

Note

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page vii.

First Edition (March 1992)

The following paragraph does not apply to the United Kingdom or any country where such provisions are inconsistent
with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information must
not be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or your IBM
Marketing Representative.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source language, which
illustrate OS/2 programming techniques. You may copy and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to
the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others, must
include a copyright notice as follows: “© (your company name) (year) All Rights Reserved.”

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

ii PM Programming Reference

About this Book

The Presentation Manager Programming Reference is a detailed technical reference, in three
volumes, for application programmers creating programs using the Presentation Manager interface.

Chapter 1 contains important information. You should read it before using this book.
This reference does not give guidance on how to use the functions, nor does it contain information

about how the functions. are related to each other. Itis intended to be used in conjunction with the
Programming Guide Volumes Il and Ill.

Prerequisite Knowledge

The 0S/2 2.0 Technical Library is intended for professional application developers knowledgeable in
at least one programming language in which 0OS/2 programs can be written. The information in the
Technical Library assumes that you are new to programming with OS/2 and the Presentation
Manager. You should understand the OS/2 services available to users.

Related Publications

The Application Design Guide and the Programming Guide Volumes |1, Il, and Il introduce the
programming concepts that you should understand before you begin developing applications to run
on the 0S/2 operating system. Getting Started describes the online programming books, tools,
programming aids, and sample programs that make up the IBM Developer’s Toolkit for 0S/2 2.0.

Organization of this Book

This book is in three volumes. The contents of each volume are as follows:

Volume I (Functions)
Chapter 1, “Introduction” on page 1-1
You should read this chapter before using this book.
Chapter 2, “Device Functions” on page 2-1
Chapter 3, “Direct Manipulation Functions” on page 3-1
Chapter 4, “Dynamic Data Formatting Functions” on page 4-1
Chapter 5, “Graphics Functions” on page 5-1

Chapter 6, “Profile Functions” on page 6-1

Chapter 7, “Spooler Functions” on page 7-1
Volume Il (Functions and Workplace)
Chapter 8, “Window Functions” on page 8-1

Chapter 9, “Workplace Classes, Instance Methods, and Class Methods” on page 9-1

About this Book iii

Volume lll (Related Information and Data Types)

iv

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

10, “Functions Supplied by Applications” on page 10-1

11, “Introduction to Message Processing” on page 11-1

12, “Default Window Procedure Message Processing” on page 12-1

13, “Button Control Window Processing” on page 13-1

14, “Entry Field Control Window Processing” on page 14-1

15, “Frame Control Window Processing” on page 15-1

16, “List Box Control Window Processing” on page 16-1

17, “Menu Control Window Processing” on page 17-1

18, “Multi-Line Entry Field Control Window Processing” on page 18-1

19, “Prompted Entry Field Control Window Processing” on page 19-1

20, “Scroll Bar Control Window Processing” on page 20-1

21, “Spin Button Control Window Processing” on page 21-1

22, “Static Control Window Processing” on page 22-1

23, “Title Bar Contro! Window Processing” on page 23-1

24, “Container Control Window Processing” on page 24-1

25, “Notebook Control Window Processing” on page 25-1

26, “Slider Control Window Processing” on page 26-1

27, “Value Set Control Window Processing” on page 27-1

28, “Clipboard Messages” on page 28-1

29, “Direct Manipulation (Drag) Messages” on page 29-1

30, “Dynamic Data Exchange Messages” on page 30-1

31, “Help Manager Messages” on page 31-1

32, “Resource Files” on page 32-1

33, “Graphics Orders” on page 33-1

PM Programming Reference

Chapter 34, “Code Pages” on page 34-1

Appendix A, “Data Types” on page A-1

Appendix B, “Error Codes” on page B-1

Appendix C, “Error Explanations” on page C-1
Appendix D, “Standard Bit-Map Formats” on page D-1
Appendix E, “Fonts Supplied with 0S/2” on page E-1
Appendix F, “The Font-File Format” on page F-1
Appendix G, “Format of Interchange Files” on page G-1
Appendix H, “Initialization File Information” on page H-1

Appendix |, “Virtual Key Definitions” on page I-1

About this Book

v

Vi

PM Programming Reference

N

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends
to make these available in all countries in which IBM operates. Any reference to an IBM product,
program or service is not intended to state or imply that only IBM’s product, program, or service may
be used. Any functionally equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights or other legaily protectible rights may be used instead of the IBM product,
program, or service. Evaluation and verification of operation in conjunction with other products,
programs, or services, except those expressly designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY
10577.

The foliowing terms, denoted by an asterisk(*) in this publication, are trademarks of the IBM
Corporation in the United States and/or other countries:

IBM

Common User Access

CUA ‘

Operating System/2

0S/2

Presentation Manager

SAA

System Application Architecture

The following terms, denoted by a double asterisk (**) in this publication, are trademarks of other
companies as follows:

Adobe Adobe Systems Incorporated
Helvetica Linotype AG

LaserJet Hewlett-Packard Company
Intel Intel Corporation

Microsoft Microsoft Corporation
PostScript Adobe Systems Incorporated
Times New Roman Monotype Corporation
Windows Microsoft Corporation

Notices vii

viii PM Programming Reference

H

Functions
Chapter 1. Introduction i 1-1
Notation CONVENHIONS i i i i i e e e et e e et e e e e e e e e e e e s 141
Conventions used in Function Descriptions o 1-1
Error SeVerities o o i e e e e e e e e e e s 1-2
Header FIles i it e e e e e e e e e e e e e e e s 1-3
Helper MacroS ottt e 1-3
Addressing Elements in Arrayso 1-5
Implicit Pointer Data Typeso e 1-5
Storage Mapping of Data Typesttt 1-6
Double-Byte Character Set (DBCS)o 1-6
Chapter2. Device Functions 2-1
DevCloseDC — Close DeviceContext, 2-2
DevEscape — ESCAPEot i 2-4
DevOpenDC — OpenDeviceContext 2-9
DevPostDeviceModes — PostDeviceModes 2-12
DevQueryCaps — Query Device Capabilities 2-15
DevQueryDeviceNames — QueryDeviceNames 2-21
DevQueryHardcopyCaps — Query HardcopyCaps 2-24
Chapter 3. Direct Manipulation Functions 3-1
DrgAcceptDroppedFiles — Direct ManipulationforFiles 3-2
DrgAccessDraginfo — Access DragInformation 3-4
DrgAddStrHandle — Create StringHandle 3-5
DrgAllocDraginfo — Allocate DRAGINFO Structure 3-7
DrgAllocDragtransfer — Allocate DRAGTRANSFER Structures 39
DrgDeleteDraginfoStrHandles — Delete DRAGINFO String Handles 3-10
DrgDeleteStrHandle — Delete StringHandle 3-11
DrgDrag — Drago oot 3-12
DrgDragFiles — BeginDraggingFiles 3-16
DrgFreeDraginfo — Free DRAGINFO Structure 3-19
DrgFreeDragtransfer — Free DRAGTRANSFER Storage 3-21
DrgGetPS — GetDrag PresentationSpace 3-22
DrgPostTransferMsg — PostDragMessage 3-24
DrgPushDraginfo — Access a DRAGINFO Structure 3-26
DrgQueryDragitem — Get DRAGITEM Structure 3-28
DrgQueryDragitemCount — Get Dragged ObjectCount 3-30
DrgQueryDragitemPtr — Get Pointer to DRAGITEM Structure 3-31
DrgQueryNativeRMF — Get Format of a Dragged Object 3-32
DrgQueryNativeRMFLen — Get String Length for Native RMF of Dragged Object 3-34
DrgQueryStrName — GetStringContents 3-36
DrgQueryStrNamelLen — GetStringlength 3-38
DrgQueryTrueType — Get True Type of Dragged Object 3-40
DrgQueryTrueTypeLen — Get String Length for True Type of Dragged Object 3-42
DrgReleasePS — Release PresentationSpace 3-44
DrgSendTransferMsg —. Send DragMessageo 3-45
DrgSetDragimage — SetDraglmage 3-48
DrgSetDragitem — SetValues inDRAGITEM 3-50
DrgSetDragPointer — Set Pointing Device Pointer 3-53
DrgVerifyNativeRMF — Verify Native Rendering Mechanism and Format 3-55
‘DrgVerifyRMF — Verify Given Rendering Mechanism and Format 3-57
DrgVerifyTrueType — Verify True Type of Dragged Object 3-59
DrgVerifyType — Verify Type of Dragged Object 3-61
DrgVerifyTypeSet — Verify Types 3-63
Chapter 4. Dynamic Data Formatting Functions 41
DdfBeginList — Begin DefinitionList o i 4-2
DdfBitmap — Place Bitmap Referenceo 4-5
DdfEndList — End Definition Listttt 4-8

Functions

DdfHyperText — Define HypertextLink 4-10

Ddfinform — DefineinformLink 4-13
Ddfinitialize — |Initialize DDFArea P 4-15
DdfListitem — lnsertListltem 4-18
DdfMetafile — Place Metafile Reference 4-21
DdfPara — Create a ParagraphinDDFBuffer 4-24
DdfSetColor — SetColorof Textt 4-26
DdfSetFont — Specify TextFont 4-29
DdfSetFontStyle — Specify TextFontStyle 4-32
DdfSetFormat — Control Formatting 4-35
DdfSetTextAlign — Define Text Alignment 4-37
DdfText — AddTextto DDF Buffer 439
Chapter 5. GraphicsFunctions e 5-1
Coordinates, 5-1
Matrix Parameter Values 5-1
Rounding Errors L 5-1
GPI Functions by Functional Area 5-2
GpiAnimatePalette — AnimatePalette 5-8
GpiAssociate — Associate 5-11
GpiBeginArea — BeginArea 5-13
GpiBeginElement — BeginElement 5-17
GpiBeginPath — BeginPath 5-19
GpiBitBit — BitBIt, 5-23
GPiBox — BOX 5-28
GpiCallSegmentMatrix — Call SegmentMatrix 5-31
GpiCharString — CharacterString 5-34
GpiCharStringAt — Character String At 5-36
GpiCharStringPos — Character String Position 5-39
GpiCharStringPosAt — Character String Position At 5-42
GpiCloseFigure — Close Figure 5-45
GpiCloseSegment — CloseSegment 5-47
GpiCombineRegion — CombineRegion 5-49
GpiComment — Comment 5-51
GpiConvert — Convert, e e 5-53
GpiConvertWithMatrix — ConvertwithMatrix 5-55
GpiCopyMetaFile — CopyMetafile 5-57
GpiCorrelateChain — CorrelateChain 5-59
GpiCorrelateFrom — Correlate From 5-63
GpiCorrelateSegment — Correlate Segment 5-67
GpiCreateBitmap — CreateBitMap 5-71
GpiCreateLogColorTable — Create Logical Color Table 5-74
GpiCreateLogFont — CreateLogical Font 5-78
GpiCreatePalette — CreatePalette 5-81
GpiCreatePS — Create PresentationSpace 5-84
CpiCreateRegion — CreateRegion 0. .. 5-88
GpiDeleteBitmap — DeleteBitMap 5-90
GpiDeleteElement — Delete Element 5-92
GpiDeleteElementRange — Delete ElementRange 5-94
GpiDeleteElementsBetweenLabels — Delete Elements BetweenLabels 5-96
CGpiDeleteMetaFile — DeleteMetafile 5-98
GpiDeletePalette — DeletePalette 5-100
GpiDeleteSegment — DeleteSegment, 5-102
GpiDeleteSegments — DeleteSegments 5-104
GpiDeleteSetld — Delete SetIdentifier 5-106
GpiDestroyPS — Destroy PresentationSpace 5-108
GpiDestroyRegion — Destroy Region 5-110
GpiDrawBits — DrawBits e e e e e e e e 5-112
GpiDrawChain — DrawChain, 5-117
GpiDrawDynamics — Draw Dynamicso i i, 5-119
GpiDrawFrom — Draw From 5-121
GpiDrawSegment — DrawSegment I 5-123
GpiElement — Element 5-125

PM Programming Reference

GpiEndArea — EndArea e e 5-128

GpiEndElement — EndElement o 5-130
GpiEndPath — EndPath e e 5-132
GpiEqualRegion — EqualRegion 5-134
GpiErase — Erase e e 5-136
GpiErrorSegmentData — ErrorSegmentData 5-138
GpiExcludeClipRectangle — Exclude ClipRectangle 5-140
GpiFillPath — FillPath e e 5-142
GpiFloodFill — Flood FHl e 5-144
GpiFrameRegion — FrameRegion 5-146
GpiFullArc — FUull Arc e e e e e e e e 5-148
GpiGetData — GetData 5-150
Gpilmage — Image e 5-153
GpilntersectClipRectangle — IntersectClipRectangle 5-155
GpiLabel — Label e e ... 5157
GpiLine — Line e e 5-159
GpiLoadBitmap — LoadBitMap e 5-161
GpiLoadFonts — LoadFonts e e e e e e e e e e e 5-163
GpiLoadMetaFile — LoadMetafile 5-165
GpiLoadPublicFonts — LoadPublicFonts 5-167
GpiMarker — Marker e e 5-168
GpiModifyPath — ModifyPath 5-170
GpiMoOve — MOVE e e e e 5-173
GpiOffsetClipRegion — OffsetClipRegion 5-175
GpiOfisetElementPointer — Offset ElementPointer 5-177
GpiOffsetRegion — OffsetRegion 5-179
GpiOpenSegment — OpenSegment 5-181
GpiOutlinePath — OutlinePath 5-184
GpiPaintRegion — PaintRegion e 5-186
GpiPartialArc — Partial Arc e 5-188
GpiPathToRegion — PathtoBRegion 5-191
GpiPlayMetaFile — PlayMetafile 5-193
GpiPointArc — POINtAIC e 5-199
GpiPolyFillet — Polyfillet e 5-201
GpiPolyFilletSharp — PolyfilletSharp e e e e e e e e e e 5-204
GpiPolygons — DrawPolygons i 5-207
GpiPolyLine — Polyline e e 5-209
GpiPolyLineDisjoint — Polyline Disjoint, 5-211
GpiPolyMarker — Polymarker e 5-213
GpiPolySpline — Polyspline e 5-215
GPIPOP — POP . . . e e e e 5-217
GpiPtinRegion — PointinRegion 0 oo 5-219
GpiPtVisible — PointVisible i 5-221
GpiPutData — PutData e 5-223
GpiQueryArcParams — Query ArcParameters 5-226
GpiQueryAttrMode — Query AttributeMode Lo o oL, 5-228
GpiQueryAttrs — Query Attributes e e e e e e e 5-229
GpiQueryBackColor — Query BackgroundColor 5-231
GpiQueryBackMix — Query BackgroundMix, 5-232
GpiQueryBitmapBits — QueryBit-MapBits, '5-233
GpiQueryBitmapDimension — Query Bit-Map Dimension 5-236
GpiQueryBitmapinfoHeader — Query Bit-Map infoHeader 5-237
GpiQueryBitmapHandle — Query Bit-MapHandle 5-239
GpiQueryBitmapParameters — Query Bit-Map Parameters 5-240
GpiQueryBoundaryData — QueryBoundaryData 5-242
GpiQueryCharAngle — Query CharacterAngle 5-244
GpiQueryCharBox — Query CharacterBox 5-246
GpiQueryCharBreakExtra — Query Character BreakExtra 5-248
GpiQueryCharDirection — Query Character Direction 5-249
GpiQueryCharExtra — Query CharacterExtra 5-250
GpiQueryCharMode — Query CharacterMode §-251
GpiQueryCharSet — QueryCharacterSet 5-252
GpiQueryCharShear — Query CharacterShear 5-253

Functions

GpiQueryCharStringPos — Query Character StringPositions
GpiQueryCharStringPosAt — Query Character String Positions At
GpiQueryClipBox — QueryClipBOX i
GpiQueryClipRegion — Query ClipRegion

GpiQueryColor — Query Color

GpiQueryColorData — Query ColorData uiinmennno..
GpiQueryColorindex — QueryColorindex
GpiQueryCp — QueryCodePage,
GpiQueryCurrentPosition — Query CurrentPosition

GpiQueryDefArcParams — Query Default Arc Parameters

GpiQueryDefAttrs — Query Defauit Attributes
GpiQueryDefaultViewMatrix — Query Default ViewMatrix
GpiQueryDefCharBox — Query Default Graphics CharacterBox
GpiQueryDefTag — QueryDefaultTag
GpiQueryDefViewingLimits — Query Default Viewing Limits
GpiQueryDevice — QueryDevice
GpiQueryDeviceBitmapFormats — Query Device Bit-Map Formats
GpiQueryDrawControl — QueryDraw Control
GpiQueryDrawingMode — QueryDrawingMode
GpiQueryEditMode — QueryEditMode
GpiQueryElement — QueryElement,
GpiQueryElementPointer — Query ElementPointer

GpiQueryElementType — QueryElementType uuiuii..
GpiQueryFaceString — Query FaceString
GpiQueryFontAction — Query FontAction
GpiQueryFontFileDescriptions — Query Font File Descriptions
GpiQueryFontMetrics — QueryFontMetricso....

GpiQueryFonts — QueryFontst

GpiQueryFullFontFileDescriptions — Query Full Font File Descriptions
GpiQueryGraphicsField — Query GraphicsField
GpiQuerylnitialSegmentAttrs — Query Initial Segment Attributes

GpiQueryKerningPairs — QueryKerningPairs
GpiQueryLineEnd — QuerylLineEnd
GpiQueryLinedoin — QueryLineJoin
GpiQueryLineType — QueryLineTypecuuuuunin...

GpiQueryLineWidth — QueryLineWidth
GpiQueryLineWidthGeom — QueryLineWidthGeom
GpiQueryLogColorTable — Query Logical ColorTable

GpiQueryLogicalFont — QuerylLogical Font

GpiQueryMarker — Query Marker,
GpiQueryMarkerBox — QueryMarker Box
GpiQueryMarkerSet — QueryMarkerSet

GpiQueryMetaFileBits — Query MetafileBits
GpiQueryMetaFileLength — Query MetafileLength
GpiQueryMix — Query MiX,

GpiQueryModelTransformMatrix — Query Model Transform Matrix
GpiQueryNearestColor — Query NearestColor
GpiQueryNumberSetids — Query Number Set Identifiers
GpiQueryPageViewport — QueryPageViewport
GpiQueryPalette — QueryPalette, ..
GpiQueryPaletteinfo — QueryPalettelinfo
GpiQueryPattern — QueryPattern
GpiQueryPatternRefPoint — Query Pattern Reference Point
GpiQueryPatternSet — QueryPatternSet
GpiQueryPel — Query Pel,
GpiQueryPickAperturePosition — Query Pick Aperture Position
GpiQueryPickApertureSize — Query Pick Aperture Size
GpiQueryPS — Query PresentationSpace ummuuinanin.
GpiQueryRealColors — QueryReaiColors e,
GpiQueryRegionBox — Query Region BoOX,
GpiQueryRegionRects — Query RegionRectangles
GpiQueryRGBColor — Query RGBColor i iteeii,
GpiQuerySegmentAttrs — Query Segment Attributes

PM Programming Reference

——

GpiQuerySegmentNames — Query SegmentNames 5-353

GpiQuerySegmentPriority — Query Segment Priority 5-355
GpiQuerySegmentTransformMatrix — Query Segment Transform Matrix 5-357
GpiQuerySetlds — Query Setldentifiers oL 5-359
GpiQueryStopDraw — Query StopDraw i 5-362
GpiQueryTag — QueryTag vt i ittt et e e e e e 5-363
GpiQueryTextAlignment — Query Text Alignment 5-364
GpiQueryTextBox — QueryTextBox 5-365
GpiQueryViewingLimits — Query ViewingLimits 5-368
GpiQueryViewingTransformMatrix — Query Viewing Transform Matrix 5-370
GpiQueryWidthTable — Query FontWidthTable 5-372
GpiRectinRegion — RectanglelnRegion 5-374
GpiRectVisible — RectangleVisible o o, 5-376
GpiRemoveDynamics — RemoveDynamics 5-378
GpiResetBoundaryData — ResetBoundaryData 5-381
GpiResetPS — ResetPresentationSpace, 5-382
GpiRestorePS — Restore PresentationSpace 5-384
GpiRotate — Rotate Transform e 5-386
GpiSaveMetaFile — SaveMetafile 5-389
GpiSavePS — Save PresentationSpace 5-391
GpiScale — ScaleMatrix e 5-393
GpiSelectPalette — SelectPalette 5-396
GpiSetArcParams — SetArcParameters 5-398
GpiSetAttirMode — Set AttributeMode Lo oL oo 5-401
GpiSetAttrs — SetAttributes 5-404
GpiSetBackColor — SetBackgroundColor 5-412
GpiSetBackMix — SetBackgroundMix e 5-415
GpiSetBitmap — SetBitMap 5-418
GpiSetBitmapBits — SetBit-MapBits 5-420
GpiSetBitmapDimension — Set Bit-Map Dimension 5-423
GpiSetBitmapld — Set Bit-Map ldentifier oo o 5-425
GpiSetCharAngle — SetCharacter Angle 5-427
GpiSetCharBox — SetCharacterBox 5-430
GpiSetCharBreakExtra — Set Character BreakExtra 5-433
GpiSetCharDirection — Set Character Direction 5-435
GpiSetCharExtra — SetCharacterExtra 5-438
GpiSetCharMode — SetCharacterMode 5-440
GpiSetCharSet — SetCharacterSet 5-443
GpiSetCharShear — SetCharacterShear, 5-445
GpiSetClipPath — SetClipPath 5-448
GpiSetClipRegion — SetClipRegion 5-451
GpiSetColor — SetColor e 5-453
GpiSetCp — SetCodePage 5-456
GpiSetCurrentPosition — SetCurrentPosition 5-458
GpiSetDefArcParams — Set Default Arc Parameters 5-460
GpiSetDefAttrs — SetDefault Attributes 5-462
GpiSetDefaultViewMatrix — Set DefaultView Matrix 5-467
GpiSetDefTag — SetDefaultTag 5-470
GpiSetDefViewingLimits — Set Default ViewingLimits 5-472
GpiSetDrawControl — SetDraw Control 5-474
GpiSetDrawingMode — SetDrawingMode 5-477
GpiSetEditMode — SetEditMode 5-480
GpiSetElementPointer — SetElementPointer 5-482
GpiSetElementPointerAtLabel — Set Element Pointer AtLabel 5-484
GpiSetGraphicsField — Set GraphicsField 5-486
GpiSetlnitialSegmentAttrs — Set Initial Segment Attributes 5-488
GpiSetLineEnd — SetLineEnd i 5-491
GpiSetLinedoin — SetlLinedoin L0 i 5-493
GpiSetLineType — SetlineTypey 5-495
GpiSetLineWidth — SetLineWidth 5-498
GpiSetLineWidthGeom — SetlLineWidthGeom 5-500
GpiSetMarker — SetMarker 5-502
GpiSetMarkerBox — SetMarkerBox 5-504

Functions

GpiSetMarkerSet — SetMarkerSet 5-506

GpiSetMetaFileBits. — SetMetafileBits 5-508
GpiSetMix — SetMix e 5-510
GpiSetModelTransformMatrix — SetModel TransformMatrix 5-513
GpiSetPageViewport — SetPageViewport 5-516
GpiSetPaletteEntries — SetPaletteEntriesc0...... 5-518
GpiSetPattern — SetPaftern e, 6-521
GpiSetPatternRefPoint — Set Pattern ReferencePoint 5-524
GpiSetPatternSet — SetPatternSet 5-526
GpiSetPel — SetPel 5-528
GpiSetPickAperturePosition — Set Pick-Aperture Position 5-530
GpiSetPickApertureSize — SetPick-ApertureSize 5-531
GpiSetPS — SetPresentationSpace, 5-533
GpiSetRegion — SetRegion 5-536
GpiSetSegmentAtirs — SetSegmentAttributes 5-538
GpiSetSegmentPriority — SetSegmentPriority 5-541
GpiSetSegmentTransformMatrix — Set Segment Transform Matrix 5-543
GpiSetStopDraw — SetStopDraw 5-546
GpiSetTag — SetTag ittt 5-548
GpiSetTextAlignment — SetTextAlignment 0 uueee..... 5-550
GpiSetViewingLimits — SetViewingLimits 5-553
GpiSetViewingTransformMatrix — Set Viewing Transform Matrix 5-555
GpiStrokePath — StrokePath 5-558
GpiTranslate — Translate Matrix 5-560
GpiUnloadFonts — UnloadFonts 5-563
GpiUnloadPublicFonts — Unload PublicFonts 5-565
GpiWCBItBIt — World Coordinates BitBIt 5-567
Chapter 6. ProfileFunctions 6-1
PriCloseProfile — Close Profile 6-2
PriOpenProfile — OpenProfile i 6-3
PriQueryProfile — QueryProfile 6-5
PriQueryProfileData — Query ProfileData 6-7
PrfQueryProfileint — Query Profileinteger 6-10
PriQueryProfileSize — QueryProfileSize -6-12
PriQueryProfileString — QueryProfileString, 6-14
PrfReset — ResetPresentationManager 6-17
PriwriteProfileData — WriteProfileData 6-19
PriWriteProfileString — Write Profile String 6-21
Chapter7. SpoolerFunctions 7-1
SpiControlDevice — Spooler ControlDevice 7-2
SpiCopydob — Spooler Copy Job 7-5
SpiCreateDevice — SpoolerCreate Deviceo..... 7-7
SpiCreateQueue — Spooler CreateQueue0uuuuuuunni.. 7-10
SplDeleteDevice — Spooler Delete Device0ouuo.... 7-14
SplDeleteJob — SpoolerDeletedob 7-16
SplDeleteQueue — SpoolerDeleteQueue0.. ... 7-18
SplEnumDevice — Spooler Enumerate Device P 7-20
SplEnumDriver — Spooler Enumerate Driver 7-23
SplEnumdJdob. — Spooler EnumerateJob 7-26
SplEnumPort — Spooler Enumerate Port 7-29
SplEnumPrinter — Spooler Enumerate Print Destinations 7-32
SplEnumQueue — Spooler EnumerateQueue 7-35
SplEnumQueueProcessor — Spooler Enumerate Queue Processor 7-39
SplHolddob — SpoolerHolddJob 7-42
SplHoldQueue — SpoolerHoldQueueoo.... 7-44
SplPurgeQueue — SpoolerPurge Queue, 7-46
SplQmAbort — SpoolerFile Abort 7-48
SplQmAbortDoc — Spooler File AbortDocument 7-49
SplQmClose — SpoolFileClose 7-50
SplQmEndDoc — SpoolerFileEndDocument 7-51
SplQmOpen — Spooler FileOpen i ... 7-53

PM Programming Reference

A

SplQmStartDoc — Spooler File Start Document 7-55

SplQmWrite — Spooler FileWrite, o o 7-57
SplQueryDevice — Spooler QueryDevice 7-59
SplQuerydob — SpoolerQueryJob 7-62
SplQueryQueue — SpoolerQueryQueue 7-66
SplReleaseJob — SpoolerReleasedJob 7-70
SplReleaseQueue — Spooler ReleaseQueue 7-72
SpiSetDevice — SpoolerSetDevice 7-74
SpiSetlob — SpoolerSetdob 7-77
SpiSetQueue — SpoolerSetQueue 7-81

Functions

PM Programming Reference

N

e

Chapter 1. Introduction

This chapter contains important information. Read it before using this book.

The purpose of this reference is to give important information about functions, messages, constants,
error codes, and data types. It provides language-dependent information about the functions which
enables the user to generate call statements in C Language.

The following information is provided:

¢ The parameter list for each function.
¢ The syntax of each data type and structure

Notation Conventions

The following notation conventions are used in this reference:

NULL

NULLHANDLE

Implicit Pointer

Constant Names

The term NULL applied to a parameter is used to indicate the presence of the
pointer parameter, but with no value.

The term NULLHANDLE applied to a parameter is used to indicate the presence
of the handle parameter, but with no value.

If no entry for a data type “Pxxxxxxx” is found in Appendix A, “Data Types” on
page A-1, then it is implicitly a pointer to the data type “xxxxxxx.” See “Implicit
Pointer Data Types” on page 1-5.

All constants are written in uppercase. Where applicable, constant names have
a prefix derived from the name of a function, message, or idea associated with
the constant. For example:

WM_CREATE Window message
SV_CXICON System value
CF_TEXT Clipboard format.

In this reference, a set of constants with the same prefix is written as in these
examples:

Window message WM_*
System value SV_*

Conventions used in Function Descriptions

The documentation of each function contains these sections:

Function name

Parameters

The function name, listed in alphabetic order of C (long) name together with the
English name. This is at the top of each page followed by the name of the define
that calls the correct header files to be included, the function prototype, and a
brief description of the function.

Each parameter is listed with its data type and a brief description.
There are four kinds of parameters:

Input Specified by the programmer.

Output Returned by the Presentation Manager® (PM) interface.
input/Output Specified by the programmer and modified by PM.

* Trademark of IBM Corporation

Chapter 1. Introduction 1-1

Return The return values are shown, together with possible errors, or
TRUE/FALSE indicators if a Boolean function.

A list of possible errors (where appropriate) is included in this
section. Some functions do not have error messages.

Note: Data types are given in C.
Remarks Additional information about the function, where required.
Related Functions Functions that can be used with the described function.
Example Code Example of how the function can be used.

Note: The functions in this book are named in mixed-case for readability, but are known to the
system as uppercase character strings. For example, the function “GpiBeginArea"” is actually
the external name “GPIBEGINAREA.”

If you are using a compiler that generates a mixed-case external name, you should code the
08/2" functions in uppercase.

Message Queues
For some functions, the Remarks section of the function description includes a statement that the
function requires a message queue. This means that, before issuing the call, WinCreateMsgQueue
must be issued by the same thread. For other functions, no previous WinCreateMsgQueue is
required, and it is only necessary to issue Wininitialize from the same thread.

Error Severities

Each of the error conditions given in the list of errors for each call falls into one of these areas:

Warning The function detected a problem, but took some remedial action that enabled
the function to complete successfully. The return code in this case indicates
that the function completed successfully.

Error The function detected a problem for which it could not take any sensible
remedial action. The system has recovered from the problem, and the state
of the system with respect to the application remains the same as at the time
when the function was requested. The system has not even partially
executed the function (other than reporting the error).

Severe Error The function detected a problem from which the system could not reestablish
its state, with respect to the application, at the time when that function was
requested, that is, the system partially executed the function. This, therefore,
necessitates the application performing some corrective activity to restore
the system to some known state.

Unrecoverable Error The function detected some problem from which the system could not
re-establish its state, with respect to the application, at the time when that
call was issued. It is possible that the application cannot perform some
corrective action to restore the system to some known state.

The WinGetLastError and WinGetErrorinfo functions can be used to find out more about an error (or
warning) that occurs as a result of executing a call.

* Trademark of IBM Corporation

12 PM Programming Reference

Header Files

Al functions require an “include” for the system header file OS2.H:
#include <0S2.H>
Also, most functions require a “define” to select an appropriate (conditional) section of the header

file, and hence, the required entry point. Where this is necessary, it is shown at the head of the
function definition in the form:

#define INCL_name
Note: These “#defines” must precede the “#include <0OS2.H>."

Helper Macros

A series of macros is defined for packing data into, and extracting data from, variables of MPARAM
and MRESULT data types. They are used in conjunction with the WinSendMsg and the other
message functions, and also inside window and dialog procedures.

These macros always cast their arguments to the specified type, so values of any of the types
specified for each macro may be passed without additional casting. NULL may be used to pass
unused parameter data.

Macros for packing data into a MPARAM variable:

/* Used to pass any pointer type: */
#define MPFROMP(p) ((MPARAM) (VOID *)(p})

/* Used to pass a window handle: */
#define MPFROMHWND (hwnd) { (MPARAM) (HWND) (hwnd))

/* Used to pass a CHAR, UCHAR, or BYTE: */
#define MPFROMCHAR(ch) ((MPARAM) (USHORT) (ch))

/* Used to pass a SHORT, USHORT, or BOOL: */
#define MPFROMSHORT(s) ((MPARAM) (USHORT) (s))

/* Used to pass two SHORTs or USHORTs: */
#define MPFROM2SHORT(s1, s2) ((MPARAM)MAKELONG(sl, s2))

/* Used to pass a SHORT and 2 UCHARs: (WM_CHAR msg)*/
#define MPFROMSH2CH(s, uchl, uch2)
((MPARAM)MAKELONG(s, MAKESHORT (uchl, uch2)))

/* Used to pass a LONG or ULONG: */
#define MPFROMLONG(1) ((MPARAM) (ULONG) (1))

Chapter 1. Introduction 1-3

Macros for extracting data from a MPARAM variable:

/* Used to get any pointer type: */
#define PVOIDFROMMP (mp) ((VOID *)(mp))

/* Used to get a window handle: */
#define HWNDFROMMP (mp) ((HWND) (mp))

/* Used to get CHAR, UCHAR, or BYTE: */

#define CHARIFROMMP (mp) { (UCHAR) (mp))

#define CHAR2FROMMP (mp) ((UCHAR) ((ULONG)mp >> 8))
#define CHAR3FROMMP (mp) ((UCHAR) ((ULONG)mp >> 16))
#define CHARAFROMMP (mp) ((UCHAR) ((ULONG)mp >> 24))

/*-Used to get a SHORT, USHORT, or BOOL: */
#define SHORT1FROMMP(mp) ((USHORT) (ULONG) (mp))
#define SHORT2FROMMP (mp) ((USHORT) ((ULONG)mp >> 16))

/* Used to get a LONG or ULONG: */
#define LONGFROMMP (mp) ((ULONG) (mp))

Macros for packing data into a MRESULT variable:

/* Used to pass any pointer type: */
#define MRFROMP(p) ((MRESULT) (VOID *){p))

/* Used to pass a SHORT, USHORT, or BOOL: */
#define MRFROMSHORT(s) ((MRESULT) (USHORT) (s))

/* Used to pass two SHORTs or USHORTs: */
#define MRFROM2SHORT(s1, s2) ((MRESULT)MAKELONG(s1, s2))

/* Used to pass a LONG or ULONG: */
#define MRFROMLONG(1) ((MRESULT) (ULONG) (1))

Macros for extracting data from a MRESULT variable:

/* Used to get any pointer type: #/
#define PVOIDFROMMR (mr) ((VOID *)(mr))

/* Used to get a SHORT, USHORT, or BOOL: */
#define SHORT1FROMMR(mr) ((USHORT) ((ULONG)mr))
#define SHORT2FROMMR (mr) ((USHORT) ((ULONG)mr >> 16))

/* Used to get a LONG or ULONG: */
#define LONGFROMMR (mr) ((ULONG) (mr))

1-4 PM Programming Reference

The following macros are for use with DDESTRUCT and DDEINIT structures:

/* Used to return a PSZ pointing to the DDE item name: */
#define DDES_PSZITEMNAME (pddes) \
(((PSZ)pddes) + ((PDDESTRUCT)pddes)->offszItemName)

/* Used to return a PBYTE pointing to the DDE data: */
#define DDES_PABDATA(pddes) \
(((PBYTE)pddes) + ((PDDESTRUCT)pddes)->offabData)

/* Used to convert a selector to a PDDESTRUCT: */
#define SELTOPDDES(sel) ((PDDESTRUCT)MAKEP(sel, 0))

/* Used to PDDESTRUCT to a selector for freeing / reallocating: */
#define PDDESTOSEL (pddes) (SELECTOROF (pddes))

/* Used to PDDEINIT to a selector for freeing: */
#define PDDEITOSEL(pddei) (SELECTOROF (pddei))

Addressing Elements in Arrays

Constants defining array elements are given values that are zero-based in C; that is, the numbering
of the array elements starts at zero, not one.:

For example, in the DevQueryCaps function, the sixth element of the alArray parameter is
CAPS_HEIGHT, which is equated to 5.

Count parameters related to such arrays always mean the actual number of elements available.
Therefore, again using the DevQueryCaps function as an example, if all elements up to and including
CAPS_HEIGHT are provided for, /Count could be set to (CAPS_HEIGHT + 1).

In functions for which the starting array element can be specified, this is always zero-based, and so
the C element number constants can be used directly. For example, to start with the CAPS_HEIGHT
element, the /Start parameter can be set to CAPS_HEIGHT.

Implicit Pointer Data Types

A data type name beginning with “P” (for example, PERRORCODE) is likely to be a pointer to another
data type (in this instance, ERRORCODE).

In the data type summary, Appendix A, “Data Types” on page A-1, no explicit “typedefs” are shown
for pointers. Therefore, if no data type definition can be found in the summary for a data type name
“Pxxxxxx,” it becomes a pointer to the data type “xxxxxx,” for which a definition should be found in
the summary.

The implicit type definition needed for such a pointer “"Pxxxxxx” is:

typedef xxxxxx *Pxxxxxx;

Such definitions are provided by means of the system header file OS2.H.

Chapter 1. Introduction 1-5

Storage Mapping of Data Types

The storage mapping of the data types is dependent on the machine architecture. To be portable,
applications must access the data types using the definitions supplied for that environment.

Double-Byte Character Set (DBCS)

Throughout this publication, you will see references to specific values for character strings. The
values are for single-byte character set (SBCS). If you use the double-byte character set (DBCS),
note that one DBCS character equals two SBCS characters.

1-6 PM Programming Reference

Chapter 2. Device Functions

The following table shows all the Device (Dev) functions in alphabetic order.

C Name

DevCloseDC

DevEscape

DevOpenDC

DevPostDeviceModes

DevQueryCaps

DevQueryDeviceNames

DevQueryHardcopyCaps

Chapter 2. Device Functions

2-1

DevCloseDC -
Close Device Context

#idefine INCL_DEV /* Or use INCL_PM. Also in COMMON section */

HMF DevCloseDC (HDC hdc)

This function closes a device context.

Parameters
hdc (HOC) — input
Device-context handle.

Returns
Error indicator metafile handle (for a metafile device context)

DEV_ERROR Error occurred.
DEV_OK Device closed, but not a metafile device context.
Other Device closed, a metafile device context whose metafile handle is returned.

Possible returns from WinGetLastError

PMERR_NOT_CREATED_BY DEVOPENDC An attempt has been made io destroy a device context
using DevCloseDC that was not created using
DevOpenDC.

PMERR_DC_IS_ASSOCIATED An attempt was made to associate a presentation space
with a device context that was already associated or to
destroy a device context that was associated.

PMERR_INV_HDC An invalid device-context handie or {micro presentation
space) presentation-space handle was specified.

Remarks
if the device context is currently associated with a presentation space, or if it is created with the
WinOpenWindowDC call (that is, it is a screen device context), an error is raised, and the device
context is not closed.

If the device context being closed is a memory device context that has a bit map currently selected
into it (see the GpiSetBitmap function), the bit map is automatically deselected before the device
context is closed.

Any clip region currently in use for this device context is deieted.

Related Functions
Prerequisite Functions

* DevOpenDC

Other Related Functions
* WinOpenWindowDC

2-2 PM Programming Reference

DevCloseDC -
Close Device Context

Example Code

This example calls DevCloseDC to close a device context based on the handle returned from
DevOpenDC.

#define INCL_DEV /* Device Function definitions */

#include <os2.h>

HDC hdc; /* Device-context handle */

HMF hmf; /* error code (or metafile handle if
metafile device context) */

/* close the device context associated with handle hdc */
hmf = DevCloseDC({hdc);

Chapter 2. Device Functions 2-3

DevEscape —
Escape

#define INCL_DEV /* Or use INCL_PM */

LONG DevEscape (HDC hdc, LONG ICode, LONG linCount, PBYTE pbinData,
PLONG plOutCount, PBYTE pbOutData)

This function allows applications to access facilities of a device not otherwise available through the
API. Escapes are, in general, sent to the presentation driver and must be understood by it.

Parameters
hdc (HDC) — input
Device-context handle.

ICode (LONG) — input
Escape code.

If the device context is of type OD_QUEUED with a PM_Q_STD spool file, some escapes are sent
to the presentation driver and others are recorded in the spool file (depending on the escape
code). If the device context is of type OD_METAFILE, all escapes are metafiled. if the device
context is of any type other than OD_QUEUED (with a PM_Q_STD spool file) or OD_METAFILE, all
escapes are sent to the presentation driver.

The description for each standard escape specifies which of these categories the escape falls
into.

Devices can define additional escape functions using user /Code values, that have the following
ranges:

32 768 through 40 959 Not metafiled and not recorded (sent to presentation driver for
PM_Q_STD)

40 960 through 49 151 Metafiled only (sent to presentation driver for PM_Q_STD)

49 152 through 57 343 Metafiled and recorded (not sent to presentation driver) for PM_Q_STD

57 344 through 65 535 Recorded only (not sent to presentation driver for PM_Q_STD).

The following escapes are defined:

DEVESC_QUERYESCSUPPORT
DEVESC_GETSCALINGFACTOR
DEVESC_STARTDOC
DEVESC_ENDDOC
DEVESC_ABORTDOC
DEVESC_NEWFRAME
DEVESC_RAWDATA
DEVESC_QUERYVIOCELLSIZES
DEVESC_SETMODE

linCount (LONG) — input
Input data count.

Number of bytes of data in the pb/inData buffer.

pbinData (PBYTE) — input
The input data required for this escape.

plOutCount (PLONG) — input/output
Output data count.

plOutCount is the number of bytes of data in the pbOutData buffer.
If data is returned in pbOutData, plOutCount is updated to the number of bytes of data returned.

2-4 PM Programming Reference

pbOutData (PBYTE) — output
Output data.

DevEscape —
Escape

pbOutData is a buffer that receives the output from this escape. If p/OutCount is null, no data is

returned.

Returns

Implementation error indicator:

DEVESC_ERROR
DEVESC_NOTIMPLEMENTED
DEV_OK

Error
Escape not implemented for specified code
OK.

Possible returns from WinGetLastError

PMERR_INV_ESCAPE_CODE
PMERR_INV_HDC

PMERR_INV_LENGTH_OR_COUNT

An invalid code parameter was specified with DevEscape.

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

An invalid length or count parameter was specified.

PMERR_ESC_CODE_NOT _SUPPORTED The code specified with DevEscape is not supported by

PMERR_INV_ESCAPE_DATA

Remarks

the target device driver.

An invalid data parameter was specified with DevEscape.

The data fields for standard escapes are:

DEVESC_QUERYESCSUPPORT

DEVESC_GETSCALINGFACTOR

DEVESC_STARTDOC

Queries whether a particular escape is implemented by the
presentation driver. The return value gives the result.

This escape is not metafiled or recorded.

lInCount Number of bytes pointed to by pbinData.

pbinData The buffer contains an escape code value
specifying the escape function to be checked.

plOutCount Not used; can be set to 0.

pbOutData Not used; can be set to null.

Returns the scaling factors for the x and y axes of a printing
device. For each scaling factor, an exponent of two is put in
pbOutData. Thus, the value 3 is used if the scaling factor is 8.

Scaling factors are used by devices that cannot support
graphics at the same resolution as the device resolution.

This escape is not metafiled or recorded.

linCount Not used; can be set to 0.

pbinData Not used; can be set to null.

plOutCount The number of bytes of data pointed to by
pbOutData. On return, this is updated to the
number of bytes returned.

pbOutData The address of a SFACTORS structure, which on
return contains the scaling factors for the x and y
axes.

Indicates that a new print job is starting. All subsequent output
to the device context is spooled under the same job identifier
until a DEVESC_ENDDOC occurs.

A GpiAssociate function must be issued to associate the
presentation space with the device context before issuing this
escape.

Chapter 2. Device Functions 2-5

DevEscape —
Escape

DEVESC_ENDDOC

DEVESC_ABORTDOC

DEVESC_NEWFRAME

DEVESC_RAWDATA

2-6 PM Programming Reference

This escape is metafiled but not recorded.

lInCount Number of bytes pointed to by pb/nData.

pbinData The buffer contains a null-terminated string,
specifying the name of the document.

plOutCount Not used; can be set to 0.

pbOutData Not used; can be set to null.

Ends a print job started by DEVESC_STARTDOC.
This escape is metafiled but not recorded.

/InCount Not used; can be set to 0.

pbinData Not used; can be set to null.

plOutCount Set equal to 2.

pbOutData The buffer contains a USHORT specifying the job
identifier if a spooler print job is created.

Aborts the current job, erasing everything the application has
written to the device since the last DEVESC_STARTDOC,
including the DEVESC_STARTDOC.

This escape is metafiled but not recorded.

{InCount Not used; can be setto 0
pbinData Not used; can be set to null
plOutCount Not used; can be setto 0
pbOutData Not used; can be set to null.

Signals when an application has finished writing to a page and
wants to start a new page. It is similar to GpiErase processing
for a screen device context, and causes a reset of the atiributes.
This escape is used with a printer device to advance to a new

page.
This escape is metafiled and recorded.

lInCount Not used; can be set to 0
pbinData Not used; can be set to null
plOutCount Not used; can be set to 0
pbOutData Not used; can be set to nuli.

Allows an application to send data directly to a presentation
driver. For example, in the case of a printer driver, this could
be a printer data stream.

if DEVESC_RAWDATA is mixed with other data (such as GPI
data) being sent to the same page of a device context, the
results are unpredictable and depend upon the action taken by
the presentation driver. For example, a presentation driver
might ignore GPI data if DEVESC_RAWDATA is mixed with it on
the same page. In general, DEVESC_RAWDATA should be sent
either to a separate page (using the DEVESC_NEWFRAME
escape to obtain a new page) or to a separate document (using
the DEVESC_STARTDOC and DEVESC_ENDDOC escapes to
create a new document).

This escape is metafiled and recorded.

lInCount Number of bytes pointed to by pbinData
pbinData Pointer to the raw data

plOutCount Not used; can be set to 0

pbOutData Not used; can be set to null.

N

DEVESC_QUERYVIOCELLSIZES

DEVESC_SETMODE

Related Functions

Prerequisite Functions

e DevOpenDC

Other Related Functions

DevEscape —
Escape

Returns the VIO cell sizes supported by the presentation driver.
This escape is not metafiled or recorded.

linCount Not used; can be set to 0

pbinData Not used; can be set to null.

plOutCount The number of bytes of data pointed to by
pbOutData. It must be an even mulitiple of the size
in bytes of the LONG data type. On return, this is
updated to the number of bytes returned.

pbOutData The address of a buffer, which on return contains a
VIOSIZECOUNT structure, immediately followed by
count copies of a VIOFONTCELLSIZE structure.

If plOutCount is less than the size of a LONG data
type, plOutCount is updated to zero, and nothing is
returned in the buffer pointed to by pbOutData.

If plOutCount is equal to the size of a LONG data
type, pbOutData returns the number of VIO cell
sizes that can be returned by this escape. The
buffer pointed to by pbOutData is updated so that
maxcount is the number of VIO cell sizes that can
be returned.

If plOutCount is greater than the size of a LONG
data type, pbOutData returns the VIO cell sizes that
are supported. The buffer pointed to by pbOutData
is updated so that:

¢ maxcount is the number of VIO cell sizes that
can be returned

e count is the number of VIO cell sizes returned
(may be zero if p/OutCount is equal to twice the
size of a LONG data type)

e count copies of a VIOFONTCELLSIZE structure
are returned.

Sets the printer into a particular mode. It is optional for printer
drivers to support this escape, but those that do support it need
to be aware of the code page of any built-in fonts. For example,
if only code page 437 is built in, it is used if 437 is requested by
DEVESC_SETMODE. However, if code page 865 is requested, a
suitable code page/font could be downloaded.

This escape is metafiled and recorded.

lInCount Number of bytes pointed to by pbinData
pbinData Buffer contains an ESCSETMODE structure
plOutCount Not used; can be setto 0

pbOutData Not used; can be set to null.

e GpiAssociate(for DEVESC_STARTDOC)
¢ GpiErase(for DEVESC_NEWFRAME)

Chapter 2. Device Functions 2-7

DevEscape -—
Escape

Graphic Elements and Orders

DevEscape functions generate orders only when metafiling.

Order: Extended Escape

Example Code
This example uses DevEscape to access facilities of a device that would otherwise be unavaiiable
through the normal Device APl set. Here, a new page in.a print job is started.

#define INCL_DEV /* Device Function definitions */
#include <o0s2.h>
LONG 1Result; /* Error code or not implemented

warning code */
HDC hdc; /* Device-context handle */
LONG plOQutCount; /* length of output buffer(input),

number of bytes returned({output) */
PBYTE pbOutData; /* output buffer */

/* for the NEWFRAME, input and output buffers are not used,
so set the buffer lengths to zero(0) and set the buffers to
NULL */

pl0utCount = 0;

pbOutData = NULL;

1Result = DevEscape(hdc, DEVESC_NEWFRAME, OL, NULL, &p10utCount,
pbOutData);

2-8 PM Programming Reference

N

DevOpenDC -
Open Device Context

#define INCL_DEV /* Or use INCL_PM. Also in COMMON section */

HDC DevOpenDC (HAB hab, LONG IType, PSZ pszToken, LONG ICount,
PDEVOPENDATA pdopData, HDC hdcComp)

This function creates a device context.

Parameters
hab (HAB) — input
Anchor-block handle.

IType (LONG) — input
Type of device context:

OD_QUEUED

OD_DIRECT

OD_INFO

OD_METAFILE

OD_METAFILE_NOQUERY

OD_MEMORY

pszToken (PSZ) — input
Device-information token.

A device, such as a printer or plotter, for which output is to be
queued.

Certain restrictions apply for this device type; see “Metafile
Restrictions” on page G-1.

A device, such as a printer or plotter, for which output is not to be
queued. \

A device, such as a printer or plotter, but the device contéxt is used
only to retrieve information (for example, font metrics). Drawing
can be performed to a presentation space associated with such a
device context, but no output medium is updated.

The device context is used to write a metafile. The presentation
page defines the area of interest within the picture in the metafile.
See OD_METAFILE_NOQUERY.

Certain restrictions apply for this device type; see “Metafile
Restrictions” on page G-1.

The device context is used to write a metafile.

Functionally, this device type is the same as OD_METAFILE, except
that querying of attributes is not allowed with a presentation space
while it is associated with an OD_METAFILE_NOQUERY device
context. If querying of attributes is not required,
OD_METAFILE_NOQUERY should be used in preference to
OD_METAFILE, since it gives improved performance.

Certain restrictions apply for this device type; see “Metafile
Restrictions” on page G-1.

A device context that is used to contain a bit map. The hdcComp
parameter identifies a device with which the memory device
context is to be compatibie.

This identifies the device information, held in the initialization file. This information is the same
as that which may be pointed to by pdopData; any information that is obtained from pdopData
overrides the information obtained by using this parameter.

If pszToken is specified as “*”, no device information is taken from the initialization file.

08S/2 behaves as if “*” is specified, but it allows any string.

Chapter 2. Device Functions 2-9

DevOpenDC -
Open Device Context

ICount (LONG) — input
Number of items.

This is the number of items present in the pdopData parameter. This can be less than the full list
if omitted items are irrelevant, or are supplied from pszToken or elsewhere.

pdopData (PDEVOPENDATA) — input
Open-device-context data area.

hdcComp (HDC) — input
Compatible-device-context handie.

When IType is OD_MEMORY, this parameter is a handle to a device context compatible with bit
maps that are to be used with this device context.

If hdeComp is NULLHANDLE, compatibility with the screen is assumed.

Returns
Device-context handie:

DEV_ERROR Error

#0 Device-context handie.

Possible returns from WinGetLastError

PMERR_INV_DC_TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_DC DATA An invalid data parameter was specified with
DevOpenDC.

PMERR_INV_HDC An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

PMERR_INV_DRIVER_NAME A driver name was specified which has not been
installed.

PMERR_INV_LOGICAL_ADDRESS An invalid device logical address was specified.

Remarks

A device context is a means of writing to a particular device. Before using GPI functions to cause
output to be directed to the device context, the GpiAssociate function call must be issued (or the
GPIA_ASSOC option specified on GpiCreatePS).

DevOpenDC cannot be used to open a device context for a screen window; use WinOpenWindowDC
instead.

The device context is owned by the process from which DevOpenDC is issued. It cannot be accessed
directly from any other process. If it still exists when the process terminates, it is automatically
deleted by the system. When using a device context type of OD_METAFILE_NOQUERY the querying
of attributes is not allowed. To improve performance of this type of metafile no error checking is
performed to ensure that such API calls are not attempted. Query calls are accepted but the results
returned are undefined.

This function requires the existence of a message queue.

2-10 PM Programming Reference

~

DevOpenDC -
Open Device Context

Related Functions
Prerequisite Functions

* Winlnitialize

Other Related Functions

DevCloseDC

GpiAssociate(for the output of GPI data)
PrfQueryProfileString
WinOpenWindowDC

WinQueryWindow

Example Code
This example calls DevOpenDC to create a memory device context with screen compatibility and
then associates that context with a newly created presentation space.

#define INCL_DEV /* Device Function definitions */
#define INCL_GPICONTROL /* GPI control Functions */
#include <os2.h>

HDC hdc; /* Device-context handle */
HAB hab; /* Anchor-block handle */

/* context data structure */
DEVOPENSTRUC dop = {NULL, "DISPLAY", NULL, NULL, NULL, NULL,
NULL, NULL, NULL};
HPS hps; /* presentation-space handle */
SIZEL siz1={0, 0}; /* use same page size as device */

/* create memory device context */
hdc = DevOpenDC(hab, OD_MEMORY, "*", 5L, (PDEVOPENDATA)&dop, NULLHANDLE);

/* create a presentation space associated with the context */
hps = GpiCreatePS(hab, hdc, &sizl, GPIA_ASSOC | PU_PELS);

Chapter 2. Device Functions 2-11

DevPostDeviceModes —
Post Device Modes

#define INCL_DEV /* Or use INCL_PM */

LONG DevPostDeviceModes (HAB hab, PDRIVDATA pdrivDriverData, PSZ pszDriverName,
PSZ pszDeviceName, PSZ pszName, ULONG flOptions)

This function returns, and optionally sets job properties.

Parameters
hab (HAB) — input
Anchor-block handie.

pdrivDriverData (PDRIVDATA) — input/output
Driver data.

A data area that, on return, contains device data defined by the presentation driver. If the
pointer to the area is NULL, this function returns the required size of the data area.

The format of the data is the same as that which occurs within the DEVOPENSTRUC structure,
passed on the pdopData parameter of DevOpenDC.

pszDriverName (PSZ) — input

Device-driver name. A string containing the name of the presentation driver; for example,
“LASERJET.”

pszDeviceName (PSZ) — input
Device-type name.

Null-terminated string in a 32-byte field, identifying the device type; for example, “HP LaserJet
ID” (model number). Valid names are defined by device drivers.

Note: This parameter always overrides the data in the szDeviceName[32] field of the
DRIVDATA structure, passed in the pdrivDriverData parameter.

pszName (PSZ) — input
Device name.

A name that identifies the device; for example, “PRINTER1.” If DPDM_POSTJOBPROP is
specified in the fIOptions parameter, the pszName parameter can be NULL.

fiOptions (ULONG) — input
Dialog options.

Options that control whether a dialog is displayed.

DPDM_POSTJOBPROP
This function allows the user to set properties for the print job by displaying a dialog
and returning the updated job properties. Examples of job properties are paper
size, paper orientation, and single-sided or duplex.

The printer is configured in the shell using a dialog provided by the presentation
driver. The configuration describes the actual printer setup such as number of paper
bins, available paper sizes, and any installed hardware fonts.

Before the job properties dialog is displayed the presentation driver merges any
changes in the printer configuration with the data passed in the pdrivDriverData
parameter. This allows, for example new paper sizes to be added into the job
properties dialog. The parameter pszName can be specified as NULL although this
is not recommended because the presentation driver cannot easily find the printer
configuration to merge.

2-12 PM Programming Reference

L

DevPostDeviceModes —
Post Device Modes

It is the responsibility of the application to retrieve and store job properties. An
application can choose to store job properties either on a per document or per
application basis. The job properties can then be passed into DevOpenDC. Initial
(default) job properties can be retrieved using DPDM_QUERYJOBPROP option.

The application cannot tell if the user modified the job properties or just cancelled
the dialog. Hence the job properties returned in the pdrivDriverData parameter must
always be stored.

The shell allows users to specify default job properties for a printer. The spooler
API SplQueryQueue can be used to retrieve these defaults. The spooler
automatically adds the default job properties for a printer to any jobs that are
submitted without job properties.

DPDM_QUERYJOBPROP

Returns

Do not display a dialog. Return the default job properties. These defaults are
derived from the defaults for the chosen device; for example, “HP Laserjet IID” and
the printer setup specified via the shell printer driver configuration dialog.

Size/error indicator.

Value depends on what was passed as the pointer to pdrivDriverData:

NULL

Other

DPDM_ERROR Error
DPDM_NONE No settable options

Size in bytes required for pdrivDriverData.

DPDM_ERROR Error
DPDM_NONE No settable options
DEV_OK OK.

Possible returns from WinGetLastError

PMERR_INV_DRIVER_DATA Invalid driver data was specified.
PMERR_DRIVER_NOT _FOUND The device driver specified with DevPostDeviceModes
was not found.
PMERR_INV_DEVICE_NAME An invalid devicename parameter was specified with
DevPostDeviceModes.
PMERR_INV_LOGICAL_ADDRESS An invalid device logical address was specified.
Remarks

An application can first call this function with a NULL data pointer to find out how much storage is
needed for the data area. Having allocated the storage, the application can then make the call a
second time for the data to be entered. The returned data can then be passed in DevOpenDC as
pdrivDriverData within the pdopData parameter.

Calling this function requires the existence of a message queue.

Use SplEnumDevice or SpiEnumPrinter with f/Type set to SPL_PR_DIRECT_DEVICE or
SPL_PR_QUEUED_DEVICE to get a list of all the devices.

To get information about a specific device use SplQueryDevice.

Chapter 2. Device Functions 2-13

DevPostDeviceModes —
Post Device Modes

Related Functions
* DevOpenDC

Example Code
This example shows how to call DevPostDeviceModes and allocate a new buffer, if necessary, for the
larger job properties (DRIVDATA structure).

#define INCL_DEV
#define INCL_DOS
#include <o0s2.h>
#include <memory.h>

{
ULONG devrc=FALSE;
HAB hab;
PSz pszPrinter;
HDC hdc=NULL;

PDRIVDATA pOldDrivData;
PDRIVDATA pNewDrivData=NULL;
PDEVOPENSTRUC dops;

LONG buflen;

/* check size of buffer required for job properties */

buflen = DevPostDeviceModes(hab,
NULL,
dops->pszDriverName,
dops->pdriv->szDeviceName,
pszPrinter,
DPDM_POSTJOBPROP

)s

/* return error to caller */
if (buflen<=0)
return(bufien);

/* allocate some memory for larger job properties and */
/* return error to caller */

if (buflen = dops->pdriv->ch)

if (DosAllocMem((PPVOID)&pNewDrivData,buflen, fALLOC))
return(DPDM_ERROR) ;

/* copy over old data so driver can use old job */
/* properties as base for job properties dialog */
pOidDrivData = dops->pdriv;
dops->pdriv = pNewDrivData;
memcpy((PSZ)pNewDrivData, (PSZ)p0ldDrivData, p0ldDrivData->ch);

/* display job properties dialog and get updated */
/* job properties from driver */

devrc = DevPostDeviceModes{ hab,
dops->pdriv,
dops->pszDriverName,
dops->pdriv->szDeviceName,
pszPrinter,
DPDM_POSTJOBPROP

return(devrc);

2-14 PM Programming Reference

N

DevQueryCaps —
Query Device Capabilities

#define INCL_DEV /* Or use INCL_PM. Also in COMMON section */

BOOL DevQueryCaps (HDC hdc, LONG IStart, LONG ICount, PLONG alArray)

This function queries the device characteristics.

Parameters
hde (HDC) — input
Device-context handle.

IStart (LONG) — input
First item of information.

The number of the first item of information to be returned in alArray, counting from zero.

ICount (LONG) — input
Count of items of information.

This is the count to be returned in alArray. It must be greater than zero.

alArray (PLONG) — output
Device capabilities.

Array of ICount elements, starting with IStart. The array elements are numbered consecutively,
starting with CAPS_FAMILY. The element number constants start with 0. See the appropriate

bindings reference.

If IStart + ICount —1 exceeds the current highest-defined element number, elements beyond the

highest are returned as 0.
CAPS_FAMILY
CAPS _10_CAPS

CAPS_TECHNOLOGY

Device type (values as for IType in DevOpenDC).
Device input/output capability:

CAPS_I0O_DUMMY

Dummy device
CAPS_SUPPORTS_OP

Device supports output
CAPS_SUPPORTS_IP
) Device supports input
CAPS_SUPPORTS 10

Device supports output and input.

Technology:

CAPS_TECH_UNKNOWN
Unknown
CAPS_TECH_VECTOR_PLOTTER
Vector plotter
CAPS_TECH_RASTER _DISPLAY
Raster display
CAPS_TECH_RASTER_PRINTER
Raster printer
CAPS_TECH_RASTER CAMERA
Raster camera
CAPS_TECH_POSTSCRIPT
PostScript device.

Chapter 2. Device Functions

-2-15

DevQueryCaps —
Query Device Capabilities

CAPS_DRIVER_VERSION

CAPS_WIDTH

CAPS_HEIGHT

CAPS_WIDTH_IN_CHARS

CAPS_HEIGHT_IN_CHARS

CAPS_HORIZONTAL_RESOLUTION
CAPS_VERTICAL_RESOLUTION
CAPS_CHAR_WIDTH
CAPS_CHAR_HEIGHT
CAPS_SMALL_CHAR_WIDTH

CAPS_SMALL_CHAR_HEIGHT

CAPS_COLORS

CAPS_COLOR_PLANES
CAPS_COLOR_BITCOUNT

CAPS_COLOR_TABLE_SUPPORT

CAPS_MOUSE_BUTTONS

2-16 PM Programming Reference

Version identifier of the presentation driver.

The high order word of the version identifier is 0. The
low order word identifies the release, for example
0x0120 is release 1.2.

Media width (for a full screen, maximized window for
displays) in pels.

Media depth (for a full screen, maximized window for
displays) in pels. (For a plotter, a pel is defined as the
smallest possible displacement of the pen and can be
smaller than a pen width.)

Media width (for a full screen, maximized window for
displays) in default character columns.

Media depth (for a full screen, maximized window for
displays) in default character rows.

Horizontal resolution of device in pels per meter.
Vertical resolution of device in pels per meter.
Default character-box width in pels for VIO.
Default character-box height in pels for VIO.

Default small-character box width in pels for VIO. This
is 0 if there is only one character-box size.

Default small-character box height in pels for VIO. This
is 0 if there is only one character-box size.

Number of distinct colors supported at the same time,
including reset (gray scales count as distinct colors). If
loadable color tables are supported, this is the number
of entries in the device color table. For plotters, the
value returned is the number of pens plus one (for the
background).

Number of color planes.

Number of adjacent color bits for each pel (within one
plane).

Loadable color table support:

CAPS_COLTABL_RGB_8
1 if RGB color table can be loaded, with a
minimum support of 8 bits each for red,
green, and blue.
CAPS_COLTABL_RGB_8 PLUS
1 if color table with other than 8 bits for
each primary color can be loaded.
CAPS_COLTABL_TRUE_MIX
1 if true mixing occurs when the logical
color table has been realized, providing that
the size of the logical color table is not
greater than the number of distinct colors
supported (see element CAPS_COLORS).
CAPS_COLTABL_REALIZE
1if a loaded color table can be realized.

The number of pointing device buttons that are
available. A returned value of 0 indicates that there are
no pointing device buttons available.

e

CAPS_FOREGROUND_MIX_SUPPORT

CAPS_BACKGROUND_MIX_SUPPORT

CAPS_VIO_LOADABLE_FONTS

DevQueryCaps —
Query Device Capabilities

Foreground mix support:

CAPS_FM_OR

Logical OR.
CAPS_FM_OVERPAINT

Overpaint.
CAPS_FM_XOR

Logical XOR.
CAPS_FM_LEAVEALONE

Leave alone.
CAPS_FM_AND

Logical AND.
CAPS_FM_GENERAL_BOOLEAN

All other mix modes; see GpiSetMix.

The value returned is the sum of the values appropriate
to the mixes supported. A device capable of supporting
OR must, as a minimum, return CAPS_FM_OR +
CAPS_FM_OVERPAINT + CAPS_FM_LEAVEALONE,
signifying support for the mandatory mixes OR,
overpaint, and leave-alone.

Note that these numbers correspond to the decimatl
representation of a bit string that is six bits long, with
each bit set to 1 if the appropriate mode is supported.

Those mixes returned as supported are guaranteed for
all primitive types. For more information, see
GpiSetMix.

Background mix support:

CAPS_BM_OR

Logical OR.
CAPS_BM_OVERPAINT

Overpaint.
CAPS_BM_XOR

Logical XOR.
CAPS_BM_LEAVEALONE

Leave alone.
CAPS_BM_AND

Logical AND.
CAPS_BM_GENERAL_BOOLEAN

All other mix modes; see GpiSetBackMix.

The value returned is the sum of the values appropriate
to the mixes supported. A device must, as a minimum,
return CAPS_BM_OVERPAINT +
CAPS_BM_LEAVEALONE, signifying support for the
mandatory background mixes overpaint, and
leave-alone.

Note that these numbers correspond to the decimal
representation of a bit string that is four bits long, with
each bit set to 1 if the appropriate mode is supported.

Those mixes returned as supported are guaranteed for
all primitive types. For more information, see
GpiSetBackMix.

Number of fonts that can be loaded for VIO.

Chapter 2. Device Functions 2-17

DevQueryCaps —
Query Device Capabilities

CAPS_WINDOW_BYTE_ALIGNMENT

CAPS_BITMAP_FORMATS
CAPS_RASTER_CAPS

CAPS_MARKER HEIGHT
CAPS_MARKER_WIDTH
CAPS_DEVICE_FONTS
CAPS_GRAPHICS SUBSET

CAPS_GRAPHICS_VERSION
CAPS_GRAPHICS_VECTOR_SUBSET

CAPS_DEVICE_WINDOWING

CAPS_ADDITIONAL_GRAPHICS

2-18 PM Programming Reference

Whether or not the client area of VIO windows should be
byte-aligned:

CAPS_BYTE_ALIGN_REQUIRED
Must be byte-aligned.
CAPS_BYTE_ALIGN_RECOMMENDED
More efficient if byte-aligned, but not
required.
CAPS_BYTE_ALIGN_NOT _REQUIRED
Does not matter whether byte-aligned.

Number of bit-map formats supported by device.
Capability for device raster operations:

CAPS_RASTER BITBLT

1 if GpiBitBIt and GpiWCBItBIt supported
CAPS_RASTER_BANDING

1 if banding is supported
CAPS_RASTER_BITBLT _SCALING

1 if GpiBitBIt and GpiWCBItBIt with scaling

supported.
CAPS_RASTER_SET PEL

1 if GpiSetPel supported.
CAPS_RASTER _FONTS

1 if this device can draw raster fonts.
CAPS_RASTER_FLOOD _FiLL

1 if GpiFloodFill is supported.

Default marker-box height in pels.
Default marker-box width in pels.
Number of device-specific fonts.

Graphics drawing subset supported. (3 indicates GOCA
DR/3)

Graphics architecture version number supported. (1
indicates Version 1)

Graphics vector drawing subset supported. (2 indicates
GOCA VS/2)

Device windowing support:

CAPS_DEV_WINDOWING SUPPORT
1 if device supports windowing.

Other bits are reserved 0.
Additional graphics support:

CAPS_GRAPHICS_KERNING_SUPPORT

1 if device supports kerning.
CAPS_FONT_OUTLINE_DEFAULT

1 if device has a default outline font.
CAPS_FONT_IMAGE_DEFAULT

1 if device has a default image font.
CAPS_SCALED_DEFAULT MARKERS

1 if default markers are to be scaled by the

marker-box attribute.
CAPS_COLOR_CURSOR_SUPPORT

1 if device supports colored cursors.
CAPS_PALETTE_MANAGER

1 if device supports palette functions (see

GpiCreatePalette).

o

CAPS_PHYS_COLORS
CAPS_COLOR_INDEX

CAPS_GRAPHICS CHAR_WIDTH
CAPS_GRAPHICS_CHAR_HEIGHT
CAPS_HORIZONTAL_FONT_RES

CAPS_VERTICAL_FONT_RES

CAPS_DEVICE_FONT_SIM

CAPS_LINEWIDTH_THICK

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HDC

PMERR_INV_QUERY_ELEMENT_NO

PMERR_INV_LENGTH_OR_COUNT

DevQueryCaps —
Query Device Capabilities

CAPS_COSMETIC_WIDELINE_SUPPORT
1 if device supports cosmetic thick lines
(see GpiSetLineWidth).
CAPS_ENHANCED_TEXT
1 if device supports full font file description
and text alignment.

Other bits are reserved 0.

