi-
nates of the opposite corners set to
(0,0), which permits the owner to free
its display resources.

Sent by the clipboard viewer to the
clipboard owner when the clipboard
contains data with the attribute
CFI_OWNERDISPLAY and when an
event occurs in the clipboard-viewer
scroll bars. The receiver should
respond to this message by scrolling
the image, invalidating the appropriate
area of the clipboard viewer, and
updating the scroll-bar position.

Sent by the clipboard viewer to the
clipboard owner when the clipboard
contains data with the attribute
CFI_OWNERDISPLAY and when an
event occurs in the scroll bars of the
clipboard viewer. The receiver should
respond to this message by scrolling
the image, invalidating the appropriate
area of the clipboard viewer, and
updating the scroll-bar position.

Sent by the clipboard viewer to the
clipboard owner when the clipboard
contains data with the attribute
CFI_OWNERDISPLAY and when the
clipboard-viewer client area needs
repainting. The receiver should
respond to this message by painting
the requested format (by calling
WinGetPS for the window handle of
the clipboard viewer).

An application automatically loses ownership of the clipboard when the clip-

board data is cleared by the WinEmptyClipbrd function. Ownership is necessary
only when data is present on the clipboard. Typically, an application loses own-

ership when another application places data on the clipboard.

26.3.5 Custom Clipboard Formats

Applications often use custom clipboard formats when standard formats are
insufficient for representing clipboard data. For example, a word processor

might have a rich-text format that contains font and style information in addition
to the usual text characters. Clearly, if the word processor uses the clipboard to

support cut, copy, and paste operations for moving data in its documents, a
standard text format would be inadequate.

=it el R R e e i

Chapter 26: Clipboard 341
R e R B S e S R R e R R R R RS S iy

Such a word processor should write at least two formats to the clipboard for
each cut or copy operation: a standard text format representing the text of the
current selection, and a private rich-text format representing the true state of the
selection. If the word processor performs a paste operation using clipboard data,
it can use the rich-text format to retain all formatting. If another application
requests the same data, it can use the standard-text format if it does not recog-
nize the private format. The word processor should also be able to render data
in CF_BITMAP and CF_METAFILE formats for painting or drawing applica-
tions.

26.3.5.1 - Assigning a Unique Format ID

Each private format must have an identification number when it is written to the
clipboard. To obtain a unique ID number for a private clipboard format, the
application should register the name of the format in the system atom table. The
system assigns a unique ID number for the format name. Other applications that
know the format name can query the system atom table for the format ID. An
application can interpret its own private formats and can request them from the
clipboard for cutting and pasting its own data. Other applications that know the
private format ID can also interpret the formatted data. The following code frag-
ment illustrates how an application obtains a unique identification number for a
clipboard format. This technique can be used either by the application that
creates the format or by another application.

hatomtbl = WinQuerySystemAtomTable() ;
formatID = WinAddAtom(hatomtbl, "SuperCAD_Format");

26.3.5.2 Display Formats

Three standard display formats exist for applications that use private formats:
CF_DSPTEXT, CF_DSPBITMAP, and CF_DSPMETAFILE. These three for-
mats correspond to the standard text, bitmap, and metafile formats with the
exception that they are intended only for use by the clipboard viewer. An appli-
cation that uses a private format should write one of the DSP formats that
approximates the appearance of the private data so that the clipboard viewer can
display the data regardless of the format. For example, a word processor using
the rich-text format should also write a CF_DSPBITMAP formatted picture of
the selected text that contains all the type fonts and styles. Note that you might
choose delayed rendering for DSP formats because there may not always be a
clipboard viewer active on the screen. With delayed rendering, an application
does not actually render the format unless it is requested to do so.

26.3.6 Delayed Rendering

An application can pass NULL instead of a selector or a handle, indicating that
the data is rendered only when another application requests it from the clip-
board. This is useful if an application supports several clipboard formats that are
time-consuming to render. With delayed rendering, an application can send
NULL handles for each clipboard format that it supports, and render individual
formats only when the format is actually requested from the clipboard. An appli-
cation can either write data for standard formats or choose delayed rendering for
more complex formats.

When an application uses delayed rendering for one or more of its clipboard for-
mats, it must become the clipboard owner. As long as the application is the clip-
board owner, it receives a WM_RENDERFMT message whenever a request is

342 MS 0S/2 Programmer’s Reference, Vol. 1

B B B B B S R R S e R e R N R

received by the clipboard for a format using delayed rendering. When the appli-
cation receives such a message, it should render the data and pass the selector
or handle to the clipboard by calling the WinSetClipbrdData function. The rules
for shared-memory access for rendered data are the same as those for standard
clipboard data. This is simply a delayed execution of the operation that occurs if
the data does not have delayed rendering.

The clipboard owner with one or more delayed-rendering formats on the clip-
board receives a WM_RENDERALLFMTS message just before the clipboard
owner application terminates. This insures that the application renders all of its
data before terminating.

26.4 Summary

The following sections summarize the standard clipboard data formats, the func-
tions that control the clipboard, and the window messages associated with the
clipboard. :

26.4.1 Standard Clipboard Formats

The following are the standard clipboard-data formats used in MS OS/2:

CF_BITMAP The handle returned by the WinQueryClipbrdData function is a
bitmap handle.

CF_DSPBITMAP A bitmap representation of a private-data format. The clip-
board viewer uses this format to display a private format.

CF_DSPMETAFILE A metafile representation of a private-data format. The
clipboard viewer uses this format to display a private format.

CF_DSPTEXT A text representation of a private-data format. The clipboard
viewer uses this format to display a private format.

CF_METAFILE The handle returned by the WinQueryClipbrdData function.

- CF_TEXT The handle returned by the WinQueryClipbrdData function has a
selector (in the low word) to an array of text characters that can include newline
characters indicating line breaks. The null character indicates the end of the text
data. :

26.4.2 Clipboard Functions
The following are the MS OS/2 functions that control the clipboard:

WinCloseClipbrd Closes the clipboard, allowing other applications to open
and use it. This function sends a WM_DRAWCLIPBOARD message, causing
the clipboard contents to be drawn in the clipboard viewer (if any). The clip-
board must be open before this function is used.

