

Note -....-....-....-....-....-....-....-....-....-....-....-....-....~-....-....-....-....-....-....-....~-....-....-....-....-....-....-....-....-....-....-....-....-,

Before using this information and the product it supports, be sure to read the general
information under "Notices" on page v.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERN A TI ON AL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or
your IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source
language, which illustrate OS/2 programming techniques. You may copy and distribute these sample
programs in any form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: "© (your company name) (year) All Rights Reserved."

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Part 1: User's Guide

© Copyright IBM Corp. 1992

Chapter 1. Introducing IPF

What It Offers .

The Tag Language .

The IPF Compiler .

The View Program .

What You Get .

Hypertext and Hypergraphic Links .

Push Buttons .

Customized Windows .

Master Index

Chapter 2. Viewing the User Interface for Online Information

The Contents Window .

The Standard Window .

Help

Main Help Window .

Selection Lists .

Menu Bar
Push Buttons

Chapter 3. Starting with the Tag Language

Syntax Conventions .

End Tags

Nested Tags .

Text Strings

Attributes .

Symbols

Headings .. .

Displaying Window Titles

Hiding Window Titles .

Controlling Entries in the Contents Window

Special Rules .

Push Buttons .

Tagging Example for the Default Set of Push Buttons

Specifying Push Buttons for the Control Area of a Window

Attribute Values for the Control Area of a Window,

Controlling the Display of Push Buttons in Designated Windows

Disabling the Display of Push Buttons .

Author-Defined Push Buttons

About the Tutorial Push Button .

Indexing

Master Help Index .

Index-Synonyms

Control Words .

Im bed

Comment

Break ·· · · · · · · · · ·

1-1
1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-3
1-3

2-1
2-1
2-2
2-2
2-3
2-4
2-4

2-11

3-1
3-1
3-1
3-1
3-2
3-2
3-4
3-4
3-4
3-5
3-5
3-7
3-7
3-9
3-9

3-10
3-11
3-11
3-11
3-12
3-12
3-13
3-14
3-15
3-15
3-15
3-16

iii

Chapter 4. Displaying Text and Graphics
Highlighted Phrases .
Notes
Notices .. .
Simple List .
Unordered List .
Ordered List .
Definition List
Parameter List .
Tables .. .
Plain Lines .
Figures and Captions .
Textual Examples
Character Graphics .
Changing Fonts
Changing Color .
Margins
Bit Map and Metafile Graphics .

Chapter 5. Linking .
Window Identifiers .
Types of Links .

Hypertext Links .
Hypergraphic Links
Automatic Links .
External Links

What Linking Can Do
Display Another Window of the Same Library
Display a Window Linked to Another Database
Display a Help Window from Another Help Library
Display a Footnote Window
Send a Message to the Application .
Start an Application .

Chapter 6. Customizing Windows .
The Default Window .

Attribute Values for Window Controls .
Multiple Windows .

Defining Window Origin and Size .
Attribute Values for Window Origin and Size
Displaying Multiple Windows
Linking to a Window Automatically .
Closing a Window Automatically
Tagging Example for Automatic Windows .

Split Windows
Defining Split Windows
Tagging Example for Split Windows .

Summary Tables of Attribute Values for Origin and Size
Summary Table for Heading Attributes .
Summary Table for Link Attributes .

Chapter 7. Compiling Source Files .
Source File Requirements .
Naming Conventions
Using a Base Source File
Starting the IPF Compiler

iv Information Presentation Facility

4-1
4-1
4-2
4-4
4-5
4-6
4-8

4-10
4-13
4-15
4-20
4-22
4-23
4-24
4-24
4-26
4-27
4-28

5-1
5-1
5-2
5-2
5-3
5-5
5-5
5-5
5-6
5-6
5-6
5-8
5-9
5-9

6-1
6-1
6-3
6-3
6-4
6-5
6-7

6-10
6-12
6-12
6-16
6-16
6-17
6-22
6-23
6-24

7-1
7-1
7-2
7-3
7-3

Compiling Help Files . 7-4
Compiling with International Language Considerations 7-4

Viewing an Online Document . 7-4
Where IPFC Files are Stored . 7-4
Concatenating .INF Files . 7-5
Interpreting IPFC Error Messages . 7-5
Differences between .HLP and .INF Files . 7-6
National Language Support . 7-7

Country Code Pages . 7-7

Part 2: Programmer's Guide

Chapter 8. Enabling Help for Applications . 8-1
Developing the Application Code . 8-1

Setting Up the IPF Help Tables . 8-1
Initializing the HELPINIT Structure . 8-4
Creating the Help Instance . 8-7
Associating the Instance with the Window Chain 8-8
Ending the Help Instance . 8-8

Responding to Messages for Menu Bar Choices 8-9
Processing "Using help" Requests . 8-9
Processing a "Keys Help" Request . 8-9
Processing Help Requests for a Child Window 8-9
When No Help Is Available 8-11
Help Window Resources . 8-11
Help Pull-Down . 8-11
Help Push Button 8-12
Command Entry Field . 8-12
A Customized Menu Bar . 8-12

Chapter 9. Expanding the Scope of IPF 9-1
Application-Controlled Windows . 9-1
Communication Objects . 9-3

The Coverpage Window . 9-3
Communication with IPF . 9-4
Writing the Communication Object Code 9-6
Using Communication Windows . 9-13

Dynamic Data Formatting . 9-19
DDF and Online Help Facilities . 9-20
DDF and Online Documents . 9-20

Chapter 10. Window Functions . 10-1
WinAssociateHelplnstance . 10-2
WinCreateHelplnstance . 10-5
WinCreateHelpTable . 10-8
WinDestroyHelplnstance . 10-10
WinLoadHelpTable . 10-13
WinQueryHelplnstance . 10-15

Chapter 11. Dynamic Data Formatting Functions
DdffieginList
Ddffiitmap
DdfEndList .

11-1
11-2
11-5
11-9

DdfHyperText
Ddflnform

11-11
. . 11-14

Contents V

Ddflnitialize . 11-16

DdfListltem . 11-20

DdfMetafile . 11-23

DdfPara . 11-26

DdfSetColor . 11-28

DdfSetFont . 11-31

DdfSetFontStyle . 11-34

DdfSetFormat . 11-37

DdfSetTextAlign . 11-39

Ddff ext . 11-42

Chapter 12. Help Manager Mesages . 12-1

HM_ACTIONBAR_COMMAND 12-4

HM_CONTROL . 12-5

HM_CREATE_HELP_TABLE 12-6

HM_DISMISS_WINDOW 12-7

HM_DISPLAY_HELP 12-8

HM_ERROR . 12-9

HM_EXT_HELP . 12-11

HM_EXT_HELP_UNDEFINED . 12-12

HM_GENERAL_HELP . 12-13

HM_GENERAL_HELP_UNDEFINED . 12-14

HM_HELP_CONTENTS . 12-15

HM_HELP _INDEX . 12-16

HM_HELPSUBITEM_NOT_FOUND . 12-17

HM_INFORM 12-19

HM_INVALIDATE_DDF_DATA . 12-20

HM_KEYS_HELP . 12-21

HM_LOAD_HELP_TABLE . 12-22

HM_NOTIFY 12-23

HM_QUERY . 12-24

HM_QUERY_DDF_DATA . 12-26

HM_QUERY_KEYS_HELP . 12-27

HM_REPLACE_HELP _FOR_HELP . 12-28

HM_REPLACE_USING_HELP . 12-29

HM_SET_ACTIVE_WINDOW . 12-30

HM_SET_COVERPAGE_SIZE . 12-31

HM_SET_HELP_LIBRARY_NAME . 12-32

HM_SET_HELP _WINDOW _TITLE . 12-33

HM_SET_OBJCOM_WINDOW . 12-34

HM_SET_SHOW_PANEL_ID . 12-35

HM_SET_USERDATA . 12-36

HM_TUTORIAL . 12-37

HM_UPDATE_OBJCOM_WINDOW_CHAIN 12-38

Part 3: Tag Reference

Chapter 13. IPF Tag Reference . 13-1

.br (Break) . 13-2

.* (Comment) . 13-3

.im (Imbed) . 13-4

:acviewport. (Application-Controlled Window) 13-5

:artlink. (Art Link) . 13-7

:artwork. (Artwork) . 13-9

:caution. (Caution) . 13-11

vi Information Presentation Facility

:cgraphic. (Character Graphic) . 13-12
:color. (Color) . 13-13
:ctrl. (Control Area) . 13-14
:ctrldef (Control Area Definition) . 13-16
:ddf. (Dynamic Data Formatting) . 13-17
:dl. (Definition List) . 13-18
:docprof. (Document Profile) . 13-20
:fig. (Figure) . 13-22
:figcap. (Figure Caption) . 13-23
:font. (Font) . 13-24
:fn. (Footnote) . 13-26
:hi. through :h6. (Headings) . 13-27
:hide. (Hide) . 13-31
:hpl. through :hp9. (Highlighted Phrase) . 13-33
:ii. and :i2. (Index) . 13-34
:icmd. (Index Command) . 13-37
:isyn. (Index Synonym) . 13-38
:Ii. (List Item) . 13-40
:lines. (Lines) . 13-41
:link. (Link) . 13-43
:Im. (Left Margin) . 13-46
:Ip. (List Part) . 13-48
:note. (Note) . 13-49
:nt. (Note) . 13-50
:ol. (Ordered List) . 13-51
:p. (Paragraph) . 13-52
:parml. (Parameter List) . 13-53
:pbutton (Push Button) . 13-55
:pd. (Parameter Description) . 13-56
:pt. (Parameter Term) . 13-57
:rm. (Right Margin) . 13-58
:sl. (Simple List) . 13-60
:table. (Table) . 13-62
:title. (Title) . 13-64
:ul. (Unordered List) . 13-65
:userdoc. (User Document) . 13-66
:warning. (Warning) . 13-67
:xmp. (Example) . 13-68

Chapter 14. Symbols 14-1

Appendix A. Compiler Error Messages . A-1
Description and Format of Error Messages . A-1

Warning Level 1 Messages . A-1
Warning Level 2 Messages . A-3
Warning Level 3 Messages . A-4

Index . X-1

Contents vii

viii Information Presentation Facility

Notices

©Copyright IBM Corp. 1992

The following terms, denoted by an asterisk(*) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

Common User Access
CUA
IBM
Operating System/2
OS/2
Personal System/2
Presentation Manager
Systems Application Architecture

The following terms, denoted by a double asterisk(**) in this publication, are
trademarks of other companies as follows:

Adobe
Helvetica
Intel486
Postscript
Times New Roman

Adobe Systems Incorporated
Linotype AG
Intel Corporation
Adobe Systems Incorporated
Monotype Corporation

ix

X Information Presentation Facility

About This Book

This book describes the elements that make up the Information Presentation Facility
(IPF). IPF is a tool that supports the design and development of online documents,
and online help facilities.

Who Should Read This Book
This book is for the information author and the application programmer using the
OS/2 2.0 operating system, and the Developer's Toolkit for OS/2 2.0 (Tookit).

To the Information Author: Use "Part I: User's Guide" and "Part III: Tag
Reference" if you are designing and writing online information.

To the Appllcatlon Programmer: Use "Part II: Programmer's Guide" if you are
developing code that creates the Help interface for an OS/2 application. You are
expected to be knowledgeable in the C-language, and know how to use the
programming library associated with the Toolkit.

How this Book is Organized

Part I: User's Guide
This section introduces you to the features of IPF and shows you how to use the
tagging language. You will learn to present text, connect information, and create
and customize windows.

Part II: Programmer's Guide
This section describes the programming techniques used to develop C-language
source code for a Help interface. Extensive use of sample source code is provided.

The reference chapters include the IPF Help Manager messages, and the application
programming interface (API) that supports dynamic data formatting and the
creation of help windows.

Part Ill: Tag Reference

© Copyright IBM Corp. 1992

This section provides an alphabetic reference of the IPF tagging language, including
the symbols that are used to display special characters.

An appendix provides IPF error messages.

xi

xii Information Presentation Facility

Part 1: User's Guide

©Copyright IBM Corp: 1992

Information Presentation Facility

Chapter 1. Introducing IPF

What It Offers

The Information Presentation Facility (IPF) is a tool that enables you to create
online information, to specify how it will appear on the screen, to connect various
parts of the information, and to provide help information that can be requested by
the user.

IPF was introduced with the Operating System/2* Version 1.2, and was improved for
OS/2 2.0 (OS/2*). It is a tool for both the information author and the application
programmer. IPF implements guidelines recommended by the Common User
Access*(CUA*) element of the Systems Application Architecture*(SAA*) platform.

As a writer of online information, you need to know what type of information users
need - tutorial, reference, or help. For example, they might need a tutorial to learn
a software program, reference information for additional topics, or help information
for assistance with the program. As a designer of online information, you need to
know what IPF features support your design. IPF features include:

• A tagging language that formats text, provides ways to connect information
uni ts, and customizes windows

• A compiler that creates online documents and help windows
• A viewing program that displays formatted online documents.

The Tag Language

The IPF Compiler

The IPF tagging language provides the instructions for how online information is to
be displayed. With these instructions, or tags, you can:

• Highlight text
• Set margins
• Add lists, notes, and notices
• Create tables
• Change the size and style (font), and the color of displayed information
• Control the formatting of lines of text
• Illustrate with examples, figures, and art
• Customize windows
• Define ways to connect information units
• Establish communication links to other applications.

When you have finished writing and tagging, information is ready to be compiled.
The IPF compiler interprets the tags in your source file and converts the information
into the appropriate format. The compiler is able to distinguish between tags and
text because each tag starts with a colon(:), is immediately followed by the tag
name; and then ends with a period (.). For example, the tag that indicates a new
paragraph is the :p. tag. When the compiler encounters this tag, it interprets it as,
"Insert a blank line before the paragraph tag and start the text that follows the
paragraph tag."

• Trademark of the IBM Corporation

© Copyright IBM Corp. 1992 1-1

At compile time, you specify what format you want. For online documents, you
direct IPF to generate a file with an INF file extension. For help information, you
specify a file with an HLP file extension. For information about compiler
commands and options, see "Starting the IPF Compiler" on page 7-3.

The View Program

What You Get

The View program (VIEW) enables you to display your compiled document. VIEW
retrieves files with an INF extension and displays the formatted information in a
standard OS/2 window.

Note: You cannot use VIEW to display files with an HLP extension. For
information about how to use VIEW, see "Viewing an Online Document" on
page 7-4.

Online designs need to communicate information through a simple structure that lets
the user find information quickly and easily. With IPF you can develop a design
that provides unique usability features, including:

• Hypertext links
• Push buttons
• Customized windows
• Master index.

Hypertext and Hypergraphic Links

Push Buttons

IPF gives the user the ability to connect to different units of text and graphics. The
connections that join these units are known as hypertext or hypergraphic links. For
example, a user can select a particular link to obtain related information or perhaps
to see a graphical description of the topic.

An advantage of using hypertext or hypergraphic links is that the author can present
information in a nonlinear way. Users can then access information both sequentially
and randomly. This lets them explore or branch into subject matter that may be
unclear or that needs to be reviewed. For information about hypertext and
hypergraphic links, see Chapter 5, "Linking."

Push buttons provide users with a fast and easy way to access commonly used IPF
tasks. When a user selects a push button, the action represented by the text on the
push button is carried out immediately. IPF provides one set of push buttons for
online documents and another set for Help windows. IPF also provides help on how
to use the push buttons.

As a designer, you can change the text of a push button, select which push buttons
you want to use, add your own push buttons, and specify the area of a window to
place them. For more information, see "Push Buttons" on page 3-7.

1-2 Information Presentation Facility

Customized Windows

Master Index

A window is the area of the screen in which information is displayed. As an author
of online information, you can customize windows. Different windowing effects are
achieved with the IPF tagging language. For example, a window can be split so that
scrollable text can be displayed beside a stationary illustration that the text describes.
Figure 1-1 shows an IPF split-window design that describes the IBM* Personal
System/2* Model 90 XP 486 series.••

Make your move to 486 power. and go
as fast as you like with the IBM* Model
90 XP 486 series from Personal
System/2*. Built around the latest
lntel486** SX and DX microprocessor
technology. the PS/2s* in this series
offer a range of speed. memory and
storage capaci1y to suit your needs and
your budget And because all Model 90
XP 486s are designed for easy
upgrading and expansion. you get a
solution that's suited not only for today
but for tomorrow.

Whether you select a 20 MHz. 25 MHz
or 33 MHz system. you benefit from
balanced Micro Channe'* based
performance. That means you get the

Figure 1-1. IPF Split Window

or:::=l
L::J

For more information, see Chapter 6, "Customizing Windows."

The OS/2 operating system provides online help that can be accessed through the
Master Help Index. The Master Help Index contains an alphabetic list of topics
related to using the operating system. It also points the user to further information.
Using IPF tags, you can participate in the Master Help Index by adding global index
entries to your online help windows. For more information, see "Master Help
Index" on page 3-13.

• Trademark of the IBM Corporation

•• Trademark of Intel Corporation

Chapter 1. Introducing IPF 1-3

1-4 Information Presentation Facility

Chapter 2. Viewing the User Interface for Online Information

This chapter describes the components of the IPF user interface. As an author, you
will use these components when developing an online document or online help.
Online documents include reference or procedural information, such as converted
printed material, tutorials, and organization charts. Online help includes
information that users of online documents or application programs might want to
access.

Because they have varying backgrounds, interests, motivations, and experiences, no
two users of online information are exactly alike. To accommodate differences, IPF
provides a flexible interface that can be customized according to personal preference.
However, when an online document requires no special design considerations, the
IPF compiler provides an automatic default design that includes:

• A Contents window

• Standard OS/2 windows

• Help.

The Contents Window

©Copyright IBM Corp. 1992

When users first select a document for viewing, IPF displays an OS/2 window that
includes a table of contents (Contents window) similar to the window shown in
Figure 2-1.

Introduction
8 Information About OSIZ Commands

Ale and Directory Concepts
How to Read a Syntax Diagram
Uslnl the Command Prom;

EB !WiUOii!G@MMM@ ld
8 OSIZ Commands by Name

ANSI - Use OSIZ Extended l(eyboard
APPEND - Set Search Path
ASSIGN -Assign Drives
ATTRIB - Set Ale Attributes
AUTOFAIL - Display Error lnformatio
BACKUP - Save Ales
BOOT - Change Operating Systems
BREAK - Check for Ctrl+Break
BUFFERS - Determine Number of DI v

Figure 2-1. A Contents window. Users select the highlighted item and go directly to a
window of text.

To find out how to use the Contents window, see page 2-9.

2-1

The Standard Window

Help

Unless special window characteristics are defined with IPF tags, the IPF compiler
formats a window that includes the following elements.

• Menu bar
• Title bar icon
• Title bar
• Maximize button
• Hide button
• Horizontal scroll bar
• Vertical scroll bar
• Push buttons.

Figure 2-2 shows a standard window and its elements.

Title bar ---­
Maximize button

Htde button

The OS/2 Command Rt:ll:n:nce describes the purpose and
syntax of tmll commands. Before you begin to use this
reference. It would be helpful to understand how you can:

o Expand the Contents to see all available topics
o Obtain additional Information for a highlighted word or phrase
o Use action bar choices.

Horizontal scroll bar
Vertical scroll bar ____ _.

Push buttons

Figure 2-2. Standard window and elements.

The title bar icon, and the maximize and hide buttons allow a user to change the size
and position of a window. The menu bar, push buttons, and scroll bars allow a user
to work with the window's contents. The window title indicates the subject of the
information, or name of the object, seen in the window.

While using an online document or application program, a user occasionally requires
additional information about choices, fields, or procedures for a task. CUA
guidelines recommend that a product provide information to a user about how to
use the product. Information about how to use a product is known as help
information. The OS/2 user interface for help information is developed with IPF
and is accessible from the menu bar. Help can also be accessed from push buttons
located at the bottom of the window or by pressing the Fl key.

2-2 Information Presentation Facility

Main Help Window
When a user requests help from a window, IPF displays the main help window, the
characteristics of which are:

• Menu bar
• Title bar icon
• Title bar
• Maximize button
• Horizontal scroll bar
• Vertical scroll bar
• Push buttons.

The main help window cannot be minimized.

Within the main help window is the help-text window. The help-text window
contains the response to the user's request for help. The characteristics of this
window are:

• Title bar icon
• Title bar (shows title of the selected help window)
• Maximize button
• Hide button
• Horizontal scroll bar
• Vertical scroll bar.

The windows shown in the lower right corner of Figure 2-3 are main help and
help-text windows.

x J.J.. OS/2 Command Reference Ja 0

Se'!ices .Q.ptions Help

:l!:T__:. Introduction Ja 0

The O~ Command Rt:li:n:m:t: describes the purpos~. and syntax o! .~
commands. Before you begin to use •• • • • • '
understand how you can: x I:

Se~ces Qptlons Help

o Expand the Contents to see all ava1ji [:!:~L('.t.lllllillllllBlt••~aITioffiil
o Obtain additional information for a r

0

o Use action bar choices.

Haw Ta Use the Caateats

Use the choices on the Services menu H

to find. print. or copy Information In the
topics of the document you are viewing

When the Contents window first appe
them. The plus sign indicates that ad

To expand the Contents and view the
a mouse; If you are using a keyboard
highlight the topic. and then press th•

or of other online documents. You can
save your place in a document by setting
a bookmark. You can create a new
window In which other topics are
displayed. You can also close the
document.

~ N~~ ha~. a pl~s ~~.~~~~~e !!_- · Use the choices on the Optiaas menu to
1'-u......,.......,-...a...._A&. Lbl&<:Lld...-..H display a complete or partial list of

topics or the index for the document you
Previous J I iearch 11 frint I l!ndex II Con!t are viewing, all the topics ~u have '""

!:::====~====~==~==~===~~J~;;~;;;;;;;;;;;;~=====-~=Jtl-----'
Previous] liearchl lfrlntl l!ndexl

Figure 2-3. An IPF main help window with its help-text window.. The title "Help for
Viewing a Document" that appears in the title bar was created by the author
of the help-text window.

When the main help window is first opened, its position is such that it covers the
smallest part of the online document or application window as possible. The
help-text window is opened at its maximum size within the main help window.

Chapter 2. Viewing the User Interface for Online Information 2-3

Selection Lists

Menu Bar

Services Menu

However, when the main help window is opened, it can be moved and resized, as can
the help-text window. If the user makes the help-text window larger or smaller, the
text within the window is reformatted to fit the new window size.

Selection lists appear when any of the menu bar choices are selected:

• Viewed pages, under Options
• Contents, under Options
• Help index, under Help.

Figure 2-4 shows the Viewed Pages selection list.

D a
Qptlons Help

APPENQ - Set Search Path D a :

•

1 -.Re_1_ak_d_c_o_m_m_an_d_s:~DP._~_rn_._P._~_rn_._s_ET~~~~~~~~~~~~--1·~j

Figure 2-4. Viewed Pages selection List.

Search results also are displayed in a selection list. Selection lists differ from the
help-text window in that they can be closed, either by selecting the Close symbol or
by pressing the Esc key.

Selecting the hide button from the title bar while a help-text window, Contents
window, Viewed Pages window, Index window, or Search results window is
displayed, results in the window being replaced by an icon.

Figure 2-5 on page 2-5 shows the menu bar that conforms to CUA guidelines. It
has the choices Services, Options, and Help.

When Services, Options, or Help is selected, a menu appears with a list of entries
that also can be selected. Some entries have an associated shortcut key or key
combination. These are shown to the right of the menu item.

The Services menu shows a list of available services. (See Figure 2-5 on page 2-5.)

2-4 Information Presentation Facility

Sel!lces .Qptions !!elp
~earch... Ctrl+S
frlnt. ..
!!_ookmark. .. Ctrl+B

,Hew window Ctrl+N

C!!,PY Ctrl+lns

~opyto file Ctrl+F

query the environment for paths to data flies and find
1---------1.. the WORDPROC or CALC subdirectories on drive C. enter

Aflpend to file Ctrl+A

F3

H you want to find any flies that have paths In the WORDPROC or CALC
subdirectories on drive C but do not want to query tile environment for paths to data
flies. enter the following:

PA1H C:,WORDPROC;C:,CALC;
APPEND C:,WORDPROC;C:,CALC;
u-....----------------------------1~ _J

Figure 2-5. Services Menu

Search: This choice, and the Search push button, display the window shown in
Figure 2-6. The user can type a text string consisting of letters, numbers, blank
spaces, and special characters, then select any of the choices to search for the text
string.

l-' _O_Sl2_C_o_m_m_a_n_d_R_e_M_re_n_c_e ________________ __._:Jo
Sel!ices .Qptlons Help

UNPACK Exam les

To unpack a compressed file named FORMAT.CO@ from the current directory on
drive A to the OSZ directory on drive C. enter the following:

UNPAC El~ Search

®!his section O!ndex

0 Marked se1:ti<m~ 0 Mark1~d !ibrnries

OA!I sections OAll liJ!raries

Figure 2-6. Search Window

e current drive and
"ng:

ied to drive C. enter the

a a

Global file-name characters can be used with the text string; for example:

current directory

The global file-name character, in this case an asterisk, automatically finds all
possibilities of the current directory string.

Following are descriptions of Search window choices:

This section
Searches the currently displayed help-text window and highlights all
occurrences of the search string that are found.

Chapter 2. Viewing the User Interface for Online Information 2-5

Marked sections
Searches the online-document windows or help windows whose titles were
marked in the Contents window. IPF does not search unmarked secondary
windows, or windows attached to the marked window by hypertext links.
Before selecting Marked sections, the user must select Contents then mark the
help titles to be searched. If no help titles are marked, the Marked sections
choice is dimmed.

Sections are marked with the mouse by pressing and holding the Ctrl key then
clicking mouse button 1. Sections are marked with the keyboard by using the
cursor keys to highlight the item and then pressing the spacebar. The same key
sequences are used to unmark the selection.

If the search is successful, IPF displays a list of the window titles where the text
string was found. The search string is shown in the title bar of the search
results window.

All sections

Index

Searches the entire help library or online document and displays a list of the
window titles where occurrences of the search string were found. The search
string is shown in the title bar of the search results window.

Searches the index and displays a list of index entries in which the text string
was found.

If no search string is entered, this choice displays an alphabetic list of all index
topics in the help library or online document.

Marked libraries
Searches selected help libraries or online documents. The user must be in an
active window of an online document and follow this procedure:

1. Select Options then Libraries.
2. Mark one or more libraries.
3. Select Services, then Search, then Marked libraries.
4. Select the Search push button.

All libraries
Searches all help libraries or online documents and displays a list of the
window titles where the text string was found. The search string is shown in
the title bar of the window.

Print: This choice, and the Print push button, display the window shown in
Figure 2-7 on page 2-7. The output is the text within the window. The user can
select any of the choices to print online information.

2-6 Information Presentation Facility

x U OS/2 Command Reference Ja}D
Se~ces Qptlons Help

:z li UNPACK Exam_files J>Io
To unpack a com~essed file named FORMAT.COjl from the current directory on

H

drive A to the XL

UNPACK A:F
8[fili!_~~i~ O!ndex

To unpack a~ 0 Marked secti(tn!~ QContents
icurrent drive and

dlredory to th ttg:

UNPACK FORj
0 All sedions

O§raphics Text

To verify the
I I

to drive C. enter the
following: Print I Cancel I I Hel~ I
UNPACK A:'*·* C:' /V

To specify that extended attributes should not be discarded when unpacking or
copying files from drive A to drive C (when drive C does not support extended
• .hla. .. ~ ••. ..- ••. ... '··"· • v

D _J

Previous] l~earchl l.erintl l!ndexl I Con!ents 11.!}aclcl IEorwardl

Figure 2-7. Print window

Following are descriptions of Print window choices:

This section
Sends the contents of the current window to be printed.

Marked sections
Sends the sections whose titles were marked in the Contents window to be
printed. Before selecting this choice, the user must select Contents and mark
the titles to be printed. If no titles are marked, Marked sections is dimmed.

Sections are marked with the mouse by pressing and holding the Ctrl key then
clicking mouse button 1. Sections are marked with the keyboard by using the
cursor keys to highlight the item and then pressing the spacebar. The same key
sequences are used to unmark the selection.

All sections
Sends the entire online document or help library to be printed.

Index
Sends the help-index or online document index to be printed.

Contents
Sends the help library or online-document contents list to be printed.

Graphics Text
Displays a check mark if a plotter or PostScript** printer are installed on the
OS/2 operating system. Removing the check mark could result in
unpredictable printing results.

This choice will not have a check mark if any other printer was installed on the
OS/2 operating system. Mark the box to print your text in graphics mode.

The text that the user selects to be printed is sent to the print spooler so the user can
continue to work. This choice does not print artwork or special highlighted text.

Bookmark: This choice displays the window shown in Figure 2-8.

••Trademark of Adobe Systems Incorporated

Chapter 2. Viewing the User Interface for Online Information 2-7

Dlsp1....--'L---....___.__ _____ ___,..__ __ _,____.. _ _...,,.
one fll :!!!: lo Boobnark

1YPE

You ca

o Print
o Paus

®flace

O~ew

0.Bemove

0Remove!ll

OK Help

f>!evious I ,learch 11frint11!ndex11Con!ents11 ftack I I forward I

Figure 2-8. Bookmark Window

Place
Saves the user's place in the document being viewed.

View
Redisplays a specific place that was marked.

Remove
Deletes one marked place.

Remove all
Deletes all marked places.

New window: This choice opens a new window for the currently selected item (for
example, table of content entry, hypertext link, index list, or search list) so the user
can see more than one topic displayed at the same time. The user can resize the new
window so the previous window also can be seen, then resize both to view both
windows.

New windows are related to online documents. If the user minimizes the document,
the new windows are saved. If the user closes the document, the new windows are
closed.

Copy: Copies the window currently being viewed to the system clipboard. The user
can then select Paste from the menu of the OS/2 System Editor (or any other editor
with this capability) to view or edit the information.

Copy to file: Copies the information to the file, TEXT.TMP. This file is placed in
the current directory. If TEXT.TMP already exists, it is replaced.

Append to file: Copies the information to the file, TEXT.TMP. This file is placed
in the current directory. If TEXT.TMP already exists, the new information is added
to the existing information.

2-8 Information Presentation Facility

Options Menu
Selecting Options displays the menu shown in Figure 2-9.

:t:l a []

Ser!lces .Qptlons !:!.elp
:ir: f'Wlllll E~pand one level .. a}[]

Expand .!!_ranch *
lnformatl~ Expand ,!11 Ctrl+* ~ Into flies and directories. A Hie Is a piece of

I-'

lnformatl~ ~ollapse branch - ~ntaln text. graphics. or Information that starts
and runs C,!llapse all Ctrl+- ~lected. Ales that start programs when entered
at the co are called JNO!lflllll Hies. Program file names
usually h Con!ents Ctrl+C ,. .CMD [OS/2 sessions). or .BAT [DOS
sessions !ndex Ctrl+I

A directo~ ~lewed pages Ctrl+H Ike a folder containing related documents. A
directory blbrarles Ctrl+L IY Is called a su/Jdln:clory. When you Installed
OSl2. soli Im the OSl2 diskettes to the mot~ which
is them~ Previous ~es in the operating system. The directory you
are curre~ usTng 1s calf elf fhe t:t1m:nt tlln:cltHy. H you stay In the root directory. for
Instance. then it is also your current directory.

You can give your flies and directories any names that conform to either High
Performance Ale System [HPFS) or File Allocation Table [FAT] rules. For details on
naming flies and directories. select !Diii or FAT.

J
J _J

Jl!evlousJ I iearch 11frlnt11 !ndex 11 Con!ents 11Dack11 forward I

Figure 2-9. Options Menu

The first five choices are active when the Contents window is active. If the Contents
window is not active, these choices are dimmed. These choices control how the table
of contents will be displayed.

A tree-structured table of contents is created if more than one heading level is
specified with IPF heading tags when the windows are created. (For a description of
heading tags, see "Headings" on page 3-4.)

If there are additional entries under a heading, + appears to the left of the entry.
When an entry is expanded one level, the next level of entries subordinate to the
selected entry is displayed, and the+ is replaced by a-. The user can click on the
+ or - symbols to expand or contract the contents.

Expand one level: Expands the first level subordinate to the selected entry.

Expand branch: Expands all levels subordinate to the selected entry.

Expand all: Displays the entire tree structure of the contents.

Collapse branch: Contracts all levels subordinate to the selected entry.

Collapse all: Displays only the highest level entries in the contents.

Contents: Lists the table of contents for the document you are viewing. You can
select from the topics shown. This choice has the same function as the Contents
push button.

Index: Displays an alphabetic list of the topics in the document. You can select
from the index entries shown. This choice has the same function as the Index push
button.

Chapter 2. Viewing the User Interface for Online Information 2-9

Help Menu

Viewed pages: This selection displays a list of all windows viewed during the
current session. Window titles are listed in the order that windows were viewed. If
a window is viewed more than once, its title appears as many times as it was viewed.

The maximum number of entries that can appear in the Viewed Pages window is 50.

Libraries: Displays a list of online libraries that are available. The libraries are
identified by their directory path and file name.

Previous: Displays the previously viewed window. Each time Previous is selected,
the previously viewed window is displayed, until the first window viewed in the
current session is shown. Selecting Previous again from a help window, ends the
current session. This choice has the same function as when the user selects the
Previous push button; or presses the Esc key.

Selecting Help displays the menu shown in Figure 2-10.

Help
Help !ndex
general help
Y.sing help
,!S,eys help

frodud Information

You can \'Pe commands In uppercase letters. lowercase
letters. or a combination of both.

From an OS/2 command prompt. you can we up to 300
charaders (bytes) before you press Enter. From a DOS
command prompt. you can we up to 128 bytes before you
press the Enter key.

You can run commands in a windowed command prompt
session while running your programs In other windows.

patll and Ille •••e Commands that allow you to enter file names can accept a

Previous I .§earch 11frint11!ndex11Con!ents11~ack11 forward I

Figure 2-10. Help Menu

a a

Help index: Displays an alphabetic list of topics for which help information is
provided.

General help: Displays general information describing the user interface and how
to access it.

Using help: Displays a list that describes the different help information that is
available to users of the OS/2 operating system.

Keys help: Displays information describing key assignments for the application.

Note: Providing Keys help is the responsibility of the application programmer. A
simple help window can be created that lists each key combination assigned
to an application function, and a brief description of what the function does.

Product Information: Displays copyright information. Providing product
information also is the responsibility of the application programmer.

2-10 Information Presentation Facility

Push Buttons

Tutorial: This choice is included in the Help menu if your application tells IPF that
it has created a Presentation Manager tutorial application. This choice has the same
function as the Tutorial push button.

When the user selects Tutorial, IPF sends a message to the application that the
selection has been made. The application then starts the tutorial.

Push buttons provide users with a fast and easy way to access commonly used IPF
functions. When a user selects a push button, the action represented is carried out
immediately. IPF provides the following set of push buttons:

Previous: This push button lets the user see information from the previously viewed
window. This is the same function as when the user selects Options then Previous
from the menu bar, or presses the Esc key.

Search: This push button displays a window that lets the user search for a word or
phrase. This is the same function as when the user selects Services then Search from
the menu bar.

Print: This push button displays a window that lets the user print one or more
topics. This is the same function as when the user selects Services then Print from
the menu bar.

Index: This push button displays an alphabetic list of the index topics in a help
library or an online document. This is the same function as when the user selects
Options then Index from the menu bar.

Contents: This push button displays the Contents window. This is the same
function as when the user selects Options then Contents from the menu bar.

Back: This push button displays the previous page in the table of contents
hierarchy.

Forward: This push button displays the next page in the table of contents hierarchy.

Tutorial: This push button is included only if a tutorial was specified in your
application. This is the same function as when the user selects Help then Tutorial
from the menu bar.

Chapter 2. Viewing the User Interface for Online Information 2-11

2-12 Information Presentation Facility

Chapter 3. Starting with the Tag Language

As the author of online information, you can use the IPF tag language to define
various characteristics of text format. You also can use tags to define characteristics
of the window in which the text is displayed.

There are 45 tags (excluding symbols) that make up the IPF tag language. The tags
are mnemonic, making it easy to associate them with their functions. However,
before you can begin to use this language, you need to familiarize yourself with the
elements that make up the syntax of the tags, and special rules that govern the use of
the tags.

Syntax Conventions

End Tags

Nested Tags

©Copyright IBM Corp. 1992

Each tag must start with a colon (:) and end with a period (.). (The period is also
known as a delimiter.) For example, the tag for a paragraph is:

:p.

A tag indicates how the text that immediately follows it is to be processed. In the
following example, the text immediately after the paragraph tag (:p.) is the actual
text that is displayed in the window, and it will begin a new paragraph.

:p.There are fewer than 1200 manatees ...

Some tags require end tags. An end tag is e immediately followed by the tag. For
example, the end tag for the :userdoc. tag is:

:euserdoc.

Most of the tags that have end tags affect text format or appearance. The end tag
tells the IPF compiler to end the operation associated with the tag. If you forget an
end tag, the compiler displays an error message.

Nested tags are tags within other tags. For example, a common way of presenting
information is in a list form; a tag begins the list, another tag identifies each list
item, and yet another tag ends the list. An example of the tagging for a simple list
follows:

:sl.
:Ii.List item 1
:Ii.List item 2
:Ii.List item 3
:esl.

The list-item tag (:Ii.) is required for each item in the list. The :Ii. tags are nested
between the :sl. tag and the :esl. tag.

Note: After paragraph and heading tags, you will probably use list tags most often.
IPF provides general-purpose lists (simple, unordered, and ordered), and
special-purpose lists (definition and parameter).

3-1

Text Strings

Attributes

Some tags have text strings associated with them. The string can immediately follow
the tag, or it can start the line immediately following the tag. For example, the
tagging for the title bar of a window is :bl. (one of the heading tags) and a text
string, which is called a title string. You can enter it like this:

:bl.Save the Manatee

or like this:

:bl.
Save the Manatee

A tag also can have one or more attributes. An attribute contains additional
information about a tag's operation. The attribute has a name, which may have a
value or keyword assigned to it.

In the following example, the attribute res= specifies a window identifier.

:bl res= 001.Save the Manatee

In this case, 001 is the assigned value. The value assigned to a res= attribute must
be unique for each heading tag. This value also will be the identifier for linking to
the heading from elsewhere in the information. The concept of linking is described
in "Hypertext Links" on page 5-2.

Notice that the period follows the attribute, not the heading tag. The period always
follows the last attribute in the tag.

You can specify many attributes in one tag, and they can extend over several lines.
However, you cannot split an attribute. For example, you cannot put the res=
attribute of the heading tag on one line, and its value, 001, on the next line.

Some attributes are optional and have a default (an assumed value) if they are not
included with the tag; other attributes are required. Tag attributes can be specified
in any order.

As mentioned, some attributes are required. For example, if you are creating a help
library, the res= attribute of a heading tag is required as a window identifier (see
"Window Identifiers" on page 5-1).

An attribute also can have a keyword associated with it. For example, an attribute
of the :color. tag is fc = (foreground color), which is used to specify the color of the
text. Its value can be equal to any of the following keywords:

• DEFAULT
• BLUE
• CYAN
• GREEN
• NEUTRAL
• RED
• YELLOW.

Not all attributes have values or keywords. For example, if you want a simple list
with no blank lines between the list items, add the compact attribute to the

3-2 Information Presentation Facility

simple-list tag (:sl.). In the following example, notice the compact attribute stands by
itself:

:sl compact.
:Ii.List item 1
:Ii.List i tern 2
:Ii.List item 3
:esl.

Attribute Values with Blank Spaces: If an attribute value includes blank spaces, the
value must be enclosed in single quotes. For example:

:font facename = 'Tms Rmn'.

Notice that the value has initial capitals. For this particular case, they are required;
otherwise, the IPF compiler will not recognize them as valid values.

Using some of the tags described thus far, you could produce a source file like this:

:userdoc.
:hl res=881.Save the Manatee
:p.
There are fewer than 1200 manatees in the state of Florida.
Ten percent of the existing herds die each year
because of:
:sl compact.
:li.Contact with boat propellers
:li.Impact from boats and barges
:li.Entrapment in locks and dams.
:esl.
:euserdoc.

The output produced from the source file is an OS/2 standard window.

The menu-bar choices, Services, Options, and Help are provided automatically by
IPF. The title-bar line, "Save the Manatee," is generated by the :bl. tag. The
viewing area of the window displays the formatted information.

{ There are fewer than 1200 manatees in the state of Florida. Ten percent of the
existing herds die each year because of:

Contact with boat propellers
Impact from boats and barges
Entrapment In locks and dams.

P!evious l~earchl lfrintl l!ndex I lcon!ents I l!lackl IEorward I
_J

Chapter 3. Starting with the Tag Language 3-3

Symbols

Headings

The best way to learn about tags is to study the examples provided in the following
sections, then create some windows of your own.

You use symbols to produce characters that cannot be entered from the keyboard.
A symbol begins with an ampersand(&) and is followed by the symbol name and a
period. For example, to produce a square bullet, which looks like this:

•
Enter the symbol like this:

&sqbul.

If you want the ampersand character (&) to appear in text, define it as the symbol,
&. Otherwise, the IPF compiler tries to interpret whatever text follows the
ampersand character as the name of a symbol, and will return the error message,
Invalid symbol.

Symbols are case-sensitive. That is, if you do not type them exactly as the appear in
the symbols table (see Chapter 14, "Symbols") you could get either the message,
Invalid Symbol, or a symbol different from the one you want.

Note: The symbols table is also available online when you install the Online
Information component of the Developer's Toolkit for OS/2 2.0.

Perhaps the most versatile tag is the heading tag. Heading tags enable information
to be displayed in windows, control entries in the Contents window, control
placement of push buttons in a window, and define the shape and size of windows.
With IPF, you can specify six levels of headings, :bl through :h6. For information
about default heading levels that start a window and place entries in the table of
contents window, see page 3-6.

Displaying Window Titles
Every heading tag that starts a window must have an associated text string. The text
string becomes the window title and appears in the title bar of the window. The
window title also becomes an entry in the Contents window, which lists the headings
of all topics in an online document.

For a window that occupies the full width of the screen, the maximum length of a
text string, including spaces and blanks, is 70 characters. A narrower window
requires a shorter text string. The text string can be on the same line as the heading
tag, or at the beginning of the next line.

The following example shows the tagging for the first three heading levels, with a
paragraph following each heading.

3-4 Information Presentation Facility

:userdoc.
:title.An Online Document
:hl.First Heading Level
:p.
This window is defined by a first-level heading tag.
:h2.Second-Level Heading
:p.
This window is defined by a second-level heading tag.
:h3.Third-Level Heading
:p.
This window is defined by a third-level heading tag.
:euserdoc.

The Contents window for the formatted output shows the three heading-level entries .

.Qptlons Help

:!:

8 Arst Head=-. level
8 MPP!iiiil iiMd

Third-Level Heading

Figure 3-1. A Contents Window

Hiding Window Titles
If you do not want a title to appear in the Contents window, use the hide attribute.
The heading definition would be entered like this:

:h3 hide.
Another Third-Level Heading

Note: You source file must contain at least one heading tag without the hide
attribute.

Controlling Entries in the Contents Window
The following example shows some tagging that will control what entries appear in
the Contents window, as well as what headings will start windows.

Chapter 3. Starting with the Tag Language 3-5

:userdoc.
:docprof toc=12.
:hi.Heading Levels
:h2.Second-Level Heading
:p.
This window is defined by a heading-level 2 tag.
:h2.Second-Level Heading
:p.
This window also is defined by a heading-level 2 tag.
:p.
:h3.Third-Level Heading
:p.
Because the :docprof. tag at the beginning of the file
specifies that only heading levels 1 and 2 can be entries in the
Contents window (toc=12), the preceding "Third-Level Heading"
and THIS text, which follows it, become part of the
window defined by the preceding heading-level 2 tag.
:h2 toc=123.Another Second-Level Heading
:p.
The heading-level 2 tag for this window contains
a toc=123 specification.
:h3.Third-Level Heading
:p.
Because the toc=123 in the preceding heading-level 2
tag overrides the toc=12 in the :docprof. tag, this
heading-level 3 tag defines a new window and creates a
Contents entry.
:euserdoc.

Unless otherwise specified, the default set of heading tags that create entries in the
Contents window and define the start of windows are :hl., :h2., and :h3.. To change
this default, specify a numeric sequence with the table of content attribute (toe=) of
the :docprof. tag. The :doeprof. tag controls the heading levels displayed in the
Contents window. The sequence must begin with level 1 and cannot skip a level in
the descending hierarchy. For example, the :h4., :h5. and :h6. tags do not start
separate windows, but control the appearance of the text of the window unless you
specify:

docprof toe= 123456.

To specify that only heading levels 1 and 2 are to define windows and appear as
entries in the Contents window, the following tag was used:

:docprof toe= 12.

The value specified for the toe= attribute remains in effect for all the heading
definitions in the file. You can override it by specifying another value for the toe=
attribute in a heading definition. The new value is then in effect for the rest of the
headings in the file, or until overridden in another heading definition.

In the preceding example, the toe= attribute of the :doeprof. tag is overridden by the
toe= attribute of a heading tag.

The next example shows the results of the tagging. Notice the effect of including a
heading level that is lower in the hierarchy than the range of heading levels specified
with the :doeprof. tag.

3-6 Information Presentation Facility

Special Rules

Push Buttons

.Qptlons Help

Third-Level Headin

Be~use the ~c=l 23 in the P 8 Heading Levels
toc-12 in the .docprof. tag. this Second-Level Heading
and creates a Contents entry. Second-Level Heading

8 Another Second-Level Heading
I hi rd I t•vt•I f 11•,idrnt

_J

Figure 3-2. Contents Window with Displayed Third-Level Heading Window

When the file is viewed, the :h3. title and the text following it are included as part of
the window defined by the preceding :h2. tag.

Sequential Coding for Heading Tags: Headings for a series of windows must always
start with :bl. and proceed in sequence. That is, you cannot have :bl. followed by
:h3.. However, you can follow :h3. with :bl ..

Source File Size between Heading Tags: Do not exceed 16 000 words, numbers,
and punctuation marks between two consecutive heading tags in your source file.
This includes blank spaces, but does not include commented lines (see "Comment"
on page 3-15). If the source file exceeds this limit, the compiler will generate an
error message. To correct the error, use another heading tag.

For more information about heading tags and attributes that define characteristics of
windows, see Chapter 6, "Customizing Windows."

This section is for both the information author and the application programmer.
Because push buttons must be considered when tagging all online information,
an introduction to push buttons is necessary in this early chapter. No attempt is
made to clarify the programming information; however, when possible, references
are given to corresponding programming sections.

Push buttons provide users with a fast and easy way to access commonly used IPF
tasks. When a user selects a push button, the action represented by the text on the
push button is carried out immediately. Push buttons are displayed in a window
called a control area. A control area can be defined within the IPF coverpage
window, or the IPF text window (the child of the coverpage window), or both. For

Chapter 3. Starting with the Tag Language 3-7

information about the IPF coverpage, see page 3-8. For information about the child
of a coverpage, see "The Coverpage Window" on page 9-3.

IPF provides one set of push buttons for online documents and another set for help
windows.

For online documents, the set of push buttons consists of:

Previous
Search
Print
Index
Contents
Back
Forward
Tutorial (only if a tutorial is available).

For help windows, the set of push buttons consists of

Previous
Search
Print
Index
Tutorial (only if a tutorial is available).

Figure 3-3 shows an online document with a set of push buttons in the control area
of the the coverpage window (the default control area).

Unless otherwise Instructed. the IPF compiler displays push
buttons In the control area [the bottom) of the covcrpage window.

P!Cvious I iearch 11frint11!ndex11 Con!ents 11jlaclc11 forward I
Control area _____ __.

Coverpage window -----

Figure 3-3. The IPF default window for push buttons. These push buttons appear in the
control area of the coverpage window.

Notice the difference in Figure 3-4 on page 3-9. This example shows a help window
with a set of push buttons in the control area of the IPF text window.

3-8 Information Presentation Facility

This Is a help window. The push buttons below are
displayed in the control area of the IPF text window.

Control area ---
IPF text window ___ ___.

Figure 3-4. A help window. These push buttons were defined in the control area of the
IPF text window. If the user changes the size of the window, the push
buttons in the control area will wraparound onto the next line. The push
buttons cannot be clipped or scrolled horizontally, because the control area is
not part of the scrollable area of the IPF text window.

Tagging Example for the Default Set of Push Buttons
The following example shows the minimum tagging required for an online document
that is to have a control area with the default set of push buttons displayed in the
coverpage window.

:userdoc.
:title.Coverpage Window
:hl.IPF Text Window
:p.Text goes here.
:euserdoc.

Notice no extra tagging is necessary.

Specifying Push Buttons for the Control Area of a Window
The control area tag (:ctrl.) specifies where push buttons are to be displayed, and
which push buttons you want displayed. When specifying a control area, always
precede the tagging with :docprof., then imbed :ctrl. between the control-area
definition tag (:ctrldef.) and :ectrldef •. For example:

:docprof toc=123.
:ctrldef.
:ctrl.
:ectrldef.

