

Note ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----.

Before using this information and the product it supports, be sure to read the general
information under "Notices" on page xi.

First Edition (December 1991)

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to
you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or
your IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source
language, which illustrate OS/2 programming techniques. You may copy and distribute these sample
programs in any form without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,
must include a copyright notice as follows: "©(your company name) (year) All Rights Reserved."

Contents

Chapter 1. Introduction .
What the SAA Solution Is .

Supported Environments .
Common Programming Interface .

How to Read the Syntax Diagrams .

Chapter 2. General Concepts .
Brief Description of the REstructured eXtended executor Language
REXX and the OS/2 Operating System .
Structure and General Syntax .

Characters .
Tokens .. .
Implied Semicolons .
Continuations .

Expressions and Operators
Expressions .
Operators

String Concatenation .
Arithmetic .
Comparison .
Logical (Boolean)

Parentheses and Operator Precedence
Clauses and Instructions

Null Clauses .
Labels .. .
Instructions
Assignments
Keyword Instructions .
Commands

Assignments and Symbols .
Constant Symbols .
Simple Symbols .
Compound Symbols ..
Stems

Commands to External Environments
Environment .
Commands

Using REXX on the OS/2 Operating System
Calling Another REXX Program .
Generating a Return Code .
Running a REXX Program .
Editing Commands .

Chapter 3. Keyword Instructions .
ADDRESS
ARG
CALL .. .
DO ·
Simple DO Group .
Simple Repetitive Loops
Controlled Repetitive Loops .
Conditional Phrases (WHILE and UNTIL)

1-1
1-1
1-1
1-2
1-2

2-1
2-1
2-1
2-2
2-2
2-2
2-7
2-7
2-7
2-7
2-8
2-8
2-9
2-9

2-10
2-11
2-12
2-12
2-12
2-13
2-13
2-13
2-13
2-13
2-14
2-14
2-14
2-16
2-17
2-17
2-17
2-18
2-18
2~18

2-18
2-19

3-1
3-2
3-4
3-6
3-9
3-9

3-10
3-10
3-12

Contents iii

iv REXX Reference

DROP ... 3-14
EXIT .. 3-15
IF . 3-16
INTERPRET . 3-17
ITERATE 3-19
LEAVE ... 3-20
NOP .. 3-21
NUMERIC . 3-22
OPTIONS . 3-24
PARSE ... 3-25
PROCEDURE . 3-27
PULL .. 3-29
PUSH ... 3-30
QUEUE .. 3-31
RETURN . 3-32
SAY .. 3-33
SELECT . 3-34
SIGNAL . 3-35
TRACE .. 3-37

Alphabetic Character (Word) Options 3-37
Prefix Option . 3-38
Numeric Options . 3-39
Tracing Tips . 3-39

A Typical Example . 3-39
Format of TRACE Output 3-39

Chapter 4. Functions . 4-1
Syntax . 4-1
Calls to Functions and Subroutines . 4-1

Search Order . 4-2
Errors During Execution . 4-4

Return Values . 4-5
Built-in Functions . 4-5

ABBREV (Abbreviation) . 4-6
ABS (Absolute Value) . 4-7
ADDRESS . 4-7
ARG (Argument) . 4-7
BEEP . 4-8
BITAND (Bit by Bit AND) . 4-9
BITOR (Bit by Bit OR) . 4-9
BITXOR (Bit by Bit Exclusive OR) . 4-10
B2X (Binary to Hexadecimal) 4-10
CENTER/CENTRE . 4-11
CHARIN (Character Input) 4-11
CHAROUT (Character Output) . 4-12
CHARS (Characters Remaining) . 4-13
COMPARE . 4-13
CONDITION 4-14
COPIES . 4-15
C2D (Character to Decimal) 4-15
C2X (Character to Hexadecimal) 4-16
DATATYPE 4-16
DATE ... 4-17
DBCS (Double-Byte Character Set Functions) 4-18
DELSTR (Delete String) 4-19
DELWORD (Delete Word) . 4-19

DIGITS . 4-19
DIRECTORY 4-19
D2C (Decimal to Character) 4-20
D2X (Decimal to Hexadecimal) 4-21
ENDLOCAL . 4-21
ERRORTEXT . 4-22
FILESPEC . 4-22
FORM ... 4-23
FORMAT 4-23
FUZZ ... 4-24
INSERT . 4-24
LASTPOS (Last Position) . 4-24
LEFT .. 4-25
LENGTH . 4-25
LINEIN (Line Input) 4-25
LINEOUT (Line Output) . 4-27
LINES (Lines Remaining) 4-28
MAX (Maximum) . 4-29
MIN (Minimum) . 4-29
OVERLAY . 4-29
POS (Position) . 4-30
QUEUED . 4-30
RANDOM . 4-30
REVERSE . 4-31
RIGHT ... 4-31
SETLOCAL . 4-32
SIGN .. 4-32
SOURCELINE . 4-33
SPACE ... 4-33
STREAM . 4-33

Stream Commands . 4-34
STRIP ... 4-36
SUBSTR (Substring) 4-37
SUBWORD . 4-37
SYMBOL . 4-37
TIME .. 4-38
TRACE .. 4-40
TRANSLATE 4-40
TRUNC (Truncate) . 4-41
VALUE .. 4-41
VERIFY .. 4-43
WORD ... 4-43
WORDINDEX . 4-43
WORDLENGTH . 4-44
WORDPOS (Word Position) . 4-44
WORDS .. 4-44
XRANGE (Hexadecimal Range) 4-45
X2B (Hexadecimal to Binary) 4-45
X2C (Hexadecimal to Character) 4-45
X2D (Hexadecimal to Decimal) 4-46

OS/2 Applications Programming Interface Functions 4-47
RXFUNCADD . 4-47
RXFUNCDROP . 4-47
RXFUNCQUERY . 4-47
Queue Interface 4-47

RXQUEUE . 4-47

Contents V

vi REXX Reference

REXX Utilities (RexxUtil)
RxMessageBox .
SysCls .. .
SysCreateObject .
SysC:urPos .
SysCurState .
SysDeregisterObjectClass .
SysDriveinfo .
SysDriveMap .
SysDropFuncs
SysFileDelete .
SysFileTree .
SysFileSearch .
SysGetEA
SysGetKey
SysGetMessage .
Sysini
SysMkDir
SysOS2Ver
SysPutEA
SysQueryClassList
SysRegisterObjectClass .
SysRmDir
SysSearchPath
SysSetlcon .
SysSieep
SysTempFileName
SysTextScreenRead
SysTextScreenSize
SysWaitNamedPipe

Chapter 5. Parsing .
Simple Templates for Parsing into Words .

The Period as a Placeholder .
Templates Containing String Patterns
Templates Containing Positional (Numeric) Patterns

Combining Patterns and Parsing Into Words
Parsing with Variable Patterns
Using UPPER .
Parsing Instructions Summary .
Parsing Instructions Examples .

Advanced Topics in Parsing .
Parsing Multiple Strings .
Combining String and Positional Patterns: A Special Case
Parsing with DBCS Characters
Details of Steps in Parsing .

Chapter 6. Numbers and Arithmetic .
Introduction .
Definition

Numbers
Precision
Arithmetic Operators .
Arithmetic Operation Rules-Basic Operators

Addition and Subtraction
Multiplication

4-49
4-49
4-51
4-51
4-51
4-52
4-52
4-53
4-53
4-54
4-54
4-55
4-56
4-58
4-58
4-58
4-59
4-61
4-62
4-62
4-62
4-63
4-63
4-64
4-64
4-65
4-65
4-66
4-66
4-66

5-1
5-1
5-2
5-3
5-4
5-6
5-7
5-8
5-8
5-9

5-10
5-10
5-11
5-11
5-11

6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-4
6-4

Division

Basic Operator Examples

Arithmetic Operation Rules-Additional Operators

Power

Integer Division .

Remainder

Additional Operator Examples .

Numeric Comparisons

Exponential Notation .

Whole Numbers .

Numbers Used Directly by RE:XX

Errors

Chapter 7. Conditions and Condition Traps

Action Taken When a Condition Is Not Trapped

Action Taken When a Condition Is Trapped .

Condition Information

The Special Variable RC

The Special Variable SIGL

Chapter 8. Input and Output Streams .

The Input and Output Model .

Character Input Streams .

Character Output Streams

The STREAM Function .

External Data Queue .

Implementation .

Queue Interface .

Access to Queues .

Session Queues .

Private Queues .

Special Considerations

Detached Processes .

Multi-Programming Considerations .

Errors During Input and Output .

Examples of Input and Output .

Summary of Instructions and Functions .

Chapter 9. Application Programming Interface

General Characteristics .

RXSTRINGs

Invoking the RE:XX Interpreter .

From the OS/2 operating system

From Within an Application .

The RexxStart Function .

RexxStart

Subcommand Interfaces

Registering Subcommand Handlers .

Creating Subcommand Handlers .

Subcommand Interface Functions .

RexxRegisterSubcomDll .

RexxRegisterSubcomExe .

RexxDeregisterSubcom .

RexxQuerySubcom

Return Codes .

External Functions

6-4
6-5
6-5
6-5
6-5
6-6
6-6
6-6
6-7
6-9
6-9
6-9

7-1
7-2
7-2
7-4
7-5
7-5

8-1
8-2
8-2
8-3
8-3
8-3
8-4
8-4
8-5
8-5
8-5
8-5
8-6
8-6
8-6
8-8
8-9

9-1
9-2
9-3
9-4
9-4
9-4
9-5
9-5
9-9
9-9
9-9

9-12
9-12
9-13
9-14
9-15
9-17
9-18

Contents vii

viii REXX Reference

Registering External Functions .
Creating External Functions

Calling External Functions .
External Function Interface Functions

RexxRegisterFunctionDll .
RexxRegisterFunctionExe
RexxDeregisterFunction
RexxQueryFunction

Return Codes .
System Exits

Writing System Exit Handlers
Exit Return Codes
Exit Parameters .
Identifying Exit Handlers to REXX .

System Exit Definitions .
System Exit Details .

RXFNC
RXCMD
RXMSQ
RXSIO
RXHLT
RXTRC
RXINI
RXTER

System Exit Functions
RexxRegisterExitDll .
RexxRegisterExitExe .
RexxDeregisterExit
RexxQueryExit

Variable Pool Interface
RexxVariablePool Interface Function

RexxVariablePool
Interface Types .

Symbolic Interface .
Direct Interface

RexxVariablePool Restrictions
Halt and Trace Functions

Halt and Trace Functions .
RexxSetHalt .
RexxSetTrace
RexxResetTrace .

Macrospace Interface
Search Order .
Storage of Macrospace Libraries
Macrospace Interface Functions

RexxAddMacro .
RexxDropMacro .
RexxClearMacroSpace
RexxSaveMacroSpace
RexxLoadMacroSpace .
RexxQueryMacro
RexxReorderMacro

Return Codes .

Chapter 10. Debugging Aids
Interactive Debugging of Programs .

9-18
9-18
9-19
9-20
9-20
9-22
9-23
9-24
9-25
9-26
9-26
9-26
9-27
9-27
9-29
9-30
9-30
9-32
9-33
9-35
9-37
9-38
9-39
9-39
9-40
9-40
9-41
9-42
9-43
9-45
9-45
9-45
9-50
9-50
9-50
9-50
9-52
9-53
9-53
9-54
9-55
9-56
9-56
9-56
9-57
9-57
9-58
9-59
9-60
9-61
9-62
9-63
9-64

10-1
10-1

RXTRACE Variable 10-2

Chapter 11. Reserved Keywords and Special Variables 11-1

Reserved Keywords . 11-1

Special Variables . 11-2

Chapter 12. Useful OS/2 Commands 12-1

CALL Command . 12-1

Other OS/2 Commands 12-1

Subcommand Handler Services . 12-2

The RXSUBCOM Command . 12-2

RXSUBCOM REGISTER . 12-2

RXSUBCOM DROP . 12-3

RXSUBCOM QUERY . 12-3

RXSUBCOM LOAD . 12-3

Queue Services (Filters) . 12-4

RXQUEUE filter . 12-4

Appendix A. Error Numbers and Messages A-1

Appendix B. Double-Byte Character Set (DBCS) Support B-1

General Description . B-1

Enabling DBCS Data Operations . B-2

Pure DBCS Strings and Mixed SBCS/DBCS Strings B-2

Mixed String Validation . B-3

Instruction Examples . B-3

PARSE B-3

SAY and TRACE . B-5

DBCS Function Handling . B-5

Built-in Function Examples . B-7

ABBREV B-7

COMPARE . B-7

COPIES . B-8

INSERT and OVERLAY . B-8

LEFT, RIGHT, and CENTER . B-8

LENGTH B-9

LINEIN . B-9

REVERSE . B-9

SPACE B-9

STRIP . B-9

SUBSTR and DELSTR . B-10

SUBWORD and DELWORD . B-10

TRANSLATE . B-10

VERIFY . B-11

WORD, WORDINDEX, and WORDLENGTH B-11

WORDS . B-12

WORDPOS . B-12

DBCS Processing Functions . B-12

Counting Option . B-12

Function Descriptions . B-12

DBADJUST . B-12

DBBRACKET . B-13

DBCENTER . B-13

DBLEFT . B-14

DBRIGHT . B-14

DBRLEFT . B-15

Contents ix

X REXX Reference

DBRRIGHT . B-15
DBTODBCS . B-16
DBTOSBCS . B-16
DBUNBRACKET . B-17
DBVALIDATE . B-17
DBWIDTH . B-18

Index . X-1

Notices

Trademarks

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights or other legally protectible rights may be used instead of
the IBM product, program, or service. Evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly
designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

Operating System/2
Operating System/400
Systems Application Architecture
Enterprise Systems Architecture/370

OS/2
OS/400
SAA
PS/2

Double-Byte Character Set (DBCS)
Throughout this publication, you will see references to specific values for character
strings. The values are for single-byte character set (SBCS). If you use the
double-byte character set (DBCS), note that one DBCS character equals two SBCS
characters.

Notices xi

xii REXX Reference

About This Book

Who Should Read This Book
This book describes the OS/2.Procedures Language processor and the REstructured
eXtended eXecutor (abbreviated REXX) language. This book is intended for
experienced programmers, particularly those who have used a block-structured,
high-level language (for example, PL/I, Algol, C, or Pascal).

This book is a reference rather than a tutorial. It assumes you are already familiar
with REXX programming concepts.

Descriptions include the use and syntax of the language and explain how the
language processor "interprets" the language as a program is executing.

How to Use This Book
The material in this book is arranged in chapters:

1. Introduction
2. General Concepts
3. Keyword Instructions (in alphabetic order)
4. Functions (in alphabetic order)
5. Parsing (a method of dividing character strings, such as commands)
6. Numbers and Arithmetic
7. Conditions and Condition Traps
8. Input and Output Streams
9. Applications Programming Interface

10. Debug Aids
11. Reserved Keywords and Special Variables
12. Some Useful OS/2 Commands

There are also appendixes covering:

• Error Numbers and Messages
• Double-Byte Character Set (DBCS) Support

For Further REXX Information
Here is a list of books that you may wish to include in your REXX library:

• The Procedures Language 2/REXX User's Guide offers a general introduction to
programming for beginners and extensive practical examples of REXX
applications for OS/2 programmers of all levels.

• The SAA• CPI Procedures Language Level 2 Reference, may be useful to more
experienced REXX users who may wish to code portable programs. This book
defines the SAA Procedures Language. Descriptions include the use and syntax
of the language as well as explanations on how the language processor interprets
the language as a program is running.

• Trademark of IBM Corporation

About This Book xiii

xiv RE:XX Reference

Introduction

Chapter 1. Introduction

This introductory section:

• Gives a brief overview of the Systems Application Architecture* (SAA) solution
• Explains the Common Programming Interface
• Explains how to read a syntax diagram.

What the SAA Solution Is
The SAA solution is based on a set of software interfaces, conventions, and
protocols that provide a framework for designing and developing applications. The
SAA Procedures Language has been defined as a superset of the REXX language
that can be used in a number of computing environments.

If you are using REXX only in an OS/2 environment, this will have no effect on
your programs. If you plan on running your programs on other environments,
however, some restrictions may apply. We suggest that you consult the SAA CPI
Procedures Language Level 2 Reference, SC24-5549.

The SAA solution:

• Defines a Common Programming Interface that you can use to develop
consistent, integrated enterprise software

• Defines Common Communications Support that you can use to connect
applications, systems, networks, and devices

• Defines a Common User Access architecture that you can use to achieve
consistency in screen layout and user interaction techniques

• Offers some applications and application development tools written by IBM.

Supported Environments
Several combinations of IBM hardware and software have been selected as SAA
environments. These are environments in which IBM will manage the availability of
support for applicable SAA elements, and the conformance of those elements to
SAA specifications. The SAA environments are the following:

• MVS

Base system (TSO/E, APPC/MVS, batch)
CICS
IMS

• VMCMS

• Operating System/400* (OS/400*)

• Operating System/2* (OS/2*).

• Trademark of IBM Corporation

Chapter. 1. Introduction 1-1

Introduction

Common Programming Interface
The Common Programming Interface (CPI) provides languages and services that
programmers can use to develop applications that take advantage of SAA
consistency.

The components of the interface currently fall into two general categories:

• Languages

Application Generator
c
COBOL
FORTRAN
PL/I
Procedures Language
RPG*

• Services

Communications
Database
Dialog
Presentation
PrintManager
Query
Repository
Resource Recovery.

The CPI is not in itself a product or a piece of code. But-as a definition-it does
establish and control how IBM products are being implemented, and it establishes a
common base across the applicable SAA environments.

How to Read the Syntax Diagrams

1-2 REXX Reference

Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ..,._ symbol indicates the beginning of a statement.

The --+ symbol indicates that the statement syntax is continued on the next
line.

The 11-- symbol indicates that a statement is continued from the previous line.

The__.... symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with the .,,__
symbol and end with the --+ symbol.

• Required items appear on the horizontal line (the main path) .

..-sTATEMENT-required_i tern------------------

• Optional items appear below the main path .

..-STATEMENT
~ptional_ite~

• If you can choose from two or more items, they appear vertically, in a stack.

• 4

Introduction

If you must choose one of the items, one item of the stack appears on the main
path.

111+--STATEMENT--i=required_choicel
required_choice2

If choosing one of the items is optional, the entire stack appears below the main
path.

• If one of the items is the default, it will appear above the main path and the
remaining choices will be shown below.

§
efault_choice~

11+--STATEMENT~t---------------+-------------------------------1•~•

ptionaLchoice
optionaLchoice

• An arrow returning to the left above the main line indicates an item that can be
repeated.

11+--STATEMENT_£repeatable_i te1m-m -'---------------• ... •

A repeat arrow above a stack in?icates that you can repeat the items in the
stack.

• Keywords appear in uppercase (for example, PARMl). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example, parmx).
They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, you must enter them as part of the syntax.

The following example shows how the syntax is described:

ll+--MAX(_£~~)---------------

Chapter 1. Introduction 1-3

Introduction

1-4 RE:XX Reference

General Concepts

Chapter 2. General Concepts

Brief Description of the REstructured extended executor Language
The REstructured eXtended eXecutor (REXX) language is a language particularly
suitable for:

• Command procedures
• Application front ends
• User-defined macros (such as editor subcommands)
• Prototyping
• Personal computing.

It is a general purpose programming language like PL/I. REXX has the usual
structured-programming instructions-IF, SELECT, DO WHILE, LEAVE, and so
on-and a number of useful built-in functions.

No restrictions are imposed by the language on program format. There can be more
than one clause on a line, or a single clause can occupy more than one line.
Indentation is allowed. Programs can, therefore, be coded in a format that
emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, so long as all variables fit
into the storage available.

Symbols (variable names) are limited to a length of 250 characters.

You can use compound symbols, such as

NAME.X. Y

(where X and Y can be the names of variables or can be constant symbols), for
constructing arrays and for other purposes.

REXX programs are executed by a language processor (interpreter). That is, the
program is executed line-by-line and word-by-word, without first being translated to
another form (compiled). The advantage of this to the user is that if the program
fails with a syntax error of some kind, the point of failure is clearly indicated;
usually, it will not take long to understand the difficulty and make a correction.

REXX and the OS/2 Operating System
REXX has been designed to be an integral part of the OS/2 operating system. When
you install the operating system, you can choose if you want to install REXX,
PMREXX, or REXX information. There is no installation process or explicit
invocation of the language processor. REXX program files have the default
extension CMD, and they can contain OS/2 commands as well as REXX
instructions. Anywhere you can use an OS/2 command or batch-file, you can use a
REXX program.

Chapter 2. General Concepts 2-1

General Concepts

Structure and General Syntax

Characters

Tokens

2-2 REXX Reference

Programs written in the REstructured eXtended eXecutor (REXX) language must
start with a comment in the first column of the first line. This distinguishes a REXX
program from an OS/2 batch file.

A RE:XX program is built from a series of clauses that are composed of:

• Zero or more blanks (which are ignored)
• A sequence of tokens (see "Tokens")
• Zero or more blanks (again ignored)
• A semicolon (;) delimiter that may be implied by line-end, certain keywords, or

the colon(:) if it follows a single symbol.

Conceptually, each clause is scanned from left to right before processing, and the
tokens composing it are identified. Instruction keywords are recognized at this
stage, comments are removed, and multiple blanks (except within literal strings) are
converted to single blanks. Blanks adjacent to operator characters and special
characters (see page 2-6) are also removed.

A character, the letter A, for example, differs from its coded representation or
encoding. Various coded character sets (such as ASCII and EBCDIC) use different
encodings for the letter A (decimal values 65 and 193, respectively). This book uses
characters to convey meanings and not to imply a specific character code, except
where otherwise stated. The exceptions are certain built-in functions that convert
between characters and their representations. The functions C2D, C2X, D2C, X2C,
and XRANGE have a dependence on the character set in use.

For information about Double-Byte Character Set characters, see Appendix B,
"Double-Byte Character Set (DBCS) Support" on page B-1.

Programs written in REXX are composed of tokens. (Tokens can be of any length,
up to an implementation-restricted maximum.) They are separated by blanks or by
the nature of the tokens themselves. The classes of tokens are:

Comments:
A sequence of characters (on one or more lines) delimited by/* and*/.
Within these delimiters any characters are allowed. Comments can
contain other comments, as long as each begins and ends with the
necessary delimiters. They are called nested comments. You can write
comments anywhere in a program. The language processor ignores them
(and, therefore, they can be of any length), but they do act as separators.

/*This is an example of a valid comment*/

A comment can contain any characters, and the only significant
characters within a comment are the /* and the * / (comment start and
end delimiters). This means you must take special care when
commenting out lines of code containing/* or*/ as part of a literal
string. Consider the following program segment:

01 parse pull input
02 if substr(input,1,5) = 1 /*123 1

03 then call process
04 dept = substr(input,32,5)

General Concepts

To comment out lines 2 and 3, the following change would be incorrect:

01 parse pull input
02 /* if substr(input,1,5) = '/*123'
03 then call process
04 */ dept = substr(input,32,5)

This is incorrect because the language processor would interpret the /*
that is part of the literal string /*123 as the start of a nested comment. It
would then fail to process the rest of the program because it would be
looking for a matching comment end (* /).

You can avoid this type of problem by using concatenation for literal
strings containing /* or * /; line 2 would be:

if substr(input,1,5) = 1
/

1 I I 1 *123 1

You could comment out lines 2 and 3 correctly as follows:

01 parse pull input
02 /* if substr(input,1,5) = 1

/
1 I I '*123'

03 then call process
04 */ dept = substr(input,32,5)

Literal Strings:
A literal string is a sequence including any character except linefeed
(X 1 10 1) and delimited by the single quote (1) or the double quote (11

).

Use two consecutive double quotation marks (1111
) to represent a 11

character within a string delimited by double quotation marks. Similarly,
use two consecutive single quotation marks (1 1

) to represent a 1

character within a string delimited by single quotation marks. A literal
string is a constant and its contents are never modified when it is
processed. Literal strings must be complete on a single line (this means
that unmatched quotation marks may be detected on the line where they
occur).

A literal string with no characters (that is, a string of length 0) is called a
null string.

These are valid strings:

'Fred'
"Don't Panic!"
'You shouldn' 't'
11

/* Same as "You shouldn't" */
/* The null string */

Implementation maximum: A literal string can contain up to 250
characters. The length of the evaluated result of an expression, however,
is only limited by the available virtual storage of your computer, with an
additional limit of 512MB maximum per process.

Note that a string followed immediately by a (is considered to be the
name of a function. If followed immediately by the symbol X or x, it is
considered to be a hexadecimal string. If followed immediately by the
symbol B or b, it is considered to be a binary string. These forms are
now described in detail.

Hexadecimal Strings:
Any sequence of zero or more hexadecimal digits (0 - 9, a - f, A- F),
optionally separated by blanks, delimited by single or double quotation
marks, and immediately followed by the symbol X or x (neither can be
part of a longer symbol). A single leading 0 is added, if necessary, at the
front of the string to make an even number of hexadecimal digits, which

Chapter 2. General Concepts 2-3

General Concepts

(

2-4 REXX Reference

represent a character. string constant formed by packing the hexadecimal
digits given. Packing the hexadecimal digits converts the pair of
hexadecimal digits into one equivalent character, for example: '41 1X to
A. The blanks, which may be present only at byte boundaries (and not
at the beginning or end of the string), are to aid readability. The
language processor ignores them.

These are valid hexadecimal strings:
1 ABCD 1 x
11 ld ec f8 11 X
11 1 d8 11 x

Note: If you use explicit hexadecimal strings, your program may operate
differently when ported to different machines.

Implementation maximum: The packed length of a hexadecimal string
(the string with blanks removed) cannot exceed 250 bytes.

Binary Strings:

Symbols:

Any sequence of zero or more binary digits (0 or 1) in groups of 8 (bytes)
or 4 (nibbles), optionally separated by one or more blanks. The first
group may have fewer than four digits; in this case, up to three 0 digits
are assumed to the left of the first digit, making a total of four digits.
The entire string is delimited by matching single or double quotation
marks, and immediately followed by the symbol b or B (which cannot be
part of a longer symbol). The blanks, which may only be present at byte
or nibble boundaries (and not at the beginning or end of the string), are
to aid readability. The language processor ignores them.

A binary string is a literal string formed by packing the binary codes
given. If the number of binary digits is not a multiple of eight, leading
zeros are added on the left to make a multiple of eight before packing.
Binary strings allow you to specify characters explicitly, bit-by-bit.

These are valid binary strings:

• 11110000 • b
11 101 110Pb
1l1b
•10000 10101010'b
I lb

/* ==
1 f8 1x */

/* == I 5d Ix *I
/* == 100000001 1b and 18l 1x */
/* == • 0001 0000 1010 1010 • b * /
/* ·== I I */

Note: If you use explicit binary strings, your program may operate
differently when ported to different machines.

Implementation maximum: The packed length of a binary-literal string
may not exceed 100 bytes.

Symbols are groups of characters, selected from the:

• English alphabetic characters (A-Zand a- z)
• Numeric characters (0 - 9)
• Characters • ! ? and underscore.

Any lowercase alphabetic character in a symbol is translated to uppercase
(that is, lowercase a - z to uppercase A-Z).

Numbers:

These are valid symbols:

Fred
Albert.Hall
WHERE?

General Concepts

A symbol can be a label (see page 2-12) or a REXX keyword (see page
11-1). If a symbol does not begin with a digit or a period, you can use it
as a variable and can assign it a value. If you have not assigned it a
value, its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase a - z to uppercase A- Z). Symbols that
begin with a number or a period are constant symbols and cannot be
assigned a value. A symbol may include other characters in one situation
only. If the first part of a symbol starts with a digit (0-9) or a period, it
may end with the sequence E or e, followed immediately by an optional
sign (-or+), followed immediately by one or more digits (which cannot
be followed by any other symbol characters). The symbol thus defined
may be a number in exponential notation. The sign in this context is
part of the symbol and is not an operator.

These are valid numbers in exponential notation:

17 .3E-12
.03e+9

These are character strings consisting of one or more decimal digits,
optionally prefixed by a plus or minus sign, and optionally including a
single period(.) that represents a decimal point. A number can also
have a power of 10 suffixed in conventional exponential notation: an E
(uppercase or lowercase), followed optionally by a plus or minus sign,
then followed by one or more decimal digits defining the power of 10.
Whenever a character string is used as a number, rounding may occur to
a precision specified by the NUMERIC DIGITS instruction (default nine
digits). See pages 6-1-6-9 for a full definition of numbers.

Numbers can have leading blanks (before and after the sign, if any) and
can have trailing blanks. Embedded blanks are not permitted. Note that
a symbol (see preceding) or a literal string may be a number. A number
cannot be the name of a variable.

These are valid numbers:

12
1 -17.9 1

127.0650
73e+l28
I + 7.9E5 I

You can specify numbers with or without quotation marks around them.
Note that the sequence -17. 9 (without quotation marks) in an
expression is not simply a number. It is a minus operator (which may be
prefix minus if no term is to the left of it) followed by a positive number.
The result of the operation is a number.

A whole number is a number that has a zero (or no) decimal part and
that the language processor would not normally express in exponential
notation. That is, it has no more digits before the decimal point than the
current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in
exponential notation can have up to nine digits.

Chapter 2. General Concepts 2-S

General Concepts

2-6 REXX Reference

Operators:
The characters: + - \ I % * I I & =, > < and the
sequences >= <= \> \< \= >< <> == \== 11 && 11 ** --,>
--,< --,= --,== >> << >>= \<< --,<< \>> --,>> <<=are operator
tokens (see page 2-8), with or without embedded blanks or comments.
(For the OS/2 operating system, 11 can also be used as the concatenation
symbol.) A few of these are also used in parsing templates, and the
equal sign is also used to indicate assignment. Blanks (and comments)
adjacent to operator characters have no effect on the operator; thus,
operators constructed from more than one character can have embedded
blanks and comments. One or more blanks, where they occur in
expressions but are not adjacent to another operator, also act as an
operator. Blanks adjacent to operator characters are removed.
Therefore, the following are identical in meaning.

345>=123
345 >=123
345 >= 123
345 > = 123

Throughout the language, the not character, --,, is synonymous with the
backslash (\). You can use the two characters interchangeably according
to availability and personal preference.

Note: On the OS/2 operating system, the REXX interpreter uses ASCII
character 124 in the concatenation operator and as the logical OR
operator. Depending on the code page or keyboard for your
particular country, ASCII 124 may be shown as a solid vertical
bar (I) or a split vertical bar (I). The character on the screen may
not match the character engraved on the key. If you are receiving
error 13, invalid character in program on an instruction
including a vertical bar character, make sure this character is
ASCII 124.

The REXX interpreter uses ASCII character 170 for the logical
NOT operator. Depending on your country, the, might not
appear on your keyboard. If the character is not available, the
backslash (\) may be used in place of, .

Special Characters:
The characters , ; :) (together with the individual characters from
the operators have special significance when found outside of literal
strings. All these characters constitute the set of special characters. They
all act as token delimiters, and blanks adjacent to any of these are
removed. There is an exception: a blank adjacent to the outside ·of a
parenthesis is deleted only if it is also adjacent to another special
character (unless the character is a parenthesis and the blank is outside it,
too). For example, the clause:

I REPEAT' B + 3;

is composed of six tokens-a literal string ('REPEAT'), a blank operator, a
symbol (B, which may have a value), an operator (+), a second symbol
(3, which is a number and a symbol), and the clause delimiter(;). The
blanks between the B and the + and between the + and the 3 are
removed. However, one of the blanks between the 'REPEAT' and the B
remains as an operator. Thus, this clause is treated as though written:
I REPEAT I 8+3;

General Concepts

Implied Semicolons

Continuations

The last element in a clause is the semicolon delimiter. The language processor
implies the semicolon in three cases: by a line-end, after certain keywords, and after
a colon if it follows a single symbol. This means that you need to include
semicolons only when there is more than one clause on a line or to terminate an

instruction that ends with a comma.

A line-end usually marks the end of a clause and, thus, a semicolon is implied at
most end of lines. However, there are exceptions:

• The line ends in the middle of a comment
• The last noncomment token was the continuation character (denoted by a

comma).

In these situations, it is not considered the end of a clause and a semicolon is not

implied.

Semicolons are also implied automatically after certain keywords when they are used
in the correct context. The keywords that have this effect are: ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

Note: The two characters forming the comment delimiters, /*and*/, must not be
split by a line-end (that is, /and* should not appear on different lines) because they
could not then be recognized correctly: an implied semicolon would be added. The
two consecutive characters forming a literal quotation mark within a string are also

subject to this line-end ruling.

One way to continue a clause onto the next line is to use the comma, which is
referred to as the continuation character. The comma is functionally replaced by a

blank, and, thus, no semicolon is implied.

The following example shows how to use the continuation character to continue a

clause.

say 'You can use a conma',
'to continue this clause.'

This displays:

You can use a conma to continue this clause.

Expressions and Operators

Expressions
Clauses can include expressions consisting of terms (strings, symbols, and function

calls) interspersed with operators and parentheses.

Terms include:

• Literal Strings (delimited by quotation marks), which are constants

• Symbols (no quotation marks), which are translated to uppercase. A symbol
that does not begin with a digit or a period may be the name of a variable; in
this case the value of that variable replaces the symbol as soon as it is needed

Chapter 2. General Concepts 2-7

General Concepts

Operators

during evaluation. Otherwise a symbol is treated as a constant string. A symbol
can also be compound.

• Function invocations-see page 4-1-which are of the form:

--rymbozc £' I
string(~ lmexpression~

Evaluation of an expression is left to right, modified by parentheses and by operator
precedence in the usual algebraic manner (see "Parentheses and Operator
Precedence" on page 2-11). Expressions are always wholly evaluated, unless an
error occurs during evaluation.

All data is in the form of "typeless" character strings (typeless because it is not-as in
some other languages-of a particular declared type, such as Binary, Hexadecimal,
Array, and so forth). Consequently, the result of evaluating any expression is itself a
character string. All terms and results (except arithmetic and logical expressions)
may be the null string (a string of length 8). Note that REXX imposes no restriction
on the maximum length of results. Expression results are limited only by the
amount of storage available to the REXX interpreter.

The following pages describe how each operator (except for the prefix operators) acts
on two terms, which may be symbols, strings, function calls, intermediate results, or
sub-expressions in parentheses. Each prefix operator acts on the term or
sub-expression that follows it. There are four types of operators:

String Concatenation

2-8 REXX Reference

The concatenation operators combine two strings to form one string. The
combination may occur with or without an intervening blank:

(blank) Concatenate terms with one blank in between

11 Concatenate without an intervening blank

Note: For the OS/2 operating system, 11 can also be used as the
concatenation symbol. See page 2-6 for additional information
on the OS/2 concatenation operator.

(abuttal) Concatenate without an intervening blank

You can force concatenation without a blank by using the 11 operator.

The abuttal operator is assumed between terms that are not separated by another
operator. This can occur when two terms are syntactically distinct, such as a literal
string and a symbol, or when they are separated only by a comment. An example of
syntactically distinct terms is: if Fred has the value 37 .4, then Fred 1%1 evaluates to
37 .4%. Any comments between the terms are irrelevant.

Examples:

If the variable PETER has the value 1, then (Fred)(Peter) evaluates to 37 .41.

The two adjoining strings, one hexadecimal and one literal, 1 4a 4b 1 x 1 LMN 1 evaluate
to JKLMN.

In the case of:

Arithmetic

Comparison

General Concepts

Fred/* The NOT operator precedes Peter. */-.Peter

there is no abuttal operator implied, and the expression is not valid. However,

(Fred)/* The NOT operator precedes Peter. */(-,Peter)

results in an abuttal, and evaluates to 37. 40.

You can combine character strings that are valid numbers (see page 2-5) using the
arithmetic operators:

+

*

I
o/o

II

**
Prefix -

Prefix+

Add

Subtract

Multiply

Divide

Divide and return the integer part of the result

Divide and return the remainder (not modulo, since the result
may be negative)

Power (raise a number to a whole-number power)

Negate the following term. Same as the subtraction: 0-term.

Take the following term as if it was the addition: 0+term.

See Chapter 6, "Numbers and Arithmetic" on page 6-1 for details of accuracy, the
format of valid numbers, and the combination rules for arithmetic. Note that if an
arithmetic result is shown in exponential notation, it is likely that rounding has
occurred.

The comparison operators return the value 1 if the result of the comparison is true,
or 0 otherwise.

The=,\==, and-,== operators test for an exact match between two strings. In this
case, the two strings must be identical to be considered strictly equal. Similarly, the
strict comparison operators such as » or « carry out a simple
character-by-character comparison, with no padding of either of the strings being
compared. The comparison of the two strings is from left to right. If one string is
shorter than and is a leading substring of another, then it is smaller (less than) the
other. The strict comparison operators also do not attempt to perform a numeric
comparison on the two operands.

For all the other comparison operators, if both terms involved are numeric, a
numeric comparison (in which leading zeros are ignored, and so forth) is effected.
Otherwise, both terms are treated as character strings (leading and trailing blanks are
ignored, and then the shorter string is padded with blanks on the right).

Character comparison and strict comparison operations are both case-sensitive, and
for both the exact collating order may depend on the character set used for the
implementation. For example, in an EBCDIC environment, lowercase alphabetics
precede uppercase, and the digits 0 - 9 are higher than all alphabetics. In an ASCII
environment, the digits are lower than the alphabetics, and lowercase alphabetics are
higher than uppercase alphabetics. The OS/2 operating system in an ASCII
environment.

Chapter 2. General Concepts 2-9

General Concepts

Logical (Boolean)

2-10 REXX Reference

The comparison operators and operations are:

=

\==,...,==
\=,..., =

>

<

>>

<<

><

<>

>=

\<,..., <

>>=

\<<,...,<<

<=

\>,..., >

<<=

\>>,...,>>

True if terms are strictly equal (identical)

True if the terms are equal (numerically or when padded,
and so forth)

True if the terms are NOT strictly equal (inverse of = =)

Not equal (inverse of =)

Greater than

Less than

Strictly greater than

Strictly less than

Greater than or less than (same as not equal)

Greater than or less than (same as not equal)

Greater than or equal to

Not less than

Strictly greater than or equal to

Strictly NOT less than

Less than or equal to

Not greater than

Strictly less than or equal to

Strictly NOT greater than

Note: Throughout the language, the not character, -,, is synonymous with the
backslash (\). You can use the two characters interchangeably according to
availability and personal preference. The backslash can appear in the following
operators: \(prefix not),\=, \==, \<, \>, \«, and \».

A character string is taken to have the value false if it is e, and true if it is a 1. The
logical operators take one or two such values (values other than e or 1 are not
allowed) and return 0 or 1 as appropriate:

& AND
Returns 1 if both terms are true.

Inclusive OR
Returns 1 if either term is true.

&& Exclusive OR
Returns 1 if either (but not both) is true.

Prefix\,..., Logical NOT
Negates; 1 becomes 0 and vice-versa.

Note: See page 2-6 for information on logical operators used with the OS/2
operating system.

General Concepts

Parentheses and Operator Precedence
Expression evaluation is from left to right; parentheses and operator precedence
modify this:

• When parentheses are encountered (other than those that identify function calls),
the entire sub-expression between the parentheses is evaluated immediately when
the term is required.

• When the sequence:

tennl operatorl tenn2 operator2 tenn3

is encountered, and operator2 has a higher precedence than operatorl, the
expression (tenn2 operator2 tenn3 ...) is evaluated first, applying the same rule
repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered). The precedence rules affect
only the order of operations.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 evaluates to
13 (rather than the 25 that would result if strict left to right evaluation occurred).
Likewise, the expression -3**2 evaluates to 9 (instead of -9) because the prefix minus
operator has a higher priority than the power operator.

The order of precedence of the operators is (highest at the top):

\..., - +

**
* I % II

+ -
(blank) 11 (abuttal)

> <
>> <<

\= ...,=
>< <>
\> ...,>
\< ...,<
\= = ...,==
\> > ...,>>
\< < ...,<<
>= >>=
<= <<=

&

I &&

Examples:

(prefix operators)

(power)

(multiply and divide)

(add and subtract)

(concatenation with or without blank)

(comparison operators)

(and)

(or, exclusive or)

Suppose the symbol A is a variable whose value is 3 and DAY is a variable whose
value is Monday. Then:

Chapter 2. General Concepts 2-11

General Concepts

A+5 -> '8'
A-4*2 -> '-5'
A/2 -> '1.5'
0.5**2 -> 10.25 1
(A+l)>7 -> ·0· /* that is, False */
I ·=· • -> '1' /* that is, True */
I '=='' -> ·0· /* that is, False */
I 1-,==' I -> '1' /* that is, True */
(A+1)*3=12 -> '1' /* that is, True */
Today is Day -> 'TODAY IS Monday'
1 If i t i s 1 day -> I If it is Monday'
Substr(Day,2,3) -> 'ond' /* Substr is a function */
1!'xxx'! 1 -> I !XXX! I

1abc 1 << 1abd 1 -> '1' /* that is, True */ 1077 1 >> ·u · -> •e• /* that is, False */
1abc 1 >> 'ab' -> '1' /* that is, True */
'ab I << 1abd 1 -> '1' /* that is, True */

Note: The REXX order of precedence usually causes no difficulty because it is the
same as in conventional algebra and other computer languages. There are two
differences from common notations:

• The prefix minus operator always has a higher priority than the power operator.

• Power operators (like other operators) are evaluated left-to-right.

For example:

-3**2 9 /* not -9 */
-(2+1)**2 == 9 /* not -9 */
2**2**3 == 64 /* not 256 */

Clauses and Instructions

Null Clauses

Labels

2-12 REXX Reference

Clauses can be subdivided into the following types:

A clause consisting only of blanks or comments or both is a null clause. It is
completely ignored.

Note: A null clause is not an instruction; for example, putting an extra semicolon
after the THEN or ELSE in an IF instruction is not equivalent to using a dummy
instruction (as it would be in C). The NOP instruction is provided for this purpose.

A clause that consists of a single symbol followed by a colon is a label. The colon in
this context implies a semicolon (clause separator), so no semicolon is required.
Labels identify the targets of CALL instructions, SIGNAL instructions, and internal
function calls. They can be traced selectively to aid debugging.

Any number of successive clauses may be labels, thus permitting multiple labels
before another type of clause. Duplicate labels are permitted, but because the search
effectively starts at the top of the program, the control, following a CALL or
SIGNAL instruction, is always passed to the first occurrence of the label. The
duplicate labels occurring later can be traced but cannot be used as a target of a
CALL, SIGNAL, or function invocation.

Instructions

Assignments

General Concepts

An instruction consists of one or more clauses describing some course of action for
the language processor to take. Instructions can be: assignments, keyword
instructions, or commands.

Single clauses of the form symbol= expression are instructions known as assignments.
An assignment gives a variable a (new) value. See "Assignments and Symbols."

Keyword Instructions

Commands

A keyword instruction is one or more clauses, the first of which starts with a keyword
that identifies the instruction. These control the external interfaces, the flow of
control, and so forth. Some instructions can include other (nested) instructions. In
this example, the DO construct (DO, the group of instructions that follow it, and its
associated END keyword) is considered a single keyword instruction.

DO

END

instruction
instruction
instruction

A subkeyword is a keyword that is reserved within the context of some particular
instruction-for example, the symbols TO and WHILE in the DO instruction.

Single clauses consisting of just an expression are instructions known as commands.
The expression is evaluated and passed as a command string to the currently active
environment.

Assignments and Symbols
A variable is an object whose value can change during the running of a REXX
program. The process of changing the value of a variable is called assigning a new
value to it. The value of a variable is a single character string, of any length, that
may contain any characters.

You can assign a new value to variables with the ARG, PARSE, or PULL
instructions, the VALUE built-in function, or the variable pool interface, but the
most common way of changing the value of a variable is the assignment instruction
itself. Any clause of the form:

symbol= expression;

is taken to be an assignment. The result of expression becomes the new value of the
variable named by the symbol to the left of the equal sign.

Example:

/*Next line gives FRED the value 11 Frederic 11 */
Fred='Frederic'

The symbol naming the variable cannot begin with a digit (0 - 9) or a period.
(Without this restriction on the first character of a variable name, you could redefine
a number; for example 3=4; would give a variable called 3 the value 4.)

Chapter 2. General Concepts 2-13

General Concepts

You can use a symbol in an expression even if you have not assigned it a value,
because a symbol has a defined value at all times. A variable you have not assigned
a value is uninitialized. Its value is the characters of the symbol itself, translated to
uppercase (that is, lowercase a - z to uppercase A- Z). However, if it is a compound
symbol, described under "Compound Symbols," its value is the derived name of the
symbol.

Example:

/* If Freda has not yet been assigned a value, */
/* then next line gives FRED the value "FREDA" */
Fred= Freda

Symbols can be subdivided into four classes: constant symbols, simple symbols,
compound symbols, and stems. Simple symbols can be used for variables where the
name corresponds to a single value. Compound symbols and stems are for more
complex collections of variables, such as arrays and lists.

Constant Symbols

Simple Symbols

A constant symbol starts with a digit (8 - 9) or a period.

You cannot change the value of a constant symbol. It is simply the string consisting
of the characters of the symbol (that is, with any lowercase alphabetic characters
translated to uppercase).

These are constant symbols:

77
827.53
.12345
12e5
3D

/* Same as 12E5 */

A simple symbol does not contain any periods and does not start with a digit (8 - 9).

By default, its value is the characters of the symbol (that is, translated to uppercase).
If the symbol has been assigned a value, it names a variable and its value is the value
of that variable.

These are simple symbols:

FRED
Whatagoodidea?
?12

/* Same as WHATAGOODIDEA? */

Compound Symbols

2-14 REXX Reference

A compound symbol contains at least one period and at least two other characters. It
cannot start with a digit or a period, and, if there is only one period, the period
cannot be the last character.

The name begins with a stem (that part of the symbol up to and including the first
period). This is followed by a tail, parts of the name (delimited by periods) that are
constant symbols, simple symbols, or null. You cannot use constant symbols with
embedded signs (for example, 12.3E+5) after a stem; in this case, the whole symbol
would not be a valid symbol.

These are compound symbols:

FRED.3
Array. I .J
AMESSY •• One.2.

General Concepts

Before the symbol is used (that is, at the time of reference), the values of any simple
symbols (I, J, and One in the example) are substituted into the symbol, thus
generating a new, derived name. This derived name is then used just like a simple
symbol. That is, its value is by default the derived name, or (if it has been used as
the target of an assignment) its value is the value of the variable named by the
derived name.

The substitution into the symbol that takes place permits arbitrary indexing
(subscripting) of collections of variables that have a common stem. Note that the
values substituted can contain any characters (including periods). Substitution is
done only once.

To summarize: the derived name of a compound variable that is referred to by the
symbol

s0.sl.s2. --- .sn

is given by

d0.vl.v2. --- .vn

where d0 is the uppercase form of the symbol s0, and vl to vn are the values of the
constant or simple symbols sl through sn. Any of the symbols sl-sn can be null.
The values vl-vn can also be null and can contain any characters (in particular,
lowercase characters are not translated to uppercase, blanks are not removed, and
periods have no special significance).

You can use compound symbols to set up arrays and lists of variables, in which the
subscript is not necessarily numeric, thus offering great scope for the creative
programmer. A useful application is to set up an array in which the subscripts are
taken from the value of one or more variables, so effecting a form of associative
memory (content addressable).

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3' to the variable A */
b=4 /* '4' to B *I
c='Fred' /* 'Fred' to C */
a.b='Fred' /* 'Fred' to A.4 */
a.fred=5 /* 1 51 to A.FRED */
a.c='Bill' /* 'Bill' to A.Fred */
c.c=a.fred /* '5' to C.Fred */
x.a.b='Annie' /* 'Annie' to X.3.4 */
say a b c a.a a.b a.c c.a a.fred x.a.4
/* displays the string: */
/* "3 4 Fred A.3 Fred Bill C.3 5 Annie" */

Implementation maximum: The length of a variable name, before and after
substitution, cannot exceed 250 characters.

Chapter 2. General Concepts 2-15

General Concepts

Stems

2-16 REXX Reference

A stem is a symbol that contains just one period, which is the last character. It
cannot start with a digit or a period.

These are stems:

FRED.
A.

By default, the value of a stem is the characters of its symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its
value is the value of that variable.

Further, when a stem is used as the target of an assignment, all possible compound
variables whose names begin with that stem receive the new value, whether they
previously had a value or not. Following the assignment, a reference to any
compound symbol with that stem returns the new value until another value is
assigned to the stem or to the individual variable.

For example:

hole. = 11 empty 11

hole.9 = 11 full 11

say hole.1 hole.mouse hole.9

/* says "empty empty full 11 * /
Thus, you can give a whole collection of variables the same value. For example,

total.= a
do forever

say "Enter an amount and a name:"
pull amount name
if datatype(amount)='CHAR' then leave
total.name= total.name+ amount
end

Note: You can always obtain the value that has been assigned to the whole
collection of variables by using the stem. However, this is not the same as using a
compound variable whose derived name is the same as the stem. For example,

total.= a
null = 1111

total.null= total.null+ 5
say total. total.null /* says 11 0 511 */
You can manipulate collections of variables, referred to by their stem, with the
DROP and PROCEDURE instructions. DROP FRED. drops all variables with that
stem (see page 3-14), and PROCEDURE EXPOSE FRED. exposes all possible variables with
that stem (see page 3-27).

Notes:

1. When the ARG, PARSE, or PULL instruction, the VALUE built-in function, or
the variable pool interface changes a variable, the effect is identical with an
assignment. Anywhere a value can be assigned, using a stem sets an entire
collection of variables.

2. Since an expression can include the operator=, and an instruction may consist
purely of an expression (see next section), a possible ambiguity is resolved by the
following rule: any clause that starts with a symbol and whose second token is

General Concepts

(or starts with) an equal sign(=) is an assignment, rather than an expression (or
an instruction). This is not a restriction, since you can ensure the clause is
processed as a command in several ways, such as by putting a null string before
the first name, or by enclosing the first part of the expression in parentheses.

Similarly, if you unintentionally use a REXX keyword as the variable name in
an assignment, this should not cause confusion. For example, the clause:

Address= 1 10 Downing Street•;

is an assignment, not an ADDRESS instruction.

Commands to External Environments

Environment

Commands

The base system for the language processor is assumed to include at least one active
environment for processing commands. One of these is selected by default on entry
to a REXX program. You can change the environment by using the ADDRESS
instruction. You can find out the name of the active environment by using the
ADDRESS built-in function. The underlying operating system defines environments
external to the REXX program. The environment so selected will depend on the
caller; for example if a REXX program is called from the OS/2 operating system,
then the default environment is CMD. If called from an editor that accepts
subcommands from the language processor, the default environment may be that
editor.

A REXX program can issue commands - called subcommands - to other OS/2
application programs. For example, a REXX program written for a text editor can
inspect a file being edited, issue subcommands to make changes, test return codes to
check that the subcommands have been executed as expected, and display messages
to the user when appropriate.

An application that uses REXX as a macro language must register its environment
with the REXX language processor. For a discussion of this mechanism see
"Subcommand Interfaces" on page 9-9.

To issue a command to the active environment, use a clause of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null
string), which is then prepared as appropriate and submitted to the underlying
system. (Enclose in quotation marks any part of the expression not to be evaluated.)

The environment then processes the command (which may have side-effects). It
eventually returns control to the language processor, after setting a return code. The
language processor places this return code in the REXX special variable RC. For
example, where the default environment is the OS/2 operating system, the sequence:

fname = 11 CHESHIRP
exten = 11 CAT"
11 ERASP fname 11

•
11exten

would result in the string ERASE CHESHIRE.CAT being passed to the OS/2 operating
system. Of course, the simpler expression:

Chapter 2. General Concepts 2-17

General Concepts

"ERASE CHESHIRE.CAT"

would have the same effect in this case.

On return, the return code placed in RC will have the value 0. if the file
CHESHIRE.CAT were erased; a nonzero value if the file could not be found in the
current directory.

Because of the return codes, errors and failures in commands can affect REXX
processing if a condition trap for ERROR or FAILURE is ON (see Chapter 7,
"Conditions and Condition Traps" on page 7-1). They may also cause the
command to be traced if TRACE E or TRACE F is set. TRACE Nonna l is the same as
TRACE F, and is the default-see page 3-37.

Note: Remember that the expression is evaluated before it is passed to the
environment. Enclose in quotation marks any part of the expression that is not to
be evaluated. Examples:

delete 11 *11 .lst

var.003 = anyvalue
type "var.083 11

w = any
dir 11 /w 11

/*not "multiplied by" */

/* not a compound symbol */

/* not "divided by ANY" */

Using REXX on the OS/2 Operating System
This section contains some general tips and information about using REXX on
Operating System/2. Specifically:

• How a REXX program calls another REXX program
• How a return code is generated
• How a REXX program is run
• How commands are edited.

Calling Another REXX Program
REXX programs can call other REXX programs as external functions or
subroutines. REXX programs can also call each other as commands by using the
OS/2 CALL command. Performance is improved by using subroutine or function
calls rather than using the OS/2 CALL command.

Generating a Return Code
When REXX programs call other REXX programs as commands, the return code of
the command is the exit value of the called program, when that value is a whole
number in the range -32768 to 32767. Otherwise the exit value is ignored and the
called program is given a return code of 0.

Running a REXX Program

2-18 REXX Reference

REXX programs on OS/2 are executed in two stages. First, the entire program is
scanned, and a special version of it is constructed. This version is called the
tokenized image. The tokenized image is then used during the second phase, when
the instructions of the program are actually run. Running the program in two stages
causes the program to run faster than if the program were run in a single stage.

General Concepts

To further enhance performance, the tokenized image is saved in an extended
attribute associated with the source file. Subsequent execution then skips the
tokenization stage and uses the tokenized image that is already present. If the
program is a read-only file, the tokenized is not saved and is recreated each time the
program runs. The extended attributes of a file are limitted to 64KB in size, so for a
large REXX program it may be impossible to save the tokenized image. Again, this
means that the program will be re-tokenized each time it runs. There is no limit on
the size of a REXX program, but for the best performance, you should break very
large programs up into smaller pieces. The great majority of REXX programs have
a tokenized image smaller than 64KB.

Note: The REXX interpreter may be changed when installing a new release of the
OS/2 operating system or when installing a corrective service diskette. This
means that when the REXX interpreter is changed, the tokenized image of
programs may be updated. Also, when sharing REXX programs over a
network between different systems, the best performance is achieved by
ensuring all the systems have the same level of OS/2. The tokenized image,
therefore, is valid for all users. Also, when upgrading to another level of
RE:XX, re-tokenizing the programs on the network drive improves
performance.

Editing Commands
When running a REXX program from the command line, the normal command line
editing takes place:

• I means piping
• > and < mean redirection
• /q suppresses echoing of OS/2 commands

Specifying //t causes REXX to tokenize the program and save the tokenized
image-but not execute the program. This is the only parameter the REXX
interpreter currently recognizes. However, the characters // are reserved for future
REXX options. The characters // should not be used in a parameter to a REXX
program

Chapter 2. General Concepts 2-19

General Concepts

2-20 REXX Reference

Keyword Instructions

Chapter 3. Keyword Instructions

A keyword instruction is one or more clauses, the first of which starts with a keyword
that identifies the instruction. Some keyword instructions affect the flow of control,
while others provide services to the programmer. Some keyword instructions, like
DO, can include nested instructions.

In the syntax diagrams on the following pages, symbols (words) in capitals denote
keywords; other words (such as expression) denote a collection of tokens as defined
previously. Note, however, that the keywords are not case dependent: the symbols
if, If, and i F all have the same effect. Note also that you can usually omit most of
the clause delimiters(;) shown because they are implied by the end of a line.

As explained in "Keyword Instructions" on page 2-13, a keyword instruction is
recognized only if its keyword is the first token in a clause, and if the second token
does not start with an= character (implying an assignment) or a colon (implying a
label). The keywords ELSE, END, OTHERWISE, THEN, and WHEN are
recognized in the same situation. Note that any clause that starts with a keyword
defined by REXX cannot be a command. Therefore,

arg(fred) rest

is an ARG keyword instruction, not a command that starts with a call to the ARG
built-in function. A syntax error results if the keywords are not in their correct
positions in a DO, IF, or SELECT instruction. (The keyword THEN is also
recognized in the body of an IF or WHEN clause.) In other contexts, keywords are
not reserved and can be used as labels or as the names of variables (though this is
generally not recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of
individual instructions. For example, the symbols VALUE and WITH are
subkeywords in the ADDRESS and PARSE instructions, respectively. For details,
see the description of the each instruction.