WinEmptyClipbrd Empties the clipboard, removing and freeing all handles to
clipboard data.

WinEnumClipbrdFmts Enumerates the available clipboard data formats. The
fmtPrev argument specifies the index of the last clipboard-data format enumer-
ated using this function. This index should start at zero, in which case the first
available format is obtained. Subsequently, it should be set to the last format

Chapter 26: Clipboard 343
b MIET SRR R el e P A ot e s R b e T o o e e S e b LA A S PR

index value returned by this function. The return value is the index of the next
available clipboard-data format on the clipboard. Enumeration is complete (no
further formats are available) when zero is returned.

WinOpenClipbrd Opens the clipboard and prevents other threads and pro-
cesses from examining or changing the clipboard contents. If another thread or
process already has the clipboard open, this function does not return until the
clipboard is available. However, it passes messages to the application while it
waits for the clipboard.

WinQueryClipbrdData Retrieves data with a specified format from the clip-
board. This function returns zero if no data with that format exists on the clip-
board.

WinQueryClipbrdFmtInfo Determines whether a particular data format is
present on the clipboard. If it is, this function provides information to the caller
about that format.

WinQueryClipbrdOwner Returns the current clipboard owner (if any). The
JLock argument specifies whether the clipboard-owner window should be locked.
If the window is locked, the calling application must unlock the window. This
window handle should be locked while being used because it may belong to
another process. Locking prevents other processes from destroying the window.

WinQueryClipbrdViewer Returns the current clipboard viewer (if any). The
fLock argument specifies whether the clipboard viewer is locked. If the window
is locked, the calling application must unlock the window. This window handle
should be locked while being used because it may belong to another process.
Locking prevents other processes from destroying the window.

WinSetClipbrdData Puts data in a specified format on the clipboard.

WinSetClipbrdOwner Sets the current clipboard owner. An application should
become the clipboard owner when it sends delayed-rendering data to the clip-
board or when it has data it must draw in the clipboard viewer.

WinSetClipbrdViewer Sets the current clipboard viewer to a specified window.
The clipboard viewer receives the WM_DRAWCLIPBOARD message when the
clipboard contents change. This allows the clipboard viewer to display an up-to-
date version of the clipboard contents. The clipboard must be open before this
function is called.

26.4.3 Clipbdard Messages

The following are the window messages used with the clipboard:

WM_DESTROYCLIPBOARD Sent by the system to the clipboard owner
when the clipboard is emptied by the WinEmptyClipbrd function. If any of the
formats have the CFL_OWNERFREE flag set, the clipboard owner must free the
data when it receives the WM_DESTROYCLIPBOARD message. -

WM_DRAWCLIPBOARD Sent by the system to the clipboard viewer when
the clipboard contents change. The clipboard viewer draws the contents of the
clipboard.

344 MS 0S/2 Programmer’s Reference, Vol. 1
T i B B S e S S e R e iR

PP

WM_HSCROLLCLIPBOARD Sent by the clipboard viewer to the clipboard
owner when the clipboard data has the CFI_OWNERDISPLAY attribute and an
event occurs in the clipboard-viewer scroll bars. The clipboard owner scrolls the
clipboard image, invalidating the appropriate sections, and updates the scroll-bar
values.

WM_PAINTCLIPBOARD Sent by the clipboard viewer to the clipboard
owner when a clipboard format with the CFI_OWNERDISPLAY flag set must
be drawn in the clipboard viewer. The owner receives a window handle for the
clipboard viewer and uses it as the destination window for drawing the clipboard
data. :

WM_RENDERALLFMTS Sent by the system to the clipboard owner when the
owner application is being destroyed. The clipboard owner should render all for-
mats that it can generate and pass a handle or selector for each format to the
clipboard by calling the WinSetClipbrdData function. This ensures that the clip-
board contains valid data even though the application that rendered the data is
destroyed.

WM_RENDERFMT Sent by the system to the clipboard owner when clipboard
data must be rendered. The receiver of this message renders the data and sends
it to the clipboard by calling the WinSetClipbrdData function.

WM_SIZECLIPBOARD Sent by the clipboard viewer to the clipboard owner
when the clipboard viewer is resized and contains data with the attribute
CFI_OWNERDISPLAY.

WM_VSCROLLCLIPBOARD Same as the WM_HSCROLLCLIPBOARD
message.

SRR e R S R R R S

Dynamic

27.1
27.2

27.3

27.4

Chapter

Data Exchange

Introduction....c.coeviviiveieiiniiiiiiiniein e 347
About Dynamic Data Exchange.......cccccvvvuvininninniinninn, 347
27.2.1 Client and Server Interaction........ccceeveeeeeneneeennnn. 347
27.2.2 Sample DDE Relationship.....ccccccvveenannnn. Teeresesiaes 348
Using Dynamic Data Exchange......cccceveeviiiiiiiiiiinnnnn.n. 349
27.3.1 Detailed DDE Examplecccoouviieninieniniininnnnnn.. 349
27.3.2 DDE Message Contents........covvueereninieienrenecunnnes 350
27.3.3 Unique Data Formats.......cccovuviviiinenenirinennenn. 353
27.3.4 Sample DDE Transactionseeeeveeeeeenenensncnnass 353
27.3.4.1 Initiating an Exchange
Between Two Applicationscceueeenen.. 353
27.3.4.2 Positive WM_DDE_ACK Response 354
27.3.4.3 Negative WM_DDE_ACK Response 355
27.3.4.4 One-Time Data Transfer
Between Two Applications ...ocveviiiiiesrineiaes 355
27.3.4.5 Permanent Data Link
Between Two Applicationseeeeeeenenenenns 356
27.3.4.6 Executing Commands
in a Remote Application........ccccveviaenennnn.. 358
27.3.4.7 Terminating an Exchange
Between Two Applicationsc.eeveeeenennnnns 359
27.3.5 Synchronization Rulescccvvuiiininiiiieienninennnnnnnn.. 359
SUMMATY t.ivtiiiiiiiiiiiri e s e ea e e enans 360
27.4.1 TFUunCtionSceueininiininiinineinroieisensesarenssassennsans 360
2742 MeSSAZES ceurnrrininitenrnnnesnrsonanenesaresnsasssensnsnenans 360