Chapter 3. Starting with the Tag Language 3-9

Attribute Values for the Control Area of a Window
The controls= attribute of :ctrl. identifies the push buttons that you want in the
control area of a window. Push buttons are displayed in the order in which they are
defined. Values that can be specified are:

SEARCH

PRINT

INDEX

CONTENTS

ESC

BACK

FORWARD

Specifies the "Search" push button. When selected, this push
button displays a window that lets the user search for a word or
phrase.

Specifies the "Print" push button. When selected, this push button
displays a window that lets the user print one or more topics.

Specifies the "Index" push button. When selected, this push
button displays an alphabetic list of the topics in the document.

Specifies the "Contents" push button. When selected, this push
button displays the Contents window.

Specifies the "Previous" push button. When selected, this push
button lets the user see information from an earlier request.

Specifies the "Back" push button. When selected, this push button
displays the previous page in the table of contents hierarchy.

Specifies the "Forward" push button. When selected, this push
button displays the next page in the table of contents hierarchy.

Note: A value for the Tutorial push button is not provided because it is displayed
automatically if a tutorial exists.

Both the page and coverpage attributes of :ctrl. affect where push buttons are
displayed. For example, you use page to specify that push buttons are to be in the
IPF text window; similarly, you use coverpage to specify that push buttons are to be
in the IPF coverpage window.

A control area also can have a value associated with it. The ctrlid = attribute
specifies the value, which can be either alpha or alphanumeric, and is referred to by
a heading tag. In the following example, ctrlid = specifies a window identifier, and
instructs the compiler to display the PREVIOUS, FORWARD, and BACK push
buttons in the control area of the coverpage window:

:docprof toc=123.
:ctrldef.
:ctrl ctrlid=newl controls='ESC FORWARD BACK' coverpage.
:ectrldef.

Conversely, the following example shows the tagging for an online document that
will display the PREVIOUS, FORWARD, and BACK push buttons in the control
area of an IPF text window.

:docprof toc=123 ctrlarea=page.
:ctrldef.
:ctrl ctrlid=newl controls='ESC FORWARD BACK' page.
:ectrldef.

Notice the :ctrlarea =page attribute of :docprof.. When the IPF compiler encounters
ctrlarea =page., it defines the control area as the IPF text window and removes the
push buttons from the control area of the coverpage window. You must ALWAYS
specify the :ctrlarea = attribute in :docprof. when overriding the default control area
in a window.

3-10 Information Presentation Facility

Other values for :ctrlarea = are:

coverpage Identifies the control area as the bottom of the coverpage window.

This is the default value.

both Specifies both the control area within an IPF text window, and the

coverpage window.

none Specifies that you do not want a control area. (You do not want

push buttons.)

You can define more than one control area with different sets of push buttons for

the IPF text window; however, only one set of push buttons can be defined for the

coverpage window.

Controlling the Display of Push Buttons in Designated Windows
Suppose your document consisted of 100 windows, and you wanted only one

window to display push buttons in the control area of the IPF text window. The

ctrlarea = attribute of a heading tag specifies which control area in a window you

want to display push buttons. You would tag your source file as follows:

:docprof ctrlarea=none.

:hl ctrlarea=page.One Window

When ctrlarea = is encountered in a heading tag, it overrides the ctrlarea = attribute

specified by :docprof.

Disabling the Display of Push Buttons
The following example shows the minimum tagging for an online document without

push buttons.

:userdoc.
:t;tle.Coverpage Window Title
:docprof toc=123 ctrlarea=none.
:hl.IPF Text Window
:p.Text goes here.
:euserdoc.

Author-Defined Push Buttons
IPF also supports author-defined pushbuttons. For example, you can define a push

button for "Examples" that can be included in the control area of a coverpage or

IPF text window. When an author-defined push button is selected, the message

HM_NOTIFY is sent to the application or communication object. It is the

responsibility of the application or communication object to respond to this message.

For information about communication objects, see "Application-Controlled

Windows" on page 9-1.

The push button tag (:pbutton.) defines author-defined pushbuttons. This tag must

be imbedded within the :ctrldef. and :ectrldef. tags, and it must precede the :ctrl. tag.

The following example shows how to override the default set of push buttons in the

coverpage window with a set that consists of Search, Index, Previous, and Example.

Chapter 3. Starting with the Tag Language 3-11

:userdoc.
:docprof toc=123 dll='example.dll' objectname='xmpbutton'.
:ctrldef.
:pbutton id=xmp res=ee1 text='-Example'.
:ctrl ctrlid=newl controls='SEARCH INDEX ESC XMP' coverpage.
:ectrldef.

Notice that a dynamic link library (DLL) is required to support the function you
want to provide with an author-defined push button. For more information, see
":pbutton (Push Button)" on page 13-55.

About the Tutorial Push Button

Indexing

When the Tutorial push button is selected, the message HM_TUTORIAL is sent to
the application or communication object. This is the same message that is sent when
the Tutorial choice is selected from the Help pull-down, or when the tutorial
attribute is specified with the heading tag.

The tutorial push button is included only if a tutorial was specified in the
initialization structure (HMINIT) or with the tutorial attribute in a heading tag.

IPF provides an index for both online documents and help windows from the
following tags.

:il.

:i2.

The :il. tag creates a primary entry, which means the entry is at the first level. The
:i2. tag provides a secondary entry to the primary one.

Index entries are imbedded in the text of a window. You should create at least one
index entry for each window, using the :il. tag. The text of an index entry must be
on the same line as the tag.

You form an index for online documents and help windows the same way. For
example, to create the index entry:

copy program

use the following tagging

:il.copy program

To create two levels of index entries, you use the :il tag with the id= attribute, and
the :i2. tag, with the refid = attribute. Here is how to do it.

1. Create the primary index entry and give it an identifier; for example:

:il id=prnt.printers and plotters

2. Create the secondary index entries that will be listed under the primary index
entry, and refer to the identifier of the primary entry; for example:

:i2 refid=prnt.change printer
:i2 refid=prnt.add printer
:i2 refid=prnt.printer properties

3-12 Information Presentation Facility

When an :il. tag has an identifier that is referred to by refid = attributes of :i2. tags,
the :il. tag must precede the :i2. tags in the file. Index entries can be located in any
of the windows defined in your source file; however, they cannot be in a footnote.

After your source file is compiled and the user selects Index from the Options menu,
or the Index push button, the index entries look like this:

printers and plotters

Master Help Index

add printer
change printer
printer properties

The Master Help Index is a collection of index entries from the OS/2 help-file
library. Its primary purpose is to provide a quick way to help topics. With it, you
can provide such features as:

• A side-by-side window design that lets the user scan index entries on one side,
then display the help-text information on the other side.

• A menu you can use to create a new Master Help Index or add index entries to
the existing one. With this menu, the user can search the Master Help Index
database, print help-text windows, or request assistance.

Master Help Index entries are global, which means they can be accessed by more
than one application program, so system resources can be conserved.

Using the Master Help Index
When the user selects the Master Help Index from the Workplace, it opens to
display an alphabetic list of entries within a bound notebook. Alphabetic tabs lay
vertically along the right edge of the notebook. Selecting one of these tabs displays
the index entries that match the letter of the tab; for example, if the user selects the
"C" tab, the first entry beginning with the letter C is moved to the top of the list.
Tabs are displayed only if an index entry exists with that letter. For example, if
there is no index entry beginning with the letter "W," IPF does not create a "W" tab
for the master index.

When the user double-clicks on an entry in the list, the associated help-text window
appears next to the entries list. Figure 3-5 on page 3-14 shows an example of the
Master Index window and the opened help-text window, "Changing and adding
fonts."

Chapter 3. Starting with the Tag Language 3-13

between running programs ~
characteristics .. settin1s .. 1ro!

AQ1iMi· II II r--
country settings !
date and time !
folder names !

!::!s !.!:

icon names
keyboard settings !
keyboard settings for handici·

·~![::::::::::::::::J·····················--···········

.. ~ll

Figure 3-5. The Master Help Index

To change the font for an object:

1. Select OSIZ Srste•.
2. Select Srste• Set•p.
3. Select F••t Palette.
4. Select the font sample you want

to use.
5. Drag the font sample to the

object for which you want to
change the font.

6. Release mouse button 2.

~i To add or delete fonts in the Font

Creating Entries for the Master Help Index

Index-Synonyms

The global attribute of the :il. and :i2. tags identifies index entries as candidates for
the Master Help Index. Good candidates are pointers to procedural and conceptual
topics. For example, a simple master index entry for conceptual information about
batch files would look like this:

:il global.batch files, creating

When referring to an :il. tag, use the global attribute in both the :il. and :i2. tags.
For example:

:il id =copy global.copying

:i2 refid =copy global.help topics

:i2 refid =copy global.document topics

When the IPF compiler encounters global attributes, it creates an alphabetic list,
which can then be accessed by selecting Master Help Index from the Workplace.

As a way of helping the user search for index entries by using synonyms, IPF
provides the index-synonym tag (:isyn.). This tag requires the root= attribute. With
these, you can specify synonyms that will be associated with primary index entries.
The :il. tags for these primary entries require a roots= ' ' attribute that associates
the entry with the synonyms.

For example, assume you have the following entries in your file:

:isyn root= copy.
copy copying duplicate duplicating
:isyn root=folder.
folder folders document documents
:il roots= 1 copy folder 1

•

copying a document

The roots= ' ' attribute of the :il. tag associates "copying a document" with the
synonyms of the root= attributes of the two :isyn. tags.

3-14 Information Presentation Facility

Control Words

Im bed

Comment

Now if a user, when requesting a search of the index, specifies any of the words in
either of the two :isyn. entries, the search results will include all :il. entries that
contain the specified word, as well as any :il. entries that have been associated with
the word by a roots= attribute.

For example, the user enters "duplicating" in a search request. When the search is
completed, one of the entries in the search results window is

copying a document

In addition to tags, you can include control words in your source files to request
special processing from the IPF compiler. A control word is placed at the beginning
of a line, and starts with a period (.).

The IPF compiler recognizes the following control words:

• im filename

. *

. br

Imbed this file in the current file .

Treat this line of text as a comment and do not interpret .

Start a new line of text .

The IPF compiler can produce a single output document by processing one master
source file that imbeds other source files. The imbed control word (.im) sends a
signal to the compiler to process each file in the sequence listed in the master file.

This process is most often associated with online documents. A portion of the
master file for the online IP F Reference looks like this:

:userdoc .

. im ipfcch01.ipf

.im ipfcch02.ipf

.im ipfcch03.ipf

If you are imbedding files, the source file that begins with the :userdoc. tag is
considered the master file. The imbedded files cannot have :userdoc. and :euserdoc ..

Occasionally, you might want to insert comments in your source file solely for the
purpose of providing information. The . * enables you to do this. Any text on the
same line as this control word is ignored by the compiler. For example, the compiler
would recognize the following lines as comment lines and ignore them.

. * This file contains the
. * introduction to IPF.

Chapter 3. Starting with the Tag Language 3-15

Break
The break control word (.br) interrupts the display of text on a line, and continues it
on the next line. The break control word must be the only entry on the line. For
example, assume the source file has the following lines.

:p.These words
appear on
the same line •
. br
These words
.br
do not.

The output looks like this:

These words appear on the same line.
These words
do not.

If you enter text on the same line as the break control word, the IPF compiler
ignores the break control word.

3-16 Information Presentation Facility

Chapter 4. Displaying Text and Graphics

Once you have defined your window, you need to consider the various ways text can
be displayed. This chapter describes how you can use tags and symbols to:

• Highlight text
• Add notes, notices, and lists
• Define tables for a structured display of data
• Illustrate your text with examples, figures, and character graphics
• Control the formatting of lines of text
• Change the font and color of the displayed information
• Set the margins of the text
• Display art.

Highlighted Phrases

©Copyright IBM Corp. 1992

Text can be highlighted by using different type styles or color. There are nine
highlighted-phrase tags you can use to emphasize text (:hpl. through :hp9.). Each
tag requires a corresponding end tag (:ehpl. through :ehp9.).

In the following example, the highlighted phrases are shown as list items in a
compact simple list.

Input Example ------------------------,

:sl compact.
:li.:hpl.Highlighted phrase 1 looks like this.:ehpl.
:li.:hp2.Highlighted phrase 2 looks like this.:ehp2.
:li.:hp3.Highlighted phrase 3 looks like this.:ehp3.
:li.:hp4.Highlighted phrase 4 looks like this.:ehp4. (BLUE)
:li.:hp5.Highlighted phrase 5 looks like this.:ehp5.
:li.:hp6.Highlighted phrase 6 looks like this.:ehp6.
:li.:hp7.Highlighted phrase 7 looks like this.:ehp7.
:li.:hp8.Highlighted phrase 8 looks like this.:ehp8. (RED)
:li.:hp9.Highlighted phrase 9 looks like this.:ehp9. (PINK)
:esl.

Figure 4-1 shows the output produced by these tags.

4-1

Notes

:note.

:t:[a a
Sel!lces Qptions Help
:z [ala

HlghHghll:d phnls1: I loots Jib: this.
H

Hl1llH11tted pllrase :Z laalcs Hice tltls.

H/"18'~*11,~,..~ 'lllllb Nb: 111/s.

Highlighted phrase 4 looks like this. (BLUE)

High!lgMed nhmse 5 looks !Ike Ibis

Hlohllo/tbrd ohmsp G loots Jib Ibis.

Hi1llll11dd 1111111; l IHu llb 11111

Highlighted phrase 8 looks like this. (RED)

Highlighted phrase 9 looks like this. (PINK) 1!
J .. ~

Previous) I ~earch 11frint11!ndex11Con!ents11!lack11 forward I
Figure 4-1. Highlighted Phrases. (See the online IPF Reference for the color

representation of highlighted phrases 4, 8, and 9.)

The type styles displayed for highlighted phrases correspond to the typeface currently
being used by IPF. You can change the typeface to Courier, Helvetica• •, or Times
New Roman*• by using the :font. tag. See "Changing Fonts" on page 4-24.

To include notes in your information, you use a note tag: either :note. or :nt. (with
its corresponding :ent.).

The one you use depends on whether your note consists of one paragraph or more
than one.

Use :note. for single-paragraph notes. You do not need an end tag.

Following is an example of :note. and the resulting output.

Input Example --------------------------.

:note.Complete all entry fields before leaving
this window. If you do not, all your information will be lost.

• • Helvetica is a trademark of Linotype AG

• • Times New Roman is a trademark of Monotype Corporation

4-2 Information Presentation Facility

:nt.

Formatted Output ------------------------.

Note: Complete all entry fields before leaving this window. If you do not, all
your information will be lost.

Use :nt. to create notes with more than one paragraph. Remember to end the note
with :ent.. In the following example, notice how the IPF compiler indents the text
for the paragraphs in the note.

Input Example --------------------------.

:nt.Complete all entry fields before leaving
this window. If you do not, all your information will be lost.
:p.If your information is lost, retype it in
the entry fields.
:ent.

Formatted Output ------------------------.

Note: Complete all entry fields before leaving this window. If you do not, all
your information will be lost.

If your information is lost, retype it in the entry fields.

Another Name for a Note: Both :nt. and :note. provide the text= attribute, so you
can substitute your own word or phrase for the word "Note." The following shows
the use of this attribute:

Input Example ----------------------~

:note text='Reminder'.Complete all
entry fields before leaving this window.

Chapter 4. Displaying Text and Graphics 4-3

Notices

:caution.

:warning.

Reminder: Complete all entry fields before leaving this window.

Two tags enable you to include caution and warning notices in your information.
Both tags require end tags.

Use :caution. to alert users to a risk of possible damage to applications or data.

Input Example -----------------------......

:caution.
Be sure to save your data. If you do not, all data will be lost.
:ecaution.

Formatted Output -------------------------.

CAUTION:
Be sure to save your data. If you do not, all data will be lost.

Use :warning. to alert users to a more severe risk or possible error condition in the
system.

Input Example -----------------------......

:warning.
The disk contains bad sectors.
:ewarning.

Formatted Output-----------------------.

Warning: The disk contains bad sectors.

4-4 Information Presentation Facility

Simple List

Place the caution and warning statements before the help information to which they
apply so the user is cautioned or warned in advance. You can use the text=
attribute if you want to use words other than "Caution" and "Warning" with these
notices.

Simple lists are vertical arrangements of items without any symbol or character
preceding the items in the list. Use simple lists when the order of the items are not
important.

To create a simple list, use the simple-list tag (:sl.) to begin the list, and its
corresponding end tag, :esl •. Identify each item in the list with a list-item tag (:Ii.).

Input Example -------------------------.

:p.Bring the following for lunch&colon.
:sl.
:li.Fruit
:li.Sandwich
:li.Drink
:esl.

Formatted Output----------------------~

Bring the following for lunch:

Fruit

Sandwich

Drink

A Compact Simple List: Use the compact attribute to produce a list with no blank
lines between the list items.

Input Example --------------------------.

:p.Bring the following for lunch&colon.
:sl compact.
:li. Fruit
:li.Sandwich
: li. Ori nk
:esl.

Chapter 4. Displaying Text and Graphics 4-5

Unordered List

Formatted Output -----------------------.

Bring the following for lunch:

Fruit
Sandwich
Drink

Nested Lists: A nested list is a list that is contained within another list. The

following shows the tagging for a simple list nested within another simple list, and

the resulting output.

Input Example --------------------------.

:p.Bring the following for lunch&colon.
:sl.
:1;.Fruit, for example&colon.
:sl compact.
:H .Apple
:1;.orange
:H.Pear
:1;.Banana
:esl.
:1;.sandwich
:H.A drink
:esl.

Formatted Output----------------------~

Bring the following for lunch:

Fruit, for example:

Apple
Orange
Pear
Banana

Sandwich

A drink

Unordered lists are vertical arrangements of items, with each item in the list
preceded by a special character, usually the lowercase "o" (called a bullet).

Use unordered lists when the order of the items is not important.

To create an unordered list, use the unordered-list tag (:ul.) to begin the list, and

:eul. to end it. Identify each item in the list with :Ii •.

4-6 Information Presentation Facility

Input Example -------------------------.

:ul.
:1;.Information typed in Window A will be stored in the
STORES.DAT file in whatever directory you designate.
:1;.Information typed in Window B will be stored in the
SALES.DAT file in the current directory.
:1;.Information typed in Window C will be stored in the
LOSSES.DAT file in the C:\FINANCE directory.
:eul.

Formatted Output ------------------------.

o Information typed in Window A will be stored in the STORES.DAT file in
whatever directory you designate.

o Information typed in Window B will be stored in the SALES.DAT file in the
current directory.

o Information typed in Window C will be stored in the LOSSES.DAT file in
the C:\FINANCE directory.

A Compact Unordered List: Use the compact attribute to produce a list with no
blank lines between the list items.

Input Example -------------------------.

:ul compact.
:1;.Information typed in Window A will be stored in the
STORES.DAT file in whatever directory you designate.
:1;.Information typed in Window B will be stored in the
SALES.DAT file in the current directory.
:1;.1nformation typed in Window C will be stored in the
LOSSES.DAT file in the C:\FINANCE directory.
:eul.

Formatted Output -----------------------.

o Information typed in Window A will be stored in the STORES.DAT file in
whatever directory you designate.

o Information typed in Window B will be stored in the SALES.DAT file in the
current directory.

o Information typed in Window C will be stored in the LOSSES.DAT file in
the C:\FINANCE directory.

Nested Unordered Lists: The following example contains two nested, unordered
lists. Notice that a bullet (lowercase "o") precedes items in the first-level list and
that a dash(-) precedes items in the second-level lists. The bullets and dashes
alternate for each level of the list. That is, third-level list items would be preceded
by bullets, fourth-level by dashes, and so on.

Chapter 4. Displaying Text and Graphics 4-7

Ordered List

Input Example ----------------------..

:ul compact.
:11.C:REPORTS\SALES.89
:ul compact.
:li.FIRST.QTR
:li.SECOND.QTR
:li.THIRD.QTR
:li.FOURTH.QTR
:eul.
:li.C:REPORTS\SALES.90
:ul compact.
:li.FIRST.QTR
:li.SECOND.QTR
:li.THIRD.QTR
:li.FOURTH.QTR
:eul.
:eul.

Formatted Output -----------------------.

o C:REPORTS\SALES.89
- FIRST.QTR
- SECOND.QTR
- THIRD.QTR
- FOURTH.QTR

o C:REPORTS\SALES.90
- FIRST.QTR
- SECOND.QTR
- THIRD.QTR
- FOURTH.QTR

When nesting lists, make sure you end each list with an end-list tag.

Ordered lists are vertical arrangements of items, with each item in the list preceded
by a number or letter. Use ordered lists when the~sequence of the items is
important, such as in a procedure.

To create an ordered list, use the ordered-list tag (:ol.) to begin the list, and :eol. to
end it. Identify each item in the list with :Ii ..

Input Example -------------------------.

:ol.
:li.Open the diskette-drive door.
:li.Remove the diskette.
:li.Store the diskette in a safe place.
:eol.

4-8 Information Presentation Facility

1. Open the diskette-drive door.

2. Remove the diskette.

3. Store the diskette in a safe place.

A Compact Ordered List: Use the compact attribute to produce a list with no blank
lines between the list items.

Input Example -------------------------.

:ol compact.
:li.Open the diskette-drive door.
:li.Remove the diskette.
:li.Store the diskette in a safe place.
:eol.

Formatted Output ------------------------.

1. Open the diskette-drive door.
2. Remove the diskette.
3. Store the diskette in a safe place.

Nested Ordered Lists: The following example contains two nested, ordered lists.
Notice that sequential numbers precede items in the first-level list, and sequential
letters precede items in the second-level list. Numbers and letters alternate for each
level of the list. That is, third-level list items would be preceded by numbers,
fourth-level by letters, and so on.

Chapter 4. Displaying Text and Graphics 4-9

Definition List

Input Example -------------------------..

:ol.
:li.First item in the first-level list.
:li.Second item in the first-level list.
This item has a nested list within it.
:ol.
:li.First item in the second-level list.
:li.Second Item in the second-level list.
:eol.
:li.Third item in the first-level list.
:eol.

Formatted Output-----------------------.

1. First item in the first-level list.

2. Second item in the first-level list. This item has a nested list within it.

a. First item in the second-level list.

b. Second Item in the second-level list.

3. Third item in the first-level list.

When nesting lists, make sure you end each list with an end-list tag.

A definition list is a special list that pairs a term and its description.

To create a definition list, use the definition-list tag (:di.) to begin the list, and :edl.
to end it. Identify each term in the list with a definition-term tag (:dt.) and each
description with a definition-description tag (:dd.).

Column Width for Definition Terms: :di. has several attributes that let you control
the appearance of definition lists. The tsize = attribute specifies the width, in
character spaces, for the term column. If tsize = is not specified, the default width
for the term column is 10 character spaces.

Definition-List Headings: If you want headings for the columns of terms and
definitions, use the definition-term heading tag (:dthd.) to identify the heading for the
terms, and the definition-description tag (:ddhd.) to identify the heading for the
definition descriptions.

4-10 Information Presentation Facility

Compact Definition List: The compact attribute produces a list with no blank lines.

The following example shows the tagging for a compact definition list with headings
for the terms and descriptions. It also shows the use of the tsize = attribute.

Input Example ------------=~-----------.

:dl compact tsize=13.
:dthd.:hp2.Key:ehp2.
:ddhd.:hp2.Purpose:ehp2.
:dt.Insert key
:dd.Switches between insert and replace modes.
:dt.Home key
:dd.Moves the cursor to the beginning of the current line.
:dt.End key
:dd.Moves the cursor to the end of the current line.
:edl.

Formatted Output--------------------------.

Key
Insert key
Home key
End key

Purpose
Switches between insert and replace modes.
Moves the cursor to the beginning of the current line.
Moves the cursor to the end of the current line.

Specifying where the Definition Descriptions Start: The break= attribute defines
where the descriptions appear in relation to their terms:

break=none

break=all

break=fit

Places the description on the same line as the term. This is the
default. If the term is longer than the specified or default tsize =

value, the term extends into the description column.

Places the description on the line below the term.

Places the description on the line below the term only when the
term is longer than the tsize = value.

The following example shows the tagging that starts the definition descriptions on
the line below the term.

Chapter 4. Displaying Text and Graphics 4-11

Input Example --------------------------.

:dl break=all tsize=3.
:dt.:hp2.Insert key:ehp2.
:dd.Switches between insert and replace modes.
:dt.:hp2.Home key:ehp2.
:dd.Moves the cursor to the beginning of the current line.
:dt.:hp2.End key:ehp2.
:dd.Moves the cursor to the end of the current line.
:edl.

Formatted Output ---------------------

Insert key
Switches between insert and replace modes.

Home key
Moves the cursor to the beginning of the current line.

End key
Moves the cursor to the end of the current line.

A definition description can apply to more than one definition term; that is, you can
specify more than one :dt. in the sequence before specifying a matching :dd •.

The following example shows the tagging for a definition list with descriptions that
apply to more than one term.

Input Example --------------------------.

:dl compact break=fit tsize=20.
:dthd.:hp2.Grocery Item:ehp2.
:ddhd.:hp2.Type:ehp2.
:dt.:hp2.0range:ehp2.
:dt.:hp2.Apple:ehp2.
:dd.A fruit.
:dt.:hp2.Carrot:ehp2.
:dt.:hp2.Celery:ehp2.
:dd.A vegetable.
:edl.

4-12 Information Presentation Facility

Parameter List

Formatted Output -------------------------.

Grocery Item
Orange
Apple
Carrot
Celery

Type

A fruit.

A vegetable.

Parameter lists are similar to definition lists in appearance and the way you use tags
to create them. The only difference between the two types of lists is that a
parameter list cannot have headings.

The parameter-list tag (:parml.) begins the list; its corresponding :eparml. ends it.
Identify each term in the list with a parameter-term tag (:pt.) and each description
with a parameter-description tag (:pd.).

:parml. has the same attributes as :di.. The tsize = attribute specifies the width for
the term column. If tsize = is not specified, the default width is 10 character spaces.

Compact Definition List: The compact attribute produces a list with no blank lines.

Specifying where the Definition Descriptions Start: The break= attribute defines
where the descriptions appear in relation to their terms:

break=none

break=all

break=fit

Places the description on the same line as the term. This is the
default. If the term is longer than the specified or default tsize =
value, the term extends into the description column.

Places the description on the line below the term.

Places the description on the line below the term only when the
term is longer than the tsize = value.

-Nested Parameter Lists: --Like simple, unordered, and ordered lists, parameter lists
can be nested.

Chapter 4. Displaying Text and Graphics 4-13

Input Example -------------------------.

:pannl compact tsize=3.
:pt.:hp2.KEYWORD-l:ehp2.
:pd.Is explained here.
:pt.:hp2.KEYWORD-2:ehp2.
:pd.Is explained here, and its nested subparameters:
:pannl compact.
:pt.:hp2.SUBPARM1:ehp2.
:pt.:hp2.SUBPARM2:ehp2.
:pd.Are explained here.
:epannl.
:pt.:hp2.KEYWORD-3:ehp2.
:pd.Is explained here.
:epannl.

Formatted Output ------------------------.

KEYWORD-I
Is explained here.

KEYWORD-2
Is explained here, and its nested subparameters:
SUBPARMl
SUBPARM2

Are explained here.
KEYWORD-3

Is explained here.

A parameter description can apply to more than one parameter; that is, you can
specify more than one :pt. in the sequence before specifying a matching :pd •.

The following example shows the tagging for a parameter list with descriptions that
apply to more than one term.

Input Example --------------------------.

:pannl compact tsize=3.
:pt.:hp2.KEYWORD-l:ehp2.
:pt.:hp2.KEYWORD-2:ehp2.
:pd.Is explained here.
:pt.:hp2.KEYWORD-3:ehp2.
:pd.Is not explained here.
:epannl.

4-14 Information Presentation Facility

Tables

KEYWORD-I
KEYWORD-2

Is explained here.
KEYWORD-3

Is not explained here.

Table tags enable you to display text in an arrangement of rows and columns. The
system font used to create tables is the monospace font.

The table tag (:table.) signals the start of the table. It requires a corresponding
:etable. at the end of the table.

The row tag (:row.) specifies the start of each row in the table. Each row must have
at least one column-entry tag (:c.). This tag specifies the text for each column in the
table.

The cols=' ' attribute of :table. specifies numeric values that represent the column
widths, in character spaces, of each column in the table. The combined values
cannot exceed 250 characters.

The number of columns in your table is determined by the number of column width
values you have specified with the cols=' ' attribute. For example, if you enter the
values shown in the following, your table will have three columns, each of which will
be eleven characters spaces wide.

cols='ll 11 11'

Chapter 4. Displaying Text and Graphics 4-15

A Table with Three Columns: The following is a simple example of a table with two
rows and three columns:

Input Example -----------------------

:table cols='13 13 13'.
:row.
:c.Column 1
:c.Column 2
:c.Column 3
:row.
:c.Row 1 Col 1
:c.Row 1 Col 2
:c.Row 1 Col 3
:row.
:c.Row 2 Col 1
:c.Row 2 Col 2
:c.Row 2 Col 3
:etable.

Formatted Output ------------------------.

Column 1 Column 2 Column 3

Row 1 Col 1 Row 1 Col 2 Row 1 Col 3

Row 2 Col 1 Row 2 Col 2 Row 2 Col 3

If you have more :c. tags following a :row. tag than you have column-width values,
the extra column entries are placed in a new row, and the compiler returns an error
message.

If you have fewer :c. tags than column-width values, the compiler does not consider
this an error. Space is still allocated for the specified columns; however, only the
columns for which you have provided entries will be filled.

Table Rules and Frames: The rules= attribute of :table. specifies whether the table
will have vertical rules, horizontal rules, a combination of both, or no rules at all to
delineate the items in the table. The values that you can specify for rules= are:

rules=both
rules=none
rules= horiz
rules=vert

4-16 Information Presentation Facility

A Table with Horizontal Rules

Input Example --------------------------.

:table rules=horiz cols= 1 10 15 15 1
•

:row.
:c.SYMBOL
:c.ELEMENT
:c.CHARACTER
:row.
:c.&.bxas.
:c.box ascender
:c.&bxas.
:row.
:c.&.bxcr.
:c.box cross
:c.&bxcr.
:row.
:c.&.bxde.
:c.box descender
:c.&bxde.
:etable.

Formatted Output~---------------------~

SYMBOL ELEMENT CHARACTER
&bxas. box ascender l

&bxcr. box cross t
&bxde. box descender T

If you do not specify the rules= attribute, your table will contain both vertical and
horizontal rules (the default).

The frame= attribute of :table. specifies whether the table will have borders. The
values that you can specify are:

frame=none
frame =rules
frame=box

If you specify frame =none, there will be no borders.

Specifying frame= rules results in a horizontal line at the top and bottom of the
table.

Chapter 4. Displaying Text and Graphics 4-17

If you specify frame= box, or do not specify the frame= attribute, the table is

enclosed in a box.

A Table without a Frame: Here is the same table without a frame.

Example Input -----------------------

:table rules=horiz frame=none cols='10 15 15'.
:row.
:c.SYMBOL
:c.ELEMENT
:c.CHARACTER
:row.
:c.&.bxas.
:c.box ascender
:c.&bxas.
:row.
:c.&.bxcr.
:c.box cross
:c.&bxcr.
:row.
:c.&.bxde.
:c.box descender
:c.&bxde.
:etable.

Formatted Output -----------------------.

SYMBOL ELEMENT CHARACTER

&bxas. box ascender l

&bxcr. box cross t
&bxde. box descender T

Special Considerations: None of the text-formatting tags (for example, list tags)

can be used in a table. You can use character-graphic symbols and
highlighted-phrase tags. However, boldface and italic highlighting can cause vertical

misalignment of column text and rules. To use boldface highlighting in tables and

avoid word alignment problems, place the highlighted-phrase tags (:hp2. and :ehp2.)

as shown in the example. The table rules as well as the text will be displayed in

boldface.

4-18 Information Presentation Facility

Input Example ------------------------.

:hp2.
:table cols='ll 11 11'.
:row.
:c.Row 1 Col 1
:c.Row 1 Col 2
:c.Row 1 Col 3
:row.
:c.Row 2 Col 1
:c.Row 2 Col 2
:c.Row 2 Col 3
:etable.
:ehp2.

Formatted Output -----------------------.

Row 1 Col 1 Row 1 Col 2 Row 1 Col 3

Row 2 Col 1 Row 2 Col 2 Row 2 Col 3

The above technique is practical only with :hp2., and does not work for :hpl. or for
the highlighted-phrase tags that change the color of text.

Unformatted Text In a Table Column: The text in table columns is formatted only
once - at compile time. If you do not want the compiler to format the text in a
column, enclose it with :lines. and :elines., as shown in the following example.

Chapter 4. Displaying Text and Graphics 4-19

Plain Lines

Input Example -------------------------.

:table cols='10 10 15 10'.
:row.
:c.Spacecraft
:c.Date
:c.Astronauts
:c.Mission
:row.
:c.Apollo 11
:c.7-16-1969
:c.
:Hnes.
Neil Armstrong
Edwin Aldrin
Michael Collins
:eHnes.
:c.
First landing on
the moon.
:etable.

Formatted Output-------------------------.

Spacecraft Date Astronauts Mission

Apollo 11 7-16-1969 Neil Armstrong First
Edwin Aldrin landing on
Michael Collins the moon.

Normally, lines of text that have no formatting tags are "wrapped" by IPF; that is,

irregular lines in the source file become a continuous string, and one word follows

another on a line until the line width of the current window is filled, a formatting

tag is encountered, or the end of the window is reached.

The :lines. tag, and its corresponding end tag, enable you to control where lines

break.
1

There are many ways to use :lines.; here we use it for a quotation.

4-20 Information Presentation Facility

Input Example -------------------------.

Here is how IPF wraps the lines to fit the window width&colon.

:p.&odq.Success awaits the person who radiates cheerfulness, not the person who
spreads gloom and dissatisfaction. Doctors tell us that cheerfulness is an
invaluable aid to health. Cheerfulness also is an invaluable aid to success.&cdq.
B. C. Forbes

In the following example, IPF will not wrap the lines, because we used the
LINES tag to prevent the lines from being formatted.

:lines.
&odq.Success awaits the person who radiates
cheerfulness, not the person who spreads
gloom and dissatisfaction. Doctors tell us
that cheerfulness is an invaluable aid to
health. Cheerfulness also is an invaluable
aid to success.&cdq.

B. C. Forbes
:elines.

The quotation appears in two forms.

-1 Information Presentation FaciHY
Services O_ptlons Hele_ _,

Plain Lines

Here is how IPF wraps the lines to fit the window width:

''Success awaits the person who radiates cheerfulness. not the person who spreads
gloom and dissatisfaction. Doctors tell us that cheerfulness is an invaluable aid to
health. Cheerfulness Is also an invaluable aid to success." 8. C. Forbes

T·T ...

T· ...
..t

In the following example. IPF will not wrap the lines. because we used the LINES tag to
prevent the lines from being formatted.

''Success awaits the person who radiates
cheerfulness. not the person who spreads
gloom and dissatisfaction. Doctors tell us
that cheerfulness is an invaluable aid to
health. Cheerfulness is also an invaluable
aid to success."

B. C. Forbes

~

Figure 4-2. Plain Lines Example

In the first case, IPF wraps the lines to fit the window width. In the second, IPF
does not wrap the lines, because :lines. prevent them from being formatted. If a line
of text were to exceed the width of the current window, it would be clipped. Also,
when IPF encounters other tags between :lines. and :elines., such as quotation tags,
the tags are processed.

Aligned Lines: :lines. has an align= attribute, which you use to align text to the
left, right, or center of the window.

Assume that in the previous example, the tag was:

:lines=center.

Chapter 4. Displaying Text and Graphics 4-21

The output would be as shown here.

-1 Information Presentation Fad!ii 1
Services O_pUons Hele_

·I Plain Unes l
ii

''Success awaits the person who radiates
cheerfulness. not the person who spreads
gloom and dissatisfaction. Doctors tell us
that cheerfulness Is an Invaluable aid to

health. Cheerfulness Is also an Invaluable
aid to success." B. C. Forbes

~

Figure 4-3. Text aligned in the center of the window.

Figures and Captions
The figure tag (:fig.) is similar to :lines •. Both convey the same message: "Do not
format the text that follows." Also, both tags have an end tag.

A Captioned Figure: Associated with :fig. is :figcap., which enables you to place a
descriptive sentence or caption above or below the text.

Input Example ----------------------------.

:h4.Example l&colon. A Captioned Figure
:fig.

Bat
Black Bear
Bobcat
Coyote
Mink
Florida Panther
Key Deer
Oppossum
West Indian Manatee
Whitetail Deer

:figcap.Major Species of Ma111llals in Florida
:efig.

The formatted output looks like this:

4-22 Information Presentation Facility

-I Information Presentation faci!!!l_ 1
Se~ces O_ptlons J:!.e~

-l AJLure Exam_l!_le l ... ~
-I Output 1· *
E•••11le 1: A Ca,U•••• A1•re

t.!

Bat
Black Bear
Bobcat
Coyote
Mink
Rorlda Panther
Key Deer
Op possum
West Indian Manatee
Whltetall Deer

Major Species of Mammals In Rorlda

~

Figure 4-4. Figure and Figure Caption

Textual Examples
One way of helping readers understand information is to use examples. The example
tag (:xmp.) and its corresponding end tag (:exmp.) enable you to illustrate your
information with textual examples by turning formatting off so that you can arrange
text any way you want it. The text will be displayed in a monospace font. To
change the monospace font, use :font. within :xmp •. For more information about
:font., see "Changing Fonts" on page 4-24.

Input Example --------------------------.

:xmp.
File Edit View Options Help

:exmp.

All
Some
By •

Formatted Output ------------------------.

File Edit View Options Help

All
Some •
By •

Restriction: You cannot nest :xmp. within another :xmp •.

Chapter 4. Displaying Text and Graphics 4-23

Character Graphics
If you want to include simple line drawings, use the character graphics tag
(:cgraphic.) and its corresponding end tag (:ecgraphic.). Text within this tag is
displayed in a monospace font. To change the monospace font, use :font. within
:cgraphic.. For more information about :font., see "Changing Fonts" on page 4-24.
If text does not fit within the boundaries of a window, it is clipped, not wrapped.

Place the tags before and after the character graphic, as shown in the following
example.

Input Example --------------------------.

:cgraphic.

[File Edit

:ecgraphic.

View l Options Help J
All
Some •

By •

Formatted Output----------------------------.

File Edit View Options Help

All
Some

By •

Restriction: You cannot nest :cgraphic. within another :cgraphic ..

Changing Fonts
The :font. tag is used to change the current font within the text of the current
window. When a heading tag that defines a new window is encountered, the font is
reset to the system default font.

The font tag has three attributes: facename = and size= are required; codepage = is
optional. If a code page value is not specified, the code page of the active system is
used.

4-24 Information Presentation Facility

facename = specifies the name of the font you want to change to. Some of the
common values for this attribute are:

Helv
Courier
default

size= specifies the height and width, in points, of the font you have selected. (A
point is a typesetting measure equal to approximately 1/72 of an inch.) The value is
expressed in the form, HxW. For example, suppose you want to change the current
font to an 18-point-high by IO-point-wide Helvetica font. You would specify:

:font facename=Helv size=18x10.

You do not have to know exact point values. IPF uses a "best fit" method to select
the font. If, in the example above, you had specified 20xl 2 as the size value, IPF
would have selected Helv 18x10 because it is the closest size to the one you specified.

Using :font., you can make as many font changes within a window as you want.
You can define highlighted phrases while a font tag is in effect, and the tagged text
will be displayed in the font style corresponding to that typeface.

You can use :font. within the :xm.p. and :cgraphic. tags to change the default system
monospace font. To change the default system monospace font, specify the desired
facename = and size= attribute.

The following resets the font to the default system proportional font.

:font facename=default size=exe.

In the following example, the font style is reset for each list item in the simple list.

Input Example ---------------------------.

:p.The following illustrate available fonts&colon.
:sl.
:font facename=Courier size=13x8.
:li.This sentence is in Courier 13 by 8 font.
*

:font facename='Tms Rmn' size=18x14.
:li.This sentence is in 'Tms Rrnn' 18 by 14 font.
*

:font facename=Helv size=28x18.
:li.This sentence is in Helvetica 28 by 18 font.
*

:font facename=default size=8x8.
:li.This sentence is in the default system font.
:esl.

Chapter 4. Displaying Text and Graphics 4-25

Here is the formatted output.

-I Information Presentation Fad~ l· ...
Services O_ptlons He!!_

·I Fonts l· ...

The following Illustrate available fonts:
t.1

This sentence is in Courier 13 by a font.

This sentence is in "Tms Rmn" 18 by 14 font.

This sentence is in Helvetica
28 by 18 font.
This sentence Is In the default system font.

~

Figure 4-5. Example of the Font Tag

Changing Color
The color tag (:color.) with its attributes fc = and be=, enables you to change the
color of the text (foreground color) and the color of the area behind the text
characters (background color).

Colors set with this tag remain in effect until others are specified, or until a heading
definition is encountered.

To return to the system colors, specify:

:color fc=default bc=default.

In the following example, each of the first three color tags specifies different
foreground and background colors. The last color tag returns the colors to the
system colors.

4-26 Information Presentation Facility

Margins

Input Example -------------------------.

:ol.
:color fc=green bc=blue.
:li.Color the foreground green; color the background blue •
. *
:color fc=blue bc=red.
:li.Color the foreground blue; color the background red.
*

:color fc=cyan bc=yellow.
:li.Color the foreground cyan; color the background yellow.
*

:color fc=default bc=default.
:li.Return to the system colors.
:eol.

The formatted output is quite colorful (see the the online /PF Reference).

You can specify the boundaries of text in a window by using the margin tags. The
left-margin tag (:Im.) specifies how many character spaces from the left border of the
window the text is to start. The right-margin tag (:rm.) specifies how many character
spaces from the right border the text is to end.

The margin= attribute sets the margin for the text. If none is specified on the :Im.
or :rm. tag, the default is 1.

If the margin tag in a line begins beyond the specified boundary, the new margin
becomes effective on the next line.

You can have multiple margin tags in your file. The specified margins remain in
effect until they are reset.

Input Example ------------------------..

:p
:nn margin=lO.
:lm margin=20.This text begins 20 spaces to the right
of the left window border and ends 10 spaces to the
left of the right window border.
All text is aligned as specified
by the margin values. :lm margin=5.Here the left margin
is changed to 5. Because this margin tag begins
more than 5 spaces on the line, the margin specified
becomes effective on the following line, and the text
begins 5 spaces from the left window border.
The right margin remains unchanged.

Chapter 4. Displaying Text and Graphics 4-27

Here is how the window looks:

-l Information Presentation Facl~ l
Services O_ptlons He!P_

-l Ma~ns I

Ml•rglns Ex••ple
i-1

This text begins ZO spaces to the right of the left window
border and ends 1 0 spaces to the left of the right window
border. All text Is aligned as specified by the margin values.

Here the left margin is changed to 5. Because this margin tag begins more
than 5 spaces on the line. the margin specified becomes effective on the
following line. and the text begins 5 spaces from the left window border. The
right margin remains unchanged.

7

Figure 4-6. Example of the Margin Tag

Bit Map and Metafile Graphics
In a previous topic, we discussed how you can use :cgraphic. to illustrate your text
with character graphics. With :artwork., you can illustrate your text with bit-map or
metafile graphics. A bit map is a representation of an image, and can be created
with such tools as the Icon Editor, which is available with the OS/2 2.0 Developer's
Toolkit. Metafiles provide device independence - bit-maps do not. The bit map or
metafile graphics reside in a file that must be specified with the name=' ' attribute of
:artwork.. This file is then loaded when you compile your source file with the IPF
compiler.

The artwork tag has other attributes as well:

• The align= attribute enables you to position the graphic. The values are left,
right, and center, and are with respect to the current margins.

• The fit attribute causes a bit map to be redrawn and scaled to fit the window.

The ratio between the width and height of the window should be the ratio of the
original width and height of the bit map or metafile; otherwise, the graphic
might appear distorted.

• The runin attribute enables you to place a graphic within a line of text. For
example, to include an icon within a line of text, the text and tag would be as
follows:

4-28 Information Presentation Facility

Input Example -------------------------.

:p.This is an example of artwork displayed within the
:artwork runin name='BOOK.BMP'.
text of a sentence.
**

:p.You can also align the artwork to appear on the
:lines align=left.
left,
:elines.
:artwork align=left name='BOOK.BMP'.
:lines align=right.
right,
:elines.
:artwork align=right name= 11 BOOK.BMP 1

•

:lines align=center.
or center of the window.
:elines.
:artwork align=center name='BOOK.BMP'.

It would bring the artwork into the screen like this.

This Is an example of artwork displayed within the ~ text of a sentence.

You also can align the artwork to appear on the

left.

or center of the window.

Figure 4-7. Example of the Artwork Tag

right

Chapter 4. Displaying Text and Graphics 4-29

4-30 Information Presentation Facility

Chapter 5. Linking

Today, the computer's ability to link pieces of information gives the author
flexibility in layering and structuring documents, and at the same time, provides
cohesive information.

This chapter describes the tags that identify, associate, and link one window to
another window. This chapter also describes the different types oflinking available
with IPF, and what to expect when using them.

Window Identifiers

© Copyright IBM Corp. 1992

The link tag (:link.) allows you to link to a heading, a footnote, an external
database, or another application. The reftype = attribute is required with each link
tag description. This attribute identifies the type of link you are defining.

The res= attribute and the value specified, identifies the window you are linking to.
This attribute is the window identifier. A res= number must be in the range 1
through 64000. The same window identifier must be specified in the tagging of the
window you are linking to in order for a hypertext link to exist (see "Hypertext
Links" on page 5-2).

The IPF compiler recognizes links to headings (including hidden headings) only
when the heading level is within the default range (toe= 123) or specified range of
heading levels. If you specify a window identifier for a level that is lower in the
hierarchy than that recognized for contents entries, and then attempt to link to it,
the compiler returns an error message. For example, suppose the default is in effect
for contents entries; that is, only heading levels 1 through 3 cause entries in the
Contents window. Also suppose your file contains the following heading definition:

:h4 res=050.Copy File

The heading "Copy File" appears in the same window as the preceding heading
level 3. If you use this window identifier in a link definition to link to the heading
from another window, the IPF compiler returns the error message, No res for this
reference.

If you are creating windows for an online document (a .INF file), you can use the
res=, id=, or name= attribute of the heading tag to specify window identifiers. An
advantage of using either id= or name = is that you can specify both alphabetic and
numeric characters, which can make the job of assigning and remembering window
IDs easier. If you use one of these attributes, you must use the refid = attribute of
:link. when defining a hypertext cross-reference to the window.

If you need to use both res= numbers and id= values, you can specify both in a
window heading. For simplicity, you can assign the same number to both
identifiers.

Note: If an OS/2 application needs to communicate with an IPF window, you must
use the res= attribute as a window identifier.

5-1

Types of Links

Hypertext Links

Links are electronic pathways that connect one online element to another. With
IPF, the user can be linked from one window to another by means of selectable text
and graphic areas that the author defines. The user also can be linked to
information in another IPF database.

Different types of links support document designs and information retrievability in
various ways:

Hypertext Links
Selectable words or phrases that connect related information.

Hypergraphic Links
Selectable graphics that connect related information.

Automatic Links
Links that begin a chain reaction at the primary window. When the user
selects the primary window, an automatic link is activated to display secondary
windows.

External Links
Links that connect external online document files.

Hypertext is the linking of online information so the user can navigate from
selectable text to related information. A hypertext link is the association between
two topics. The origin of the link is the source topic; the destination is the target
topic.

In the following example, the DIR command is the source topic; it describes the
directory command. Within the DIR topic is a reference to the MKDIR command
- the target topic.

Source Topic Target Topic

DIR - Display files in a r---""" MKDIR - Make a new

Related co11111and: MKDIR ---1-~ Related co11111and: DIR

You use :link. to establish a hypertext link between a topic in the source-topic
window and a topic in the target-topic window. :link. enables you to create
selectable, highlighted text in the source-topic window. When users select this text,
they are linked to the window containing the target topic, and the linked window
appears.

5-2 Information Presentation Facility

Consider the following example:

:link reftype=hd res=123.MKDIR:elink.

• reftype=hd indicates the hypertext phrase MK.DIR is being linked to a heading
in the target-topic window.

Notice MKDIR is delimited by the period of the :link. tag and the colon of the
:elink. tag.

• res= 123 is the identifier of the target-topic window.

The heading tag of the target-topic window must contain this identifier. The
following is an example:

:h2 res=123.MKDIR

For more information about hypertext links, see "Display Another Window of the
Same Library" on page 5-6.

Hypergraphic Links

Bit Maps

A hypergraphic link is similar to a hypertext link except that the user navigates from
a selectable graphic instead of selectable text.

Graphic illustrations are usually bit maps. Bit maps can be monochrome or color
and can be created with the Presentation Manager Icon Editor, which is available in
the Toolkit. The bit map resides in a separate file called by IPF at compile time.

The artwork tag (:artwork.) identifies the name of the bit-map; for example:

:artwork name='mybitmap.bmp'.

The :artlink. and :eartlink. tags define areas of the bit map that are selectable
hypergraphic. This means the user can link from the artwork to additional
information. If no :artlink. tag is used, no hypergraphic areas are defined.