Blanks adjacent to keywords have no effect other than to separate the keyword from
the subsequent token. One or more blanks following VALUE are required to
separate the expression from the subkeyword in the example following:

ADDRESS VALUE expression

However, no blank is required after the VALUE subkeyword in the following
example, although it would add to the readability:

ADDRESS VALUE'ENVIR' I I number

Chapter 3. Keyword Instructions 3-1

ADDRESS

ADDRESS

3-2 REXX Reference

.,._ADDRESS--.-----------.-- ---------
nvironment-....------........-1

, expression
--.---"T"--oxpress ionl--""""

VALUE

ADDRESS temporarily or permanently changes the destination of commands.

To send a single command to a specified environment, code an environment, a literal
string or a single symbol, which is taken to be a constant, followed by an expression.
The expression is evaluated, and the resulting command string is routed to
environment. After execution of the command, environment is set back to whatever it
was before, thus temporarily changing the destination for a single command.

Example:

ADDRESS CMD "DIR C:\STARTUP.CMD 11 /* OS/2 */

/* In a mainframe (for example, CMS) environment, the */
/*ADDRESS instruction might be used like this: */

ADDRESS CMS 'STATE PROFILE EXEC A' /* VM */

If you specify only environment, a lasting change of destination occurs: all
commands that follow (clauses that are neither REXX instructions nor assignment
instructions) are routed to the specified command environment, until the next
ADDRESS instruction is executed. The previously selected environment is saved.

Examples:

Say that the environment for a text editor is registered by the name EDIT:

address CMD
'DIR C:\STARTUP.CMD'
if rc=0 then 'COPY STARTUP.CMD *.TMP'
address EDIT

Subsequent commands are passed to the editor until the next ADDRESS instruction.

Similarly, you can use the VALUE form to make a lasting change to the
environment. Here expression] (which may be just a variable name) is evaluated,
and the result forms the name of the environment. You can omit the subkeyword
VALUE if expression] does not begin with a symbol or literal string (that is, if it
starts with a special character, such as an operator character or parenthesis).

Example:

ADDRESS (1 ENVIR 1 I !number)

With no arguments, commands are routed back to the environment that was selected
before the previous lasting change of environment was made, and the current
environment name is saved. Repeated execution of ADDRESS alone, therefore,
switches the command destination between two environments alternately. A null
string for the environment name (1111

) is the same as the default environment.

ADDRESS

The two environment names are automatically saved across subroutine and internal

function calls. See the CALL instruction (page 3-6) for more details.

You can retrieve the current ADDRESS setting using the ADDRESS built-in
function ("ADDRESS" on page 4-7). The registration of alternative subcommand

environments is described on page 9-9.

Chapter 3. Keyword Instructions 3-3

ARG

ARG

3-4 REXX Reference

11+-ARG
Ltemplate listj

ARG retrieves the argument strings provided to a program or internal routine and
assigns them to variables. It is just a short form of the instruction

11+-PARSE UPPER ARG
Ltemplate listj

The template list is often a single template but can be several templates separated by
commas. If specified, each template is a list of symbols separated by blanks or
patterns or both.

Unless a subroutine or internal function is being executed, the strings passed as
parameters to the program are parsed into variables according to the rules described
in the section on parsing (page 5-1).

If a subroutine or internal function is being executed, the data used will be the
argument strings passed to the routine by the caller.

In either case, the strings passed are translated to uppercase (that is, lowercase a - z
to uppercase A - Z) before they are processed. Use the PARSE ARG instruction if
you do not desire uppercase translation.

The ARG (and PARSE ARG) instructions can be executed as often as desired
(typically with different templates) and always parse the same current input string
(or strings). The only restrictions on the length or content of the data parsed are
those the caller imposes.

Example:

/* String passed is 11 Easy Rider11 */

Arg adjective noun .

/* Now: ADJECTIVE contains 1 EASY 1

/* NOUN contains 'RIDER'
*/
*/

If you expect more than one string to be available to the program or routine, you
can use a comma in the parsing template list so each template is selected in tum.

Example:

/*Function is invoked by FRED('data X',1,5) */

Fred: Arg string, numl, num2

/* Now:
/*
/*

STRING contains 'DATA X'
NUMl contains 1 11

NUM2 contains 1 51

*/
*/
*/

ARG

Notes:

1. The ARG built-in function can also retrieve or check the argument strings to a
REXX program or internal routine. See. page 4-7.

2. The source of the data being processed is also made available on entry to the
program. See the PARSE instruction (SOURCE option) on page 3-26 for
details.

Chapter 3 .. Keyword Instructions 3-5

CALL

CALL

3-6 REXX Reference

xpression

FF1ERROR
FAILURE
HALT
NOTREADY

N1ERROR
FAILURE
HALT
NOTREADY

NAME-trapname

CALL invokes a routine (if you specify name) or controls the trapping of certain
conditions (if you specify ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap.
OFF turns off the specified condition trap. ON turns on the specified condition
trap. All information on condition traps is contained in Chapter 7, "Conditions and
Condition Traps" on page 7-1.

To invoke a routine, specify name, a symbol or literal string that is taken as a
constant. The name must be a symbol, which is treated literally, or a literal string.
The routine invoked can be:

• An internal routine
• A built-in function
• An external routine.

If name is a string (that is, you specify name in quotation marks), the search for
internal routines is bypassed, and only a built-in function or an external routine is
invoked. Note that the names of built-in functions are in uppercase, and, therefore
you should uppercase the name in the literal string. On the OS/2 operating system,
file names may be in upper, lower, or mixed case. The OS/2 operating system uses a
case insensitive search for files; therefore, when using CALL to run a REXX
subroutine contained on a disk file, the case does not matter.

The invoked routine can optionally return a result, and so the CALL instruction is
functionally identical with the clause:

£' ~result=name(-~------.---)-;-----------------~

lexpressionj

except that the variable RESULT becomes uninitialized if the routine invoked
returns no result.

The OS/2 operating system supports specifying up to 20 expressions, separated by
commas. The expressions are evaluated in order from left to right and form the
argument strings during execution of the routine. Any ARG or PARSE ARG
instructions or ARG built-in function in the called routine accesses these strings,
rather than those previously active in the calling program. You can omit
expressions, if appropriate, by including extra commas.

CALL

The CALL then causes a branch to the routine called name, using exactly the same
mechanism as function calls. The section on functions (page 4-1) describes the order
in which these are searched for; briefly, it is as follows:

Internal routines:
These are sequences of instructions inside the same program, starting at
the label that matches name in the CALL instruction. If you specify the
routine name in quotation marks, then an internal routine is not
considered for that search order. You can use SIGNAL and CALL
together to call an internal routine whose name is determined at the time
of execution; this is known as a multi-way call (see page 3-36). The
RETURN instruction completes the execution of an internal routine.

Built-in routines:
These are routines built into the language processor for providing various
functions. They always return a string containing the result of the
function. (See page 4-5.)

External routines:
Users can write or use routines that are external to the language
processor and the calling program. An external routine can be coded in
REXX or in any language that supports the system-dependent interfaces.
If the CALL instruction invokes an external routine written in REXX as
a subroutine, you can retrieve any argument strings with the ARG or
PARSE ARG instructions or the ARG built-in function.

During execution of an internal routine, all variables previously known are normally
accessible. However, the PROCEDURE instruction can set up a local variables
environment to protect the subroutine and caller from each other. The EXPOSE
option on the PROCEDURE instruction can expose selected variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine.
The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden and the status of internal values (NUMERIC settings,
and so forth) start with their defaults (rather than inheriting those of the caller).

When control reaches an internal routine, the line number of the CALL instruction
is available in the variable SIGL (in the caller's variable environment). This may be
used as a debug aid, as it is, therefore, possible to find out how control reached a
routine. Note that if the internal routine uses the PROCEDURE instruction, then it
needs to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should execute a RETURN instruction, and at that point
control returns to the clause following the original CALL. If the RETURN
instruction specified an expression, the variable RESULT is set to the value of that
expression. Otherwise, the variable RESULT is dropped (becomes uninitialized).

An internal routine can include calls to other internal routines, as well as recursive
calls to itself.

Example:

Chapter 3. Keyword Instructions 3-7

CALL

3-8 REXX Reference

/*Recursive subroutine execution ••• */
arg x
call factorial x
say x'! =' result
exit

factorial: procedure
arg. n
if n=e then return 1
call factorial n-1
return result * n

/* Calculate factorial by */
/* recursive invocation. */

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and are then restored upon return from the
routine. These are:

• The status of DO loops and other structures: Executing a SIGNAL while within a
subroutine is safe because DO loops, and so forth, that were active when the
subroutine was called are not terminated. (But those currently active within the
subroutine are terminated).

• Trace action: Once a subroutine is debugged, you can insert a TRACE Off at the
beginning of it, and this does not affect the tracing of the caller. Conversely, if
you only wish to debug a subroutine, you can insert a TRACE Results at the
start and tracing is automatically restored to the conditions at entry (for
example, Off) upon return. Similarly, ? (interactive debug) is saved across
routines.

• NUMERIC settings: The DIGITS,. FUZZ, and FORM of arithmetic operations,
(in "NUMERIC" on page 3-22) are saved and are then restored on return. A
subroutine can, therefore, set the precision, and so forth, that it needs to use
without affecting the caller.

• ADDRESS settings: The current and previous destinations for commands (see
"ADDRESS" on page 3-2) are saved and are then restored on return.

• Condition traps: CALL ON and SIGNAL ON are saved and then restored on
return. This means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL
OFF can be used in a subroutine without affecting the conditions the caller set
up.

• Condition information: This is the information the CONDITION built-in
function returns. See "CONDITION" on page 4-14.

• Elapsed-time clocks: A subroutine inherits the elapsed-time clock from its caller
(see "TIME" on page 4-38), but because the time clock is saved across routine
calls, a subroutine or internal function can independently restart and use the
clock without affecting its caller. For the same reason,. a clock started within an
internal routine is not available to the caller.

• OPTIONS settings: ETMODE and EXMODE are saved and are then restored
on return. For more information, see "OPTIONS" on page 3-24.

Implementation maximum: The total nesting of control structures, which includes
internal and external routine calls, may not exceed a depth of 100.

DO

..--ooi---~~~~-----.-~~~~~--- ---~~~~~~~--ENOi--~--~

Lrepetito,.J Lconditionalj L£ iJ
instruction

repetitor:

ame=exprl
lro-exprt]

FOREVER-.-----------------
xpr1~~~~~~~~~~~~~~~~~~~~~~_,

conditional:

~HILE~expr
UNTIL-expru

DO groups instructions together and optionally executes them repetitively. During
repetitive execution, a control variable (name) can be stepped through some range of
values.

Syntax Notes:

• The exprr, expri, exprb, exprt, and exprf options (if present) are any expressions
that evaluate to a number. The exprr and exprf options are further restricted to
result in a nonnegative whole number. If necessary, the numbers are rounded
according to the setting of NUMERIC DIGITS.

• The exprw or expru options (if present) can be any expression that evaluates to 1
ore.

• The TO, BY, and FOR phrases can be in any order, if used, and are evaluated
in the order in which they are written.

• The instruction can be any instruction, including assignments, commands, and
keyword instructions (these include any of the more complex constructs such as
IF, SELECT, and the DO instruction itself).

• The subkeywords TO, BY, FOR, WHILE and UNTIL are reserved within a DO
instruction, in that they cannot be used as symbols in any of the expressions.
FOREVER is also reserved, but only if it immediately follows the keyword DO.

• The exprb option defaults to 1, if relevant.

Simple DO Group
If you specify neither repetitor nor conditional, the construct merely groups a number
of instructions together. These are executed once. Otherwise, the group of
instructions is a repetitive DO loop, and they are executed according to the repetitor
phrase, optionally modified by the conditional phrase.

In the following example, the instructions are executed once.

Chapter 3. Keyword Instructions 3-9

Example:

/* The two instructions between DO and END are both */
/* executed if A has the value "3". */
If a=3 then Do

a=a+2
Say 1 Smi 1 e ! •

End

Simple Repetitive Loops
A simple repetitive loop is a repetitive DO loop in which the repetitor phrase is an
expression that evaluates to a count of the iterations.

If repetitor is omitted but there is a conditional or if the repetitor is FOREVER, the
group of instructions is nominally executed "forever," that is, until the condition is
satisfied or a REXX instruction is executed that ends the loop (for example,
LEAVE).

Note: For a discussion on conditional phrases, see "Conditional Phrases (WHILE
and UNTIL)" on page 3-12.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must
result in a nonnegative whole number), and the loop is then executed that many
times.

Example:

/* This displays "Hello" five times * /
Do 5

say 'Hello'
end

Note that, similar to the distinction between a command and an assignment, if the
first token of exprr is a symbol and the second token is (or starts with) =, the
controlled form of repetitor is expected.

Controlled Repetitive Loops

3-10 REXX Reference

The controlled form specifies a control variable, name, which is assigned an initial
value (the result of expri, formatted as though 0 had been added) before the first
execution of the instruction list. The variable is then stepped (by adding the result
of exprb, at the bottom of the loop) each time the group of instructions is executed.
The group is executed repeatedly while the end condition (determined by the result
of exprt) is not met. If exprb is positive or 0, the loop is terminated when name is
greater than exprt. If negative, the loop is terminated when name is less than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated
once only, before the loop begins and before the control variable is set to its initial
value. The default value for exprb is 1. If exprt is omitted, the loop executes
indefinitely unless some other condition terminates it.

Example:

Do 1=3 to -2 by -1
say
end

/* Displays: */
/* 3 */
/* 2 */
/* 1 */
/* 0 */
/* -1 */
/* -2 */

The numbers do not have to be whole numbers:

Example:

X=0.3
Do Y=X to X+4 by 0.7

say Y
end

/* Displays: */
/* 0.3 */
/* 1.0 */
/* 1.7 */
/* 2.4 */
/* 3.1 */
/* 3.8 */

The control variable can be altered within the loop, and this may affect the iteration

of the loop. Altering the value of the control variable is not usually considered good
programming practice, though it may be appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the
control variable is stepped, on the second and subsequent iterations). Therefore, if
the end condition is met immediately, the group of instructions can be skipped
entirely. Note also that the control variable is referred to by name. If (for example)

the compound name A. I is used for the control variable, altering I within the loop
causes a change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In
this case, you must specify exprf, and it must evaluate to a nonnegative whole
number. This acts just like the repetition count in a simple repetitive loop, and sets
a limit to the number of iterations around the loop if no other condition terminates
it. Like the TO and BY expressions, it is evaluated once only-when the DO
instruction is first executed and before the control variable receives its initial value.
Like the TO condition, the FOR condition is checked at the start of each iteration.

Example:

Do Y=0.3 to 4.3 by 0.7 for 3 /* Displays: */
say Y /* 0.3 */
end /* 1.0 */

/* 1.7 */
In a controlled loop, the name describing the control variable can be specified on the
END clause. This name must match name in the DO clause in all respects except

case (note that no substitution for compound variables is carried out); a syntax error
results if it does not. This enables the nesting ofloops to be checked automatically,
with minimal overhead.

Example:

Do K=l to 10

End k /* Checks that this is the END for K loop */

Chapter 3. Keyword Instructions 3-11

Note: The NUMERIC settings may affect the successive values of the control
variable, because REXX arithmetic rules apply to the computation of stepping the
control variable.

Conditional Phrases (WHILE and UNTIL)

3-12 REXX Reference

A conditional phrase, which may cause termination of the loop, can follow any of
the forms of repetitor (none, FOREVER, simple, or controlled). If you specify
WHILE or UNTIL, exprw or expru, respectively, is evaluated each time around the
loop using the latest values of all variables (and must evaluate to either e or 1), and
the loop is terminated if exprw evaluates toe or expru evaluates to 1.

For a WHILE loop, the condition is evaluated at the top of the group of
instructions. For an UNTIL loop the condition is evaluated at the bottom-before
the control variable has been stepped.

Example:

Do I=l to 10 by 2 until i>6
say i
end

/* Displays: 11 111 11 311 11 511 11 711 */
Note: Using the LEA VE or ITERATE instructions can also modify the execution
of repetitive loops.

Evaluate exprr or evaluate
expri and then exprt, exprb,
and exprf in order written.

Start value assigned to control
variable

Count of iterations (exprr) _-"'-.. Discontinue execution of DO
used to test for termination -y group if number of iterations --------------#"...... is exceeded .

..------...-------..... Discontinue execution of DO
......... ~ group if FOR value (number of FOR value (exprf) used to test

for termination -v iterations through the loop) is
------~-------k' exceeded .

WHILE expression (exprw)
used to test for termination
------""l!'!'!'.------J"

...... __ > Discontinue execution of DO
group if WHILE condition is

............ not met.

UNTIL expression (expru) __ > Discontinue execution of DO
used to test for termination group if UNTIL condition is ..._ ___________ met.

BY value (exprb) used to
update control variable

Figure 3-1. Concept ofa DO Loop

Chapter 3. Keyword Instructions 3-13

DROP

DROP

3-14 REXX Reference

--ORO~ame JI
(name)

DROP "unassigns" variables, that is, restores them to their original uninitialized
state. Each name identifies a variable you want to drop and must be a symbol that
is a valid variable name, separated from any other name by one or more blanks or
comments. Optionally, you can enclose a name in parentheses to denote a subsidiary
list.

Each variable specified is dropped from the list of known variables. If a single name
is enclosed in parentheses, then its value is used as a subsidiary list of variables to
drop. (Blanks are not necessary either inside or outside the parentheses, but you can
add them if desired.) This subsidiary list must follow the same rules as the main list
(that is, be valid variable names, separated by blanks) except that no parentheses are
allowed. The variables are dropped in sequence from left to right. It is not an error
to specify a name more than once or to DROP a variable that is not known. If an
exposed variable is named (see the PROCEDURE instruction), the variable itself in
the older generation is dropped.

Example:

j=4
Drop a x.3 x.j
/* Resets the variables: A, X.3, and X.4 */
/* so that reference to them returns their name. */

Here, a variable name in parentheses is used as a subsidiary list.

Example:

mylist='a b c'
drop (mylist) d
/* Resets the variables A, B, C, and D */
/* Does not drop MY LIST * /
Specifying a stem (that is, a symbol that contains only one period, as the last
character), drops all variables starting with that stem.

Example:

Drop x.
/* Resets all variables with names starting with X. */

EXIT

EXIT

..,.__EXIT~~~~~~-"""T"""- -~~~~~~~~~~~~~~~~----

lexpress ionj

EXIT leaves a program unconditionally. Optionally EXIT returns a character string
to the caller. The program is terminated immediately, even if an internal routine is
currently being executed. If no internal routine is active, RETURN (see page 3-32)
and EXIT are identical in their effect on the program that is being executed.

If you specify expression, it is evaluated and the string resulting from the evaluation
is passed back to the caller when the program terminates.

Example:

j=3
Exit j*4
/*Would exit with the string 1 12 1 */

If you do not specify expression, no data is passed back to the caller. If the program
was called as an external function, this is detected as an error-either immediately (if
RETURN was used), or on return to the caller (if EXIT was used).

"Running off the end" of the program is always equivalent to the instruction EXIT,
in that it terminates the whole program and returns no result string.

Note: The language processor does not distinguish between invocation as a
command on the one hand, and invocation as a subroutine or function on the other.
If the program was invoked through a command interface, an attempt is made to
convert the returned value to a return code acceptable by the underlying operating
system. (Host in this sense means the current command environment.) The returned
string must be a whole number whose value will fit in a 16-bit signed integer (within
the range -(2**15 to 2**15-1)). If the conversion fails, no error is raised, and a 0
return code is returned.

Chapter 3. Keyword Instructions 3-15

IF

IF

3-16 REXX Reference

.._I F-expression-.------THEN!---......-----instruction---------L.J L.J
' '

li:LsE J tnstructio.tJ L.
'

IF conditionally processes an instruction or group of instructions depending on the
evaluation of the expression. The expression must evaluate to e or 1.

The instruction after the THEN is processed only if the result of the evaluation is 1.
If you specify an ELSE, the instruction after the .ELSE is processed only if the result
of the evaluation is e.

Example:

if answer='YES' then say 'OK!'
else say 'Why not?'

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon before the ELSE.

Example:

if answer= 1 YES 1 then say 'OK!'; else say 'Why not?'

The ELSE binds to the nearest IF at the same level. You can use the NOP
instruction to eliminate errors and possible confusion when IF constructs are nested,
as in the following example.

Example:

If answer = 'YES' Then
If name= 'FRED' Then

say 1 OK, Fred. •
Else

nop
Else

say 'Why not?'

Notes:

1. The instruction can he any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, SELECT, or the IF
instruction itself. A null clause is not an instruction, so putting an extra

. semicolon after the THEN or ELSE is not equivalent to putting a dummy
instruction (as it would be in PL/I). The NOP instruction.is provided for this
purpose.

2. The symbol THEN cannot be used within expression, because_the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the IF clause to be terminated by the THEN, without a ; being
required. If this were not true, people who are used to other computer
languages would experience considerable difficulties.

INTERPRET

INTERPRET

.,...._INTERPRET-expression-;----------------_....

INTERPRET executes instructions that have been built dynamically by evaluating
expression.

The expression is evaluated and is then executed (interpreted) just as though the
resulting string were a line inserted into the input file (and bracketed by a DO; and
an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that
constructions such as DO ... END and SELECT ... END must be complete. For
example, a string of instructions being interpreted cannot contain a LEA VE or
ITERATE instruction (valid only within a repetitive DO loop) unless it also contains
the whole repetitive DO ... END construct.

A semicolon is implied at the end of the expression during execution, if one was not
supplied.

Example:

data= 1 FRED 1

interpret data 1= 4'
/* 1) Builds the string "FRED = 411 */
/* 2) Executes: FRED = 4; */
/* Thus the variable FRED is set to 11 411 */

Example:

data='do 3; say "Hello there!"; end'
interpret data /* Displays: */

/* Hello there! */
/* Hello there! */
/* Hello there! */

Notes:

1. Labels within the interpreted string are not permanent and are therefore an
error.

2. If you are new to the concept of the INTERPRET instruction and are getting
results that you do not understand, you may find that executing it with TRACE R
or TRACE I set is helpful.

Example:

/* Here we have a small program. */
Trace Int
name=' Kitty•
indirect=' name•
interpret •say 11 Hello111 indirect 111 ! 111

When this is run it gives the trace:

Chapter 3. Keyword Instructions 3-17

INTERPRET

3-18 REXX Reference

[C:\] kitty
3 *-* name='Kitty'

>L> "Kitty"
4 *-* indirect='name'

>L> "name"
5 *-* interpret 1 say "Hell 0 111 indirect 111 ! 111

>L> "say "He 110 1111

>V> "name"
>O> "say "Hello" name"
>L> ""! ""
>O> "say "Hello" name 11 ! 1111

- say "Hello" name"! 11

>L> "Hel 10 11

>V> "Kitty"
>O> "Hello Kitty"
>L> "!II
>O> "Hello Kitty!"

Hello Kitty!
[C:\]

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then
proceeds in two stages. First the string to be interpreted is built up, using a
literal string, a variable (INDIRECT), and another literal. The resulting pure
character string is then interpreted, just as though it were actually part of the
original program. Because it is a new clause, it is traced as such (the second *-*
trace flag under line 5) and is then executed. Again a literal string is
concatenated to the value of a variable (NAME) and another literal, and the final
result (He 11 o Kitty!) is then displayed.

3. For many purposes, the VALUE function (see page 4-41) can be used instead of
the INTERPRET instruction. Line 5 in the last example could therefore have
been replaced by:

say "Hell 0 11 value(indirect)"! 11

INTERPRET is usually required only in special cases, such as when more than
one statement is to be interpreted at once.

ITERATE

ITERATE

!TERA TE alters the flow within a repetitive DO loop (that is, any DO construct

other than that with a simple DO).

Execution of the group of instructions stops, and control is passed to the DO

instruction just as though the END clause had been encountered. The control

variable (if any) is incremented and tested, as usual, and the group of instructions is

executed again, unless the DO instruction terminates the loop.

If name is not specified, ITERATE steps the innermost active repetitive loop. If

name is specified, it must be the name of the control variable of a currently active

loop (which may be the innermost), and this is the loop that is stepped. Any active

loops inside the one selected for iteration are terminated (as though by a LEAVE

instruction).

Example:

do i=l to 4
if i=2 then iterate
say i
end

/* Displays the numbers: 11 111 11 311 11 411 */

Notes:

1. If specified, name must match the symbol naming the control variable in the DO

clause in all respects except case. No substitution for compound variables is

carried out when the comparison is made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an

INTERPRET instruction is executed) during execution of a loop, the loop

becomes inactive until the subroutine has returned or the INTERPRET

instruction has completed. !TERA TE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, ITERATE selects

the innermost loop.

Chapter 3. Keyword Instructions 3-19

I

LEAVE

LEAVE

3-20 REXX Reference

LEA VE causes an immediate exit from one or more repetitive DO loops (that is, any
DO construct other than a simple DO).

Processing of the group of instructions is terminated, and control is passed to the
instruction following the END clause, just as though the END clause had been
encountered and the termination condition had been met normally. However, on
exit, the control variable (if any) will contain the value it had when the LEAVE
instruction was processed.

If name is not specified, LEAVE terminates the innermost active repetitive loop. If
name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and that loop (and any active loops inside it) is
then terminated. Control then passes to the clause following the END that matches
the DO clause of the selected loop.

Example:

do i=l to 5
say i
if i=3 then leave
end

/* Displays the numbers: 11 111 11211 11 311 */

Notes:

1. If specified, name must match the symbol naming the control variable in the DO
clause in all respects except case. No substitution for compound variables is
carried out when the comparison is made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. LEA VE cannot be used to terminate an inactive
loop.

3. If more than one active loop uses the same control variable, LEA VE selects the
innermost loop.

NOP

NOP

NOP is a dummy instruction that has no effect. It can be useful· as the target of a
THEN or ELSE clause:

Example:

Select
when a=b then nop /* Do nothing */
when a>b then say 1A > 81

otherwise say 1 A < 8 1

end

Note: Putting an extra semicolon instead of the NOP would merely insert a null
clause, which would be ignored. The second WHEN clause would ·be seen as the
first instruction expected after the THEN, and would, therefore, be treated as a
syntax error. NOP is a true instruction, however, and is, therefore, a valid target for
the THEN clause.

Chapter 3. Keyword Instructions 3-21

NUMERIC

NUMERIC

3-22 REXX Reference

111+-NUMERIC IGITS·--------.--------- -------
xpressionl

SCIENTIFIC-----

xpression3

NUMERIC changes the way in which arithmetic operations are carried out. The
options of this instruction are described in detail on pages 6-1-6-9, but in summary:

NUMERIC DIGITS
controls the precision to which arithmetic operations and arithmetic built-in
functions are evaluated. If you omit expression], the precision defaults to 9
digits. Otherwise, expression] must evaluate to a positive whole number,
rounded if necessary according to the current NUMERIC DIGITS setting, and
must be larger than the current NUMERIC FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage
available), but note that high precisions are likely to require a good deal of
processing time. It is recommended that you use the default value wherever
possible.

You can retrieve the current NUMERIC DIGITS setting with the DIGITS
built-in function. See "DIGITS" on page 4-19.

NUMERIC FORM
controls which form of exponential notation REXX uses for the result of
arithmetic operations and arithmetic built-in functions. This may be either
SCIENTIFIC (in which case only one, nonzero digit appears before the decimal
point) or ENGINEERING (in which case the power of 10 is always a multiple
of 3). The default is SCIENTIFIC. The FORM is set either directly by the
subkeywords SCIENTIFIC or ENGINEERING or is taken from the result of
evaluating expression2 following VALUE. The result in this case must be either
SCIENTIFIC or ENGINEERING. You can omit the subkeyword VALUE if
expression2 does not begin with a symbol or a literal string (that is, if it starts
with a special character, such as an operator or parenthesis).

You can retrieve the current NUMERIC FORM setting with the FORM built-in
function. See "FORM" on page 4-23. ,

NUMERIC FUZZ
controls how many digits, at full precision, are ignored during a numeric
comparison operation. If you omit expression3, the default is e digits.
Otherwise, expression3 must evaluate to e or a positive whole number, rounded
if necessary according to the current NUMERIC DIGITS setting, and must be
smaller than the current NUMERIC DIGITS setting.

FUZZ temporarily reduces the value of DIGITS by the FUZZ value before
every numeric comparison operation. The numbers being compared are
subtracted from each other under a precision of DIGITS-FUZZ digits and this
result is then compared with 0.

You can retrieve the current NUMERIC FUZZ setting with the FUZZ built-in
function. See "FUZZ" on page 4-24.

NUMERIC

Note: The three numeric settings are automatically saved across subroutine and
internal function calls. See the CALL instruction (page 3-6) for more details.

Chapter 3. Keyword Instructions 3-23

OPTIONS

OPTIONS

3-24 REXX Reference

~PT IONS-expression-;------------------

OPTIONS passes special re.quests or parameters to the language processor. For
example, these may be language processor options or perhaps. define a special
character set.

The expression is evaluated, and the result is examined one word at a time. If the
language processor recognizes the words, then they are obeyed. Words that are not
recognized are ignored and assumed to be instructions to a different processor.

The language processor recognizes the following words:

ETMODE specifies that literal strings and comments containing DBCS
characters are checked for being valid D BCS strings.

NOETMODE specifies that literal strings and comments containing DBCS
characters are not checked for being valid D BCS strings.
NOETMODE is the default.

EXMODE specifies that instructions, operators, and functions handle DBCS
data in mixed strings on a logical character basis. DBCS data
integrity is maintained.

NOEXMODE specifies that any data in strings is handled on a byte basis. The
integrity of DBCS characters, if any, may be lost. NOEXMODE is
the default.

Notes:

1. Because of the language processor's scanning procedures, you are advised to
place an OPTIONS 1 ETMODE 1 instruction as the first instruction in a program
containing DBCS literal strings and DBCS comments.

2. To ensure proper scanning of a program containing DBCS literals and DBCS
comments, enter the words ETMODE, NOETMODE, EXMODE, and
NOEXMODE as literal strings (that is, enclosed in quotation marks) in the
OPTIONS instruction.

3. The OPTIONS ETMODE and OPTIONS EXMODE settings are saved and
restored across subroutine and function calls.

4. The words ETMODE, NOETMODE, EXMODE, and NOEXMODE can
appear several times within the result. The one that takes effect is determined
by the last valid one specified between the pairs ETMODE-NOETMODE and
EXMODE-NOEXMODE.

PARSE

PARSE

11+-PARSE--.---..........,.-A,RG·---------.---.-------.-- ----...
LINEI---------1
PULL----------1
SOURCE-------
VALUE WIT

Lexpressio,,J
VAR-nom•o----------1
VERSIO--------'

template list

PARSE assigns data (from various sources) to one or more variables according to
the rules and templates described in the section on parsing (page 5-1).

The template list is often a single template but may be several templates separated by
commas. If specified, each template is a list of symbols separated by blanks or
patterns or both.

Each template is applied to a single source string. Specifying multiple templates is
never a syntax error, but only the PARSE ARG variant can supply more than one
non-null source string. See page 5-10 for information on parsing multiple source
strings.

If you do not specify a template, no variables are set but action is taken to get the
data ready for parsing if necessary. Thus for PARSE PULL, a data string is
removed from the current data queue, for PARSE LINEIN (and PARSE PULL if
the queue is empty), a line is taken from the default input stream, and for PARSE
VALUE, expression is evaluated. For PARSE VAR, the specified variable is
accessed. If it does not have a value, the NOVALUE condition is raised, if it is
enabled.

If you specify the UPPER option, the data to be parsed is first translated to
uppercase (that is, lowercase a - z to uppercase A- Z). Otherwise, no uppercase
translation takes place during the parsing.

The data used for each variant of the PARSE instruction is:

PARSEARG
The string or strings passed to the program, subroutine, or function as the input
argument list are parsed. (See the ARG instruction for details and examples.)

Note: You can also retrieve or check the argument strings to a REXX program
or internal routine with the ARG built-in function (page 4-7).

PARSE LINEIN
The next line from the default input stream is parsed. (See Chapter 8, "Input
and Output Streams" on page 8-1 for a discussion of REXX input and output.)
PARSE LINEIN is a shorter form of the instruction

.,._PARSE VALUE LINEIN() WITH----.------~-------­
ltemplate listj

If no line is available, program execution will normally pause until a line is
complete. Note that PARSE LINEIN should only be used when direct access to
the character input stream is necessary. Normal line-by-line dialogue with the
user should be carried out with the PULL or PARSE PULL instructions, to
maintain generality.

Chapter 3. Keyword Instructions 3-25

PARSE

3-26 REXX Reference

To check if any lines are available in the default input stream, use the built-in
function LINES; see page 4-28. Also see page 4-25 for a description of the
LINEIN function.

PARSE PULL
The next string from the external data queue is parsed. If the external data
queue is empty, lines are read from the default input (typically the user's
terminal). You can add data to the head or tail of the queue by using the
PUSH and QUEUE instructions, respectively. You can find the number of lines
currently in the queue with the QUEUED built-in function, described on page
4-30. The queue remains active as long as the language processor is active.
Other programs in the system can alter the queue and use it as a means of
communication with programs written in REXX.

Note: PULL and PARSE PULL read first from the current data queue; if the
queue is empty, they read from the default input stream, STDIN (typically, the
keyboard). (See the PULL instruction, on page 3-29, for further details.)

PARSE SOURCE
The data parsed describes the source of the program being executed.

The source string contains the characters OS/2, followed by either COMMAND,
FUNCTION, or SUBROUTINE, depending on whether the program was
invoked as a host command or from a function call in an expression or via the
CALL instruction. These two tokens are followed by the complete path
specification of the program file.

The string parsed might therefore look like this:

OS/2 COMMAND C:\OS2\REXTRY.CMD

PARSE VALUE
The expression is evaluated, and the result is the data that is parsed. Note that
WITH is a subkeyword in this context and cannot be used as a symbol within
expression.

Thus, for example:

PARSE VALUE time() WITH hours 1
:

1 mins 1
:

1 secs

gets the current time and splits it up into its constituent parts.

PARSE VAR name
The value of the variable specified by name is parsed. The name must be a
symbol that is valid as a variable name (that is, it cannot start with a period or a
digit). Note that the variable name is not changed unless it appears in the
template, so that for example:

PARSE VAR string wordl string

removes the first word from string, puts it in the variable wordl, and assigns the
remainder back to string. Similarly

PARSE UPPER VAR string wordl string

in addition translates the data from string to uppercase before it is parsed.

PARSE VERSION
Information describing the language level and the date of the language processor
is parsed. This consists of five words (delimited by blanks): first the string
REXXSAA, then the language level description (for example, 4.00, 13 June 1989).

PROCEDURE

PROCEDURE

...-PROCEDURE----.--------..-- ----------­

LEXPOSE_L,,ome J I
L(name)

PROCEDURE protects variables within an internal routine (subroutine or function)
by making them unknown to the instructions that follow it. On executing a
RETURN instruction, the original variables environment is restored and any
variables used in the routine (that were not exposed) are dropped. The
PROCEDURE instruction must be the first instruction executed after the CALL or
function invocation; that is, it must be the first instruction following the label.

If you use the EXPOSE option, any variable specified by name is exposed, so that
any reference to it (including setting and dropping) is made to the variables
environment the caller owns. With the EXPOSE option yon mmd spP.~ify M le.~st

one name, a symbol separated from any other name with one or more blanks. Any
variables in the main program that are not exposed are still protected. Therefore,
some limited set of the caller's variables can be made accessible, and these variables
can be changed (or new variables in this set can be created). All these changes are
visible to the caller upon RETURN from the routine.

The variables are exposed in sequence from left to right. It is not an error to specify
a name more than once, or to specify a name that the caller has not used as a
variable.

Example:

/* This is the main program */
j=l; x.l='a'
call toft
say j k m /* Di sp 1 ays 11 l 7 M11 * /
exit

toft: procedure expose j k x.j
say j k x.j /* Displays 11 1 K a" */
k=7; m=3 /* Note: M is not exposed */
return

Note that if X.J in the EXPOSE list had been placed before J, the caller's value of J
would not have been visible at that time, so X.1 would not have been exposed.

If a single name is enclosed in parentheses then, after that variable is exposed, the
value of the variable is immediately used as a subsidiary list of variables. (Blanks
are not necessary either inside or outside the parentheses, but you can add them if
desired.) This list must follow the same rules as the main list (that is, valid variable
names, separated by blanks) except that no parentheses are allowed. The variables
named in a subsidiary list are also exposed from left to right.

Example:

Chapter 3. Keyword Instructions 3-27

PROCEDURE

3-28 REXX Reference

/* This is the main program */
j=l;k=6;m=9
a =' j k m'
call test
exit

test: procedure expose (a)
say a j k m
return

/* Exposes A, J, K, and M
/* Displays "j k m 1 6 9"

*/
*/

You can use subsidiary lists to more easily expose a number of variables at once or,
with the VALUE built-in function, to manipulate dynamically named variables.

Example:

/* This is the main program */
a=ll; b=12; c=13
Showlist='a b' /*but not C */
call Playvars
say a b c d /* Displays "11 New 13 9" */
exit

/ / This is a subroutine
Playvars: procedure expose
say word(showlist,2)

(showlist) d

say value(word(showlist,2),'New')
say value(word(showlist,2))
c=B

/* Displays "b"
/* Displays "12" and sets
/* Displays "New"
/* C is not exposed

*/
new value */

*/

d=9 /* D was explicitly exposed
*/
*/

return

Specifying a stem as name exposes this stem and all possible compound variables
whose names begin with that stem. (A stem is a symbol containing just one period,
which is the last character. See page 2-16.)

Example:

lucky7:Procedure Expose i j a. b.
/* This exposes I, J, and all variables whose */
/* names start with A. or B. */
A.1='7' /* This sets A.1 in the caller's */

/* environment, even if it did not */
/* previously exist. */

Variables may be exposed through several generations of routines, if desired, by
ensuring that they are included on all intermediate PROCEDURE instructions.

Notes:

1. Only one PROCEDURE instruction in each level of routine call is allowed.

2. An internal routine need not include a PROCEDURE instruction, in which case
the variables it is manipulating are those the caller "owns."

See the CALL instruction and function descriptions on pages 3-6 and 4-1 for details
and examples of how routines are invoked.

PULL

PULL

PULL reads a string from the head of the external data queue. It is just a short
form of the instruction:

11+-PARSE UPPER PULL
Ltemplate l istj

The current head-of-queue is read as one string. Without a template list specified,
no further action is taken (and the string is thus effectively discarded). If specified, a
template list is usually a single template, which is a list of symbols separated by
blanks or patterns or both. The template list can be several templates separated by
commas, but PULL parses only one source string; if you specify several
comma-separated templates, variables in templates other than the first one are
assigned the null string. The string is translated to uppercase (that is, lowercase a-z
to uppercase A - Z) and then parsed into variables according to the rules described in
the section on parsing (page 5-1). Use the PARSE PULL instruction if you do not
desire uppercase translation.

Note: If the current data queue is empty, PULL reads instead from STDIN
(typically, the keyboard). A question-mark is displayed to the user as a prompt.
The length of data read by the PULL instruction is restricted to the length of strings
contained by variables.

Example:

Say 'Do you want to erase the file? Answer Yes or No:'
Pull answer •
if answer='NO' then say 'The file will not be erased.'

Here the dummy placeholder, a period (. }, is used on the template to isolate the first
word the user enters.

If the external data queue is empty, a line is read from the default input stream and
the program pauses, if necessary, until a line is complete. (This is as though PARSE
UPPER LINEIN had been executed. See page 3-25.)

The QUEUED built-in function ("QUEUED" on page 4-30) returns the number of
lines currently in the external data queue.

Chapter 3. Keyword Instructions 3-29

PUSH

PUSH

3-30 REXX Reference

11+-PUSH
lexpressionj

PUSH stacks the string resulting from the evaluation of expression LIFO (Last In,
First Out) onto the external data queue. (See Chapter 8, "Input and Output
Streams" on page 8-1 for a discussion of REXX input and output.)

If you do not specify expression, a null string is stacked.

Example:

a='Fred'
push
push a 2

/* Puts a null line onto the queue */
/* Puts "Fred 211 onto the queue */

The QUEUED built-in function ("QUEUED" on page 4-30) returns the number of
lines currently in the external data queue.

QUEUE

~UEUE
lexpressionj

QUEUE

QUEUE appends the string resulting from expression to the tail of the external data
queue. That is, it is added FIFO (First In, First Out). (See Chapter 8, "Input and
Output Streams" on page 8-1 for a discussion of REXX input and output.)

If you do not specify expression, a null string is queued.

Example:

a= 1Toft 1

queue a 2 /* Enqueues "Toft 211 */
queue /* Enqueues a null line behind the last */
The QUEUED built-in function ("QUEUED" on page 4-30) returns the number of
lines currently in the external data queue.

Chapter 3. Keyword Instructions 3-31

RETURN

RETURN

3·32 REXX Reference

.,.__RETURN
1-expressionj

RETURN returns control (and possibly a result) from a REXX program or internal
routine to the point of its invocation.

If no internal routine (subroutine or function) is active, RETURN and EXIT are
identical in their effect on the program that is being executed. (See page 3-15.)

If a subroutine is being executed (see the CALL instruc.tion), expression (if any) is
evaluated, control passes back to the caller, and the REXX special variable
RESULT is set to the value of expression. If expression is omitted, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at
the time of the CALL (tracing, addresses, and so forth) are also restored. (See page
3-6.)

If a function is being executed, the action taken is identical, except that expression
must be specified on the RETURN instruction. The result of expression is then used
in the original expression at the point where the function was invoked. See the
description of functions on page 4-1 for more.details.

If a PROCEDURE instruction was executed within the routine (subroutine or
internal function), all variables of the current generation are .dropped (and those of
the previous generation are exposed) after expression is evaluated and before the
result is used or assigned to RESULT.

SAY

SAY

..__SAY~---------~-~-~-~-~---~-~-~
Lexpressionj

SAY writes to the output stream the result of evaluating expression. This typically

displays the result to the user, but the output destination can depend on the
implementation. The result of expression may be of any length. If you omit
expression, the null string is written.

The SAY instruction is a shorter form of the instruction:

..__CALL LINEOUT ,---......-------- -----------------9"4
Lexpressionj

except that SAY does not affect the special variable RESULT and SAY does not

close the stream if you omit expression. See page 4-27 for details of the LINEOUT
function.

Notes:

1. Data from the SAY instruction is sent to the default output stream (STDOUT).
However, the standard OS/2 rules for redirecting output apply to SAY output.

2. The SAY instruction does not format data; line _wrapping is handled by the
operating system and the hardware. However formatting is accomplished, the
output data remains a single logical line.

Example:

data=100
Say data 'divided by 4 => 1 data/4
/* Displays: 11 100 divided by 4 => 25 11 */

Chapter 3. Keyword Instructions 3-33

SELECT

SELECT

3-34 REXX Reference

.,._SELECT ;_LWHEN-expression___,.----THEN1___,.----.--instruction'---• L.J L.J
' '

~•--.~~~~~~~~~~~~~~~___,....-END~;~~~~~~--4

loTHERWISE-----------.--

l._;_J l.t::tnstructio~

SELECT conditionally executes one of several alternative instructions.

Each expression after a WHEN is evaluated in tum and must result in 0 or 1. If the
result is 1, the instruction following the THEN (which may be a complex instruction
such as IF, DO, or SELECT) is executed and control then passes to the END. If
the result is 0, control passes to the next WHEN clause.

If none of the WHEN expressions evaluates to 1, control passes to the instructions,
if any, after OTHERWISE. In this situation, the absence of an OTHERWISE
causes an error.

Example:

balance = balance - check
Select

when balance > 0 then
say •congratulations! You still have• balance 1dollars left.'

when balance = 0 then do
say •warning, Balance is now zero! STOP all spending.•
say 11 You cut it close this month! Hope you do not have any 11

say 11 checks left outstanding. 11

end
Otherwise

say 11 You have just overdrawn your account. 11

say 11 Your balance now shows 11 balance 11 dollars. 11

say 11 0ops! Hope the bank does not close your account."
end /* Select */

Notes:

1. The instruction can be any assignment, command, or keyword instruction,
including any of the more complex constructs such as DO, IF, or the SELECT
instruction itself.

2. A null clause is not an instruction, so putting an extra semicolon after a WHEN
clause is not equivalent to putting a dummy instruction. The NOP instruction is
provided for this purpose.

3. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the WHEN clause to be terminated by the THEN without a ;
(delimiter) being required.

SIGNAL

11+-SIGNAL

SIGNAL

labelname-------------- -------
i---r-----expression-------

VALUE

OFF1ERROR FAILURE
HALT
NOTREADY
NOVALUE
SYNTAX

N1ERROR FAILURE
HALT
NOT READY
NOVALUE
SYNTAX

NAME-trapname

SIGNAL causes an abnormal change in the flow of control (if you specify labelname

or VALUE expression), or controls the trapping of certain conditions (if you specify

ON or OFF).

To control trapping, you specify OFF or ON and the condition you want to trap.

OFF turns off the specified condition trap. ON turns on the specified condition

trap. All information on condition traps is contained in Chapter 7, "Conditions

and Condition Traps" on page 7-1 .

To change the flow of control, a label name is derived from labelname or taken from

the result of evaluating the expression after VALUE. The labelname you specify

must be a symbol, which is treated literally, or a literal string that is taken as a

constant. You can omit the subkeyword VALUE if expression does not begin with a

symbol or literal string (that is, if it starts with a special character, such as an

operator or parenthesis). All active pending DO, IF, SELECT, and INTERPRET

instructions in the current routine are then terminated (that is, they cannot be

resumed). Control then passes to the first label in the program that matches the

required string, as though the search had started from the top of the program.

Example:

Signal fred; /* Jump to label FRED below */

Fred: say 'Hi! '

Because the search effectively starts at the top of the program, if duplicates are

present, control always passes to the first occurrence of the label in the program.

When control reaches the specified label, the line number of the SIGNAL instruction

is assigned to the special variable SIGL. This can aid debugging because you can

use SIGL to determine the source of a jump. to a label.

For information about using SIGNAL with the INTERPRET instruction, see Note

1 on page 3-17.

Using SIGNAL VALUE

Chapter 3. Keyword Instructions 3-35

SIGNAL

3-36 REXX Reference

The VALUE form of the SIGNAL instruction allows a branch to a label whose
name is determined at the time of execution. This can safely effect a multi-way
CALL (or function call) to internal routines because any DO loops, and so forth, in
the calling routine are protected against termination by the call mechanism.

Example:

fred= 1 pete 1

call multiway fred, 7

Multiway: procedure
arg label •

signal value label

/* One word, upper case */
/* Can add checks for valid labels here */
/* Jump to wherever * /

Pete: say arg{l) 1 ! 1 arg(2) /*Displays: 11 pete ! 711

return
*/

TRACE

numbe
Nonnal----.

1 AH·----

Or, alternatively:

OR1Dands---t
Erro---­
Failura----i
lntennediates
Labels----
ff-----t

Resul ts--__,

TRACE

11+-TRACE-------------.-- ---------------1~
string------­
symbol-------1

......,. ___ T--oxpression
VALUE

TRACE is primarily used for debugging. It controls the tracing action taken (that
is, how much is displayed to the user) during execution of a REXX program. The
syntax of TRACE is more concise than that of other RE:XX instructions. The
economy of key strokes for this instruction is especially convenient since TRACE is
usually entered manually during interactive debugging.

If specified, the number must be a whole number.

The string or expression evaluates to:

• A numeric option
• One of the valid prefix or alphabetic character (word) options described later
• Null.

The symbol is taken as a constant, and is, therefore:

• A numeric option
• One of the valid prefix or alphabetic character (word) options described later.

The option that follows TRACE or the result of evaluating expression determines the
tracing action. If expression is used, you can omit the subkeyword VALUE as long
as expression starts with a special character or operator (so it is not mistaken for a
symbol or ·string).

Alphabetic Character (Word) Options
Although you can enter the word in full, only the capitalized and boldfaced letter is
needed; all characters following it are ignored. That is why these are referred to. as
alphabetic character options.

TRACE actions correspond to the alphabetic character options as follows:

Chapter 3. Keyword Instructions 3-37

TRACE

Prefix Option

3-38 REXX Reference

All

Commands

Error

Failure

Intermediates

Labels

Normal

Off

Results

All clauses are traced (that is, displayed) before execution.

All commands are traced before execution, and any error return
code is displayed.

Any command resulting in an error or failure is traced after
execution, together with the return code from the command.

Any command resulting in a failure is traced after execution.
This is the same as the Nonna l option.

All clauses are traced before execution. Intermediate results
during evaluation of expressions and substituted names are also
traced.

Labels passed during execution are traced. This is especially
useful with debug mode, when the language processor pauses
after each label. It is also convenient for the user to make note
of all subroutine calls and signals.

Any failing command is traced after execution. This is the
default setting.

For the default OS/2 command processor, an attempt to issue an
unknown command will raise a FAILURE condition. The CMD
return code for an unknown command is 1041. An attempt to
issue a command to an unknown command environment will
also raise a FAILURE condition; in such a case, the variable RC
is set to 30.

Nothing is traced, and the special prefix actions (described later)
are reset to OFF.

All clauses are traced before execution. Final results (contrast
with Intennedi ates, preceding) of evaluating an expression are
traced. Values assigned during PULL, ARO, and PARSE
instructions are also displayed. This setting is recommended for
general debugging.

The prefix ? is valid either alone or with one of the alphabetic character options.
You can specify the prefix more than once, if desired. Each occurrence of a prefix
on an instruction reverses the action of the previous prefix. The prefix must
immediately precede the option (no intervening blanks).

The prefix ? modifies tracing and execution as follows:

? Controls interactive debug. During normal execution, a TRACE option prefixed
with? causes interactive debug to be switched on. (See the separate section in
Chapter 10, "Debugging Aids" on page 10-1 for full details of this facility).
While interactive debug is on, interpretation pauses after most clauses that are
traced. For example, the instruction TRACE ?E makes the language processor
pause for input after executing any command that returns an error (that is, a
nonzero return code or explicit setting of the error condition by the command
handler).

Any TRACE instructions in the file being traced are ignored. {This is so that
you are not taken out of interactive debug unexpectedly.)

When interactive debug is in effect, you can switch it off by issuing a TRACE
instruction with a prefix 1. Repeated use of the 1 prefix, therefore, switches you

Numeric Options

Tracing Tips

alternately in and out of interactive debug. Or, you can tum off interactive
debug at any time by issuing TRACE 0 or TRACE with no options.

If interactive debug is active and if the option specified is a positive whole number
(or an expression that evaluates to a positive whole number), that number indicates
the number of debug pauses to be skipped over. (See separate section in
Chapter 10, "Debugging Aids" on page 10-1, for further information.) However, if
the option is a negative whole number (or an expression that evaluates to a negative
whole number), all tracing, including debug pauses, is temporarily inhibited for the
specified number of clauses. For example, TRACE -100 means that the next 100
clauses that would normally be traced are not, in fact, displayed. After that, tracing
resumes as before.

1. When a loop is being traced, the DO clause itself is traced on every iteration of
the loop.

2. If no option is specified on a TRACE instruction, or if the result of evaluating
the expression is null, the default tracing actions are restored. The defaults are
TRACE N and interactive debug (?) off.

3. You can retrieve the trace actions currently in effect by using the TRACE
built-in function ("TRACE" on page 4-40).

4. Comments in the source REXX program are not included in the trace output.

5. Commands traced before execution always have the final value of the command
(that is, the string passed to the environment), and the clause generating it
produced in the traced output.

6. Trace actions are automatically saved across subroutine and function calls. See
the CALL instruction (page 3-6) for more details.

A Typical Example
One of the most common traces you will use is:

TRACE ?R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */

Format of TRACE Output
Every clause traced is displayed with automatic formatting (indentation) according
to its logical depth of nesting and so forth. Results (if requested) are indented an
extra two spaces and are enclosed in double quotes so that leading and trailing
blanks are apparent. Any control codes in the data encoding (ASCII values less
than 120 1 x) are replaced by a question mark (?) to avoid screen interference.

Chapter 3. Keyword Instructions 3-39

3-40 REXX Reference:

All lines displayed during tracing have a three-character prefix to identify the type of
data being traced~ These can be:

- Identifies the source of a single clause, that is, the data actually in the
program.

+++ Identifies a trace message. This may be the nonzero return code from a
command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program (see below).

»> Identifies the result of an expression (for TRACE R) or the value assigned to a
variable during parsing, or the value returned from a subroutine call.

>.> Identifies the value "assigned" to a placeholder during parsing (see page
5-2).

The following prefixes are only used if TRACE Intemedi ates is in effect:

>C> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of a
variable substituted into it.

>F> The data traced is the result of a function call.

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>O> The data traced is the result of an operation on two terms.

>P> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

Following a syntax error that SIGNAL ON SYNTAX does not trap, the clause in
error is always traced. If an attempt to transfer control to a label that could not be
found caused the error, that label is also traced.

Functions

Chapter 4. Functions

Syntax
You can include function calls to internal and external routines in an expression
anywhere that a data term (such as a string) would be valid, using the notation:

f"' ..-functi on-name(~-L-....-------"'-- -----------------~
lexpress ionj

function-name is a literal string or a single symbol, which is taken to be a constant.

There can be up to an implementation-defined maximum number of expressions,
separated by commas, between the parentheses. On the OS/2 operating system, the
implementation maximum is up to 20 expressions. These expressions are called the
arguments to the function. Each argument expression may include further function
calls.

Note that the (must be adjacent to the name of the function, with no blank in
between, or the construct is not recognized as a function call. (A blank operator
would be assumed at this point instead.) Only a comment (which has no effect) can
appear between the name and the left parenthesis.

The arguments are evaluated in tum from left to right and they are all then passed
to the function. This then executes some operation (usually dependent on the
argument strings passed, though arguments are not mandatory) and eventually
returns a single character string. This string is then included in the original
expression just as though the entire function reference had been replaced by the
name of a variable that contained that data.

For example, the function SUBSTR is built-in to the language processor (see page
4-37) and could be used as:

Nl='abcdefghijk'
Zl='Part of Nl is: 'Substr(Nl,2,7)
/* Sets Z1 to 'Part of Nl is: bcdefgh' */

A function call without any arguments must always include the parentheses;
otherwise it would not be recognized as a function call.

date() /* returns the date in the default format dd mon yyyy */

Calls to Functions and Subroutines
The function calling mechanism is identical with that for subroutines. The only
difference between functions and subroutines is that functions must return data,
whereas subroutines need not.

The following types of routines can be called as functions:

Chapter 4. Functions 4-1

Functions

Search Order

4-2 REXX Reference

Internal If the routine name exists as a label in the program, the current
processing status is saved, so that it is later possible to return to the point
of invocation to resume execution. Control is then passed to the first
label in the program that matches the name. As with a routine invoked
by the CALL instruction, various other status information (TRACE and
NUMERIC settings and so forth) is saved too. See the CALL
instruction (page 3-6) for details about this. You can use SIGNAL and
CALL together to call an internal routine whose name is determined at
the time of execution; this is known as a multi-way call (see page 3-36).

If you are calling an internal routine as a function, you must specify an
expression in any RETURN instruction to return from it. This is not
necessary if it is called only as a subroutine.

Example:

/*Recursive internal function execution ••• */
arg x
say x'! =' factorial(x)
exit

factorial: procedure /*Calculate factorial by */
arg n /* recursive invocation. */
if n=e then return 1
return factorial(n-1) * n

FACTORIAL is unusual in that it invokes itself (this is recursive
invocation). The PROCEDURE instruction ensures that a new variable
n is created for each invocation.

Built-in These functions are always available and are defined in the next section
of this manual. (See pages 4-5--4-46.)

External You can write or make use of functions that are external to your
program and to the language processor. An external function can be
written in any language (including REXX) that supports the
system-dependent interfaces the language processor uses to invoke it.
Again, when called as a function, it must return data to the caller.

Notes:

1. Calling an external REXX program as a function is similar to calling
an internal routine. The external routine is, however, an implicit
PROCEDURE in that all the caller's variables are always hidden
and the status of internal values (NUMERIC settings and so forth)
start with their defaults (rather than inheriting those of the caller).

2. Other REXX programs can be called as functions. You can use
either EXIT or RETURN to leave the invoked REXX program, and
in either case you must specify an expression.

The search order for functions is: internal routines take precedence, then built-in
functions, and finally external functions.