Maximum number of distinct colors available on the
device.

Maximum logical color-table index supported for this
device. For the EGA and VGA drivers, the value is 63.

Default graphics character-box width, in pels.
Default graphics character-box height, in pels.

Effective horizontal device resolution in pels per inch,
for the purpose of selecting fonts.

For printers, this is the actual device resolution, but for
displays it may differ from the actual resolution for
reasons of legibility.

Effective vertical device resolution in pels per inch, for
the purpose of selecting fonts.

Identifies which simulations are valid on device fonts.
Valid flags are:

CAPS_DEVICE_FONT_SIM_BOLD
CAPS_DEVICE_FONT_SIM_ITALIC
CAPS_DEVICE_FONT_SIM_UNDERSCORE
CAPS_DEVICE_FONT_SIM_STRIKEOUT

Cosmetic thickness of lines and arcs on this device,
when fxLineWidth is LINEWIDTH_THICK (see
GpiSetLineWidth). The units are pels. A value of 0 is
interpreted as 2 pels.

An invalid device-context handle or (micro presentation
space) presentation-space handie was specified.

An invalid start parameter was specified with
DevQueryCaps.

An invalid length or count parameter was specified.

Chapter 2. Device Functions 2-19

DevQueryCaps -
Query Device Capabilities

Remarks
GpiQueryDevice can be used to find the handle of the currently associated device context.

Related Functions
Prerequisite Functions

* DevOpenDC(for CAPS_FAMILY)

Other Related Functions

DevQueryDeviceNames

DevQueryHardcopyCaps

GpiQueryDevice

GpiSetMix(for CAPS_FOREGROUND_MIX_SUPPORT)
GpiSetBackMix(for CAPS_BACKGROUND_MIX_SUPPORT)

Example Code
In this example the driver is queried to see if it supporis input, output, or both. Note that a valid
device context handle must be passed. This example assumes a DevOpenDC call has been made to
obtain the device context handie.

#define INCL_DEV
#include <0S2.H>

HDC hdc;

LONG 1Start;

LONG 1Count;

BOOL flreturn;

LONG alArray[CAPS_TECHNOLOGY];
1Count = CAPS_TECHNOLOGY;
1Start = CAPS_FAMILY;

flreturn = DevQueryCaps (hdc, /* device context handle */
1Start, /* number of first item */
1Count, /* count of items */

alArray); /* array of longs which */
/* will contain the return */
/* information. */

switch(alArray[CAPS_I0_CAPS]) /* we test the CAPS_IO_CAPS */
/* element of the array to */
/* find out which options */

{ /* are supported. */
case CAPS_IO_SUPPORTS OP: /* device supports output.*/
break;
case CAPS_IO_SUPPORTS_IP: /* device supports input. */
break;
case CAPS_IO_SUPPORTS IO: /* device supports both */

/* input and output. */
break;

default:
break;

}

2-20 PM Programming Reference

—

DevQueryDeviceNames —
Query Device Names

#define INCL_DEV /* Or use INCL_PM */

BOOL DevQueryDeviceNames (HAB hab, PSZ pszDriverName, PLONG pidn,
PSTR32 aDeviceName, PSTR64 aDeviceDesc, PLONG pidt,
PSTR16 aDataType)

This function causes a presentation driver to return the names, descriptions, and data types of the
devices it supports.

Parameters

hab (HAB) — input
Anchor-block handle.

pszDriverName (PSZ) - input
Fully-qualified name of the file containing the presentation driver.

The file-name extension is DRV.

pldn (PLONG) — input/output
Maximum number of device names and descriptions that can be returned.

pldn can have the following values:

Zero The number of device names and descriptions supported is returned; aDeviceName
and aDeviceDesc are not updated.

Nonzero pldn is updated to the number returned in aDeviceName and aDeviceDesc;
aDeviceName and aDeviceDesc are updated.

aDeviceName (PSTR32) — output
Device-name array.

An array of null-terminated strings, each element of which identifies a particular device. Valid
names are defined by presentation drivers.

aDeviceDesc (PSTR64) — output
Device-description array.

An array of null-terminated strings, each element of which is a description of a particular device.
Valid descriptions are defined by presentation drivers.

pldt (PLONG) — input/output ;
Maximum number of data types that can be returned.

pldt can have the following values:
Zero The number of data types supported is returned, and aDataType is not updated.
Nonzero pldtis updated to the number returned, and aDataType is updated.

aDataType (PSTR16) — output
Data type array.

An array of null-terminated strings, each element of which identifies a data type. Valid data
types are defined by presentation drivers.

Chapter 2. Device Functions 2-21

DevQueryDeviceNames —
Query Device Names

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

Remarks
An application can first call this function with p/dn and pldt set to 0 to find how much storage is
needed for the data areas. Having allocated the storage, the application calls the function a second
time for the data to be entered.

‘HP LaserdJdet™ II’ is an example of a device name, ‘HP LaserJet II’ is an example of a device
description, and ‘PM_Q_STD’ is an example of a data type.

Related Functions
¢ DevQueryCaps
¢ DevQueryHardcopyCaps

” Trademark of Hewlett-Packard Company

2-22 PM Programming Reference

DevQueryDeviceNames —
Query Device Names

4

/ Example Code
This example uses DevQueryDeviceNames to return the names, descriptions, and data types of
supported devices for a presentation driver. The first call to DevQueryDeviceNames determines the
number of names, description, and data types available; after allocating the arrays, the second call
actually returns the information in the arrays.

#define INCL_DEV /* Device Function definitions */
#define INCL_DOSMEMMGR /* DOS Memory Manager Functions */
#include <o0s2.h>

BOOL fSuccess; /* success indicator */
HAB hab; /* Anchor-block handle */
LONG pldn = OL; /* number of device names/descriptions */
LONG pldt = 0OL; /* number of data types */
PSTR32 aDeviceName; /* array of device names */
PSTR64 aDeviceDesc; /* array of device descriptions */
PSTR16 aDataType; /* array of data types */

/* query number of supported names/descriptions/data types
(pldn & pldt both 0) */
fSuccess = DevQueryDeviceNames (hab, "IBM4201.DRV", &pldn,
aDeviceName, aDeviceDesc, &pldt,
aDataType);

if (fSuccess)

{

/* allocate arrays */

DosAl1ocMem((VOID *)aDeviceName, (ULONG)pldn*sizeof(STR32),
PAG_COMMIT | PAG_WRITE);

DosAl1locMem((VOID *)aDeviceDesc, (ULONG)pldn*sizeof(STR64),
PAG_COMMIT | PAG_WRITE);

DosAllocMem((VOID *)aDataType, (ULONG)pldt*sizeof(STR16),
PAG_COMMIT | PAG_WRITE);

/* query supported device information */

fSuccess = DevQueryDeviceNames(hab, "IBM4201.DRV", &pldn,
aDeviceName, aDeviceDesc, &pldt,
aDataType);

Chapter 2. Device Functions 2-23

DevQueryHardcopyCaps —
Query Hardcopy Caps

fidefine INCL_DEV /* Or use INCL_PM */

LONG DevQueryHardcopyCaps (HDC hdc, LONG iStartForm, LONG IForms,
PHCINFO phciHcinfo)

This function queries the hard-copy capabilities of a device.

Parameters
hdc (HDC) — input
Device-context handle.

IStartForm (LONG) — input
Start-forms code.

Forms-code number from which the query is to start. The first forms code has the value 0.
IStartForm is used with IForms.

IForms (LONG) — input
Number of forms to query.

If 0, the number of forms codes defined is returned. If greater than zero, this function returns the
number of forms codes for which information is returned.

For example, if there are five forms codes defined, and IStartForm = 2 and IForms = 3, a query
is performed for forms codes 2, 3, and 4. The result is returned in the buffer pointed to by
phciHcinfo.

phciHcelnfo (PHCINFO) — output
Hard-copy capabilities information.

A buffer containing the results of the query. The result consists of IForms copies of the HCINFO
structure.

At least one of the defined forms codes must have the HCAPS_CURRENT bit set. There might be
more than one with either the HCAPS_CURRENT or the HCAPS_SELECTABLE bits set.

For a job to be selected by the spooler for printing, each one of the forms specified in the FORM
spooler parameter (see pszSpoolerParams in DEVOPENSTRUC) must be either
HCAPS_CURRENT or HCAPS_SELECTABLE. The following are possibilities:

¢ All forms specified are HCAPS_SELECTABLE.
The single form specified is HCAPS_CURRENT.
* One of the forms is HCAPS_CURRENT, and all of the others are HCAPS_SELECTABLE.

Returns
Details of forms:

DQHC_ERROR Error.

20 If IForms equals 0, number of forms available.
If IForms does not equal 0, number of forms returned.

Possible returns from WinGetlLastError

PMERR_INV_HDC An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

PMERR_INV_FORMS_CODE An invalid forms code parameter was specified with
DevQueryHardcopyCaps.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

2-24 PM Programming Reference

~—

DevQueryHardcopyCaps —
Query Hardcopy Caps

Related Functions

Prerequisite Functions

e DevOpenDC

Other Related Functions

¢ DevQueryDeviceNames
¢ DevQueryCaps

Example Code
The height and width of the capability of the output device is queried for each form code available.
Note that a valid device context handle must be passed. This example assumes a DevOpenDC call
has been made to obtain the device context handle of a printer.

#define INCL_DEV
#include <0S2.H>

HDC hdc;

LONG 1StartForm; /* Form code number from which the query */
/* is to start */

LONG 1Forms; /* number of forms to query */

/* array of structures containing return information. */
HCINFO ahciHcInfo[5];

LONG Treturn;

int i;

HCINFO height[5];

HCINFO width[5];

1StartForm = OL;

1Forms = OL; /* the actual number of forms codes is */
/* returned. There will be lreturn */
/* copies of the HINFO structure. */
1return = DevQueryHardcopyCaps{hdc,
1StartForm,
1Forms,
ahciHcInfo);
if (1return > 5)
{
Treturn = 5L; /* we only want the first five form codes */
} /* if there are more than five */

for(i = 0; i < Treturn; i++)

width[1return].cx = ahciHcInfo[lreturn].cx;
height[1return].cy = ahciHcInfo[lreturn].cy;

Chapter 2. Device Functions 2-25

2-26 PM Programming Reference

“_

Chapter 3. Direct Manipulation Functions

This section describes functions that an application would use to initiate or participate in a direct
manipulation operation. The foliowing table shows all the direct manipulation (Drg) functions in

alphabetic order.

C Name C Name
DrgAcceptDroppedFiles DrgQueryNativeRMF
DrgAccessDraginfo DrgQueryNativeRMFLen
DrgAddStrHandle DrgQueryStrName
DrgAllocDraginfo DrgQueryStrNamelLen
DrgAllocDragtransfer DrgQueryTrueType
DrgDeleteDraginfoStrHandles DrgQueryTrueTypelen
DrgDeleteStrHandle DrgReleasePS

DrgDrag DrgSendTransferMsg

DrgDragFiles

DrgSetDragimage

DrgFreeDraginfo

DrgSetDragitem

DrgFreeDragtransfer DrgSetDragPointer
DrgGetPS DrgVerifyNativeRMF
DrgPostTransferMsg DrgVerifyRMF
DrgPushDraginfo DrgVerifyTrueType
DrgQueryDragitem DrgVerifyType
DrgQueryDragitemCount DrgVerifyTypeSet
DrgQueryDragitemPtr

Chapter 3. Direct Manipulation Functions

3-1

DrgAcceptDroppedFiles —
Direct Manipulation for Files

#define INCL_WINSTDDRAG

BOOL DrgAcceptDroppedFiles (HWND Hwnd, PSZ pszPath, PSZ pszTypes,
ULONG ulDefaultOp, ULONG ulReserved)

This function handles the file direct manipulation protocol for a given window.

Parameters
Hwnd (HWND) — input
Window handle.

Handle of calling window.

pszPath (PSZ) — input
Directory.

Directory in which to place the dropped files. If NULL, the files are placed in the current
directory.

pszTypes (PSZ) — input
List of types.

A list of types that are acceptable to the drop. This string is of the form: TYPE[,TYPE...].
When this pointer is NULL, any type of file will be accepted.

ulDefaultOp (ULONG) - input
Default drag operation.

Default drag operation for this window. The operation is either DO_MOVE or DO_COPY.

ulReserved (ULONG) — input
Reserved.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Remarks
This function handies the file direct manipulation protocol for a given window. The window responds
(DOR_DROP, usDefaultOp) to DM_DRAGOVER messages for items with a type matching the
acceptable type string and with a rendering mechanism and format of <DRM_OS2FILE,DRF_UNKNOWN>.
Not all dragged objects must match this criteria for the drop to be acceptable.

After the drop occurs, this function handles the conversation required to complete the direct
manipulation operation for all acceptable objects. A DM_ENDCONVERSATION (DMFL_TARGETFAIL)
message is sent to the source when an object is unacceptable.

When an error occurs during a move or copy, the caller is sent a DM_DRAGERROR message. The
caller can take corrective action.

As the move or copy operation is successfully completed for each file, a DM_DRAGFILECOMPLETE
message is sent to the caller. No message is sent when the operation fails.

The function returns TRUE if the operation is successful and FALSE if an error occurs.

3-2 PM Programming Reference

DrgAcceptDroppedFiles —
Direct Manipulation for Files

Related Functions
* DrgDragFiles

Example Code
This example uses the DrgAcceptDroppedFiles function to define the direct manipulation protocol of
the given window, accept all file types, and use the current directory as the drop directory.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
HWND Hwnd; /* Handle of calling window */
PSZ pszPath; /* Directory in which to place the */

/* dropped files */
PSZ pszTypes; /* A list of types that are acceptable */
ULONG ulDefaultOp; /* Default drag operation */
pszPath = NULL; /* Drop file in current directory */
pszTypes = NULL; /* Accept any file type */
uiDefaultOp = DO_MOVE; /* Default drag operation is move */

fSuccess = DrgAcceptDroppedFiles(Hwnd, pszPath, pszTypes,
ulDefaultOp, 0);

Chapter 3. Direct Manipulation Functions 3-3

DrgAccessDraginfo —
Access Drag Information

#define INCL_WINSTDDRAG

BOOL DrgAccessDraginfo (PDRAGINFO pDraginfo)

This function accesses a DRAGINFO structure.

Parameters
pDraginfo (PDRAGINFO) — input
Pointer. .

Pointer to the DRAGINFO structure.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_ACCESS_DENIED The memory block was not allocated properly.

Remarks
This function is used by the target of a drag operation to access a DRAGINFO structure. The address
of the structure is passed in a drag message (DM_DRAGOVER, DM_DROP, or DM_DROPHELP).

To release the structure, use the DrgFreeDraginfo function.

Related Functions
* DrgAllocDraginfo
* DrgDrag
* DrgFreeDraginfo
* DrgPushDraginfo

Example Code
This example uses the DrgAccessDraginfo function to make an existing drag information structure
(created by the DrgAllocDraginfo function) available.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
DRAGINFO Draginfo; /* Drag-information structure */

fSuccess = DrgAccessDraginfo(&Draginfo);

3-4 PM Programming Reference

DrgAddStrHandle —
Create String Handle

#define INCL_WINSTDDRAG

HSTR DrgAddStrHandle (PSZ pszString)

This function creates a handle to a string.

Parameters
pszString (PSZ) — input
String.

String for which a handle is to be created.

Returns
String handle.

NULLHANDLE Error occurred.
Other String handle created.

Possible returns from WinGetLastError

PMERR_INVALID_PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

PMERR_RESOURCE_DEPLETION An internal resource depletion error has occurred.

Remarks
The handle can be used by any application to reference the input string.

This function must be called by the source of a drag whenever a string is to be passed in a
DRAGINFO structure.

Related Functions
¢ DrgDeleteStrHandle
¢ DrgQueryStrName

Chapter 3. Direct Manipulation Functions 3-56

DrgAddStrHandle —
Create String Handle

Example Code
This example calls the DrgAddStrHandle function to create handles for strings that are used in a
DRAGITEM structure.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

USHORT ID_ITEM = 1; /* Drag item identifier */
HWND hwnd; /* Window handle */
DRAGITEM- ditem; /* DRAGITEM structure */

/* Initialize the DRAGITEM structure */
ditem.hwndItem = hwnd; /* Conversation partner */
ditem.ulItemID = ID_ITEM; /* Identifies item being dragged */
ditem.hstrType = DrgAddStrHandle("DRT_TEXT"); /* Item is text */

ditem.hstrRMF = DrgAddStrHandle("<DRM_0S2FILE,DRF_TEXT>");
ditem.hstrContainerName = DrgAddStrHandle("C:\\");

ditem.hstrSourceName = DrgAddStrHandle("C:\\CONFIG.SYS");
ditem.hstrTargetName = DrgAddStrHandle("C:\\0S2\\CONFIG.SYS");
ditem.cx0ffset = 0; /* X-offset of the origin of the */
/* image from the pointer hotspot*/
ditem.cyOffset = 0; /* Y-offset of the origin of the */
/* image from the pointer hotspot*/
ditem.fsControl = 0; /* Source item control flags */
/* object is open */

ditem.fsSupportedOps = 0;

3-6 PM Programming Reference

o

T

™~

DrgAllocDraginfo —
Allocate DRAGINFO Structure

#define INCL_WINSTDDRAG

PDRAGINFO DrgAllocDraginfo (ULONG cDitem)

This function allocates a DRAGINFO structure.

Parameters
cDitem (ULONG) — input
Number of objects.

Number of objects being dragged. This number must be greater than 0.

Returns
Pointer.

Pointer to the DRAGINFO structure.

NULL Error occurred.
Other The DRAGINFO structure.

Possible returns from WinGetLastError
PMERR_INSUFFICIENT_MEMORY
PMERR_INVALID_PARAMETERS

Remarks

The operation terminated through insufficient memory.

An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

This function must be called before the DrgDrag function is called.

The caller can define a default operation for the objects represented by the DRAGINFO structure by
modifying the usOperation field. if the usOperation field is modified, the new value will be sent to the
target as the operation whenever a DO_DEFAULT operation would normally be sent. The caller
should not modify any other part of the DRAGINFO structure. The DRAGITEM structures associated
with the DRAGINFO structure should only be altered with DrgSetDragitem or by using a pointer

obtained with DrgQueryDragitemPtr.

Related Functions
¢ DrgAccessDraginfo
* DrgDrag
e DrgFreeDraginfo
* DrgPushDraginfo

Chapter 3. Direct Manipulation Functions 3-7

DrgAllocDraginfo —
Allocate DRAGINFO Structure

Example Code

This example calls the DrgAllocDraginfo function to create a Drag structure for a single object and
uses the new structure to set the DRAGITEM (DrgSetDragitem) structure.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

PDRAGINFO pdinfo; /* Pointer to DRAGINFO structure */
HWND hwnd; /* Handle of calling (source) window */
BOOL flResult; /* Result indicator */
DRAGITEM ditem; /* DRAGITEM structure */

pdinfo = DrgAllocDraginfo(1l); /* Create the DRAGINFO structure */
/* Set the drag item */
flResult= DrgSetDragitem(pdinfo, &ditem, (ULONG)sizeof(ditem), 0);

3-8 PM Programming Reference

DrgAllocDragtransfer —
Allocate DRAGTRANSFER Structures

#define INCL_WINSTDDRAG

PDRAGTRANSFER DrgAllocDragtransfer (ULONG cdxfer)

This function allocates a specified number of DRAGTRANSFER structures from a single segment.

Parameters
cdxfer (ULONG) — input
Number of structures.

Number of DRAGTRANSFER structures to be allocated. This number must be greater than 0.

Returns

Pointer.

Pointer to an array of DRAGTRANSFER structures.
NULL Error occurred.

Other The array of DRAGTRANSFER structures.

Possible returns from WinGetLastError
PMERR_MEMORY_ALLOCATION_ERR An error occurred during memory management.
PMERR_INSUFFICIENT_MEMORY The operation terminated through insufficient memory.

PMERR_PARAMETER_OUT_OF_RANGE The value of a parameter was not within the defined valid
range for that parameter.

Remarks
This function must be called before sending a DM_RENDER message.

Related Functions
* DrgFreeDragtransfer
¢ DrgSendTransferMsg

Example Code
This example calls the DrgAllocDragtransfer function to allocate a single DRAGTRANSFER structure
and adds a pointer to a DRAGITEM structure for an object that will be transferred.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions*/
#include <os2.h>

PDRAGTRANSFER pResult; /* Pointer to DRAGTRANSFER structure */
PDRAGITEM pDragitem; /* Pointer to DRAGITEM structure */

pResult = DrgAllocDragtransfer(l);

if (pResult != NULL) /* Indicate DRAGITEM to be transferred */
pResult->pditem = pDragitem;

Chapter 3. Direct Manipulation Functions 3-9

DrgDeleteDraginfoStrHandles —
Delete DRAGINFO String Handles

#define INCL_WINSTDDRAG

BOOL DrgDeleteDraginfoStrHandles (PDRAGINFO pDraginfo)

This function deletes each unique string handle in a DRAGINFO structure.

Parameters
pDraginfo (PDRAGINFO) — input
Pointer.

Pointer to the DRAGINFO structure that contains string handles to delete.

Returns

Success indicator.
TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to 432,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

Remarks

Using this function is equivalent to calling the DrgDeleteStrHandle function for each unique string in
a DRAGINFO structure.

This function must be called by the target of a direct manipulation operation either:

* After processing a DM_DROPHELP message
or
* After completing the direct manipuiation operation begun as a result of a DM_DROP message.

Related Functions
¢ DrgDeleteStrHandle

Example Code
This example calls the DrgDeleteDraginfoStrHandles function to delete all unique string handles
associated with the specified DRAGINFO structure (previously allocated by the DrgAllocDraginfo
function).

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
DRAGINFO Draginfo; /* DRAGINFO structure containing string */
/* handles to delete */

fSuccess = DrgDeleteDraginfoStrHandles (&Draginfo);

3-10 PM Programming Reference

-

DrgDeleteStrHandle —
Delete String Handle

#tdefine INCL_WINSTDDRAG

BOOL DrgDeleteStrHandle (HSTR Hstr)

This function deletes a string handle.

Parameters
Hstr (HSTR) — input
String handle.

The string handle to delete.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID_PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to +32,767 cannot be converted to a SHORT, and
i a negative number cannot be converted to a ULONG or
USHORT.

Remarks
This function must be used to delete a string handle created by the DrgAddStrHandle function.

. Related Functions
¢ DrgAddStrHandle
¢ DrgDeleteDraginfoStrHandles

Example Code

‘This example calls the DrgDeleteStrHandle function to delete an existing string handle (returned by a
previous call to the DrgAddStrHandle function).

- #define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <o0s2.h>

BOOL fSuccess; /* Indicate success or failure */
HSTR Hstr; /* String handle */

fSuccess = DrgDeleteStrHandle (Hstr);

Chapter 3. Direct Manipulation Functions 3-11

DrgDrag —
Drag

#define INCL_WINSTDDRAG

HWND DrgDrag (HWND hwndSource, PDRAGINFO pDraginfo, PDRAGIMAGE pdimg,
ULONG cdimg, LONG vkTerminate, PVOID pReserved)

This function performs a drag operation.

Parameters
hwndSource (HWND) — input
Window handle.

Handle of the window calling DrgDrag. This window is the source of the drag.

pDraginfo (PDRAGINFO) — input/output
Pointer.

Pointer to the DRAGINFO structure.

pdimg (PDRAGIMAGE) ~ input
Pointer.

Pointer to an array of DRAGIMAGE structures. These structures describe the images that are to
be drawn under the pointing device pointer during the drag.

cdimg (ULONG) — input
Array size.

Size of the pdimg array.

vkTerminate (LONG) — input
Pointing device button.

Pointing device button that ends the drag operation.
VK_BUTTON1 Release of button 1 ends the drag.
VK_BUTTON2 Release of button 2 ends the drag.
VK_BUTTON3 Release of button 3 ends the drag.

VK_ENDDRAG Release of the system-defined direct manipulation button ends the drag. This is
the recommended value if the DrgDrag function call is invoked in response to a
WM_BEGINDRAG message.

pReserved (PVOID) — input
Reserved.

Must be set to NULL by the caller.

Returns
Window handle.

Handle of window on which the dragged objects were dropped.
NULL Error occurred.
Other Window handle.

Possible returns from WinGetLastError
PMERR_INVALID HWND An invalid window handie was specified.

3-12 PM Programming Reference

~=

DrgDrag —
Drag

PMERR_INVALID_ PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to 432,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

PMERR_INSUFFICIENT_MEMORY The operation terminated through insufficient memory.

Remarks
This function:

Initiates a direct manipulation operation

Uses the input image to provide visual feedback to the user
Notifies other windows as the dragged object passes over
Notifies the destination if the object is dropped.

DrgDrag is called when the system-defined direct-manipulation button is pressed while the pointer is
over a window and a pointing device movement follows. As the pointer moves over a potential
target, a DM_DRAGOVER message is sent to the target. When the pointer moves from one target
window to another, a DM_DRAGLEAVE message is sent to the former target.

if the pointer is over a valid target when the direct-manipulation button is released, a DM_DROP
message is sent to the target.

Before the DM_DROP message is sent, the cxOffset and cyOffset fields are copied from the
DRAGIMAGE structures to the corresponding fields in the DRAGITEM structures. The values from
the first DRAGIMAGE are copied to the first DRAGITEM, from the second DRAGIMAGE to the second
DRAGITEM, and so on. The target can use this information to place the images in the same spatial
relationship after the drop. If there are more DRAGITEM structures than there are DRAGIMAGE
structures, the cxOffset and cyOffset from the final DRAGIMAGE are placed in each of the remaining
DRAGITEM structures.

The caller can define a default operation for the objects represented by the DRAGINFO structure by
modifying the usOperation field. f the usOperation field is modified, the new value will be sent to the
target as the operation whenever a DO_DEFAULT operation would normally be sent. The caller
should not modify any other part of the DRAGINFO structure. The DRAGITEM structures associated
with the DRAGINFO structure should only be altered with DrgSetDragitem or by using a pointer
obtained with DrgQueryDragitemPtr.

The following keys are active during the drag operation:

Esc The drag operation is canceled.
F1 A DM_DROPHELP message Is posted to the target so that it can provide context help for
the drag operation. The drag operation is canceled.

Before invoking DrgDrag, the caller is responsible for:

e Obtaining a DRAGINFO structure using DrgAllocDraginfo
e |nitializing the DRAGITEM structures using DrgSetDragitem.

On return from DrgDrag, the caller must free the structure using DrgFreeDraginfo.

If the dragged objects are not dropped, NULL is returned.

Chapter 3. Direct Manipulation Functions 3-13

DrgDrag —
Drag

Related Functions
Prerequisite Functions

* DrgAHlocDraginfo

Other Related Functions

* DrgFreeDraginfo
* DrgSetDragitem

Example Code
This example uses the DrgDrag function to drag a single object in response to the
direct-manipulation button being pressed while the pointer is over a drag object. The example
shows the initialization of the DRAGITEM, DRAGINFO, and DRAGIMAGE structures used by the
DrgDrag function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_WININPUT /* Window Input Functions */
#include <os2.h>

PDRAGINFO pdinfo; /* Pointer to DRAGINFO structure */
HWND hwnd; /* Handle of calling (source) window */
BOOL f1Result; /* Result indicator */
DRAGITEM ditem; /* DRAGITEM structure */
DRAGIMAGE dimg; /* DRAGIMAGE structure */
HBITMAP hbm; /* Bit-map handle */
HWND hwndDrop; /* Handle of drop (target) window */

case WM_BEGINDRAG:

/***/

/* Initialize the DRAGITEM structure */
/***l
ditem.hwndItem = hwnd; /* Conversation partner */
ditem.ulItemID = ID_ITEM; /* Identifies item being dragged*/
ditem.hstrType = DrgAddStrHandle("DRT_TEXT"); /* Text item */
ditem.hstrRMF = DrgAddStrHandle("<DRM_0S2FILE,DRF_TEXT>");
ditem.hstrContainerName = DrgAddStrHandle("C:\\");
ditem.hstrSourceName = DrgAddStrHandle("C:\\CONFIG.SYS");
ditem.hstrTargetName = DrgAddStrHandle("C:\\0S2\\CONFIG.SYS");

ditem.cx0ffset = 0; /* X-offset of the origin of */
/* the image from the pointer */
/* hotspot */
ditem.cyOffset = 0; /* Y-offset of the origin of *x/
/* the image from the pointer */
/* hotspot */
ditem.fsControl = 0; ~ /* Source item control flags */
/* object is open */

ditem. fsSupportedOps = 0;

/***/

/* Create the DRAGINFO structure */

/***/

pdinfo = DrgAllocDraginfo(1l);

if (Ipdinfo) return (FALSE); /* If allocation fails, */
/* return FALSE */
/**k******************/
/* Initialize the DRAGIMAGE structure */
/***[
dimg.cb = sizeof (DRAGIMAGE); /* Size control block */
dimg.cptl =0;
dimg.hImage = hbm; /* Image handle passed to */

3-14 PM Programming Reference

e

/* DrgDrag */
dimg.siz1Stretch.cx = 20L; /* Size to stretch ico or bmp to*/
dimg.siz1Stretch.cy = 20L;
dimg.f1 = DRG_BITMAP | /* Flags passed to DrgDrag */

DRG_STRETCH; /* Stretch to size specified */

/* in sizlStretch */
dimg.cx0ffset = 03 /* 0ffset of the origin of *x/
dimg.cyOffset = 0; /* the image from the pointer */

/* hotspot */

/***/

/* Set the drag item */

/***/

flResult= DrgSetDragitem(pdinfo, 8ditem, (ULONG)sizeof(ditem),

0);
/***/
/* Perform the drag operation: */
/* - Give the user a visual cue by changing the pointer to a */
/* bit map */
/* - Send DM_DRAGOVER messages to the target window (in this */
/* case it is also the source) */
/***/
hwndDrop = DrgDrag(hwnd, /* Source of the drag */

pdinfo, /* Pointer to DRAGINFO structure */
(PDRAGIMAGE)&dimg, /* Drag image */
1, /* Size of the pdimg array */
VK_ENDDRAG, /* Release of direct-manipulation */

/* button ends the drag */
NULL); /* Reserved */

DrgDrag —
Drag

Chapter 3. Direct Manipulation Functions 3-15

DrgDragFiles —
Begin Dragging Files

#define INCL_WINSTDDRAG

BOOL DrgDragFiles (HWND Hwnd, PAPSZ pFiles, PAPSZ pTypes, PAPSZ pTargets,
ULONG cFiles, HPOINTER hptrDrag, ULONG vkTerminate,
BOOL fSourceRender, ULONG ulReserved)

This function begins a direct manipulation operation for one or more files.

Parameters
Hwnd (HWND) — input
Window handle.

Handle of calling window.

pFiles (PAPSZ) — input
File names.

The names of the files to be dragged.

pTypes (PAPSZ) — input
File types.

The file types of the files to be dragged.

pTargets (PAPSZ) — input
Target file names.

cFiles (ULONG) — input
Number of files.

Number of files to be dragged.

hptrDrag (HPOINTER) — input
lcon.

Icon to display during the drag.

vkTerminate (ULONG) — input
Button.

Button that ends the drag.

fSourceRender (BOOL) — input
Flag.

Flag to indicate whether the source must perform the move or copy.
TRUE The caller will receive a DM_RENDERFILE message for each file.
FALSE All file manipulation is performed by DrgDragFiles.

ulReserved (ULONG) - input
Reserved.

Returns
Success indicator.

TRUE The drag operation was initiated successfully.
FALSE An error occurred.

3-16 PM Programming Reference

s

DrgDragFiles —
Begin Dragging Files

Remarks
This function begins a direct manipulation operation for one or more files. DRAGINFO and
DRAGITEM structures are allocated and initialized, and are then used as input to DrgDrag. All of the
post-drag conversation required to complete the direct manipulation operation is handled by an
object window created by this function.

The caller should set fSourceRender to TRUE if it must perform the file manipulation for any of these
files. When fSourceRender is TRUE, the caller receives a DM_RENDERFILE message as the
drag-object window receives a DM_RENDER message. The caller should move or copy the file after
receiving the DM_RENDERFILE message. The caller should then send a DM_FILERENDERED
message to the drag-object window, and the drag-object window should send a
DM_RENDERCOMPLETE message to the target.

When pTypes is NULL, the .TYPE EA is interrogated to determine the type for each file in pFiles.
When pTypes is not NULL, the size of the array is expected to be the same as the size of pFiles.
When any individual pointer in the array is NULL, the .TYPE EA for the corresponding file is read.
When .TYPE EA does not exist for any file for which it is needed, a type of DRT_UNKNOWN is used.

When pTargets is NULL, the target name for a file will be the same as the source file name with the
path information removed. If pTargets is not NULL, the size of the array is expected to be the same
as the size of pFiles. If any individual pointer in the array is NULL, the target name for the
corresponding file will match the source name minus the path information.

The rendering mechanism and format for each file is: <DRM_OS2FILE,DRF_UNKNOWN>.

When an error occurs during the move or copy, the caller is sent a DM_DRAGERROR message. The
caller can take corrective action.

As the operation is complete for each file in the list, a DM_DRAGFILECOMPLETE message is sent to
the caller of DrgDragFiles. The caller is thus notified that resources can be freed for a particular file.

This function returns TRUE if the drag operation was initiated successfully and FALSE if an error
occurred. :

Related Functions
-» DrgAcceptDroppedFiles

Chapter 3. Direct Manipulation Functions 3-17

DrgDragFiles —
Begin Dragging Files

Example Code
This example calls the DrgDragFiles function to begin direct manipulation for a single file object,
using the same source and target name, and determining the file type based on the file’s type EA.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_ WININPUT /* Window Input Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
HWND Hwnd; /* Handle of calling window */
PSZ pFiles[1]; /* The names of the files to be dragged */
PSZ pTypes[1]; /* The file types of the files to be */

/* dragged */
PSZ pTargets[1]; /* The target file names */
HPOINTER hptrDrag; /* Icon to display during drag */
pFiles[0] = "FILENAME.EXT"; /* Copy file name to string array */
pTargets[0] = NULL; /* Use source name as target name */
pTypes[0] = NULL; /* Query type EA to determine file type */

fSuccess = DrgDragFiles(Hwnd, pFiles, pTypes, pTargets, 1,
hptrDrag, VK_BUTTON2, FALSE, OL);

3-18 PM Programming Reference

DrgFreeDraginfo —
Free DRAGINFO Structure

N

#define INCL_WINSTDDRAG

BOOL DrgFreeDraginfo (PDRAGINFO pDraginfo)

This function frees a DRAGINFO structure allocated by DrgAllocDraginfo.

Parameters
pDraginfo (PDRAGINFO) — input
Pointer.

Pointer to the DRAGINFO structure.

, Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_MEMORY _DEALLOCATION_ERR An error occurred during memory management.

PMERR_SOURCE_SAME_AS_TARGET The direct manipulation source and target process are
the same.

Remarks

DrgFreeDraginfo fails with an error of PMERR_SOURCE_SAME_AS_TARGET if it is called by the

process that called DrgDrag before DrgDrag returns. When a process is performing a drag operation
between two of its own windows, this prevents the source window from freeing the DRAGINFO
structure before the target window finishes processing.

Related Functions
Prerequisite Functions

) * DrgAllocDraginfo

Other Related Functions

* DrgDrag
¢ DrgAccessDraginfo
* DrgPushDraginfo

Chapter 3

. Direct Manipulation Functions

3-19

DrgFreeDraginfo —
Free DRAGINFO Structure

Example Code
This example calls the DrgFreeDraginfo function to free an existing DRAGINFO structure allocated by
the DrgAllocDraginfo function after a drag operation has completed.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
PDRAGINFO pdinfo; /* Pointer to DRAGINFO structure */
HWND hwnd; /* Handle of calling (source) window */
DRAGIMAGE dimg; /* DRAGIMAGE structure */
HWND hwndDrop; /* Handle of drop (target) window */
/**/
/* Perform the drag operation: */
/* - Give the user a visual cue by changing the pointer to a */
/* bit map */
/* - Send DM_DRAGOVER messages to the target window (in this */
/* case it is also the source) */
/******************’k***/
hwndDrop = DrgDrag{hwnd, /* Source of the drag */
pdinfo, /* Pointer to DRAGINFO structure */
(PDRAGIMAGE) &dimg, /* Drag image */

1, /* Size of the pdimg array */

VK_ENDDRAG, /* Release of drag button */

/* Terminates the drag */

NULL); /* Reserved */

fSuccess = DrgFreeDraginfo(&pdinfo);

3-20 PM Programming Reference

N

DrgFreeDragtransfer —
Free DRAGTRANSFER Storage

#define INCL_WINSTDDRAG

BOOL DrgFreeDragtransfer (PDRAGTRANSFER pdxfer)

This function frees the storage associated with a DRAGTRANSFER structure.

Parameters
pdxfer (PDRAGTRANSFER) — input
Pointer.

Pointer to the DRAGTRANSFER structures to be freed.

Returns
Return code.

0 The structure was freed.

Other Deallocation failed.

Possible returns from WinGetLastError
PMERR_MEMORY_DEALLOCATION_ERR An error occurred during memory management.

Remarks
This function frees the DRAGTRANSFER structures allocated by calls to DrgAllocDragtransfer. When
all of the DRAGTRANSFER structures have been freed, the memory block containing the
DRAGTRANSFER array is deallocated.

Related Functions
* DrgAllocDragtransfer

Example Code
This example calls the DrgFreeDragtransfer function to free an existing DRAGTRANSFER structure
allocated by the DrgAliocDragtransfer function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
DRAGTRANSFER dxfer; /* Pointer to DRAGTRANSFER structure */

fSuccess = DrgFreeDragtransfer(&dxfer);

Chapter 3. Direct Manipulation Functions 3-21

DrgGetPS -
Get Drag Presentation Space

#define INCL_WINSTDDRAG

HPS DrgGetPS (HWND Hwnd)

This function gets a presentation space that is used to provide target feedback to the user during a
drag operation.

Parameters
Hwnd (HWND) — input
Window handle.

Handle of the window for which presentation space is required.

Returns
Presentation-space handle.

Presentation-space handle used for drawing in the window.
NULLHANDLE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID HWND An invalid window handle was specified.
PMERR_NOT_DRAGGING A drag operation is not in progress at this time.
Remarks

This function returns a handle to a presentation space that can be used for drawing while a direct
manipulation operation is in progress.

DrgGetPS is called only during a direct manipulation operation. This function is called only after a
DM_DRAGOVER, DM_DRAGLEAVE, or DM_DROP message has been received.

in order to draw target emphasis, an application must use DrgGetPS and DrgReleasePS to unlock its
window.

The presentation space created with DrgGetPS must be freed with DrgReleasePS.

Related Functions
* DrgReleasePS

3-22 PM Programming Reference

DrgGetPS —
Get Drag Presentation Space

Example Code
This example uses the DrgGetPS function to get a presentation space handie which is used during
drag operations such as loading a drag bit map. When finished with the presentation space, release
it with the DrgReleasePS function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

HPS hps; /* Presentation space handle */
HWND hwnd; /* Handle of the window for which */
/* presentation space is required */

case DM_DRAGOVER:
hps = DrgGetPS(hwnd);

DrawTargetEmphasis(hps, hwnd);
DrgReleasePS{hps);

Chapter 3. Direct Manipulation Functions 3-23

DrgPostTransferMsg —
Post Drag Message

#define INCL_WINSTDDRAG

BOOL DrgPostTransterMsg (HWND hwndTo, ULONG ulMsgid, PDRAGTRANSFER pdxfer,
ULONG fs, ULONG ulReserved, BOOL fRetry)

This function posts a message to the other application involved in the direct manipulation operation.

Parameters
hwndTo (HWND) — input
Window handle.

Window handle to which the message is to be posted:
Target hwnditem in the DRAGITEM structure.
Source hwndClient in the DRAGTRANSFER structure.

ulMsgid (ULONG) — input
Message identifier.

Identifier of the message to be posted. DM_RENDERCOMPLETE is the only valid message.

pdxfer (PDRAGTRANSFER) —~ input
Pointer.

Pointer to the DRAGTRANSFER structure.

fs (ULONG) — input
Flags.

The flags to be passed in the param2 parameter of the message.

ulReserved (ULONG) — input
Reserved.

This must be 0.

fRetry (BOOL) — input
Retry indicator.

TRUE If the destination queue is full, the message posting is retried at 1-second intervals
until the message is posted successfully.

In this case, DrgPostTransferMsg dispatches any messages in the queue by calling
WinPeekMsg and WinDispatchMsg in a loop. The application can receive messages
sent by other applications while it is trying to post drag transfer messages.

FALSE The call returns FALSE without retrying.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

3-24 PM Programming Reference

7

DrgPostTransferMsg —
Post Drag Message

Remarks
The usReply field in the DRAGTRANSFER structure is set to 0 before the message is posted. If the
posting fails for any reason, FALSE is returned.

Related Functions
* DrgSendTransferMsg

Example Code
This example calls the DrgPostTransferMsg function to respond to a DM_RENDER message from the
target. The response consists of a DM_RENDERCOMPLETE message, plus a flag indicating whether
the render was successful (DMFL_RENDEROK) or not (DMFL_RENDERFAIL).

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

MPARAM mpl; /* Message parameter 1 */
BOOL fSuccess; /* Indicate success or failure */
BOOL Rendered; /* Success of render operation */

PDRAGTRANSFER pdxfer; /* Pointer to DRAGTRANSFER structure */

case DM_RENDER:
pdxfer = (PDRAGTRANSFER)PVOIDFROMMP(mpl); /* Get DRAGTRANSFER */
/* structure */

/**/

/* Attempt to render file */

/**/

if (Rendered)
{
fSuccess = DrgPostTransferMsg(pdxfer->pditem,
DM_RENDERCOMPLETE,

pdxfer,
DMFL_RENDEROK,
0,FALSE);
return {MRESULT)TRUE;
}
else
{

fSuccess = DrgPostTransferMsg(pdxfer->pditem,
DM_RENDERCOMPLETE,
pdxfer,
DMFL_RENDERFAIL,
0,FALSE);

return (MRESULT)FALSE;

} -

Chapter 3. Direct Manipulation Functions 3-25

DrgPushDraginfo -
Access a DRAGINFO Structure

#define INCL_WINSTDDRAG

BOOL DrgPushDraginfo (PDRAGINFO pDraginfo, HWND hwndDest)

This function gives a process access to a DRAGINFO structure.

Parameters
pDraginfo (PDRAGINFQ) - input
Pointer.

Pointer to the DRAGINFO structure.

hwndDest (HWND) — input
Window handie.

Handle of the window whose process is to be given access to a DRAGINFO structure.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_ACCESS_DENIED The memory block was not allocated properly.
PMERR_INSUFFICIENT MEMORY The operation terminated through insufficient memory.
Remarks

The receiving process is responsible for:

1. Deleting the string handles in the DRAGINFO structure with DrgDeleteDraginfoStrHandles
2. Freeing the DRAGINFO structure using DrgFreeDraginfo.

Related Functions
* DrgAllocDraginfo
* DrgDrag
* DrgAccessDraginfo
* DrgFreeDraginfo

3-26 PM Programming Reference

DrgPushDraginfo —
Access a DRAGINFO Structure

Example Code
This example calls the DrgPushDraginfo function to grant access to a DRAGINFO structure to the
process owning the specified window handle. The DRAGINFO structure was previously aliocated
using the DrgAllocDraginfo function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
DRAGINFO Draginfo; /* Pointer to DRAGINFO structure */
HWND hwndDest ; /* Handle of window whose process will */
/* will be given access to the DRAGINFO */
/* structure */

fSuccess = DrgPushDraginfo(&Draginfo,hwndDest);

Chapter 3. Direct Manipulation Functions 3-27

DrgQueryDragitem -
Get DRAGITEM Structure

#define INCL_WINSTDDRAG

BOOL DrgQueryDragitem (PDRAGINFO pDraginfo, ULONG cbBuffer, PDRAGITEM pDragitem,
ULONG iltem)

This function returns a DRAGITEM structure used in the direct manipulation operation.

Parameters
pDraginfo (PDRAGINFO) — input
Pointer.

Pointer to the DRAGINFO structure from which the DRAGITEM structure is obtained.

cbBuffer (ULONG) — input
Number of bytes.

Maximum number of bytes to copy.

pDragitem (PDRAGITEM) — output
Pointer.

Pointer to the buffer into which the DRAGITEM structure is copied.

iitem (ULONG) - input
DRAGITEM index.

Zero-based index of the DRAGITEM to be returned.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Remarks
This function returns the DRAGITEM structure identified by iltem.

Related Functions
* DrgSetDragitem
* DrgQueryDragitemPtr

3-28 PM Programming Reference

~_

DrgQueryDragitem -
Get DRAGITEM Structure

Example Code
This example calls the DrgQueryDragitem function to return the entirety of the first DRAGITEM
structure in the given DRAGINFO structure, after which it obtains the source window handle.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

BOOL fSuccess; /* Indicate success or failure */
DRAGINFO Draginfo; /* DRAGINFO structure from which the */
/* DRAGITEM structure is obtained */
ULONG cbBuffer; /* Maximum number of bytes to copy */
DRAGITEM Dragitem; /* Buffer into which the DRAGITEM */
/* structure is copied */
ULONG iltem; /* Zero-based index of the DRAGITEM */
/* to be returned */
HWND hwndSource; /* Source window handle for the drag */

chBuffer = sizeof (DRAGITEM); /* Copy entire DRAGITEM structure */
iltem = 0; /* Return first DRAGITEM */

fSuccess = DrgQueryDragitem(&Draginfo,cbBuffer,&Dragitem,iltem);

hwndSource = Dragitem.hwndItem; /* Obtain source window handle */

Chapter 3. Direct Manipulation Functions 3-29

DrgQueryDragitemCount —
Get Dragged Object Count

#define INCL_WINSTDDRAG

ULONG DrgQueryDragitemCount (PDRAGINFO pDraginfo)

This function returns the number of objects being dragged during the current direct manipulation
operation.

Parameters
pDraginfo (PDRAGINFO) — input
Pointer.

Pointer to the DRAGINFO structure for which the number of dragged objects is requested.

Returns
Number of objects.

Number of objects being dragged.

Example Code
This example calls the DrgQueryDragitemCount function to return the number of DRAGITEM
structures in the corresponding DRAGINFO structure, which maps to the number of objects being
dragged.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <o0s2.h>

ULONG cDitem; /* Number of objects being dragged */
DRAGINFO Draginfo; /* DRAGINFO structure queried for the */
/* number of drag objects */

cDitem = DrgQueryDragitemCount (&Draginfo);

3-30 PM Programming Reference

N

N~

=

DrgQueryDragitemPtr —
Get Pointer to DRAGITEM Structure

#define INCL_WINSTDDRAG

PDRAGITEM DrgQueryDragitemPtr (PDRAGINFO pDraginfo, ULONG ulindex)

This function returns a pointer to the DRAGITEM structure used in the direct manipulation operation.

Parameters
pDraginfo (PDRAGINFO) — input
Pointer.

Pointer to the DRAGINFO structure from which the DRAGITEM structure is obtained.

ulindex (ULONG) — input
DRAGITEM index.

Zero-based index of the DRAGITEM structure for which the pointer is to be returned.

Returns
Pointer.

Pointer to the DRAGITEM structure.

Remarks
This function returns a pointer to ulltemID in the DRAGITEM structure used in the direct manipulation
operation.

Related Functions
* DrgQueryDragitem

Example Code
This example calls the DrgQueryDragitemPtr function to return a pointer to first DRAGITEM structure
in the given DRAGINFO structure, after which it obtains the source window handle.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

PDRAGITEM pDragitem; /* DRAGITEM structure pointer */
DRAGINFO Draginfo; /* DRAGINFO structure from which the */

/* DRAGITEM structure is obtained */
ULONG ullIndex; /* Zero-based index of the DRAGITEM */

/* structure pointer to be returned */
HWND hwndSource; /* Source window handle for the drag */
USHORT usn = 0; /* Return pointer to first DRAGITEM */

pDragitem = DrgQueryDragitemPtr(&Draginfo,usn);

hwndSource = pDragitem->hwndItem; /* Obtain source window handle */

Chapter 3. Direct Manipulation Functions 3-31

DrgQueryNativeRMF —
Get Format of a Dragged Object

#define INCL_WINSTDDRAG

BOOL DrgQueryNativeRMF (PDRAGITEM pDragitem, ULONG cbBuflen, PCHAR ppBuffer)

This function obtains the ordered pair that represents the native rendering mechanism and format of
the dragged object.

Parameters
pDragitem (PDRAGITEM) — input
Pointer.

Pointer to the DRAGITEM structure whose native rendering mechanism and format are to be
obtained.

cbBufien (ULONG) — input
Number of bytes.

Maximum number of bytes to copy to the buffer.

ppBuffer (PCHAR) — output
Pointer.

Pointer to the buffer in which the null-terminated string is to be returned.

Returns

Success indicator.
TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetlLastError

PMERR_INVALID PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

Remarks
If the rendering mechanism and format string for the object are NULL, FALSE is returned. If TRUE is
returned, the format of the string is: <MECHANISM,FORMAT>.

The native rendering mechanism and format are the first ordered pair, or the first ordered pair
produced by a cross product, in the string associated with hstrRMF in the DRAGITEM structure.

DrgQueryNativeRMFLen can be used to determine the size of the buffer required to hold the string
returned by this function.

Related Functions
Prerequisite Functions

* DrgQueryNativeRMFLen

Other Related Functions
¢ DrgVerifyNativeRMF

3-32 PM Programming Reference

~s

DrgQueryNativeRMF —
Get Format of a Dragged Object

Example Code

This example shows how to obtain the window handle of the source of a drag item.

#defi
#defi

#incl

DRAGI
PVOID
PSZ
ULONG
BOOL

cb

rc

if (!

fR

ne INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
ne INCL_DOSMEMMGR /* Memory Management Functions for */

/* DosSubAlloc */
ude <0S2.H>

TEM ditem;

pMem;

pszBuffer;

cb;

rc, fResult;
DrgQueryNativeRMFLen(&ditem) + 1;
DosSubAlloc(pMem, (PVOID *) pszBuffer, cb);

rc)

esult = DrgQueryNativeRMF(&ditem, cb, pszBuffer);

Chapter 3. Direct Manipulation Functions 3-33

DrgQueryNativeRMFLen —
Get String Length for Native RMF of Dragged Object

#define INCL_WINSTDDRAG

ULONG DrgQueryNativeRMFLen (PDRAGITEM pDragitem)

This function obtains the length of the string representing the native rendering mechanism and
format of the dragged object.

Parameters
pDragitem (PDRAGITEM) — input
Pointer.

Pointer to the DRAGITEM structure whose native rendering mechanism and format string length
are to be obtained.

Returns
String length.

String length of the ordered pair:
0 Error occurred.

Other String length of the ordered pair, excluding the null-terminating byte.

Possible returns from WinGetLastError

PMERR_INVALID PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

Remarks
This function is used to determine the size of the buffer that contains the string representing the
native rendering mechanism and format of the dragged object.

if the input string handle is NULLHANDLE or not valid, a length of 0 is returned.

Related Functions
* DrgQueryNativeRMF

3-34 PM Programming Reference

DrgQueryNativeRMFLen —
Get String Length for Native RMF of Dragged Object

N7

Example Code
This example shows how to obtain the window handle of the source of a drag item.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_DOSMEMMGR /* Memory Management Functions for */

/* DosSubAlloc */
#include <0S2.H>

DRAGITEM ditem;

PVOID pMem;

PSZ pszBuffer;
ULONG cb;

BOOL rc, fResult;

cb = DrgQueryNativeRMFLen(&ditem) + 1;
rc = DosSubAlloc(pMem, (PVOID *) pszBuffer, cb);
if (Irc)

fResult = DrgQueryNativeRMF(8ditem, cb, pszBuffer);
}

Chapter 3. Direct Manipulation Functions 3-35

DrgQueryStrName -
Get String Contents

#define INCL_WINSTDDRAG

ULONG DrgQueryStrName (HSTR Hstr, ULONG cbBuflen, PSZ pszBuffer)

This function gets the contents of a string associated with a string handle.

Parameters
Hstr (HSTR) — input
String handle.

The handle must have been created with DrgAddStrHandle.

cbBuflen (ULONG) — input
Number of bytes.

Maximum number of bytes to copy.

pszBuffer (PSZ) — output
Buffer.

Buffer where the nuli-terminated string is returned.

Returns
Number of bytes.

Number of bytes written to pszBuffer.

Possible returns from WinGetLastError

PMERR_INVALID PARAMETERS An application parameter value is invalid for its converted

PM type. For example: a 4-byte value outside the range
—32,768 to 432,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

Remarks

This function should be called whenever the contents of a string referenced by a drag string handle
are required. If the input string handle is NULLHANDLE or not valid, a null string is returned.

Related Functions

Prerequisite Functions

¢ DrgQueryStrNameLen

Other Related Functions
* DrgAddStrHandle

3-36 PM Programming Reference

DrgQueryStrName -
Get String Contents

Example Code
This example shows how to obtain the contents of a string given that the string handle is known. The
string handle must have been originally created with the DrgAddStrHandle function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */

#define INCL_DOSMEMMGR /* Memory Management Functions for */
/* DosAllocMem */
#include <0S2.H>
HSTR hstr; /* Handle to a string. The handle must */
/* have been created with */
/* DrgAddStrHandle. */
PSZ pBuffer; /* Buffer where the null-terminated */
/* string is returned */
ULONG ulStrien; /* String length */
ULONG ulBytesRead; /* Number of bytes read */
ULONG rc; /* Return code */

ulStrlen = DrgQueryStrNameLen(hstr) + 1;

rc = DosAllocMem((PVOID *) pBuffer,
(LONG)ulStrlen,
fPERM |
PAG_COMMIT) ;

/***l

/* The ulBytesRead parameter contains the number of bytes */
/* actually written to the memory pointed to by pBuffer *
/***/
ulBytesRead = DrgQueryStrName(hstr,
ulStrien, /* Number of bytes to copy */
pBuffer);

Chapter 3. Direct Manipulation Functions 3-37

DrgQueryStrNamelLen —
Get String Length

#define INCL_WINSTDDRAG

ULONG DrgQueryStrNameLen (HSTR Hstr)

This function gets the length of a string associated with a string handle.

Parameters
Hstr (HSTR) — input
String handie.

The handle must be created with DrgAddStrHandle.

Returns
String length.

0 The string handle is NULLHANDLE or is not valid.

Other The length of the string associated with the string handle, excluding the null terminating
byte.

Possible returns from WinGetlLastError

PMERR_INVALID PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

Remarks

This function should be called before calling the DrgQueryStrName function. It is used to determine
and allocate the buffer size for the string associated with the string handle. If the input string handle
is NULLHANDLE or not valid, a length of 0 is returned.

Related Functions
* DrgQueryStrName

3-38 PM Programming Reference

DrgQueryStrNamelLen —
Get String Length

LN
J
Example Code
This example shows how to obtain the length of a string given that the string handle is known. The
string handle must have been originally created with the DrgAddStrHandle function.
#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_DOSMEMMGR /* Memory Management Functions for */
/* DosAllocMem */
#include <0S2.H>
HSTR hstr; /* Handle to a string. The handle must */
/* have been created with */
/* DrgAddStrHandie. */
PSZ pBuffer; /* Buffer where the null-terminated */
/* string is returned */
ULONG ulStrien; /* String length */
ULONG ulBytesRead; /* Number of bytes read */
ULONG rc; /* Return code */
b ulStrien = DrgQueryStrNameLen(hstr) + 1;
v
rc = DosAllocMem((PVOID *) pBuffer,
(LONG)ulStrlen,
fPERM |
PAG_COMMIT) ;
/***/
/* The ulBytesRead parameter contains the number of bytes */
/* actually written to the memory pointed to by pBuffer */
/***/
\ ulBytesRead = DrgQueryStrName(hstr,
) ulStrien, /* Number of bytes to copy */
pBuffer);
)
¥

Chapter 3. Direct Manipulation Functions 3-39

DrgQueryTrueType —
Get True Type of Dragged Object

#define INCL_WINSTDDRAG

BOOL DrgQueryTrueType (PDRAGITEM pDragitem, ULONG cbBuflen, PSZ pszBuffer)

This function obtains the true type of a dragged object.

Parameters
pDragitem (PDRAGITEM) — input
Pointer.

Pointer to the DRAGITEM structure whose true type is to be obtained.

cbBuflen (ULONG) - input
Number of bytes.

Maximum number of bytes to copy to the buffer.

pszBuffer (PSZ) — output
Buffer.

Buffer in which the null-terminated string is to be returned.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
-32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or

USHORT.
Remarks
The true type of an object is the first type in the string referenced by hstrType in the DRAGITEM
structure.

This function can be called after calling the DrgQueryTrueTypeLen function. If the type string for the
object is NULLHANDLE, FALSE is returned.

Related Functions
Prerequisite Functions

* DrgQueryTrueTypelen

Other Related Functions

* DrgVerifyTrueType

3-40 PM Programming Reference

<o

T

Example Code

DrgQueryTrueType —
Get True Type of Dragged Object

This example shows how to obtain the true type of an object.
#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */

#inciude <0S2.H>

BOOL fSuccess; Vad Retufn value */
DRAGITEM Dragitem; /* DRAGITEM structure whose true type */
/* is to be obtained */
char szBuffer[32]; /* Buffer in which the null-terminated */
/* string is to be returned */

fSuccess = DrgQueryTrueType(8Dragitem,
sizeof(szBuffer),
szBuffer);

Chapter 3. Direct Manipulation Functions

3-41

DrgQueryTrueTypelLen —
Get String Length for True Type of Dragged Object

#define INCL_WINSTDDRAG

ULONG DrgQueryTrueTypeLen (PDRAGITEM pDragitem)

This function obtains the length of the string that represents the true type of a dragged object.

Parameters
pDragitem (PDRAGITEM) - input
Pointer.

Pointer to the DRAGITEM structure whose true type length is to be obtained.

Returns
String length.

0 Error occurred.

Other The length of the first element of the character string associated with hstrType,
excluding the null-terminating byte.

Possible returns from WinGetLastError

PMERR_INVALID_PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to 432,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or

USHORT.

Remarks

This function can be used to determine the buffer size to allocate for the string representing the true
type of a dragged object. The true type of an object is the first type in the type string referenced by

hstrType in the DRAGITEM structure.
This function can be called before calling the DrgQueryTrueType function.

If the input string handle is NULLHANDLE or not valid, a length of 0 is returned.

Related Functions
* DrgQueryTrueType

3-42 PM Programming Reference

DrgQueryTrueTypeLen -
Get String Length for True Type of Dragged Object

Example Code
This example shows how to obtain the length of the true type string with the DrgQueryTrueTypeLen

function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */

#define INCL_DOSMEMMGR /* Memory Management Functions for */
/* DosAllocMem */

#include <0S2.H>

PSZ pszBuffer; /* Buffer in which the DRAGITEM */
/* structure is stored */

BOOL fSuccess; /* Return value */

DRAGITEM Dragitem; /* DRAGITEM structure whose true type */
/* length is to be obtained */

ULONG rc; /* Return code */

ULONG ulLength; /* String length of dragged object */

ulLength = DrgQueryTrueTypeLen(&Dragitem) + 1;
rc = DosAllocMem((PVOID *) pszBuffer, ulLength, fPERM);

fSuccess = DrgQueryTrueType(&Dragitem, ullLength, pszBuffer);

Chapter 3. Direct Manipulation Functions 3-43

DrgReleasePS —
Release Presentation Space

#define INCL_WINSTDDRAG

BOOL DrgReleasePS (HPS Hps)

This function releases a presentation space obtained by using the DrgGetPS function.

Parameters
Hps (HPS) — input
Presentation-space handle.

Handle of the presentation space to release.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_NOT DRAGGING A drag operation is not in progress at this time.
Remarks

Only presentation spaces created with DrgGetPS can be released using this function.

The presentation-space handie should not be used after this function.

Related Functions
Prerequisite Functions

* DrgGetPS

Example Code

In this example the presentation space handle is retrieved, a bit map is loaded, and the presentation
space is released with the DrgReleasePS function.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

#define ID_BITMAP 255

HPS hps;

HWND hwnd;

case DM_DRAGOVER:
hps = DrgGetPS(hwnd) ;

DrawTargetEmphasis(hps, hwnd);
DrgReleasePS(hps);

3-44 PM Programming Reference

DrgSendTransferMsg —
Send Drag Message

_LF

#define INCL_WINSTDDRAG

MRESULT DrgSendTransferMsg (HWND hwndTo, ULONG ulMsgid, MPARAM mpParami,
MPARAM mpParam2)

This function sends a message to the other application involved in the direct manipulation operation.

Parameters
hwndTo (HWND) — input
Window handle.

Window handle to which the message is to be sent:
Target hwnditem in the DRAGITEM structure.
Source hwndClient in the DRAGTRANSFER structure.

ulMsgid (ULONG) — input
Message identifier.

Identifier of the message to be sent. Valid messages are:

DM_ENDCONVERSATION
DM_RENDER
DM_RENDERPREPARE

mpParam1 (MPARAM) — input
mp1 for the message.

mpParam2 (MPARAM) - input
mp2 for the message.

Returns
Message-return data.

Remarks
i If the message to be sent is DM_RENDER or DM_RENDERCOMPLETE, the usReply field in

DRAGTRANSFER is set to 0 before the message is sent. If the message cannot be sent, FALSE is
returned.

When the message to be sent is DM_RENDER, DosGiveSeg is called. DosGiveSeg gives access to
the DRAGTRANSFER structure to the process that owns the window indicated by hwndTo. The use
count for the segment in which the DRAGTRANSFER structure exists is incremented.

The process to which the message is being sent must call DrgFreeDragtransfer for the
DRAGTRANSFER structure before the segment can be freed.

Related Functions
* DrgPostTransferMsg

Chapter 3. Direct Manipulation Functions 3-45

DrgSendTransferMsg —
Send Drag Message

Example Code
This function is used to send a message from one window to another when a direct manipulation is in
progress. In this example, the function is used to inform the target that the operation is complete and
successful.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

PDRAGINFO pdinfo;
MPARAM mpl;
TID tid;

case DM_DROP:
pdinfo = (PDRAGINFO) mpl;
/***/

/* If this is a copy operation, spawn a thread to do the copy */
/***/

if (pdinfo->usOperation == DO_COPY)
{ DosCreateThread (&tid, CopyThread, pdinfo, FALSE, 4096);
greak;

zoid Copy Thread (PDRAGINFO pdinfo)

PDRAGITEM pditem;

USHORT is

ULONG flResult;

HAB hab;

HMQ hmg;

char szSource [CCH_MAXPATH] ;
char szTarget [CCH_MACPATH] ;

/***/

/* DrgSendTransferMsg needs a message queue, so create one for */
/* this thread */

/***/

hab = WinInitialize (0);
hmq = WinCreateMsgQueue (hab, 0);

/***/

/* Try to copy each item that was dragged */

/***/
for (i = 0; i < pdinfo->cditem; i++)

/***/

/* Get a pointer to the DRAGITEM */

/***/

pditem = DrgQueryDragitemPtr (pdinfo, i);

/***/

/* If we could query the source and target names, and the */
/* copy was successful, return success */
/***/
if (DrgQueryStrName (pditem->hstrSourceName, sizeof (szSource),
szSource)
DrgQueryStrName (pditem->hstrTargetName, sizeof (szTarget),
szTarget)
!DosCopy (szSource, szTarget, 0))

f1Result = DMFL_TARGETSUCCESSFUL;

3-46 PM Programming Reference

DrgSendTransferMsg —
Send Drag Message

/***/

/* Otherwise, return failure */
/***/
else

flResult = DMFL_TARGETFAIL;

/***/

/* Let the source know we're done with this item */
/***I
DrgSendTransferMsg (pditem->hwndItem, DM_ENDCONVERSATION,
(MPARAM) pditem->ulItemlD,
(MPARAM) fiResult);
}

WinDestroyMsgQueue (hmgq);
WinTerminate (hab);

}

Chapter 3. Direct Manipulation Functions 3-47

DrgSetDragimage -—
Set Drag Image

#define INCL_WINSTDDRAG

BOOL DrgSetDragimage (PDRAGINFO pDraginfo, PDRAGIMAGE pdimg, ULONG cdimg,
PVOID pReserved)

This function sets the image that is being dragged.

Parameters
pDraginfo (PDRAGINFO) — input
Pointer.

Pointer to the DRAGINFO structure representing the drag operation for which the pointer is to be
set.

pdimg (PDRAGIMAGE) — input
Pointer.

Pointer to an array of DRAGIMAGE structures. These structures describe the images to be
drawn under the pointer during the drag.

cdimg (ULONG) — input
Array size.

Size of the pdimg array.

pReserved (PVOID) — input
Reserved.

Must be set to NULL by the caller.

Returns

Success indicator.
TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_ACCESS_DENIED The memory block was not allocated properly.

PMERR_INVALID PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

PMERR_INSUFFICIENT_MEMORY The operation terminated through insufficient memory.

Remarks

The image that is set with DrgSetDragimage is used only while the pointer is over the target that
made the call. If the pointer leaves the original target, the new target can specify an image by
calling DrgSetDragimage.

If the new target does not call DrgSetDragimage, the original image that was supplied on the call to
DrgDrag is used.

3-48 PM Programming Reference

~ =z

DrgSetDragimage —
Set Drag Image

Related Functions
* DrgSetDragPointer

Example Code
This example sets the icon image that is displayed during a direct manipulation operation.

#define INCL_GPIBITMAPS /* GPI Bit Map Functions */
#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <os2.h>

#define ID_BITMAP 257 /* .rc file: "bitmap 257 drgimage.bmp" */

HPS hps; /* Presentation space handle */
BOOL f1Result;
HAB hab;

PDRAGINFO pdinfo;

DRAGIMAGE dimg;

HBITMAP hbm; /* Bit-map handie */
HWND hwnd;

/***/

/* Load a bit map for use as a drag image */
/***/

case WM _CREATE:
hps = WinGetPS(hwnd) ;

hbm = GpiloadBitmap(hps,0L,ID_BITMAP,26L,20L);
WinReleasePS(hps);
break;

case DM_DRAGOVER:

/***/

/* Initialize the DRAGIMAGE structure *x/

/***/

dimg.cb = sizeof (DRAGIMAGE); /* Size control block */
dimg.cptl = 0;
dimg.hImage = hbm; /* Image handle passed to */
/* DrgDrag */
dimg.sizlStretch.cx = 20L; /* Size to stretch ico or */
dimg.siz1Stretch.cy = 20L; /* bmp to */
dimg.f1 = DRG_BITMAP |
DRG_STRETCH; /* Stretch to size specified */
dimg.cx0ffset = 0; /* 0ffset of the origin of */
dimg.cyOffset = 0; /* the image from the pointer*/
/* hotspot */

/***/
/* Set the drag image */

/***/

f1Result= DrgSetDragImage{pdinfo,&dimg, (ULONG)sizeof(dimg), NULL);

Chapter 3. Direct Manipulation Functions 3-49

DrgSetDragitem -—
Set Values in DRAGITEM

#define INCL_WINSTDDRAG

BOOL DrgSetDragitem (PDRAGINFO pDraginfo, PDRAGITEM pDragitem, ULONG cbBuffer,
ULONG iitem)

This function sets the values in a DRAGITEM structure.

Parameters
pDraginfo (PDRAGINFO) — input
Pointer.

Pointer to the DRAGINFO structure in which to place the DRAGITEM.

pDragitem (PDRAGITEM) — input
Pointer.

Pointer to the DRAGITEM structure to place in DRAGINFO.

cbBuffer (ULONG) — input
DRAGITEM size.

Size of the DRAGITEM addressed by pDragitem.

iitem (ULONG) - input
DRAGITEM index.

Zero-based index of the DRAGITEM to be set.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Remarks
This function is used to initialize the DRAGINFO structure before calling DrgDrag.

This function is used only by the source of the drag, not by the target.

Related Functions
* DrgQueryDragitem

Example Code

This example shows a direct manipulation operation between two windows. The actual operation,
copying the CONFIG.SYS file to C:\OS2\CONFIG.SYS, is visually represented by a drag and drop of

anicon.