If you want the entire bit map to be hypergraphic, the tagging is simple. You have
only one art link, and you do not have to define the area. The following shows the
tagging required to establish a link:

Input Example ----------------------~

:p.This is an example of a hypergraphic.
Select the Shuttle graphic and get ready for a walk on
the moon.
:artwork name='shuttle.bmp'.
:artlink.
:link reftype=hd res=001.
:eartlink.

Notice there is no :elink. tag. Instead, there is an :eartlink. tag. An :elink. tag is
required only to denote the end of a hypertext link.

Chapter 5. Linking 5-3

Metafiles

You also need to specify the identifier in the tagging for the window you are linking
to. For example:

:hl res=001.Apollo 11

Here is the formatted result:

Previous l~earch I lfrintl l!ndex 11 Con!ents l ID.ackl I forward I

Figure 5-1. The entire bit map as a selectable hypergraphic area.

When the user double-clicks on the hypergraphic area, the window whose identifier
is 001 ("Apollo 11 ") appears.

A metafile is another type of file in which graphics are stored. However, a metafile
contains data generated from the Presentation Manager graphics (GPI) functions
only. (For information about graphics functions, see the OS/2 2.0 Programming
Guide, Volume 3.) IPF supports a metafile as a hypergraphic link only when the
entire metafile is defined as a hypergraphic area.

The artwork tag identifies the file name of a metafile as follows:

:artwork name='myfile.met'.

Segmented Hypergraphics
You can divide your bit map into rectangular segments, make each segment
selectable, and have each segment link to different information. You must define
each segment in terms of values along the x and y axes. Values for x and y define
the origin of the segment. The changes in x and y are given as values for ex and cy.
The following is an example of a segmented bit map:

0,16 32,16
I
I
I
y
I
I
I
0,0 --------------x--------------- 32,0

S-4 Information Presentation Facility

Automatic Links

External Links

The following shows the tagging to establish a bit-map segment as a hypergraphic
area:

:artwork name='show2.bmp'.
:artl ink.
:link reftype=hd res=001 x=e y=e cx=16 cy=8.
:eartHnk.

Links also can be made automatically. An automatic link occurs when the user
performs an action that selects a window in which a link is defined. For automatic
links to occur, the reftype = attribute of the :link. tag must have a value of hd,
inform, or launch. Automatic links allow you to:

• Display multiple windows when a heading or link definition is selected (hd
attribute).

• Display multiple secondary windows within the coverpage of a primary window
(hd attribute). For a tagging example, see Figure 6-12 on page 6-13.

• Send a message to the application when a window is displayed (inform attribute).
For a tagging example, see Figure 9-7 on page 9-18.

• Start a Presentation Manager program when a window is displayed (launch
attribute).

Automatic links can be associated with selectable links so that another action occurs
in addition to the display of a linked window. For example, a Presentation Manager
program can be started, or a message can be sent to the application program.

An external link is a link from a .HLP file to another .HLP file or from a .INF file
to another .INF file.

If you are linking from one internal database to another, use the res= attribute. If
you want to allow external databases to link to a window in your file, the window
heading must contain the global attribute, and you must use the id= attribute as a
window identifier.

For more information about external links, see "Display a Help Window from
Another Help Library" on page 5-6.

What Linking Can Do
You now know that :link. makes text phrases and hypergraphic areas within a
window selectable. When the user selects a hypertext or hypergraphic area, the
following occurs, depending on the content of the :link. tag:

• Another window of the same library is displayed.
• Another window of a different library is displayed.
• A footnote window is displayed.
• A message is sent to the application program.
• Another application is started.

Chapter 5. Linking 5-5

Display Another Window of the Same Library
When you want the user to link to another window in the current library, use the
reftype = hd attribute with :link.. For example:

:link
reftype=hd res=21084.What Are Libraries For?
:el ink.

The hd attribute tells the compiler to link to a heading in another window. The
res= attribute value specifies the identification of the window being linked to.

The text "What Are Libraries For?" is uniquely highlighted in the window so that
the user knows it is selectable. If the user selects it, the window containing the
heading defined by res= 21084 appears.

Note: The highlighting of a hypertext phrase is done with a color selected by IPF
and should not be confused with highlighted-phrase tags, which are used to
change the type font. (See "Highlighted Phrases" on page 4-1 for an
explanation of these tags.)

The tagging shown in Figure 5-2 on page 5-7 contains an example of the link tag.
Also included is the tagging for the window being linked to.

Display a Window Linked to Another Database
You also can link a user to a window in another IPF .HLP or .INF file. You must
specify the file name with the database= attribute. If the following were in the
source file, selection of the hypertext link would cause the file, EDITOR.HLP to be
loaded, and the window whose ID is 001 to be displayed.

:link reftype=hd database= 1editor.hlp 1 refid=001.
Editing Functions
:el ink.

The heading definition in the other file must contain the global attribute. If the link
to the file cannot be resolved, the hypertext phrase in the link is not highlighted.
For example, if the .INF or .HLP file is not available, IPF will not highlight the
linked phrase. If the .INF or .HLP file becomes available, IPF will dynamically
highlight the phrase.

Display a Help Window from Another Help Library
If you are creating a window for a help library (a .HLP file), you must use the res=

attribute to assign an identifier to each window. For example:

:hl res=2001 id=2001 global.
Help for Copy

IPF uses the value specified for res= (any integer from 1 through 64,000) to
associate a window with a user's request for help on a field or window of the
application. If you use the res= attribute in a heading tag, you must also use it in a
link tag when defining a hypertext cross-reference to the window. For example:

:link reftype=hd res=2091.
Help for Copy
:el ink.

5-6 Information Presentation Facility

:**
:* In the following source, the text of the window
:* contains a heading tag with a window
:* identifier, a paragraph tag, and a hypertext
:* link to another window.
:**
:hl res=21083.The Library Manager
:il.object code libraries
:p.
The Library Manager (LIB) lets you create and maintain
libraries of object code. A library is an organized
collection
of object code; that is, a library contains functions and data
that are already assembled or compiled and ready for linking
with your programs. See:
:link
reftype=hd res=21084.What Are Libraries For?
:el ink.
:p.
LIB works with both DOS and OS/2 files.
:**
:* The following contains a heading tag with a
:* window identifier that matches the link-tag
:* res= attribute above.
:* This file also contains an unordered list.
:**
:h2 res=21084.What Are Libraries For?
:p.Programming libraries of object code are used:
:ul.
:li.To support high-level languages.
:p.Most compilers include libraries to perform standard
operations, such as input/output and floating-point mathematics.
:p.
When your program refers to a library routine, the
compiler and linker combine the library routine with your
program.
:li.To perform complex and specialized activities, such
as database management or advanced graphics.
:p.Compilers include libraries for specialized tasks. You
also can use a library from a third party software vendor.
:li.To support your own work.
:p.If you have created routines that you use with a
variety of programs, you might want to consolidate these routines
into a library. You then can link to one library object module
rather than to a large group of object files.
:eul.

Figure 5-2. Example source for linking to another window.

Chapter 5. Linking 5-7

Display a Footnote Window
A footnote window results when the user selects a hypertext phrase that is linked to
a footnote tag (:fn.). The text between :fn. and :efn. is what appears in the footnote
window. The following is an example of the tagging for the footnote text:

Input Example --------------------------.

:fn ;d=drive.
:p.The text you enclose in footnote tags appears in a
small window when the user selects a hypertext or hypergraphic
link to the footnote. Notice that
the title of the window is the same as the hypertext
phrase "disk drives" that links to the window.
:efn.

The id= attribute identifies the footnote for linking purposes.

In the :link tag, use refid = to refer to the footnote identifier (in this case, "drive"),
and reftype = fn to indicate that the link is to a footnote, and to specify the title of
the footnote window. The following is an example of the tagging for a link to the
footnote:

:p.Additional information about
:l;nk ref;d=drive reftype=fn.disk drives:el;nk.
is available.

Figure 5-3, shows the resulting footnote window.

Here Is a hypertext link to the footnote:

:p.Additional information about
:link refid•drive reftype•fn.disk drives:elink.
is available.

Now seled the link to [x~••ll•••••••G@"ll
Additional Information The text you enclose In footnote tags

appears In a pop-up window when a
following are some re hypertext or hypergraphlc link to the

footnote Is seleded by the user. Notice
o A footnote can be ph that the title of the window Is the same It follows the first

:II. tag. as the hypertext phrase that links to the

P!evious I iearch 11flint11 !ndex 11 Con!ents 11J!ack11 Eorward I

Figure 5-3. Footnote window.

5-8 Information Presentation Facility

The following are some important points to remember about footnotes:

• A footnote can be placed anywhere in your source file, as long as it follows the
first heading tag.

• Footnotes cannot contain index entries.

• Information in a footnote cannot be detected by a search.

• A footnote CANNOT be in a window that has a split attribute in its heading or
link definition.

Send a Message to the Application
When the reftype =inform attribute is specified with :link., a message is sent to the
application. The res= attribute, instead of being a resource identifier for IPF (a
window ID), is a resource identifier for the application. The value specified must be
an integer. When the application receives the message, it can then perform an
application-specific function.

For more information about how messages are sent to application windows using the
reftype=inform attribute see "Using Communication Windows" on page 9-13.

Start an Application
The reftype =launch attribute of :link. causes IPF to start another Presentation
Manager application. The object= attribute indicates the file specification of the
application. The data= attribute specifies parameters associated with the
application to be started.

You can use the reftype =launch attribute with :link. to start a tutorial.

Chapter 5. Linking 5-9

5-10 Information Presentation Facility

Chapter 6. Customizing Windows

A window is an area of the screen with visible boundaries within which information
is displayed. Often a single window uses the entire screen for its information.
Because online information is best presented in small pieces, or units, most designs
call for a multiple window format. This chapter explains how to size and position
more than one window on a screen, and how to use attributes that enable IPF to
open and close those windows. Before you begin this chapter, make sure you read
about the OS/2 standard windows described in Chapter 2, "Viewing the User
Interface for Online Information."

For a summary of attributes described in this chapter, see "Summary Tables of
Attribute Values for Origin and Size" on page 6-22, "Summary Table for Heading
Attributes" on page 6-23, and "Summary Table for Link Attributes" on page 6-24.

The Default Window

©Copyright IBM Corp. 1992

Both the heading tags (:hn.) and the link tag (:link.) have attributes that affect how
windows look on a screen. For example, the attributes define:

• Window size and position
• Which window controls are provided to the user
• What windows are displayed.

You do not have to use all the attributes provided by a heading tag to define a
window. The following is an example of the minimum tagging required for a
window:

:hl res=991.My First Window
:p.
Here is the text for the first window.

In this example, :bl. creates a level-1 entry in the Contents window and the title,
"My First Window," in the title bar of the default window.

6-1

Figure 6-1 shows the tagging to produce the two default windows shown in
Figure 6-2.

:hl res=001.My First Window
:p.
Here is the text for the first window.
This is a
:l;nk reftype=hd res=002.
hypertext link
:el ink.
to the second window.
:hl res=092.My Second Window
:p.
Here is the text for the second window.
This is a
:link reftype=hd res=901.
hypertext link
:el;nk. to the first window.

Figure 6-1. Tagging for two IPF default windows.

Figure 6-2 shows the compiled version of the tagging shown in Figure 6-1. "My
First Window" is one of the default windows and is bounded by the window
"Default Window Example." This window is called a coverpage and provides
window controls for the user.

Se~ces .Qptions ttelp

Figure 6-2. Example of an IPF default window.

6-2 Information Presentation Facility

The two windows each have a hypertext link. Selection of the hypertext link in "My
First Window" causes the other default window "My Second Window" to display.
Each default window has the same characteristics:

• Its size is 100% of the coverpage window.
• It provides window controls for the user:

Title bar with a title bar icon
Maximize and hide buttons
Vertical and horizontal scroll bars
Sizing borders
Push buttons.

Attribute Values for Window Controls
Both the heading tag and :link. have attributes that define window controls.
Following are the names of the window-control attributes, and values you can
specify (defaults are underscored):

titlebar = yeslsysmenulminmaxlbothlnone

scroll= horizontallverticallbothlnone

rules= border I size border I none

You can eliminate window controls altogether by specifying:

titlebar =none scroll= none rules= none

You then can substitute controls of your own. By eliminating borders around
windows and using :font. to specify fonts, you can design a more sophisticated layout
of text and graphics. The OS/2 system tutorial is an example of this.

For informaton about the tags that control the display of push buttons, see
"Attribute Values for the Control Area of a Window" on page 3-10.

Multiple Windows
Windows can be considered to be subdivisions of the screen. They can be either
primary or secondary windows. A primary window is where the main topic appears,
or where the interaction between a user and an object or application takes place. A
secondary window usually supplements the information in the primary window. It is
closed when its primary window is closed. Figure 6-3 on page 6-4, shows a simple
multiple-window design with a primary and secondary window.

Chapter 6. Customizing Windows 6-3

This Is a primary window. The
Information In this window should be
independent from information in the
secondary window.

This is a secondary window. It
supplements the Information In the
primary window.

Figure 6-3. A primary and secondary window arrangement.

a D

a D

To create the two-window format shown in the figure, you must define the size of
each window, then position them within the boundaries of the coverpage window.
When defining window size, you specify horizontal and vertical areas of the window,
using window coordinates.

Defining Window Origin and Size
Each window represents a rectangle with x and y coordinates. The x-axis is always
horizontal; the y-axis is always vertical. The position where the values specified for
x and y intersect is the window's origin. From this position, width and height are
measured. Figure 6-4 shows the window coordinates of a primary and secondary
window.

I 100

90

BO

y 70

Axis 60

50

40

30

20

10

0

I
i
i
l
l

0 10 20 30 40 50 60 70 BO 90 100

X Axis

Figure 6-4. A window in relationship to its coordinates.

6-4 Information Presentation Facility

Attribute Values for Window Origin and Size

Absolute Values

Relative Values

Dynamic Values

Both the heading tags and :link. have attributes that define window origin and size.

The heading tag has four attributes:

x=

y=

width=
height=

Specifies a point on the x axis. The x-axis runs horizontally from left

to right.
Specifies a point on they axis. The y-axis runs vertically from bottom

to top.
Specifies the width (horizontal space) of the window.

Specifies the height (vertical space) of the window.

The :link. tag also has four attributes:

vpx=

vpy=

vpcx=
vpcy=

Specifies a point on the x axis. The x-axis runs horizontally from left

to right.
Specifies a point on they axis. The y-axis runs vertically from bottom

to top.
Specifies the width (horizontal space) of the window.

Specifies the height (vertical space) of the window.

Origin and size attributes also can be assigned values of the following types:

• Absolute
• Relative
• Dynamic.

Absolute values are specified in characters, pixels, or points. The format for an

absolute value is an integer followed by one of these letters:

c (characters)
Average character width of the default system font.

x (pixels)
Pixel size, dependent on the display adapter in use.

p (points)
Typesetting measure, equal to approximately 1/72 inch.

Relative values are specified as percentages of the display area of the coverpage

window. The format for a relative value is an integer followed by the percent sign

(%).

Dynamic values for x- and y-coordinates identify locations on the coverpage-window

perimeter or its center. Values are left and right for x, top and bottom for y, and

center for both.

Heading Definition Example
The window defined in the following example is a primary window; its origin is

specified using dynamic values, and its width and height are specified as percentages

of its coverpage window.

:hl res=001
x=left y=bottom width=50% height=100%
group=l.Primary Window

For now, ignore "group= l." We will explain it later.

Chapter 6. Customizing Windows 6-5

The most practical values to use for window size and position are a combination of
relative and dynamic values. Then, if the user resizes the coverpage window, IPF
automatically resizes and repositions the windows relative to the new size and
position of the coverpage window. If you use absolute values, the window might be
clipped when the user resizes the coverpage window.

When defining window position and size, you cannot mix absolute values with
dynamic or relative values for either of the following combinations of attributes:

x = and width=
y = and height=

If no values for x and y are specified, the origin of the window is 0,0. If you specify
an origin other than 0,0, you also must specify width and height values. Negative
values for these attributes are not allowed.

Origin and Size Example
The example of a source file shown in Figure 6-5, defines two windows. The origin
and size attributes specified with the heading definitions place the windows adjacent
to one another on the screen.

:hl.Origin and Size Window Example
:h2 res=003

x=left y=bottom
width=50% height=100%.

Primary Window
:p.
Here is the text for the primary window. This is a
:link reftype=hd res=004.
hypertext link
:el ink.
to the secondary window.
:h2 res=004

x=right y=bottom
width=50% height=100%.

Secondary Window
:p.
Here is the text for the secondary window. This is a
:link reftype=hd res=003.
hypertext link
:el ink.
to the primary window.

Figure 6-5. Sample source file for defining window origin and size.

The origin of the first window is the lower left-hand comer of the coverpage
window. It occupies 50% of the width, but 100% of the height of the coverpage
window on the left-hand side.

The origin of the second window is the lower right-hand comer of the coverpage
window. It occupies 50% of the width, but 100% of the height of the coverpage
window on the right-hand side.

Although these two windows occupy adjacent positions on the screen, you cannot
display them both at the same time. To define separate windows, you must specify a
group number in the heading definition.

6-6 Information Presentation Facility

Displaying Multiple Windows
To display more than one window on the screen, you must assign a unique group
number to each window with the group= attribute. This attribute can be specified
with :link. or the heading tag.

If you do not specify a group number, a value of 0 is assigned. (This is the default
value and is reserved for use by IPF.) If another window is already opened with the
number specified for group= , IPF swaps its image (places the image in the same
window) for the one defined by the heading or link tag.

Note: If a group number is assigned in both a heading and a hypertext or an
automatic link, the link group number overrides the heading group number.
The numbers you can assign to group= are integers from 1 to 64000.

Compare the three heading definitions in Figure 6-6 on page 6-8. Notice that:

• The first and second windows have different group numbers and different
positions.

• The second and third windows have the same group number.
• The second and third windows have the same size and position.

Chapter 6. Customizing Windows 6-7

:hl res=005
x=left y=bottom
width=50% height=100%
group=l.

My First Window
:p.
Here is the text for the first window.
This is a
:link reftype=hd res=006.
hypertext link
:el ink.
to the second window.
:p.
This is a
:link reftype=hd res=007.
hypertext link
:el ink.
to the third window.
:hl res=006

x=right y=top
width=50% height=100%
group=2.

My Second Window
:p.
Here is the text for the second window.
This is a
:link reftype=hd res=005.
hypertext link
:el ink.
to the first window.
:p.
This is a
:link reftype=hd res=007.
hypertext link
:elink.
to the third window.
:hl res=007

x=right y=top
width=50% height=100%
group=2.

My Third Window
:p.
Here is the text for the third window.
This is a
:link reftype=hd res=005.
hypertext link
:el ink.
to the first window.
:p.
This is a
:link reftype=hd res=ee6.
hypertext link
:el ink.
to the second window.

Figure 6-6. Source File for Window Group Number

6-8 Information Presentation Facility

Now assume that the source file shown in Figure 6-6 is compiled, and the user
selects "My First Window" from the Contents window. The window in Figure 6-7
displays.

.Qptlons .!::!elp

Here Is the text for the first window.
This Is a £iii§i@lftdl to the second
window.

This Is a hypertext link to the third
window.

Figure 6-7. Multiple windows display with different group numbers.

If the user selects the hypertext link in this window, "My Second Window" will
appear, as shown in Figure 6-8.

::!!:

Se'!f ces .Qptions .!::!elp

:r: I j My First Window

Here Is the text for the first window.
This Is a l&Jn;.@MftHS to the second
window.

This Is a hypertext link to the third
window.

_J

Here is the text for the second window.
This is a IBi.!Qe@llfHS to the first
window.

This is a hypertext link to the third
window.

_J

Figure 6-8. Multiple windows display with same group numbers.

The windows appear next to each other because their heading definitions specify
different group numbers. If the user now selects the hypertext link in "My Second
Window," the resulting screen will be as shown in Figure 6-9.

Chapter 6. Customizing Windows 6-9

.Qptlons Help

ArstWlndow

Here Is the text for the first window.
This is a hypertext llnk to the second
window.

This Is a 14iiipi@if1Hi to the third
window.

Here Is the text for the third window.
This Is a ilii@i@lflHI to the first
window.

This Is a hypertext llnk to the second
window.

Figure 6-9. Compiled output of third window from group number .. "My Third Window"
replaced "My Second Window" because it has the same group number as "My
Second Window."

Preventing Image Swapping in Windows
The group= attribute opens a new window only if no other window with the same
group number is already displayed. When a window is opened and a user selects
another window with the same group number, IPF swaps its image in the already
opened window. To prevent this, use the viewport attribute; it always opens a
window.

Suppose you have defined the following hypertext link to a window:

:l;nk reftype=hd res=001.
vpx=25% vpy=bottom
vpcx=75% vpcy=100%
v;ewport group=2.

Guidance
:el;nk.

When this window is displayed, if the user selects the same hypertext link, the same
window will open. You cannot control how many times the user will select a
hypertext link. If you do not want another window opened each time the user
selects the same hypertext link, use the group= attribute instead of the viewport
attribute. This eliminates the potential for the user to open multiple windows
containing the same information.

Linking to a Window Automatically
As we have seen, one way to display a secondary window is to enable the user to
select a hypertext link from one window to another. Another way is to link the user
to the secondary window automatically. For example, in Figure 6-10 on page 6-11
the window on the right is displayed automatically when the user selects the window
on the left (perhaps from the Contents window).

6-10 Information Presentation Facility

Seled ••e: --Topics
Related Topics

As the author of help Information. you can use the IPF tag
language In an ASCII source file to define various
charaderistics of text format. You also can use tags to define
charaderistics of the window In which the text Is displayed.

The IPF compiler Interprets the tags In the source file and
converts the file to an IPF library format. The IPF compiler is
able to distinguish the tags from the text because each tag
consists of a colon. the tag name. and a period. For example.
a new paragraph Is indicated by the paragraph tag [:p.). When
the IPF compiler encounters this tag. It Interprets It as. ,,nsert
a blank line and start the text that follows the tag on the next
line."

Because the IPF compiler Interprets the colon as the start of a
tag. do not \fpe the colon charader when you mean to use It as
a punduation mark In text. Instead. \fpe the symbol &eel••··

_J

Previous I ~earch 11_erint11 Index 11 Con!Cnts 11~aclc11.Eorward I

Figure 6-10. Example of a window displayed automatically. The window on the right was
displayed automatically.

Auto Attribute: A window that starts the concurrent display of one or more other
windows by automatic or hypertext links is referred to as the owner of the window
chain. The auto attribute and the reftype = hd attribute indicate that a window is to
be opened automatically whenever the owner window is opened. The group=
attribute specifies the number of the window. (For more information about group
numbers, see "Displaying Multiple Windows" on page 6-7.)

The vpx, vpy, vpcx, and vpcy attributes indicate the size and position of the window
in relation to its coverpage window.

CAUTION:
When defining automatic links, you do not want to create an "infinite loop" by linking
to the same window or group number more than once in a chain of links.

For example, suppose you create three windows, A, B, and C, that contain the
following automatic links.

Window A Window B Window C

> Link to B 1--> Link to C f--> Link to A

When the file containing these links is compiled, the IPF compiler does not return an
error message because of the loop. Now suppose Window A is an entry in the
Contents window and the user selects it. Windows A, B and C open and close
uncontrollably until an error occurs and the process is terminated by the system.

Chapter 6. Customizing Windows 6-11

Closing a Window Automatically
The dependent attribute causes the window to close automatically when the owner
window is closed.

In the following example, the link at the end of the heading definition defines the
owner window on the left. It links to the window on the right. Notice the link tag
defining the automatic link does not require :elink. ..

:hl res=421
x=left y=bottom
width=25% height=l00%

group=l.
Developing Online Information
:link reftype=hd res=422

vpx=right vpy=bottom
vpcx=75% vpcy=100%
auto dependent group=2.

:hl res=422.Developing Online Information

Figure 6-11. Sample tagging defining an automatic link.

Tagging Example for Automatic Windows
The example shown in Figure 6-12 on page 6-13, defines two automatic window
chains. A window chain has at least one owner window, and an owner window has
one or more automatic or hypertext links to other windows in the chain. When an
owner window closes, the windows in its chain that have specified the dependent
attribute also close.

In "Example l," (see Figure 6-13 on page 6-15) the only owner window in the chain
is the first window (res= 008). It contains links to three other automatic windows,
which are referred to as sibling windows of the owner window.

In "Example 2," (see Figure 6-14 on page 6-15) Windows 1 through 3 in the chain
are owner windows. Window 1 owns all the windows in the chain and can close all
of them. Window 2 also owns Windows 3 and 4. Window 3 also owns Window 4,
the last window in the chain, which is displayed by means of a hypertext link in the
text.

6-12 Information Presentation Facility

:hl.Automatic Windows
:h2 res=008

x=left y=top width=25% height=100%
scroll=none group=l clear.

Example 1
:link reftype=hd res=009

vpx=25% vpy=top vpcx=25% vpcy=100%
group=2 auto dependent.

:link reftype=hd res=OlO
vpx=50% vpy=top vpcx=25% vpcy=100%
group=3 auto dependent.

:link reftype=hd res=Oll

:p.

vpx=75% vpy=top vpcx=25% vpcy=100%
group=4 auto dependent.

This is Window 1.
:p.
This window has three automatic links to
Windows 2, 3, and 4.
:h2 res=009

x=25% y=top width=25% height=100%
scroll=none hide.

Window 2
:p.
This is Window 2.
:h2 res=010

x=50% y=top width=25% height=100%
scroll=none hide.

Window 3
:p.
This is Window 3.
:h2 res=Oll

x=75% y=top width=25% height=100%
scroll=none hide.

Window 4
:p.
This is Window 4.

Figure 6-12 (Part 1 of 2). Sample tagging for automatic windows.

Chapter 6. Customizing Windows 6-13

:h2 res=012
x=left y=top width=25% height=100%
scroll=none group=l clear.

Example 2
:link reftype=hd res=013

:p.

vpx=25% vpy=top vpcx=25% vpcy=100%
group=2 auto dependent.

This is Window 1.
:p.
This window has an automatic link to
Window 2.
:hl res=013

x=25% y=top width=25% height=100%
scroll=none hide.

Window 2
:link reftype=hd res=014

:p.

vpx=50% vpy=top vpcx=25% vpcy=100%
group=3 auto dependent.

This is Window 2.
:p.
This window has an automatic link to
Window 3.
:hl res=014

x=50% y=top width=25% height=100%
scroll=none hide.

Window 3
:p.
This is Window 3.
:p.
This paragraph contains a
:link reftype=hd res=015

vpx=75% vpy=top vpcx=25% vpcy=100%
group=4 dependent.

hypertext link
:el ink.
to Window 4.
:hl res=015

x=75% y=top width=25% height=100%
scroll=none hide.

Window 4
:p.
This is Window 4.

Figure 6-12 (Part 2 of 2). Sample tagging for automatic windows.

6-14 Information Presentation Facility

xt a Jo
Ser!lces Qptions Help

ii:l...1 Exam~elaJo ii:fi Window ;J aJcij ii:l..1 Wlndow~_aJo ii:_l a Jo

This Is Window 1. This Is Window z. This Is Window 3. This Is Window 4.

This window has
three automatic
llnks to Windows Z.
3. and 4.

Figure 6-13. Example of four automatic windows.

When "Example 1" is selected from the Contents window, four windows are
displayed in rapid succession. When Window 1 is closed, all four windows close.

Figure 6-14 shows the windows that are displayed when "Example 2" is selected
from the Contents window.

This is Window 1.

This window is an
automatic link to
Window Z.

Window; a D ii: Wlndow3 ~

This is Window 2.

This window has an
automatic link to
Window 3.

This is Window 3.

This paragr.!e!!......_
contains a lil'!llllllll
• to Window 4.

Figure 6-14. Example of three automatic windows.

Notice Window 4 is not displayed. To display Window 4, you must select the
hypertext link in Window 3.

Note: You can use the viewport attribute on an automatic link, because an
automatic link is made only once.

Chapter 6. Customizing Windows 6-15

Split Windows
A group of windows can be given the semblance of one window and yet offer the
advantage of different windows; for example, text can be displayed next to an object
the text describes. The author creates this effect by defining a window that consists
of:

• :bl. or :h2. primary-window heading tags, followed by automatic links to
secondary windows. (Text is not allowed.)

• :h2. secondary-window heading tags, each followed by text.

The primary window and its secondary windows must reside in the same file.

The position and size of the primary window determines the boundaries for its
secondary windows. If the position and size of a secondary window are defined in
absolute values that exceed the perimeter of the primary window, the secondary
window is clipped. (When a window is clipped, part of it lies outside the window
boundary and cannot be viewed.)

Sizes of secondary windows can be defined as percentages of the primary-window
size. The minimum size of a secondary window (expressed in percentages) is zero
height by zero width. Negative values for origin and position are not allowed.

Defining Split Windows
The primary window cannot have any text or graphics, only automatic links to each
of its secondary windows. Each automatic link to a secondary window requires the
auto and split attributes. The following is an example of the tagging for a primary
window that contains a split window:

:hl res=OOl scroll=none.Primary Window A
:link reftype=hd res=002 auto split group=lO

vpx=left vpy=top vpcx=50% vpcy=100%
scroll=none titlebar=none.

:link reftype=hd res=003 auto split group=ll
vpx=right vpy=top vpcx=50% vpcy=100%
scroll=vertical titlebar=none.

The primary window does not have text and does not need a scroll bar; thus, the
heading tag attribute is scroll= none. The primary window can define an overall title
bar and disable the title bars in the secondary windows.

CAUTION:
When defining split windows, do not link to a footnote from a secondary-window.

For example, the text of a secondary window cannot have a link such as the
following:

:link reftype=fn
refid=OOl.

Display Pop-Up Window
:el ink.

6-16 Information Presentation Facility

Tagging Example for Split Windows
The examples in Figure 6-15 on page 6-18, and Figure 6-18 on page 6-20, show the
tagging for two different split-window arrangements.

In Figure 6-15 on page 6-18, "Primary Window A" (res=016) has automatic links
to two secondary windows, (res=017 and res=018). The tagging for res=017 has
two list items, each of which is a hypertext link. The first list item, "Ducks," links
to res=018; the second item, "World," links to res=Ol9.

The tagging for both res=018 and res=Ol9 refer to bit-map files.

Notice that in "Primary Window A" the link tags for the secondary windows specify
titlebar =none, but the heading tags for the secondary windows specify "Dummy" as
title text. You must always provide IPF with a title string in a heading tag, even
when you specify that the window will not have a title bar and will not have an
entry in the Contents window because you have specified the hide attribute. The link
tags for a hypertext link to a secondary window must specify the split attribute. If
the split attribute is omitted, the window will not behave as a secondary window;
that is, it will not close when the primary window is closed, and instead of moving
when the primary window is moved, it will become obscured.

Hide, Noprlnt, and Nosearch Attributes: In the examples, each secondary window
heading has the hide, noprint, and nosearch attributes. The hide attribute prevents an
entry from appearing in the Contents window. You do not want a secondary
window (in a split-window arrangement) to be displayed by itself; you want it
displayed only when the Contents entry for its primary window is selected.

The nosearch attribute prevents the title string of the secondary window from being
listed as an entry in the Search Results window. The Search option of IPF also
searches the secondary window (for a word or phrase) because of the link definition
in the primary window; however, only the title string of the primary window is
returned in the Search Results window.

The Print option of IPF enables the user to print one or more topics, the index, or
the table of contents. The noprint attribute in a primary-window heading prevents
the contents of a secondary window from being printed. Secondary windows are
printed as part of their primary window. The contents of secondary windows are
printed only in the order in which the link definitions appear in the primary-window
definition.

None of the primary-window heading tags specifies a group number with the
group= attribute, so IPF assigns 0 (the default) as the group number of each. The
clear attribute causes the screen to be cleared of windows before each split window is
displayed.

Chapter 6. Customizing Windows 6-17

:hl res=916 scroll=none clear.
Primary Window A
:link reftype=hd res=917 auto split group=19

vpx=left vpy=top vpcx=50% vpcy=199%
rules=border scroll=none titlebar=none.

:link reftype=hd res=918 auto split group=ll
vpx=right vpy=top vpcx=59% vpcy=199%
rules=border scroll=none titlebar=none.

:h2 res=917 hide nosearch noprint.Dummy
:p.
This secondary window contains hypertext links

. to the adjacent secondary window.
:p.
Select one:
: sl compact.
:li.:link reftype=hd res=918 split group=ll

vpx=right vpy=top vpcx=59% vpcy=199%
rules=border scroll=none titlebar=none.

Ducks
:el ink.
:li.:link reftype=hd res=919 split group=ll

vpx=right vpy=top vpcx=59% vpcy=199%
rules=border scroll=none titlebar=none.

World
:elink.
:esl.
:h2 res=918 hide nosearch noprint.Dummy
:artwork name='ducks.bmp' fit.
:h2 res=919 hide nosearch noprint.Dummy
:p.
:artwork name='world.bmp' fit.

Figure 6-15. Tagging for split window primary window A.

6-18 Information Presentation Facility

Here are both views of the compiled version of Primary Window A

Window A

This secondary window contains hypertext
links to the adjacent secondary window.

Select one:

IDlll
World

a 0

a 0

Figure 6-16. Example of a split window with an automatic link. The window on the right

is displayed automatically when "Primary Window A" is selected from the
Contents window.

This secondary window contains hypertext
links to the adjacent secondary window.

Select one:

Ducks mm

Figure 6-17. Example of a split window with hypertext link. The window on the right is
displayed when the second hypertext link is selected.

Chapter 6. Customizing Windows 6-19

:hl res=022 scroll=none titlebar=none rules=none clear.
Primary Window B
:link reftype=hd res=023 auto split group=10

vpx=left vpy=top vpcx=40% vpcy=100%
scroll=none titlebar=none rules=none.

:link reftype=hd res=024 auto split group=ll
vpx=right vpy=top vpcx=60% vpcy=20%
scroll=none titlebar=none rules=none.

:link reftype=hd res=025 auto split group=12
vpx=right vpy=bottom vpcx=60% vpcy=80%
scroll=none titlebar=none rules=none.

:h2 res=023 hide nosearch noprint.Dummy
:lm margin=5.
:rm margin=2.
:p.
:font facename='Tms Rmn' size=24x12.
:color bc=green.:hp2.TREES LOVE IPF:ehp2.
:color bc=cyan.:hp3.TREES LOVE IPF:ehp3.
:color bc=green.:hp4.TREES LOVE IPF:ehp4.
:color bc=cyan.:hp5.TREES LOVE IPF:ehp5.
:color bc=green.:hp6.TREES LOVE IPF:ehp6.
:color bc=cyan.:hp7.TREES LOVE IPF:ehp7.
:color bc=green.:hp4.TREES LOVE IPF:ehp4.
:color bc=cyan.:hp3.TREES LOVE IPF:ehp3.
:color bc=green.:hp2.TREES LOVE IPF:ehp2.
:h2 res=024 hide nosearch noprint.Dummy
:p.
:h2 res=025 hide rules=none nosearch noprint.Dummy
:rm margin=3.
:font facename= 1 Helv 1 size=18x9.
:p.
The Information Presentation Facility (IPF) is a set of tools
that supports the design and development of an online help
facility that is accessed by users of your application.
:p.
IPF also supports the design and development of online
information that may be viewed independently of an application.
These files are compiled with the /INF parameter of the IPF
compiler, and they are viewed by entering the name of
the compiled file as a parameter of the VIEW program.

Figure 6-18. Tagging for split window primary window B.

6-20 Information Presentation Facility

Here is the compiled version of Primary Window B.

£1 • ::pl11 V/111dow I 'r1111<1r/ V/1ndow H am
Se~ces Qptlons tl_elp

TREES LOVE IPF
TREE$ LOVE IPF
TREES LOVE IPF
TREES LOVE IPF
TR£ES LOE!" /PF
TREES L<>VE IPF
TREES LOVE IPF
TREE$ LOVE IPF
TREES LOVE IPF

The Information Presentation Facility (IPF) is a set of
tools that supports the design and development of an
online help facility that is accessed by users of your
application.

IPF also supports the design and development of online
information that may be viewed independently of an
application. These files are compiled with the /INF
parameter of the IPF compiler. and they are viewed by
entering the name of the compiled file as a parameter
of VIEW.

Figure 6-19. Example of a split window without window controls. You cannot see the
boundaries of the three windows because the window controls were
eliminated. For a color representation of this screen, see the online /PF
Reference available with the Toolkit.

Push Buttons for Spllt Windows: Be careful when using heading tags to define a
control area for split windows. A control area cannot be defined in the secondary
window heading tag of a split window. You must define the control area (the
coverpage window) in the primary window heading tag. In the previous examples of
split windows, the push button feature of IPF was disabled (see "Disabling the
Display of Push Buttons" on page 3-11).

Chapter 6. Customizing Windows 6-21

Summary Tables of Attribute Values for Origin and Size
The following tables summarize the attribute values that define a window's origin and size. Values shown in
uppercase are keywords (words with special significance to IPF). Values shown in lowercase italics are to be
substituted with your own values. Values are stacked when more than one value can be used with the
attribute.

Heading (:hn) Tag

Attribute =Value Description

X=CENTER Specifies the location of the x-axis. The x-axis runs horizontally
LEFT from left to right.
RIGHT

Y=CENTER Specifies the location of the y-axis. The y-axis runs vertically from
TOP bottom to top.
BOTTOM

_L

WIDTH= an integer followed by Specifies the width (horizontal space) of a window.
the percent sign (%)

HEIGHT= an integer followed Specifies the height (vertical space) of a window.
by the percent sign (%)

Link (:link.) Tag

Attribute= Value Description

VPX=CENTER Specifies the location of the x-axis. The x-axis runs horizontally
LEFT from left to right. Overrides the x-axis attribute value specified by
RIGHT the heading tag.

VPY=CENTER Specifies the location of the y-axis. The y-axis runs vertically from
TOP bottom to top. Overrides the y-axis attribute value specified by the
BOTTOM heading tag.

VPCX =an integer followed by Specifies the width (horizontal space) of a window. Overrides the
the percent sign (%) width attribute value specified by the heading tag.

VPCY =an integer followed by Specifies the height (vertical space) of a window. Overrides the height
the percent sign (%) attribute value specified by the heading tag.

Point to Remember: Origin and size attributes in a link tag override the origin and size attributes in a
heading tag.

6-22 Information Presentation Facility

Summary Table for Heading Attributes

This table summarizes the heading attributes that support a multiple window format.

Heading (:hn) Tag

Attribute= Value Function

res= Define references to internal and external sources.
id=
name=
global
tutorial

x= Define the origin and size of a window in relation to its coverpage or
y= primary window.
width=
height=

titlebar= Define the control the user has over the window.
scroll=
rules=

viewport Manage the display of information in multiple windows.
group=
clear

hide Restrict user retrieval of information.
nosearch
noprint

toe= Change heading levels appearing in the Contents window.

Chapter 6. Customizing Windows 6-23

Summary Table for Link Attributes

This table summarizes the link attributes that support a multiple window format.

Link (:link.) Tag

Attribute= Value Function

reftype= Define references to internal and external sources.
res=
refid=
database=
object=
data=

vpx= Define the origin and size of a window in relation to its coverpage or
vpy= primary window.
vpcx=
vpcy=

titlebar= Define the control the user has over the window.
scroll=
rules=

viewport Manage the display of information in multiple windows.
group=
dependent
auto
split

Points to Remember: Link-tag attributes that have the same functions as those specified in a heading tag will
override the heading-tag attributes. Although link-tag attributes have different names for x- and
y-coordinates and window width and height, they provide the same functions.

6-24 Information Presentation Facility

Chapter 7. Compiling Source Files

This chapter explains how to prepare your source files so that they will be
recognized by the IPF compiler. This chapter also shows you how to enter the
compile command, how to interpret error messages, and how to view the compiled
document. A section on national language support is also provided.

Source File Requirements

©Copyright IBM Corp. 1992

Using a single source file, you can produce a successful display of information with a
limited number of tags. These tags are:

:userdoc.
:docprof.
:title.
:hl.
:p.
:euserdoc.

The :userdoe. tag is always the first item in your source file. It identifies the
beginning of an IPF file. This tag is a signal to the IPF compiler to begin
translating the tag language.

The :euserdoe. tag is required as the last line of the file to signal the end of the
tagged document.

Place the :docprof. tag at the beginning of your source file after the :userdoe. tag and
before any heading definitions. Use the function of the toe (table of contents)
attribute of the :doeprof. tag to control the heading levels displayed in the Content
window. For example, if you want only heading levels 1 and 2 to appear, the
tagging is:

:docprof toe = 12.

If no toe= value is specified, heading level 1 through 3 appear in the Contents
window.

Not to be confused with window titles, the text string specified with a :title. tag is
placed into the title bar of an online document. When the online document is
displayed, the title appears on the title line of the main window. The tagging looks
like this:

:title.Endangered Mammals

The maximum length of a title string specified with a :title. tag is 47 characters,
including spaces and blanks.

The title tag provides a name for the online document but is also used for titles of
Help windows. The title appears in the title bar of the main window. You usually
place the title tag after the :docprof. tag.

Every file must start with a :bl. tag. Heading level sequences must not skip a level
in the heading hierarchy. For example, you cannot have a heading level 1 tag (:bl.)
followed by a heading level 3 tag (:b3.).

7-1

Source File Limits

You must have at least one paragraph tag (:p.) and associated text to display a
window.

Figure 7-1 shows an IPF source file:

The source file contains a :userdoc.
tag, a :title. tag, a heading tag with a window
identifier, a :p .. tag, and the
:euserdoc. tag .

. *
:userdoc.
:title.Endangered Ma11111als
:hl res=001.The Manatee
*

:p.
The manatee has a broad flat tail and two flipper
like forelegs. There are no back legs.
The manatee's large upper lip is split in two and
can be used like fingers to place food into the
mouth. Bristly hair protrudes from its lips,
and almost buried in its hide are small eyes, with
which it can barely see.
*

:euserdoc.

Figure 7-1. Source file structure

• The maximum size of a line in an IPF source file is 255 characters. Each source
file cannot exceed 64KB of data.

• The maximum number of fonts in a source file is 16.

Naming Conventions

Naming Restriction

It is a good idea to give your source files an extension of IPF, so they can be
distinguished from your other files. For example:

MYHELP.IPF

The IPF compiler does not require an IPF file-name extension; however, if your file
has an IPF file-name extension, you will not have to type the extension at compile
time.

During the compilation process, IPF creates some files to hold data temporarily, and
erases the files when it no longer needs them. The names of these files are:

filename.mdf
filename.elf
0000
2222

where filename is the name of your source file. Do not give your source file an
MDF or CLF extension. Also, do not give your source file a name of 0000 or ·
2222.

7-2 Information Presentation Facility

Using a Base Source File
The IPF compiler can produce a single output document by processing multiple
input files through one base source file. This process is most often associated with
online documents. For example9 the online Information Presentation Facility
Reference has more than ten separate source files, but all the files were processed
through one base file.

Theim. (imbed) control word sends a signal to the compiler and tells it to process
each file in the sequence listed in the base file.

A portion of the base file IPFCBASE.IPF for the online Information Presentation
Facility Reference looks like this:

:userdoc •

• im ipfcchOl.ipf
.im ipfcch02.ipf
.im ipfcch03.ipf

The placement of an imbedded file determines the order of entries in the table of
contents.

lmbedded files cannot use the :userdoc. or :euserdoc. tags.

Note: When using a base source file to process multiple files, enter the base file
name as the filename parameter of the IPFC command.

Starting the IPF Compiler
You can start the IPF compiler and specify all input from the command line. An
example of the syntax follows:

IPFC filename {/INF] [/SJ [/X] [/W] [> messageoutputfi lename]

where:

filename

/INF

JS

Specifies the name of your IPF source file or base file.

If you do not give a file-name extension, the IPF compiler uses .IPF by default.
If your file has a file-name extension other than IPF, include that file-name
extension in the command line.

Compiles the source file as an online document.

If this parameter is not included, the default is to compile the source file as a
help library, whose extension is .HLP.

Suppresses the performance of the Search function. This parameter increases
compression of compiled data by about 10% to further reduce the storage it
requires.

Chapter 7. Compiling Source Files 7-3

/X
Generates and displays a cross-reference list.

/Wn
Generates and displays a list of error messages. Then indicates the level of
error messages you want to receive. Values you can specify for n are 1, 2, or 3.
For more information, see "Interpreting IPFC Error Messages" on page 7-5.

messageoutputfilename

Compiling Help Files

Specifies the name of the file where error and cross reference messages are sent.
If you do not specify this parameter, messages generated by /X and /Wn are
sent to the display screen.

To compile a source file that is intended as a help-text window, use the IPFC
command without the /INF option. For example:

IPFC myhelp.hlp

Compiling with International Language Considerations
The following parameters provide international language support:

/COVNTRY=nnn (nnn is the 3-digit country code)

/CODEPAGE=nnn (nnn is the 3-digit code page)

/LANGUAGE=xxx (xxx is a 3-letter identifier that indicates an international
languages file is to be used).

An example of the command-line syntax follows:

IPFC myfile.txt /INF /COUNTRY=fJ33 /CODEPAGE=437 /LANGUAGE=FRA

For more information, see "National Language Support" on page 7-7.

Viewing an Online Document
If you want to see your formatted online document, you can use the VIEW
command to display it.

An online document has an extension of INF. It can be viewed by entering its name
as a parameter to the VIEW command; for example:

VIEW myfile

You do not need to include the INF file extension.

Note: You cannot use VIEW to display help-text windows for application
programs.

Where IPFC Files are Stored
When you first install the Toolkit, the following environment variable is placed into
the CONFIG.SYS file:

IPFC = C:\ TOOLKT20\IPFC

7-4 Information Presentation Facility

The IPFC environment variable identifies the directory in which data files needed by
the IPF compiler are stored.

When you first install the system, the following environment variable is placed into
the CONFIG.SYS file:

HELP= C:\082\HELP

The HELP environment variable identifies the location of .HLP libraries.

BOOKSHELF= C:\082\BOOK

The BOOKSHELF environment variable identifies the location of online documents
and is used by VIEW.

Concatenating .INF Files
Concatenation of .INF files is useful when you have a large amount of information
that cannot be compiled as one file that fits on a diskette. If you want to
concatenate files, you must use the res= attribute for window identifiers.

After you have created your .INF files, use the SET command to set an environment
variable equal to a string that consists of the .INF file names, for example:

SET PROGREF=PRINTRO.INF+PRCP.INF+PRWIN.INF+PRDATA.INF

When you specify the environment value as a parameter to the VIEW program,
VIEW displays the online information. Headings from the different files are
displayed in the contents window in the order the files are concatenated for the
environment variable.

Interpreting IPFC Error Messages
The /Wn parameter of the IPFC command determines the levels of error messages
that will be displayed. Following are the values that you can specify for n:

Value Meaning

1 Returns only warning level 1 messages. Warning level 1 messages are the
most severe.

2 Returns warning level 1 and 2 messages.

3 Returns all three warning levels of messages. This is the default. Warning
level 3 messages are the least severe.

When IPF compiles your file, it generates and displays the error messages. If no
errors are found, IPF tells you that compiling has been completed and no errors
were found.

You may prefer to redirect error messages from the screen to an error file. You
could enter the IPFC command like this:

IPFC myhelp /w3 > myhelp.err

If you have also requested that a cross-reference list be created by specifying the /X
parameter, it will be included in the MYHELP.ERR file.

Chapter 7. Compiling Source Files 7-S

For a list of error messages that the IPF compiler returns, see Appendix A,
"Compiler Error Messages."

Differences between .HLP and .INF Files

Help Libraries Online Documents

IPFC Command IPFC filename IPFC filename
Syntax: /INF

Compiled File .HLP .INF
Extensions:

Environment BOOKSHELF=
Variables Used by defines the location
the VIEW Program: of .INF files

Environment HELP= defines
Variables Used by the location of
IPF for Help .HLP libraries.
Windows:

Cause of Interface An application Entering the file
Display: user's request for name as a

help. parameter to the
VIEW utility.

Initial Size of Main 35% of screen 85% of screen
Window: (default) (default)

Initial Contents of Response to help Contents window
Main Window: request (default)

Main Window Title: Defined by the Defined by the
programmer in the :title. tag, which is
HELPINIT placed on the line
structure. following the

:userdoc. tag.

External Links: (See .HLP files can link .INF files can link
global attribute of to other .HLP files only to other .INF
heading tag and and also to .INF files.
database attribute of files.
:link. tag.)

To View SpeCify a string of Set an environment
Concatenated Files: .HLP files in the variable equal to a

HELPINIT string of .INF file
structure. names.

Note: Defaults may be overridden by objects that are displayed in application-controlled windows.

7-6 Information Presentation Facility

National Language Support
The following parameters provide national language support (NLS):

/COUNTRY
/CODEPAGE
/LANGUAGE

If you do not specify these parameters, the default for /COUNTRY and
/CODEPAGE are the values specified in your CONFIG.SYS file. If you do not
request that an NLS file be used, the titles for the tags listed in the parameter
description are shown in United States English.