Internal routines are not used if the function name is given as a string (that is,
specified in quotation marks); in this case the function must be built-in or external.
This lets you usurp the name of, say, a built-in function to extend its capabilities, yet
still be able to invoke the built-in function when needed.

Example:

/* Modified DATE to return standard date by default */
date: procedure

arg in
if in=• 1 then in= 1 Standard 1

return 1 DATE 1 (in}

Functions

Built-in functions have uppercase names, and so the name in the literal string must be
in uppercase for the search to succeed, as in the example. On the OS/2 operating
system, file names may be in upper, lower, or mixed case. That operating system
uses a case insensitive search for files. When calling a REXX subroutine, the case of
the name does not matter.

External functions and subroutines have a system-defined search order.

REXX searches for external functions in this order.

1. Functions that have been loaded into the macrospace for pre-order execution;
see "Macrospace Interface" on page 9-56.

2. Functions that are part of a function package; see "External Functions" on
page 9-18.

3. REXX functions in the current directory, with the current extension.

4. REXX functions along environment PATH, with the current extension.

5. REXX functions in the current directory, with the default extension.

6. REXX functions along environment PATH, with the default extension.

7. Functions that have been loaded into the macrospace for post-order execution.

The full search pattern for functions and routines is shown in Figure 4-1 on
page 4-4.

Chapter 4. Functions 4-3

Functions

start

l
yes

is name quoted?

no

yes
an internal function
(i.e .• a label)?

no

yes
a built-in function?

no

yes
macrospace pre-order?

no

part of an yes
external function

package?

no

yes
external function

with the
current extension?

no

yes
external function

with the
default extension?

no

yes
macrospace post-order?

no

error execute

Figure 4-1. Function and Routine Resolution and Execution

Errors During Execution

4-4 REXX Reference

If an external or built-in function detects an error of any kind, the language
processor is informed, and a syntax error results. Execution of the clause that
included the function call is, therefore, terminated. Similarly, if an external function
fails to return data correctly, the language processor detects this and reports it as an
error.

If a syntax error occurs during the execution of an internal function, it can be
trapped (using SIGNAL ON SYNTAX) and recovery may then be possible. If the
error is not trapped, the program is terminated.

Return Values

Functions

A function normally returns a value that is substituted for the function call when the
expression is evaluated.

How the value returned by a function (or any RE:XX routine) is handled depends on
whether it is called by a function call or as a subroutine with the CALL instruction.

A routine called as a subroutine: If the routine returns a value, that value is
stored in the special variable named RESULT. Otherwise, the RESULT
variable is dropped, and its value is the string RESULT.

A routine called as a function: If the function returns a value, that value is
substituted into the expression at the position where the function was called.
Otherwise RE:XX stops with an error message.

Here are some examples of how to call a RE:XX procedure:

call Beep see, 1ee /* Example 1: a subroutine call */

The built-in function BEEP is called as a RE:XX subroutine. The return value from
BEEP is placed in the RE:XX special variable RESULT.

be = Beep(see, 1ee) /* Example 2: a function call */

BEEP is called as a RE:XX function. The return value from the function is
substituted for the function call. The clause itself is an assignment instruction; the
return value from the BEEP function is placed in the variable be.

Beep(see, iee) /* Example 3: result passed as */
/* a command * /

The BEEP function is executed and its return value is substituted in the expression
for the function call, just as in the preceding example. In this case, however, the
clause as a whole evaluates to a single expression; therefore, the evaluated expression
is passed to the current default environment as a command.

Note: Many other languages (such as C) throw away the return value of a function
if it is not assigned to a variable. In REXX, however, a value returned as in the
third example is passed on to the current environment or subcommand handler. If
that environment is CMD (the default), then this action will result in the OS/2
program performing a disk search for what seems to be a command.

Built-in Functions
RE:XX provides a rich set of built-in functions. These include character
manipulation, conversion, and information functions.

General notes on the built-in functions:

• The parentheses in a function are always needed, even if no arguments are
required. The first parenthesis must follow the name of the function with no
space in between.

Chapter 4. Functions 4-5

Functions

• The built-in functions work internally with NUMERIC DIGITS 9 and
NUMERIC FUZZ 0 and are unaffected by changes to the NUMERIC settings,
except where stated. Any argument named as a number is rounded, if necessary,
according to the current setting of NUMERIC DIGITS Gust as though the
number had been added to 0) and checked for validity before use. This occurs
in the following functions: ABS, FORMAT, MAX, MIN, SIGN, and TRUNC,
and for certain options of DATA TYPE.

• Any argument named as a string may be a null string.

• If an argument specifies a length, it must be a nonnegative whole number. If it
specifies a start character or word in a string, it must be a positive whole
number, unless otherwise stated.

• Where the last argument is optional, you can always include a comma to
indicate you have omitted it; for example, DATATYPE(l,), like DATATYPE(l), would
return NUM.

• If you specify a .pad character, it must be exactly one character long.

• If a function has an option you can select by specifying the first character of a
string, that character can be in upper- or lowercase.

• Conversion between characters and hexadecimal involves the machine
representation of character strings, and returns appropriately different results for
ASCII and EBCDIC machines.

• A number of the functions described in this chapter support DBCS. A complete
list and description of these functions is given in Appendix B, "Double-Byte
Character Set (D BCS) Support" on page B-1.

ABBREV (Abbreviation)

4-6 REXX Reference

11+-ABBREV (information, info
L,zengthj

· returns 1 if info is equal to the leading characters of information and the length of
info is not less than length. Returns 0 if either of these conditions is not met.

If you specify length, it must be a nonnegative whole number. The default for length
is the number of characters in info.

Here are some examples:

ABBREV('Print','Pri')
ABBREV('PRINT','Pri')
ABBREV('PRINT','PRI',4)
ABBREV('PRINT','PRY')
ABBREV('PRINT',' ')
ABBREV('PRINT',' ',1)

->
->
->
->
->
->

1
{:)

{:)

{:)

1
{:)

Note: A null string always matches if a length of 0 (or the default) is used. This
allows a default keyword to be selected automatically if desired; for example:

say 1 Enter option:'; pull option •
select /* keywordl is to be the default */

when abbrev('keywordl',option) then
when abbrev('keyword2',option) then •••

otherwise nop;
end;

Functions

ABS (Absolute Value)
1.---.-.--A-BS-(-nu_m_b-er-)---.

ADDRESS

ARG (Argument)

returns the absolute value of number. The result has no sign and is formatted
according to the current NUMERIC settings.

Here are some examples:

ABS(1 12.3 1
)

ABS(' -0.307')
->
->

12.3
0.307

.,._ADDRESS()---------------------...

returns the name of the environment to which commands are currently being
submitted. Trailing blanks are removed from the result.

Here are some examples:

ADDRESS()
ADDRESS()

->
->

1 CMD 1

1 EDIT 1

/* default under OS/2 */
/* possible editor */

I

..---.-. -A-RG-(~==========-----~-------------~----_ -------------~--
[n

L,optionj

returns an argument string or information about the argument strings to a program
or internal routine.

If you do not specify n, the number of arguments passed to the program or internal
routine is returned.

If you specify only n, the nth argument string is returned. If the argument string
does not exist, the null string is returned. n must be a positive whole number.

If you specify option, ARG tests for the existence of the nth argument string. The
following are valid options. (Only the capitalized and boldfaced letter is needed; all
characters following it are ignored.)

Exists returns 1 if the nth argument exists; that is, if it was explicitly specified
when the routine was called. Returns 0 otherwise.

Chapter 4. Functions 4-7

Functions

B.EEP
(Non-SAA Function)

4-8 REXX Reference

Omitted returns 1 if the nth argument.was omitted; that is, if it was not explicitly
specified when the routine was called. Returns e otherwise.

Here are some examples:

/* fo 11 owing ~·ca 11 name; 11 (no arguments) */
ARG() -> e
ARG(l) -> 11

ARG(2) -> 11

ARG(l, 1e 1) -> e
ARG(l, 10 1

) -> 1

/* following "Call name 1 a1,, 1 b1
;

11 */
ARG(} -> 3
ARG(l} -> ia1
ARG(2) -> 11

ARG(3} -> lbl
ARG(n) -> 11 /* for n>=4 */
ARG(l, 1e 1

) -> 1
ARG(2, IE I} -> (:)

ARG(2, 10 1
) -> 1

ARG(3, 10 1} -> e
ARG(4, 10 1} -> 1

Notes:

1. The number of argument strings is the largest number n for which ARG(n, 1e1}
would return 1. That is, it is the position of the last explicitly specified
argument string.

2. Programs called as commands can have only 0 or 1 argument strings. The
program has 0 argument strings if it is called with the name only and has 1
argument string if anything else (including blanks) is included with the
command.

3. Programs called by the REXSAA entry point (see 9-4) may have multiple
argument strings.

4. ·You can retrieve and directly parse the argument strings to a program or
internal routine with the ARG or PARSE ARG instructions. (See pages 3-4,
3-25, and 5-1.)

BEEP is a non-SAA.built-in function provided by the 0$/2 operating system .

.._BEEP(frequency,duration}----------------~

sounds the speaker at frequency (Hertz) for duration (milliseconds). The frequency
can be any whole number in the range 37 to 32767 Hertz. The duration can be any
number in the range 1 to 60000 milliseconds.

This routine is most useful when called as a subroutine. A null string is returned.

Here is an example:

/* C scale */
note.1 = 262
note.2 = 294
note.3 = 330
note.4 = 349
note.5 = 392
note.6 = 440
note.7 = 494
note.8 = 523

do i=l to 8

/* middle C */
/* D */
/* E */
/* F */
/* G */
/* A */
/* B */
/* c */

call beep note.i,250 /* hold each note for */
/* one-quarter second */

end

BITAND (Bit by Bit AND)

Functions

11+-BITAND(stringl---.----------....-- --------
l ---~---.------...--'

' lstring2] l,pad]

returns a string composed of the two input strings logically ANDed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no pad

character is provided, the AND operation terminates when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it is used to extend the shorter of the two
strings on the right before carrying out the logical operation. The default for string2

is the zero length (null) string.

Here are some examples:

->
->
->
->

'12'x
'23'x
'1155'x
'1154'x

BITAND(' 12 'x)
BITAND('73'x,'27'x)
BITAND('13'x,'5555'x)
BITAND('13'x,'5555'x,'74'x)
BITAND('pQrS',,'DF'x) -> 'PQRS' /* ASCII only */

BITOR (Bit by Bit OR)

11+-BITOR (st ringl---..--------------.-- ----------~ L--....--___ ______.
' lstring2] l,pad]

returns a string composed of the two input strings logically ORed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no pad

character is provided, the OR operation terminates when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it is used to extend the shorter of the two
strings on the right before carrying out the logical operation. The default for string2

is the zero length (null) string.

Here are some examples:

Chapter 4. Functions 4-9

Functions

BITOR(112 1 x) -> 112 1x
BITOR(115 1x, 124 1x) -> 135 1x
BITOR(115 1x, 12456 1x) -> 13556 1x
BITOR(115 1x, 12456 1x, 1F8 1x) -> 135F6 1x
BITOR(1llll 1x,, 1 4D'x) -> 1505D 1x
BITOR('pQrS',,'291x) -> 1pqrs 1 /*ASCII only */

BITXOR (Bit by Bit Exclusive OR)

11+-BITXOR(stringl-.------------.--- ---------11~ L ______ ____,..__.
' lstring2] l,pad]

returns a string composed of the two input strings logically eXclusive ORed together,
bit by bit. The length of the result is the length of the longer of the two strings. If
no pad character is provided, the XOR operation terminates when the shorter of the
two strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If pad is provided, it is used to extend the shorter of
the two strings on the right before carrying out the logical operation. The default
for string2 is the zero length (null) string.

Here are some examples:

BITXOR(112 'x)
BITXOR('l2 1x, 122'x)
BITXOR('l211 1x, 122'x)
BITXOR(I C711 1x,I222222 Ix, I I)

BITXOR('llll'x,'444444'x)
BITXOR('llll 1x, 1444444 1 x, 140 1x)
BITXOR('llll'x,, 14D'x)

-> 112'x
-> 1 39 1x
-> '3911 1x
-> 1E53392'x /*ASCII */
-> '555544'x
-> '555594'x
-> '5C5C'x

B2X (Binary to Hexadecimal)

4-10 REXX Reference

1~-11+---B-2-X-(b_i_n_ar_y _ _s_tr_i_n_g_)---~~~-~~~-~~~-~~-~--

returns a string, in character format, that represents binary _string converted to
hexadecimal.

The binary _string is a string, of any length, of binary (e or 1) digits. You can
optionally include blanks in binary _string (at four-digit boundaries only, not leading
or trailing) to aid readability; they are ignored.

The returned string uses uppercase alphabetics for the values A - F, and does not
include blanks.

If binary _string is null, B2X returns a null string. If the number of binary digits in
binary_string is not a multiple of four, then up to three 0 digits are added on the left
before the conversion to make a total that is a multiple of four.

Here are some examples:

s2x (• 11eeee11 •) -> 'C3'
B2X(119111 1) -> 117 1
B2X(1191 1) -> 151
s2x(11 1111 eeee 1) -> 1 lFf) I

Functions

You can combine B2X with the functions X2D and X2C to convert a binary number

into other forms. For example:

X2D(B2X('10111')) -> '23' /*decimal 23 */

CENTER/CENTRE

~CENTER(--r--string,length
LcENTRE(_J

returns a string of length length with string centered in it, with pad characters added

as necessary to make up length. The default pad character is blank. If the string is
longer than length, it is truncated at both ends to fit. If an odd number of
characters are truncated or added, the right-hand end loses or gains one more
character than the left-hand end.

Here are some examples:

CENTER(abc,7)
CENTER(abc,8, 1

-
1

)

CENTRE('The blue sky',8)
CENTRE('The blue sky',7)

->
->
->
->

I ABC I

1 --ABC--- 1

'e blue s'
'e blue '

Note: To avoid errors because of the difference between British and American
spellings, this function can be called either CENTRE or CENTER.

CHARIN (Character Input)

111+-CHARIN(----...-..... ----------.....-- ------...
Lnamej L ---r---.---.------.---­

' [start] [,length]

returns a string of up to length characters read from the character input stream

name. (See Chapter 8, "Input and Output Streams" on page 8-1 for a discussion of

REXX input and output.) If you omit name, characters are read from the device

named STDIN, which is the default input stream. The default length is 1.

For persistent streams, a read position is maintained for each stream. On OS/2, this

is the same as the write position. Any read from the stream starts at the current

read position by default. When the read is completed, the read position is increased

by the number of characters read. You can give a start value to specify an explicit

read position. This read position must be positive and within the bounds of the
stream, and must not be specified for a transient stream. A value of 1 for start

refers to the first character in the stream.

If you specify a length of 0, then the read position is set to the value of start but no

characters are read and the null string is returned.

In a transient stream, if there are fewer than length characters available, then
execution of the program normally stops until sufficient characters do become
available. If, however, it is impossible for those characters to become available due

to an error or other problem, the NOTREADY condition is raised (see "Errors
During Input and Output" on page 8-6) and CHARIN returns with fewer than the

requested number of characters.

Chapter 4. Functions 4-11

Functions

Here are some examples:

CHARIN(myfile,1,3) -> 'MFC' /* the first 3 */
/* characters */

CHARIN(myfile,1,e) -> 11 /* now at start */
CHARIN(myfile) -> 'M' /* after last call */
CHARIN(myfile,,2) -> 'FC' /* after last call */

/* Reading from the default input (here, the keyboard) */
/* User types 'abed efg' */
CHARIN() -> 'a' /* default is */

/* 1 character */
CHARIN(,,5) -> 'bed e'

Notes:

1. CHARIN returns all characters that appear in the stream, including control
characters such as line feed, carriage return, and end of file.

2. When CHARIN is used to read from the keyboard, program execution stops
until you press the Enter key.

CHAROUT (Character Output)

4-12 REXX Reference

Lnamej L,---.----...----.----.--I
~ ~ .. ~C-H-AR-0-UT-(~~~~-~~~~~~~~~~~~~~~~---.

~strin9-.J ~,start~

returns the count of characters remaining after attempting to write string to the
character output stream name. (See Chapter 8, "Input and Output Streams" on
page 8-1 for a discussion of REXX input and output.) If you omit name, characters
in string are written to the device STDOUT (normally the display), which is the
default output stream. string can be the null string, in which case no characters are
written to the stream and e is always returned.

For persistent streams, a write position is maintained for each stream. On OS/2, this
is the same as the read position. Any write to the stream starts at the current write
position by default. When the write is completed the write position is increased by
the number of characters written. The initial write position is the end of the stream,
so that calls to CHAROUT usually append to the end of the stream.

You can give a start value to specify an explicit write position for a persistent
stream. This write position must be a positive whole number within the bounds of
the stream (though it can specify the character position immediately after the end of
the stream). A value of 1 for start refers to the first character in the stream.

You can omit the string for persistent streams. In this case, the write position is set
to the value of start that was given, no characters are written to the stream, and e is
returned. If you do not specify start or string, the stream is closed. Again, 0 is
returned.

Execution of the program normally stops until the output operation is effectively
complete. If, however, it is impossible for all the characters to be written, the
NOTREADY condition is raised (see "Errors During Input and Output" on
page 8-6) and CHAROUT returns with the number of characters that could not be
written (the residual count).

Functions

Here are some examples:

CHAROUT(myfile, 'Hi 1
) -> e /* nonnally */

CHAROUT{myfile, 'Hi• ,5) -> (:) /* nonnal ly * /
CHAROUT{myfile,,6) -> e /* now at char 6 */
CHAROUT{myfile) -> e /* at end of stream */
CHAROUT { ' I Hi I) ..;> e /* nonnal ly */
CHAROUT { , • He 11 o 1

) -> 2 /* maybe */
Note: This routine is often best called as a subroutine. The residual count is then
available in the variable RESULT. For example:

Ca 11 CHAROUT myf il e, •He 11 o •
Call CHAROUT myfile, 1 Hi 1 ,6
Call CHAROUT :myfile

CHARS (Characters Remaining)
l~~..._~C-HA-R-S{~lf1~a-me-j~~~~~~~~~~~~~~~~~~

COMPARE

returns the total number of characters remaining in the character input stream name.
The count includes any line separator characters,· if these are defined for the stream,
and in the case of persistent streams is the count of characters from the current read
position. (See Chapter 8, "Input and Output Streams" on page 8-1 for a discussion
of REXX input and output.) If you omit name, the number of characters available
in the default input stream (STDIN) is returned.

The total number of characters remaining cannot be determined for some streams
(for example, STDIN). For these streams. the CHARS function returns 1 to indicate
that data is present, or 0 if no data is present. For OS/2 devices, CHARS always
returns 1.

Here are some examples:

CHARS {myf ile)
CHARS(nonfile)
CHARS{)

-> 42 /* perhaps */
-> e /* perhaps */
-> 1 /* perhaps */

11+-COMPARE(stringl,string2
L,padJ

returns 0 if the strings, string] and string2, are identical. Otherwise, returns· the
position of the first character that does not match. The shorter string is padded on
the right with pad if necessary. The default pad character is a blank.

Chapter 4. Functions 4-13

Functions

CONDITION

4-14 REXX Reference

Here are some examples:

COMPARE(1abc 1
,

1abc 1
)

COMPARE(1abc 1
,

1ak 1
)

COMPARE('ab 1
,

1ab 1
)

COMPARE('ab 1
,

1ab 1
,

1 1
)

COMPARE('ab 1
,

1ab 1
,

1x1
)

COMPARE('ab-- 1
,

1ab 1
,

1
-

1
)

->
->
->
->
->
->

e
2
e
e
3
5

11+-CONDITION(------ --------------_....
loptionj

returns the condition information associated with the current trapped condition.
(See Chapter 7, "Conditions and Condition Traps" on page 7-1 for a description of
condition traps.) You can request four pieces of information:

• The name of the current trapped condition
• Any descriptive string associated with that condition
• The instruction processed as a result of the condition trap (CALL or SIGNAL)
• The status of the trapped condition.

Request this information by using the following options. (Only the capitalized and
boldfaced letter is needed; all characters following it are ignored.)

Condition name

Description

Instruction

Status

returns the name of the current trapped condition.

returns any descriptive string associated with the current
trapped condition. See page 7-4 for the list of possible strings.
If no description is available, returns a null string.

returns either CALL or SIGNAL, the keyword for the instruction
processed when the current condition was trapped. This is the
default if you omit option.

returns the status of the current trapped condition. This can
change during processing, and is either:

ON - the condition is enabled

OFF - the condition is' disabled

DELAY - any new occurrence of the condition is delayed or
ignored.

If no condition has been trapped (that is, there is no current trapped condition), then
the CONDITION function returns a null string in all four cases.

COPIES

Here are some examples:

CONDITION(}
CONDITION {I c I)
CONDITION {I I I)
CONDITION {ID I)
CONDITION {Is I)

->
->
->
->
->

1 CALL 1

I FAILURE'
1 CALL 1

1 FailureTest 1

/* perhaps */

'OFF' /* perhaps */

Functions

Note: The CONDITION function returns condition information that is saved and
restored across subroutine calls (including those a CALL ON condition trap causes).
Therefore, once a subroutine invoked with CALL ON trapname has returned, the
current trapped condition reverts to the condition before the CALL took place.
CONDITION returns the values it returned before the condition was trapped.

11+-COPIES(string ,n)-------------------

returns n concatenated copies of string. n must be a nonnegative whole number.

Here are some examples:

COPIES{ 1 abc 1 ,3)
COPIES { 1 abc 1 ,0)

->
->

1 abcabcabc 1

11

C2D (Character to Decimal)

l

....--...._---C-2D_(_s-tr_z_·n_g __________________________ ~

L nJ
'

returns the decimal value of the binary representation of string. If the result cannot
be expressed as a whole number, an error results. That is, the result must not have
more digits than the current setting of NUMERIC DIGITS. If you specify n, it is
the length of the returned result. If you do not specify n, string is processed as an
unsigned binary number.

If string is null, returns 0.

Here are some examples:

C2D{ 1 09 1 X)
C2D{ 18l 1 X)
C2D{ I FF8l 1 X)
C2D{ •a 1

)

->
->
->
->

9
129

65409
97 /* ASCII *I

If you specify n, the string is taken as a signed number expressed in n characters.
The number is positive if the leftmost bit is off, and negative, in two's complement
notation, if the leftmost bit is on. The string is padded on the left with 100 1 x
characters (note, not "sign-extended"), or truncated on the left ton characters. If n
is e, C2D always returns e.

Chapter 4. Functions 4-15

Functions

Here are some examples:

C2D(' 81' X, 1) -> -127
C20('81'X,2) -> 129
C2D(I FF81 'X,2) -> -127
C2D(I FF81'x,1) -> -127
C2D(I FF7F' x, 1) -> 127
C2D('F081'X,2) -> -3967
C2D(I F081'X,1) -> -127
C2D('0031 'X,0) -> 0

Implementation maximum: The input string cannot have more than 250 characters
that are significant in forming the final result. Leading sign characters (100 1 x and
1FF 1 x) do not count towards this total.

C2X (Character.to Hexadecimal)
l~~..._~-C-2X_(_s-tr-i-ng-)~~~~~~~~~~~~~~~~~~~~~---.

DATATYPE

4-16 REXX Reference

returns a string, in character format, that represents string converted to hexadecimal.
The returned string contains twice as many bytes as the input string. On an ASCII
system, C2X(l) returns 31 because the ASCII representation of the character 1 is
131 'X.

The string returned uses uppercase alphabetics for the values A - F and does not
include blanks. If string is null, returns a null string. The string can be of any
length.

Here are some examples:

C2X (I 0123 IX)
C2X(I ZD8 1

)

->
->

10123 1 /* '30313233'X in ASCII */
'5A4438' /* '354134343338'X in ASCII */

11+-0ATATYPE(string
L,typeJ

returns NUM if you specify only string and if string is a valid REXX number (any
format) that can be added to 0 without error; returns CHAR if string is not a valid
number.

If you specify type, returns 1 if string matches the type; otherwise returns 0. If string
is null, returns 0 (except when type is X, which returns 1). The following are valid
types. (Only the capitalized and boldfaced letter is needed; all characters following it
are ignored.)

Alphanumeric returns 1 if string contains only characters from the ranges a - z,
A-Z, and 0-9.

Binary returns 1 if string contains only the characters 0 or 1 or both.

C returns 1 if string is a mixed SBCS/DBCS string.

Dbcs returns 1 if string is a pure DBCS string.

Lowercase returns 1 if string contains only characters from the range a - z.

DATE

Mixed case

Number

Symbol

Uppercase

Functions

returns 1 if string contains only characters from the ranges a - z
and A-Z.

returns 1 if DATATYPE(string) would return NUM.

returns 1 if string contains only characters that are valid in REXX
symbols (see page 2-4). Note that both uppercase and lowercase
alphabetics are permitted.

returns 1 if string contains only characters from the range A - Z.

Whole number returns 1 if string is a REXX whole number under the current
setting of NUMERIC DIGITS.

heXadecimal returns 1 if string contains only characters from the ranges a- f,
A- F, 0-9, and blank (as long as blanks appear only between pairs
of hexadecimal characters). Also returns 1 if string is a null string.

Here are some examples:

DATATYPE(I 12 I) -> 1 NUM 1

DATATYPE(I I) -> 'CHAR'
DATATYPE('123*') -> 'CHAR'
DATATYPE(1 12.3 1

,
1 N1

) -> 1
DATATYPE('l2.3 1

,
1W1

) -> e
DATATYPE(1 Fred 1

,
1M1

) -> 1
DATATYPE('','M') -> e
DATATYPE('Fred','L') -> e
DATATYPE('?20K','s') -> 1
DATATYPE('BCd3','X') -> 1
DATATYPE('BC d3 1

,
1X1

) -> 1

Note: The DATATYPE function tests the meaning or type of characters in a string,
independent of the encoding of those characters (for example, ASCII or EBCDIC
and so forth).

returns, by default, the local date in the format: dd mon yyyy (for example, 27 Aug
1988), with no leading zero or blank on the day. For mon, the first three characters
of the English name of the month are used.

You can use the following options to obtain specific formats. (Only the capitalized
and boldfaced letter is needed; all characters following it are ignored.)

Base returns the number of complete days (that is, not including the current
day) since and including the base date, January 1, 0001, in the format:
dddddd (no leading zeros). The expression DATE(' 8 1

) //7 returns a
number in the range 0 - 6, where 0 is Monday and 6 is Sunday.

Note: The origin of January 1, 0001 is based on the Gregorian
calendar. Though this calendar did not exist prior to 1582, this base
date is calculated as if it did: 365 days per year, an extra day every
four years except century years, and leap centuries if the century is
divisible by 400. It does not take into account any errors in the
calendar system that created the Gregorian calendar originally.

Chapter 4. Functions 4-17

Functions

Days returns the number of days, including the current day, so far in this
year in the format: ddd (no leading zeros)

European returns date in the format: dd/mm/yy

Language returns date in an implementation- and language-dependent, or local,
date format. On the OS/2 operating system, the Language format is
dd Month yyyy. The name of the month will be according to the
national language installed on the system. If no local date format is
available, the default format is returned.

Month

Normal

Ordered

Standard

Usa

Weekday

Note: This format is intended to be used as a whole; REXX programs
should not make any assumptions about the form or content of the
returned string.

returns full English name of the current month, for example, August

returns date in the format: dd mon yyyy. This is the default.

returns date in the format: yy/mm/dd (suitable for sorting, and so
forth)

returns date in the format: yyyymmdd (suitable for sorting, and so
forth)

returns date in the format: mm/dd/yy

returns the English name for the day of the week, in mixed case. For
example, Tuesday.

Here are some examples:

DATE{) -> '27 Aug 1988' /* perhaps */
DATE('B') -> 725975
DATE('D') -> 240
DATE('E') -> '27/08/88'
DATE(IL I) -> '27 August 1988'
DATE(1M1

) -> 'August'
DATE(IN I) -> 1 27 Aug 1988'
DATE(101

) -> 188/08/27 1

DATE(Is I) -> 1 19880827 1

DATE(I u I) -> '08/27/88'
DATE('W') -> 'Saturday'

Note: The first call to DATE or TIME in one clause causes a time stamp to be
made that is then used for all calls to these functions in that clause. Therefore,
multiple calls to any of the DATE or TIME functions or both in a single expression
or clause are guaranteed to be consistent with each other.

DBCS (Double-Byte Character Set Functions)

4-18 REXX Reference

The following are all DBCS processing functions. See page B-1.

DBADJUST
DBBRACKET
DBCENTER
DBLEFT

DBRIGHT
DBRLEFT
DBRRIGHT
DBTODBCS

DBTOSBCS
DBUNBRACKET
DBVALIDATE
DBWIDTH

Functions

DELSTR (Delete String)

I
~ ~~-~~D-EL_S_T_R-(s-t-rz-.n-g-,n~-~~~~-)~~~~~~~~~~~~~~--.

. L, zengt,,J

returns string after deleting length characters beginning at the nth character. If you
omit length, it defaults to the remaining characters in string. If n is greater than the
length of string, returns string unchanged. n must be a positive whole number.

Here are some examples:

DELSTR(•abed• ,3)
DELSTR('abcde',3,2)
DELSTR('abcde',6)

->
->
->

'ab'
'abe'
'abcde'

DELWORD (Delete Word)

DIGITS

DIRECTORY
(Non-SAA Function)

~~~~~~~~~~~~~~~~~~
~~~~~~~~~~---.. 

I
--OELWORD(string,n

. L,zengthj

returns string after deleting length blank-delimited words, beginning at the nth word.
If you omit length, it defaults to the remaining words in string. n must be a positive
whole number. If n is greater than the number of words in string, returns string
unchanged. The string deleted includes any blanks following the final word
involved.

Here are some examples:

DELWORD('Now is the time',2,2) -> 'Now time'
DELWORD('Now is the time ',3) -> 'Now is 1

DELWORD('Now is the time',5) -> 'Now is the time'

111+-DIGITS()----------------------i~

returns the current setting of NUMERIC DIGITS.

Here is an example:

DIGITS() -> 9 /* by default */

DIRECTORY is a non-SAA built-in function provided by the OS/2 operating
system.

111+-directory(
L._newdirectory_J

Chapter 4. Functions 4-19

Functions

returns the current directory, first changing it to newdirectory if an argument is
supplied and the named directory exists. If new directory is not specified, the name
of the current directory is returned. Otherwise, an attempt is made to change to the
specified newdirectory. If successful, the name of the newdirectory is returned; if an
error occurred, null is returned.

The return string includes a drive letter prefix as the first two characters of the
directory name. Specifying a drive letter prefix as part of newdirectory causes the
specified drive to become the current drive. If a drive letter is not specified, then the
current drive remains unchanged.

For example, the following program fragment saves the current directory and
switches to a new directory; it performs an operation there, and then returns to the
former directory.

/* get current directory */
curdir = directory()
/* go play a game */
newdir = directory("d:\usr\games")
if newdir = 11d:/usr/games 11 then

do
fortune /* tell a fortune */

/* return to former directory */
call directory curdir
end

else
say 'Can 11 t find \usr\games'

D2C (Decimal to Character)

4-20 REXX Reference

I
~ ~~~~2-C-(w_h_o-le_n_u-mb_e_,~-~~~~~~~~~~~~~~~~~~~----.

- L,,,J

returns a string, in character format, that is the ASCII representation of the decimal
number. If you specify n, it is the length of the final result in characters. If you
specify n, leading blanks are added to the output character.

If you omit n, wholenumber must be a nonnegative number and the result length is as
needed; therefore, the returned result has no leading 100 1 x characters.

Here are some examples:

D2C(65) -> 'A' /* 141 1x is an ASCII 1A1 */
D2C(65,1) -> 'A'
D2C(65,2) -> I A'
D2C(65,5) -> A'
D2C(109) -> 'm' /* 16D 1x is an ASCII 1m1 */
D2C(-109,1) -> •a• /* 193 1x is an ASCII 161 */
D2C(76,2) -> I L' /* 1 4C 1x is an ASCII 1 L 1 */
D2C(-188,2) -> I L'

Implementation maximum: The output string may not have more than 250
significant characters, though a longer result is possible if it has additional leading
sign characters (100 1 x and 1 FF 1 x).

Functions

D2X (Decimal to Hexadecimal)

ENDLOCAL
(Non-SAA Function)

I
~ ~..--0~~2-X-(~-h-o-le-n-um_b_e_i~~-~~~~~~~~~~--~~~----~~-

. L.~

returns a string, in character format, that represents wholenumber, a decimal number,
converted to hexadecimal. The returned string uses uppercase alphabetics for the
values A - F and does not include blanks.

If you specify n, it is the length of the final result in characters. If you specify n,
after conversion the input string is sign-extended to the required length. If the
number is too big to fit into n characters, it is truncated on the left.

If you omit n, wholenumber must be a nonnegative number and the returned result
has no leading 0 characters.

Here are some examples:

D2X(9) -> 191
D2X(l29) -> 181 1
D2X(129, 1) -> • 1 •
D2X(129,2) -> 181 1
D2X(129,4) -> '(:)(:)81'
D2X(257,2) -> '(:)1'
D2X(-127,2) -> 181'
D2X(-127,4) -> 1FF8l 1
D2X(12,C:>) -> 11

Implementation maximum: The output string may not have more than 500
significant hexadecimal characters, though a longer result is possible if it has
additional leading sign characters (0 and F).

ENDLOCAL is a non-SAA built-in function provided by the OS/2 operating system.

111+-ENDLOCAL()----------------------11~

restores the drive, directory, and environment variables in effect before the last
SETLOCAL function (see page 4-32) was executed. If ENDLOCAL is not included
in a procedure, then the initial environment saved by SETLOCAL will be restored
upon exiting the procedure.

END LOCAL returns a value of 1 if the initial environment is successfully restored
and a value of (:) if no SETLOCAL has been issued or if the action is otherwise
unsuccessful.

Note: Unlike their counterparts in the OS/2 batch language (the Setlocal and
Endlocal statements), the REXX SETLOCAL and ENDLOCAL functions can be
nested.

Here is an example:

Chapter 4. Functions 4-21

Functions

ERRORTEX1"

FILESPEC
(Non-SAA Function)

4-22 REXX Reference

n = SETLOCAL() /* saves the current environment

/* The program can now change environment */
/* variables (with the VALUE function) and */
/* then work in that changed environment. */

*/

n = END LOCAL() /* restores the initial environment */

For additional examples, see "SETLOCAL" on page 4-32.

11+-ERRORTEXT(n)-------------------

returns the REXX error message associated with error number n. The n must be in
the range 0 - 99, and any other value is an error. Returns the null string if n is in
the allowed range but is not a defined REXX error number. See Appendix A,
"Error Numbers and Messages" on page A-1 for a complete description of error
numbers and messages.

Here are some examples:

ERRORTEXT(16)
ERRORTEXT(60)

->
->

1 Label not found 1

11

FILESPEC is a non-SAA built-in function provided by the OS/2 operating system.

11+-FI LESPEC(option,/i lespec)---------------__...,.

returns a selected element of filespec, a given file specification, identified by one of
the following strings for option:

Drive The drive letter of the given filespec.

Path The directory path of the given filespec.

Name The filename of the given filespec.

If the requested string is not found, then FILESPEC returns a null string (1111
).

Note: Only the the initial letter of option is needed.

Here are some examples:

thisfile = 11 C:\OS2\UTIL\EXAMPLE.EXP
say FILESPEC(11 drive 11 ,thisfile) /* says 11 C: 11 */
say FILESPEC(11 path 11 ,thisfile) /* says 11 \052\UTIL\ 11 */
say FILESPEC(11 name 11 ,thisfile) /* says 11 EXAMPLE.EXP */

part = 11 name 11

say FILESPEC(part,thisfile) /* says 11 EXAMPLE. EXP * /

FORM

FORMAT

Functions

returns the current setting of NUMERIC FORM.

Here is an example:

FORM() -> 'SCIENTIFIC' /* by default */

~FORMAT(numbe,.._-----------------------

....

returns number, rounded and formatted.

The number is first rounded and formatted according to standard REXX rules, just
as though the operation number+0 had been carried out. The result is precisely that
of this operation if you specify only number. If you specify any other options, the
number is formatted as follows.

The before and after options describe how many characters are used for the integer
and decimal parts of the result, respectively. If you omit either or both of these, the
number of characters used for that part is as needed.

If before is not large enough to contain the integer part of the number (plus the sign
for a negative number), an error results. If before is too large, the number is padded
on the left with blanks. If after is not the same size as the decimal part of the
number, the number is rounded (or extended with zeros) to fit. Specifying 0 causes
the number to be rounded to an integer.

Here are some examples:

FORMAT (I 3 I '4) -> 3'
FORMAT('l.73',4,0) -> 2'
FORMAT('l.73',4,3) -> 1.730'
FORMAT('-.76',4,1) -> -0.8'
FORMAT (I 3 • 03 I '4) -> 3.03'
FORMAT(' - 12.73',,4) -> '-12.7300'
FORMAT(' - 12.73') -> '-12.73'
FORMAT c • 0. 000 •) -> '0'

The first three arguments are as described above. In addition, expp and expt control
the exponent part of the result: expp sets the number of places for the exponent
part; the default is to use as many as needed. The expt sets the trigger point for use
of exponential notation. If the number of places needed for the integer part exceeds
expt, exponential notation is used. Likewise, exponential notation is used if the
number of places needed for the decimal part exceeds twice expt. The default is the
current setting of NUMERIC DIGITS. If expt is 0, exponential notation is always
used unless the exponent would be 0. If expp is 0, no exponent is supplied, and the

Chapter 4. Functions 4-23

Functions

FUZZ

INSERT

number is expressed in simple form with added zeros as necessary (this overrides a 0
value of expt if necessary). Otherwise, if expp is not large enough to contain the
exponent, an error results. If the exponent would be 0 in this case (a nonzero expp),
then expp + 2 blanks are supplied for the exponent part of the result.

Here are some examples:

FORMAT(1 12345. 73 1
,, ,2,2)

FORMAT(1 12345. 73 1
, ,3, ,0)

FORMAT('l.234573 1 ,,3,,0)
FORMAT(112345.73 1 ,,,3,6)
FORMAT(1 1234567e5 1 ,,3,0)

->
->
->
->
->

1 1.234573.E+04 1

1 1.235E+4 1

1 1.235 1

112345.73 1

1 123456700000.000 1

111+-FUZZ()--------------------__.....

returns the current setting of NUMERIC FUZZ.

Here is an example:

FUZZ() -> /* by default */

1+--INSERT(new,target [
,~L_n_J....-...... L-,~:~~~~~:~:~~~::

lzength] l ,pad]

....

inserts the string new, padded to length length, into the string target after the nth
character. If specified, n must be a nonnegative whole number. If n is greater than
the length of the target string, padding is added before the string new also. The
default pad character is a blank. The default value for n is 0, which means insert
before the beginning of the string.

Here are some examples:

INSERT(' ','abcdef',3)
INSERT(1123 1

,·
1 abc 1 ,5,-6)

INSERT (1123 1
, 'abc' ,5,6, • +•)

INSERT(1 123 1
., • abc •)

lNS ERT(1 123 1
,

1 abc • ,, 5, • - •)

->
->
->
->
->

1-abc def'
'abc 123
1 abc++l23+++'
1 123abc 1

1 123--abc'

LASTPOS (Last . Position)

4-24 REXX ·Reference

111+-LASTPOS(needle,haystack
L,startj

returns the position of the last occurrence of one string, needle, in another, haystack.
(See also the POS function.) Returns 0 if needle is the null string or is not found.
By default the search starts at the last character of haystack and scans backward.
You can override this by specifying start, the point at which the backward ·scan

LEFT

LENGTH

Functions

starts. start must be a positive whole number and defaults to LENGTH (haystack) if
larger than that value or omitted.

Here are some examples:

LASTPOS(' ','abc def ghi 1
)

LASTPOS(' ','abcdefghi')
LASTPOS('xy','efgxyz')
LASTPOS(' 1

,
1abc def ghi',7)

->
->
->
->

8
e
4
4

11+-LEFT(string, length
L,pa~

returns a string of length length, containing the leftmost length characters of string.
The string returned is padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank. length must be nonnegative. The
LEFT function is exactly equivalent to:

11+-SUBSTR(string,l ,length [J)
,pad

Here are some examples:

LEFT(' abc d' ,8)
LEFT('abc d',8, 1

•
1

)

LEFT('abc def',7)

->
->
->

'abc d
'abc d ..• '
'abc de'

11+-LENGTH(string)---------------------

returns the length of string.

Here are some examples:

LENGTH('abcdefgh')
LENGTH('abc defg')
LENGTH(I I)

->
->
->

8
8
e

LINEIN (Line Input)

name l,--.......----.---.----......... I
~ -.,.._~-L-IN_EI_N_(~l~-J~~~~~~~~~~~~~~~~~

[line~ l,count~

returns count lines read from the character input stream name. count must be 1 ore.
(See Chapter 8, "Input and Output Streams" on page 8-1 for a discussion of REXX
input and output.) See page 8-1 for a list of device names. If you omit name, the
line is read from the OS/2 default input stream, STDIN. The default count is 1.

For persistent streams, a read position is maintained for each stream. On OS/2, this
is the same as the write position. Any read from the stream starts at the current

Chapter 4. Functions 4-25

Functions

4-26 REXX Reference

read position by default. (Under certain circumstances, a call to LINEIN returns a
partial line. This can happen if the stream has already been read with the CHARIN
function, and part but not all of a line (and its termination, if any) has already been
read.) When the read is completed, the read position is moved to the beginning of
the next line. The read position may be set to the beginning of the stream by giving
line a value of 1-the only valid value for line on OS/2.

If you give a count of e, then no characters are read and the null string is returned.

For transient streams, if a complete line is not available in the stream, then
execution of the program normally stops until the line is complete. If, however, it is
impossible for a line to be completed due to an error or other problem, the
NOTREADY condition is raised (see "Errors During Input and Output" on
page 8-6) and LINEIN returns whatever characters are available.

Here are some examples:

LINEIN() /* Reads one line from the */

myfile = 'ANYFILE.TXT'

/* default input stream; */
/* normally this is an entry */
/* typed at the keyboard */

LINEIN(myfile) -> 'Current line' /* Reads one line from */
/* ANYFILE.TXT, beginning */
/* at the current read */
/*position. (If first call, */
/* file is opened and the */
/* first line is read.) */

LINEIN(myfile,1,1) -> 'first line' /* Opens and reads the first */
/*line of ANYFILE.TXT (if */
/* the file is already open, */
/*reads first line); sets */
/* read position on the */
/* second line. */

LINEIN(myfile,1,0) -> '' /*No read; opens ANYFILE.TXT */
/* (if file is already open, */
/* sets the read position to */
/* the first line). */

LINEIN(myfile,,0) -> '' /*No read; opens ANYFILE.TXT */
/* (no action if the file is */
/*already open). */

LINEIN("QUEUE:") -> 'Queue line' /*Read a line from the queue; */
/* If the queue is empty, the */
/* program waits until a line */
/* is put on the queue. */

Note: If the intention is to read complete lines from the default input stream, as in
a simple dialogue with a user, use the PULL or PARSE PULL instructions instead
for simplicity. The PARSE LINEIN instruction is also useful in certain cases.

Functions

LINEOUT (Line Output)

Lnamej L,--.-----------.__.

1

..---.._--L-I-NE-O-UT-(---.

~stringmJ ~,linemJ

returns the count of lines remaining after attempting to write string to the character
output stream name. (See Chapter 8, "Input and Output Streams" on page 8-1 for
a discussion of RE:XX input and output.) The count is either 0 (meaning the line
was successfully written) or 1 (meaning that an error occurred while writing the line).
string can be the null string, in which case only the action associated with completing
a line is taken. LINEOUT adds a line-feed and a carriage-return character to the
end of string.

If you omit name, the line is written to the OS/2 default output stream, STDOUT
(normally the display).

For persistent streams, a write position is maintained for each stream. On the OS/2
operating system, this is the same as the read position. Any write to the stream
starts at the current write position by default. (Under certain circumstances the
characters written by a call to LINEOUT may be added to a partial line previously
written to the stream with the CHAROUT routine. LINEOUT conceptually
terminates a line at the end of each call.) When the write is completed, the write
position is set to the beginning of line following the one just written. The initial
write position is the end of the stream, so that calls to LINEOUT normally append
lines to the end of the stream.

You can set the write position to the first character of a persistent stream by giving a
value of 1 (the only valid value) for line.

You can omit the string for persistent streams. If you specify line, the write position
is set to the start of the line that was given, nothing is written to the stream, and 0 is
returned. If you specify neither line nor string, the write position is set to the end of
the stream. This use of LINEOUT has the effect of closing the stream in
environments (such as the OS/2 operating system) that support this concept. Again,
0 is returned.

Execution of the program normally stops until the output operation is effectively
complete. If, however, it is impossible for a line to be written, the NOTREADY
condition is raised (see "Errors During Input and Output" on page 8-6), and
LINEOUT returns a result of 1 (that is, the residual count of lines written).

Here are some examples:

Chapter 4. Functions 4-27

Functions

LINEOUT(,'Display this')

myfile = 1ANYFILE.TXT 1

LINEOUT(myfile,'A new line')

LINEOUT(myfile,'A new start',1)

LINEOUT(myfile,,1)

LINEOUT(myfile)

/* Writes string to the default */
/* output stream (normally, the */
/*display); returns 0 if */
/* successful *I

/*Opens the file ANYFILE.TXT and */
/* appends the string to the end. */
/* If the file is already open, */
/* the string is written at the */
/* current write position. */
/*Returns 0 if successful. */

/* Opens the file (if not already */
/* open); overwrites first line */
/*with a new line. */
/*Returns 0 if successful. */

/* Opens the file (if not already */
/* open). No write; sets write */
/* position at first character. */

/* Closes ANYFILE.TXT */
LINEOUT is often most useful when called as a subroutine. The return value is
then available in the variable RESULT. For example:

Call LINEOUT 'A:rexx.bat','Shell',1
Call LINEOUT ,'Hello'

Note: If the lines are to be written to the default output stream without the
possibility of error, use the SAY instruction instead.

LINES (Lines Remaining)

4-28 REXX Reference

~I --...._--L-1N_E_sc--------->-----------------------------------.

- Ln~

returns 1 if any data remains between the current read position and the end of the
character input stream name; returns 0 if no data remains. In effect, LINES reports
whether a read action that CHARIN (see page 4-11) or LINEIN (see page 4-25)
performs will succeed. (See Chapter 8, "Input and Output Streams" on page 8-1 for
a discussion of REXX input and output.)

See page 8-1 for a list of device names. If you omit name, then the presence or
absence of data in the default input stream (STDIN:) is returned. For OS/2 devices,
LINES always returns 1. For QUEUE: the actual number of lines is returned.

Here are some examples:

LINES(myfile) -> 0

LINES() -> 1

LINES("COMl: 11
) -> 1

/* at end of the file */

/* data remains in the */
/* default input stream */
/* STDIN: */

/* An OS/2 device name */
/*always returns 1 11 */

MAX (Maximum)

MIN (Minimum)

OVERLAY

Functions

Note: The CHARS function returns the number of characters in a persistent stream
or the presence of data in a transient stream.

1--~---A-X_(_£--~u-mb_e_1_I __) ______________________________ ~

returns the largest number from the list specified, formatted according to the current
setting of NUMERIC DIGITS.

Here are some examples:

MAX(12,6,7,9) -> 12
MAX(17 .3,19,17 .03) -> 19
MAX(-7,-3,-4.3) -> -3
MAX(l,2,3,4,5,6,7,8,9,10,ll,12,13,14,15,16,17,18,19,MAX(20,21)) -> 21

Implementation maximum: You can specify up to 20 numbers, and can nest calls to
MAX if more arguments are needed.

~IN(_f"~~)---------------------------1~

returns the smallest number from the list specified, formatted according to the
current setting of NUMERIC DIGITS.

Here .are some examples:

MlN(12,6,7 ,9)
MIN(17.3,19,17.03)
MlN(-7 ,-3,-4.3)
MIN(21,20,19,18,17,16,15,l4,13,12,ll,10,9,8,7,6,5,4,3,MIN(2,1))

->
->
->
->

6
17.03
-7
1

Implementation maximum: You can specify up to 20 numbers, and can nest calls to
MIN if more arguments are· needed.

11+-()VERLAY (new, target [---.-......-~---------...----'
, LnJ L, _________ _____.

lzength] l ,pad]

returns the string target, which, starting at the nth .character, is overlaid with the
string new, padded or truncated to length length. If you specify length, it must be
positive or 0. The default value for length is the length of new. If n is greater than
the length of the target string, padding is added before the new string. The default
pad character is a blank, and the default value for n is 1. If you specify n, it must be
a positive whole number.

Chapter 4. Functions 4-29

Functions

POS (Position)

QUEUED

RANDOM

4-30 REXX Reference

Here are some examples:

OVERLAY(' ','abcdef',3)
OVERLAY('.','abcdef',3,2)
OVERLAY('qq 1

,
1abcd 1

)

OVERLAY(1qq 1
,

1abcd 1 ,4)
OVERLAY(1 123 1

,
1abc 1 ,5,6, 1+1

)

->
->
->
->
->

..-pos(needle,haystack
L,stortj

'ab def'
'ab. ef'
'qqcd'
'abcqq'
'abc+123+++'

returns the position of one string, needle, in another, haystack. (See also the
LASTPOS function.) Returns 0 if needle is the null string or is not found. By
default the search starts at the first character of haystack (that is, the value of start is
1). You can override this by specifying start (which must be a positive whole
number), the point at which the search starts.

Here are some examples:

POS (1day 1
, 'Saturday•)

POS('x','abc def ghi')
POS(' 1

,
1abc def ghi')

POS(' ','abc def ghi',5)

->
->
->
->

6
a
4
8

~UEUED()-----------------__.....

returns the number of lines remaining in the external data queue at the time when
the function is invoked. (See Chapter 8, "Input and Output Streams" on page 8-1
for a discussion of REXX input and output.)

Here is an example:

QUEUED() -> 5 /* Perhaps */

..-RANDOM(---..----------------- ________,..

f-maxt;, ___ i-r-J.....---L--J___. ~----' ~ax ,seed

returns a quasi-random nonnegative whole number in the range min to max
inclusive. If you specify max or min or both, max minus min cannot exceed 100000.
min and max default to a and 999, respectively. To start a repeatable sequence of
results, use a specific seed as the third argument, as described in Note 1 on
page 4-31. This seed must be a whole number.

Here are some examples:

REVERSE

RIGHT

Functions

RANDOM() -> 305
RANDOM(5,8) -> 7
RANDOM(2) -> (:) /* (:) to 2 */
RANDOM(2,) -> 747 /* 2 to 999 */
RANDOM(,,1983) -> 123 /* reproducible */

Notes:

1. To obtain a- predictable sequence of quasi-random numbers, use RANDOM a
number of times, but specify a seed only the first time. For example, to simulate
40 throws of a 6-sided, unbiased die:

sequence = RANDOM(l,6,12345) /* any number would */
/* do for a seed */

do 39
sequence = sequence RANDOM(l,6)
end

say sequence

The numbers are generated mathematically, using the initial seed, so that as far
as possible they appear to be random. Running the program again produces the
same sequence; using a different initial seed almost certainly produces a different
sequence. If you do not supply a seed, the first time RANDOM is called, one is
randomly assigned; your program usually gives different results each time it is
run.

2. The random number generator is global for an entire program; the current seed
is not saved across internal routine calls.

3. The actual random number generator used may differ from implementation to
implementation.

.,._REVERSE(string)-------------------

returns string, swapped end for end.

Here are some examples:

REVERSE (• ABc. 1
)

REVERSE (I XYZ I)
->
->

1 .cBA'
I ZYX'

.,._RIGHT (st ring, length----..------.---)-------------..,..
L,padJ

returns a string of length length containing the rightmost length characters of string.
The string returned is padded with pad characters (or truncated) on the left as
needed. The default pad character is a blank. length must be nonnegative.

Here are some examples:

RIGHT('abc d',8)
RIGHT('abc def',5)
RIGHT(• 12 • , 5, • e · >

->
->
->

1 abc d1

•c def'
•eee12·

Chapter 4. Functions 4-31

Functions

SETLOCAL
(Non-SAA Function)

SIGN

4•32 · REXX Reference

SETLOCAL is a non-SAA built-in function provided by the OS/2 operating system .

..--sETLOCAL()-------------------.....

SETLOCAL saves the current working drive and directory and the current values of
the OS/2 environment variables that are local to the current process.

For example, SETLOCAL can be used to save the current environment before
changing selected settings with the VALUE function (see page 4~41). To restore the
drive, directory, and environment, use the ENDLOCAL function (see page 4-21).

SETLOCAL returns a value of 1 if the initial drive, directory and environment are
successfully saved, a value of 0 if unsuccessful. If SETLOCAL is not followed by an
ENDLOCAL function in a procedure, then the initial environment saved by
SETLOCAL will be restored upon exiting the procedure.

The following is an example:

/* current path is 'C:\PROJ\FILES' */
n = SETLOCAL(} /* saves all environment settings */

/* Now use the VALUE function to change the PATH variable. */
p = VALUE('Path','C:\PROC\PROGRAMS'.'OS2ENVIRONMENT'}

/* Programs in directory C:\PROC\PROGRAMS may now be run */

n = ENDLOCAL() /* restores initial environment (including */
/* the changed PATH variable, which is */
/* once again 'C:\PROJ\FILES'} */

Note: Unlike their counterparts in the OS/2 batch language (the Setlocal and
Endlocal statements), the REXX SETLOCAL and ENDLOCAL functions can be
nested.

..--sIGN(number}--------------------

returns a number that indicates the sign of number. number is first rounded
according to standard REXX rules, just as though the operation number+0 had been
carried out. Returns -1 if number is less than 0; returns 0 if it is 0; and returns 1 if it
is greater than 0.

Here are some examples:

SIGN(' 12.3'}
SIGN(' -0.307'}
SIGN(0.0}

->
->
->

1
-1
0

SOUR CELINE

SPACE

STREAM

Functions

....-souRCELINE(------ ---------------­
LnJ

returns the line number of the final line in the source file if you omit n, or e if no
source lines are available. If you specify n, returns the nth line in the source file if
available at the time of execution; otherwise, returns the null string. If specified, n
must be a positive whole number and must not exceed the number that a call to
SOURCELINE with no arguments returns.

Here are some examples:

-> 10 SOURCELINE()
SOURCELINE (1) -> 1 /* This is a lG-line REXX program */ 1

....-sPACE (string [________ __.

' ln] l,pad]

returns the blank-delimited words in string with n pad characters between each
word. If you specify n, it must be nonnegative. If it is e, all blanks are removed.
Leading and trailing blanks are always removed. The default for n is 1, and the
default pad character is a blank.

Here are some examples:

SPACE('abc def ')
SPACE(' abc def',3)
SPACE('abc def 1 ,l)
SPACE(1abc def ',0)
SPACE(1 abc def ',2, 1+ 1

)

->
->
->
->
->

1abc def'
'abc def'
1abc def'
1abcdef'
1abc++def 1

....-sTREAM(name----..----------------r-------......
State,----------.

CoJT111and~,~streamconrnand

Description-------'

returns a string describing the state of, or the result of an operation upon, the
character stream name. (See Chapter 8, "Input and Output Streams" on page 8-1
for a discussion of REXX input and output.) This function is used to request
information on the state of an input or output stream, or to carry out some specific
operation on the stream.

The first argument, name, specifies the stream to be accessed. The second argument
can be one of the following strings (of which only the first letter is needed),
describing the action to be carried out:

Chapter 4. Functions 4-33

Functions

Stream Commands

4-34 REXX Reference

Conmand an operation (specified by the streamcommand given as the third
argument) is applied to the selected input or output stream. The
string that is returned depends on the command performed and
may be the null string. The possible input strings for the
streamcommand argument are described below.

Description returns the current state of the specified stream. It is identical to
the State operation, except that the returned string is followed by a
colon and, if available, additional information about ERROR or
NOTREADY states.

State returns a string that indicates the current state of the specified
stream. This is the default operation.

When used with the State option, STREAM returns one of the following strings:

ERROR

NOTREADY

READY

UNKNOWN

The stream has been subject to an erroneous
operation (possibly during input, output, or
through the STREAM function-see "Errors
During Input and Output" on page 8-6). You may
be able to obtain additional information about the
error by invoking the STREAM function with a
request for the description.