#define INCL_GPIBITMAPS /* GPI Bit Map Functions */
#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#define INCL_DOSFILEMGR /* File Management Functions */
#define INCL_WININPUT /* Window Input Functions */

#include <os2.h>

#include <string.h>

#define ID_WINDOW 255

#define ID_ITEM 256

#define ID_BITMAP 257 /* .rc file: "bitmap 257 drgimage.bmp" */
HPS hps; /* Presentation space handle */

3-50 PM Programming Reference

g

DrgSetDragitem -—
Set Values in DRAGITEM

BOOL flResult;
HAB hab;
PDRAGINFO pdinfo;
DRAGITEM ditem;
DRAGIMAGE dimg;
PDRAGITEM pditem;

HBITMAP hbm; /* Bit-map handle */

HPOINTER hptr; /* Pointer bit-map handle */

HWND hwndDrop;

HWND hwnd ;

MPARAM mpl;

char szBuffer[32]; /* Buffer where intersection string */
/* is returned */

char szSource[32];
char szTarget[32];
/***/

/* Inside ClientWindowProc of Source Window */
/***/

case WM_BEGINDRAG:

/***/

/* Initialize the DRAGITEM structure */

/***l

ditem.hwndItem = hwnd; /* Conversation partner */
ditem.ulItemID = ID_ITEM; /* Identifies item being dragged */
ditem.hstrType = DrgAddStrHandle("DRT_TEXT"); /* Text item */

ditem.hstrRMF = DrgAddStrHandle("<DRM_0S2FILE,DRF_TEXT>");
ditem.hstrContainerName = DrgAddStrHandle("C:\\");
ditem.hstrSourceName = DrgAddStrHandte("C:\\CONFIG.SYS");
ditem.hstrTargetName = DrgAddStrHandle("C:\\0S2\\CONFIG.SYS");
ditem.cxOffset = 0; ditem.cyOffset = 0;

ditem.fsControl = 0; ditem.fsSupportedOps = 0;

/***/

/* Create the DRAGINFO structure */
/***#***************/
pdinfo = DrgAllocDraginfo(1);

/***/

/* Initialize the DRAGIMAGE structure */

/***/

dimg.cb = sizeof(DRAGIMAGE); /* Size control block */
dimg.cptl = 0;
dimg.hImage = hbm; /* Image handle passed to */
/* DrgDrag */
dimg.siz1Stretch.cx = 20L /* Size to stretch ico or */
dimg.siz1Stretch.cy = 20L; /* bmp to */
dimg.fl = DRG_BITMAP |
DRG_STRETCH; /* Stretch to size specified */
dimg.cx0ffset = 0; /* 0ffset of the origin of the */
dimg.cyOffset = 0; /* image from the pointer */
/* hotspot */

fiResult= DrgSetDragitem(pdinfo, &ditem, (ULONG)sizeof(ditem), 0);

/**********************************t******************************/

/* Perform the drag operation: */
/***/

Chapter 3. Direct Manipulation Functions 3-51

DrgSetDragitem —
Set Values in DRAGITEM

twndDrop = DrgDrag(hwnd, /* Source of the drag */
pdinfo, /* Pointer to DRAGINFO structure */
(PDRAGIMAGE)&dimg, /* Drag image */

1, /* Size of the pdimg array */

VK_ENGDRAG, /* Release of drag button */

/* terminates the drag */

NULL); /* Reserved */

/***,

/* Inside ClientWindowProc of Target Window */
/***/

case DM_DRAGOVER:

pdinfo = MPFROMP(mpl);
pditem = DrgQueryDragitemPtr(pdinfo,0);

flResult = DrgVerifyTrueType(pditem,"DRF_TEXT");

if(IflResult)

/***/

/* Inform the application that you will accept the drop */
/***/

return (MRFROM2SHORT (DOR_DROP,D0_COPY)) ;

case DM _DROP:
pdinfo = MPFROMP(mpl);
pditem = DrgQueryDragitemPtr(pdinfo,0);

/***l

/* Perform the operation represented by the direct manipulation */
/***/

DrgQueryStrName(pditem->hstrSourceName,sizeof(szSource),szSource);
DrgQueryStrName (pditem->hstrTargetName,sizeof(szTarget),szTarget);
f1Result = DosCopy(szSource,szTarget,0L);

/***/

/* If operation is successful, return DMFL_TARGETSUCCESSFUL */

/***/

if(!f1Result)
{

DrgSendTransferMsg(pditem->hwndItem,
DM_ENDCONVERSATION,
MPFROMLONG(pditem->ulItemID),
MPFROMLONG (DMFL_TARGETSUCCESSFUL)) ;

}

/***/

/* Otherwise, return DMFL_TARGETFAIL */

/***/

else
{
DrgSendTransferMsg(pditem->hwndItem,
DM_ENDCONVERSATION,
MPFROMLONG (pditem->ulItemID),
MPFROMLONG (DMFL_TARGETFAIL});

3-52 PM Programming Reference

~_.¥

DrgSetDragPointer —
Set Pointing Device Pointer

#define INCL_WINSTDDRAG

BOOL DrgSetDragPointer (PDRAGINFO pDraginfo, HPOINTER hptrHandle)

This function sets the pointer to be used while over the current target.

Parameters
pDraginfo (PDRAGINFO) — input
Pointer.

Pointer to the DRAGINFO structure to be used for this drag.

hptrHandle (HPOINTER) — input
Pointer handle.

Handle to the pointer to use.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetlLastError
PMERR_INVALID HPTR An invalid pointer handle was specified.

Remarks
This function sets the pointer to be used to indicate the hot spot while dragging over the current
target.

The pointer that is set with DrgSetDragPointer is used only while it is over the current target. The
pointer is reset to the default when a new target is dragged over.

This function can be used by an application to provide meaningful augmentation emphasis for an
operation that is unknown to the system (for example, swap).

When the drag pointer is successfully set, TRUE is returned.

Related Functions

* DrgSetDragimage

Chapter 3. Direct Manipulation Functions 3-53

DrgSetDragPointer —
Set Pointing Device Pointer

Example Code
This example uses the DrgSetDragPointer function to set the image used for the pointer while the
pointer is over the target during a direct manipulation operation.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <0S2.H>

BOOL flResult;

PDRAGITEM pditem;

HPOINTER hptrCrossHair;

MPARAM mpl;

char szBuffer[32];

case DM_DRAGOVER:
DrgSetDragPointer ((PDRAGINFO) mpl, hptrCrossHair);

3-54 PM Programming Reference

DrgVerifyNativeRMF —
Verify Native Rendering Mechanism and Format

#define INCL_WINSTDDRAG

BOOL DrgVerifyNativeRMF (PDRAGITEM pDragitem, PSZ pszRMF)

This function determines if the native rendering mechanism and format of an object match any
supplied by the application.

Parameters
pDragitem (PDRAGITEM) — input
Pointer.

Pointer to the DRAGITEM structure whose native rendering mechanism and format are to be
verified.

pszRMF (PSZ) — input
String.

A string specifying the rendering mechanism and format. The string is of the form:
MECHFMT[,MECHFMT,MECHFMT,...], where MECHFMT can be in either of these formats:

e <mechanism(1),format(1)>
* (mechanism(1)[, mechanism(n)...]) (format(1)[,format(n)...])

Returns
Validity indicator.

TRUE Successful compietion.
FALSE Error occurred.

Remarks

This function determines if the natiVe rendering mechanism and format of a dragged object are
understood by the target.

If TRUE is returned, the target may be able to carry out the action indicated by the direct

manipulation itself, or it can select the native rendering mechanism and format as those to be used
for the data exchange.

Related Functions
* DrgQueryNativeRMF

Chapter 3. Direct Manipulation Functions 3-55

DrgVerifyNativeRMF -
Verify Native Rendering Mechanism and Format

Example Code
This example determines if the native rendering mechanism and format of an object match any
supplied by the application.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <0S2.H>

DRAGITEM Dragitem; /* DRAGITEM structure whose native */
/* rendering mechanism and format are */
/* to be verified */
char pszRMF[25]; /* A string specifying the rendering */
/* mechanism and format. The string is */
/* of the form: */
/* */
/* mechfmt[,mechfmt,mechfmt,...], */
/* */
/* where 'mechfmt' can be in either of */
/* these formats: */
/* */
/* o <mechanism(1),format(1)> */
/* o (mechanism(1)[, mechanism(n)...]) */
/* (format(1)[,format(n)...]) */

strepy (pszRMF, " (DRM_OS2FILE,DRF_TEXT)");
/* Mechanism is an 0S/2 file and format */
/* is a null-terminated string. See */
/* the DRAGITEM structure for valid */
/* formats. */

if(DrgVerifyNativeRMF(8&Dragitem, pszRMF))
{

/* Code block */

3-56 PM Programming Reference

DrgVerifyRMF —
Verify Given Rendering Mechanism and Format

#define INCL_WINSTDDRAG

BOOL DrgVerifyRMF (PDRAGITEM pDragitem, PSZ pszMech, PSZ pszFormat)

This function determines if a given rendering mechanism and format are supported for a dragged
object.

Parameters
pDragitem (PDRAGITEM) — input
Pointer.

Pointer to the DRAGITEM structure whose native rendering mechanism and format are to be
validated.

% pszMech (PSZ) — input
Mechanism string.

A string specifying the rendering mechanism to search for. NULL will match any mechanism.

pszFormat (PSZ) — input
Format string.

A string specifying the rendering format to search for. NULL will match any format.

Returns
) Validity indicator.

TRUE Successful completion.
FALSE Error occurred.

Remarks
This function determines if a given rendering mechanism and format ordered pair are represented in
the set of valid pairs specified by hstrRMF for the dragged object.

\ Related Functions
¢ DrgVerifyNativeRMF

Chapter 3. Direct Manipuiation Functions 3-57

DrgVeriftyRMF —
Verify Given Rendering Mechanism and Format

Example Code

This example determines if a given rendering mechanism and format are supported for a dragged
object.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <0S2.H>

DRAGITEM Dragitem; /* DRAGITEM structure whose native */
/* rendering mechanism and format are */
/* to be validated */

char pszMech[] = "DRM_OS2FILE";
/* A string specifying the rendering */
/* mechanism to search for */
char pszFormat[] = "DRF_TEXT";)
/* A string specifying the rendering */
/* format to search for */

if(DrgVeri fyRMF (4Dragitem, pszMech, pszFormat))
/* Mechanism is an 0S/2 file and format */
/* is a null-terminated string */

/* Code block */

3-58 PM Programming Reference

=

DrgVerifyTrueType -
Verify True Type of Dragged Object

#define INCL_WINSTDDRAG

BOOL DrgVerifyTrueType (PDRAGITEM pDragitem, PSZ pszType)

This function determines if the true type of a dragged object matches an application-supplied type

string.

Parameters
pDragitem (PDRAGITEM) - input
Pointer.

Pointer to the DRAGITEM structure whose true type is to be verified.

pszType (PSZ) — input
Type string.

A string specifying a type. This string is in the format: TYPE[TYPE...].

Returns
Validity indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
If an item in the string pointed to by pszType matches the first type in the string associated with
hstrType in the DRAGITEM structure, TRUE is returned.

A target application uses this function to determine if it supports the true type of a dragged object. if

the application does not support the true type, it can either disallow a drop or change its default
operation. If the default operation is a move, the drop should be disallowed, or the operation
changed to a copy to prevent any loss of data for the object.

Related Functions
e DrgQueryTrueType
* DrgVerifyType
e DrgVerifyTypeSet

Chapter 3. Direct Manipulation Functions

3-59

DrgVerifyTrueType —
Verify True Type of Dragged Object

Example Code
This example verifies whether a given type is present in the list of types defined for a drag object.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <0S2.H>

BOOL fvalid;
DRAGITEM Dragitem; /* DRAGITEM structure whose hstrType is */
/* to be verified */
char pszType[8]; /* A string specifying the types to */
/* search for */
strcpy(pszType,"DRT_EXE"); /* Executable file type. See the */
/* DRAGINFO structure for valid */
/* types. */

fvalid = DrgVerifyTrueType(&Dragitem, pszType);

3-60 PM Programming Reference

~—

DrgVerifyType -
Verify Type of Dragged Object

#define INCL_WINSTDDRAG

BOOL DrgVerifyType (PDRAGITEM pDragitem, PSZ pszType)

This function verifies whether a given type is present in the list of types defined for a drag object.

Parameters
pDragitem (PDRAGITEM) - input
Pointer.

Pointer to the DRAGITEM structure whose hstrType is to be verified.

pszType (PSZ) — input
Type string.

A string specifying the types to search for. This string is in the format: TYPE[,TYPE...].

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INVALID PARAMETERS An application parameter value is invalid for its converted
PM type. For example: a 4-byte value outside the range
—32,768 to +32,767 cannot be converted to a SHORT, and
a negative number cannot be converted to a ULONG or
USHORT.

PMERR_INSUFFICIENT_MEMORY The operation terminated through insufficient memory.

Remarks
If at least one of the types specified by pszType is present in hstrType in the DRAGITEM structure,
TRUE is returned.

Related Functions
* DrgVerifyTrueType
e DrgVerifyTypeSet

Chapter 3. Direct Manipulation Functions 3-61

DrgVerifyType —
Verify Type of Dragged Object

Example Code

This example verifies whether a given type is present in the list of types defined for a drag object.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <0S2.H>

BOOL fvalid;

DRAGITEM Dragitem; /* DRAGITEM structure whose hstrType is */
/* to be verified */

char pszTypef] = "DRT_EXE";
/* A string specifying the types to */
/* search for */

fvalid = DrgVerifyType(&Dragitem, pszType);

3-62 PM Programming Reference

N

DrgVerifyTypeSet —
Verify Types

#define INCL_WINSTDDRAG

BOOL DrgVerifyTypeSet (PDRAGITEM pDragitem, PSZ pszType, ULONG cbBuflen,
PSZ pszBuffer)

This function returns the intersection of the contents of the string associated with the type-string
handle for an object and an application-specified type string.

Parameters
pDragitem (PDRAGITEM) — input
Pointer.

Pointer to the DRAGITEM structure whose hstrType is to be verified.
pszType (PSZ) — input
Type string.
A string specifying the types to search for. This string is in the format: TYPE[,TYPE...].

cbBuflen (ULONG) — input
Buffer size.

Size of the return buffer. The buffer should be at least one byte longer than the length of the
string pointed to by pszType.

pszBuffer (PSZ) — output
Buffer.

Buffer where the intersection string is returned.

Returns
Match indicator.

TRUE Successful completion.
FALSE Error occurred.

Remarks

If at least one of the types specified by pszType is present in hstrType in the DRAGITEM structure,
TRUE is returned.

Related Functions
* DrgVerifyType
* DrgVerifyTrueType

Chapter 3. Direct Manipuiation Functions = 3-63

DrgVerifyTypeSet —
Verify Types

Example Code
In this example, the DrgVerifyTypeSet function is used to determine whether DRT_TEXT is among
the types associated with the object. If it is, the drop is accepted.

#define INCL_WINSTDDRAG /* Direct Manipulation (Drag) Functions */
#include <0S2.H>

#include <stdio.h>

BOOL flResult;

DRAGITEM pditem;

char szBuffer[32];

case DM_DRAGOVER:

f1Result = DrgVerifyTypeSet(&pditem,
"DRT_TEXT",
sizeof(szBuffer),
szBuffer);

flResult = strcmp(szBuffer,"DRT_TEXT");

/**/

/* See if the object is an 0$/2 file as well as being of text */
/* format. AND result flag with previous result flag to get */

/* the "effective" return code. */
/**/

flResult = DrgVerifyRMF (&pditem,"DRM_0S2FILE","DRF_TEXT");
JRRREEEERRARRRRRE AR A AR AR RREEREEREERERERRRRERI A ARRIREAA |

/* See if DRT_TEXT is the true type of the object */

/**/

fiResult = DrgVerifyTrueType(&pditem,"DRF_TEXT");

if(1f1Result)

/**/

/* Inform the application that you will accept the drop */

/**I

return(MRFROM2SHORT (DOR_DROP, DO_COPY));
break;

3-64 PM Programming Reference

g

Chapter 4. Dynamic Data Formatting Functions

The following table shows ail the dynamic data formatting (Ddf) functions in alphabetic order.

C Name
DdfBeginlList
DdfBitmap
DdfEndList
DdfHyperText
Ddfinform
Ddfinitialize
DdfListitem
DdfMetafile
DdfPara
DdfSetColor
DdfSetFont
DdfSetFontStyle

DdfSetFormat
DdfSetTextAlign
DdfText

Chapter 4. Dynamic Data Formatting Functions 4-1

DdfBeginList —
‘Begin Definition List

#define INCL_DDF

BOOL DdfBeginList (HDDF hddf, ULONG ulWidthDT, ULONG fBreakType, ULONG fSpacing)

This function begins a definition list in the DDF buffer; it corresponds to the :dl. (definition list) tag.

Parameters
hddf (HDDF) — input

Handle to DDF returned by Ddfinitialize.
ulWidthDT (ULONG) — input

Width of the definition term.
fBreakType (ULONG) — input

Only the following constants may be specified:

HMBT_ALL Start all definition descriptions on the next line, regardless of the actual
lengths of definition terms.

HMBT_FIT Start definition description on the next line only when the definition term
is longer than the width specified.

HMBT_NONE Do not start the definition description on the next line, even when the

definition term is longer than the width specified.
fSpacing (ULONG) — input
Only the following constants may be specified:

HMLS_SINGLELINE Do not insert a blank line between each definition description and the
next definition term.

HMLS_DOUBLELINE Insert a blank line between each definition description and the next
definition term.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF MEMORY Not enough memory is available.

HMERR_DDF _LIST_UNCLOSED An attempt was made to nest a list.

HMERR_DDF LIST BREAKTYPE The value of BreakType is not valid.

HMERR_DDF _LIST SPACING The value for Spacing is not valid.
Remarks

Once this function has been called, use of any DDF function other than DdfListltem, DdfSetColor, and
DdfEndList may produce unpredictable results.

4-2 PM Programming Reference

DdfBeginList —
Begin Definition List

Related Functions

DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdflListitem
Ddfinitialize
Ddfinform
DdfHyperText
DdfEndList
DdfBitmap

Example Code

After initializing a DDF buffer with Ddflnitialize, the example uses DdfBeginList to indicate the
beginning of a definition list in the DDF buffer (this corresponds to the IPF dl tag). For a more
detailed example and discussion of initializing DDF, see the Ddfinitialize sample.

#define INCL_WINWINDOWMGR /* General window management *x/
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

struct _LISTITEM /* definition list */

PSZ Term;
PSZ Desc;

} Definition[2] = {{"MVS", "Multiple Virtual
System"},

{"VM", “Virtual Machine"}};

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)

{

HWND hwndParent;

HWND hwndInstance;

HDDF hDdf; /* DDF handle */
SHORT i3 /* loop index */

switch(ulMsg)

{
case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
'H

Chapter 4. Dynamic Data Formatting Functions 4-3

DdfBeginList —
Begin Definition List

if (hDdf == NULLHANDLE) /* Check return code
{

return (MRESULT)FALSE;
}

/* begin definition 1ist */
if (1DdfBeginList(hDdf, 3L, HMBT ALL, HMLS_SINGLELINE))
{

return (MRESULT)FALSE;
}

/* insert 2 entries into definition list */
for (i=0; i < 2; i++)

if (!DdfListItem(hDdf, Definition[i].Term,
Definition[i] .Desc))

return (MRESULT)FALSE;
}

/* terminate definition list */
if (1DdfEndList(hDdf))
{

return (MRESULT)FALSE;

return (MRESULT)hDdf;

4-4 PM Programming Reference

*/

-

S

DdfBitmap -—
Place Bitmap Reference

#de

fine INCL_DDF

BOOL DdfBitmap (HDDF hddf, HBITMAP hbm, ULONG fAlign)

This function places a reference to a bit map in the DDF buffer.

Parameters
hddf (HDDF) - input

Handle to DDF returned by Ddfinitialize.

hbm (HBITMAP) — input

Standard Presentation Manager bit map handie.

fAlign (ULONG) — input

Any of the following values can be specified:

ART_LEFT Left-justify the bit map.

ART_RIGHT Right-justify the bit map.

ART_CENTER Center the bit map.

ART_RUNIN Allow the bit map to be reflowed with text.
Returns

Success indicator.
TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF MEMORY Not enough memory is available.
HMERR_DDF_ALIGN_TYPE The alignment type is not valid.
Remarks

The handle to the presentation space in which the bit map was created cannot be freed by the
application while the panel is displayed.

Note: There is a (3-byte + size of HBITMAP structure) ESC code overhead in the DDF internal buffer

Relat

for this function. There is a 1-byte ESC code overhead required for the Align flag.

ed Functions
DdfText

- DdfSetTextAlign
- DdfSetFormat
. DdfSetFontStyle

DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdfListitem

Chapter 4. Dynamic Data Formatting Functions 4-5

DdiBitmap —
Place Bitmap Reference

Ddflnitialize
Ddfinform
DdfHyperText
DdfEndList
DdfBeginList

Example Code
After initializing a DDF buffer with Ddfinitialize, the example obtains a device context (DevOpenDC),
creates a presentation space (GpiCreatePS), and loads a bit map (Gpil.oadBitmap). It then uses
DdfBitmap to place a reference to the bit map in the DDF buffer. For a more detailed example and
discussion of initializing DDF, see the Ddfinitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_GPICONTROL /* Basic PS control */
#define INCL_GPIBITMAPS /* Bit maps and Pel Operations */
#define INCL_GPIPRIMITIVES /* Drawing Primitives/Attributes*/
#define INCL_DDF /* Dynamic Data Facility *x/

#include <o0s2.h>
#include <pmhelp.h>

#define ACVP_HAB 12
#define BM_HPS 16
#define BM_HDC 20
#define BM_HWND 24
#define ID_LEFT 255

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent; /* parent window */
HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */
HDC hdc; /* device context handle */
HPS hps; /* presentation space handle */
HAB hab; /* anchor block handle */
SIZEL sizel = {OL,0L};/* size of new PS */
HBITMAP hBitmap; /* bit map handle */
HMODULE hModule; /* module handle */

switch(ulMsg)
{

case HM_QUERY_DDF_DATA:
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg{ hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
);
if (hDdf == NULLHANDLE) /* Check return code */
{

return (MRESULT)FALSE;

/* get module handle for bit map */
DosGetModHand1e("bitmap", &hModule);
if (hModule == NULLHANDLE)

{

4-6 PM Programming Reference

DdfBitmap —
Place Bitmap Reference

Vi return (MRESULT)FALSE;
}

/* get hab for this window */
if ((hab = (HAB)WinQueryWindowULong(hwnd, ACVP_HAB)) == NULLHANDLE)
{

return (MRESULT)FALSE;
}

/* create a device context */
if ((hdc = DevOpenDC(hab, OD_MEMORY, "*", OL,
(PDEVOPENDATA)NULL, (HDC)NULL)) == NULLHANDLE)

return (MRESULT)FALSE;
}

/* save hdc in reserved word */
WinSetWindowULong(hwnd, BM_HDC, (ULONG)hdc);

/* create a noncached micro presentation space */
/* and associate it with the window */
if ((hps = GpiCreatePS(hab, hdc, &sizel, PU_PELS |
GPIF_DEFAULT
| GPIT_MICRO | GPIA_ASSOC)) == NULLHANDLE)

return (MRESULT)FALSE;
}

\ /* save hps in reserved word */
! WinSetWindowlULong(hwnd, BM_HPS, (ULONG)hps);

/* Load the Bit map to display */
if ((hBitmap = GpiLoadBitmap(hps, hModule, ID_LEFT, 300L,
300L)) == NULLHANDLE)

return (MRESULT)FALSE;
}

/* save bit map hwnd in reserved word */
WinSetWindowULong(hwnd, BM_HWND, (ULONG)hBitmap);

N~

/* Display the bit map align left */

if (!DdfBitmap(hDdf, hBitmap, (ULONG)TA_LEFT))
{

}

return (MRESULT)hDdf;

return (MRESULT)FALSE;

case WM_CLOSE:
/* release PS, DC, and bit map */
GpiDestroyPS ((HPS)WinQueryWindowULong (hwnd, BM_HPS));
DevCloseDC ((HDC)WinQueryWindowULong(hwnd, BM_HDC));
GpiDeleteBitmap ((HBITMAP)WinQueryWindowULong (hwnd, BM_HWND));
WinDestroyWindow (WinQueryWindow(hwnd, QW_PARENT));
return (MRESULT)TRUE;

Chapter 4. Dynamic Data Formatting Functions 4-7

DdfEndList —
End Definition List

#define INCL_DDF

BOOL DdfEndList (HDDF hddf)

This function terminates the definition list initialized by DdfBeginList.

Parameters
hddt (HDDF) — input

Handle to DDF returned by Ddflnitialize.

Returns

Success indicator.
TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF_LIST_UNINITIALIZED No definition list has been initialized by DdfBeginList.

Related Functions
e DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdfListlitem
Ddfinitialize
Ddfinform
DdfHyperText
DdfBitmap
DdfBeginList

Example Code

After initializing a DDF buffer with Ddflnitialize, the example uses DdfBeginList to indicate the
beginning of a definition list in the DDF buffer (this corresponds to the IPF di tag). For a more
detailed example and discussion of initializing DDF, see the Ddflnitialize sample:

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <o0s2.h>
#include <pmhelp.h>

struct _LISTITEM /* definition list */

PSZ Term;

4-8 PM Programming Reference

DdfEndList —
End Definition List

PSZ Desc;
} Definition[2] = {{"MVS", "Multiple Virtual
System"},
{"VM", "Virtual Machine"}};
MRESULT WindowProc{ HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)

{
HWND hwndParent;
HWND hwndInstance;
HDDF hDdf; /* DDF handle */
SHORT i3 /* loop index */
switch(ulMsg)
{
case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);
/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */
oL, /* Default buffer size */
oL /* Default increment */
):
if (hDdf == NULLHANDLE) /* Check return code */
{
return (MRESULT)FALSE;
}
/* begin definition Tist */
if (iDdfBeginList(hDdf, 3L, HMBT_ALL, HMLS_SINGLELINE))
return (MRESULT)FALSE;
}
/* insert 2 entries into definition list */
for (i=0; i < 2; i++)
if (1DdfListItem(hDdf, Definition[i].Term,
Definition[i].Desc))
return (MRESULT)FALSE;
}
/* terminate definition list */
if (!DdfEndList(hDdf))
return (MRESULT)FALSE;
}
return (MRESULT)hDdf;
}
}

Chapter 4. Dynamic Data Formatting Functions 4-9

DdfHyperText —
Define Hypertext Link

#define INCL_DDF

BOOL DdfHyperText (HDDF hddf, PSZ pszText, PSZ pszReference, ULONG fReferenceType)

This function defines a hypertext link to another panel.

Parameters ;
hddt (HDDF) — input

Handle to DDF returned by Ddflnitialize.
pszText (PSZ) — input
Hypertext phrase.
pszReference (PSZ) — input
The value of this parameter depends on the value of ReferenceType:

- If ReferenceType is REFERENCE_BY_RES, this parameter must contain a pointer to a
numeric string containing the res number; otherwise it will default to a res number of zero.
Valid values are 1 - 64000; all other values are reserved.

- If ReferenceType is REFERENCE_BY_ID, this parameter contains a pointer to a string
containing the alphanumeric identifier of the destination panel.

fReferenceType (ULONG) — input

This parameter specifies whether you are linking via a resource identifier (res number) or via an
alphanumeric identifier.

REFERENCE_BY_RES To link via a resource identifier.
REFERENCE_BY_ID To link via an alphanumeric identifier.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF _MEMORY Not enough memory is available.
HMERR_DDF_REFTYPE The reference type is not valid.
Remarks

Note: There is a 3-byte ESC code overhead in the DDF internal buffer for each word in the text
buffer. There is a 1-byte ESC code overhead for each blank and for each newline character.
if ReferenceType is REFERENCE_BY_ID, then there is a (3-byte + Reference length) ESC code
overhead. For a ReferenceType of REFERENCE_BY_RES, the overhead is 5 bytes. Finally,
there is a 3-byte ESC code overhead that is required for ending the hypertext link.

4-10 PM Programming Reference

N

DdfHyperText —
Define Hypertext Link

Related Functions
e DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdfListitem
Ddflnitialize
Ddfinform
DdfEndList
DdfBitmap
DdfBeginList

Example Code

After initializing a DDF buffer with Ddfinitialize, the example uses DdfHyperText to create a hypertext
link with another resource. For a more detailed example and discussion of initializing DDF, see the
Ddfinitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

pPSz Text = "This text is a HYPERTEXT message.\n"; /* hypertext
string */
PSZ ResID = "1"; J* Resource identifier */

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{
HWND hwndParent;
HWND hwndInstance;
HDDF hDdf; /* DDF handle */

switch(ulMsg)

{
case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

Chapter 4. Dynamic Data Formatting Functions 4-11

DdfHyperText —
Define Hypertext Link

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
);
if (hDdf == NULLHANDLE) /* Check return code */
{

return (MRESULT)FALSE;
}

/* create hypertext 1ink with resource 1 */
if (!DdfHyperText(hDdf, (PSZ)Text, ResID, REFERENCE_BY_RES))
{

return (MRESULT)FALSE;

return (MRESULT)hDdf;

4-12 PM Programming Reference

Ddflnform -
Define Inform Link

#define INCL_DDF

BOOL Ddfinform (HDDF hddf, PSZ pszText, ULONG resinformNumber)

This function defines a hypertext inform link; it corresponds to the link tag with reftype =inform.

Parameters
hddf (HDDF) — input

Handle to DDF returned by Ddfinitialize.
pszText (PSZ) — input

Hypertext phrase.
resinformNumber (ULONG) — input

Res number associated with this hypertext field. Possible values are 1 to 64000; all other values
are reserved.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError
HMERR_DDF MEMORY Not enough memory is available.

Related Functions
e DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdfListltem
Ddfinitialize
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginList

Example Code
After initializing a DDF buffer with Ddfinitialize, the example uses Ddfinform to create a hypertext
inform link with another resource (corresponds to the IPF :link. tag with reftype=inform). For a more
detailed example and discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

Chapter 4. Dynamic Data Formatting Functions 4-13

Ddfinform -
Define Inform Link

PSZ Text = "This text is a HYPERTEXT message.\n"; /* hypertext
string */
MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{
HWND hwndParent;
HWND hwndInstance;
HDDF hDdf; /* DDF handle ' */

switch(ulMsg)
{

case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT(HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
);
if (hDdf == NULLHANDLE) /* Check return code */
{
return (MRESULT)FALSE;
}

/* create hypertext inform link with resource 1 */
if (!1DdfInform(hDdf, (PSZ)Text, 1L))
{

return (MRESULT)FALSE;

return (MRESULT)hDdf;

4-14° PM Programming Reference

~—

Ddfinitialize —
Initialize DDF Area

#define INCL_DDF

HDDF Ddfinitialize (HWND hwndHelpinstance, ULONG cbBuffer, ULONG ulincrement)

This function initializes the IPF internal structures for dynamic data formatting and returns a DDF
handle. The application uses this handle to refer to a particular DDF panel.

Parameters
hwndHelpinstance (HWND) — input

Handle of a help instance.
cbBuffer (ULONG) - input

Initial length of internal buffer where DDF information is to be stored. If this field is NULL, a
default value of 1K is defined. The maximum value is 60KB.

ulincrement (ULONG) — input

Amount by which to increment the buffer size, if necessary. If this field is NULL, a default value
of 256 bytes is defined. The maximum value is 60KB.

Returns
A handle to DDF (HDDF) is returned if initialization was successful. Otherwise, the value
returned is:

NULL An error has occurred because of insufficient memory or incorrect instance.

Remarks
At initialization, the default for dynamic data display is that text aligned on the left, and formatting is
turned on.

Related Functions
e DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdfListltem
Ddfinform
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginList

Example Code
This example shows how to initialize and use the Dynamic Data Facility for displaying an online
document. Two functions are defined: the first, SampleObj, creates a window that will display the
online information and specifies the second function, SampleWindowProc, as the corresponding
window procedure. These two functions are compiled into a DLL and exported, so that IPF can
invoke them when it encounters the :ddf and :acviewport tags during execution. The :acviewport tag
will specify the DLL name and the SampleObj function; when IPF calls SampleObj, it initializes an

Chapter 4. Dynamic Data Formatting Functions 4-15

Ddfinitialize —
Initialize DDF Area

application-controlied window with SampleWindowProc as the window procedure and returns the
window handle. Later, when IPF encounters the :ddf tag, it will send SampleWindowProc an
HM_QUERY_DDF_DATA message. At this point, before calling any of the DDF API, Ddflnitialize must
first be called to initiate a DDF buffer, after which the other DDF AP! can be called to display the
online information.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_WINDIALOGS /* Dialog boxes */
#define INCL_DDF /* Dynamic Data Facility */

#define INCL_32
#include <os2.h>
#include <pmhelp.h>

#define COM_HWND 4 /* window word offsets */
#define PAGE_HWND 8

#define ACVP_HAB 12

USHORT DdfClass = FALSE;

MRESULT EXPENTRY SampleWindowProc(HWND hWnd, ULONG Message,
MPARAM 1Paraml, MPARAM 1Param2);

USHORT APIENTRY SampleObj(PACVP pACVP, PCH Parameter)
{

HWND DdfHwnd; /* Client window handle */
HWND DdfCHwnd; /* Child window handle */
HWND PreviousHwnd; /* Handle for setting comm window active */

/* register DDF Base class if not registered already */
if (!DdfClass)

{
if (!WinRegisterClass(
pACVP->hAB, /* Anchor block handle */
"CLASS_Ddf", /* Application window class name */
/* Address of window procedure */
SampleWindowProc,
/* Window class style */
CS_SYNCPAINT | CS_SIZEREDRAW | CS_MOVENOTIFY,
20)) /* Extra storage */
{
return TRUE;
}
DdfClass = TRUE;
}

/* create standard window */
if (1(DdfHwnd = WinCreateStdWindow(

pACVP->hWndParent, /* ACVP is parent */
oL, /* No class style */
NULL, /* Frame control flag */
"CLASS_Ddf", /* Window class name */
NULL, /* No title bar */
oL, /* No special style */
oL, /* Resource in .EXE */
0, /* No window identifier */
&DdfCHwnd))) /* Client window handle */

{

return FALSE;
}

/* store the frame window handle in ACVP data structure */
pACVP->hWndACVP = DdfHwnd;

4-16 PM Programming Reference

Ddflnitialize —
Initialize DDF Area

/* set this window as active communication window */

PreviousHwnd = (HWND)WinSendMsg(pACVP->hWndParent,
HM_SET_OBJCOM_WINDOW,
MPFROMHWND (DdfHwnd) , NULL);

/* save returned communication hwnd in reserved word */
WinSetWindowULong (DdfCHwnd, COM_HWND, (ULONG)PreviousHwnd);

/* save anchor block handle in reserved word */
WinSetWindowULong (DdfCHwnd, ACVP_HAB, (ULONG)pACVP->hAB);

return FALSE;
} /* SampleObj */

MRESULT EXPENTRY SampleWindowProc(HWND hWnd, ULONG Message,
MPARAM 1Paraml, MPARAM 1Param2)

{
HWND hwndParent; /* parent window */
HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */
ULONG DdfID; /* DDF resource id */

switch (Message)

{

case HM_QUERY_DDF_DATA:
WinSetWindowlLong(hWnd, PAGE_HWND, LONGFROMMP(1Paraml));
DAfID = LONGFROMMP(1Param2);
hwndParent = WinQueryWindow(hWnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,

MPFROMSHORT (HMQW_INSTANCE) , NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
)3
if (hDdf == NULLHANDLE) /* Check return code */
{
return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

default:
return (WinDefWindowProc (hWnd, Message, 1Paraml, 1Param?));

}
} /* SampleWindowProc */

Chapter 4. Dynamic Data Formatting Functions 4-17

DdfListitem -
Insert List Item

#define INCL_DDF

BOOL DdfListitem (HDDF hddf, PSZ pszTerm, PSZ pszDescription)

This function inserts a definition list entry in the DDF buffer; it corresponds to a combination of the
:dt. (definition term) and :dd. (definition define) tags.

Parameters
hddf (HDDF) — input

Handle to DDF returned by Ddfinitialize.
pszTerm (PSZ) — input

Term portion of the definition list entry.
pszDescription (PSZ) — input

Description portion of the definition list entry.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetlL.astError

HMERR_DDF MEMORY Not enough memory is available.
HMERR_DDF_LIST_UNINITIALIZED No definition list has been initialized by DdfBeginList.
Remarks

The handle to the presentation space in which the bit map was created cannot be freed by the
application while the panel is displayed.

Note: There is a (3-byte + size of HBITMAP structure) ESC code overhead in the DDF internal buffer
for this function. There is a 1-byte ESC code overhead required for the Align flag.

Related Functions
s DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
Ddfinitialize
Ddfinform
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginList

4-18 PM Programming Reference

DdfListitem -
Insert List Iltem

Example Code

After initializing a DDF buffer with Ddfinitialize, the example uses DdfBeginList to indicate the
beginning of a definition list in the DDF buffer (this corresponds to the IPF di tag). For a more
detailed example and discussion of initializing DDF, see the Ddflnitialize sample.

fdefine INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

struct _LISTITEM /* definition list */
PSZ Term;
PSZ Desc;

} Definition[2] = {{"MVS", "Multiple Virtual

System"},

{"VM", "Virtual Machine"}};
MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;

HWND hwndInstance;

HODF hDdf; /* DDF handle */
SHORT i3 /* loop index */

switch({ ulMsg)
{

case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
'H
if (hDdf == NULLHANDLE) /* Check return code */
{
return (MRESULT)FALSE;
}

/* begin definition list */
if (!DdfBeginList(hDdf, 3L, HMBT_ALL, HMLS_SINGLELINE))
{

return (MRESULT)FALSE;

Chapter 4. Dynamic Data Formatting Functions 4-19

DdfListitem -—
Insert List Iltem

/* insert 2 entries into definition list */
for (i=0; i < 2; i++)

if (!DdfListItem(hDdf, Definition[i].Term,
Definition{i].Desc))

return (MRESULT)FALSE;
}
}

/* terminate definition list */
if (1DdfEndList(hDdf))
{

return (MRESULT)FALSE;

return (MRESULT)hDdf;

4-20 PM Programming Reference

i

DdfMetafile —
Place Metafile Reference

#define INCL_DDF

BOOL DdfMetafile (HDDF hddf, HMF hmf, PRECTL prciRect)

This function places a reference to a metafile into the DDF buffer.

Parameters
hddt (HDDF) — input

Handle to DDF returned by Ddfinitialize.
hmt (HMF) — input

The handie of the metafile to display.
prciRect (PRECTL) — input

If not NULL, contains the size of the rectangle in which the metafile will be displayed. The
aspect ratio of the metafile is adjusted to fit this rectangle.

Returns

Success indicator.
TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetlLastError
HMERR_DDF_MEMORY Not enough memory is available.

Remarks
Note: There is a 3-byte ESC code overhead in the DDF internal buffer for this function. There is also
a (MetaFilename length) overhead. Finally, the Rect variable requires an additional 16 bytes
of overhead in the DDF internal buffer.

Related Functions
* DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfListitem
Ddflnitialize
Ddfinform
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginList

Chapter 4. Dynamic Data Formatting Functions 4-21

DdfMetafile —
Place Metafile Reference

Example Code

After initializing a DDF buffer with Ddfinitialize and loading a metafile with GpiLoadMetaFile, the
example uses DdfMetafile to place a reference to the metafile in the DDF buffer. For a more detailed
example and discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */
#define INCL_GPIMETAFILES /* MetaFiles */

#include <o0s2.h>
#include <pmhelp.h>

#define MF_HWND ©
#define ACVP_HAB 4

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;

HAB hab;

HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */
HMF hwndMetaFile; /* metafile handle */

switch(ulMsg)
{

case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
):
if (hDdf == NULLHANDLE) /* Check return code */
{

return (MRESULT)FALSE;
}

/* get hab for this window */
if ((hab = (HAB)WinQueryWindowULong(hwnd, ACVP_HAB)) == NULLHANDLE)
{

return (MRESULT)FALSE;
/* Load the Metafile to display */
if ((hwndMetaFile = GpiLoadMetaFile(hab, "SAMP.MET")) == NULLHANDLE)

{
return (MRESULT)FALSE;

4-22 PM Programming Reference

S~

DdfMetafile —
Place Metafile Reference

/* Save MetaFile hwnd in reserved word */
WinSetWindowULong (hwnd, MF_HWND, hwndMetaFile);

if (IDdfMetafile(hDdf, hwndMetaFile, NULL))
{

}
return (hDdf);

return (MRESULT)FALSE;

case WM_CLOSE:
GpiDeleteMetaFile((HMF)WinQueryWindowULong(hwnd, MF_HWND));
WinDestroyWindow(WinQueryWindow(hwnd, QW_PARENT));
return (MRESULT)TRUE;

}
return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

Chapter 4. Dynamic Data Formatting Functions 4-23

DdfPara —
Create a Paragraph in DDF Buffer

#define INCL_DDF

BOOL DdfPara (HDDF hddf)

This function creates a paragraph within the DDF buffer. It corresponds to the :p. tag. This function
places a reference to a bit map in the DDF buffer.

Parameters
hddf (HDDF) — input

Handle to DDF returned by Ddflnitialize.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError
HMERR_DDF_MEMORY Not enough memory is available.

Remarks
Note: There is a 1-byte ESC code overhead in the DDF internal buffer for this function.

Related Functions
* DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfMetafile
DdflListitem
Ddflnitialize
Ddfinform
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginList

e © & 0 0 0 o & o ¢ o o o

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses DdfPara to start a new paragraph,
DdfSetFont and DdfSetFontStyle to have the text displayed in a large, bold Courier font, DdfSetColor
to change the text color, and DdfText to place text in the buffer. For a more detailed example and
discussion of initializing DDF, see the Ddfinitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

4-24 PM Programming Reference

Rg—

DdfPara -
Create a Paragraph in DDF Buffer

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)

HWND hwndParent;
HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */

switch(ulMsg)

{
case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size *f
oL /* Default increment */
)
if (hDdf == NULLHANDLE) /* Check return code */
{
return (MRESULT)FALSE;
}

/* create paragraph in DDF buffer */
if(!'DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

/* Change to large (100 x 100 dimensions) Courier font */
if(1DdfSetFont(hDdf, "Courier", 100L, 100L))
{

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(1DdfSetFontStyle(hDdf, FM_SEL_BOLD))

{
return (MRESULT)FALSE;

}

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR_PALEGRAY, CLR_BLUE))

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (1DdfText(hDdf, "Sample Text"))

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

}
return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

Chapter 4. Dynamic Data Formatting Functions 4-25

DdfSetColor —
Set Color of Text

#define INCL_DDF

BOOL DdfSetColor (HDDF hddf, COLOR BackColor, COLOR ForColor)

This function sets the background and foreground colors of the displayed text.

Parameters
hddf (HDDF) — input

Handle to DDF returned by Ddfinitialize.
BackColor (COLOR) — input
Specifies the desired background color.
ForColor (COLOR) — input
Specifies the desired foreground color.
The following color value constants may be used for the foreground and background colors:

CLR_DEFAULT - used to set IPF default text color
CLR_BLACK
CLR_BLUE
CLR_RED
CLR_PINK
CLR_GREEN
CLR_CYAN
CLR_YELLOW
CLR_BROWN
CLR_DARKGRAY
CLR_DARKBLUE
CLR_DARKRED
CLR_DARKPINK
CLR_DARKGREEN
CLR_DARKCYAN
CLR_PALEGRAY
CLR_UNCHANGED

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF_MEMORY Not enough memory is available.
HMERR_DDF BACKCOLOR The background color is not valid.
HMERR_DDF FORCOLOR The foreground color is not valid.

4-26 PM Programming Reference

DdfSetColor —
Set Color of Text

Remarks
Note: There is a 4-byte ESC code overhead in the DDF internal buffer for the foreground color, and a
4-byte overhead for the background color, with this function.

Related Functions
e DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfPara
DdfMetafile
DdfListltem
Ddfinitialize
Ddfinform
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginlList

Example Code ,
After initializing a DDF buffer with Ddflnitialize, the example uses DdfPara to start a new paragraph,
DdfSetFont and DdfSetFontStyle to have the text displayed in a farge, bold Courier font, DdfSetColor
to change the text color, and DdfText to place text in the buffer. For a more detailed example and
discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)

{
HWND hwndParent;
HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */

switch(uiMsg)

{
case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
):
if (hDdf == NULLHANDLE) /* Check return code */
{
return (MRESULT)FALSE;
}

Chapter 4. Dynamic Data Formatting Functions 4-27

DdfSetColor —
Set Color of Text

/* create paragraph in DDF buffer */
if(1DdfPara(hDdf))
{

return (MRESULT)FALSE;
}

/* Change to large (100 x 100 dimensions) Courier font */
if(!DdfSetFont(hDdf, "Courier", 100L, 100L))
{

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(IDdfSetFontStyle(hDdf, FM_SEL_BOLD))

{
return (MRESULT)FALSE;

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR_PALEGRAY, CLR BLUE))
{

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (1DdfText(hDdf, "Sample Text"))
{

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

}
return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

}

4-28 PM Programming Reference

DdfSetFont —
Specify Text Font

#define INCL_DDF

BOOL DdfSetFont (HDDF hddf, PSZ pszFaceName, ULONG ulWidth, ULONG ulHeight)

This function specifies a text font in the DDF buffer.

Parameters
hddf (HDDF) — input

Handle to DDF returned by Ddfinitialize.
pszFaceName (PSZ) — input
This parameter can be specified in two ways:

An ASCIIZ string specifying the font name.
“NULL" or “DEFAULT” to specify the defauit font.

ulWidth (ULONG) — input

Font width in in points. A point is approximately 1/72 of an inch
ulHeight (ULONG) - input

Font height in points.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetlLastError
HMERR_DDF MEMORY Not enough memory is available.

Related Functions
e DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetColor
DdfPara
DdfMetafile
DdfListitem
Ddflnitialize
Ddfilnform
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginList

Chapter 4. Dynamic Data Formatting Functions 4-29

DdfSetFont —
Specify Text Font

Example Code

After initializing a DDF buffer with Ddfinitialize, the example uses DdfPara to start a new paragraph,
DdfSetFont and DdfSetFontStyle to have the text displayed in a large, bold Courier font, DdfSetColor
to change the text color, and DdfText to place text in the buffer. For a more detailed example and

discussion of initializing DDF, see the Ddfinitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

MRESULT WindowProc{ HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)

HWND hwndParent;
HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */

switch(ulMsg)
{

case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdflInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size *x/
oL /* Default increment */
'K
if (hDdf == NULLHANDLE) /* Check return code */
{
return (MRESULT)FALSE;
}

/* create paragraph in DDF buffer */
if(!DdfPara(hDdf))
{

}

/* Change to large (100 x 100 dimensions) Courier font */
if(!DdfSetFont(hDdf, "Courier", 100L, 100L))
{

return (MRESULT)FALSE;

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM_SEL BOLD))
{

return (MRESULT)FALSE;
}

4-30 PM Programming Reference

DdfSetFont —
Specify Text Font

/* make the text display as BLUE on a PALE GRAY background */
if(1DdfSetColor(hDdf, CLR_PALEGRAY, CLR_BLUE))
{

}

/* Write data into the buffer */
if (1DdfText(hDdf, "Sample Text"))
{

}

return (MRESULT)hDdf;

return (MRESULT)FALSE;

return (MRESULT)FALSE;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

Chapter 4. Dynamic Data Formatting Functions 4-31

DdfSetFontStyle
Specify Text Font Style

#define INCL_DDF

BOOL DdfSetFontStyle (HDDF hddf, ULONG fFontStyle)

This function specifies a text font style in the DDF buffer.

Parameters
hddf (HDDF) — input

Handle to DDF returned by Ddfinitialize.
fFontStyle (ULONG) - input

A NULL value for this parameter will set the font-style back to the default. Any of the following
values can be specified:

FM_SEL_ITALIC
FM_SEL_BOLD
FM_SEL_UNDERSCORE

These values can be “ORed” together to combine different font styles.
Note: There is a 4-byte ESC code overhead in the DDF internal buffer for FontStyle.

Returns

Success indicator.
TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError
HMERR_DDF_MEMORY Not enough memory is available.
HMERR_DDF FONTSTYLE The font style is not valid.

Related Functions
* DdfText
DdfSetTextAlign
DdfSetFormat
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdfListitem
Ddfinitialize
Ddfinform
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginList

4-32 PM Programming Reference

N

DdfSetFontStyle —
Specify Text Font Style

Example Code
After initializing a DDF buffer with Ddfinitialize, the example uses DdfPara to start a new paragraph,
DdfSetFont and DdfSetFontStyle to have the text displayed in a large, bold Courier font, DdfSetColor
to change the text color, and DdfText to place text in the buffer. For a more detailed example and
discussion of initializing DDF, see the Ddfinitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <o0s2.h>
#include <pmhelp.h>

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)

HWND hwndParent;
HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */

switch(ulMsg)

case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
):

if (hDdf == NULLHANDLE) /* Check return code */

{
return (MRESULT)FALSE;

/* create paragraph in DDF buffer */
if(IDdfPara(hDdf))
{

return (MRESULT)FALSE;
}

/* Change to large (100 x 100 dimensions) Courier font */
if([IDdfSetFont(hDdf, "Courier", 106L, 100L))
{

return (MRESULT)FALSE;
}

/* make the font BOLDFACE */
if(!DdfSetFontStyle(hDdf, FM_SEL_BOLD))
{

return (MRESULT)FALSE;

Chapter 4. Dynamic Data Formatting Functions 4-33

DdfSetFontStyle —
Specify Text Font Style

/* make the text display as BLUE on a PALE GRAY background */
if(1DdfSetColor(hDdf, CLR_PALEGRAY, CLR_BLUE))

return (MRESULT)FALSE;
}

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

4-34 PM Programming Reference

DdfSetFormat —
Control Formatting

#define INCL_DDF

BOOL DdfSetFormat (HDDF hddf, ULONG fFormatType)

This function is used to turn formatting off or on. It corresponds to the :lines. tag.

Parameters
hddf (HDDF) — input

Handle to DDF returned by Ddfinitialize.
fFormatType (ULONG) — input
Only the following constants may be used in this parameter:

TRUE Turn formatting on.
FALSE Turn formatting off.

Returns

Success indicator.
TRUE Successful completion.
FALSE Error occurred.

Possible returns from WinGetLastError

HMERR_DDF MEMORY Not enough memory is available.

Remarks
Note: If formatting is ON, there is a 3-byte ESC code overhead in the DDF internal buffer for this
function. Otherwise, there is a 4-byte ESC code overhead.

Related Functions
o DdfText
DdfSetTextAlign
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdfListltem
Ddfinitialize
Ddfinform
DdfHyperText
DdfEndL.ist
DdfBitmap
DdfBeginList

Chapter 4. Dynamic Data Formatting Functions 4-35

DdfSetFormat —
Control Formatting

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses DdfSetTextAlign to specify left
justified test in the DDF buffer when formatting is OFF. The example then uses DdfSetFormat to turn
off formatting for text in the DDF buffer (corresponds to the IPF lines tag). For a more detailed
example and discussion of initializing DDF, see the Ddfinitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_GPIPRIMITIVES /* Drawing Primitives/Attributes*/
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

HWND hwndParent;
HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */

switch(ulMsg)
{

case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
):

if (hDdf == NULLHANDLE) /* Check return code */

{
return (MRESULT)FALSE;

/* left justify text when formatting is OFF */
if (1DdfSetTextAlign(hDdf, TA_LEFT))
{

}

/* turn formatting OFF */

if (!DdfSetFormat(hDdf, FALSE))
{

}

if (!pdfText(hDdf,
"Format OFF: This text should be Left Aligned!\n"))
{ ,

return (MRESULT)FALSE;

return (MRESULT)FALSE;

return (MRESULT)FALSE:;

return (MRESULT)hDdf;

return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

4-36 PM Programming Reference

S

DdfSetTextAlign —
Define Text Alignment

#define INCL_DDF

BOOL DdfSetTextAlign (HDDF hddf, ULONG fAlign)

This function defines whether left, center, or right text justification is to be used when text formatting
is off.

Parameters
hddf (HDDF) — input

Handle to DDF returned by Ddflnitialize.

fAlign (ULONG) — input

Only the following constants may be used:

TA_LEFT
TA_RIGHT
TA_CENTER

Returns

Possible returns from WinGetLastError
HMERR_DDF_ALIGN_TYPE

Success indicator.

TRUE Successful completion.

FALSE Error occurred.

Remarks
It should be called before DdfSetFormat is called to turn off text formatting, and should not be called
again until formatting is turned back on. Note that leading and trailing spaces are not stripped from

the text as a resuit of this alignment.

Related Functions

DdfText
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdfListitem
Ddfinitialize
Ddfinform
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginList

Left-justify text.
Right-justify text.

The alignmen

Chapter 4

t type is not valid.

. Dynamic Data Formatting Functions

4-37

DdfSetTextAlign —
Define Text Alignment

Example Code
After initializing a DDF buffer with Ddflnitialize, the example uses DdfSetTextAlign to specify left
justified test in the DDF buffer when formatting is OFF. The example then uses DdfSetFormat to turn
off formatting for text in the DDF buffer (corresponds to the IPF lines tag). For a more detailed
example and discussion of initializing DDF, see the Ddflnitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_GPIPRIMITIVES /* Drawing Primitives/Attributes*/
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)

HWND hwndParent;
HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */

switch(ulMsg)
{

case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
):
if (hDdf == NULLHANDLE) /* Check return code */
{

return (MRESULT)FALSE;
}

/* left justify text when formatting is OFF */
if (1DdfSetTextAlign(hDdf, TA_LEFT))
{

return (MRESULT)FALSE;
}

/* turn formatting OFF */
if (1DdfSetFormat(hDdf, FALSE))

{
return (MRESULT)FALSE;

if (!DdfText(hDdf,
"Format OFF: This text should be Left Aligned!\n"))

return (MRESULT)FALSE;
}

return (MRESULT)hDdf;

}
return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

4-38 PM Programming Reference

DdfText —
Add Text to DDF Buffer

#define INCL_DDF

BOOL DdfText (HDDF hddf, PSZ pszText)

This function adds text to the DDF buffer.

Parameters
hddt (HDDF) — input

Handle to DDF returned by Ddfinitialize.
pszText (PSZ) — input
Pointer to the text buffer to be formatted.

Note: There is a 3-byte ESC code overhead in the DDF internal buffer for each word in the text
buffer. There is a 1-byte ESC code overhead for each blank and for each newline
character.

Returns
Success indicator.

TRUE Successful completion.
FALSE Error occurred.

Related Functions
* DdfSetTextAlign
DdfSetFormat
DdfSetFontStyle
DdfSetFont
DdfSetColor
DdfPara
DdfMetafile
DdfListlitem
Ddflnitialize
Ddfinform
DdfHyperText
DdfEndList
DdfBitmap
DdfBeginList

Example Code
After initializing a DDF buffer with Ddfinitialize, the example uses DdfPara to start a new paragraph,
DdfSetFont and DdfSetFontStyle to have the text displayed in a large, bold Courier font, DdfSetColor
to change the text color, and DdfText to place text in the buffer. For a more detailed example and
discussion of initializing DDF, see the Ddfinitialize sample.

#define INCL_WINWINDOWMGR /* General window management */
#define INCL_WINMESSAGEMGR /* Message management */
#define INCL_DDF /* Dynamic Data Facility */

#include <os2.h>
#include <pmhelp.h>

MRESULT WindowProc(HWND hwnd, ULONG ulMsg, MPARAM mpl, MPARAM mp2)
{

Chapter 4. Dynamic Data Formatting Functions 4-39

DdfText —

Add Text to DDF Buffer
HWND hwndParent;
HWND hwndInstance; /* help instance window */
HDDF hDdf; /* DDF handle */

switch(ulMsg)
{

case HM_QUERY_DDF_DATA:
/* get the help instance */
hwndParent = WinQueryWindow(hwnd, QW_PARENT);
hwndParent = WinQueryWindow(hwndParent, QW_PARENT);
hwndInstance = (HWND)WinSendMsg(hwndParent, HM_QUERY,
MPFROMSHORT (HMQW_INSTANCE), NULL);

/* Allocate 1K Buffer (default) */
hDdf = DdfInitialize(
hwndInstance, /* Handle of help instance */

oL, /* Default buffer size */
oL /* Default increment */
);
if (hDdf == NULLHANDLE) /* Check return code */
{

return (MRESULT)FALSE;
}

/* create paragraph in DDF buffer */
if(1DdfPara(hDdf))
{

return (MRESULT)FALSE;

/* Change to large (100 x 100 dimensions) Courier font */
if(!DdfSetFont(hDdf, "Courier", 100L, 160L))
{

return (MRESULT)FALSE;

/* make the font BOLDFACE */
if(!pdfSetFontStyle(hDdf, FM_SEL BOLD))
{

return (MRESULT)FALSE;
}

/* make the text display as BLUE on a PALE GRAY background */
if(!DdfSetColor(hDdf, CLR_PALEGRAY, CLR BLUE))
{

return (MRESULT)FALSE;

/* Write data into the buffer */
if (!DdfText(hDdf, "Sample Text"))

{
return (MRESULT)FALSE;

}

return (MRESULT)hDdf;

}
return WinDefWindowProc(hwnd, ulMsg, mpl, mp2);

}

4-40 PM Programming Reference

Chapter 5. Graphics Functions

Coordinates

GPI coordinate values that are in world or model space are passed in variables of data type LONG.
For a presentation space of format GPIF_LONG (see GpiCreatePS), the signed value must be
contained within the low-order 28 bits.

For a presentation space with a format of GPIF_SHORT, the signed value must be contained within
the low-order 16 bits. Coordinates that exceed this limit are truncated without error, when stored in
a segment. As a consequence, a large positive number may appear as a negative number.

In both instances, after transformation to media space (that is, device space, possibly including a
translation for the window origin), coordinate values must be in the range —32 768 through +32 767.

The PMERR_COORDINATE_OVERFLOW error condition occurs if a coordinate is too large to be
handled.

Region coordinates must be within the range —32 767 through +32 765.

Matrix Parameter Values

These GPI functions define transforms:

GpiSetSegmentTransformMatrix
GpiSetModelTransformMatrix
GpiCallSegmentMatrix
GpiSetViewingTransformMatrix
GpiSetDefaultViewMatrix
GpiCreatePS

e GpiSetPageViewport.

Note: The last two functions define the device transform; the page viewport may be defaulted.

Concatenation of transform matrixes can occur as the transform is specified, for example, if
TRANSFORM_ADD is specified. Concatenation also occurs during drawing, between the various
transforms in the viewing pipeline.

During the process of concatenation, it is possible for the matrix parameter overfiow error,
PMERR_INV_MATRIX_ELEMENT, to occur. This error is raised if either of the following conditions
occurs for any intermediate value during the concatenation arithmetic (see, for example,
GpiSetSegmentTransformMatrix for an explanation of matrix element numbers):

* Any of the matrix elements 1, 2, 4, or 5 is greater than 32 767 or less than —32 768 (11 fora
GPIF_SHORT format presentation space), or

e Either of elements 7 or 8 is greater than 134 217 727 (227 —1) or less than —134 217 728 (—227)
(greater than 32 767 or less than —32 768 for a GPIF_SHORT format presentation space).

Rounding Errors

In general for graphics coordinates, when non-unity transforms (apart from simple translation) are
involved, rounding errors occur. For example, adding the coordinates of one point {o a delta value,
to produce the coordinates of a second point (all in world coordinates) does not always map to the
same device pel as if the computation had been done in device coordinates. Such errors can be
avoided if calculations are done in device coordinates, or if there are no scaling (or rotational, or
shear) elements in the transforms. Alternatively, the problems can be reduced, though not
eliminated, by defining very fine world coordinates.

Chapter 5. Graphics Functions 5-1

Drawing Process Check Errors
Some GPI functions involve processing buffers of graphics orders or retained graphics segments (the
data for which consists of graphics orders). These functions can give rise to Drawing Process Check
(DPC) errors if an order is found that either is not valid in its context or that contains invalid data. If
this happens, processing of the function stops and the error is recorded. Note that orders up to the
one found to be in error are processed by the function, and output occurs if drawing is being
performed.

Each function that can return these errors has Drawing Process Check errors in its error condition
list. The full list of DPC errors is:

PMERR_INV_IN_AREA
PMERR_INV_IN_PATH
PMERR_INV_IN_ELEMENT
PMERR_ALREADY_IN_ELEMENT
PMERR_STOP_DRAW_OCCURRED (warning)
PMERR_PATH_INCOMPLETE
PMERR_AREA_INCOMPLETE
PMERR_IMAGE_INCOMPLETE
PMERR_INV_ORDER_LENGTH
PMERR_NOT_IN_IMAGE
PMERR_NOT_IN_AREA
PMERR_NOT_IN_ELEMENT
PMERR_NOT_IN_PATH
PMERR_INSUFFICIENT_MEMORY
PMERR_SEG_CALL_STACK_EMPTY
PMERR_SEG_CALL_STACK_FULL
PMERR_TRUNCATED_ORDER
PMERR_CALLED_SEG_NOT_FOUND
PMERR_DYNAMIC_SEG_SEQ_ERROR
PMERR_PROLOG_ERROR
PMERR_INV_IN_VECTOR_SYMBOL

GPI Functions by Functional Area

The following table shows how ali of the Graphics Programmingv Interface (GPI) functions are related
within functional areas.

C Name l C Name
Curve Functions
Attribute Setting Functions
GpiQueryArcParams GpiSetArcParams
GpiQueryDefArcParams GpiSetDefArcParams
Primitive Functions
GpiFullArc GpiPolyFillet
GpiPartialArc GpiPolyFilletSharp
GpiPointArc GpiPolySpline
Area Functions
Attribute Setting Functions
GpiQueryPattern GpiSetPattern
GpiQueryPatternRefPoint GpiSetPatternRefPoint
GpiQueryPatternSet GpiSetPatternSet

5-2 PM Programming Reference

C Name

l C Name

Primitive Functions

GpiBeginArea

l GpiEndArea

Bit-Map Support

Creation and Selection Functions

GpiCreateBitmap

GpiQueryBitmapDimension

GpiDeleteBitmap

GpiSetBitmap

GpiLoadBitmap

GpiSetBitmapDimension

Operations on Raw Bit Maps

GpiQueryBitmapBits

GpiQueryDeviceBitmapFormats

GpiQueryBitmaplnfoHeader

GpiSetBitmapBits

GpiQueryBitmapParameters

Operations through Presentation Spaces

GpiBitBIlt GpiSetPel
GpiDrawBits GpiWCBItBit
GpiQueryPel

Resources and Defaults Functions

GpiQueryBitmapHandle

GpiSetBitmapld

Character Functions

Attribute Setting Functions

GpiQueryCharAngle

GpiSetCharAngle

GpiQueryCharBox GpiSetCharBox
GpiQueryCharBreakExtra GpiSetCharBreakExtra
GpiQueryCharDirection GpiSetCharDirection
GpiQueryCharExtra GpiSetCharExtra
GpiQueryCharMode GpiSetCharMode
GpiQueryCharSet GpiSetCharSet
GpiQueryCharShear GpiSetCharShear

GpiQueryTextAlignment

GpiSetTextAIignment

Primitive Functions

GpiCharString

GpiCharStringPosAt

GpiCharStringAt

GpiQueryCharStringPos

GpiCharStringPos

GpiQueryCharStringPosAt

Resources and Defaults Functions

GpiCreatelogFont GpiQueryKerningPairs
GpiDeleteSetld GpiQuerylLogicalFont
GpiLoadFonts GpiQueryNumberSetlds
GpiLoadPublicFonts GpiQuerySetids
GpiQueryCp GpiQueryTextBox
GpiQueryDefCharBox GpiQueryWidthTable
GpiQueryFaceString GpiSetCp

Chapter 5. Graphics Functions

5-3

5-4

C Name

C Name

GpiQueryFontMetrics

GpiUnioadFonts

GpiQueryFonts

GpiUnloadPublicFonts

GpiQueryFullFontFileDescriptions

GpiQueryFontAction

Color and Mix Functions

Attribute Setting Functions

GpiQueryBackColor GpiSetBackColor
GpiQueryBackMix GpiSetBackMix
GpiQueryColor GpiSetColor
GpiQueryMix GpiSetMix

Resources and Default Functions
GpiCreatelLogColorTable GpiQueryNearestColor
GpiQueryColorData GpiQueryRealColors
GpiQueryColorindex GpiQueryRGBColor
GpiQueryLogColorTable

Palette Manager Functions

GpiAnimatePalette

GpiQueryPaletteinfo

GpiCreatePalette

GpiSelectPalette

GpiDeletePalette GpiSetPaletteEntries
GpiQueryPalette

Control Functions
GpiAssociate GpiQueryPS
GpiCreatePS GpiResetPS
GpiDestroyPS GpiRestorePS
GpiErrorSegmentData GpiSavePS
GpiQueryDevice GpiSetPS

Correlation and Boundary Determination Functions

Bounds Data Functions

GpiQueryBoundaryData

GpiResetBoundaryData

Correlation Data Functions

GpiCorrelateChain

GpiCorrelateSegment

GpiCorrelateFrom

" Pick Aperture and Tag Functions

GpiQueryDefTag) GpiSetDefTag
GpiQueryPickAperturePosition GpiSetPickAperturePosition
GpiQueryPickApertureSize GpiSetPickApertureSize
GpiQueryTag GpiSetTag

Drawing Functions
GpiDrawChain GpiQueryDrawControl
GpiDrawDynamics GpiQueryDrawingMode
GpiDrawFrom GpiQueryStopDraw

PM Programming Reference

C Name C Name
GpiDrawSegment GpiRemoveDynamics
GpiErase GpiSetDrawControl
GpiFloodFill GpiSetDrawingMode
GpiGetData GpiSetStopDraw
GpiPutData GpiPolygons

General Attribute Functions

Attribute Mode Functions
GpiPop GpiSetAttrMode
GpiQueryAttrMode GpiSetDefAttrs
GpiQueryDefAttrs
Attribute Strip Setting Functions
GpiQueryAttrs | GpiSetAttrs
Image Functions
Primitive Functions
Gpilmage !
Line Functions

Attribute Setting Functions
GpiQueryLineEnd GpiSetLineEnd
GpiQueryLinedoin GpiSetLinedoin
GpiQuerylLineType GpiSetLineType
GpiQueryLineWidth GpiSetLineWidth

GpiQueryLineWidthGeom

GpiSetLineWidthGeom

Primitive Functions

GpiBox GpiPolyLine
GpilLine GpiQueryCurrentPosition
GpiMove GpiSetCurrentPosition
GpiPolyLineDisjoint

Visibility Functions
GpiPtVisible GpiRectVisible

Marker Functions
Attribute Setting Functions

GpiQueryMarker GpiSetMarker
GpiQueryMarkerBox GpiSetMarkerBox
GpiQueryMarkerSet GpiSetMarkerSet

Primitive Functions

GpiMarker

GpiPolyMarker

Metafile Support

GpiCopyMetaFile

GpiQueryMetaFileBits

GpiDeleteMetaFile

GpiQueryMetaFilelLength

GpiLoadMetaFile

GpiSaveMetaFile

Chapter 5. Graphics Functions

C Name

C Name

GpiPlayMetaFile

GpiSetMetaFileBits

Miscellaneous Functions

GpiComment

Path Functions

Path Clipping Functions

GpiSetClipPath

Path Definition and Deletion Functions

GpiBeginPath GpiEndPath
GpiCloseFigure

Path Drawing Functions
GpiFillPath GpiStrokePath

GpiOutlinePath

Path Manipulation Functions

GpiModifyPath

Region Support

Clipping Region Functions

GpiExcludeClipRectangle

GpiQueryClipBox

GpilntersectClipRectangle

GpiQueryClipRegion

GpiOffsetClipRegion

GpiSetClipRegion

Drawing Functions

GpiFrameRegion

GpiPaintRegion

Region Functions

GpiCombineRegion

GpiPtinRegion

GpiCreateRegion

GpiQueryRegionBox

GpiDestroyRegion

GpiQueryRegionRects

GpiEqualRegion

GpiRectinRegion

GpiOffsetRegion

GpiSet Region

GpiPathToRegion:

Segment Manipulation Functions

Segment Content Manipulation Functions

GpiBeginElement

GpiQueryEditMode

GpiDeleteElement

GpiQueryElement

GpiDeleteElementRange

GpiQueryElementPointer

GpiDeleteElementsBetweenLabels GpiQueryElementType
GpiElement GpiSetEditMode
GpiEndElement GpiSetElementPointer
GpiLabel GpiSetElementPointerAtLabel

GpiOffsetElementPointer

Whole Segment Functions

GpiCloseSegment

GpiQuerySegmentNames

PM Programming Reference

C Name

C Name

GpiDeleteSegment

GpiQuerySegmentPriority

GpiDeleteSegments

GpiSetinitialSegmentAttrs

GpiOpenSegment GpiSetSegmentAttrs
GpiQueryinitialSegmentAttrs GpiSetSegmentPriority
GpiQuerySegmentAttrs
Transform Functions
Clipping
GpiQueryDefViewingLimits GpiSetDefViewing Limits
GpiQueryGraphicsField GpiSetGraphicsField

GpiQueryViewingLimits

GpiSetViewingLimits

Conversion Functions

GpiConvert l GpiConvertWithMatrix
Device Transforms

GpiQueryPageViewport [GpiSetPageViewport
Helper Functions

GpiRotate GpiTranslate

GpiScale

Modelling Transform Functions

GpiCallSegmentMatrix

GpiSetModelTransformMatrix

GpiQueryModelTransformMatrix

GpiSetSegmentTransformMatrix

GpiQuerySegmentTransformMatrix

Viewing Transform Functions

GpiQueryDefaultViewMatrix

GpiSetDefaultViewMatrix

GpiQueryViewingTransformMatrix

GpiSetViewingTransformMatrix

Chapter 5. Graphics Functions

5-7

GpiAnimatePalette —
Animate Palette

#define INCL_GP!LOGCOLORTABLE /* Or use INCL_GPI or INCL_PM */

LONG GpiAnimatePalette (HPAL hpal, ULONG ulFormat, ULONG uiStart, ULONG ulCount,
PULONG auilTable)

This function changes the color values of animating indexes in a palette.