27.4.3 DDE Status FIagsc.ccveveiieieneeeinrneireennenenennnns 361

I\

ATX

Chapter 27: Dynamic Data Exchange 347

N e e B B R S R e R S S R R B S S S R RS R R

27.1 Introduction

27.2 About

27.2.1 Client

This chapter describes how to use dynamic data exchange (DDE) messages to
transfer data between applications. You should also be familiar with the follow-
ing topics:

B Standard user-interface guidelines

® Window messages and. message queues

® MS OS/2 memory management and shared memory
B Clipboard data-exchange model

Dynamic Data Exchange

The dynamic data exchange (DDE) protocol is a set of messages and guidelines
that allow MS OS/2 Presentation Manager applications to share data freely,
using either one-time data transfers or ongoing exchanges, in which applications
send updates to one another as new data becomes available.

The DDE protocol uses messages for signaling between applications that share
data. The DDE protocol uses shared memory as the means of transferring data
from application to application. DDE defines some structures to store the shared
memory objects.

DDE is different from the clipboard data-transfer mechanism that is also part of
MS OS/2. One difference is that the clipboard is almost always used as a one-
time response to a specific action by the user (such as choosing Paste from a
menu). DDE, on the other hand, is often initiated by a user but typically contin-
ues without the user’s further involvement.

and Server Interaction

DDE transactions always consist of a client application and a server application.
The client initiates the exchange by requesting data from the server. The server
responds to the data requests by providing data to the client. A server can have
many clients at the same time, and a client can request data from multiple
servers.

An application can be both a client and a server. For instance, an application
might receive data from another application as a client, and then act as a server
by passing the data to another application.

The important distinction between a client and a server is that the client initiates
the DDE transaction.

348 MS 0S/2 Programmer’s Reference, Vol. 1 .
B B B R R e R e O R e s e s i

27.2.2 Sample DDE Relationship

There are many potential uses of DDE in real-time data-acquisition applications.
This section discusses an example of one such use: a DDE-based real-time sys-
tem for tracking portfolios. Two hypothetical Presentation Manager applications
cooperate in this example. One application, named “Collector,” is a specialized
interface that draws data from an on-line data service. The other application is a
spreadsheet. Both applications use the DDE protocol. In the described transac-
tions the spreadsheet application is the client—that is, the application that ini-
tiates DDE transactions—and the on-line data-collection application is the
server.

The sample spreadsheet has the following layout:

A B C D
1 Stock Shares Price Extension
2 BTRX 1000 148 148000
3 HLOW 2000 26 52000
4 WRLD 200 24 4800
5 ZMXI 2000 93 186000
6 390800

Without DDE, this spreadsheet could be updated by using the clipboard to man-
ually copy numbers from the screen display of the Collector application into the
spreadsheet. This would require screen sharing or switching between applica-
tions, and would also require that the user pay attention to the price data and
personally undertake the data exchange.

With DDE, this system could be much more automatic, providing the spread-
sheet with the current values for multiple data items without intervention by the
user. DDE would allow the user to set up an exchange between the server and
client applications that would keep the spreadsheet up-to-date whenever a
change occurred in the value of specified stocks. Once this connection was
established, the cell values in the spreadsheet would always reflect the most
current data available from the server. This system would facilitate the timely
analysis of real-time data.

The usefulness of the DDE protocol is not restricted to specialized real-time
data-acquisition applications. Productivity software in general can benefit signif-
icantly from the protocol. For example, suppose a monthly report is prepared
using a graphics-and-text word processor, and that the report includes graphs
generated in a separate business-graphics package. Without DDE, it would be
necessary to manually copy and paste each month’s new graphs into each
month’s report. With DDE, the word processor can establish a permanent link
to the charting application, so that any changes made by the user to the charting
document are reflected in the word-processing document, either automatically or
ol:l request. This makes the routine of document preparation much simpler for
the user.

Chapter 27: Dynamic Data Exchange 349
B B S e i P S e s e e R S S S SR S S ST

27.3 Using Dynamic Data Exchange

A DDE transaction between two applications actually takes place between two
windows, one for each of the participating applications. Applications open a
window for each conversation they engage in. (Note that such windows are typi-
cally not visible.) A window is identified by its handle. The window belonging to
the server application is the server window; the window belonging to the client
application is the client window.

After a conversation has been initiated by the client, the client interacts with the
server by issuing transactions. When issuing a transaction, the client requests
that the server perform a particular action. There are six types of transactions:
request, advise, unadvise, poke, execute, and terminate. These transactions are
permitted only within an exchange begun by using the WM_DDE_INITIATE
message. DDE transactions are one-way: the client application always issues the
transactions. If the server issues a transaction to the client, the server must ini-
tiate a new exchange for that purpose. The server becomes the client in this new
exchange. (The only exception to the one-way rule is the terminate transaction,
which can be issued by either the client or the server.)

27.3.1 Detailed DDE Example

This section presents a more detailed view of the workings of the DDE protocol.
It discusses the example of the Collector and spreadsheet interaction and illus-
trates forwarding stock quotes from the Collector application to the spreadsheet.
For the sake of simplicity, this example will be limited to the exchange of quotes
for a single stock, BTRX.

The Collector DDE server application is started first. Typically, applications
designed to operate as dedicated DDE servers have some user interface for ini-
tialization and then run as icons at the bottom of the Presentation Manager
screen. As part of the initialization process, the Collector DDE server applica-
tion goes through whatever steps are necessary (entering passwords, testing, etc.)
to ensure that data can be provided to clients.