The stream is known to be in a state such that
normal input or output operations attempted upon
it would raise the NOTREADY condition. (See
page 8-6.) For example, a simple input stream may
have a defined length; an attempt to read that
stream (with the CHARIN or LINEIN built-in
functions, perhaps) beyond that limit may make
the stream unavailable until the stream has been
closed (for example, with LINEIN(name)) and then
reopened.

The stream is known to be in a state such that
normal input or output operations may be
attempted (this is the usual state for a stream,
though it does not guarantee that any particular
operation will succeed).

The state of the stream is unknown. In OS/2
implementations, this generally means that the
stream is closed (or has not yet been opened).

Note: The state (and operation) of an input or output stream is global to a REXX
program; it is not saved and restored across internal function and subroutine calls
(including those a CALL ON condition trap causes).

The following stream commands are used to:

Open a stream for reading or writing

Close a stream at the end of an operation

Position the read or write position within a persistent stream (for example, a file)

Get information about a stream (its existence, size, and last edit date).

Functions

The streamcommand argument must be used when - and only when - you select the
operation C (command). The syntax is:

111+-STREAM(name, 'C' ,streamcolllTland}-----------------...

In this form, the STREAM function itself returns a string corresponding to the given
streamcommand if the command is successful. If the command is unsuccessful,
STREAM returns an error message string in the same form as that supplied by the
"D" (Description) operation.

For most error conditions, the additional information is in the form of a numeric
return code. These return codes are defined and set by the OS/2 file system. For
information on the meaning of specific codes see the OS/2 Command Reference.

Command strings: The argument streamcommand can be any expression that
REXX evaluates as one of the following command strings:

'OPEN'

'CLOSE'

'SEEK offset '

opens the named stream. The default for 'OPEN' is to open
the stream for both reading and writing data. To specify
whether name is only to be read or only to be written to, add
the word 'READ' or 'WRITE' to the command string.

The STREAM function itself returns 'READY' if the named
strea is successfully opened or an appropriate error message if
unsuccessful.

Examples:

stream(strout,'c','open'}
stream(strout,'c','open write'}
stream(strinp,'c','open read'}

closes the named stream. The STREAM function itself
returns 'READY' if the named stream is successfully closed
or an appropriate error message otherwise. If an attempt is
made to close an unopened file, then STREAM returns a null
string (1111

).

Example:

stream('STRM.TXT','c','close'}

sets the read or write position a given number (offset) within
a persistent stream.

Note: On the OS/2 operating system, the read and write
positions are the same. (See page 8-1 for a discussion of read
and write positions in a persistent stream.) To use this
command, the named stream must first be opened (with the
'OPEN' stream command, described previously). The offset
number can be preceded by one of the following characters:

= explicitly specifies the offset from the beginning of the
stream. This is the default if no prefix is supplied.

< specifies offset from the end of the stream.

+ specifies offset forward from the current read or write
position.

specifies offset backward from the current read or write
position.

Chapter 4. Functions 4-35

Functions

STRIP

4-36 REXX Reference

The STREAM function itself returns the new position in the
stream if the read or write position is successfully located or
an appropriate error message otherwise.

Examples:

stream(name, 1 c 1
,

1 seek =2')
stream(name, 1 c 1

,
1 seek +15')

stream(name, 1 c 1
,

1 seek -7')
fromend = 125
stream(name, 1 c 1

,
1 seek <'fromend)

Used with these stream commands, the STREAM function returns specific
information about a stream

'QUERY EXISTS'

'QUERY SIZE'

'QUERY DATETIME'

returns the full path specification of the named stream, if it
exists or a null string otherwise.

stream(' •• \ file. txt', 'c', 'query exists')

A sample output might be:

C:\CONFIG.SYS

returns the size in bytes of a persistent stream.

stream(1
•• \file.txt 1

,
1 c 1

,
1query size')

A sample output might be:

1305

returns the date and time stamps of a stream.

stream(1
•• \file.txt 1

,
1 c 1

,
1query datetime')

A sample output might be:

12-11-91 03:29:12

11+-STRI P(string---......-------------..-- ---------
l ~---...----.-~

' [option] l,chaTJ

returns string with leading or trailing characters or both removed, based on the
option you specify. The following are valid options. (Only the capitalized and
boldfaced letter is needed; all characters following it are ignored.)

Both removes both leading and trailing characters from string. This is the
default.

Leading removes leading characters from string.

Trailing removes trailing characters from string.

The third argument, char, specifies the character to be removed, and the default is a
blank. If you specify char, it must be exactly one character long.

Functions

Here are some examples:

STRIP(I ab e I) -> 'ab e'
STRIP(I ab e I' IL I} -> 'ab e I
STRIP(I ab e It It I} -> I ab e'
STRIP(1 12.7000 1 ,,0) -> 1 12.7 1

STRIP(10012.700 1 ,,0} -> 1 12.7 1

SUBSTR (Substring)

SUB WORD

SYMBOL

.,..__SUBSTR(string,n L
' lzength] L,padJ

returns the substring of string that begins at the nth character and is of length length,
padded with pad if necessary. n must be a positive whole number. If n is greater
than LENGTH(string), then only pad characters are returned.

If you omit length, the. rest of the string is returned. The default pad character is a
blank.

Here are some examples:

SUBSTR(1 abe' ,2)
SUBSTR('abe',2,4}
SUBSTR('abe',2,6, 1

•
1

}

->
->
->

'be'
'be I

I be.••• I

Note: In some situations the positional (numeric) patterns of parsing templates are
more convenient for selecting substrings, especially if more than one substring is to
be extracted from a string.

.,..__SUBWORD(string ,n [J }
, length

returns the substring of string that starts at the nth word, and is of length length,
blank-delimited words. n must be a positive whole number. If you omit length, it
defaults to the number of remaining words in string. The returned string never has
leading or trailing blanks, but includes all blanks between the selected words.

Here are some examples:

SUBWORD('Now is the time',2,2}
SUBWORO('Now is the time',3}
SUBWORO('Now is the time',5)

->
->
->

1 is the'
'the time'
11

.,..__SYMBOL(name)--------------------+4

returns the state of the symbol named by name. Returns BAD if name is not a valid
REXX symbol. Returns VAR if it is the name of a variable (that is, a symbol that has

Chapter 4. Functions 4-37

Functions

TIME

4-38 REXX Reference

been assigned a value). Otherwise returns LIT, indicating that it is either a constant
symbol or a symbol that has not yet been assigned a value (that is, a literal).

As with symbols in REXX expressions, lowercase characters in name are translated
to uppercase and substitution in a compound name occurs if possible.

Note: You should specify name as a literal string (or it should be derived from an
expression) to prevent substitution before it is passed to the function.

Here are some examples:

/* following:
SYMBOL(I JI)
SYMBOL(J)
SYMBOL('a.j 1

)

SYMBOL(2)
SYMBOL(I* I)

Drop A.3; J=3 */
-> 1 VAR 1

-> 1 LIT 1 /*has tested "3" */
-> 1 LIT 1 /* has tested A.3 */
-> 1 LIT 1 /*a constant symbol */
-> 1 BAD 1 /* not a valid symbol */

11+-TIME(---.---- -----------------
loptionj

returns the local time in the 24-hour clock format: hh:mm:ss (hours, minutes, and
seconds) by default, for example, 04:41:37.

You can use the following options to obtain alternative formats, or to gain access to
the elapsed-time clock. (Only the capitalized and boldfaced letter is needed; all
characters following it are ignored.)

Civil returns the time in Civil format: hh:mmxx. The hours may take the
values 1through12, and the minutes the values C:l0 through 59. The
minutes are followed immediately by the letters am or pm to distinguish
times in the morning (midnight 12:00am through l 1:59am) from noon
and afternoon (noon 12:00pm through l 1:59pm). The hour has no
leading zero. The minute field shows the current minute (rather than the
nearest minute) for consistency with other TIME results.

Elapsed returns sssssssss.uuOOOO, the number of seconds.hundredths since the
elapsed-time clock was started or reset (see below). The returned number
has no leading zeros but always has four trailing zeros in the decimal
portion. It is not affected by the setting of NUMERIC DIGITS.

REXX calculates elapsed time by subtracting the time the elapsed time
clock was started or reset from the current time. On the OS/2 operating
system, it is possible to change the system time clock while the system is
running. This means that the elapsed time value REXX calculates might
not be a true elapsed time. If the time is changed so that the system time
is earlier than when the REXX elapsed time clock was started (so that
the elapsed time would appear negative), REXX raises an error and
disables the elapsed time clock. To restart the elapsed time clock, trap
the error through SIGNAL ON SYNTAX. To change the system time
clock, use the OS/2 TIME command. The clock can also by changed by
programs on the system. Many LAN-attached programs synchronize the
system time clock with the system time clock of the server during startup.
This causes the REXX elapsed time function to be unreliable during
LAN initialization.

Functions

Hours returns up to two characters giving the number of hours since midnight
in the format: hh (no leading zeros or blanks, except for a result of 0).

Long returns time in the format hh:mm:ss.uuOOOO (where uu is the fraction of
seconds in hundredths of a second).

Minutes returns up to four characters giving the number of minutes since
midnight in the format: mmmm (no leading zeros or blanks, except for a
result of 0).

Normal returns the time in the default format hh:mm:ss, as described previously.
The hours can have the values 00 through 23, and minutes and seconds,
ea through 59; all these are always two digits. Any fractions of seconds
are ignored (times are never rounded up). This is the default.

Reset returns sssssssss. uuOOOO, the number of seconds.hundredths since the
elapsed-time clock was started or reset (see below) and also resets the
elapsed-time clock to zero. The returned number has no leading zeros,
but always has four trailing zeros in the decimal portion.

Refer to the Elapsed option for more information on resetting the system
time clock.

Seconds returns up to five characters giving the number of seconds since midnight
in the format: sssss (no leading zeros or blanks, except for a result of 0).

Here are some examples:

TIME(IL I) -> '16:54:22.120000' /* Perhaps */
TIME() -> '16:54:22'
TIME(IHI) -> '16'
TIME('M') -> '1014' /* 54 + 60*16 */
TIME('S') -> '60862' /* 22 + 60*(54+60*16) */
TIME('NI) -> '16:54:22'
TIME(I c I) -> '4:54pm'

The elapsed-time clock:

The elapsed-time clock may be used for measuring real time intervals. On the first
call to the elapsed-time clock, the clock is started, and both TIME (' E') and TIME ('R')
return e.

The clock is saved across internal routine calls, which is to say that an internal
routine inherits the time clock its caller started. Any timing the caller is doing is not
affected, even if an internal routine resets the clock. An example of the elapsed-time
clock:

time('E') -> 0 /*The first call */
/* pause of one second here */
time('E') -> 1.e2eeee /* or thereabouts */
/* pause of one second here */
time('R') -> 2.030000 /* or thereabouts */
/* pause of one second here */
time('R') -> 1.050000 /* or thereabouts */

Note: See the note under DATE about consistency of times within a single clause.
The elapsed-time clock is synchronized to the other calls to TIME and DATE, so
multiple calls to the elapsed-time clock in a single clause always return the same
result. For the same reason, the interval between two normal TIME/DATE results
may be calculated exactly using the elapsed-time clock.

Chapter 4. Functions 4-39

Functions

TRACE

TRANSLATE

Implementation maximum: Should the number of seconds in the elapsed time exceed
nine digits (equivalent to over 31.6 years), an error will result.

..._TRACE(-----------------------­
laptionj

returns trace actions currently in effect.

If option is supplied, it must be the valid prefix 1 or one of the alphabetic character
options (that is, starting with A, C, E, F, I, L, N, 0, or R) associated with the TRACE
instruction or both. (See the TRACE instruction in "TRACE" on page 3-37 for
full details.) The function uses option to alter the effective trace action (such as
tracing Labels, and so forth).

Unlike the TRACE instruction, the TRACE function alters the trace action even if
interactive debug is active. Also unlike the TRACE instruction, option cannot be a
number.

Here are some examples:

-> '?R' /*maybe */ TRACE()
TRACE('0 I)
TRACE(' 11 I)

-> '?R' /* also sets tracing off */
-> '0' /* now in interactive debug */

11+-TRANSLATE(string-c-_-_-~_-_-_-_-~..----_-_-~_-_-_-_-~_-_-_-_-~_-_-_-_-_-...... -~-)---M

' ltableo] l,---..-----...~----.,.........
ltablei] l,pad]

returns string with each character translated to another character or unchanged.
You can also use this function to reorder the characters in string.

The output table is tableo and the input translation table is tablei. TRANSLATE
searches tablei for each character in string. If the character is found, then the
corresponding character in tableo is used in the result string; if there are duplicates in
tab lei, the first (leftmost) occurrence is used. If the character is not found, the
original character in string is used. The result string is always the same length as
string. The tables can be of any length.

If you specify neither translation table, string is simply translated to uppercase (that
is, lowercase a - z to uppercase A - Z). Otherwise, tablei defaults to
XRANGE('ee•x, 'FF'x), and tableo defaults to the null string and is padded with pad
or truncated as necessary. The default pad is a blank.

Here are some examples:

TRANSLATE('abcdef')
TRANSLATE(' abbc', ' & ', 'b')

. TRANS LATE ('abcdef' , ' 12' , 'ec')
TRANSLATE('abcdef', '12', 'abed','.')
TRANSLATE ('4123', 'abed',' 1234')

-> 'ABCDEF'
-> 'a&&c'
-> I ab2dlf' .
-> 1 12 •• ef I
-> 'dabc'

4-40 REXX Reference

Functions

Note: The last example shows how to use the TRANSLATE function to reorder

the characters in a string. In the example, the last character of any four-character

string specified as the second argument would be moved to the beginning of the

string.

TRUNC (Truncate)

VALUE

l
~----.......... -----T-R-UN_C_(-nu_m_b-e1~------~-------~---=================================-----~

[n]
'

returns the integer part of number, and n decimal places. The default n is e and

returns an integer with no decimal point. If you specify n, it must be a nonnegative

whole number. The number is first rounded according to standard REXX rules, just
as though the operation number+e had been carried out. The number is then

truncated ton decimal places (or trailing zeros are added if needed to make up the

specified length). The result is never in exponential form.

Here are some examples:

TRUNC(12.3)
TRUNC(127.09782,3)
TRUNC(127 .1,3)
TRUNC(127,2)

->
->
->
->

12
127.097
121. iee
121.ee

Note: The number is rounded according to the current setting of NUMERIC
DIGITS if necessary before the function processes it.

.,._.VALUE(nome,----------------...- --------
l -...------...-....----..,.........

' lnewvolue] l,selectot=J

returns the value of the symbol that name (often constructed dynamically) represents

and optionally assigns it a new value. By default, VALUE refers to the current

REXX-variables environment, but other, external collections of variables may be

selected. If you use the function to refer to REXX variables, then name must be a

valid REXX symbol. (You can confirm this by using the SYMBOL function.)

Lowercase characters in name are translated to uppercase. If name is a compound

symbol, then REXX substitutes symbol values to produce the symbol's derived name
(see "Compound Symbols" on page 2-14). If you specify newvalue, then the named

variable is assigned this new value. This does not affect the result returned; that is,

the function returns the value of name as it was before the new assignment.

Examples:

/* After: Drop A3; A33=7; K=3; fred= 1K1; list.5=1Hi 1 */
VALUE(1a1 k) -> 1A3 1
VALUE(1a1kl lk) -> 171
VALUE (1fred 1) -> iK1 /* looks up FRED */
VALUE(fred) -> 131 /* looks up K */
VALUE(fred,5) -> 131 /* and sets K=5 */
VALUE(fred) -> 151
VALUE(1LIST. 1k) -> I Hi I /* looks up LIST.5 */

Chapter 4. Functions 4-41

Functions

4-42 REXX Reference

To use the VALUE to manipulate OS/2 environment variables, selector must be the
string "OS2ENVIRONMENT" or an expression so evaluated. In this case, the
variable name need not be a valid REXX symbol. When VALUE is used to set or
change the value of an environment variable, the new value is retained after the
REXX procedure ends.

Restriction: The values assigned to the variables must not contain any character that
is a hexadecimal zero ('OO'X). For example, Call VALUE 1 MYVAR 1

, 'FIRST' 11
•ee•x 11 'SECOND', 'OS2ENVIRONMENT' sets MYVAR to "FIRST", truncating the
'OO'x and 'SECOND'.

Examples:

/* Given that an external variable FRED has a value of 4 */
share = 'OS2ENVIRONMENT'
say VALUE('fred',7,share) /*says '4' and assigns */

/* FRED a new value of 7 */

say VALUE('fred',,share) /* says 1 71 */

/* After this procedure ends, FRED again has a value of 4 */

/* Accessing and changing OS/2 environment entries */
env = 'OS2ENVIRONMENT'
new= 1C:\LIST\PROD; 1

say value('prompt',,env) /*says 1$i[$p] 1 (perhaps) */ */
say value('path',new,env) /*says 1 C:\EDIT\DOCS; 1 (perhaps) */

/* and sets PATH = 1 C:\LIST\PROD 1 */

say value('path',,env) /* says 1 C:\LIST\PROD 1

/* When this procedure ends, PATH = 1 C:\LIST\PROD 1

*/

*/

Notes:

1. If the VALUE function refers to an uninitialized REXX variable then the
default value of the variable is always returned; the NOVALUE condition is not
raised. A reference to an external collection of variables never raises
NOVALUE.

2. The VALUE function is used when a variable contains the name of another
variable, or when a name is constructed dynamically. If you specify the name as
a single literal string and omit newva/ue and selector, the symbol is a constant
and so the string between the quotation marks can usually replace the whole
function call. (For example, fred=VALUE(1 k1

); is identical with the assignment
fred=k;, unless the NOVALUE condition is being trapped. (See Chapter 7,
"Conditions and Condition Traps" on page 7-1.)

3. To effect temporary changes to environment variables, use the SETLOCAL and
ENDLOCAL functions.

VERIFY

WORD

WORDINDEX

Functions

...-vERI FY (st ring, ref ere nee-.-------------- ----
L -..----....--~-...........

' [option] l,start]

returns a number that, by default, indicates whether string is composed only of
characters from reference; returns 0 if all characters in string are in reference, or
returns the position of the first character in string not in reference.

The third argument, option, can be any expression that results in a string starting
with N or M that represents either Nomatch (the default) or Match. Only the first
character of option is significant, and it can be in upper- or lowercase, as usual. If
you specify Match, returns the position of the first character in string that is in
reference, or returns e if none of the characters are found.

The default for start is 1, thus, the search starts at the first character of string. You
can override this by specifying a different start point, which must be a positive whole
number.

Always returns e if string is null, or if start is greater than LENGTH(string). If
reference is null, returns e if you specify Match, otherwise returns 1.

Here are some examples:

VERIFY(1 123 1
,

1 1234567890 1
) -> e

VERIFY(1 1Z3 1
,

1 1234567890 1
) -> 2

VERIFY(1AB4T 1
,

1 1234567890 1
) -> 1

VERIFY(1AB4T 1
,

11234567890 1
,

1M1
) -> 3

VERIFY(1AB4T 1
,

11234567890 1
,

1 N1
) -> 1

VERIFY(1 1P3Q4 1
,

1 1234567890 1 ,,3) -> 4
VERIFY(1AB3CD5 1

,
1 1234567890 1

,
1M1 ,4) -> 6

...+---WORD(string,n)

returns the nth blank-delimited word in string or returns the null string if fewer than
n words are in string. n must be a positive whole number. This function is exactly
equivalent to SUBWORD(stri ng,n, 1).

Here are some examples:

WORD(1 Now is the time 1 ,3)
WORD(1 Now is the time 1 ,5)

-> 1 the 1

-> 11

...-woRDINDEX(string ,n)------------------

returns the position of the first character in the nth blank-delimited word in string or
returns e if fewer than n words are in string. n must be a positive whole number.

Chapter 4. Functions 4~43

Functions

WORDLENGTH

Here are some examples:

WORDINDEX(1 Now is the time',3)
WORDINDEX(1 Now is the time',6)

->
->

8
e

11+-WORDLENGTH (string ,n)-----------------....

returns the length of the nth blank-delimited word in string or returns e if fewer than
n words are in string. n must be a positive whole number.

Here are some examples:

WORDLENGTH('Now is the time',2)
WORDLENGTH('Now comes the time',2)
WORDLENGTH('Now is the time',6)

->
->
->

2
5
e

WORDPOS (Word Position)

WORDS

4-44 REXX Reference

I
~ -11+-W~-OR_D_P_OS-(-ph_r_a_se-,-s-tr_i_n_g ______) ______ ~--------.

_ L,startj

returns the word number of the first word of phrase found in string or returns e if
phrase contains no words or if phrase is not found. Multiple blanks between words
in either phrase or string are treated as a single blank for the comparison, but
otherwise the words must match exactly.

By default the search starts at the first word in string. You can override this by
specifying start (which must be positive), the word at which to start the search.

Here are some examples:

WORDPOS('the','now is the time') -> 3
WORDPOS('The','now is the time') -> 0
WORDPOS(1 is the','now is the time') -> 2
WORDPOS('is the','now is the time') -> 2
WORDPOS('is time ','now is the time') -> 0
WORDPOS('be','To be or not to be') -> 2
WORDPOS('be','To be or not to be',3) -> 6

11+-WORDS (string)----------------------....

returns the number of blank-delimited words in string.

Here are some examples:

WORDS('Now is the time')
WORDS(I I)

->
->

4
e

Functions

XRANGE (Hexadecimal Range)

I
~ -.-.--XAA-N-GE_(__ l---J---l---J------------------------.
_ start ,end

returns a string of all 1-byte codes between and .including the values start and end.

The default value for start is '00' x, and the default value for end is ' FF' x. If start is
greater than end, the values wrap from 'FF 1 x to '00' x. If specified, start and end

must-be single characters.

Here are some examples:

XAANGE (' a ' , ' f ') ->
XAANGE('03'x,'07'x) ->

XAANGE(,'04'x) ->
XAANGE (I FE Ix' I 02 Ix) ->
XAANGE:(Ii I' I j I) ->

X2B (Hexadecimal to Binary)

'abcdef'
'0304050607'x
'0001020304'x
I FEFF000102 Ix
I ij I /* ASCII */

~I ~.-.~X-2-B(-h-ex_s_t_r-in_g_)~~~~~~~~~~~~~~~~~~~~~~

returns a string, in character format, that represents hexstring converted to binary.
The hexstring is a string of hexadecimal characters. It can be of any length. Each
hexadecimal character is· converted to a string of four binary digits. You can
optionally add blanks to hexstring (at byte boundaries only, not leading or trailing)
to aid readability; they are ignored.

The returned string has a length that is a multiple of four, and does not include any
blanks.

If hexstring is null, returns a null string.

Here are some examples:

X2B(I C3')
X2B('7')
X2B('l Cl')

-> • 11eeee11 •
-> '0111'
-> '000111000001 I

You can combine X2B. with the functions D2X and C2X to convert numbers or
character strings into binary form.

For example:

X2B(C2X('C3 'x)) -> '11000011'
X2B(D2X(' 129')) -> '10000001 I
X2B(D2X('12')) -> 1 1100'

X2C (Hexadecimal to Character)
l~~.-.~X-2-C(-h-ex_s_t_r-in_g_)~~~~~~~~~~~~~~~~~~~~-----.

returns a string, in character format, that represents hexstring converted to character.
The returned string is half as many bytes as the original hexstring. hexstring can be

Chapter 4. Functions 4-45

Functions

of any length. You can optionally add blanks to hexstring (at byte boundaries only,
not leading or trailing) to aid readability; they are ignored.

If hexstring is null, returns a null string.

If necessary, hexstring is padded with a leading 0 to make an even number of
hexadecimal digits.

Here are some examples:

X2C('4865 6c6c 6f'} ->
X2C('3732 73'} ->
X2C('F'} ->

'Hello'
'72s'
I I

/* ASCII */
/* ASCII */
/* '0F' is unprintable EBCDIC */

X2D (Hexadecimal to Decimal)

4-46 REXX Reference

l
.---~-~~x-2-0-(h-e-xs_t_r_i-ng~-~-~~~~~~~~~~~~~~~~~~~---.

L nJ
'

returns the decimal representation of hexstring. The hexstring is a string of
hexadecimal characters. If the result cannot be expressed as a whole number, an
error results. That is, the result must not have more digits than the current setting
of NUMERIC DIGITS.

You can optionally add blanks to hexstring (at byte boundaries only, not leading or
trailing) to aid readability; they are ignored.

If hexstring is null, returns 0.

If you do not specify n, hexstring is processed as an unsigned binary number.

Here are some examples:

X2D('GE'} -> 14
X20('81'} -> 129
X2D(I F81'} -> 3969
X2D(I FF81'} -> 65409
X2D('c6 f0' X} -> 240

If you specify n, the given hexstring is padded on the left with 0 characters (note, not
"sign-extended"), or truncated on the left ton characters. The resulting string of n
hexadecimal digits is taken to be a signed binary number: positive if the leftmost bit
is off, and negative, in two's complement notation, if the leftmost bit is on. If n is 0,
X2D returns 0.

Here are some examples:

X2D('81' ,2} -> -127
X2D('81' ,4} -> 129
X2D(I F081' ,4} -> -3967
X2D(I F081' ,3} -> 129
X2D (I F081' ,2} -> -127
X2D(I F081' '1} -> 1
x2oc 'ee31 • ,e} -> e

OS/2 API Functions

OS/2 Applications Programming Interface Functions

RXFUNCADD

RXFUNCDROP

RXFUNCQUERY

Queue Interface

RX QUEUE

The following built-in REXX functions can be used in a REXX program to register,
drop or query external function packages and to create and manipulate external data
queues.

• See "External Functions" on page 9-18 for a full discussion of the
external-function interfaces

• See "Queue Interface" on page 8-4 for a full discussion of applications queuing
services.

11+--RXFUNCADD(name,module,procedure)-----------------

registers the function name, making it available to REXX procedures. A zero return
value signifies successful registration.

rxfuncadd(1SysloadFuncs, 1 REXXUTIL 1
,

1 SysloadFuncs 1
) -> 0

/* if not already registered */

11+--RXFUNCDROP(name)----------------------

removes (deregisters) the function name from the list of available functions. A zero
return value signifies successful removal.

rxfuncdrop(1SysloadFuncs 1
} -> 0 /* if not already registered*/

11+--RXFUNCQUERY(name)----------------------

queries the list of available functions for a registration of the name function. The
function returns a value of 0 if the function is registered, and a value of 1 if it is not.

rxfuncquery(1SysloadFuncs 1
} -> 0 /* if not already registered */

11+--RXQUEUE-(11 Get 11------~ ----------------1-

111Set 11-newqueuenam
11 Del ete"-queuenam
"Create"---.------.--'

creates and deletes external data queues; also sets and queries their names.

Parameters

Chapter 4. Functions 4-47

OS/2 API Functions

4-48 REXX Reference

Create

Delete

Creates a queue with the name, queuename (if specified); if no name is
specified, then REXX will provide a name. Returns the name of the
queue in either case.

Many queues may exist at the same time, and most systems have
sufficient resources available to support several hundred queues at
once. If a queue name is given and a queue with that name already
exists, a queue· is still created; but REXX chooses the name and
returns the actual name.

Deletes the named queue; returns 0 if successful, a nonzero number if
an error occurs; the possible return values are:

0 Queue has been deleted.
5 Not a valid queue name.
9 Queue named does not exist.
10 Queue is busy; wait is active.
12 A memory failure has occurred.
1000 Initialization error; check file OS2.INI.

Get Returns the name of the queue currently in use.

Set Sets the name of the current queue to newqueuename and returns the
previous name of the queue.

The first parameter determines the function. Only the first character of the first
parameter is significant. The parameter may be entered in any case. The syntax for
a valid queue name is the same as for a valid REXX symbol.

The second parameter specified for Create, Set, and Delete must abide by the same
syntax rules as for REXX variable names. (There is no connection, however,
between queue names and variable names. A program can have a variable and a
queue with a common name, and there is no connection between them.) The actual
name. of the queue is the uppercase value of the name requested.

The queue name must be a valid REXX symbol. However, there is no connection
between queue names and variable·names. A program can have a variable and a
queue with a common name.

Nam~d queues prevent different REXX programs that are running in a single session
from interfering with each other. Named queues allow REXX programs running in
different sessions to synchronize execution and pass data. LINEOUT(' QUEUE: ') is
especially useful because the calling program will cease execution until another
program places a line on the queue.

/* default queue */
rxqueue('Get') -> 'SESSION'

/* assuming FRED does not already exist */
rxqueue('Create', 'Fred' ->'FRED'

/* assuming SESSION had been active */
rxqueue('Set', 'Fred') ->'SESSION'

/* assuming FRED did not exist */
rxqueue('delete', 'Fred') -> •e•

REXX Utilities

REXX Utilities (RexxUtil)

RxMessageBox

RexxUtil is a Dynamic Link Library (DLL) package of OS/2 operating system
REXX functions. These operating system functions:

• Manipulate OS/2 operating system files and directories

• Manipulate OS/2 classes and objects.

• Perform text screen input and output.

To use a RexxUtil function, you must first register the function with the REXX
RxFuncAdd function:

Add RexxUtil Function -----------------------.

call RxFuncAdd 'SysCls', 'RexxUtil', 'SysCls'

The example above registers the SysCls function. You can now use the SysCls
function in your REXX programs.

The SysLoadFuncs RexxUtil function automatically loads the other RexxUtil
functions. The following instructions in a REXX program will register all of the
RexxUtil functions.

Load RexxUtil Function -----------------------.

call RxFuncAdd 'SysloadFuncs', 'RexxUtil', 'SysloadFuncs'
call SysloadFuncs

Once registered, the RexxUtil functions are available from all OS/2 operating system
sessions. If you use the RexxUtil functions frequently, you should place a call to
SysLoadFuncs in your STARTUP.CMD file.

action = RxMessageBox(text, [title], [button], [icon])

Displays a Presentation Manager message box. RxMessageBox can only be used
from a REXX program running under PMREXX or called from a Presentation
Manager application.

Parameters

text

title

button

The message box text.

The message box title. The default title is "Error!."

The message box button style. The allowed styles are:

OK
A single OK button.

OK CANCEL
An OK button and a CANCEL button.

Chapter 4. Functions 4-49

REXX Utilities

CANCEL
A single CANCEL button.

ENTER
A single ENTER button.

ENTER CANCEL
An ENTER button and a CANCEL button.

RETRY CANCEL
A RETRY button and a CANCEL button.

ABORTRETRYCANCEL
An ABORT button, a RETRY button and a CANCEL button.

YESNO
A YES button and a NO button.

YESNOCANCEL
A YES button, a NO button and a CANCEL button.

The default button style is OK.

icon The message box icon style. The allowed styles are:

NONE
No icon is displayed.

HAND
A hand icon is displayed.

QUESTION
A question mark icon is displayed.

EXCLAMATION
An exclamation mark icon is displayed.

ASTERISK
An asterisk icon is displayed.

INFORMATION
An information icon is displayed.

QUERY
A query icon is displayed.

WARNING
A warning icon is displayed.

ERROR
An error icon is displayed.

action The selected message box button. Possible values are:

1 The OK button was pressed

2 The CANCEL button was pressed

3 The ABORT button was pressed

4 The RETRY button was pressed

5 The IGNORE button was pressed

6 The YES button was pressed

7 The NO button was pressed

4-50 REXX Reference

SysCls

SysCls()

SysCreateObject

REXX Utilities

8 The ENTER button was pressed

Example

/* Give option to quit */
if RxMessageBox("Shall we continue 11

,, "YesNo", "Query")= 7
Then Exit /* quit option given, exit */

Clears the screen quickly.

Example

call SysCls

result = SysCreateObject(classname, title, location < ,icon>)

SysCurPos

Creates a new instance of an object class.

Parameters

classname The registered object class name.

title The object title.

location The object location. This can be either a descriptive path (for example,
OS/2 System Folder\System Configuration) or a file system path (for
example, C:\bin\mytools).

icon The name of an icon .ICO file with the object icon.

result The WinCreateObject return code. This will return 1 (TRUE) if the
object was created and 0 (FALSE) if the object was not created.

Example

/* Code */
if \SysCreateObject("NewObject 11 ,"NEWDLL", 11 C:\tools\bin") then

say 'Install successfully completed for NewObject'

pos = SysCurPos(row, col)

Moves the cursor to the specified row and column and queries the cursor position.

Chapter 4. Functions 4-Sl

REXX Utilities

SysCurState

SysCurState state

Parameters

row The new cursor row postion.

col The cursor column postion.

pos The current cursor position. SysCurPos returns the position in the form
'row col'.

Note: Position (0,0) is the upper left comer. You may call SysCurPos without a
column and row position to obtain the cursor position without moving the cursor.

Example

/* Code */
call SysCls
parse value SysCurPos() with row col
say 'Cursor position is 'row', 'col

/* Output */
Cursor position is 0, 0

Hides or displays the cursor.

Parameters

state The new cursor state. Allowed states are:

ON display the cursor
OFF hide the cursor

SysDeregisterObjectClass

result = SysDeregisterObjectClass(classname)

4-52 REXX Reference

Deregisters an object class definition from the system.

Parameters

classname The object class name.

result The WinDeregisterObjectClass return code. SysDeregisterObjectClass
will return 1 (TRUE) if the class was deregistered and 0 (FALSE) if the
class was not deregistered.

Example

/* Code */
call SysDeregisterObjectClass 110ldObjectClass 11

REXX Utilities

SysDrivelnfo

info = SysDrivelnfo (drive)

SysDriveMap

Returns drive information.

Parameters

info Drive information returned in the following form: 'drive: free total label'.

Where:

drive: is the drive letter identifier.
free is the drive unused space.
total is the total size of the drive.
label is the drive label.

If the drive is not accessible, then info will equal ".

drive The drive of interest, 'C:'.

Example

/* Code */
say 1 Disk= 1 SysDrivelnfo(• C: •)

/* Output */
Disk=C: 33392640 83687424 TRIGGER_C

map = SysDriveMap ([drive], [opt])

Returns accessible drives in the form: 'C: D: . . '

Parameters

drive The first drive letter of the drive map. The default is 'C:'.

opt The drivemap option. The accepted options are:

USED
Returns the drives that are accessible or in use, including all local
and remote drives. This is the default.

FREE
Returns drives that are free or not in use.

LOCAL
Returns only local drives.

REMOTE
Returns only remote drives, such as redirected LAN resources or
installable file system (IFS) attached drives.

DETACHED
Returns detached LAN resources.

map A string of blank separated drive letters.

Chapter 4. Functions 4-53

REXX Utilities

SysDropFuncs

call SysDropFuncs

SysFileDelete

Example

/* Code */
say 'Used drives include:'
say SysDriveMap('C: 1

, 'USED')

/* Output */
Used drives include:
C: D: E: F: W:

Drops all RexxUtil functions. Once a REXX program call SysDropFuncs, the
RexxUtil functions will not be availablee in any OS/2 operating system sessions.

re = SysFileDelete(file)

4-54 REXX Reference

Deletes a file. SysFileDelete does not support wildcard file specifications.

Parameters

file The name of the deleted file.

re The return code from SysFileDelete. The following return codes are
commonly returned:

0 File deleted successfully.

2 File not found.

3 Path not found.

5 Access denied.

26 Not DOS disk.

32 Sharing violation.

36 Sharing buffer exceeded.

87 Invalid parameter

206 Filename exceeds range error

Unlike the OS/2 operating system ERASE or DELETE commands, SysFileDelete
does not issue an error message if the file doesn't exist.

Example

parse arg Inputfile Outputfile
call SysfileDelete Outputfile /* unconditionally erase output file */

REXX Utilities

SysFileTree

re = SysFileTree(filespec, stem, [options], [tattrib], [nattrib])

Finds all files that match a file specification. SysFileTree returns the file descriptions
(date, time, size, attributes, and file specification) in a REXX stem variable
collection.

Parameters

filespec

stem

options

tattrib

nattrib

The search file specification.

The result stem variable name. SysFileTree sets REXX variable stem.O
to the number of files and directories found and variables stem.] to
stem.n to the individual file descriptions.

Any combination of the following:

F Search only for files.
D Search only for directories.
B Search for both files and directories. This is the default.
S Search file subdirectories also.
T Return the time and date in the form: YY /MM/DD/HH/MM.
0 Returns only the file specifications. Be default, SysFileTree returns

the date, time, size, attributes, and file specification for each file.

The target attribute mask for file specification matches. Only files that
match the target mask will be returned. The default mask is '*****'
which returns all files regardless of the Archive, Directory, Hidden,
Read-Only, and System attribute settings. The target mask attributes
must appear in the order 'AD HRS'.

Target Mask Options

*. The file attribute may be any state.
+ The file attribute must be set.

The file attribute must be cleared.

Target Mask Examples

'*** +*'
'+**+*'

Find all files with the Read-Only attribute set.

'* + +**'
'--+-'

Find all files with the Read-Only and Archive attributes
set.
Find all hidden subdirectories.
Find all files with only the Read-Only attribute set.

The new attribute mask used to set the attributes of each matching file.
The default mask, '*****', leaves the Archive, Directory, Hidden,
Read-Only, and System attributes unchanged. The target mask attributes
must appear in the order 'AD HRS'.

New Atrribute Mask Options

*
+

The file attribute will not be changed.
The file attribute will be set.
The file attribute will be cleared.

New Attribute Mask Examples

'*** +*' Sets the Read-Only attribute on all files.

Chapter 4. Functions 4-55

REXX Utilities

SysFileSearch

'-** +*'

'+*+++' ,_,

Sets the Read-Only attribute and clear the Archive
attribute of each file.
Sets all file attributes, excluding the directory attribute.
Clears all attributes on all files.

Note: You cannot set the directory bit on
non-directory files. SysFileTree·retums the file ·attribute
settings after the new attribute mask have been :applied.

re The SysFileTree return code. The following return codes are of
particular interest:

0 Successful.

2 Not enough memory.

Examples

/* Find all subdirectories on C: */
call SysfileTree 1 c:*.* 1

, 'file', 'SD'

/* Find all Read-Only files */
call SysFileTree 1 c:*.* 1

, 'file', •s•, '***+*'

/* Clear Archive and Read-Only bits of files which have them set */
call SysFileTree 'c:*.*'., 'file', •s•, 1+**+* 1

,
1 -**-* 1

/****<< Sample Code and Output Example.>>********/

/* Code */
call SysFileTree
do i=l to file.a

say file.i
end

/* Actual Output */
12:15:89 12:00a
12:15:89 12:00a
5:24:89 4:59p

'c:\os2*.', 1 file 1
, 'B'

4096 A-HRS C·: \OS2LDR
29477 A-HRS C:\OS2KRNL

0 -D--- C:\OS2

call SysFileSearch ·target, file, stem, [options]

4-56 REXX Reference

Finds all file lines containing the target string. SysFileSearch returns the file lines in
a REXX ·stem variable collection.

Parameters

target

·file

The target search string.

The searched ·file.

REXX Utilities

stem The result stem variable name. SysFileSearch sets REXX variable stem.O
to the number of lines returned and variables stem.I to stem.n to the
individual file lines.

options Any combination of the following one-character options:

C Conducts a case-sensitive search.

N Also return file line numbers.

The default is a case insensitive search without line numbers.

Return Codes

0 Successful.

2 Not enough memory.

3 Error opening file.

Examples

/* Find DEVICE statements in CONFIG.SYS */
call SysFileSearch 'DEVICE', 1 C:\CONFIG.SYS 1

, 'file.'
do i=l to file.a
say file.i

end

/* Output */
DEVICE=C:\052\DOS.SYS
DEVICE=C:\052\PMDD.SYS
DEVICE=C:\OS2\COMa2.SYS
SET VIDEO DEVICES=VIO IBM8514A
SET VIO_IBM8514A=DEVICE(BVHVGA,BVH8514A)
DEVICE=C:\052\POINTDD.SYS
DEVICE=C:\OS2\MSPS2a2.SYS
DEVICE=C:\052\MOUSE.SYS TYPE=MSPS2$

/* Find DEVICE statements in CONFIG.SYS (along with */
/* line numbers) */
call SysFileSearch 'DEVICE', 1 C:\CONFIG.SYS 1

, 'file.', 1 N1

do i=l to file.a
say file.i

end

/* Output */
2a DEVICE=C:\052\DOS.SYS
21 DEVICE=C:\052\PMDD.SYS
22 DEVICE=C:\OS2\COMa2.SYS
33 SET VIDEO DEVICES=VIO IBM8514A
34 SET VIO IBM8514A=DEVICE(BVHVGA,BVH8514A)
40 DEVICE=C:\OS2\POINTDD.SYS
41 DEVICE=C:\OS2\MSPS2a2.SYS
42 DEVICE=C:\OS2\MOUSE.SYS TYPE=MSPS2$

Chapter 4. Functions 4-57

REXX Utilities

SysGetEA

result == SysGetEA(file, name, variable)

SysGetKey

Reads a file extended attribute.

Parameters

file The file name.

name The extended attribute name.

variable The REXX variable where SysGetEA places the extended attribute value.

result The function result. When result is 0, the SysGetEA retrieved the
extended attribute and placed the extended attribute value in variable.
When result is non-zero, result is the OS/2 operating system return code.

Example

/* Code */
if (SysGetEA(11 C:\CONFIG.SYS 11

,
11 .type11

,
11 TYPEINF0 11

) = 0 then
parse var typeinfo 11 type
say type

/* Output */
OS/2 Comnand File

key == SysGetKey([opt])

SysGetMessage

Reads the next key from the keyboard buffer. If the keyboard buffer is empty,
SysGetKey will wait until a key is pressed. Unlike the REXX CHARIN built-in
function, SysGetKeyQ does not wait until the Enter key is pressed.

Parameters

key The pressed key.

opt An option controlling screen echoing. Allowed values are:

ECHO Echo the pressed key to the screen. ECHO is the default.
NOECHO Do not echo the pressed key.

msg == SysGetMessage(num, [file] [strl], ... [str9])

4-58 REXX Reference

Retrieves a message from an OS/2 operating system message file. SysGetMessage
can insert up to 9 message text variables.

Syslni

REXX Utilities

Message files are created with the OS/2 2.0 Toolkit MKMSGF utility. MKMSGF is

documented in the toolkit Online Tools Reference.

Parameters

num The message number.

file The message file containing the message. The default message file is
OSOOO I.MSG. SysGetMessage searches for message files in the system
root directory (C:\), the current directory, and along the current
DPATH.

strl, ••• str9 Insertion text variables. If the message contains insertion fields % 1 to
%9, SysGetMessage will insert the optional parameters strl through str9

into the message.

msg The retrieved message, with variable substitutions performed.

Example

/*** Sample code segment using SysGetMessage and insertion text vars ***/
msg = SysGetMessage(34, , 'A:', 'diskette labeled "Disk 2111

, 'SER0002')
say msg

/** Output **/
The wrong diskette is in the drive.
Insert diskette labeled "Disk 211 (Volume Serial Number: SER0002)
into drive A:.

result = Syslni ([inifile], app, key, val, stem)

Allows limited access to profile variables. Variables are stored in profiles as

Application Names with associated Key Names or keywords. The Syslni can store

application profile information.

Note: Syslni can retrieve and store all types of profile data (text, numeric, binary).

Care should be used when changing application profile information.

Parameters

inifile The profile file name containing the profile variables. inifile can be a file

specification, or one of the following:

USER

SYSTEM
BOTH

The user profile file (usually C:\OS2\0S2.INI). This is the
default.
The system INI file (usually C:\OS2\0S2SYS.INI).
Search both the user and system profile files. When setting
variables, Syslni will write to the user profile file.

app The application name used to store profile information.

key The keyword name holding profile information.

val The application keyword value.

Chapter 4. Functions 4-59

REXX Utilities

4-60 REXX Reference

stem The name of a REXX stem variable collection to receive profile
information. Syslni will set REXX variable stem.Oto the number of
profile variables returned. Variables stem.] to stem.n are set to the
individual profile variable values.

result When Syslni successfully sets a profile variable, result will equal ".
When Syslni successfully retrieves a profile variable, result result will be
the application keyword value. When Syslni successfully deletes a profile
variable, result will equal ".

Syslni will return the error string ERROR: when an error occurs.
Possible error conditions include:

• An an application/key pair does not exist.

• An error opening the profile file occurred. You may have specified
the current user or system INI file with a relative file specification.
The full file specificaiton must be used.

Syslni has six modes. The modes and the syntax variations are as follows:

Set a single key value.
Syslni([inifile], app, key, val)

Retrieve a single key value.
Syslni([inifile], app, key)

Delete a single key.
Syslni([inifile], app, key, 'DELETE:')

Delete an application and all associated keys.
Syslni([inifile], app, ['DELETE:'])

Retrieve all keys for an application.
Syslni([inifile], app, 'ALL:', 'stem')

Retrieve the names of all applications.
Syslni([inifile], 'ALL:', 'stem')

SysMkDir

REXX Utilities

Example

/* Sample code segments */

/*** Save the user entered name under the key 'NAME' of *****
**** the application 'MYAPP'. ****/
pull name •
call Syslni , 1 MYAPP 1

, 'NAME', name/* Save the value */
say Syslni(, 'MYAPP', 'NAME') /*Query the value */
call Sysini , 1MYAPP 1 /* Delete all MYAPP info */
exit

/**** Type all OS2.INI file infonnation to the screen *****/
call Syslni , 'ALL', 'Apps' /*Stem Var=Apps */
if Result = •·ERROR:• then
do i=l to Apps.e

call Sysini , Apps.i, 'ALL', 'Keys' /*Stem Var=Keys */
if Result = 1 ERROR: 1 then
do j=l to Keys.a

val = Syslni(, Apps.i, Keys.j)
say left(Apps.i, 20) left(Keys.j, 20),

end
end

exit

1 Len=x' left(d2x(length(val)) ,4) left(val, 20)

re = SysMkDir(dirspee)

Creates a file directory.

Parameters

dirspec The directory specification.

re The SysMkDir return code. The following return codes are of particular
interest:

0 Directory creation was successful.

2 File not found.

3 Path not found.

5 Access denied.

26 Not a DOS disk.

87 Invalid parameter.

108 Drive locked.

206 Filename exceeds range.

Unlike the OS/2 operating system MD (Make Directory) command, the SysMkDir
function does not issue an error message when the directory cannot be created.

Example

ca 11 SysMkDi.r 1 c: \rexx •

Chapter 4. Functions 4-61

REXX Utilities

SysOS2Ver

ver = SysOS2VerO

SysPutEA

Returns the OS/2 operating system version information.

Parameters

ver A string containing the OS/2 operating system version information in the
form 'x.xx'

result = SysPutEA(file, name, value)

Writes a named extended attribute to a file.

Parameters

file The file where SysPutEA will write the extended attribute.

name The extended attribute name.

value The new extended attribute value.

result The function result. When result is 0, SysPutEA has written the extended
attribute to the file. When result is non-zero, result contains an OS/2
operating system error code.

Example

/* update a security classification */
call SysPutEA 11 C:\CONFIG.SYS 11

, "SECURITY", "Unclassified"

Many file extended attributes contain binary data. Care should be used when
changing extended attributes with SysPutEA.

SysQueryClassList

call SysQueryClassList stem

4-62 REXX Reference

Retrieves the complete list of registered object classes.

Parameters

stem A REXX stem variable name. SysQueryClassList will set REXX
variable stem.0 to the number of object classes and variables stem.] to
stem.n to the individual class names.

Example

/*type the list of object classes */
call SysQueryClasslist 11 list. 11

do i = 1 to list.a
say 'Class• i 1 is 1 1 ist. i

end

REXX Utilities

SysRegisterObjectClass

result = SysRegisterObjectClass(classname, modulename)

SysRmDir

Registers a new object class definition.

Parameters

classname

modulename

result

Example

/* Code */

The new object class name.

The module file containing the object definition.

The WinRegisterObjectClass return code. SysRegisterObjectClass
will return 1 (TRUE) if the class was successfully registered and 0
(FALSE) if the new class was not registered.

if SysRegisterObjectClass(11 NewObject 11
,

11 NEWDLL 11
) then

say 'Install successfully completed for NewObject'

re = SysRmDir(dirspec)

Deletes a file directory.

Parameters

dirspec

re

The directory specification.

The SysRm.Dir return code. The following return codes are of particular
interest:

0 Directory removal was successful.

2 File not found.

3 Path not found.

5 Access denied.

16 Current directory.

26 Not a DOS disk.

87 Invalid parameter.

108 Drive locked.

206 Filename exceeds range.

Chapter 4. Functions 4-63

REXX Utilities

Example

call SysRmDir 'c:\rexx'

SysSearchPath

filespec = SysSearchPath(patb, filename)

SysSetlcon

Searches a file path for a file. When a file is found, SysSearchPath returns the full
file specification. When the file is not found, SysSearchPath returns ".

Parameters

path An environment variable name. The environment variable must contain
a list of file directories separated by semicolons.

filename The requested file.

filespec The returned file specification. When the file is found, filespec will be
the fully qualified file name. When the file is not found, filespec will be
II

Example

/* Code */
fspec = SysSearchPath('PATH', 'CMD.EXE')
say "CMD.EXE is located at" fspec

/* Output */
CMD.EXE is located at C:\052\CMD.EXE

result = SysSetlcon(filename, iconfilename)

4-64 REXX Reference

Associates an icon with a file.

Parameters

filename

iconfilename

result

Example

/* Code */

The file to receive the icon.

An .ICO file containing icon data.

The WinSetlcon return code. SysSetlcon returns 1 (TRUE) when
the icon is successfully set and 0 (FALSE) when the new icon could
not be set.

if SysSetlcon(file, 11 NEW.IC0 11
) then

say 'Install successfully completed for' file

REXX Utilities

SysSleep

call SysSleep secs

Pauses a REXX program for a specified time interval.

Parameters

secs The number of seconds to pause.

SysTempFileName

file = SysTempFileName(template, [filter])

Returns a unique file or directory name. SysTempFileName is useful when a
program requires a unique temporary file.

Parameters

template template is the location and base form of the temporary file or directory
name. The template name is a file or directory specification with up to 5
filter characters.

filter The filter character used in template. SysTempFileName replaces each
filter character in template with a numeric value. The resulting file or
directory name will not exist on the specified drive. The default filter
character is ?.

file A file or directory that does not currently exist. If an error occurred or
SysTempFileName could not create a unique name from the template, a
null string is returned.

Example

/* Code */
say SysTempFileName('C:\TEMP\MYEXEC.??? 1

)

say SysTempFileName('C:\TEMP\??MYEXEC.??? 1
)

say SysTempFileName('C:\MYEXEC@.@@@ 1
,

1@1
)

/* Output */
C:\TEMP\MYEXEC.251
C:\TEMP\lOMYEXEC.392
C:\MYEXEC6.019

SysTempFileName generates the filter character replacements with a random number
algorithm. If the resulting file or directory already exists, SysTempFileName
increments the replacement value until all possibilities have been exhausted.

Chapter 4. Functions 4-65

REXX Utilities

SysTextScreenRead

string = SysReadScreen(row, col, [len])

Reads characters from a specified screen location.

Parameters

row

col

len

string

The screen row.

The screen column.

The number of characters to read. The default is the end of the screen.

The characters read from the screen. This includes any carriage return
and linefeed characters on the screen.

Note: Limitations: This function only reads screen characters. When restoring a
character string to the screen with SAY or the CHAROUT built-in function, the
previous color settings will be lost.

Examples

/* Example which reads in the entire screen */
screen = SysTextScreenRead(e, e)

/* Example which reads in one line */
line= SysTextScreenRead(2, e, 80)

SysTextScreenSize

result = SysTextScreenSize()

Returns the screen size.

Parameters

result The screen size. The result string format is 'row col'.

Example

/* Example */
parse value SysScreenSize() with row col
say 'Rows='row', Columns='col

SysWaitNamedPipe

result = SysWaitNamedPipe(name, [timeout])

Performs a timed wait on a named pipe.

Parameters

4-66 REXX Reference

name

timeout

result

Example

The named pipe name. Pipe names must have the form
"\PIPE\pipename."

REXX Utilities

The number of microseconds to wait. If timeout is omitted or zero,
SysWaitNamedPipe uses the pipe default timeout value. A timeout of -1
will wait until the named pipe is no longer busy.

The DosWaitNmPipe return code. The following return codes are of
particular interest:

0 The named pipe is no longer busy.

2 The named pipe was not found.

231 The wait timed out before the pipe became available.

Parse value stream(PipeName,'C','OPEN') with PipeState ':' OS2RC
If OS2RC=231 then call SysWaitNamedPipe(PipeName, -1)

Chapter 4. Functions 4-67

REXX Utilities

4-68 REXX Reference

Parsing

Chapter 5. Parsing

The parsing instructions are ARG, PARSE, and PULL (see "ARG" on page 3-4,
"PARSE" on page 3-25, and "PULL" on page 3-29).

The data to parse is a source string. Parsing splits up the data in a source string and
assigns pieces ofit into the variables named in a template. A template is a model
telling how to split the source string. The simplest kind of template consists of only
a list of variable names. Here is an example:

variablel variable2 variable3

This kind of template parses the source string into blank-delimited words. More
complicated templates contain patterns in addition to variable names.

String patterns

Positional patterns

Match characters in the source string to tell where to split it.
(See "Templates Containing String Patterns" on page 5-3 for
details.)

Indicate the character positions at which to split the source
string. (See. "Templates Containing Positional (Numeric)
Patterns" on page 5-4 for details.)

Parsing is essentially a two-step process.

1. Parse the source string into appropriate substrings using patterns.

2. Parse each substring into words.

Simple Templates for Parsing into Words
Here is a parsing instruction:

parse value 'time and tide' with varl var2 var3

The template in this instruction is: varl var2 var3. The data to parse is between the
keywords PARSE VALUE and the keyword WITH, the source string 'time and tide'.
Parsing divides the source string into blank-delimited words and assigns them to the
variables named in the template as follows:

varl='time'
var2='and'
var3='tide'

In this example, the source string to parse is a literal string, time and tide. In the
next example, the source string is a variable.

/* PARSE VALUE using a variable as the source string to parse */
string='time and tide'
parse value string with varl var2 var3 /* same results */

(PARSE VALUE does not convert alphabetic characters in the source string to
uppercase (lowercase a - z to uppercase A - Z). If you want to convert characters to
uppercase, use PARSE UPPER VALUE. A summary of the effect of parsing
instructions on case is in "Using UPPER" on page 5-8.)

All of the parsing instructions assign the parts of a source string into the variables
named in a template. There are various parsing instructions because of differences
in the nature or origin of source strings. (A summary of all the parsing instructions
is on page 5-8.)

Chapter 5. Parsing 5-1

Parsing

The PARSE VAR instruction is similar to PARSE VALUE except that the source
string to parse is always a variable. In PARSE VAR, the name of the variable
containing the source string follows the keywords PARSE VAR. In the next example,
the variable stars contains the source string. The template is starl star2 star3.

/* PARSE VAR example
stars=' Sirius Polaris Rigil 1

parse var stars starl star2 star3

*/

/* starl='Sirius' */
/* star2='Polaris' */
/* star3= 1 Rigil 1 */

All variables in a template receive new values. If there are more variables in the
template than words in the source string, the leftover variables receive null (empty)
values. This is true for all parsing: for parsing into words with simple templates
and for parsing with templates containing patterns. Here is an example using
parsing into words.

/* More variables in template than (words in) the source string */
satellite='moon'
parse var satellite Earth Mercury /* Earth='moon'

/* Mercury= 1 1
*/
*/

If there are more words in the source string than variables in the template, the last
variable in the template receives all leftover data. Here is an example:

/* More (words in the) source string than variables in template */
satellites='moon Io Europa Callisto ••• '
parse var satellites Earth Jupiter /* Earth='moon' */

/*Jupiter=' Io Europa Callisto ••• '*/

Parsing into words removes leading and trailing blanks from each word before it is
assigned to a variable. The exception to this is the word or group of words assigned
to the last variable. The last variable in a template receives leftover data, preserving
extra leading and trailing blanks. Here is an example:

/* Preserving extra blanks
solar5='Mercury Venus Earth Mars
parse var solars varl var2 var3 var4
/* varl ='Mercury'
/* var2 ='Venus'
/* var3 ='Earth'
/* var4 =' Mars Jupiter 1

Jupiter
*/

*/
*/
*/
*/

In the source string, Earth has two leading blanks. Parsing removes both of them
(the word-separator blank and the extra blank) before assigning var3=' Earth 1

• Mars
has three leading blanks. Parsing removes one word-separator blank and keeps the
other two leading blanks. It also keeps all five blanks between Mars and Jupiter and
both trailing blanks after Jupiter.