Parameters
hpal (HPAL) — input
Palette handle.

ulFormat (ULONG) - input
Format of entries in the table:

LCOLF_CONSECRGB Array of RGB values, corresponding to color indexes ulStart upwards.
Each entry is 4 bytes long.

ulStart (ULONG) — input
Starting index.

This is relevant only for LCOLF_CONSECRGB.

ulCount (ULONG) — input
Count of elements in aulTable.

This must be greater than or equal to 0.

aulTable (PULONG) - input
Start of the application data area.

This contains the palette definition data. The format depends on the value of u/Format.
Each color value is a 4-byte integer, with a value of

(F * 16777216) + (R * 65536) + (G * 256) + B

where:

F is a flag byte, which can take the following values (these can be ORed together if required):

PC_RESERVED This index is an animating index. This means that the application might
frequently change the RGB value, so the system should not map the logical
index of the palette of another application to the entry in the physical
palette used for this color.

PC_EXPLICIT The low-order word of the logical color table entry designates a physical
palette entry. This allows an application to show the contents of the device
palette as realized for other logical palettes. This does not prevent the
color in the entry from being changed for any reason.

R is red intensity value
G is green intensity value
B is blue intensity value.

The maximum intensity for each primary is 255.

5-8 PM Programming Reference

o

GpiAnimatePalette —
Animate Palette

Returns
Number of remapped colors.

PAL_ERROR Error occurred

Other Number of colors remapped (that is, having entries in the physical color table).
These are all animating indexes: they have the PC_RESERVED flag set on this
function. [f the palette is selected into more than one presentation space, the
number returned is the maximum number of indexes that have entries in any of
the relevant devices.

Note that by the time an application receives this information, other applications
using the palette may have caused the number to be changed.

Possible returns from WinGetLastError

PMERR_INV_HPAL An invalid color palette handle was specified.
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.
PMERR_INV_COLOR_DATA Invalid color table definition data was specified with
GpiCreateLogColorTable.
PMERR_INV_COLOR_FORMAT An invalid format parameter was specified with
GpiCreatelLogColorTabie.
PMERR_INV_COLOR_START_INDEX An invalid starting index parameter was specified with a
logical color table or color query function.
PMERR_INSUFFICIENT MEMORY The operation terminated through insufficient memory.
PMERR_PALETTE_BUSY An attempt has been made to reset the owner of a palett

when it was busy. ‘

PMERR_INV_IN_AREA An attempt was made to issue a function invalid inside an
area bracket. This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

Remarks
The animating indexes are those that have the PC_RESERVED flag set in the palette and also in the
corresponding element of the aulTable array in this function.

If an animating index already has an entry in the physical hardware palette (allocated from a
previous call to WinRealizePalette), both that entry and the entry in the logical palette are changed.
If there is not an entry in the physical palette, or the device does not support palette functions, the
logical palette color is changed. This function does not allocate a new entry in the physical palette.

This function ignores those elements in aulTable corresponding to non-animating indexes (those that
do not have the PC_RESERVED flag set). Their colors are not changed.

All presentation spaces that have this palette selected into them (see GpiSelectPalette) are updated
with the effects of this function. It is not necessary to issue a WinRealizePalette function before the
effects become visible.

if a palette is selected into a presentation space that is associated with a device context of type
OD_METAFILE or OD_METAFILE_NOQUERY, only the final color values are recorded in the metafile.

Itis an error if a paletté is selected into a presentation space that is within an area or path definition
when this function is issued.

Chapter 5. Graphics Functions 5-9

GpiAnimatePalette —
Animate Palette

Related Functions

* GpiCreatePalette
GpiDeletePalette
GpiQueryPalette
GpiQueryPalettelnfo
GpiSelectPalette
GpiSetPaletteEntries
WinRealizePalette

Example Code
This example uses GpiAnimatePalette to change the color values of the first four animating indexes

in a palette.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

LONG T1remapColors; /* number of remapped colors */
HPAL hpal; /* palette handle */

/***

* assume 4 entries in palette.
* The RGB values are calculated with the following formula:
* (F * 16777216) + (R * 65536) + (G * 256) + B

* % % ¥ % % ¥

* where F = flag, PC_RESERVED or PC_EXPLICIT
* R = red intensity value

* G = green intensity value

* B = blue intensity value

* Thus, in the following table, red and green intensities are 0 *

* while the blue intensity increases from 1 to 4. *
***/

ULONG aulTable[4]=
{(PC_RESERVED*16777216) + (0*65536) + (0*256) + 1,
(PC_RESERVED*16777216) + (0*65536) + (0*256) + 2,
(PC_RESERVED*16777216) + (0*65536) + (0*256) + 3,
(PC_RESERVED*16777216) + (0*65536) + (0*256) + 4};

TremapColors = GpiAnimatePalette(hpal, LCOLF_CONSECRGB, OL, 4L,
aulTable);

5-10 PM Programming Reference

GpiAssociate —
Associate

#define INCL_GPICONTROL /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

BOOL GplAssociate (HPS hps, HDC hdc)

This function associates a graphics presentation space with, or dissociates it from, a device context.

Parameters
hps (HPS) — input
Presentation-space handle.

hdc (HDC) — input
Device-context handle.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_PS_IS_ASSOCIATED
PMERR_DC_IS_ASSOCIATED

PMERR_INV_MICROPS_FUNCTION
PMERR_INV_HDC

PMERR_REALIZE_NOT_SUPPORTED
PMERR_PATH_INCOMPLETE

PMERR_AREA_INCOMPLETE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to destroy a presentation or
associate a presentation space that is still associated
with a device context.

An attempt was made to associate a presentation space
with a device context that was already associated or to
destroy a device context that was associated.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

An attempt was made to create a realizable logical color
table on a device driver that does not support this
function.

An attempt was made to open or close a segment either
directly or during segment drawing, or to issue
GpiAssociate while there is an open path bracket.

Either:

A segment has been opened, closed, or drawn.

* GpiAssociate was issued while an area bracket was
open.

* A drawn segment has opened an area bracket and
ended without closing it.

Chapter 5. Graphics Functions 5-11

GpiAssociate —
Associate

Remarks
Any type of device context may be used.

Subsequent drawing functions direct output to the associated device context.

If a null handle is supplied for the device context, the presentation space is dissociated from its
currently-associated device context. An associated presentation space cannot be associated with
another device context, and an associated device context cannot be associated with another
presentation space.

An error occurs if you try to draw to a presentation space associated with a memory device context
that has no bit map selected into it (see GpiSetBitmap).

The processing described for GRES_ATTRS (see GpiResetPS) is performed on the presentation
space. Also, bounds data is destroyed, the page viewport is reset to its default value (see
GpiCreatePS), and any clip region and path definition are lost. The save/restore presentation-space
stack (see GpiSavePS8) is purged.

Any palette selected into the presentation space remains selected.

Any dynamic segments left drawn on the device are not subsequently removed by
GpiRemoveDynamics.

Related Functions
* GpiCreatePS
GpiDestroyPS
GpiQueryDevice
GpiQueryPS
GpiResetPS
GpiRestorePS
GpiSavePS
GpiSetPS
GpiSetMarkerSet
GpiSetPatternSet

Example Code
This example releases the current device context and associates a new device context with the
presentation space.

#define INCL_GPICONTROL /* GPI control Functions */
#include <os2.h>

HPS hps; /* presentation space handle */
HDC hdcPrinter; /* device context handle */

/* release the current device context */
GpiAssociate(hps, NULLHANDLE);
/* associate a printer device context */
GpiAssociate(hps, hdcPrinter);

5-12 PM Programming Reference

GpiBeginArea —
Begin Area

#fdefine INCL_GPIPRIMITIVES /* Or use INCL_GP! or INCL_PM. Also in COMMON section */

BOOL GpiBeginArea (HPS hps, ULONG flOptions)

This function begins the construction of an area.

Parameters
hps (HPS) — input
Presentation-space handle.

flOptions (ULONG) — input
Area options.

This contains fields of option bits. For each field, one value should be selected (unless the
default is suitable). These values can be ORed together to determine whether to draw boundary
lines as well as the area interior:

BA_NOBOUNDARY Do not draw boundary lines.

BA_BOUNDARY Draw boundary lines (the default).

Construction of the area interior:

BA_ALTERNATE Construct interior in alternate mode (the defauit)
BA_WINDING Construct interior in winding mode.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
i from more than one thread simultaneously.

PMERR_INV_AREA_CONTROL An invalid options parameter was specified with
GpiBeginArea.

PMERR_INV_IN_PATH An attempt was made to issue a function invalid inside a
path bracket.

PMERR_ALREADY_IN_AREA An attempt was made to begin a new area while an

existing area bracket was already open.

Remarks
The construction is terminated by the GpiEndArea function.

You can use the following list of functions to define an area. They are used between the
GpiBeginArea and GpiEndArea functions.

GpiBeginElement

GpiBox (with the IControl parameter set to DRO_OUTLINE)
GpiCallSegmentMatrix

GpiComment

GpiElement (containing a valid call)

Chapter 5. Graphics Functions 5-13

GpiBeginArea —
Begin Area

GpiEndElement

GpiFullArc (with the /Control parameter set to DRO_OUTLINE)
GpiLabel

GpiLine

GpiMove

GpiPartialArc

GpiPointArc

GpiPolyFiliet
GpiPolyFilletSharp
GpiPolyLine

GpiPolySpline

GpiPop (that pops a valid call)
GpiSetArcParams
GpiSetAttrMode

GpiSetAttrs (setting valid line attributes only, or foreground color/mix (only) for other primitive
types)

GpiSetColor
GpiSetCurrentPosition
GpiSetLineEnd
GpiSetLinedoin
GpiSetLineType
GpiSetLineWidth

GpiSetMix
GpiSetModelTransformMatrix

GpiBox and GpiFullArc are valid only in an area bracket (that is, between the GpiBeginArea and
GpiEndArea functions with the IControl parameter set to DRO_OUTLINE. Other values of this
parameter on these functions cause an implicit area bracket around the function.

Shading of the area is performed using the current pattern, as set by the GpiSetPattern function. The
color and color-mixing modes that are current at the time GpiBeginArea is issued define the
attributes to be applied to the pattern. The pattern reference point is also subjected to all of the
transformations (including the model transformation) in force at the time of GpiBeginArea.

The area boundary consists of one or more closed figures, each constructed by:

GpiBox

GpiFullArc
GpiPointArc
GpiLine
GpiPartialArc
GpiPolyFilletSharp
GpiPolyLine
GpiPolySpline
GpiPolyFillet

The GpiSetColor and GpiSetMix functions can be used to control how the area boundary is to be
colored. The GpiSetLineEnd, GpiSetLineJoin, GpiSetLineType, and GpiSetLineWidth functions can be
used to control line attributes as required. GpiSetAttrs can be used as an alternative way of setting
these attributes. GpiSetArcParams can be used to control the shape of arcs produced by GpiFuliArc,
GpiPointArc, and GpiPartialArc.

The start of a new figure is indicated by:

GpiCaliSegmentMatrix

GpiFuliArc

GpiMove

GpiPop (or end of called segment), which pops current position or a model transform
GpiSetCurrentPosition

GpiSetModelTransformMatrix

Note: GpiCloseFigure must not be issued within an area.

5-14 PM Programming Reference

ey

GpiBeginArea —
Begin Area

A GpiBox or GpiFullArc function called within an area definition generates a complete closed figure.
These functions must not be used within another figure definition.

The starting point of each closed figure is the current position when this function is made, or the
point specified by the function starting the figure. Figure construction continues until either a new
figure is started, or GpiEndArea is called.

Each figure should be closed, that is, the start and end points should be identical. If these points are
not identical, they are joined by a straight line to arbitrarily close the figure.

The area interior is constructed either in alternate mode or in winding mode. In alternate mode,
whether any point is within the interior is determined by drawing an imaginary line from that point to
infinity; if there is an odd number of boundary crossings, the point is inside the area, if there is an
even number of crossings, it is not.

In winding mode, the direction of the boundary lines is taken into account. Using the same imaginary
line, the number of crossings is counted, as in alternate mode, but boundary lines going in one
direction score plus one, and boundary lines going in the other direction score minus one. The point
is in the interior if the final score is not zero.

In either mode, all of the boundaries of the area are considered to be part of the interior.

If the fiOptions parameter of this function is BA_NOBOUNDARY, the boundary lines are not drawn,
but the shading ends at the boundaries. If the flOptions parameter specifies BA_BOUNDARY, the
boundary lines and any lines added to close the figures are drawn. The lines are drawn using the
current line attributes (which can be changed during construction) and shading occurs within the
boundaries.

The current position is not changed by this function, but it can be changed by the moves, arcs, fillets,
and lines between this function and the GpiEndArea function, including any used to close figures.

Area definitions cannot be nested. This function and the GpiEndArea function for one area must be
within the same segment.

You can have no more than 1 450 straight-line vertices that describe the area.
During correlation in nonretained mode, a hit on any function within an area returns GPI_HITS in the

GpiEndArea function. GPI_HITS is not returned on any of the primitives that occur within the area
definition.

Related Functions

¢ GpiBeginPath

* GpiEndArea

* GpiSetPattern

* GpiSetPatternRefPoint
GpiSetPatternSet
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Chapter 5. Graphics Functions 5-15

GpiBeginArea -
Begin Area

Graphic Elements and Orders
Element Type: OCODE_GBAR

Order: Begin Area

Example Code
This example uses the GpiBeginArea function to draw an area. The area, an isosceles triangle, is
drawn with boundary lines and filled using the alternate filling mode.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, O }; /* first vertex */
POINTL pti1Triangle[] = { 100, 1060, 2006, 0, 0, O }; /* vertices */

GpiMove(hps, &ptiStart); /* move to starting point (0, 0) *f

GpiBeginArea(hps, /* start the area bracket */
BA_BOUNDARY | /* draw boundary lines */
BA_ALTERNATE) ; /* fi11 interior with alternate mode */

GpiPolyLine(hps, 3L, pt1Triangle); /* draw the triangle */

GpiEndArea(hps); /* end the area bracket */

5-16 PM Programming Reference

L

GpiBeginElement —
Begin Element

#define INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

BOOL GpiBeginElement (HPS hps, LONG IType, PSZ pszDesc)

This function defines the start of an element within a segment.

Parameters
hps (HPS) — input
Presentation-space handie.
IType (LONG) — input
Type to be associated with the element.

Application-defined elements should have type values in the range X'81 xxxxxx' through
X'FFxxxxxx' to avoid conflict with system-generated elements.

pszDesc (PSZ) — input
Description.

Variable-length character string, recorded with the type.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_ALREADY_IN_ELEMENT An attempt was made to begin a new element while an
existing element bracket was already open.

PMERR_DESC_STRING_TRUNCATED An attempt was made to supply a description string with
GpiBeginElement that was greater then the permitted
maximum length (251 characters). The string was
truncated.

Remarks
This function starts an element, stored in the current segment, in retain or draw-and-retain mode
(see GpiSetDrawingMode). The element is drawn in draw or draw-and-retain mode.

The drawing functions that form the contents of the element are passed on subsequent GP! functions
{only those functions that can generate orders are logically part of the element). The element
extends up to the next GpiEndElement function (or GpiCloseSegment, which causes an implicit
GpiEndElement to be generated).

Grouping drawing functions together into an element is useful if the set of functions is to be changed
or replaced together at a later time. Drawing functions that are not explicitly grouped together in an
element bracket (GpiBeginElement -GpiEndElement pair) generate a single element for each GPI
function.

Chapter 5. Graphics Functions 5-17

GpiBeginElement -
Begin Element

The GpiElement function, that itself generates a complete element, is not allowed within an element
bracket. The GpilLabel function is also not allowed within an element bracket. Elements must not be
nested within one segment.

Related Functions

* GpiCloseSegment
GpiDeleteElement
GpiDeleteElementRange
GpiDeleteElementsBetweenLabels
GpiElement
GpiEndElement
Gpilabel
GpiOffsetElementPointer
GpiQueryElement
GpiQueryElementPointer
GpiQueryElementType
GpiSetElementPointer
GpiSetElementPointerAtLabel

Graphic Elements and Orders
The element type is defined by the /Type parameter.

Order: Begin Element

Example Code
This example uses the GpiBeginElement function to create an element in a segment. The element
type is 1 and the element description is “Triangle”. The application can use these later to identify the

element.

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */

#include <os2.h>

HPS hps;

POINTL ptiStart = { 0, 0 }; /* first vertex */

POINTL pt1Triangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiBeginElement (hps, /* start element bracket */
1L, /* element type is 1 */
"Triangle"); /* element description */

GpiMove(hps, &ptiStart); /* move to start point (0, 0) */

GpiPolyLine(hps, 3L, ptiTriangle); /* draw triangle */

GpiEndElement (hps) ; /* end element bracket */

5-18 PM Programming Reference

GpiBeginPath —
Begin Path

#define INCL_GPIPATHS /* Or use INCL_GP! or INCL_PM */

BOOL GpiBeginPath (HPS hps, LONG IPath)

This function specifies the start of a path.

Parameters
hps (HPS) — input

Presentation-space handle.

IPath (LONG) — input

Path identifier.

This must be 1.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_PATH_ID An invalid path identifier parameter was specified.
PMERR_ALREADY_IN_PATH An attempt was made to begin a new path while an

existing path bracket was aiready open.

PMERR_INV_IN_AREA An attempt was made to issue a function invalid inside an

area bracket. This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

Remarks
Paths can be used for these purposes:

To generate lines and curves that have a geometric width (that is, a width that is subject to
transformations); see GpiModifyPath and GpiStrokePath.

To generate lines and curves that have cosmetic width; see GpiOutlinePath. In particular, if the
lines and curves are defined by characters drawn with an outline font, hollow characters are
produced. Hollow characters can also be drawn outside paths, using the FATTR_SEL_OUTLINE
FATTRS option with the GpiCreatel.ogFont function.

To generate nonrectangular shapes to be used for clipping; see GpiSetClipPath.
To generate shapes to be filled; see GpiFillPath.
Note: Areas can also be used for filling; see GpiBeginArea.

To generate shapes to be converted to regions on which the region-combination function,
GpiCombineRegion, can be used; see GpiPathToRegion.

Chapter 5. Graphics Functions 5-19

GpiBeginPath —
Begin Path

There are two stages in the process of describing a path:

1. Path specification
2. Path definition.

Path Specification
A path is specified by a number of figures, within a GpiBeginPath-GpiEndPath pair. Each figure is
specified by line functions, or curve functions, or both, and is separated from other figures by one of
these functions:

GpiCallSegmentMatrix
GpiCharString
GpiCharStringAt
GpiCharStringPos
GpiCharStringPosAt
GpiFullArc

GpiMarker

GpiMove

GpiPolyMarker

GpiPop (which restores the current position)
GpiSetCurrentPosition
GpiSetModelTransformMatrix

A figure that is terminated by one of the functions in this list is said to be an open figure. A figure
can also be terminated by a GpiCloseFigure function. This is said to be a closed figure.

A GpiBox or GpiFullArc function within a path specifies a complete closed figure. These functions
must not be used within another figure specification.

GpiBeginPath initializes the path to be empty.

Path specification functions are terminated by GpiEndPath. if there are no primitives between the
GpiBeginPath and GpiEndPath functions, a null path is specified. The GpiEndPath that terminates
this path specification must occur within the same segment as the GpiBeginPath function.

Path specification functions can occur within a segment bracket.

Path Definition
The process of path definition causes a description of the path to be built in the currently associated
device context. This description is used during any subsequent operation on the path. If the
definition occurred by the drawing of a retained segment containing specification functions, these
may subsequently be edited, with no effect on the path definition, until the segment is drawn again.

if the drawing mode (see GpiSetDrawingMode) is set to draw or draw-and-retain, the path is defined
as it is specified. If drawing mode is retain, path definition does not occur until the segment
containing the path specification is drawn.

When a path has been defined, the definition cannot be reopened. An attempt to redefine the path
results in the definition being replaced.

As the path definition is kept in the device context, association of the presentation space with a new
device context means that the definition is lost.

When it has been defined, a path can be used only in a single GpiFillPath, GpiStrokePath,
GpiOutlinePath, GpiPathToRegion, or GpiSetClipPath function. Alternatively, a path can be modified
once only with a GpiModifyPath function, and then used in a single GpiFillPath, GpiPathToRegion, or
GpiSetClipPath function. If a path is required to be reused in a normal (not a micro) presentation
space, it can be created in a retained segment (for exampie, using draw-and-retain mode [see
GpiSetDrawingMode]). This segment must be drawn whenever the definition has to be recreated.
This may be done even if the application is otherwise nonretained. Otherwise, the application must

5-20 PM Programming Reference

g

GpiBeginPath —
Begin Path

reissue all the individual functions to reconstruct the path whenever the definition has to be
recreated.

A path definition is bound in device coordinates at the time the path is defined. If any transforms
(other than the final windowing transform) are subsequently changed, they have no effect on the path
itself. However, they affect the thickness if the path is to be stroked using GpiModifyPath, and they
affect the pattern reference point if the path is to be filled with GpiFillPath. The transforms affect both
the thickness and the pattern reference point if GpiStrokePath is used.

Other Remarks

Line type and line width have no effect on a path. Geometric line width takes effect if the path is
stroked with GpiModifyPath or GpiStrokePath.

These functions can be used inside the path bracket (that is, between the GpiBeginPath function and
the following GpiEndPath function) to define the path:

GpiBeginElement (containing valid calls e GpiPolyLine

only) ¢ GpiPolySpline

GpiBox (must specify DRO_OUTLINE option) * GpiPop (if only a valid call is popped)
GpiCallSegmentMatrix * GpiSetArcParams
GpiCharString e GpiSetAttrMode
GpiCharStringAt e GpiSetAttrs
GpiCharStringPos s GpiSetCharAngle
GpiCharStringPosAt ®» GpiSetCharBox
GpiCloseFigure e GpiSetCharDirection
GpiComment * GpiSetCharMode
GpiElement (containing a valid call) * GpiSetCharSet
GpiEndElement * GpiSetCharShear
GpiFullArc (must specify DRO_OUTLINE ¢ GpiSetColor

option) ¢ GpiSetCurrentPosition
GpilLabel e GpiSetLineEnd
GpiLine * GpiSetLineJoin
GpiMarker * GpiSetLineType
GpiMove * GpiSetLineWidth
GpiPartialArc ¢ GpiSetMarker
GpiPointArc * GpiSetMarkerBox
GpiPolyFilliet * GpiSetMarkerSet
GpiPolyFilletSharp * GpiSetMix
GpiPolyMarker * GpiSetModelTransformMatrix

The GpiCharString... functions, GpiQueryCharStringPos, GpiQueryCharStringPosAt, and
GpiQueryTextBox are allowed only if the current font is an outline font.

You can have no more than 1 450 straight line vertices that describe the path. Curves are
decomposed into straight lines internally, and the number of resulting vertices are also subject to
this limit. The same applies to outline font character strings. If solid-filled outline characters are to
be drawn, it is better to do this outside a path definition. GpiModifyPath and GpiStrokePath increase
the number of lines in the path, and will cause a path initially containing more than 297 straight lines
to exceed the limit of 1 450.

It is not valid for this function to occur within an area definition.

Chapter 5. Graphics Functions 5-21

GpiBeginPath —
Begin Path

Related Functions
* GpiBeginArea
GpiCloseFigure
GpiEndPath
GpiFillPath
GpiModifyPath
GpiOutlinePath
GpiPathToRegion
GpiSetClipPath
GpiStrokePath
GpiSetLineEnd
GpiSetLinedJoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GBPTH

Order: Begin Path

Example Code
This example uses the GpiBeginPath function to create a path. The path, an isosceles triangle, is
given path identifier 1. After the path bracket is ended using GpiEndPath, a subsequent call to the
GpiFillPath function draws and fills the path.

#define INCL_GPIPATHS /* GPI Path functions */

#include <os2.h>

HPS hps; /* presentation space handle */

POINTL ptiStart = { 0, 0 }; /* first vertex */

POINTL ptiTriangle[] = { 100, 100, 200, @, 0, O }; /* vertices */

GpiBeginPath(hps, 1L); /* start the path bracket */
GpiMove(hps, &ptiStart); /* move to starting point */
GpiPolyLine(hps, 2L, ptl1Triangle); /* draw two sides */
GpiCloseFigure(hps); /* close the triangle */
GpiEndPath(hps); /* end the path bracket */

GpiFillPath(hps, 1L, FPATH_ALTERNATE); /* draw and fill the path */

5-22 PM Programming Reference

GpiBitBit —
Bit Bit

#define INCL_GPIBITMAPS /~ Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GpiBitBit (HPS hpsTarget, HPS hpsSource, LONG iCount, PPOINTL aptiPoints,
LONG IRop, ULONG flOptions)

This function copies a rectangle of bit-map image data.

Parameters
hpsTarget (HPS) — input
Target presentation-space handle.

hpsSource (HPS) — input
Source presentation-space handle.

ICount (LONG) — input
Point count.

Number of points specified in apt/Points.

If this is 3, a source rectangle of the same size as the target rectangle is used. Ifitis 4,
stretching or compression is performed as necessary. lf compression is performed, the
flOptions parameter determines how eliminated rows or columns are handled.

aptiPoints (PPOINTL) — input
Point array.

Array of ICount points, in the order Tx1, Ty1, Tx2, Ty2, Sx1, Sy1, Sx2, Sy2, where:

Tx1,Tyl Specify the lower-left corner of the target rectangle in target device coordinates.
Tx2,Ty2 Specify the upper-right corner of the target rectangle in target device coordinates.
Sx1,8y1 Specify the lower-left corner of the source rectangle in source device coordinates.

Sx2,8y2 Specify the upper-right corner of the source rectangle in source device coordinates
(not required if neither stretching nor compression is to be performed).

IRop (LONG) — input
Mixing function required.

The value of /Rop required to achieve any given result can be determined from the following
table. The final value of each bit in every pel depends on the values of the corresponding bits in
the pattern (P), source (S), and the original target value (T initial). Each row of the table shows
one of the 8 possibie combinations of these values. For each combination, mark the desired
final target value in the last column. The 8 bits in this column then show the value of the least
significant byte of IRop required to achieve this mixing function. For example, if the required
mixing function is to copy the source to the target, then the T (final) column will be the same as
the S column, and so /Rop will have the binary value 11001100, or the hexadecimal value 00CC.

P -] T (initial) T (final)

0 0 0 Bit 0 (least significant)
0 0 1 Bit 1

0 1 0 Bit 2

0 i 1 Bit3

1 0 0 Bit 4

1 0 1 Bit 5

1 1 0 Bit 6

1 1 1 Bit 7 (most significant)

- Mnemonic names are available for commonly used mixes:

Chapter 5. Graphics Functions 5-23

GpiBitBIt —

Bit Bit
ROP_SRCCOPY /* SRC */
ROP_SRCPAINT /* SRC OR DST *f
ROP_SRCAND /* SRC AND DST *f
ROP_SRCINVERT /* SRC XOR DST */
ROP_SRCERASE /* SRC AND NOT(DST) */
ROP_NOTSRCCOPY /* NOT(SRC) L7
ROP_NOTSRCERASE /= NOT(SRC) AND NOT(DST) */
ROP_MERGECOPY /* SRC AND PAT */
ROP_MERGEPAINT /* NOT(SRC) OR DST *f
ROP_PATCOPY /* PAT */
ROP_PATPAINT /* NOT(SRC) OR PAT OR DST =*/
ROP_PATINVERT /* DST XOR PAT */
ROP_DSTINVERT /* NOT(DST) */
ROP_ZERO /* 0 */
ROP_ONE /* 1 */
flOptions (ULONG) — input
Options.

The options define how eliminated lines or columns are treated if a compression is performed.
Bits 15 through 31 of flOptions may be used for privately supported modes for particular devices.

BBO_OR The default. If compression is necessary, logical-OR the eliminated rows or
columns. This is useful for white on black.

BBO_AND If compression is necessary, logical-AND the eliminated rows or columns. This
is useful for black on white.

BBO_IGNORE If compression is necessary, ignore the eliminated rows or columns. This is
useful for color.

Returns
Correlation and error indicators:

GPI_OK Successful completion
GPI_HITS Correlate hits
GPI_ERROR Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.
PMERR_INV_BITBLT_MIX An invalid /Rop parameter was specified with a GpiBitBit
or GpiWCBItBlIt function.
PMERR_INV_BITBLT_STYLE An invalid options parameter was specified with a
GpiBitBit or GpiWCBItBIt function.
PMERR_BITMAP_NOT_FOUND A attempt was made to perform a bit-map operation on a
bit map that did not exist.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_RECT An invalid rectangle parameter was specified.
PMERR_NO_BITMAP_SELECTED An attempt has been made to operate on a memory
device context that has no bit map selected.
PMERR_INCORRECT DC_TYPE An attempt was made to perform a bit-map operation on a

presentation space associated with a device context of a
type that is unable to support bit-map operations.

.5-24 PM Programming Reference

GpiBitBlt —
Bit Bt

PMERR_INCOMPATIBLE_BITMAP An attempt was made to select a bit map or perform a
BitBIt operation on a device context that was
incompatible with the format of the bit map.

Remarks
A rectangle of bit-map image data is copied from a bit map selected into a device context associated
with the source presentation space, to a bit map selected into a device context associated with the
target presentation space. Alternatively, either presentation space may be associated with a device
context that specifies a suitable raster device, for example, the screen.

Note: In either case, both source and target device contexts must apply to the same physical device.
It is an error if this device does not support raster operations.

Unless the device is a banded printer, both source and target may refer to the same presentation
space. If so, the copy is nondestructive when source and target rectangles overlap.

A rectangle can be specified in device coordinates, for both source and target. These rectangles are
noninclusive; that is, they include the left and lower boundaries in device space, but not the right and
upper boundaries. Thus, if the lower-left maps to the same device pel as the upper-right, that
rectangle is considered to be empty.

if the upper-right source point is specified, and the source and target rectangles are of different
sizes, stretching, or compressing, or both, of the data occurs. fiOptions specifies how eliminated
rows or columns of bits are to be treated if compression occurs. Note that the pattern data is never
stretched or compressed.

The following current attributes of the target presentation space are used (other than for converting
between monochrome and color, as described below):

Area color

Area background color
Pattern set

Pattern symbol.

The color values are used in conversion between monochrome and color data. This is the only
format conversion performed by this function. The conversions are:
e Output of a monochrome pattern to a color device.
In this instance, the pattern is converted first to a color pattern using the current area colors:

— source 1s — area foreground color
— source 0s — area background color.

e Copying from a monochrome bit map to a color bit map (or device).
The source bits are converted as follows:

— source 1s — image foreground color
~ source Os — image background color.

s Copying from a color bit map to a monochrome bit map (or device).

— source pels that are the source image background color — image background color.
— all other pels — image foreground color.

Note: In all of the above instances (except where the source image background color is used) it is
the attributes of the target presentation space that are used.

If the mix (IRop) does not call for a pattern, the pattern set and pattern symbol are not used. If it does
not require a source (this is not valid when f/Options is in the range 1 through 3), hpsSource is not
required and must be null. Sx1,8y1 is also ignored in this instance.

Chapter 5. Graphics Functions 5-25

GpiBitBit —
Bit Bit

Neither the source nor the pattern is required when a bit map, or part of a bit map, is to be cleared to
a particular color.

If the mix does require both source and pattern, a three-way operation is performed.

if a pattern is required, dithering may be performed for solid patterns in a color that is not available
on the device; see GpiSetPattern.

If any of the source data is not available (when, for example, the source presentation space is
connected to a screen window, and the source rectangle is not totally visible), the contents of the
unavailable parts are undefined. This can be checked with GpiRectVisible before calling this
function.

This function is independent of drawing mode (see GpiSetDrawingMode); the effect always occurs
immediately, and it is not retained even if the drawing mode is draw-and-retain or retain. Its effect,
however, is recorded in a metafile, but note that this is successful only if the metafile is replayed on
a similar device, with draw drawing mode.

The current position in both source and target presentation spaces is unchanged by this function.

Note: This function must not be used when creating SAA-conforming metafiles; see “Metafile
Restrictions” on page G-1.

Related Functions

* DevQueryCaps
DevOpenDC
GpiCreateBitmap
GpiDeleteBitmap
GpiDrawBits
GpiLoadBitmap
GpiQueryBitmapBits
GpiQueryBitmapDimension
GpiQueryBitmapHandle
GpiQueryBitmapParameters
GpiQueryDeviceBitmapFormats
GpiSetBitmap
GpiSetBitmapBits
GpiSetBitmapDimension
GpiSetBitmapld
GpiWCBitBIt
WinDrawBitmap
WinGetSysBitmap

5-26 PM Programming Reference

A o

GpiBitBIt —
Bit Bit

Example Code
This example uses GpiBitBit to copy a bit map from one presentation space to another. Two
presentation spaces are created: one associated with a memory context, and the other associated
with a screen context. The function copies the memory context bit map that is 100 pels wide and 100
pels high into a 50-by-50-pel rectangle at the location (300,400) on the screen, thereby causing the bit
map to be visible in the window. Since the raster operation is ROP_SRCCOPY, GpiBitBIt replaces the
image previously in the target rectangle. The function compresses the bit map to fit the new
rectangle by discarding extra rows and columns as specified by the BBO_IGNORE option.

#define INCL_GPIBITMAPS /* Bit map functions */
#define INCL_DEV /* Device Function definitions */
#define INCL_GPICONTROL /* GPI control Functions */
#define INCL_WINWINDOWMGR /* Window Manager Functions */
#include <os2.h>

HAB hab; /* anchor-block handle */
HPS hpsMemory ; /* presentation-space handle */
HPS hpsScreen; /* presentation-space handle */
HDC hdcScreen; /* Device-context handle */
HDC hdcMemory; /* Device-context handle */
SIZEL sizi={0, 0}; /* use same page size as device */

/* context data structure */
DEVOPENSTRUC dop = {0L, "DISPLAY", NULL, OL, OL, OL, OL, OL, OL};
={

POINTL apt1[4]
300, 400, /* Tower-left corner of target */
350, 450, /* upper-right corner of target */
0, 0, /* Tower-left corner of source */
100, 100 }; /* upper-right corner of source */

HWND hwnd;

/* create memory device context and presentation space, associating
DC with the PS */
hdcMemory = DevOpenDC(hab, OD_MEMORY, "*" 5L, (PDEVOPENDATA)&dop,
NULLHANDLE) ;
hpsMemory = GpiCreatePS(hab, hdcMemory, &sizl, GPIA_ASSOC
| PU_PELS);

/* create window device context and presentation space, associating
DC with the PS */
hdcScreen = WinOpenWindowDC{hwnd); /* Open window device context */
hpsScreen = GpiCreatePS(hab, hdcScreen, &sizl, PU_PELS | GPIF_LONG
| GPIA_ASSOC);

/*

. get bit map, associate bit map with memory device context,
draw into bit map)

*/
/* display the bit map on the screen by copying it from the memory

device context into the screen device context */
GpiBitB1t(hpsScreen, hpsMemory, 4L, aptl, ROP_SRCCOPY, BBO_IGNORE);

Chapter 5. Graphics Functions 5-27

GpiBox —
Box

f#idefine INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GpiBox (HPS hps, LONG IControl, PPOINTL pptiPoint, LONG IHRound, LONG IVRound)

This function draws a rectangular box with the current position and a specified position at diagonally
opposite corners.

Parameters
hps (HPS) — input
Presentation-space handie.

iControl (LONG) — input
Outline and fill control.

Specifies if the interior of the box is to be filled, and if the outline is to be drawn:
DRO _FILL Fill interior

DRO_OUTLINE Draw outline

DRO_OUTLINEFILL Draw outline and fill interior.

pptiPoint (PPOINTL) — input
Corner point.

The coordinates of the corner that is diagonally opposite to the current position.

IHRound (LONG) - input
Corner-rounding control.

Horizontal length of the full axis of the ellipse that is used for rounding at each corner.

IVRound (LONG) — input
Corner-rounding control.

Vertical length of the full axis of the ellipse that is used for rounding at each corner.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_BOX_CONTROL An invalid control parameter was specified with GpiBox.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_BOX_ROUNDING_PARM An invalid corner rounding control parameter was

specified with GpiBox.

5-28 PM Programming Reference

~S

GpiBox —
Box

Remarks
The sides of the box are parallel to the world coordinate x- and y-axes.

The four corners of the box can be rounded with a quarter ellipse. The size of this ellipse is specified
by IHRound and IVRound. If IHRound equals IVRound, the corners of the box are rounded with a
quarter circle.

If either IHRound or IVRound is zero, no rounding occurs.

If the current position is (x0,y0) and ppt/Point is set to (x1,y1), the box is drawn from (x0,y0) to (x1,y0)
to (x1,y1) to (x0,y1) to (x0,y0). The direction of drawing is significant in area winding mode; see
GpiBeginArea.

The current position is unchanged by this function.
Either the outline of the box, or its interior, or both, can be drawn.

If this function occurs within an area or path definition, it generates a complete closed figure
(DRO_OUTLINE must be specified). It must not occur within any other figure definition.

If correlation is in force, a hit always results if the pick aperture intersects the box boundary.
However, if the pick aperture lies wholly within the box, a hit only occurs if the interior is being
drawn (DRO_FILL or DRO_OUTLINEFILL).

Related Functions
¢ GpiBox
GpiQueryCurrentPosition
GpiSetCurrentPosition
GpiSetLineJoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCBOX

Order: Box at Current Position

Chapter 5. Graphics Functions 5-29

GpiBox -
Box

Example Code

This example calls GpiBox to draw a series of rounded boxes, one inside another.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>
HPS hps; /* presentation space handle */
POINTL pt1 = { 160, 100 };
SHORT 1i;
for (i = 0; i < 5; i++)
GpiBox(hps, /* handle to a presentation space */
DRO_OUTLINE, /* draw the box outline */
&ptl, /* address of the corner */
i* 1oL, /* horizontal corner radius */
i * 10L); /* vertical corner radius */

§5-30 PM Programming Reference

GpiCallSegmentMatrix —
Call Segment Matrix

#define INCL_GPITRANSFORMS /* Or use INCL_GPI or INCL_PM */

LONG GpiCaliSegmentMatrix (HPS hps, LONG ISegment, LONG ICount,
PMATRIXLF pmatifArray, LONG IOptions)

This function calls a segment and applies an instance transform to it.

Parameters
hps (HPS) — input
Presentation-space handle.
ISegment (LONG) — input
Identifier of segment to be called.

This must be greater than 0.
The segment must not be a chained segment.

ICount (LONG) — input
Number of elements.

The number of elements of pmat/fArray to be examined, starting from the beginning of the
structure. If ICount is less than 9, the remaining elements default to the corresponding elements
of the identity matrix. If ICount = 0, the identity matrix is used.

pmatifArray (PMATRIXLF) — input
Instance transform matrix.

The third, sixth, and ninth elements, when specified, must be 0, 0, and 1, respectively.

IOptions (LONG) — input
Transformation options.

Specify how the transform defined by the pmatifArray parameter should be used to modify the
existing current model transform for the duration of the function. The existing transform is the
concatenation, in the current function context, of the instance, segment, and model transforms,
from the root segment downwards.

TRANSFORM_REPLACE The previous model transform is discarded and replaced by the
specified transform.

TRANSFORM_ADD The specified transform is combined with the existing model
transform. The existing transform precedes the new transform. This
option is most useful for incremental updates to transforms.

TRANSFORM_PREEMPT The specified transform is combined with the existing model
transform. The new transform precedes the existing transform.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handlie was specified.

Chapter 5. Graphics Functions 5-31

GpiCallSegmentMatrix —
Call Segment Matrix

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_SEG_NAME An invalid segment identifier was specified.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_MATRIX_ELEMENT An invalid transformation matrix element was specified.

PMERR_INV_TRANSFORM_TYPE An invalid options parameter was specified with a
transform matrix function.

PMERR_CALLED_SEG_NOT_FOUND An attempt was made to call a segment that did not exist.

PMERR_CALLED SEG_IS_CHAINED An attempt was made to call a segment that has a
chained attribute set.

PMERR_CALLED_SEG_IS CURRENT An attempt was made to call a segment that is currently
open.

PMERR_SEG_CALL_STACK_EMPTY A call stack empty condition was detected when
attempting a pop function during GpiPop or segment
drawing.

Remarks

The instance transform specified is a model transform that is used to modify the current model
transform, in a way that depends upon the value of the /Options parameter, before calling the
segment. This new transform applies only to the called segment. On return, it is reset to the model
transform in operation before the function was called.

The transform is specified as a one-dimensional array of elements, being the first ICount elements of
a 3-row by 3-column matrix ordered by rows. The order of the elements is:

Matrix Array

a b o

cd o (a,b,0,c,d,0,e,f,1)
e f 1

A point with coordinates (x,y) is transformed to the point
(a*x + c*y + e, b*x + d*y + f)

The called segment must have a unity transform for the viewing transform (see
GpiSetViewingTransformMatrix).

If scaling values greater than unity are given (which only applies if the presentation space coordinate
format as set by the GpiCreatePS function is GPIF_LONG), it is possible for the combined effect of
this and any other relevant transforms to exceed fixed-point implementation limits. This causes an
error.

Related Functions

* GpiCloseSegment
GpiCorrelateSegment
GpiDeleteSegment
GpiDeleteSegments
GpiDrawSegment
GpiErrorSegmentData

5-32 PM Programming Reference

N

GpiCallSegmentMatrix —
Call Segment Matrix

GpiOpenSegment
GpiQuerylnitialSegmentAttrs
GpiQuerySegmentAttrs
GpiQuerySegmentNames
GpiQuerySegmentPriority
GpiSetinitialSegmentAttrs
GpiSetSegmentAttrs
GpiSetSegmentPriority
GpiSetSegmentTransformMatrix

Graphic Elements and Orders
Element Type: OCODE_GCALLS

Order: Push and Set Model Transform

Order: Call Segment

Order: Pop

Example Code
This example calls the GpiCallSegmentMatrix function to draw a segment three times. Each time
the segment is drawn, the instance transformation doubles in size. The result is three triangles with
the last triangle twice the size of the second, and the second twice the size of the first.

#define INCL_GPITRANSFORMS /* GPI Transform functions */
#define INCL_GPISEGMENTS /* Segment functions */
#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps;

USHORT 13 :

POINTL ptiStart = { @, 0 }; /* first vertex */

POINTL ptiTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */
MATRIXLF matlfInstance = { MAKEFIXED(1, 0), MAKEFIXED(O, 0), O,
MAKEFIXED(O, 0), MAKEFIXED(1, 0), 0,

9, 0, 1}k

GpiOpenSegment (hps, 1L); /* opens segment */
GpiMove(hps, &pt1Start); /* moves to start point (0, 0) */
GpiPolyLine(hps, 3L, pt1Triangle); /* draws triangle */
GpiCloseSegment (hps); /* closes segment */
for (i = 0; i < 3; i++)

{

/*

* Draw the segment after adding the matrix to the model
* transformation.

*/

GpiCallSegmentMatrix(hps, 1L, 9, &matlfInstance, TRANSFORM_ADD);
mat1fInstance.fxM1ll *= 2;

matlfInstance.fxM22 *= 2;

}

Chapter 5. Graphics Functions 5-33

GpiCharString —
Character String

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GpiCharString (HPS hps, LONG ICount, PCH pchString)

This function draws a character string starting at the current position.

Parameters
hps (HPS) — input
Presentation-space handle.

ICount (LONG) — input
Number of bytes in the string.

The maximum number is 512.

pchString (PCH) — input
Characters to be drawn.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_FONT_AND_MODE_MISMATCH An attempt was made to draw characters with a character
mode and character set that are incompatible. For
example, the character specifies an image/raster font
when the mode calls for a vector/outline font.

Remarks
Each character in the string is positioned so that its character reference point is at the current
position. The current position is advanced after each character is drawn to give the position for the
next character.

The characters in the character string are selected from the current character set. The font from
which the characters are selected depends on the current character mode. For a description of
which fonts are used for each of the possible modes, see GpiSetCharMode.

The degree to which approximation of the position and size of characters is allowed, and also the
area used during correlation of the character string, is controlled by the character-mode attribute.

After the string has been drawn, the current position is set to the end of the character string. This is
the point at which the next character would have been drawn, had it existed.

5-34 PM Programming Reference

GpiCharString —
Character String

Related Functions

* GpiCharStringAt
GpiCharStringPos
GpiCharStringPosAt
GpiQueryCharStringPos
GpiQueryCharStringPosAt
GpiQueryDefCharBox
GpiSetCharAngle
GpiSetCharBox
GpiSetCharDirection
GpiSetCharMode
GpiSetCharSet
GpiSetCharShear
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCCHSTM

Order: Character String Move at Current Position

Example Code
This example uses the GpiCharString function to draw the string ‘Hello’. The GpiMove function
moves the current position io (100,100) so that the string starts there.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptlStart; /* beginning of string : */
ptiStart.x = 100L;

ptiStart.y = 100L;

/* Start string at (100, 108). */
GpiMove(hps, &ptiStart);
/* Draw the 5-character string. */

GpiCharString(hps, 5L, "Hello");

Chapter 5. Graphics Functions 5-35

GpiCharStringAt —
Character String At

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GpiCharStringAt (HPS hps, PPOINTL pptiPoint, LONG ICount, PCH pchString)

This function draws a character string starting at a specified position.

Parameters
hps (HPS) — input
Presentation-space handle.

pptiPoint (PPOINTL) — input
Starting position.

Defines, in world coordinates, the position at which the first character in the string is to be

placed.

ICount (LONG) — input
Number of bytes in the string.

The maximum number is 512.

pchString (PCH) — input
Characters to be drawn.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_COORDINATE
PMERR_INV_LENGTH_OR_COUNT
PMERR_FONT_AND_MODE_MISMATCH

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.
An invalid length or count parameter was specified.

An attempt was made to draw characters with a character
mode and character set that are incompatible. For
example, the character specifies an image/raster font
when the mode calls for a vector/outline font.

The function GpiCharStringAt (hps, point, count, string) is equivalent to:

GpiMove (hps, point)
GpiCharString (hps, count, string)

Each character in the string is positioned so that its character reference point is at the current -
position. The current position is advanced after each character is drawn to give the position for the

next character.

5-36 PM Programming Reference

A4

~—

The font from which the characters in the character string are selected depends on the current
character mode. For a description of which fonts are used for each of the possible modes, see

GpiSetCharMode.

GpiCharStringAt —
Character String At

The degree to which approximation of the position and size is allowed, and also the area used during
correlation of the character string, is controlied by the character-mode attribute.

After the string has been drawn, the current position is set to the end of the character string. This is
the point at which the next character would have been drawn, had it existed.

Relat

ed Functions
GpiCharString
GpiCharStringPos
GpiCharStringPosAt
GpiQueryCharStringPos
GpiQueryCharStringPosAt
GpiQueryDefCharBox
GpiSetCharAngle
GpiSetCharBox
GpiSetCharDirection
GpiSetCharMode
GpiSetCharSet
GpiSetCharShear
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCHSTM

Order: Character String Move at Given Position

Chapter 5. Graphics Functions

5-37

GpiCharStringAt —
Character String At

Example Code
This example uses the GpiCharStringAt function to draw the string “Hello” starting at the position
(100,100). It then uses the GpiMove and GpiCharString functions to draw the same string at exactly
the same position.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <o0s2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart;

ptiStart.x
ptiStart.y

100L;
100L;

/* Draw the string "Hello" at (100, 100). */
GpiCharStringAt(hps, &ptl1Start, 5, "Hello");
/* These two calls are identical to the one above. */

GpiMove(hps, &ptiStart);
GpiCharString(hps, 5L, "Hello");

5-38 PM Programming Reference

S

~—

GpiCharStringPos —
Character String Position

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiCharStringPos (HPS hps, PRECTL prciRect, ULONG flOptions, LONG ICount,
PCH pchString, PLONG alAdx)

This function draws a character string starting at the current position, with formatting options.

Parameters
hps (HPS) - input
Presentation-space handle.

prciRect (PRECTL) — input
Rectangle structure.

Defines, in world coordinates, the two corners of the rectangle that defines the background of the
characters. It is ignored unless CHS_OPAQUE or CHS_CLIP is specified.

fiOptions (ULONG) — input
Formatting options.

Option flags that can be used in combination:

CHS_OPAQUE Background of characters is defined by the rectangle specified by
prciRect. The rectangie is to be shaded (with background color and
overpaint) before drawing.

CHS_VECTOR Increments vector (alAdx) is supplied. If zero, alAdx is ignored.

CHS_LEAVEPOS Leave the current position at the start of the string. If not set, the current
position is moved to the position at which the next character would have
been drawn, had there been one.

CHS_CLIP Clip the string to the rectangle.

CHS_UNDERSCORE Underscore the characters. See FATTR_SEL_UNDERSCORE on
page A-37 in the FATTRS on page A-36 datatype.

CHS_STRIKEOUT Overstrike the characters. See FATTR_SEL_STRIKEOUT in the FATTRS
datatype.

Other bits are reserved and must be zero.

ICount (LONG) — input
Number of bytes in the string.

The maximum number is 512.

pchString (PCH) — input
Characters to be drawn.

alAdx (PLONG) — input
Increment values.

Vector of increment values, in world coordinates. Any negative values are treated as if they
were zero.

Chapter 5. Graphics Functions 5-39

GpiCharStringPos —
Character String Position

Returns «
Correlation and error indicators:
GPI_OK Successful

GP1_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_CHAR_POS_OPTIONS An invalid options parameter was specified with
GpiCharStringPos or GpiCharStringPosAt.
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.
PMERR_INV_RECT An invalid rectangle parameter was specified.

PMERR_FONT_AND_MODE_MISMATCH An attempt was made to draw characters with a character
mode and character set that are incompatible. For
example, the character specifies an image/raster font
when the mode calls for a vector/outline font.

Remarks
A vector of increments can be specified, allowing control over the positioning of each character after
the first. This vector consists of distances measured in world coordinates (along the baseline for
left-to-right and right-to-left character directions, and along the shearline for top-to-bottom and
bottom-to-top character directions). Increment i is the distance of the reference point of character
i+1 from the reference point of character i. The last increment may be needed to update the current
position.

These increments, when specified, set the widths of each character.

A further option allows a rectangle to be specified that can be used as the background of the string
instead of the normal background. This rectangle is painted using the current character background
color and an overpaint mix (unless this is in a dynamic segment, when leave-alone is used). Both
corners of the rectangle are specified, so that the rectangle is positioned independently of the
current position. Points on the borders of the rectangle are considered to be included within the
rectangle.

Clipping of the string to the rectangle is also allowed. This is independent of whether the rectangle
is actually drawn.

The current position can be updated to the point at which the next character would have been drawn,
had there been one, or it can be left at the start of the string.

Related Functions

* GpiCharString
GpiCharStringAt
GpiCharStringPosAt
GpiQueryCharStringPos
GpiQueryCharStringPosAt
GpiQueryDefCharBox
GpiSetCharAngle
GpiSetCharBox
GpiSetCharDirection
GpiSetCharMode

5-40 PM Programming Reference

GpiCharStringPos —
Character String Position

GpiSetCharSet
GpiSetCharShear
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: ETYPE_GCCHSTE

Order: Character String Extended at Current Position

Example Code
This example uses GpiCharStringPos to display ‘13 Characters’, starting at position 10,10 and
clipped to a 100x100 rectangle in the lower left corner.

#define INCL_GPIPRIMITIVES /* GPI Primitive functions */
#include <os2.h>

LONG 1Hits; /* correlation/error indicator */
HPS hps; /* Presentation-space handle */

POINTL pptiStart = {10L,10L};
/* Starting position */
RECTL prclRect = {6L,0L,100L,100L};

/* Rectangle structure */
ULONG f10ptions; /* Formatting options */
LONG 1Count; /* Number of bytes in the string *x/
char pchString[25]; /* Characters to be drawn */

GpiMove(hps, &pptlStart);

fl0ptions = CHS_CLIP; /* clip text to rectangle */
1Count = 13;
strepy(pchString,"13 characters");

/* draw the string */

1Hits = GpiCharStringPos(hps, &prciRect, flOptions, 1Count,
pchString, NULL);

Chapter 5. Graphics Functions 5-41

GpiCharStringPosAt —
Character String Position At

ffdefine INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiCharStringPosAt (HPS hps, PPOINTL pptiStart, PRECTL prciRect, ULONG fiOptions,
LONG iCount, PCH pchString, PLONG alAdx)

This function draws a character string starting at a specified position, with formatting options.

Parameters
hps (HPS) — input
Presentation-space handle.

pptiStart (PPOINTL) — input
Starting position.

prciRect (PRECTL) — input
Rectangle structure.

Defines, in world coordinates, the two corners of the rectangle that defines the background of the
characters. It is ignored unless CHS_OPAQUE or CHS_CLIP is selected.

flOptions (ULONG) — input
Formatting options.

Option flags that can be used in combination:

CHS_OPAQUE Background of characters is defined by the rectangle specified by
prclRect. The rectangle is to be shaded (with background color and
overpaint) before drawing.

CHS_VECTOR Increments vector (alAdx) is supplied. If 0, alAdx is ignored.

CHS_LEAVEPOS If set, current position is unchanged by this function. If not set, current
position is moved to the position at which the next character would have
been drawn, had there been one.

CHS_CLIP Clip the string to the rectangle.

CHS_UNDERSCORE Underscore the characters. See FATTR_SEL_UNDERSCORE in the
FATTRS datatype.

CHS_STRIKEOUT Overstrike the characters. See FATTR_SEL_STRIKEOUT in the FATTRS
datatype.

Other bits are reserved and must be zero.

ICount (LONG) — input
Number of bytes in the string.

The maximum number is 512.

pchString (PCH) — input
Character string.

alAdx (PLONG) — input
Increment values.

Vector of increment values, in world coordinates. Any negative values are treated as if they
were zero. .

5-42 PM Programming Reference

I

GpiCharStringPosAt —
Character String Position At

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_CHAR_POS OPTIONS An invalid options parameter was specified with
GpiCharStringPos or GpiCharStringPosAt.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_RECT An invalid rectangle parameter was specified.
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_FONT_AND_MODE_MISMATCH An attempt was made to draw characters with a character
mode and character set that are incompatible. For
example, the character specifies an image/raster font
when the mode calls for a vector/outline font.

Remarks
A vector of increments can be specified, allowing control over the position of each character after the
first. This vector consists of distances measured in world coordinates (along the baseline for
left-to-right and right-to-left character directions, and along the shearline for top-to-bottom and
bottom-to-top character directions). Increment i is the distance of the reference point (for example,
lower left corner) of character i+1 from the reference point of character i. The last increment may be
needed to update the current position.

These increments, if specified, set the widths of each character.

A further option allows a rectangle to be specified that can be used as the background of the string
instead of the normal background. This rectangle is painted using the current character background
color and an overpaint mix (unless this is in a dynamic segment, when leave-alone is used). Both
corners of the rectangle are specified, so that the rectangle is positioned independently of current
position. Points on the borders of the rectangle are considered to be included within the rectangle.

Clipping of the string to the rectangle is also allowed. This is independent of whether the rectangle
is actually drawn.

Current position can be updated to the point at which the next character would have been drawn, had
there been one, or it can be left at the start of the string.

Chapter 5. Graphics Functions 5-43

GpiCharStringPosAt —
Character String Position At

Related Functions

* GpiCharString
GpiCharStringAt
GpiCharStringPos
GpiQueryCharStringPos
GpiQueryCharStringPosAt
GpiQueryDefCharBox
GpiSetCharAngle
GpiSetCharBox
GpiSetCharDirection
GpiSetCharMode
GpiSetCharSet
GpiSetCharShear
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: ETYPE_GCHSTE

Order: Character String Extended at Given Position

Example Code
This example uses GpiCharStringPosAt to display ‘13 Characters’, starting at position 10,10 and
clipped to a 100x100 rectangle in the lower left corner.

#define INCL_GPIPRIMITIVES /* GPI Primitive functions */
#include <os2.h>

LONG 1Hits; /* correlation/error indicator */
HPS hps; /* Presentation-space handle */

POINTL pptiStart = {10L,10L};
/* Starting position */
RECTL rclRect = {OL,0L,100L,100L};

/* Rectangle structure */
ULONG fiOptions; /* Formatting options */
LONG 1Count; /* Number of bytes in the string */
char pchString[14]; /* Characters to be drawn */

fl0ptions = CHS_CLIP; /* clip text to rectangle */
1Count = 13;
strcpy(pchString,"13 characters");

1Hits = GpiCharStringPosAt(hps, &pptl1Start, &rclRect, flOptions,
1Count, pchString, NULL);

5-44 PM Programming Reference

GpiCloseFigure —
Close Figure

#define INCL_GPIPATHS /* Or use INCL_GPI or INCL_PM */

BOOL GpiCloseFigure (HPS hps)

This function closes a figure within a path specification.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

Remarks
The current figure is closed by a line drawn to the start point of the figure.

This function need not be used if the path is to be filled (see GpiFillPath), or used as a clip path (see
GpiSetClipPath), as any figures in the path that have not been closed are automatically closed at that
time. It should be used, however, for any closed figures within paths that are subsequently to be
stroked by GpiModifyPath or GpiStrokePath.

This function must not be used outside a path specification. In particular, it must not be used within
an area.

Related Functions

Prerequisite Functions

* GpiBeginPath

Other Related Functions

¢ GpiEndPath
* GpiModifyPath
* GpiStrokePath

Graphic Elements and Orders
Element Type: OCODE_GCFIG

Order: Close Figure

Chapter 5. Graphics Functions 5-45

GpiCloseFigure —
Close Figure

Example Code
This example uses the GpiCloseFigure function to close a triangle drawn in a path bracket. The
triangle starts at (0,0), and as the current position just before the GpiCloseFigure is (200,0), the
function closes the triangle by drawing a line from (200,0) to (0,0).

#define INCL_GPIPATHS /* GPI Path functions */
#include <o0s2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 };
POINTL ptl1Points[] = { 100, 100, 200, 0 };

GpiBeginPath(hps, 1L); /* start the path bracket */
GpiMove(hps, &ptiStart); /* move to starting point */
GpiPolyLine(hps, 2L, pt1Points); /* draw two sides */
GpiCloseFigure(hps); /* close the triangle */
GpiEndPath(hps); /* end the path bracket */

5-46 PM Programming Reference

~

GpiCloseSegment —
Close Segment

#define INCL_GPISEGMENTS /* Or use INCL_GP! or INCL_PM */

BOOL GpiCloseSegment (HPS hps)

This function closes the current segment.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION
PMERR_NOT_IN_SEG

PMERR_PATH_INCOMPLETE

PMERR_AREA_INCOMPLETE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to end a segment using
GpiCloseSegment while not in a segment bracket.

An attempt was made to open or close a segment either
directly or during segment drawing, or to issue
GpiAssociate while there is an open path bracket.

Either:

* A segment has been opened, closed, or drawn.

e GpiAssociate was issued while an area bracket was
open.

s A drawn segment has opened an area bracket and
ended without closing it.

Closing a segment does not delete the segment or affect the graphics primitives that are drawn.

Any attributes that have been preserved (see the AM_PRESERVE option of GpiSetAttrMode) are
popped (restored) when the GpiCloseSegment function is issued in draw or draw-and-retain modes,
and at the end of the segment when the segment is subsequently drawn in draw-and-retain or retain

modes (see GpiSetDrawingMode).

if an area or path is open when a segment is closed, the area or path is terminated. When the
drawing mode is draw or draw-and-retain, a warning is given, but the close processing continues.
No warning is given for retain mode. If a retained segment with an open area or path is drawn, an

error occurs.

If an element bracket is open when a segment is closed, the element bracket is first closed

automatically.

Chapter 5. Graphics Functions 5-47

GpiCloseSegment —
Close Segment

If this function is followed by primitives or attributes, without first opening a segment, the following
may or may not have been reset to their default values:

Current attribute values and arc parameters
Current tag

Current model transform

Current position

Current clip path and viewing limits.

Any such quantity can be assumed to contain its default value only if it is known either that it has not
been changed from the default, or that last time it was changed, it was set to its default value. An
application should not be written to depend on the values of these quantities immediately after
GpiCloseSegment.

Subsequent primitives, not preceded by an GpiOpenSegment function, are not retained, irrespective
of the current drawing mode.

The current viewing transform, however, is guaranteed to be reset to unity for primitives outside
segments.

Related Functions
Prerequisite Functions

* GpiOpenSegment

Other Related Functions

GpiCallSegmentMatrix
GpiCorrelateSegment
GpiDeleteSegment
GpiDeleteSegments
GpiDrawSegment
GpiErrorSegmentData
GpiQueryinitialSegmentAttrs
GpiQuerySegmentAttrs
GpiQuerySegmentNames
GpiQuerySegmentPriority
GpiSetinitialSegmentAttrs
GpiSetSegmentAtirs
GpiSetSegmentPriority

Example Code
This example uses the GpiCloseSegment function to close a segment. The GpiOpenSegment opens
the segment; GpiMove and GpiPolyLine draw a triangle.

#define INCL_GPISEGMENTS /* Segment functions */
#include <o0s2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */
POINTL ptiTriangle[] = { 160, 100, 200, 0, 0, 0 }s /* vertices */
GpiOpenSegment (hps, 1L); /* open the segment */
GpiMove(hps, &ptiStart); /* move to start point (0,0) */
GpiPolyLine(hps, 3L, ptl1Triangle); /* draw triangle */
GpiCloseSegment (hps); /* close the segment */

5-48 PM Programming Reference

e

GpiCombineRegion —
Combine Region

#define INCL_GPIREGIONS /* Or use INCL_GP! or INCL_PM */

LONG GpiCombineRegion (HPS hps, HRGN hrgnDest, HRGN hrgnSrc1, HRGN hrgnSrc2,
LONG IMode)

This function combines two regions.

Parameters
hps (HPS) — input
Presentation-space handle.

The regions must be owned by the device identified by the currently associated device context.

hrgnDest (HRGN) — input
Handle of destination.

hrgnSrc1 (HRGN) — input
Handle of first source region.

hrgnSrc2 (HRGN) — input
Handle of second source region.

IMode (LONG) — input
Method of combination:

CRGN_OR Union of hrgnSrc1 and hrgnSrc2
CRGN_COPY hrgnSrc1 only (hrgnSrc2 ignored)
CRGN_XOR Symmetric difference of hrgnSrc1 and hrgnSrc2

CRGN_AND Intersection of hrgnSrc1 and hrgnSrc2
CRGN_DIFF hrgnSrc1 and not (hrgnSrc2).

Returns
Complexity of resulting region and error indicators:
RGN_NULL Null region
RGN_RECT Rectangular region

RGN _COMPLEX Complex region

RGN_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_HRGN
PMERR_REGION_IS_CLIP_REGION

PMERR_INV_REGION_MIX_MODE

PMERR_HRGN_BUSY

An invalid presentation-space handie was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An invalid mode parameter was specified with
GpiCombineRegion.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

Chapter 5. Graphics Functions 5-49

GpiCombineRegion —
Combine Region

Remarks
Source and destination regions must all be of the same device class. The destination region can be
one of the source regions.

An error is raised if any of the specified regions are currently selected as the clip region (by
GpiSetClipRegion).

Related Functions

* GpiCreateRegion
GpiDestroyRegion
GpiEqualRegion
GpiOffsetRegion
GpiPaintRegion
CGpiPtinRegion
GpiQueryRegionBox
GpiQueryRegionRects
GpiRectinRegion
GpiSetRegion

Example Code
This example uses the GpiCombineRegion function to create a complex region consisting of
everything in two rectangles except where they overlap.

#define INCL_GPIREGIONS /* Region functions */
#include <os2.h>

HPS hps; /* presentation space handle */
HRGN hrgnl, hrgn2, hrgn3;

RECTL rclRectl = { 0, 0, 100, 100 };

RECTL rclRect2 = { 50, 50, 200, 200 };

/* create first region */

hrgnl = GpiCreateRegion(hps, 1L, &rclRectl);
/* create second region */

hrgn2 = GpiCreateRegion(hps, 1L, &rclRect?);
/* create empty region */

hrgn3 = GpiCreateRegion(hps, OL, NULL);

/* Combine first and second regions, replacing the empty region. */

GpiCombineRegion(hps, hrgn3, hrgnl, hrgn2, CRGN_XOR):

5-60 PM Programming Reference

GpiComment —
Comment

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

BOOL GpiComment (HPS hps, LONG ILength, PBYTE pbData)

This function adds a comment to the current segment.

Parameters
hps (HPS) — input
Presentation-space handie.

ILength (LONG) — input
Data length.

The length of pbData in bytes. ILength must not be greater than 255.

pbData (PBYTE) — input
Comment string.

No conversion of any kind is performed on the data.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simuitaneously.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

Remarks
\ An application can use this function to store some data of its own in the segment if the drawing mode

(see GpiSetDrawingMode) is set to retain or draw-and-retain. It has no effect on drawing. The data
can subsequently be retrieved by the application using GpiQueryElement or GpiGetData.

Graphic Elements and Orders
Element Type: OCODE_GCOMT

Order: Comment

Chapter 5. Graphics Functions 5-51

GpiComment —
Comment

Example Code
This example uses the GpiComment function to comment the contents of a segment.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#define INCL_GPISEGMENTS /* Segment functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */

POINTL ptiTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiOpenSegment (hps, OL); /* open the segment */
GpiComment (hps, 18L, "Start point (0, 0)");

GpiMove(hps, 8ptlStart);

GpiComment (hps, 13L, "Draw triangle");

GpiPolyLine(hps, 3L, ptiTriangle);

GpiCloseSegment (hps) ; /* close the segment */

§-52 PM Programming Reference

GpiConvert —
Convert

#define INCL_GPITRANSFORMS /* Or use INCL_GPI or INCL_PM */

BOOL GpiConvert (HPS hps, LONG ISrc, LONG ITarg, LONG iCount, PPOINTL aptiPoints)

This function converts an array of coordinate pairs from one coordinate space to another.

Parameters
hps (HPS) — input
Presentation-space handle.

ISrc (LONG) — input
Source coordinate space.

ITarg (LONG) — input
Target coordinate space.

ICount (LONG) — input
Number of coordinate pairs in apt/Points.

aptiPoints (PPOINTL) — input/output
Array of coordinate pair structures.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handie was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.
PMERR_INV_COORD_SPACE An invalid source or target coordinate space parameter
was specified with GpiConvert.
PMERR_COORDINATE_OVERFLOW An internal coordinate overflow error occurred. This can

occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

Remarks
This function replaces each coordinate pair in aptlPoints with the converted values.

Valid values for the ISrc and ITarg parameters are:

CVTC_WORLD World coordinates

CVTC_MODEL Model space

CVTC_DEFAULTPAGE Page space before default viewing transform
CVTC_PAGE Page space after default viewing transform
CVTC_DEVICE Device space.

Conversions involving either world coordinates or model space should not be performed if the
drawing mode (see GpiSetDrawingMode) is retain.

Chapter 5. Graphics Functions 5-53

GpiConvert —
Convert

Related Functions

* GpiCreatePS
GpiSetDefaultViewMatrix
GpiSetModelTransformMatrix
GpiSetPageViewport
GpiSetSegmentTransformMatrix
GpiSetViewingTransformMatrix

Example Code
This example uses the GpiConvert function to convert the coordinates of the mouse pointer to the
corresponding coordinates in world space. The system passes mouse coordinates to a window
procedure in the WM_MOUSEMOVE message. The coordinates are device coordinates. After the
coordinates are converted, the GpiMove uses them to move to a new location in world space.