The spreadsheet is started next, and the stock-portfolio document is loaded.
At this time, the spreadsheet calls the WinDdelnitiate function, which sends
a WM_DDE_INITIATE message to all current top-level frame windows.

The WM_DDE_INITIATE message is a request to initiate an exchange with an
application on a specified topic—in this case, NYSE. An application can accept
this message by responding with a positive WM_DDE_INITIATEACK message,
or can decline it by passing the message on to the WinDefWindowProc function:
If no application accepts the request, the spreadsheet assigns an error value to
the external reference and its DDE activity concludes.

If the Collector application acknowledges the request, the spreadsheet can use
the newly established exchange to request the Collector application to provide
continuous updates on a specified data item. To make this request, the spread-
sheet posts a WM_DDE_ADVISE message to the Collector application (actu-
ally, to a window within the Collecior application that is acting as the message
recnpnent for DDE messages), indicating that updates should be sent every time
there is a new value available for the data jtem named “BTRX,” and that the
updates should be in a particular format—for example, DDEFMT_TEXT .

350 MS 0S8/2 Programmer’s Reference, Vol. 1
A R P R R A R N D R S ﬁﬁ#ﬁﬁm{@ﬁ:a‘ B R T R o R PSR

Upon receiving this message, the Collector application records the request in its
database and posts a WM_DDE_ACK message to the spreadsheet. From then
on, the Collector application posts a WM_DDE_DATA message to the spread-
sheet application (actually, to the window in the spreadsheet that initiated the
exchange) whenever it receives a new BTRX stock quote from the server. Each
of these messages carries a selector for a shared memory object. The object
itself contains the data, rendered in the requested format. Whenever the
spreadsheet receives such a message, it retrieves the data from the referenced
memory object and uses the data to update the value of the cell containing the
external reference.

The periodic updates continue until the spreadsheet document is closed. At that
point the spreadsheet application posts a WM_DDE_UNADVISE message to
the Collector application, indicating that further updating is not necessary. Upon
receipt of this message, the Collector application removes the corresponding
data request from its database and posts a positive WM_DDE_ACK message
back to the spreadsheet.

Finally, unless the spreadsheet initiates other data exchanges under this same
topic, it posts a WM_DDE_TERMINATE message to the Collector application,
indicating the end of the DDE transaction. The Collector application responds
with a WM_DDE_TERMINATE message.

27.3.2 DDE Message Contents

DDE uses the three-level hierarchy—application, topic, and item—to uniquely
identify a unit of data. An item is a data object that can be passed in a DDE
transaction. For example, an item might be a single integer, a string, several
paragraphs of text, or a bitmap. A topic is a logical data context. For applica-
tions that operate on file-based documents, topics are usually filenames; for
other applications they are other application-specific strings. Using the Collector
and spreadsheet model described earlier, the application name is collector, the
topic name is NYSE, and the item name is BTRX.

There are two data structures used for DDE transactions: the DDEINIT struc-
ture and the DDESTRUCT structure. The DDEINIT structure is used for the
WM_DDE_INITIATE and WM_DDE_INITIATEACK messages. DDEINIT
contains pointers to the application-name and topic-name strings. The DDEINIT
structure has the following form:

typedef struct _DDEINIT {
USHORT cb;
PSZ pszAppName;
PSZ pszTopic;

} DDEINIT:;

An application typically does not need to fill in a DDEINIT structure, since
the operating system fills it in automatically when the application calls the
WinDdelnitiate or WinDdeRespond function. It is important, however, to
understand the organization of the DDEINIT structure when receiving a
WM_DDE_INITIATE or WM_DDE_INITIATEACK message, so that you
can extract the application name and the topic name.

Chapter 27: Dynamic Data Exchange 351

T e B S e e B S S S S S S S R S s s

Figure 27.1

The DDESTRUCT structure is passed with all DDE messages except
WM_DDE_INITIATE and WM_DDE_INITIATEACK. It contains a byte count
of the data, the format of the data, the item name, a status word, and the data
being transferred. The DDESTRUCT structure has the following form:

typedef struct _DDESTRUCT {
ULONG <cbData;
USHORT fsStatus;
USHORT usFormat;
USHORT offszItemName;
USHORT offabData;

} DDESTRUCT;

The data in a DDE message is contained in a shared memory segment. The
sender allocates a segment large enough to hold one of the two data structures
described above and the actual data to be transferred, and passes the selector
for the memory as part of the message. The layout of a typical DDE segment is
shown in Figure 27.1. The first part of the DDE segment is occupied by the
DDESTRUCT structure. Next comes the item-name string. Following the name
string is the actual data to be transferred. The offset fields of the DDESTRUCT

" structure must be set to point to the name string and the beginning of the data.

The cbData field must also be set to indicate the number of bytes of data.

Typical DDE Segment

Data Data

ltemName } Item name

offabData
offszitemName
usFormat DDESTRUCT
fsStatus
cbData

The sender must allocate the segment as SEG_GIVEABLE and call the Dos-
GiveSeg function to share the segment with the receiving application. To share a
segment, the sender needs to know the process identifier of the recipient. The
process identifier can be obtained by calling the WinQueryWindowProcess func-
tion for the recipient’s window handle.

The sender should call the DosFreeSeg function to free its copy of the segment
selector as soon as it has given the shared segment selector to the recipient. The
recipient should call DosFreeSeg when it is finished using the segment. The
sender should not try to access the segment once it has been sent to the recip-
ient in a DDE message.

352 MS 08/2 Programmer’s Reference, Vol. 1
B R R S e S S R e e R R R R

The following code fragment shows a function that creates a shared segment for
a DDE transaction. The function parameters include the destination window for
the DDE message, the item name for the transaction, the status word, the for-
mat of the data, the actual data to be transferred (if any), and the length of the
data. The segment allocated by this function must be big enough to hold the
DDESTRUCT structure, the item name, and the actual data to be transferred.
The function returns a pointer (PDDESTRUCT) to a shared segment that is
ready to post as part of a DDE message.