Parsing removes no blanks if the template contains only one variable. For example:

parse value • Pluto 1 with varl /* varl=' Pluto '*/

The Period as a Placeholder

5-2 REXX Reference

A period in a template is a placeholder. It is used instead of a variable name, but it
receives no data. It is useful:

• As a "dummy variable" in a list of variables
• Or to collect unwanted information at the end of a string.

Parsing

The period in the first example is a placeholder. Be sure to separate adjacent
periods with spaces; otherwise, an error results.

/* Period as a placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars •• brightest • /* brightest='Sirius' */

/* Alternative to period as placeholder */
stars='Arcturus Betelgeuse Sirius Rigil'
parse var stars drop junk brightest rest /* brightest='Sirius' */

A placeholder saves the overhead of unneeded variables.

Templates Containing String Patterns
· A string pattern matches characters in the source string to indicate where to split it.

A string pattern can be a:

Literal string pattern One or more characters within quotation marks.

Variable string pattern A variable within parentheses with no sign before the left
parenthesis. (See page 5-7 for details.)

Here are two templates: a simple template and a template containing a literal string
pattern:

varl var2 /* simple template
varl ', ' var2 /* template with literal string pattern

*/
*/

The literal string pattern is: ' , ' . This template:

• Puts characters from the start of the source string up to (but not including) the
first character of the match (the comma) into varl

• Puts characters starting with the character after the last character of the match
(the character after the blank that follows the comma) and ending with the end
of the string into var2.

A template with a string pattern can omit some of the data in a source string when
assigning data into variables. The next two examples contrast simple templates with
templates containing literal string patterns.

/* Simple template
name='Smith, John'
parse var name ln fn

*/

/*Assigns: ln='Smith,' */
/* fn='John' */

Notice that the comma remains (the variable ln contains 'Smith,'). In the next
example the template is l n ' , ' f n. This removes the comma.

/* Template with literal string pattern
name='Smith, John'
parse var name ln ', ' fn /* Assigns: ln='Smith'

/* fn='John'

*/

*/
*/

First, the language processor scans the source string for 1
, ' • It splits the source

string at that point. The variable l n receives data starting with the first character of
the source string and ending with the last character before the match. The variable
fn receives data starting with the first character after the match and ending with the
end of string.

A template with a string pattern omits data in the source string that matches the
pattern. (There is a special case (on page 5-11) in which a template with a string

Chapter 5. Parsing 5-3

Parsing

pattern does not omit matching data in the source string.) We used the pattern • , •
(with a blank) instead of 1

,
1 (no blank) because, without the blank in the pattern,

the variable f n receives 1 John• (including a .blank).

If the source string does not contain a match for a string pattern, then the variables
preceding the unmatched string pattern get all the data in question. Any variables
after that pattern :receive the null string.

A null string is never found. It always matches the end of the source string.

Templates Containing Positional (N·umeric) Patterns

S-4 REXX Reference

A positional pattern is a number that identifies the character position at which to
split data in the source string. The number must be a whole number.

An absolute positional pattern is

• A number with no + or - preceding it or with an equal sign preceding it
• A variable in parentheses with an equal sign before the left parenthesis. (See

page 5-8 for details on variable positional patterns.)

The number specifies the absolute character position at which to split the source
string.

Here is a template with absolute positional patterns:

variable! 11 varfab1e2 21 variable3

The numbers 11 and 21 are absolute positional patterns. The number l1 refers to
the 11th position in the input string, 21 to the 21st position. This.template:

• Puts characters 1 through 10 of the source string into ·variable!
• Puts characters 11 through 20 into variable2
• Puts characters 21 to the end into variable3.

Positional patterns are probably most useful for working with a file of records, such
as:

character positions:
1 11 21

FIELDS: ILASTNAME 'FIRST I PSEUDONYM

The following example uses this record structure.

40

l
end of
record

/* Parsing with absolute positional patterns in template */
record.l='Clemens Samuel Mark Twain 1

·record.2='Evans Mary Ann George Eliot
reco.rd.3='Munro H.H. Saki
do n=l to 3

parse var record.n lastname 11 firstname 21 pseudonym
If lastname= 1£vans 1 & firstname='Mary Ann' then say 'By George!'

end /* Says •By George! 1 after record 2 * /

The source string is first split at character position 11 and at position 21. The
language processor assigns characters 1 to 10 into 1 astname, characters 11 to 20 into
fi rstname, and characters 21 to 40 into pseudonym.

The template could have been:

1 lastname 11 firstname 21 pseudonym

instead of

lastname 11 firstname 21 pseudonym

Specifying the 1 is optional.

Parsing

Optionally, you can put an equal sign before a number in a template. An equal sign
is the same as no sign before a number in a template. The number refers to a
particular character position in the source string. These two templates work the
same:

lastname 11 first 21 pseudonym

lastname =11 first =21 pseudonym

A relative positional pattern is a number with a plus (+) or minus (-) sign preceding
it. (It can also be a variable within parentheses, with a plus (+) or minus (-) sign
preceding the left parenthesis; see page 5-8 for details on variable positional
patterns.)

The number specifies the relative character position at which to split the source
string. The plus or minus indicates movement right or left, respectively, from the
start of the string (for the first pattern) or the position of the last match. The
position of the last match is the first character of the last match. Here is the same
example as for absolute positional patterns done with relative positional patterns:

/* Parsing with relative positional patterns in template */
record.l='Clemens Samuel Mark Twain •
record.2='Evans Mary Ann George Eliot
record.3='Munro H.H. Saki
do n=l to 3

parse var record.n lastname +10 firstname + 10 pseudonym
If lastname='Evans' & firstname='Mary Ann' then say 'By George!'

end /* same results */
Blanks between the sign and the number are insignificant. Therefore, + 10 and + 10
have the same meaning. Note that +O is a valid relative positional pattern.

Absolute and relative positional patterns are interchangeable (except in the special
case (on page 5-11) when a string pattern precedes a variable name and a positional
pattern follows the variable name). The templates from the examples of absolute
and relative positional patterns give the same results.

~
lastname 11 firstname 21 pseudonym
l astname +10 firstname + 10 pseudonym

(Implied Put characters Put characters Put characters
starting 1 through 10 11 through 20 21 through
point is in lastname. in firstname. end of string
position (Non-inclusive (Non-inclusive in pseudonym.
1.) stopping point stopping point

is 11 (1+10).) is 21 (11+10).)

Only with positional patterns can a matching operation back up to an earlier
position in the source string. Here is an example using absolute positional patterns:

Chapter 5. Parsing 5-5

Parsing

/*Backing up to an earlier position (with absolute positional) */
string=' astronomers'
parse var string 2 varl 4 1 var2 2 4 var3 5 11 var4
say string 'study' varll lvar2llvar31 lvar4
/* Displays: "astronomers study stars" */

The absolute positional pattern 1 backs up to the first character in the source string.

With relative positional patterns, a number preceded by a minus sign backs up to an
earlier position. Here is the same example using relative positional patterns:

/* Backing up to an earlier position (with relative positional) */
string=' astronomers'
parse var string 2 varl +2 -3 var2 +l +2 var3 +l +6 var4
say string 'study' varll lvar21 lvar31 lvar4 /* same results */
In the previous example, the relative positional pattern -3 backs up to the first
character in the source string.

The templates in the last two examples are equivalent.

4J
varl 4

q_J
var2 2 4 var3 5 11 var4

varl +2 var2 +l +2 var3 +l +6 var4

Start Non- Go to 1. Non- Go to 4 Go to 11
at 2. inclusive (4-3=1) inclusive (2+2=4). (5+6=11).

stopping stopping Non-inclusive
point is 4 point is stopping point
(2+2=4). 2 (1+1=2). is 5 (4+1=5).

You can use templates with positional patterns to make multiple assignments:

/* Making multiple assignments */
books='Silas Marner, Felix Holt, Daniel Deronda, Middlemarch'
parse var books 1 Eliot 1 Evans
/* Assigns the (entire) value of books to Eliot and to Evans. */

Combining Patterns and Parsing Into Words

5-6 REXX Reference

What happens when a template contains patterns that divide the source string into
sections containing multiple words? String and positional patterns divide the source
string into substrings. The language processor then applies a section of the template
to each substring, following the rules for parsing into words.

/* Combining string pattern and parsing into words */
name=' John Q. Public'
parse var name fn init 1

•
1 ln /*Assigns: fn= 1John 1 */

/* init=' Q' */
/* ln=' Public' */

The pattern divides the template into two sections:

• fn init
• l n

The matching pattern splits the source string into two substrings:
• I John Q'
•

1 Public 1

Parsing

The language processor parses these substrings into words based on the appropriate
template section.

John had three leading blanks. All are removed because parsing into words removes
leading and trailing blanks except from the last variable.

Q has six leading blanks. Parsing removes one word-separator blank and keeps the
rest because i nit is the last variable in that section of the template.

For the substring ' Pub l i c ', parsing assigns the entire string into l n without
removing any blanks. This is because l n is the only variable in this section of the
template. (For details about treatment of blanks, see page 5-2.)

/* Combining positional patterns with parsing into words */
string='R E X X'
parse var string varl var2 4 var3 6 var4 /* Assigns: varl='R' */

/* var2='E' */
/* var3=' X' */
/* var4=' X' */

The pattern divides the template into three sections:

• varl var2
• var3
• var4

The matching patterns split the source string into three substrings that are
individually parsed into words:

• 'R E'
• I X'
• I X'

The variable varl receives 1 R'; var2 receives 'E'. Both var3 and var4 receive ' X'
(with a blank before the X} because each is the only variable in its section of the
template. (For details on treatment of blanks, see page 5-2.)

Parsing with Variable Patterns
You may want to specify a pattern by using the value of a variable instead of a fixed
string or number. You do this by placing the name of the variable in parentheses.
This is a variable reference. Blanks are not necessary inside or outside the
parentheses, but you can add them if you wish.

The template in the next parsing instruction contains the following literal string
pattern ' . 1

•

parse var name fn init '. ' ln

Here is how to specify that pattern as a variable string pattern:

strngptrn=' • 1

parse var name fn init (strngptrn) ln

If no equal, plus, or minus sign precedes the parenthesis that is before the variable
name, the value of the variable is then treated as a string pattern. The variable can
be one that has been set earlier in the same template.

Example:

Chapter 5. Parsing 5-7

Parsing

Using UPPER

/* Using a variable as a string pattern */
/* The variable (delim) is set in the same template */
SAY "Enter a date (mm/dd/yy format). =====> 11 /*assume 11/15/90 */
pull date
parse var date month 3 delim +1 day +2 (delim) year

/*Sets: month='ll'; delim= 1
/

1
; day='15'; year='90' */

If an equal, a plus, or a minus sign precedes the left parenthesis, then the value of
the variable is treated as an absolute or relative positional pattern. The value of the
variable must be a nonnegative whole number.

The variable can be one that has been set earlier in the same template. In the
following example, the first two fields specify the starting character positions of the
last two fields.

Example:

/* Using a variable as a positional pattern */
dataline = 1 6 20 Samuel ClemensMark Twain'
parse var dataline posl pos2 6 =(posl) realname =(pos2) pseudonym
/*Assigns: realname='Samuel Clemens'; pseudonym='Mark Twain' */

Specifying UPPER on any of the PARSE instructions converts characters to
uppercase (lowercase a - z to uppercase A - Z) before parsing. The following table
summarizes the effect of the parsing instructions on case.

Converts alphabetic characters to Maintains alphabetic characters in case
uppercase before parsing entered

ARG PARSEARG

PARSE UPPER ARG

PARSE UPPER LINEIN PARSE LINEIN

PULL PARSE PULL

PARSE UPPER PULL

PARSE UPPER SOURCE PARSE SOURCE

PARSE UPPER VALUE PARSE VALUE

PARSE UPPER VAR PARSE VAR

PARSE UPPER VERSION PARSE VERSION

The ARG instruction is simply a short form of PARSE UPPER ARG. The PULL
instruction is simply a short form of PARSE UPPER PULL. If you do not desire
uppercase translation, use PARSE ARG (instead of ARG or PARSE UPPER ARG)
and use PARSE PULL (instead of PULL or PARSE UPPER PULL).

Parsing Instructions Summary

5-8 REXX Reference

Remember: All parsing instructions assign parts of the source string into the
variables named in the template. The following table summarizes where the source
string comes from.

Parsing

Instruction Where the source string comes from

ARG Arguments you list when you invoke the program or

PARSEARG
arguments in the call to a subroutine or function.

PARSE LINEIN Next line in the default input stream.

PULL The string at the head of the external data queue. (If

PARSE PULL
queue empty, uses default input, typically the
terminal.)

PARSE SOURCE System-supplied string giving information about the
executing program.

PARSE VALUE Expression between the keyword VALUE and the
keyword WITH in the instruction.

PARSE VAR name Parses name.

PARSE VERSION System-supplied string telling the language, language
level, and (three-word) date.

Parsing Instructions Examples
All examples in this section parse source strings.into words.

ARG

/* ARG with source string named in program invocation */
/* Program name is PALETTE. Specify 2 primary co 1 ors (ye 11 ow, * /
/* red, blue} on call. Assume call is: palette red blue */
arg varl var2 /* Assigns: varl='RED'; var2= 1BLUE 1 */
If varl<> 1 RED 1 & varl<> 1 YELLOW 1 & varl<> 1 BLUE 1 then signal err
If var2<> 1 RED 1 & var2<> 1 YELLOW 1 & var2<> 1 BLUE 1 then signal err
total=length(varl}+length{var2}
SELECT;

.when total=7 then new= 1-purple 1

When total=9 then new='orange'
When tota 1 =10 then new=' g-reen'
Otherwise new=varl /* entered duplicates */

END
Say new; exit /* Displays: 11 purple 11 */

Err:
say 'Input error--color is not 11 red 11 or 11 blue 11 or "yellow"'; exit

ARG converts alphabetic characters to uppercase before parsing. An example of
ARG with the arguments in the CALL to a subroutine is in "Parsing Multiple
Strings" on page 5-10.

PARSE ARG works the same as ARG except that PARSE ARG does not convert
alphabetic characters to uppercase before parsing.

PARSE LINEIN

parse linein 'a=·• numl 'b=' num2
sum=numl+num2
say sum

PARSE PULL

/* Assume: 8 and 9 */
/* Enter: a=8 b=9 as input */
/* Displays: 11 17 11 */

Chapter 5. Parsing 5-9

Parsing

PUSH '80 7' /* Puts data on queue */
parse pull fourscore seven/* Assigns: fourscore= 180'; seven='7' */
SAY fourscore+seven /* Displays: 1187 11 */

PARSE SOURCE

parse source sysname •
Say sysname

PARSE VALUE example is on page 5-1.

/* Displays: "OS/2 11 */

PARSE VAR examples are throughout the chapter, starting on page 5-2.

PARSE VERSION

parse version • level
say level /* Displays: 11 4.00 11 */

PULL works the same as PARSE PULL except that PULL converts alphabetic
characters to uppercase before parsing.

Advanced Topics in Parsing
This section includes parsing multiple strings and flow charts depicting a conceptual
view of parsing.

Parsing Multiple Strings

S-10 REXX Reference

Only ARG and PARSE ARG can have more than one source string. To parse
multiple strings, you can specify multiple comma-separated templates. Here is an
example:

parse arg template!, template2, template3

This instruction consists of the keywords PARSE ARG and three comma-separated
templates. (For an ARG instruction, the source strings to parse come from
arguments you specify when you invoke a program or CALL a subroutine or
function.) Each comma is an instruction to the parser to move on to the next string.

Example:

/* Parsing multiple strings in a subroutine */
num= 131

musketeers= 11 Porthos, Athos, Aramis, D1Artagnon 11

CALL Sub num,musketeers /* Passes num and musketeers to sub */
SAY total; say fourth/* Displays: 11411 and 11 D1Artagnon 11 */
EXIT

Sub:
parse arg subtotal, ••• fourth
total=subtotal+l
RETURN

Note that when a REXX program is started as a command, only one argument
string is recognized. You can pass multiple argument strings for parsing:

• When one REXX program invokes another REXX program with the CALL
instruction or a function call.

• When programs written in other languages start a REXX program.

Parsing

If there are more templates than source strings, each variable in a leftover template
receives a null string. If there are more source strings than templates, the language
processor ignores leftover source strings. If a template is empty (two commas in a
row) or contains no variable names, parsing proceeds to the next template and
source string.

Combining String and Positional Patterns: A Special Case
There is a special case in which absolute and relative positional patterns do not work
identically. We have shown how string patterns skip over data in the source string
(see page 5-3). But a template containing the sequence:

• string pattern
• variable name
• relative positional pattern

does not skip over any data. A relative positional pattern moves relative to the first
character of a string pattern. As a result, assignment includes the data that is in the
string pattern. Thus, the variable receives characters including the matching data.

/* Template containing string pattern, then variable name, then */
/* relative positional pattern does not skip over any data. */
string='REstructured eXtended executor'
parse var string varl 3 junk 1X1 var2 +1 junk 'X' var3 +1 junk
say varll lvar21 lvar3 /* Concatenates variables; displays: 11 REXX 11 */

Here is how this template works:

~ Jjuni 'X' I Jvari +lJ ~ Jvarl +l J y
Put Starting Starting Starting Starting Starting
characters at 3, put with first with char- with with char-
1 through characters •x• put 1 acter after second 'X' after sec-
2 in varl. up to (not (+l) first •x• put 1 (+1) ond •x•
(Stopping including) character put up to character put rest
point is first 'X' in var2. second 'X' in var3. of string
3.) in junk. in junk. in junk.

varl= 1 RE 1 junk= var2= 1 X1 junk= var3='X' junk=
'structured 'tended e' 'ecutor'
e'

Parsing with DBCS Characters
Parsing with DBCS characters generally follows the same rules as parsing with SBCS
characters. Literal strings can contain DBCS characters, but numbers and variable
names must be in SBCS characters. See "PARSE" on page B-3 for examples of
DBCS parsing.

Details of Steps in Parsing
The three figures that follow are to help you understand the concept of parsing.
Please note that the figures do not include error cases.

The figures include terms whose definitions are as follows:

string start

string end

is the beginning of the source string (or substring).

is the end of the source string (or substring).

Chapter 5. Parsing 5-11

Parsing

5-12 REXX Reference

length is the length of the source string.

match start is in the source string. and is the first character of the match.

match end is in the source string. For a string pattern, it is the first character
after the end of the match. For a positional pattern, it is the same
as match start.

match position is in the source string. For a string pattern, it is the first matching
character. For a positional pattern, it is the position of the
matching character~

token is a distinct syntactic element in a template, such as a variable, a
period, a pattern, or a comma.

value is the numeric value of a positional pattern. This can be either a
constant or the resolved value of a variable.

START
Token is first one in template.
Length=length{source string)
Match start=l. Match end=l.

End of template?

no

CALL Find Next
Pattern.

CALL Word Parsing.

Step to next token.

Token a co11111a?

no

!Parsing complete.

yes
1----1~ 1 Set next source

string and template.

Figure 5-1. Conceptual Overview View of Parsing

Start:
End of
template?

no

yes String start=match end.
Match start=length + 1.
Match end=length + 1. Return.

Token period yes
or variable? Step to next token.

Token a
minus?

no

no

no

Token an
equal?

Token a
number?

no

no

Variable yes Resolve
fonn? its value.

no

yes Variable yes Resolve
fonn? its value.

no

yes Variable yes Resolve
fonn? its value.

no

yes String start=match end.

String start=match start.
Match start=min(length + l,
match start+ value).

Match end=match start. Return.

String start=match start.
Match start=max(l, match
start - value).

Match end=match start. Return.

String start=match end.
Match start=min(length+l, value).
Match end=match start. Return.

Match start=min(length+l, value).
Match end=match start. Return.

Token a lit- yes
eral string?

Token a var- yes Resolve Match found in yes String start=match end.
iable string? its value. rest of string? Match start=match position.

no

Token a yes
conma? _... -..

Match end=match position +
no pattern length. Return.

String start=match end.
Match start=length + 1.
Match end=length + 1. Return.

Match start=length + 1.
Match end=length + 1. Return.

Figure 5-2. Conceptual View of Finding Next Pattern

Parsing

Chapter 5. Parsing 5-13

Parsing

Start: Match end <=
string start?

yes

String end=length + 1.

no
String end=match start.

Substring=substr(source string,string start,(string end-string start))
Token=previous pattern.

no
Any more tokens?

yes

Step to next token.

no I Return. Token a variable or a
period?

yes

IAny more tokens? lno

l + yes

Next token a variable or no Assign rest of substring
period? to variable.

yes
no

Any substring left? Assign null string to
variable.

yes l ~

Strip any leading blanks.

no
Any substring left? Assign null string to

variable.

yes l ~

no
Blank found in substring? Assign rest of substring

to variable.

yes 1

Assign word from substring to variable and step past blank.

Figure 5-3. Conceptual View of Word Parsing

5-14 REXX Reference

Numbers and Arithmetic

Chapter 6. Numbers and Arithmetic

Introduction

REXX defines the usual arithmetic operations (addition, subtraction, multiplication,
and division) in as natural a way as possible. What this really means is that the
rules followed are those that are conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the
rules used vary considerably (indeed much more than generally appreciated) from
person to person and from application to application and in ways that are not
always predictable. The arithmetic described here is, therefore, a compromise that
(although not the simplest) should provide acceptable results in most applications.

Numbers (that is, character strings used as input to REXX arithmetic operations and
built-in functions) can be expressed very flexibly. Leading and trailing blanks are
permitted, and exponential notation can be used. Some valid numbers are:

12 /* a whole number * /
'-76' /* a signed whole number */

12.76 /* decimal places */
' + 0.003 ' /* blanks around the sign and so forth */

17. /*sameas"l7" */
.5 /* same as "0.5" */

4E9 /* exponential notation */
0.73e-7 /* exponential notation */

(Exponential notation means that the number includes a power of ten following an E
that indicates how the decimal point is shifted. Thus 4E9 above is just a short way
of writing 4000000000, and 0. 73e-7 is short for 0.000000073.)

The arithmetic operators include addition (+), subtraction (-), multiplication (*),
power (**), division (/), prefix plus (+), and prefix minus (-). In addition, there are
two further division operators: integer divide (%) divides and returns the integer part;
remainder(//) divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to
definite rules. The most important of these rules are as follows (see the "Definition"
section for full details):

• Results are calculated up to some maximum number of significant digits (the
default is 9, but you can alter this with the NUMERIC DIGITS instruction to
give whatever accuracy you need). Thus if a result requires more than 9 digits,
it would normally be rounded to 9 digits. For example, the division of 2 by 3
would result in 0.666666667 (it would require an infinite number of digits for
perfect accuracy).

• Except for division and power, trailing zeros are preserved (this is in contrast to
most popular calculators, which remove all trailing zeros). So, for example:

2.40 + 2 -> 4.40
2.40 - 2 -> C:l.40
2.40 * 2 -> 4.80
2.40 I 2 -> 1.2

This behavior is desirable for most calculations (especially financial calculations).

Chapter 6. Numbers and Arithmetic 6-1

Numbers and Arithmetic

Definition

Numbers

Precision

6-2 REXX Reference

If necessary, you can remove trailing zeros with the STRIP function (see page
4-36), or by division by 1.

• A zero result is always expressed as the single digit e.
• Exponential form is used for a result depending on the setting of NUMERIC

DIGITS (the default is 9). If the number of places needed before the decimal
point exceeds the NUMERIC DIGITS setting, or the number of places after the
point exceeds twice the NUMERIC DIGITS setting, the number will be
expressed in exponential notation:

le6 * le6
1 I 3E10

->
->

1E+l2 /* not 1000000000000 */
3.33333333E-11 /* not 0.0000000000333333333 */

A precise definition of the arithmetic facilities of the REXX language is given here.

A number in REXX is a character string that includes one or more decimal digits,
with an optional decimal point. (See "Exponential Notation" on page 6-7 for an
extension of this definition.) The decimal point may be embedded in the number, or
may be prefixed or suffixed to it. The group of digits (and optional decimal point)
constructed this way can have feading or trailing blanks and an optional sign(+ or
-) that must come before any digits or decimal point. The sign can also have
leading or trailing blanks.

Therefore, number is defined as:

....

Where:

blanks

ls ign,___,L,..----J
blanks

are one or more spaces

sign
is either+ or -

digits

r=::~:;~.digits~ t .dzgz ts---j­
digi ts.-----

are one or more of the decimal digits a - 9.

Note that a single period alone is not a valid number.

The maximum number of significant digits that can result from an operation is
controlled by the instruction:

11+-NUMERIC DIGITS I . j
Lexpresszon

.. ..

expression is evaluated and must result in a positive whole number. This defines the
precision (number of significant digits) to which calculations are carried out. Results
are rounded to that precision, if necessary.

Numbers and Arithmetic

If you do not specify expression in this instruction, or if no NUMERIC DIGITS
instruction has been executed since the start of a program, the default precision is
used. The REXX standard for the default precision is 9.

Note that NUMERIC DIGITS can set values below the default of nine. Use small
values, however, with care-the loss of precision and rounding thus requested affects
all REXX computations, including, for example, the computation of new values for
the control variable in DO loops.

Arithmetic Operators
REXX arithmetic is performed by the operators+, -, *, /, %, //,and** (add,
subtract, multiply, divide, integer divide, remainder, and power), which all act on
two terms, and the prefix plus and minus operators, which both act on a single term.
This section describes the way in which these operations are carried out.

Before every arithmetic operation, the term or terms being operated upon have
leading zeros removed (noting the position of any decimal point, and leaving just
one zero if all the digits in the number are zeros). They are then truncated (if
necessary) to DIGITS + 1 significant digits (the extra digit is a "guard" digit) before
being used in the computation. The operation is then carried out under up to
double that precision, as described under the individual operations that follow.
When the operation is completed, the result is rounded if necessary to the precision
specified by the NUMERIC DIGITS instruction.

Every operation is carried out in such a way that no errors will be introduced except
during the final rounding of the result to the specified significance. (That is, input
data is first truncated to the appropriate significant digit (NUMERIC DIGITS+ 1)
before being used in the computation, and then divisions and multiplications are
carried out to double that precision, as needed.)

Rounding is done in the traditional manner. The digit to the right of the least
significant digit in the result (the "guard digit") is inspected and values of 5 through
9 are rounded up, and values of e through 4 are rounded down. Even/odd rounding
would require the ability to calculate to arbitrary precision at all times and is,
therefore, not the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point if otherwise there
would be no digit before it. Significant trailing zeros are retained for addition,
subtraction, and multiplication, according to the rules that follow, except that a
result of zero is always expressed as the single digit e. For division, trailing zeros are
removed after rounding.

The FORMAT built-in function (see page 4-23) allows a number to be represented
in a particular format if the standard result provided does not meet your
requirements.

Arithmetic Operation Rules-Basic Operators
The basic operators (addition, subtraction, multiplication, and division) operate on
numbers as follows. All numbers have insignificant leading zeros removed before
being used in computation.

Chapter 6. Numbers and Arithmetic 6-3

Numbers and Arithmetic

Addition and Subtraction

Multiplication

Division

6-4 REXX Reference

If either number is 0, the other number, rounded to NUMERIC DIGITS digits, if
necessary, is used as the result (with sign adjustment as appropriate). Otherwise, the
two numbers are extended on the right and left as necessary, up to a total maximum
of DIGITS + 1 digits (the number with the smaller absolute value may, therefore,
lose some or all of its digits on the right) and are then added or subtracted as
appropriate.

Example:

becomes:

xxx.xxx + yy.yyyyy

xxx.xxxee
+ 0yy.yyyyy

zzz.zzzzz

The result is then rounded to the current setting of NUMERIC DIGITS if necessary
(taking into account any extra "carry digit" on the left after addition, but otherwise
counting from the position corresponding to the most significant digit of the terms
being added or subtracted), and any insignificant leading zeros are removed.

The prefix operators are evaluated using the same rules; the operations +number and
-number are calculated as e+number and a-number, respectively.

The numbers are multiplied together ("long multiplication") resulting in a number
that may be as long as the sum of the lengths of the two operands.

Example:

xxx.xxx * yy.yyyyy

becomes:

zzzzz.zzzzzzzz

The result is then rounded, counting from the first significant digit of the result, to
the current setting of NUMERIC DIGITS.

For the division:

yyy / xxxxx

the following steps are taken: First the number yyy is extended with zeros on the
right until it is larger than the number xxxxx (with note being taken of the change in
the power of ten that this implies). Thus, in this example, yyy might become yyyee.
Traditional long division then takes place. This might be written:

zzzz

xxxxx yyyee

The length of the result (zzzz) is such that the rightmost z is at least as far right as
the rightmost digit of the (extended) y number in the example. During the division,
they number is extended further as necessary. The z number may increase up to
NUMERIC DIGITS+ 1 digits, at which point the division stops and the result is
rounded. Following completion of the division (and rounding if necessary),
insignificant trailing zeros are removed.

Numbers and Arithmetic

Basic Operator Examples
Following are some examples that illustrate the main implications of the rules just
described.

/* With: Numeric digits 5 */
12+1.00 -> 19.00
1.3-1.07 -> 0.23
1.3-2.07 -> -0.77
1.20*3 -> 3.60
7*3 -> 21
0.9*0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1
8.0/2 -> 4

Note: With all the basic operators, the position of the decimal point in the terms
being operated upon is arbitrary. The operations may be carried out as integer
operations with the exponent being calculated and applied afterwards. Therefore,
the significant digits of a result are not in any way dependent on the position of the
decimal point in either of the terms involved in the operation.

Arithmetic Operation Rules-Additional Operators

Power

Integer Division

The power (**), integer divide (%), and remainder (//) operators rules follow.

The** (power) operator raises a number to a power, which may be positive,
negative, or 0. The power must be a whole number. If negative, the absolute value
of the power is used, and then the result is inverted (divided into 1). For calculating
the result, the number is effectively multiplied by itself for the number of times
expressed by the power, and finally trailing zeros are removed (as though the result
were divided by one).

In practice (see Note 1 on page 6-6 for rationale), the result is calculated by the
process ofleft-to-right binary reduction. For x**n: n is converted to binary, and a
temporary accumulator is set to 1. If n = 0 the calculation is complete. (Thus, x**0
= 1 for all x, including 0**0.) Otherwise each bit (starting at the first nonzero bit)
is inspected from left to right. If the current bit is 1, the accumulator is multiplied
by x. If all bits have now been inspected, the calculation is complete; otherwise the
accumulator is squared and the next bit is inspected for multiplication. When the
calculation is complete, the temporary result is divided into 1 if the power was
negative.

The multiplications and division are done under the normal REXX arithmetic
combination rules with the initial calculation (the multiplications) using precision of
DIGITS + L + 1 digits (where L is the length in digits of the whole number n) and
the final division using the usual NUMERIC DIGITS digits.

The o/o (integer divide) operator divides two numbers and returns the integer part of
the result. The result returned is defined to be that which would result from
repeatedly subtracting the divisor from the dividend while the dividend is larger than
the divisor. During this subtraction, the absolute values of both the dividend and
the divisor are used: the sign of the final result is the same as that which would
result if normal division were used.

Chapter 6. Numbers and Arithmetic 6-5

Numbers and Arithmetic

Remainder

The result returned will have no fractional part (that is, no decimal point or zeros
following it). If the result cannot be expressed simply by digits within the precision
set by the NUMERIC DIGITS instruction, the operation is in error and will fail.
For example, 10000000000%3 requires 10 digits for the result (3333333333) and
would, therefore, fail if NUMERIC DIGITS 9 were in effect.

The II (remainder) operator returns the remainder from integer division, which is
defined as being the residue of the dividend after the operation of calculating integer
division as just described. The sign of the remainder, if nonzero, is the same as that
. of the. original .dividend.

This operation will fail under the same conditions as integer division (that is, if
integer division on the same two terms would fail, the remainder cannot be
calculated).

Additional Operator Examples
Following are some examples using the power, integer divide, and remainder
operators just described:

/* Again with: Numeric digits 5 */
2**3 -> 8
2**-3 -> 0.12.5
1.7**8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 •> ·-1
10.2//1 -> 0.2
10//0.3 -> 0.1

Notes:

1. A particular algorithm for calculating powers is used, because it is efficient
(though not optimal) and considerably reduces the nwnber of actual
multiplications performed. It, therefore, gives better performance than the
simpler definition of repeated multiplication. Because results may differ from
those of repeated multiplication, the algorithm is defined here.

2. The integer divide and remainder operators are defined so that they can be
calculated as a by-product of the standard division operation. The division
process is ended as soon as the integer result is available; the residue of the
dividend is the remainder.

Numeric Comparisons

6-6 REXX Reference

The comparison operators are listed in "Comparison" on page 2-9. Yau can use
any of these for comparing numeric strings. However, you should not use==,\==,
-,==, >>, \>>, -,>>, <<,\<<,and -,<<to compare numeric values because leading
and trailing blanks and leading zeros are significant with these operators.

A comparison of numeric values is effected by subtracting the two numbers
(calculating the difference) and then comparing the result with 0. That is, the
operation:

A ? B

where ? is any numeric comparison operator, is identical with:

Numbers and Arithmetic

(A - B) 1 '0'

It is, therefore, the difference between two numbers, when subtracted under REXX
subtraction rules, that determines their equality.

Comparison of two numbers is affected by a quantity called fuzz, which is set by the
instruction:

11+-NUMERI c FUZZ L . J
expresszon

Here expression must result in a whole number that is 0 or positive. This FUZZ
number controls the amount by which two numbers may differ before being
considered equal for the purpose of comparison. The default is 0.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ
value for each numeric comparison operation. That is, the numbers are subtracted
under a precision of DIGITS - FUZZ digits during the comparison. Clearly FUZZ
must be less than DIGITS.

Thus if DIGITS = 9, and FUZZ = 1, the comparison is carried out to 8 significant
digits, just as though NUMERIC DIGITS 8 had been put in effect for the duration of the
operation.

Example:

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5 /* Displays "0" */
say 4.9999 < 5 /* Displays "1" */
Numeric fuzz 1
say 4.9999 = 5 /* Displays "1" */
say 4.9999 < 5 /* Displays "0" */

Exponential Notation
The preceding description of numbers describes "pure" numbers, in the sense that
the character strings that describe numbers could be very long. For example:

10000000000 * 1e0eeee0e00

would give

100eee0e00e0e000e0000

and

.00000000001 * .00000000001

would give

0.0000000000000000000001

For both large and small numbers some form of exponential notation is useful, both
to make long numbers more readable, and to make execution possible in extreme
cases. In addition, exponential notation is used whenever the "simple" form would
give misleading information.

For example:

numeric digits 5
say 54321*54321

Chapter 6. Numbers and Arithmetic 6-7

Numbers and Arithmetic

6-8 REXX Reference

would display 2950800000 if long form were used. This is clearly misleading, and so
the result is expressed as 2. 9508E+9 instead.

The definition of numbers is, therefore, extended as:
....

..
td:;:~~-digits~ .dzgzts---j­

igi ts.----'

The integer following the E represents a power of ten that is to be applied to the
number, and the E can be in uppercase or lowercase.

Here are some examples:

12E11 12000eeeeeeee
12E-5 = 0.00012
-12e4 = -120000

•

.. 4

The preceding numbers are valid for input data at all times. The results of
calculations are returned in either conventional or exponential form depending on
the setting of DIGITS. If the number of places needed before the decimal point
exceeds DIGITS, or the number of places after the point exceeds twice DIGITS,
exponential form is used. The exponential form generated by REXX always has a
sign following the E in order to improve readability. An exponential part of E+O will
never be generated.

You can explicitly convert numbers to exponential form, or force them to be
displayed in "long" form, by using the FORMAT built-in function, described in
"FORMAT" on page 4-23.

You can control whether Scientific or Engineering notation is to be used by using
the instruction:

SCIENTIFIC------
..._NUMERIC FOR------------ ------------

ENGINEERIN•-------
....__,. __ ___,.--e·xpress ion

VALUE

The default setting of FORM is SCIENTIFIC.

Scientific notation adjusts the power of 10 so there is a single nonzero digit to the
left of the decimal point. Engineering notation causes powers of 10 to always be
expressed as a multiple of 3: the integer part may, therefore, range from 1 through
999.

/* after the instruction */
Numeric form scientific

123. 45 * lell -> 1.2345E+l3

/* after the instruction */
Numeric form engineering

123. 45 * lell -> 12.345E+12

Whole Numbers

Numbers and Arithmetic

Within the set of numbers REXX understands, it is useful to distinguish the subset
defined as whole numbers. A whole number in REXX is a number that has a
decimal part that is all zeros (or that has no decimal part). In addition, it must be
possible to express its integer part simply as digits within the precision set by the
NUMERIC DIGITS instruction. REXX would express larger numbers in
exponential notation, after rounding, and, therefore, these could no longer be safely
described or used as whole numbers.

Numbers Used Directly by REXX

Errors

As discussed, numbers are always rounded (if necessary) according to the setting of
NUMERIC DIGITS during any arithmetic operation. Similarly, when REXX
directly uses a number (which has not necessarily been involved in an arithmetic
operation), the same rounding is also applied.

In the following cases, the number used must be a whole number with the following
limits:

Power values (right hand operand of 999999999
the power operator)

Values of exprr and exprf in the DO The current numeric precision (up to
instruction 999999999).

Values given for DIGITS or FUZZ in 999999999 (Note: FUZZ must always
the NUMERIC instruction be less than DIGITS).

Positional patterns in parsing 999999999
templates

Number given for option in the 999999999
TRACE instruction.

Two types of errors may occur during arithmetic:

• Overflow /Underflow

This error occurs if the exponential part of a result would exceed the range that
the language processor can handle, when the result is formatted according to the
current settings of NUMERIC DIGITS and NUMERIC FORM. The language
defines a minimum capability for the exponential part, namely the largest
number that can be expressed as an exact integer in default precision. Because
the default precision is 9, the OS/2 operating system supports exponents in the
range -999999999 through 999999999.

Because this allows for (very) large exponents, overflow or underflow is treated
as a terminating syntax error.

• Insufficient storage

Storage is needed for calculations and intermediate results, and on occasion an
arithmetic operation may fail due to lack of storage. This is considered a
terminating error as usual, rather than an arithmetic error.

Chapter 6. Numbers and Arithmetic 6-9

Numbers and Arithmetic

6-10 REXX Reference

Conditions and Condition Traps

Chapter 7. Conditions and Condition Traps

CALL and SIGNAL modify the flow of execution in a REXX program by using
condition traps. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (see "CALL" on page 3-6 and
"SIGNAL" on page 3-35) .

..._..cALL J LOFF-condi tion
LsIGNAL ON-condition------------.....-

LNAME-t rapnamej

condition and trapname are symbols that are taken as constants. Following one of
these instructions, a condition trap is set to either ON (enabled) or OFF (disabled).
The initial setting for all condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to
the routine or label trapname. SIGNAL or CALL is used, depending on whether the
most recent trap for the condition was set using SIGNAL ON or CALL ON,
respectively.

The conditions and their corresponding events that can be trapped are:

ERROR
raised if a command indicates an error condition upon return. It is also raised if
any command indicates failure and neither CALL ON FAILURE nor SIGNAL
ON.FAILURE is set. The condition is raised at the end of the clause that
invoked the command, but is ignored if the ERROR condition trap is already in
the delayed state.

FAILURE
raised if a command indicates a failure condition upon return. The condition is
raised at the end of the clause that invoked the command, but is ignored if the
FAILURE condition trap is already in the delayed state.

An attempt to issue a command to an unknown subcommand environment will
also raise a FAILURE condition.

HALT
raised if an external attempt is made to interrupt and terminate execution of the
program. The condition is usually raised at the end .of the clause that was being
executed when the external interruption occurred. When a REXX program is
running in an OS/2 full-screen or command prompt session, the Ctrl +Break key
sequence raises the halt condition. However, if Ctrl +Break is pressed wht1e a
command or non.:REXX external function is running, the command or function
ends. The REXX program is also ended by without raising the halt condition.
When a REXX program is running under PMRE:XX, PMREXX provides a
pull-down control for raising the halt condition. This affects only the REXX
program, not non-REXX programs which may have been called by the REXX
program.

Note: Application programs that use the REXX language processor might use
the RX.HALT exit or the RexxStart programming interface to halt execution of
a REXX macro. See "System Exits" on page 9-26~

Chapter 7. Conditions and Condition Traps 7-1

Conditions and Condition Traps

NOTREADY ·
raised if an error occurs during an input or output operation. See "Errors
During Input and Output" on page 8-6. This condition is ignored if the
NOTREADY condition trap is already in the delayed state.

NOVALUE
raised if an uninitialized variable is used:

• As a term in an expression
• As the name following the VAR subkeyword of the PARSE instruction
• As a variable reference in a parsing template, a PROCEDURE, or a DROP

instruction.

This condition may be specified only for SIGNAL ON.

SYNTAX
raised if any language processing error is detected. This includes all kinds of
processing errors, including true syntax errors and "run-time" errors, such as
attempting an arithmetic operation on non-numeric terms. This condition may
be specified only for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON, OFF,
or delayed, and any trapname) of that condition trap. Thus, a SIGNAL ON HALT
replaces any current CALL ON HALT, a CALL ON or SIGNAL ON with a new
trap name replaces any previous trap name, any OFF reference disables the trap for
CALL or SIGNAL, and so on.

Action Taken When a Condition Is Not Trapped
When a condition trap is currently disabled (OFF) and the specified condition
occurs, the default action depends on the condition:

• For HALT and SYNTAX, the execution of the program ends, and a message
(see Appendix A, "Error Numbers and Messages" on page A-1) describing the
nature of the event that occurred usually indicates the condition.

• For all other conditions, the condition is ignored and its state remains OFF.

Action Taken When a Condition Is Trapped

7-2 REXX Reference

When a condition trap is currently enabled (ON) and the specified condition occurs,
instead of the usual flow of control, a CALL trapname or SIGNAL trapname
instruction is executed automatically (that is, passes control to a label or routine).
The label or routine given control depends on whether you used the NAME
trapname option when you enabled the condition trap.

If you did not explicitly specify a trapname, control is passed to the label or routine
that matches the name of the condition itself (ERROR, FAILURE, HALT,
NOTREADY, NOVALUE, or SYNTAX).

For example, the instruction call on error enables the condition trap for the
ERROR condition. If the condition occurred, then a call to the routine identified by
the name ERROR is made. The instruction ca 11 on error name commanderror
would enable the trap and call the routine COMMANDERROR if the condition
occurred.

Conditions and Condition Traps

If you specified trapname after the NAME subkeyword of the CALL ON or

SIGNAL ON instruction, control is passed to the label or routine specified, rather

than to the name of the condition.

The sequence of events, once a condition has been trapped, varies depending on

whether a SIGNAL or CALL is executed:

• If the action taken is a SIGNAL, execution of the current instruction ceases

immediately, the condition is disabled (set to OFF), and the SIGNAL takes

place in exactly the same way as usual (see page 3-35).

If any new occurrence of the condition is to be trapped, a new CALL ON or

SIGNAL ON instruction for the condition is required to re-enable it once the

label is reached. For example, if SIGNAL ON SYNTAX is enabled when a

SYNTAX condition occurs, then if the SIGNAL ON SYNTAX label name is

not found, a normal syntax error termination occurs.

• If the action taken is a CALL, the CALL is made in the usual way (see page

3-6) except that the special variable RESULT is not affected by the call. If the

routine should RETURN any data, then the returned character string is ignored.

Note that CALL ON can only occur at clause boundaries. Because these

conditions (ERROR, FAILURE, and HALT) can arise during execution of an

INTERPRET instruction, execution of the INTERPRET may be interrupted

and later resumed if CALL ON was used.

Before the CALL is made, the condition trap is put into a delayed state. This

state persists until the RETURN from the CALL, or until an explicit CALL (or

SIGNAL) ON (or OFF) is made for the condition. This delayed state prevents

a premature condition trap at the start of the routine called to process a

condition trap. When a condition trap is in the delayed state it remains enabled,

but if the condition is trapped again any action (including the updating of the

condition information) is delayed until one of the following events occurs:

1. A CALL ON or SIGNAL ON, for the delayed condition, is executed. In

this case a CALL or SIGNAL takes place immediately after the new CALL

ON or SIGNAL ON instruction has been executed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is executed. In

this case the condition trap is disabled and the default action for the

condition occurs at the end of the CALL OFF or SIGNAL OFF

instruction.

3. A RETURN is made from the subroutine. In this case the condition trap is

no longer delayed and the subroutine is called again immediately.

On RETURN from the CALL, the original flow of execution is resumed (that is,

the flow is not affected by the CALL).

Notes:

1. In all cases, the condition is raised immediately upon detection. If SIGNAL

ON traps the condition, the current instruction is terminated, if necessary.

Therefore, the instruction during which an event occurs may be only partly

executed. For example, if SYNTAX is raised during the evaluation of the

expression in an assignment, the assignment does not take place. Note that

the CALL for ERROR, FAILURE, HALT, and NOTREADY traps can

occur only at clause boundaries. If these conditions arise in the middle of

an INTERPRET instruction, execution of INTERPRET may be interrupted

and later resumed. Similarly, other instructions, for example, DO or

SELECT, may be temporarily interrupted by a CALL at a clause boundary.

Chapter 7. Conditions and Condition Traps 7-3

Conditions and Condition Traps

2. The state (ON, OFF, or delayed, and any trapname) of each condition trap
is saved on entry to a subroutine and is then restored on RETURN. This
means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can
be used in a subroutine without affecting the conditions set up by the caller.
See the CALL instruction (page 3-6) for details of other information that is
saved during a subroutine call.

3. The state of condition traps is not affected when an external routine is
invoked by a CALL, even if the external routine is a REXX program. On
entry to any REXX program, all condition traps have an initial setting of
OFF.

4. While user input is executed during interactive tracing, all conditions are set
OFF so that unexpected transfer of control does not occur should (for
example) the user accidentally use an uninitialized variable while SIGNAL
ON NOVALUE is active. For the same reason, a syntax error during
interactive tracing does not cause exit from the program, but is trapped
specially and then ignored after a message is given.

5. Certain execution errors are detected by the system interface either before
execution of the program starts or after the program has exited. SIGNAL
ON SYNTAX cannot trap these errors.

6. If a trap is enabled using CALL ON, the routine can be an internal, built-in,
or external function.

Note that labels are clauses consisting of a single symbol followed by a colon.
Any number of successive clauses can be labels; therefore, multiple labels are
allowed before another type of clause.

Condition Information

7-4 REXX Reference

When any condition is trapped and causes a SIGNAL or CALL, this becomes the
current trapped condition, and certain condition information associated with it is
recorded. You can inspect this information by using the CONDITION built-in
function (see "CONDITION" on page 4-14).

The condition information includes:

• The name of the current trapped condition
• The instruction executed as a result of the condition trap (CALL or SIGNAL)
• The status of the trapped condition
• Any descriptive string associated with that condition.

The descriptive string varies, depending on the condition trapped.
ERROR The string that was processed and resulted in the error condition.
FAILURE The string that was processed and resulted in the failure condition.
HALT Any string associated with the halt request. This can be the null

string if no string was provided.

NOTREADY The name of the stream being manipulated when the error occurred
and the NOTREADY condition was raised. If the stream was a
default stream with no defined name, then the null string may be
returned.

NOVALUE

SYNTAX

Conditions and Condition Traps

The derived name of the variable whose attempted reference caused
the NOVALUE condition. The NOVALUE condition trap can be
enabled only using SIGNAL ON.

Any string the language processor associated with the error. This
can be the null string if no specific string is provided. Note that
the special variables RC and SIGL provide information on the
nature and position of the processing error. The SYNTAX
condition trap can be enabled only using SIGNAL ON.

The current condition information is replaced when control is passed to a label as
the result of a condition trap (CALL ON or SIGNAL ON). Condition information
is saved and restored across subroutine or function calls, including one due to a
CALL ON trap. A routine invoked by a CALL ON, therefore, can access the
appropriate condition information. Any previous condition information is still
available after the routine returns.

The Special Variable RC
For ERROR and FAILURE, the REXX special variable RC is set to the command
return code before control is transferred to the condition label. For SIGNAL ON
SYNTAX, RC is set to the syntax error number.

The Special Variable SIGL
When any transfer of control due to a SIGNAL or CALL takes place, the line
number of the clause currently executing is stored in the REXX special variable
SIGL. This is especially useful for SIGNAL ON SYNTAX when the number of the
line in error can be used, for example, to control an editor. Typically, code
following the SYNTAX label may PARSE SOURCE to find the source of the data,
then invoke an editor to edit the source file positioned at the line in error. Note that
in this case the program has to be reinvoked before any changes made in the editor
can take effect.

Alternatively, SIGL can be used to help determine the cause of an error (such as the
occasional failure of a function call) as in the following example:

/* Standard handler for SIGNAL ON SYNTAX */
syntax:

say 'REXX error' re 'in line' sigl ':' errortext(rc)
say sourceline(sigl)
trace ?r; nop

This code first displays the error code, line number, and error message. It then
displays the line in error, and finally drops into debug mode to let you inspect the
values of the variables used at the line in error.

Chapter 7. Conditions and Condition Traps 7-5

Conditions and Condition Traps

7-6 REXX Reference

Input and Output

Chapter 8. Input and Output Streams

REXX defines only simple, character oriented, forms of input and output. In
general, communication to or from the user is in the form of a stream of characters.
These streams may be manipulated either character-by-character or line-by-line. In
addition to these character streams, an external data queue is defined for
inter-program communication. This queue can only be accessed on a line-by-line
basis.

In this discussion, input and output will be described as though communicating with
a human user, but a character stream might, in fact, have a variety of sources or
destinations. These may include files, serial interfaces, displays, or networks. A
character stream may therefore be:

• transient, or dynamic; for example, data sent or received over a serial interface

or

• persistent, in a static form; for example, a file or data object.

Housekeeping for the character streams (opening and closing files, for example) is
not explicitly part of the language since in most environments these operations will
be automatic; however, a function is provided for miscellaneous stream commands
for those operating environments that require them.

It is assumed that there is one default input stream and one default output stream.

A stream name can be a file, a named pipe, or any OS/2 device. If the name is a
file, it can use a valid drive, path, and file specification, including network file
names. If the stream is a named pipe, it must follow the OS/2 conventions for
named pipes.

Some valid OS/2 devices for streams include:

COM1:/COM2:
CON:
KBD:
LPT1:/LPT2:
PRN:
STD ERR:
STD IN:
STDOUT:
QUEUE:

Communication ports
Display screen input and output
Keyboard input
Printer devices
Current default printer output
Standard error output
Standard input stream
Standard output stream
REXX external data queue.

The default input and output streams are STNIN (the standard OS/2 input stream)
and STDOUT (the standard OS/2 output stream). The appropriate default input or
output stream is used when no name is specified.

Notes:

1. For additional information on specific devices, refer to the MODE command in
the OS/2 Command Reference.

2. While the form of a stream name is necessarily defined by the OS/2
environment, it is still possible to write programs that use input and output
functions and yet are effectively independent of the OS/2 program.

Chapter 8. Input and Output Streams 8-1

Input and Output

The Input and Output Model
The model of input and output for REXX consists of three logically distinct parts,
namely:

• One or more character input streams
• One or more character output streams
• One or more external data queues.

These three elements are manipulated by the REXX instructions and built-in
routines as follows.

Character Input Streams

8-2 REXX Reference

Input to REXX programs takes the form of a serial character stream generated by
user interaction, or having the characteristics of a stream so generated. Characters
may be added to the end of some streams asynchronously; other streams may be
static or synchronous.

The instructions that govern the use of input streams are:

• Any named input stream can be read directly as characters by the CHARIN
function or as lines by the LINEIN function.

• The default input character stream (STDIN:) can be read as lines by the PULL
and PARSE PULL instructions if the external data queue is empty (PULL is the
same as PARSE PULL except that uppercase translation takes place).

• The PARSE LINEIN instruction can be used to read lines from the default
input character stream regardless of the state of the external data queue.
Normally, however, the default input stream is read by using PULL or PARSE
PULL.

In a persistent stream, the REXX language processor maintains a current read
position.

• The CHARS function returns the number of characters currently available in an
input character stream from the read position through the end of the stream
(including any line-end characters, if these are defined for the stream).

• The LINES function is used to determine if any data remains between the
current read position and the end of the stream.

• The read position itself can be manipulated to an arbitrary point in the stream
by means of the SEEK command of the STREAM function.

In a transient stream, no read position is available.

• The CHARS and LINES function can determine only if data is present in the
stream. For OS/2 devices, the return value is 1 for either of these functions.

• The SEEK command of the STREAM function is not applicable to transient
streams.

Input and Output

Character Output Streams
Character output streams provide for output from a REXX program.

• Any output stream can be written in character form with the CHAROUT
function.

• Any output stream can be written as lines using the LINEOUT function.

• The default output stream (STDOUT:) can also be written as lines with the SAY

instruction.

Both LINEOUT and SAY provide the appropriate line-end sequence at the end of

each line. Depending on the stream being written, other modifications or formatting

may be applied to output lines by the operating system or the hardware; however the
output data remains a single logical line.

The current write position in a stream (identical to the read position) is also
maintained by the REXX language processor. This position is usually the end of the

stream (as for example when the stream is first opened), so that data can be
appended to the end of the stream. For persistent files, however, the write position

can be set to the beginning of the stream to overwrite existing data by giving a value

of 1 for the start parameter of the CHARO UT function or for the 1 i ne parameter

of the LINEOUT function. Or, the STREAM function can be used to direct
sequential output to some arbitrary point in the stream.

Note: Once data has been placed in a transient character output stream (for
example, a network or serial link), it is no longer accessible to REXX. Normally the

actual use of the characters in the stream, by the system, is asynchronous.

The STREAM Function
The built-in STREAM function is used to determine the state of an input or output

stream and to carry out specific operations, described by stream commands. This
stream command mechanism allows REXX programs to open and close selected

streams for read-only or read and write operations, to move the read and write
positions within a stream, and to access the size and the date of last update, see
"STREAM'' on page 4-33.

External Data Queue
The external data queue is a list of character strings that can only be accessed by line

operations. It is external to REXX programs in that other REXX programs can

have access to the queue.

The external data queue therefore forms a REXX-defined channel of communication

between programs. Data in the queue is arbitrary; no characters have any special

meaning or effect.

Apart from the explicit REXX operations described here, no detectable change to

the queue occurs during the execution of a REXX program except when control

leaves the program (as, for example, when an external command or routine is

called). The REXX queuing operations are:

• Lines may be removed from the queue using the PULL or PARSE PULL
instructions. When the queue is empty, these instructions will read lines from

the default character input stream (STDIN:). In this way, the external data
queue may be used as a source for user input, provided that the input is read as
lines with PULL or PARSE PULL. Optionally, queue items can also be

Chapter 8. Input and Output Streams 8-3

Input and Output

Implementation

removed by using the LINEIN function to address the queue as a device, such as
LINEIN{ 1 QUEUE: 1

).

• Lines can be stacked at the head of the queue using the PUSH instruction.

• Lines can be added to the tail of the queue using the QUEUE instruction, or
using the LINEOUT function to address the queue as a device, such as
LINEOUT{ 1 QUEUE: 1

,
1 string 1

).

• The QUEUED function returns the number of lines currently in the queue as
does the function call LINES {'QUEUE:').

Usually, the dialog between a REXX program with the user takes place on a
line-by-line basis and is therefore carried out with the SAY and PULL (or PARSE
PULL) instructions. This technique considerably enhances the usability of many
programs, as they may be converted to programmable dialogs by using the external
data queue to provide the input normally typed by the user. The PARSE LINEIN
instruction should only be used when it is necessary to bypass the external data
queue.

When a dialog is not on a line-by-line basis, use the explicitly serial interfaces
provided by the CHARIN and CHAROUT functions. These functions are especially
important for input and output in transient character streams, such as keyboards,
printers, or network environments.

Opening and closing of persistent streams, such as files, is largely automatic.
Generally speaking, a stream is opened upon the first call of a line or character
function and remains open until explicitly closed with the CHAROUT, LINEOUT
or STREAM functions, or until the program ends. A stream can also be opened or
closed explicitly. This can be done with the STREAM function, or through specific
use of the other I/0 functions. For example, invoking the LINEOUT function with
just the name of a stream (and no output line) closes the named stream.

A stream opened by the CHARIN, CHAROUT, LINEIN or LINEOUT functions is
open for both reading and writing. The STREAM function, however, can be used
to open a stream for read-only or write-only operations.