#define INCL_GPITRANSFORMS /* GPI Transform functions */
#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

MPARAM mpl;
HPS hps;
POINTL ptl;

case WM_MOUSEMOVE:
ptl.x = (LONG) SHORT1FROMMP(mpl);
ptl.y = (LONG) SHORT2FROMMP(mpl);
GpiConvert (hps, CVTC_DEVICE, CVTC_WORLD, 1L, &ptl1);
GpiMove(hps, 8&ptl1);

5-54 PM Programming Reference

N~

GpiConvertWithMatrix —
Convert with Matrix

#define INCL_GPITRANSFORMS /* Or use INCL_GPI or INCL_PM */

BOOL GpiConvertWithMatrix (HPS hps, LONG ICount, PPOINTL aptiPoints, LONG iCount,
PMATRIXLF pmatifArray)

This function converts an array of (x,y) coordinate pairs from one coordinate space to another, using
the supplied transform matrix.

Parameters
hps (HPS) — input
Presentation-space handle.

ICount (LONG) — input
Point count.

Number of coordinate pairs in aptl/Points.

aptiPoints (PPOINTL) — input/output
Array of (x,y) coordinate pair structures.

ICount (LONG) — input
Number of elements.

The number of elements of pmatifArray to be examined, starting from the beginning of the
structure. If ICount is less than 9, remaining elements default to the corresponding elements of
the identity matrix. If /Count = 0, the identity matrix is used.

pmatifArray (PMATRIXLF) — input
Instance transform matrix.

The third, sixth, and ninth elements, when specified, must be 0, 0, and 1, respectively.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.
PMERR_COORDINATE_OVERFLOW An internal coordinate overflow error occurred. This can

occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

Chapter 5. Graphics Functions 5-55

GpiConvertWithMatrix —
Convert with Matrix

Remarks
The array contains x1, y1, x2, y2,.... The input coordinates are replaced by the converted
coordinates.

Only the supplied transform matrix is used, all other current transforms are ignored by this function.

The transform is specified as a one-dimensional array of elements, being the first ICount elements of
a 3-row by 3-column matrix ordered by rows. The order of the elements is:

Matrix Array

a b o

c do (a,b,0,c,d,0,e,f,1)
e f 1

A point with coordinates (x,y) is transformed to the point
(a*x + c*y + e, b*x + d*y + f)

Example Code
This example uses GpiConvertWithMatrix to convert two coordinate pairs to another coordinate
space defined by the supplied matrix, which has only the first transform element defined.

#define INCL_GPITRANSFORMS /* GPI Transform functions */
#include <o0s2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
LONG 1Countp; /* Point count */

POINTL aptlPointsf2] = {{oL,0L},{1L,1L}};
/* Array of (x,y) coordinate pair

structures */
LONG 1Count; /* Number of elements */
MATRIXLF pmatlfArray; /* Instance transform matrix */

1Count = 1; /* examine only first element of transform matrix */
pmat1fArray.fxMll = 2; /* set first element of transform matrix */

fSuccess = GpiConvertWithMatrix(hps, 1Countp, aptlPoints,
1Count, &pmatlfArray);

5-56 PM Programming Reference

GpiCopyMetaFile —
Copy Metafile

#define INCL_GPIMETAFILES /* Or use INCL_GPI or INCL_PM */

HMF GpiCopyMetaFile (HMF hmf)

This function creates a new metafile and copies the contents of an existing loaded metafile into it.

Parameters
hmt (HMF) — input
Source metafile handle.

Returns

New metafile handle and error indicators:
#0 New metafile handle
GPI_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HMF An invalid metafile handie was specified.

PMERR_METAFILE_IN_USE An attempt has been made to access a metafile that is in
use by another thread.

PMERR_TOO_MANY_METAFILES_IN_USE The maximum number of metafiles allowed for a given
process was exceeded.

Remarks
The source metafile must already be loaded or generated. It is identified by a metafile handle. The
new metafile is identified by a handle that is returned by this function, so it may be used, for
example, by GpiPlayMetaFile.

The new metafile is owned by the process from which this function is issued. It cannot be accessed
directly from any other process. If it still exists when the process terminates, it is automatically
deleted by the system.

Related Functions

¢ GpiDeleteMetaFile
GpiLoadMetaFile
GpiPlayMetaFile
GpiQueryMetaFileBits
GpiQueryMetaFileLength
GpiSaveMetaFile
GpiSetMetaFileBits

Chapter 5. Graphics Functions 5§-57

GpiCopyMetaFile —
Copy Metafile

Example Code
This example uses the GpiCopyMetaFile function to make a copy of the metafile loaded using the
GpiLoadMetaFile function.

#define INCL_GPIMETAFILES /* Metafile functions */
#include <o0s2.h>

HAB hab; /* anchor block handle */
HMF hmf, hmf2; /* metafile handle */

/* loads metafile from disk */
hmf = GpiloadMetaFile(hab, "sample.met");

hmf2 = GpiCopyMetaFile(hmf); /* copy the metafile */

5-58 PM Programming Reference

GpiCorrelateChain —
Correlate Chain

#define INCL_GPICORRELATION /* Or use INCL_GPI or INCL_PM */

LONG GpliCorrelateChain (HPS hps, LONG IType, PPOINTL pptiPick, LONG IMaxHits,
LONG IMaxDepth, PLONG alSegTag)

This function performs a correlate operation on the retained segment chain. it returns data for each
tagged primitive that intersects the current aperture, as set by GpiSetPickApertureSize.

Parameters
hps (HPS) — input
Presentation-space handle.

IType (LONG) — input
Segment type.

Type of segment on which correlation is to be performed:

PICKSEL VISIBLE Only visible and detectable segments with nonzero identifiers are
correlated.

PICKSEL_ALL All segments with nonzero identifiers are correlated, regardless of the
detectability and visibility attributes of the segments.

pptiPick (PPOINTL) — input
Pick position.

The position of the center of the pick aperture, in presentation page units.

IMaxHits (LONG) — input
Maximum hits.

Maximum number of hits that can be returned in the alSegTag parameter.

IMaxDepth (LONG) — input
Number of pairs.

Number of segment and tag pairs to be returned by each hit.

alSegTag (PLONG) — output
Segment identifiers and tags.

An array consisting of segment identifiers and primitive tags in alternate elements. For each hit,
a set of IMaxDepth segment identifiers and tag pairs is returned.

Returns
Number of hits and error indicators:

>0 Number of hits that occurred
GPI_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simuitaneously.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_MAX HITS An invalid maxhits parameter was specified with

GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

Chapter 5. Graphics Functions 5-59

GpiCorrelateChain —
Correlate Chain

PMERR_INV_CORRELATE_DEPTH An invalid maxdepth parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.
PMERR_INV_CORRELATE_TYPE An invalid type parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.
Remarks

The data returned for each “hit” (or correlation) consists of a set of segment and tag pairs, starting
with the correlated one and followed by the one that calied that segment. This is repeated until
either the root segment is reached or IMaxDepth segment and tag pairs are returned.

Only primitives with a nonzero tag in segments with a nonzero identifier are correlated using this
function. Primitives in segments called (to any depth in the hierarchy) from an unnamed segment
are not eligible for correlation.

The depth value specifies the number of sets of segment and tag pairs to be returned for each hit. If
the root segment is reached before IMaxDepth values, the remaining values are set to zero. If more
than IMaxDepth values are available, only that number is returned.

The number of hits that occurred is returned in INumHits.

A “hit” is an instance of a segment identifier and tag pair for which the primitives lie completely or
partially within the specified aperture. Two different primitives in the same segment might have the
same tag, and would therefore produce the same hit. This is counted as a single hit; the hit is
recorded only once in the alSegTag parameter returned. The INumHits parameter, therefore, returns
this distinct number of hits. Hits are returned in the reverse order of their occurrence.

alSegTag is set to the hits that are found, up to the maximum defined in the IMaxHits parameter.
Corresponding pairs of elements form the “hit" pairs. The number returned by the function therefore
contains the number of sets of IMaxDepth pairs set if the IMaxHits parameter is greater than the
number of hits detected. The number of elements set in the aiSegTag parameter is twice the number
returned by the function (subject to a maximum of IMaxHits) multiplied by the IMaxDepth.

If the INumHits value returned by the function is greater than that specified in IMaxHits, more hits
occurred than could be returned. If all hits are important, specify an array that is large enough to
contain the maximum number of sets of hits that are expected.

The draw controls (see GpiSetDrawControl) are ignored by this function.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the chain. This can be done by either ensuring
that the first segment to be correlated does not have the ATTR_FASTCHAIN attribute (see
GpiSetinitialSegmentAttrs), or by issuing GpiResetPS before the GpiCorrelateChain. The latter
method also resets the clip path to no clipping.

If this function is followed by primitives or attributes, without first opening a segment, the processing
is as described for GpiCloseSegment.

5-60 PM Programming Reference

N

GpiCorrelateChain —
Correlate Chain

Examples

Start segment 1
Tag 10
Call 2

End segment 1

Start segment 2

Tag 20 Pick Aperture
Call 3

Tag 21

...... —Hit 1

oooooo

End segment 2

Start segment 3
Tag 30
...... —1Hit 2

End segment 3

For IMaxHits = 1 at IMaxDepth = 2:

segment tag
2 21
1 10

Returned INumHits = 2.

For IMaxHits = 2 at IMaxDepth = 4:

segment tag
2 21 hitl.1l
1 10 hitl.2
0 0 hitl.3
0 0 hitl.4
3 30 hit2.1
2 20 hit2.2
1 10 hit2.3
0 0 hit2.4

Returned INumHits = 2.

Related Functions

* GpiCorrelateFrom
GpiCorrelateSegment
GpiSetDrawControl
GpiSetPickAperturePosition
GpiSetPickApertureSize

Chapter 5. Graphics Functions 5-61

GpiCorrelateChain —
Correlate Chain

Example Code
E This example uses GpiCorrelateChain to correlate, using an aperture of default size and centered at
(200,200), on visible and detectable segments and requests one intersection (or hit) and one
segment/tag pair for that hit to be returned. The segments will have been previously defined and
created using GpiSetinitialSegmentAtirs and GpiOpenSegment/GpiCloseSegment.

#define INCL_GPICORRELATION /* GPI Correlation functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
SIZEL psiz1Size={0L,0L}; /* size of pick aperture */
LONG TNumHits; /* number of hits or error */
HPS hps; /* Presentation-space handle */

POINTL pptlPick = {200L,200L};
/* Pick (center of aperture) position */

LONG 1MaxHits; /* Maximum hits to be returned */
LONG 1MaxDepth; /* Number of pairs to be returned */
LONG alSegTag; /* Segment identifiers and tags */

fSuccess = GpiSetPickAperturePosition(hps, &pptl1Pick);

/* set aperture size (use default) */
fSuccess = GpiSetPickApertureSize(hps, PICKAP_DEFAULT, &psiziSize);

/* return only one hit */
1MaxHits = 1L;

/* return only one segment/tag pair per hit */
1MaxDepth = 1L;

/* correlate on visible, detectable segment chains */

TNumHits = GpiCorrelateChain(hps, PICKSEL_VISIBLE, &pptl1Pick, 1MaxHits,
1MaxDepth, &alSegTag);

5-62 PM Programming Reference

GpiCorrelateFrom -
Correlate From

#define INCL_GPICORRELATION /* Or use INCL_GPI or INCL_PM */

LONG GpiCorrelateFrom (HPS hps, LONG IFirstSegment, LONG ILastSegment, LONG IType,
PPOINTL pptiPick, LONG IMaxHits, LONG IMaxDepth,
PLONG alSegTag)

This function performs a correlate operation on a section of the retained segment chain.

Parameters

hps (HPS) — input
Presentation-space handle.

IFirstSegment (LONG) — input
Specifies the first segment to be correlated.

It must be greater than 0.

ILastSegment (LONG) — input
Specifies the last segment to be correlated.

It must be greater than 0.

IType (LONG) — input
Type of segments on which correlation is to be performed:

PICKSEL_VISIBLE Only visible and detectable segments with nonzero identifiers are
correlated.

PICKSEL_ALL All segments with nonzero identifiers are correlated, regardless of the
detectability and visibility attributes of the segments.

pptiPick (PPOINTL) ~ input
Pick position.

The position of the center of the pick aperture, in presentation page units.

IMaxHits (LONG) — input
Maximum hits.

Maximum number of hits that can be returned in the a/lSegTag parameter.

IMaxDepth (LONG) — input
Number of pairs.

Number of segment and tag pairs to be returned by each hit.

alSegTag (PLONG) — output
Segment identifiers and tags.

An array consisting of segment identifiers and primitive tags in alternate elements. For each hit,
a set of IMaxDepth segment identifiers and tag pairs is returned.

Chapter 5. Graphics Functions 5-63

GpiCorrelateFrom —
Correlate From

Returns
Number of hits and error indicators:

=0 Number of hits that occurred
GPI_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR _INV_CORRELATE_TYPE An invalid type parameter was specified with

GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

PMERR_INV_COORDINATE An invalid coordinate value was specified.

PMERR_INV_MAX_HITS An invalid maxhits parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

PMERR_INV_CORRELATE_DEPTH An invalid maxdepth parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.

PMERR_SEG_NOT FOUND The specified segment identifier did not exist

PMERR_SEG_NOT_CHAINED An attempt was made to issue GpiDrawFrom,

GpiCorrelateFrom or GpiQuerySegmentPriority for a
segment that was not chained.

PMERR_INV_SEG_NAME An invalid segment identifier was specified.

Remarks
The correlation operation starts at the segment identified by IFirstSegment and includes chained and
called segments up to, and including, the segment identified by /LastSegment.

Data is returned for each tagged primitive that intersects the pick aperture. The data returned for
each “hit” (or correlation) consists of a set of segment and tag pairs, starting with the correlated one
and followed by the one that called the segment. This is repeated until the root segment is reached
or IMaxDepth values are returned.

~Only primitives with a nonzero tag (see GpiSetTag) in segments with a nonzero identifier are
correlated using this function. Primitives in segments called (to any depth in the hierarchy) from a
segment 0 are not eligible for correlation.

The depth value specifies the number of sets of segment and tag pairs to be returned for each hit. If
the root segment is reached before IMaxDepth values, the remaining values are set to zero. If more
than IMaxDepth values are available, only that number is returned.

The number of hits that occurred is returned in INumHits.

A “hit” is an instance of'a segment identifier and tag pair for which the primitives lie completely or
partially within the specified aperture. Two different primitives in the same segment might have the
same tag, and would therefore produce the same hit. This is counted as a single hit; the hit is
recorded only once in the alSegTag parameter returned. The INumHits parameter, therefore, returns
this distinct number of hits. Hits are returned in reverse order of their occurrence.

5-64 PM Programming Reference

s

GpiCorrelateFrom —
Correlate From

alSegTag is set to the hits that are found, up to the maximum defined in the IMaxHits parameter.
Corresponding pairs of elements form the hit pairs. The number returned by the call therefore
contains the number of sets of IMaxDepth pairs set if the IMaxHits parameter is greater than the
number of hits detected. The number of elements set in the alSegTag parameter is twice the number
returned by the function (subject to a maximum of /IMaxHits) multiplied by the IMaxDepth.

If the INumHits value returned by the function is greater than that specified in IMaxHits, more hits
occurred than could be returned. If all hits are important, specify an array that is large enough to
contain the maximum number of sets of hits that are expected.

The draw controls (see GpiSetDrawControl) are ignored by this calil.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the segments. This can be done either ensuring
that the first segment to be correlated does not have the ATTR_FASTCHAIN attribute (see
GpiSetinitialSegmentAttrs), or by issuing GpiResetPS before the GpiCorrelateFrom. The latter
method also resets the clip path to no clipping.

If this function is followed by primitives or attributes, without first opening a segment, the processing
is as described for GpiCloseSegment.

If IFirstSegment does not exist, or is not in the segment chain, an error is raised. If /LastSegment
does not exist, or is not in the chain, or is chained before IFirstSegment, no error is raised and
processing continues to the end of the chain.

Related Functions

* GpiCorrelateChain
GpiCorrelateSegment
GpiSetDrawControl
GpiSetPickAperturePosition
GpiSetPickApertureSize

Chapter 5. Graphics Functions 5-65

GpiCorrelateFrom —
Correlate From

Example Code
This example uses GpiCorrelateFrom to correlate, using an aperture of default size and centered at
(200,200), on visible and detectable segments within the given chain of 2 segments. It requests one
intersection (or hit) and one segment/tag pair for that hit to be returned. The segments will have
been previously defined and created using GpiSetinitialSegmentAttrs and
GpiOpenSegment/GpiCloseSegment.

#define INCL_GPICORRELATION /* GPI Correlation functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
SIZEL psizlSize; /* size of pick aperture */
LONG TNumHits; /* number of hits or error */
HPS hps; /* Presentation-space handle */
LONG 1FirstSegment; /* Specifies the first segment to be
correlated */
LONG 1LastSegment; /* Specifies the last segment to be
correlated */

POINTL pptlPick = {200L,200L};
/* Pick (center of aperture) position */

LONG TMaxHits; /* Maximum hits to be returned */
LONG TMaxDepth; /* Number of pairs to be returned */
LONG alSegTag; /* Segment identifiers and tags */

fSuccess = GpiSetPickAperturePosition(hps, &pptiPick);

/* set aperture size (use default) */
fSuccess = GpiSetPickApertureSize(hps, PICKAP_DEFAULT, &psizlSize);

/* define chain of two segments (1 and 2) */
1FirstSegment = 1;
1LastSegment = 2;

/* return only one hit */
TMaxHits = 1L;

/* return only one segment/tag pair per hit */
1MaxDepth = 1L;

/* correlate on visible, detectable segments */

INumHits = GpiCorrelateFrom(hps, 1FirstSegment, 1LastSegment,
PICKSEL_VISIBLE, &pptlPick, 1MaxHits,
1MaxDepth, 8alSegTag);

5-66 PM Programming Reference

GpiCorrelateSegment —
Correlate Segment

#define INCL_GPICORRELATION /* Or use INCL_GPi or INCL_PM */

LONG GpiCorrelateSegment (HPS hps, LONG ISegment, LONG IType, PPOINTL pptiPick,
LONG IMaxHits, LONG IMaxDepth, PLONG alSegTag)

This function performs a correlate operation on a specified segment.

Parameters
hps (HPS) — input
Presentation-space handle.

ISegment (LONG) — input
Identifier of the segment to be correlated.

It must be greater than 0.

IType (LONG) — input
Type of segments on which correlation is to be performed:

PICKSEL_VISIBLE Only visible and detectable segments with nonzero identifiers are
correlated.

PICKSEL_ALL All segments with nonzero identifiers are correlated, regardless of the
detectability and visibility attributes of the segments.

pptiPick (PPOINTL) — input
Pick position.

The position of the center of the pick aperture, in presentation page units.

IMaxHits (LONG) — input
Maximum hits.

The maximum number of hits that can be returned in the a/lSegTag parameter.

IMaxDepth (LONG) — input
Number of pairs.

Number of segment/tag pairs to be returned by each hit.

alSegTag (PLONG) — output
Segment identifiers and tags.

An array consisting of segment identifiers and primitive tags in alternate elements. For each hit,
a set of IMaxDepth segment identifiers and tag pairs is returned.

Returns
Number of hits and error indicators:

>0 Number of hits that occurred
GPI_ALTERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_CORRELATE_TYPE An invalid type parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

Chapter 5. Graphics Functions 5-67

GpiCorrelateSegment —
Correlate Segment

PMERR_INV_COORDINATE An invalid coordinate value was specified.

PMERR_INV_MAX_HITS An invalid maxhits parameter was specified with
GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

PMERR_INV_CORRELATE_DEPTH An invalid maxdepth parameter was specified with

GpiCorrelateSegment, GpiCorrelateFrom, or
GpiCorrelateChain.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.
PMERR_SEG_NOT_FOUND The specified segment identifier did not exist
PMERR_INV_SEG_NAME An invalid segment identifier was specified.
Remarks

Data is returned for each tagged primitive that intersects the pick aperture. The data returned for
each “hit” (or correlation) consists of a set of segment and tag pairs, starting with the correlated one
and followed by the one that called that segment. This is repeated until the specified segment (which
was not called by another segment) is reached, or IMaxDepth values are returned.

The specified segment identifier must be nonzero. Only primitives with a nonzero tag (see
GpiSetTag) are correlated using this function.

The depth value specifies the number of sets of segment and tag pairs to be returned for each hit. If
the specified segment is reached before IMaxDepth values, the remaining values are set to zero. If
more than IMaxDepth values are available, only that number is returned.

The number of hits that occurred is returned in INumHits.

A “hit” is an instance of a segment identifier and tag pair for which the primitives lie completely or
partially within the specified aperture. Two different primitives in the same segment might have the
same tag, and would therefore produce the same hit. This is counted as a single hit; the hit is
recorded only once in the alSegTag parameter returned. The INumHits parameter, therefore, returns
this distinct number of hits. Hits are returned in reverse order of their occurrence.

alSegTag is set to the hits that are found, up to the maximum defined in the /IMaxHits parameter.
Corresponding pairs of elements form the hit pairs. The number returned by the function, therefore,
contains the number of sets of IMaxDepth pairs set if the IMaxHits parameter is greater than the
number of hits detected. The number of elements set in the alSegTag parameter is twice the number
returned by the function (subject to a maximum of /IMaxHits) multiplied by the IMaxDepth.

If the INumHits value returned by the function is greater than that specified in /IMaxHits, more hits
occurred than could be returned. If all hits are important, specify an array that is large enough to
contain the maximum number of sets of hits that are expected.

The draw controls (see GpiSetDrawControl) are ignored by this function. This function differs from
the other GpiCorrelate... functions because the segment to be correlated need not be a chained
segment.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values before processing the segment. This can be done either by ensuring
that the segment to be correlated does not have the ATTR_FASTCHAIN attribute (see
GpiSetinitialSegmentAttrs) or by issuing GpiResetPS before the GpiCorrelateSegment. The latter
method also resets the clip path to no clipping.

if this function is followed by primitives or attributes without first opening a segment, the processing
is as described for GpiCloseSegment.

5-68 PM Programming Reference

Related Functions

GpiCorrelateChain
GpiCorrelateFrom
GpiCallSegmentMatrix
GpiCloseSegment
GpiDeleteSegment
GpiDeleteSegments
GpiDrawSegment
GpiErrorSegmentData
GpiOpenSegment
GpiQuerylinitialSegmentAttrs
GpiQuerySegmentAttrs
GpiQuerySegmentNames
GpiQuerySegmentPriority
GpiSetDrawControl
GpiSetinitialSegmentAttrs
GpiSetPickAperturePosition
GpiSetPickApertureSize
GpiSetSegmentAttrs
GpiSetSegmentPriority

GpiCorrelateSegment —
Correlate Segment

Chapter 5. Graphics Functions

5-69

GpiCorrelateSegment —
Correlate Segment

Example Code
This example uses GpiCorrelateSegment to correlate, using an aperture of default size and centered
at (200,200), on a visible and detectable segment and requests one intersection (or hit) and one
segment/tag pair for that hit to be returned. The segment will have been previously defined and
created using GpiSetinitialSegmentAttrs and GpiOpenSegment/GpiCloseSegment.

#define INCL_GPICORRELATION /* GPI Correlation functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
SIZEL psizlSize; /* size of pick aperture */
LONG TNumHits; /* number of hits or error */
HPS hps; /* Presentation-space handle */
LONG 1Segment ; /* segment to be correlated */
LONG 1LastSegment; /* Specifies the last segment to be
correlated */

POINTL pptlPick = {200L,200L};
/* Pick (center of aperture) position */

LONG TMaxHits; /* Maximum hits to be returned */
LONG 1MaxDepth; /* Number of pairs to be returned */
LONG alSegTag; /* Segment identifiers and tags */

fSuccess = GpiSetPickAperturePosition(hps, &pptiPick):

/* set aperture size (use default) */
fSuccess = GpiSetPickApertureSize(hps, PICKAP_DEFAULT, &psiz1Size);

/* define segment */
1Segment = 1;

/* return only one hit */
TMaxHits = 1L;

/* return only one segment/tag pair per hit */
1MaxDepth = 1L;

/* correlate on visible, detectable segments */

INumHits = GpiCorrelateSegment (hps, 1Segment, PICKSEL_VISIBLE,
8ppt1Pick, TMaxHits, 1MaxDepth,
&alSegTag) ;

5-70 PM Programming Reference

GpiCreateBitmap —
Create Bit Map

#define INCL_GPIBITMAPS /* Or use INCL_GPI or INCL_PM */

HBITMAP GpiCreateBitmap (HPS hps, PBITMAPINFOHEADER2 pbmp2New, ULONG fiOptions,
PBYTE pbinitData, PBITMAPINFO2 pbmi2infoTable)

This function creates a bit map and returns the bit-map handle.

Parameters
hps (HPS) — input
Presentation-space handle.

The associated device should, if possible, hold the bit map in its own memory. Where this is not
possible, main memory is used and the bit map is held in a format compatible with the device.

pbmp2New (PBITMAPINFOHEADER2) — input
Bit-map information header.

This structure defines the format of the bit map to be created.

flOptions (ULONG) — input
Options:

CBM_INIT Initialize the bit map with pblnitData

If the bit map is stored on a device, the flOptions parameter is passed to the device.
Bits 16 through 31 can be used for special features known to be supported by the
particular device driver.

pbinitData (PBYTE) — input
Buffer address.

The address in application storage from which initialization data is to be copied, if CBM_INIT is
set.

pbmi2infoTable (PBITMAPINFO2) — input
Bit-map information table.

This defines the format of the data in pbinitData. It is ignored if CBM_INIT is not set.

Returns
Bit-map handle and error indicators:

#0 New bit-map handle
GPI_ERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_INFO_TABLE An invalid bit-map info table was specified with a bit-map
operation.

PMERR_INV_USAGE_PARM An invalid options parameter was specified with
GpiCreateBitmap.

Chapter 5. Graphics Functions 5-71

GpiCreateBitmap
Create Bit Map

Remarks

On some devices it is possible to create the bit map in device memory. Even when this is not
possible, a bit map always belongs to a particular device. The device is specified through the device
context associated with the specified presentation space. The device context can be any device
context that describes the physical device (such as any window device context for the screen).

There are a number of standard bit-map formats that should normally be adhered to. Other formats
can be used if supported by the device.

A newly created bit map can be filled with data supplied by the application. This is useful where the
bit map always contains, or always starts with, the same image, captured in the application. A
bit-map information structure is also passed, which defines the format and color usage of the
initialization data. It is assumed that enough data is passed to initialize the entire bit map.

Some bit-map functions, including those that draw into the bit map, require the bit map to be selected
into a memory device context, using GpiSetBitmap. This is true whether device or main memory is
used to hold the bit map.

The bit map is owned by the process from which this function is issued. It cannot be accessed
directly from any other process. If it still exists when the process terminates, it is automatically
deleted by the system.

Some restrictions apply when using this function. Refer to Appendix G, “Format of Interchange
Files” on page G-1 for additional details.

Related Functions

GpiBitBIt
GpiDeleteBitmap
GpiDrawBits
GpiLoadBitmap
GpiQueryBitmapBits
GpiQueryBitmapDimension
GpiQueryBitmapHandle
GpiQueryBitmapParameters
GpiQueryDeviceBitmapFormats
GpiSetBitmap
GpiSetBitmapBits
GpiSetBitmapDimension
GpiSetBitmapld
GpiWCBitBIt
WinDrawBitmap
WinGetSysBitmap

® & o & & & & o O ¢ ¢ O o o o

5-72 PM Programming Reference

GpiCreateBitmap —
Create Bit Map

Example Code
The following example loads a bit map resource from memory and uses the GpiCreateBitmap
function to create the bit map. This is similar to using the GpiLoadBitmap function, except it gives
the application the chance to modify the bit map image data before creating the bit map.

#define INCL_GPIBITMAPS /* GPI bit map functions */

#define INCL_DOSRESQURCES /* Dos Resource functions */

#include <os2.h>

HPS hps; /* presentation space handle */

/* address of bit map image data in

resource */

BITMAPINFOHEADER2 bmih; /* bit map info structure */

HBITMAP hbm; /* bit map handle */

memset (8bmih,0, sizeof(BITMAPINFOHEADER2));

bmih.cbFix = sizeof (BITMAPINFOHEADER2) ;
bmih.cx = X}
bmih.cy = cy;
bmih.cPlanes =1;

bmih.cBitCount = cBitCount;
(hbm = GpiCreateBitmap(hps, &bmih, OL, NULL, NULL);

Chapter 5. Graphics Functions 5-73

GpiCreateLogColorTable —
Create Logical Color Table

#define INCL_GPILOGCOLORTABLE /* Or use INCL_GPI or INCL_PM */

BOOL GpiCreateLogColorTable (HPS hps, ULONG flOptions, LONG IFormat, LONG IStart,
LONG ICount, PLONG alTable)

This function defines the entries of the logical color table.

Parameters
hps (HPS) — input
Presentation-space handle.

fiOptions (ULONG) — input
Options:

LCOL_RESET The color table is reset to its default values before processing the
remainder of the data in this function.

This value is assumed if the color table is currently in RGB mode and is
being changed to index mode; that is, LCOLF_INDRGB or
LCOLF_CONSECRGB is specified.

The IFormat parameter must be LCOLF_INDRGB or LCOLF_CONSECRGB.

LCOL_PURECOLOR When this option is set only colors for solid patterns (see GpiSetPattern)
available in the physical palette will be used. Only pure colors are used
and no dithering is done.

Other flags are reserved and must be 0.

IFormat (LONG) — input
Format of entries in the table:

LCOLF_INDRGB Array of index/RGB pairs. Each pair is 8 bytes long: 4 bytes (local
format) for the index, and 4 bytes for the color value.

This sets the color table into index mode (and forces LCOL_RESET) if it
is in RGB mode.

The maximum index that can be loaded is returned in the
CAPS_COLOR_INDEX parameter of the DevQueryCaps function.

Each index specified must be greater than or equal to 0.

LCOLF_CONSECRGB Array of RGB values, corresponding to color indexes /Start upwards.
Each entry is 4 bytes long.

This sets the color table into index mode (and forces LCOL_RESET) if it
is in RGB mode.

The maximum index that can be loaded is returned in the
CAPS_COLOR_INDEX parameter of the DevQueryCaps function.

LCOLF_RGB Color index = RGB.
This sets the color table into RGB mode.

IStart (LONG) ~ input
Starting index.

This is relevant only for LCOLF_CONSECRGB.

The starting index must be greater than or equal to 0.

5-74 PM Programming Reference

GpiCreateLogColorTable —
Create Logical Color Table

ICount (LONG) — input
Count of elements in alTable.

This must be greater than or equal to 0. If 0 is specified, LCOLF_INDRGB and
LCOLF_CONSECRGB have the same effect.

For LCOLF_INDRGB, alTable must contain an even number of elements. /Count must be an even
number.

alTable (PLONG) — input
Start of the application data area.

This contains the color table definition data. The format depends on the value of /Format.
Each color value is a 4-byte integer, with a value of

(R * 65536) + (G * 256) + B

where:

R is red intensity value
G is green intensity value
B is blue intensity value.

The maximum intensity for each primary is 255.
The high order byte must be 0.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simuitaneously.

PMERR_INV_COLOR_OPTIONS An invalid options parameter was specified with a logical
color table or color query function.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_COLOR_DATA Invalid color table definition data was specified with
GpiCreatelogColorTable.

PMERR_INV_COLOR_FORMAT An invalid format parameter was specified with
GpiCreateLogColorTable.

PMERR_INV_COLOR_START_INDEX An invalid starting index parameter was specified with a
logical color table or color query function.

PMERR_REALIZE NOT_SUPPORTED An attempt was made to create a realizable logical color
table on a device driver that does not support this
function.

PMERR_PALETTE_SELECTED Color palette operations cannot be performed on a

presentation space while a palette is selected.

Chapter 5. Graphics Functions 5-75

GpiCreateLogColorTable —
Create Logical Color Table

Remarks
This function can cause the color table to be reset to the default values. These are:

CLR_BACKGROUND Reset color, used by GpiErase. This is the natural background color for the
device. For a display, it is the default window color
(SYSCLR_WINDOWTEXT; see WinSetSysColors). For a printer, it is the
paper color.

The background color for the display can be changed by setting new system
colors from the Control Panel. The background color for a printer can be
changed by selecting a new paper color (if allowed by the presentation

driver).
CLR_BLUE Blue.
CLR_RED Red.
CLR_PINK Pink (magenta).
CLR_GREEN Green.
CLR_CYAN Cyan (turquoise).
CLR_YELLOW Yellow.
CLR_NEUTRAL A device-dependent color that provides a contrasting color to

CLR_BACKGROUND. For a display, it is the default window text color
(SYSCLR_WINDOWTEXT; see WinSetSysColors). For a printer, it is a color
that contrasts with the paper color.

The neutral color for the display can be changed by setting new system
colors from the Control Panel. The neutral color for a printer can be
changed by selecting a new paper color (if allowed by the presentation

driver).
CLR_DARKGRAY Dark gray.
CLR_DARKBLUE Dark blue.
CLR_DARKRED Dark red.
CLR_DARKPINK Dark pink.
CLR_DARKGREEN Dark green.
CLR_DARKCYAN Dark cyan.
CLR_BROWN Brown.
CLR_PALEGRAY Pale gray.

GpiErase clears the output of a device to the color defined by CLR_BACKGROUND.

By default, presentation spaces have a logical color table consisting of the 16 default values given
above. In index mode, these entries are always considered as part of the color table, unless they are
explicitly overwritten. Color indexes outside this range, which have not been loaded, are not
considered as part of the color table; it is an error to use such colors if the color table is in index
mode.

The system performs a mapping from the colors in the logical color table to those in the standard
physical color table for that device. This mapping is used for all drawing and bit maps. Mixing is not
predictable.

The standard physical color table always includes the standard 16 colors, where this is physically
possible. On devices that support more than 16 colors, there may be additional colors available to
which the requested colors may be mapped. However, it cannot be ensured that these additional
colors are the same on different devices. Applications that depend upon precise colors beyond the
first 16 should use a palette (see GpiCreatePalette) on devices for which this is supported.
DevQueryCaps can be used to determine whether the function is supported by the device; see
CAPS_PALETTE_MANAGER.

For.a monochrome device (whether it is a display, bit map, printer, or some other type), a reset color
is defined as follows:
1. Start with the appropriate item below:

* The paper color, for a printer with no loaded color table

5-76 PM Programming Reference

GpiCreateLogColorTable —
Create Logical Color Table

¢ SYSCLR_WINDOW, for a monochrome display with no loaded color table
* Color 0, for any device if a color table has been loaded.

2. If this color is white or a light color, the reset color is set to white; otherwise, the reset color is
set to black.

The reset color is used for:

The color that GpiErase clears the output to

CLR_BACKGROUND (cotor 0), uniess an RGB color table is in use
CLR_DEFAULT for GpiSetBackColor

Any color that has exactly the same RGB value as the reset color.

Any other color becomes black if the reset color is white, and the converse.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see “Metafile Restrictions” on page G-1.

Related Functions

* DevQueryCaps
GpiCreatePalette
GpiQueryColorData
GpiQueryColorindex
GpiQueryLogColorTable
GpiQueryNearestColor
GpiQueryRealColors
GpiQueryRGBColor
WinSetSysColors

Example Code

This example uses the GpiCreateLogColorTable function to create a logical color table, using data
from the previous logical color table.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

HPS hps: /* presentation space handle */
LONG alTable[16]; /* assume 16 entries */

/* retrieve the current table */
GpiQueryLogColorTable(hps, 6L, 6L, 16L, alTable);

alTable[1] = Ox000080; /* change the second entry to 1light blue */

GpiCreateLogColorTable(hps, /* presentation space */
oL, /* no special options */
LCOLF_CONSECRGB, /* consecutive RGB values */
oL, /* start with color index 0 */
16, : /* 16 entries */
alTable); /* RGB color values */

Chapter 5. Graphics Functions 5-77

GpiCreateLogFont —
Create Logical Font

#define INCL_GPILCIDS /* Or use INCL_GP! or INCL_PM */

LONG GpiCreateLogFont (HPS hps, PSTR8 pName, LONG ILcid, PFATTRS pAttrs)

This function provides a logical definition of a font.

Parameters

hps (HPS) — input
Presentation-space handle.

pName (PSTR8) — input
Logical font name.
An B-character name that can be used to describe the logical font. Its principal use is in
interchange files, where it can help to identify the required font. For example, it can reference a
file name that contains the font for a remote system.

ILcid (LONG) — input
Local identifier.
The local identifier that the application uses to refer to this font. It must be in the range 0
through 254. 1f 0 is specified, the properties of the default font are changed. The original default

font can be restored by calling GpiDeleteSetid, with an ILcid parameter of LCID_DEFAULT or
LCID_ALL.

if the ILcid parameter specifies a local identifier that is already being used to refer to a logical
font, but is not the current pattern-set or marker-set local identifier, then the new definition
replaces the old one. If ILcid specifies a local identifier that is already being used to refer to a
logical font, and is the current pattern-set or marker-set local identifier, an error occurs. An
error also occurs if the local identifier is currently used to refer to a bit map.

pAttrs (PFATTRS) — input
Attributes required of the font.

Returns
Match indicators:

FONT_MATCH Font requirements matched successfully
FONT_DEFAULT Font requirements not matched; a default font is used
GPIL_ERROR Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_SETID An invalid setid parameter was specified.

PMERR_INV_FONT_ATTRS An invalid attrs parameter was specified with
GpiCreateLogFont.

PMERR_FONT NOT_LOADED An attempt was made to create a font that was not loaded.

PMERR_SETID_IN_USE An attempt was made to specify a setid that was already
in use as the currently selected character, marker or
pattern set.

5-78 PM Programming Reference

GpiCreatel.ogFont —
Create Logical Font

PMERR_KERNING_NOT_SUPPORTED Kerning was requested on GpiCreateLogFont call to a
presentation space associated with a device context that
does not support kerning.

Remarks
The system uses the available physical font that most closely matches the requirements. Physical
fonts can be:

e Loaded at initialization time
* Built into particular devices or device drivers
* Private ones for this process, loaded by GpiL.oadFonts.

An application can force selection of a particular physical font by quoting the IMatch value in FATTRS
to be returned for the desired font by GpiQueryFonts. However, this method is only valid for a
particular device/device driver combination on a single machine. This method should be avoided as
a method for selecting fonts.

Whichever method is used, the choice of physical font, which is made when this function is issued, is
never subsequently changed for a particular logical font.

The local identifier (/Lcid) that the application decides to use to reference this logical font for later
drawing operations is also specified; see GpiSetCharSet.

if the face name is provided, GpiCreateLogFont tries to select the font with that face name. If the face
name is empty, GpiCreateLogFont selects a default font.

When a match number is provided, GpiCreateLogFont tries to find a font with the same match
number and face name. If there is a mismatch at this point, GpiCreateLogFont acts as though the
match number is 0 and starts the search again.

When the match number is 0 and the calling program requests a bit-map font
(FATTR_FONTUSE_OUTLINE not set), GpiCreateLogFont searches for a bit-map font with the required
average character width (AveCharWidth) and maximum baseline extent (MaxBaselineExt), consistent
with the usage flags. If this search fails, GpiCreateLogFont searches for an outline font with the
required face name.

When the match number is zero and the calling program requests an outline font

(FATTR_FONTUSE_OUTLINE is set), GpiCreateLogFont searches for an outline font with the required

selection flags. If that search fails, a default outline font is selected. If the match number is setto a

positive number, a Presentation Manager font is selected. If the match number is negative, a font
..~ belonging to a physical device is selected.

It is advisable to set the values of all the elements in the pAttrs structure. This is particularly
important where printing, plotting, or interchange are concerned, as the target machine may need to
substitute an existing device font for the requested font.

To anticipate possible substitution by a vector font, values should be set for character angle,
character shear and character box (using GpiSetCharAngle, GpiSetCharShear, and GpiSetCharBox
respectively) before drawing any character strings. The GpiQueryFontMetrics function can be used
to get the values of the character box height and width for a font. These are held in the fields
IEmHeight and IEminc in the FONTMETRICS structure.

Outline font characters are normally drawn filled. However, hollow characters are produced if the
FATTR_SEL_OUTLINE flag is set in the pAttrs parameter. For small characters, outlining in this way
can give a similar visual appearance to filled characters, with improved performance.

There are restrictions on the use of non-installed fonts with certain device types. See GpiLoadFonts
for more details.

Chapter 5. Graphics Functions 5-79

GpiCreateLogFont —
Create Logical Font

If this function occurs within a path definition when the drawing mode (see GpiSetDrawingMode) is
retain or draw-and-retain, its effect is not stored with the definition.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;
see “Metafile Restrictions” on page G-1.

Related Functions

* GpiDeleteSetid
GpiLoadFonts
GpiQueryFontMetrics
GpiQueryFonts
GpiQueryKerningPairs
GpiQueryNumberSetlds
GpiQuerySetids
GpiQueryWidthTable
GpiSetCharSet
GpiSetCharMode
GpiSetMarkerSet
GpiSetPatternSet
GpiUnloadFonts

Example Code
This example uses the GpiCreateLogFont function to create a logical font with the local identifier 1.
The logical font has the face name “Courier” and requested width and height of 12 pels. Once the
font is created, the example sets the font using the local identifier and displays a string in the font at
the point (100,100).

#define INCL_GPILCIDS /* Font functions */
#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL pt1 = { 100, 100 };
FATTRS fat;

fat.usRecordLength = sizeof(FATTRS); /* sets size of structure */

fat.fsSelection = 0; /* uses default selection */
fat.1Match = OL; /* does not force match */
fat.idRegistry = 0; /* uses default registry */
fat.usCodePage = 850; /* code-page 850 */

fat.1MaxBaselineExt = 12L; /* requested font height is 12 pels */
fat.1AveCharWidth = 12L; /* requested font width is 12 pels */
fat.fsType = 0; * uses default type */
fat.fsFontUse = FATTR_FONTUSE_NOMIX;/* doesn't mix with graphics */

/* Copy Courier to szFacename field */

strcpy(fat.szFacename ,"Courier");

GpiCreateLogFont (hps, /* presentation space */
NULL, /* does not use logical font name */
1L, /* local identifier */
&fat); /* structure with font attributes */

GpiSetCharSet (hps, 1L); /* sets font for presentation space */

GpiCharStringAt(hps, &ptl, 5L, "Hello"); /* displays a string */

5-80 PM Programming Reference

e

GpiCreatePalette —
Create Palette

#define INCL_GPILOGCOLORTABLE /* Or use INCL_GPI or INCL_PM */

HPAL GpiCreatePalette (HAB hab, ULONG fiOptions, LONG IFormat, LONG [Count,
PLONG alTable)

This function creates and initializes a color palette.

Parameters
hab (HAB) — input
Anchor-block handie.

flOptions (ULONG) — input
Options:

LCOL_PURECOLOR

LCOL_OVERRIDE_DEFAULT_COLORS

IFormat (LONG) — input
Format of entries in the table:

The application does not want color dithering to create
colors not available in the physical palette for solid
patterns (see GpiSetPattern). If this option is set, only
pure colors are used and no dithering is done.

Override option for applications that need the full
hardware palette. The system does not guarantee a
consistent look to the user interface when this option is
used. The override is only in effect while the overriding
palette is in the foreground

To combine these two options, OR the values together.
Other flags are reserved and must be B'0’.

LCOLF CONSECRGB Array of (RGB) values. Each entry is 4 bytes long. This is currently the
only supported value for this parameter.

ICount (LONG) — input
Count of elements in alTable.

This must be greater than zero.

alTable (PLONG) — input
Start of the application data area.

This contains the palette definition data.

Each color value is a 4-byte integer, with a value of
(F * 16777216) + (R * 65536) + (G * 256) + B

where:

F is a flag byte, which can take the following values (these can be ORed together if required):

PC_RESERVED This index is an animating index. This means that the application might
frequently change the RGB value and so the system should not map the
logical index of another application’s palette to the entry in the physical
palette used for this color.

PC_EXPLICIT The low-order word of the logical color table entry designates a physical
palette siot from which the color definition is to be taken. This allows an
application to show the actual contents of the device palette as realized for
other logical palettes. This does not prevent the color in the slot from being
changed for any reason.

Chapter 5. Graphics Functions 5-81

GpiCreatePalette —
Create Palette

R is red intensity value
G is green intensity value
B is blue intensity value.

Each intensity value must be in the range 0 through 255.

Returns
Palette handle:

#0 Palette handle
GPI_ERROR Error occurred.

Possible returns from WinGetlLastError

PMERR_INV_COLOR_OPTIONS An invalid options parameter was specified with a logical
color table or color query function.
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.
PMERR_INV_COLOR_DATA Invalid color table definition data was specified with
GpiCreatelLogColorTable.
PMERR_INV_COLOR_FORMAT An invalid format parameter was specified with
GpiCreateLogColorTable.
PMERR_INV_COLOR_START_INDEX An invalid starting index parameter was specified with a
logical color table or color query function.
PMERR_INSUFFICIENT_MEMORY The operation terminated through insufficient memory.
Remarks

The new palette contains only the entries set in the alTable parameter. All color indices outside this
range are not considered part of the palette; it is an error to use such colors when this palette is
selected.

When a palette is realized (see WinRealizePalette), the lowest indices are considered first. The
palette should therefore be ordered so that the most important colors have the lowest indices.
Animating indices, which on realization can have their own individual slots in the physical palette,
should be used oniy when necessary.

Palettes should be created with only those color indices that the application requires and not
unnecessarily create a large palette. The maximum index for a palette is not limited to
CAPS_COLOR_INDEX.

The palette can be selected into a presentation space using GpiSelectPalette.

Related Functions

* DevQueryCaps
GpiAnimatePalette
GpiDeletePalette
GpiQueryPalette
GpiQueryPalettelnfo
GpiSelectPalette
GpiSetPaletteEntries
WinRealizePalette
GpiCreatelLogColorTable

® & o 06 o & o o

5-82 PM Programming Reference

GpiCreatePalette —
Create Palette

Example Code

The uses GpiCreatePalette to create and initialize a palette of 4 pure (no dithering) colors.

#define INCL_GPILOGCOLORTABLE /¥ Color Table functions */
#include <os2.h>

HAB hab; /* anchor block handle */
HPAL hpal; /* palette handle */
LONG 1Format; /* table entry format */

/***

* assume 4 entries in palette. *
* The RGB values are calculated with the following formula: *
* (F * 16777216) + (R * 65536) + (G * 256) + B *
* where F = flag, PC_RESERVED or PC_EXPLICIT *
* R = red intensity value *
* G = green intensity value *
* B = blue intensity value *

*

* Thus, in the following table, red and green intensities are @

* while the blue intensity increases from 1 to 4. *
***/

ULONG aulTable[4]=
{(PC_RESERVED*16777216) + (0*65536) + (0*256) + 1,
(PC_RESERVED*16777216) + (0*65536) + (0*256) + 2,
(PC_RESERVED*16777216) + (0*%65536) + (0*256) + 3,
(PC_RESERVED*16777216) + (0*65536) + (0%256) + 4};

hpal = GpiCreatePalette(hab, OL, LCOLF_CONSECRGB, 4L, aulTable);

Chapter 5. Graphics Functions 5-83

GpiCreatePS —
Create Presentation Space

#define INCL_GPICONTROL /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

HPS GpiCreatePS (HAB hab, HDC hdc, PSIZEL psiziSize, ULONG fiOptions)

This function creates a presentation space.

Parameters
hab (HAB) — input
Anchor-block handle.

hdc (HDC) — input
Device-context handle.

The handle of a device context with which the presentation space is to be associated, if
GPIA_ASSOC is specified. This is mandatory for a micrg presentation space (type GPIT_MICRO).

psiziSize (PSIZEL) — input
Presentation-page size.

The size of the presentation page defines a rectangle in presentation page space, with the
bottom-left corner at the origin. This rectangle is used for these purposes:

* Together with the page viewport, it defines the device transform. Whenever the
presentation space is associated with a device context, a default page viewport is
constructed, based on the presentation page size.

* Itdefines the “area of interest” of the picture. This is recorded in a metafile, if one is
generated from this presentation space. Note, however, that depending upon the device
transform, information drawn outside it may sometimes be visible; it is not a clipping
boundary.

* If PU_ARBITRARY is specified, the page viewport is constructed such that the origin of the
page rectangle maps to the origin of the default device rectangle (maximized window size,
paper size, and so on), and either the right or top edges map, keeping the picture within the
default device rectangle, and preserving its aspect ratio.

If 0 is specified as either the width or the height, GPIA_ASSOC must also be specified, and a
presentation page of default dimension for the device (see above) is assumed. For
PU_ARBITRARY the pel dimensions are used.

flOptions (ULONG) - input
Options.

This contains fields of option bits. For each field, one value should be selected (unless the
default is suitable). These values can then be ORed together to generate the parameter.

PS_UNITS
Presentation-page size units.

In each instance, the origin is at the bottom left.
One of these values must be specified:
PU_ARBITRARY Application-convenient units
PU_PELS Pel coordinates

é?’i»u_mus‘rmc Units of 0.1 mm

(PU_HIMETRIC Units of 0.01 mm

| PU_LOENGLISH Units of 0.01 inch

. PU_HIENGLISH Units of 0.001 inch

5-84 PM Programming Reference

R

GpiCreatePS —
Create Presentation Space

PU_TWIPS Units of 1/1440 inch.

PS_FORMAT
Coordinate format.

Indicates options to be used when storing coordinate values internally in the segment store.

For most calls, the format is not directly visible to an application. However, it is visible
during editing (for example, GpiQueryElement). The format also has an effect on the
amount of storage required for segment store. If a metafile is generated from this
presentation space, the format also controls the format of the orders in the metafile.

Note: If GPIF_SHORT is selected, it is the responsibility of the application to ensure that the
values passed for graphics coordinates are in the range —32 768 through +32 767,
when the drawing mode is retain or draw-and-retain (see GpiSetDrawingMode), or if
a metafile is being created. If in doubt, default or specify GPIF_LONG.

Do not specify GPIF_SHORT if a metafile of unknown format is to be played into this
presentation space with GpiPlayMetaFile.

One of these can be selected, for a GPIT_NORMAL presentation space (for a GPIT_MICRO
presentation space, only GPIF_DEFAULT is allowed):

GPIF_DEFAULT Default local format (same as GPIF_LONG)
GPIF_SHORT 2-byte integers
GPIF_LONG 4-byte integers.

PS_TYPE
Presentation space.

GPIT_NORMAL Normal presentation space,; this is the defauit
GPIT_MICRO Micro presentation space.
Note: GPIA_ASSOC must also be set if GPIT_MICRO is set.

PS_MODE
Mode. Reserved, must be 0 (default).

PS_ASSOCIATE
Association indicator.

Indicates whether the new presentation space is to be associated with the specified device
context:

GPIA_NOASSOC No association is required. This is the default.
GPIA_ASSOC Association with hdc required.
Note: GPIA_ASSOC must be set if GPIT_MICRO is set.

Returns
Presentation-space handle:

#0 Presentation-space handle
GPIERROR Error.

Possible returns from WinGetLastError

PMERR_INV_OR_INCOMPAT_OPTIONS An invalid or incompatible (with micro presentation
space) options parameter was specified with
GpiCreatePS or GpiSetPS.

PMERR_DC_IS_ASSOCIATED An attempt was made to associate a presentation space
with a device context that was already associated or to
destroy a device context that was associated.

Chapter 5. Graphics Functions 5-85

GpiCreatePS
Create Presentation Space

PMERR_INV_HDC An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.
PMERR_INV_PS_SIZE An invalid size parameter was specified with
GpiCreatePS or GpiSetPS.
Remarks

There are two types of presentation spaces:

* Micro presentation space
* Normal presentation space.

Only a restricted subset of calls is allowed to a micro presentation space; the main difference is that
graphic segments {primitives, attributes, and so on) can be retained by the system, for subsequent
redraw or editing, in a normal presentation space, but not in a micro presentation space. However,
the storage and execution overheads are lower for a micro presentation space.

An initial association of the new presentation space with a device context may be performed (this is
mandatory for a micro presentation space), by specifying GPIA_ASSOC.

When a presentation space is associated with a device context, either using this function with
GPIA_ASSOC, or exphcltly with GpiAssociate, a page viewport in device space is automatically
constructed, to which the page is mapped to form the device transform. The value of PS_UNITS and
the psiziSize parameter, are taken into account.

In general, the size parameter can be safely set to zeroes except when using PU_ARBITRARY units.
In that case, use a size in device coordinates obtained from DevQueryCaps. For units other than
PU_PELS, a non-zero size can cause a transform to be in effect for the resulting PS.

Related Functions
GpiAssociate
GpiDestroyPS
GpiQueryDevice
GpiQueryPS
GpiResetPS
GpiRestorePS
GpiSavePS
GpiSetPageViewport
GpiSetPS
WinGetPS
WinGetScreenPS

® O ¢ o o o & o o o

5-86 PM Programming Reference

GpiCreatePS -—
Create Presentation Space

Example Code
This example uses the GpiCreatePS function to create a micro presentation space for a memory
device context. The function associates the presentation space with the device context and sets the
page units to pels. By default, the presentation space is a normal presentation space that uses local
storage format.

#define INCL_GPICONTROL /* GPI control Functions */
#include <o0s2.h>

HAB hab; /* anchor block handie */
HDC hdc; /* device context handle */
HPS hps; /* presentation space handle */
SIZEL sizl = { 0, 8 }; /* use same page size as device */

/**************************

* context data structure *
**************************/

DEVOPENSTRUC dop = {6L, "DISPLAY", NULL, 6L, OL, OL, 6L, OL, OL};

/* create memory device context */
hdc = DevOpenDC(hab, OD_MEMORY, "*", 5L, (PDEVOPENDATA) &dop, NULLHANDLE);

/* Create the presentation and associate the memory device
context. */
hps = GpiCreatePS(hab, hdc, &sizl, PU_PELS |
GPIT_MICRO | GPIA_ASSOC);

Chapter 5. Graphics Functions 5-87

GpiCreateRegion —
Create Region

#define INCL_GPIREGIONS /* Or use INCL_GPI or INCL_PM */

HRGN GpiCreateRegion (HPS hps, LONG ICount, PRECTL arclRectangles)

This function creates a region, for a particular class of device, using a series of rectangles.

Parameters
hps (HPS) — input
Presentation-space handle.

A region suitable for use with the currently associated device is created.

ICount (LONG) — input
The number of rectangles.

The number specified in arc/Rectangles. If ICount is 0, an empty region is created, and
arclRectangles is ignored.

arclRectangles (PRECTL) — input
An array of rectangles.

The rectangles are specified in device coordinates.

For each rectangle in the array, the value of xright must be greater than (or equal to) xleft, and
ytop must be greater than (or equal to) ybottom.

Returns
Region handle:

#0 Region handle
RGN_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_RECT An invalid rectangle parameter was specified.
Remarks

The new region is defined by the logical-OR of all of the rectangles specified. Points on the
right-hand and top boundaries are not included in the region. Points on the left-hand and bottom
boundaries, that are not also on the right-hand or top boundaries (that is, the top-left and bottom-right
corner points), are included.

The region is owned by the process from which this function is issued. It cannot be accessed directly

from any other process. If it still exists when the process terminates, it is automatically deleted by
the system.

5-88 PM Programming Reference

GpiCreateRegion -
Create Region

Related Functions

* GpiCombineRegion
GpiDestroyRegion
GpiEqualRegion
GpiOffsetRegion
GpiPaintRegion
GpiPtinRegion
GpiQueryRegionBox
GpiQueryRegionRects
GpiRectinRegion
GpiSetRegion

Example Code
This example uses the GpiCreateRegion function to create a region consisting of the union of three

rectangles.
#define INCL_GPIREGIONS /* Region functions */
#include <os2.h>
HPS hps; /* presentation space handle */
HRGN hrgn; /* handle for region */
RECTL arc1[3] = { 100, 106, 200, 200, /* 1st rectangle */
150, 150, 250, 250, /* 2nd rectangle */
200, 200, 300, 300 }; /* 3rd rectangle */
hrgn = GpiCreateRegion(hps, /* presentation space */
3L, /* three rectangles */

arcl); /* address of array of rectangles */

Chapter 5. Graphics Functions 5-89

GpiDeleteBitmap -
Delete Bit Map

#define INCL_GPIBITMAPS /* Or use INCL_GP! or INCL_PM. Also in COMMON section */

BOOL GpiDeleteBitmap (HBITMAP hbm)

This function deletes a bit map.

Parameters
hbm (HBITMAP) — input
Handle of the bit map to be deleted.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HBITMAP An invalid bit-map handle was specified.

PMERR_BITMAP_IS_SELECTED An attempt was made to delete a bit map while it was
selected into a device context.

PMERR_HBITMAP_BUSY An internal bit map busy error was detected. The bit map

was locked by one thread during an attempt to access it
from another thread.

Remarks
There are restrictions on the use of this function while generating a metafile or a PM_Q_STD print
file; see “Metafile Restrictions” on page G-1.

Related Functions

* GpiBitBIt
GpiCreateBitmap
GpiDrawBits
GpiloadBitmap
GpiQueryBitmapBits
GpiQueryBitmapDimension
GpiQueryBitmapHandle
GpiQueryBitmapParameters
GpiQueryDeviceBitmapFormats
GpiSetBitmap
GpiSetBitmapBits
GpiSetBitmapDimension
GpiSetBitmapld
GpiWCBitBIt
WinDrawBitmap
WinGetSysBitmap

5-90 PM Programming Reference

GpiDeleteBitmap —
Delete Bit Map

Example Code
This example uses the GpiDeleteBitmap function to delete a bit map. The GpiSetBitmap function
releases the bit map from the presentation space before deleting it. This is needed only if the bit
map is set in the presentation space.

#define INCL_GPIBITMAPS /* GPI Bit map functions */
#include <os2.h>

HPS hps; /* presentation space handle */
HBITMAP hbm, hbmPrevious;

hbm = GpiLoadBitmap(hps, OL, 1, OL, OL); /* load the bit map */
hbmPrevious = GpiSetBitmap(hps, hbm); /* set bit map for PS */

/* bit map displayed with GpiBitB1t */

GpiSetBitmap(hps, hbmPrevious); /* release bit map from PS */
GpiDeleteBitmap(hbm) ; /* delete the bit map */

Chapter 5. Graphics Functions 5-91

GpiDeleteElement —
Delete Element

#define INCL_GPISEGEDITING /* Or use INCL_GP! or INCL_PM */

BOOL GpiDeleteElement (HPS hps)

This function deletes the element indicated by the element pointer.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_NOT_IN_RETAIN_MODE

PMERR_NO_CURRENT SEG

PMERR_INV_IN_ELEMENT

Remarks

An invalid presentation-space handle was specitied.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

An attempt was made to issue a function invalid inside an
element bracket.

The element pointer is set to the element immediately preceding the deleted element.

If the element pointer has a value of 0 (points that are logically before the first element), nothing is
deleted and the element pointer is not changed.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress. It is invalid within an element

bracket.

5-92 PM Programming Reference

GpiDeleteElement —
Delete Element

Related Functions

* GpiBeginElement
GpiDeleteElementRange
GpiDeleteElementsBetweenlLabels
GpiElement
GpiEndElement
GpiLabel
GpiOffsetElementPointer
GpiQueryElement
GpiQueryElementPointer
GpiQueryElementType
GpiSetElementPointer
GpiSetElementPointerAtlabel

® & & o o o & 0o o o o

Example Code
This example uses the GpiDeleteElement function to delete the third element from the previously
created segment 2.

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */
#include <os2.h>

HPS hps;

GpiOpenSegment (hps, 2L); /* open segment #2 */
GpiSetElementPointer(hps, 3L);: /* move to third element */
GpiDeleteElement(hps); /* delete element */
GpiCloseSegment (hps); /* close the segment */

Chapter 5. Graphics Functions 5-93

GpiDeleteElementRange —
Delete Element Range

#define INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

BOOL GpiDeleteElementRange (HPS hps, LONG IFirstElement, LONG ILastElement)

This function deletes all elements between, and including, the elements indicated by the specified

element numbers.

Parameters
hps (HPS) — input
Presentation-space handie.

IFirstElement (LONG) — input

Number of the first element to be deleted.

ILastElement (LONG) — input

Number of the last element to be deleted.

Returns
Success indicator:
TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_NOT_IN_RETAIN_MODE

PMERR_NO_CURRENT_SEG

PMERR_INV_IN_ELEMENT

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

An attempt was made to issue a function invalid inside an
element bracket.

If either element number is outside the range of the current segment, it is set to the nearest valid

value.

When this function has finished, the element pointer is set to the element immediately preceding the

deleted element or elements.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress. It is not valid within an element

bracket.

5-94 PM Programming Reference

GpiDeleteElementRange —
Delete Element Range

Related Functions

* GpiBeginElement
GpiDeleteElement
GpiDeleteElementsBetweenLabels
GpiElement
GpiEndElement
GpilLabel
GpiOffsetElementPointer
GpiQueryEiement
GpiQueryElementPointer
GpiQueryElementType
GpiSetElementPointer
GpiSetElementPointerAtLabel

Example Code
This example uses the GpiDeleteElementRange function to delete the second through fifth elements
in the previously created segment 2.

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */
#include <os2.h>

HPS hps;

GpiOpenSegment (hps, 2L); /* open segment # 2 */
GpiDeleteElementRange(hps, 2L, 5L);/* delete elements 2 thru 5 */
GpiCloseSegment (hps); /* close the segment */

Chapter 5. Graphics Functions 5-95

GpiDeleteElementsBetweenLabels —
Delete Elements Between Labels

#define INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

BOOL GpiDeleteElementsBetweenLabels (HPS hps, LONG [FirstLabel, LONG ILastLabel)

This function deletes all elements between, but not including, the elements found to contain the
indicated labels.

Parameters
hps (HPS) — input
Presentation-space handle.

IFirstLabel (LONG) — input
Label marking the start of the elements to be deleted.

ILastLabel (LONG) — input
Label marking the end of the elements to be deleted.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.
PMERR_NOT_IN_RETAIN_MODE An attempt was made to issue a segment editing element

function that is invalid when the actual drawing mode is
not set to retain

PMERR_NO_CURRENT_SEG An attempt has been made to issue
GpiQueryElementType or GpiQueryEiement while there is
no currently open segment.

PMERR_INV_IN_ELEMENT An attempt was made to issue a function invalid inside an
element bracket.
PMERR_LABEL_NOT FOUND The specified element label did not exist.
Remarks

The search for IFirstLabel and ILastLabel is performed separately, and starts from the element
pointed to by the current element pointer.

See also:

* GpiSetElementPointer
¢ GpiSetElementPointerAtLabel.

If either label cannot be found between the current element pointer location and the end of the
segment, an error is generated and no deletion occurs.

5-96 PM Programming Reference

GpiDeleteElementsBetweenlLabels —
Delete Elements Between Labels

On completion, the element pointer is set to the element immediately preceding the deleted
elements.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress. It is not valid within an element
bracket.

Related Functions

* GpiBeginElement
GpiDeleteElement
GpiDeleteElementRange
GpiElement
GpiEndElement
GpilLabel
GpiOffsetElementPointer
GpiQueryElement
GpiQueryElementPointer
GpiQueryElementType
GpiSetElementPointer
GpiSetElementPointerAtLabel

Example Code
This example uses the GpiDeleteElementsBetweenLabels function to delete the elements between,
but not including, the elements having the labels 1 and 2.

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */
#include <o0s2.h>

HPS hps;

GpiOpenSegment (hps, 2L); /* open segment #2 */

/* delete elements between 1 and 2 */

GpiDeleteElementsBetweenLabels(hps, 1L, 2L);
GpiCloseSegment (hps); /* close the segment */

Chapter 5. Graphics Functions 5-97

GpiDeleteMetaFile —
Delete Metafile

#define INCL_GPIMETAFILES /* Or use INCL_GPI or INCL_PM */

BOOL GpiDeleteMetaFile (HMF hmf)

This function deletes a metafile.

Parameters
hmf (HMF) — input
Metafile handle.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HMF An invalid metafile handle was specified.
PMERR_METAFILE_IN_USE An attempt has been made to access a metafile that is in

use by another thread.

PMERR_TOO_MANY_ METAFILES_IN USE The maximum number of metafiles allowed for a given

process was exceeded.

Remarks

This function deletes access to the specified memory metafile and makes the metafile handle invalid.

Related Functions

* GpiCopyMetaFile
GpiLoadMetaFile
GpiPlayMetaFile
GpiQueryMetaFileBits
GpiQueryMetaFileLength
GpiSaveMetaFile
GpiSetMetaFileBits

e © o o o o

5-98 PM Programming Reference

Example Code

GpiDeleteMetaFile —
Delete Metafile

This example uses GpiDeleteMetaFile to delete a metafile previously loaded with GpiL.oadMetaFile.

#define INCL_GPIMETAFILES

#include <os2.h>

BOOL fSuccess;

HMF hmf;
HAB hab;

/* loads metafile from disk */

/* Metafile functions */
/* success indicator */
/* metafile handle */
/* anchor block handle *x/

hmf = GpiloadMetaFile(hab, "sample.met");

fSuccess = GpiDeleteMetaFile(hmf);

Chapter 5. Graphics Functions 5-99

GpiDeletePalette —
Delete Palette

#define INCL_GPILOGCOLORTABLE /* Or use INCL_GPI or INCL_PM */

BOOL GpiDeletePalette (HPAL hpal)

This function deletes a color palette.

Parameters
hpal (HPAL) - input
Palette handie.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPAL
PMERR_PALETTE_SELECTED

PMERR_PALETTE_BUSY

Remarks

An invalid color palette handle was specified.

Color palette operations cannot be performed on a
presentation space while a palette is selected.

An attempt has been made to reset the owner of a palette
when it was busy.

The palette must not be currently selected into a presentation space (see GpiSelectPalette).

Related Functions

* GpiAnimatePalette
GpiCreatePalette
GpiQueryPalette
GpiQueryPalettelnfo
GpiSelectPalette
GpiSetPaletteEntries
WinRealizePalette

5-100 PM Programming Reference

GpiDeletePalette —
Delete Palette

Example Code
This example uses GpiDeletePalette to delete the color palette currently associated with the
presentation space, which is determined using GpiQueryPalette.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <o0s2.h>

BOOL fSuccess; /* success indicator */
HPAL hpal; /* palette handle */
HPS hps; /* Presentation-space handle */

/* get handle of currently associated palette */
hpal = GpiQueryPalette(hps);

/* delete palette */
fSuccess = GpiDeletePalette(hpal);

Chapter 5. Graphics Functions 5-101

GpiDeleteSegment —
Delete Segment

#define INCL_GPISEGMENTS /* Or use INCL_GPI or INCL_PM */

BOOL GpiDeleteSegment (HPS hps, LONG iSegid)

This function deletes a retained segment.

Parameters
hps (HPS) — input
Presentation-space handle.

ISegid (LONG) — input
Segment identifier.

The identifier of the segment to be deleted; it must be greater than 0.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_SEG_NAME An invalid segment identifier was specified.
PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in

a micro presentation space.

Remarks
If the segment is open when it is deleted, there is no open segment after this function. In this
instance, processing as described for GpiCloseSegment is performed.

If the segment is in the segment chain, it is removed from the chain.

This function deletes only a retained segment.

Note: in draw drawing mode (see GpiSetDrawingMode), the identifier of the current segment is not
remembered, so it is not recognized if specified as the /Segid parameter.

5-102 PM Programming Reference

Relat

ed Functions
GpiCallSegmentMatrix
GpiCloseSegment
GpiCorrelateSegment
GpiDeleteSegments
GpiDrawSegment
GpiErrorSegmentData
GpiOpenSegment
GpiQueryinitialSegmentAttrs
GpiQuerySegmentAttrs
GpiQuerySegmentNames
GpiQuerySegmentPriority
GpiSetlnitialSegmentAttrs
GpiSetSegmentAtirs
GpiSetSegmentPriority

Example Code
This example uses the GpiDeleteSegment function to delete segment 4, previously created by

GpiDeleteSegment —

GpiOpenSegment.
#define INCL_GPISEGMENTS /* Segment functions */
#include <o0s2.h>
HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */
POINTL ptlTriangle[] = { 100, 100, 260, 0, 0, O }; /* vertices */

GpiOpenSegment (hps, 4L);
GpiMove(hps, &ptlStart);

GpiPolyLine(hps, 3L, ptiTriangle);

GpiCloseSegment (hps) ;

GpiDeleteSegment (hps, 4L);

/*
/*
/*
/*

/*

open the segment

move to start point (0, 0)
draw triangle

close the segment

delete segment #4

Delete Segment

*/
*/

*/

*/

Chapter 5. Graphics Functions 5-103

GpiDeleteSegments —
Delete Segments

#define INCL_GPISEGMENTS /* Or use INCL_GPI or INCL_PM */

BOOL GpiDeleteSegments (HPS hps, LONG IFirstSegment, LONG ILastSegment)

This function deletes ail segments in the given identifier range.

Parameters
hps (HPS) — input
Presentation-space handle.