PDDESTRUCT MakeDDESegment (hwndDest, pszItemName, fsStatus, usFormat,
pabData, usDatalen)

HWND hwndDest;

PSZ pszltemName;

USHORT fsStatus;

USHORT usFormat;

PVOID pabData;

USHORT usDatalLen;

{.
PDDESTRUCT pddes; /* pointer to DDESTRUCT */
USHORT usItemlen; /* length of item name */
USHORT usTotalLen; /* total length of segment */
SEL selBuf; /* local selector for segment */
SEL selShared; /* shared selector for segment */
USHORT receiverPID; /* process ID of server *x/
USHORT receiverTID; /* thread ID of server */

usItemLen = FarStrLen (pszItemName) + 1;
usTotalLen = sizeof (DDESTRUCT) + usItemLen + usDatalen;
if (! DosAllocSeg(usTotallen, &selBuf, SEG_GIVEABLE)) {
/* Initialize DDESTRUCT. */
pddes = SELTOPDDES (selBuf):;
pddes->cbData = usTotalLen;
pddes->fsStatus = fsStatus;
pddes->usFormat = usFormat;
pddes->offszItemName = sizeof (DDESTRUCT) ;
if ((usDataLen) && (pabData))
pddes->offabData = sizeof (DDESTRUCT) + usItemLen;
else
pddes->offabData = O;
/* Copy item name immediately following DDESTRUCT. */
FarStrCopy (DDES_PSZITEMNAME (pddes), pszItemName) ;
/* Copy data immediately following item name. */
FarStructCopy (DDES_PABDATA (pddes), pabData, usDatalen);
/* Get process identifier of server. */
WinQueryWindowProcess (hwndDest, &receiverPID, &receiverTID);
/* Give the segment away. */
if (!DosGiveSeg(selBuf, receiverPID, &selShared)) {
pddes = SELTOPDDES (selShared);
return (pddes);
}

/* Else could not allocate or share segment. */

return (NULL);

Chapter 27: Dynamic Data Exchange 353
S R R S e R e R B S S U NG

]

This function is used in many examples in the following sections to demonstrate
the creation of DDE shared segments. You may want to define a similar function
in your own programs as well.

27.3.3 Unique Data Formats

Whenever you exchange data by using the DDE protocols you must specify the
format of the data in the usFormat ficld of the DDESTRUCT structure. The
system-defined standard format is DDEFMT_TEXT, which indicates text data.

Applications can define their own data formats. Each nonstandard DDE format
must have a unique identification number. The application should register the
name of the format in the system atom table, receiving an identification number
for that format name. Other applications that have the name of the format can
also query the system atom table for the format’s identification number. This
method ensures that all applications use the same atom to identify a format.

The following code fragment shows how an application can obtain a unique
identification number for a DDE format. This technique can be used by the
application that creates the format and by an application that is able to use the
format.

hatomtbl = WinQuerySystemAtomTable():
formatID = WinAddAtom(hatomtbl, "SuperCAD_Format"):

27.3.4 Sample DDE Transactions

This section discusses beginning and ending a DDE transaction and the five
basic types of interchange supported by DDE. Each of the following subsections
provides a detailed description of the message protocols that are associated with
the transactions it discusses.

27.3.4.1 Initiating an Exchange Between Two Applications

To initiate a DDE transaction, the client calls the WinDdelnitiate function,
specifying the server application-name and topic-name strings. This function
sends a WM_DDE_INITIATE message to all frame windows whose parent is
HWND_DESKTOP. Because the message is sent rather than posted, WinDde-
Initiate requires all of the message’s recipients to respond to the message before
control is returned. Either the application name or the topic name can be a null
string, in which case the server ignores that name. For example, a client could
send a valid application name with a null topic name to request an exchange on
all available topics for that application.

The server applications that respond to the WM_DDE_INITIATE message will
call the WinDdeRespond function, as shown in the following pseudocode:

If ((specific app requested and server is instance of app) or
(specific app not requested){

If (specific topic requested)
If (server can support topic)

acknowledge the requested topic

Else
acknowledge each supported topic

354 MS 0S/2 Programmer’s Reference, Vol. 1
B B e s s B S R e e R T S e B S R

To acknowledge a specific topic, the server responds with the following code
fragment:

WinDdeRespond (hwndClient, hwndServer, pszAppName, pszTopicName):;

To acknowledge more than one topic, the server makes one such response for
each topic. This initiates an exchange on each topic. The client should post a
WM_DDE_TERMINATE message for all unneeded transactions.

The System Topic

Applications are encouraged to support the “System” topic at all times. This
topic provides a context for information that may be of general interest to any
partners in a DDE transaction. DDE applications should request an exchange on
the System topic with a NULL application name when they start up, to find out
what kinds of information other DDE-capable programs can provide.

The System topic should support the following terms, as well as any other items
the application may use:

Item Description

SysItems , A list of the items supported under the System
topic by this application.

Topics A list of the topics supported by the application
at the current time (this may vary from moment
to moment).

ReturnMessage Supporting detail for the most recently issued

WM_DDE_ACK message. (This is useful when
more than eight bits of application-specific return
code are required.)

Status An indication of the current status of the applica-
tion.
Formats A list of DDE format numbers that the applica-

tion can render.

Individ)ual elements of lists should be delimited by tabs (the DDEFMT_TEXT
format).