Queue Interface

8-4 REXX Reference

REXX provides queuing services entirely separate from the OS/2 Inter-Process
Communications queues. The queues discussed here are solely for the use of REXX
programs.

REXX queues are manipulated within a program by these instructions:

PUSH

QUEUE

PULL

Stacks a string on top of the queue (LIFO).

Adds a string to the tail of the queue (FIFO).

Reads a string from the head of the queue. If the queue is empty, input
is taken from the console (STDIN:).

To get the number of items remaining in the queue, use the function QUEUED.

Input and Output

Access to Queues

Session Queues

Private Queues

/*

/*
push date() time()
do 10(:)(:)

nop
end
pull a b

There are two kinds of queues in REXX. Both kinds are accessed and processed by
name.

One session queue is automatically provided for each OS/2 session in operation. Its
name is always SESSION and it is created by REXX the first time information is
put on the queue by a program or procedure. All processes (programs and
procedures) in a session can access the session queue. However, a given process can
only access the session queue defined for its session and the session queue is not
unique to any single process in the session.

Private queues are created (and deleted) by your program. You can name the queue
yourself or leave the naming to REXX. In order for your program to use any
queue, it must know the name of the queue.

The following is an example:

/* push/pull WITHOUT multiprogra11111ing support

/* push date and time
/* lets pass some time
/* doing nothing
/* end of loop
/* pull them

say 'Pushed at ' ab ', Pulled at ' date() time() /* say now and then

*/
*/
*/
*/
*/
*/
*/
*/
*/

/*
/*
/*
/*

push/pull WITH multiprogranming support
(no error recovery, or unsupported env tests)

*/
*/
*/
*/

newq = RXQUEUE('Create') /* create a unique queue */
oq = RXQUEUE('Set',newq)
push date() time()

/* establish new queue */
/* push date and time */

do 1000
nop

end
pull a b

/* lets spend some time */
/* doing nothing */
/* end of loop */
/* get pushed info */

say 'Pushed at ' ab ', Pulled at
call RXQUEUE 'Delete',newq

' date() time() /* tell user */
/* destroy unique queue created */

/* reset to default queue (not required) */ call RXQUEUE 'Set',oq

Figure 8-1. Sample REXX Procedure Using a Queue

Special Considerations
1. External programs that must communicate with a REXX procedure by means of

defined data queues can use the default queue or the session queue, or they can
receive the data queue name by some interprocess communication technique.
This could include: parameter passing, placement on a prearranged logical
queue, or use of normal OS/2 Inter-Process Communication mechanisms (for
example, pipes, shared memory, or IPC queues).

Chapter 8. Input and Output Streams 8-5

Input and Output

2. Named queues are available across the entire system; therefore, the names of
queues must be unique within the system. If a queue named os2que exists and
this function is issued:

newqueue = RXQUEUE('Create', 'OS2QUE')

a new queue is created with a randomly chosen name, and newqueue is assigned
that new name.

Detached Processes
1. Detached processes will access a detached session queue that is unique for each

detached process. Note, however, that this detached session queue is not the
same as the session queue of the starting session.

2. REXX programs that are to be run as detached processes cannot perform any
PULL or PARSE PULL instructions that involve terminal 1/0. However,
PULL and PARSE PULL instructions that act on a queue are permitted in
detached processes.

Multi-Programming Considerations
This data queue mechanism differs from the OS/2 standard API queueing in the
following ways:

1. The queue is not owned by a specific process and as such any process is entitled
to modify the queue at any time. The operations that effect the queue are
atomic, in that the resource is serialized by the subsystem such that no data
integrity problems can be encountered.

However, synchronization of requests such that two processes accessing the same
queue get the data in the order it was placed on the queue is a user
responsibility.

2. Such a queue is defined as an element copy data queue.

3. A regular OS/2 IPC queue is owned (created) by a specific process. When that
process terminates, the queue is destroyed. Conversely, the queues created by
the RxQueue('Create' , queuename) call will exist until explicitly deleted.
Termination of a program or procedure that created a private queue does not
force the deletion of the private queue. Any data on the queue when the process
creating it terminates will remain on the queue until either the queue is deleted,
by way of the REXX function call RxQueue ('Delete' , queuename), or until the
data is read.

Data queues must be explicitly deleted by some procedure or program (not
necessarily the creator). Deletion of a queue ·with remaining items, destroys those
items.

Errors During l.nput and Output

8-6 REXX Reference

The REXX language offers considerable flexibility in the handling of errors during
input or output. It is provided in the form of a NOTREADY condition that may be
trapped by the CALL ON and .SIGNAL ON instructions and further information
can be elicited by the STREAM function. See Chapter 7, "Conditions and
Condition Traps," for a more detailed discussion of SIGNAL ON and CALL ON.)

When an error occurs during an input or output operation, the function being called
will normally continue without interruption (with, for example, a nonzero count
being returned by an output function). Depending on the nature of the operation, a

Input and Output

program has the option of raising the NOTREADY condition. The NOTREADY
condition is similar to the ERROR and FAILURE conditions associated with
commands in that it does not cause a terminating error if the condition is raised but
is not trapped.

Chapter 8. Input and Output Streams 8-7

Input and Output

Once NOTREADY has been raised, the following possibilities exist:

• The NOTREADY condition is not being trapped; in this case execution
continues without interruption; the NOTREADY condition remains in the OFF
state.

• The NOTREADY condition is being trapped by SIGNAL ON NOTREADY; in
this case, the NOTREADY condition is raised, execution of the current clause
ceases immediately, and the SIGNAL takes place as usual for condition traps.

• The NOTREADY condition is being trapped by CALL ON NOTREADY; in
this case the NOTREADY condition is raised, but execution of the current
clause is not halted. The NOTREADY condition is put into the delayed state,
and execution continues until the end of the current clause. While execution
continues, input functions that refer to the same stream may return the null
string and output functions may return an appropriate count, depending on the
form and timing of the error. At the end of the current clause, the CALL takes
place as usual for condition traps.

• The NOTREADY condition is being trapped (by CALL ON NOTREADY) but
is already in the DELAY state (due to NOTREADY already having been
raised); in this case execution continues, and the NOTREADY condition
remains in the DELAY state.

Once the NOTREADY condition has been raised and is in DELAY state, the
CONDITION function will return (for a description invocation) the name of the
stream being processed when the stream error occurred. If the stream is a default
stream and has no defined name, then the null string may be returned in this case.

The STREAM function will then usually show that the state of the stream is
ERROR or NOTREADY, and additional information on the state of the stream will
normally be available by way of the description option of the STREAM function.

Examples of Input and Output

8-8 REXX Reference

In most circumstances, communication with a user running a REXX program will be
by way of the default input and output streams. For a question and answer dialog,
the recommended technique is to use the SAY and PULL instructions (using PARSE
PULL if case-sensitive input is required).

More generally, though, it is necessary to write to or read from streams other than
the default. For example, to copy the contents of one file to another one might use
the following program:

/* FILECOPY.CMD */
/* This routine copies the stream or file named by */
/* the first argument to the stream or file named */
/* by the second, as l i nes. *I
parse arg inputname, outputname

signal on notready

do forever
call lineout outputname, linein(inputname)

end

not ready:

Input and Output

As long as lines remain in the named input stream, a line is read and is then

immediately written out to the named output stream. It is easy to modify this
program so that it filters the lines in some way before they are written.

To illustrate how character and line operations might be mixed in a communications

program, consider the following example in which a character stream is converted

into lines:

/* COLLECT.CMD */
/* This routine collects characters from the stream */
/* named by the first argument until a line is */
/* complete, and then places the line on the */
/* external data queue. */
/* The second argument is the single character that */
/* identifies the end of a line. */
parse arg inputname, lineendchar

buffer='' /*zero-length character accumulator*/
do forever

nextchar=charin(inputname)
if nextchar=lineendchar then leave
buffer=bufferllnextchar /*add to buffer*/
end

queue buffer /* place it on the external data queue */

Here each line is built up in a variable called BUFFER. When the line is complete

(for example, when the Enter key is pressed) the loop is ended and the contents of

BUFFER are placed on the external data queue. The program then ends.

Summary of Instructions and Functions
CHARIN Reads zero or more characters from a character input stream.

A start position may be specified for persistent streams. See
"CHARIN" on page 4-11.

CHAROUT Writes zero or more characters to a character output stream. A
start position may be specified for persistent streams. See
"CHAROUT" on page 4-12.

CHARS Returns the number of characters currently remaining in a
character input stream. See "CHARS" on page 4-13.

LINEIN Reads zero or one line from a character input stream. See
"LINEIN" on page 4-25.

LINEOUT Writes zero or one line to a character output stream. See
"LINEOUT" on page 4-27.

LINES Returns 1 if any data currently remains in a character input
stream. See "LINES" on page 4-28.

PARSE LINEIN Reads one line from the default character input stream. See
"PARSE LINEIN" on page 3-25.

PARSE PULL Reads one line from the external data queue. If the queue is
empty it reads a line from the default character input stream
instead. See "PARSE PULL" on page 3-25.

Chapter 8. Input and Output Streams 8-9

Input and Output

PULL

PUSH

QUEUE

QUEUED

SAY

STREAM

8-10 REXX Reference

The same as PARSE PULL except that the string read is
translated to uppercase. See "PULL" on page 3-29.

Writes one line to the head of the external data queue, as in a
stack. See "PUSH" on page 3-30.

Writes one line to the tail of the external data queue. See
"QUEUE" on page 3-31.

Returns the number of lines currently available in the external
data queue. See "QUEUED" on page 4-30.

Writes one line to the default character output stream. See
"SAY" on page 3-33.

Returns a string describing the state of, or the result of an
operation upon, a named character stream. See "STREAM" on
page 4-33.

API

Chapter 9. Application Programming Interface

Other chapters of this book are addressed to professional systems and application
programmers who are writing REXX programs. This chapter is addressed to
professional systems and application programmers involved with the following:

• Interfacing applications to REXX
• Extending REXX language facilities by writing external functions.

Programmers attempting these tasks have typically written applications in the C
language, or a similar language. They will, therefore, be familiar with the interface
conventions described here. Those programmers not involved in these tasks can
refer to the other sections of this book for an understanding of the REXX language.

This chapter describes:

• RXSTRINGs
• Invoking the REXX Interpreter
• Subcommand Handlers
• External Functions
• System Exits
• Variable Pool Interface
• Macrospace Interface
• Halt and Trace Functions

In this chapter, the term application refers to programs written in languages other
than REXX. The features described here allow an application to extend many parts
of the REXX language or extend an application with REXX. This includes creating
handlers for subcommands, external functions and system exits.

Subcommands are commands issued from a REXX program. A REXX expression
is evaluated and the result is passed as a command to the currently
"addressed" subcommand handler. Subcommands are used in
REXX programs running as application macros.

Functions are direct extensions of the REXX language. An application can
create functions that extend the native REXX function set.
Functions may be general purpose extensions or specific to an
application.

System Exits are programmer-defined variations of the operating system. The
application programmer can tailor the REXX interpreter behavior
by replacing OS/2 for REXX system requests.

Subcommand, function and exit handlers have similar coding, compilation and
packaging characteristics.

In addition, applications can manipulate the variables in REXX programs (the
Variable Pool Interface), and execute REXX routines directly from memory (the
Macrospace. Interface).

Chapter 9. Application Programming Interface 9-1

API

General Characteristics

9-2 REXX Reference

The basic requirements for subcommand, function and system exit handlers are:

• REXX handlers must use the system linkage convention. Handler functions
should be declared with the appropriate type definition from the REXXSAA.H
include file:

RexxSubcomHandler
- RexxFunctionHandler
- RexxExitHandler

• A REXX handler must be packaged as either:

An exported routine within an OS/2 Dynamic Link Library (a dynalink or
DLL)
An entry point within an executable (EXE) module.

• A handler must be registered with REXX before it can be used. REXX uses the
registration information to locate and call the handler. For example, external
function registration of a dynamic link library external function identifies both
the dynamic link library and routine that contains the external function. Also
note:

Dynamic link library handlers are global to the OS/2 system; they can be
called from any REXX program.

EXE file handlers are local to the registering process; handlers packaged
within an EXE module can only be called by a REXX program running in
the same process as the EXE module.

RXSTRINGs

RXSTRINGs

Many of the REXX interfaces pass REXX character strings to and from a REXX
procedure. The RXSTRING data structure is used to describe REXX character
strings. An RXSTRING-is a content-insensitive, flat model character string with a
theoretical maximum length of 4 gigabytes. The following structure defines an
RXSTRING:

typedef struct {
ULONG
PCH

strlength;
strptr;

/* length of string
/* pointer to string

*/
*/

} RXSTRING;

typedef RXSTRING *PRXSTRING; /* pointer to an RXSTRING

Figure 9-1. RXSTRING Data Structure

Notes:

1. The REXXSAA.H include file contains a number of convenient macros for
setting and testing RXSTRING values.

*/

2. An RXSTRING may have a value (including the null string, '"') or it may be
empty.

• If an RXSTRING has a value, the strptr field will be non-NULL. The
RXSTRING macro RXV ALIDSTRING(string) will return TRUE.

• If an RXSTRING is the REXX null string(""), the strptr field will be
non-NULL and the strlength field will be zero. The RXSTRING macro
RXZEROLENSTRING(string) will return TRUE.

• If an RXSTRING is empty, the field strptr will be NULL. The
RXSTRING macro RXNULLSTRING(string) will return TRUE.

3. When the REXX interpreter passes an RXSTRING to a subcommand handler,
external function, or exit handler, the interpreter adds a null character
(hexadecimal zero) at the end of the RXSTRING data. The C string library
functions can be used on these strings. However, the RXSTRING data may
also contain null characters. There is no guarantee that the first null character
encountered in an RXSTRING marks the end of the string. The C string
functions should only be used when null characters are not expected in the
RXSTRINGs (such a file names passed to external functions). The strlength
field in the RXSTRING does not include the terminating null character.

4. On calls to subcommand and external functions handlers, as well as some of the
exit handlers, the REXX interpreter expects an RXSTRING value returned.
The REXX interpreter provides a default RXSTRING with a strlength of 256
for the returned information. If the returned data is shorter than 256 characters,
the handler can copy the data into the default RXSTRING and set the strlength
field to the length returned.

If the returned data is longer than 256 characters, a new RXSTRING can be
allocated using DosAllocMem. The strptr field must point to the new storage
and the strlength must be set to the string length. The REXX interpreter will
return the newly allocated storage to the system for the handler routine.

Chapter 9. Application Programming Interface 9-3

Interpreter Invocation

Invoking the REXX Interpreter
A REXX program may be executed directly by the operating system or from within
an application program.

From the OS/2 operating system
The standard OS/2 CMD.EXE command shell calls the RE:XX interpreter for the
user:

• at OS/2 command prompts

• in calls from CMD (batch) files

Note: Use the OS/2 CALL command to invoke a RE:XX program in a batch
file if you want control to return to the caller.

• from the object that represents the program.

From Within an Application

9-4 RE.XX Reference

The REXX interpreter is an OS/2 dynamic link library (DLL) routine. Any
application may call the RE:XX interpreter to execute a REXX program. The
interpreter is fully re-entrant and supports RE:XX procedures running on multiple
threads within the.same process.

A C-language prototype for calling RE:XX is in the OS/2 Developer's Toolkit
REXXSAA.H include file.

Interpreter Invocation

The RexxStart Function

RexxStart
RexxStart invokes the REXX interpreter to execute a REXX procedure.

RexxStart (ArgCount, ArgList, ProgramName, Instore, EnvName, CaUType,
Exits, ReturnCode, Result)

Parameters

ArgCount (LONG) - input
The number of elements in the ArgList array. This is the value that will be
returned by the ARG() built-in function in the REXX program. ArgCount
includes RXSTRINGs which represent omitted arguments. Omitted
arguments will be empty RXSTRINGs (strptr will be NULL).

ArgList (PRXSTRING) - input
An array of RXSTRING structures that are the REXX program
arguments.

ProgramName (P SZ) - input
Address of the ASCIIZ name of the REXX procedure. If Instore is NULL,
string must contain at least the file name of the REXX procedure. An
extension, drive, and path specification may also be provided. If a file
extension is not specified, a default of" .CMD" is supplied. A REXX
program can use any extension. If the path and drive are not provided, the
REXX interpreter uses the normal OS/2 file search (current directory, then
environment path).

If Instore is not NULL, ProgramName is the name used in the PARSE
SOURCE instruction. If lnstore requests a REXX procedure from the
macrospace, ProgramName is the macrospace function name. (see
"Macrospace Interface" on page 9-56).

lnstore (PRXSTRING) - input
An array of two (2) RXSTRING descriptors for in-storage REXX
procedures. If the strptr fields of both RXSTRINGs are NULL, the
interpreter searches for REXX procedure ProgramName in the REXX
macrospace (see "Macrospace Interface" on page 9-56). If the procedure is
not in the macrospace, the call to RexxStart terminates with an error return
code.

If either Instore strptr field is not NULL, lnstore is used to execute a
REXX procedure directly from storage.

Instore[O] An RXSTRING describing a memory buffer containing the
REXX procedure source. The source must be an exact image
of a REXX procedure disk file (complete with carriage returns,
line feeds, and end-of-file characters).

Chapter 9. Application Programming Interface 9-5

Interpreter Invocation

9-6 REXX Reference

Instore[l] An RXSTRING containing the tokenized image of the REXX
procedure. If Instore[J] is empty, the REXX interpreter will
return the tokenized image in Instore[J] when the REXX
procedure finishes executing. The tokenized image may be used
in Instore[J] on subsequent RexxStart calls.

If Instore[J] is not empty, interpreter will execute the tokenized
image directly. The program source provided in lnstore[O] is
only used if the REXX procedure uses the SOURCELINE
built-in function. lnstore[O] may be empty if SOURCELINE is
not used. If lnstore[O] is empty and the SOURCELINE
built-in function is used, SOURCELINE will return null strings
for the REXX procedure source lines.

If Instore[l] is not empty, but does not contain a valid REXX
tokenized image, unpredictable results can occur. The REXX
interpreter may be be able to determine that the tokenized
image is incorrect and retokenize the source.

lnstore[J] is both an input and an output parameter.

If the procedure is executed from disk, the Instore pointer must be NULL.
If the first argument string in Arg/ist contains the string "//T" and the
Cal/Type is RXCOMMAND, the interpreter will tokenize the procedure
source and return the tokenized image without running the program.

The program calling RexxStart must release lnstore[l] using DosFreeMem
when the tokenized image is no longer needed.

The format of the tokenized image of a REXX program is not a
programming interface. The tokenized image can only be executed by the
same interpreter version used to create the image. Therefore, a tokenized
image should not be moved to other OS/2 systems or saved for later use.
The tokenized image may, however, be used multiple times during a single
application instance.

EnvName (PSZ) - input
Address of the ASCIIZ initial ADDRESS environment name. The
ADDRESS environment is a subcommand handler registered using
RexxRegisterSubcomExe or RexxRegisterSubcomDll. EnvName is used as
the initial setting for the REXX ADDRESS instruction.

If EnvName is NULL, the file extension is used as the initial ADDRESS
environment. The environment name cannot be longer than 250 characters.

CallType (LO NG) - input
The type of REXX procedure execution. Allowed execution types are:

RXCOMMAND The REXX procedure is an OS/2 or application
command. REXX commands normally have a single
argument string. The REXX PARSE SOURCE
instruction will return COMMAND as the second token.

RXSUBROUTINE The REXX procedure is a subroutine of another
program. The subroutine may have multiple arguments
and does not need to return a result. The REXX
PARSE SOURCE instruction will return SUBROUTINE as
the second token.

RX FUNCTION

Interpreter Invocation

The REXX procedure is a function called from another
program. The subroutine may have multiple arguments
and must return a result. The REXX PARSE
SOURCE instruction will return FUNCTION as the second
token.

Exits (P RXSYSEXIT) - input
An array of RXSYSEXIT structures defining exits the REXX interpreter
will use. The RXSYSEXIT structures have the following form:

typedef struct {
PSZ
LONG

} RXSYSEXIT;

sysexit_name;
sysexit_code;

/* name of exit handler */
/* system exit function code */

Figure 9-2. RXSYSEXIT Data Structure

The sysexit_name is the address of an ASCIIZ exit handler name registered
with RexxRegisterExitExe or RexxRegisterExitDll. sysexit_code is a code
identifying the handler exit type. See "System Exits" on page 9-26 for exit
code definitions. The system exit list end is identified by an RXENDLST
entry. Exits must be NULL if exits are not used.

RetumCode (PLONG) - output
The integer form of the Result string. If the Result string is a whole
number in the range -(2**15) to 2**15-1, it will be converted to an integer
and and also returned in ReturnCode.

Result (PRXSTRING) - output
The string returned from the REXX procedure with the REXX RETURN
or EXIT instruction. A default RXSTRING may be provided for the
returned result. If a default RXSTRING is not provided or the default is
too small for the returned result, the REXX interpreter will allocate an
RXSTRING using DosAllocMem. The caller of RexxStart is responsible
for releasing the RXSTRING storage with DosFreeMem.

The REXX interpreter does not add a terminating null to Result.

Returns

The possible RexxStart return codes are:

negative

0

positive

Interpreter errors. See Appendix A, "Error Numbers and
Messages" on page A-1 for the list of REXX errors.

No errors occurred. The REXX procedure executed
normally.

An OS/2 return code indicating problems finding or
loading the interpreter. See the return codes for the OS/2
functions DosLoadModule and DosQueryProcAddr for
details.

When a called macrospace REXX procedure is not loaded in the
macrospace, the return code is -3 ("Program is unreadable").

Chapter 9. Application Programming Interface 9-7

" Interpreter Invocation

9-8 RE:XX Reference

Example

LONG
RXSTRING
RXSTRING
LONG
CHAR

return code;
argv[l];
retstr;
re;
return_buffer[250];

/* interpreter return code
/* program argument string
/* program return value
/* converted return code
/* returned buff er

*/
*/
*/
*/
*/

/* build the argument string */
MAKERXSTRING(argv[e], macro_argument,

strlen(macro_argument));
/* set up default return */

MAKERXSTRING(retstr, return_buffer, sizeof(return_buffer));

return_code = RexxStart(l,
argv,
"CHANGE. ED",
NULL,
"Editor",
RXCOMMAND,
NULL,
&re,
&retstr);

/* one argument
/* argument array
/* REXX procedure name
/* use disk version
/* default address name
/* calling as a subcommand
/* no exits used
/* converted return code
/* returned result

*/
*/
*/
*/
*/
*/
*/
*/
*/

/* process return value */

/* need to return storage? */
if (RXSTRPTR(retval) != return buffer)

DosFreeMem(RXSTRPTR(retval)); /* release the RXSTRING */

Figure 9-3. Sample Call to the RE:XX Interpreter

Subcommand Interfaces

Subcommand Interfaces
An application can create named handlers to process commands from a REXX
programs. Once created, the subcommand handler name can be used with the
RexxStart function or the REXX ADDRESS instruction. Subcommand handlers
must be registered with the RexxRegisterSubcomExe or RexxRegisterSubcomDll
function before use.

Registering Subcommand Handlers
A subcommand handler can reside in the same module (EXE or DLL) as an
application, or it can reside in a separate dynamic link library. An application that
executes REXX procedures with RexxStart should use RexxRegisterSubcomExe to
register subcommand handlers. The REXX interpreter passes commands to the
application subcommand handler entry point. Subcommand handlers created using
RexxRegisterSubcomExe are available only to REXX programs invoked from the
registering application.

The RexxRegisterSubcomDll interface creates subcommand handlers which reside in
a dynamic link library. A dynamic link library subcommand handler can be
accessed by any REXX program using the REXX ADDRESS instruction. A
dynamic link library subcommand handler can also be registered directly from a
REXX program using the RXSUBCOM command.

Creating Subcommand Handlers
The following example is a sample subcommand handler definition.

ULONG conmand_handler(
PRXSTRING Conmand,
PUSHORT Flags,
PRXSTRING Retstr);

/* Conmand string from REXX
/* Returned Error/Failure flags
/* Returned RC string

*/
*/
*/

Figure 9-4. Sample Definition of a Subcommand Handler

Where:

Command The command string created by REXX.

command is a null-terminated RXSTRING containing the issued
command.

Flags Subcommand completion status. The subcommand handler can indicate
success, error, or failure status. The subcommand handler can set Flags
to one of the following value:

RXSUBCOM_OK
The subcommand completed normally. No errors occurred during
subcommand processing and the REXX procedure will continue
when the subcommand handler returns.

RXSUBCOM_ERROR
A subcommand error occurred. RXSUBCOM_ERROR indicates a
subcommand error occurred, for example, incorrect command
options or syntax.

If the subcommand handler sets Flags to RXSUBCOM_ERROR, the
REXX interpreter will raise an ERROR condition if SIGNAL ON
ERROR or CALL ON ERROR traps have been created. If TRACE

Chapter 9. Application Programming Interface 9-9

Subcommand Interfaces

Retstr

9-10 REXX Reference

ERRORS has been issued, REXX will trace the command when the
subcommand handler returns.

RXSUBCOM_FAILURE
A subcommand failure occurred. RXSUBCOM_FAILURE indicates
that general subcommand processing errors have occurred. For
example, unknown commands normally return
RXSUBCOM_FAILURE.

If the subcommand handler sets Flags to RXSUBCOM_FAILURE,
the REXX interpreter will raise a FAILUREcondition if SIGNAL
ON FAILURE or CALL ON FAILURE traps have been created. If
TRACE FAILURES has been issued, REXX will trace the command
when the subcommand handler returns.

Address of an RXSTRING for the return code. Retstr is a character
string return code that will be assigned to the REXX special variable RC
when the subcommand handler returns to REXX. The REXX
interpreter provides a default 256-byte RXSTRING in Retstr. A longer
RXSTRING may allocated with DosAllocMem if the return string is
longer than the default RXSTRING. If the subcommand handler sets
Retval to an empty RXSTRING (a NULL strptr), REXX will assign the
string "O" to RC.

Subcommand Interfaces

Example

ULONG Edit_Co11111ands(
PRXSTRING Conmand,
PUSHORT Flags,
PRXSTRING Retstr)

/* Co11111and string passed from the caller
/* pointer to short for return of flags
/* pointer to RXSTRING for RC return

*/
*/
*/

{

}

LONG
LONG
PSZ
PSZ

conmand_id;
re;
scan_pointer;
target;

/* conmand to process
/* return code
/* current conmand scan
/* general editor target

*/
*/
*/
*/

scan_pointer = conmand->strptr; /* point to the conmand */
/* resolve co11111and */

co11111and_id = resolve_co11111and(&scan_pointer);

switch (co11111and_id) { /* process based on conmand */

}

case LOCATE: /* locate co11111and */

/* validate rest of conmand */
if (re = get_target(&scan_pointer, &target)) {

Flags = RXSUBCOM_ERROR; / raise an error condition */
break; /* return to REXX * /

}
re= locate(target);
*Flags = RXSUBCOM_OK;
break;

default:
re = 1;
*Flags = RXSUBCOM_FAILURE;
break;

/* look target in the file */
/* not found is not an error */
/* go finish up */

/* unknown conmand */
/* return code for unknown */
/* this is a command failure */

sprintf(Retstr->strptr, 11 %d 11
, re); /* format return code string */

/* and set the correct length */
Retstr->strlength = strlen(Retstr->strptr);
return e; /* processing completed */

Figure 9-5. Sample Subcommand Handler

Chapter 9. Application Programming Interface 9-11

Subcommand Interfaces

Subcommand -Interface FuncUons
The functions for registering and using subcommand. handlers are:

RexxRegisterSubcomDll

9-12 REXX Reference

RexxRegisterSubcomDll registers a subcommand handler that resides in a dynamic
link library routine.

RexxRegisterSubcomDU (EnvName, ModuleName, EntryPoint, UserArea,
DropAuth)

Parameters

EnvName (PSZ) - input
Address of an ASCIIZ subcommand handler name.

ModuleName (PSZ) - input
Address of an ASCIIZ dynamic link library name. ModuleName is the
DLL file containing the subcommand handler routine.

EntryPoint (PSZ) - input
Address of an ASCIIZ dynamic link library procedure name. Entry Point ,is
the name of the exported routine within ModuleName that REXX will call
as a subcommand handler.

UserArea (PUCHAR) - input
Address of an eight-byte area of user defined information. The eight-bytes
addressed :by UserArea will.be saved with the subcommand handler
registration. User Area may be NULL if there is no user information to
save. The saved user information can be retrieved with the
RexxQuerySubcom function.

DropAuth (ULONG) - input
The drop authority. DropAuth identifies the processes that can deregister
the·subcommand handler. ·The possible DropAuth values are:

RXSUBCOM_DROPPABLE
Any process can deregister the subcommand handler with
RexxDeregisterSubcom.

RXSUBCOM_NONDROP

Returns

Remarks

Only a· thread within the same process as the thread that registered the
handler can deregister the handler with RexxDeregisterSubcom.

0 RXSUBCOM_OK
10 RXSUBCOM_DUP
1002 RXSUBCOM_NOEMEM
1003 RXSUBCOM_:BADTYPE

Entry Point may be either a· 16..:bit or a. 32-bit routine. REXX will invoke the
handler in the· correct addressing mode.

Subcommand Interfaces

RexxRegisterSubcomExe
RexxRegisterSubcomExe registers a subcommand handler that resides within
application code.

RexxRegisterSubcomExe (EnvName, EntryPoint, UserArea)

Parameters

EnvName (P SZ) - input
Address of an ASCIIZ subcommand handler name.

EntryPoint (PFN) - input
Address of the subcommand handler entry point within the application
EXE code.

UserArea (PUCHAR) - input
Address of an eight-byte area of user defined information. The eight-bytes
addressed by UserArea will be saved with the subcommand handler
registration. User Area may be NULL if there is no user information to
save. The user information can be retrieved with the RexxQuerySubcom
function.

Returns

0 RXSUBCOM_OK
10 RXSUBCOM_DUP
30 RXSUBCOM_NOTREG
1002 RXSUBCOM_NOEMEM
1003 RXSUBCOM_BADTYPE

Remarks

If EnvName is same as a subcommand handler already registered with
RexxRegisterSubcomDll, RexxRegisterSubcomExe will return
RXSUBCOM_DUP. This is not an error condition. RexxRegisterSubcomExe
has successfully registered the new subcommand handler.: A REXX procedure
can register dynamic link library subcommand handlers with the RXSUBCOM
command. For example:

/* register Dialog Manager */
/* subco11111and handler */

1 RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR'
Address ispcir /* send co11111ands to dialog mgr */

The RXSUBCOM command registers the Dialog Manager subcommand
handler ISPCIR as routine ISPCIR in the ISPCIR dynamic link library.

Chapter 9. Application Programming Interface 9-13

Subcommand Interfaces

Example

WORKAREARECORD *user_info[2];

user info[0] = global workarea;
user-info[l] = NULL; -

/* saved user information */

/* save global work area for */
/* re-entrancy */

re= RexxRegisterSubcomExe{ 11 Editor 11
, /* register editor handler */

&Edit Commands, /* located at this address */
user_info); /*save global pointer */

Figure 9-6. Sample Subcommand Handler Registration

RexxDeregisterSubcom

9-14 REXX Reference

RexxDeregisterSubcom deregisters a subcommand handler.

RexxDeregisterSubcom (EnvName, ModuleName)

Parameters

EnvName (PSZ) - input
Address of an ASCIIZ subcommand handler name.

ModuleName (PSZ) - input
Address of an ASCIIZ dynalink library name. ModuleName is the name of
the dynalink library containing the registered subcommand handler. When
ModuleName is NULL, RexxDeregisterSubcom searches the
RexxRegisterSubcomExe subcommand handler list for a handler within the
current process. If RexxDeregisterSubcom does not find a
RexxRegisterSubcomExe handler, it will search the RexxRegisterSubcomDll
subcommand handler list.

Returns

0 RXSUBCOM_OK
30 RXSUBCOM_NOTREG
40 RXSUBCOM_NOCANDROP
1003 RXSUBCOM_BADTYPE

Remarks

The handler is removed from the active subcommand handler list.

RexxQuerySubcom

Subcommand Interfaces

RexxQuerySubcom queries a subcommand handler and retrieves saved user
information.

RexxQuerySubcom (EnvName, ModuleName, Flag, UserWord)

Parameters

EnvName (PSZ) - input
Address of an ASCIIZ subcommand handler name.

ModuleName (PSZ) - input
Address of an ASCIIZ dynamic link library name. ModuleName restricts
the query to a subcommand handler within the ModuleName dynamic link
library. When ModuleName is NULL, RexxQuerySubcom searches the
RexxRegisterSubcomExe subcommand handler list for a handler within the
current process. If RexxQuerySubcom does not find a
RexxRegisterSubcomExe handler, it will search the RexxRegisterSubcomDll
subcommand handler list.

Flag (PUSHORT) - output
Subcommand handler registration flag. Flag is the EnvName subcommand
handler registration status. When RexxQuerySubcom returns
RXSUBCOM_ OK, the EnvName subcommand handler is currently
registered. When RexxQuerySubcom returns RXSUBCOM_NOTREG, the
EnvName subcommand handler is not registered.

UserWord (PU CHAR) - output
Address of an eight-byte area to receive the user information saved with
RexxRegisterSubcomExe or RexxRegisterSubcomDll. UserWord can be
NULL if the saved user information is not required.

Returns

0 RXSUBCOM_OK
30 RXSUBCOM_NOTREG
1003 RXSUBCOM_BADTYPE

Chapter 9. Application Programming Interface 9-15

Subcommand Interfaces

Example

ULONG Edit_CoJ11Dands(
PRXSTRING CoJ11Dand,
PUSHORT Flags,
PRXSTRING Retstr)

{

/* CoJ11Dand string passed from the caller
/* pointer to short for return of flags
/* pointer to RXSTRING for RC return

WORKAREARECORD *user_info[2];
WORKAREARECORD global_workarea;

/* saved user information
/*application data anchor
/* flag for handler query USHORT query_flag;

*/
*/
*/

*/
*/
*/

re= RexxQuerySubcom(11 Editor 11
,

NULL,
/* retrieve application work */
/* area anchor from REXX. */

&query_flag,
user_info);

global_workarea = user_info[e]; /* set the global anchor */

Figure 9-7. Sample Subcommand Handler Query

9-16 REXX Reference

Return Codes

RXSUBCOM_ERROR OxOl

RXSUBCOM_FAILURE Ox02

RXSUBCOM_NOEMEM 1002

RXSUBCOM_OK 0

RXSUBCOM_DUP 10

RXSUBCOM_NOTREG 30

RXSUBCOM_NOCANDROP 40

RXSUBCOM_LOADERR 50

RXSUBCOM_NOPROC 127

Subcommand Interfaces

An error in subcommand execution has occurred;
the interpreter raises an ERROR condition.

A failure in subcommand execution has occurred;
the interpreter raises a FAILURE condition.

There is insufficient memory available to complete
this request.

A subcommand has execute successfully.

A duplicate handler name has been successfully
registered; there is either:

• an EXE handler with the same name registered
in another process, or

• a DLL handler with the same name registered in
another DLL; to address this subcommand, its
library name must be specified.

This indicates:

• registration was unsuccessful due to duplicate
handler and dynalink names
(Re.xxRegisterSubcomExe or
Re.xxRegisterSubcomDll)

• the subroutine environment is not registered
(other REXX subcommand functions).

The subcommand handler has been registered as
"not droppable."

An error has occurred while loading a dynalink
library; most commonly caused by a missing
dynalink library file.

The registered subcommand handler routine was not
found; ensure the dynalink routine name has been
exported during linking.

Chapter 9. Application Programming Interface 9-17

External Functions

External Functions
There are two types of REXX external functions:

I. Routines written in REXX

2. Routines written in other OS/2-supported languages.

External functions written in the REXX language are not registered with REXX.
the REXX functions are found by a disk search for a REXX procedure file that
matches the function name. Functions written in other languages, however, must be
registered with the REXX interpeter.

Registering External Functions
An external function can reside in the same module (EXE or DLL) as an
application, or it can reside in a separate dynamic link library.
RexxRegisterFunctionExe registers external functions within an application module.
External functions registered with RexxRegisterFunctionExe are available only to
REXX programs invoked from the registering application.

The RexxRegisterFunctionDll interface registers external functions that reside in a
dynamic link library. Once registered, a dynamic link library external function can
be accessed by any REXX program. A dynamic link library external function can
also be registered directly from a REXX program using the REXX RxFuncAdd
built-in function.

Creating External Functions

9-18 REXX Reference

The following is a sample external function definition:

LONG SysLoadFuncs(
PSZ Name,
LONG Argc,
RXSTRING Argv[],
PSZ Queuename,
PRXSTRING Retstr)

/* name of the function */
/* number of arguments */
/* list of argument strings */
/* current queue name */
/* returned result string */

Figure 9-8. Sample External Function Definition

Where

Name

Argc

Argv

Queue

Retstr

Address of ASCIIZ function name used to call the external function.

The size of the argument list. Argv will contain Argc RXSTRINGs.

An array of null-terminated RXSTRINGs for the function arguments.

The name of the currently defined REXX external data queue.

Address of an RXSTRING for the returned value. Retstr is a
character string function or subroutine return value. When a REXX
program calls an external function with the REXX CALL instruction,
Retstr is assigned to the REXX special variable RESULT. When the
REXX program calls an external function with a function call, Retstr
is used directly within the REXX expression.

The REXX interpreter provides a default 256-byte RXSTRING in
Retstr. A longer RXSTRING may allocated with DosAllocMem if the
returned string is longer name 256 bytes. The REXX interpreter

External Functions

releases Retstr with DosFreeMem when the external function
completes.

Returns An integer return code from the function. When the external function
returns zero, the function completed successfully. Retstr contains the
function return value. When the external function returns a non-zero,
the REXX interpreter raises REXX error 40 ("Invalid call to routine").
The Retstr value is ignored.

If the external function does not have a return value, the function
should set Retstr to an an empty RXSTRING (NULL strptr). When
an external function called as a function does not return a value, the
interpreter raises error 44, "Function did not return data." When an
external function called with the REXX CALL instruction does not
return a value, the REXX interpreter drops (unassigns) the special
variable RESULT.

Calling External Functions
RexxRegisterFunctionExe external functions are local to the registering process.
Only REXX procedures running in the same process can call the registered external
function. It is possible to register functions with the same external function name if
they are registered from different processes. However, RexxRegisterFunctionDll
functions are available from all processes. The function names cannot be duplicated.

Example

LONG SysMkDir(

{

}

PSZ Name,
LONG Argc,
RXSTRING Argv[],
PSZ Queuename,
PRXSTRING Retstr)

ULONG re;

if (Argc != 1)
return 40;

re= DosMkDir(Argv[0].strptr, 0L);

/* name of the function */
/* number of arguments */
/* list of argument strings */
/* current queue name */
/* returned result string */

/* Return code of function */

/* must be 1 argument */
/* incorrect call if not */

/* make the directory using */
/* the null-terminated */
/* directly */

sprintf(Retstr->strptr, 11 %d 11
, re); /* result is return code */

/* set proper string length */
Retstr->strlength = strlen(Retstr->strptr);
return 0; /* successful completion */

Figure 9-9. Sample External Function Routine

Chapter 9. Application Programming Interface 9-19

External Functions

External Function Interface Functions
The functions for registering and using_ external functions are:

RexxRegisterFunctionDll-

9-20 REXX Reference

RexxRegisterFunctionDll registers an external function that resides in a dynamic link
library routine.

RexxRegisterFunctionDll (FuncName, ModuleName, EntryPoint)

Parameters

FuncName (P SZ) - input
Address of an ASCIIZ external function name.

ModuleName (PSZ) - input
Address of an ASCIIZ dynamic link library name. ModuleName is the
DLL file containing the external function routine.

EntryPoint (PSZ) - input
Address of an ASCIIZ dynamic link procedure name. Entry Point is
exported external function routine within ModuleName. FuncName.

Returns

0 RXFUNC_OK
10 RXFUNC_DEFINED
20 RXFUNC_NOMEM

Remarks

EntryPoint may be either a 16-bit or 32-bit routine. REXX will invoke the
function in the correct addressing mode.: A REXX procedure can register
dynamic link library subcommand handlers with the RxFuncAdd built-in
function. For example:

/* register function SysloadFuncs*/
/* in dynalink library REXXUTIL */

Call RxFuncAdd 'SysLoadFuncs', 'REXXUTIL', 'SysloadFuncs'
Call SysloadFuncs /* call to load other functions */

The RxFuncAdd registers the external function SysLoadFuncs as routine
SysLoadFuncs in the REXXUTIL dynamic link library. SysLoadFuncs
registers additional functions in REXXUTIL.DLL with
RexxRegisterFunctionDll. See the SysLoadFuncs routine below for a function
registration example.

External Functions

Example

static PSZ RxFncTable[] =
{

/* function package list */

}

11 SysCls 11
,

11 SysCurpos 11
,

11 SysCurState 11
,

"SysDriveinfo",

LONG RexxFunctionHandler SysLoadFuncs(

{

}

INT
INT

PSZ Name, /* name of the function
LONG Argc, /* number of arguments
RXSTRING Argv[], /*list of argument strings
PSZ Queuename, /* current queue name
PRXSTRING Retstr) /* returned result string

entries;
j;

/* Num of entries
/* Counter

*/
*/
*/
*/
*/

*/
*/

Retstr->strlength = 0; /* set null string return */

if (Argc > 0)
return 40;

/* check arguments */
/* too many, raise an error */

/* get count of arguments */
entries= sizeof(RxFncTable)/sizeof(PSZ);

/* register each function in */
for (j = 0; j <entries; j++) { /*the table */

RexxRegisterFunctionDll(RxFncTable[j],
11 REXXUTIL 11

, RxFncTable[j]);
}
return 0; /* successful completion */

Figure 9-10. Function Package Load Routine

Chapter 9. Application Programming Interface 9-21

External Functions

RexxRegisterFunctionExe

9-22 REXX Reference

RexxRegisterFunctionExe registers an external function that resides within
application code.

RexxRegisterFunctionExe (FuncName, Entry Point)

Parameters

FuncName (PSZ) - input
Address of an ASCIIZ external function name.

EntryPoint (PFN) - input
Address of the external function entry point within the application EXE
file. Functions registered with RexxRegisterFunctionExe are local to the
current process. REXX procedures in the same process as the
RexxRegisterFunctionExe issuer can call local external functions.

Returns

0 RXFUNC_OK
10 RXFUNC_DEFINED
20 RXFUNC_NOMEM

External Functions

RexxDeregisterFunction
RexxDeregisterFunction deregisters an external function.

RexxDeregisterFunction (FuncName)

Parameters

FuncName (PSZ) - input
Address of an ASCIIZ external function name to deregister.

Returns

0 RXFUNC_OK
30 RXFUNC_NOTREG

Chapter 9. Application Programming Interface 9-23

External Functions

RexxQueryFunction

9-24 REXX Reference

RexxQueryFunction queries the existence of a registered external function.

RexxQueryFunction (FuncName)

Parameters

FuncName (PSZ) - input
Address of an ASCIIZ external function name to query.

Returns

0 RXFUNC_OK
30 RXFUNC_NOTREG

Remarks

RexxQueryFunction will only return RXFUNC_OK if the requested function is
available to the current process. If a function is not available to the current
process, RexxQueryFunction search will search the RexxRegisterFunctionDll
external function list.

Return Codes

RXFUNC_OK

RXFUNC_DEFINED

RXFUNC_NOMEM

RXFUNC_NOTREG

RXFUNC_MODNOTFND

RXFUNC_ENTNOTFND

0

10

20

30

40

50

External Functions

The call to the function completed successfully.

The requested function is already registered.

There is not enough memory to register a new
function.

The requested function is not registered.

The dynamic link library module could not be
found.

The dynamic link library entry point could not be
found.

Chapter 9. Application Programming Interface 9-25

System Exits

System Exits
The REXX System Exits create user-define REXX interpreter operating
environment. Application defined exit handlers process specified REXX
interpreter activities.

Applications can create exits for:

• The administration of resources at the beginning and end of interpretation.

• Linkages to external functions and subcommand handlers.

• Special language features. For example, input and output to standard
resources.

• Polling for halt and external trace events.

Exit handlers are similar to subcommand handlers and external functions:

• Applications must registers named exit handlers with the REXX interpreter.

• Exit handlers can reside in dynamic link libraries or within an application
EXE module.

Writing System Exit Handlers

Exit Return Codes

9-26 REXX Reference

The following is a sample exit handler definition:

LONG Rexx_IO_exit(
LONG ExitNumber,
LONG Subfunction,
PEXIT ParmBlock);

/* code defining the exit function */
/* code defining the exit subfunction */
/* function dependent control block */

Figure 9-11. Sample System Exit Handler Definition

Where:

ExitNumber The major function code defining the type of exit call.

Subfunction The subfunction code defining the exit event for the call.

ParmBlock A pointer to the exit parameter list.

The exit parameter list contains exit specific information. See the
exit descriptions below parameter list formats.

Note: Some exit subfunctions do not have parameters.
ParmB/ock for exit subfunctions without parameters.

Exit handlers return an integer value that signals one of three actions:

RXEXIT_HANDLED
The exit handler processed the exit subfunction and updated the subfunction
parameter list as required. The REXX interpreter continues with normal
processing.

RXEXIT_NOT_HANDLED
The exit handler did not process the exit subfunction. The REXX
interpreter processes the subfunction as if the exit handler had not been
called.

Exit Parameters

System Exits

RXEXIT_RAISE_ERROR
A fatal error occurred in the exit handler. The REXX interpreter raises
REXX error 48 ("Failure in system service").

For example, if an application creates an input/output exit handler:

• When the exit handler returns RXEXIT_NOT_HANDLED for an
RXSIOSA Y subfunction, the REXX interpreter writes the output line to
STDOUT.

• When the exit handler returns RXEXIT_HANDLED for an RXSIOSAY
subfunction, the REXX interpreter assumes the exit handler has performed
all required output. The interpreter will not write the output line to
STDOUT.

• When the exit handler returns RXEXIT_RAISE_ERROR for an
RXSIOSA Y subfunction, the interpreter raise REXX error 48, "Failure in
system service."

Each exit subfunction has a different parameter list. All RXSTRING exit
subfunction parameters are passed as null-terminated RXSTRINGs. It is
possible that the RXSTRING value may contain null characters also.

For some exit subfunctions, the exit handler may return an RXSTRING
character result in the parameter list. The interpreter provides a default
256-byte for RXSTRING result strings. If the result is longer than 256 bytes, a
new RXSTRING can be allocated using DosAllocMem. The REXX interpreter
will return the RXSTRING storage for the exit handler.

Identifying Exit Handlers to REXX
System exit handlers must be registered with RexxRegisterExitDll or
RexxRegisterExitExe. The system exit handler registration is similar to
subcommand handler registration.

The REXX system exits are enabled with the RexxStart function parameter
Exits. Exits is a pointer to an array of RXSYSEXIT structures. Each
RXSYSEXIT structure in the array contains a REXX exit code and the address
of an ASCIIZ exit handler name. The RXENDLST exit code marks the exit list
end.

typedef struct {
PSZ
LONG

} RXSYSEXIT;

sysexit_name;
sysexit_code;

/* name of exit handler */
/* system exit function code */

Figure 9-12. RXSYSEXIT Data Structure

The REXX interpreter calls the registered exit handler named in sysexit_name

for all of the sysexit_code subfunctions.

Chapter 9. Application Programming Interface 9-27

System Exits

9-28 REXX Reference

Example

WORKAREARECORD *user_info[2];
RXSYSEXIT exit_list[2];

/* saved user infonnation
/* system exit list

*/
*/

}

user_info[0] = global_workarea;
user_ i.nfo [1] = NULL;

/* save global work area for */
/* re-entrancy */

re= RexxRegisterExitExe(11Editlnit 11
, /*register exit handler */

&lnit exit, /* located at this address */
user _info) ; /* save 9 l obal pointer * /

/* set up for RXINI exit */
exit list[0].sysexit name= 11 Editlnit 11

;

exit=list[0].sysexit=code = RXINI;
exit_list[l].sysexit_code = RXENDLST;

return_code = RexxStart(l,
argv,
"CHANGE.ED",
NULL,
"Editor",
RXCOMMAND,
exit_list,
&re,
&retstr);

/* one argument
/* argument array
/* REXX procedure name
/* use disk version
/* default address name
/* calling as a subconmand
/* no exits used
/* converted return code
/* returned result

*/
*/
*/
*/
*/
*/
*/
*/
*/

/* process return value */

LONG Init_exit(

{

}

LONG ExitNumber,
LONG Subfunction,
PEXIT ParmBl ock)

/* code defining the exit function */
/* code defining the exit subfunction */
/* function dependent control block */

WORKAREARECORD *user_info[2];
WORKAREARECORD global_workarea;
USHORT query_flag;

re = RexxQueryExit(11 Editlnit 11
,

NULL,
&query_ flag,
user_info);

global_workarea = user_info[0];

/* saved user infonnation
/* application data anchor
/* flag for handler query

*/
*/
*/

/* retrieve application work */
/*area.anchor from REXX. */

/* set the global anchor */

if (global_workarea->rexx_trace) /* trace at start? */
/* turn on macro tracing */

RexxSetTrace(global_workarea->rexx_pid, global_workarea->rexx...;tid);
return RXEXIT_HANDLED; /* successfully handled */

Figure 9-13. Sample System Exit Usage

System Exit Definitions
The REXX interpreter supports the following system exits:

RXFNC External function call exit

RXFNCCAL Call an external function

RXCMD Subcommand call exit

RXCMDHST Call a subcommand handler

RXMSQ External data queue exit

Pull a line from the external data queue.
Place a line on the external data queue.

System Exits

RXMSQPLL
RXMSQPSH
RXMSQSIZ
RXMSQNAM

Return number of lines on the external data queue.
Set active external data queue name.

RXSIO Standard input and output exit.

RXSIOSAY

RXSIOTRC

RXSIOTRD

RXSIODTR

Write a line to the standard output stream for the SAY
instruction.
Write a line to the standard error stream for REXX
trace or REXX error messages.
Read a line from the standard input stream for PULL
or PARSE PULL.
Read a line from the standard input stream for
interactive debug.

RXHL T Halt processing exit

RXHLTTST
RXHLTCLR

Test for a HALT condition.
Clear a HALT condition.

RXTRC External trace exit

RXTRCTST Test for an external trace event.

RXINI Initialization exit

RXINIEXT Allow additional REXX procedure initialization.

RXTER Termination exit

RXTEREXT Process REXX procedure termination.

Each exit subfunction has the following characteristics:

• When REXX calls the exit handler.

• The default action when the exit is not provided or the exit handler does not
process the subfunction.

• The subfunction parameter list.

• The service the subfunction provides.

• The state of the variable pool interface during the exit handler call. The variable
pool interface is fully enabled for the RXCMD, RXFNC, RXINI, and RXTER

exit handler calls. The variable pool interface is enabled for RXSHV _EXIT
requests for RXHLT, RXCMD, RXFNC, RXSIO and RXMSQ exit handler
calls.

Chapter 9. Application Programming Interface 9-29

System Exits

System Exit Details

RXFNC
Process calls to external functions.

9-30 REXX Reference

RXFNCCAL
Process calls to external functions.

When called: When REXX calls an external subroutine or function.

Default action: Call the external routine using the normal external function
search order.

Exit Action: Call the external routine, if possible.

Continuation: If necessary, raise REXX error 40 ("Invalid call to routine"),
43 ("Routine not found"), or 44 ("Function did not return data").

Parameter list:

typedef struct {
struct {

unsigned rxfferr 1;
unsigned rxffnfnd 1;
unsigned rxffsub 1;

} rxfnc_fl ags

PU CHAR
USHORT
PU CHAR
US HORT
US HORT
PRXSTRING

RXSTRING
} RXFNCCAL_PARM;

rxfnc_name;
rxfnc_namel;
rxfnc_que;
rxfnc_quel;
rxfnc_argc;
rxfnc_argv;

rxfnc_retc;

/* Invalid call to routine. */
/* Function not found. */
/* Called as a subroutine if */
/*TRUE. Return values are */
/* optional for subroutines. */
/* required for functions. */

/* Pointer to function name. */
/* Length of function name. */
/* Current queue name. */
/* Length of queue name. */
/*Number of args in list. */
/* Pointer to argument list. */
/* List mimics argv list for */
/* function calls, an array of*/
/* RXSTRINGs. */
/* Return value. */

The name of the external function is defined by rxfnc_name and
rxfnc_name/. The argwnents to the function are in rxfnc_argc and
rxfnc_argv. If the named external function is invoked by the REXX CALL
instruction (rather than as a function call), the flag rxffsub is TRUE.

The exit handler can set rxfnc _flags to indicate the external function call
success. If neither rxfferr or rxffnfnd is TRUE, the exit hander successfully
called the external function. The error flags are checked only when the exit
handler handles the the request.

The exit handler sets rxffnfnd to TRUE when the exit handler could not
locate the external function. The interpreter raises REXX error 43,
"Routine not found." The exit handler sets rxfferr to TRUE when the exit
handler located the external function, but the external function returned an
error return code. The REXX interpreter raises error 40, "Invalid call to
routine .. "

The exit handler returns the external function result in the rxfnc_retc
RX.STRING. The REXX interpreter will raise error 44, "Function did not
return data." when the external routine is invoked as a function call and the
exit handler does not return a result. When the external routine is by the
REXX CALL instruction, the exit handler a result is not required.

System Exits

Note: The variable pool interface is fully enabled during calls to the RXFNC exit

handler.

Chapter 9. Application Programming Interface 9-31

System Exits

RXCMD

9-32 REXX Reference

Process calls to subcommand handlers.

RXCMDHST
Call a named subcommand handler.

When called: When a command is issued in a REXX procedure.

Default action: Call the named subcommand handler specified by the current
REXX ADDRESS setting.

Exit Action: Process the call to a named subcommand handler.

Continuation: Raise the ERROR or FAILURE condition when indicated by
the parameter list flags,

Parameter list:

typedef struct {
struct {

unsigned rxfcfail 1;

unsigned rxfcerr 1;

} rxcmd_fl ags;
PU CHAR
US HORT
PU CHAR
US HORT

RXSTRING
RXSTRING

} RXCMDHST_PARM;

rxcmd_address;
rxcmd_addressl;
rxcmd_dll;
rxcmd_dll_len;

rxcmd_conmand;
rxcmd_retc;

/* Condition flags */
/* Conmand failed. Trap with */
/* CALL or SIGNAL on FAILURE. */
/* Conmand ERROR occurred. */
/* Trap with CALL or SIGNAL on */
/* ERROR. */

/* Pointer to address name. */
/* Length of address name. */
/* dll name for conmand. */
/* Length of dll name. e ==> */
/* .EXE file. */
/* The conmand string. */
/* Pointer to return code */
/* buffer. User allocated. */

The rxcmd_command field contains the issued command. rxcmd_address,
rxcmd_address/, rxcmd_dll, and rxcmd_dll_len fully define the current
ADDRESS setting. rxcmd_retc is an RXSTRING for the return code value
assigned to REXX special variable RC.

The exit handler can set rxfcfail or rxfcerr to TRUE to raise an ERROR or
FAILURE condition.

Note: The variable pool interface function is fully enabled during calls to the
RXCMD exit handlers.

RXMSQ

System Exits

External data queue exit.

RXMSQPLL
Pull a line from the external data queue.

When called: When a REXX PULL instruction, PARSE PULL instruction,
or LINEINO built-in function reads a line from the external data queue.

Default action: Remove a line from the current REXX data queue.

Exit Action: Return a line from the exit handler provided data queue.

Parameter list:

typedef struct {
RXSTRING rxmsq_retc; /* Pointer to dequeued entry */

/* buffer. User allocated. */
} RXMSQPLL_PARM;

The exit handler returns the queue line in the rxmsq_retc RXSTRING.

RXMSQPSH
Place a line on the external data queue.

When called: Called by the REXX PUSH instruction, QUEUE instruction,
or LINEOUTO built-in function to add a line to the data queue.

Default action: Add the line to the current REXX data queue.

Exit Action:.Add the line to the exit handler provided data queue.

Parameter list:

typedef struct {
struct {

unsigned rxfmlifo : 1;
/* Operation flag */
/* Stack entry LIFO when TRUE, *I
/* FIFO when FALSE. * /

} rxmsq_ fl ags ;
RXSTRING

} RXMSQPSH_P.ARM;
rxmsq_value; /* The entry to be ~ushed. */

The rxmsq_value RXSTRING contains the line added to the queue. It is the
responsibility of the exit handler to truncate the string if the exit handler
data queue has a maximum length restriction. rxfmlifo is the stacking order
(LIFO or FIFO).