Country Code Pages

COUNTRY

Australia

Belgium

Canadian English

Canadian French

Chinese

Denmark

Finland

France

Germany

Italy

Japan

Korea

Latin America

Netherlands

Norway

Portugal

Spain

Sweden

Switzerland

United Kingdom

United States

The following table lists the 3-digit country code for the /COUNTRY parameter of
the !PFC command. The third column lists the numeric identifiers of code pages
supported:

COUNTRY CODE CODE PAGES

061 437, 850

032 437, 850

001 437, 850

002 863, 850

088 938, 437' 850

045 865, 850

358 437, 850

033 437, 850

049 437, 850

039 437, 850

081 932,437, 850

082 934,437, 850

003 437, 850

031 437, 850

047 865, 850

351 860, 850

034 437, 850

046 437, 850

041 437, 850

044 437, 850

001 437, 850

The following table lists the 3-letter identifier for the /LANGUAGE parameter of the !PFC command:

Chapter 7. Compiling Source Files 7-7

ID LANGUAGE NLSFILE APSFILE

CHT Chinese IPFCHT.NLS APSYM938.APS

DAN Danish IPFDAN.NLS APSYMBOL.APS

DEU German IPFDEU.NLS APSYMBOL.APS

ENG English UK IPFENG.NLS APSYMBOL.APS

ENU English US IPFENU.NLS APSYMBOL.APS

ESP Spanish IPFESP.NLS APSYMBOL.APS

FIN Finnish IPFFIN.NLS APSYMBOL.APS

FRA French IPFFRA.NLS APSYMBOL.APS

FRC Canadian French IPFFRC.NLS APSYMBOL.APS

ITA Italian IPFITA.NLS APSYMBOL.APS

JPN Japanese IPFJPN.NLS APSYM932.APS

KOR Korean IPFKOR.NLS APSYM934.APS

NLD Dutch IPFNLD.NLS APSYMBOL.APS

NOR Norwegian IPFNOR.NLS APSYMBOL.APS

PTG Portuguese IPFPTG.NLS APSYMBOL.APS

SVE Swedish IPFSVE.NLS APSYMBOL.APS

UND User defined IPFUND.NLS APSYMBOL.APS

Note: You must specify the appropriate symbols file, otherwise the system defaults to APSYMBOL.APS.
However, double-byte character set (DBCS) countries (Japan, Korea, and China), MUST copy the
appropriate symbol file to APSYMBOL.APS. The IPF compiler will not recognize a file by any other
name. For a list of symbols, see Chapter 14, "Symbols."

7-8 Information Presentation Facility

Part 2: Programmer's Guide

© Copyright IBM Corp. 1992

Information Presentation Facility

Chapter 8. Enabling Help for Applications

While running an application the user sometimes requires help. For example, the
user may need assistance in making a choice, recalling the name of an application
command or the use of a function key, or locating information.

Using IPF, you can develop a user interface that provides general help for
application windows, and contextual help for fields within windows.

Implementing the IPF user interface when creating helps for an application requires
two different development efforts:

• Developing the programming code that communicates with IPF and the
Presentation Manager to display help windows.

• Developing a library of help information that IPF refers to in response to a user
request.

This section will concentrate on the first development effort: writing the
programming code that enables communication between IPF and the Presentation
Manager.

Developing the Application Code
Use the following steps to develop the application code that adds help to your
application.

1. Set up the help table and help subtable, and include the help constants defined
in PMHELP.H.

2. Initialize the HELPINIT structure with a call to DosLoadModule.

3. Create a help instance.

4. Associate the help instance with the application window chain.

5. Respond to messages for menu bar choices.

6. End the help instance.

The following sections describe how to implement each of these steps. Some of the
steps are illustrated with example code from the JIGSAW sample program provided
in the \TOOLKT20\C\SAMPLES\JIGSAW subdirectory.

Setting Up the IPF Help Tables

© Copyright IBM Corp. 1992

Two table structures in application memory or in resource files (.RC file-name
extension), identify window resources in the IPF library. The help table associates
each application window with its corresponding help subtable and the window
identifier of its extended help window. The help subtable associates each entry field,
menu item and push button within an application window with the window identifier
(ID) of its help window. The address of the help table is passed to the application
during initialization of the IPF initializing structure (HELPINIT).

When the user requests help on a field, menu bar, or push button in the application
window, IPF uses the help subtable associated with the field to find the window ID
of the contextual help window for the field. The help subtable also can store
optional entries relating to application-specific information.

8-1

The maximum size of the help table is 64KB. The number of help subtables is
limited to 16,000.

Help table and help subtable structures are contained in the PMHELP.H in the
\TOOLKT20\C\OS2H subdirectory.

IPF supports two methods of defining help tables and help subtables. They can be
allocated in memory, or they can be defined as resources. In either case, the
information passed to IPF is identical.

Defining Help Tables in Memory
By defining help tables and subtables in memory, you can dynamically change a
single entry in the help table. You can add a new window ID to be associated with
a field, or add fields that are to be associated with existing windows.

After the help table structure is initialized, the application can pass IPF the address
in memory of the new help table, either by sending the
HM_ CREATE_HELP _TABLE message from its window procedure, or by calling
WinCreateHelpTable.

When defining help tables in memory, the data structures in PMHELP.H are used.
The help table contains the structure for each application window. This structure
holds the following information:

• Application window ID
• Address of the window's subtable
• Window ID of the window's extended help window.

These entries are integers. The last entry in the list contains a NULL for each entry
type, to indicate the end of the list. The following is an example of a help table for
an application.

HELPSUBTABLE

HELPTABLE
{

};

APP _WIND_l,
APP _WIND_2,
APP _WIND_3,
APP _WIND_ 4,
APP _WIND_5,
e,

tablel, table2, table3,
table4, table5;

helpTableEntry [] =

&tablel,
&table2,
&table3,
&table4,
&tables,
NULL,

idExtHelpl,
idExtHelp2,
idExtHelp3,
idExtHelp4,
idExtHelp5,
NULL

The help subtable contains the structure defined in the PMHELP .H file for each
application window. This structure holds the following information for each field in
the application window:

• Field ID from which user requests help
• Window ID of the contextual help window associated with the field
• Optional, application-specific integers.

8-2 Information Presentation Facility

The last entry in the structure contains the word length for each field entry. The
minimum number of words is two, which is the default. The following is an example
of a help subtable for an application window that has six fields.

HELPSUBTABLE
{

HelpSubTable [] =

};

2,
FIELD_ID_l,
FIELD_ID_2,
FIELD_ID_3,
FIELD_ID_ 4,
FIELD_ID_5,
FIELD_ID_6,
e,

IDRES_HELPl,
IDRES_HELP2,
IDRES_HELP3,
IDRES_HELP4,
IDRES_HELP5,
IDRES_HELP6,
e

Defining Help Tables as Resources
If help tables are defined as resources, they can be bound to the application's
executable file, or they can reside in a dynamic link library (DLL).

If help tables are defined as resources in a dynamic link library, the application must
call DosLoadModule to load the DLL before it calls WinCreateHelplnstance. When
the application calls WinCreateHelplnstance, it passes the handle to the DLL and
the resource ID of the help table in the HELPINIT structure.

The application can load a new help table residing in the DLL by either sending the
HM_LOAD_HELP_TABLE message from its window procedure, or by calling
WinLoadHelpTable. The application passes the handle to the DLL and the resource
ID of the new help table.

A HELPT ABLE resource contains a HELPITEM entry for each application
window, dialog, and message box for which help is provided.

Each entry of a HELPT ABLE resource contains:

• HELPITEM keyword
• Application window ID
• ID of the HELPSUBT ABLE resource
• Window ID of the extended help window.

A HELPSUBT ABLE resource contains an entry for each item that can be selected
in an application window. Each of these items is assumed to be a child window of
the application window identified in the HELPT ABLE resource. The
HELPSUBTABLE should contain a single SUBITEMSIZE and a HELPSUBITEM
for each control, child window, and menu item.

Each entry of a HELPSUBTABLE resource contains:

• HELPSUBITEM keyword
• Field ID
• Window ID of the field's help window (corresponds to the resource number

specified in the heading tag of the help-text window)
• Optional, application-defined integers.

Chapter 8. Enabling Help for Applications 8-3

The integer ID of the field can be a control, menu item, or message box ID. The ID
specified must be unique within the table. An ID of hex FFFF is reserved for use by
IPF.

The optional integers value allows the writer of the resource script file to append
additional integers to the end of each HELPSUBITEM for application-specific use.

The SUBITEMSIZE keyword is used to identify the size in words of each
HELPSUBITEM. All entries must be the same length. If this value is specified, it
must be greater than or equal to 2. If this value is not specified, it defaults to 2.

All referenced HELPSUBT ABLE resources must reside in the same .RES file as the
HELPTABLE resource.

Following is an example of .RC source file for defining a HELPT ABLE and its
related HELPSUBT ABLE resources.

HELPTABLE TABLE_l
BEGIN
HELPITEM parentwindowl, SUBTABLE_l,

extendedhelppanell
HELPITEM parentwindow2, SUBTABLE_2,

extendedhelppanel2
END

HELPSUBTABLE SUBTABLE 1
[SUBITEMSIZE subitemsizel]
BEGIN

HELPSUBITEM FIELD IDl, helppanell [,
integerl, ••• n]-

HELPSUBITEM FIELD ID2, helppanel2 [,
integerl, •.. n]-

END

HELPSUBTABLE SUBTABLE 2
[SUBITEMSIZE subitemsize2]
BEGIN

HELPSUBITEM FIELD ID3, helppanel3 [,
integerl, ••• n]-

HELPSUBITEM FIELD ID4, helppanel4 [,
integerl, ••• n]-

END

Initializing the HELPINIT Structure
Before you call WinCreateHelpinstance, you must allocate memory for and initialize
the HELPINIT structure. This structure defines values that IPF needs to create the
help instance. Some of the values can be changed by your application after
initialization.

The HELPINIT structure and the help table structures referred to by IPF during
help processing are contained in the PMHELP.H file. The PMHELP.H file also
contains the error codes returned in the event of an unsuccessful call. You include
this file in your source code by using the INCL_ WINHELP define statement. The
following shows the HELPINIT structure.

8-4 Information Presentation Facility

typedef struct _HELPINIT /* hinit */
{

ULONG
ULONG
PSZ
PHELPTABLE
HMODULE
HMODULE
ULONG
ULONG
PSZ
ULONG
PSZ
} HELPINIT;

cb;
ulReturnCode;
pszTutorialName;
phtHelpTable;
hmodHelpTableModule;
hmodAccelActionBarModule;
idAccelTable;
idActionBar;
pszHelpWindowTitle;
fShowPanelld;
pszHelplibraryName;

Following are descriptions of the HELPINIT structure fields.

Field Name

cb

ulReturnCode

pszTutorialName

Description

The length of the initialization structure. This value can be
use to identify the version of IPF being used.

The IPF return code

A pointer to a tutorial name, if one exists. If this value is
NULL, either the application help interface does not include
a tutorial, or the tutorial is referenced from a help window.
If this value in not NULL, IPF provides a Tutorial choice in
the help pull-down.

If the user selects the Tutorial choice in the pull-down, IPF
sends the HM_TUTORIAL message to the application so
that it can start the tutorial.

phtHelpTable A pointer to the help table.

hmodHelpTableModule
The name of the resource file that indexes the dynamic link
library that contains the help table and its corresponding
subtables. If the help table is not being accessed through a
dynamic link library, this value is 0.

hmodAccelActionBarModule
The name of the dynamic link library that contains the
modified menu bar. If you do not have a modified menu bar,
this value is 0.

idAccelTable The name of the accelerator table if you are using a modified
menu bar; otherwise, this value is 0.

idActionBar The identity of the menu bar (action bar) template. If you
are not modifying the menu bar, this value is 0.

pszHelpWindowTitle A pointer to the name of the title for the main help window.
This name can be changed after initialization by sending the
message HM_SET_HELP _WINDOW _TITLE.

t'ShowPanelld A flag used to append the window ID to the beginning of the
help window title in the title bar of the help window. If this
flag is set to CMIC_SHOW _PANEL_ID, the window IDs are
displayed. If this flag is set to CMIC_HIDE_PANEL_ID or
to 0, the window IDs are not displayed.

Chapter 8. Enabling Help for Applications 8-5

This flag is useful during the development stages of the help
interface.

After initialization, this flag can be toggled with the
HM_SET_SHOW _PANEL_ID message.

pszHelpLibraryName The help library names of the .HLP files containing the help
windows. These .HLP files are created by the IPF compiler.
When IPF needs to search for a help window, it looks for
these library names in the path set by the HELP environment
variable. If IPF cannot find a library name in this path, it
then searches the current directory.

After initialization, help library names can be specified with
the HM_SET_HELP_LIBRARY_NAME message. If
multiple libraries are specified, library names must be
separated by a blank space.

The following shows how the help facility for JIGSAW is initialized. Notice that
hmodAccelActionBarModule, idAccelTable, and idActionBar have values set to O;
this is because JIGSAW uses a standard menu bar.

VOID Helpinit (VOID)
{

HELPINIT hi ni;

/* if we return because of an error, Help will be disabled */
fHelpEnabled = FALSE;

/* initialize help init structure */
hini.cb = sizeof (HELPINIT)
hini.ulReturnCode = 0L;

hini.pszTutorialName = (PSZ)NULL /*if tutorial added, add name here*/

hini.phtHelpTable = (PHELPTABLE)MAKELONG(JIGSAW_HELP_TABLE, OxFFFF);
hini.hmodHelpTableModule = (HMODULE)O;
hini.hmodAccelActionBarModule = (HMODULE)O;
hini.idAccelTable = O;
hini.idActionBar = O;

if (!WinloadString (habMain,
(HMODULE)O,
IDS_HELPWINDOWTITLE,
HELPLIBRARYNAMELEN,
(PSZ)szWindowTitle))

8-6 Information Presentation Facility

{
MessageBox (habMain, IDS_CANNOTLOADSTRING, MB_OK I MB_ERROR, FALSE);
return;

}

hini.pszHelpWindowTitle = (PSZ)szWindowTitle;

/* if debugging, show panel ids; else, don•t */
#ifdef DEBUG

hini.fShowPanelld = CMIC_SHOW_PANEL_ID;
#else

hini.fShowPanelld = CMIC_HIDE_PANEL_ID;
#endif

if (!WinLoadString (habMain,
(HMODULE)0,
IDS_HELPLIBRARYNAME,
HELPLIBRARYNAMELEN,
(PSZ)szLibName))

{
MessageBox (habMain, IDS_CANNOTLOADSTRING, MB_OK I MB_ERROR, FALSE);
return;
}

hini.pszHelpLibraryName = (PSZ)szLibName;

Creating the Help Instance
The WinCreateHelplnstance call passes the HELPINIT structure defined in the
PMHELP.H include file to the Presentation Manager. WinCreateHelplnstance
returns a handle to the help instance, which you must store in a HWND variable for
use with the rest of the application programming interface (API) function calls
associated with IPF.

IPF responds to the WinCreateHelplnstance call by installing its help hook and
initializing for help processing.

The following shows how the help instance is created for JIGSAW.

/* Creating help instance */
hwndHelplnstance = WinCreateHelplnstance (habMain, &hini);

if (!hwndHelplnstance I I hini.ulReturnCode)
{
MessageBox (hwndFrame,

IDS HELPLOADERROR,
MB OK I MB ERROR,
TRUE); -

return;
}

Chapter 8. Enabling Help for Applications 8-7

Associating the Instance with the Window Chain
After an application creates a help instance, it must associate the instance with the
application window chain by calling WinAssociateHelplnstance. IPF uses the active
window handle passed by this call to index into the help table to find the help
window that should be displayed for the application window.

An IPF instance can be associated with any application window that has a frame.
Once the association of an IPF instance with the application window chain is made,
help can be requested for any application window in the chain.

The following shows how the help instance is associated with the application window
chain for JIGSAW.

/* associate the help instance with the main frame */
if (!WinAssociateHelplnstance (hwndHelplnstance, hwndFrame))
{
MessageBox (hwndFrame,

IDS_HELPLOADERROR,
MB OK I MB ERROR,
TRUE); -

return;
}

/* IPF is successfully initialized; set flag to TRUE */
fHelpEnabled = TRUE;

Ending the Help Instance
To end the current help instance, the application calls WinDestroyHelplnstance,
passing the handle of the help instance that is to be ended.

The parameter hwndHelplnstance is the handle to the IPF instance returned from the
WinCreateHelplnstance call.

The following shows how the help instance is terminated by JIGSAW.

VOID DestroyHelpinstance (VOID)
{

}

if (hwndHelpinstance)
{

WinDestroyHelplnstance (hwndHelplnstance);
}

8-8 Information Presentation Facility

Responding to Messages for Menu Bar Choices
IPF communicates with the active window. This communication is accomplished
with messages. The application may need to do some of its own processing in
response to these messages.

Processing "Using help" Requests
When the user selects "Using help" from the help pull-down menu, a
WM_ COMMAND is sent to the application's window procedure.

If the application has created its own 'Using help' window, it responds by sending
the HM_REPLACE_USING_HELP message with the help-window ID. If the
application chooses to use the "Using help" window provided by IPF, it responds by
sending the HM_DISPLA Y _PANEL with NULL in both parameters.

Current CUA guidelines recommend applications use "Using help;" however, IPF
continues to support the "Help for help" window.

Processing a "Keys Help" Request
When the user selects 'Keys help' from the help pull-down, an HM_KEYS_HELP
message is sent by the application to IPF. In response, IPF sends an
HM_QUERY_KEYS_HELP message to the application. The application returns
the window ID of the keys help window.

Processing Help Requests for a Child Window
In the Presentation Manager, parent and child windows are active at the same time.
Therefore, when a help instance is associated with a window, its descendants are
included in the association. However, only the parent window is the active help
window.

Note: Do not confuse child windows with dialog, message boxes, and other
windows which the application may own but are actually children of the
desktop.

For IPF to process help requests for a child window, an application must send IPF
HM_SET_ACTIVE_WINDOW messages to set the active help window. Until this
happens, IPF continues to satisfy help requests for the child window from the help
subtable for the parent window.

The HM_SET_ACTIVE_ WINDOW message should be sent by ALL windows in
response to the WM_ACTIVATE and WM_INITMENU messages as shown in the
following example.

Chapter 8. Enabling Help for Applications 8-9

switch(usMsg)
{

case WM ACTIVATE:
if(SHORTlFROMMP(mpl))
{

}

/*
* Set active help window to this window's parent when
* activated
*/

WinSendMsg(WinQueryHelpinstance(hWnd),
HM SET ACTIVE WINDOW,
WinQueryWindo;(hWnd, QW_PARENT),
WinQueryWindow(hWnd, QW_PARENT));

else
{

/*
* clear active help window when this window is
* deactivated - necessary for message box help, etc.
* to work properly.
*/

WinSendMsg(WinQueryHelpinstance(hWnd),
HM_SET_ACTIVE_WINDOW,
NULL,
NULL);

}
break;

case WM INITMENU:

}

/* -
* Set active window to this window's parent here so that
* the menu id will be found in the proper subtable.
* Activation and deactivation of the help window will
* take care of setting the help window back to the
* active window.
*/

WinSendMsg(WinQueryHelpinstance(hWnd),

break;

HM SET ACTIVE WINDOW,
WinQueryWindo;(hWnd, QW PARENT),
WinQueryWindow(hWnd, QW=PARENT));

8-10 Information Presentation Facility

When No Help Is Available
A user may request help by pressing Fl when the cursor is positioned on an item for
which no field-level help is available. In such a case, IPF sends the
HM_HELPSUBITEM_NOT _FOUND message to the application. To display the
extended help window, the application then can either return FALSE or ignore the
message. If the application returns TRUE, there is no response to the user request.

Help Window Resources

Help Pull-Down

You can define the following window resources for the help interface:

• Help pull-down

• Help push button

• Command entry field

• Customized menu bar.

CUA guidelines recommend that all application windows with menu bars include a
help pull-down menu. The help application menu bar choice and corresponding
pull-down menu is defined in your resource file. The following example shows how
to define the help pulldown.

MENU IDR_MAIN PRELOAD
BEGIN

END

SUBMENU 11 -File 11
,

BEGIN
MENUITEM .. -open ••• 11

,

END

SUBMENU .. -options",
BEGIN

SUBMENU "Size",
BEGIN

END

MENUITEM "Small",
MENUITEM "Medium",
MENUITEM "Large",
MENUITEM "Full Size",

MENUITEM 11 -Jumble! 11
,

END

SUBMENU 11 -Help",
BEGIN

MENUITEM "Help -index",
MENUITEM "-General help",
MENUITEM n-using help",
MENU ITEM SEPARATOR
MENUITEM "-Product infonnation",

END

IDM_FILE

IDM_LOAD

IDM_OPTIONS

IDM_SIZE_MENU

IDM_SIZE_SMALL, e, MIS_TEXT
IDM_SIZE_MEDIUM, e, MIS_TEXT
IDM_SIZE_LARGE, e, MIS_TEXT
IDM_SIZE_FULL, e, MIA_CHECKED

IDM_JUMBLE

IDM_HELP, MIS_TEXT

IDM_HELPINDEX, MIS_TEXT
IDM_HELPEXTENDED, MIS_TEXT
IDM_HELPHELPFORHELP, MIS_TEXT

IDM_HELPABOUT, MIS_ TEXT

Chapter 8. Enabling Help for Applications 8-11

Help Push Button
If your application has a dialog or message area, you may want to include the Help

push button in the bottom area of the secondary application window (dialog box).
To define the Help push button, use the Presentation Manager button style
BS_HELP and BS_NOPOINTERFOCUS.

The BS_HELP style causes the Presentation Manager to call IPF when the user

selects this Help push button. The BS_NOPOINTERFOCUS style enables the
Presentation Manager to determine the field for which the user requested help.

Command Entry Field
An entry field is a control window that enables users to enter text. A command
entry field is used for typing commands, and may be programmed to accept entries

recognized by the application.

For example, a command entry field might be used in an interpreter with a
Presentation Manager interface. The field would accept a request from the user and
execute it. Similarly, a command entry field might be used in an editor in a
"command mode" to accept advanced instructions not associated with any editing

keys. Any time the user has a limited number of correct responses, a command
entry field may be appropriate.

Help windows for application commands can be associated with a command entry

field by imbedding the index command tag (:icmd.) with a command name in the

window that describes the command.

When the cursor is positioned in the associated entry field and the user presses Fl or

selects the Help push button, titles of windows that contain these tags are displayed
in alphabetic order in a list box window.

For a complete description on entry fields, see the Programming Guide, Volume 2.

A Customized Menu Bar
A Help menu bar template is shipped with the Toolkit. The template is in the
HMTAILOR.RC file. Included in the template is the Help menu pull-down. You
can customize the menu bar by adding pull-downs and choices to the Help menu bar

template.

When a menu bar or pull-down choice you have added is selected by the application
user, IPF sends the HM_ACTION_BAR_COMMAND message to the currently

active application window. The low-order word of paraml contains the command

value of the selected item. The command values of the actions added by the
application must be between hex 7FOO and hex 7FFF for its commands.

The accelerator table maps function keys to commands on help windows. This table

is also contained in the HMTAILOR.RC file. If you add a choice to the menu bar

that maps to a key on the keyboard, you must also add an entry to the accelerator

table for that choice. IPF functions depend on the entries that already exist in the

shipped accelerator table. They must not be altered. The command value specified

in the accelerator table entry must be the same command value that was specified for

the associated action in the menu bar template.

If the HMT AILOR.RC file is changed, you must compile it using the resource
compiler and attach it to the executable file. If the executable file is a DLL, you

8-12 Information Presentation Facility

must call DosLoadModule to load it before calling WinCreateHelplnstance. Identify
the handle to IPF in the hmodAcce/ActionBarModule field in the initialization
structure. When this field is 0, IPF uses the default menu bar.

The HMTAILOR.RC file includes the HMTAILOR.H file.

Note: When modifying the menu bar, define IDM_HM_MENU and
IDD_COVERPAGE_HM_ACCEL in your help header (.H) file. Also, add
the IDs in the idActionBar and idAccelTable fields in the HELPINIT
structure.

Chapter 8. Enabling Help for Applications 8-13

8-14 Information Presentation Facility

Chapter 9. Expanding the Scope of IPF

Rather than have IPF display information that has been interpreted by the IPF
compiler, you can expand IPF by having the application call a routine in a dynamic
link library (DLL). Help information can be customized by hooking a piece of
Presentation Manager code into the IPF help facility. This means that help
information can include function simulation, user interaction, animation, and audio
and video presentations.

An IPF window can be controlled by IPF or by an IPF communication object
written by a programmer. The IPF communication object determines what is
displayed in an application-controlled window. However, the use of IPF
communication objects is not limited to creating application-controlled windows; it
also can change the function and size of the IPF coverpage window (see "The
Coverpage Window" on page 9-3).

IPF communication objects also can request IPF to display the Table of Contents,
the Help Index, the Master Help Index, or the list of Viewed Pages. IPF
communication code can subclass any window by knowing its handle and installing a
help hook.

IPF also provides dynamic data formatting routines. This function enables the
application to establish a dialog with the user by formatting text responses in a
window.

Application-Controlled Windows

© Copyright IBM Corp. 1992

IPF handles the formatting and display of text and graphic information within its
windows. IP F-control/ed windows are defined in the tagged source file with a
heading tag or :link .. These windows are !PF-controlled because IPF provides the
window procedures that control them. The content and presentation of information
in an !PF-controlled window is limited by the functions of a standard OS/2 window.

To create !PF-controlled windows, an author requires only tagging skills. However,
to create application-controlled windows, an author requires both tagging and
programming skills.

Application-controlled windows are defined in the tagged source file with the
application-controlled window tag (:acviewport.). With this tag, a window is
controlled by a program that has been written and compiled into the form of a
dynamic link library (DLL). When an IPF window is displayed at execution time
and :acviewport. is encountered, IPF passes control to the entry point in the DLL
specified by the objectname = ' ' attribute of :acviewport.. At this point, the DLL
takes control and executes the instructions specified in the source file. When the call
returns to IPF, IPF sizes and positions the window on the screen as defined in the
heading tag or :link. (see Chapter 6, "Customizing Windows").

Figure 9-1 shows the tagging to produce a split window. In this example, the
contents of the left window are !PF-controlled. The contents of the right window
are defined and controlled by the IPF communication object IPFMain which resides
in IPF.DLL.

9-1

:userdoc.
:t;tle.Infonnation Presentation Facility
:docprof ctrlarea=none.
:hl res=816 scroll=none clear.Using a Mouse
.*
:l;nk reftype=hd res=017 auto spl;t

vpx=left vpy=top vpcx=50% vpcy=108%
rules=border scroll=none t;tlebar=none •

. *
:acv;ewport dll= 1 ipf 1

. *

objectname= 1 IPFMain 1 object;d=l
vpx=r;ght vpy=top vpcx=50% vpcy=100% •

:h2 res=017.Using a Mouse
.*
:p.You move the pointer (usually an arrow) so that it
points at the objects and actions you want to select.
:p.If you run out of room to slide the mouse, lift it up, put it
back down, and slide it again.
:p.The left-hand mouse button (or mouse button 1) is
usually used to select objects on the screen.
:p.The right-hand mouse button (or mouse button 2) is
usually used to :hpl.drag:ehpl. or move objects around the screen.
:euserdoc.

Figure 9-1. Tagging for an IPF- and an application-controlled window.

Figure 9-2 shows the compiled version of the tagging shown in Figure 9-1.

You move the pointer [usually an arrowI so
that h points at the objects and actions you
want to select.

ff you run out of room to slide the mouse.
lift h up. put h back down. and slide h
again.

The left.hand mouse button (or mouse
button 1) Is usually used to select objects
on the screen.

The rlghHland mouse button [or mouse
button 2) Is usually used to t/nJg or move
objects around the screen.

Figure 9-2. The left window is !PF-controlled. The right window displays an animated
mouse whose activity is controlled by a routine in a DLL.

In the previous example, IPF processes :acviewport. as follows:

1. It loads IPF.DLL and calls the procedure IPFMain.

2. IPFMain creates a window and registers it with IPF as an object communication
window.

9-2 Information Presentation Facility

3. When the call to IPFMain returns to IPF, IPF gives instructions to display the

animated mouse.

IPFMain, IPF.DLL, and the bit maps used for the animated mouse are provided in

the IPF sample program available with the Toolkit.

Communication Objects
The flexibility of IPF communication objects makes it a powerful tool for

customizing IPF windows. However, before using a communication object, you

must understand:

• The components of an IPF coverpage window.
• Communication with IPF.

The Coverpage Window
When an application requests that IPF create a help instance, IPF creates a

coverpage frame window. The coverpage window is the window in which the

application's help information is displayed. The coverpage window title is the help

window title defined in the HELPINIT structure:

}
hini.pszHelpWindowTitle = (PSZ)szWindowTitle;

The IPF text window is a child of the coverpage window. When IPF receives a

request to display an application-controlled window, it displays the

application-controlled window as a child of the coverpage window. Figure 9-3

shows a coverpage window and its child window.

a D

IPF text goes here.

-------- Coverpage window

Child of coverpage window-----'

Figure 9-3. A coverpage window and a child window

Changing the Size of the Coverpage Window
IPF communication objects can change the look and function of the coverpage and

its child windows. A communication object can change the size of the coverpage

and the coverpage menu. This is accomplished by including the dll = ' ' and

objectname = ' ' attributes in the :docprof. tag at the beginning of the tagged source

file for the help information. When IPF processes :docprof., the specified DLL is

loaded and the specified communication object is called.

Chapter 9. Expanding the Scope of IPF 9-3

Communication with IPF
Information is passed between IPF and a communication object in two ways:

• Through the parameters to the IPF communication object
• Through messages between the IPF communication object or any windows it

creates, and the IPF windows for which the communication object has access.

Communication Object Parameters: When IPF calls an IPF communication object,
it passes two parameters to the communication object: a pointer to an ACVP data
structure and a pointer to the object information specified by the objectinfo =' '
attribute of :acviewport •.

The ACVP data structure is defined in the PMHELP.H header file in the Toolkit
and includes the following elements:

ULONG cb;
HAB hAB;
HMQ hmq;
ULONG ObjectID;

HWND hWndParent;
HWND hWndOwner;
HWND hWndACVP;

/* length of data structure
/* anchor block handle
/* handle to message queue
/* ObjectID attribute as specified in
/* acviewport tag
/* handle to acviewport parent window
/* handle to acviewport owner window
/* handle to acviewport

*/
*/
*/

*/
*/
*/
*/

IPF supplies all but the last piece of information in this data structure for the
communication object. If the communication object creates an
application-controlled window, it must place the handle to that window in the last
element of the data structure before returning to IPF. IPF uses the handle to size
and position the window.

The following example contains an IPF communication object template that shows
how an IPF communication object returns the window handle to IPF.

#define INCL_WIN
#include <os2.h>

MRESULT EXPENTRY MyObject(PACVP pACVP, PCH Objectlnfo)
{

HWND hwndMyACVP; /*handle to the application-controlled*/
/* window that this procedure creates */

/*create the application-controlled */
/* window */

pACVP->hWndACVP=hwndMyACVP; /* return the application-controlled */
/* window handle to IPF through the */
/* ACVP data structure */

return 0; /* return to I PF * /
}

IPF passes the value of objectid =' ' attribute of :acviewport. to the communication
object through the ACVP data structure. When an IPF communication object

9-4 Information Presentation Facility

supports multiple :acviewport. tags within a document, the objectid =' ' attribute is
used to indicate which function the communication object executes when called as a
result of a specific :acviewport. tag.

Messages between IPF and the Communication Object
IPF and its communication object also communicate through window messages.
IPF communication objects, and windows that they create, can send messages to IPF
and IPF windows for which the communication object can get a handle. Similarly,
IPF can send messages to any window that the communication object creates.

Any message that an application can send to IPF also can be sent by IPF
communication objects. The OS/2 2.0 operating system broadens the list of
messages to include:

HM_ CONTROL
This message is sent to the application or the communication object by
IPF prior to the addition of a push button in the control area of a
window.

HM_INFORM
This message is sent by IPF and notifies the application that a user has
selected a hypertext field that was specified with the reftype =inform
attribute of the :link. tag.

HM_INV ALIDATE_DDF _DATA
This message is sent by the application and informs IPF that previous
dynamic data formatting (DDF) information is no longer valid.

HM_NOTIFY
This message is sent by IPF and notifies the application or
communication object that an event has occurred that the application
may be interested in controlling.

HM_ QUERY
This message is sent by the application and notifies IPF that the
application requires !PF-specific information.

HM_QUERY_DDF_DATA
This message is sent by IPF and notifies the communication object
window that IPF has encountered the dynamic data formatting tag
(:ddf.).

HM_SET_ COVERPAGE_SIZE
This message is sent by the application and informs IPF to set the size of
the coverpage window.

HM_SET_OBJCOM_ WINDOW
This message is sent by the application and informs IPF to identify the
communication object to which the HM_INFORM and
HM_QUERY_DDF_DATA messages are sent.

HM_SET_USERDATA
This message is sent by the application and informs IPF to store data in
the IPF data area.

HM_UPDATE_OBJCOM_ WINDOW _CHAIN
This message is sent to the currently active communication object by the
communication object who wants to withdraw from the communication
chain.

Chapter 9. Expanding the Scope of IPF 9-5

For a complete list, see Chapter 12, "Help Manager Messages."

The Communication Chain
When creating a communication object, always use
HM_ UPDATE_ OBJCOM_ WINDOW_ CHAIN. This ensures that your application
interacts well with other applications.

Communication objects are "inserted" in a daisy chain when they are created; upon
termination, IPF sends the HM_UPDATE_WINDOW_CHAIN message to the
currently active communication object. It is the responsibility of the communication
object that receives the message, to close the gap in the daisy chain. The responsible
communication object does this by checking to see if paraml is equal to the handle
that was received from a HM_SET_OBJCOM_ WINDOW message issued when the
communication chain started. The handle is stored as a variable. If the handle is
equal to paraml, then a communication object is being removed from the chain and
the communication chain must replace the handle in the variable with the handle in
param2. If the handle is not equal to paraml, then the responsible communication
object must send the message to the handle in the variable so that the
communication chain is updated.

In other words, each communication object in the chain knows only one other
communication object- the communication object handle returned by
HM_SET_OBJCOM_WINDOW. When this one known communication object is
removed from the communication chain, the only way to inform the application is to
send the message HM_UPDATE_OBJCOM_WINDOW_CHAIN to the active
communication object. Be sure to store the return value sent by
HM_SET_OBJCOM_ WINDOW.

Writing the Communication Object Code
An IPF communication object can be structured in many ways. Its content depends
on the function being implemented. Application-controlled windows typically
simulate activity that might or might not require user interaction.

An example of a communication object is provided in the IPF sample program
(available in the Toolkit), and is shown in Figure 9-2 on page 9-2. The program
contains two procedures:

IPFMain (Figure 9-4) registers a window class for the application-controlled
window, creates an instance of the class, and registers it with IPF as a
communication object.

IPFWioProc (Figure 9-5) provides the animation in the application-controlled
window. IPFWinProc is called by IPFMain procedure.

9-6 Information Presentation Facility

#define INCL_WIN
#define INCL_GPI
#define INCL_DOS
#define INCL_DOSMODULEMGR
#define LINT_ARGS
#define DINCL_32

#include <OS2.H>
#include "IPF.H"

#define COM_HWND
#define FRAMES

4 /* Used in WinSetWindowULong */
5 /* Number of frames in animation sequence */

60 /* Frequency of warning beep */ #define BEEP_WARN_FREQ
#define BEEP_WARN_DUR 100 /* Duration of warning beep */

US HORT
HWND
HWND

IPFClassRegistered = 0;
hwndClient;
hwndPrevious;

/* IPF class registered flag */
/* Handle to the client window */
/* Handle to the previous active */
/* object communication window */
/* Handle to the latest active */
/* object communication window */

HWND hwndlatest;

MRESULT EXPENTRY IPFMain (PACVP pACVP, PCH Parameter);
MRESULT EXPENTRY IPFWinProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2);
VOID Error (PCH str);

MRESULT EXPENTRY IPFMain (PACVP pACVP, PCH Parameter)
{

HWND hwndParent;
HWND hwndFrame;
ULONG WinStyle;
ULONG CtrlData;

/* Handle of parent window in IPF
/* Handle to the frame
/* window style for creating frame
/* control data for creating frame

Parameter; /* Warning Level 3 Avoidance */

/** 1) Initialize**/
if (!IPFClassRegistered)
{

if (!WinRegisterClass (pACVP->hAB,
"CLASS_IPF",
(PFNWP) IPFWinProc,
CS SYNCPAINT I CS SIZEREDRAW I CS_MOVENOTIFY,
8)) -

{
DosBeep (BEEP WARN FREQ, BEEP WARN DUR);
exit (TRUE); - - - -

}
IPFClassRegistered = 1;

}
WinStyle = 0L;
CtrlData = 0L;

Figure 9-4 (Part 1 of 2). IPFMain from IPF.C Sample Program

*/
*/
*/
*/

Chapter 9. Expanding the Scope of IPF 9-7

if (!(hwndFrame = WinCreateStdWindow {pACVP->hWndParent,
WinStyle,
&CtrlData,

{

}

Error ("Cannot create window");
return (MRESULT) TRUE;

"CLASS IPF" - ' 11 IPF 11
,

0L,
0L,
0L,
&hwndClient
)))

/** 2) Process **/

pACVP->hWndACVP = hwndFrame;

hwndParent = pACVP->hWndParent;

hwndPrevious = WinSendMsg {pACVP->hWndParent,
HM SET OBJCOM WINDOW,
(MPARAM) hwndframe,
NULL);

hwndLatest = WinSendMsg (pACVP->hWndParent,
HM QUERY,
MPFROM2SHORT (NULL, HMQW OBJCOM WINDOW),
NULL); - -

if (hwndFrame != hwndLatest)
{

}

Error ("Cannot set object communication window");
return (MRESULT) TRUE;

/** 3) Finish **/

}

if (!WinSetWindowULong (hwndClient, COM_HWND, (ULONG) hwndPrevious))
{

}

Error ("Cannot save handle into reserved memory");
return (MRESULT) TRUE;

return (MRESULT) FALSE;

Figure 9-4 (Part 2 of 2). IPFMain from IPF.C Sample Program

9-8 Information Presentation Facility

MRESULT EXPENTRY IPFWinProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

static HAB
static HBITMAP
static HPS
static POINTL
static HMODULE
static SHORT
static LONG

BOOL

Hhab;
hbm [5];
hps;
ptl;
hModule;
index;
cxClient,
cyClient;
rValue=TRUE;

/** 1) Initialize**/

switch (msg)
{

/* anchor block handle
/* array of bitmap handles
/* presentation space
/* pointl
/* to get bitmaps from DLL resource
/* index to current bitmap to display

/* window size
/* FALSE if the message was acted
/* upon successfully

case HM_UPDATE_OBJCOM_WINDOW_CHAIN:

hwndPrevious = (HWND) WinQueryWindowULong (hwnd, COM_HWND);

if (hwndPrevious == mp2)
{

}

hwndPrevious = mpl;

if (!WinSetWindowULong (hwndClient,
COM HWND,
(ULONG) hwndPrevious))

{

}

Error ("Cannot save handle into reserved memory");
break;

else
{

}

if (hwndPrevious != NULL)
{

WinSendMsg (hwndPrevious,
HM UPDATE OBJCOM WINDOW CHAIN,
(MPARAM) mpl, - -
(MPARAM) mp2);

}

rValue = FALSE;
break;

Figure 9-5 (Part 1 of 4). IPFWinProc from IPF.C Sample Program

*/
*/
*/
*/
*/
*/

*/
*/
*/

Chapter 9. Expanding the Scope of IPF 9-9

case WM_CREATE:

if (DosLoadModule (NULL, 0L, "IPF", &hModule}}
{

}

Error ("Cannot load module"};
break;

if (!(hps = WinGetPS(hwnd}}}
{

Error ("Cannot get presentation space"};
break;

}

for (index = 0; index < FRAMES; index++}
{

if (!(hbm [index]= GpiLoadBitmap (hps,

{

}
}

Error ("Cannot load bitmap"};
return (MRESULT} rValue;

WinReleasePS (hps};

index = e;

hModule,
(USHORT}(IDB_FRAMEl+index},
cxClient,
cyClient}}}

if (!(Hhab = WinQueryAnchorBlock (hwnd}}}
{

}

Error ("Cannot retrieve anchor block handle"};
break;

if (!WinStartTimer (Hhab, hwnd, ID_TIMER, 150}}
{

}

Error ("Cannot start timer"};
break;

rValue = FALSE;
break;

Figure 9-5 (Part 2 of 4). IPFWinProc from IPF.C Sample Program

9-10 Information Presentation Facility

case WM_TIMER:

if (index++ == FRAMES-1)
{

index = e;
}

WinlnvalidateRect (hwnd, NULL, FALSE);

rValue = FALSE;
break;

/** 2) Process **/

case WM_PAINT:

if (!(hps = WinBeginPaint (hwnd, NULL, NULL)))
{

Error (11 Cannot set presentation space for drawing 11
);

break;
}

if (!WinDrawBitmap (hps,

{

hbm [index],
NULL,
&ptl,
CLR_NEUTRAL,
CLR_BACKGROUND,
DBM_NORMAL))

Error (11 Cannot draw bitmap11
);

break;
}

WinEndPaint (hps);

rValue = FALSE;
break;

case WM_SIZE:

cxClient = SHORTlFROMMP (mp2);
cyClient = SHORT2FROMMP (mp2);

rVa l ue = FALSE;
break;

Figure 9-5 (Part 3 of 4). IPFWinProc from IPF.C Sample Program

Chapter 9. Expanding the Scope of IPF 9-11

/** 3) Finish **/

}

}

case WM_CLOSE:

WinDestroyWindow (WinQueryWindow (hwnd, QW_PARENT));

rValue = FALSE;
break;

case WM_.DESTROY:

WinStopTimer (Hhab, hwnd, ID_TIMER);

for (index = 0; index < 8; index++)
{

GpiDeleteBitmap (hbm [index]);
}

hwndPrevious = (HWND) WinQueryWindowULong (hwnd, COM_HWND);

hwndLatest = WinSendMsg (hwnd,

WinSendMsg (hwndLatest,

HM QUERY,
MPFROM2SHORT (NULL, HMQW_OBJCOM_WINDOW),
NULL);

HM UPDATE OBJCOM WINDOW CHAIN,
(MPARAM) hwndPrevious, -
(MPARAM) WinQueryWindow (hwnd, QW_PARENT));

DosFreeModule (hModule);

rValue = FALSE;
break;

default:

rValue = TRUE;
break;

return (rValue? WinDefWindowProc (hwnd, msg, mpl, mp2) 0L);

Figure 9-5 (Part 4 of 4). IPFWinProc from IPF.C Sample Program

9-12 Information Presentation Facility

Using Communication Windows
To position windows or graphics within an application-controlled window, the IPF
communication object requires a communication object window. For example, an
application-controlled window can be used to represent the Workplace, with an
interactive, simulated application window positioned on the Workplace. However,
the code implementation of this poses a dilemma. Because IPF sizes and positions
the application-controlled window AFTER returning from the call to a
communication object, the communication object cannot size and position the
simulated application window until after it has created the window and returned
control to IPF.

The dilemma is resolved because the communication object can receive
HM_INFORM messages after :acviewport. has been processed by IPF and the
communication object has created an active communication object window. Upon
receiving the HM_INFORM message from IPF, the window procedure can then
create the simulated application window and position it within the
application-controlled window.

The following C-language source code contains the communication object
Com Window that creates a communication window and processes messages from
IPF.

Chapter 9. Expanding the Scope of IPF 9-13

#define INCL_WIN
#define INCL_DOS

#include <os2.h>

/* Define ID used with reftype = infonn attribute in the link tag */
/* in tagged source for help infonnation */

#define SIMULATE_APPWINDOW 1000

MRESULT EXPENTRY ComWindowProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2);
MRESULT EXPENTRY SimWindowProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2);

HWND hComWindow = NULL;
HWND hSimWindow = NULL;
HWND hComClientWindow;
HWND hSimClientWindow;
HWND PreviousComWindow;
HWND PreviousHwnd;

USHORT EXPENTRY ComWindow (pACVP, Objectlnfo)

PACVP pACVP;
PCH Objectlnfo;
{

ULONG FrameFlags=0L;

/* Register class for conmunication window */

WinRegisterClass (pACVP->hAB,
11 CLASS_COMM 11

,

(PFNWP)ComWindowProc,
CS_SYNCPAINT I CS_SIZEREDRAW I CS_MOVENOTIFY, 8);

/* Register class for simulated application window */

WinRegisterClass (pACVP->hAB,
11 CLASS_APPSIM 11

,

(PFNWP)SimWindowProc,
CS_SYNCPAINT I CS_SIZEREDRAW I CS_MOVENOTIFY, 4);

/* Create the conmunication window */

hComWindow = WinCreateStdWindow (pACVP->hWndParent,
0L,
&FrameFlags,
(PSZ) 11 CLASS_COMM 11

,

NULL,
0L,
(HMODULE)NULL,
0L,
(PHWND)&hComClientWindow);

Figure 9-6 (Part 1 of 4). Procedure for a communication object window.

9-14 Information Presentation Facility

/* Return handle of Contnunication frame window to IPF */

pACVP->hWndACVP=hComWindow;

/* Send a message to IPF indicating that it should talk to our*/
/* contnunication window */

PreviousComWindow = WinSendMsg (pACVP->hWndParent,
HM SET OBJCOM WINDOW,
(MPARAM)hComWindow,
(MPARAM)hComWindow);

/* Save handle of IPF's contnunication window in window word of the */
/* contnunication window */

WinSetWindowULong (hComClientWindow, GL, (ULONG)PreviousComWindow);

return FALSE;
}
MRESULT EXPENTRY ComWindowProc (HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

HPS hps;
RECTL Rect;

ULONG FrameFlags = FCF_TITLEBAR
FCF_SIZEBORDER

switch (msg)
{

case HM_INFORM:

switch ((USHORT)mpl)
{

case SIMULATE_APPWINDOW:

FCF_SYSMENU
FCF_MINMAX

/* create the application window*/

hSimWindow = WinCreateStdWindow (hwnd,
WS_VISIBLE,
&FrameFl ags,
(PSZ) 11 CLASS_APPSIM 11

,

NULL,
GL,
(HMODULE)NULL,
GL,
(PHWND)&hSimClientWindow);

Figure 9-6 (Part 2 of 4). Procedure for a communication object window.

Chapter 9. Expanding the Scope of IPF 9-15

}

WinSetWindowText (hSimWindow, "Application X");

WinSendMsg {hSimWindow,
WM SETICON,
WinQuerySysPointer (HWND_DESKTOP, SPTR_APPICON,
FALSE), NULL);

/*get the size of the co11111unication client window*/

WinQueryWindowRect (hwnd, &Rect);

/* adjust the size of the application window within the */
/* conmunication client window */

Rect.xLeft = Rect.xRight / 12;
Rect.yBottom = Rect.yTop / 5;
Rect.xRight = Rect.xLeft * 10;
Rect.yTop = Rect.yBottom * 3;

/* position the application window within the */
/* conmunication client window */

WinSetWindowPos (hSimWindow, HWND TOP,
(SHORT)Rect.xLeft,
(SHORT)Rect.yBottom,
(SHORT)Rect.xRight,
(SHORT)Rect.yTop,
(SWP SHOW I SWP SIZE I

SWP=MOVE I SWP=ACTIVATE));

return (MRESULT)TRUE;

case WM_PAINT:

hps = WinBeginPaint (hwnd, (HPS)NULL, (PRECTL)NULL);
WinQueryWindowRect (hwnd, &Rect);
WinFillRect (hps, &Rect, CLR_RED);
WinEndPaint (hps);
break;

case WM_CLOSE:

WinDestroyWindow (WinQueryWindow (hwnd, QW_PARENT));
return (MRESULT)TRUE;

· Figure 9-6 (Part 3 of 4). Procedure for a communication object window.

9-16 Information Presentation Facility

}

}

case WM_DESTROY:

PreviousHwnd = (HWND)WinQueryWindowULong (hwnd, 0L);
WinSendMsg (WinQueryWindow (hwnd, QW_PARENT),

HM_SET_OBJCOM_WINDOW,
PreviousHwnd,
NULL);

break;

return (WinDefWindowProc (hwnd, msg, mpl, mp2));

/* Create the simulated frame window */

MRESULT EXPENTRY SimWindowProc(HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
{

}

HPS hps;
RECTL Rect;

switch (msg)
{

}

case WM_PAINT:

hps = WinBeginPaint (hwnd, (HPS)NULL, (PRECTL)NULL);
WinQueryWindowRect (hwnd, &Rect);
WinFillRect {hps, &Rect, CLR_WHITE);
WinEndPaint {hps);
break;

case WM_CLOSE:

WinDestroyWindow (WinQueryWindow (hwnd, QW_PARENT));
return (MRESULT)TRUE;

case WM_DESTROY:

PreviousHwnd = (HWND)WinQueryWindowULong (hwnd, 0L);
WinSendMsg (WinQueryWindow (hwnd, QW_PARENT),

HM_SET_OBJCOM_WINDOW,
PreviousHwnd,
NULL);

break;

return (WinDefWindowProc (hwnd, msg, mpl, mp2));

Figure 9-6 (Part 4 of 4). Procedure for a communication object window.