27.3.4.2 Positive WM_DDE_ACK Response

A client or server often must positively acknowledge a DDE message that it
receives by posting a WM_DDE_ACK message with the DDE_FRESPONSE
flag set in the status word of the DDESTRUCT structure. Sending a positive

Chapter 27: Dynamic Data Exchange 355
e R S B e O e e R B e e R R e B S e S S B

WM_DDE_ACK message means that the sender will respond to the previous
message. The following code fragment is an example of a positive acknowledg-
ment message:

pddeStruct = MakeDDESegment (hwndDest, /* handle of destination */
"BTRX", /* item name */
DDE_EACKREQ, /* status flags +y
DDEFMT_TEXT, /* data format */
NULL, /* no data for request */
0); /* data length */

WinDdePostMsg (hwndDest, /* handle of destination */
hwndSource, /* handle of source */
WM_DDE_ACK, /* message */
pddeStruct, /* shared-segment pointer */
1) ; /* retry *

27.3.4.3 Negative WM_DDE_ACK Response

When an application receives a DDE message that it cannot respond to (such as
a request for data in a format that it does not support), the application must
post a WM_DDE_ACK message with the DDE_NOTPROCESSED flag set in
the status word of the DDESTRUCT structure. The following code fragment is
an example of a negative acknowledgment message:

pddeStruct = MakeDDESegment (hwndDest, /* handle of destination */
"BTRX", * jtem name */
DDE_NOTPROCESSED, /* status flags */
DDEFMT_TEXT, /* data format */
NULL, /* no data for request */
0): /* data length */
WinDdePostMsg (hwndDest, /* handle of destination */
hwndSource, /* handle of source */
WM_DDE_ACK, - /* message . */
pddeStruct, /* shared-segment pointer */
1) /* retry */

If an application is busy when it receives a DDE message, it can post a
WM_DDE_ACK message with the DDE_FBUSY flag set.

27.3.4.4 One-Time Data Transfer Between Two Applications

A client application can use the DDE protocol to obtain a data item from
a server (WM_DDE_REQUEST), or to submit a data item to a server
(WM_DDE_POKE). In either case, the client must have already initiated
an exchange with the server, as described earlier.

The client posts a WM_DDE_REQUEST message to the server, specifying an
item and format by allocating a shared segment and filling in a DDESTRUCT
structure and passing the structure to the WinDdePostMsg function. For exam-
ple, if a DDE exchange has been started on the NYSE topic, the client could
request data for the BTRX item by using the following code fragment. (For an
exampl)e of how to allocate and initialize a shared memory segment, see Section
27.3.2.

356 MS 0S/2 Programmer’s Reference, Vol. 1
R R e e e B B R R R R R R RS BRI

pddeStruct = MakeDDESegment (hwndServer, /* handle of server */
"BTRX", : /* item name */
o, /* status flags */
DDEFMT_TEXT, /* data format */
NULL, /* no data for request */
0); /* data length /

WinDdePostMsg (hwndServer, /* handle of server */
hwndClient, /* handle of client x/
WM_DDE_REQUEST, /* message
pddeStruct, /* shared-segment pointer */
1) /* retry *

If the server is unable to satisfy the request, it sends the client a negative
WM_DDE_ACK message. If the server can satisfy the request, it renders the
item in the requested format and includes it with a DDESTRUCT structure in a
shared memory object and posts a WM_DDE_DATA message to the client, as
shown in the following code fragment:

pddeStruct = MakeDDESegment (hwndClient, /* handle of client */

"BTRX", /* item name */

o, /* status flags */

DDEFMT_TEXT, /* data format */

pabData, /* pointer to data

usDataLen) ; /* data length */
WinDdePostMsg (hwndClient, /* handle of client .

hwndServer, /* handle of server */

WM_DDE_DATA, /* message

pddeStruct, /* shared-segment pointer */

1) /* retry *

Upon receiving a WM_DDE_DATA message, the client processes the data
item. The DDESTRUCT structure at the beginning of the shareable segment con-
tains a status word indicating whether the sender has requested an acknowledg-
ment message. If the DDE_FACKREQ bit of the status word is set, the client
should send the server a positive WM_DDE_ACK message.

Upon receiving a negative WM_DDE_ACK message, the client can ask for the -
same item again, specifying a different DDE format. Typically, a client will first
ask for the most complex format it can support, then step down, if necessary,
through progressively simpler formats until it finds one the server can provide.

27.3.4.5 - Permanent Data Link Between Two Applications

A client application can use DDE to establish a link to an item in a server appli-
cation. When such a link is established, the server sends perlodlc updates about
the linked item to the client (typically, whenever the data that is associated with
the item in the server application has changed). A permanent “data stream” is
established between the two applications and remains in place until it is exphcxtly
disconnected.

The client sends the server a WM_DDE_ADVISE message to set up the data
link. (Of course, the client must have first initiated an exchange by using the
WM_DDE_INITIATE message, as described previously.) The advise message
contains a shared-memory pointer containing a DDESTRUCT structure with the

Chapter 27: Dynamic Data Exchange 357
B e B S e S e R R R R S e R e A iB

item name, format information, and status mformatlon, as shown in the follow-
ing code fragment:

pddeStruct = MakeDDESegment (hwndServer, /* handle of server *
"BTRX", /* item name */
DDE_FACKREQ, /* status flags */
DDEFMT_TEXT, /* data format
NULL, /* no data for advise */
0):; /* data length */

WinDdePostMsg (hwndServer, /* handle of server */
hwndClient, /* handle of client */
WM_DDE_ADVISE, /* message */
pddeStruct, /* shared-segment pointer */
1): /* retry */

If the server has access to the requested item and can render it in the desired
format, the server records the new link and then sends the client a positive
WM_DDE_ACK message. Until the client issues a WM_DDE_UNADVISE
message, the server sends data messages to the client every time the source data
changes that is associated with the item in the server application.

If the server is unable to satisfy the request, it sends the client a negative
WM_DDE_ACK message.

When a link is established with the DDE_FNODATA status bit cleared, the
client is sent the data each time the data changes. In such cases, the server
renders the new version of the item in the previously specified format and posts
a WM_DDE_DATA message to the client, as shown in Section 27.3.4.4.

When the client receives a WM_DDE_DATA message, it extracts data from the
shared memory segment by using the DDESTRUCT structure at the beginning of
the segment. If the DDE_FACK status bit is set in the status word of the
DDESTRUCT structure, the client must post a positive WM_DDE_ACK mes-
sage to the server.

When a link is established with the DDE_FNODATA status flag set, a noti-
fication, not the data itself, is posted to the client each time the data changes.