Chapter 9. Application Programming Interface 9-33

System Exits

9-34 REXX Reference

RXMSQSIZ
Return the number of lines in the external data queue.

When called: When the RE:XX QUEVEDO built-in function requests the
size of the external data queue.

Default action: Request the size from the current RE:XX data queue.

Exit Action: Return the size of the exit handler provided data queue.

Parameter list:

typedef struct {
ULONG

} RXMSQSIZ_PARM;
rxmsq_size; /* Number of Lines in Queue

The exit handler returns the number of queue lines in rxmsq_size.

RXMSQNAM
Set the name of the active external data queue.

*/

When called: Called by the RXQUEUE("SET", newname) built-in function.

Default action: Change the current default queue to newname.

Exit Action: Change the default queue name for the exit handler provided
data queue.

Parameter list:

typedef struct {
RXSTRING

} RXMSQNAM_PARM;

rxmsq_name; /* RXSTRING containing
/* queue name.

rxmsq_name contains the new queue name.

*/
*/

RXSIO

System Exits

Standard input and output.

RXSIOSAY
Write a line to the standard output stream (STDOUT).

When called: By the SAY instruction to write a line to the standard output
stream.

Default action: Write to the OS/2 standard output stream.

Exit Action: Write the line to the exit handler provided output stream.

Parameter list:

typedef struct {
RXSTRING

} RXSIOSAY_PARM;
rxsio_string; /* String to display. */

The output line is contained in rxsio _string. The output line may be any
length. It is the responsibility of the exit handler to truncate or split the line
if necessary.

RXSIOTRC
Write trace and error message output to the standard error stream.

When called: To output lines of trace output and REXX error messages.

Default action: Write the line to the OS/2 standard error stream (STDERR).

Exit Action: Write tine to the exit handler provided error output stream.

Parameter list:

typedef struct {
RXSTRING

} RXSIOTRC_PARM;
rxsio_string; /* Trace line to display. */

The output line is contained in rxsio _string. The output line may be of any
length. It is the responsibility of the exit handler to truncate or split the line
if necessary.

RXSIOTRD
Read from standard input stream.

When called: To read from the standard input stream for the REXX PULL
and PARSE PULL instructions.

Default action: Read a line from the OS/2 standard input stream (STDIN).

Exit Action: Return a line from the exit handler provided standard input
stream.

Parameter list:

typedef struct {
RXSTRING

} RXSIOTRD_PARM;
rxsiotrd_retc; /* RXSTRING for output. */

The input stream line is returned in the rxsiotrd_retc RXSTRING.

Chapter 9. Application Programming Interface 9-35

System Exits

9-36 REXX Reference

RXSIODTR
Interactive debug input.

When called: To read from the debug input stream for interactive debug
prompts.

Default action: Read a line from the OS/2 standard input stream (STDIN).

Exit Action: Return a line from the exit handler provided standard debug
stream.

Parameters: Debug read from STDIN: stream.

typedef struct {
RXSTRING

} RXSIODTR_PARM;
rxsiodtr_retc; /* RXSTRING for output.

The input stream line is returned in the rxsiodtr _retc RXSTRING.

*/

Note: The PARSE.LINEIN instruction and the LINEIN, LINEOUT, LINES,
CHARIN, CHAROUT, and CHARS built-in functions do not call the RXSIO exit
handler.

RXHLT

System Exits

HALT condition processing.

Note: Since the RXHL T exit handler is called after every REXX instruction, this
exit will slow REXX program execution. The RexxSetHalt function may be used to
halt a REXX program without between-instruction polling.

RXHLTTST
Test HALT indicator.

When called: RXHL TTST is called by the interpreter to poll externally
raised HALT conditions. The exit will be called after completion of every
REXX instruction.

Default action: The interpreter uses the system facilities for trapping
Cntrl-Break signals.

Exit Action: Return the current state of the HALT condition (either TRUE
or FALSE).

Continuation: Raise the REXX HALT condition if the exit handler returns
TRUE.

Parameter list:

typedef struct {
struct {

unsigned rxfhhalt 1;
} rxhlt_fl ags;

} RXHLTTST_PARM;

/* Halt flag
/* Set if HALT occurred.

*/
*/

If the exit handler sets rxjh.halt to TRUE, the HALT condition will be raised
in the REXX program.

When the exit handler has set rxjh.halt to TRUE, it can also use the
RXSHV _EXIT operation of RexxVariablePool to return a string describing
the HALT condition reason. The REXX program can retrieve the reason
string using the CONDITION("D") built-in function.

RXHLTCLR
Clear HALT condition.

When called: To acknowledge processing of the HALT condition when the
interpreter has recognized and raised a HALT condition

Default action: The interpreter resets the Cntrl-Break signal handlers.

Exit Action: Reset exit handler HALT state to FALSE.

Parameters: None.

Chapter 9. Application Programming Interface 9-37

System Exits

RXTRC

9-38 REXX Reference

Test external trace indicator.

Note: Since the RXTST exit is called after every REXX instruction, these exits will
slow REXX procedure execution. The RexxSetTrace function may be used to tum
on REXX tracing without the between-instruction polling.

RXTRCTST
Test external trace indicator.

When called: RXTRCTST is called by the interpreter to poll for an external
trace event. The exit will be called after completion of every REXX
instruction.

Default action: None.

Exit Action: Return the current state of external tracing (either TRUE or
FALSE).

Continuation: When the exit handler switches from FALSE to TRUE, the
REXX interpreter enters REXX interactive debug mode using TRACE ?R
level of tracing. When the exit handler switches from TRUE to FALSE, the
REXX interpreter will exit interactived debug mode.

Parameter list:

struct rxtrc_pann {

}

struct {
unsigned rxftrace 1;

} rxtrc_fl ags;
/* External trace setting */

If the exit handler switches rxftrace to TRUE, REXX will switch on
interactive debug mode. It the exit handler switches rxftrace to FALSE,
REXX will switch off interactive debug mode.

RXINI

RXTER

Initialization processing.

RXINIEXT
Initialization exit.

System Exits

The RXINI exit is called as the last step of REXX program initialization. The
exit handler may perform additional initialization. For example:

• Use RexxVariablePool to initialize application specific variables

• Use RexxSetTrace to switch on REXX interactive debug mode.

When called: Before the first instruction of the REXX procedure is
interpreted.

Default action: None.

Exit Action: The exit handler may perform additional initialization. For
example:

• Use RexxVariablePool to initialize application specific variables

• Use RexxSetTrace to switch on REXX interactive debug mode.

Parameters: None.

Note: The variable pool interface is fully enabled for this exit.

Termination processing.

RXTEREXT
Termination exit

the RXINI exit is called as the first step of REXX program termination.

When called: After the last instruction of the REXX procedure has been
interpreted.

Default action: None.

Exit Action: The exit handler may perform additional termination activities
For example, the exit handler can use RexxVariablePool to retrieve REXX
variables values.

Parameters: None.

Note: The variable pool interface is fully enabled for this exit.

Chapter 9. Application Programming Interface 9-39

System Exits

System Exit Functions

RexxRegisterExitDll

9-40 REXX Reference

The system exit functions are similar to the subcommand handler functions. The
system exit functions are:

RexxRegisterExitDll registers an exit handler that resides in a dynalink library
routine.

RexxRegisterExitDll (ExitName, ModuleName, EntryPoint, UserArea,
DropAuth)

Parameters

EnvName (P SZ) - input
Address of an ASCIIZ exit handler name.

ModuleName (PSZ) - input
Address of an ASCIIZ dynamic link library name. ModuleName is the
DLL file containing the exit handler routine.

EntryPoint (PSZ) - input
Address of an ASCIIZ dynalink procedure name. Entry Point is the routine
within ModuleName that REXX will call as an exit handler.

UserArea (PUCHAR) - input
Address of an eight-byte area of user defined information. The eight-bytes
addressed by UserArea will be saved with the exit handler registration.
User Area may be NULL if there is no user information to save. The saved
user information can be retrieved with the RexxQueryExit function.

DropAuth (ULONG) - input
The drop authority. DropAuth identifies the processes that can deregister
the exit handler. The possible DropAuth values are:

RXEXIT_DROPPABLE
Any process can deregister the subcommand handler with
RexxDeregisterSubcom.

RXEXIT_NONDROP

Returns

Remarks

Only a thread within the same process as the thread that registered the
handler can deregister the handler with RexxDeregisterExit.

0 RXEXIT_OK
10 RXEXIT_DUP
1002 RXEXIT_NOEMEM
1003 RXEXIT_BADTYPE

EntryPoint may be either a 16-bit or a 32-bit routine. REXX will invoke the
exit handler in the correct addressing mode.

RexxRegisterExitExe

System Exits

RexxRegisterExitExe registers an exit handler that resides within application
code.

RexxRegisterExitExe(EnvName, EntryPoint, UserArea)

Parameters

EnvName (PSZ) - input
Address of an ASCIIZ exit handler name.

EntryPoint (PFN) - input
Address of the exit handler entry point within the application EXE file.

UserArea (PUCHAR) - input
Address of an eight-byte area of user defined information. The eight-bytes
addressed by User Area will be saved with the exit handler registration.
User Area may be NULL if there is no user information to save. The user
information can be retrieved with the RexxQueryExit function.

Returns

0 RXEXIT_OK
10 RXEXIT_DUP
30 RXEXIT_NOTREG
1002 RXEXIT_NOEMEM
1003 RXEXIT_BADTYPE

Remarks

If EnvName has the same name as a handler registered with
RexxRegisterEXitDU, RexxRegisterExitExe will return RXEXIT_DUP. This is
not an error and the new exit handler has been properly registered.

Example

WORKAREARECORD *user_info[2];

user_info[e] = global_workarea;
user_info[l] = NULL;

/* saved user infonnation */

/* save global work area for */
/* re-entrancy */

re= RexxRegisterExitExe(11 IO_Exit 11
, /*register editor handler */

&Edit IO Exit, /* located at this address */
user_info); /*save global pointer */

Figure 9-14. Sample Exit Handler Registration

Chapter 9. Application Programming Interface 9-41

System Exits

RexxDeregisterExit

9-42 REXX Reference

RexxDeregisterExit deregisters an exit handler.

RexxDeregisterExit(EnvName, ModuleName)

Parameters

EnvName (PSZ) - input
Address of an ASCIIZ exit handler name.

ModuleName (PSZ) - input
Address of an ASCIIZ dynamic link library name. ModuleName restricts
the query to an exit handler within the ModuleName dynamic link library.
When ModuleName is NULL, RexxDeregisterExit searches the
RexxRegisterExitExe exit handler list for a handler within the current
process. If RexxDeregisterExit does not find a RexxRegisterExitExe
handler, it will search the RexxRegisterExitDll exit handler list.

Returns

0 RXEXIT_OK
30 RXEXIT_NOTREG
40 RXEXIT_NOCANDROP
1003 RXEXIT_BADTYPE

Remarks

The handler is removed from the exit handler list.

RexxQueryExit

System Exits

RexxQueryExit queries an exit handler and retrieves saved user information.

RexxQueryE:xit(EnvName, ModuleName, Flag, UserWord)

Parameters

EnvName (PSZ) - input
Address of an ASCIIZ exit handler name.

ModuleName (PSZ) - input
ModuleName restricts the query to an exit handler within the ModuleName
dynamic link library. When ModuleName is NULL, RexxQueryExit
searches the RexxRegisterExitExe exit handler list for a handler within the
current process. If RexxQueryExit does not find a RexxRegisterExitExe
handler, it will search the RexxRegisterExitDll exit handler list.

Flag (PUSHORT) - output
Exit handler registration flag. Flag is the EnvName exit handler registration
status. When RexxQueryExit returns RXEXIT_OK, the EnvName exit
handler is currently registered. When RexxQueryExit returns
RXEXIT_NOTREG, the EnvName exit handler is not registered.

Flag (PUSHORT) - output
Exit handler registration flag. Flag indicates if the EnvName exit handler is
registered. If Flag is RXEXIT_OK, the EnvName exit handler is not
registered. If Flag is RXEXIT_NOTREG, the EnvName exit handler is
registered.

UserWord (PU CHAR) - output
Address of an eight-byte area to receive the user information saved with
RexxRegisterExitExe or RexxRegisterExitDll. UserWord can be NULL if
the saved user information is not required.

Returns

0 RXEXIT_OK
30 RXEXIT_NOTREG
1003 RXEXIT_BADTYPE

Chapter 9. Application Programming Interface 9-43

System ·Exits

9-44 REXX Reference

·example

ULONG Edit_IO_Exit{

{

PRXSTRING Conmand, /* Comand string passed from the caller */
PUSHORT Flags, /* pointer to short for return of flags * /
PRXSTRING Retstr} /*pointer to RXSTRING for RC-return */

WORKAREARECORD *user_info[2]; /* saved user information */
WORKAREARECORD global_workarea; /* application data .anchor */
USHORT query_ flag; /* flag for handler query * /

re= RexxQueryExit{"IO_Exit",
NULL,
&query flag,
user •info} .• - '

global_workarea = user_info[0];

/* retrieve application work */
/* area anchor from REXX. */

/* set the global anchor */

Figure 9-15. Sample Exit Handler Query

Variable Pool Interface

Variable Pool Interface
Application programs can use the REXX Variable Pool Interface to manipulate the
variables of a currently active REXX procedure.

RexxVariablePool Interface Function

RexxVariablePool

REXX procedure variables are accessed using the RexxVariablePool function.

RexxVariablePool accesses variables of a currently active REXX procedure.

RexxVariablePool(RequestBlockList)

Parameters

RequestBlockList (PSHVBLOCK) - input
A linked list of shared variable request blocks (SHVBLOCK). Each shared
variable request block in the linked list is a separate variable access
request.: The SHVBLOCK has the following form:

typedef struct shvnode {
struct shvnode *shvnext;
RXSTRING shvname;
RXSTRING shvvalue;
ULONG shvnamelen;
ULONG shvvaluelen;
UCHAR shvcode;
UCHAR shvret;

} SHVBLOCK;

Figure 9-16. SHVBLOCK Data Structure

Where:

shvnext The address of the next SHVBLOCK in the request list.
shvnext is NULL for the last request block.

shvcode The shared variable block request code. The request codes are:

RXSHV_SET
RXSHV _SYSET

Assign a new value to a REXX procedure variable.

RXSHV _FETCH
RXSHV _SYFETCH

Retrieve the value of a REXX procedure variable.

RXSHV _DROPV
RXSHV _SYDRO

Drop (unassign) a REXX procedure variable.

RXSHV_PRIV
Fetch REXX procedure private information. The following
information items can be retrieved by name:

Chapter 9. Application Programming Interface 9-45

Variable Pool Interface

shvret

9-46 REXX Reference

PARM
The number of arguments supplied to the REXX
procedure. The number will be formatted as a
character string.

PARM.n
The Nth argument string to the REXX procedure. If
the Nth argument was not supplied to the procedure
(either omitted or fewer than N parameters were
specified), a null string will be returned.

QUENAME
The current REXX data queue name.

SOURCE
The REXX procedure source string used for the
PARSE SOURCE instruction.

VERSION
The REXX interpreter version string used for the
PARSE SOURCE instruction.

RXSHV _NEXTV
Fetch next variable. RXSHV _NEXTV traverses the
variables in the current generation of REXX variables,
excluding variables hidden by PROCEDURE instructions.
The variables will not be returned in any specified order.

The REXX interpreter maintains an internal pointer to its
list of variables. The variable pointers is reset to the first
REXX variable whenever:

1. An external program returns control to the interpreter
2. A set, fetch or drop RexxVariablePool function is used.

RXSHV _NEXTV returns both the name and the value of
REXX variables until the end of the variable list is reached.
If no REXX variables are left to return, RexxVariablePool
will set the RXSHV _L VAR bit in shvret.

RXSHV_EXIT
Set a return value for an external function or system exit
call. RXSHV _EXIT is only valid from external functions
or system exit events which return a string value. A single
call is allowed per external call.

Individual shared variable request return code. shvret is a
1-byte field of status flags for the individual shared variable
request. The shvret fields for all request blocks in the list are
ORed together to form the RexxVariablePool return code. The
individual status conditions are:

RXSHV_OK
The request was processed with out error (all flag bits are
FALSE).

RXSHV_NEWV
The named variable was uninitialized at the time of the call.

Variable Pool Interface

RXSHV_LVAR
No more variables are available for an RXSHV _NEXTV
operation.

RXSHV _TRUNC
A variable value or variable name was truncated because
the supplied Rx.STRING was too small for the copied
value.

RXSHV_BADN
The variable name specified in shvname was invalid for the
requested operation.

RXSHV _MEMFL
The REXX interpreter was unable to obtain the storage
required to complete the request.

RXSHV_BADF
The shared variable request block contains an invalid
function code.

shmame An RXSTRING containing a REXX variable name. shvname
usage varies for the different SHVBLOCK request codes:

RXSHV_SET
RXSHV _SYSET
RXSHV _FETCH
RXSHV _SYFET
RXSHV _DROPV
RXSHV _SYDRO
RXSHV_PRIV

shvname is an Rx.STRING pointing to the name of the
REXX variable accessed by the shared variable request
block.

RXSHV_NEXTV
shvname is an RXSTRING defining an area of storage to
receive the name of the next variable. shvnamelen is the
length of the RXSTRING area. If the variable name is
longer than shvnamelen characters, the name will be
truncated and the RXSHV _TRUNC bit of shvret will be
set. On return, shvname.strlength will contain the length of
the variable name; shvnamelen will be unchanged.

If shvname is an empty Rx.STRING (strptr is NULL), the
REXX interpreter will allocate and return an Rx.STRING
to hold the variable name. If the REXX interpreter
allocates the RXSTRING, an RXSHV _ TRUNC condition
cannot occur. However, RXSHV _MEMFL errors are
possible for these operations. If an RXSHV _MEMFL
condition occurs, memory will not be allocated for that
request block. The RexxVariablePool caller is responsible
for releasing the storage with DosFreeMem.

Note: The RexxVariablePool does not add a terminating
null character to the variable name.

RXSHV_EXIT
shvname is unused for the RXSHV _EXIT function.

Chapter 9. Application Programming Interface 9-47

Variable Pool Interface

9-48 REXX Reference

shvvalue An RXSTRING containing a REXX variable value. shvvalue
meaning varies for the different SHVBLOCK request codes:

RXSHV_SET
RXSHV _SYSET

shvvalue is the value assigned to the REXX variable in
shvname. shvvaluelen contains the length of the variable
value.

RXSHV_EXIT
shvvalue is the value assigned to the exit handler return
value. shvvaluelen contains the length of the variable value.

RXSHV _FETCH
RXSHV _SYFET
RXSHV_PRIV
RXSHV_NEXT

shvvalue is a buffer the REXX interpreter uses to return a
copy of REXX variable shvname. shvvaluelen contains the
length of the value buffer. On return, shvvalue.strlength will
be set to the length of the returned value and shvvaluelen
will be unchanged. If the variable value is longer than
shvvaluelen characters, the value will be truncated and the
RXSHV _TRUNC bit of shvret will be set. On return,
shvvalue.strlength will be set to the length of the returned
value; shvvaluelen will be unchanged.

If shvvalue is an empty RXSTRING (strptr is NULL), the
REXX interpreter will allocate and return an RXSTRING
to hold the variable value. If the REXX interpreter
allocates the RXSTRING, an RXSHV _TRUNC condition
cannot occur. However, RXSHV _MEMFL errors are
possible for these operations. If an RXSHV _MEMFL
condition occurs, memory will not be allocated for that
request block. The Rexx VariablePool caller is responsible
for releasing the storage with DosFreeMem.

Note: The RexxVariablePool does not add a terminating
null character to the variable value.

RXSHV _DROPV
RXSHV _SYDRO

shvvalue is not used.

The REXX interpreter processes each request block in the order provided;
RexxVariablePool returns to the caller after the last block is processed or
after a severe error (such as an out-of-memory condition).

The RexxVariablePool function return code is a composite return code for
the entire set of shared variable requests. The return codes for all of the
individual requests are ORed together to form the composite return code.
Individual shared variable request return code are returned in the request
shared variable blocks.

Variable Pool Interface

RexxVarlablePool Return Codes

0 to 127
RexxVariablePool has processed the entire shared variable request
block list.

The RexxVariablePool function return code is a composite return
code for the entire set of shared variable requests. The low-order 6
bits of the the shvret fields for all request blocks are ORed together
to form the composite return code~ Individual shared variable
request status flags are returned in the shared variable request block
shvre t field.

RXSHV_NOAVL
The variable pool interface was not enabled when call was issued.

Chapter 9. Applicati-0n Programming Interface 9-49

Variable Pool Interface

Interface Types

Symbolic Interface

Direct Interface

Three of the Variable Pool Interface functions (set, fetch and drop) have dual
interfaces.

The symbolic interface uses normal REXX variable rules when interpreting variables.
Variable names are valid REXX symbols (in mixed case if desired) including
compound symbols. Compound symbols will be referenced with tail substitution.
The functions that use the symbolic interface are RXSHV _ SYSET,
RXSHV_SYFET, and RXSHV_SYDRO.

The direct interface uses no substitution or case translation. Simple symbols must be
valid REXX variable names. A valid REXX variable name:

• Does not begin with a digit or period

• Contains only uppercase A to Z, the digits 0 - 9, or the characters_, ! or?
before the first period of the name.

• Can contain any characters after the first period of the name.

Compound variables are specified using the derived name of the variable. Any
characters (including blanks) may appear after the first period of the name. No
additional variable sustitution is used. The direct interface is used by RXSHV _SET,
RXSHV _FETCH, and RXSHV _DROP.

RexxVariablePool Restrictions

9-50 REXX Reference

Only the main thread of an application can access the REXX variable pool.
Applications may create and use new threads, but only the original thread that called
RexxStart may use RexxVariablePool.

OS/2 EXE modules invoked from a REXX procedure execute in a new process.
Because the modules are not using the same process and thread as the REXX
procedure, the modules cannot use RexxVariablePool to access REXX variables.
RexxVariablePool can be used from subcommand handlers, external functions and
exit handlers.

Variable Pool Interface

Example

/***/
/* */
/* SetRexxVariable - Set the value of a Rexx variable */
/* */
/***/

INT SetRexxVariable

{

}

PSZ name,
PSZ value)

SHVBLOCK block;

block.shvcode = RXSHV SYSET;
block.shvret=(UCHAR)e;
block.shvnext=(PSHVBLOCK)0;

/* Rexx variable to set
/* value to assign

*/
*/

/* variable pool control block*/

/* do a symbolic set operation*/
/* clear return code field */
/* no next block */
/* set variable name string */

MAKERXSTRING(block.shvname, name, strlen(name));
/* set value string

MAKERXSTRING(block.shvvalue, value, strlen(value));
block.shvvaluelen=strlen(value); /*set value length
return RexxVariablePool(&block); /*set the variable

*/

*/
*/

Figure 9-17. Sample Call to Rexx VariablePool

Chapter 9. Application Programming Interface 9-51

Halt and Trace Functions

Halt and Trace· Fundions

9-52 REXX Reference

The halt and trace functions raise a REXX HALT condition or change the REXX
interactive debug mode while a REXX procedure is running. These interfaces may
be preferred over the RXHL T and RXTRC system exits. The system exits require
an additional call to an exit routine after each REXX instruction completes. This
may cause a noticable performance degradation. The Halt and Trace functions are a
single request to change the halt or trace state, and do not degrade the REXX
procedure performance.

Halt and Trace Functions

Halt and Trace Functions

RexxSetHalt
RexxSetHalt raises a HALT condition in a running REXX program.

RexxSetHalt(Processld, Threadld)

Parameters

Processld (P ID) - input
The process ID of the target REXX procedure. Processld is the application
process that called the RexxStart function.

Threadld (TID) - input
The thread ID of the target REXX procedure. Threadld is the application
thread that called the RexxStart function.

Returns

0 RXARI_OK
1 RXARI_PID_TID_NOT_FOUND
2 RXARI_PROCESSING_ERROR

Note: This call will not be processed if the target REXX program is
executing with the RXHLT exit enabled.

Chapter 9. Application Programming Interface 9-53

Halt and Trace Functions

RexxSetTrace

9-54 REXX Reference

RexxSetTrace turns on interactive debug mode for a REXX procedure.

RexxSetTrace(Processld, Threadld)

Parameters

Processld (P ID) - input
The process ID of the target REXX procedure. Processld is the application
process that called the RexxStart function.

Tbreadld (TID) - input
The thread ID of the target REXX procedure. Threadld is the application
thread that called the RexxStart function.

A RexxSetTrace call will not be processed if the REXX procedure is using
the RXTRC exit.

RexxResetTrace

Halt and Trace Functions

RexxResetTrace turns off interactive debug mode for a REXX procedure.

RexxResetTrace(Processld, Threadld)

Parameters

Processld (PID) - input
The process ID of the target REXX procedure. Processld is the application
process that called the RexxStart function.

Threadld (TID) - input
The thread ID of the target REXX procedure. The thread ID of the target
REXX procedure. Threadld is the application thread that called the
RexxStart function.

A RexxResetTrace call will not be processed if the REXX procedure is
using the RXTRC exit.

Returns

0 RXARIOK
1 RXARI_PID_TID_NOT_FOUND
2 RXARI_PROCESSING_ERROR

Notes:

1. A RexxResetTrace call will not be processed if the REXX procedure
is using the RXTRC exit.

2. Interactive debug will not be turned off unless interactive debug
mode was originally started with RexxSetTrace.

Chapter 9. Application Programming Interface 9-55

Macrospace Interface

Macrospace Interface

Search Order

The macrospace can improve the performance of REXX procedures by
maintaining REXX procecure images in memory for immediate load and
execution. This is useful for frequently used procedures and functions
such as editor macros.

Programs registered in the REXX macrospace are available to all
processes. They may be executed using the RexxStart function or called
as functions or subroutines from other REXX procedures.

Procedures in the macrospace are called the same way other REXX
external functions are called. However, the macrospace REXX
procedures may be placed at the front or at the very end of the external
function search order.

REXX procedures in the macrospace can be saved to a disk file. A
saved macrospace file can be reloaded with a single call to
RexxLoadMacroSpace. An application, such as an editor, can create its
own library of frequently-used functions and load the entire library into
memory for fast access. Multiple macrospace libraries may be created
and loaded.

When RexxAddMacro loads a REXX procecure into the macrospace, the
position in the external function search order is specified. The REXX
procedure may be placed before all other forms of external function or
after all other external functions.

RXMACRO _SEARCH_BEFORE A function registered with
RXMACRO_SEARCH_BEFORE will be located by the
REXX interpreter before any registered functions or external
REXX files.

SEARCH_AFTER Function Registration A function registered with
RXMACRO_SEARCH_AFTER will be located by the
REXX interpreter after any registered functions or external
REXX files.

Storage of Macrospace Libraries

9-56 REXX Reference

Note: The REXX macrospace is placed in OS/2 shared memory. The
size of the macrospace is only limited by the amount of memory and
swap space available to the system. However, as the macrospace grows,
it limits the memory available to other processes in the system. Allowing
the macrospace to grow too large may degrade overall system
performance due to increased system swap file access. It is recommended
that only the most frequently used functions be placed in the macrospace.

Macrospace Interface

Macrospace Interface Functions

RexxAddMacro

The functions to manpulate macrospaces are:

RexxAddMacro loads a REXX procedure into the macrospace.

RexxAddMacro (FuncName, SourceFile, Position)

Parameters

FuncName (PSZ) - input
: Address of the ASCIIZ function name. REXX procedures in the
macrospace are called using the assigned function name.

SourceFile (P SZ) - input
Address of the ASCIIZ file specification for the REXX procedure source
file. When a file extension is not supplied, . CMD is used. When the full
path is not specified, the current directory and OS/2 path is searched.

Position (ULONG) - input
Position in the REXX external function search order. Possible values are:

RXMACRO_SEARCH_BEFORE
The function will be located by the REXX interpreter before any
registered functions or external REXX files.

RXMACRO_SEARCH_AFfER

Returns

The function will be located by the REXX interpreter after any
registered functions or external REXX files.

0 RXMACRO_OK
1 RXMACRO_NO_STORAGE
7 RXMACRO_SOURCE_NOT_FOUND
8 RXMACRO_INVALID_POSITION

Chapter 9. Application Programming Interface 9-57

Macrospace Interface

RexxDropMacro
RexxDropMacro removes a REXX procedure from the macrospace.

RexxDropMacro (FuncName)

Parameters

FuncName (PSZ) - input
Address of the ASCIIZ function name.

Returns

0 RXMACRO_OK
2 RXMACRO_NOT_FOUND

9-58 REXX Reference

Macrospace Interface

RexxClearMacroSpace
RexxClearMacroSpace removes all loaded REXX procedures from the macrospace.

RexxClearMacroSpaceO

Returns

0 RXMACRO_OK
2 RXMACRO_NOT_FOUND

Remarks

RexxClearMacroSpace should be used with care. This function will remove all
functions from the macrospace, including functions loaded by other processes.

Chapter 9. Application Programming Interface 9-59

Macrospace Interface

RexxSaveMacroSpace

9-60 REXX Reference

RexxSaveMacroSpace saves all or part of the macrospace REXX procedures to a
disk file.

RexxSaveMacroSpace (FuncCount, FuncNames, MacroLibFile)

Parameters

FuocCount (ULONG) - input
Number of REXX procedures to save.

FuocNames (PSZ *) - input
Address of a list of ASCIIZ function names. FuncCount gives the size of
the function list.

MacroLibFile (P SZ) - input
Address of the ASCIIZ macrospace file name. If MacroLibFile already
-exists, it is replaced with the new file.

Returns

0 RXMACRO_OK
2 RXMACRO_NOT_FOUND
3 RXMACRO_EXTENSION_REQUIRED
S RXMACRO_FILE_ERROR

Remarks

When FuncCount is zero or FuncNames is NULL, RexxSaveMacroSpace saves
all functions in the macrospace.: Saved macrospace files may only be used with
the same interpreter version that created the images. If RexxLoadMacroSpace
is called to load the procedures, and the release level or service levelis incorrect,
RexxLoadMacroSpace will. fail. If RexxLoadMacroSpace fails, the REXX
procedures must be reloaded individually from the original source programs.

Macrospace Interface

RexxLoadMacroSpace
RexxLoadMacroSpace loads all or part of the REXX procedures from a saved

macrospace file.

RexxLoadMacroSpace (FuncCount, FuncNames, MacroLibFile)

Parameters

FuncCount (ULONG) - input
Number of REXX procedures to load from the saved macrospace.

FuncNames (P SZ *) - input
Address of a list of ASCIIZ REXX function names. FuncCount gives the

size of the function list.

MacroLibFile (P SZ) - input
Address of the ASCIIZ saved macrospace file name.

Returns

0 RXMACRO_OK
1 RXMACRO_NO_STORAGE
2 RXMACRO_NOT_FOUND
4 RXMACRO_ALREADY_EXISTS
5 RXMACRO_FILE_ERROR
6 RXMACRO_SIGNATURE_ERROR

Remarks

When FuncCount is zero or FuncNames is NULL, RexxLoadMacroSpace loads

all REXX procedures from the saved file.: If a RexxLoadMacroSpace call

would replace an existing macrospace REXX procedure, the entire load request

is discarded and the macrospace remains unchanged.

Chapter 9. Application Programming Interface 9-61

Macrospace Interface

RexxQueryMacro

9-62 REXX Reference

RexxQueryMacro searches the macrospace for a specified function.

RexxQueryMacro (FuncName, Position)

Parameters

FuncName (PSZ) - input
Address of an ASCIIZ function name.

Position (PUSHORT) - output
Address of an unsigned short integer flag. If the function is loaded in the
macrospace, Position is set to the current function search-order position.

Returns

0 RXMACRO_OK
2 RXMACRO_NOT_FOUND

RexxReorderMacro

Macrospace Interface

RexxReorderMacro changes the search order position of a loaded macrospace
function.

RexxReorderMacro (FuncName, Position)

Parameters

FuncName (P SZ) - input
Address of an ASCIIZ macrospace function name.

Position (ULONG) - input

New search-order position of the macrospace function. Possible values are:

RXMACRO_SEARCH_BEFORE
The function will be located by the REXX interpreter before any
registered functions or external REXX files.

RXMACRO_SEARCH_AFTER

Returns

The function will be located by the REXX interpreter after any
registered functions or external REXX files.

0 RXMACRO_OK
2 RXMACRO_NOT_FOUND
8 RXMACRO_INVALID_POSITION

Chapter 9. Application Programming Interface 9-63

Macrospace Interface

Return Codes
The follow return codes may be returned from the macrospace functions. These
values signify the causes for a failure, in these functions.

RXMACRO_OK

RXMACRO_NO_STORAGE

RXMACRO_NOT_FOUND

RXMACRO_EXTENSION_REQUIRED

RXMACRO_ALREADY_EXISTS

RXMACRO_FILE_ERROR

RXMACRO_SIGNATURE_ERROR

RXMACRO_SOURCE_NOT_FOUND

RXMACRO_INVALID_POSITION

9-64 REXX Reference

0

1

2

3

4

5

6

7

8

The call to the function completed successfully

There was not enough memory to complete the
requested function

The requested function was not found in the
macrospace

An extension is required for the macrospace file
name.

Duplicate functions cannot be loaded from a
macrospace file

An error occurred accessing a macrospace file

A macrospace save file does not contain valid
function images

The requested file was not found

An invalid search-order position request flag was
used

Macrospace Interface

Example

/* first load entire package */
RexxLoadMacroSpace(0, NULL, 11 EDITOR.MAC 11

);

for { i = 0; i < MACRO_ COUNT; i ++) { /* verify each macro * /
/* if not there */

if {RexxQueryMacro{macroftli", &position))
/*add to list */

RexxAddMacro{macroftli", macro filesftli",
RXMACRO_SEARCH_BEFORE); -

}
/* rebuild the macrospace */

RexxSaveMacroSpace{e, NULL, 11 EDITOR.:MAC 11
);

/* build the argument string */
MAKERXSTRING{argv[e], macro_argument,

strlen{macro_argument));
/* set up default return */

MAKERXSTRING{retstr, return buffer, sizeof{return buffer));
- /* set up for macrospace call */

MAKERXSTRING(macrospace[0],NULL, 0);
MAKERXSTRING{macrospace[l],NULL, 0);

return_code = RexxStart{l,
argv,
macro[pos],
macrospace,
.. 'Editor",
RXCOMMAND,
NULL,
&re,
&retstr);

Figure 9-18. Sample Macrospace Usage

/* one argument
/* argument array
/* REXX procedure name
/* use macrospace version
/* default address name
/* calling as a subco11111and
/* no ~xits used
/* converted return code
/* returned result

*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 9. Application Programming Interface 9-65

Macrospace Interface

9-66 REXX Reference

Debugging Aids

Chapter 10. Debugging Aids

In addition to the TRACE instruction described on page 3-37, there are the
following debugging aids.

Interactive Debugging of Programs
The debug facility permits interactively controlled execution of a program. Adding
the prefix character ? to the TRACE instruction or the TRACE function (for
example, TRACE ?I or TRACE(?!)) turns on interactive debug and indicates to the user
that interactive debug is active. Further TRACE instructions in the program are
ignored, and the language processor pauses after nearly all instructions that are
traced at the console (see the following for the exceptions). When the language
processor pauses, three debug actions are available:

1. Entering a null line makes the language processor continue execution until the
next pause for debug input. Repeatedly entering a null line, therefore, steps
from pause point to pause point. For TRACE ?A, for example, this is equivalent
to single-stepping through the program.

2. Entering an equal sign (=) with no blanks makes the language processor
re-execute the clause last traced. For example, if an IF clause is about to take
the wrong branch, you can change the value of the variables on which it
depends, and then re-execute it.

Once the clause has been re-executed, the language processor pauses again.

3. Anything else entered is treated as a line of one or more clauses, and processed
immediately (that is, as though DO; line; END; had been inserted in the
program). The same rules apply as in the INTERPRET instruction (for
example, DO-END constructs must be complete). If an instruction has a syntax
error in it, a standard message is displayed and you are prompted for input
again. Similarly all the other SIGNAL conditions are disabled while the string
is processed to prevent unintentional transfer of control.

During execution of the string, no tracing takes place, except that nonzero
return codes from host commands are displayed. Host commands are always
executed, but the variable RC is not set. Once the string has been processed, the
language processor pauses again for further debug input.

Interactive debug is turned off:

• If a TRACE instruction uses the ? prefix while interactive debug is in effect

or

• At any time, if TRACE 0 or TRACE with no options is entered.

The numeric form of the TRACE instruction may be used to allow sections of the
program to be executed without pause for debug input. TRACE n (that is, positive
result) allows execution to continue, skipping the next n pauses (when interactive
debug is or becomes active). TRACE -n (that is, negative result) allows execution to
continue without pause and with tracing inhibited for n clauses that would otherwise
be traced. The trace action selected by a TRACE instruction is saved and restored
across subroutine calls. This means that if you are stepping through a program (say
after using TRACE ?R to trace Results) and then enter a subroutine in which you have

Chapter 10. Debugging Aids 10-1

Debugging Aids

no interest, you can enter TRACE 0 to tum tracing off. No further instructions in the
subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R
instruction at its start. Having traced the routine, the original status of tracing is
restored and hence (if tracing was off on entry to the subroutine) tracing. (and
interactive debug). is turned off until the next entry. to the subroutine.

Since any instructions may be executed in interactive debug you have considerable
control over execution.

The following are some examples:

Say expr

name=expr

Trace O

Trace ?A

exit

/* displays the result of evaluating the
/* expression.

/* alters th.e value of a variable.

/* (or Trace with no options) turns off
/* interactive debug and all tracing.

/* turns off interactive debug but continue
/* tracing all clauses.

/* terminates execution of the program.

do i=l to 10; say stem .• i; end

*/
*/

*/

*/
*/

*/
*/

*/

/* displays ten elements of the array stem. */

Exceptions: Some clauses cannot safely be re-executed, and therefore the language
processor does. not pause after them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the loop.

• All END clauses (not a useful place to pause in any case).

• All THEN, ELSE, OTHERWISE, or null clauses.

• All RETURN clauses, except when returning from an internal function or
subroutine call.

• All EXIT clauses.

• All SIGNAL and CALL clauses (the language processor pausesafter the target
label has been traced).

• Any clause that causes a syntax error. (These may be trapped by SIGNAL ON
SYNTAX, but cannot be re-executed.)

RXTRACE Variable

10-2 REXX Reference

When the interpreter starts the interpretation of a REXX procedure it will check the
setting of the special environment variable, RXTRACE. If RXTRACE has been set
to ON (not case sensitive) then the interpreter will start in interactive debug mode (as
if the REXX instruction TRACE 1 ?R' had been .the first interpretable instruction). All
other settings of RXTRACE will be ignored. RXTRACE will only be checked when
starting a new REXX procedure.

Use the OS/2 SET command to set or query OS/2 environment variables.

Keywords and Variables

Chapter 11. Reserved Keywords and Special Variables

Keywords may be used as ordinary symbols in many situations where there is no
ambiguity. The precise rules are given in this chapter.

There are three special variables: RC, RESULT, and SIGL.

Reserved Keywords
The free syntax of REXX implies that some symbols are reserved for use by the
language processor in certain contexts.

Within particular instructions, some symbols may be reserved to separate the parts
of the instruction. These symbols are referred to as keywords. Examples of REXX
keywords are the WHILE keyword in a DO instruction, and the THEN keyword,
which acts as a clause terminator in this case, following an IF or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and
that are not followed by an"=" or":" are checked to see if they are instruction
keywords; the symbols may be freely used elsewhere in clauses without being
understood as keywords.

Be careful of host commands or subcommands with the same name as REXX
keywords (for example, the OS/2 command CALL). This can create problems for
any programmer whose REXX programs might be used for some time and in
circumstances outside his or her control, and who wishes to make the program
absolutely watertight.

In this case, a REXX program may be written with at least the first words in
command lines enclosed in quotes. ,

The following is an example:

'DELETE' Fn'.'Ext

This also has an advantage in that it is more efficient; and with this style, the
SIGNAL ON NOV ALUE condition may be used to check the integrity of an exec.

An alternative strategy is to precede such command strings with two adjacent quotes.
This concatenates the null string onto the front.

The following is an example:

' ' Erase Fn' • ' Ext

A third option is to enclose the entire expression, or the first symbol, in parentheses.

The following is an example:

(Erase Fn'. 'Ext)

The choice of strategy, if it is to be done at all, is a personal one by the programmer.
It is not imposed by the REXX language.

Chapter 11. Keywords and Variables 11-1

Keywords and Variables

Special Variables

11-2 REXX Reference

There are three special variables that may be set automatically by the language
processor:

RC Is set to the return code from any executed host command (or
subcommand). Following the SYNTAX, ERROR, and FAILURE
SIGNAL events, RC is set to the code appropriate to the event; the
syntax error number (see Appendix A for error messages) or the
command return code. RC is unchanged following a HALT,
NOTREADY, or NOV ALUE event.

Note: Host commands that are executed manually from debug mode do
not cause the value of RC to change.

RESULT Is set by a RETURN instruction in a subroutine that has been called if
the RETURN instruction specifies an expression. If the RETURN
instruction has no expression on it, RESULT is dropped (becomes
uninitialized.)

SIGL Contains the line number of the clause currently running when the last
transfer of control to a label took place. (This could be caused by a
SIGNAL event, a CALL instruction, an internal function invocation, or
a trapped error condition.)

None of these variables has an initial value. They may be altered by the user, just
like any other variable. They also may be accessed by way of the variable pool
interface (see "Variable Pool Interface" on page 9-45). The PROCEDURE and
DROP instructions also affect these variables in the usual way.

Certain other information is always available to a REXX program. This includes
the name by which the program was invoked and the source of the program (which
is available using the PARSE SOURCE instruction, see page 3-26). The latter
consists of the string "OS/2," followed by the call type and then the full path
specification of the file being executed.

In addition, PARSE VERSION (see page 3-26) makes available the version and date
of the language processor code that is running. The built-in functions TRACE and
ADDRESS return the current trace setting and environment name respectively.

Finally, the current settings of the NUMERIC function can be obtained using the
DIGITS, FORM, and FUZZ built-in functions.

Chapter 12. Useful OS/2 Commands

CALL Command
The OS/2 CALL command should not be confused with the REXX CALL
instruction (see page 3-6). The REXX CALL instruction calls REXX internal or
external subroutines. The OS/2 CALL command:

• When used in an OS/2 batch file, invokes a REXX program or OS/2 batch file.
OS/2 batch files use REXX programs and OS/2 batch fies as commands by using
the CALL command. When the called command completes, the calling batch
file continues execution.

Using a REXX program or batch file by name only (without CALL) transfers
control to the named routine. The calling batch file is terminated.

• When used in a REXX program, the OS/2 CALL command calls a REXX
program or OS/2 batch file as an OS/2 command. The call creates a new
invocation of the CMD.EXE command shell. When the command files is a
REXX program, the REXX interpreter is also called again. When the called
program completes, the original REXX program resumes execution. To call a
REXX program as an OS/2 command, the CALL command must be a quoted
string:

"call progl 11

If the CALL is not a quoted string

call progl

the REXX program is called as a subroutine.

Notes:

1. A REXX program cannot be called as an OS/2 command with the CALL
command (for example, "progl 11 alone). OS/2 will give error ********** give
chaining message.

2. A CMD file cannot call itself with the OS/2 CALL command. However, a
REXX program can call itself with the REXX CALL instruction.

Other OS/2 Commands
COPY

DELETE

DIR

ERASE

MODE

PATH

SET

Copies files.

Deletes files

Displays disk directories.

Erases files.

Controls input and output device characteristics.

Defines or displays the search path for commands and REXX
programs. See also "Search Order" on page 4-2.

Displays or changes OS/2 environment variables. See also "VALUE"
on page 4-41.

Chapter 12. Useful OS/2 Commands 12-1

Subcommand Handler Services
See "Subcommand Interfaces" on page 9-9 for a complete subcommand handler
description.

The RXSUBCOM Command
The RXSUBCOM command registers, drops, and queries REXX subcommand
handlers. A REXX procedure or OS/2 batch file can use RXSUBCOM register
dynamic link library subcommand handlers. Once the subcommand handler is
registered, a REXX program can send commands to the subcommand handler with
the REXX ADDRESS instruction. For example, REXX Dialog Manager programs
use RXSUBCOM to register the ISPCIR subcommand handler.

1 RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR'
Address ispcir

See "ADDRESS" on page 3-2 for details of the ADDRESS instruction.

RXSUBCOM REGISTER
RXSUBCOM REGISTER registers a dynamic link library subcommand handler.
This command makes a command environment available to REXX.

RXSUBCOM REGISTER envname di/name procname

12-2 REXX Reference

Options

envname
The subcommand handler name. The REXX ADDRESS instruction uses
envname to send commands to the subcommand handler.

dllname
Name of the dynamic link library file containing the subcommand handler
routine.

procname
Name of the dynamic link library procedure within di/name that REXX will
call as a subcommand handler.

Returns

0 The command environment has been registered.
10 A duplicate registration has occurred. An envname

subcommand handler in a different dynamic link library has
already been registered. Both the new subcommand handler
and the existing subcommand handler can be used.

30 The registration has failed. Subcommand handler envname in
library di/name is already registered.

1002 RXSUBCOM registers was unable to obtain the memory
necessary to register the subcommand handler.

-1 A parameter is missing or incorrectly specified.

RXSUBCOM DROP
RXSUBCOM DROP deregisters a subcommand handler.

RXSUBCOM DROP envname [di/name]

RXSUBCOM QUERY

Options

envname
The name of the subcommand handler.

[dllname]
Name of the dynamic link library file containing the subcommand handler
routine.

Returns

0 The subcommand handler was successfully deregistered.
30 The subcommand handler does not exist.
40 The environment was registered by a different process as

RXSUBCOM_NONDROP.
-1 A parameter is missing or specified incorrectly.

This command checks the existance of a subcommand handler. The
return is the query result.

RXSUBCOM QUERY envname [di/name]

RXSUBCOM LOAD

Options

envname
The name of the subcommand handler.

[dllname]
Name of the dynamic link library file containing the subcommand handler
routine.

Returns

0 The subcommand handler is registered.
30 The subcommand handler is not registered.
-1 A parameter is missing or specified incorrectly.

RXSUBCOM LOAD loads a subcommand handler dynamic link library.

RXSUBCOM LOAD envname [di/name]

Chapter 12. Useful OS/2 Commands 12-3

Options

enmame
The name of the subcommand handler.

[dllname]
Name of the dynamic link library file containing the subcommand handler
routine.

Returns

0 The dynamic link library was located and loaded successfully.
50 The dynamic link library was not located or the dynamic link

library could not be loaded.
-1 A parameter is missing or incorrectly specified.

Queue Services (Filters)

RXQUEUE filter

12-4 REXX Reference

11+-RXQUEUE cq eJ
ueuenam

The RXQUEUE filter normally operates on the default queue named
SESSION. However, if an environment variable named "RXQUEUE"
exists, the RXQUEUE value will be used for the queue name.

For a full description of REXX queue services for applications
programming, see "Queue Interface" on page 8-4.

Parameters

[queuename]/LIFO
Stacks items from STDIN last in, first out (LIFO) on a REXX queue.

[queuename]/FIFO
Queues items from STDIN first in, first out (FIFO) on a REXX queue.

[queuename]/CLEAR
Removes all lines from a REXX queue.

Remarks
RXQUEUE takes output lines from another programs and placess

them on a REXX queue. A REXX procedure can use RXQUEUE to
capture OS/2 command and program output for processing. RXQUEUE
can direct output to any REXX queue, either either FIFO (first in, first
out) or LIFO (last in, first out).

RXQUEUE uses the OS/2 environment variable RXQUEUE for the
default queue name. When RXQUEUE does not have a value,
RXQUEUE uses SESSION for the queue name.

This example obtains the OS/2 version number with RXQUEUE:

/* Sample program to show simple use of RXQUEUE */
/* Find out the OS/2 version number, using the */
/* VER conmand. VER produces two lines of */
/*output; one blank line, and one line with the*/
/* fomat "The OS/2 Version is n.nn 11 */

'VER IRXQUEUE' /* Put the data on the Queue */
pull • /* Get and discard the blank line */
Pull ••••• number /* Get the data, keeping only the number */

Say 'We are running on OS/2 Version' number

This example processes output from the OS/2 DIR command:

Chapter 12. Useful OS/2 Commands 12-5

/* Sample program to show how to use the RXQUEUE filter */
/* This program filters the output from a DIR command, */
/* ignoring sma 11 files. It di sp 1 ays a 1 i st of the * /
/* large files, and the total of the sizes of the large */
/* files. */

size_l imit = 10000 /* The dividing line */
/* between large and small*/
/* Sum of large file sizes*/
/* Set up to handle very * /
/* numbers */

size_total = e
NUMERIC DIGITS 12

/* Create a new queue so that this program cannot */
/* interfere with data placed on the queue by another */
/* program. */

queue_name = rxqueue(1Create 1
)

Call rxqueue 'Set', queue_name

'DIR /N I RXQUEUE' queue_name

/* DIR output starts with five header lines */
Do 5

Pull • /*-dis.card header line */
End

/* Now all the lines are file or directory lines, */
/* except for one at the end. * /

Do queued() - 1 /* loop for lines we want */
Parse Pull •• size • name ./* get one name and size */
/* If the size field says 11<DIR> 11

, we ignore this */
/* line. */
If size <> '<DIR>' Then

/* Now check size, and display */
If size > size limit Then Do

Say format(size.,12) name
size_total = si.ze_total + size

End
End

Say 'The total size of those files is' size_total

/*Now we are done with the queue. We·delete it, which*/
/* discards the 1 ine remaining in it. */

Call rxqueue 'DELETE', queue_name

12-6 REXX Reference

Appendix A. Error Numbers and Messages

The error numbers produced by syntax errors during processing of REXX programs

are all in the range 3 to 49 (and this is the value placed in the variable RC when

SIGNAL ON SYNTAX event is trapped).

Two of the error messages can be generated by the external interfaces to the
language processor either before the language processor gains control or after

control has left the language processor. Therefore these errors cannot be trapped by

SIGNAL ON SYNTAX. The error numbers involved are 3 and 5 (if the initial
requirements for storage could not be met). Similarly, error 4 can be trapped only

by SIGNAL ON HALT or CALL ON HALT.

Two of the error messages are generated when the program is being tokenized.

Because the program has not yet started executing, these errors cannot be trapped by

SIGNAL ON SYNTAX unless they occur during execution of an INTERPRET

instruction. The errors involved are 6 and 30.

Error 3 Program is unreadable WRONG RIGHT

Explanation: The REXX program could not
be read from the disk.

Error 4 Program interrupted

Error 5

Explanation: The system interrupted execution
of your REXX program.

Machine resources exhausted

Explanation: While attempting to process a
program, the language processor was unable to
get the space needed for its work areas and
variables. This may have occurred because the
program that invoked the language processor
has already used up most of the available
storage itself.

Error 6 Unmatched "/*" or quote

Explanation: The language processor reached
the end of the file (or the end of data in an
INTERPRET instruction) without finding the
ending "* /" for a comment or quote for a
literal string.

Error 7 WHEN or OTHERWISE expected

Explanation: The language processor expected
a series of WHEN expressions and an
OTHERWISE within a SELECT statement.
This message is issued when any other
instruction is found or if all WHEN
expressions are found to be false and an
OTHERWISE is not present. This error is
often caused by forgetting the DO and END
instructions around the list of instructions
following a WHEN. For example:

Error 8

Select
When a=b then

Say 1A equals 8 1

exit
Otherwise nop
end

Select
When a=b then DO

Say 1A equals 81

exit
end

Otherwise nop
end

Unexpected THEN or ELSE

Explanation: The language processor has
found a THEN or an ELSE clause that does
not match a corresponding IF clause. This
situation is often caused by forgetting to put an
END or DO END instruction in the THEN
part of a complex IF THEN ELSE
construction. For example:

WRONG

If a=b then do;
Say EQUALS
exit

else
Say NOT EQUALS

RIGHT

If a=b then do;
Say EQUALS
exit
end

else
Say NOT EQUALS

Error 9 Unexpected WHEN or OTHERWISE

Explanation: The language processor has
found a WHEN or OTHERWISE instruction
outside of a SELECT construction. You may
have accidentally enclosed the instruction in a
DO END construction by leaving off an END
instruction, or you may have tried to branch to
it with a SIGNAL statement (which cannot
work because the SELECT construction is then
terminated).

Appendix A. Error Numbers and Messages A-1

Error 10 Unexpected or unmatched END

Explanation: The language processor has
found more END instructions in your program
than DO or SELECT instructions, or the END
instructions were placed so that they did not
match the DO or SELECT instructions.

This message can be caused if you try to
SIGNAL into the middle of a loop. In this
case, the END instruction will be unexpected
because the previous DO instruction will not
have been executed. Remember also, that
SIGNAL terminates any current loops, so it
can not be used to jump from one place inside
a loop to another.

This message can also be caused if you place
an END instruction immediately after a THEN
or ELSE construction. It may be helpful to use
TRACE Scan to show the structure of the
program and make it more obvious where the
error is. Putting the name of the control
variable on END instructions that close
repetitive loops can also help locate this kind
of error.

Error 11 Control stack full

Explanation: This message is issued if you
exceed the limit on levels of nesting of control
structures (DO-END, IF-THEN-ELSE, and so
on).

This message could be caused by a looping
INTERPRET instruction. For example:

line='INTERPRET line'
INTERPRET line

These lines would loop until they exceeded the
nesting level limit and this message would be
issued. Similarly, a recursive subroutine that
does not terminate correctly could loop until it
causes this message.

Error 13 Invalid character in program

Explanation: The language processor found an
invalid character outside of a literal (quoted)
string. Valid characters are:

A through Z a through z e through 9
(Alphamerics)

? • (Name Characters)

& * () - + = ~ I " ; : < ' > I \
(Special Characters)

A-2 REXX Reference

Error 14 Incomplete DO/SELECT/IF

Explanation: The language processor has
reached the end of the file (or end of data for
an INTERPRET instruction) and has found
that there is a DO or SELECT instruction
without a matching END instruction, or an IF
clause that is not followed by a THEN clause.
Putting the name of the control variable on
END instructions that close repetitive loops
can help locate this kind of error.

Error 15 Invalid hexadecimal or binary string

Explanation: For the language processor,
hexadecimal or binary constants cannot have
leading or trailing blanks and can have
imbedded blanks only at byte boundaries. The
following are all valid hexadecimal constants:
1 13 1x
I A3C2 lc34 Ix

1 lde8 1 x

These are all valid binary constants:
I 1011 'b
1 110 1101 1 b
•1e11e1 11e1ee11 1 b

You may have mistyped one of the digits, for
example, typing a letter o instead of a 0. This
message can also be caused if you follow a
string by the I-character symbol X or B (as the
name of a variable X or B) when the string is
not intended to be taken as a hexadecimal or
binary specification. In this case, use the
explicit concatenation operator (I) to
concatenate the string to the value of the
symbol.

Error 16 Label not found

Explanation: The language processor could
not find the label specified by a SIGNAL
instruction or a label matching an enabled
condition when the corresponding (trapped)
event occurred. You may have mistyped the
label or forgotten to include it.

Error 17 Unexpected PROCEDURE

Explanation: The language processor
encountered a PROCEDURE instruction in an
invalid position. This could occur because no
internal routines are active or because the
PROCEDURE instruction was not the first
instruction executed after the CALL instruction
or function invocation. This error can be
caused by dropping through to an internal
routine, rather than invoking it with a CALL
instruction or a function call.