Chapter 9. Expanding the Scope of IPF 9-17

The following shows the tagging that communicates with the communication object
through the reftype =inform attribute of :link.. The contents of the right window are
defined by IPF. The contents of the left window are defined and controlled by the
communication object ComWindow and resides in INFORM.DLL.

:userdoc.
:docprof ctrlarea=none.
:hl id=examp5

scroll=none
x=left y=bottom width=100% height=100%.

Interacting with Application Windows on the Workplace
*

:link reftype=hd refid=mytxt5
vpx=left vpy=bottom vpcx=50%
vpcy=100% titlebar=none scroll=none auto split.

*
:acviewport dll='inform'

objectname='ComWindow'
objectid=l
objectinfo='optional 1

vpx=right vpy=bottom
vpcx=50% vpcy=100%.

*
*

:link reftype=infonn
res=1000 auto.

:hl hide id=mytxt5.
My text
:p.
This window could contain an explanation of how to interact with
the application-controlled window displayed on the right.
:euserdoc.

Figure 9-7. Tagging for a communication window

In the previous example, IPF processes :acviewport. as follows:

1. It loads INFORM.DLL and calls the procedure ComWindow.
2. Com Window passes the value of objectid = and objectinfo = . These attributes

are place holders for this example.
3. Com Window creates a communication window that will receive the

HM_INFORM messages from IPF when it processes the reftype=inform
attribute of :link •.

When the HM_INFORM message is sent to IPF, IPF creates and displays the
simulated application window on the Workplace.

Figure 9-8 on page 9-19 displays the windows from the example in Figure 9-7.

9-18 Information Presentation Facility

This window could contain an explanation
of how to interact with the
application-controlled window displayed on
the right.

a D

a~ ,\ppl11 <111011 x ami

Figure 9-8. An application-controlled window. The communication object window is a
functioning frame window.

Communication windows also are useful when the same communication object is
used to support multiple application-controlled windows in help information. For
example, you can use the same IPF communication object to represent different
simulated application windows from one window to another. Using the previous
examples, this is accomplished in two steps.

• Add another :bl. window definition to the tagged source for the help
information. A different number is specified in the res= attribute for the :link.
tag that has the reftype=inform attribute (see Figure 9-7 on page 9-18).

• Add the corresponding res= number as another possible value of the parameter
to the HM_INFORM message. It is processed accordingly by the
communication object window procedure (see, Figure 9-6 on page 9-14).

Dynamic Data Formatting
Dynamic data formatting (DDF) allows you to incorporate text, bit maps, or
metafiles in an IPF window at execution time. You can use dynamic data
formatting facility in conjunction with the dynamic data format tag (:ddf.) The :ddf.
tag functions as a request by IPF to the application for the DDF data, and a set of
DDF application programming interface calls that provide primitives for formatting
text. The DDF calls also allow you to incorporate bit maps and metafiles
dynamically, and to specify a hypertext or inform link from DDF data to non-DDF
data.

IPF has no knowledge of the DDF data it displays, other than that a block of data
has been provided to it by the application program. Therefore, DDF data cannot be
searched or printed. In effect, DDF is a specific extension of application-controlled
windows. When the :ddf. tag is encountered at execution time, IPF sends the
HM_QUERY_DDF _DATA message to the application window procedure with
which the current instance of help is associated. IPF sends the message either by a
WinAssociateHelplnstance request or a HM_SET_OBJCOM_WINDOW message.

Chapter 9. Expanding the Scope of IPF 9-19

DDF and Online Help Facilities
DDF data is treated differently for a help and an online document. In the case of a

help facility, the HM_QUERY_DDF _DATA message must be processed in the
application's window procedure. Within the processing for this message, you can

turn on the number specified in the res= attribute of the :ddf. tag to allow for
different processing based on which IPF window with a :ddf. tag is currently being

displayed.

Therefore, in the case of dynamic data formatting within help, it is not necessary to

specify an application-controlled window or a separate DLL. However, this would

also work if the application-controlled window used the
HM_SET_OBJCOM_WINDOW message to explicitly identify the entry point
specified in the dll = • • and objectname = • • attributes of the :acviewport. tag as the

proper window procedure where the HM_QUERY_DDF _DATA message is

processed.

DDF and Online Documents
The situation is different with an online document. The VIEW program, which
displays an online document, is not available for modification. Therefore, to display

DDF data in an online document, the :ddf. tag must be specified within an
application-controlled window. The window that actually specifies the :ddf. tag must

be defined as a LINK AUTO SPLIT of the application-controlled window's parent

window that is specified with a heading tag. The reason is based on the serialization

sequence when IPF reads an .INF source file. For example, suppose the file is tagged

as follows:

:hl res=100 x=0 y=0 width=50% height=50%.DDF Parent
:acviewport dll='test.dll' objectname='someobject' objectid='l'.
:ddf res=100.

The HM_QUERY_DDF _DATA message will be sent to the window procedure of

VIEW, which does not process it, and it will be lost. However, suppose the tagging

sequence is as follows:

:hl res=100 x=left y=top width=100% height=100% titlebar=both clear.Look here fir
:acviewport dll='flight' objectname='GetName' objectid='2'.
:link reftype=hd refid=ddfl auto split.
:hl id=ddfl x=50% y=top width=50% height=100% hide.ddfl
:ddf res=100.

The HM_QUERY_DDF _DATA message will be sent to the "GetName" window

procedure, which can initialize and process the DDF data. Therefore, to incorporate

DDF data in an online document, you must write a DLL to handle the processing.

For information about the DDF calls, see Chapter 11, "Dynamic Data Formatting
Functions."

9:20 Information Presentation Facility

Chapter 10. Window Functions

© Copyright IBM Corp. 1992

Following is a summary of the window function calls that you would use to interface
with IPF.

WinAssociateHelplnstance
Associates the help instance with the application window chain.

WinCreateHelplnstance
Calls the IPF help hook so that IPF can handle help requests.

WinCreateHelpTable
Identifies or changes the pointer to the help table in application memory.

WinDestroyHelplnstance
Ends the window chain's association with the help instance.

WinLoadHelpTable
Identifies or changes the handle of the module that contains the help table
resource.

WinQueryHelplnstance
Identifies the help instance associated with a particular application window
chain.

10-1

WinAssociateHelplnstance

WinAssociateHelplnstance

Purpose

This function associates a help instance with the application window chain.

Syntax

#define INCL_WINHELP /* Or use INCL_WIN or INCL_PM */

BOOL fSuccess = WinAssociateHelpinstance (hwndHelpinstance, hwndApp)

Parameters

hwndHelplnstance (HWND) - input
Handle returned by the WinCreateHelplnstance function.

hwndApp (HWND) - input
Handle of the application window with which to associate the help instance. The help instance is
associated with the application window and any of its children or owned windows.

t'Success (BOO L) - return
Success indicator.

Returns

WinAssociateHelplnstance returns the following values:

TRUE
FALSE

Successful completion.
Error has occurred.

When an error occurs, it is returned to the ulRetumCode parameter of the HELPINIT structure.

10-2 Information Presentation Facility

WinAssociateHelplnstance

Example Code

This example shows a typical main function for an application which uses help. Following creation of the
main application window, IPF is initialized and associated with the window. The help table is defined in the
application's resources. When the window is destroyed, terminating the application, the help instance is also
destroyed.

#define INCl=us.WIN
#include <os2.h>

#define IDHT_APPLICATION iee /* id of HELP TABLE in resource file */

main(int argc, char *argv;J, char *envpiJ
{

HAB hab = Winlnitialize(0);
HMQ hmq = WinCreateMsgQueue(hab, 0);
HWND hwnd;
HWND hwndClient;
HWND hwndHelp;
QMSG qmsg;
ULONG flStyle;
HELPINIT helpinit;

/*Setup the help initialization structure*/
helpinit.cb = sizeof(HELPINIT);
helpinit.ulReturnCode = 0L;
helpinit.pszTutorialName = (PSZ)NULL;
/* Help table in application resource */
helpinit.phtHelpTable = (PHELPTABLE)MAKEULONG(IDHT_APPLICATION, 0xffff);
helpinit.hmodHelpTableModule = NULLHANDLE;
/* Default action bar and accelerators */
helpinit.hmodAccelActionBarModule = NULLHANDLE;
helpinit.idAccelTable = 0;
helpinit.idActionBar = 0;
helpinit.pszHelpWindowTitle = 11 APPNAME HELP";
helpinit.fShowPanelld = CMIC_SHOW_PANEL_ID;
helpinit.pszHelplibraryName = 11 APPNAME.HLP 11

;

Chapter 10. Window Functions 10-3

\V'in.A.ssociatelielplnstance

}

/* Register the class */
if(WinRegisterClass(•••))
{

}

/* create the main window */
flStyle = FCF STANDARD;
hwnd = WinCreateStdWindow();

if(hwnd)
{

}

/* Create and associate the help instance */
hwndHelp = WinCreateHelplnstance(hab, &helpinit);

if(hwndHelp && WinAssociateHelplnstance(hwndHelp, hwnd)
{

}

/* Process messages */
while(WinGetMsg(hab, &qmsg, NULLHANDLE, 0, 0))
{

WinDispatchMsg(hab, &qmsg);
} /* endwhile */

/* Remove help instance - note: add */
/* WinAssociateHelplnstance(NULLHANDLE, hwnd); */
/* to WM_DESTROY processing to remove the association. */
WinDestroyHelplnstance(hwndHelp);

/* finish the cleanup and exit */
WinDestroyMsgQueue(hmq);
WinTerminate(hab);

10-4 Information Presentation Facility

WinCreateHelplnstance

Purpose

This function calls the IPF help hook so that IPF can handle help requests.

Syntax

#define INCL_WINHELP /* Or use INCL_WIN or INCL_PM */

HWND hwndhelp = WinCreateHelpinstance (hab, phinitHMinitStructure)

Parameters

hab (HAB) - input
Handle of the application anchor block returned by the Winlnitialize function.

phinitHMinitStructure (HELP /NIT) - input/output
Pointer to the help initialization structure (Helplnit).

hwndhelp (HWND) - return
Handle to a help instance.

Returns

WinCreateHelpinstance returns the following values:

NULL
Other

Error has occurred.
Handle to help instance has been returned.

WinCreateHelplnstance

When an error occurs, it is returned to the ulRetumCode parameter of the HELPINIT structure.

Chapter 10. Window Functions 10-5

WinCreateHelplnstance

Example Code

This example shows a typical main function for an application which uses help. Following creation of the

main application window, IPF is initialized and associated with the window. The help table is defined in the

application's resources. When the window is destroyed, terminating the application, the help instance is also

destroyed.

#define INCL=us.WIN
#include <os2.h>

#define IDHT_APPLICATION 100 /* id of HELP TABLE in resource file */

main(int argc, char *argviJ, char *envpiJ
{

HAB hab = Winlnitialize(0);
HMQ hmq = WinCreateMsgQueue(hab, 0);
HWND hwnd;
HWND hwndClient;
HWND hwndHelp;
QMSG qmsg;
ULONG flStyle;
HELPINIT helpinit;

/* Setup the help initialization structure */
helpinit.cb = sizeof(HELPINIT);
helpinit.ulReturnCode = 0L;
helpinit.pszTutorialName = (PSZ)NULL;
/* Help table in application resource */
helpinit.phtHelpTable = (PHELPTABLE)MAKEULONG(IDHT_APPLICATION, 0xffff);
helpinit.hmodHelpTableModule = NULLHANDLE;
/* Default action bar and accelerators */
helpinit.hmodAccelActionBarModule = NULLHANDLE;
helpinit.idAccelTable = 0;
helpinit.idActionBar = 0;
helpinit.pszHelpWindowTitle = 11 APPNAME HELP";
helpinit.fShowPanelld = CMIC_SHOW_PANEL_ID;
hel pin it. pszHel pl i braryName = 11 APPNAME. HLP 11

;

10-6 Information Presentation Facility

}

/* Register the class */
if(WinRegisterClass(•••))
{

}

/* create the main window */
flStyle = FCF STANDARD;
hwnd = WinCreateStdWindow();

if(hwnd)
{

}

/* Create and associate the help instance */
hwndHelp = WinCreateHelplnstance(hab, &helpinit);

if(hwndHelp && WinAssociateHelplnstance(hwndHelp, hwnd)
{

}

/* Process messages */
while(WinGetMsg(hab, &qmsg, NULLHANDLE, 0, 0))
{

WinDispatchMsg(hab, &qmsg);
} /* endwhile */

/* Remove help instance - note: add */
/* WinAssociateHelplnstance(NULLHANDLE, hwnd); */
/* to WM_DESTROY processing to remove the association. */
WinDestroyHelplnstance(hwndHelp);

/* finish the cleanup and exit */
WinDestroyMsgQueue(hmq);
WinTerminate(hab);

WinCreateHelplnstance

Chapter 10. Window Functions 10-7

WinCreateHelpTable

WinCreateHelpTable

Purpose

This function identifies or changes a pointer to a help table in application memory.

Syntax

#define INCL_WINHELP /* Or use INCL_WIN or INCL_PM */

BOOL fSuccess = WtnCreateHelpTable (hwndHelplnstance, phtHelpTable)

Parameters

hwndHelplnstance (HWND) - input
Handle of a help instance, returned by the WinCreateHelplnstance function.

phtHelpTable (PHELPTABLE) - input
Pointer to the help table allocated by the application.

:t'Success (BOO L) - return
Success indicator.

Returns

WinCreateHelpTable returns the following values:

TRUE
FALSE

Successful completion.
Error has occurred.

When an error occurs, it is returned to the ulReturnCode parameter of the HELPINIT structure.

Example Code

This example creates a help table in memory and passes the table to the IPF via WinCreateHelpTable. The
help instance must have been created by WinCreateHelplnstance.

#define INCL_WINHELP
#include <os2.h>

/* defines for window id's, menu items, controls, panels, etc. should */
/* be inserted here or in additional include files. */

10-8 Information Presentation Facility

/* Subtable for the main window's help */
HELPSUBTABLE phtMainTablei J = { 2,

/* length of each entry */
/* fill in one line for each menu item */
IDM_FILE, PANELID_FILEMENU,
IDM_FILENEW, PANELID_FILENEW,
IDM_FILEOPEN, PANELID_FILEOPEN,
IDM_FILESAVE, PANELID_FILESAVE,
IDM FILESAVEAS, PANELID FILESAVEAS,
IDM=FILEEXIT, PANELID=FILEEXIT };

/* Subtable for the dialog window's help */
HELPSUBTABLE phtDlgTablei J = { 2, /* length of each entry */

/* fill in one line for each control */
IDC_EDITFLD, PANELID_DLGEDITFLD,
IDC_OK, PANELID_DLGOK,
IDC CANCEL, PANELID DLGCANCEL,
IDC=HELP, PANELID=HELP };

/* Help table for the applications context sensitive help */
HELPTABLE phtHelpTablei J = { WINDOWID_MAIN, phtMainTable, PANELID_MAINEXT,

WINDOWID DLG, phtDlgTable, PANELID DLGEXT,
e, - NULL, e }; -

BOOL CreateHelpTable(HWND hWnd)
{

}

BOOL bSuccess = FALSE;
HWND hwndHelp;

/* get the associated help instance */
hwndHelp = WinQueryHelplnstance(hWnd);

if(hwndHelp)
{

}

/* pass address of help table to the help manager */
bSuccess = WinCreateHelpTable(hwndHelp, phtHelpTable);

/* return success indicator */
return bSuccess;

WinCreateHelpTable

Chapter 10. Window Functions 10-9

WinDestroyHelplnstance

WinDestroyHelplnstance

Purpose

This function ends a window chain's association with a help instance.

Syntax

#define INCL_WINHELP /* Or use INCL_WIN or INCL_PM */

BOOL fSuccess = WinDestroyHelpinstance (hwndHelpinstance}

Parameters

hwnd.Helplnstance (HWND) - input
Handle of the help instance to be destroyed. This is the handle returned by the WinCreateHelplnstance
call.

fSuccess (BOOL) - return
Success indicator.

Returns

WinDestroyHelplnstance returns the following values:

TRUE
FALSE

Successful completion.
Error has occurred.

When an error occurs, it is returned to the ulRetumCode parameter of the HELPINIT structure.

10-10 Information Presentation Facility

WinDestroyHelplnstance

Example Code

This example shows a typical main function for an application which uses help. Following creation of the
main application window, IPF is initialized and associated with the window. The help table is defined in the
application's resources. When the window is destroyed, terminating the application, the help instance is also
destroyed.

#define INCL=us.WIN
#include <os2.h>

#define IDHT_APPLICATION 100 /* id of HELP TABLE in resource file */

main(int argc, char *argv1J, char *envp1J
{

HAB hab = Winlnitialize(0);
HMQ hmq = WinCreateMsgQueue(hab, 0);
HWND hwnd;
HWND hwndClient;
HWND hwndHelp;
QMSG qmsg;
ULONG flStyle;
HELPINIT helpinit;

/* Setup the help initialization structure */
helpinit.cb = sizeof(HELPINIT);
helpinit.ulReturnCode = 0L;
helpinit.pszTutorialName = (PSZ)NULL;
/* Help table in .application resource */
helpinit.phtHelpTable = (PHELPTABLE)MAKEULONG(IDHT_APPLICATION, 0xffff);
helpinit.hmodHelpTableModule = NULLHANDLE;
/* Default action bar and accelerators */
helpinit.hmodAccelActionBarModule = NULLHANDLE;
helpinit.idAccelTable = 0;
helpinit.idActionBar = 0;
helpinit.pszHelpWindowTitle = "APPNAME HELP";
helpinit.fShowPanelld = CMIC_SHOW_PANEL_ID;
helpinit.pszHelplibraryName = 11 APPNAME.HLP 11

;

Chapter 10. Window Functions 10-11

WinDestroyHelplnstance

}

/* Register the class */
if(WinRegisterClass(•••))
{

}

/* create the main window */
flStyle = FCF_STANDARD;
hwnd = WinCreateStdWindow();

if(hwnd)
{

}

/* Create and associate the help instance */
hwndHelp = WinCreateHelplnstance(hab, &helpinit);

if(hwndHelp && WinAssociateHelplnstance(hwndHelp, hwnd)
{

}

/* Process messages */
while(WinGetMsg(hab, &qmsg, NULLHANDLE, 0, 0))
{

WinDispatchMsg(hab, &qmsg);
} /* endwhile */

/* Remove help instance - note: add */
/* WinAssociateHelplnstance(NULLHANDLE, hwnd); */
/* to WM_DESTROY processing to remove the association. */
WinDestroyHelplnstance(hwndHelp);

/* finish the cleanup and exit */
WinDestroyMsgQueue(hmq);
WinTerminate(hab);

10-12 Information Presentation Facility

WinLoadHelpTable

WinLoadHelpTable

Purpose

This function identifies or changes the handle of a module containing a help table resource.

Syntax

#define INCL_WINHELP /* Or use INCL_WIN or INCL_PM */

BOOL fSuccess = WinloadHelpTable (hwndHelpinstance, idHelpTable, Module)

Parameters

hwndHelplnstance (HWND) - input
Handle of the help instance. This is the handle returned by the WinCreateHelplnstance call.

idHelpTable (USHORT) - input
Help table identifier.

Module (HMODULE) -input
Handle of the module that contains the help table and help subtable resources.

fSuccess (BOOL) - return
Success indicator.

Returns

WinLoadHelpTable returns the following values:

TRUE
FALSE

Successful completion.
An error has occurred.

When an error occurs, it is returned to the ulReturnCode parameter of the HELPINIT structure.

Chapter 10. Window Functions 10-13

WinLoadHelpTable

Example Code

The following example loads a help table from RES.DLL using the module handle supplied by
DosLoadModule. The module handle is passed to WinCreateHelplnstance and, with an application supplied
help table identification (id), the help table is defined to the help manager instance. Notice the assignment of
the hmodHelpTableModule field.

BOOL LoadHelpTable(HWND hWnd, USHORT usResource, PSZ pszModuleName)
{

}

BOOL bSuccess = FALSE;
HMODULE hmodule;
HWND hwndHelp;
PSZ pszObjNameBufi 80 J;

/* get the DLL loaded */
if(!DosloadModule(pszObjNameBuf, sizeof(pszObjNameBuf),

pszModuleName, &hmodule))
{

}

/* get the associated help instance */
hwndHelp = WinQueryHelplnstance(hWnd);

if (hwndHel p)
{

/* pass address of help table to the help manager */
bSuccess = WinloadHelpTable(hwndHelp, usResource, hmodule);

}

/* return success indicator */
return bSuccess;

phinitHMinitStructure.hmodHelpTableModule);

10-14 Information Presentation Facility

WinQueryHelplnstance

WinQueryHelplnstance

Purpose

This function identifies the help instance that is associated with a particular application window chain.

Syntax

#define INCL_WINHELP /* Or use INCL_WIN or INCL_PM */

HWND hwndHelp = WinQueryHelpinstance (hwndApp)

Parameters

hwndApp (HWND) - input
Handle of the application window.

hwndHelp (HWND) - return
Help window handle.

Returns

WinQueryHelplnstance returns the following values:

NULL
Other

No help instance is associated with the application window.
A help window handle is returned.

Example Code

This example shows the use of the WinQueryHelplnstance call during the processing of a WM_INITMENU
message in order to obtain the handle for sending an HM_SET_ACTIVE_WINDOW message.

#define INCL_WIN
#include <os2.h>

MRESULT wm initmenu(HWND hWnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{ -

}

/*Send message to establish the current window's parent */
/* as the active help window. */
WinSendMsg(WinQueryHelpinstance(hWnd),

HM SET ACTIVE WINDOW,
(MPARAM)WinQueryWindow(hWnd, QW_PARENT),
(MPARAM)WinQueryWindow(hWnd, QW_PARENT));

/* Pass message on for default processing */
return WinDefWindowProc(hWnd, ulMsg, mpl, mp2);

Chapter 10. Window Functions 10-15

WinQueryHelplnstance

10-16 Information Presentation Facility

Chapter 11. Dynamic Data Formatting Functions

© Copyright IBM Corp. 1992

The application can also use the window to establish a dialog with the user, and
format text responses in the window by calling dynamic data formatting (DDF)
routines. The DDF functions provide limited formatting of text at run time.

Following is a summary of the DDF calls that you can use in your Presentation
Manager application.

DdffieginList
Begins a definition list in the DDF buffer.

Ddmitmap
Places a reference to a bit map in the DDF buffer.

DdfEndList
Terminates the definition list initialized by DdffieginList.

DdfHyperText
Defines a hypertext link to another window.

Ddfinf orm
Defines a hypertext inform link.

Ddflnitialize
Initializes the IPF internal structures for a DDF facility and returns a DDF
handle.

DdfListltem
Inserts a definition list entry item in the DDF buffer.

Dd:fl\fetafile
Places a reference to a metafile into the DDF buffer.

DdfPara
Creates a paragraph within the DDF buffer.

Ddt'SetColor
Sets the background and foreground colors of the displayed text.

Ddt'SetFont
Specifies a text font (Courier) in the DDF buffer.

Ddt'SetFontStyle
Specifies a text font (bold face) in the DDF buffer.

Ddt'SetFormat
Tums formatting off or on.

Ddt'SetTextAlign
Defines whether left, center, or right text justification is to be used when text
formatting is off.

Ddffext
Adds text to the DDF buffer.

11-1

DdfBeginList

DdfBeginList

Purpose

Syntax

Parameters

This function begins a definition list in the DDF buffer, and corresponds to the
definition list tag (:di.). Once this function is called, use of any DDF function other
than DdfListltem, DdfSetColor, and DdfEndList may produce unpredictable results.

#define INCL_DDF

APIRET = DdfBeginlist (hddf, ulWidthDT, fBreakType,
fSpacing);

HDDF hddf

ULONG ulWidthDT

ULONG fBreakType

ULONG fSpacing

/* Handle returned by
Ddflnitial ize

/* Width of the definition
term

/* Which line to start the
definition on

/*Single or double line
spacing

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize

ulWidthDT (ULONG) - input
Width of the definition term.

mreakType (ULONG) - input
Only the following constants may be specified:

*/

*/

*/

*/

HMBT_ALL Start all definition descriptions on the next line, regardless of
the actual lengths of definition terms.

HMBT_FIT Start definition description on the next line only when the
definition term is longer than the width specified.

HMBT _NONE Do not start the definition description on the next line, even
when the definition term is longer than the width specified.

f'Spacing (ULONG) - input
Only the following constants may be specified:

HMLS_SINGLELINE

HMLS_DOUBLELINE

Do not insert a blank line between each definition
description and the next definition term.
Ins¢rt a blank line between each definition
description and the next definition term.

11-2 Information Presentation Facility

Returns

Example Code

Success indicator.

TRUE

FALSE

Successful completion

Error occurred.

Possible returns from WinGetLa~tError

1 HMERR_DDF _MEMORY
- Not enough memory is available.

7 HMERR_DDF_LIST_UNCLOSED
- An attempt was made to nest a list.

9 HMERR_DDF _LIST_BREAKTYPE
- The value for BreakType is not valid.

10 HMERR_DDF_LIST_SPACING
- The value for Spacing is not valid.

DdffieginList

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdffieginList to indicate the beginning of a definition list in the DDF buffet.
This function corresponds to :di. For more information about initializing DDF, see
"Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#qefine INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

struct LISTITEM
{ - /* definition list

PSZ Term;
PSZ Desc;

} Definition[2] = {{ 11 MVS 11
, "Multiple Virtual System"},

{
11 VM 11

, "Virtual M~chine 11 }};

*/
*/
*/

*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;
SHORT i;

/* DDF handle
/* loop index

*/
*/

Chapter 11. Dynamic Data Formatting Functions 11-3

DdffieginList

}

switch(ulMsg)
{
case HM QUERY DDF DATA:

/* get the help instance */

}

hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent: HM_QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
GL, /* Default buffer size */
GL /* Default increment */
) ;

if (hDdf == NULLHANDLE) /* Check return code */
{

return (MRESULT)FALSE;
}

/* begin definition list */
if (!DdfBeginList(hDdf, 3L, HMBT_ALL, HMLS_SINGLELINE))
{

return (MRESULT)FALSE;
}

/* insert 2 entries into definition list */
for (i=G; i < 2; i++)
{

}

if (!Ddflistltem(hDdf, Definition[i].Term, Definition[i].Desc))
{

return (MRESULT)FALSE;
}

/* terminate definition list */
if (!DdfEndList(hDdf))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

11-4 Information Presentation Facility

DdfBitmap

Purpose

Syntax

Parameters

Returns

DdfBitmap

This function places a reference to a bit map in the DDF buffer.

The handle to the presentation space in which the bit map was created cannot be
freed by the application while the window is displayed.

#define INCL_DDF

APIRET = DdfBitMap (hddf, hbm, fAlign);

HDDF hddf

HBITMAP hbm

/* Handle returned by
Ddflnitial ize

/* Standard PM bit map handle

ULONG fAlign /*Alignment of the bit map

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

hbm (HBITMAP) - input
Standard Presentation Manager bit map handle.

fAlign (ULONG) - input
Any of the following values can be specified:

ART_LEFT Left-justify the bit map.

ART_RIGHT Right-justify the bit map.

ART_CENTER Center the bit map.

*/

*/

*/

ART_RUNIN Allow the bit map to be reflowed with text.

Note: There is a (3-byte +size of HBITMAP structure) ESC code overhead in the
DDF internal buffer for this function. There is a 1-byte ESC code overhead
required for the Align flag.

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

1 HMERR_DDF _MEMORY
- Not enough memory is available.

2 HMERR_DDF_ALIGN_TYPE
- The alignment type is not valid.

Chapter 11. Dynamic Data Formatting Functions 11-5

Ddffiitmap

Example Code
After initializing a DDF buffer with Ddflnitialize, the following example shows how
to obtain a device context (DevOpenDC), create a presentation space (GpiCreatePS),
and load a bit map (GpiLoadBitmap). The example then shows how to use
Ddffiitmap to place a reference to the bit map in the DDF buffer. For more
information about initializing DDF, see "Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_GPICONTROL
#define INCL_GPIBITMAPS
#define INCL_GPIPRIMITIVES
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

#define ACVP_HAB 12
#define BM_HPS 16
#define BM_HDC 20
#define BM_HWND 24
#define ID_LEFT 255

/* General window management */
/* Message management */
/* Basic PS control */
/* Bit maps and Pel Operations */
/* Drawing Primitives/Attributes*/
/*Dynamic Data Facility */

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent; /* parent window
HWND hwndlnstance; /* help instance window
HOOF hDdf; /* DDF handle
HOC hdc; /* device context handle
HPS hps; /* presentation space handle
HAB hab; /* anchor block handle
SIZEL sizel = {eL,eL};/* size of new PS
HBITMAP hBitmap; /* bit map handle
HMODULE hModule; /* module handle

switch(ulMsg)
{
case HM QUERY DDF DATA:

*/
*/
*/
*/
*/
*/
*/
*/
*/

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent~ HM QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code */

11-6 Information Presentation Facility

/* get module handle for bit map */
DosGetModHandle("bitmap", &hModule);
if (hModule == NULLHANDLE)
{

return (MRESULT)FALSE;
}
/* get hab for this window */

DdfBitmap

if ((hab = (HAB)WinQueryWindowULong(hwnd, ACVP_HAB)) == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* create a device context */
if ((hdc = DevOpenDC(hab, OD MEMORY, 11 * 11

, 0L,
(PDEVOPENDATA)NULL, (HDC)NULL)) == NULLHANDLE)

{

}
return (MRESULT)FALSE;

/* save hdc in reserved word */
WinSetWindowULong(hwnd, BM_HDC, (ULONG)hdc);

/* create a noncached micro presentation space */
/* and associate it with the window */
if ({hps = GpiCreatePS(hab, hdc, &sizel, PU_PELS I GPIF_DEFAULT

{

}

I GPIT_MICRO I GPIA_ASSOC)) == NULLHANDLE)

return (MRESULT)FALSE;

/* save hps in reserved word */
WinSetWindowULong(hwnd, BM_HPS, (ULONG)hps);

/* Load the Bit map to display */
if ((hBitmap = GpiloadBitmap{hps, hModule, ID_LEFT, 300L,

300L)) == NULLHANDLE)
{

}
return (MRESULT)FALSE;

/* save bit map hwnd in reserved word */
WinSetWindowULong(hwnd, BM_HWND, (ULONG)hBitmap);

/*Display the bit map align left */
if (!DdfBitmap(hDdf, hBitmap, (ULONG)TA_LEFT))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

Chapter 11. Dynamic Data Formatting Functions 11-7

Ddmitmap

}

case WM CLOSE:

}

/* release PS, DC, and bit map */
GpiDestroyPS((HPS)WinQueryWindowULong(hwnd, BM_HPS));
DevCloseDC((HDC)WinQueryWindowULong(hwnd, BM_HDC));
GpiDeleteBitmap((HBITMAP)WinQueryWindowULong(hwnd, BM HWND));
WinDestroyWindow(WinQueryWindow(hwnd, QW PARENT)); -
return (MRESULT)TRUE; -

11-8 Information Presentation Facility

DdfEndList

Purpose

Syntax

Parameters

Returns

Example Code

This function terminates the definition list initialized by DdffieginList.

#define INCL_DDF

APIRET = DdfEndlist (hddf);

HOOF hddf /* Handle returned by
Odflnitialize */

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

8 HMERR_DDF_LIST_UNINITIALIZED
- No definition list has been initialized by DdfBeginList.

DdfEndList

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdfEndList to end a definition list in the DDF buffer. For more information
about initializing DDF, see ''Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

struct LISTITEM
{ -

/* definition list

PSZ Term;
PSZ Desc;

} Definition[2] = {{ 11 MVS 11
, "Multiple Virtual System"},

{
11 VM 11

, "Virtual Machine"}};

*/
*/
*/

*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

Chapter 11. Dynamic Data Formatting Functions 11-9

DdfEndList

}

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;
SHORT i;

switch(ulMsg)
{

/* DDF handle
/* loop index

case HM QUERY DDF DATA:
/* get the help instance */

*/
*/

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent: HM QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
GL, /* Default buffer size */
GL /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* begin definition list */

/* Check return code

if (!DdfBeginList(hDdf, 3L, HMBT_ALL, HMLS_SINGLELINE))
{

return (MRESULT)FALSE;
}

/* insert 2 entries into definition list */
for (i=G; i < 2; i++)
{

*/

if (!DdfListltem(hDdf, Definition[i].Tenn, Definition[i].Desc))
{

}

return (MRESULT)FALSE;
}

}

/* tenninate definition list */
if (!DdfEndList(hDdf))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

11-10 Information Presentation Facility

DdfHyperText

Purpose

Syntax

Parameters

DdfHyperText

This function defines a hypertext link to another window.

#define INCL_DDF

APIRET = OdfHyperText (hddf, pszText,
pszReference, fReferenceType);

HOOF hddf /* Handle returned by

PSZ pszText

PSZ pszReference

Odflnitial ize

/* Hypertext phrase

/* Pointer to res number or
alphanumeric string

*/

*/

*/

ULONG fReferenceType /* Specifies linking using a
res number or alphanumeric ID */

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

pszText (P SZ) - input
Hypertext phrase.

pszReference (P SZ) - input
The value of this parameter depends on the value of ReferenceType:

- If ReferenceType is REFERENCE_BY_RES, this parameter must contain
a pointer to a numeric string containing the res number; otherwise it will
default to a res number of zero. Valid values are 1 - 64000; all other values
are reserved.

- If ReferenceType is REFERENCE_BY _ID, this parameter contains a
pointer to a string containing the alphanumeric identifier of the destination
window.

tReferenceType (ULONG) - input
This parameter specifies whether you are linking using a resource identifier (res
number), or an alphanumeric identifier.

REFERENCE_BY_RES to link using a resource identifier.
REFERENCE_BY_ID to link using an alphanumeric identifier.

Note: There is a 3-byte ESC code overhead in the DDF internal buffer for each
word in the text buffer. There is a I-byte ESC code overhead for each blank
and for each newline character. If ReferenceType is REFERENCE_BY_ID,
then there is a (3-byte +Reference length) ESC code overhead. For a
ReferenceType of REFERENCE_BY_RES, the overhead is 5 bytes. Finally,
there is a 3-byte ESC code overhead that is required for ending the hypertext
link.

Chapter 11. Dynamic Data Formatting Functions 11-11

DdniyperText

Returns

Example Code

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

1 HMERR_DDF_MEMORY
- Not enough memory is available.

6 HMERR_DDF_REFTYPE
- The reference type is not valid.

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdfHyperText to create a hypertext link with another resource. For more
information about initializing DDF, see "Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/*Dynamic Data Facility

*/
*/
*/

PSZ Text= "This text is a HYPERTEXT message.\n 11
; /* hypertext

string */
PSZ ResID = 11 1"; /*Resource identifier */

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HDDF hDdf; /* DDF handle */
switch(ulMsg)
{
case HM QUERY DDF DATA:

/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

MPFROMSHORT{ HMQW INSTANCE), NULL);
/* Allocate lK Buffer (default) */ -
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
al, /* Default buffer size */
al /* Default increment */
) ;

11-12 Information Presentation Facility

}
}

if {hDdf == NULLHANDLE)
{

return {MRESULT)FALSE;
}

/* Check return code

/* create hypertext link with resource 1 */

DdfliyperText

*/

if {!DdfHyperText{hDdf, {PSZ)Text, ResID, REFERENCE_BY_RES))
{

return {MRESULT)FALSE;
}

return {MRESULT)hDdf;

Chapter 11. Dynamic Data Formatting Functions 11-13

Ddflnform

Ddflnform

Purpose

Syntax

Parameters

Returns

This function defines a hypertext inform link, and corresponds to the :link. tag and
its reftype ==inform attribute.

#define INCL_DDF

APIRET = Ddflnfonn (hddf, pszText,
reslnfonnNumber);

HDDF hddf

PSZ pszText

/* Handle returned by
Ddflnitialize

/* Hypertext phrase

ULONG reslnfonnNumber /* Res number associated

*/

*/

with the hypertext field */

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

pszText (PSZ) - input
Hypertext phrase.

reslnformNumber (ULONG) -input
Res number associated with this hypertext field. Possible values are 1 to 64000;
all other values are reserved.

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

1 HMERR_DDF _MEMORY
- Not enough memory is available.

11-14 Information Presentation Facility

Example Code

Ddflnform

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use Ddflnform to create a hypertext inform link with another resource. This
function corresponds to :link. and its reftype =inform attribute. For more
information about initializing DDF, see "Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

*/
*/
*/

PSZ Text= 11 This text is a HYPERTEXT message.\n 11
; /*hypertext

string */
MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{

/* DDF handle

case HM QUERY DDF DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

}
}

/*Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
SL, /* Default buffer size */
SL /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code

/* create hypertext inform link with resource 1 */
if (!Ddflnform(hDdf, (PSZ)Text, lL))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

*/

Chapter 11. Dynamic Data Formatting Functions 11-15

Ddflnitialize

[)clfl11itiC1.li~Et

Purpose

Syntax

Parameters

Returns

This function initializes the IPF internal structures for dynamic data formatting and
returns a DDF handle. The application uses this handle to refer to a particular
DDF window.

At initialization, the default for dynamic data display is that text is aligned on the
left, and formatting is turned on.

#define INCL_OOF

HOOF= Odflnitialize (hwndHelplnstance, cbBuffer,
ullncrement);

HWNO hwndHelplnstance

ULONG cbBuffer

ULONG ullncrement

/* Handle to help
instance */

/* Initial OOF buffer
length */

/* Amount by which to
increment buffer size
when necessary */

hwndHelplnstance (HWND) - input
Handle of a help instance.

cbBuffer (ULONG) - input
Initial length of internal buffer where DDF information is to be stored. If this
field is NULL, a default value of lK is defined. The maximum value is 60K.

ullncrement (ULONG) - input
Amount by which to increment the buffer size, if necessary. If this field is
NULL, a default value of 256 bytes is defined. The maximum value is 60K.

A handle to DDF (HDDF) is returned if initialization was successful. Otherwise,
the value returned is:

NULL
- An error has occurred because of insufficient memory or incorrect instance.

11-16 Information Presentation Facility

Example Code

Ddflnitialize

The following example shows how to initialize and use the DDF facility for
displaying an online document. Two functions are defined: SampleObj, creates a
window that displays the online information and specifies the second function,
SampleWindowProc, as the corresponding window procedure. These functions are
compiled into a dynamic link library (DLL) and exported, so that IPF can invoke
them when it encounters :ddf. and :acviewport. during execution.

:acviewport. specifies the name of the DLL and the SampleObj function. When IPF
calls SampleObj, it initializes an application-controlled window with
SampleWindowProc as the window procedure and returns the window handle.
Later, when IPF encounters :ddf., it sends SampleWindowProc an
HM_QUERY_DDF _DATA message. At this point, before calling any of the DDF
functions, Ddflnitialize must first be called to initiate a DDF buffer, after which the
other DDF functions are called to display the online information.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_WINDIALOGS
#define INCL_DDF
#define INCL_32
#include <os2.h>
#include <pmhelp.h>

#define COM_HWND 4
#define PAGE_HWND 8
#define ACVP_HAB 12

USHORT OdfClass = FALSE;

/* General window management
/* Message management
/* Dialog boxes
/* Dynamic Data Facility

/* window word offsets

*/
*/
*/
*/

*/

MRESULT EXPENTRY SampleWindowProc(HWND hWnd, ULONG Message,
MPARAM lParaml, MPARAM 1Param2);

USHORT APIENTRY SampleObj(PACVP pACVP, PCH Parameter)
{
HWND DdfHwnd;
HWND DdfCHwnd;
HWND PreviousHwnd;

/* Client window handle */
/* Child window handle */
/* Handle for setting co111n window active */

Chapter 11. Dynamic Data Formatting Functions 11-17

Ddflnitialize

/* register DDF Base class if not registered already */
if (!DdfClass)
{

}

{

}

if (!WinRegisterClass(
pACVP->hAB, /* Anchor block handle */
"CLASS_Ddf", /*Application window class name*/

/* Address of window procedure */
SampleWindowProc,

/* Window class style */
CS SYNCPAINT I CS SIZEREDRAW I CS MOVENOTIFY,
20)) /* Extra storage - */

return TRUE;

DdfClass = TRUE;

/* create standard window */
if (!(DdfHwnd = WinCreateStdWindow(

pACVP->hWndParent,
eL,

/* ACVP is parent */
/* No class style */
/* Frame control flag */ NULL,

"CLASS Ddf" - ' /* Window class name */

{

}
return FALSE;

NULL,
0L,
0L,
e,
&DdfCHwnd)))

/* No title bar */
/* No special style */
/* Resource in .EXE */
/* No window identifier */
/* Client window handle */

/* store the frame window handle in ACVP data structure */
pACVP->hWndACVP = DdfHwnd;

/* set this window as active communication window */
PreviousHwnd = (HWND)WinSendMsg(pACVP->hWndParent,

HM SET OBJCOM WINDOW,
MPFROMHWND(DdfHwnd), NULL);

/* save returned communication hwnd in reserved word */
WinSetWindowULong(DdfCHwnd, COM_HWND, (ULONG)PreviousHwnd);

/* save anchor block handle in reserved word */
WinSetWindowULong (DdfCHwnd, ACVP_HAB, (ULONG)pACVP->hAB);

11-18 Information Presentation Facility

Ddflnitialize

return FALSE;
} /* SampleObj */

MRESULT EXPENTRY SampleWindowProc(HWND hWnd, ULONG Message,
MPARAM lParaml, MPARAM 1Param2}

{
HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;
ULONG DdflD;

switch (Message}
{

/* parent window
/* help instance window
/* DDF handle
/* DDF resource id

case HM QUERY DDF DATA:
WinSetWindowULong(hWnd, PAGE HWND, LONGFROMMP(lParaml});
DdfID = LONGFROMMP(lParam2};-
hwndParent = WinQueryWindow(hWnd, QW PARENT};
hwndParent = WinQueryWindow(hwndParent, QW_PARENT};
hwndlnstance = (HWND}WinSendMsg(hwndParent, HM QUERY,

MPFROMSHORT(HMQW_INSTANCE}, NULL};

/*Allocate lK Buffer (default} */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
} ;

if (hDdf == NULLHANDLE}
{

return (MRESULT}FALSE;
}

return (MRESULT}hDdf;

/* Check return code */

default:
return (WinDefWindowProc(hWnd, Message, lParaml, 1Param2}};

}
} /* SampleWindowProc */

*/
*/
*/
*/

Chapter 11. Dynamic Data Formatting Functions 11-19

DdfListltem

Ddflistltem

Purpose

Syntax

Parameters

Returns

This function inserts a definition list entry item in the DDF buffer, and corresponds
to a combination of the definition term tag (:dt.) and definition define tag (:dd.).
The handle to the presentation space in which the bit map was created cannot be
freed by the application while the window is displayed.

#define INCL_DDF

APIRET = Ddflistltem (hddf, pszTenn,
pszDescription);

HOOF hddf /* Handle returned by
Ddflnitialize */

PSZ pszTenn /* Tenn portion of the
definition list entry */

PSZ pszDescription /* Description portion of
the definition list
entry.

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize

pszTerm (P SZ) - input
Term portion of the definition list entry.

pszDescription (P SZ) - input
Description portion of the definition list entry.

*/

Note: There is a (3-byte +size of HBITMAP structure) ESC code overhead in the
DDF internal buffer for this function. There is a 1-byte ESC code overhead
required for the Align flag.

Success indicator.

TRUE

FALSE

Successful completion

Error occurred.

Possible returns from WinGetLastError

1 HMERR_DDF_MEMORY
- Not enough memory is available.

8 HMERR_DDF_LIST_UNINITIALIZED
- No definition list has been initialized by DdffieginList.

11-20 Information Presentation Facility

Example Code

DdfListltem

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to begin a definition list and use DdfListltem to insert list entries in the DDF buffer.
This function corresponds to a combination of :dt. and :dd .. For more information
about initializing DDF, see "Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

struct LISTITEM
{ -

/*definition list

PSZ Term;
PSZ Desc;

} Defi ni ti on [2] = {{ 11 MVS 11
, "Multiple Virtual System"},

{
11 VM 11

, "Virtual Machine"}};

*/
*/
*/

*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;
SHORT i;

switch(ulMsg)
{

/* DDF handle
/* loop index

case HM QUERY DDF DATA:
/* get the help instance */

*/
*/

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent~ HM QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/*Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE) /* Check return code */
{

return (MRESULT)FALSE;
}

/* begin definition list */
if (!DdfBeginlist(hDdf, 3L, HMBT_ALL, HMLS_SINGLELINE))
{

return (MRESULT)FALSE;
}

Chapter 11. Dynamic Data Formatting Functions 11-21

DdfListltem

}
}

/* insert 2 entries into definition list */
for (i=C:l; i < 2; i++)
{

}

if (!Ddflistltem(hDdf, Definition[i].Tenn, Definition[i].Desc))
{

return (MRESULT)FALSE;
}

/* tenninate definition list */
if (!DdfEndlist(hDdf))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

11-22 Information Presentation Facility

DdfMetafile

Purpose

Syntax

Parameters

Returns

This function places a reference to a metafile into the DDF buffer.

#define INCL_OOF

APIRET = OdfMetafile (hddf, hmf,
prclRect);

HOOF hddf

HMF hmf

/* Handle returned by
Odflnitial ize

/* Handle of the metafile

*/

to display */

PRECTL prclRect

hddf (HDDF) - input

/* Size of the rectangle
in which the metafile
will be displayed */

Handle to DDF returned by Ddflnitialize.

hmf (HMF) - input
The handle of the metafile to display.

prclRect (P REC TL) - input
NULL - fit metafile to window

DdfMetafile

If not NULL, contains the size of the rectangle in which the metafile will be
displayed. The aspect ratio of the metafile is adjusted to fit this rectangle.

Note: There is a 3-byte ESC code overhead in the DDF internal buffer for this
function. There also is a MetaFilename length overhead. Finally, the Rect
variable requires an additional 16 bytes of overhead in the DDF internal
buffer.

Success indicator.

TRUE

FALSE

Successful completion

Error occurred.

Possible returns from WinGetLastError.

1 HMERR_DDF _MEMORY
- Not enough memory is available.

Chapter 11. Dynamic Data Formatting Functions 11-23

DdfMetafile

Example Code
After initializing a DDF buffer with Ddflnitialize, and loading a metafile with
GpiLoadMetaFile, the following example shows how to use DdfMetafile to place a
reference to the metafile in the DDF buffer. For more information about initializing
DDF, see "Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#define INCL_GPIMETAFILES
#include <os2.h>
#include <pmhelp.h>

#define MF_HWND 0
#define ACVP_HAB 4

/* General window management
/* Message management
/* Dynamic Data Facility
/* MetaFiles

*/
*/
*/
*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HAB hab;
HWND hwndlnstance;
HOOF hDdf;
HMF hwndMetaFile;

switch(ulMsg)
{

/* help instance window
/* DDF handle
/* metafile handle

case HM QUERY DDF DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

*/
*/
*/

MPFROMSHORT(HMQW_INSTANCE), NULL);

/*Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
GL, /* Default buffer size */
GL /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code

/* get hab for this window */

*/

if ((hab = (HAB)WinQueryWindowULong(hwnd, ACVP_HAB)) == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Load the Metafile to display */
if ((hwndMetaFile = GpiLoadMetaFile(hab, 11 SAMP.MET 11

)) == NULLHANDLE)
{

return (MRESULT)FALSE;
}

11-24 Information Presentation Facility

}

/* Save MetaFile hwnd in reserved word */
WinSetWindowULong{hwnd, MF_HWND, hwndMetaFile);

if {!DdfMetafile{hDdf, hwndMetaFile, NULL))
{

return {MRESULT)FALSE;
}

return {hDdf);

DdfMetafile

case WM CLOSE:

}

GpiDeleteMetaFile{{HMF)WinQueryWindowULong(hwnd, MF_HWND));
WinDestroyWindow(WinQueryWindow(hwnd, QW_PARENT));

return (MRESULT)TRUE;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

Chapter 11. Dynamic Data Formatting Functions 11-25

DdfPara

DdfPara

Purpose

Syntax

Parameters

Returns

Example Code

This function creates a paragraph within the DDF buffer, and corresponds to the
paragraph tag (:p.). This function places a reference to a bit map in the DDF
buffer.

#define INCL_DDF

APIRET = DdfPara (hddf);

HOOF hddf /* Handle returned by Ddflnitialize */

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

Note: There is a I-byte ESC code overhead in the DDF internal buffer for this
function.

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

1 HMERR_DDF_MEMORY
- Not enough memory is available.

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdfPara to create a paragraph in the DDF buffer. This function corresponds
to :p.. For more information about initializing DDF, see "Ddflnitialize" on
page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

*/
*/
*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)

/* help instance window
/* DDF handle

*/
*/

11-26 Information Presentation Facility

}

DdfPara

{
case HM QUERY DDF DATA:

/* get the help instance */

}

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent~ HM QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

*/

/* Change to large (100 x 100 dimensions) Courier font */
if(!DdfSetFont(hDdf, "Courier", 100L, 100L))
{

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM SEL BOLD) { - -

return (MRESULT)FALSE;
}

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR_PALEGRAY, CLR_BLUE))
{

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

Chapter 11. Dynamic Data Formatting Functions 11-27

DdfSetColor

DdfSetColor

Purpose

Syntax

Parameters

This function sets the background and foreground colors of displayed text.