In this case, the server does not render the new version of the item when the
source data changes, but simply posts a WM_DDE_DATA message with zero
bytes of data and the DDE_FNODATA status flag set, as shown in the following
code fragment:

pddeStruct = MakeDDESegment (hwndClient, /* handle of client */
"BTRX", /* item name ' */
DDE_FNODATA, /* status flags */
DDEFMT_TEXT, /* data format */
NULL, /* no data */
0); /* data length *

WinDdePostMsg (hwndClient, /* handle of client */
hwndServer, /* handle of server */
WM_DDE_DATA, /* message */
pddeStruct, /* shared-segment pointer */
1) ; /* retry *

358 MS 0S/2 Programmer’s Reference, Vol. 1
- R e e e B e B e e R el

A R e B R

The client can request the latest version of the data by performing a regular

one-time WM_DDE_REQUEST transaction, or it can simply ignore the data-
change notice from the server. In either case, if the DDE_FACK status bit is
set, the client should send a positive WM_DDE_ACK message to the server.

To terminate a specific item link, the client posts a WM_DDE_UNADVISE
message to the server, as shown in the following code fragment:

pddeStruct = MakeDDESegment (hwndServer, /* handle of server */
"BTRX", * item name */
DDE_FACKREQ, /* status flags */
DDEFMT_TEXT, /* data format */
NULL, /* no data for unadvise */
0); ' /* data length */
WinDdePostMsg (hwndServer, /* handle of server */
hwndClient, /* handle of client */
WM_DDE_UNADVISE, /* message */
pddeStruct, /* shared-segment pointer */
1) /* retry */

The server checks that the client currently has a link to the specified item in this
exchange. If the link exists, the server sends a positive WM_DDE_ACK mes-
sage to the client and no longer sends updates on the item in this exchange. If
the server has no such link, it sends a negative WM_DDE_ACK message.

To terminate all links for a particular exchange, the client application posts a
WM_DDE_UNADVISE message with a null item name to the server. The
server checks that the exchange has at least one link currently established. If so,
the server posts a positive WM_DDE_ACK message to the client, and no longer
sends any updates in the exchange. If the server has no links in the exchange, it
posts a negative WM_DDE_ACK message.

27.3.4.6 Executing Commands in a Remote Application

A Presentation Manager application can use the DDE protocol to cause a com-
mand or series of commands to be executed in another application. Such remote
executions are performed by means of the WM_DDE_EXECUTE transaction.

To execute a remote command, the client application posts to the server a
WM_DDE_EXECUTE message containing a selector for a shared-memory
object that contains a DDESTRUCT structure and a command string, as shown
in the following code fragment:

pddeStruct = MakeDDESegment (hwndServer, /* handle of server */
"BTRX", - /* ltem name */
DDE_FACKREQ, /* status flags
DDEFMT_TEXT, : /* data format */
pabData, /* pointer to command string */
usDataLen) ; /* data length *

WinDdePostMsg (hwndServer, /* handle of server */
hwndClient, /* handle of client */
WM_DDE_EXECUTE, /* message *
pddeStruct, /* shared-segment pointer */
1) /* retry . *

The server attempts to execute the specified string according to some agreed-
upon protocol. If successful, the server posts a positive WM_DDE_ACK mes-
sage to the client; if unsuccessful, a negative WM_DDE_ACK message is
posted.

Chapter 27: Dynamic Data Exchange 359

il el R e E e e e T el e S e b s e e s

27.3.4.7 Terminating an Exchange Between Two Applications

At any time, either the client or the server may terminate an exchange by using
the following procedure to issue a WM_DDE_TERMINATE message. Similarly,
both the client application and server application should be able to receive a
WM_DDE_TERMINATE message at any time.

An application must end its exchanges before terminating. The application posts
a WM_DDE_TERMINATE message with a NULL shared-segment pointer, as
shown in the following code fragment. A WM_DDE_TERMINATE message
stops all transactions for a given exchange.

WinDdePostMsg (hwndDest, /* handle of destination */
hwndSource, /* handle of source */
WM_DDE_TERMINATE, /* message */
NULL, /* no shared-segment pointer */
1); /* retry */

The WM_DDE_TERMINATE message means that the sender will send no
further messages in that exchange and that the recipient may destroy its DDE
window. The recipient must always send a WM_DDE_TERMINATE message
promptly in response; it is not permissible to send a negative, busy, or positive
WM_DDE_ACK message instead. -

If the sender of the original termination request receives any other message
before the WM_DDE_TERMINATE message arrives from the recipient of the
request, no response should be sent to this other message; the sender of the
other message may already have destroyed the window to which the response
would be sent.

27.3.5 Synchronization Rules

A window processing DDE requests from another window must process them
strictly in the order in which the requests were received.

A window does not need to apply this first-in, first-out rule between requests
from different windows—that is, it may provide asynchronous support for multi-
ple processes. For example, a window might have the following requests in its
queue:

B 1: Request Message from window x

B 2: Request Message from window y
B 3: Request Message from window x

The window must process request 1 before 3, but it does not need to process 2
before 3. If y has a lower priority than x, the window follows the order 1, 3, 2.

If a server is unable to process an incoming request because it is waiting for an
external process, it must post a busy WM_DDE_ACK message to the client, to
prevent deadlock. A busy WM_DDE_ACK message can also be sent if the
server is unable to process an incoming request quickly.

360

MS 0S/2 Programmer’s Reference, Vol. 1

e T o A E S S R IS

27.4 Summary

This section describes the functions, messages, and status flags associated with
the DDE protocol.

27.4.1 Functions

Three functions simplify the use of DDE messages:

WinDdelnitiate Sends a WM_DDE_INITIATE message containing the

~ specified application name and topic name to all top-level frame windows in the

system.
WinDdePostMsg Posts a DDE message to the specified recipient window.

WinDdeRespond Sends a WM_DDE_INITIATEACK message in response to
a WM_DDE_INITIATE message.

27.4.2 Messages

The predefined DDE messages are summarized below:
WM_DDE_ACK Sent as acknowledgment to many DDE messages.

WM_DDE_ADVISE Sent from the client to the server, requesting the server
to provide a data update whenever the specified data item changes.