IFirstSegment (LONG) — input
First identifier in the range; it must be greater than 0.

ILastSegment (LONG) — input
Last identifier in the range; it must be greater than 0.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_SEG_NAME An invalid segment identifier was specified.
PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in

a micro presentation space.

Remarks
IFirstSegment and ILastSegment can have the same value, in which instance, only this segment is
deleted. If IFirstSegment is greater than ILastSegment only the segment with identifier IFirstSegment
is deleted.

If one of the segments deleted is the currently open segment, there is no open segment after this
function. In this instance, processing as described for GpiCloseSegment is performed. If any of the
segments are in the segment chain, they are removed from the chain.

This function only deletes retained segments.

Note: In draw drawing mode (see GpiSetDrawingMode), the identifier of the current segment is not
remembered, so it is not recognized if it occurs within the range of specified identifiers.

5-104 PM Programming Reference

Related Functions

GpiCallSegmentMatrix
GpiCloseSegment
GpiCorrelateSegment
GpiDeleteSegment
GpiDrawSegment
GpiErrorSegmentData
GpiOpenSegment
GpiQuerylnitialSegmentAttrs
GpiQuerySegmentAttrs
GpiQuerySegmentNames
GpiQuerySegmentPriority
GpiSetlnitiaiSegmentAttrs
GpiSetSegmentAttrs
GpiSetSegmentPriority

Example Code
This example uses the GplDeleteSegments function to delete segments 4 through 6, created by
GpiOpenSegment.

#define INCL_GPISEGMENTS
#include <os2.h>

HPS hps;

GpiOpenSegment (hps, 4L);

GpiCloseSegment (hps) ;
GpiOpenSegment (hps, 5L);

GpiCloseSegment (hps);
GpiOpenSegment (hps, 6L);

GpiCloseSegment (hps);

GpiDeleteSegments(hps, 4L, 6L);

/*

/*
/*

/*
/*

/*

GpiDeleteSegments —

/* Segment functions

/* presentation space handle

open segment 4

close the segment
open segment 5

close the segment
open segment 6

close the segment

*/

*/
*/

*/
*/

*/
*/

*/

/* delete segments 4 through 6 */

Chapter 5. Graphics Functions

Delete Segments

5-105

GpiDeleteSetld —
Delete Set Identifier

#define INCL_GPILCIDS /* Or use INCL_GPI or INCL_PM */

BOOL GpiDeleteSetid (HPS hps, LONG ILcid)

This function deletes a logical font or bit-map tag.

Parameters
hps (HPS) — input
Presentation-space handle.

ILcid (LONG) — input
Local identifier.

The local identifier (Icid) for the object.

If LCID_ALL is specified, all logical fonts are deleted, and all bit-map tagging is removed. If
LCID_DEFAULT or LCID_ALL is specified, the original defauit font is restored if it has been

changed (see GpiCreatel.ogFont).

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_SETID
" PMERR_SETID_NOT_FOUND
PMERR_SETID_IN_USE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid setid parameter was specified.
An attempt was made to delete a setid that did not exist.

An attempt was made to specify a setid that was already
in use as the currently selected character, marker or
pattern set.

If the object is a logical font, it is deleted, and is no longer available for use. If the object is a bit
map, it is no longer tagged with the local identifier; the bit map is not deleted and its handle remains

valid.

In either instance, the ILcid is released and is now available for reuse, uniess the object is currently
selected (as the current character, pattern, or marker set), in which instance an error is raised.

If this function occurs within a path definition when the drawing mode (see GpiSetDrawingMode) is
retain or draw-and-retain, its effect is not stored with the definition.

Note: This function must not be used when creating SAA-conforming metafiles; see “Metafile

Restrictions” on page G-1.

5-106 PM Programming Reference

GpiDeleteSetld —
Delete Set Identifier

Related Functions

* @GpiCreatelLogFont
GpiLoadFonts
GpiQueryFontMetrics
GpiQueryFonts
GpiQueryKerningPairs
GpiQueryNumberSetlds
GpiQuerySetlds
GpiQueryWidthTable
GpiUnloadFonts
GpiSetBitmaplid
GpiSetCharSet

Example Code

This example uses the GpiDeleteSetld function to delete a logical font. The GpiSetCharSet function

is required only if the logical font is the current font for the presentation space.

#define INCL_GPILCIDS /* Font functions */
#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
FATTRS fat;

/* create and set the font */

GpiCreateLogFont(hps, NULL, 1L, &fat);
GpiSetCharSet(hps, 1L);

GpiSetCharSet(hps, OL); /* release the font before deleting */
GpiDeleteSetId(hps, 1L); /* delete the logical font */

Chapter 5. Graphics Functions

5-107

GpiDestroyPS —
Destroy Presentation Space

#define INCL_GPICONTROL /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

BOOL GpiDestroyPS (HPS hps)

This function destroys the presentation space.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handie was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_PS_IS ASSOCIATED An attempt was made to destroy a presentation or

associate a presentation space that is still associated
with a device context.

Remarks
All resources owned by the presentation space are released, and any subsequent calls that use the
value of the presentation space handle are rejected.

Related Functions
* GpiAssociate
GpiCreatePS
GpiQueryDevice
GpiQueryPS
GpiResetPS
GpiRestorePS
GpiSavePS
GpiSetPS

e & o o o o o

5-108 PM Programming Reference

GpiDestroyPS -—
Destroy Presentation Space

Example Code -
This example uses the GpiDestroyPS function to destroy the presentation space associated with a
memory device context.

#define INCL_GPICONTROL /* GPI control Functions */
#define INCL_DEV /* Device Function definitions */
#include <os2.h>

HAB hab; /* Anchor-block handle */
HPS hps; /* Target presentation-space handle */
HDC hdc; /* Device-context handle */
DEVOPENSTRUC dop; /* context data structure */
SIZEL page = { 0, 0 }; /* page size (use same as device) *f

/* Create the memory device context and presentation space. */
hdc = DevOpenDC(hab, OD_MEMORY, "**, 5L, (PDEVOPENDATA)&dop, NULLHANDLE);
hps = GpiCreatePS(hab, hdc, &page, PU_PELS|GPIT_MICRO}GPIA_ASSOC);

GpiAssociate(hps, NULLHANDLE); /* disassociate device context */
GpiDestroyPS(hps); /* destroys presentation space */
DevCloseDC(hdc); /* closes device context */

Chapter 5. Graphics Functions 5-109

GpiDestroyRegion —
Destroy Region

fidefine INCL_GPIREGIONS /* Or use INCL_GPI or INCL_PM */

BOOL GpiDestroyRegion (HPS hps, HRGN hrgn)

This function destroys a region.

Parameters
hps (HPS) — input
Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

hrgn (HRGN) — input
Handle of region to be destroyed.

If this is NULLHANDLE, the call takes no action, and completes without error.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_HRGN An invalid region handle was specified.
PMERR_REGION_IS_CLIP_REGION An attempt was made to perform a region operation on a
region that is selected as a clip region.
PMERR_HRGN_BUSY An internal region busy error was detected. The region

was locked by one thread during an attempt to access it
from another thread.

Remarks
This function cannot be used to destroy the clip region; the clip region must first-be deselected with
GpiSetClipRegion.

5-110 PM Programming Reference

GpiDestroyRegion —
Destroy Region

Related Functions

Prerequisite Functions

e GpiSetClipRegion(if the region to be destroyed is a clip region)

Other Related Functions

GpiCombineRegion
GpiCreateRegion
GpiEqualRegion
GpiOffsetRegion
GpiPaintRegion
GpiPtinRegion
GpiQueryRegionBox
GpiQueryRegionRects
GpiRectinRegion
GpiSetRegion

Example Code
This example uses the GpiDestroyRegion function to destroy a region after drawing a complex
figure.

#define INCL_GPIREGIONS /* Region functions */
#include <os2.h>

HPS hps; /* presentation space handle */
HRGN hrgn;
RECTL arci[3] = { 10,10,20,20,15,15,25,25,20,20,30,30 };

hrgn = GpiCreateRegion(hps, 3L, arcl); /* use 3 rectangles */

GpiPaintRegion(hps, hrgn); /* paint the region */
GpiDestroyRegion(hps, hrgn); /* destroy the region */

Chapter 5. Graphics Functions 5-111

GpiDrawBits —
Draw Bits

#define INCL_GPIBITMAPS /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GpiDrawBits (HPS hpsTarget, PVOID pBits, PBITMAPINFO2 pbmi2infoTable,
LONG iCount, PPOINTL aptiPoints, LONG IRop, ULONG flOptions)

This function draws a rectangle of bits.

Parameters
hpsTarget (HPS) — input

Target presentation-space handle.

pBits (PVOID) — input

Source bits.

The source bits must be in one of the standard bit-map formats.

pbmi2infoTable (PBITMAPINFO2) — input

Bit-map information table.

This describes the format of the source bits.

ICount (LONG) — input

Point count.

This count must be equal to 4.

aptiPoints (PPOINTL) — input

Point array

Array of ICount points, in the order Tx1, Ty1, Tx2, Ty2, Sx1, Sy1, Sx2, Sy2. These are:
Tx1,Tyl Specify the bottom left corner of the target rectangle in target world coordinates.
Tx2,Ty2 Specify the top right corner of the target rectangle in target world coordinates.

An error occurs if the left coordinate of the target rectangle is greater than the right,
or if the bottom coordinate is greater than the top.

$x1,S8y1 Specify the bottom left corner of the source rectangle in source device coordinates.

Sx2,8y2 Specify the top right corner of the source rectangle in source device coordinates.

IRop (LONG) - input

Mixing function required.

Each plane of the target can be considered to be processed separately. For any pel in a target
plane, three bits together with the /Rop values are used to determine the final value. These are
the value of that pel in the Pattern (P) and Source (S) data and the initial value of that pel in the
Target (T) data. For any combination of P, S, and T pel values, the final target value for the pel is
determined by the appropriate /Rop bit value as shown below:

5-112

P S T(initial) T(final)

0 0 Index bit O (least
significant)

0 0 1 Index bit 1

0 1 0 Index bit 2

0 1 1 Index bit 3

1 0 0 Index bit 4

1 0 1 Index bit 5

1 1 0 Index bit 6

1 1 1 Index bit 7 (most
significant)

PM Programming Reference

GpiDrawBits —
Draw Bits

The index formed as described above determines the mixing required. Mnemonic names are

available for commonly used mixes:

ROP_SRCCOPY /* SRC */
ROP_SRCPAINT /* SRC OR DST */
ROP_SRCAND /* SRC AND DST */
ROP_SRCINVERT /* SRC XOR DST */
ROP_SRCERASE /* SRC AND NOT(DST) */
ROP_NOTSRCCOPY /* NOT(SRC) */

ROP_NOTSRCERASE ~ /* NOT(SRC) AND NOT(DST) */

ROP_MERGECOPY /* SRC AND PAT */
ROP_MERGEPAINT /* NOT(SRC) OR DST */
ROP_PATCOPY /* PAT */
ROP_PATPAINT /* NOT(SRC) OR PAT OR DST */
ROP_PATINVERT /* DST XOR PAT */
ROP_DSTINVERT /* NOT(DST) */
ROP_ZERO /* 0 */
ROP_ONE /¥ 1 */
fiOptions (ULONG) — input
Options.

How eliminated lines or columns are treated if a compression is performed.

Flags 15 through 31 of flOptions can be used for privately supported modes for particular

devices.

BBO_OR The default value; if compression is necessary, logical-OR eliminated rows or
columns. This is useful for white on black.

BBO_AND If compression is necessary, logical-AND eliminated rows or columns. This is

useful for black on white.

BBO_IGNORE If compression is necessary, ignore eliminated rows or columns. This is useful

for color.
Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_BITBLT_MIX

PMERR_INV_BITBLT STYLE

PMERR_INV_COORDINATE
PMERR_INV_RECT
PMERR_INCORRECT_DC_TYPE

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

An invalid /Rop parameter was specified with a GpiBitBIt
or GpiWCBItBIt function.

An invalid options parameter was specified with a
GpiBitBit or GpiWCBItBIt function.

An invalid coordinate value was specified.
An invalid rectangle parameter was specified.

An attempt was made to perform a bit-map operation on a
presentation space associated with a device context of a
type that is unable to support bit-map operations.

Chapter 5. Graphics Functions 5-113

GpiDrawBits —
Draw Bits

Remarks
A rectangle of bit-map image data is copied from storage to a bit map selected into a device context
associated with the target presentation space. Alternatively, the target presentation space can be
associated with a device context that specifies a suitable raster device, for example, the screen. An
error occurs if this device does not support raster operations.

The source bits must be in one of the standard bit-map formats.

A rectangle is specified in device coordinates for the source bits, and one in world coordinates for
the target presentation space. The source rectangle is noninclusive; the left and lower boundaries in
device space are included, but not the right and upper boundaries. Thus if the bottom left is equal to
the top right, the rectangle is deemed to be empty. The target rectangle is “inclusive-inciusive”; that
is, all boundaries are included in the rectangle.

If the target rectangle, after transformation to device coordinates and adjustment for inclusivity, is
not the same size as the source rectangle, then stretching or compressing of the data occurs.
flOptions specifies how eliminated rows or columns of bits are to be treated if compression occurs.
Note that the pattern data is never streiched or compressed.

These current attributes of the target presentation space are used (other than for converting between
monochrome and color, as described below):

Area color

Area background color
Pattern set

Pattern symbol.

The color values are used in conversion between monochrome and color data. This is the only
format conversion performed by this function. The conversions are:

* Output of a monochrome pattern to a color device
In this instance the pattern is converted first to a color pattern, using the current area colors:

— source 1s — area foreground color
— source 0s — area background color.

* Copying from a monochrome bit map to a color bit map (or device)
The source bits are converted as follows:

— 'source 1s — image foreground color
— source 0s — image background color.

¢ Copying from a color bit map to a monochrome bit map (or device)
The source bits are converted as follows:

— source nonzeros — image foreground color
— source 0Os — image background color.

if the mix (/Rop) does not call for a pattern, the pattern set and pattern symbol are not used.

Neither the source nor the pattern is required when a bit map, or part of a bit map, is to be cleared to
a particular color.

If the mix does require both source and pattern, a three-way operation is performed.

If a pattern is required, dithering may be performed for solid patterns in a color that is not available
on the device. See GpiSetPattern.

5-114 PM Programming Reference

This function can cause immediate drawing, or be retained in segment store, or both of these,

GpiDrawBits —
Draw Bits

depending upon the drawing mode (see GpiSetDrawingMode). If the function is retained in segment
store, the storage identified by the pBits and pbmi2infoTable parameters must not be changed or
freed by the application while the segment containing the function can still be drawn. However, if a
metafile is generated and no further drawing is needed, this does not apply, as the information is
encaptured in the metafile.

Note: There are restrictions on the use of this function when creating SAA-conforming metafiles;

see “Metafile Restrictions” on page G-1.

Related Functions

Graphic Elements and Orders

GpiBitBlt

GpiCreateBitmap
GpiDeleteBitmap
GpilLoadBitmap
GpiQueryBitmapBits
GpiQueryBitmapDimension
GpiQueryBitmapHandle
GpiQueryBitmapParameters
GpiQueryDeviceBitmapFormats
GpiSetBitmap
GpiSetBitmapBits
GpiSetBitmapDimension
GpiSetBitmapld
GpiWCBitBIt
winDrawBitmap
WinGetSysBitmap

Element Type: OCODE_GBBLT
Order: Bitbit

Chapter 5. Graphics Functions

5-115

GpiDrawBits —
Draw Bits

Example Code
This example uses GpiDrawBits to draw a rectangle of bits. The bit map was previously placed in
application memory using GpiQueryBitmapBits; when the stored image is displayed, it will be a
compressed copy (ROP_SRCCOPY) of the source bit map (note the difference between the target and
source rectangle sizes), with eliminated rows/columns ignored (BBO_IGNORE) when compression

takes place.

#define INCL_GPIBITMAPS /* Bit map functions */
#include <os2.h>

HPS hps; /* presentation-space handle */
PBYTE pb; /* bit-map image data */
BITMAPINFO2 pbmi; /* bit-map information table */
LONG 1Hits; /* correlation/error indicator */
LONG 1Scan; /* number of lines scanned */
/* target and source rectangles */

POINTL apt1Points[4]={ 300, 400, 350, 450, 0, 0, 100, 100 };

/* scan and transfer bit map to application storage */
pbmi.cbFix = 16L;

pbmi.cPlanes = 1;

pbmi.cBitCount = 4;

1Scan = GpiQueryBitmapBits{hps, OL, 100L, pb, &pbmi);

/* draw stored rectangle bit map */
MHits = GpiDrawBits(hps, (VOID *)pb, &pbmi, 4L,
apt1Points, ROP_SRCCOPY, BBO_IGNORE);

6-116 PM Programming Reference

GpiDrawChain —
Draw Chain

#define INCL_GPISEGMENTS /* Or use INCL_GPI or INCL_PM */

BOOL GpiDrawChain (HPS hps)

This function draws the segments that are in the segment chain.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simuitaneously.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in

a micro presentation space.

Remarks
The segments drawn are all of the retained segments that have the ATTR_CHAINED segment
attribute (see GpiSetinitialSegmentAttrs), together with all of the unchained segments that are called
from them.

The drawing operation is controlled by the calls set by the draw controls (see GpiSetDrawControl),
except for the correlate control. If there is not a segment open at the time of the draw, and this
function is followed by primitives or attributes, without first opening a segment, the processing is as
described for GpiCloseSegment.

If a segment is aiready open at the time of the draw, GpiCloseSegment processing is not performed
at the completion of the draw (except that any unclosed path or area is abandoned with an error). In
this instance, if the open segment is the last one drawn (and no dynamic segments had to be drawn),
attributes and other parameters are in the correct state to continue drawing in any drawing mode.

Dynamic segments are not drawn if they are found while processing the segment chain. However,
depending on the setting of DCTL_DYNAMIC (see GpiSetDrawControl), they may be removed before,
and drawn after, the operation.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the chain. This can be done by ensuring that the
first segment to be drawn does not have the ATTR_FASTCHAIN attribute (see
GpiSetinitialSegmentAtirs), or by issuing GpiResetPS before the GpiDrawChain. The latter method
also resets the clip path to no clipping, which may also be necessary.

Chapter 5. Graphics Functions 5-117

GpiDrawChain -
Draw Chain

It is an error to issue this function while any of these brackets are open:

Area bracket
* Path bracket
* Element bracket.

Related Functions

* GpiDrawDynamics
GpiDrawFrom
GpiDrawSegment
GpiErase
GpiQueryDrawControl
GpiQueryDrawingMode
GpiQueryStopDraw
GpiRemoveDynamics
GpiSetDrawControl
GpiSetDrawingMode
GpiSetStopDraw

Example Code
This function uses GpiDrawChain to draw the two chained segments.

#define INCL_GPISEGMENTS /* Segment functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* presentation-space handle */

/* The chaining attribute is switched on */
GpiSetInitialSegmentAttrs(hps, ATTR_CHAINED, ATTR_ON);

/* two chained segments are defined */
GpiOpenSegment (hps, 1L);
GpiCloseSegment (hps);

GpiOpenSegment (hps, 2L);
GpiCloseSegment (hps);

/* draw the segment chain */
fSuccess = GpiDrawChain(hps);

5-118 = PM Programming Reference

GpiDrawDynamics —
Draw Dynamics

#define INCL_GPISEGMENTS /* Or use INCL_GPI or INCL_PM */

BOOL GpiDrawDynamics (HPS hps)

This function redraws the dynamic segments in, or called from, the segment chain.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.

PMERR_INV_FOR_THIS_DC_TYPE An attempt has been made to issue GpiRemoveDynamics
or GpiDrawDynamics to a presentation space associated
with a metafile device context.

Remarks
Dynamic segments are those segments in the segment chain that have the ATTR_DYNAMIC segment
attribute (see GpiSetinitialSegmentAttrs). It is preferable to position dynamic segments at the start of
the segment chain.

Dynamic segments can either be drawn with this function, or by setting the DCTL_DYNAMIC draw
control (see GpiSetDrawControl), and issuing one of the other GpiDraw... calls.

If there is no range set by a previous GpiRemoveDynamics, all dynamic segments are redrawn by
GpiDrawDynamics). However, if GpiRemoveDynamics specified a range in the segment chain, the
redraw is restricted to the dynamic segments that are in, or called from, the selected range. (See
GpiRemoveDynamics).

Note: The redraw is controlled by the calls set by previous calls to GpiSetDrawControl.
The “stop draw” condition can be set (from another thread) while GpiDrawDynamics is in

progress. This is useful in responding to a new position by setting this condition, and then
clearing it and redrawing at the new position.

If “Erase before draw” is set ON (see GpiSetDrawControl), the presentation space is erased before
the redraw.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits

are reset to their default values, before processing the segments. This can be done either by
ensuring that the first dynamic segment to be drawn does not have the ATTR_FASTCHAIN afttribute

Chapter 5. Graphics Functions 5-119

GpiDrawDynamics —
Draw Dynamics

(see GpiSetinitialSegmentAttrs), or by issuing GpiResetPS before the GpiDrawDynamics. The latter
method also resets the clip path to no clipping, which may also be necessary.

If this function is followed by primitives or attributes, without first opening a segment, the processing
is as described for GpiCloseSegment. In particular, note that during GpiDrawDynamics, the system

forces the foreground mix to FM_XOR and the background mix to BM_LEAVEALONE. It may be
necessary to set one or both of these before starting to draw.

Related Functions

¢ GpiDrawChain .
GpiDrawFrom
GpiDrawSegment
GpiErase
GpiGetData
GpiPutData
GpiQueryDrawControl
GpiQueryDrawingMode
GpiQueryStopDraw
GpiRemoveDynamics
GpiSetDrawControl
GpiSetDrawingMode
GpiSetinitialSegmentAttrs
GpiSetSegmentAttrs
GpiSetStopDraw

Example Code

This example uses GpiDrawDynamics to redraw the two previously defined dynamic chained

segments.

#define INCL_GPISEGMENTS /* Segment functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* presentation-space handlie */

/* The chaining attribute is switched on */

GpiSetInitialSegmentAttrs(hps, ATTR_CHAINED | ATTR_DYNAMIC,
ATTR_ON) ;

/* two dynamic chained segments are defined */

GpiOpenSegment (hps, 1L);

GpiCloseSegment (hps);

GpiOpenSegment (hps, 2L);
GpiCloseSegment (hps) ;

/* draw the dynamic segment chain */
fSuccess = GpiDrawDynamics(hps);

5-120 PM Programming Reference

.

GpiDrawFrom -

Draw From
#define INCL_GPISEGMENTS /* Or use INCL_GPI or INCL_PM */
BOOL GpiDrawFrom (HPS hps, LONG IFirstSegment, LONG ILastSegment)
This function draws a section of the segment chain.
Parameters
hps (HPS) - input
Presentation-space handle.
IFirstSegment (LONG) — input
First segment to be drawn; it must be greater than 0.
ILastSegment (LONG) — input
Last segment to be drawn; it must be greater than 0.
Returns
Success indicator:
TRUE Successful completion
FALSE Error occurred.
Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simuitaneously.
PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.
PMERR_SEG_NOT_FOUND The specified segment identifier did not exist
PMERR_SEG_NOT_CHAINED An attempt was made to issue GpiDrawFrom,

GpiCorrelateFrom or GpiQuerySegmentPriority for a
segment that was not chained.

PMERR_INV_SEG;NAME An invalid segment identifier was specified.

Remarks

Drawing starts at the segment identified by IFirstSegment and includes all chained segments (those
with the ATTR_CHAINED segment attribute, see GpiSetinitialSegmentAttrs), and the segments called
from them, up to, and including, the segment identified by /ILastSegment.

The drawing operation is controlled by the calls set by the draw controls {(see GpiSetDrawControl),
except for the correlate control.

If there is not a segment open at the time of the draw, and this function is followed by primitives or
attributes, without first opening a segment, the processing is as described for GpiCloseSegment.

If a segment is already open at the time of the draw, GpiCloseSegment processing is not performed
at the completion of the draw (except that any unclosed path or area is terminated with an error). In
this instance, if the open segment is the last one drawn (and no dynamic segments had to be drawn),
attributes and other parameters are in the correct state to continue drawing in any drawing mode.

Chapter 5. Graphics Functions 5-121

GpiDrawFrom -
Draw From

Dynamic segments are not drawn if they are found while processing the segment chain. However,
depending on the setting of DCTL_DYNAMIC (see GpiSetDrawControl), they may be removed before,
and drawn after, the operation. If this happens, then all dynamic segments are involved, whether
they occur within the range specified or not.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits
are reset to their default values, before processing the segments. This can be done either by
ensuring that the first segment to be drawn does not have the ATTR_FASTCHAIN attribute (see
GpiSetinitialSegmentAttrs), or by issuing GpiResetPS before the GpiDrawFrom. The latter method
also resets the clip path to no clipping, which may also be necessary.

It is an error to issue this function while any of these brackets are open:

* Area bracket
Path bracket
* Element bracket.

lf IFirstSegment does not exist, or is not in the segment chain, an error is raised. If the ILastSegment
does not exist, or is not in the chain, or is chained before the /FirstSegment, no error is raised, and
processing continues to the end of the chain.

Related Functions

* GpiDrawChain
GpiDrawDynamics
GpiDrawSegment
GpiErase
GpiGetData
GpiPutData
GpiQueryDrawControl
GpiQueryDrawingMode
GpiQueryStopDraw
GpiRemoveDynamics
GpiSetDrawControl
CGpiSetDrawingMode
GpiSetStopDraw

Example Code
This example uses the GpiDrawFrom function to draw all segments in the picture chain between and
including the segments 1 and 4.

#define INCL_GPISEGMENTS /* Segment functions */
#include <os2.h>

HPS hps; /* presentation space handle */

GpiDrawFrom(hps, 1L, 4L);

5-122 PM Programming Reference

~—

GpiDrawSegment —
Draw Segment

#define INCL_GPISEGMENTS /* Or use INCL_GPI or INCL_PM */

BOOL GpiDrawSegment (HPS hps, LONG ISegment)

This function draws the specified segment.

Parameters

hps (HPS) — input
Presentation-space handle.

ISegment (LONG) — input
Segment to be drawn; it must be greater than 0.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.

PMERR_SEG _NOT_FOUND The specified segment identifier did not exist

PMERR_INV_SEG_NAME An invalid segment identifier was specified.

Remarks

The drawing operation is controlled by the calls set by the draw controls (see GpiSetDrawControl),
except for the correlate control.

If there is not a segment open at the time of the draw, and this function is followed by primitives or
attributes, without first opening a segment, the processing is as described for GpiCloseSegment.

If a segment is already open at the time of the draw, GpiCloseSegment processing is not performed
at the completion of the draw (except that any unclosed path or area is abandoned with an error). In
this instance, if the open segment is the segment specified in ISegment, and no dynamic segments
had to be drawn, then attributes and other parameters are in the correct state to continue drawing in
any drawing mode.

Depending on the setting of DCTL_DYNAMIC (see GpiSetDrawControl), all of the dynamic segments
in the chain may be removed before, and drawn after, the specified segment is drawn. (Note that if
the specified segment is itself dynamic, it is only drawn in this way.)

This function differs from the other GpiDraw... calls, in that the segment to be drawn need not be a
chained segment.

It may be necessary to ensure that attributes, model transform, current position, and viewing limits

are reset to their default values, before processing the segment. This can be done either by
ensuring that the segment does not have the ATTR_FASTCHAIN attribute (see

Chapter 5. Graphics Functions 5-123

GpiDrawSegment —
Draw Segment

GpiSetinitiaiSegmentAttrs), or by issuing GpiResetPS before the GpiDrawSegment. The latter
method also resets the clip path to no clipping, which may also be necessary.

It is an error to issue this function while any of these brackets are open:

* Area bracket
* Path bracket
* Element bracket.

Related Functions

* GpiDrawChain
GpiDrawDynamics
GpiDrawFrom
GpiErase
GpiErrorSegmentData
GpiQueryDrawControl
GpiQueryDrawingMode
GpiQueryStopDraw
GpiRemoveDynamics
GpiSetDrawControl
GpiSetDrawingMode
GpiSetStopDraw

Example Code

This example uses the GpiDrawSegment function to draw segment 4.

#define INCL_GPISEGMENTS /* Segment functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */
POINTL ptiTriangle[] = { 100, 1060, 200, 0, 0, 0 }; /* vertices */

GpiOpenSegment (hps, 4L); /* open the segment */
GpiMove(hps, 8ptiStart); /* move to start point (0, 0) */

GpiPolyLine(hps, 3L, ptlTriangle); /* draw triangle */
GpiCloseSegment (hps); /* close the segment */

GpiDrawSegment (hps, 4L); /* draw segment #4 */

5-124 PM Programming Reference

GpiElement —
Element

#define INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

LONG GpliElement (HPS hps, LONG iType, PSZ pszDesc, LONG ILength, PBYTE pbData)

This function adds a single element to the current segment..

Parameters
hps (HPS) — input
Presentation-space handle.

IType (LONG) — input
Type to be associated with the element.

Application-defined elements should have type values in the range X'81xxxxxx' through
X'FFxxxxxx' so as to avoid conflict with system-generated elements.

pszDesc (PSZ) — input
Element description.

This is a variable length character string that is recorded with the element.

iLength (LONG) — input
Length of content data for the element.

This must not be greater than 63KB.

pbData (PBYTE) — input
Buffer pointer.

Element content data.

Returns
Correlation and error indicators:
GP1_OK Successful
GPL_HITS Correlate hits

GPI_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION
PMERR_INV_LENGTH_OR_COUNT

PMERR_DATA_TOO_LONG

PMERR_ALREADY_IN_ELEMENT

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid length or count parameter was specified.

An attempt was made to transfer more than the maximum
permitted amount of data (64512 bytes) using GpiPutData,
GpiGetData, or GpiElement.

An attempt was made to begin a new element while an
existing element bracket was already open.

Chapter 5. Graphics Functions 5-125

GpiElement —
Element

Remarks
The element is stored in the current segment if the drawing mode (see GpiSetDrawingMode) is retain
or draw-and-retain. It is drawn if the drawing mode is draw or draw-and-retain.

Itis an error if the element data contains any begin or end element orders. Similarly, this function is
not valid within an element bracket.

Note: No coordinate conversion is performed by this function. The application must ensure that the
coordinates within the element are in the correct format for the presentation space (see
GpiCreatePS).

Related Functions

¢ GpiBeginElement
GpiDeleteElement
GpiDeleteElementRange
GpiDeleteElementsBetweenLabels
GpiEndElement
GpilLabel
GpiOffsetElementPointer
GpiQueryElement
GpiQueryElementPointer
GpiQueryElementType
GpiSetElementPointer
GpiSetElementPointerAtlabel

5-126 PM Programming Reference

Example Code

GpiElement -
Element

This example uses GpiElement to add a single element to the current segment: an arc starting at the

current position, passing through (10,10), and ending at (5,5).

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */
#define INCL_GPISEGMENTS /* Segment functions */
#define INCL_ORDERS /* Graphical Order Formats */
#include <os2.h>

LONG THits; /* correlation/error indicator */
HPS hps; /* presentation-space handle */
LONG 1Type; /* element type */
char pszDesc[4]; /* element description */
LONG 1Length; /* length of element data */
LORDER pbData; /* pointer to element data */

ORDERL_GCARC TArcPts = {10L,10L,5L,5L}; /* arc points structure */
GpiOpenSegment (hps, 3L); /* opens segment to receive element */

/* type is order code for arc at current position (GARC) */
1Type = OCODE_GCARC;

/* call the element 'Arc' */
strepy(pszDesc,"Arc");

/* length of element data */
1Length = sizeof(LORDER);

/* fill element data structure */

pbData.idCode = OCODE_GCARC; /* order code: arc at current
position */

pbData.uchLength = sizeof(ORDERL_GCARC);

/* order data contains arc points structure */

memcpy (pbData.uchData, 1ArcPts, sizeof(ORDERL_GCARC));

/* add element */
1Hits = GpiElement(hps, 1Type, pszDesc, 1Length, (BYTE *)&pbData);

GpiCloseSegment (hps); /* closes segment that received data */

Chapter 5. Graphics Functions 5-127

GpiEndArea —
End Area

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GpiEndArea (HPS hps)

This function ends the construction of a shaded area.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Correlation and error indicators:
GPL_OK Successful

GPI_HITS Correlate hits
GPLERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_NOT_IN_AREA

PMERR_COORDINATE_OVERFLOW

Remarks

An invalid presentation-space handie was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to end an area using GpiEndArea
or during segment drawing while not in an area bracket.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

The construction is started by the GpiBeginArea function. If necessary, a final line is constructed (to
the starting point of the last figure) to close the area.

The current position is not changed, unless a closure line has to be drawn, in which case the current
position is moved to the end point of the line.

5-128 PM Programming Reference

GpiEndArea —
End Area

Related Functions
Prerequisite Functions

¢ GpiBeginArea

Other Related Functions

GpiSetPattern
GpiSetPatternRefPoint
GpiSetPatternSet
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GEAR

Order: End Area

Example Code
This example uses the GpiEndArea function to end an area bracket. The function draws the area (a
triangle) by filling the outline with the current fill pattern.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps: /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */

POINTL ptiTriangle[} = { 100, 100, 200, 0, 0, O }; /* vertices */

GpiBeginArea(hps, BA_NOBOUNDARY | BA_ALTERNATE);
GpiMove(hps, &ptiStart);

GpiPolyLine(hps, 3L, ptl1Triangle);
GpiEndArea(hps);

Chapter 5. Graphics Functions 5-129

GpiEndElement —
End Element

#define INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

BOOL GpiEndElement (HPS hps)

This function terminates an element started by GpiBeginElement.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_NOT_IN_ELEMENT

Related Functions
Prerequisite Functions

* GpiBeginElement

Other Related Functions

GpiDeleteElement
GpiDeleteElementRange
GpiDeleteElementsBetweenLabels
GpiElement

GpiLabel
GpiOffsetElementPointer
GpiQueryElement
GpiQueryElementPointer
GpiQueryElementType
GpiSetElementPointer
GpiSetElementPointerAtLabel

5-130 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to end an element using
GpiEndElement or during segment drawing while not in
an element bracket.

GpiEndElement —
End Element

Example Code

This example uses the GpiEndEiement function to end an element bracket.

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */

POINTL pti1Triangle[] = { 100, 100, 200, 0, 6, O }; /* vertices */

/* begin the element bracket */
GpiBeginElement(hps, 1L, "Triangle");

GpiMove(hps, &ptliStart); /* move to start point (0, 0) */
GpiPolyLine(hps, 3L, ptiTriangle); /* draw triangle */
GpiEndElement (hps) ; /* end element bracket */

Chapter 5. Graphics Functions 5-131

GpiEndPath —
End Path

#define INCL_GPIPATHS /* Or use INCL_GPI or INCL_PM */

BOOL GpiEndPath (HPS hps)

This function ends the specification of a path started by GpiBeginPath.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_NOT_IN PATH An attempt was made to end a path using GpiEndPath or

during segment drawing while not in a path bracket.

Related Functions

Prerequisite Functions
* GpiBeginPath

Other Related Functions

GpiFillPath
GpiModifyPath
GpiOutlinePath
GpiPathToRegion
GpiSetClipPath
GpiStrokePath
GpiSetLineEnd
GpiSetLineJoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

5-132 PM Programming Reference

GpiEndPath —
End Path

Graphic Elements and Orders
Element Type: OCODE_GEPTH

Order: End Path

Example Code

This example uses the GpiEndPath function to end a path bracket. When the path bracket is ended, a

subsequent call to the GpiFillPath function draws and fills the path.

#define INCL_GPIPATHS /* GPI Path functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */
POINTL ptiTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */
GpiBeginPath(hps, 1L); /* start the path bracket */
GpiMove(hps, &ptl1Start); /* move to starting point */
GpiPolyLine(hps, 2L, ptiTriangle); /* draw the three sides */
GpiCloseFigure(hps); /* close the triangle */
GpiEndPath(hps); /* end the path bracket */

GpiFillPath(hps, 1L, FPATH_ALTERNATE); /* draw and fill the path */

Chapter 5. Graphics Functions

5-133

GpiEqualRegion —
Equal Region

fidefine INCL_GPIREGIONS /* Or use INCL_GP! or INCL_PM */

LONG GpiEqualRegion (HPS hps, HRGN hrgnSrc1, HRGN hrgnSrc2)

This function checks whether two regions are identical.

Parameters
hps (HPS) — input
Presentation-space handle.

The regions must be owned by the device identified by the currently associated device context.

hrgnSrc1 (HRGN) — input
Handle of first region.

hrgnSre2 (HRGN) — input
Handle of second region.

Returns
Equality and error indicators:

EQRGN_NOTEQUAL Not equal
EQRGN_EQUAL Equal
EQRGN_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_HRGN
PMERR_REGION_IS_CLIP_REGION

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

Both regions must be of the same device class. It is invalid if the specified region is currently
selected as the clip region (by GpiSetClipRegion).

5-134 PM Programming Reference

Related Functions

* GpiCombineRegion
GpiCreateRegion
GpiDestroyRegion
GpiOffsetRegion
GpiPaintRegion
GpiPtinRegion
GpiQueryRegionBox

GpiRectinRegion
GpiSetRegion
WinEqualRect

Example Code

GpiQueryRegionRects

GpiEqualRegion —

Equal Region

This example uses GpiEqualRegion to create two regions (each consisting of three rectangles), and

then compares them for equality.

#define INCL_GPIREGIONS
#include <os2.h>

LONG 1Equality;
HPS hps;

HRGN hrgnSrcl;
HRGN hrgnSrc2;

/* Region functions

equality/error indicator
presentation-space handle
handle for first region
handle for second region
RECTL arcl1[3] = { 100, 160, 200, 200,
150, 150, 250, 250,
200, 200, 300, 300 };

/* 1st rectangle
/* 2nd rectangle
/* 3rd rectangle

*/

/* create two identical regions comprising three rectangies each*/

hrgnSrcl

= GpiCreateRegion(hps, 3L, arcl);
hrgnSrc2 = GpiCreateRegion(hps, 3L, arcl);

1Equality = GpiEqualRegion(hps, hrgnSrcl, hrgnSrc2);

Chapter 5. Graphics Functions 5-135

GpiErase —
Erase

#define INCL_GPICONTROL /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

BOOL GpiErase (HPS hps)

This function clears the output display of the device context associated with the specified
presentation space, to the reset color (CLR_BACKGROUND; see GpiSetColor).

Parameters
hps (HPS) - input
Presentation-space handle.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError ‘
PMERR_INV_HPS An invalid presentation-space handie was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

Remarks
This operation is independent of the draw controls; see GpiSetDrawControl.

The call is subject to all clipping currently in force; that is, clip path, viewing limits, graphics field,
clip region, and visible region.

This function does not perform any bounds collection, or correlation.

Note: This function must not be used when creating metafiles conforming to SAA* guidelines; see
“Metafile Restrictions” on page G-1.

Related Functions
¢ GpiCreateLogColorTable
e GpiSetColor
* GpiSetDrawControl

* Trademark of IBM Corporation

5-136 PM Programming Reference

GpiErase -
Erase

Example Code
This example uses the GpiErase function to clear the display before drawing.

#define INCL_GPICONTROL /* GPI control Functions */
#include <o0s2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* start point */
POINTL ptiTriangle[] = { 100, 100, 200, 0, 8, O }; /* vertices */
GpiErase(hps); /* clear the display */
GpiMove(hps, &ptiStart); /* draw a triangle */

GpiPolyLine(hps, 3L, ptiTriangle);

Chapter 5. Graphics Functions 5-137

GpiErrorSegmentData —
Error Segment Data

fidefine INCL_GPICONTROL /* Or use INCL_GPI or INCL_PM */

LONG GpiErrorSegmentData (HPS hps, PLONG piSegment, PLONG piContext)

This function returns information about the last error that occurred during a segment drawing
operation.

Parameters
hps (HPS) — input
Presentation-space handle.

piSegment (PLONG) — output
Segment in which the error occurred.

piContext (PLONG) — output
Context of the error:

GPIE_SEGMENT The error occurred while processing the contents of a retained segment.
GPIE_ELEMENT The error occurred while processing the contents of a GpiElement function.

GPIE_DATA The error occurred while processing the contents of a GpiPutData function.

Returns
Position.

This is either the byte offset or the element number, depending on p/Context:
>0 Position

GPI ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simuitaneously.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in

a micro presentation space.

Remarks
The information returned is:

* The segment name
* The context
* The byte offset or element number (depending on the context).

The byte offset is returned for these contexts:

* The error occurred within the data of a GpiElement function
* The error occurred within the data of a GpiPutData function.

The element number is returned for the segment context.

5§-138 PM Programming Reference

~

Related Functions

GpiElement
GpiDrawChain
GpiDrawDynamics
GpiDrawFrom
GpiDrawSegment
GpiGetData
GpiPutData
GpiRemoveDynamics

Example Code
This example uses GpiErrorSegmentData to query the error context and assigns a variable to the
returned element number if the context is an element error.

#def
#inc

LONG
HPS

LONG
LONG
LONG

ine INCL_GPICONTROL
lude <os2.h>

10ff;

hps;
piSegment;
piContext;
1Element;

/*
/*
/*
/*
/*

GpiErrorSegmentData —
Error Segment Data

/* Control functions

error or offset/element number
presentation-space handle

*/

Segment in which the error occurred */

Context of the error
element number causing error

10ff = GpiErrorSegmentData(hps, &plSegment, &plContext);

if (plContext == GPIE_ELEMENT)

1

Element = 10ff;

Chapter 5. Graphics Functions

5-139

GpiExcludeClipRectangle —
Exclude Clip Rectangle

ftdefine INCL_GPIREGIONS /* Or use INCL_GPi or INCL_PM */

LONG GpiExcludeCilipRectangle (HPS hps, PRECTL prciRectangle)

This function excludes a rectangle from the clipping region.

Parameters
hps (HPS) — input
Presentation-space handle.

prciRectangle (PRECTL) — input
Rectangle to be excluded.

The coordinates are world coordinates.

Returns ,
Complexity of clipping and error indicators.

The clipping complexity information includes the combined effects of:
Clip path

Viewing limits

Graphics field

Clip region

Visible region (windowing considerations).

RGN_NULL Null region
RGN_RECT Rectangular region
RGN_COMPLEX Complex region
RGN_ERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_RECT An invalid rectangle parameter was specified.
Remarks

The boundaries of the rectangle are considered to be part of the interior, so that a point on the
rectangie boundary is clipped (removed).

This function creates a clip region if one does not currently exist. The application is responsible for
freeing this (with GpiDestroyRegion) if it subsequently selects another clip region (see
GpiSetClipRegion). Any clip region still selected when the device context is closed is automatically
freed.

Note: This function must not be used when creating SAA-conforming metafiles; see “Metafile
Restrictions” on page G-1.

5-140 PM Programming Reference

GpiExcludeClipRectangle —
Exclude Clip Rectangle

Related Functions

* GpilntersectClipRectangle
GpiOffsetClipRegion
GpiQueryClipBox
GpiQueryClipRegion
GpiSetClipRegion
WinExcludeUpdateRegion

Example Code

This example uses GpiExcludeClipRectangle to exclude a 100x100 rectangle, anchored at (100,100),
from the clipping region.

#define INCL_GPIREGIONS /* Region functions */
#include <os2.h>

LONG T1Complexity; /* clipping complexity/error return */
HPS hps; /* Presentation-space handle */ -

RECTL prclRectangle = {100, 100, 200, 200};/* exclude rectangle */

1Complexity = GpiExcludeClipRectangle(hps, &prclRectangle);

Chapter 5. Graphics Functions 5-141

GpiFillPath —
Fill Path

ffdefine INCL_GPIPATHS /* Or use INCL_GPI or INCL_PM */

LONG GpiFiliPath (HPS hps, LONG IPath, LONG IOptions)

This function draws the interior of a path using the area attributes.

Parameters
hps (HPS) - input
Presentation-space handle.

IPath (LONG) - input

Identifier of path whose interior is to be drawn; it must be 1.

1Options (LONG) — input
Fill option:

FPATH_ALTERNATE Fills the path using the alternate rule; see GpiBeginArea.

FPATH_WINDING Fills the path using the winding rule; see GpiBeginArea. This value must
’ be selected if the path has been modified using GpiModifyPath.

The default is FPATH_ALTERNATE.

Returns
Error indicator:

GPI_OK Successful
GPLHITS Correlate hits
GPILLERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_PATH_ID
PMERR_INV_FILL_PATH_OPTIONS

PMERR_PATH_UNKNOWN

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid path identifier parameter was specified.

An invalid options parameter was specified with
GpiFillPath.

An attempt was made to perform a path function on a path
that did not exist.

Any open figures within the path are closed.

The path is deleted when the interior has been drawn.

The boundaries of the area, as defined by the path, are considered to be part of the interior and are

inciuded in the fill.

If the current drawing mode (see GpiSetDrawingMode) is draw or draw-and-retaln, the interior is
drawn on the currently associated device. If the drawing mode is retain, this function is stored in the
current segment, and output occurs when the segment is subsequently drawn in the usual way.

5-142 PM Programming Reference

GpiFillPath —
Fill Path

Related Functions
Prerequisite Functions

* GpiBeginPath

Other Related Functions

GpiEndPath
GpiModifyPath
GpiOutlinePath
GpiPathToRegion
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetClipPath
GpiStrokePath
GpiSetLineEnd
GpiSetLinedoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiSetPattern
GpiSetPatternRefPoint
GpiSetPatternSet
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GFPTH
Note that GpiStrokePath also generates this element type.

Order: Fill Path

Example Code
This example uses the GpiFillPath function to draw the interior of the given path. The path, an
isosceles triangle, is not closed when it is created, so the GpiFillPath function closes it before filling.

#define INCL_GPIPATHS /* GPI Path functions */
#include <o0s2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */

POINTL ptl1Triangte{] = { 100, 100, 200, 0, @, O }; /* vertices */
GpiBeginPath(hps, 1L); /* create a path */
GpiMove(hps, &ptlStart);

GpiPolyLine(hps, 3L, ptlTriangle);

GpiEndPath(hps);

GpiFillPath(hps, 1L, FPATH ALTERNATE); /* fill the path */

Chapter 5. Graphics Functions 5-143

GpiFloodFill —
Flood Fill

#define INCL_GPIBITMAPS /* Or use INCL_GPI or INCL_PM */

LONG GpiFloodFill (HPS hps, LONG IOptions, LONG [Color)

This function fills an area bounded by a given color, or while on a given color.

Parameters
hps (HPS) — input
Presentation-space handle.
10ptions (LONG) — input
Flood fill options:

FF_BOUNDARY Fills up to the specified color
FF_SURFACE Fills while on the specified color.

IColor (LONG) — input
Color.

The boundary or surface color, depending on the value of /IOptions.

This is either a logical color index, or an RGB value, depending on the state of the color table.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_FUNCTION_NOT_SUPPORTED
PMERR_INV_FLOOD FILL_OPTIONS
PMERR_INV_IN_AREA

PMERR_INV_IN_PATH

PMERR_INV_COLOR ATTR

PMERR_INSUFFICIENT_MEMORY
PMERR_START_POINT_CLIPPED

5-144 PM Programming Reference

An invalid presentation-space handie was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

The function is not supported.
Invalid flood fill parameters were specified.

An attempt was made to issue a function invalid inside an
area bracket. This can be detected while the actual
drawing mode is draw or draw-and-retain or during
segment drawing or correlation functions.

An attempt was made to issue a function invalid inside a
path bracket.

An invalid color attribute value was specified or the
default value was explicitly specified with GpiSetAttrs
instead of using the defaults mask.

The operation terminated through insufficient memory.

The starting point specified for flood fill is outside the
current clipping path or region.

GpiFloodFill —
Flood Fill

PMERR_NO FiLL No flood fill occured because either the starting point
color was the same as the input color when a boundary
fill was requested, or the starting point color was not the
same as the input color when a surface fill was
requested.

Remarks
The seed point is current position, which is unchanged by this function.

The area attributes define the fill.

DevQueryCaps (CAPS_RASTER_FLOOD_FILL) indicates whether GpiFloodFill is supported on any
particular device.

The results produced by this function are highly device-dependent.
When the drawing mode is draw, if
If the presentation space is partially obscured by an overlying window an incorrect fill can result.

When filling over a pattern or a dithered color, the individual color of each pel is taken into account.

Note: This function must not be used when creating SAA-conforming metafiles; see “Metafile
Restrictions” on page G-1.

Related Functions

Prerequisite Functions

GpiBeginArea
GpiBeginPath
GpiFillPath
GpiSetPel

Example Code
This function uses GpiFloodFill to fill an area bounded by a given color, or while on a given color.
The example assumes the color table is in index mode,; it fills up to the boundary where the color
represented by index 1 appears.

#define INCL_GPIBITMAPS /* Bit map functions */
#include <os2.h>

LONG THits; /* correlation/error indicator */
HPS hps; /* Presentation-space handle */
LONG 10ptions; /* flood fill options */
LONG 1Color; /* color */

/* £ill up to the boundaries of the color */
10ptions = FF_BOUNDARY;

/* use color corresponding to index 1 */
1Color = 1;

1Hits = GpiFloodFill{hps, 10ptions, iColor);

Chapter 5. Graphics Functions 5-145

GpiFrameRegion -
Frame Region

#define INCL_GPIREGIONS /* Or use INCL_GP! or INCL_PM */

LONG GpiFrameRegion (HPS hps, HRGN hrgn, PSIZEL psiziThickness)

This function draws a frame inside a region using the current pattern attributes.

Parameters
hps (HPS) — input
Presentation-space handle.
hrgn (HRGN) — input
Region handle.

psiziThickness (PSIZEL) — input
Thickness of frame.

The width and height of the rectangle, in device coordinates, used to trace the frame. Both the
width and height fields must be greater than or equal to zero.

Returns
Correlation and error indicators:
GPL_OK Successful

GPLHITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetlastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_REGION_IS CLIP_REGION An attempt was made to perform a region operation on a
region that is selected as a clip region.
PMERR_INV_HRGN An invalid region handle was specified.
PMERR_HRGN_BUSY An internal region busy error was detected. The region

was locked by one thread during an attempt to access it
from another thread.

Remarks
The frame is drawn by tracing around the inner boundary of the region with a rectangle of size given
by the psiziThickness parameter. The edge of the frame includes the pels on the left and bottom
boundaries of the region, unless those pels are also on the top and right boundaries, in which case
they are excluded.

No part of the frame is drawn outside the region.
The region is assumed fo be defined in device coordinates.

Itis invalid if the specified region is currently selected as the clip region (by GpiSetClipRegion).

Note: This function must not be used when creating SAA-conforming metafiles; see “Metafile
Restrictions” on page G-1.

5-146 PM Programming Reference

GpiFrameRegion —
Frame Region

Example Code
This example uses GpiFrameRegion to draw a frame of width 5 around an existing region.
#define INCL_GPIREGIONS /* Region functions */
#include <os2.h>
LONG THits; /* correlation/error indicator *x/
HPS hps; /* presentation-space handle */
HRGN hrgn; /* handle for region */
SIZEL psiziThickness = {5L,5L};
/* Thickness of frame */
RECTL arc1[3] = { 100, 100, 200, 200, /* 1st rectangle */
150, 150, 250, 250, /* 2nd rectangle */
200, 200, 300, 300 }; /* 3rd rectangle */

/* create a region comprising three rectangles */
hrgn = GpiCreateRegion(hps, 3L, arcl);

THits = GpiFrameRegion(hps, hrgn, &psizlThickness);

Chapter 5. Graphics Functions 5-147

GpiFullArc —
Full Arc

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GplFullArc (HPS hps, LONG IControl, FIXED txMultiplier)

This function creates a full arc with its center at the current position.

Parameters
hps (HPS) — input
Presentation-space handle.

IControl (LONG) — input
Interior and outline control.

Specifies whether the interior of the full arc should be filled, and whether the outline should be

drawn:
DRO _FILL Fill interior
DRO_OUTLINE Draw outline

DRO_OUTLINEFILL Draw outline and fill interior.

fxMultiplier (FIXED) — input
Multiplier.

This determines the size of the arc, in relation to an arc with the current arc parameters. The
implementation limit of the multiplier is 255.

The value must not be negative.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_ARC_CONTROL An invalid control parameter was specified with
GpiFullArc.

PMERR_INV_MULTIPLIER An invalid multiplier parameter was specified with

GpiPartialArc or GpiFullArc.

Remarks
The current position is not changed.

The arc parameters determine whether the full arc is drawn clockwise or counterclockwise.
Either the outline of the full arc, or its interior, or both, can be drawn.

If this function appears within an area or path definition, it generates a complete closed figure
(DRO_OUTLINE must be specified). It must not occur within any other figure definition.

5-148 PM-Programming Reference

GpiFullArc —
Full Arc

/ If correlation is in force, a hit always results if the pick aperture intersects the full arc boundary.
However, if the pick aperture lies wholly within the figure, a hit only occurs if the interior is being
drawn (DRO_FILL or DRO_OUTLINEFILL).

Related Functions

e QGpiPartialArc
GpiPointArc
GpiSetCurrentPosition
GpiSetArcParams
GpiSetDefArcParams
GpiSetLineType
GpiSetLineWidth
GpiPop
GpiSetAttrMode
GpiSetAtirs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCFARC

Order: Begin Area
This order is generated only if IControl is DRO_FILL or DRO_OUTLINEFILL.

Order: Full Arc at Current Position

Order: End Area
This order is generated only if /Control is DRO_FILL or DRO_OUTLINEFILL.

Example Code
This example uses GpiFullArc to draw five concentric circles. The arc parameters are set before
drawing the arc. Only the outline is drawn for the arc.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
j #include <os2.h>

HPS hps; /* presentation space handle */

SHORT i; /* loop variable */

ARCPARAMS arcp = {1, 1, 0, 0 }; /* arc parameters structure */
GpiSetArcParams (hps, &arcp);

for (i = 5; i>0; i--)
GpiFullArc(hps, /* presentation-space handle */
DRO_OUTLINE, /* outline */
MAKEFIXED(i, 0)); /* converts integer to fixed point */

~a

Chapter 5. Graphics Functions 5-149

GpiGetData —
Get Data

#define INCL_GPISEGMENTS /* Or use INCL_GPI or INCL_PM */

LONG GpiGetData (HPS hps, LONG ISegid, PLONG plOffset, LONG IFormat, LONG ILength,
PBYTE pbData)

This function retrieves a buffer of graphic data from the specified segment into the supplied buffer.
The data is a list of drawing orders. For details of these, see Chapter 33, “Graphics Orders.”

Parameters
hps (HPS) — input
Presentation-space handle.

ISegid (LONG) — input
Segment identifier.

plOffset (PLONG) — input/output
Segment offset.

A value used to indicate the position in the segment from which data is to be retrieved. It must
be set to 0 the first time GpiGetData is called. This indicates that data is to be obtained from the
start of the segment. On return, it contains a value that can be used on a subsequent call to
continue data retrieval.

The only possible values that can be specified are 0 or the value returned from a previous
function.

IFormat (LONG) - input
Coordinate type required:

DFORM_NOCONV No coordinate conversion performed.

iLength (LONG) — input
Length of data buffer.

pbData (PBYTE) — output
Data buffer.

For order formats, see Chapter 33, “Graphics Orders” on page 33-1.

Returns
Length of returned data.

>0 Number of bytes actually returned in pbData
GPI_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS: An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_SEG_NAME An invalid segment identifier was specified.

PMERR_INV_SEG_OFFSET An invalid offset parameter was specified with
GpiPutData.

PMERR_INV_GETDATA_CONTROL An invalid format parameter was specified with
GpiGetData.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

5-150 PM Programming Reference

GpiGetData —
Get Data

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.

PMERR_SEG_NOT_FOUND The specified segment identifier did not exist

PMERR_SEG_IS_CURRENT An attempt was made to issue GpiGetData to a segment

that was currently open.

PMERR_DATA_TOO_LONG An attempt was made to transfer more than the maximum
permitted amount of data (64512 bytes) using GpiPutData,
GpiGetData, or GpiElement.

Remarks
If the buffer is large enough to contain the data requested, the data is returned and /Count is set to

show its length.

If the buffer is not large enough, the buffer is filled and /ICount is set to the length of the buffer. This
may mean that there is an incomplete order at the end of the buffer; even so, it is possible to use
GpiPutData subsequently, without having to scan the orders in the buffer.

The application can detect when it has been given all the data by checking the /ICount value. If this is
less than the value of /Length specified, there is no more data to be returned. If it is equal, there is
more data, except in the case where the data just fits in the buffer, which is detected if another
GpiGetData function is issued, and a /Count of 0 is returned.

No conversion of coordinates is performed for the DFORM_NOCONYV value of the control parameter.
The coordinates are in the presentation space format.

This function can be issued while there is a segment open, uniess the open segment is the segment
referenced by this function. If the segment referenced by this function is open, an error occurs.

The segment transform and viewing transform are not returned by this cail.

Related Functions
e GpiPutData

Chapter 5. Graphics Functions 5-151

GpiGetData —
Get Data

Example Code

This example uses the GpiGetData function to copy data from one segment to another.

#define INCL_GPISEGMENTS /* Segment functions *x/
#include <o0s2.h>

HPS hps; /* presentation space handle */
LONG fFormat = DFORM_NOCONV; /* does not convert coordinates */

LONG offSegment = OL; /* offset in segment */
LONG offNextElement = OL; /* offset in segment to next element */
LONG cb = OL; /* bytes retrieved */

BYTE abBuffer[512]; /* data buffer */
GpiOpenSegment (hps, 3L); /* opens segment to receive data */
do {

offSegment += cb;

offNextElement = offSegment;

cb = GpiGetData(hps, 2L, &offNextElement, fFormat, 512L,
abBuffer);

/* Put data in other segment. */

if (cb > OL) GpiPutData(hps, /* presentation-space handle */

fFormat, /* format of coordinates */
&cb, /* number of bytes in buffer */
abBuffer); /* buffer with graphics-order data */

} while (cb > 0);
GpiCloseSegment (hps); /* closes segment that received data */

5-152 PM Programming Reference

Gpilmage -—
Image

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG Gplimage (HPS hps, LONG IFormat, PSIZEL psiziimageSize, LONG ILength,
PBYTE pbData)

This function draws a rectangular image, with the top-left corner at the current position.

Parameters
hps (HPS) — input
Presentation-space handle.

IFormat (LONG) — input
Format of image data.

This is a reserved field; must be set to 0.

psizllmageSize (PSIZEL) — input
Size of image area (in pels).

The maximum width allowed is 2 040.

ILength (LONG) — input
Length in bytes of image data.

pbData (PBYTE) — input
Image data.

Returns
Correlation and error indicators:

GPI_OK Successful
GPI_HITS Correlate hits
GPi_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IMAGE_FORMAT An invalid IFormat parameter was specified with
Gpilmage.

PMERR_INV_IMAGE_DATA _LENGTH An invalid /Length parameter was specified with
Gpilmage. There is a mismatch between the image size
and the data length.

PMERR_INV_IMAGE_DIMENSION An invalid psizlimageSize parameter was specified with
Gpilmage.

Remarks
All images are a rectangular array of pels (display points), each pel being represented by one bit.

psizlimageSize, which defines the width and height of the image, determines how many pels there
are in the horizontal and vertical directions.

Chapter 5. Graphics Functions 5-1563

Gpilmage —
Image

pbData determines which of the pels are visible; a 1 bit sets the associated pel, using the image
foreground color and mix, and a 0 bit sets the pel using the image background color and mix.

The top left-hand corner of the image is placed at the current position, and the data supplied is drawn
row by row, starting at the top. Each row is drawn from left to right and must be padded out to an
integral number of bytes if the image width specified is not a multiple of 8. For example, if the image
width specified is 12, each row of data must be padded out to a length of 16 so that the data in the
row occupies exactly 2 bytes.

Within each byte the high-order bit is drawn on the left.

The length of image data specified must include the padding of each row of data. The length must be
given in bytes, and an error message is issued if it is wrong.

If the image is being stored in a metafile, then (((pels_per_row + 9}/ 8) * pels_per_column) + 10,
must be less than 32768.

Because of the different sizes of pels for different devices, the relationship of the image with respect
to other graphics primitives is device-dependent.

The current position remains unchanged after the image has been drawn.

Related Functions
* GpiSetAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCBIMG

Order. Begin Image at Current Position

Order: Image Data
One order for each pel row of the image.

Order: End Image

Example Code
This example uses Gpilmage to draw an 8-by-8 image. The image data is specified as an array of
bytes.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
SIZEL sizl = { 8, 8 }; /* image is 8 pels wide by 8 pels high */
BYTE abImagef] = { 0x00, 0x18, Ox3c, Ox7e, Oxff,

Oxff, Ox7e, 0x3c, 0x18, 0x00 }; /* image data */

GpiImage(hps, OL, &sizl, 8L, abImage); /* draws the image */

5-154 PM Programming Reference

GpilntersectClipRectangle —
Intersect Clip Rectangle

#define INCL_GPIREGIONS /* Or use INCL_GPI or INCL_PM */

LONG GpiilntersectClipRectangle (HPS hps, PRECTL prclRectangle)

This function sets the new clip region to the intersection of the current clip region and the specified
rectangle.

Parameters
hps (HPS) — input
Presentation-space handie.

prciRectangle (PRECTL) - input
prclRectangle, the coordinates of which are world coordinates.

Returns
Complexity of clipping and error indicators.

The clipping complexity information includes the combined effects of:
Clip path

Viewing limits

Graphics field

Clip region
Visible region (windowing considerations).

RGN_NULL Nult region

RGN_RECT Rectangular region
RGN COMPLEX Complex region
RGN_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_RECT An invalid rectangle parameter was specified.
Remarks

The boundaries of the rectangle are considered to be part of the interior, so that a point on the
rectangle boundary is not clipped (removed) if it was previously within the clip region.

This function creates a clip region if one does not currently exist. The application is responsible for
freeing this (with GpiDestroyRegion), if it subsequently selects another clip region (see
GpiSetClipRegion). Any clip region still selected when the device context is closed is automatically
freed.

Note: This function must not be used when creating SAA-conforming metafiles; see “Metafile
Restrictions” on page G-1.

Chapter 5. Graphics Functions 5-155

GpilntersectClipRectangle —
Intersect Clip Rectangle

Related Functions

* GpiExcludeClipRectangle
GpiOffsetClipRegion
GpiQueryClipBox
GpiQueryClipRegion
GpiSetClipRegion

Example Code
This example uses GpilntersectClipRectangle to create a new clipping region, consisting of the
intersection of the old clipping region and a 100x100 rectangle, anchored at (100,100).

#define INCL_GPIREGIONS /* Region functions */
#include <os2.h>

LONG 1Complexity; /* clipping complexity/error return */
HPS hps; /* Presentation-space handle *x/

RECTL prclRectangle = {100,100,200,200}; /* intersect rectangle */

1Complexity = GpilntersectClipRectangle(hps, &prclRectangle);

5-156 PM Programming Reference

GpiLabel —
Label

#define INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

BOOL GpiLabel (HPS hps, LONG ILabel)

This function generates an element containing the specified label.

Parameters
hps (HPS) — input
Presentation-space handle.

ILabel (LONG) — input
Required label.

No check is made on the value of this parameter.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.

PMERR_INV_IN ELEMENT An attempt was made to issue a function invalid inside an

element bracket.

Remarks
This function has no effect unless a retained segment is being constructed. It is invalid within an
element bracket. Duplicate labels within a segment are allowed.

Related Functions
* GpiSetElementPointerAtLabel
* GpiSetTag

Graphic Elements and Orders
Element Type: OCODE_GLABL

Order: Label

Chapter 5. Graphics Functions 5-157

GpiLabel —
Label

Example Code
This example uses the GpiLabel function to create label elements in a segment. If the segment is
subsequently edited, the label elements can still be used to locate the elements near it.

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */
#include <os2.h>

HPS hps; /* presentation space handle) */
POINTL ptiStart = { 0, 0 }; /* first vertex */
POINTL ptl1Triangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */
GpiOpenSegment (hps, 4L); /* creates a segment */
GpiLabel{hps, 5L); /* creates label 5 */
GpilLabel(hps, 10L); /* creates label 18 */

GpiMove(hps, &ptlStart);
GpiCloseSegment (hps) ;
GpiPolyLine(hps, 3L, ptiTriangle);

5-158 PM Programming Reference

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GpiLine (HPS hps, PPOINTL pptiEndPoint)

This function draws a straight line from the current position to the specified end point.

Parameters
hps (HPS) — input
Presentation-space handle.

pptiEndPoint (PPOINTL) — input
End point of the line.

Returns
Correlation and error indicators:
GP1_OK Successful

GPL HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR _PS_BUSY

PMERR_INV_COORDINATE
PMERR_INV_NESTED_FIGURES

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified.

Nested figures have been detected within a path
definition.

The current position is set to the end point of the line.

The line is drawn using the current values of the line color, line mix, line width, and line type

attributes.

Chapter 5. Graphics Functions 5-159

GpiLine —
Line

Related Functions
* GpiBox
GpiMove
GpiPolyLine
GpiQueryCurrentPosition
GpiSetCurrentPosition
GpiSetLineEnd
GpiSetLineJoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCLINE
Note that GpiPolyLine also generates this element type.

Order: Line at Current Position

Example Code
This example uses GpiLine to draw an X.

#define INCL_GPIPRIMITIVES /* GPI primitive functions

#include <o0s2.h>

HPS hps; /* presentation space handle
/* point array */
POINTL pt1[4] = { @, 0, 100, 100, 0, 100, 100, 0 };

GpiMove(hps, &pt1[0]);
GpiLine(hps, &pt1[1]);
GpiMove(hps, &pt1[2]);
GpiLine(hps, &pt1[3]);

5-160 PM Programming Reference

*/

*/

GpiLoadBitmap —
Load Bit Map

#define INCL_GPIBITMAPS /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

HBITMAP GpilLoadBitmap (HPS hps, HMODULE Resource, ULONG idBitmap, LONG [Width,
LONG IHeight)

This function creates and loads a bit map from a resource, and returns the bit-map handle.

Parameters
hps (HPS) — input
Presentation-space handle.

The associated device should, if possible, hold the bit map in its own memory. Where this is not
possible, main memory is used and the bit map is held in a format compatible with the device.

Resource (HMODULE) — input
Resource identity containing the bit map:

NULLHANDLE Use the .EXE file of the application.
Other Module handle returned from the 0S/2 DosLoadModule function.

idBitmap (ULONG) — input
ID of the bit map within the resource file.

IWidth (LONG) — input
Width of the bit map in pels.

IHeight (LONG) — input
Height of the bit map in pels.

Returns
Bit-map handie:

#0 Bit-map handle
GPI_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_BITMAP_NOT_FOUND A attempt was made to perform a bit-map operation on a
bit map that did not exist.

PMERR_INV_BITMAP_DIMENSION An invalid dimension was specified with a load bit-map
function.

Remarks

Some bit-map functions, including drawing into the bit map, require it to be selected into a memory
device context, using GpiSetBitmap. This is true whether device or main memory is used to hold the
bit map.

The bit map is stretched to the specified IWidth and IHeight. f IWidth or IHeight is 0, the bit map is
not stretched in that direction; when, for example, IWidth = 0, the bit map is not stretched
horizontally, when /Height = 0, it is not stretched vertically.

The bit map may have been created by the icon editor in bit-map mode.

Chapter 5. Graphics Functions 5-161

GpiLoadBitmap -
Load Bit Map

There are a number of standard bit-map formats that should normally be adhered to. Other formats
can be used if supported by the device.

The bit map is owned by the process from which this function is issued. It cannot be accessed
directly from any other process. If it still exists when the process terminates, it is automatically
deleted by the system.

Related Functions
* GpiBitBIt

GpiCreateBitmap

GpiDeleteBitmap

GpiDrawBits

GpiQueryBitmapBits

GpiQueryBitmapDimension

GpiQueryBitmapHandie

GpiQueryBitmapParameters

GpiQueryDeviceBitmapFormats

GpiSetBitmap

GpiSetBitmapBits

GpiSetBitmapDimension

GpiSetBitmapld

GpiWCBitBIt

WinDrawBitmap

WinGetSysBitmap

Example Code
This example uses the GpiLoadBitmap function to load a bit map from the .EXE file into application
memory. The bit map is then selected, displayed, and finally, deleted from memory.