#define INCL_OOF

APIRET = OdfSetColor (hddf, clrfBackColor,
clrfForColor);

HOOF hddf /* Handle returned by
Odflnitialize */

COLOR fBackColor /* Background color */

COLOR fForColor /* Foreground color */

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

mackColor (COLOR) -input
Specifies the desired background color.

fForColor (COLOR) - input
Specifies the desired foreground color.

The following color value constants may be used for the foreground and
background colors:

CLR_DEFAULT - used to set IPF default text color
CLR_BLACK
CLR_BLUE
CLR_RED
CLR_PINK
CLR_GREEN
CLR_CYAN
CLR_YELLOW
CLR_BROWN
CLR_DARKGRAY
CLR_DARKBLUE
CLR_DARK.RED
CLR_DARKPINK
CLR_DARKGREEN
CLR_DARKCYAN
CLR_PALEGRAY
CLR_UNCHANGED

Note: There is a 4-byte ESC code overhead in the DDF internal buffer for the
foreground color, and a 4-byte overhead for the background color, with this
function.

11-28 Information Presentation Facility

Returns

Example Code

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

1 HMERR_DDF_MEMORY
- Not enough memory is available.

3 HMERR_DDF _BACKCOLOR
- The background color is not valid.

4 HMERR_DDF _FORCOLOR
- The foreground color is not valid.

DdfSetColor

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdfSetColor to set the foreground and background color for text in the DDF
buffer. For more information about initializing DDF, see "Ddflnitialize" on
page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

*/
*/
*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{

/* help instance window
/* DDF handle

case HM QUERY DDF DATA:
/* get the help instance */

*/
*/

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent~ HM QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
BL /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

/* Check return code */

return (MRESULT)FALSE;
}

Chapter 11. Dynamic Data Formatting Functions 11-29

DdfSetColor

}

}

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

/* Change to large (100 x 100 dimensions) Courier font */
if(!DdfSetFont(hDdf, "Courier", 100L, 100L))
{

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM SEL BOLD))
{ - -

return (MRESULT)FALSE;
}

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR PALEGRAY, CLR BLUE))
{ - -

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

11-30 Information Presentation Facility

DdfSetFont

Purpose

Syntax

Parameters

Returns

This function specifies a text font in the DDF buffer.

#define INCL_DDF

APIRET = DOfSetFont (hddf, pszFaceName, ulWidth,
ulHeight);

HOOF hddf /* Handle returned by
Ddflni ti a 1 i ze

PSZ pszFaceName /* Font name

ULONG ulWidth /* Font width in points

ULONG ulHeight /* Font height in points

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

pszFaceName (PSZ) - input
This parameter can be specified in two ways:

- An ASCIIZ string specifying the font name.

*/

*/

*/

*/

- "NULL" or "DEFAULT" to specify the default font.

ulWidth (ULONG) - input
Font width in points. A point is approximately 1/72 of an inch.

ulHeight (ULONG) - input
Font height in points.

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

1 HMERR_DDF _MEMORY
- Not enough memory is available.

Ddf'SetFont

Chapter 11. Dynamic Data Formatting Functions 11-31

DdfSetFont

Example Code
After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdfSetFont to specify Courier as the text font used in the DDF buffer. For
more information about initializing DDF, see "Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

*/
*/
*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HDDF hDdf;

switch(ulMsg)
{

/* help instance window
/* DDF handle

case HM QUERY DDF DATA:
/* get the help instance */

*/
*/

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent: HM QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/*Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

*/

11-32 Information Presentation Facility

}

}

/* Change to large {100 x 100 dimensions) Courier font */
if{ ! DdfSetFont { hDdf, "Courier", 100L, 100L))
{

return {MRESULT)FALSE;
}
/* make the font BOLDFACE */
if{ !DdfSetFontStyle{ hDdf, FM SEL BOLD))
{ - -

return {MRESULT) FALSE;
}

DdfSetFont

/* make the text display as BLUE on a PALE GRAY background */
if{ !DdfSetColor{ hDdf, CLR_PALEGRAY, CLR_BLUE))
{

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))
{

return {MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

Chapter 11. Dynamic Data Formatting Functions 11-33

DdfSetFontStyle

DdfSetFontStyle

Syntax

Parameters

Returns

This function specifies a text font style in the DDF buffer.

#define INCL_DDF

APIRET = DdfSetFontStyle (hddf, fFontStyle);

HOOF hddf /* Handle returned by
Ddflnitialize */

ULONG fFontStyle /* Font style */

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

fFontStyle (ULONG) - input
Any of the following values can be specified:

FM_SEL_ITALIC
FM_SEL_BOLD
FM_SEL_ UNDERSCORE

These values can be "ORed" together to combine different font styles.

A value of NULL for this parameter sets the font style back to the default font style.

Note: There is a 4-byte ESC code overhead in the DDF internal buffer for
FontStyle.

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

1 HMERR_DDF_MEMORY
- Not enough memory is available.

5 HMERR_DDF_FONTSTYLE
- The font style is not valid.

11-34 Information Presentation Facility

Example Code

DdfSetFontStyle

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdfSetFontStyle to specify a bold face text font style in the DDF buffer. For
more information about initializing DDF, see "Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/*Dynamic Data Facility

*/
*/
*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{

/* help instance window
/* DDF handle

case HM QUERY DDF DATA:
/*get the help instance */

*/
*/

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent~ HM QUERY,

MPFROMSHORT(HMQW INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

*/

Chapter 11. Dynamic Data Formatting Functions 11-35

DdfSetFontStyle

}

}

/* Change to large (100 x 100 dimensions) Courier font */
if(!DdfSetFont(hDdf, "Courier", 100L, 100L))
{

return (MRESULT)FALSE;
}
/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM_SEL_BOLD)
{

return (MRESULT)FALSE;
}
/*make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR PALEGRAY, CLR BLUE))
{ - -

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

11-36 Information Presentation Facility

DdfSetFormat

Purpose

Syntax

Parameters

Returns

Example Code

DdfSetFormat

This function is used to turn formatting off or on. It corresponds to the :lines. tag.

#define INCL_DDF

APIRET = DdfSetFormat (hddf, fFormatType);

HDDF hddf /* Handle returned by
Ddflnitialize */

ULONG fFormatType /* Turns formatting on
or off */

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

f.FormatType (ULO NG) - input
Only the following constants may be used in this parameter:

TRUE
FALSE

Turn formatting on.
Turn formatting off.

Note: If formatting is ON, there is a 3-byte ESC code overhead in the DDF
internal buffer for this function. Otherwise, there is a 4-byte ESC code
overhead.

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

TRUE
- Formatting was on.

FALSE
- Formatting was off.

DdfSetFormat also returns the following value:

1 HMERR_DDF_MEMORY
- Not enough memory is available.

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdfSetFormat to turn off formatting for text in the DDF buffer. This
corresponds to the :lines. tag. For more information about initializing DDF, see
"Ddflnitialize" on page 11-16.

Chapter 11. Dynamic Data Formatting Functions 11-37

DdfSetFormat

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_GPIPRIMITIVES
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management */
/* Message management */
/* Drawing Primitives/Attributes*/
/*Dynamic Data Facility */

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

}

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{

/* help instance window
/* DDF handle

case HM QUERY DDF DATA:
/* get the help instance */

*/
*/

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

}

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code

/* left justify text when formatting is OFF */
if (!DdfSetTextAlign(hDdf, TA_LEFT))
{

return (MRESULT)FALSE;
}

/* turn formatting OFF */
if (!DdfSetFormat(hDdf, FALSE))
{

return (MRESULT)FALSE;
}

if (!DdfText(hDdf,

*/

"Format OFF: This text should be Left Aligned!\n"))
{

}
return (MRESULT)FALSE;

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

11-38 Information Presentation Facility

DdfSetTextAlign

DdfSetTextAlign

Purpose

Syntax

Parameters

Returns

This function is used to specify left5 center5 or right text justification.

#define INCL_OOF

APIRET = OdfSetTextAlign (hddf, fAlign);

HOOF hddf /* Handle returned by
Odflnitial ize */

ULONG fAlign /* Text alignment specification */

hddf (HDDF) - input
Handle to DDF returned by Ddflnitialize.

fAlign (ULONG) - input
Only the following constants may be used:

TA_LEFT
TA_RIGHT
TA_ CENTER

Left-justify text.
Right-justify text.
Center text.

Note: It should be called before DdfSetFormat is called to tum off text formatting,
and should not be called again until formatting is turned back on. Note that
leading and trailing spaces are not stripped from the text as a result of this
alignment.

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

Possible returns from WinGetLastError

2 HMERR_DDF_ALIGN_TYPE
- The alignment type is not valid.

Chapter 11. Dynamic Data Formatting Functions 11-39

DdfSetTextAlign

Example Code
After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdfSetTextAlign to specify left justified text in the DDF buffer when
formatting is OFF. For more information about initializing DDF, see
"Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_GPIPRIMITIVES
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management */
/* Message management */
/* Drawing Primitives/Attributes*/
/* Dynamic Data Facility */

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HDDF hDdf;

switch(ulMsg)
{

/* help instance window
/* DDF handle

case HM QUERY DDF DATA:
/* get the help instance */

*/
*/

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent: HM QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* Check return code */

11-40 Information Presentation Facility

}

}

/* left justify text when fonnatting is OFF */
if {!DdfSetTextAlign{hOdf, TA_LEFT))
{

return {MRESULT)FALSE;
}
/* turn fonnatting OFF */
if {!DdfSetFonnat{hDdf, FALSE))
{

return {MRESULT)FALSE;
}

if {!DdfText{hOdf,

DdfSetTextAlign

11 Fonnat OFF: This text should be Left Aligned!\n 11
))

{

}
return {MRESULT)FALSE;

return {MRESULT)hDdf;

return WinDefWindowProc{ hwnd, ulMsg, mpl, mp2);

Chapter 11. Dynamic Data Formatting Functions 11-41

Ddffext

DdfText

Purpose

Syntax

Parameters

Returns

This function adds text to the DDF buffer.

fut: I 1 iit: rncL_OOF

APIRET = DdfText {hddf, pszText);

HOOF hddf /* Handle returned by
Odflnitial ize

PSZ pszText /* Pointer to the text buffer

*/

to be fonnatted */

hddf (HDDF) -input
Handle to DDF returned by Ddflnitialize.

pszText (PSZ) - input
Pointer to the text buffer to be formatted.

Note: There is a 3-byte ESC code overhead in the DDF internal buffer for each
word in the text buffer. There is a I-byte ESC code overhead for each blank
and for each newline character.

Success indicator.

TRUE

FALSE

Successful completion.

Error occurred.

11-42 Information Presentation Facility

Example Code

DdIText

After initializing a DDF buffer with Ddflnitialize, the following example shows how
to use DdfText to place text in the buffer. For more information about initializing
DDF, see "Ddflnitialize" on page 11-16.

#define INCL_WINWINDOWMGR
#define INCL_WINMESSAGEMGR
#define INCL_DDF
#include <os2.h>
#include <pmhelp.h>

/* General window management
/* Message management
/* Dynamic Data Facility

*/
*/
*/

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndlnstance;
HOOF hDdf;

switch(ulMsg)
{

/* help instance window
/* DDF handle

case HM QUERY DDF DATA:
/* get the help instance */

*/
*/

hwndParent = WinQueryWindow(hwnd, QW PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndlnstance = (HWND)WinSendMsg(hwndParent, HM QUERY,

MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate lK Buffer (default) */
hDdf = Ddflnitialize(

hwndlnstance, /* Handle of help instance */
0L, /* Default buffer size */
0L /* Default increment */
) ;

if (hDdf == NULLHANDLE) /* Check return code */
{

return (MRESULT)FALSE;
}

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

Chapter 11. Dynamic Data Formatting Functions 11-43

DdfText

}

}

/* Change to large (100 x 100 dimensions) Courier font */
if (!DdfSetFont (hDdf, ·"Courier", 100L, 100L))
{

return (MRESULT)FALSE;
}
/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM_SEL_BOLD))
{

return (MRESULT)FALSE;
}

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR PALEGRAY, CLR BLUE))
{ - -

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

11-44 Information Presentation Facility

Chapter 12. Help Manager Messages

© Copyright IBM Corp. 1992

The following is a summary of the messages sent by IPF and the application in
response to user help requests.

HM_ACTIONBAR_COMMAND
This message is sent by IPF and notifies the application that a user has selected
a tailored menu bar item.

HM_ CONTROL
This message is sent to the application or the communication object by IPF
prior to the addition of a push button in the control area of a window.

HM_CREATE_HELP_TABLE
This message is sent by the application and informs IPF to use the new help
table indicated by this address in memory.

HM_DISMISS_ WINDOW
This message is sent by the application and informs IPF to remove the active
help window.

HM_DISPLAY_HELP
This message is sent by the application and informs IPF to display a specific
help window.

HM_ERROR
This message notifies the application of an error caused by user interaction.

HM_EXT_HELP
This message is sent by the application and informs IPF to display the extended
help window for the active application window.

HM_EXT_HELP_UNDEFINED
This message is sent by IPF and notifies the application that an extended help
window has not been defined.

HM_GENERAL_HELP
This message is sent by the application and informs IPF to display the general
help window for the active application window.

HM_GENERAL_HELP _UNDEFINED
This message is sent by IPF and notifies the application that a general help
window has not been defined.

HM_HELP _CONTENTS
This message is sent by the application and informs IPF to display the Contents
window.

HM_HELP _INDEX
This message is sent by the application and informs IPF to display the help
index window.

HM_HELPSUBITEM_NOT_FOUND
This message is sent by IPF and notifies the application that a user has
requested help on a field but that IPF cannot find a related entry in the help
subtable.

HM_INFORM
This message is sent by IPF and notifies the application that a user has selected
a hypertext field that was specified with the reftype =inform attribute of the
:link. tag.

12-1

HM_INV ALIDATE_DDF _DATA
This message is sent by the application and informs IPF that previous dynamic
data formatting (DDF) information is no longer valid.

HM_KEYS_HELP
This message is sent by the application and informs IPF to display the keys help
window.

HM_LOAD_HELP _TABLE
This message is sent by the application and provides IPF with the module
handle that contains the help table, the help subtable, and the identity of the
help table.

HM_NOTIFY
This message is sent by IPF and notifies the application or communication
object that an event has occured that the application may be interested in
controlling.

HM_ QUERY
This message is sent by the application and notifies IPF that the application
requires !PF-specific information.

HM_QUERY_DDF_DATA
This message is sent by IPF and notifies the communication object that IPF has
encountered the dynamic data formatting tag (:ddf.).

HM_QUERY_KEYS_HELP
This message is sent by IPF and notifies the application that a user has
requested keys help for a function.

HM_REPLACE_HELP_FOR_HELP
This message is sent by the application and informs IPF to display the
application-defined Help for Help window instead of the IPF Help for Help
window.

HM_REPLACE_USING_HELP
This message is sent by the application and informs IPF to display the
application-defined Using help window instead of the IPF Using help window.

HM_SET_ACTIVE_ WINDOW
This message is sent by the application and enables the application to change
the active application window with which the IPF help window is associated.

HM_SET_COVERPAGE_SIZE
This message is sent by the application and informs IPF to set the size of the
coverpage window (the window within which all other IPF windows are
displayed).

HM_SET_HELP _LIBRARY_NAME
This message is sent by the application and informs IPF to replace the list of
help libraries specified in the initialization structure with a new list.

HM_SET_HELP _WINDOW _TITLE
This message is sent by the application and informs IPF to change the text of a
help window title.

HM_SET_OBJCOM_ WINDOW
This message is sent by the application and informs IPF to identify the
communication object to which the HM_INFORM and
HM_QUERY_DDF_DATA messages are sent.

12-2 Information Presentation Facility

HM_SET_SHOW _PANEL_ID
This message is sent by the application and informs IPF to display or hide
window IDs for each help window.

HM_SET_USERDATA
This message is sent by the application and informs IPF to store data in the IPF
data area.

HM_ TUTORIAL
This message is sent by IPF and notifies the application when the user selects
Tutorial choice from the Help menu bar.

HM_UPDATE_OBJCOM_ WINDOW _CHAIN
This message is sent to the currently active communication object by the
communication object who wants to withdraw from the communication chain.

A detailed description of the parameters and returns for these messages follows.

Chapter 12. Help Manager Messages 12-3

HM_ACTIONBAR_COMMAND

HM ACTIONBAR COMMAND - -

Parameters

Returns

This message is sent by IPF and notifies the current active application window that a
user has selected a customized menu bar item.

paraml

idCommand (USHORT)
Identity of the menu bar item that was selected.

param2 (ULONG)
Reserved

0 Reserved value, zero.

fireply (ULONG)
Reserved

0 Reserved value, zero.

12-4 Information Presentation Facility

HM CONTROL

Parameters

Returns

HM_ CONTROL

This message is sent by IPF to the child of the coverpage window (see "The
Coverpage Window" on page 9-3) to add a control in the control area of a window.
If an application wants to filter any of the controls, it can subclass the child of the
coverpage window and intercept this message. If the application does not intercept
this message, IPF adds the control to the control area.

paraml

reserved (HIUSHORT)

controlres (LOUSHORT)
The res number of the control that was selected. For author-defined push
buttons, this is the res identification number that was specified with the push
button tag (:pbutton.). For the default push buttons, this is the res
identification number defined in the PMHELP.H file.

param2 (BIT32)
Reserved.

flreply (ULONG)
Reserved

0 Reserved value, zero.

Chapter 12. Help Manager Messages 12-S

HM_CREATE_HELP_TABLE

HM CREATE HELP TABLE - - -

Parameters

Returns

This message is sent by the application to give IPF a new help table.

paraml

HELPTABLE(PHELPTABLE)
A pointer to a help table structure.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretumValue (ULONG)
Return code.

0 The procedure was successfully completed.

Other See the values of the ulErrorCode parameter of the HM_ERROR
message.

12-6 Information Presentation Facility

HM_DISMISS_ WINDOW

HM DISMISS WINDOW - -

Parameters

Returns

This message tells IPF to remove the active help window.

If the user requests help from a primary or secondary window, and then interacts
with the primary or secondary window without leaving help, the currently displayed
help window might not be appropriate for the application window. This message
gives the application the ability to remove that help window.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretumV aloe (ULONG)
Return code.

0 The help window was successfully removed.

Other There was no associated help window.

See also the values of the ulErrorCode parameter of HM_ERROR
message.

Chapter 12. Help Manager Messages 12-7

HM_DISPLAY_HELP

HM DISPLAY HELP

Parameters

Returns

This message tells IPF to display a specific help window.

paraml
This parameter depends on the value of the usTypeFlag parameter.

For a value of the usTypeFlag parameter of HM_RESOURCEID.

HelpPanelld (PIDENTITY)
Identity of the help window.

This points to a USHORT data type.

For a value of the usTypeFlag parameter of HM_PANELNAME.

HelpPanelName (PSTRL)
Name of the help window.

This points to a PSZ data type.

param2

usTypeFlag (USHORT)

reply

Flag indicating how to interpret the first parameter.

HM_RESOURCEID Indicates that paraml points to the identity of the
help window.

HM_P ANELNAME Indicates that paraml points to the name of the help
window.

ulretumV alue (ULONG)
Return code.

0 The window was successfully displayed.

Other See the values of the ulErrorCode parameter of the HM_ERROR
message.

12-8 Information Presentation Facility

HM ERROR

Parameters

HM_ERROR

This message notifies the application of an error caused by a user interaction.

There is no other way to communicate the error to the application since the user
initiated communication, not the application. Other errors caused when the
application sends a message to IPF are returned as the flreply parameter of the
message.

IPF does not display any error messages to the user. Instead, IPF sends or returns
all error notifications to the application so that it can display its own messages. This
procedure ensures a consistent message interface for all user messages.

paraml

ulErrorCode (ULONG)
Error code.

A constant describing the type of error that occurred. The application can
also receive some of these error constants in the flreply parameter of
messages it has sent to the help manager.

The error constants are:

HMERR_LOAD_DLL
The application is unable to load the resource dynamic link library
(DLL).

HMERR_NO _FRAME_ WND_IN_CHAIN
There is no frame window in the window chain from which to find or
set the associated help instance.

HMERR_INV ALID _ASSOC_APP _ WND
The application window handle specified on the
WinAssociateHelplnstance call is not a valid window handle.

HMERR_INVALID_ASSOC_HELP_INST
The help instance handle specified on the WinAssociateHelplnstance
call is not a valid window handle.

HMERR_INV ALID_DESTROY_HELP _INST
The window handle specified as the help instance to destroy is not of
the help instance class.

HMERR_NO _HELP _INST_IN_ CHAIN
The parent or owner chain of the application window specified does
not have an associated help instance.

HMERR_INV ALID_HELP _INSTANCE_HDL
The handle specified to be a help instance does not have the class name
of an IPF help instance.

HMERR_INV ALID _ QUERY_APP _ WND
The application window specified on a WinQueryHelplnstance call is
not a valid window handle.

HMERR_HELP_INST_CALLED_INVALID
The handle of the help instance specified on a call to IPF does not
have the class name of an IPF help instance.

Chapter 12. Help Manager Messages 12-9

HM_ERROR

Returns

HMERR_HELPTABLE_ UNDEFINE
The application did not provide a help table for context-sensitive help.

HMERR_HELP _INSTANCE_UNDEFINE
The help instance handle specified is invalid.

HMERR_HELPITEM_NOT_FOUND
Context-sensitive help was requested but the ID of the main help item
specified was not found in the help table.

HMERR_INV ALID _HELPSUIBITEM_SIZE
The help subtable item size is less than 2.

HMERR_HELPSUIBITEM_NOT_FOUND
Context-sensitive help was requested but the ID of the help item
specified was not found in the help subtable.

HMERR_INDEX_NOT_FOUND
The index is not in the library file.

HMERR_CONTENT_NOT_FOUND
The library file does not have any content.

HMERR_OPEN_LIB_FILE
The library file cannot be opened.

HMERR_READ_LIB_FILE
The library file cannot be read.

HMERR_CLOSE_LIB_FILE
The library file cannot be closed.

HMERR_INV ALID_LIB_FILE
Improper library file provided.

HMERR_NO_MEMORY
Unable to allocate the requested amount of memory.

HMERR_ALLOCATE_SEGMENT
Unable to allocate a segment of memory for memory allocation
requests from IPF.

HMERR_FREE_MEMORY
Unable to free allocated memory.

HMERR_PANEL_NOT_FOUND
Unable to find the requested help window.

HMERR_DATABASE_NOT_OPEN
Unable to read the unopened database.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

flreply (ULONG)
Reserved.

0 Reserved value, zero.

12-10 Information Presentation Facility

HM EXT HELP

Parameters

Returns

HM_EXT_HELP

When IPF receives this message, it displays the extended help window for the active
application window.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretum Value (ULONG)
Return code.

0 The extended help window was successfully displayed.

Other See the values of the ulErrorCode parameter of the HM_ERROR
message.

Chapter 12. Help Manager Messages 12-11

Hl\1_EXT_HELP_UNDEFINED

HM EXT HELP UNDEFINED - - -

Parameters

Returns

This message is sent to the application by IPF to notify it that an extended help

window has not been defined.

When the extended help window is requested, IPF searches the help table for its

identity. If the extended help window identity associated with the current active

window is zero, IPF sends this message to the application to notify it that an

extended help window has not been defined. The application can then:

• Ignore the request for help and not display a help window

• Display its own window
• Use the HM_DISPLAY_HELP message to tell IPF to display a particular

window.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

param.2 (ULONG)
Reserved.

0 Reserved value, zero

flreply (ULONG)
Reserved.

0 Reserved value, zero.

12-12 Information Presentation Facility

HM_GENERAL_HELP

HM GENERAL HELP - -

Parameters

Returns

When IPF receives this message, it displays the general help window for the active
application window.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretum Value (ULONG)
Return code.

0 The general help window was successfully displayed.

Other See the values of the ulErrorCode parameter of the HM_ERROR
message.

Chapter 12. Help Manager Messages 12-13

111\f_GENERAL_HELP_UNDEFINED

HM GENERAL HELP UNDEFINED - - -

Parameters

Returns

This message is sent to the application by IPF to notify it that a general help
window has not been defined.

When the general help window is requested, IPF searches the help table for its
identity. If the general help window identity associated with the current active
window is zero, IPF sends this message to the application to notify it that a general
help window has not been defined. The application can then:

• Ignore the request for help and not display a help window
• Display its own window
• Use the HM_DISPLAY_HELP message to tell IPF to display a particular

window.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

flreply (ULONG)
Reserved.

0 Reserved value, zero.

12-14 Information Presentation Facility

HM_HELP _CONTENTS

HM HELP CONTENTS -

Parameters

Returns

When IPF receives this message, it displays the Contents window.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretum Value (ULONG)
Return code.

0 The Contents window was successfully displayed.

Other See the values of the ulErrorCode parameter of the HM_ERROR
message.

Chapter 12. Help Manager Messages 12-lS

HM_HELP _INDEX

HM HELP INDEX - -

Parameters

Returns

When IPF receives this message, it displays the help index window.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretumValue (ULONG)
Return code.

0 The help index window was successfully displayed.

Other See the values of the ulErrorCode parameter of the HM_ERROR
message.

12-16 Information Presentation Facility

HM_HELPSUBITEM_NOT_FOUND

HM HELPSUBITEM NOT FOUND - - -

Parameters

IPF sends this message to the application when the user requests help on a field and
it cannot find a related entry in the help subtable.

If FALSE is returned from this message, IPF displays the extended help window.

The application has the following options:

• Ignore the notification and not display help for that field or window
• Display its own window
• Use the HM_DISPLAY_HELP message to tell IPF to display a particular

window.

paraml

usContext (USHORT)
The type of window on which help was requested.

HLPM_ WINDOW An application window.

HLPM_FRAME A frame window.

HLPM_MENU A menu window.

param.2

sTopic (USHORT)
Topic identifier.

For a value of the usContext parameter of HLPM_ WINDOW or
HLPM_FRAME:

window

menu

Identity of the window containing the field on which help
was requested.

Identity of the submenu containing the field on which help
was requested.

sSubTopic (USHORT)
Subtopic identifier.

For a value of the usContext parameter of HLPM_ WINDOW or
HLPM_FRAME:

control

-1

Other

Control identity of the cursored field on which help was
requested.

No menu item was selected.

Menu item identity of the currently selected submenu item
on which help was requested.

Chapter 12. Help Manager Messages 12-17

HM_HELPSUBITEM_NOT_FOUND

Returns
reply

Informs IPF what should be done next.

fAction (BOOL)
Action indicator:

For a value of the usContext parameter of HLPM_ WINDOW or
HLPM_FRAME:

FALSE

TRUE

Display the extended help window.

Do nothing.

For a value of the usContext parameter of HLPM_MENU:

FALSE Display the extended help window.

12-18 Information Presentation Facility

HM INFORM

Parameters

Returns

HM_INFORM

This message is used by IPF to notify the application when the user selects a
hypertext field that was specified with the reftype =inform attribute of the :link. tag.

paraml

idnum (USHORT)
Window identity.

The identity that is associated with the hypertext field.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Oreply (ULONG)
Reserved.

0 Reserved value, zero.

Chapter 12. Help Manager Messages 12-19

HM_INV ALIDATE_DDF _DATA

HM INVALIDATE DDF DATA

Parameters

Returns

The application sends this message to IPF to indicate that the previous dynamic data
formatting (DDF) information is no longer valid. When IPF receives this message,
it discards the current DDF information and sends a new
HM_QUERY_DDF _DATA message to the object communication window.

This message should be sent to the child of the coverpage window handle.

paraml (ULONG)

rescount
The count of DDFs to be invalidated.

param2 (PUSHORT)

resarray
The pointer to an array of unsigned 16-bit (USHORT) integers that are the
res numbers of DDFs to be invalidated.

Note: If both paraml and param2 are NULL, then all the DDFs in that
window will be invalidated.

reply

ulretumvalue (ULONG)
Return Code.

0 The procedure was successfully completed.

Other See the values of the errorcode parameter of the HM_ERROR
message.

12-20 Information Presentation Facility

HM_KEYS_HELP

HM KEYS HELP - -

Parameters

Returns

This message is sent by the application and informs IPF to display the keys help
window.

When IPF receives this message, it sends an HM_QUERY_KEYS_HELP message to
the active application window. The active application window is the window that
was specified when the last HM_SET_ACTIVE_WINDOW message was sent. If no
HM_SET_ACTIVE_WINDOW message was issued, then the active application
window is the window specified in the WinAssociateHelplnstance call.

The application must return one of the following:

• The identity of a keys help window in the HelpPanel parameter of the
HM_QUERY_KEYS_HELP message.

• Zero, if no action is to be taken by IPF for keys help.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretumV aloe (ULONG)
Return code.

0 The keys help window was successfully displayed.

Other See the values of the ulErrorCode parameter of the HM_ERROR
message.

Chapter 12. Help Manager Messages 12-21

HM_LOAD_HELP _TABLE

HM LOAD HELP TABLE - -

Parameters

Returns

The application, sends this message to give IPF the module handle that contains the
help table, the help subtable, and the identity of the help table.

paraml

idHelpTable (USHORT)
Identity of the help table.

fsidentityflag (USHORT)
Help table identity indicator.

X'FFFF'
Reserved value.

param2

MODULE (HMODULE)
Resource identity.

Handle of the module that contains the help table and help subtable.

reply

ulretumValue (ULONG)
Return code.

0 The procedure was successfully completed.

Other See the values of the ulErrorCode parameter of the HM_ERROR
message.

12-22 Information Presentation Facility

HM NOTIFY

Parameters

Returns

HM_NOTIFY

This message is sent to the application to notify it of events that the application
would be interested in controlling.

This message is used by the application to sub-class and change the behavior or
appearance of the help-window.

paraml

controlres (HIUSHORT)
The res number of the control that was selected. For author-defined push
buttons, this is the res number that was specified with the push button tag
(:pbutton.). For the default push buttons, this is the res number defined in
the PMHELP.H file.

reserved (HIUSHORT)
Reserved for events other than CONTROL_SELECTED and
HELP _REQUESTED.

0 Reserved value, zero.

event (LOUSHORT)
The type of event which has occurred.

CONTROL_SELECTED

HELP _REQUESTED

OPEN_COVERPAGE

OPEN_PAGE

SWAP_PAGE

OPEN_INDEX

OPEN_TOC

OPEN_HISTORY

OPEN_LIBRARY

OPEN_SEARCH_HIT_LIST

param2 (ULONG)
Window handle of relevant window.

reply

fresult (BOOL)
Return code.

A control was selected.

Help was requested.

The coverpage is displayed.

The child window of the coverpage is
opened.

The child window of the coverpage is
swapped.

The index window is displayed.

The table of contents window is
displayed.

The history window is displayed.

The new library is opened.

The search list is displayed.

TRUE IPF will not format the controls and re-size the window.

FALSE IPF will process as normal.

Chapter 12. Help Manager Messages 12-23

HM_ QUERY

HM_QUERY

Parameters

This message is sent to IPF by the application to request !PF-specific information,
such as the current Instance handle, the active communication object window, the
active window, or the group number of the current window.

paraml·

usresened (USHORT)
Reserved

0 Reserved value, zero.

usmeaageid (USHORT)
Specifies the type of window to query. The value can be any of the
following constants:

HMQW_INDEX

HMQW_TOC

HMQW _SEARCH

HMQW _ VIEWEDPAGES

HMQW _LIBRARY

HMQW _OBJCOM_ WINDOW

HMQW _INSTANCE

HMQW _ COVERPAGE

HMQW _ VIEWPORT

HMQW _GROUP_ VIEWPORT

HMQW _RES_ VIEWPORT

HMQW _ACTIVEVIEWPORT

USERDATA

The handle of the index window.

The handle of the Table of Contents
window.

The handle of the Search Hitlist
window.

The handle of the Viewed Pages
window.

The handle of the Library List window.

The handle of the active
communication window.

The handle of the help instance.

The handle of the IPF multiple
document interface parent window. It
is where the secondary windows are
contained within the parent window.

The handle of the viewport window
specified in the low order word of
paraml and in param2.

The group number of the window
whose handle is specified in param2.

The resource identification number of
the window whose handle is specified in
param2.

The handle of the currently active
window.

The previously stored user-data.

12-24 Information Presentation Facility

Returns

HM_ QUERY

usselectionid (USHORT)
Specifies whether a res ID, ID number, or group number is being requested.
The value can be any of the following constants:

HMQVP _NUMBER

HMQVP_NAME

HMQVP_GROUP

A pointer to a USHOR T that holds the
res ID of the window.

A pointer to a null-terminated string
that holds the ID of the window.

The group number of the window.

paraml (PVOID)
Param2 depends on the value of paraml messageid:

If paraml messageid is HMQW _ VIEWPORT, then param2 is a pointer to the res
number, ID, or group ID.

If paraml messageid is HMQW _GROUP_ VIEWPORT, then param2 is the
handle of the viewport window for which the group number is requested.

If paraml messageid is HMQW _RES_ VIEWPORT, then param2 is the handle of
the viewport for which the res number is requested.

reply

ulreturnvalue (ULONG)
Return value.

0 The procedure was not successfully completed.

Other The handle (HWND), group number (USHORT), or res number
(USHORT) of the window, or the user data (USHORT),
depending on the value of paraml selectionid.

Chapter 12. Help Manager Messages 12-25

HM:_QUERY_DDF_DATA

HM_QUERY_DDF_DATA

Parameters

Returns

This message is sent to the communication object window by IPF when it encounters
the dynamic data formatting tag (:ddf.). Upon receiving this message, the
communication object calls Ddflnitialize to indicate the start of dynamic data
formatting (DDF). Any combination of other DDF calls are then made to describe
this data. When this is complete, the communication object finishes processing this
message, indicating the DDF data is complete. After that time, the DDF handle
received from Ddflnitialize is considered invalid.

paraml (HWND)

pageclienthwnd
The client handle of the page that contains the object communication
window.

param2 (ULONG)

resid
The res ID associated with the DDF tag.

reply

hddfddfhandle (HDDF)
Return code.

0 An error has occurred in the application's DDF processing.

Other The DDF handle to be displayed.

Note: Once this handle has been returned, the HDDF handle can
no longer be used by the application.

12-26 Information Presentation Facility

HM:_QUERY_KEYS_HELP

HM_QUERY_KEYS_HELP

Parameters

Returns

When the user requests the keys help function, IPF sends this message to the
application.

The application responds by returning the identity of the requested keys help
window. IPF then displays that help window.

Returning zero in the usHelpPanel parameter indicates that IPF should do nothing
for the keys help function.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

paraml (ULONG)
Reserved.

0 Reserved value, zero

reply

usHelpPanel (USHORT)
The identity of the application-defined keys help window that is to be
displayed.

0 Do nothing.

Other The identity of the keys help window that is to be displayed.

Chapter 12. Help Manager Messages 12-27

~_REPLACE_HELP_FOR_HELP

HM REPLACE HELP FOR HELP - -

Parameters

Returns

This message tells IPF to display the application-defined Help for Help window

instead of the IPF Help for Help window. An application may prefer to provide

information that is more specific to itself, rather than the more general help

information that is provided in the IPF Help for Help window.

paraml

idHelpForHelpPanel (USHORT)
The identity of the application-defined Help for Help window.

0 Use the IPF Help for Help window.

Other The identity of the application-defined Help for Help window.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

flreply (ULONG)
Reserved.

0 Reserved value, zero.

12-28 Information Presentation Facility

HM:_REPLACE_USING_HELP

HM REPLACE USING HELP - - -

Parameters

Returns

This message tells IPF to display the application-defined Using help window instead
of the IPF Using help window. An application may prefer to provide information
that is more specific to itself, rather than the more general help information that is
provided in the IPF Using help window. The guidelines that define the CWTent CUA
interface recommend the Using help choice be provided in a pull-down menu from
the Help choice.

paraml

idUsingHelpPanel (USHORT)
The identity of the application-defined Using Help window.

0 Use the IPF Using Help window.

Other The identity of the application-defined Using Help window.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

Oreply (ULONG)
Reserved.

0 Reserved value, zero.

Chapter 12. Help Manager Messages 12-29

HM_SET_ACTIVE_ WINDOW

HM SET ACTIVE WINDOW - - -

Parameters

Returns

This message enables the application to change both the window with which IPF
communicates and the window next to which the help window is to be positioned.

IPF normally communicates with the application window with which the IPF help
instance has been associated, and the help window is positioned next to this same

application window.

paraml

hwndActiveWindow (HWND)

param2

The handle of the window to be made active.

Its window procedure receives all messages from IPF until the application
changes the active window with another HM_SET_ACTIVE_WINDOW

message.

hwndRelativeWindow (HWND)
The handle of the window next to which the help window is to be
positioned.

The handle of the application window next to which IPF will position a new
help window.

HWND_PARENT

Other

This IPF-defined constant tells IPF to trace the
parent chain of the window that had the focus when
the user requested help.

Handle of the window next to which the help window
is to be positioned.

If the hwndactivewindow parameter is zero, the relativewindow parameter is set to
zero. That is, if the active window is NULL HANDLE, the relative window is

not used.

reply

ulretumValue (ULONG)
Return code.

0 The procedure was successfully completed.

Other See the values of the ulErrorCode parameter of the HM_ERROR
message.

12-30 Information Presentation Facility

HM_SET_COVERPAGE_SIZE

HM SET COVERPAGE SIZE - - -

Parameters

Returns

This message is sent to IPF by the application to set the size of the coverpage, the
window within which all other IPF windows are displayed. The default size for the
coverpage of a book is the full width of the screen, while the default size for a help
file is one-half the width of the screen.

This message takes effect immediately, changing the size of the coverpage. If the
coverpage is not currently open, the requested size is saved for the next open.

paraml (P RECTL)

coverpagerectl
A PRECTL containing the size of the coverpage.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretumvalue (ULONG)
Return code.

0 The procedure was successfully completed.

Other See the values of the errorcode parameter of the HM_ ERROR
message.

Chapter 12. Help Manager Messages 12-31

HM_SET_HELP _LIBRARY_NAME

HM SET HELP LIBRARY NAME - - -

Parame.ters

Returns

This message identifies a list of help window library names to the IPF help instance.

Any subsequent communication to IPF with this message replaces the current list of
names with the newly specified list.

When help is requested, IPF will search each library in the list for the requested help
window.

paraml

HelpLibraryName (PSTRL}
Library name.

Pointer to a PSZ data. type.

The string contains a list of help window library names that will be searched
by IPF for the requested help window.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretumValue (ULONG)
Return code.

0 The newly specified library successfully replaced the current help
window library name.

Other See the values of the errorcode parameter of the HM_ERROR
message.

12-32 Information Presentation Facility

HM_SET_HELP _WINDOW _TITLE

HM SET HELP WINDOW TITLE - - -
Parameters

Returns

This message enable the application to change the text of a help window title.

paraml

HelpWindowTitle (PSTRL)
Help window title.

Pointer to a PSZ data type.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretumValue (ULONG)
Return code.

0 The window title was successfully set.

Other See the values of the errorcode parameter of the HM_ERROR
message.

Chapter 12. Help Manager Messages 12-33

HM_SET_OBJCOM_WINDOW

HM SET OBJCOM WINDOW - -

Parameters

Returns

This message is sent to IPF by the application to identify the communication object
window to which the HM_INFORM and HM_QUERY_DDF_DATA messages will
be sent. This message is not necessary if the communication object does not expect
to receive either of these messages.

HM_INFORM and HM_QUERY_DDF_DATA messages which are not processed
must be passed to the previous communication object window which was returned
when HM_SET_OBJECT_ WINDOW was sent.

paraml (HWND)

objcomhwnd
The handle of the communication object window to be set.

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

hwndprevioushwnd (HWND)
The handle of the previous communication object window.

Note: It is important that the return value be stored and not discarded.

12-34 Information Presentation Facility

HM_SET_SHOW _PANEL_ID

HM SET SHOW PANEL ID - - - -

Parameters

Returns

This message tells IPF to display, hide, or toggle the window identity for each help
window displayed.

paraml

fsShowPanelld (USHORT)
The show window identity indicator.

Cl\11C_HIDE_PANEL_ID

Cl\11C_SHOW _PANEL_ID

Cl\11C_TOGGLE_PANEL_ID

param2 (ULONG)
Reserved.

0 Reserved value, zero.

reply

ulretumV alue (ULONG)
Return code.

Sets the show option off and the
window identity is not displayed.

Sets the show option on and the
window identity is displayed.

Toggles the display of the window
identity.

0 The show window identity indicator was successfully changed.

Other See the values of the errorcode parameter of the HM_ERROR
message.

Chapter 12. Help Manager Messages 12-35

HM_SET_USERDATA

HM SET USERDATA - -
Parameters

Returns

The application sends this message to IPF to store data in the IPF data area.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

paraml (VOID)
4 byte user data area.

reply

ulretum-value (ULONG)
Return code.

TRUE The user data was successfully stored.

FALSE The call failed.

12-36 Information Presentation Facility

HM TUTORIAL

Parameters

Returns

HM_TUTORIAL

IPF sends this message to the application window when the user selects the Tutorial
choice from a help window. The application then calls its own tutorial program.

paraml

TutorialName (PSTRL)
Default tutorial name.

This points to a PSZ data type.

This string contains the name of the default tutorial program specified in the
IPF initialization structure. A tutorial name specified in the help window
definition overrides this default tutorial program.

paraml (ULONG)
Reserved.

0 Reserved value, zero.

flreply (ULONG)
Reserved.

0 Reserved value, zero.

Chapter 12. Help Manager Messages 12-37

HM_UPDATE_OBJCOM_ WINDOW _CHAIN

HM UPDATE OBJCOM WINDOW CHAIN - - - -

Parameters

Returns

This message is sent to the currently active communication object by the
communication object who wants to withdraw from the communication chain.

paraml (HWND)
The handle of the object to be withdrawn from the communication chain.

param2 (HWND)
Window containing the handle of the object to be replaced.

The object that receives this message should check to see if the object handle
returned from HM_SET_OBJCOM_WINDOW is equal to the handle inparaml. If
the handle is equal, then the handle in paraml should be replaced by the handle in
param2. If the handle is not equal and the handle previously received is not NULL
HANDLE, then send HM_UPDATE_OBJCOM_WINDOW_CHAIN to that object.

tlreply (ULONG)
Reserved.

0 Reserved value, zero.

12-38 Information Presentation Facility

Part 3: Tag Reference

©Copyright IBM Corp. 1992

Information Presentation Facility

Chapter 13. IPF Tag Reference

<O Copyright IBM Corp. 1992

This section contains an alphabetic listing of the tags used by the IPF compiler to
create online documents and Help windows. An IPF tag controls the format of the
displayed output.

The syntax description of each tag includes the tag name, the element that the tag
describes, the attributes of the tag, and the end tag. A tag begins with a colon (:)
and ends with a period(.) Most tags have an end tag associated with them. An end
tag has the same name as the tag, preceded by the letter "e." For example, the end
tag for the :userdoc. tag is the :euserdoc. tag.

A tag may have one or more attributes associated with it. An attribute provides
additional control information for the tag. An attribute can be followed by
apostrophes or single quotation marks. This shows that the information needed
contains special characters, and requires single quotation mark or apostrophe
delimiters, for example,
:font facename = 'Tms Rmn'.

Notice that the period that ends the tag follows the attributes specified for the tag.
If no attributes are specified, then the period immediately follows the tag name. For
example, when the :note. tag does not have the text=' ' attribute specified, the
period immediately follows the word :note.

Some tags are required to be in a specific order before the file can be compiled by
the IPF compiler. The following example shows the minimum tags required to
compile a file:

:userdoc.
:hl id=examplel.Tag Example 1
:p.This is the first tag example.
:euserdoc.

This section also describes control words used by the IPF compiler. Control words
start with a period (.). A control word tells the IPF compiler about the statement
that it is part of. For example, the imbed (.im) control word tells the IPF Compiler
to include the specified file in the source file at this point.

13-1

.br (Break)

Purpose
Causes a break in a line of text.

Syntax

Control Word Element Attributes End

.br Break

Attributes

None

Description
Use the .br control word to stop the display of text on a line, and continue it on the next line. The break
control word must be the only statement on the line. If you enter text on the same line as the break control
word, the IPF compiler ignores the break control word.

The break control word is especially useful before a line of text that contains a symbol.

Conditions

The .br control word must start in column 1, and be the only statement on the line.

Example

:p.These words
appear on
the same line.
~br
These words
.br
do not.

Output

These words
appear on the same line.
These words
do not.

For more information, see "Break" on page 3-16.

13-2 Information Presentation Facility

. * (Comment)

Purpose
Places a comment into a file.

Syntax

Control Word

*

Attributes
None

Description

Element Attributes End

Comment

The • * control word allows you to place a comment line into your file. The IPF compiler ignores any text on
the same line as the comment control word, and does not display this text.

The comment control word must be the first statement on the line of text that you do not want displayed.
Each comment control word must begin on a new line.

You can use comment control words to refer to items, to place notes into your file, or to prevent the display
of an item.

No space is required between the comment control word and the text that follows it. Comment control
words are used independently of IPF tags. They are not used between any IPF tags or with any IPF tag and
its accompanying text or attributes.

Conditions
Do not use the comment control word:

• Within the IPF tag, that is, between the colon that starts the tag and the period that ends the tag.

• Between an IPF tag and its accompanying text or attributes.

Always start the comment control word in column 1.

Example

.* The co1t111ent control word must be the first statement on the line •
• *When the source file is compiled, the text on the
.* co1t111ent line is not displayed.

Output
When the file is compiled, the comment control word and the information following it on the comment line
are not displayed.

Chapter 13. IPF Tag Reference 13-3

.im (lmbed)

Purpose
Specifies that text or artwork files are to be included at process time.

Syntax

I ~ntrol Word
.Im

Attributes
None

Description

Element Attributes

Im.bed

End

The .im control word enables you to include text or artwork files when you are ready to compile your file.

Conditions

• If the file to be included is not in the current directory, you must enter a complete file name.

• Im.bedded files must not use the :userdoc. or :euserdoc. tags.

Always start the .im control word in column 1.

Example

:userdoc •
• ;m filename.ext
.;m c:\main\filename.ext
:euserdoc.

Output
The text and art in the imbedded files are displayed when you access the compiled file.

13-4 Information Presentation Facility

:acviewport. (Application-Controlled Window)

Purpose
Enables an application to dynamically control what is displayed in an IPF window.

Syntax

Tag Element Attributes End

:acviewport Have IPF call a dll=''
function in a objectname =' '
dynamic-link module. objectinfo = ' '

objectid = ' '

Define the window in vpx=
which the function vpy=
runs. vpcx=

vpcy=

Attributes

dll=''
Specifies a dynamic-link module for IPF to load so that an object (a function) in the module can be run in
a window (an application-controlled window).

objectname =' '
Identifies the entry point of the object in the dynamic-link module. The value specified for this attribute
is case sensitive.

objectinfo =' '
Identifies parameters to be passed to the object.

objectid =' '
Specifies an identifier that will associate the window with the object.

vpx=
vpy=
vpcx=
vpcy=

Define the location and size of the window. vpx = and vpy = are positions along the x (horizontal) and y
(vertical) axes. The point where the values intersect represents the origin of the window. vpcx = and
vpcy = represent changes along the x and y axes with respect to the origin.

These attributes can be expressed as absolute values, relative values, or dynamic values:

Absolute value:
A number followed by a letter, which indicates the unit of measure:

c (Characters): Average character width of the default system font.
x (Pixels): Dependent on the display adapter in use.
p (Points): Typesetting measure; equal to approximately 1/72 inch.

Relative value:
A number followed by the percent sign (%), indicating a percentage of the parent-window width or
height.

Chapter 13. IPF Tag Reference 13-S

Dynamic value:
A term indicating a window coordinate location that is dependent on the current size and position of
the parent window:

left I center I right
For x values, flush left with, in the center of, or flush right with the parent window.

top I center! bottom
For y values, at the top, center, or bottom of the parent window.

Description
:acviewport is used in either a help file or an online document file to specify that a window will be under the
control of a routine that was written and compiled as part of a dynamic-link module. When an IPF window
is selected·for display at run time, and :acviewport is encountered, IPF passes control to the entry point
(objectname =) in the dynamic-link module. At this point, the routine in the module takes control. For more
information, see Chapter 9, "Expanding the Scope of IPF" on page 9-1.

The definition for :acviewport follows a primary heading; for example:

:h2 res=2000
x=left y=top width=100% height=100%
scroll=none titlebar=both clear group=l.Infonnation Windows

:acviewport dll= 1 My_DLL 1 objectname= 1My_Routine 1 objectid= 1 l 1
•

vpx=right vpc=top vpcx=50% vpcy=100%

In the example, a window is displayed in the primary window indicated by the heading tag (:b2) and its
attributes. The contents of the window are controlled by the object, My _Routine in the dynamic-link
module, My_DLL.

When the user selects the primary window and :acviewport tag is encountered, IPF calls the object in the
dynamic-link module and sizes the child window.

13-6 Information Presentation Facility

:artlink. (Art Link)

Purpose
Identifies link definitions for hypergraphic areas of a bit map or a metafile.