WM_DDE_DATA Sent from the server to the client to notify the client that
the data is available.

WM_DDE_EXECUTE Sent from the client to the server; containing a text
string that the server should execute as a command or series of commands.

WM_DDE_INITIATE Sent by a client apphcatnon to initiate an exchange with
one or more server applications. This message is often sent to all current appli-
cations by calling the WinBroadcastMsg function.

WM_DDE_INITIATEACK Sent by a server application as a positive response
to a WM_DDE_INITIATE message. This message specifies the server applica-
tion name and the topic on which the server will open a DDE transaction.

WM_DDE_POKE Sént as an unsohclted data message for the recipient, which
should reply with a WM_DDE_ACK message to indicate whether or not it
accepted the data.

WM_DDE_REQUEST Sent from the client to the server to request that a data
item be sent to the client.

WM_DDE_TERMINATE Sent by either the client or the server to terminate
the exchange.

WM_DDE_UNADVISE Sent from the client to the server to indicate that the
specified item should no longer be updated. This message requests the server to
remove the link to the data item set up by the WM_DDE_ADVISE message.

Chapter 27: Dynamic Data Exchange 361
R e B S R e e S s R S e S R g e a e R R e e s

27.4.3 DDE Status Flags

The following constant values control various aspects of a DDE transaction.
They can be combined in the fsStatus word of the DDESTRUCT structure by
using the OR operator.

DDE_FACK Set for positive acknowledgment.
DDE_FACKREQ Set to acknowledge DDE messages for the application.

DDE_FAPPSTATUS Upper eight bits of status word are reserved for the
application-specific data.

DDE_FBUSY Set if application is busy.
DDE_FNODATA Set if there is no data transfer for the WM_DDE_ADVISE

message.
DDE_FRESERVED Reserved; must be zero.

DDE_FRESPONSE Set if there is a response to a WM_DDE_REQUEST
message.

DDE_NOTPROCESSED Set if the message is not supported.

e N R R B N R e R S R Ry

Hooks

28.1
28.2
28.3

28.4
28.5

28.6

Chapter

Introduction.......ccvvviniiiinininniniiininnnane, [S 365
About HOOKS ...ovviniiiiiiiiiiiiiiiiiiiiiicci e 365
Types of HOOKS .c.vvuiiriiiiieiiiiiiiiiiinieiiciccie e, 365
28.3.1 Input HOOK ..iuiiiiiiniiineieieerreenrineneearcnranssonsonens 365
'28.3.2 Send-Message HOOK ..cceenrninrieeniiennrercansacanrenenas 366
28.3.3 Message-Filter Hook....... e reeteeeacerencstaaransernnenenene 367
28.3.4 Journal-Record HOOK...covuriiiiiiiiniiienicnienarnnanne. 368
28.3.5 Journal-Playback HOOKceovururuinienenieceaiannnnnnnn. 370
28.3.6 Help HOOK...iiiiieiiiiiiiiiniiiiiieaeiiciinassenenenanns 370
Using HOOKS ..ivevniiiiiiiiiiieriieireeniiieieinrsneneesenensncnnns 372
Hook Example....cceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinenaiaeeenenennes 373
28.5.1 Installing a System HOOK......coeuerreeeninenrnenenrnnnnnnn. 373
28.5.2 System-Hook Code....cuurrnrnnrnniniiniinniniianeninnnanenns 374
Summarycoceiviiinninennnn.. e eeeetrerir e raas 374
28.6.1 Functions ...cvcevieiveieissssionsnesearaeesnssssnsnssssnsasssns 374

Chapter 28: Hooks 365

R S e S S R B S N R R i T TS

28.1 Introduction

28.2 About

This chapter describes how to use hooks in your applications. You should also
be familiar with the following topics:

B Standard user-interface guidelines
B Window messages and message queues
® Focus window and input guidelines

Hooks

MS OS/2 is based on a message-passing model. The behavior of most programs
depends on the messages that the program receives. Messages can be generated
by input devices, such as the keyboard and mouse, or they can originate within
the system as a way of managing and communicating between system resources.

MS OS/2 provides hooks to allow applications to monitor and modify the mes-
sage stream. Hooks can be installed in either the system queue, so that they
affect all applications, or in an individual thread’s message queue, so that only
messages for that queue are affected.

Because many applications may install hooks at the same time, most hooks are
arranged in chains. The system passes a message to the first hook in the chain,
and then to the next hook in the chain, and so on until the message is delivered
to the destination application. Each hook may modify the message or stop its
progress through the chain, preventing it from reaching the application. Hooks
in a chain are called in last-installed, first-called order.

28.3 Types of Hooks

There are six different types of hooks. You can install the different types of
hooks in any combination, although some of the hook types can be installed only
in the system queue.

The following sections describe the available types of hooks. Each type of hook
is expressed as a function with a unique syntax.

28.3.1 Input Hook

This hook monitors the input queue and is called whenever a message is about
to be returned by the WinGetMsg or WinPeekMsg function. Typically, the input
hook is used to monitor mouse and keyboard input and other messages that are
posted to a queue.

The syntax for the input hook is as follows:
BOOL CALLBACK InputHook(HAB hab, PQMSG pQOmsg, USHORT fs5)

The pQmsg parameter is a far pointer to a QMSG structure that contains infor-
mation about the message. The QMSG structure has the following form:

366 MS 0S/2 Programmer’s Reference, Vol. 1 ‘
B B B g S T A g

typedef struct _QHSG {
HWND hwnd
USHORT msg;
MPARAM mpl;
MPARAM mp2;
ULONG time;
POINTL ptl:

} QMSG:

The fs parameter of the InputHook function can contain the following flags from
the WinPeekMsg function, indicating whether or not the message is removed
from the queue:

PM_NOREMOVE
PM_REMOVE

If this hook function returns TRUE, the message is not passed to the rest of the
hook chain or to the application—effectively ending the message. If the function
returns FALSE, the message is passed to the next hook in the chain, or to the
applicati