#define INCL_GPIBITMAPS /* GPI bit map functions */
#include <os2.h>

HPS hps; /* presentation space handle */
HBITMAP hbm, hbmPrevious;

#define BITMAP_ID 1

/* load the bit map from the EXE */

hbm = GpiloadBitmap(hps, NULLHANDLE, BITMAP_ID, 106L, 100L);
hbmPrevious = GpiSetBitmap(hps, hbm); /* select bit map for PS */
/* bit map displayed with GpiBitBl1t */

GpiSetBitmap(hps, hbmPrevious); /* release bit map from PS */
GpiDeleteBitmap(hbm) ; /* delete the bit map */

5-162 PM Programming Reference

GpilLoadFonts —
Load Fonts

#define INCL_GPILCIDS /* Or use INCL_GPI or INCL_PM */

BOOL GpiLoadFonts (HAB hab, PSZ pszFilename)

This function loads one or more fonts from the specified resource file.

Parameters
hab (HAB) — input

Anchor-block handle.

pszFilename (PSZ) - input

Filename.

This is the fully-qualified name of the font resource. The file-name extension is “.FON.”

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_FONT FILE_DATA The font file specified with GpiLoadFonts,

GpiLoadPublicFonts,

Remarks
All of the fonts in the file become available for any presentation space (GP! or VIO) created by the
same process. They are not available for any other process.

The format of the font definitions in the resource file is defined in Appendix F, “The Font-File
Format” on page F-1.

When no longer required, the fonts may be unloaded with GpiUnloadFonts.

Note: Fonts loaded with GpiLoadFonts are not available for use for spooled printing, that is if a

device type of OD_QUEUED is specified in DevOpenDC; in this case GpiCreatel.ogFont will
never return FONT_MATCH for these fonts. To avoid this, install the fonts as public fonts
using the Font Palette object located in the System Setup folder, on both the generating and
the receiving workstations if these are different.

Related Functions

GpiCreatelLogFont
GpiDeleteSetld
GpiQueryFontMetrics
GpiQueryFonts
GpiQueryKerningPairs
GpiQueryNumberSetids
GpiQuerySetlds
GpiQueryWidthTable
GpiUnloadFonts
GpiSetCharSet

Chapter 5. Graphics Functions 5-163

GpiLoadFonts —
Load Fonts

Example Code
This example uses the GpilLoadFonts function to load all fonts from the font resource file HELV.FON.
The GpiQueryFonts function retrieves the number of fonts loaded.

#define INCL_GPILCIDS /* Font functions */
#include <os2.h>

HPS hps; /* presentation space handle */
HAB hab; /* anchor-block handlie */
LONG cFonts = OL; /* font count */
LONG remFonts; /* fonts not returned *x/

GpiLoadFonts(hab, "helv");

remFonts = GpiQueryFonts(hps, QF_PRIVATE, NULL, &cFonts, OL, NULL);

5-164 PM Programming Reference

GpiLoadMetaFile —
Load Metafile

#define INCL_GPIMETAFILES /* Or use INCL_GPI or INCL_PM */

HMF GpllL.oadMetaFile (HAB hab, PSZ pszFilename)

This function loads data from a file into a metafile.

Parameters
hab (HAB) — input
Anchor-block handle.

pszFilename (PSZ) — input
Filename.

The name of the file that is to be loaded into a metafile.

Returns
Metafile handle or error:
#0 Metafile handle

GPIERROR Error.

Possible returns from WinGetlLastError

PMERR_DOSOPEN_FAILURE A DosOpen call made during GpiLoadMetaFile or
GpiSaveMetaFile gave a good return code but the file was
not opened successfully.

PMERR_DOSREAD _FAILURE A DosRead call made during GpiLoadMetaFile gave a
good return code. However, it failed to read any more
bytes although the file length indicated that there were
more to be read.

Remarks
A metafile is created, into which the data from the file is loaded. The handle of the metafile created
is returned in hmf; it can be used on subsequent GpiPlayMetaFile or GpiDeleteMetaFile functions.

Related Functions

¢ GpiCopyMetaFile
GpiDeleteMetaFile
GpiPlayMetaFile
GpiQueryMetaFileBits
GpiQueryMetaFileLength
GpiSaveMetaFile
GpiSetMetaFileBits

Chapter 5. Graphics Functions 5-165

GpiLoadMetaFile —
Load Metafile

Example Code
This example uses the GpiLoadMetaFile function to load a metafile with data from the file
sample.met. Later, the metafile is deleted by using the GpiDeleteMetaFile function.

#define INCL_GPIMETAFILES /* Metafile functions */
#include <o0s2.h>

HAB hab; /* anchor block handle */
HMF hmf; /* metafile handle */

/* loads metafile from disk */
hmf = GpiLoadMetaFile(hab, "sample.met");

GpiDeleteMetaFile(hmf); /* deletes metafile */

5-166 PM Programming Reference

GpiLoadPublicFonts —
Load Public Fonts

#define INCL_GPILCIDS /* Or use INCL_GPI or INCL_PM */

BOOL GpiLoadPublicFonts (HAB hab, PSZ pszFilename)

This function loads one or more fonts from the specified resource file, to be available for all
applications.

Parameters
hab (HAB) — input
Anchor-block handle.

pszFilename (PSZ) — input
Filename.

This is the fully-qualified name of the font resource. The file-name extension is “.FON.”

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INSUFFICIENT MEMORY The operation terminated through insufficient memory.

PMERR_INV_FONT FILE_DATA The font file specified with GpiLoadFonts,
: GpiLoadPublicFonts,

Remarks
All of the fonts in the file become available for any presentation space (GPI or VIO) created by any
process.

The format of the font definitions in the resource file is defined in Appendix F, “The Font-File
Format” on page F-1.

Note: Problems can occur when applications load and unioad public fonts. See
GpiUnloadPublicFonts.

Example Code
This example use GpiLoadPublicFonts to load and make available fonts from a file ‘TEST.FON’,
which is assumed to exist and contain valid fonts.

#define INCL_GPILCIDS /* Font functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HAB hab; /* anchor-block handle */
char pszFilename[13]; /* Name of fond resource file */

/* resource file is named 'TEST.FON' */
strcpy (pszFilename,"TEST.FON");

fSuccess = GpiLoadPublicFonts(hab, pszFilename);

Chapter 5. Graphics Functions 5-167

GpiMarker -
Marker

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiMarker (HPS hps, PPOINTL pptiPoint)

This function draws a marker with its center at a specified position.

Parameters
hps (HPS) — input
Presentation-space handle.

pptiPoint (PPOINTL) — input
Position of the marker.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS
PMERR _PS_BUSY

PMERR_INV_COORDINATE

Remarks
The current position is moved to the specified position. The marker symbol is selected by the
current values of the marker set and marker symbol attributes.

Related Functions

5-168

GpiPolyMarker
GpiSetMarker
GpiSetMarkerBox
GpiSetMarkerSet
GpiSetLineEnd
GpiSetLineJoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid coordinate value was specified. -

GpiMarker —
Marker

Graphic Elements and Orders
Element Type: OCODE_GMRK
Note that GpiPolyMarker also generates this element type.

Order: Marker at Given Position

Example Code «
This example uses the GpiMarker function to draw a marker at the point (10,10).

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <o0s2.h>

HPS hps; /* presentation space handle */
POINTL pt1 = { 10, 10 }; /* marker point */

GpiMarker(hps, &ptl);

Chapter 5. Graphics Functions 5-169

GpiModifyPath —
Modify Path

#define INCL_GPIPATHS /* Or use INCL_GPI or INCL_PM */

BOOL GpiModifyPath (HPS hps, LONG IPath, LONG IMode)

This function modifies the specified path.

Parameters
hps (HPS) — input
Presentation-space handile.

IPath (LONG) — input
Path identifier.

Identifier of the path to be modified; it must be 1.

IMode (LONG) — input
Modification required.

This must be:

MPATH_STROKE Convert the path to one describing the envelope of a wide line.

Returns

Success indicator:
TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handie was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_PATH_ID An invalid path identifier parameter was specified.

PMERR_INV_MODIFY_PATH_MODE An invalid mode parameter was specified with
GpiModifyPath.

PMERR_PATH_UNKNOWN An attempt was made to perform a path function on a path
that did not exist.

PMERR_COORDINATE_OVERFLOW An internal coordinate overflow error occurred. This can

occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

Remarks
This function converts the path to one describing the envelope of a wide line stroked using the
current geometric wide-line atiribute (see GpiSetLineWidthGeom). Note that this and GpiStrokePath
are the only calls that can cause geometric wide lines to be constructed.

The envelope includes the effects of line joins, and line ends, according to the current values of these
attributes (see GpiSetLineJoin and GpiSetLineEnd). Note these points:

* A line may be joined to an arc, for example. The common point is handled according to the
line-join attribute, rather than applying line ends at each end.

* Any open figures within the path are not closed automatically.

5-170 PM Programming Reference

GpiModifyPath —
Modify Path

* |f a figure is closed using GpiCloseFigure, the joining rules are followed, rather than the ending
rules, at the start and end point.

* The envelope takes account of any crossings, so that a character such as a stroked “X” does not
have a hole in the middle when subsequently drawn in exclusive-OR mode.

After this function, the only calls that can be performed on the path are GpiFillPath, specifying the
FPATH_WINDING option, or GpiSetClipPath, specifying the SCP_WINDING option.

Related Functions
* GpiBeginPath
GpiEndPath
GpiFillPath
GpiOutlinePath
GpiPathToRegion
GpiSetClipPath
GpiSetPattern
GpiSetPatternRefPoint
GpiSetPatternSet
GpiStrokePath
GpiSetLineEnd
GpiSetLineJoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GMPTH

Order: Modify Path

Chapter 5. Graphics Functions 5-171

GpiModifyPath —
Modify Path

Example Code
This example uses the GpiModifyPath function to modify the given path. The GpiFillPath function
then draws the path.

#define INCL_GPIPATHS /* GPI Path functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 6, 0 }; /* first vertex */

POINTL ptiTrianglef] = { 100, 100, 200, 8, 0, 0 }; /* vertices */

GpiBeginPath(hps, 1L); /* creates path */
GpiMove(hps, &pt1Start);

GpiPolyLine(hps, 3L, ptlTriangle);

GpiEndPath(hps);

GpiModifyPath(hps,

1L,

MPATH_STROKE) ; /* modifies path for wide line */
GpiFil1Path(hps, 1L, FPATH_ALTERNATE); /* draws the wide line */

5-172 PM Programming Reference

GpiMove -
Move

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

BOOL GpiMove (HPS hps, PPOINTL pptiPoint)

This function moves the current position to the specified point.

Parameters
hps (HPS) — input
Presentation-space handle.

pptiPoint (PPOINTL) — input
Position to which to move.

This position is in world coordinates.

Returns

Success indicator:
TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
Remarks

This function also has the effect of resetting position within a line-type sequence, and, if within an
area, of starting a new closed figure and causing any previous one to be closed automatically if
necessary.

This function is equivalent to the GpiSetCurrentPosition call, except that, if the current attribute mode
is AM_PRESERVE (see GpiSetAttrMode), the current position is not saved before being set to a new
value by the GpiMove function, and hence cannot be restored using the GpiPop call.

Related Functions
* GpiQueryCurrentPosition
* GpiSetCurrentPosition

Graphic Elements and Orders
Element Type: OCODE_GSCP
Note that GpiSetCurrentPosition also generates this element type.

Order: Set Current Position

Chapter 5. Graphics Functions 5-173

GpiMove —
Move

Example Code
This example uses the GpiMove function to draw an X. The function moves the current position to
the starting point of each leg of the character.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
/* point array */
POINTL pt1[4] = { 0, O, 100, 100, 0, 100, 100, O };

GpiMove(hps, 8pt1[0]); /* move to (0,0) */
GpiLine(hps, &pt1[1]):
GpiMove(hps, 8pt1[2]); /* move to (0,100) */
GpiLine(hps, &pt1[3]);

5-174 PM Programming Reference

GpiOffsetClipRegion —
Offset Clip Region

#define INCL_GPIREGIONS /" Or use INCL_GP! or INCL_PM */

LONG GpiOffsetClipRegion (HPS hps, PPOINTL pptiPoint)

This function moves the clipping region by the specified displacement.

Parameters
hps (HPS) — input
Presentation-space handle.

pptiPoint (PPOINTL) — input
Dispiacement.

The displacement by which the clipping region is to be moved, expressed as an offset in world
coordinates.

Returns
Complexity of clipping and error indicators.

The clipping complexity information includes the combined effects of:

Clip path

Viewing limits

Graphics field

Clip region

Visible region (windowing considerations).

RGN_NULL Null region
RGN_RECT Rectangular region
RGN_COMPLEX Complex region
RGN_ERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_COORDINATE_OVERFLOW An internal coordinate overflow error occurred. This can

occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

Remarks
Note: This function must not be used when creating SAA-conforming metafiles; see “Metafile
Restrictions” on page G-1.

Related Functions

* GpiExcludeClipRectangle
GpilntersectClipRectangle
GpiQueryClipBox
GpiQueryClipRegion
GpiSetClipRegion
WinExcludeUpdateRegion

Chapter 5. Graphics Functions 5-175

GpiOffsetClipRegion —
Ofiset Clip Region

Example Code ~
This example uses GpiOffsetClipRegion to move the clipping region right by 3 and up by 3.

#define INCL_GPIREGIONS /* Region functions */
#include <os2.h>

LONG 1Complexity; /* clipping complexity/error return */
HPS hps; /* Presentation-space handle */
POINTL pptlPoint = {3,3}; /* displacement */

1Complexity = GpiOffsetClipRegion(hps, &pptlPoint);

5-176 PM Programming Reference

GpiOffsetElementPointer —
Offset Element Pointer

#define INCL_GPISEGEDITING /* Or use INCL_GP! or INCL_PM */

BOOL GpiOffsetElementPointer (HPS hps, LONG loffset)

This function sets the element pointer, within the current segment, to the current value plus the
specified offset.

Parameters
hps (HPS) — input
Presentation-space handie.

loffset (LONG) — input
Offset to be added to the element pointer.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.

PMERR_NOT IN_RETAIN_MODE An attempt was made to issue a segment editing element
. function that is invalid when the actual drawing mode is
not set to retain

PMERR_NO_CURRENT SEG An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

PMERR_INV_IN_ELEMENT An attempt was made to issue a function invalid inside an
element bracket.

Remarks
If the resulting value is negative, the element pointer is set to 0. If the resuilting value is greater than
the number of elements in the segment, it is set to the last element.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress.

This function is invalid within an element bracket.

Chapter 5. Graphics Functions 5-177

GpiOffsetElementPointer —
Ofiset Element Pointer

Related Functions

* GpiBeginElement
GpiDeleteElement
GpiDeleteElementRange
GpiDeleteElementsBetweenLabels
GpiElement
GpiEndElement
GpilLabel
GpiQueryElement
GpiQueryElementPointer
GpiQueryElementType
GpiSetElementPointer
GpiSetElementPointerAtLabel

Example Code
This example uses the GpiOffsetElementPointer function to move to the element associated with a
label element. Combining the GpiSetElementPointerAtLabel and GpiOffsetElementPointer functions
is a convenient way to locate elements in segments that have been edited.

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */
#define INCL_GPISEGMENTS /* Segment functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */
POINTL ptiTriangle[] = { 100, 100, 2060, 0, O, O }; /* vertices */

GpiOpenSegment (hps, 4L); /* creates a segment with labels */
GpiLabel(hps, 5L); GpiMove(hps, &ptlStart);

GpiLabel(hps, 10L); GpiPolyLine(hps, 3L, pt1Triangie);
GpiCloseSegment (hps);

GpiOpenSegment (hps, 4L);
GpiSetElementPointerAtLabel (hps, 10L);/* move to label 10 */
GpiOffsetElementPointer(hps, 1L); /* move to polyline element */

5-178 PM Programming Reference

GpiOffsetRegion —
Offset Region

#define INCL_GPIREGIONS /* Or use INCL_GPI or INCL_PM */

BOOL GpiOfisetRegion (HPS hps, HRGN Hrgn, PPOINTL pptiOffset)

This function moves a region.

Parameters
hps (HPS) — input
Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

Hrgn (HRGN) — input
Handle of the region to be moved.

pptiOfiset (PPOINTL) — input
Offset to be.added to the region boundary.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_HRGN An invalid region handle was specified.
PMERR_REGION_IS_CLIP_REGION An attempt was made to perform a region operation on a
region that is selected as a clip region.
PMERR_INV_COORDINATE . An invalid coordinate value was specified.
PMERR_HRGN_BUSY An internal region busy error was detected. The region

was locked by one thread during an attempt to access it
from another thread.

Remarks
This function moves the region to a new position. The new position is obtained by adding the value
of pptlOffset to all the points that define the region boundary.

An error is raised if the specified region is currently selected as the clip region (by
GpiSetClipRegion).

Chapter 5. Graphics Functions 5-179

GpiOffsetRegion —
Offset Region

Related Functions

* GpiCombineRegion
GpiCreateRegion
GpiDestroyRegion
GpiEqualRegion
GpiPaintRegion
GpiPtinRegion
GpiQueryRegionBox
GpiQueryRegionRects
GpiRectinRegion
GpiSetRegion

e & & o o ¢ o o o

Example Code
This example uses GpiOffsetRegion to move a region right by 3 and up by 3.

#define INCL_GPIREGIONS /* Region functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
HRGN Hrgn; /* handle for region */
POINTL pptl0ffset = {3,3}; /* displacement */

fSuccess = GpiOffsetRegion{hps, Hrgn, &pptl10ffset);

5-180 PM Programming Reference

GpiOpenSegment —
Open Segment

#idefine INCL_GPISEGMENTS /* Or use INCL_GP! or INCL_PM */

BOOL GpiOpenSegment (HPS hps, LONG ISegment)

This function opens a segment with the specified identification number.

Parameters
hps (HPS) — input
Presentation-space handle.

ISegment (LONG) — input
Segment identifier.

Must be zero or a positive number.

Returns
Success indicator:
TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_SEG_NAME
PMERR_INV_MICROPS_FUNCTION

PMERR_ALREADY_IN_SEG

PMERR_PATH_INCOMPLETE

PMERR_AREA_INCOMPLETE

PMERR_INV_MODE_FOR_REOPEN_SEG

PMERR_DYNAMIC_SEG_ZERO_INV

PMERR_INV_MODE_FOR_OPEN DYN

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid segment identifier was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to open a new segment while an
existing segment bracket was already open.

An attempt was made to open or close a segment either
directly or during segment drawing, or to issue
GpiAssociate while there is an open path bracket.

Either:

* A segment has been opened, closed, or drawn.

e GpiAssociate was issued while an area bracket was
open.

e A drawn segment has opened an area bracket and
ended without closing it.

An attempt was made to reopen an existing segment
while the drawing mode was set to DM_DRAW or
DM_DRAWANDRETAIN.

An attempt was been made to open a dynamic segment
with a segment identifier of zero.

An attempt was made to open a segment with the
ATTR_DYNAMIC segment set, while the drawing mode
was set to DM_DRAW or DM_DRAWANDRETAIN.

Chapter 5. Graphics Functions 5-181

GpiOpenSegment —
Open Segment

PMERR_UNCHAINED_SEG_ZERO _INV An attempt was made to open segment with segment
identifier zero and the ATTR_CHAINED segment attribute
not specified.

Remarks
A segment is a way of grouping graphics primitives.

If the current drawing mode is retain or draw-and-retain (see GpiSetDrawingMode), the foliowing
occurs:

* If a nonzero identifier is given, and if a segment with the specified identifier does not already
exist, a new retained segment is created. if one does already exist, it is reopened in retain
mode (with the element pointer set to 0), but is an error in draw-and-retain mode.

* If an identifier of 0 is given, a new retained segment is created, regardless of whether one with a
0 identifier already exists. There can be more than one segment with an identifier of 0, but such
segments can never subsequently be referenced by identifier. When they have been created,
they continue to exist until all segments are deleted. Zero segments must be chained and
cannot be defined as dynamic.

If the current drawing mode is draw, a new nonretained segment is started. No check is made
against any possible retained segment identifiers. The current attributes are set to default values
(subject to the ATTR_FASTCHAIN segment attribute; see below).

The initial attributes of the segment are as set by GpiSetinitialSegmentAttrs. The attributes may
subsequently be changed with GpiSetSegmentAttrs (except for a segment with an identifier of 0). Itis
an error to try to open a new segment with a drawing mode of draw or draw-and-retain, with the
ATTR_DYNAMIC segment attribute.

This function causes a segment bracket to be started. While the bracket is in effect, any primitive
and attribute functions are considered to be part of the segment, and are stored in it if the drawing
mode is retain or draw-and-retain. The bracket is terminated by a GpiCloseSegment. It is an error if
GpiOpenSegment is issued when a segment is already open.

The following actions occur when drawing of a chained segment is started (either as it is passed
across the API in draw or draw-and-retain, or as it is found during a draw operation):

Current attributes and arc parameters are reset to default values.

The current tag is reset to its default value.

Current model transform is reset to unity.

Current position is set to (0,0).

The current clip path is set so as to cause no clipping.

The current viewing limits are reset to their default values.

The current viewing transform is set either to the value last set by
GpiSetViewingTransformMatrix, or to the default value if no GpiSetViewingTransformMatrix
function has been issued.

If the segment has the ATTR_FASTCHAIN attribute, the application should not depend upon whether
or not these operations are performed. This avoids complications when interchanging picture data
with other implementations.

Note: The current clip region is not changed by this function.
If any primitive/attribute calls are issued immediately before this function (that is, outside a segment

bracket), then any currently open area, path, or element brackets are terminated, as described for
GpiCloseSegment, before the new segment is opened. .

If the segment being defined is to be called from another segment (see GpiCallSegmentMatrix),

ensure that the viewing transform (see GpiSetViewingTransformMatrix) is unity before first openihg
the segment. i

5-182 PM Programming Reference

GpiOpenSegment —
Open Segment

The maximum number of retained segments allowed for a given presentation space at any time is
16378.

Related Functions
GpiCallSegmentMatrix
GpiCloseSegment
GpiCorrelateSegment
GpiDeleteSegment
GpiDeleteSegments
GpiDrawSegment
GpiErrorSegmentData
GpiQueryinitiaiSegmentAttrs
GpiQuerySegmentAttrs
GpiQuerySegmentNames
GpiQuerySegmentPriority
GpiSetinitialSegmentAttrs
GpiSetSegmentAttrs
GpiSetSegmentPriority
GpiSetViewingTransformMatrix

Example Code
This example uses the GpiOpenSegment to create a new segment The segment is subsequently
drawn by using the GpiDrawSegment function.

#define INCL_GPISEGMENTS /* Segment functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex #f
POINTL pt1Triangte[] = { 100, 100, 200, 0, O, O }; /* vertices */
GpiOpenSegment (hps, 1L); /* opens the segment *x/
GpiMove(hps, &ptiStart); /* moves to starting point (0,0) */
GpiPolyLine(hps, 3L, ptiTriangie);/* draws triangle */
GpiCloseSegment (hps); /* closes the segment */

GpiDrawSegment (hps, 1L);

Chapter 5. Graphics Functions 5-183

GpiOutlinePath —
Outline Path

#define INCL_GPIPATHS /* Or use INCL_GPI or INCL_PM */

LONG GpiOutlinePath (HPS hps, LONG IPath, LONG Options)

This function draws the outline of a path.

Parameters
hps (HPS) — input
Presentation-space handle.
iPath (LONG) — input
Identifier of path to be outlined; it must be 1.

10ptions (LONG) — input
Options:

Reserved; must be 0.

Returns
Correlation and error indicators:
GPI_OK Successiul

GPLHITS Correlate hits
GPILERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PQ_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_PATH_ID An invalid path identifier parameter was specified.
PMERR_INV_RESERVED _FIELD An invalid reserved field was specified.
PMERR_PATH_UNKNOWN An attempt was made to perform a path function on a path

that did not exist.

Remarks
The outline of the path is drawn, using the line attributes, inciuding cosmetic line width (see
GpiSetLineWidth) but not geometric line width (see GpiSetLineWidthGeom). This normally has the
same effect as if the lines, curves, and so on, which comprise the path, had been drawn without
defining them as being within a path. However, if character strings (referencing outiine fonts) are
contained within the path, the outlines of the characters, without the interior fill, are drawn by
GpiOutlinePath, giving the appearance of hollow characters.

Open figures within the path are not closed automatically.

When the outline of the path has been drawn, the path is deleted.

5-184 PM Programming Reference

Related Functions

Graphic Elements and Orders
Element Type: OCODE_GOPTH

GpiBeginPath
GpiEndPath
GpiFillPath
GpiModifyPath
GpiPathToRegion
GpiSetClipPath
GpiStrokePath
GpiSetLineEnd
GpiSetLineJoin
GpiSetLineType
GpiSetlLineWidth
GpiPop
GpiSetAtirMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Order: Outline Path

Example Code
This example uses GpiOutiinePath to draw the outline of a path (in this case a triangle).

#define INCL_GPIPATHS
#include <os2.h>

LONG 1Hits;

HPS

hps;

/* Path functions

/* correlation/error indicator
/* Presentation-space handle

POINTL ptiStart = { 0, 0 }; /* first vertex

POINTL ptiTriangle[] = { 100, 100, 200, 0, 0, @ }; /* vertices

GpiBeginPath(hps, 1L);
GpiMove(hps, &ptiStart);
GpiPolyLine(hps, 2L, ptl1Triangle);

GpiCloseFigure(hps);
GpiEndPath(hps);

THits = GpiOutlinePath(hps, 1L, OL);

/*
/*
/*
/*
/*

GpiOutlinePath —

*/

*/

start the path bracket */
move to starting point */

draw the three sides

close the triangle

end the path bracket

*/
*/
*/

Outline Path

Chapter 5. Graphics Functions 5-185

GpiPaintRegion —
Paint Region

#define INCL_GPIREGIONS /* Or use INCL_GPI or INCL_PM */

LONG GpiPaintRegion (HPS hps, HRGN hrgn)

This function paints a region into a presentation space, using the current pattern attributes.

Parameters
hps (HPS) — input
Presentation-space handle.
hrgn (HRGN) — input
Region handle.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_REGION_IS_CLIP_REGION

PMERR_INV_HRGN
PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handie was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An invalid region handle was specified.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

The current GPI area foreground and background colors are used. Mixing is controlled by the area

foreground mix only.

It is invalid if the specified region is currently selected as the clip region (by GpiSetClipRegion).

The region is assumed to be defined in device coordinates.

Note: This function must not be used when creating SAA-conforming metafiles; see “Metafile

Restrictions” on page G-1.

5-186 PM Programming Reference

Related Functions

* GpiBeginArea
GpiBeginPath
GpiFillPath
WinFillRect
GpiCombineRegion
GpiCreateRegion
GpiDestroyRegion
GpiEqualRegion
GpiOffsetRegion
GpiPtinRegion
GpiQueryRegionBox
GpiQueryRegionRects
GpiRectinRegion
GpiSetRegion
GpiPop
GpiSetAttrMode
GpiSetAtirs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix
GpiSetPattern
GpiSetPatternRefPoint
GpiSetPatternSet

Example Code

GpiPaintRegion —

Paint Region

This example uses the GpiPaintRegion function to fill a complex region consisting of three,

intersecting rectangles. The region is filled with a red, diagonal pattern.

#define INCL_GPIREGIONS /* Region functions

#include <o0s2.h>

HPS hps; /* presentation space handle
HRGN hrgn; /* handle for region */
RECTL arc1{3] = { 100, 100, 200, 200,
150, 150, 250, 250,
200, 200, 300, 360 };

hrgn = GpiCreateRegion(hps, 3L, arcl);
GpiSetColor(hps, CLR_RED);
GpiSetPattern(hps, PATSYM DIAG1);
GpiPaintRegion(hps, hrgn);

/* 1st rectangle
/* 2nd rectangle
/* 3rd rectangle

*/

*/
*/
*/
*/

Chapter 5. Graphics Functions 5-187

GpiPartialArc —
Partial Arc

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiPartialArc (HPS hps, PPOINTL pptiCenter, FIXED fxMultiplier, FIXED fxStartAngle,
FIXED fxSweepAngle)

This function draws a straight line, followed by an arc.

Parameters
hps (HPS) — input
Presentation-space handle.

" pptiCenter (PPOINTL) — input
Center point.

Center of the arc.

fxMultiplier (FIXED) — input
Multiplier.

This determines the size of the arc in relation to an arc with the current arc parameters.

The implementation limit for the multiplier is 255.

The value must not be negative.

fxStartAngle (FIXED) — input
Start angle in degrees.

The value must be positive.

fxSweepAngle (FIXED) — input
Sweep angle in degrees.

The value must be positive.

Returns ,
Correlation and error indicators:
GPI_OK Successful

GPL_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_MULTIPLIER

PMERR_INV_COORDINATE
PMERR_INV_ANGLE_PARM

PMERR_INV_NESTED_FIGURES

5-188 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid multiplier parameter was specified with
GpiPartialArc or GpiFullArc.

An invalid coordinate value was specified.

An invalid angle parameter was specified with
GpiPartialArc.

Nested figures have been detected within a path
definition.

GpiPartialArc —
Partial Arc

Remarks
This function draws two figures:

¢ A straight line, from the current position to the starting point of an arc
* An arc, with its center at the specified point.

The full arc, of which the arc is a part, is identical to that defined by GpiFullArc. The part of the arc
drawn by this primitive is defined by the parameters fxStartAngle and fxSweepAngle, that are the
start and sweep angles, subtended from the center, if the current arc parameters specify a circular
form. if they do not, these angles are skewed to the same degree that the ellipse is a skewed circle.
fxStartAngle is measured counterclockwise from the x axis of the circle before application of the arc
parameters. Both angles must be positive; whether the arc is drawn clockwise or counterclockwise
is determined by the arc parameters.

Current position is updated to the final point on the arc.

Note: This differs from GpiFullArc, where current position remains at the center of the figure. A
primitive (such as GpiLine) following GpiPartialArc draws from the end point of the arc.

A segment of a pie can be drawn by the following calling sequence:

1. GpiMove, to center of pie
2. GpiPartialArc, drawing one spoke and the arc
3. Gpiline, back to center.

The third step can be performed implicitly by autoclosure if an area is being drawn.

A closed figure bounded by a chord and an arc can be drawn by the following calling sequenbe:

1. GpiSetLineType to invisible

2. GpiPartialArc, with fxStartAngle = angle2, and fxSweepAngle = 0, to define one end of the chord
3. GpiSetLineType to visible

4. GpiPartialArc, with fxStartAngle = angle1, and fxSweepAngle = angle2 —angle1.

(In the second example, angle2 is greater than angle1. If the interior of the chord is to be shaded, the
area must start after step 2 or 3.)

A sweep angle of greater than 360 degrees is valid, and means that after the initial line a full arc is
drawn, followed by a partial arc with a sweep angile of (fxSweepAngle MOD 360) degrees.

Related Functions

* GpiFullArc
GpiPointArc
GpiSetArcParams
GpiSetDefArcParams
GpiSetLineType
GpiSetLineWidth
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetLineEnd
GpiSetLineJoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Chapter 5. Graphics Functions 5-189

GpiPartialArc —
Partial Arc

Graphic Elements and Orders
Element Type: OCODE_GCPARC

Order; Partial Arc at Current Position

Example Code
This example uses the GpiPartialArc function to draw a chord (an arc whose end points are
connected by a straight line).

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <o0s2.h>

HPS hps; /* presentation space handle */
POINTL pt1 = { 100, 100 }; /* center point for arc */

GpiSetLineType(hps, LINETYPE_INVISIBLE);

GpiPartialArc(hps, &ptl, MAKEFIXED(50, 0), MAKEFIXED(6, 0),
MAKEFIXED(180, 0));

GpiSetLineType(hps, LINETYPE_SOLID);

GpiPartialArc(hps, &ptl, MAKEFIXED(50, 0), MAKEFIXED{(@, 0),
MAKEFIXED(180, 0));

5-190 PM Programming Reference

~

GpiPathToRegion —
Path to Region

#define INCL_GPIPATHS /* Or use INCL_GPI or INCL_PM */

HRGN GpiPathToRegion (HPS hps, LONG IPath, ULONG flOptions)

This function converts a path to a region.

Parameters
hps (HPS) — input
Presentation-space handle.

IPath (LONG) - input
Identifier of path to be converted; it must be 1.

flOptions (ULONG) — input
Fill options:

FPATH_ALTERNATE Fills the path using the alternate rule; see GpiBeginArea.

FPATH_WINDING Fills the path using the winding rule; see GpiBeginArea. This value must
be selected if the path has been modified using GpiModifyPath.

The default is FPATH_ALTERNATE.

Returns
Region handle:

#0 Region handle
RGN_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_PATH_ID An invalid path identifier parameter was specified.

PMERR_INV_PATH_CONVERT OPTIONS An invalid options parameter was specified with
GpiOutlinePath.

PMERR_PATH_UNKNOWN An attempt was made to perform a path function on a path
that did not exist.

Remarks
This function converts a path (originally defined by a series of GPI drawing calls) to a region. The
new region can be operated on by the GPI region calls; in particular GpiCombineRegion can be used
to combine it with another region.

Any open figures within the path are closed automatically.

The boundaries of the area defined by the path are considered to be part of the interior, so that a
point on the boundary is included in the new region.

After a path is converted to a region, it no longer exists as a path. The path cannot be reused for any
other purpose.

Chapter 5. Graphics Functions 5-191

GpiPathToRegion —
Path to Region

Related Functions
* GpiBeginPath
GpiCombineRegion

GpiEndPath
GpiFillPath
GpiModifyPath
GpiOutlinePath
GpiSetClipPath
GpiStrokePath

Example Code

This example uses GpiPathToRegion to convert a path (a triangle) to a region using the winding rule
to fill the region.

#define INCL_GPIPATHS /* Path functions */

#include <o0s2.h>

HRGN hrgn; /* handle for region */

HPS hps; /* Presentation-space handle */

POINTL ptiStart = { 0, 0 }; /* first vertex */

POINTL ptiTriangle[] = { 100, 100, 200, O, 0, 0 }; /* vertices */

GpiBeginPath(hps, 1L); /* start the path bracket */
GpiMove(hps, &ptiStart); /* move to starting point */
GpiPolyLine(hps, 2L, ptlTriangle); /* draw the three sides */
GpiCloseFigure(hps); /* close the triangle */
GpiEndPath(hps); /* end the path bracket */

hrgn = GpiPathToRegion(hps, 1L, FPATH_WINDING);

5-192 PM Programming Reference

GpiPlayMetaFile —
Play Metafile

#define INCL_GPIMETAFILES /* Or use INCL_GP! or INCL_PM */

LONG GpiPlayMetaFile (HPS hps, HMF hmf, LONG ICount1, PLONG alOptarray,
PLONG piSegCount, LONG ICount2, PSZ pszDesc)

This function plays a metafile into a presentation space.

Parameters
hps (HPS) — input
Presentation-space handie.
hmf (HMF) — input
Metafile handle.

Handle of the metafile containing the data.

ICountt (LONG) — input
Count of elements in alOptarray.

alOptarray (PLONG) — input
Array of options for playing.

The values of the elements in this array determine what action is to be taken when the metafile
is played into the specified presentation space. The elements in the array are numbered
consecutively, starting with PMF_SEGBASE. The element number constants start with 0. (Refer
to the appropriate bindings reference.) Any elements in the array that are not set to one of the

values defined below must be set to 0.
Optarray.[PMF_SEGBASE]
Optarray.[PMF_LOADTYPE]

Optarray.[PMF_RESOLVE]
Optarray.[PMF_LCIDS]

Reserved; must be 0.

Specifies what transformations should be performed on
the imported picture. The options are:

LT_DEFAULT The default; same as LT_NOMODIFY

LT_NOMODIFY The graphics are restored using the
current viewing transform (see
GpiSetViewingTransformMatrix), rather than the ones
that were in use when the data was created. This is
the default action.

Any change to the graphics field or default viewing
transform during the course of the picture will be
ignored if this option is specified (or defaulted).

LT_ORIGINALVIEW The graphics are restored using the
viewing transforms that are in the metafile.

The default viewing transform of the presentation
space is not altered (unless RES_RESET is specified).
However, any changes to the default viewing
transform that occur during the course of the picture
(and also any graphics field clipping) cause changes
to the values in the presentation space.

Reserved; must be 0.

Specifies the action to be taken for any logical font
definitions, or bit maps referenced by local identifiers
for use as shading patterns that are held in the metafile.

The options are:

Chapter 5. Graphics Functions 5-193

GpiPlayMetaFile —
Play Metafile

Optarray.[PMF_RESET]

Optarray.[PMF_SUPPRESS]

5-194 PM Programming Reference

LC_DEFAULT Default; same as LC_NOLOAD.

LC_NOLOAD Do not load such objects. This is the
default, and is used where the application expects the
correct objects to be already loaded.

LC_LOADDISC Load all objects referenced in the
metafile, first deleting any already existing in the
presentation space, for which the referenced local
identifier is already in use.

Specifies whether the presentation space should be
reset before playing the metafile, with the page units
and size being set as defined in the metafile.

The options are:
RES_DEFAULT Default; same as RES_NORESET.
RES_NORESET Do not perform a reset.

RES_RESET Reset the presentation space, before
loading any logical fonts, color tables, segments, and
so on, as follows:

1. Reset the page units and page size to the values
contained in the metafile.

2. Set up default transformations, based on the
page units and size, as if the presentation space
had just been created with these values.

3. Further modify the device transform to ensure
that the physical size of the metafile picture is
preserved. (Only performed if the page units in
the metafile are not PU_ARBITRARY or
PU_PELS.)

4. Perform the equivalent of GpiResetPS (option
GRES_ALL).

5. Set the defauit viewing transform to the value
specified in the metafile.

This option should normally be used with a
PMF_LOADTYPE option of LT_ORIGINALVIEW and
LC_LOADDISC, but this is not enforced.

Specifies whether the playing of this metafile actually
occurs. This is provided to allow an application to use
the PMF_RESET option, and then to regain control to
perform further presentation-space modifications if
necessary, before playing the remainder of the metafile.

The options are:
SUP_DEFAULT Default; same as SUP_NOSUPPRESS.

SUP_NOSUPPRESS Do not suppress the remainder of
the metafile.

SUP_SUPPRESS Suppress the remainder of the
metafile.

If this option is selected, only processing as
determined by the PMF_RESET option is performed.
The remainder of the metafile, and all other options,
are ignored.

J Optarray.[PMF_COLORTABLES]

Optarray.[PMF_COLORREALIZABLE]

| Optarray.[PMF_DEFAULTS]

piSegCount (PLONG) — output
Reserved.

The value 0 is always returned.

j ICount2 (LONG) — input
Count of bytes in pszDesc.

GpiPlayMetaFile —
Play Metafile

Specifies the action to be taken with respect to any color
table or palette implied or present within the metafile.

The options are:
CTAB_DEFAULT Default; same as CTAB_NOMODIFY.

CTAB_NOMODIFY ignore. The default or loaded color
table or selected palette in the presentation space is
unchanged, as are the references to color attributes
in the new data. This is the default; it is suitable
where it is known that the currently loaded color table
or selected palette (if any) is suitable for the use of
color in the imported picture.

CTAB_REPLACE Overwrite the currentiy-loaded color
table (if any), with a color table as implied or present
in the metafile. This can be used where there is no
existing picture.

CTAB_REPLACEPALETTE Overwrite the
currently-selected palette (if any), with a palette as
implied or present in the metafile. This can be used
where there is no existing picture.

Note: If the metafile specifies a color table in RGB
mode, the currently-selected palette (if any) is
overwritten with a color table in RGB mode,
and a warning is issued.

Specifies whether the color table data contained in the
metafile should be loaded with the LCOL_REALIZABLE
option or not (see GpiCreateLogColorTable).

The options are:
CREA_DEFAULT Default; same as CREA_NOREALIZE

CREA_DOREALIZE Load the color table with the
realizable option set, and realize the color table.

CREA_NOREALIZE Load the color table with the
realizable option off. This is the default.

Specifies how the drawing defaults contained in the
metafile should be used (see GpiSetDefAttrs,
GpiSetDefViewingLimits, GpiSetDefTag, and
GpiSetDefArcParams).

The options are:
DDEF_DEFAULT Default; same as DDEF_IGNORE

DDEF_IGNORE Ignore any drawing default values in the
metafile.

DDEF_LOADDISC Change any drawing default values in
the presentation space that are specified in the
metafile, to the values contained in the metafile.

Chapter 5. Graphics Functions 5-195

GpiPlayMetaFile —
Play Metafile

pszDesc (PSZ) — output
Descriptive record.

pszDesc is a buffer that, on return, contains the descriptive record, of up to 253 bytes, that is
saved when the metafile is created (see DevOpenDC). This is null-terminated, even if it has to

be truncated.

Returns

Correlation and error indicators:

GPI_OK Successiul
GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS BUSY

PMERR_INV_HMF
PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_PLAY _METAFILE_OPTION

PMERR_INCOMPATIBLE_METAFILE

PMERR_INV_METAFILE
PMERR_INV_MICROPS_ORDER

PMERR_STOP_DRAW_OCCURRED

PMERR_INV_OUTSIDE_DRAW_MODE

PMERR_INV_ELEMENT_POINTER

PMERR_INV_IN_CURRENT EDIT MODE

PMERR_PROLOG_ERROR

PMERR DUP_SEG

5-196 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simuitaneously.

An invalid metafile handle was specified.
An invalid length or count parameter was specified.

An invalid option parameter was specified with
GpiPlayMetaFile.

An attempt was made to associate a presentation space
and a metafile device context with incompatible page
units, size or coordinate format; or to play a metafile
using the RES_RESET option (to reset the presentation
space) to a presentation space that is itself associated
with a metafile device context.

An invalid metafile was specified with GpiPlayMetaFile.

An attempt was made to play a metafile containing orders
that are invalid in a micro presentation space.

Segment drawing or GpiPlayMetaFile was stopped
prematurely in response to a GpiSetStopDraw request.

An attempt was made to issue a GpiSavePS or
GpiRestorePS function, or an output only function (for
example, GpiPaintRegion) from GpiPlayMetaFile without
the drawing mode set to DM_DRAW.

An attempt was made to issue GpiPutData with the
element pointer not pointing at the last element.

An attempt was made to issue a function invalid inside
the current editing mode.

A prolog error was detected during drawing. Segment
prologs are used internally within retained segments and
also appear in metafiles. This error can also arise from
an End Prolog order that is outside a prolog.

During GpiPlayMetaFile, while the actual drawing mode
was draw-and-retain or retain, a metafile segment to be
stored in the presentation space was found to have the
same segment identifier as an existing segment.

GpiPlayMetaFile —
Play Metafile

Remarks
This function executes the contents of a metafile. This process is known as “playing” the metafile.
Whether the graphics are drawn, or retained in segment store, or both, depends upon the current
drawing mode (see GpiSetDrawingMode) in the presentation space, for the chained and unchained
segment contexts, as appropriate. If chained segments are retained, they are added to the end of
any existing segment chain. An error is raised if a segment is to be retained, and it has the same
(nonzero) identifier as a currently existing segment.

A segment must not be open when this function is issued. At the completion of the call, there is no
open segment.

The application may need to reset the presentation space by GpiResetPS, before issuing this
function. Alternatively, the PMF_RESET option on this function may be suitable.

Segments retain the segment attributes that they originally possessed.

Related Functions

¢ GpiCopyMetaFile
GpiDeleteMetaFile
GpiLoadMetaFile
GpiQueryMetaFileBits
GpiQueryMetaFileLength
GpiSaveMetaFile
GpiSetMetaFileBits

Chapter 5. Graphics Functions 5-197

GpiPlayMetaFile —
Play Metafile

Example Code
This example uses the GpiPlayMetaFile function to play (execute) the metafile loaded by
GpiLoadMetaFile into a presentation space associated with a window. GpiPlayMetaFile is called
twice: the first call resets the presentation space (by combining the RES_RESET and SUP_SUPPRESS
flags), while the second call actually executes the metafile.

#define INCL_GPIMETAFILES /* Metafile functions */
#define INCL_GPICONTROL /* GPI control Functions */
#include <os2.h>

HAB hab; /* anchor-block handle */
HPS hps; /* presentation space handle */
HMF hmf; /* metafile handle */
HDC hdc; /* Device-context handle */
HWND hwnd; /* window handle */
SIZEL siz1={0,0}; /* use same page size as device */
CHAR szBuffer[80]; /* descriptive record buffer */
LONG THits; /* correlation/error indicator */

/* play metafile options array */

LONG optArray[PMF_DEFAULTS+1] =
{0,LT_DEFAULT,0,LC_DEFAULT,RES_RESET,
SUP_SUPPRESS,CTAB_DEFAULT,CREA_DEFAULT,
DDEF_DEFAULT};

hmf = GpiLoadMetaFile(hab, "sample.met");

/* create window device context and presentation space,
associating DC with the PS */

hdc = WinOpenWindowDC (hwnd) ;

hps = GpiCreatePS(hab, hdc, &sizl, PU_PELS | GPIA_ASSOC);

/* reset presentation space */
1Hits = GpiPlayMetaFile(hps, hmf, 9L, optArray, (LONG *)O, 80OL,
szBuffer);

/* display metafile in window (reset and
suppress flags must be changed) */
optArray [PMF_SUPPRESS]=SUP_DEFAULT;
optArray[PMF_RESET]=RES_DEFAULT;
1Hits = GpiPlayMetaFile(hps, hmf, 9L, optArray, (LONG *)0O, 8OL,
szBuffer);

5-198 PM Programming Reference

GpiPointArc —
Point Arc

#define INCL_GPIPRIMITIVES /* Or use INCL_GP! or INCL_PM */

LONG GpiPointArc (HPS hps, PPOINTL aptiPoints)

This function creates an arc, using the current arc parameters, through three points, starting at the
current position.

Parameters
hps (HPS) — input
Presentation-space handle.

aptiPoints (PPOINTL) — input
Intermediate and end points.

Returns
Correlation and error indicators:
GP1_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
PMERR_INV_NESTED_FIGURES Nested figures have been detected within a path
definition.
Remarks

The first element of the apt/Points array defines an intermediate point along the arc, and the second
element identifies the end point of the arc. Upon completion, current position is set to the end point
of the arc.

Related Functions
* GpiFullArc
GpiPartialArc
GpiSetArcParams
GpiSetDefArcParams
GpiSetLineType
GpiSetLineWidth
GpiPop
GpiSetAttrMode
GpiSetAtirs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Chapter 5. Graphics Functions 5-199

GpiPointArc —
Point Arc

Graphic Elements and Orders
Element Type: OCODE_GCARC

Order: Arc at Current Position

Example Code

This example uses the GpiPointArc function to draw an arc through the three points of a triangle.
The GpiPolyLine function then draws the triangle.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle *f
POINTL ptl1Triangle{] = { 0, 0, 100, 160, 200, 0 }:

GpiMove(hps, &ptlTriangle[0]); /* moves to start point (0, 0)*/
GpiPointArc(hps, &pt1Triangle[1]);/* draws the arc */
GpiMove(hps, &ptlTriangle[0]); /* moves to start point (0, 0)*/
/* draws the triangle */

GpiPolyLine(hps, 3L, &tl1Triangle[1]);

5-200 PM Programming Reference

GpiPolyFillet —
Polyifillet

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiPolyFillet (HPS hps, LONG ICount, PPOINTL aptiPoints)

This function draws a curve starting at the current position and defined by the points supplied.

Parameters
hps (HPS) — input
Presentation-space handle.

ICount (LONG) — input
Number of points.

Must not be negative. Zero is valid but causes no output.

aptiPoints (PPOINTL) - input
Array of points.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_COORDINATE An invalid coordinate value was specified.

PMERR_INV_NESTED_FIGURES Nested figures have been detected within a path
definition.

Remarks

If two points are supplied, an imaginary straight line is drawn from the current position to the first
point and a second straight line from the first point to the second. A curve is then constructed,
starting at the current position and tangential to the first straight line. The curve is drawn such that it
reaches the last point at a tangent to the second straight line. Figure 5-1 on page 5-202 shows the
curve constructed, given current position A and the two points B and C.

If more than two points are supplied, a series of imaginary straight lines is constructed through them
(as in the GpiPolyLine function). All of the straight lines except the first and last are then divided in
two at their mid-points. A series of curved fillets is then drawn, each starting at the end point of the
last, at one of the mid-points. Figure 5-2 on page 5-202 shows the curve constructed, given current
position A and three points B, C, and D.

The current position is set to the last point.

Each individual fillet always lies within the area bounded by the start, end, and control points.

It is not an error for any of the points to be coincident.

Chapter 5. Graphics Functions 5-201

GpiPolyFillet —
Polyfillet

The maximum number of fillets allowed in the polyfillet is more than 4 000.

where:

B e A = Current position
./’ B and C = Points specified

~.
~.
~.
~—
"~
~—.
T~

Cc

Figure 5-1. GpiPolyFillet Example A

where:

B ,/ A = Current position
/ B.C.D = Points specified

Figure 5-2. GpiPolyFillet Example B

Related Functions
* GpiPointArc
GpiPolyFilletSharp
GpiPolySpline
GpiSetArcParams
GpiSetDefArcParams
GpiSetLineType
GpiSetLineWidth
GpiPop
GpiSetAtirMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

5-202 PM Programming Reference

GpiPolyFillet —
Polyfillet

Graphic Elements and Orders
Element Type: OCODE_GCFLT

Order: Fillet at Current Position
As many of these orders are generated as is necessary to hold the specified fillets.

Example Code
This example uses the GpiPolyFillet function to draw a curve with a loop. The four points are the
four points of a rectangle. The curve is drawn from the lower-left corner, through the midpoint of the
top edge, and back to the lower-right corner.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, @ }; /* start point */
POINTL apti[3] = { 200, 100, O, 100, 200, © }; /* curve points */
GpiMove(hps, &ptiStart); /* move to the lower-left corner */
GpiPolyFillet(hps, 3L, aptl); /* draw the curve */

Chapter 5. Graphics Functions 5-203

GpiPolyFilletSharp —
Polyfillet Sharp

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiPolyFilletSharp (HPS hps, LONG ICount, PPOINTL aptiPoints, PFIXED afxSharpness)

This function creates a fillet on a series of connected lines, with the first line starting at the current
position. Subsequent points identify the end points of the lines.

Parameters
hps (HPS) — input
Presentation-space handle.
ICount (LONG) — input
Count of points.

This is the number of points specified in apt/Points. it must be 2+f, where f is the number of
fillets; the value must be a positive even number. Zero is valid but causes no output.

aptiPoints (PPOINTL) — input
An array of points.

These points are set as follows:

cl, el, c2, e2, c3, e3, ... cf, ef

where:

cf is the control point for the 'th fillet

ef is the end point of the f'th fillet.

afxSharpness (PFIXED) — input
Array of sharpness values.

These give the sharpness of successive fillets.

Returns
Correlation and error indicators:
GP1_OK Successful

GPLHITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_COORDINATE
PMERR_INV_SHARPNESS_PARM

PMERR_INV_NESTED_FIGURES

5-204 PM Programming Reference

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.
An invalid coordinate value was specified.

An invalid sharpness parameter was specified with
GpiPolyFilletSharp.

Nested figures have been detected within a path
definition.

GpiPolyFilletSharp —
Polyfillet Sharp

Remarks
The first fillet is drawn using the two imaginary lines, one from current position to its control point
(the first point specified in apt/Points), and one from this point to the second point specified in
aptiPoints. The fillet starts from current position, and ends at this second point. It is tangential to the
first line at current position, and to the second line at the second point of apt/Points. The sharpness
of this fillet is given by the first element of the afxSharpness array.

Each subsequent fillet is drawn starting from the end point of the previous fillet, and uses the next
two lines in the sequence, in a similar way. Therefore two points and one sharpness value are
required for each fillet.
The differences from GpiPolyFillet are:

* The sharpness of each fillet is explicitly specified.

* Both the control and the end point of each fillet are explicitly specified.

* Adjacent fillets, generally, have a discontinuity in gradient, unless the points are chosen so that

this is not the case.

The sharpness of each fillet is defined as follows. Let A and C be the start and end points,
respectively, of the fillet, and let B be the control point. (See Figure 5-3.) Let W be the mid-point of
AC. Let D be the point where the fillet intersects WB.

sharpness = WD/DB
so that

> 1.0 means a hyperbola is drawn
= 1.0 means a parabola is drawn
< 1.0 means an ellipse is drawn.

~.
~—.
~.
"~
-~
~——
~N

Sharpness = WD/WB

Figure 5-3. GpiPolyFilletSharp Example

On completion, the current position is the end point of the last line in the series. Each individual fillet
always lies within the area bounded by the start, end, and control points.

It is not an error for any of the points to be coincident.

The maximum number of fillets allowed is more than 2 000.

Chapter 5. Graphics Functions 5-205

GpiPolyFilletSharp —
Polyfillet Sharp

Related Functions
* GpiPointArc
GpiPolyFillet
GpiPolySpline
GpiSetArcParams
GpiSetDefArcParams
GpiSetLineType
GpiSetLineWidth
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCSFLT

Order: Sharp Fillet at Current Position
As many of these orders are generated as is necessary to hold the specified fillets.

Example Code
This example uses the GpiPolyFiiletSharp function to draw a curve with a loop. The curve is drawn
within a rectangle. The sharpness values are chosen to draw the curve close to the control points.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* start of curve */

POINTL apt1[4]={ 100, 100, 260, 100, 0, 100, 200, 0};/* points */
FIXED afx[2]={MAKEFIXED(4, 0), MAKEFIXED(4, 0)};/* sharpness */

GpiMove(hps, &pt1Start); /* move to first starting point */
GpiPolyFilletSharp(hps, /* presentation-space handle */
aL, /* 4 points in the array */
aptl, /* address of array of points */
afx); /* address of array of sharpness values */

5-206 PM Programming Reference

GpiPolygons —
Draw Polygons

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL._PM */

LONG GplPolygons (HPS hps, LONG ICount, PPOLYGON alPolygons, LONG IOptions,
LONG Imodel)

This function draws a set of closed polygons.

Parameters
hps (HPS) — input
Presentation-space handle.

ICount (LONG) — input
Number of polygons.

Equal to the number of polygons in the polygons array. May be zero or positive, zero causes no
output.

alPolygons (PPOLYGON) — input
Array of polygons.

An array of POLYGON structures.

10ptions (LONG) — input
Drawing options.

This contains fields of option bits. For each field, one value should be selected (unless the
default is suitable). These values can be ORed together to determine whether to draw boundary
lines as well as the area interior:

POLYGON_NOBOUNDARY Do not draw boundary lines
POLYGON_BOUNDARY Draw boundary lines (the default).
Construction of the area interior:
POLYGON_ALTERNATE Construct interior in alternate mode (the default)
POLYGON_WINDING Construct interior in winding mode. '
Imodel (LONG) — input
Drawing model.
POLYGON_INCL The fill is inclusive of bottom right. This is the default.

POLYGON_EXCL The fill is exclusive of bottom right. This is provided to aid migration from
other graphics models.

Chapter 5. Graphics Functions 5-207

GpiPolygons —
Draw Polygons

Returns
Correlation/error indicator:
GPI_OK Successful

GPI_HITS Correlate hits.
GP1L_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_AREA_CONTROL An invalid options parameter was specified with
GpiBeginArea.

PMERR_INV_IN_PATH An attempt was made to issue a function invalid inside a
path bracket.

PMERR_ALREADY_IN_AREA An attempt was made to begin a new area while an

existing area bracket was already open.

Remarks
The polygons are filled using the current AREABUNDLE structure values. For the first polygon, the
current position is the first point. For all subsequent polygons all points which define the polygon are
given explicitly. The polygons are automatically closed, if necessary, by drawing a line from the last
vertex to the first.

The polygons may overlap, but that is not necessary.
GpiPolygons is not valid inside of an area.
Graphic Elements and Orders

Element Type: OCODE_GPOLYS
Order: Polygons

5-208 PM Programming Reference

GpiPolyLine —
Polyline

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GpiPolylLine (HPS hps, LONG ICount, PPOINTL aptiPoints)

This function draws a series of straight lines starting at the current position and connecting the
points specified.

Parameters
hps (HPS) — input
Presentation-space handle.

ICount (LONG) — input
Number of points

Must not be negative. Zero is valid but causes no output.

aptiPoints (PPOINTL) — input
Array of points.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_ ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_COORDINATE An invalid coordinate value was specified.

PMERR_INV_NESTED_FIGURES Nested figures have been detected within a path
definition.

Remarks

On completion, current position is set to the last point.
The maximum number of lines allowed in a polyline is device dependent, but is always greater than

3 500 for GPIF_LONG format spaces and always greater than 7 200 for GPIF_SHORT format spaces
(see the PS_FORMAT of GpiCreatePS for the meaning of this format).

Chapter 5. Graphics Functions 5-209

GpiPolyLine -
Polyline

Related Functions
* GpiBox
GpiLine
GpiPolyLineDisjoint
GpiMove
GpiSetCurrentPosition
GpiSetLineEnd
GpiSetLineJoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCLINE
Note that GpiLine also generates this element type.

Order: Line at Current Position
As many of these orders are generated as is necessary to hold the specified points.

Example Code

This example uses the GpiPolyLine function to draw a triangle.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
POINTL ptiTriangle[] = { 100, 100, 200, 0, 0, 0 }; /* vertices */

GpiMove(hps, &ptlTriangle[2]); /* moves to end point (0, 0)*/
GpiPolyLine(hps, 3L, &ptl1Triangle[1]);/* draws triangle */

5-210 PM Programming Reference

GpiPolyLineDisjoint —
Polyline Disjoint

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GpliPolyLineDisjoint (HPS hps, LONG ICount, PPOINTL aptiPoints)

This function draws a series of disjoint straight lines using the end-point pairs specified.

Parameters
hps (HPS) — input
Presentation-space handle.
iCount (LONG) — input
Number of points

Must be even and not negative. Zero is valid, but it causes no output. The maximum number of
points allowed is system-dependent, but it is at least 7 000.

aptiPoints (PPOINTL) — input
Array of points.

Returns
Correlation/error indicator:
GPI_OK Successful

GPL_HITS Correlate hit(s)
GPI_ERROR Error.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_COORDINATE
PMERR_INV_NESTED_FIGURES

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.
An invalid coordinate value was specified.

Nested figures have been detected within a path
definition.

The effect of this function is the same as the following sequence of calls:

GpiMove (hps, Points[0]);
GpiLine (hps, Points[1]);
GpiMove (hps, Points[2]);
GpiLine (hps, Points[3]);
GpiMove (hps, Points[Count-2]);
Gpiline (hps, Points[Count-1]);

On completion, current position is set to the last point.

Chapter 5. Graphics Functions 5-211

GpiPolyLineDisjoint —
Polyline Disjoint

Related Functions
* GpiBox
GpiLine
GpiPolyLine
GpiMove
GpiSetCurrentPosition
GpiSetLineEnd
GpiSetLineJoin
GpiSetLineType
GpiSetLineWidth
GpiSetLineWidthGeom
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

e & &6 & & & & & & & 6 o o 0o 0 o o

Example Code
This example uses the GpiPolyLineDisjoint function to draw two lines.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps: /* presentation space handle
POINTL ptiLines[] = { 100, 1008, 1060, 200, /* line 1 */
200, 100, 200, 200 }; /* line 2

GpiPolyLineDisjoint(hps, 4L, &ptlLines[1]);/* draw lines */

§-212 PM Programming Reference

GpiPolyMarker —
Polymarker

#define INCL_GPIPRIMITIVES /* Or use INCL_GP! or INCL_PM */

LONG GplPolyMarker (HPS hps, LONG ICount, PPOINTL aptiPoints)

This function draws markers with their centers at each of a series of specified positions.

Parameters
hps (HPS) — input
Presentation-space handle.

ICount (LONG) — input
Number of points.

Must not be negative. Zero is valid but causes no output.

aptiPoints (PPOINTL) — input
Array of points.

A marker is drawn at each of these points.

Returns
Correlation and error indicators:
GPI_OK Successful
GPI_HITS Correlate hits

GPI_LERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT
PMERR_INV_COORDINATE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simuitaneously.

An invalid length or count parameter was specified.

An invalid coordinate value was specified.

On completion, the current position is set to the position of the last marker in the series. The marker
symbol is selected by the current values of the marker set and marker symbol attributes.

Related Functions
* GpiMarker
GpiSetMarker
GpiSetMarkerBox
GpiSetMarkerSet
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Chapter 5. Graphics Functions 5-213

GpiPolyMarker —
Polymarker

Graphic Elements and Orders
Element Type: OCODE_GMRK
Note that GpiMarker also generates this element type.

Order: Marker at Given Position
As many of these orders are generated as is necessary to hold the specified positions.

Example Code
This example uses the GpiPolyMarker function to draw a series of markers. It then uses the
GpiPolyLine function to connect to markers with lines.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <o0s2.h>

HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* start point */

POINTL apt1[5]={10, 8, 20, 17, 30, 28, 40, 51, 50, 46};/* points*/
GpiPolyMarker{hps, 51, aptl);

GpiMove(hps, &ptiStart);
GpiPolyLine(hps, 5L, aptl);

5-214 PM Programming Reference

GpiPolySpline —
Polyspline

#idefine INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpliPolySpline (HPS hps, LONG ICount, PPOINTL aptiPoints)

This function creates a succession of Bézier splines.

Parameters
hps (HPS) — input
Presentation-space handle.
ICount (LONG) — input
Count of points.

This is the number of points specified in apt/Points. it must be three times the number of
splines. The value must not be negative, and it must be divisible by 3. Zero is valid but causes
no output.

aptiPoints (PPOINTL) — input
An array of points.

The points are given in this order:
cll, cl12, el, c21, c22, e2, ... csl, cs2, es
where:

cs1 is the first control point of spline s
cs2 is the second control point of spline s
es is the end point of spline s.

Returns
Correlation and error indicators:
GPI_OK Successful

GPI_HITS Correlate hits
GPI_LERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_COORDINATE An invalid coordinate value was specified.

PMERR_INV_NESTED FIGURES Nested figures have been detected within a path
definition.

Remarks

The first Bézier spline starts from the current position and goes to the third specified point, with the
first and second points used as control points. Subsequent splines start from the ending point of the
previous spline, and end at the next specified point but two, with the intervening points their first and
second control points. It is the responsibility of the application to ensure that the gradient is
continuous at each end and start point, if this is required.

Chapter 5. Graphics Functions 5-215

GpiPolySpline —
Polyspline

On completion, the current position is set to the last specified point. Each individual spline always
lies within the area bounded by the start, end, and control points.

It is not an error for any of the points to be coincident.

The maximum number of splines allowed is more than 2 500.

Related Functions
* GpiPointArc
GpiPolyFillet
GpiPolyFilletSharp
GpiSetArcParams
GpiSetDefArcParams
GpiSetLineType
GpiSetLineWidth
GpiPop
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiSetBackColor
GpiSetBackMix
GpiSetColor
GpiSetMix

Graphic Elements and Orders
Element Type: OCODE_GCBEZ

Order: Bezier Spline at Current Position
As many of these orders are generated as is necessary to hold the specified splines.

Example Code ,
This example uses the GpiPolySpline function to draw a curve. The curve is drawn within a skewed
rectangle, with the bottom corners being the start and end points and the top corners being the
control points.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <o0s2.h>
HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* start point */
POINTL apt1{3] = { 0, 100, 200, 150, 200, 50 }; /* point array */
GpiMove(hps, &ptlStart); /* moves to start point */
GpiPolySpline(hps, /* presentation-space handle */
3L, /* 3 points in the array */
aptl); /* address of array of points */

5-216 PM Programming Reference

GpiPop —
Pop

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

BOOL GpiPop (HPS hps, LONG iCount)

This function restores the primitive attributes that have been saved on the stack.

Parameters
hps (HPS) — input
Presentation-space handle.

ICount (LONG) — input
Number of attributes to be restored.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_INV_LENGTH_OR_COUNT
PMERR_SEG_CALL_STACK_EMPTY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An invalid length or count parameter was specified.

A call stack empty condition was detected when
attempting a pop function during GpiPop or segment
drawing.

Each time a primitive attribute call (such as color, or line type) is issued and the attribute mode is set
to AM_PRESERVE, the values are put into a “Last in, First out” stack.

This function can reset the current attribute values (starting with the last one set) to the previous
value; this is known as “popping.” This allows a called segment to change the values of the
attributes, and aliows them to be restored on return to the caller (an implicit GpiPop function is
performed for each preserved attribute when returning from a called segment).

When inside an area or path definition, this function is only valid if the attribute being popped is valid

inside an area or path definition.

Note: it is not possible to check whether the attribute to be popped is valid before issuing this

function.

Chapter 5. Graphics Functions 5-217

GpiPop —
Pop

Related Functions
* GpiQueryAtirMode
GpiQueryAttrs
GpiQueryDefAttrs
GpiRestorePS
GpiSetAttrMode
GpiSetAttrs
GpiSetDefAttrs
GpiRestorePS

Graphic Elements and Orders
Element Type: OCODE_GPOP

Order: Pop
ICount of these orders are generated.

Example Code
This example uses the GpiPop function to restore the fill pattern and color attribute after painting a

region.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#define INCL_GPIREGIONS /* GPI region functions */
#include <os2.h>

HPS hps; /* presentation space handle */
HRGN hrgn; /* region handle */

/* preserves attributes on stack */
GpiSetAttrMode(hps, AM_PRESERVE);

GpiSetColor(hps, CLR_RED); /* sets color to red */
GpiSetPattern(hps, PATSYM DIAGl); /* sets pattern to a diagonal */
GpiPaintRegion(hps, hrgn);

GpiPop(hps, 2L); /* restores values of last two attributes set */

5-218 PM Programming Reference

GpiPtinRegion —
Point In Region

#define INCL_GPIREGIONS /* Or use INCL_GPI or INCL_PM */

LONG GpiPtinRegion (HPS hps, HRGN hrgn, PPOINTL pptiPoint)

This function checks whether a point lies within a region.

Parameters
hps (HPS) — input
Presentation-space handle.

The region must be owned by the device identified by the currently associated device context.

hrgn (HRGN) — input
Region handie.

pptiPoint (PPOINTL) — input
Point to be checked.

The point is in device coordinates.

Returns

Inside and error indicators:
PRGN_OUTSIDE Not in region
PRGN_INSIDE in region
PRGN_ERROR Error.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS BUSY

PMERR_INV_HRGN
PMERR_INV_COORDINATE
PMERR_REGION_IS_CLIP_REGION

PMERR_HRGN_BUSY

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid region handle was specified.
An invalid coordinate value was specified.

An attempt was made to perform a region operation on a
region that is selected as a clip region.

An internal region busy error was detected. The region
was locked by one thread during an attempt to access it
from another thread.

it is invalid if the specified region is currently selected as the clip region (by GpiSetClipRegion).

Chapter 5. Graphics Functions 5-219

GpiPtinRegion —
Point In Region

Related Functions
* GpiCombineRegion
GpiCreateRegion
GpiDestroyRegion
GpiEqualRegion
GpiOffsetRegion
GpiPaintRegion
GpiQueryRegionBox
GpiQueryRegionRects
GpiRectinRegion
GpiSetRegion

Example Code
This example uses GpiPtinRegion to determine if the point (150,150) lies within a region.

#define INCL_GPIREGIONS /* Region functions */
#include <os2.h>
LONG 1Inside; /* inside/error indicator */
HPS hps; /* Presentation-space handle */
HRGN hrgn; /* handle for region */
POINTL pptiPoint = {150L,150L};/* point to be checked */
RECTL arci[3] = { 100, 100, 200, 200, /* 1st rectangle */
150, 150, 250, 250, /* 2nd rectangle */
200, 200, 300, 300 }; /* 3rd rectangle */

/* create a region comprising three rectangles */
hrgn = GpiCreateRegion(hps, 3L, arcl);

1Inside = GpiPtInRegion(hps, hrgn, &pptl1Point);

5-220 PM Programming Reference

GpiPtVisible —
Point Visible

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiPtVisible (HPS hps, PPOINTL pptiPoint)

This function checks whether a point is visible within the clipping region of the device associated
with the specified presentation space.

Parameters
hps (HPS) — input
Presentation-space handle.

pptiPoint (PPOINTL) - input
Point to be checked.

The point is given in world coordinates.

Returns
Visibility indicator:

PVIS_INVISIBLE Not visible
PVIS_VISIBLE Visible
PVIS_ERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_COORDINATE An invalid coordinate value was specified.
Remarks

For the purposes of this function, the clipping region is defined as the intersection between the
application clipping region, and any other clipping, including windowing.

Related Functions

* GpiExcludeClipRectangle
GpilntersectClipRectangle
GpiOffsetClipRegion
GpiQueryClipBox
GpiQueryClipRegion
GpiQueryPel
GpiRectVisible
GpiSetClipRegion
GpiSetGraphicsField
WinExciudeUpdateRegion

Chapter 5. Graphics Functions 5-221

GpiPtVisible —
Point Visible

Example Code

This example uses GpiPtVisible to check whether (150,150) is visible within the clipping region of the
device associated with the presentation space.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

LONG 1Visibility; /* visibility indicator */
HPS hps; /* Presentation-space handle */
POINTL pptl1Point = {150L,150L};/* point to be checked */

1Visibility = GpiPtVisible(hps, &pptlPoint);

5-222 PM Programming Reference

g

GpiPutData —
Put Data

#define INCL_GPISEGMENTS /* Or use INCL_GPI or INCL_PM */

LONG GpiPutData (HPS hps, LONG IFormat, PLONG plLength, PBYTE pbData)

This function passes a buffer of graphics orders to the current segment, or draws the orders, or both
of these. For details of the orders, see Chapter 33, “Graphics Orders.”