Syntax

I Tag
:artlink.

Attributes
None

Description

Element Attributes End

:eartlink.

Use :artlink in conjunction with the artwork tag (:artwork) to indicate links to a bit map or segments of a bit
map, or a metafile. The link definitions are specified by link tags (:link and follow :artlink, as in Example 1.

Example 1

:artlink.
:link reftype=hd res=OOl x=O y=O cx=16 cy=8.
:link reftype=fn refid=afnr x=16 y=8 cx=16 cy=8.
:link reftype=infonn res=0345 x=O y=8 cx=16 cy=8.
:eartlink.

(For more information, see ":link. (Link)" on page 13-43.)

All of the above could be in a separate file, which would be identified by the linkfile attribute of the artwork
tag, as in Example 2.

Example 2

:artwork name='mybitmap.bmp' linkfile='mylinks'.

In this example, MYBITMAP.BMP is the name of the file containing the bit map, and MYLINKS is the file
consisting of the entries shown in Example 1.

If the artwork tag does not specify the attribute linkfile =, IPF looks for :artlink on the line immediately
following :artwork, as shown in Example 3.

Example 3
:artwork name= 1mybitmap.bmp 1

•

:artlink.
:link reftype=hd res=OOl.
:eartlink.

In this example, if the user clicks on the bit map associated with this art link, the window with the identifier,
001 is displayed.

If no :artlink. tag is found, no hypergraphic areas for the bit map are defined.

Chapter 13. IPF Tag Reference 13-7

You can divide a bit map into rectangular segments, each of which is selectable and links to different
information. For each segment, you need to define values for x, y, ex, and cy, which represent pixel values
on the x and y axes. The x axis is always horizontal, and the y axis is always vertical; x and y define the
origin of the segment, while ex and cy identify the changes in x and y. The value 0,0 indicates the origin of
the bit map and is always the bottom left comer.

Following is an example of a segmented bit map.

0,16 32,16
I
I
I
y

I
I
I
0,0 --------------x--------------- 32,0

Example 4 shows the tagging when the link is from a segmented bit map. The name of the segmented
bit-map file is show2.bmp; the name of the file with the link information is link.dat.

Example 4

:artwork name= 1 show2.bmp 1 linkfile= 1 link.dat 1
•

The following information could be placed into LINK.DAT.

:artlink.
:link reftype=hd res=001 x=0 y=0 cx=16 cy=S.
:link reftype=fn refid=afnr x=16 y=8 cx=16 cy•8.
:link reftype•infonn res•0345 x•0 y•S cx•16 cy=S.
:link reftype=launch object• 1 c:\os2\e.exe 1 data• 1 c:\appsdir\tutor.dat 1

x=l6 y=0 cx=16 cy=S.
:eartlink.

13-8 Information Presentation Facility

:artwork. (Artwork)

Purpose
Identifies a bit map to be placed into the user's file.

Tag Element Attributes End

:artwork. Artwork name=''

align=

linkfile = ' '

runin

fit

Attributes

name= 'filename.ext'
Identifies the file containing the bit map (artwork). This attribute is required and must specify a complete
file name.

align= left I right I center
Specifies how the artwork is to align with the current margins. It can be to the left, to the right, or
centered.

linkfile ='filename.ext'
Identifies the file with the link definitions. This file begins with :artlink and ends with :eartlink. The
linkfile = attribute enables you to link from whole or segmented bit maps. It can be omitted if the artwork
file does not require links, or if the links are enclosed by :artlink and :eartlink immediately following the
artwork tag.

runin

fit

Specifies that the artwork is to be placed within the line of text. You enter :artwork and its attributes in
the line of text where you want the artwork to appear.

Causes the artwork to fill the window in which it is displayed. If the user resizes the window, IPF
redisplays the bit map so that it fits the new window size.

When the initial size of the window is specified, the ratio between its width and height should be
approximately the same as that of the bit map; otherwise, the artwork may appear distorted.

The fit attribute is most often used when artwork is to be displayed in a split window, where one window
contains a bit map, and another contains text that is displayed beside the bit map.

If the artwork tag has fit, and you include text in the same window, the text will be displayed briefly, but
will then be covered by the painting of the bit map in the window.

Description
Use :artwork to include bit maps, such as vectors and scanned images, in the text file. The artwork tag and
its attributes enable you to merge whole or segmented bit maps and position them in the window. A bit map
can be created by an application or by a bit-map editing tool, such as the Presentation Manager Icon Editor.

Chapter 13. IPF Tag Reference 13-9

Conditions

• If a path name is not specified for either name= or linkfile =, IPF looks for the file in the current
directory.

• If linkfile = is not specified, IPF looks for the artlink tag on the line immediately following the artwork
tag.

• The artwork tag requires the name= attribute.

Example 1
This example shows how to include artwork that does not require a hypergraphic link. The artwork is to be
placed within the line of text that contains the artwork tag.

Click on the :artwork name= 1gopi.art 1 runin. symbol to close the file.

Example 2
This example shows how to include artwork that fills the window in which it is displayed.

:artwork name= 1c:\main\world.bmp 1 fit.

13-10 Information Presentation Facility

:caution. (Caution)

Purpose
Alerts the user to a risk.

Tag Element Attributes End

:caution. Caution text='' :ecaution.

Attributes

text=' I

Enables you to change CAUTION to different text.

Description
A caution message notifies the user of possible risks. It should precede the text to which it pertains so the
user will see it first.

When :caution is encountered, CAUTION appears on the screen, and the caution text is displayed on the next
line. A blank line is inserted before the caution message.

Conditions
None

Example 1

:caution.
These berries are wild. Do not eat.
:ecaution.

Example 2

:caution text•'Wild Berries:'.
These berries are wild. Do not eat.
:ecaution.

Output

Example 1

CAUTION:
These berries are wild. Do not eat.

Example 2

Wild Berries:
These berries are wild. Do not eat.

Chapter 13. IPF Tag Reference 13-11

:cgraphic. (Character Graphic)

Purpose
Defines a character graphic.

Syntax

Tag

:cgraphic.

Attributes
None

Description

Element

Character graphic

Attributes End

:ecgraphic.

Character graphics are those you create with an ASCII editor. The :cgraphic tag indicates that a character
graphic is to follow. Everything after the tag and before :ecgraphic will be in a monospace font .. A blank
line is inserted before and after the graphic.

Conditions
Text that does not fit in the display area of a window is clipped.

Example

:cgraphic.

I I I ~___.._I LL One J
:hp2.Two:ehp2. __ __,

:ecgraphic.

Output

13-12 Information Presentation Facility

:color. (Color)

Purpose
Changes the colors of the text and text background.

Syntax

Tag Element Attributes End

:color. Color fc=

be=

Attributes

fc=
Enables you to change the color of the text. Text following this attribute appears in the color specified.
The values that can be specified are:

default
blue
cyan
green
neutral
red
yellow

be=
Enables you to change the background color of the text. The screen colors remain the same. The values
that can be specified are the same as those for fc =.

Description
:color and its attributes enable you to change the color of the text and the color of the text background.
Colors set With this tag remain in effect until another color is specified or a heading definition is encountered.

To return to the system colors, use fc =default and be= default.

Conditions
None

Example

:sl.
:color fc=green bc=;blue.
:li.Color the foreground green; color the background blue •
. *
:color fc•blue bc=red.
:li.Color the foreground blue; color the background red •
. *
:color fc=cyan bc•yellow.
:li.Color the foreground cyan; color the background yellow •
. *
:color fc=default bc=.default.
:li.Return to the system colors.
:esl.

Output
The colors of the screen and text change t-0 the specified colors.

Chapter 13. IPF Tag Reference 13-13

:ctrl. (Control Area)

Purpose
Defines the contents of the control area.

Syntax

Tag

:ctrl

Attributes

ctrlid=

Element

Control area

Attributes End

ctrlid=
controls= 1 I

page
coverpage

Specifies the identification value for the control area. The identification value can be either alpha or
alphanumeric, and is referenced by the heading tag.

controls= 1
•

Specifies the identification values of the push buttons that you want included in the control area of a
window. Push buttons are displayed in the order in which they are defined. The values that can be
specified are:

Search

Print

Index

Contents

Esc

Back

Forward

Specifies the "Search" push button. This push button displays a window that lets the
user search for a word or phrase.

Specifies the "Print" push button. This push button displays a window that lets the user
print one or more topics.

Specifies the "Index" push button. This push button displays an alphabetic list to the
topics in the document.

Specifies the "Contents" push button. This push button displays the Contents window.

Specifies the "Previous" push button. This push button lets the user see information
from an earlier request.

Specifies the "Back" push button. This push button displays the previous page in the
table of contents hierarchy.

Specifies the "Forward" push button. This push button displays the next page in the
table of contents hierarchy.

Note: An identification value for the Tutorial push button is not provided because it is displayed
automatically if a tutorial exists.

If you are defining your own push buttons, use id= attribute of the push button tag (:pbutton.). See
":pbutton (Push Button)" on page 13-55.

The identification values for the predefined push buttons are defined in the PMHELP.H file (refer to the
Developer's Toolkit for OS/2 2.0).

page
Specifies that a set of push buttons display in the control area area of an IPF text window (see page 3-9).
You can use this attribute to override the default set of push buttons that display in the control area of an
IPF text window.

13-14 Information Presentation Facility

coverpage
Specifies the set of push buttons that display in the control area of the the coverpage window (see page
3-8). The control area in the coverpage window is at the very bottom of a window. You can use this
attribute to override the default set of push buttons that display in the coverpage window.

Example: The following tagging specifies the Previous, Forward, and Back push buttons display in the
coverpage window:

:ctrl ctrlid=newl controls='ESC FORWARD BACK' coverpage.

Description
The control area tag (:ctrl.) specifies where push buttons are displayed, and which push buttons you want
displayed. You can display push buttons in the control areas of coverpage window or an IPF text window.

The default control area for online documents and Help windows is the coverage page window, and the
default push buttons that display are:

Online documents

Previous
Search
Print
Index
Contents
Back
Forward
Tutorial (only if a tutorial is available).

Help windows

Previous
Search
Print
Index
Tutorial (only if a tutorial is available).

You can define more than one control area with different sets of pushbutton for an IPF text window.
However, only one set of pushbuttons can be defined for the coverpage window.

The default set of push buttons for an IPF text window can be overridden by defining a new default or by
referring to the control area definition with the heading tag (see ":hl. through :h6. (Headings)" on
page 13-27). For more information about push buttons, see "Push Buttons" on page 3-7.

Conditions

• The control area tag (:ctrl.) must be enclosed within the control area definition tag (:ctrldef.) and
associated end tag (:ectrldef.) (see ":ctrldef (Control Area Definition)" on page 13-16).

• The :ctrl. tag must follow all push button tags (:pbutton.) (see ":pbutton (Push Button)" on page 13-55).

Chapter 13. IPF Tag Reference 13-15

:drldef (Control Area Definition)

Purpose
Defines a control area.

Syntax

Tag

:ctrldef.

Attributes
None

Description

Element

Control area definition

Attributes End

NONE :ectrldef.

Use the :ctrldef. tag to define a control area and the contents of the control area. For tagging information
about the control area of a window, see ":ctrl. (Control Area)" on page 13-14.

Conditions

• This tag should follow the :docprof. tag.

• The following tags are embedded within the :ctrldef. and :ectrldef. tags.

- :pbutton.

- :ctrl.

13-16 Information Presentation Facility

:ddf. {Dynamic Data Formatting)

Purpose
Display dynamically formatted text in an application-controlled window.

Syntax

Tag Element Attributes End
:ddf. Dynamic data res=

formatting

Attributes

res=
Associates a location in a window with a request for specific information. The value is an integer from 1
to 64000.

Description
:ddf indicates that the application will provide dynamically formatted data.

When IPF encounters :ddf, it sends the message HM_QUERY_DDF _DATA to the OBJCOM window, and
specifies the res= value. {The application identified the OBJ COM window by sending
HM_SET_OBJCOM_WINDOW to IPF.) The OBJCOM code responds by initializing for dynamic data
formatting and proceeding with a dynamic data-formatting routine, using dynamic data-formatting functions.
For more information, see "Dynamic Data Formatting" on page 9-19.

Chapter 13. IPF Tag Reference 13-17

:di. (Definition List)

Purpose
Identifies a list of terms and definitions.

Syntax

Tag Element Attributes End

:dl. Definition list compact :edl.
tsize=
break=

:dthd. Definition-term
heading

:ddhd. Definition- description
heading

:dt. Definition term

:dd. Definition description

Attributes

compact
Causes the list to be formatted without a blank line between each term and description. If you omit this

attribute, a blank line is inserted.
tsize= 10 In

Defines the amount of space to allot for the terms and term headings. The default is 10 character units.

If the value of tsize = exceeds the current size of the formatting area (the space between the current

margins), the current formatting area size is assigned, and a warning message is issued.

break= none I fit I all
Controls the formatting of the terms and descriptions:

none The description is on the same line as the term. If the length of the term exceeds the value

specified by tsize =, the term extends into the description column, and the description starts one

space after the term.

fit The description is placed on the line below the term if the term is longer than the value specified

by tsize=.

all All descriptions are placed on the line below the term.

Conditions

• The term-heading tag (:dthd.) is paired with the description-heading tag (:ddhd.) and precedes the term

and description tags (:dt. and :dd.).

• The term tag requires a description tag.

13-18 Information Presentation Facility

Example

:dl compact tsize=20.
:dthd.:hp2.Ma11111al:ehp2.
:ddhd.:hp2.Description:ehp2.
:dt.Florida Panther
:dd.Relative of the mountain lion or puma.
:dt.Key Deer
:dd.&odq.Toy&cdq. member of the whitetail deer family.
:dt.Manatee
:dd.Gentle giant sea cow.
:edl.

Output

Mammal
Florida Panther
Key Deer
Manatee

Description
Relative of the mountain lion or puma.
"Toy" member of the whitetail deer family.
Gentle giant sea cow.

Chapter 13. IPF Tag Reference 13-19

:docprof. (Document Profile)

Purpose
Specifies the heading-level entries to be displayed in the Contents window.

Syntax

Tag Element Attributes End

:docprof. Contents window toe=
entries

Application-controlled dll=' I

window support objectname =' '
objectinfo =' '

Push button support ctrlarea=

Attributes

toe=
Enables you to control the heading levels displayed in the table of contents. For example, if you want
only heading levels 1 and 2 to appear, the tagging is:

:docprof toc=12.

If no toe= value is specified, heading levels 1 through 3 appear in the Contents window. Heading levels 4
through 6 appear as part of the text when the window is displayed.

If a heading tag also specifies a value for toe=, the heading-tag value overrides the :docprof value until
either the end of the file is reached, or another heading toe= value is encountered.

dll=''
Specifies the communication dynamic-link library that IPF loads so that a communication object in the
library can be executed in an application-controlled window (see ":acviewport. (Application-Controlled
Window)" on page 13-5). For author-defined push buttons, this is the communication object that will
receive the HM_NOTIFY message. For a tutorial push button, this is the communication object that will
receive the HM_TUTORIAL message.

objectname =' '
Identifies the entry point of the communication object in the dynamic-link library. The value for this
attribute is case sensitive.

objectinfo =' '
Identifies parameters to be passed to the object.

ctrlarea=
defines the control areas in a window where you want to display push buttons. For more information on
control areas in a window, see "Push Buttons" on page 3-7.

Possible values are:

page

eoverpage

both

none

Identifies the control area within the IPF text window.

Identifies the control area as the bottom of the coverpage window. This is the default
value.

Specifies that you want a control area in both the IPF text window, and the coverpage
window.

Specifies that you do not want a control area. You do not want push buttons.

13-20 Information Presentation Facility

Description
:docprof is placed at the beginning of the file. It follows the title tag (:tide), if a title is specified; otherwise, it
follows the user-document tag (:userdoc).

The :docprof tag also provides application-controlled window support by loading any dynamic-link modules
specified by :acviewport tags. It is possible to have multiple windows, multiple dynamic-link modules, and
multiple entry points within a dynamic-link module. You also can use this tag to change the size and
function of the coverpage and its client and control windows (see "The Coverpage Window" on page 9-3).

The :docprof tag defines the control area in a window where you want to display push buttons.

Conditions
None

Example

:userdoc.
:title.
:docprof toc=123 ctrlarea=none.
:euserdoc.

Output
When the user selects the+ icon in the Contents window, heading levels 1 through 4 are displayed in a
tree-structured format. There are no push buttons because of ctrlarea =none.

Chapter 13. IPF Tag Reference 13-21

:fig. (Figure)

Purpose
Identifies a figure.

Syntax

Tag

:fig.

Attributes
None

Description

Element Attributes End

Any text :efig.

:fig indicates that what follows is to be formatted exactly as it is entered. Text that exceeds the window area
will be clipped.

The figure is displayed in proportional font, with a blank line preceding the text. Because proportional font
is used, words will align, but letters and numbers may not.

Conditions
None

Example
:fig.

Area Number Classification Code

JOBI

:efig.

Output

Area

JOBI

2
4
4
I
2

Number

2
4
4
I
2

Full-time exempt
Part-time exempt
Full-time nonexempt
Part-time nonexempt
Supplemental

Classification

Full-time exempt
Part-time exempt
Full-time non-exempt
Part-time non-exempt
Supplemental

13-22 Information Presentation Facility

IA
18
2A
28
3A

Code

IA
IB
2A
28
3A

:figcap. (Figure Caption)

Purpose
Specifies a figure title.

Syntax

Tag

:figcap.

Attributes
None

Description

Element

Any text

Attributes End

:figcap is placed between :fig and :efig. The text of the caption goes on the same line as the tag, or on the
next line.

Conditions

• Use :figcap either immediately after :fig or immediately before :efig.
• The text of the figure caption cannot contain tags or semicolons.

Example
:fig.

Area Number Classification Code

JOB2

5 Full-time exempt lA
1 Part-time exempt 18
3 Full-time non-exempt 2A
1 Part-time non-exempt 28
1 Supplemental 3A

:figcap.Payroll Codes for Area JOB2 :efig.

Output

Area Number Classification Code

JOB2

5 Full-time exempt lA
1 Part-time exempt 18
3 Full-time non-exempt 2A
1 Part-time non-exempt 28
1 Supplemental 3A

Payroll Codes for Area JOB2

Chapter 13. IPF Tag Reference 13-23

:font. (Font)

Purpose
Changes the font to the specified typeface, size, and code page.

Syntax

Tag Element Attributes

:font. Fonts facename=

size=

codepage=

Attributes

facename=
Defines the typeface name of the font. Possible values are:

Courier
'Tms Rmn'
Helv
default

End

None

This attribute is required. If default is specified, the font is reset to the default system font.

Notice that facename= values have initial capitals. These are required; otherwise, the IPF compiler will
not recognize them as valid values. No error message is returned when an invalid value for facename = is
encountered.

size=h x w
Defines the average character height and width, in points, of the Presentation Manager image font. (A
point is a typesetting measure that is equal to approximately 1/72 of an inch.)
Following are the Presentation Manager image fonts available on all system-supported display adapters:

Face Point Sizes

Courier 8, 10, 12

Helv 8, 10, 12, 14, 18, 24

TmsR.mn 8, 10, 12, 14, 18, 24

The size= attribute is required. If the value is set to OxO, the font is reset to the default system font.
codepage=

Specifies the code page to be used. This is a three-digit number. Possible values are:
437 - U.S. IBM PC
850 - Multilingual
860 - Portuguese
863 - Canadian French
865 - Nordic

See "Country Code Pages" on page 7-7 for a list of countries and their code pages.

The codepage= attribute is optional. If no code-page value is specified, the code page of the active
system process is used.

13-24 Information Presentation Facility

Description
:font changes the current font for the text within the current window. When a heading tag defining a new
window is encountered, the font resets to the default system font.

You can make as many font changes within a window as you want. If you define highlighted phrases while a
font tag is in effect, the highlighted text will be displayed in the font style corresponding to the specified
typeface.

When you specify height and width values for a valid font name, you do not have to know the exact point
values. If no match is found for a specified font size, IPF uses a "best fit" method to select the font. For
example, suppose you specify:

:font facename=Helv s;ze=20x12.

IPF selects "Helv 18xl0" because it is the closest match.

Chapter 13. IPF Tag Reference 13-25

:fn. (Footnote)

Purpose
Identifies a pop-up window.

Syntax

Attributes

id=

Element Attributes End

Pop-up id= :efn.

Specifies the ID of the footnote. It is used in conjunction with the link tag (see ":link. (Link)" on
page 13-43).

Description
The footnote tag encloses information that will be displayed in a pop-up window when the user selects a
hypertext link to the information. Footnotes can appear within paragraphs, lists, highlighted phrases, and
artwork.

Conditions

• Index entries are not valid within a footnote.
• The id= attribute is required.
• One footnote must end before another begins.
• A footnote cannot be linked from a child window.
• Information in a footnote cannot be returned as the result of a search.

Example
The following shows how to enter the footnote ID (here "ddrive") and provide a link to the footnote.

:fn id=ddrive.
The infonnation you place here appears in the pop-up window as a
footnote. For example, you could enter additional infonnation
about the disk drive in a footnote.
:efn.

To provide the link that allows the user to view the footnote pop-up, you could enter:

:p.Additional infonnation about
:link refid=ddrive reftype•fn.disk drives:elink.
is available.

Output
When the information is displayed, disk drives is highlighted and clicking on disk drives pops up the footnote
window.

13-26 Information Presentation Facility

:h1. through :h6. (Headings)

Purpose
Define window characteristics.

Syntax

Tag Element Attributes End

:hl.-:h6. Define cross references res=
to internal and external id=
sources. name=

global
tutorial =' '

Define origin and size x=
of windows with y=
relation the primary width=
window. height=

Manage the display of group=
information in multiple viewport
windows. clear

Define the user's titlebar=
control over the scroll=
window. rules=

Restrict user retrieval nosearch
of information. noprint

hide

Change heading levels toe=
that appear in the
Contents window.

Define the control area ctrlarea=
of a window for ctrlrefid=
displaying push
buttons.

Attributes

res=
id=
name=

Specify window identifiers.

If you are creating an .HLP file, res= is required and can be any integer from 1 through 64000.
However, if you are creating an .INF file (compiled by specifying the /INF parameter with the IPFC
command), you can use res=, name= or id= . With name= and id=, you can include alphabetic
characters. You CANNOT use these attributes if you plan to concatenate .INF files. Instead, you must
use res=. For more information see "Concatenating .INF Files" on page 7-5.

Chapter 13. IPF Tag Reference 13-27

global
Indicates to IPF that the window can be a reference in an external database (another IPF .HLP or .INF
file). A reference from one IPF database to another is made by specifying reftype =database and
object= 'filename' with the link tag.

tutorial = ' '

x=

Specifies the file name of the tutorial and causes the tutorial choice to be added to the help pull-down
when the window is displayed. When the user selects Tutorial, the HM_TUTORIAL message specifying
the file name of the tutorial is sent to the application. An example of the tagging follows:

:hl tutorial='example.exe'.Test Window

y=
width=
height=

Define the size and position of a window. The x = and y = attributes are values along the x and y axes;
they define the origin of the window. The x axis runs horizontally from left to right, and the y axis runs
vertically from bottom to top. The position where the values specified for x = and y = intersect is the the
origin of the window. (The 0,0 intersection is the bottom left comer of the parent window.) From this
location, width and height are measured. For more information about window coordinates, see "Defining
Window Origin and Size" on page 6-4.

Size and position attributes can be given in absolute, dynamic, or relative values:

Absolute value:
A number followed by a letter, which indicates the unit of measure:

c (Characters): Average character width of the default system font.
x (Pixels): Dependent on the display adapter in use.
p (Points): Typesetting measure; equal to approximately l /72 inch.

Relative value:
A number followed by the percent sign (%), indicating a percentage of the parent-window width or
height.

Dynamic value:
A term indicating a window coordinate location that is dependent on the current size and position of
the primary window:

center I left I right
For x= values: In the center of, flush left in, or flush right in the parent window.

center I top I bottom
For y = values: In the center of, at the top of, or at the bottom of the parent window.

Restrictions:
When defining window position and size, you cannot mix absolute values with dynamic or relative
values for either of the following combinations of attributes:

The x coordinate and the width
They coordinate and the height.

If no values for x = and y = are specified, the origin of the window is 0,0. If you specify values other
than 0,0, you also must specify width and height values. Negative values for these attributes are not
allowed.

13-28 Information Presentation Facility

group=
viewport
clear

The group= attribute enables you to assign the window a number from 1 through 64000. This associates

the window with a heading definition and the IPFC information that follows it. If you do not provide a

number with group=, IPF assigns the number 0.

A group number can be assigned to a viewport by a heading or link definition. For example, suppose you

have a group number specified in a link definition, and another in the heading that the link refers to. If a

user action causes the link definition to be selected, the link group number overrides the heading group

number. However, if the user selects the heading from either the Contents window or the Index window,

the heading group number takes effect.

IPF searches among the open windows to find one with a number matching the one specified with

group=. If no match is found, IPF opens a new window. If a match IS found, the information

associated with the group number is swapped with the information in the matched window.

The viewport attribute always opens a window. If you specify both viewport and group=, and a window

with the specified group number is already open, IPF opens another window with the same group

number. Thus, it is better that you do NOT specify the viewport attribute in a heading that will appear in

the Contents window, unless you want your contents entries to always open separate windows.

The clear attribute causes IPF to close any open windows before opening a window to display the current

window.

titlebar =yes I sysmenu I minmax I both I none
rules= border I size border I none
scroll= horizontal I vertical I both I none

These attributes define Presentation Manager window controls and are used primarily when defining

secondary windows. If none of these attributes are specified, the default is to open a window that has a

title bar with title bar icon, hide button, maximize button; a sizing border; and vertical and horizontal

scroll bars.

nose arch
no print
hide

These attributes restrict information retrieval and are most often used in heading definitions for secondary

windows.

The nosearch attribute in a secondary heading definition prevents the heading from being returned as an

entry in the search-results window. This does not mean the secondary window is not searched. It is;

however, only the primary heading definition that is returned. When the user selects the primary heading

definition, the contents of the second window are displayed as part of the primary-window composition.

The noprint attribute in a secondary heading definition prevents the contents of a secondary window from

being printed as a separate entity. Instead, secondary windows are printed as part of their primary

window. The contents of secondary windows are printed in the order in which the link definitions are

listed in the primary window.

When used in secondary heading definitions, nosearch and noprint merely prevent duplication of output

(search results or printed copy). When used in regular heading definitions, they prevent retrieval of the

information by the user. The only exception to this condition is if the user selects This section for either

printing or searching.

The hide attribute prevents a heading level from appearing in the Contents window. However, there must

be at least one heading level that is not hidden.

Chapter 13. IPF Tag Reference 13-29

toe=
Specifies heading levels that are to be entries in the Contents window. When this attribute is encountered
in a heading tag, the specified heading levels override any levels specified by toe= of the document-profile
tag (:doeprof.) until either the end-of-file is reached or another toe= attribute is encountered in a heading
tag. If no document-profile tag exists, the heading levels that appear in the Contents window are levels 1,
2, and 3.

etrlarea=
Specifies which control area in a window you want to display push buttons. When this attribute is
encountered in a heading tag, it overrides the etrlarea attribute specified by :doeprof.. Possible values are:

page Identifies the control area as the IPF text window.

none Specifies that you do not want a control area.

For example: If your document consisted of 100 windows, and you wanted only one window to display
push buttons in the IPF text window, you would tag your source file as follows:

:docprof ctrlarea=none.

:hl ctrlarea•page.One Window

etrlrefid=
Refers to the identification value (id=) specified by the control area tag (:etrl.). This attribute specifies
which control area you want to display for this heading. This attribute is used to overrides the default
control area (the coverpage window).

Note: Be careful when using heading tags to define a control area for split windows. A control area cannot
be defined in the secondary window heading tag of a split window. You must define the control area
(the coverpage window) in the primary window heading tag.

13-30 Information Presentation Facility

:hide. (Hide)

Purpose
Controls display of IPF text and graphics to meet conditions set by the !PF _KEYS= environment variable.

Syntax

Tag Element Attributes End

:hide. Hide key= :ehide.

Attributes

key=''
Defines the key that enables a user to view hidden information. You can specify one or more key names.
Enclose each key name within apostrophes. When specifying more than one key name, insert a plus (+)
sign after each name.

Text entered between the :hide. and :ehide. tags is only displayed when the key=' 'attribute matches the
entry specified by the user. Use the OS/2 environment variable SET !PF _KEYS= to specify the key
name identified for the hidden information. When this feature is used in online documents, the
SET_KEYS= line MUST be set in CONFIG.SYS. This feature cannot be altered on a session basis.

If this attribute is not specified, the information identified by the hide tag is displayed.

Description
:hide enables you to determine what text and graphics will be displayed within a window. This function is
useful when you want to tailor the information you give to users; for example, if you want to display levels of
information on the basis of a user's system configuration, you assign each level a value with the key=
attribute. When a topic containing hide tags is selected for viewing, IPF will look for an environment
variable called IPF _KEYS= to determine what level of information to show the user. If a match is found,
the information within the hide tags is displayed; otherwise, the information is hidden from view.

The hide tag affects the display of compiled information. You can hide lines of text within the window, a
word or a phrase within a line, or you can hide an instruction to display a bit map, as in the following
example.

:hide key= 1 levell 1
•

:artwork name= 1mybitmap.bmp 1
•

:ehide.

If the user's environment does not contain the key to display the hidden information, IPF wraps the text
from the last character or formatting instruction on the line preceding :hide to the line following :ehide.

In some situations, the same user may need to view more than one level of hidden information. This can be
accomplished by setting the IPF _KEYS= to concatenated values; for example:

SET IPF_KEYS=LEVEL1+LEVEL2

Take care that a window view does not contain an orphan tag. For example, you do not want to hide the
information following a list item, unless you have alternate information to display, based on the setting of a
key. In the case of an ordered list, which generates sequential numbers, you would not include a list item in
the hidden information, unless it is the last item in the list.

Chapter 13. IPF Tag Reference 13-31

Conditions

• You cannot nest one set of hide tags within another.
• You cannot include a heading tag that has a res= attribute within a set of hide tags.
• You cannot set IPF _KEYS= on a session basis.

Example
Suppose the following source has been compiled as part of a help library file:

:hl res•001.Installation Procedure
:ol.
: 1t.
:hide key= 1 usera 1

•

Instruction for User A.
:ehide.
:hide key='userb'.
Instruction for User B.
:ehide.
:lt.
Shut down the system from the desk top.
:H.
Press Ctl+Alt+Del to restart the system.
:eol.

If the user's environment includes the setting, IPF _KEYS= USERA, the following is displayed:

1. Instruction for User A.

2. Shut down the system from the desk top.

3. Press Ctl +Alt+ Del to restart the system.

13-32 Information Presentation Facility

:hp1. through :hp9. (Highlighted Phrase)

Purpose
Emphasize text by changing the font style or foreground color.

Syntax

Tag Element Attributes End

:hpn. Highlighting None :ehpn.

Description
Highlighted-phrase tags are useful for emphasizing words and phrases within text.

Font styles that are displayed for highlighted phrases correspond to the typeface currently being used by IPF.
To change from the default system typeface to other typefaces, use :font. When you use either the example
tag (:xmp) or the character-graphics tag (:cgraphic), the system monospace typeface is displayed.

Input

:sl compact.
:li.:hpl.Highlighted phrase 1 looks like this.:ehpl.
:li.:hp2.Highlighted phrase 2 looks like this.:ehp2.
:li.:hp3.Highlighted phrase 3 looks like this.:ehp3.
:li.:hp4.Highlighted phrase 4 looks like BLUE.:ehp4.
:li.:hpS.Highlighted phrase 5 looks like this.:ehpS.
:li.:hp6.Highlighted phrase 6 looks like this.:ehp6.
:li.:hp7.Highlighted phrase 7 looks like this.:ehp7.
:li.:hp8.Highlighted phrase 8 looks like RED.:ehp8.
:li.:hp9.Highlighted phrase 9 looks like PINK.:ehp9.
:esl.

System Default Font Output

Highlighted phrase 1 looks like this.
Highlighted phrase 2 looks like this.
Highlighted phrase 3 looks like this.
Highlighted phrase 4 looks like BLUE.
Highlighted phrase 5 looks like this.
Highlighted phrase 6 looks like this.
Highlighted phrase 7 looks like this.
Highlighted phrase 8 looks like RED.
Highlighted phrase 9 looks like PINK.

Conditions
You cannot nest highlighted-phrase tags.

Chapter 13. IPF Tag Reference 13-33

:i1. and :i2. (Index)

Purpose
Place topics into the index.

Syntax

Tag Element Attributes End

:ii. Primary entry id=

global

roots=''

sortkey=''

:i2. Secondary entry refid=

global

sortkey=''

Attributes

id=
Provides a cross-reference identifier for the secondary index tag (:i2). This attribute is optional and only

valid when used with the primary index tag (:il).

global
Specifies that the index entry appear in the OS/2 Master Help Index folder. Entries also appear in the

component index. This attribute is only used in Help windows. Online document cannot use this

attribute.

roots='root words
Specifies a list of root words that act as index entries to specified topics. These root words are associated

with words defined with the index-synonym tag (:isyn). Root words can contain alphabetic and numeric

characters, which can be entered in uppercase or lowercase. When entering a string of words, insert a

blank space between each word, and enclose the string within apostrophes.

Root words do not appear in the index, so are not viewed by the user, and need not be translated. They

are used to create a link between the primary index tag and the index-synonym tag. To enable the user to

search for an index entry, use the index-synonym tag to map the root words associated with the entry to
synonyms.

sortk.ey = 'sortkey-text' .index-text
Specifies a character string that is used for sorting the entry in the index, and another character string that

is displayed for the index entry.

The sortkey-text character string determines where this entry is placed in the index. The index-text

character string is displayed for the index entry.

refid ==
Provides a reference to the text associated with the primary index tag.

13-34 Information Presentation Facility

Description
You use the primary and secondary index tags to provide index entries to the information. The attributes
associated with each index tag enable you to define related information. Index entries can be used
throughout the file, but cannot be placed within a footnote.

The text of the index entry must be on the same line as the tag, and cannot contain other tags. The entry for
each primary index entry within the window must be unique. That is, you cannot provide duplicate index
entries within the same window. Secondary index entries must refer to an identifier specified for a primary
index entry.

When the user selects Help index from the Help menu, an Index window is displayed for the help interface.
When the user selects Index from the Options menu, an Index window is displayed for the online information
interface. If the user enters a synonym that matches a root word, the index topics listed for the root word
are displayed.

Conditions

• Index entries cannot appear in a footnote.
• When referencing the :il. tag use the global attribute on both the :il. and :i2. tag.

Example 1
This example shows how to tag your file to include primary and secondary index entries.
:il id=del.delete
:i2 refid=del.directories
:i2 refid=del.files

Output
The index will include the following entry:

delete
directories
files

Example 2
This example shows a file with the index-synonym tag (:isyn) and the roots= attribute.

:hl id=copy03.Help for Copying
:isyn root=copy.copy copying duplicate duplicating
:isyn root=book.book manual draft manuscript
:isyn root=folder.folder folders document documents
:il roots='copy folder'.Copying a document
:il roots='book folder'.Test procedures
:p.When copying a file from the current directory to a new
directory, specify the following:
:ul.
:li.The file name
:li.The target directory
:li.The new file name and extension.
:eul.

Chapter 13. IPF Tag Reference 13-35

Output
The index-synonym tag creates the following synonym table:

Root word Synonym words

copy

book

folder

copy copying duplicate duplicating

book manual draft manuscript

folder folders document documents

The roots= attribute points to the root words, "copy" and "folder," and the list of associated synonyms.
For example, if the user searches for "copy" or "folder," the "Copying a document" entry appears because

"copy" and "folder," identified by the index roots= attribute, match the entries listed for the index synonym

root= attribute.

A search for the synonym "duplicate" lists "Copying a document" as one of the index choices. A search for

the synonym "manual" lists "Test procedures" as an index choice, and a search for "document" lists both
"Copying a document" and "Test procedures."

Example 3
This example shows how to specify a sort key to change the location of the entry in the index.

:tl sortkey='point sizes'.changing fonts
:ii.program header
:tl.parameter list
: il.preface

Output
The index will include the entry "changing fonts" at the location where the term "point sizes" would appear

in the sorting sequence of the index, as follows:

parameter list
changing fonts
preface
program header

13-36 Information Presentation Facility

:icmd. (Index Command)

Purpose
Identifies the help window that describes a command.

Syntax

Tag Element Attributes End

:icmd. Index command external command
string

Attributes

external-command-string
Specifies the command for which help is being defined. The text can contain no other tags.

Description
The help information for a command is assumed to be in the help window in which the index-command tag
(:icmd) is defined. If the help window provides help for more than one command, an index-command tag
should be defined within the heading tag for each command.

The same external command string cannot be specified in more than one index-command tag of an index file;
that is, only one help window can be designated as describing a command.

If the compiler finds the same external command string more than once (either from the same or different
help windows), the duplicate occurrences are discarded, and a warning message is issued.

Note: The association with entry field and command names is a programming task. In addition, the
application developer must define the field with which command windows are to be associated as a
command entry field. For more information about programming a command entry field, see
"Command Entry Field" on page 8-12.

Conditions
:icmd must follow a heading tag or another index tag.

Example

:hl ;d=xhlp.Help for Copying
:tcmd.Copying
:hl res=129.Deleting Files
:tcmd.Delete

Ou,tput
At execution time, the index entries enable the compiler to process command helps, create a list of commands
for which help is available, and display the help window defined for any of those commands.

Chapter 13. IPF Tag Reference 13-37

:isyn. (Index Synonym)

Purpose
Identifies synonyms and word variations for the help keywords.

Syntax

Tag Element Attributes End

:isyn. Index synonyms root=

Attributes

root=
Links synonyms and variations of words specified in a primary index tag.

To establish a link, specify the same word as specified in the roots= attribute of the primary index tag.

Then add a period, repeat the root word, and add the list of synonyms and variations, separated by

blanks. For example, assume that the value specified for the roots= attribute of the primary index tag is

"copy." The entry for the index-synonym tag could be:

:isyn root=copy.copy copying duplicate duplicating

The words entered in the synonym list enable the user to search for terms that may not be in the Index

list, and still receive the appropriate help. Lowercase and uppercase characters are treated the same.

Description
:isyn begins a list of synonyms or variations of a word specified by a primary index tag. The compiler uses

this list to build a table that serves as a link to the primary index tags. Synonyms determine the topic entries

displayed when the user enters words for a search of the index. The compiler matches the entered words with

words in the table and links to the topics to be displayed.

The index-synonym tag can be placed within any window that contains related index entries identified by the

index tag. The synonyms defined in a window can relate to many topics, and thus to many windows.

Synonyms defined with this tag do not appear in the index.

Conditions
A root word can contain only alphabetic and numeric characters.

Example

:hl id=copy03.Help for Copying
:isyn root=copy.copy copying duplicate duplicating
:isyn root=folder.folder folders document documents
:il roots='copy folder'.Copying a document
:p.When copying a file from the current directory to a new
directory, specify the following:
:ul.
:li.The file name
:li.The target directory
:li.The new file name and extension
:eul.

13-38 Information Presentation Facility

Output
The index-synonym tag creates the following synonym table:

Root word

copy

folder

Synonym words

copy copying duplicate duplicating

folder folders document documents

The roots= attribute points to the root words, "copy" and "folder," and the list of associated synonyms. If
the user searches for "copy" or "folder," the words will be displayed because of the matches between the
roots= attribute of the primary index tag and the root= attribute of the index-synonym tag. However, a
search for the synonym "duplicate" returns "Copying a document" as an index choice.

Chapter 13. IPF Tag Reference 13-39

:Ii.- (List Item)

Purpose
Identifies an item within a list.

Syntax

Attributes
None

Description

Element

List item

Attributes End

The format of the· list items depends on the type of list: ordered, unordered, or simple. For example, if the
list is an ordered list, a number precedes each list item. If the list is an unordered list, a bullet precedes each
item. See ":ol. (Ordered List)" on page 13-51, ":sl. (Simple List)" on page 13-60, and ":ul. (Unordered
List)" on page 13-65 for more information.

Conditions
None

Example

:p.To remove a diskette&colon.
:ol.
:li.Open the drive door.
:11.Remove the diskette.
:li.Put the diskette in a safe place.
:eol.

Output
To remove a diskette:

1. Open the drive door.

2. Remove the diskette.

3. Put the diskette in a safe place.

13-40 Information Presentation Facility

:lines. (Lines)

Purpose
Turns formatting off.

Syntax

Tag Element Attributes End

:lines. Lines align= :elines.

Attributes

align= left I right I center
Places the entered lines to the left in the window, to the right, or in the center.

Description
:lines specifies that the following text is to be formatted exactly as it is entered. The attributes enable you to
align the text within the window. Text that is too long for the window is clipped.

Proportional fonts are used for formatting, so the text may not be displayed exactly as entered.

Conditions
None

Example 1
This example aligns text to the left.

:lines align=left.
The warehouse contained:

12 desks
28 chairs
15 lamps
39 typewriters
11 pictures

:elines.

Example 2
This example aligns text to the right.

:lines align=right.
The warehouse contained:

12 desks
28 chairs
15 lamps
39 typewriters
11 pictures

:elines.

Chapter 13. IPF Tag Reference 13-41

Output

Example 1

The warehouse contained:
12 desks
28 chairs
15 lamps
39 typewriters
11 pictures

Example 2

13-42 Information Presentation Facility

The warehouse contained:
12 desks

28 chairs
15 lamps

39 typewriters
11 pictures

:link. (Link)

Purpose
Activates a link to additional information.

Syntax

Tag Elements Attributes End

:link. Link to more reftype= :elink.

Attributes

reftype=

information

Automatic linking

Define window
position and size

Define window
controls

res=
refid=
database= 1 I

object= 1 I

data= I
I

auto
viewport
dependent
split
group=

vpx=
vpy=
vpcx=
vpcy=

titlebar=
scroll=
rules=

Defines the type of link. Possible values are hd, fn, launch, and inform.

reftype=hd
Links to a heading. The heading definition (or an overriding definition in the link) causes its
information to be displayed in the current window or another window. The integer value of refid =
identifies the ID of the heading. If the heading is in an external IPF database, its file name is specified
with the database= attribute.

In the following example, selection of the hypertext link causes the external database, EDITOR.HLP,
to be loaded, and the heading with the ID of 001 to be displayed.

:link reftype-hd refid•001.
database='editor.hlp'.

Editing Functions
:eltnk.

The heading definition in the external database must contain the global attribute. If the link to the file
cannot be resolved, the hypertext phrase in the link will not be highlighted.

reftype=fn
Links to a footnote. Its contents are displayed in a pop-up window in the current window. The
refid = attribute specifies the ID of the footnote.

Restriction: A split window cannot contain a link to a footnote.

Chapter 13. IPF Tag Reference 13-43

reftype =launch
Starts a Presentation Manager program. The file name of the program is specified with the object=
attribute. Any parameters to the program are specified with data= . In the following example, the
hypertext link starts the System Editor and opens the file, MYFILE, for editing.

:link reftype=launch
object='c:\os2\e.exe•
data= 1myfile 1

•

Start Editor
:el ink.

reftype =inform
Causes a message to be sent to the application. The res= attribute is required and is an integer value
that directs the application to perform some application-specific function. When using this attribute,
DO NOT use :elink •. For example:

:link reftype=infonn res=1000 auto.

auto
viewport
dependent
split
group=

With the auto attribute, you can define any of the link types described above, with the exception of a
footnote link, as an automatic link.

The automatic-link definition follows a heading definition and is activated as soon as a reference to the
heading definition is made. The reference can be made by the user selecting an IPF window entry (for
example, the Contents window), or by a hypertext or hypergraphic link.

Following are the automatic-link actions that can be specified, and the attributes used:

• Open a secondary window when the heading that contains the link is referred to:

auto reftype=hd viewport dependent res=

Note the inclusion of the dependent attribute. Usually, the information in an automatic window is
dependent on the information in its secondary window. Specifying dependent causes an automatic
window to close when the user closes the window of the secondary that contains the automatic link.

• Open secondary windows when the heading of the primary window that contains the links is referred
to:

auto reftype=hd split res=

Restriction: The primary heading cannot contain text or graphics; only links to its secondary headings.
For more information, see "Split Windows" on page 6-16.

• Start a Presentation Manager program when the heading that contains the link is referred to:

auto reftype=launch object= data=

• Send the application a message when the heading that contains the link is referred to:

auto reftype=infonn res=

13-44 Information Presentation Facility

To display more than one window on the screen, you must assign a unique group number to each window
with the group= attribute. This attribute can be specified with :link. or the heading tag. For more
information about group numbers, see "Displaying Multiple Windows" on page 6-7.

vpx=
vpy=
vpcx=
vpcy=

Define the size and position of the window. Any values specified by these attributes override size and
position values specified by the attributes in a heading tag. (See ":hi. through :h6. (Headingsr on
page 13-27 for details about these attributes.)

titlebar =yes I sysmenu I minmax I both .I none
scroll= horizontal I vertical I both I none
rules= border I sizeborder I none

Define window controls. Any values specified by these attributes override window-control values specified
by the attributes in a heading tag. (See ":hi. through :h6. (Headings)" on page 13-27 for details about
these attributes.)

When titlebar=yes is specified the window displays a titlebar WITHOUT the system menu symbol, the hide
button, and the maximize button.

Chapter 13. IPF Tag Reference 13-45

:Im. (Left Margin)

Purpose

Sets the left margin of the text.

Syntax

Tag Element Attributes End

:lm. Left margin margin=

Attributes

margin=
Specifies where the left margin of the text is to begin. To set the margin for the current line, specify a
number greater than the position of the cursor. For example, to set the left margin to 15, begin the left
margin tag before space 15. Otherwise, the margin becomes effective on the next line.

Note: When counting character spaces, you are actually counting average character widths.

Description

Use the left-margin tag and the right-margin tag (:rm) to specify the boundaries of the text in the window.

When the text window is sized, the text area adjusts from the right to fit within the specified margin
boundaries; that is, the right margin adjusts to the new window size. The left margin remains constant. If
the window is sized smaller than the specified margins, the margins remain the same, and the text area is
reduced to one character space.

You can place multiple margin tags in your file. The margins specified remain effective until they are reset.
If no margin value is specified, the default is 1.

Conditions

None

Example

This example shows the use of both margin tags.

:p.
:m margin=lC:l.
:lm margtn=2C:l.This text begins 20 spaces to the
right of the left window border and ends 10 spaces to the
left of the right window border.
All text is aligned as specified
by the margin values. :lm margtn=5.Here the left margin
is changed to 5. Because this margin tag begins
more than 5 spaces on the line, the margin specified
becomes effective on the following line, and the text
begins 5 spaces from the left window border.
The right margin remains unchanged.

13-46 Information Presentation Facility

Output

This text begins 20 spaces to the right of the left window
border and ends 10 spaces to the left of the right window
border. All text is aligned as specified by the margin values.

Here the left margin is changed to 5. Because this margin tag begins more
than 5 spaces on the line, the margin specified becomes effective on the
following line, and the text begins 5 spaces from the left window border.
The right margin remains unchanged.

Chapter 13. IPF Tag Reference 13-47

:Ip. (List Part)

Purpose

Identifies an explanation within a list.

Syntax

Element Attributes End

List part

Attributes

None

Description

:Ip. can be entered anywhere within the list. The text following the tag starts at the left margin of the current
list item. It is not numbered or lettered. Using the list-part tag does not interrupt the sequence of the list.

Conditions

None

Example

:p.To remove a diskette&colon.
:ol.
:li.Open the drive door.
:lp.Before removing the diskette, make sure all drive activity
has stopped.
:li.Remove the diskette.
:li.Put the diskette in a safe place.
:eol.

Output

To remove a diskette:

1. Open the drive door.

Before removing the diskette, make sure all drive activity has stopped.

2. Remove the diskette.

3. Put the diskette in a safe place.

13-48 Information Presentation Facility

:note. (Note)

Purpose

Starts a note.

Syntax

Tag Element Attributes End

:note. Note text=''

Attributes

text=''
Enables you to change the name of the note.

Description

:note identifies a single-paragraph note. When the tag is encountered, a blank line is inserted, and the note
starts at the left margin with Note: followed by two blank spaces. The start of another tag ends the note, so
no end tag is needed.

When the tag is used within a list, the note aligns with the text of the items within the list.

Use the text= ' ' attribute to give the note a specific name.

Conditions

None

Example 1
:note.
This text appears within a note.
The word :hp2.Note:ehp2. aligns
with the text that precedes it.

Example 2

:note text='Text note:'.
The name of this note is :hp2.Text note:ehp2 ••
The name of the note replaces
the word :hp2.Note:ehp2 •• The name of the note
aligns with the text that precedes it.

Output

Example 1

Note: This text appears within a note. The word Note aligns with the text that precedes it.

Example 2

Text note: The name of this note is Text note. The text for the note replaces the word Note. The name of
the note aligns with the text that precedes it.

Chapter 13. IPF Tag Reference 13-49

:nt. (Note)

Purpose

Starts a note that can have multiple paragraphs.

Syntax

Tag Element Attributes End

:nt. Note text=' ' :ent.

Attributes

text=''
Enables you to change the name of the note.