Parameters
hps (HPS) — input
Presentation-space handie.

IFormat (LONG) — input
Coordinate type used:

DFORM_NOCONV No coordinate conversion performed
DFORM_S370SHORT S/370 format short (2-byte) integers
DFORM_PCSHORT PC format short (2-byte) integers
DFORM_PCLONG PC format long (4-byte) integers.

piLength (PLONG) — input/output
Length of graphic data.

Set by the application to the length of order data in pbData. If an incomplete order occurred, it is
updated, on return, to the offset of the start of the incomplete order.

plLength must not be greater than 63 KB.

pbData (PBYTE) — input
Orders to be copied.

Returns
Correlation and error indicators:
GPLOK Successful

GPI_HITS Correlate hits
GPI_ERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_PUTDATA_FORMAT

PMERR_INV_ LENGTH_OR_COUNT
PMERR_INV_MICROPS_FUNCTION

PMERR_DATA_TOO_LONG

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid format parameter was specified with
GpiPutData.

An invalid length or count parameter was specified.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to transfer more than the maximum
permitted amount of data (64512 bytes) using GpiPutData,
GpiGetData, or GpiElement.

Chapter 5. Graphics Functions 5-223

GpiPutData —
Put Data

PMERR_INV_ELEMENT _POINTER An attempt was made to issue GpiPutData with the
element pointer not pointing at the last element.

PMERR_INV_REPLACE_MODE _FUNC An attempt was made to issue GpiPutData with the editing
mode set to SEGEM_REPLACE.

PMERR_ORDER_TOO BIG An internal size limit was exceeded while converting

orders from short to long format during GpiPutData
processing. An order was too long to convert.

Remarks
The orders passed may be added to the current segment, drawn immediately, or both, depending on
the current drawing mode (see GpiSetDrawingMode), and whether the primitives are within a
segment.

If there is an incomplete order at the end of the buffer, p/Length is updated to point to the start of the
incomplete order. The application can then concatenate this partial order in front of the next buffer.

The orders End Prolog and Set Viewing Transform are not allowed.

This function is valid within an element bracket (see GpiBeginElement). It can contain
GpiBeginElement and GpiEndElement orders, while these are in the correct sequence with respect to
the currently opened segment in segment store.

The data in the buffer is converted, if necessary, to the presentation space format (defined when the
presentation space is first created; see GpiCreatePS).

This function is invalid if the editing mode (see GpiSetEditMode) is set to SEGEM_REPLACE, and also
in SEGEM_INSERT mode if the element pointer is not pointing to the last element.

Related Functions
* GpiBeginElement
* @GpiEndElement
* GpiGetData

5-224 PM Programming Reference

GpiPutData —
Put Data

Example Code

This example uses the GpiPutData function to copy graphics orders from one segment to another.

#define INCL_GPISEGMENTS /* Segment functions */
#include <os2.h>

HPS hps; /* presentation space handle */
LONG fFormat = DFORM_NOCONV;/* do not convert coordinates */
LONG offSegment = OL; /* offset in segment */
LONG offNextElement = 0;/* offset in segment to next element */
LONG cb = OL; /* bytes retrieved */
BYTE abBuffer[512]; /* data buffer */

GpiOpenSegment (hps, 3L); /* open segment to receive the data */
do {
of fSegment += cb;
offNextElement = offSegment;
cb = GpiGetData(hps, 2L, &offNextElement, fFormat, 512L, abBuffer);

/* Put data in other segment. */

if (cb > 6L) GpiPutData(hps, /* presentation-space handle */

fFormat, /* format of coordinates */
&cb, /* number of bytes in buffer */
abBuffer); /* buffer with graphics-order data */

} while (cb > 0OL);
GpiCloseSegment (hps); /* close segment that received data */

Chapter 5. Graphics Functions 5-225

GpiQueryArcParams -
Query Arc Parameters

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryArcParams (HPS hps, PARCPARAMS parcpArcParams)

This function returns the current arc parameters used to draw full, partiatl, and 3-point arcs.

Parameters
hps (HPS) — input
Presentation-space handle.

parcpArcParams (PARCPARAMS) — output

Arc parameters.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS BUSY

PMERR_INV_IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Arc parameters are set by GpiSetArcParams.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
e GpiQueryAttrs
* GpiSetArcParams

5-226 PM Programming Reference

GpiQueryArcParams -
Query Arc Parameters

Example Code
This example uses GpiQueryArcParams to return the current arc parameters used to draw full,
partial, and 3-point arcs. The example queries the arc parameters and assigns a variable to the P
coefficient if the query succeeds.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
ARCPARAMS parcpArcParams; /* Arc parameters */
LONG 1Pcoefficient; /* p coefficient of arc definition */

fSuccess = GpiQueryArcParams(hps, &parcpArcParams);
/* if successful, assign value of P coefficient */

if (fSuccess == TRUE)
1Pcoefficient = parcpArcParams.1P;

Chapter 5. Graphics Functions 5-227

GpiQueryAttrMode —
Query Attribute Mode

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryAttrMode (HPS hps)

This function returns the current value of the attribute mode, as set by GpiSetAttrMode.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Current attribute mode:

20 Current attribute mode
AM_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

Related Functions
* GpiQueryAttrs
¢ GpiSetAttrMode

Example Code
This example uses GpiQueryAttrMode to return the current value of the attribute mode and sets a
new mode using GpiSetAttrMode; after the application has finished using the new mode, the original
attribute mode is restored.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

LONG 1TMode; /* current attribute mode (or error) */
HPS hps; /* Presentation-space handle */

/* query current attribute mode */
1Mode = GpiQueryAttrMode(hps);

/* set new mode */
GpiSetAttrMode(hps, AM_PRESERVE);

/* restore original mode */
GpiSetAttrMode(hps, 1Mode);

5-228 PM Programming Reference

GpiQueryAttrs —
Query Attributes

#define INCL_GPIPRIMITIVES /* Or use INCL._GPI or INCL_PM */

LONG GpiQueryAttrs (HPS hps, LONG IPrimType, ULONG flAttrMask, PBUNDLE ppbunAttrs)

This function returns current attributes for the specified primitive type.

Parameters
hps (HPS) — input
Presentation-space handle.

IPrimType (LONG) — input
Primitive type.

This is the type of primitive for which attributes are to be queried, as follows:
PRIM_LINE Line and arc primitives

PRIM_CHAR Character primitives

PRIM_MARKER Marker primitives

PRIM_AREA Area primitives

PRIM_IMAGE Image primitives.

flAttrMask (ULONG) — input
Attributes mask.

Each flag that is set indicates that the corresponding flag in IDefMask is to be updated, and that if
the corresponding attribute is not currently set to default, its value is to be returned in the
ppbunAttrs buffer.

If all flags in flAttrMask are zero, the ppbunAttrs buffer address is not used.

ppbunAttrs (PBUNDLE) — output
Attributes.

ppbunAttrs is a buffer in which is returned the value of each non-default attribute for which the
flAttrMask flag is set, in the order specified in GpiSetAtirs for the particular primitive type.

Only data for attributes for which the appropriate flag in flAttrMask is set is updated, so
ppbunAttrs need only be large enough for the highest offset attribute to be returned (see
GpiSetAtirs).

The data returned in ppbunAttrs for any attribute for which the flAttrMask flag is set, but which is
currently set to default, is undefined.

Returns
Defaults mask.

As fIDefMask in GpiSetAtirs:
GPIALTERROR Error occurred

Positive Defaults mask, numeric value can be greater than or equal to 0.

Possible returns from WinGetlLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

Chapter 5. Graphics Functions 5-229

GpiQueryAttrs —

Query Attributes
PMERR_INV_PRIMITIVE_TYPE An invalid primitive type parameter was specified with
GpiSetAttrs or GpiQueryAttrs.
PMERR_UNSUPPORTED_ATTR An unsupported attribute was specified in the attrmask
with GpiSetAttrs or GpiQueryAttrs.
PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

PMERR_INV_DC_TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks
This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to refain. This
function returns a mask, similar in meaning to fiDefMask in GpiSetAttrs. Each flag in the returned
mask is updated if the corresponding flag in flAttrMask is set. It is set if the attribute is set to the
default, otherwise it is reset. Other flags are undefined.

The parameters returned by this function may be used to reinstate exactly the same attributes as are

queried, using GpiSetAttrs.

Related Functions
* GpiSetAttrs

Example Code

This example uses the GpiQueryAttrs function to retrieve the current attributes for the line primitive.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#include <os2.h>

HPS hps; /* presentation space handle */
LINEBUNDLE 1bnd;
LONG fiDefMask;

fiDefMask = GpiQueryAttrs(hps, /* presentation-space handle */

PRIM_LINE, /* line primitive */
LBB_COLOR | /* line color */
LBB_MIX_MODE | /* color-mix mode */
LBB_WIDTH | /* line width */
LBB_GEOM_WIDTH | /* geometric-line width */
LBB_TYPE | /* line style */
LBB_END | /* Tine-end style */
LBB_JOIN, /* line-join style */
&1bnd) ; /* buffer for attributes */

if (f1DefMask & LBB_COLOR)
{

/* The line color has the default value. */

}

5-230 PM Programming Reference

GpiQueryBackColor —
Query Background Color

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryBackColor (HPS hps)

This function returns the current value of the (character) background color attribute, as set by the
GpiSetBackColor function.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns

Background color:
CLR_ERROR Error
CLR_DEFAULT Default

Otherwise Background color index.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

PMERR_INV_DC _TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks
This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
e GpiQueryAttrs
* GpiSetBackColor

Example Code
This example uses GpiQueryBackColor to return the current value of the (character) background
color attribute, as set by the GpiSetBackColor call.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

LONG 1Color; /* current background color {or error) */
HPS hps;’ /* Presentation-space handle */

1Color = GpiQueryBackColor(hps);

Chapter 5. Graphics Functions 5-231

GpiQueryBackMix —
Query Background Mix

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryBackMix (HPS hps)

This function returns the current value of the (character) background color-mixing mode, as set by
the GpiSetBackMix function.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Background mix:

BM_DEFAULT Default
>0 Background mix mode
BM_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
: from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

PMERR_INV_DC _TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks
This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
* GpiQueryAttrs
* GpiSetBackMix

Example Code
This example uses GpiQueryBackMix to return the current value of the (character) background
color-mixing mode, as set by the GpiSetBackMix call.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

LONG 1MixMode; /* current background mix (or error) */
HPS hps; /* Presentation-space handle */

1MixMode = GpiQueryBackMix{hps);

5-232 PM Programming Reference

GpiQueryBitmapBits —
Query Bit-Map Bits

#define INCL_GPIBITMAPS /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryBitmapBits (HPS hps, LONG IScanStart, LONG IScans, PBYTE pbBuffer,
PBITMAPINFO2 pbmi2infoTable)

This function transfers data from a bit map to application storage.

Parameters
hps (HPS) — input
Presentation-space handle.

IScanStart (LONG) — input
Starting line number.

Scan-line number at which the data transfer is to start, counting from zero as the bottom line.

IScans (LONG) - input
Number of scan lines to be returned.

pbBuffer (PBYTE) — output
Data area.

Data area into which the bit-map data is copied.

pbmi2infoTable (PBITMAPINFO2) — input/output
Bit-map information table.

Storage must be provided for the associated color table.

Returns
Number of scan lines actually returned:

=0 Number of scan lines actually returned
GPI_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_INFO_TABLE An invalid bit-map info table was specified with a bit-map
operation.

PMERR_NO_BITMAP_SELECTED An attempt has been made to operate on a memory
device context that has no bit map selected.

PMERR_INV_SCAN_START An invalid scanstart parameter was specified with a
bitmap function.

PMERR_INCORRECT DC_TYPE An attempt was made to perform a bit-map operation on a

presentation space associated with a device context of a
type that is unable to support bit-map operations.

Chapter 5. Graphics Functions 5-233

GpiQueryBitmapBits —
Query Bit-Map Bits

Remarks
The presentation space must be currently associated with a memory device context, which has a bit
map currently selected.

The pbmi2infoTable must be initialized by the application with the values of cbFix, and also cPlanes
and c¢BitCount, set to the format required. The standard bit-map formats are supported, plus any
known to be supported by the device (see GpiQueryDeviceBitmapFormats). Each of the following
fields must also be set by the application before issuing the call (uniess the BITMAPINFO2 structure
is truncated and the field is not present):

ulCompression
usReserved
usRecording
usRendering
ulColorEncoding

This function returns the values of ¢x, cy (plus any other information, apart from that set by the
application, for which space is available in the BITMAPINFO2 structure), and the color table array
filled in by the system.

The bit-map data is converted where necessary.
pbBuffer must point to a storage area large enough to contain data for the requested number of scan

lines. The amount of storage required for one scan line can be determined by
GpiQueryBitmapParameters. It is

((bitcount*bitmapwidth + 31)/32)*planes*4 bytes

The storage required for the entire bit map is this value multiplied by bitmapheight.

Related Functions
* GpiSetBitmapBits

5-234 PM Programming Reference

RS

GpiQueryBitmapBits —
Query Bit-Map Bits

Example Code
This example uses GpiQueryBitmapBits to copy the image data of a bit map from a presentation
space associated with a memory device context.

#define INCL_GPIBITMAPS /* GPI Bit-map functions */
#define INCL_DOSMEMMGR /* DOS Memory Manager Functions */
#include <os2.h>

HPS hps; /* presentation space handle */
BITMAPINFOHEADER2 bmp = { 16, 640, 350, 1, 1 }; /* info struct */
ULONG chBuffer, chBitmapInfo; /* buffer lengths */
PBYTE pbBuffer; /* bit-map data buffer */
PBITMAPINFO2 pbmi; /* info structure */
/*

* Compute the size of the image-data buffer and the bit map
* information structure.
*
cbBuffer = (((bmp.cBitCount * bmp.cx) + 31) / 32)
* 4 * bmp.cy * bmp.cPlanes;
cbBitmapInfo = sizeof(BITMAPINFO2) +
(sizeof(RGB) * (1 << bmp.cBitCount));

/*
* AlTocate memory for the image data-buffer and the bit map
* information structure.

*/

DosAllocMem((VOID *)pbBuffer,cbBuffer,
PAG_COMMIT | PAG_READ | PAG_WRITE);

DosAllocMem((VOID *)pbmi,chBitmapInfo,
PAG_COMMIT | PAG_READ | PAG_WRITE);

/* Copy the image data. */

pbmi->cbFix = 16L;

pbmi->cPlanes = 1;

pbmi->cBitCount = 1;

GpiQueryBitmapBits(hps, 0L, (LONG) bmp.cy, pbBuffer, pbmi);

Chapter 5. Graphics Functions 5-235

GpiQueryBitmapDimension —
Query Bit-Map Dimension

#define INCL_GPIBITMAPS /* Or use INCL_GPI or INCL_PM */

BOOL GplQueryBitmapDimension (HBITMAP hbm, PSIZEL psiziBitmapDimension)

This function returns the width and height of a bit map, as specified on a previous

GpiSetBitmapDimension function.

Parameters
hbm (HBITMAP) — input
Bit-map handle.

psiziBitmapDimension (PSIZEL) — output
Size of bit map.

The width and height of the bit map in 0.1 millimeter units.

If not set by GpiSetBitmapDimension, zeros are returned.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HBITMAP
PMERR_HBITMAP_BUSY

Related Functions
* GpiSetBitmapDimension

Example Code

An invalid bit-map handle was specified.

An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

This example uses GpiQueryBitmapDimension to return the width and height of a bit map, as
specified on a previous GpiSetBitmapDimension call; if successful, it assigns the width to a variable.

#define INCL_GPIBITMAPS /* Bit-map functions */
#include <o0s2.h>

BOOL * fSuccess; /* success indicator */
HBITMAP hbm; /* bit-map handle */
SIZEL psiziBitmapDimension; /* size of bit map */
LONG 1Width; /* width of bit map */

fSuccess = GpiQueryBitmapDimension(hbm, &psiz1BitmapDimension);

/* if successful, assign value of bit-map width */

if (fSuccess == TRUE)
1Width = psiziBitmapDimension.cx;

5-236 PM Programming Reference

GpiQueryBitmapinfoHeader —
Query Bit-Map Info Header

fdefine INCL_GPIBITMAPS /" Or use INCL_GPI or INCL_PM */

BOOL GplQueryBitmapinfoHeader (HBITMAP hbm, PBITMAPINFOHEADER2 pbmp2Data)

This function returns information about a bit map identified by the bit-map handle.

Parameters
hbm (HBITMAP) — input
Bit-map handle.

pbmp2Data (PBITMAPINFOHEADER2) — input/output
Bit-map information header.

This is a structure, that on return, is filled with data for the specified bit map.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HBITMAP An invalid bit-map handle was specified.

PMERR_HBITMAP_BUSY An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

Remarks
The cbFix field of the BITMAPINFOHEADER2 structure must be set by the application before
performing this function.

Note: This function should be used in preference to the GpiQueryBitmapParameters function.

Chapter 5. Graphics Functions 5-237

GpiQueryBitmapinfoHeader —
Query Bit-Map Info Header

Example Code
This example uses GpiQueryBitmaplinfoHeader to return information about a bit map identified by
the bit-map handle; if successful, it uses this information to create a new bit map via
GpiCreateBitmap.

#define INCL_GPIBITMAPS /* Bit-map functions */
#include <os2.h>
HPS hps; /* presentation-space handle */
BOOL fSuccess; /* success indicator */
HBITMAP hbm; /* bit-map handle */
HBITMAP hbmNew; /* bit-map handle */
BITMAPINFOHEADERZ pbmp2Data; /* Bit-map information header */
PBYTE pb; /* address of bit-map image data in
resource */

/* set size of info structure */
pbmp2Data.cbFix = 16L;

fSuccess = GpiQueryBitmapInfoHeader(hbm, &pbmp2Data);

/* use information to create bit map */
hbmNew = GpiCreateBitmap(hps, /* presentation space */
&pbmp2Data, /* bit-map information header */
CBM_INIT, /* initialize the bit map */
pb, /* bit-map data */
{PBITMAPINF02)&pbmp2Data) ;
/* bit-map information table */

5-238 PM Programming Reference

GpiQueryBitmapHandle —
Query Bit-Map Handle

#define INCL_GPIBITMAPS /* Or use INCL_GPI or INCL_PM */

HBITMAP GpiQueryBitmapHandle (HPS hps, LONG ILcid)

This function returns the handle of the bit map currently tagged with the specified local identifier

(Icid).

Parameters
hps (HPS) — input
Presentation-space handle.

ILcid (LONG) — input
Local identifier.

Returns
Bit-map handle:

#0 Bit-map handle
GPIL_ERROR Error.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS BUSY

PMERR_INV_SETID
PMERR_ID_HAS_NO_BITMAP

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid setid parameter was specified.

No bit map was tagged with the setid specified on a
GpiQueryBitmapHandle call.

An error is raised if a bit map is not currently tagged with the specified Icid.

Related Functions
* GpiSetBitmapld

Example Code

This example uses GpiQueryBitmapHandie to return the handie of the bit map currently tagged with
the specified local identifier (Icid) set by GpiSetBitmapld.

#define INCL_GPIBITMAPS /* Bit-map functions */
#include <os2.h>

HBITMAP hbm; /* bit-map handle */
HPS hps; /* presentation-space handle */
LONG 1Llcid; /* local identifier */

hbm = GpiQueryBitmapHandle(hps, TLcid);

Chapter 5. Graphics Functions 5-239

GpiQueryBitmapParameters —
Query Bit-Map Parameters

#define INCL_GPIBITMAPS /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryBitmapParameters (HBITMAP hbm, PBITMAPINFOHEADER pbmpData)

This function returns information about a bit map identified by the bit-map handle.

Parameters
hbm (HBITMAP) — input
Bit-map handle.

pbmpData (PBITMAPINFOHEADER) — input/output
Bit-map information header.

This is a structure, that on return, is filled with data for the specified bit map. The structure
includes the elements (width, height, planes, bitcount) of a bit-map information table.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HBITMAP An invalid bit-map handle was specified.

PMERR_HBITMAP_BUSY An internal bit map busy error was detected. The bit map
was locked by one thread during an attempt to access it
from another thread.

Remarks
The cbFix field of the BITMAPINFOHEADER structure must be set by the application before
performing this function.

Related Functions
¢ GpiCreateBitmap

5-240 PM Programming Reference

GpiQueryBitmapParameters —
Query Bit-Map Parameters

Example Code
This example uses GpiQueryBitmapParameters to return information about a bit map identified by
the bit-map handle; if successful, it assigns the width fieid to a variable.

#define INCL_GPIBITMAPS /* Bit-map functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HBITMAP hbm; /* bit-map handle */
BITMAPINFOHEADER pbmpData; /* bit-map information header */
USHORT usWidth; /* width of bit map */

/* set size of info structure */
pbmpData.cbFix = sizeof(BITMAPINFOHEADER);

fSuccess = GpiQueryBitmapParameters(hbm, &pbmpData);
/* if successful, assign value of bit-map width */

if (fSuccess == TRUE)
usWidth = pbmpData.cx;

Chapter 5. Graphics Functions 5-241

GpiQueryBoundaryData —
Query Boundary Data

fidefine INCL_GPICORRELATION /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryBoundaryData (HPS hps, PRECTL prciBoundary)

This function returns the boundary data.

Parameters
hps (HPS) — input
Presentation-space handie.

prciBoundary (PRECTL) — output
Boundary data.

A rectangle structure in which the boundary data is returned, containing the following fields:
xmin Lowest x value found
ymin Lowesty value found
xmax Highest x value found

ymax Highest y value found.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_COORDINATE_OVERFLOW An internal coordinate overflow error occurred. This can

occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

PMERR_INV DC _TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks

This function returns the boundary data set upon completion of the last boundary calculation.
Boundary data is returned as the coordinates in model space.

Boundary data is inclusive. A null boundary is indicated if xmin is greater than xmax, or if ymin is

greater than ymax. After GpiResetBoundaryData, xmin and ymin are the maximum positive
numbers, and xmax and ymax are the maximum negative numbers.

§-242 PM Programming Reference

GpiQueryBoundaryData —
Query Boundary Data

Related Functions
* GpiResetBoundaryData
* GpiSetDrawControl

Example Code
This example uses the GpiQueryBoundaryData function to retrieve the rectangie enclosing the
output. The boundary data is then used to draw a border around the output.

#define INCL_GPICORRELATION

#define INCL_GPIPRIMITIVES /* GPI primitive functions */
#define INCL_GPICONTROL /* GPI control Functions */
#include <os2.h>
HPS hps; /* presentation space handle */
POINTL ptiStart = { 0, 0 }; /* first vertex */
POINTL pt1Triangle[] = { 100, 100, 200, 0, 0, © }; /* vertices */
RECTL rcl; /* rectangle */
GpiSetDrawControl (hps,

DCTL_BOUNDARY, DCTL_ON); /* accumulate boundary data */
GpiMove(hps, &ptliStart); /* produce output */

GpiPolyLine(hps, 3L, pt1Triangle);

GpiQueryBoundaryData(hps, &rcl); /* copy boundary data to rcl */
if (rcl.xLeft < rcl.xRight) { /* verify output exists*/
ptiStart.x = rcl.xLeft; ptiStart.y = rcl.yBottom;
GpiMove(hps, &ptiStart); /* move to lower-right corner */
ptiStart.x = rcl.xRight; ptiStart.y = rcl.yTop;
GpiBox(hps, DRO_OUTLINE, &ptlStart, 6L, OL); /* draw border */

Chapter 5. Graphics Functions 5-243

GpiQueryCharAngle —
Query Character Angle

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

BOOL GplQueryCharAngle (HPS hps, PGRADIENTL pgradliAngle)

This function returns the current value of the character baseline angle.

Parameters
hps (HPS) — input
Presentation-space handle.

pgradiAngle (PGRADIENTL) — output
Baseline angle.

A point, relative to (0,0), that defines the character baseline angle vector.

If the character angle is currently set to the default value, (0,0) is returned.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for exampie,

query) that is invalid when the actual drawing mode is not

draw or draw-and-retain.

PMERR_INV_DC TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
* GpiQueryAttrs
* GpiSetCharAngle

5-244 PM Programming Reference

pN—

GpiQueryCharAngle —
Query Character Angle

Example Code

This example uses GpiQueryCharAngle to return the current value of the character baseline angle; if
successful, it places the x component in a variable.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
LONG 1xComponent; /* x component of baseline angle */
GRADIENTL pgradlAngle; /* Baseline angle */

fSuccess = GpiQueryCharAngle(hps, &pgradlAngle);

if (fSuccess == TRUE)
1xComponent = pgradlAngle.x;

Chapter 5. Graphics Functions 5-245

GpiQueryCharBox —
Query Character Box

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryCharBox (HPS hps, PSIZEF psizixSize)

This function returns the current value of the character box attribute, as set by the GpiSetCharBox
function.

Parameters
hps (HPS) — input
Presentation-space handle.

psizixSize (PSIZEF) — output
Character-box size.

If the character box is currently set to the default, the default size is returned. This is the size
returned by DevQueryCaps (CAPS_GRAPHICS_CHAR_WIDTH and
CAPS_GRAPHICS_CHAR_HEIGHT), converted to presentation page space.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

PMERR_INV DC TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks
In general this function does not return the same box as GpiQueryTextBox for an average-sized
character. For outline fonts the character-box attribute is mapped to a particular font dimension
related to the point size, for raster fonts it does not correspond to any font metric. (See
GpiSetCharMode).

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.
Related Functions
* DevQueryCaps

¢ GpiQueryAttrs
* GpiSetCharBox

5-246 PM Programming Reference

GpiQueryCharBox —
Query Character Box

Example Code
This example uses GpiQueryCharBox to return the current value of the character box attribute, as
set by the GpiSetCharBox call; if successful, places the box width in a variable.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
SIZEF psizfxSize; /* Character-box size */
FIXED 1Width; /* character box width */

fSuccess = GpiQueryCharBox(hps, &psizfxSize);

if (fSuccess == TRUE)
Width = psizfxSize.cx;

Chapter 5. Graphics Functions 5-247

GpiQueryCharBreakExtra —
Query Character Break Extra

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryCharBreakExtra (HPS hps, PFIXED pixBreakExtra)

This function returns the current value of the character-break-extra attribute, as set by the
GpiSetCharBreakExtra function.

Parameters
hps (HPS) — input
Presentation-space handle.

pfxBreakExtra (PFIXED) — output
Character-break-extra attribute value.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handie was specified.

PMERR_PS BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

Remarks
This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code

This example uses GpiQueryCharBreakExtra to return the current value of the character-break-extra
attribute, as set by the GpiSetCharBreakExtra call.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */

FIXED pfxBreakExtra; /* Character-break-extra attribute value*/

fSuccess = GpiQueryCharBreakExtra(hps, &pfxBreakExtra);

5-248 PM Programming Reference

GpiQueryCharDirection —
Query Character Direction

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryCharDirection (HPS hps)

This call returns the current value of the character direction attribute, as set by the
GpiSetCharDirection function.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Character direction:

CHDIRN_DEFAULT Default
>0 Character direction
CHDIRN_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example, /

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

PMERR_INV_DC_TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks
This call is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
* GpiQueryAttrs
e GpiSetCharDirection

Example Code
This example uses GpiQueryCharDirection to return the current value of the character direction
attribute, as set by the GpiSetCharDirection call.

#define INCL;GPIPRIMITIVES /* Primitive functions */
#include <o0s2.h>

LONG 1Direction; /* character direction (or error) */
HPS hps; /* Presentation-space handle */

1Direction = GpiQueryCharDirection(hps);

Chapter 5. Graphics Functions 5-249

GpiQueryCharExtra —
Query Character Extra

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryCharExtra (HPS hps, PFIXED pixExtra)

This function returns the current value of the character-extra attribute, as set by the GpiSetCharExtra
function.

Parameters
hps (HPS) — input
Presentation-space handle.

pixExtra (PFIXED) — output
Character-extra attribute value.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handie was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

Remarks
This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQueryCharExtra to return the current value of the character-extra attribute,
as set by the GpiSetCharExtra call.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
FIXED pfxExtra; /* Character-extra attribute value */

fSuccess = GpiQueryCharExtra(hps, &pfxExtra);

5-250 PM Programming Reference

GpiQueryCharMode —
Query Character Mode

#define INCL_GPIPRIMITIVES /" Or use INCL_GPi or INCL_PM */

LONG GpiQueryCharMode (HPS hps)

This function returns the current value of the character-mode attribute, as set by the

GpiSetCharMode function.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Character mode:

CM_DEFAULT Default
>0
CM_ERROR

Character mode

Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handie was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
e GpiQueryAttrs
¢ GpiSetCharMode

Example Code

This example uses GpiQueryCharMode to return the current value of the character mode attribute,

as set by the GpiSetCharMode call.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

LONG TMode; /* character mode attribute - */
HPS hps; /* Presentation-space handle */

1Mode = GpiQueryCharMode (hps);

Chapter 5. Graphics Functions 5-251

GpiQueryCharSet —
Query Character Set

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryCharSet (HPS hps)

This function returns the character-set local identifier (Icid), as set by the GpiSetCharSet function.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Character-set local identifier:

LCID_DEFAULT Default
>0 Local identifier
LCID_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain. ’

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
* GpiQueryAttrs
* GpiSetCharSet

Example Code

This example uses GpiQueryCharSet to return the character-set local identifier (lcid), as set by the

GpiSetCharSet calil.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

LONG 1Lcid; /* character set 1cid (or error) */
HPS hps; /* Presentation-space handle */

1Lcid = GpiQueryCharSet(hps);

§6-252 PM Programming Reference

GpiQueryCharShear -
Query Character Shear

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryCharShear (HPS hps, PPOINTL pptiShear)

This function returns the value of the current character-shear angle, as set by the GpiSetCharShear
function.

Parameters
hps (HPS) — input
Presentation-space handie.

pptiShear (PPOINTL) — output
Character shear.

A point, relative to (0,0), that defines the character shear vector.

If the character shear is currently set to the default, (0,1) is returned.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

PMERR_INV DC TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
* GpiQueryAtirs
* GpiSetCharShear

Chapter 5. Graphics Functions 5-253

GpiQueryCharShear —
Query Character Shear

Example Code
This example uses GpiQueryCharShear to return the value of the current character-shear angle, as
set by the GpiSetCharShear call; if successful, it assigns the x coordinate of the returned vector to a

variable.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
POINTL pptliShear; /* character shear */
LONG 1xCoord; /* shear angle vector x coordinate */

fSuccess = GpiQueryCharShear(hps, &pptiShear);

if (fSuccess == TRUE)
1xCoord = pptiShear.x;

5-2564 PM Programming Reference

GpiQueryCharStringPos —
Query Character String Positions

#define INCL_GPIPRIMITIVES /* Or use INCL_GP! or INCL_PM */

BOOL GpiQueryCharStringPos (HPS hps, ULONG fiOptions, LONG ICount, PCH pchString,
PLONG alXincrements, PPOINTL aptiPositions)

This function processes a string as if it is being drawn under the current character attributes using
GpiCharStringPos, and returns the positions in the string at which each character would be drawn.

Parameters
hps (HPS) — input
Presentation-space handle.

flOptions (ULONG) — input
Option flag:

CHS _VECTOR Increments vector supplied (a/Xincrements). If 0, alXincrements is ignored.

ICount (LONG) — input
Length of the string.

pchString (PCH) — input
Character string to be examined.

alXincrements (PLONG) — input
Vector of x increment values.

These are signed values in world coordinates. Any negative values are treated as if they were
0. This parameter is ignored if CHS_VECTOR is not set.

aptiPositions (PPOINTL) — output
Array of points.

The positions of each character in world coordinates. The first point returned is the initial
current position, and the last point is the new current position if the string has been drawn.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

PMERR_INV_CHAR_POS_OPTIONS An invalid options parameter was specified with
GpiCharStringPos or GpiCharStringPosAt.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_COORDINATE An invalid coordinate value was specified.

Chapter 5. Graphics Functions 5-255

GpiQueryCharStringPos —
Query Character String Positions

PMERR_COORDINATE_OVERFLOW An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

PMERR_INV_DC _TYPE An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks
A vector of increments can be specified, allowing control over the positioning of each character after
the first. These are distances measured in world coordinates (along the baseline for left-to-right and
right-to-left character directions, and along the shearline for top-to-bottom and bottom-to-top). The
i'th increment is the distance of the reference point of the (i+ 1)’th character from the reference point
of the i'th. The last increment may be needed to update current position.

These increments, if specified, set the widths of each character.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions

* GpiCharString
GpiCharStringAt
GpiCharStringPos
GpiCharStringPosAt
GpiQueryCharStringPosAt
GpiSetCharAngle
GpiSetCharBox
GpiSetCharDirection
GpiSetCharMode
GpiSetCharSet
GpiSetCharShear

Example Code
This example calls the GpiQueryCharStringPos function to determine the location of each character
in the string. Vector increments are not used.

#define INCL_GPIPRIMITIVES /* GPI primitive functions *x/
#include <o0s2.h>

HPS hps; /* presentation space handle */
CHAR szString[] = "Sample string";
POINTL aptl[sizeof(szString) + 1];

GpiQueryCharStringPos (hps, /* presentation-space handle */
oL, /* does not use vector increments */
sizeof(szString), /* number of characters in string */
szString, /* character string */
NULL, /* no vector increments */
aptl); /* array of structures for points */

§-2566 PM Programming Reference

GpiQueryCharStringPosAt —
Query Character String Positions At

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI! or INCL_PM */

BOOL GpiQueryCharStringPosAt (HPS hps, PPOINTL pptiStart, ULONG fiOptions,
LONG [Count, PCH pchString, PLONG aiXincrements,
PPOINTL aptiPositions)

This function processes a string as if it is being drawn under the current character attributes using
GpiCharStringPosAt, and returns the positions in the string at which each character would be drawn.

Parameters
hps (HPS) — input
Presentation-space handle.

pptiStart (PPOINTL) — input
Starting position.

flOptions (ULONG) — input
Option flags:

CHS VECTOR Increments vector supplied (a/Xincrements). It 0, alXincrements is ignored.

ICount (LONG) — input
Length of the string.

pchString (PCH) — input
Character string to be examined.

alXincrements (PLONG) — input
Vector of x increment values.

These are signed values in world coordinates. Any negative values are treated as if they were
0. This parameter is ignored if CHS_VECTOR is not set.

aptiPositions (PPOINTL) — output
Array of points, in which the positions of each character in world coordinates are returned.

The first point returned is the initial current position, and the last point is the new current
position if the string has been drawn.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

PMERR_INV_CHAR_POS_OPTIONS An invalid options parameter was specified with
GpiCharStringPos or GpiCharStringPosAt.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

Chapter 5. Graphics Functions 5-257

GpiQueryCharStringPosAt —
Query Character String Positions At

PMERR_INV_COORDINATE
PMERR_COORDINATE_OVERFLOW

PMERR_INV_DC_TYPE

Remarks

An invalid coordinate value was specified.

An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

A vector of increments can be specified, allowing control over the positioning of each character after
the first. These are distances measured in world coordinates (along the baseline for left-to-right and
right-to-left character directions, and aiong the shearline for top-to-bottom and bottom-to-top). The

i’th increment is the distance of the

reference point of the (i + 1)’th character from the reference point

of the i’th. The last increment may be needed to update current position.
These increments, if specified, set the widths of each character.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Related Functions
* GpiCharString

GpiCharStringAt
GpiCharStringPos
GpiCharStringPosAt
GpiQueryCharStringPos
GpiSetCharAngle
GpiSetCharBox

" GpiSetCharDirection
GpiSetCharMode
GpiSetCharSet
GpiSetCharShear

Example Code
This example uses the GpiQueryCharStringPosAt function to determine the location of each
character in the string. Vector increments are not used.

#define INCL_GPIPRIMITIVES /* GPI primitive functions */

#include <os2.h>

HPS hps; /* presentation space handle */

POINTL ptiStart = { 100, 100 };

POINTL apt1[12];

GpiQueryCharStringPosAt(hps, /* presentation-space handle */
&ptiStart, /* starting point for string */
oL, /* do not use vector increments */
11L, /* 11 characters in string */
"This string", /* character string */
NULL, /* no vector increments */
aptl); /* array of structures for points */

5-258 PM Programming Reference

GpiQueryClipBox -
Query Clip Box

#define INCL_GPIREGIONS /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryClipBox (HPS hps, PRECTL prciBound)

This function returns the dimensions of the tightest rectangle which completely encloses the
intersection of all the clipping definitions.

Parameters
hps (HPS) — input
Presentation-space handle.

prciBound (PRECTL) — output
Bounding rectangle.

The coordinates of the bounding rectangle, in world coordinates.

Returns
Complexity and error indicators:
RGN_NULL Null region
RGN_RECT Rectangular region

RGN_COMPLEX Complex region
RGN_ERROR Error.

Possible returns from WinGetlastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_COORDINATE_OVERFLOW An internal coordinate overflow error occurred. This can
occur if coordinates or matrix transformation elements (or
both) are invalid or too large.

Remarks
The clipping definitions include the combined effects of:

Clip path

Viewing limits

Graphics field

Clip region

Visible region (windowing considerations).

Points on the borders of the rectangle returned are considered to be included within the rectangle. If
the intersection is null, the rectangle returned has the right boundary less than the left, and the top
boundary less than the bottom.

Chapter 5. Graphics Functions 5-259

GpiQueryClipBox -
Query Clip Box

Example Code
This example uses GpiQueryClipBox to return the dimensions of the tightest rectangle which
completely encloses the intersection of all the clipping definitions. The example queries the clip box
and, if a rectangular region is returned, assigns the x coordinate of the lower left hand corner of the
clip box region to a variable. :

#define INCL_GPIREGIONS /* Region functions */
#include <o0s2.h>

LONG 1Complexity; /* complexity/error indicator */
HPS hps; /* Presentation-space handle */
RECTL prclBound; /* bounding rectangle */

LONG TLwrLftxCoord; /* lower left x coordinate of clip box */
1Complexity = GpiQueryClipBox(hps, &prclBound);
/* if returned region is a rectangle, assign lower left x coordinate */

if (1Complexity == RGN_RECT)
1LwrLftxCoord = prciBound.xLeft;

5-260 PM Programming Reference

GpiQueryClipRegion —
Query Clip Region

#define INCL_GPIREGIONS /* Or use INCL_GPI or INCL_PM */

HRGN GpiQueryClipRegion (HPS hps)

This function returns the handle of the currently selected clip region.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Clip-region handle (if any):

NULLHANDLE Null handle (no region is selected)
HRGN_ERROR Error
Otherwise Clip region handle.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

Remarks
If there is no currently selected clip region, a null handle is returned.

Example Code
This example uses GpiQueryClipRegion to return the handle of the currently selected clip region.

#define INCL_GPIREGIONS /* Region functions */
#include <o0s2.h>

HPS hps; /* Presentation-space handle */
HRGN hrgn; /* clip region handle */

hrgn = GpiQueryClipRegion(hps);

Chapter 5. Graphics Functions 5-261

GpiQueryColor —
Query Color

N

#idefine INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM. Also in COMMON section */

LONG GplQueryColor (HPS hps)

This function returns the current value of the (character) color attribute, as set by the GpiSetColor

calil.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Color attribute:

CLR_ERROR Error
CLR_DEFAULT Default

Otherwise Color index.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_IN_RETAIN_MODE

PMERR_INV_DC_TYPE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

An invalid type parameter was specified with
DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

5-262 PM Programming Reference

GpiQueryColor —
Query Color

Example Code
This example uses GpiQueryColor to return the current value of the (character) color attribute, then
sets the color to red by calling GpiSetColor. When finished with red, the color is set back to its
original value.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

LONG 1Color; /* current character color (or error) */
HPS hps; /* Presentation-space handle */

HPS GEhps;

/* query current color */
1Color = GpiQueryColor(hps);

/* set color to red */
GpiSetColor(GEhps, CLR RED);

/* restore to original color */
GpiSetColor(GEhps, 1Color);

Chapter 5. Graphics Functions 5-263

GpiQueryColorData —
Query Color Data

#define INCL_GPILOGCOLORTABLE /* Or use INCL_GP! or INCL_PM */

BOOL GpiQueryColorData (HPS hps, LONG ICount, PLONG alArray)

Information about the current logical color table or the selected palette is returned by this function.

Parameters
hps (HPS) — input
Presentation-space handle.
ICount (LONG) - input
Number of elements.

Number of elements supplied in alArray.

alArray (PLONG) — output
Array.

On return this array contains:
Array[QCD_LCT_FORMAT]

Array[QCD_LCT_LOINDEX]

Array[QCD_LCT _HIINDEX]

Array[QCD_LCT_OPTIONS]

5-264 PM Programming Reference

Format of loaded color table if any. One of the following values is
returned:

LCOLF_DEFAULT Default color table is in force.

LCOLF_INDRGB Color table loaded which provides translation
from index to RGB.

LCOLF_RGB Color index = RGB.

LCOLF_PALETTE Palette is selected.

Smallest color index in the color table or palette ; always zero for
color tables.

Largest color index in the color table or palette ; never less than
15 for color tables.

Color table or palette option. Zero or more of the following are
returned:

LCOL_PURECOLOR No color dithering (color table or selected
palette).

LCOL_OVERRIDE_DEFAULT_COLORS Override for applications
that need the full hardware palette (selected
palette only)

The array elements are numbered consecutively, starting with
Array[QCD_LCT_FORMAT]. The element number constants start
with 0. (See the appropriate Bindings Reference.)

Information is returned only for the number of elements supplied.
Any extra elements supplied, beyond those described above, are
set to zero by the system.

Returns

Success indicator:
TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_LENGTH_OR_COUNT

Example Code

GpiQueryColorData —
Query Color Data

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid length or count parameter was specified.

This example uses the GpiQueryColorData function to retrieve the smallest color-table index. The
GpiQueryLogColorTable function is then used to retrieve the RGB color value for this index.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <o0s2.h>

HPS hps; /* presentation space handle */
LONG alData[3]; /* information array */
LONG alColor[1]; /* information array */

GpiQueryColorData(hps, 3L, alData);

GpiQuerylLogColorTable(hps, OL, alData[QCD_LCT_LOINDEX],

1L, alColor);

Chapter 5. Graphics Functions 5-265

GpiQueryColorindex —
Query Color Index

#define INCL_GPILOGCOLORTABLE /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryColorindex (HPS hps, ULONG ulOptions, LONG IRgbColor)

This function returns the color index of the device color that is closest to the specified RGB color
representation for the device connected to the specified presentation space.

Parameters
hps (HPS) — input
Presentation-space handle.

ulOptions (ULONG) — input
Options:

Reserved, and must be zero.

IRgbColor (LONG) — input
Specifies a color in RGB terms.

Returns
Color index providing closest match to the specified color:

20 Color index

GPI_ALTERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_COLOR_OPTIONS An invalid options parameter was specified with a logical
color table or color query function.

PMERR_INV_RGBCOLOR An invalid rgb color parameter was specified with
GpiQueryNearestColor or GpiQueryColor

Remarks
If an RGB logical color table has been loaded, this call returns the same RGB color that is passed to
it.

5-266 PM Programming Reference

GpiQueryColorindex —
Query Color Index

Example Code
This example uses GpiQueryColorindex to return the color index of the device color that is closest to
the specified RGB color representation for the device connected to the specified presentation space.

#define INCL_GPILOGCOLORTABLE /* Color Table functions */
#include <os2.h>

LONG 1Index; /* closest match color index */
HPS hps; /* Presentation-space handle */
ULONG ulOptions; /* options */
LONG 1RgbColor; /* color in RGB terms */

/* reserved; set to 0 */
ulOptions = OL;

/* color to find index for */
1RgbColor = (PC_RESERVED*16777216) + (0*65536) + (0*256) + 1;

1Index = GpiQueryColorIndex(hps, ulOptions, 1RgbColor);

Chapter 5. Graphics Functions 5-267

GpiQueryCp —
Query Code Page

#define INCL_GPILCIDS /* Or use INCL_GPI or INCL_PM */

ULONG GpiQueryCp (HPS hps)

This function returns the currently selected graphics code page.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Code page:

GPI_LERROR Error
Otherwise Code page.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

Remarks
The code page identity returned is the one that is set by GpiSetCp (or defaulted when the
presentation space is first created). This is the code page of the default font, not the
currently-selected font, found from GpiQueryFontMetrics.

Example Code
This example uses GpiQueryCp to return the currently selected graphics code page.

#define INCL_GPILCIDS /* Font functions */
#include <os2.h>

ULONG ulCodePage; /* code page (or error) */
HPS hps; /* Presentation-space handle */

ulCodePage = GpiQueryCp(hps);

5-268 PM Programming Reference

GpiQueryCurrentPosition —
Query Current Position

#define INCL_GPIPRIMITIVES /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryCurrentPosition (HPS hps, PPOINTL pptiPoint)

This function returns the value of current position.

Parameters
hps (HPS) — input
Presentation-space handle.

pptiPoint (PPOINTL) — output
Current position.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simuitaneously.

PMERR_INV_IN_RETAIN_MODE An attempt was made to issue a function (for example,

query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

PMERR_INV_DC TYPE An invalid type parameter was specified with
: DevOpenDC, or a function was issued that is invalid for a
OD_METAFILE_NOQUERY device context.

Remarks
This function is invalid when the drawing mode (see GpiSetDrawingMode) is set to retain.

Example Code
This example uses GpiQueryCurrentPosition to return the value of the current position and assigns
the x coordinate to a variable.

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
POINTL pptl1Point; /* current position */
LONG 1xCoord; /* current position x coordinate */

fSuccess = GpiQueryCurrentPosition(hps, &pptlPoint);

if (fSuccess == TRUE)
1xCoord = pptlPoint.x;

Chapter 5. Graphics Functions 5-269

GpiQueryDefArcParams -
Query Default Arc Parameters

#define INCL_GPIDEFAULTS /* Or use INCL_GP! or INCL_PM */

BOOL GpiQueryDefArcParams (HPS hps, PARCPARAMS parcpArcParams)

This function returns the default values of the arc parameters, as set by the GpiSetDefArcParams
function.

Parameters
hps (HPS) — input
Presentation-space handle.

parcpArcParams (PARCPARAMS) — output
Default arc parameters.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

Example Code
This example uses GpiQueryDefArcParams to return the default values of the arc parameters, as set
by the GpiSetDefArcParams call, and assign a variable to the P coefficient if the query succeeds.

#define INCL_GPIDEFAULTS /* Default functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
ARCPARAMS parcpArcParams; /* Arc parameters */
LONG 1Pcoefficient; /* p coefficient of arc definition */

fSuccess = GpiQueryDefArcParams(hps, &parcpArcParams);
/* if successful, assign value of P coefficient */

if (fSuccess == TRUE)
1Pcoefficient = parcpArcParams.1P;

5-270 PM Programming Reference

GpiQueryDefAttrs —
Query Default Attributes

#define INCL_GPIDEFAULTS /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryDefAttrs (HPS hps, LONG IPrimType, ULONG fiAttrMask,
PBUNDLE ppbunAttrs)

This function returns default attribute values for the specified primitive type.

Parameters
hps (HPS) — input
Presentation-space handle.
iPrimType (LONG) - input
Primitive type.

This is the type of primitive for which default attribute values are to be queried, as follows:

PRIM_LINE Line and arc primitives
PRIM_CHAR Character primitives

PRIM_MARKER Marker primitives

PRIM_AREA Area primitives

PRIM_IMAGE Image primitives.

flAttrMask (ULONG) — input
Attributes mask.

Each flag that is set indicates that the default value of the corresponding attribute is to be

returned in the ppbunAttrs buffer.

If all flags in flAttrMask are 0, the ppbunAttrs buffer address is not used.

ppbunAttrs (PBUNDLE) -~ output
Attributes.

ppbunAttrs is a buffer in which is returned the default value of each attribute for which the
fIAttrMask flag is set, in the order specified in GpiSetAttrs for the particular primitive type.

Only data for attributes for which the appropriate flag in flAttrMask is set is updated, so
ppbunAttrs need only be large enough for the highest offset attribute to be returned (see

GpiSetAttrs).

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetlLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_PRIMITIVE_TYPE

PMERR_UNSUPPORTED_ATTR

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An invalid primitive type parameter was specified with
GpiSetAttrs or GpiQueryAttrs.

An unsupported attribute was specified in the attrmask
with GpiSetAttrs or GpiQueryAttrs.

Chapter 5. Graphics Functions 5-271

GpiQueryDefAttrs —
Query Default Attributes

Remarks

The parameters returned by this function may be used to reinstate exactly the same default attribute
values as are queried, using GpiSetDefAttrs.

Example Code
This example uses GpiQueryDefAttrs to return the default color and mix attribute values for the
primitive line and arc types and, if successful, uses the values to reinstate the default attributes via
the DosSetDefAttrs API.

#define INCL_GPIDEFAULTS /* Default functions */
#include <o0s2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
LONG 1PrimType; /* primitive type */
ULONG flAttrMask; /* attributes mask */
LINEBUNDLE ppbunAttrs; /* Attributes */

/* request line/arc primitive values */
1PrimType = PRIM_LINE;

/* request values for color, mix attributes */
flAttrMask = LBB_COLOR | LBB_MIX_MODE;

fSuccess = GpiQueryDefAttrs(hps, 1PrimType, flAttrMask,
&ppbunAttrs);

/* if successful, reinstate default color and mix attributes */
if (fSuccess == TRUE)
fSuccess = GpiSetDefAttrs(hps, 1PrimType, flAttrMask,
&ppbunAttrs);

§-272 PM Programming Reference

GpiQueryDefaultViewMatrix —
Query Default View Matrix

#define INCL_GPITRANSFORMS /* Or use INCL_GPI or INCL_PM */

BOOL GplQueryDefaultViewMatrix (HPS hps, LONG ICount, PMATRIXLF pmatifArray)

This function returns the current default viewing transform; see GpiSetDefaultViewMatrix.

Parameters
hps (HPS) — input
Presentation-space handle.

iICount (LONG) — input
Number of elements.

The number of elements to be returned in pmatifArray; must be in the range 0 through 9. If 0 is
specified, no matrix elements are returned.

pmatlfArray (PMATRIXLF) - output
Transform matrix.

An array into which the elements of the default viewing transform matrix are returned.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

Chapter 5. Graphics Functions 5-273

GpiQueryDefaultViewMatrix —
Query Default View Matrix

Example Code

This example uses GpiQueryDefaultViewMatrix to return the default viewing transform and, if
successful, defines - via DosSetDefaultViewMatrix - the returned value as the new default transform.

#define INCL_GPITRANSFORMS /* Transform functions */
#include <o0s2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
LONG 1Count; /* number of elements */
MATRIXLF pmatl1fArray; /* transform matrix */
LONG 10ptions; /* set default options */

1Count = 1; /* examine only first element of transform matrix */
fSuccess = GpiQueryDefaultViewMatrix(hps, 1Count, &pmatlfArray);

/* set default to returned transform */
if (fSuccess == TRUE)
{
10ptions = TRANSFORM REPLACE;
fSuccess = GpiSetDefaultViewMatrix(hps, 1Count, &pmatlfArray,
10ptions);
}

5-274 PM Programming Reference

~——

GpiQueryDefCharBox —

Query Default Graphics Character Box

#define INCL_GPIPRIMITIVES /* Or use INCL_GP! or INCL_PM */

BOOL GpiQueryDefCharBox (HPS hps, PSIZEL psiziSize)

This function returns the size of the default graphics character box in world coordinates.

Parameters
hps (HPS) — input
Presentation-space handle.

psiziSize (PSIZEL) — output
Default character-box size.

Returns

Success indicator:
TRUE Successful completion

FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_IN_RETAIN_MODE

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simuitaneously.

An attempt was made to issue a function (for example,
query) that is invalid when the actual drawing mode is not
draw or draw-and-retain.

The values returned are the same as the initial default value of the character-box attribute. See

GpiSetCharBox for further information.

Chapter 5. Graphics Functions 5-275

GpiQueryDefCharBox —
Query Default Graphics Character Box

Example Code
This example uses GpiQueryDefCharBox to query the initial size of the default graphics character
box in world coordinates and, if the query succeeds, resets the current size back to this initial default
value via GpiSetCharBox (note the required transformation from LONG to FIXED using the
MAKEFIXED macro).

#define INCL_GPIPRIMITIVES /* Primitive functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
SIZEL psizlSize; /* default character-box size */
SIZEF psizfxSize; /* new character-box size */

fSuccess = GpiQueryDefCharBox(hps, &psizlSize);

/* if successful, set current box size to initial default value */
if (fSuccess == TRUE)
{

psizfxSize.cx = MAKEFIXED(psiz1Size.cx,0x0000);

psizfxSize.cy = MAKEFIXED(psiz1Size.cy,0x0000);
GpiSetCharBox(hps, &psizfxSize);
}

§-276 PM Programming Reference

GpiQueryDefTag —
Query Default Tag

#define INCL_GPIDEFAULTS /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryDefTag (HPS hps, PLONG piTag)

This function returns the default value of the tag identifier, as set by the GpiSetDefTag function.

Parameters
hps (HPS) — input
Presentation-space handie.

piTag (PLONG) — output
Default tag identifier.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

Example Code

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

This example uses GpiQueryDefTag to return the default value of the tag identifier, as set by the

GpiSetDefTag call.
#define INCL_GPIDEFAULTS /* Default functions */
#include <os2.h>
BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
LONG plTag; /* default tag identifier */

fSuccess = GpiQueryDefTag(hps, &p1Tag);

Chapter 5. Graphics Functions 5-277

GpiQueryDefViewingLimits —
Query Default Viewing Limits

#define INCL_GPIDEFAULTS /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryDefViewingLimits (HPS hps, PRECTL prciLimits)

This function returns the default value of the viewing limits, as set by the GpiSetDefViewingLimits
function.

Parameters
hps (HPS) — input
Presentation-space handle.

prciLimits (PRECTL) — output
Default viewing. limits.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetl.astError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

Example Code
This example uses GpiQueryDefViewingLimits to return the default value of the viewing limits, as set
by the GpiSetDefViewingLimits and, if the query succeeds, assigns a variable to the x coordinate of
the lower left hand corner of the viewing limits rectangle.

#define INCL_GPIDEFAULTS /* Default functions */
#include <os2.h>

BOOL fSuccess; /* success indicator */
HPS hps; /* Presentation-space handle */
RECTL prcllLimits; /* default viewing limits */

LONG TLwrLftxCoord; /* lower left x coordinate of limit */
fSuccess = GpiQueryDefViewingLimits(hps, &prclLimits);
/* if successful, assign Tower left x coordinate of viewing Timit */

if (fSuccess == TRUE)
TLwrLftxCoord = preilimits.xLeft;

5-278 PM Programming Reference

GpiQueryDevice —
Query Device

#define INCL_GPICONTROL /* Or use INCL_GP! or INCL_PM. Also in COMMON section */

HDC GpiQueryDevice (HPS hps)

This function returns the handle of the currently associated device context.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns

Device-context handle:
HDC_ERROR Error
NULLHANDLE No device context is currently associated

Otherwise Device context handle.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_INV_HDC An invalid device-context handle or (micro presentation
space) presentation-space handle was specified.

Example Code
This example uses the GpiQueryDevice function to retrieve a device-context handle for the
presentation space of the desktop window. The handle is used in the DevQueryCaps function to
determine the width and height of the Presentation Manager screen.

#define INCL_GPICONTROL /* GPI control Functions */
#define INCL_WINWINDOWMGR /* Window Manager Functions */
#define INCL_DEV /* Device Function definitions */
#include <os2.h>

HPS hps; /* presentation space handle */
HDC hdc; /* device context handle */

LONG 1Width, 1Height;

hps = WinGetScreenPS (HWND_DESKTOP) ;

hdc = GpiQueryDevice(hps);

DevQueryCaps (hdc, CAPS_WIDTH, 1L, &IWidth);
DevQueryCaps (hdc, CAPS_HEIGHT, 1L, &iHeight);

Chapter 5. Graphics Functions 5-279

GpiQueryDeviceBitmapFormats —
Query Device Bit-Map Formats

#define INCL_GPIBITMAPS /* Or use INCL_GPI or INCL_PM */

BOOL GpiQueryDeviceBitmapFormats (HPS hps, LONG ICount, PLONG alArray)

This function returns the formats of bit maps supported internally by the device driver.

Parameters
hps (HPS) — input
Presentation-space handle.

The associated device context defines the class of device for which formats are required. This
must be either a memory device context or a device context for a device that supports raster
operations.

ICount (LONG) — input
Number of elements.

Number of elements in alArray (must be an even number). For the complete set of formats
returned, the value of this parameter must be at least doubie the number of device formats
returned by DevQueryCaps.

alArray (PLONG) — output
Data array.

Array of elements that, on return, is set to pairs of (cPlanes, cBitCount)elements (see
BITMAPINFOHEADER) for each supported format in turn. Any unused elements are set to 0.

Returns
Success indicator:

TRUE Successful completion
FALSE Error occurred.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS BUSY An attempt was made to access the presentation space
from more than one thread simuitaneously.
PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.
Remarks

An application can create, set, and query bit maps using any of the standard formats. Internally,
however, these are converted by the device driver into one of the device internal formats if
necessary. This is normally a smaller set than the standard set of bit-map formats.

The number of device bit-map formats can be found with DevQueryCaps (CAPS_BITMAP_FORMATS).

The first pair of (cPlanes, cBitCount) elements returned most closely matches the device.

This function must not be issued when there is no device context associated with the presentation
space.

5-280 PM Programming Reference

i

GpiQueryDeviceBitmapFormats —
Query Device Bit-Map Formats

Example Code
This example uses the GpiQueryDeviceBitmapFormats function to retrieve bit-map formats for the
screen and creates a screen-compatible bit map with GpiCreateBitmap.

#define INCL_GPIBITMAPS /* GPI Bit-map functions */
#include <os2.h>

HPS hps; /* Target presentation-space handle */
LONG 1Formats[24] ;/* Formats supported by the device */
HBITMAP hbm; /* Bit-map handle */
PBYTE pb; /* Bit-map image data */
BITMAPINFO2 pbmInfo; /* Bit-map information table */

/* Get screen supportable formats */
GpiQueryDeviceBitmapFormats (hps, 24L, 1Formats);

/****************************

* set bitmapinfo structure *
****************************l
pbmInfo.cbFix = 16L;
pbmInfo.cx = 100L;
pbmInfo.cy = 160L;
pbmInfo.cPlanes = (USHORT) 1Formats[0] ;
pbmInfo.cBitCount = (USHORT) 1Formats[1];

/* create bit map and return handle */
hbm = GpiCreateBitmap(hps, /* presentation space */
(PBITMAPINFOHEADER2) &pbmInfo,
/* bit-map information header */
CBM_INIT, /* initialize the bit map */
pb, /* bit-map data */
&pbmInfo); /* bit-map information table */

Chapter 5. Graphics Functions 5-281

GpiQueryDrawControl —
Query Draw Control

#define INCL_GPICONTROL /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryDrawControl (HPS hps, LONG IConirol)

This function returns a drawing control as set by GpiSetDrawControl.

Parameters
hps (HPS) — input
Presentation-space handle.

IControl (LONG) - input
Control whose vaiue is to be returned:

DCTL_ERASE Erase before draw

DCTL _DISPLAY Display

DCTL_BOUNDARY Accumulate boundary data
DCTL_DYNAMIC Draw dynamic segments
DCTL_CORRELATE Correlate.

Returns
Value of the control.

(See GpiSetDrawControl for details):
DCTL_OFF Off

DCTL_ON On

DCTL_ERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_DRAW_CONTROL An invalid control parameter was specified with

GpiSetDrawControl or GpiQueryDrawControl.

PMERR_INV_MICROPS_DRAW CONTROL A draw control parameter was specified with
GpiSetDrawControl that is invalid in a micro presentation
space.

‘ 5282 PM Programming Reference

W

GpiQueryDrawControl —
Query Draw Control

Example Code
This example uses GpiQueryDrawControl to return the value for the Display drawing control as set
by GpiSetDrawControl.

#define INCL_GPICONTROL /* Control functions */
#include <os2.h>

LONG 1Value; /* value of the control */
HPS hps; /* Presentation-space handle */
LONG 1Control; /* control value to be queried */

/* ask for Display control value */
1Control = DCTL_DISPLAY;

1Value = GpiQueryDrawControl(hps, 1Control);

Chapter 5. Graphics Functions 5-283

GpiQueryDrawingMode —
Query Drawing Mode

#fdefine INCL_GPICONTROL /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryDrawingMode (HPS hps)

This function returns the current drawing mode, as set by GpiSetDrawingMode.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns

Drawing mode.

(See GpiSetDrawingMode for details):
>0 Drawing mode
DM_ERROR Error.

Possible returns from WinGetLastError
PMERR_INV_HPS An invalid presentation-space handle was specified.

PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.

PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.

Example Code
This example uses GpiQueryDrawingMode to return the current drawing mode, as set by

GpiSetDrawingMode.

#define INCL_GPICONTROL /* Control functions */
#include <os2.h>

LONG 1Mode; /* drawing mode */
HPS hps; /* Presentation-space handle */

1Mode = GpiQueryDrawingMode(hps);

5-284 PM Programming Reference

GpiQueryEditMode —
Query Edit Mode

#define INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryEditMode (HPS hps)

This function returns the current editing mode, as set by GpiSetEditMode.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns

Current editing mode:
SEGEM_INSERT
SEGEM_REPLACE Replace mode
SEGEM_ERROR

Insert mode

Error.

Possible returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simultaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

This function can be issued in any drawing mode.

Example Code

This example uses GpiQueryEditMode to return the current editing mode, as set by GpiSetEditMode.

#define INCL_GPISEGEDITING
#include <os2.h>

LONG 1Mode:;
HPS hps;

1Mode = GpiQueryEditMode(hps);

/* editing mode
/* Presentation-space handie */

/* Segment Editing functions */

*/

Chapter 5. Graphics Functions 5-285

GpiQueryElement —
Query Element

#define INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

LONG GplQueryElement (HPS hps, LONG 10ff, LONG IMaxLength, PBYTE pbData)

This function returns element content data.

Parameters
hps (HPS) — input
Presentation-space handle.

10ff (LONG) — input
Starting byte offset within the element.

IMaxLength (LONG) — input
Maximum length of data that can be returned.

pbData (PBYTE) — output
Element content data.

An area of IMaxLength bytes in which the element content data is to be returned.

Returns
Number of bytes returned:

20 Actual number of bytes returned
GPI_ALTERROR Error.

Possible returns from WinGetLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_MICROPS_FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.
PMERR_NO_CURRENT_ELEMENT An attempt has been made to issue

GpiQueryElementType or GpiQueryElement while there is
no currently open element.

PMERR_NOT_IN_RETAIN_MODE An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_IN ELEMENT An attempt was made to issue a function invalid inside an
element bracket.

PMERR_INV_ELEMENT OFFSET An invalid off (offset) parameter was specified with
GpiQueryElement.

PMERR_NO_CURRENT_SEG An attempt has been made to issue

GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

5-286 PM Programming Reference

GpiQueryElement —
Query Element

Remarks

Returns the element content (or part of the element content) for the element to which the element
pointer currently points.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress.

This function is not valid within an element bracket.

Example Code

This example uses the GpiQueryElement function to retrieve the graphics-order data for an element.

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */
#include <os2.h>

HPS hps; /* presentation space handle */
BYTE abElement[512]; /* element data buffer */

/* Move pointer to first element in segment. */

GpiSetElementPointer(hps, 1L);

GpiQueryElement (hps, /* presentation space */
oL, /* start with first byte in element */
512L, /* copy no more than 512 bytes */
abElement); /* buffer to receive data */

Chapter 5. Graphics Functions 5-287

GpiQueryElementPointer —

Query Element Pointer

#tdefine INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

LONG GplQueryElementPointer (HPS hps)

This function returns the current element pointer.

Parameters
hps (HPS) — input
Presentation-space handle.

Returns
Current element pointer:

>0 Current element pointer

GPI_ALTERROR Error.

Possibie returns from WinGetLastError
PMERR_INV_HPS
PMERR_PS_BUSY

PMERR_INV_MICROPS_FUNCTION

PMERR_NOT_IN_RETAIN_MODE

PMERR_NO_CURRENT_SEG

Remarks

An invalid presentation-space handle was specified.

An attempt was made to access the presentation space
from more than one thread simuitaneously.

An attempt was made to issue a function that is invalid in
a micro presentation space.

An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

An attempt has been made to issue
GpiQueryElementType or GpiQueryElement while there is
no currently open segment.

This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress.

5-288 PM Programming Reference

GpiQueryElementPointer —
Query Element Pointer

Example Code
This example uses GpiQueryElementPointer to return the current element pointer after setting the
Draw mode to retain and beginning a graphics segment named 1.

#define INCL_GPISEGEDITING /* Segment Editing functions */
#define INCL_GPICONTROL /* Control functions */
#define INCL_GPISEGMENTS /* Segment functions */
#include <o0s2.h>

LONG 1Element; /* current element pointer */
HPS hps; /* Presentation-space handle */

/* set the draw mode to retain and open the segment */
if (GpiSetDrawingMode(hps, DM_RETAIN) == TRUE &&
GpiOpenSegment (hps, 1L) == TRUE)
{

1Element = GpiQueryElementPointer(hps);

GpiCloseSegment(hps); /* close the segment */
}

Chapter 5. Graphics Functions 5-289

GpiQueryElementType -
Query Element Type

#define INCL_GPISEGEDITING /* Or use INCL_GPI or INCL_PM */

LONG GpiQueryElementType (HPS hps, PLONG piType, LONG ILength, PSZ pszData)

This function returns information about the element to which the element pointer currently points.

Parameters
hps (HPS) - input
Presentation-space handle.

piType (PLONG) — output
Element type.

The element type can be system-defined or application-defined; see GpiElement and
GpiBeginElement.

ILength (LONG) — input
Data length.

Length of the description data buffer.

pszData (PSZ) — output
Description of data buffer.

The description may be system-defined or application-defined; see GpiElement and
GpiBeginElement. The string is null-terminated, even if it has to be truncated.

Returns
Size of the data required to hold the element content.

This can be used for a subsequent GpiQueryElement function.
20 Size of data
GPI_ALTERROR Error.

Possible returns from WinGetlLastError

PMERR_INV_HPS An invalid presentation-space handle was specified.
PMERR_PS_BUSY An attempt was made to access the presentation space
from more than one thread simultaneously.
PMERR_INV_MICROPS FUNCTION An attempt was made to issue a function that is invalid in
a micro presentation space.
PMERR_NO_CURRENT_ELEMENT An attempt has been made to issue

GpiQueryElementType or GpiQueryElement while there is
no currently open element.

PMERR_NOT_IN_RETAIN_MODE An attempt was made to issue a segment editing element
function that is invalid when the actual drawing mode is
not set to retain

PMERR_INV_LENGTH_OR_COUNT An invalid length or count parameter was specified.

PMERR_INV_IN_ELEMENT An attempt was made to issue a function invalid inside an
element bracket.

PMERR_NO_CURRENT SEG An attempt has been made to issue

GpiQueryEiementType or GpiQueryElement while there is
no currently open segment. '

5-290 PM Programming Reference

GpiQueryElementType —
Query Element Type

Remarks
This function is only valid when the drawing mode (see GpiSetDrawingMode) is set to retain (not
draw-and-retain), and a segment bracket is currently in progress. It is not valid in an element
bracket.

Example Code
This example uses the GpiQueryElementType function to retrieve the size of the current element.
The size is used to retrieve the graphics-order data in the element.

#define INCL_GPISEGEDITING /* GPI Segment Edit functions */
#include <os2.h>

HPS hps; /* presentation space handle */
BYTE abElement[512];

LONG chElement;

LONG 1Type;

/* move pointer to first element in segment */

GpiSetElementPointer(hps, 1L);
cbElement = GpiQueryElementType(

hps, /* presentation space */
&1Type, /* variable to receive type *f
oL, /* copy zero bytes of description */
NULL); /* no buffer for description */

GpiQueryElement (hps, OL, cbElement, abElement);

Chapter 5. Graphics Functions 5-291

GpiQueryFaceString —
Query Face String

#define INCL_GPILCIDS /* Or use INCL_GPI or INCL_PM */

ULONG<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>