Description

:nt starts a new paragraph with Note: followed by two blank spaces and the first line of the text. The second

and succeeding lines of text align with the first line, to the right of Note:.

Notes can be placed within lists and paragraphs. However, unlike the :note. tag, :nt requires an end tag.

You can use the text=' ' attribute to assign a specific name to the note.

Conditions

None

Example

:nt.
Use this tag to include paragraphs in a note.
You also can use it within
paragraphs and lists.
:p.End this tag before you begin another note
tag. :ent.

Output

Note: Use this tag to include paragraphs in a note. You also can use it within paragraphs and lists.

End this tag before you begin another note tag.

13-SO Information Presentation Facility

:ol. (Ordered List)

Purpose

Starts a sequential list of items or steps.

Syntax

Tag Element Attributes End

:ol. Ordered list compact :eol.

Attributes

compact
Causes the list to be formatted without a blank line between each list item. If you omit compact, a blank
line appears between each list item.

Description

:ol. indicates the start of an ordered list. Items in the list are entered with the list-item tag (:Ii.). The output
is an indented list with each item numbered. Use the list-part tag (:Ip.) for paragraphs within the list.

Ordered lists can be nested or imbedded within other lists. When this is done, the first list has sequential
numbers at the left margin, and the nested list has sequential letters indented two spaces. After the second
list, the number-letter sequence repeats for each successive ordered list.

Be sure to end each list with the end-list tag.

Example
:p.To remove a diskette&colon.
:ol.
:li.Open the drive door&colon.
:ol compact.
:li.Remove two screws.
:li.Lift the door.
:eol.
:li.Remove the diskette.
:li.Put the diskette in a safe place.
:eol.

Output

To remove a diskette:

1. Open the drive door:

a. Remove two screws.
b. Lift the door.

2. Remove the diskette.

3. Put the diskette in a safe place.

Chapter 13. IPF Tag Reference 13-Sl

:p. (Paragraph)

Purpose

Starts a new paragraph.

Syntax

Element Attributes End

Paragraph

Attributes

None

Description

Each paragraph identified by a paragraph tag formats as an unindented block of text. Paragraphs placed
within a list align with the text of the list. When paragraphs are placed within a note, the text of the
paragraph aligns with the text of the note.

Conditions

None

Example

:p.Paragraph tags cause a blank line before the text.
When placed within a list or note, the text of the paragraph
aligns with the text of the list or note.
:ul.
:li.Paragraph tags
:p.Paragraph tags are flexible and can be used
with most tags.
:li.Note tags
:p.Note tags can include paragraphs.
:eul.

Output

Paragraph tags cause a blank line before the text. When placed within a list or note, the text of the
paragraph aligns with the text of the list or note.

• Paragraph tags

Paragraph tags are flexible and can be used with most tags.

• Note tags

Note tags can include paragraphs.

13-52 Information Presentation Facility

:parml. (Parameter List)

Purpose

Starts a two-column list of parameter terms and descriptions.

Syntax

Tag Element Attributes End

:parml. Parameter list tsize= :eparml.

break=

compact

:pt. Parameter term

:pd. Parameter definition

Attributes

tsize=
Specifies the space allocated for the parameter term. The default is 10 character units.

break= all I fit I none
Controls the formatting of the parameter terms and descriptions:

break=all
Causes the description to begin on the line below the parameter term, next to the space allocated by
tsize =. This is the default.

break=fit
Causes the parameter description to begin on the same line as the term, if the term has fewer
characters than specified by tsize = . If the term has more characters, the description begins on the
line below the term.

break=none
Causes the description to begin on the same line as the term. If the term has more characters than
specified by tsize =, it continues into the description area. The description starts one space after the
end of the term.

compact
Causes the list to be formatted without a blank line between each list item. If you omit compact, a blank
line appears between each item.

Description

Parameter lists are similar to definition lists; they define terms and descriptions that format in two columns.
The elements of the parameter-list tag are the parameter-term tag (:pt.) and the parameter-description tag
(:pd.). The term tag identifies the term, and the definition tag identifies the description.

Parameter lists can occur anywhere in text; you can nest them within other lists, and you can nest other lists
within parameter lists.

Conditions

• Each parameter-term tag requires a parameter-description tag.
• Each parameter list requires an end-parameter-list tag.

Chapter 13. IPF Tag Reference 13-53

Example

:pannl compact tsize=10 break•none.
:pt.Tree
:pd.Plant life in forest
:pt.Orange
:pd.Fruit on tree
:pt.Cow
:pd.Animal on fann
:epannl.

Output

Tree
Orange
Cow

13-54

Plant life in forest
Fruit on tree
Animal on farm

Information Presentation Facility

:pbutton (Push Button)

Purpose

Defines author-defined push buttons.

Syntax

Tags Element Attributes End

:pbutton. Author-defined id=
pushbuttons res=

text=''

Attributes

id=
Specifies the identification value for a push button that you define. The identification value can be alpha
or alphanumeric. This identification value is referenced by the control area tag (:ctrl.).

res-
Specifies the resource identification value for a push button that you define. This value is returned with
the HM_NOTIFY and HM_CONTROL messages and can be any integer greater than 256 (0 to 256 are
reserved for use by IPF).

text- ''
Specifies the text for the push button that you define. Define the mnemonic for the pushbutton by
placing the tilde (,...,) character before the mnemonic character. For example:

:pbutton id=xmp res=300 text=',...,Example'.

Note: Make sure the mnemonic you specify for author-defined push buttons does not conflict with the
mnemonics of the predefined set of pushbuttons, or with any of IPF's shortcut keys. See ":ctrl. (Control
Area)" on page 13-14, for a description of the control area tag (:ctrl.) and a list of the predefined push
buttons and their associated mnemonics.

Description

Use the push button tag (:pbutton.) to define author-defined pushbuttons. For more information, see
"Author-Defined Push Buttons" on page 3-11.

Chapter 13. IPF Tag Reference 13-55

:pd. (Parameter Descri·ption)

Purpose

Starts the description for a parameter term in a parameter list.

Syntax

Tag Element Attributes End

:pd. Parameter description

Attributes

None

Description

The text that follows :pd. describes the term identified by :pt. The description formats in the right column, as
defined by the values of tsize = and break=. For a description of :parml. see ":parml. (Parameter List)" on
page 13-53.

A parameter list can have multiple parameter-term and parameter-description tags. However, each term tag
requires a description tag.

Conditions

• The parameter-description tag follows the parameter-term tag.
• The parameter-description tag is valid only within a parameter list.

Example

:pannl compact tsize=15 break-all.
:pt.Tree
:pd.Plant life in forest
:pt.Orange
:pd.Fruit on tree
:pt.Cow
:pd.Animal o.n fann
:epannl.

Output

Tree

Orange

Cow

Plant life in forest

Fruit on tree

Animal on farm

13-56 Information Presentation Facility

:pt. (Parameter Term)

Purpose

Identifies a term in a parameter list.

Syntax

Tag Element Attributes End

:pt. Parameter description

Attributes

None

Description

The term identified by :pt. formats in the left column. The :pt. tag requires a parameter-description tag (:pd.);
the description formats in the right column.

Conditions

• The parameter-term tag requires a parameter-description tag.
• The parameter-term tag precedes the parameter-description tag.
• The parameter-term tag is valid only within a parameter list (for a description of :parml., see ":parml.

(Parameter List)" on page 13-53).

Example

:pannl compact tsize=15 break=all.
:pt.Tree
:pd.Plant life in forest
:pt.Orange
:pd.Fruit on tree
:pt.Cow
:pd.Animal on farm
:epannl.

Output

Tree
Plant life in forest

Orange
Fruit on tree

Cow
Animal on farm

Chapter 13. IPF Tag Reference 13-57

:rm. (Right Margin)

Purpose

Sets the right margin of the text.

Syntax

Tag Element Attributes End

:rm. Right margin margin=

Attributes

margin=
Enables you to indicate the number of character spaces from the right border of the window the text is to
end. For example, margin= 60 means that the text is to end 60 spaces from the right border.

Note: When counting character spaces, you are actually counting average character widths.

Description

Use :rm with the left-margin tag (:Im) to specify the boundaries of the text in the window. The left-margin
tag specifies where the text is to start, and the right-margin tag specifies where it is to end.

You can enter margin tags at the beginning of the line of text or while you are entering the text. Margin tags
that begin the line of text cause text on that line and the following lines to align with the values specified.
Margins set while you enter text become effective on the current line or on the next line, depending on where
the margin tag begins. For example, to set the right margin to 60 (that is, 60 spaces before the right border
of the window), begin the right-margin tag at least 60 spaces to the left of the right border. When the file is
displayed, the text entered after the margin tag aligns to the value specified on that line.

If the margin tag is started after the specified boundary, the margin becomes effective on the next line.

When the text window is sized, the text area adjusts from the right to fit within the specified margin
boundaries; that is, the right margin adjusts to the window size. The left margin stays the same. If the
window is sized smaller than the specified margins, the margins remain the same, and the text area is reduced
to one character space. If no value is specified for margin=, the default for the right margin is 1.

You can place multiple margin tags in your file. The specified margins remain effective until they are reset.

13-58 Information Presentation Facility

Example

: lm margin=l.
:nn margin=44.
:p.In this
example, the left margin is 1. The right margin
is 44. The margins are set before the text;
therefore, when the file is displayed, the text
fonnats according to the margins set.
The text begins at space 2 and ends 44 spaces before
the right window border. If the margin specified is
less than the current cursor position on the screen,
the margins set become effective on the following
line. For example, if the current cursor position is
60 spaces to the left of the right window border and
you set the right margin to 50, the margin is
effective on the current line. However, if the right
margin is set to 65, the margin becomes effective
on the next line.
:p.
: lm margin=5.
:nn margin=60.Here the left margin is set to 5
and the right margin is set to 60. This means that
the left margin begins 5 spaces to the right of the
left border. The right margin ends 60 spaces to the
left of the right border.

Output

In this example, the left margin is 1. The right
margin is 44. The margins are set before the
text; therefore, when the file is displayed, the text
formats according to the margins set. The text
begins at space 2 and ends 44 spaces before the
right Window border. If the margin specified is
less than the current cursor position on the
screen, the margins set become effective on the
following line. For example, if the current cursor
position is 60 spaces to the left of the right
window border and you set the right margin to 50,
the margin is effective on the current line.
However, if the right margin is set to 65, the
margin becomes effective on the next line.

Here the left margin is set to 5
and the right margin is set to
60. This means that the left
margin begins 5 spaces to the
right of the left border. The
right margin ends 60 spaces to
the left of the right border.

Chapter 13. IPF Tag Reference 13-59

:sl. (Simple List)

Purpose

Starts a nonsequential list of items.

Syntax

Tag Element Attributes End

:sl. Simple list compact :esl.

Attributes

compact
Causes the list to be formatted without a blank line between each list item. If you omit compact, a blank
line appears between each item.

Description

:sl. identifies items that do not require a sequential listing. Items in a simple list are not indented and do not
have bullets, hyphens, or dashes preceding them. Simple lists can be nested within other lists. When nested,
a simple list is indented four spaces to the right of the left margin of the list that contains it. Each list
requires an end-list tag.

The simple-list tag requires the list-item tag (:Ii.) to identify items in the list. You can use the list-part tag
(:Ip.) to include paragraphs in the list.

Conditions: None

Example

:p.Bring the following for lunch&colon.
:sl.
:1;.Fruit, for example&colon.
:sl compact.
:lLAn apple
:1;.An orange
:lLA pear
: 1 LA banana
:esl.
:1;.sandwich
:1;.A drink, for example&colon.
:sl compact.
: 1 LA soda
: 1 LJuice
:lLMilk.
:esl.
:esl.

13-60 Information Presentation Facility

Output

Bring the following for lunch:

Fruit, for example:

An apple
An orange
A pear
A banana

Sandwich

A drink, for example:

A soda
Juice
Milk.

Chapter 13. IPF Tag Reference 13-61

:table. (Table)

Purpose

Formats information as a table.

Syntax

Tag Element Attributes End

:table. Tables cols='' :etable.

rules=

frame=

:row. Rows None None

:c. Columns None None

Attributes

cols=''
Specifies the width, in character spaces, of each column; for example: cols= '10 15 20'.

rules=
Specifies whether the table will have horizontal and vertical rules. Following are the possible values and
meanings:

both Horizontal and vertical rules
horiz Horizontal rules only
vert Vertical rules only
none No rules

Note: The default is both.

frame=
Specifies whether the table will have borders. Following are the possible values and meanings:

rules A horizontal line at the top and bottom of the table
box. A box around the table
none No borders.

Note: The default is box.

The :row. tag specifies the start of each row in the table. The :c. tag specifies the text for each column entry
in the table. The text provided with the :c. tag is formatted within the column. However, if a single word is
longer than the specified width of the column, the word will be clipped.

13-62 Information Presentation Facility

Example

The following defines a table with three columns and two rows. The width of each column is 15, 20, and 25
character spaces.

~table co1s='15 20 25' rules=both frame=box.
:row.
:c.Row 1 Col 1
:c.Row 1 Col 2
:c.Row 1 Col 3
:row.
:c.Row 2 Col 1
:c.Row 2 Col 2
:c.Row 2 Col 3
:etable.

Output

Row 1 Coll Row 1Col2 Row 1Col3

Row 2 Coll Row 2 Col 2 Row 2 Col 3

Chapter 13. IPF Tag Reference 13-63

:titlt:t. ("19itlt:t)

Purpose

Provides a name for the online document.

Syntax

I Tag
:title.

Element Attributes End

Title

Attributes

None

Description

The text that follows :title. provides a name for the online document. The title of an online document can

contain up to 47 characters, including spaces and blanks. If the title exceeds 47 characters, the IPF Compiler

displays an error message.

When you display the online document, the title appears on the title line of the main window. The title is

limited to one line. Word wrapping does not occur in the title of an online document.

Conditions

Use the :title. tag only for the title of an online document. Do not use it for online help windows.

Example

:userdoc.
:title.Using the Infonnation Presentation Facility
:hl res=100.Creating an Index
:p.This section shows you how to create index entries.
:euserdoc.

Output

When you compile this file, "Using the Information Presentation Facility" is displayed on the title line of the

main window of the online document.

"Creating an Index" is listed as an entry in the contents window. If you select "Creating an Index", the

window with this heading and the accompanying text is displayed in the text information area, overlaying the

contents window.

13-64 Information Presentation Facility

:ul. (Unordered List)

Purpose

Starts a list of nonsequential items.

Syntax

Tag Element Attributes End

:ul. Unordered list Compact :eul.

Attributes

compact
Causes the list to be formatted without a blank line between each list item. If you omit compact, a blank
line appears between each item.

Description

:ul. indicates the start of a list of items that do not require sequential listing. The list-item tag (:Ii.) identifies
the items within the list. The list-part tag (:Ip.) is used to include paragraphs within the list.

Unordered list items are indented, and a bullet (lowercase "o") precedes each item. Unordered lists can be
nested within other lists. If placed within an ordered list or a simple list, the nested list will be indented four
spaces, and each item will be preceded by a bullet. If placed within another unordered list, the nested list will
be indented four spaces, and each item will be preceded by a dash.

Conditions

None

Example

:p.Before leaving for the day remember to&colon.
:ul.
:lt.Turn off the computer
:lt.Turn off the lights&colon.
:ul compact.
: 1 t. Ceil i ng
:lt .Desk
:eul.
:li.Secure all equipment.
:eul.

Output

Before leaving for the day remember to:

• Turn off the computer

• Turn off the lights:

- Ceiling
- Desk

• Secure all equipment.

Chapter 13. IPF Tag Reference 13-65

:userdoc. (User Document)

Purpose

Identifies the source file that is to be compiled.

Syntax

Tag Element Attributes End

:userdoc. User Document :euserdoc.

Attributes

None

Description

:userdoc must be the first tag in the source file. It signals the compiler to begin compiling the tagged text that
follows. All other tags that define how the text is to be formatted follow this tag.

The end-user-document tag (:euserdoc) identifies the end of the tagged text and the end of the source file. It
must be the last tag in the source file.

Conditions

None

Example

:userdoc.

:euserdoc.

13-66 Information Presentation Facility

:warning. (Warning)

Purpose

Alerts the user of a risk or possible error condition.

Syntax

Tag Element Attributes End

:warning. Warning text='' :ewarning.

Attributes

text=''
Enables you to give a specific name to the warning notice.

Description

A warning notice alerts the user to a possible risk, such as an error condition in the system. It should appear
before the text that it discusses. Use the text=' ' attribute to provide a specific name for the warning notice.

Conditions

None

Example 1

:warning.
The disk contains bad sectors.
:ewarning.

Example 2

:warning text='Bad disk:'.
The disk contains bad sectors.
:ewarning.

Output

Example 1

Warning: The disk contains bad sectors.

Example 2

Warning: The disk contains bad sectors.

Chapter 13. IPF Tag Reference 13-67

:xmp. (Example)

Purpose

Turns formatting off.

Syntax

Element Attributes End

Example :exmp.

Attributes

None

Description

Text entered between :xmp and :exmp is formatted as entered, in a monospace font. The text is indented two
spaces from the left margin of the window. Lines that are too long to fit within the window are clipped.

Conditions

• An example cannot be placed within another example.
• An end-example tag is required.

Example

:xmp.
#define INCL_WIN
#include <os2.h>

MRESULT EXPENTRY MyObject(PACVP pACVP, PCH Objectlnfo)
{

HWND hwndMyACVP;

:exmp.

Output
#define INCL_WIN
#include <os2.h>

/* handle to the application-controlled */
/* window that this procedure creates */

MRESULT EXPENTRY MyObject(PACVP pACVP, PCH Objectlnfo)
{

HWND hwndMyACVP; /*handle to the application-controlled*/
/* window that this procedure creates */

13-68 Information Presentation Facility

Chapter 14. Symbols

This appendix discusses the symbols you can use to display special characters that you may want to include
in your file. Symbols can be used to specify characters that are not on the keyboard. Each symbol
represents a single character. When tagging your file to include symbols, begin each symbol with an
ampersand(&) and end the symbol with a period(.). For example, to place a square bullet(•) in a file, you
would enter:

&sqbul.

Symbols are case sensitive, that is uppercase characters produce different symbols than lowercase characters.
Therefore, when tagging the file to include a symbol, enter the tag for the symbol exactly as it is shown in the
symbols chart.

Note: All symbols in the following chart are also in the APSYMBOL.APS file., This file is in the
C:/TOOLKT20/IPFC directory and can be edited with any text editor. However, some National Language
code pages require a different symbols file. See "National Language Support" on page 7-7, for a list of these
files.

Symbol Symbol Name Character

&aa. a acute a
&ac. a circumflex a
&ae. a umlaut a
&Ae. A umlaut A

&ag. a grave a
æ. ae ligature re

Æ. AE ligature ..£

&Alpha. Alpha A

&. Ampersand &

&and. and A

&angstrom. angstrom A

&ao. a overcircle a
&Ao. A overcircle A

&apos. Apostrophe '

&bx2022. ASCII code 185 ~I
&bx2020. ASCII code 186 II
&bx0022. ASCII code 187 ii

&bx2002. ASCII code 188 :!I

&bx2200. ASCII code 200 I!:

&bx0220. ASCII code 201 Ii'

&bx2202. ASCII code 202 JI,

&bx0222. ASCII code 203 if

&bx2220. ASCII code 204 I~
&bx0202. ASCII code 205 =

&bx2222. ASCII code 206 JL
1r

&asterisk. Asterisk •
&atsign. At sign @

&bslash., &bsl. Back slash \
&Beta. Beta B

©Copyright IBM Corp. 1992 14-1

Symbol Symbol Name Character

&bxas., &bxbj. box ascender J.

&bxcr., &bxcj. box cross +
&bxde., &bxtj. box descender T

&bxh. box horizontal -
&bxll. box lower-left L

&bxlr. box lower-right J

&bxri., &bxrj. box right junction ~
&bxul. box upper-left r
&bxur. box upper-right 1

&bxv. box vertical I
&cc. c cedilla ~

&Cc. C cedilla <;
&caret. Caret symbol "
&cdq. Close double quote "

&cdqf. Close French double quote »

&csq. Close single quote '

&comma. Comma
'

&colon. Colon :

&dash. Dash -

°ree., °. degree 0

÷ divide

&dollar. Dollar sign $

&dot. dot

&darrow. Down arrow !
&ea. e acute e
&Ea E acute E
&ec. e circumflex e
&ee. e umlaut e
&eg. e grave e
&emdash. Em dash -
&en dash. En dash -
&eq., &equals., &eqsym. Equal sign =
&xclm., &,txclam. Exclamation point !

&fnof. function of f
>sym., >. &gesym. Greater than >

&house. House Cl

&hyphen. Hyphen -
&ia. i acute i

&ic. i circumflex i

&ie. i umlaut i

&ig. i grave i

&inve. inverted exclamation mark j

&invq. inverted question mark i,

&larrow. Left arrow +-

&lahead. Left arrowhead ...

14-2 Information Presentation Facility

Symbol Symbol Name Character

&lbrace., &lbrc. Left brace {

&lbracket. &lbrk. Left bracket [

&lpar., &lparen. Left parenthesis (

&lnot. logical not,

&mdash. M dash -

&minus. Minus sign -

&mu. Mu µ

&ndash. Ndash -
&nt. n tidle ii

&Nt. N tidle ~

&lnot., ¬sym. not symbol,

&numsign. Number sign #
&oa. o acute 6

&oc. o circumflex 0

&og. o grave 0

&oe. o umlaut 0

&Oe. Oumlaut 0
¼. one fourth Y4

&fracl2. one half Yz

&odq. Open double quote "

&odqf. Open French double quote «

&osq. Open single quote '

&percent. Percent %

&per. Period

&plus. Plus sign +
&plusmin., &pm. plusminus ±
&Lsterling. pound sterling £

&rbl. Required blank

&rarrow. Right arrow -+

&rahead. Right arrowhead ...
&rbrace., &rbrc. Right brace }

&rbracket., &rbrk. Right bracket]

&rpar., &rparen. Right parenthesis)

&semi. Semicolon ;

&boxl4. shaded box 1/4 dots ..
&boxl2. shaded box 1/2 dots I
&box34. shaded box 3/4 dots I
&slash., &sir. Slash I
&BOX. solid box I
&BOXBOT. solid box bottom half •
&splitvbar. Split vertical bar (piping symbol) I

I

&sqbul. square bullet •
². superscript 2 2

&tilde. Tilde "'
&ua. u acute u

Chapter 14. Symbols 14-3

Symbol Symbol Name Character

&uc. u circumflex u
&ug. u grave u
&ue. u umlaut ii

&Ue. U umlaut 0

&us. Underscore -
&aus. underscored a A

&ous. underscored o Q

&ye. y umlaut y

14-4 Information Presentation Facility

Appendix A. Compiler Error Messages

This appendix lists the error messages sent by the IPF compiler.

Description and Format of Error Messages

There are three types of error messages:

• Warning Level 1. They are the most severe.

• Warning Level 2. They are moderately severe.

• Warning Level 3. They are the least severe.

These error messages have the following format.

<C:\IPFC\YOURFILE.IPF:999> 124: Invalid tag 1n footnote ~

Optional error infonnation.
Tag, filename, etc.

Error message

Error code

Line number error occurred at in source file

Filename of source file

Drive and path of source file

Warning Level 1 Messages

101 Invalid document body

Explanation: No userdoc/euserdoc match

102 Invalid tag syntax
103 Missing hypertext information
104 Cannot hide parent head level

Explanation: Preceding head level must be hidden

105 megal context for tag

Explanation: Tags are not properly matched, a tag is used incorrectly, or a tag is placed
incorrectly.

~Copyright IBM Corp. 1992 A-1

106 List start tag mismng-tag ignored
107 List end tag not matched-tag ignored
108 Ignoring unmatched tag
109 Cannot open me

Explanation: SYSTEM ERROR. Filename or path is incorrect, file doesn't exist, or other
system problem.

110 No id for this reference
111 No references to this footnote
112 No id for this footnote
113 No text found in tag
114 Page is too big

Explanation: Panel is too big. Maximum size is 16,000 words and punctuation marks. (Note
maximum size is language dependent.)

115 Bitmap is too large or invalid and will be ignored
116 Cannot create panel(s)
117 Duplicate text in tag
118 Duplicate root word
119 Duplicate tag in tag me
120 Ignoring text before :hl tag
121 Invalid head level

Explanation: Head levels are not in consecutive order.

Example: If hl and h3 are used and h2 is missing, this error will occur.

122 Definition term or header not matched
123 Unexpected end of file

Explanation: This may be caused by an ending tag not being found, a corrupted or truncated
source file, or a control-Z character found before the true end of file.

124 Invalid tag in footnote
125 Not enough memory

Explanation: SYSTEM ERROR. Close some applications to free some memory.

126 Cannot free memory

Explanation: SYSTEM ERROR. System could not free memory.

127 Cannot read file

Explanation: SYSTEM ERROR. Source file may be corrupted.

128 Invalid file type

Explanation: File is corrupt or may not be an IPF tagged source file.

129 Document is too big - unique words exceed 16,000
130 A DT tag is not defined
131 A PT tag is not defined
132 Cannot write to a file

Explanation: SYSTEM ERROR. File system is full, out of disk space, diskette is write
protected, etc.

A-2 Information Presentation Facility

133 Attribute not defined
134 Tag not defined
135 Invalid bitmap format

Explanation: File is not a valid PM format bitmap file.

137 Cannot execute a program

Explanation: SYSTEM ERROR. IPF could not execute a required program. Program may be
missing, corrupt, or other system problem may exist.

138 Cannot rename file

Explanation: SYSTEM ERROR.

140 Invalid country code, or codepage
141 Invalid language code
142 Cannot determine current working directory

Explanation: SYSTEM ERROR.

143 No valid COLS specification was given
144 Ignoring invalid tag in table cell
145 Ignoring text before :c tag
146 Extra cells will be placed in next table row
147 Missing ELINK tag inserted at end of table cell
148 Total table width exceeds limit of 250 characters
149 Cannot reopen. File is already opened

Explanation: SYSTEM ERROR.

150 Document has no vocabulary
151 No res for this reference
152 Duplicate tag in source file

Warning Level 2 Messages

201 Invalid tag
202 Invalid attribute
203 Invalid symbol

Explanation: Invalid APS symbol; period missing after the APS symbol, symbol specified is not
in the APSYMBOL.APS file, invalid APSYMBOL.APS file.

204 Invalid macro
205 Text too long in tag

Explanation: Heading and index tags have a maximum of 150 characters.

206 Token is bigger than expected.

Explanation: Maximum length of token is 255 characters. This error could be caused by a
missing end period or quote character.

Appendix A. Compiler Error Messages A-3

207 Invalid attribute value
208 Missing tag
209 Attribute not matched
210 Text too long in macro expansion

Explanation: Maximum 255 characters.

211 Total number of fonts exceeds the limit of 14
212 Sub index cannot be global without global main index

Warning Level 3 Messages

301 Ignoring attribute
302 Duplicate ID

Explanation: Cannot specify the same ID in the same panel or index.

303 Duplicate symbol in symbol file
304 Duplicate res number
305 Parent panel cannot have its own text

A-4 Information Presentation Facility

Index

A
ACVIEWPORT tag 9-1, 13-5
ALIGN= attribute

on ARTWORK tag 4-28
on LINES tag 4-21, 13-41

application-controlled windows 9-1
applications, help for 8-1
ARTLINK tag 13-7
ARTWORK tag 4-28, 13-9
associating help instance with child window 8-9
attribute values, using 3-2
attributes

ALIGN= (on ARTWORK tag) 4-28, 13-9
ALIGN= (on LINES tag) 13-41
AUTO 6-16, 13-44
BC= 4-26, 13-13
BREAK 4-11
BREAK= (on DL tag) 13-18
BREAK= (on PARML tag) 13~53
CLEAR 13-29
CODEPAGE= 13-24
COLS= 4-15, 13-62
COMPACT (on simple list) 13-60
COMPACT (on unordered list) 13-65
COMPACT (ordered list) 13-51
CONTROLS= 3-10, 13-14
COVERPAGE 3-10, 13-15
CTRLAREA= (DOCPROF tag) 3-10
CTRLAREA= (on DOCPROF tag) 13-20
CTRLAREA= (on heading tag) 13-30
CTRLID= 3-10, 13-14
CTRLREFID = 13-30
DATABASE= 5-6, 13-43
DATA= 5-9, 13-44
DEPENDENT 6-12, 13-44
DLL= (on ACVIEWPORT tag) 13-5
DLL= (on DOCPROF tag) 13-20
FACENAME= 13-24
FC = 4-26, 13-13
FIT 4-28, 13-9
FRAME= 4-17, 13-62
GLOBAL (for an external link) 5-5
GLOBAL (master index) 3-14
GLOBAL (on heading tags) 13-28
GLOBAL (on index tag) 13-34
GROUP= 6-7, 13-29,, 13-45
HEIGHT= 13-28
HIDE 6-17, 13-29
ID= (heading tags) 13-27
ID= (on FN tag} 13-26
ID= (on index tag) 13-34
ID= (on PBUTTON tag) 13-55
INFORM (on LINK tag) 5-9

© Copyright IBM Corp. 1992

attributes (continued)
KEY= 13-31
LAUNCH (on LINK tag) 5-9
LINKFILE = 13-9
MARGIN= 4-27, 13-46
MARGIN= (on RM tag) 13-58
NAME= 4-28, 5-1, 13-9
NOPRINT 6-17, 13-29
NOSEARCH 6-17, 13-29
OBJECTID= 13-5
OBJECTINFO= 13-5
OBJECTINFO= (on DOCPROF tag) 13-20
OBJECTNAME= 9-1, 13-5
OBJECTNAME= (on DOCPROF tag) 13-20
OBJECT= 5-9, 13-44
PAGE 3-10, 13-14
REFID= (on index tag) 13-34
REFTYPE = 13-43
RES= (on DDF tag) 13-17
RES= (on heading tags) 13-27
ROOTS= (on index tag) 13-34
ROOT= (on index synonym tag) 13-38
RULES= 6-3
RULES= (on heading tag) 13-29
RULES= (on LINK tag) 13-45
RULES= (on TABLE tag) 4-16, 13-62
RUNIN 4-28, 13-9
SCROLL 13-29
SCROLL= 6-3
SCROLL= (on LINK tag) 13-45
SIZE= 13-24
SORTKEY = 13-34
SPLIT 6-16, 13-44
TEXT= (on CAUTION tag) 13-11
TEXT= (on NOTE tag) 4-3, 13-49
TEXT= (on NT tag) 13-50
TEXT= (on PBUTTON tag) 13-55
TEXT= (on WARNING tag) 13-67
TITLEBAR 13-29
TITLEBAR = 6-3
TITLEBAR= (on LINK tag) 13-45
TOC= (on DOCPROF tag) 3-6, 13-21
TOC = (on heading tag) 13-30
TSIZE= (on DL tag) 13-18
TSIZE= (on PARML tag) 13-53
TUTORIAL= 13-28
VIEWPORT 6-10, 13-29, 13-44
VPCX = (on heading tag) 13-5
VPCX= (on LINK tag) 13-45
VPCY = (on heading tag) 13-5
VPCY= (on LINK tag) 13-45
VPX = (on heading tag) 13-5
VPX = (on LINK tag) 13-45
VPY = (on heading tag) 13-5

X-1

attributes (continued)
VPY= (on LINK tag) 13-45
WIDTH= 13-28
X = (on heading tag) 13-28
Y= (on heading tag) 13-28

auto attribute 6-16, 13-44
automatic links 5-5
automatic windows 6-10

B
background-color attribute 4-26
base source file 7-3
BC= attribute 4-26
bit maps 4-28
border sizing keyword 13-29
BREAK attribute 4-11
break control word 13-2
break control word (.br) 3-16
BREAK= attribute 13-18

c
CAUTION tag 4-4, 13-11
CGRAPHIC tag 4-24, 13-12
chain, window 8-8
changing fonts 4-24
character graphic tag 13-12
character graphics 4-23, 4-24
child of the coverpage window 9-3
child window, help requests for 8-9
CLEAR attribute 13-29
code pages, country 7-7
CODEPAGE= attribute 13-24
COLOR tag 4-26, 13-13
COLS attribu~..: 4-15
COLS= attribute 13-62
command entry field 8-12
comment control word 13-3
commented out lines 3-15
communication chain 9-6
communication object DLL 9-1
COMPACT attribute

definition 3-2
DL tag 13-18
on ordered list 13-51
on simple list tag 13-60
on unordered list 13-65

compiling command for IPF 7-3
concatenating .INF files 7-5
Contents window

controlling entries 3-6
heading levels 3-4

control area definition 13-16
control area tag 13-14
control attributes, window 6-3
control words

break (.br) 3-16

X-2 Information Presentation Facility

control words (continued)
commented lines 3-15
description 3-15
imbed (.im) 3-15

CONTROLS= attribute 13-14
coordinates, window 6-4
country code pages 7-7
COVERPAGE attribute (push buttons) 13-15
coverpage window

changing the size 9-3
default window sizes 12-31
description 9-3
HM_SET_COVERPAGE_SIZE 12-31

CTRL tag 13-14
CTRLAREA = attribute 13-30
CTRLDEF tag 13-16
CTRLREFID= attribute 13-30

D
DATABASE= attribute 13-43
DATA= attribute 13-44
DDF tag 13-17
DdffieginList 11-2
Ddffiitmap 11-5
DdfEndList 11-9
DdfHyperText 11-11
Ddflnform 11-14
Ddflnitialize 11-16
DdfListltem 11-20
DdfMetafile 11-23
DdfPara 11-26
DdfSetColor 11-28
DdfSetFont 11-31
DdfSetFontStyle 11-34
DdfSetFormat 11-37
DdfSetTextAlign 11-39
DdIText 11-42
default heading tags that start windows 3-6
definition list 4-10
definition list tag 13-18
DEPENDENT attribute 6-12, 13-44
disabling push buttons 3-11
display a footnote window 5-8
DL tag 4-10
DOCPROF tag 13-20
dynamic data formatting

bit maps, using 9-19
DdffieginList 11-2
Ddffiitmap 11-5
DdfEndList 11-9
DdfHyperText 11-11
Ddflnform 11-14
Ddflnitialize 11-16
DdfListltem 11-20
DdfMetafile 11-23
DdfPara 11-26
DdfSetColor 11-28

dynamic data formatting (continued)
DdfSetFont 11-31
DdfSetFontStyle 11-34
DdfSetFormat 11-37
DdfSetTextAlign 11-39
Ddff ext 11-42
metafiles, using 9-19
online documents 9-20

dynamic data formatting tag 13-17
dynamic link library, communication object 9-1
dynamic values for window coordinates 6-5

E
end tag (description) 3-1
entries in Contents window 3-6
entry-field index command 8-12
environment variable, IPFC 7-4
environment variable, IPF _KEYS= 13-31
error messages 7-5
error messages, compiler A-1
example tag 4-23, 13-68
external link 5-5

F
FACENAME= attribute 13-24
FC = attribute 4-26
FIGCAP tag 4-22
figure caption tag 13-23
figure tag 13-22
figures, tags for 4-22
FIT attribute 4-28, 13-9
FONT tag 4-24, 13-24
fonts, changing 4-24
font, monospace 4-23, 13-68
font, return to system default 4-25
footnote tag 13-26
footnote window, link to a 5-8
foreground-color attribute 4-26
FRAME= attribute (TABLE tag) 4-17, 13-62

G
GLOBAL attribute

for external links 5-5
for master index 3-13
heading tag 13-28

graphics
bit map 4-28
character 4-24
metafile 4-28

group numbers for windows 6-7
GROUP= attribute 13-29

H
heading tags 13-27
headings

definition list 4-10
description 3-4
GLOBAL attribute 13-28
ID= 13-27
levels 3-4
limitations between tags 3-7
sequence rule 3-7
table of content attribute 3-6

HEIGHT= 13-28
help for applications 8-1
help for help requests 8-9
help instance

associating the 8-8
creating the 8-7
ending the 8-8

help is not available 8-11
help manager messages

HM_ACTIONBAR_COMMAND 12-4
HM_CONTROL 12-5
HM_CREATE_HELP _TABLE 12-6
HM_DISMISS_ WINDOW 12-7
HM_DISPLAY_HELP 12-8
HM_ERROR 12-9
HM_EXT_HELP 12-11
HM_EXT_HELP_UNDEFINED 12-12
HM_GENERAL_HELP 12-13
HM_GENERAL_HELP_UNDEFINED 12-14
HM_HELPSUBITEM_NOT_FOUND 12-17
HM_HELP _CONTENTS 12-15
HM_HELP _INDEX 12-16
HM_INFORM 12-19
HM_ INV ALIDATE_DDF _DATA 12-20
HM_KEYS_HELP 12-21
HM_LOAD _HELP _TABLE 12-22
HM_NOTIFY 12-23
HM_QUERY 12-24
HM_QUERY_DDF _DATA 12-26
HM_QUERY_KEYS_HELP 12-27
HM_REPLACE_HELP _FOR_HELP . 12-28
HM_REPLACE_USING_HELP 12-29
HM_SET&Us.COVERPAGE_SIZE 12-31
HM_SET_ACTIVE_ WINDOW 12-30
HM_SET_HELP_LIBRARY_NAME 12-32
HM_SET_HELP _WINDOW _TITLE 12-33
HM_SET_OBJCOM_ WINDOW 12-34
HM_SET_SHOW _PANEL_ID 12-35
HM_SET_USERDATA 12-36
HM_TUTORIAL 12-37
HM_UPDATE_OBJCOM_WINDOW_CHAIN 12-38

Help menu-bar choice 2-10
help pull-down 8-11
help push button 8-12
help requests for a child windows 8-9

Index X-3

help requests, processing 8-9
help subtable 8-1
help tables

address 8-1
as resources 8-3
defining in memory 8-2

help window resources 8-11
help windows

help index 3-13
main 2-3
text 2-3

help windows, compiling 7-4
HELPINIT structure 8-4
hide attribute 6-17, 13-29
hide button (MINMAX keyword) 13-29
hide tag 13-31
hiding a title string 3-5
highlighted phrase 13-33
highlighted phrases, tags for 4-1
HM_ACTIONBAR_COMMAND 12-4
HM_ CONTROL 12-5
HM_CREATE_HELP _TABLE 12-6
HM_DISMISS_ WINDOW 12-7
HM_DISPLA Y _HELP 12-8
HM_ERROR 12-9
HM_EXT_HELP 12-11
HM_EXT_HELP _UNDEFINED 12-12
HM_GENERAL_HELP 12-13
HM_GENERAL_HELP _UNDEFINED 12-14
HM HELPSUBITEM NOT FOUND 12-17
HM=HELP _CONTENTS 12-15
HM_HELP_INDEX 12-16
HM_INFORM 12-19
HM INVALIDATE DDF DATA 12-20
HM=KEYS_HELP -12-21-
HM_LOAD _HELP _TABLE 12-22
HM_NOTIFY 12-23
HM_QUERY 12-24
HM_QUERY_DDF _DATA 12-26
HM_QUERY_KEYS_HELP 12-27
HM REPLACE HELP FOR HELP 12-28
HM=REPLACE=USING_HELP 12-29
HM_SET_ACTIVE_ WINDOW 12-30
HM_SET_COVERPAGE_SIZE 12-31
HM SET HELP LIBRARY NAME 12-32
HM -SET - HELP-WINDOW -TITLE 12-33
HM)ET=OBJCOM_WINDOW 12-34
HM_SET_SHOW _PANEL_ID 12-35
HM_SET_USERDATA 12-36
HM_TUTORIAL 12-37
HM UPDATE OBJCOM WINDOW CHAIN 9-6,

12.:J8 - - -
horizontal rules for tables 4-17
horizontal scroll bar attribute 13-29
HP1-HP9 tags 4-1
hypergraphic link 5-3
hypertext link 5-2

X-4 Information Presentation Facility

Hl-H6 tags 3-4

I
ID attribute
identifier, window 5-1
ID= (on footnote) 13-26
IM tag 13-4
imbed control word 13-4
Imbedding files 3-15, 7-3
index command tag 13-37
index command tag (:icmd.) 8-12
index tags 13-34
indexing

help windows 3-13
master index 3-13
synonyms, tags for 3-14

inform links 5-5
information retrieval, restricting 13-29
initializing HELPINIT 8-4
instance of help, creating 8-7
international language documents, compiling 7-4
IPF command for help windows 7-4
IPFC command 7-3
IPFC environment variable 7-4
ISYN tag 3-14
11-I2 tags 3-12

K
keys help request 8-9
keys, defining 13-31
keywords 3-2
KEY= attribute 13-31

L
launch links 5-5
left margin 4-27
left margin tag 13-46
limits, source file 7-2
LINES tag 4-20
lines, plain 13-41
lines, unformatted 4-20
link actions 5-5
link tag 13-43
link to another window 5-6
LINKFILE = attribute 13-9
linking

automatically 5-5
bit maps 5-3
external 5-5
hypergraphic 5-3
hypertext 5-2
metafiles 5-3, 5-4
segmented hypergraphic 5-4
to a footnote 5-8
to another database 5-6

list item tag 13-40
list part tag 13-48
lists

definition 4-10
definition (tag) 13-18
list part (tag) 13-48
ordered 4-8
ordered (tag) 13-51
parameter 4-13
parameter (tag) 13-53
simple 4-5
simple (tag) 13-60
unordered 4-6
unordered (tag) 13-65

LM tag 4-27
loop, automatic window 6-11

M
margin tag, left 13-46
margin tag, right 13-58
margins 4-27
MARGIN= attribute 13-46
master help index

description 3-13
GLOBAL attribute 3-14

maximize button (MINMAX keyword) 13-29
menu bar choices

Help 2-10
Options 2-9
Services 2-4

menu bar, customized 8-12
metafiles 4-28
metafile, linking 5-4
MINMAX keyword 13-29
monospace font (EXAMPLE tag) 13-68
multiple windows 6-3

N
NAME= attribute 4-28, 13-9
national language support 7-7
nested tags 3-1
noprint attribute 6-17, 13-29
nosearch attribute 6-17, 13-29
NOTE tag 4-2, 13-49
notes, tags for 4-2
notes, text attribute for 4-3
notices, tags for 4-4
NT (note) tag 4-3, 13-50

0
OBJECTNAME= attribute 9-1
OL tag 13-51
online documents

default design 2-1
help interface 2-2

online documents (continued)
standard window 2-2

online document, viewing an 7-4
options menu-bar choice 2-9
order list tag 13-51
ordered list 4-8
origin and size attributes table 6-22

p
PAGE attribute (push buttons) 13-14
PAGE keyword 13-30
paragraph tag 13-52
parameter description tag 13-56
parameter list 4-13
parameter list tag 13-53
parameter term tag 13-57
PARML tag 4-13, 13-53
PBUTTON tag 13-55
push buttons

R

author-defined 3-11
control area tag 13-14
description 2-11
disabling 3-11
PBUTTON tag 13-55
split windows 6-21
Tutorial 3-12

REFID = attribute
on LINK tag 13-43
on RM tag 4-27
on RUNIN attribute 4-28
RULES= attribute on TABLE tag 4-16

REFID = attribute (index) 13-34
REFTYPE = attribute 13-43
REFTYPE = FN attribute 13-43
REFTYPE=LAUNCH attribute 13-44
relative values for window coordinates 6-5
removing push buttons from windows 3-11
resource identifier 5-1
restricting information retrieval 13-29
restriction, source file 7-2
RES = attribute

definition 3-2
description 5-1
LINK tag 13-44
on DDF tag 13-17
on heading tags 13-27

right margin 4-27
right margin tag 13-58
ROOTS= attribute (index) 13-34
ROOT= (index synonym) 13-38
rule for heading tag sequence 3-7
RULES= attribute 6-3

on heading tag 13-29
on TABLE tag 13-62

Index X-5

RUNIN attribute 13-9

s
scroll bar attributes 13-29
SCROLL= attribute 6-3
segments for hypergraphic links 5-4
send a message to the application 5-9
Services menu-bar choice 2-4
SET_KEYS= environment variable 13-31
simple list 4-5
simple list tag 13-60
size of window 6-5
SIZEBORDER keyword 13-29
SL tag 4-5
SORTKEY = attribute 13-34
source file

base files 7-3
commented out lines 3-15
imbedded files 3-15
maximum size of a line 7-2
naming convention 7-2

source file structure 7-1
special characters 3-4
SPLIT attribute 13-44
split windows 6-16
standard window 2-2
start an application 5-9
start tag (description) 3-1
start windows, default heading tags that 3-6
strings

text 3-2
title 3-4

subtable, help 8-1
symbols

description 3-4
table· 14-1

synonym tag 3-14, 13-38
syntax for tags 3-1
SYSMENU keyword 13-29

T
table of content attribute 3-6
TABLE tag 4-15, 13-62
tables

columns 4-15
FRAME= attribute 4-17, 13-62
RULES= attribute 4-16

tags
ACVIEWPORT 13-5
ARTLINK 13-7
ARTWORK 4-28, 13-9
BR (break) 13-2
CAUTION 4-4, 13-11
CGRAPHIC (character graphic) 4-24, 13-12
COLOR 4-26, 13-13
COMMENT 13-3

X-6 Information Presentation Facility

tags (continued)
CTRL (control area) 13-14
CTRLDEF (control area definition) 13-16
DDF (dynamic data formatting) 13-17
DL (definition list) 4-10, 13-18
DOCPROF 13-20
FIG (figure) 4-22, 13-22
FIGCAP (figure caption) 4-22, 13-23
FN (footnote) 13-26
FONT 4-24, 13-24
HIDE 13-31
HP1-HP9 (highlighted phrase) 4-1, 13-33
Hl-H6 (headings) 3-4, 13-27
ICMD (index command) 8-12, 13-37
IM (imbed) 13-4
index 3-12
ISYN (synonym) 3-14, 13-38
11-12 (index) 3-12, 13-34
LI (list item) 13-40
LINES 4-20, 13-41
LINK 13-43
LM (left margin) 4-27, 13-46
LP (list part) 13-48
nested 3-1
NOTE 4-2, 13-49
NT (note) 4-3, 13-50
OL (ordered list) 13-51
P (paragraph) 13-52
PARML (parameter list) 4-13, 13-53
PBUTTON (push button) 13-55
PD (parameter description) 13-56
PT (parameter term) 13-57
RM (right margin) 4-27, 13-58
SL (simple list) 4-5, 13-60
symbols 14-1
syntax 3-1
TABLE 4-15, 13-62
text strings 3-2
TITLE 13-64
UL (unordered list) 13-65
USERDOC 13-66
WARNING 4-4, 13-67
XMP (example) 4-23, 13-68

temporary files created by IPF 7-2
text

appearance 4-1
example tag 4-23
format 4-1
XMP tag 4-23

text strings 3-2
TEXT= attribute

on CAUTION tag 13-11
on NOTE tag 13-49
on NT tag 13-50
on PBUTTON tag 13-55
on WARNING tag 13-67

TEXT= attribute for note tags 4-3

title string 3-4
title string, hiding a 3-5
TITLE tag 13-64
TITLEBAR attribute 13-29
TITLEBAR = attribute 6-3
TOC= attribute 13-21
TOC = attribute (heading tag) 13-30
TSIZE= attribute (definition) 4-10
TSIZE= (DL tag) 13-18
TUTORIAL= attribute 13-28

u
unordered list 4-6
unordered list tag 13-65
user help interface

help menu 2-10
options menu 2-9
push buttons 2-11
selection list 2-4
services menu 2-4

USERDOC tag 13-66
using help requests 8-9

v
vertical scroll bar keyword 13-29
VIEW command 7-4
viewing an online document 7-4
viewing hidden information 13-31
VIEWPORT attribute 6-10, 13-29, 13-44

w
WARNING tag 4-4, 13-67
WIDTH= 13-28
WinAssociateHelpinstance 10-2
WinCreateHelpinstance 8-7, 10-5
WinCreateHelpTable 8-2, 10-8
WinDestroyHelpinstance 8-8, 10-10
window

chain 8-8
control attributes 6-3, 13-29
coordinates 6-4
coverpage 9-3
group numbers for 6-7
horizontal scroll bar keyword 13-29
identifier for linking 5-1
limitations between heading tags 3-7
main help 2-3
menu bar 2-4
multiple 6-3
origin and size attributes 6-22
owner 6-11
selection list 2-4
split 6-16
standard 2-2
text 2-3

window (continued)
vertical scroll bar keyword 13-29
WinAssociateHelpinstance 8-8
WinLoadHelpTable 8-3

window functions
WinAssociateHelpinstance 10-2
WinCreateHelpinstance 10-5
WinCreateHelpTable 10-8
WinDestroyHelpinstance 10-10
WinLoadHelpTable 10-13
Win Query Help Instance 10-15

WinLoadHelpTable 10-13
Win Query Help Instance 10-15

x
XMP tag 4-23
X = attribute (on heading tag) 13-28

y
Y = attribute (on heading tag) 13-28

Index X-7

®IBM, OS/2 and Operating System/2 are
registered trademarks of
International Business Machines Corporation

---- ------ -- --- - -- - ---- - - -------------·-®

©IBM Corp. 1992

International Business
Machines Corporation

Printed in the
United States of America
All Rights Reserved

10G6262

SHlG-6262-00

HI U 11111111111
P10G6262