Error 18 THEN expected Error 26 Invalid whole number

Explanation: Each REXX IF and WHEN Explanation: The language processor found an

clause must be followed by a THEN clause. expression in the NUMERIC instruction, a

Another clause was found before a THEN parsing positional pattern, or the right hand

clause was found. term of the exponentiation (**) operator that
did not evaluate to a whole number or was

Error 19 String or symbol expected greater than the limit, for these uses, of

Explanation: The language processor expected
999 999 999. This error condition is also

a symbol or string following the CALL or
raised when the DO repetitor is not a positive

SIGNAL keywords, but none was found. You
whole number or when an integer-divide or

may have omitted the string or symbol, or you
remainder operation does not result in a whole

may have inserted a special character (such as
number.

a parenthesis). Error 27 Invalid DO syntax

Error 20 Symbol expected Explanation: The language processor found a

Explanation: The language processor expected
syntax error in the DO instruction. You might

a symbol following the CALL ON, END,
have used BY, TO, or FOR phrases twice, or

ITERATE, LEAVE, NUMERIC, PARSE,
used BY, TO, or FOR instruction when you

PROCEDURE, or SIGNAL ON keywords or
did not specify a control variable.

expected a list of symbols following the DROP Error 28 Invalid LEA VE or ITERATE
or PROCEDURE (with EXPOSE option)
keywords. Either there was no symbol when Explanation: The language processor

one was required or some other characters encountered an invalid LEA VE or ITERATE

were found. instruction. The instruction was invalid
because:

Error 21 Invalid data on end of clause No loop was active •
Explanation: You have followed a clause, such or
as SELECT or NOP, by some data other than
a comment. • The name specified on the instruction did

not match the control variable of any

Error 23 Invalid character string. active loop.

Explanation: A data string (that is, the result Note that internal routine calls and the

of an expression) contains character codes that INTERPRET instruction protect DO loops by

are not valid in the interpreter. This might be making them inactive. Therefore, for example,

because some characters are impossible or a LEA VE instruction in a subroutine cannot

because the character set is extended in some affect a DO loop in the calling routine.

way and a given character combination is not You can cause this message to be issued if you
allowed. use the SIGNAL instruction to transfer control

Error 24 Invalid TRACE request
within or into a loop. A SIGNAL instruction
terminates all active loops, and any ITERATE

Explanation: The language processor issues or LEA VE instruction issued then would cause

this message when the action specified on a this message to be issued.

TRACE instruction or the argument to the
built-in function, did not start with an A, C, E, Error 29 Environment name too long

F, I, L, N, 0, or R. Explanation: The language processor

Error 25 Invalid subkeyword found
encountered an environment name specified on
an ADDRESS instruction that is longer than

Explanation: The language processor expected the allowed limit of 250 characters.

a particular subkeyword at this position in an
instruction but something else was found. For Error 30 Name or string too long

example, the NUMERIC instruction must be Explanation: The language processor found a
followed by the DIGITS, FUZZ, or FORM
subkeyword. If NUMERIC is followed by

variable name or a literal (quoted) string that is

anything else, this message will be issued.
longer the allowed limit of 250 characters.

The limit for names includes any substitutions.
A possible nuse of this error is the use of a
period(.) in a name, causing an unexpected
subs ti tu ti on.

Appendix A. Error Numbers and Messages A-3

For a literal string, this error can be caused by
leaving off an ending quote (or putting a single
quote in a string) because several clauses may
be included in the string. For example, the
string 1 don 1 t 1 should be written as 1 don 1 1 t 1 or
11 don 1 t 11

•

Error 31 Name starts with numeric or"·"

Explanation: The language processor found a
variable whose name began with a digit or a
period. The RE.XX rules do not allow you to
assign a value to a variable whose name begins
with a digit or a period, because you could
then redefine numeric constants.

Error 33 Invalid expression result

Explanation: The language processor
encountered an expression result that is invalid
in its particular context. The result may be
invalid because an illegal FUZZ or DIGITS
value was used in a NUMERIC instruction
(FUZZ must be no larger than DIGITS).
Another possibility is an invalid or missing
expression following a VALUE keyword in an
instruction.

Error 34 Logical value not 0 or 1

Error 35

Explanation: The language processor found an
expression in an IF, WHEN, DO WHILE, or
DO UNTIL phrase that did not result in a e or
1. Any value operated on by a logical operator
(-., : , &, or &&) must result in a e or 1. For
example, the phrase If result then exit re
will fail if res u 1 t has a value other than e or 1.
Thus, the phrase would be better written as If
result-.=(:) then exit re.

Invalid expression

Explanation: The language processor found a
grammatical error in an expression. You might
have ended an expression with an operator,
had two adjacent operators with no data in
between, or included special characters (such as
operators) in an intended character expression
without enclosing them in quotes. For
example, in the OS/2 program, the command
DIR C:\UTIL*.* should be written as DIR
1 C:\UTIL*.* 1 (assuming DIR is not a
variable) or even as 1 DIR C: \UTI L \ *. * 1

•

Error 36 Unmatched"(" in expression

Explanation: The language processor found an
unmatched parenthesis within an expression.
You will get this message if you include a
single parenthesis in a command without
enclosing it in quotes.

A-4 REXX Reference

Error 37 Unexpected " , " or ")"

Explanation: The language processor found a
comma (,) outside a routine invocation or too
many right parentheses in an expression. You
will get this message if you include a comma in
a character expression without enclosing it in
quotes. For example, the instruction:

Say Enter A, B, or C

should be written as:

Say 'Enter A, B, or C'

Error 38 Invalid template or pattern

Explanation: The language processor found an
invalid special character, for example, %
within a parsing template, or the syntax of a
variable trigger was incorrect (no symbol was
found after a left parenthesis). This message is
also issued if the WITH subkeyword is omitted
in a PARSE VALUE instruction.

Error 39 Evaluation stack overOow

Explanation: The language processor was not
able to evaluate the expression because it is too
complex (many nested parentheses, functions,
and so on).

Error 40 Incorrect call to routine

Explanation: The language processor
encountered an incorrect call to a built-in or
external routine. Some possible causes are:

• You passed invalid data (arguments) to the
routine.

• You passed too many arguments to the
routine.

• The external routine invoked was not
compatible with the language processor.

If you were not trying to invoke a routine, you
may have a symbol or a string adjacent to a
"(" when you meant it to be separated by a
space or an operator. This causes it to be seen
as a function call. For example, TIME(4+5)
should probably be written as TIME* (4+5).

Error 41 Bad arithmetic conversion

Explanation: The language processor found a
term in an arithmetic expression that was not a
valid number or that had an exponent outside
the allowed range of -999 999 999 to
+ 999 999 999.

You may have mistyped a variable name, or
included an arithmetic operator in a character
expression without putting it in quotes. For
example, the command DIR *prod.dat should
be written as 1 DIR *prod.dat 1 (in quotes);

Error 42

otherwise, the language processor will try to
multiply DIR by prod.dat.

Arithmetic overftow /underftow

Explanation: The language processor
encountered the result of an arithmetic
operation that required an exponent greater
than the limit of nine digits (more than
999 999 999 or less than -999 999 999).

This error can occur during evaluation of an
expression (often as a result of trying to divide
a number by 0) or during the stepping of a DO
loop control variable.

Error 43 Routine .not found

Explanation: The language processor was
unable to find a routine called in your
program. You invoked a function within an
expression or invoked a subroutine· by CALL,
but:

• The specified label is not in the program.

• It is not the name of a built-in function.

• The language processor could not locate it
externally.

The simplest, and probably most common,
cause of this error is mistyping the name.

If you were not trying to invoke a routine, you
may have put a symbol or string adjacent to a
"(" when you meant it to be separated by a
space or an operator. The language processor
would see that as a function invocation. For
example, the string 3 (4+5) should probably be
written as 3* (-4+5).

Error 44 Function did .not return data

Explanation: The language processor invoked
an external routine within an expression. The
routine seemed to end without error, but it did
not return data for use in the expression.

This may be due to specifying the name of a
program that is not intended for use as a

Error 45

REXX function. It should be called as a
command or subroutine.

No data specified on function RETURN

Explanation: A REXX program has been
called as a· function, but an attempt is being
made to return (by a RETURN instruction)
without passing back any data. Similarly, an
internal routine, called as a function, must end
with a RETURN statement specifying an
expression.

Error 46 Invalid variable reference

Explanation: The syntax of a variable
reference is incorrect within a DROP, PARSE
or PROCEDURE instruction. Check for a
missing parenthesis or an incorrectly spelled
variable name.

Error 47 Unexpected label

Explanation: A label was found in the
instructions processed by an INTERPRET
instruction. The label must be removed in
order to work correctly.

Error 48 Failure in system service

Explanation: The language processor halts
execution of the program because some system
service, such as stream input or output or the
manipulation of the external data queue, has
failed to work correctly.

Error 49 Interpretation error

Explanation: The language processor has
encountered a severe error while performing a
·self-consistency check.

Appendix A. Error Numbers and Messages A-5

A-6 REXX Reference

These errors are issued by RXQUEUE and RXSUMCOM.

Error 115 The RXSUBCOM parameters are incorrect.

Explanation: Check the RXSUBCOM parameters and retry the command.
RXSUBCOM accepts the following parameters:

• To register a subcommand environment:

RXSUBCOM REGISTER ENVIRONMENT_NAME Dll_NAME ENTRY_POINT
• To query a specific subcommand environment for existance:

RXSUBCOM QUERY ENVIRONMENT_NAME [dll_name]

• To drop a subcommand environment handler:

RXSUBCOM DROP ENVIRONMENT_NAME [dll_name]

• To load a subcommand environment from disk:

RXSUBCOM LOAD ENVIRONMENT_NAME [dll_name]

Error 116 The RXSUBCOM parameter REGISTER is incorrect.

Explanation: Check the RXSUBCOM parameters and retry the command.
RXSUBCOM REGISTER requires all of the following parameters:

RXSUBCOM REGISTER ENVIRONMENT NAME DLL NAME ENTRY POINT
ENVIRONMENT NAME the name of the subc011111and environment.
DLL_NAME - the Dynalink Module name
ENTRY_POINT the name of the function to be executed when called

Error 117 The RXSUBCOM parameter DROP is incorrect.

Explanation: Check the RXSUBCOM parameters and retry the command.
RXSUBCOM DROP requires the environment name be specified.

RXSUBCOM DROP ENVIRONMENT_NAME [dll_name]
ENVIRONMENT NAME the name of the subconmand environment
DLL_NAME - the Dynalink Module name (optional)

Error 118 The RXSUBCOM parameter LOAD is incorrect.

Explanation: Check the RXSUBCOM parameters and retry the command.
RXSUBCOM LOAD requires the environment name be specified.

RXSUBCOM LOAD ENVIRONMENT_NAME [DLL_NAME]
ENVIRONMENT NAME the name of the subc011111and environment
DLL_NAME - the Dynalink Module name (optional)

Appendix B. Double-Byte Character Set (DBCS) Support

A Double-Byte Character Set supports languages that have more characters than can

be represented by 8 bits (such as Korean Hangeul and Japanese Kanji). REXX has

a full range of DBCS functions and handling techniques.

These include:

• String handling capabilities with DBCS characters

• OPTIONS modes that handle DBCS not only as literal strings, but also in data

operations

• A number of functions that specifically support the processing of DBCS

character strings

• Defined DBCS enhancements to current instructions and functions.

Note: The use of DBCS does not affect the meaning of the built-in functions as

described in Chapter 4, "Functions" on page 4-1. There we described how the

characters in a result are obtained from the characters of the arguments by such

actions as selecting, concatenating, and padding. The appendix describes how the

resulting characters are represented as bytes. This internal representation is not

usually seen if the results are printed. It may be seen if the results are displayed on

certain terminals.

General Description
The following characteristics help define the rules used by DBCS to represent

extended characters:

• Each DBCS character consists of 2 bytes.

• There are no DBCS control characters.

• The codes are within the ranges defined in the table, which shows the valid

DBCS code for the DBCS blank.

Table B-1. DBCS Ranges

Byte EBCDIC ASCII

1st X 1 41 1 to X 1 FE 1 X 1 8l 1 to X 1 FC 1

2nd X 1 41 1 to X 1 FE 1 -

DBCS blank X 1 4040 1 X 1 8140 1

Note: In ASCII, the 1st byte may vary from country to country, but is in the

range defined in the table. (Japan, for example, uses only the ranges X 1 81 ' to

X 1 9F 1 and X 1 E0 1 to X 1 FC 1 for the 1st byte.)

Appendix B. Double-Byte Character Set (DBCS) Support B-1

• DBCS alphanumeric and special symbols

A DBCS contains double-byte representation of alphanumeric and special
symbols· corresponding to those of the Single• Byte Character Set (SBCS). In
EBCDIC, the first byte of a double-byte alphanumeric or special symbol is
X'42' and the second is the same hex code as the corresponding EBCDIC code.

Here are some examples:

X' 42Cl 1 is an EBCDIC double-byte A
X 1 4281' is an EBCDIC double-byte a
X 1 4270 1 is an EBCDIC double-byte quote

• No case translation

In general, there is no concept of lowercase and uppercase in DBCS.

• Notational conventions

This appendix uses the following notational conventions:

DBCS character -> .A .B .C .D
SBCS character -> a b c d e
DBCS blank ->
EBCDIC shift-out (X'0E') -> <
EBCDIC shift-in (X'0F') -> >

Note: In EBCDIC, the shift-out (SO) and shift-in (SI) characters distinguish DBCS
characters from SBCS characters.

Enabling DBCS Data Operations
The OPTIONS instruction controls how REXX regards DBCS data. DBCS
operations are enabled using the EXMODE option. (See "OPTIONS" on page 3-24
for more information.)

Pure DBCS Strings and Mixed SBCS/DBCS Strings

B-2 RE:XX Reference

A pure DBCS string consists of only DBCS characters. A mixed SBCS/DBCS string
is formed by a combination of SBCS and DBCS characters. In EBCDIC, the SO
and SI bracket the DBCS data and distinguish it from the SBCS data. Since the SO
and SI are only needed in the mixed strings, they are not associated with the pure
DBCS strings.

In EBCDIC:

Pure DBCS string -> .A.B.C
Mixed string -> ab<.A.B>
Mixed string -> <.A.B>

In ASCII:

Pure DBCS string -> .A.B.C
Mixed string -> ab.A.B

Mixed String Validation
The validation of mixed strings depends on the instruction, operator, or function. If
an invalid mixed string is used in one that does not allow invalid mixed strings under
DBCS enabled mode, it causes a SYNTAX ERROR.

The following rules must be followed for mixed string validation:

• DBCS strings must be an even number of bytes in length.

EBCDIC only

• SO and SI must be paired in a string.

• Nesting of SO or SI is not permitted.

These examples show some possible misuses:
1ab<cd 1 ->
1 <.A<.B>.C> ->
1 <.A.BC> 1 ->

INVALID - not paired
INVALID - nested
INVALID - odd byte length

When a variable is created, modified, or referred in a REXX program under
OPTIONS EXMODE, it is validated whether it contains correct mixed string or not.
When a referred variable contains invalid mixed string, it depends on the instruction,
function, or operator whether it causes a syntax error.

Instruction Examples

PARSE

Here are some examples that illustrate how instructions work with DBCS.

In EBCDIC:

xl = 1 <><.A.B>< •• ><.E><.F><> 1

PARSE VAR xl wl
wl -> 1 <><.A.B>< •• ><.E><.F><> 1

PARSE VAR xl 1 wl
wl -> 1<><.A.B>< •• ><.E><.F><> 1

PARSE VAR xl wl •
wl -> 1<.A.8> 1

The leading and trailing SO and SI are unnecessary for word parsing and thus they
are stripped off. However, one pair is still needed in order for a valid mixed DBCS
string to be returned.

PARSE VAR xl • w2
w2 -> 1 <. ><.E><.F><> 1

Here the first blank delimited the word and the SO is added to the string to ensure
the D BCS blank and the valid mixed string.

Appendix B. Double-Byte Character Set (DBCS) Support B-3

B-4 REXX Reference

PARSE VAR xl wl w2
wl -> 1<.A.B> 1

w2 -> 1<. ><.E><.F><> 1

PARSE VAR xl wl w2 •
wl -> 1<.A.B>'
w2 -> 1<.E><.F> 1

The word delimiting allows for unnecessary SO and SI to be dropped.

x2 = 1abc<>def <.A.B><><.C.D> 1

PARSE VAR x2 wl 1 1 w2
wl -> 1abc<>def <.A.B><><.C.D> 1
w2 -> 11

PARSE VAR x2 wl 1<> 1 w2
wl ->
w2 ->

1abc<>def <.A.B><><.C.D> 1
11

PARSE VAR x2 wl 1<><> 1 w2
wl -> 1abc<>def <.A.B><><.C.D> 1

w2 -> 11

Note that for the last three examples 1 1, <>,and<><> are each a null string (a string
of length 0). When parsing, the null string matches the end of string. For this
reason, wl is assigned the value of the entire string and w2 is assigned the null string.

And in ASCII:

xl = '.A.B ••• E.F 1

PARSE VAR xl wl
wl -> 1 .A.B ••• E.F 1

PARSE VAR xl 1 wl
wl -> I .A.B. . .E. F1

PARSE VAR xl wl •
wl -> I .A.B1

PARSE VAR xl • w2
w2 -> .E. F'

PARSE VAR xl wl w2
wl -> I .A.B'
w2 -> I .E. F1 .

PARSE VAR xl wl w2 •
wl -> I .A.B1

w2 -> I.E. Fl

x2 = 1abcdef .A.B.C.0 1

PARSE VAR x2 wl ' 1 w2
wl -> 'abcdef .A.B.C.0 1
w2 -> I I

SAY and TRACE
When the data is split up in shorter lengths, again the DBCS data integrity is kept
under OPTIONS EXMODE. In EBCDIC, if the terminal line size is less than 4, the
string is treated as SBCS data, because 4 is the minimum for mixed string data.

DBCS Function Handling
Some built-in functions can handle DBCS. The functions that deal with word
delimiting and length determining conform with the following rules under OPTIONS
EXMODE:

1. Counting characters-Logical character lengths are used when counting the
length of a string (that is, 1 byte for one SBCS logical character, 2 bytes for one
DBCS logical character). In EBCDIC, SO and SI are considered to be
transparent, and are not counted, for every string operation.

2. Character extraction from a string-Characters are extracted from a string on a
logical character basis. In EBCDIC, leading SO and trailing SI are not
considered as part of one DBCS character. For instance, .A and .Bare
extracted from <.A.B>, and SO and SI are added to each DBCS character when
they are finally preserved as completed DBCS characters. When multiple
characters are consecutively extracted from a string, SO and SI that are between
characters are also extracted. For example, • A><. B is extracted from <.A><. B>,
and when the string is finally used as a completed string, the SO prefixes it and
the SI suffixes it to give <.A><. B>.

Here are some EBCDIC examples:

Sl = 'abc<>def'

SUBSTR(Sl,3,1) ->
SUBSTR(Sl,4,1) ->
SUBSTR(Sl,3,2) ->

S2 = 1 <><.A.8><> 1

SUBSTR(S2,1,1) ->
SUBSTR(S2,2,1) ->
SUBSTR(S2,1,2) ->
SUBSTR(S2,1,3, 1 x 1

) ->

S3 = 'abc<><.A.B>'

SUBSTR(S3,3,1) ->
SUBSTR(S3,4,1) ->
SUBSTR(S3,3,2) ->
DELSTR(S3,3,1) ->
DELSTR(S3,4,1) ->
DELSTR(S3,3,2) ->

'c'
'd'
'c<>d'

'<.A>'
'<.B>'
1 <.A.8> 1

1 <.A.B><>x'

'c'
'<.A>'
'c<><.A>'
'ab<><.A.B>'
'abc<><.B>'
'ab<.B>'

Here are some ASCII examples:

Appendix B. Double-Byte Character Set (DBCS) Support B-5

B-6 REXX Reference

S2 = I .A.B 1

SUBSTR(S2,1,1) -> I .A I
SUBSTR(S2,2,1) -> I .B'
SUBSTR(S2,1,2) -> I .A.8 1

SUBSTR(S2,1,3, 1x1
) -> 1 .A.Bx 1

S3 = 1abc.A.B 1

SUBSTR(S3,3,1) -> 'c'
SUBSTR(S3,4,1) -> I .A I
SUBSTR(S3,3,2) -> 'c.A 1

DELSTR(S3,3,1) -> 'ab.A.B 1

DELSTR(S3,4,1) -> 'abc.B'
DELSTR(S3,3,2) -> 'ab.B 1

3. Character concatenation-String concatenation can only be done with valid
mixed strings. In EBCDIC, adjacent SI and SO (or SO and SI) that are a result
of string concatenation are removed. Even during implicit concatenation as in
the DELSTR function, unnecessary SO and SI are removed.

4. Character comparison-Valid mixed strings are used when comparing strings on a
character basis. A DBCS character is always considered greater than a SBCS if
they are compared. In all but the strict comparisons, SBCS blanks, DBCS
blanks, and leading and trailing contiguous SO and SI (or SI and SO) in
EBCDIC are removed. SBCS blanks may be added if the lengths are not
identical.

In EBCDIC, contiguous SO and SI (or SI and SO) between nonblank characters
are also removed for comparison.

Note: The strict comparison operators do not cause syntax errors even if invalid
mixed strings are specified.

In EBCDIC:

'<.A>' '<.A. >' -> 1 /* true */
'<><><.A>' '<.A><><>' -> 1 /* true */
'<> <.A>' '<.A>' -> 1 /* true */

1<.A><><.B> 1 '<.A.B>' -> 1 /* true */
1abc 1 < 'ab<. >1 -> 0 /* false */

In ASCII:

I .A I I .A. I -> 1 /* true */
I .A' I .A I -> 1 /* true */ .

1abc 1 < 'ab. I -> 0 /* false */
5. Word extraction from a string-"Word" means that characters in a string are

delimited by an SBCS or a DBCS blank.

In EBCDIC, leading and trailing contiguous SO and SI (or SI and SO) are also
removed when words are separated in a string, but contiguous SO and SI (or SI
and SO) in a word are not removed or separated for word operations. Leading
and trailing contiguous SO and SI (or SI and SO) of a word are not removed if
they are among words that are extracted at the same time.

In EBCDIC:

Wl = '<>< •• A ••• B><.C •• D><>'

SUBWORD(Wl,1,1}
SUBWORD(Wl,1,2)
SUBW.ORD(Wl,3,1)
SUBWORD(Wl,3)

->
->
->
->

W2 = '<.A •• B><.C><> <.D>'

SUBWORD(W2,2,1)
SUBWORD(W2,2,2)

In ASCII:

->
->

Wl = I •• A ••• B.C •• D'

SUBWORD:(Wl , 1, 1)
SUBWORD(Wl,1,2)
SUBWORD(Wl,3,1)
SUBWORD(Wls3)

W2 = I .A •• B.C .D'

SUBWORD(W2,2,l)
SUBWORD(W2,2,2)

->
->
->
->

->
->

'<.A>'
'<.A ••• B><.C>'
'<.D>'
'<.D>'

'<.B><.C>'
'<.B><.C><> <.D>'

I .A'
I .A. • .B.C I
I .D'
I .D'

I .B.C'
'.B.C .D'

Built-in Function Examples

ABBREV

COMPARE.

Examples for built-in functions, those that support DBCS and follow the rules
defined, are given in this section. For full function descriptions and the syntax
diagrams,. refer to Chapter 4, "Functions" on page 4-1.

In EBCDIC:

ABBREV (I <.A. B. C> I ' I <.A. B> I) -> 1
ABBREV(1 <.A.B.C> 1

,
1 <.A.C> 1

) -> 0
ABBREV(1 <.A><:.B.C> 1

,
1 <.A.8> 1

) -> 1
ABBREV ('aa<>bbccdd 1

,
1 aabbcc') -> 1

In ASCII:

ABBREV (I • A. B. c I ' I • A. B I) -> 1
ABBREV (I • A. 8:. c I ' I • A. c I) -> 0

Applying the character comparison and character extraction from a string rules.

In EBCDIC:

COMPAR£(1 <.A.B.C> 1
,

1 <.A.B><.C> 1
) -> 0

COMPARE(1<.A.B.C>', 1<.A.B.D> 1
) -> 3

COMPARE ('ab<>cde 1
, ' abcdx') -> 5

COMPARE(1 <.A><> 1
,

1 <.A> 1
,

1<. >1
) -> 0

In ASCII:

COMPARE(1 .A.B.C1
' I .A.B.C') -> 0

COMPARE(I .A.B.C' 'I .A.B.D') -> 3
COMPARE{ 1 abcde 1

,
1 abcdx 1

) -> 5

Applying the character concatenation for padding, character extraction from a
string, and. character comparison rules.

Appendix B. Double-Byte Character Set (DBCS) Support B-7

COPIES
In EBCDIC:

COPIES('<.A.B>',2)
COPIES('<.A><.B>',2)
COPIES('<.A.B><>',2)

In ASCII:

COPIES('.A.B',2)

-> '<.A.B.A.B>'
-> '<.A><.B.A><.B>'
-> 1<.A.B><.A.8><> 1

-> '.A.B.A.B'

Applying the character concatenation rule. Applying the character extraction from a
string and character comparison rules.

INSERT and OVERLAY
In EBCDIC:

INSERT('a','b<><.A.B>',1) -> 'ba<><.A.B>'
INSERT('<.A.8> 1

,
1 <.C.D><> 1 ,2) -> 1<.C.D.A.B><>'

INSERT('<.A.B>','<.C.D><><.E>',2) -> '<.C.D.A.B><><.E>'
INSERT('<.A.B>','<.C.D><>',3,,'<.E>') -> '<.C.D><.E.A.B>'

OVERLAY(1 <.A.8> 1
,

1<.C.D><> 1 ,2)
OVERLAY{'<.A.B>', 1<.C.D><><.E>',2)
OVERLAY{'<.A.8> 1

,
1 <.C.D><><.E>',3)

OVERLAY(1 <.A.B> 1
,

1 <.C.D><> 1 ,4,,'<.E> 1
)

OVERLAY{ 1<.A> 1
,

1<.C.D><.E> 1 ,2)

In ASCII:

INSERT('a','b.A.B',1)
INSERT('.A.B','.C.D',2)
INSERT('.A.B','.C.D.E',2)
INSERT('.A.B','.C.D',3,,'.E')

OVERLAY('.A.B','.C.D',2)
OVERLAY{'.A.B','.C.D.E',2)
OVERLAY{'.A.8 1

,
1 .C.D.E',3)

OVERLAY{'.A.B','.C.D',4,,'.E')
OVERLAY{'.A','.C.D.E',2)

->
->
->
->

->
->
->
->
->

-> 1<.C.A.8> 1

-> 1<.C.A.8> 1

-> 1<.C.D><><.A.8> 1

-> 1<.C.D><.E.A.B>'
-> 1<.C.A><.E> 1

'ba.A.B'
'.C.D.A.B'
'.C.D.A.B.E'
I .C.D.E.A.B'

I .C.A.B'
'.C.A.B'
'.C.D.A.B'
I .C.D.E.A.B'
I .C.A.E'

Applying the character extraction from a string and character comparison rules.

LEFT, RIGHT, and CENTER

B-8 REXX Reference

In EBCDIC:

LEFT('<.A.B.C.D.E>',4) ->
LEFT ('a<>' ,2) ->
LEFT('<.A>' ,2, '*') ->
RIGHT('<.A.B.C.D.E>',4) ->
RIGHT('a<>' ,2) ->
CENTER('<.A.B>',10,'<.E>') ->
CENTER(1<.A.B>',ll, 1 <.E> 1

) ->
CENTER('<.A.B>',10,'e') ->

In ASCII:

'<.A.B.C.D>'
'a<> I

'<.A>*'
1<.B.C.D.E>'
I a'
'<.E.E.E.E.A.B.E.E.E.E>'
1<.E.E.E.E.A.B.E.E.E.E.E>'
'eeee<.A.B>eeee'

LENGTH

LINEIN

REVERSE

SPACE

STRIP

LEFT('.A.8.C.D.E',4) -> '.A.B.C.D'
LEFT(' a' ,2) -> 'a I

LEFT(' .A' ,2, 1*1
) -> I .A*'

RIGHT('.A.8.C.D.E',4) -> 1 .8.C.D.E 1

RIGHT(' a• ,2) -> I a'
CENTER('.A.8',10,'.E') -> '.E.E.E.E.A.8.E.EoE.E'
CENTER('.A.8 1 ,ll,'.E') -> 1 .E.E.E.E.A.8.E.E.E.E.E'
CENTER(1 .A.8 1 ,10, 1e1

) -> 1eeee.A.8eeee 1

Applying the character concatenation for padding and character extraction from a
string rules.

In EBCDIC:

LENGTH(1<.A.8><.C.D><> 1
) -> 4

In ASCII:

LENGTH(1 .A.8.C.D 1
) -> 4

Applying the counting characters rule.

When reading a line from a stream under OPTIONS EXMODE, the LINEIN
function ignores any DBCS strings when searching for line-end characters. The
DBCS string itself is read normally from the stream.

In EBCDIC:

REVERSE('<.A.8><.C.D><>') -> 1<><.D.C><.8.A>'

In ASCII:

REVERSE(1 .A.8.C.D 1
} -> 1 .D.C.8.A 1

Applying the character extraction from a string and character concatenation rules.

In EBCDIC:

SPACE('a<.A.B •• C.D>',l} -> 'a<.A.B> <.C.D>'
SPACE('a<.A><>< •• C.D> 1 ,l, 1x1

) -> 1a<.A>x<.C.D> 1

SPACE('a<.A>< •• C.D> 1 ,l, 1<.E> 1
) -> 1a<.A.E.C.D> 1

In ASCII:

SPACE('a.A.B •• C.D',1}
SPACE('a.A •• C.D 1 ,l, 1x1

}

SPACE('a.A •• C.D' ,1, 1 .E')

-> 'a.A.B .C.D'
-> 'a.Ax.C.D'
-> 'a.A.E.C.D'

Applying the word extraction from a string and character concatenation rules.

In EBCDIC:

STRIP(1<><.A><.B><.A><> 1
,,

1<.A> 1
) -> 1<.8> 1

In ASCII:

STRIP(1 .A.8.A 1
,,

1 .A 1
) -> '.8'

Applying the character extraction from a string and character concatenation rules.

Appendix B. Double-Byte Character Set (DBCS) Support B-9

SUBSTR and DELSTR
In EBCDIC:

SUBSTR(1 <><.A><><.:B><.C.D> I ,1,2)
DELSTR(1<><.A><><.B><.C.D> 1 ,1,2)
SUBSTR(4 <.A><><.B><.C.D>'~2,2)
DELSTR(1 <.A><><.B><.C~D> 1 ,2,2)
SUBSTR(I <.A. B><> I' 1,2)
SUBSTR(1<.A.B><> 1 ,l)

In ASCII:

SUBSTR(I .A. B.C. DI' 1,2)
DELSTR(1 .A.B.C.D 1 ,1,2)
SUBSTR(1 .A.B.CrD 1 ,2,2)
DELSTR(I .. A.B.C.0 1 ,2,2)
SUBSTR(1 .A.B 1 ,1,2)
SUBSTR(I.A.BI '1)

->
->
->
->
->
->

->
->
->
->
->
->

1<.A><><.8> 1

1 <><.C.0> 1

1<.B><.C> 1

1 <.A><><.D> 1

1<.A.8> 1

1<.A.8><> 1

I .A.8 1

· .c.o•
I .• B.C'
I .A.0 1

I .A.8 1

I .A.8 1

Applying the character extraction from a string and character concatenation rules.

SUBWORD and DELWORD

TRANSLATE

B-10 REXX Reference

In EBCDIC:

SUBWORD(1 <><. .A. • • B><.C. .D> I' 1,2)
DELWORD(I<><. .A. • .B><.C. .D> 1 '1,2)
SUBWORD(I <><.A. • .B><.C. .D> I ,l,2)
DELWORD(I <><.A. • .B><.C. .D> I ,1,2)
SUBWORD(1 <.A •• B><.C><> <.D>',1,2)
DELWORD(1<.A •• B><.C><> <.D>',1,2)

In ASCII:

SUBWORD(4
•• A ••• B.C •• D' ,1,2)

DELWORD(' •• A ••• B.C •• D' ,1,2)
SUBWORD(1 .A ••• B • .C •• 0 1 ,1,2)
DELWORD(I .A. • "B. c. . DI~ 1,2)
SUBWORD(' .A •• B.C .:0 1 ,1,2)
DELWORD(' .A •• B.C .D' ,1,2)

->
->
->
->
->
->

->
->
->
->
->
->

'< .. A. . .B><.C> 1

'<><. .D>'
'< .. A. . .B><.C> 1

'<><.D>'
'<.A • • B><.C> 1

'<.D>'

I .A. .B.C1 .
I .o• .
I .A. . .B.C'
I .01

I .A • • B.C 1

I .01

Applying the word extraction from a string and character concatenation rules.

In EBCDIC:

-> 1<.A.'B.C>d 1 TRANSLATE{' abed', 1<.A.B.C> 1
, • abe •)

TRANSLATE(1 abed', 1<><.A.B.C> 1
,

1 abe 1
)

TRANSLATE(• abed•, 1<><.A.B.C> 1
, • ab<>e •)

TRANSLATE(1 a<>bed 1
,

1<><.·A.B.C> 1
,

1 ab<>e •) ->
TRANSLATE(1 a<>xed 1

,
1<><.A.B.C> 1

,
1 ab<>e 1

} ->

-> 1<.A.B.C>d 1

-> 1<.A.B.C>d 1

I <.A. BOC>d I
1<.A>x<.C>d 1

In ASCII:

TRANSLATE('abed', 1 .A.B.C', 1 abe 1
)

TRANSLATE{' axed·', 1 .A.B.C 1
,

1 abc 1
)

-> I .A.B.Cd I
-> 1 .Ax.Cd 1

Applying the character extraction from a string, character comparison, and character
concatenation rules.

VERIFY
In EBCDIC:

VERIFY('<><><.A.B><><.X>','<.B.A.C.D.E>') -> 3

In ASCII:

VERIFY('.A.B.X','.B.A.C.D.E') -> 3

Applying the character extraction from a string and character comparison rules.

WORD, WORDINDEX, and WORDLENGTH
In EBCDIC:

X = '<>< •• A ••• B><.C •• D>'

WORD(X,1)
WORDINDEX(X,1)
WORDLENGTH(X,1)

->
->
->

'<.A>'
2
1

Y = 1<><.A ••• B><.C •• D> 1

WORD(Y,1)
WORDINDEX(Y,1)
WORDLENGTH(Y,1)

->
->
->

'<.A>'
1
1

Z = '<.A .B><.C> <.D>'

WORD(Z,2)
WORDINDEX(Z,2)
WORDLENGTH(Z,2)

In ASCII:

->
->
->

'<.B><.C>'
3
2

X = ' .. A ••• B.C •• D'

WORD(X,1)
WORDINDEX(X,1)
WORDLENGTH(X,1)

y = I .A ••• B.C •• D'

WORD(Y,1)
WORDINDEX(Y,1)
WORDLENGTH(Y,1)

z = I .A. .B.C .D'

->
->
->

->

->

->

I .A'
2
1

I .A'
1
1

Where .A is followed by a DBCS blank
and .C is followed by an SBCS blank

WORD(Z,2)
WORDINDEX(Z,2)
WORDLENGTH(Z,2)

-> I .B.C'
-> 3
-> 2

Applying the word extraction from a string and (for WORDINDEX and
WORDLENGTH) counting characters rules.

Appendix B. Double-Byte Character Set (DBCS) Support B-11

WORDS

WORDPOS

In EBCDIC:

X = '<>< •• A ••• B><.C •• D>'

WORDS(X)

In ASCII:

->

X = ' .. A ••• B.C •• D'

WORDS(X) ->

3

3

Applying the word extraction from a string rule.

In EBCDIC:

WORDPOS('<.B.C> abc 1
,

1<.A •• B.C> abc') -> 2
WORDPOS(1<.A.B> 1

,
1<.A.B •• A.B>< •• B.C •• A.B>',3) -> 4

In ASCII:

WORDPOS('.B.C abc 1
,

1 .A •• B.C abc')
WORDPOS(I .A.B' 'I .A.B •• A.B •• B.C •• A.B' ,3)

-> 2
-> 4

Applying the word extraction from a string and character comparison rules.

DBCS Processing Functions

Counting Option

This section describes the functions that support DBCS mixed strings. These
functions handle mixed strings regardless of the OPTIONS mode.

Note: When used with DBCS functions, length is always measured in bytes (as
opposed to LENGTH(string) which is measured in characters).

In EBCDIC, when specified in the functions, the counting option can control
whether or not the SO and SI are considered present when determining the length.
Y specifies counting SO and SI within mixed strings. N specifies not to count the SO
and SI, and is the default.

In ASCII, the count options is ignored if Y is specified and the default N is always
in effect. As such, EBCDIC and ASCII implementations yield different results.

Function Descriptions

DBADJUST

B-12 REXX Reference

11+-DBADJUST(string
L,operationj

In ASCII, merely returns the input string. In EBCDIC, adjusts all contiguous SI
and SO (or SO and SI) characters in string based on the operation specified. The
following are valid operations. Only the capitalized and boldfaced letter is needed;
all characters following it are ignored.

DB BRACKET

DBCENTER

Blank changes contiguous characters to blanks (X • 4040 •).

Remove removes contiguous characters, and is the default.

Here are some EBCDIC examples:

OBAOJUST(1 <.A><.B>a<>b 1
,

1 81
)

OBAOJUST(1 <.A><.B>a<>b 1
,

1 R1
)

OBAOJUST(1 <><.A.B> 1
,

1 81
)

->
->
->

1 <.A. • B>a b •
1 <.A.B>ab 1

I<. .A. B> I

11+-0BBRACKET(string)-------------------.

In ASCII, merely returns the input string. In EBCDIC, adds SO and SI brackets to

a pure DBCS string. If string is not a pure DBCS string, a SYNTAX error results.

That is, the input string must be an even number of bytes in length and each byte

must be a valid DBCS value.

Here are some EBCDIC examples:

OBBRACKET(1 .A.B 1
)

OBBRACKET(1abc 1
)

OBBRACKET(1<.A.B> 1
)

->
->
->

1<.A.8> 1

SYNTAX error
SYNTAX error

11+-0BCENTER (string, length---..------------....- ____ .,..
L-.-----~

' Lpad] l,option]

returns a string of length length with string centered in it, with pad characters added

as necessary to make up length. The default pad character is a blank. If string is

longer than length, it is truncated at both ends to fit. If an odd number of

characters are truncated or added, the right hand end loses or gains one more

character than the left hand end.

The option controls the counting rule. Y counts SO and SI within mixed strings as

one each. N does not count the SO and SI and is the default.

In ASCII, option "Y" is ignored and "N" is always in effect.

Here are some EBCDIC examples:

OBCENTER(1 <.A.B.C> 1 ,4)
OBCENTER(1 <.A.B.C> 1 ,3)
OBCENTER(1<.A.B.C> 1 ,10, 1x1

)

OBCENTER(1 <.A.B.C> 1 ,10, 1x1
,

1Y1
)

OBCENTER(1<.A.B.C> 1 ,4, 1 x1
,

1Y1
)

OBCENTER(1<.A.B.C> 1 ,5, 1x1
,

1 Y1
)

OBCENTER(1 <.A.B.C> 1 ,8, 1 <.P> 1
)

OBCENTER(1<.A.B.C> 1 ,9, 1<.P> 1
)

OBCENTER(1<.A.B.C> 1 ,10, 1<.P> 1
)

OBCENTER(1<.A.B.C> 1 ,12, 1<.P> 1
,

1Y1
) ->

->
->
->
->
->
->

I

->

->
I
..l>

Here are some ASCII examples:

I <.B> I

I <.B>'
1 xx<.A.B.C>xx 1

1 x<.A.B.C>x 1

'<.B>'
1 x<.B> 1

I <.A.B.C> I

I <.A.B.C.P> 1

1 <.P.A.B.C.P> 1

1 <.P.A.B.C.P> 1

Appendix B. Double-Byte Character Set (DBCS) Support B-13

DB LEFT

DB RIGHT

B-14 REXX Reference

DBCENTER('.A.B.C',9,'.P')
DBCENTER('.A.B.C',10,'.P')

->
->

I .A.B.C.P'
I .P.A.B.C.P'

11+-l)BLEFT (string, length---.-----------.-- ------L ____ __,..._...,
' lpad] l,option]

returns a string of length length containing the leftmost length characters of string.
The string returned is padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

In ASCII, option Y is ignored and N is always in effect.

Here are some EBCDIC examples:

DBLEFT('ab<.A.B>',4) ->
DBLEFT('ab<.A.B>',3) ->
DBLEFT('ab<.A.B>',4,'x','Y') ->
DBLEFT('ab<.A.B>',3,'x','Y') ->
DBLEFT('ab<.A.B>',8,'<.P>') ->
DBLEFT('ab<.A.B>',9,'<.P>') ->
DBLEFT('ab<.A.8> 1 ,8, 1<.P>','Y') ->
DBLEFT('ab<.A.B>',9,'<.P>','Y') ->

Here are some ASCII examples:

DBLEFT('ab.A.B',3,,'Y')
DBLEFT('ab.A.B',9,'.P')

->
->

'ab<.A>'
'ab I

'abxx'
'abx'
'ab<.A.B.P>'
'ab<.A.B.P> '
'ab<.A.B>'
'ab<.A.B> '

'ab I

'ab.A.B.P '

11+-0BRIGHT (st ring, length--......----------~)--------....
L ----.---_____.

' lpad] l,option]

returns a string of length length containing the rightmost length characters of string.
The string returned is padded with pad characters (or truncated) on the left as
needed. The default pad character is a blank.

The option controls the counting rule. Y counts SO and SI within mixed strings as
one each. N does not count the SO and SI and is the default.

In ASCII, option Y is ignored and N is always in effect.

Here are some EBCDIC examples:

DBRLEFT

DBRRIGHT

DBRIGHT('ab<.A •. 8> 1 ,4) -> '<.A.B>'
DBRIGHT('ab<.A.8> 1 ,3) -> I <.B>'
DBRIGHT('ab<.A.B> 1 ,S,'x 1

,
1 Y') -> 'x<.B>'

DBRIGHT('ab<.A.B>' ,10, 'x', 'Y') -> 'xxab<.A.B>'
DBRIGHT('ab<.A. B> 1 ,8, 1 <. P>') -> 1 <.P>ab<.A.8>1

DBRIGHT(1ab<.A.B> 1 ,9, 1<.P>1) -> 1 <.P>ab<.A.8>1

DBRIGHT(1ab<.A.B>1,8, 1<.P>1, 'Y') -> 'ab<.A.8>1

DBRIGHT(1ab<.A.B>1,ll, 1<.P>1, 1Y1) -> ab<.A.B>'
DBRIGHT(1ab<.A.B>1,12, 1<.P>1, 1Y') -> 1<.P>ab<.A.8>1

Here are some ASCII examples:

DBRIGHT(1ab.A.B 1,3) -> I .81
DBRIGHT(1ab.A.B 1,12, 1.P1, 1Y1) -> I .P.P.Pab.A.81

~BRLEFT (strtng, length1

--....-----..--

L ,optionj

returns the remainder from the DBLEFT function of string. If length is greater than
the length of string, returns a null string.

The option controls the counting rule. Y counts SO and SI within mixed strings as

one each. N does not count the SO and SI and is the default.

In ASCII, option Y is ignored and N is always in effect.

Here are some EBCDIC examples:

DBRLEFT('ab<.A.B>',4) ->
DBRLEFT(1ab<.A.B>1,3) ->
DBRLEFT(1ab<.A.B>1,4, 1Y1) ->

DBRLEFT (1 ab<.A.8>1,3, 1y 1
) ->

DBRLEFT (1 ab<.A.8>1 ,8) ->
DBRLEFT(1ab< •. A.B> 1 ,9, 1Y1) ->

Here are some ASCII examples:

DBRLEFT('ab.A.81 ,3)
DBRLEFT('ab.A.B' ,9, 'Y')

->
->

i<.B>'
1 <.A.8>1
1<.A.B>'
1<.A.8>1
11
11

I .A.8 1

11

~BRRIGHT(string, length [. J)
,optz.on

returns the remainder from the DBRIGHT function of string. If length is greater

than the length of string, returns a null string.

The option controls the counting rule. Y counts SO. and· SI within mixed strings as

one each. N does. not count the SO and SI and is the default.

In ASCII,. option Y is ignored and N is always in effect.

Here are some EBCDIC examples:

Appendix B. Double-Byte Character Set (DBCS).Support B-15

DBTODBCS

DBTOSBCS

B-16 REXX Reference

DBRRIGHT(1ab<.A.B> 1 ,4)
DBRRIGHT(1 ab<.A.B> 1 ,3)
DBRRIGHT(1ab<.A.B> 1 ,5)
DBRRIGHT(1ab<.A.8> 1 ,4, 1Y1

)

DBRRIGHT(1ab<.A.B> 1 ,S, 1Y1
)

DBRRIGHT(1 ab<.A.B> 1 ,8)
DBRRIGHT(1ab<.A.8> 1 ,8, 1 Y1

)

Here are some ASCII examples:

DBRRIGHT('ab.A.B',3)
DBRRIGHT('ab.A.B',8)

->
->
->
->
->
->
->

->
->

1ab 1

1ab<.A> 1

'a'
'ab<.A> 1

'ab<.A>'
11

11

'ab.A'
11

11+-[)BTODBCS(string)------------------

converts all passed, valid SBCS characters (including the SBCS blank) within string
to the corresponding DBCS equivalents. Other single-byte codes and all DBCS
characters are not changed. In EBCDIC, SO and SI brackets are added and
removed where appropriate.

Here are some EBCDIC examples:

DBTODBCS('Rexx 1988') -> '<.R.e.x.x •• 1.9.8.8> 1

DBTODBCS('<.A> <.B>') -> 1 <.A •• 8> 1

Here are some ASCII examples:

DBTODBCS('Rexx 1988') -> '.R.e.x.x •• 1.9.8.8'
DBTODBCS(I .A .B') -> I .A •• B'

Note: In these examples, the • x is the D BCS character corresponding to an SBCS x.

11+-[)BTOSBCS(string)-----------------.....

converts all passed, valid DBCS characters (including the DBCS blank) within string
to the corresponding SBCS equivalents. Other DBCS characters and all SBCS
characters are not changed. In EBCDIC, SO and SI brackets are removed where
appropriate.

Here are some EBCDIC examples:

DBTOSBCS('<.S.d>/<.2.-.1>') ->
DBTOSBCS('<.X •• Y>') ->

Here are some ASCII examples:

DBTOSBCS('.S.d/.2.-.1')
DBTOSBCS('.X •• Y')

->
->

'Sd/2-1'
1<.X> <.Y>'

'Sd/2-1'
I .x . Y'

Note: In these examples, the .dis the DBCS character corresponding to an SBCS d.
But the • X and • Y do not have a corresponding SBCS character and are not
converted.

DB UN BRACKET

DBVALIDATE

~BUNBRACKET(strtng)----------------...

In ASCII, merely returns the input string. In EBCDIC, removes the SO and SI

brackets from a pure D BCS string enclosed by SO and SI brackets. If the string is

not bracketed, a SYNTAX error results.

Here are some EBCDIC examples:

DBUNBRACKET('<.A.8>') -> 1 .A.8 1

DBUNBRACKET('ab<.A>') -> SYNTAX error

~BVALIDATE(strtng
L,·c·J

returns 1 if the string is a valid miXed string or SBCS string. Otherwise, returns a.
Mixed string validation rules are:

1. Only valid DBCS character codes

2. DBC_S string is an even number of bytes in length

3. EBCDIC only - Proper SO and SI pairing.

In ASCII, the option C has no effect. In EBCDIC, if C is omitted, only the leftmost

byte of each DBCS character is checked to see that it falls in the valid range for the

implementation it is being run on (that is, in EBCDIC, the leftmost byte range is

from X'41' to X 1 FE 1
).

Here are some EBCDIC examples:

x='abc<de'

DBVALIDATE('ab<.A.B>') -> 1
DBVALIDATE(x) -> e

y='C1C20E111213140F'X

DBVALIDATE(y) -> 1
DBVALIDATE(y,'C') -> a

Here are some ASCII examples:

DBVALIDATE('ab.A.B') -> 1
DBVALIDATE('ab.A. 1

) -> 0 /*widow left DBCS byte*/

y='C1C2FCFFFCFF'X

DBVALIDATE(y)
DBVALIDATE(y,'C')

/* 'FCFF'x will pass DBCS range check*/

->
->

1
1

Appendix B. Double-Byte Character Set (DBCS) Support B-17

DB WIDTH

B-18 REXX Reference

~BWIDTH{string
L,optionj

returns the length of string in bytes.

The option controls the counting rule. Y counts SO and SI· within mixed strings as
one each. N does not count the SO and SI and is the default.

In ASCII, option Y is ignored and N is always in effect.

Here. are some EBCDIC examples:

DBWIDTH('ab<.A.B>', 'Y')
DBWIDTH ('ab<. A. B>' , • N •)

->
->

Here are some ASCII examples:

8
6

DBWIDTH{'ab.A.8', 'Y') -> 6
DBWIDTH{'ab.A.B','N') -> 6

Index

A
ABBREV function

description 4-6
using to select a default 4-6

abbreviations
testing with ABBREV function 4-6

abnormal change in flow of control 7-1
ABS function 4-7
absolute positional patterns 5-4
absolute value

finding using ABS function 4-7
used with power 6-5

abuttal 2-8
active loops 3-19
add external function 4-4 7
addition

definition 6-4
operator 2-9

ADDRESS
function 4-7
instruction 3-2
settings saved during subroutine calls 3-8

algebraic precedence 2-11
alphabetics

checking with DATATYPE 4-16
used as symbols 2-4

alphanumeric checking with DATATYPE 4-16
altering

flow within a repetitive DO loop 3-J 9
special variables 2-17

AND operator 2-10
ANDing character strings together 4-9
AND, logical 2-10
API functions
API return codes
application programming interfaces 8-10

application data structures 8-10
RXSYSEXIT 9-7
SHVBLOCK 9-45

exit interfaces 8-10
RexxDeregisterExit 9-42
RexxQueryExit 9-43
RexxRegisterExitDll 9-40
RexxRegisterExitExe 9-41

external function interfaces 8-10
RexxDeregisterFunction 9-23
RexxRegisterFunctionDll 9-20
RexxRegisterFunctionExe 9-22

halt and trace interfaces 8-10
RexxResetTrace 9-55
RexxSetHalt 9-53
RexxSetTrace 9-54

handler definitions 8-10
exit handler 9-26

application programming interfaces (continued)
handler definitions (continued)

external function 9-18
RexxSubcomHandler 9-9
subcommand handler 9-9

invoking REXX interpreter 8-10
RexxStart 9-5

macrospace interfaces 8-10
RexxAddMacro 9-57
RexxClearMacroSpace 9-59
RexxDropMacro 9-58
RexxLoadMacroSpace 9-61
RexxQueryMacro 9-62
RexxReorderMacro 9-63
RexxSaveMacroSpace 9-60

RXSTRING 9-3
RXSYSEXIT 9-27
subcommand interfaces 8-10

RexxDeregisterSubcom 9-14
RexxQuerySubcom 9-15
RexxRegisterSubcomDll 9-12
RexxRegisterSubcomExe 9-13

variable pool interface 8-10
RexxVariablePool 9-45

ARG function 4-7
ARG instruction 3-4
ARG option of PARSE instruction 3-25
arguments

checking with ARG function 4-7
of functions 3-4, 4-1
of programs 3-4
of subroutines 3-4, 3-6
passing to functions 4-1
retrieving with ARG function 4-7
retrieving with ARG instruction 3-4
retrieving with the PARSE ARG instruction 3-25

arithmetic
combination rules 6-3
comparisons 6-6
errors 6-9
NUMERIC settings 3-22
operators 2-9, 6-1, 6-3
overflow 6-9
precision 6-2
underflow 6-9

array
initialization of 2-16
setting up 2-14

assigning data to variables 3-25
assignment

description of 2-13
multiple assignments 5-6
of compound variables 2-14, 2-16

Index X-1

assignment indicator (=) 2-13
associative storage 2-14

B
backslash, use of 2-6, 2-10
BASE option of DATE function 4-17
BEEP function 4-8
binary digits 2-4
binary strings 2-4
binary to hexadecimal conversion 4-10
BIT AND function 4-9
BITOR function 4-9
bits checked using DATATYPE 4-16
BITXOR function 4-10
blank removal with STRIP function 4-36
blanks

adjacent to special character 2-2
as concatenation operator 2-8
in parsing, treatment of 5-2

boolean operations 2-10
bottom of program reached during execution 3-15
bracketed D BCS strings

DBBRACKET function B-13
DBUNBRACKET function B-17

built-in function invoking 3-6
built-in functions

ABBREV 4-6
ABS 4-7
ADDRESS 4-7
ARG 4-7
BEEP 4-8
BITAND 4-9
BITOR 4-9
BITXOR 4-10
B2X 4-10
CENTER 4-11
CENTRE 4-11
CHARIN 4-11
CHAROUT 4-12
CHARS 4-13
COMPARE 4-13
CONDITION 4-14
COPIES 4-15
C2D 4-15
C2X 4-16
DATATYPE 4-16
DATE 4-17
D BCS functions B-12
DELSTR 4-19
DELWORD 4-19
description of 4-5
DIGITS 4-19
DIRECTORY 4-20
Double-Byte Character Set functions B-12
D2C 4-20
D2X 4-21
ENDLOCAL 4-21

X-2 REXX Reference

built-in functions (continued)
ERRORTEXT 4-22
FILESPEC 4-22
FORM 4-23
FORMAT 4-23
FUZZ 4-24
INSERT 4-24
LASTPOS 4-24
LEFT 4-25
LENGTH 4-25
LINEIN 4-25
LINEOUT 4-27
LINES 4-28
MAX 4-29
MIN 4-29
OVERLAY 4-29
POS 4-30
QUEUED 4-30
RANDOM 4-30
REVERSE 4-31
RIGHT 4-31
SETLOCAL 4-32
SIGN 4-32
SOURCELINE 4-33
SPACE 4-33 /
STREAM 4-33
STRIP 4-36
SUBSTR 4-37
SUBWORD 4-37
SYMBOL 4-37
TIME 4-38
TRACE 4-40
TRANSLATE 4-40
TRUNC 4-41
VALUE 4-41
VERIFY 4-43
WORD 4-43
WORDINDEX 4-43
WORDLENGTH 4-44
WORDPOS 4-44
WORDS 4-44
XRANGE 4-45
X2B 4-45
X2C 4-45
X2D 4-46

BY phrase of DO instruction 3-9
B2X function 4-10

c
CALL command (OS/2) 12-1
CALL instruction 3-6
CENTER function 4-11
centering a string using CENTER function 4-11
centering a string using CENTRE function 4-11
CENTRE function 4-11
changing destination of commands 3-2

Character input and output 8-1-8-10
See also Default character streams
See also External character streams
See also Files
See also Line input and output
See also Serial input and output
See also Stream
See also Typewriter input and output

Character input streams 8-2
Character output streams 8-2
character position of a string 4-24
character removal with STRIP function 4-36
character to decimal conversion 4-15
character to hexadecimal conversion 4-16
CHARIN function 4-11

role in input and output 8-1
CHAROUT function 4-12

role in input and output 8-1
CHARS function 4-13

role in input and output 8-1
clauses

as labels 2-12
assignment 2-13
continuation of 2-7
description of 2-2
null 2-12

CMD command environment 3-2
codes, error A-1
collating sequence using XRANGE 4-45
Collections of variables 4-41
COLLECTOR example program 8-9
colon

as a special character 2-6
in a label 2-12

colon as label terminators 2-12
combination, arithmetic 6-3
comma

as continuation character 2-7
in CALL instruction 3-6
in function calls 4-1
separator of arguments 3-6, 4-1
within a parsing template 5-10
within a parsing template list 3-4

comma in parsing 5-10
command errors, trapping 7-1
command inhibition

See TRACE instruction
command line editing, OS/2 2-19
commands

alternative destinations 2-17
destination of 3-2
issuing to host 2-17

commands, editing 2-19
comments

description of 2-2
COMPARE function 4-13
comparisons

of numbers 2-9, 6-6

comparisons (continued)
of strings 2-9

using COMPARE 4-13
compound symbols 2-14
compound variable

description of 2-14
setting new value 2-16

concatenation of strings 2-8
concatenation operator

abuttal 2-8
blank 2-8
11 2-8

concatenation operator, OS/2 2-6
CONDITION function 4-14
condition trap information using CONDITION 4-14
conditional loops 3-9
conditions

ERROR 7-1
FAILURE 7-1
HALT 7-1
NOTREADY 7-1
NOVALUE 7-2
saved during subroutine calls 3-8
SYNTAX 7-2

conditions, trapping of 7-1
console

reading from with PULL 3-29
writing to with SAY 3-33

constant symbols 2-14
content addressable storage 2-14
continuation

character 2-7
of clauses 2-7
of data for display 3-33

control variable 3-10
controlled loops 3-10
conversion

binary to hexadecimal 4-10
character to decimal 4-15
character to hexadecimal 4-16
decimal to character 4-20
decimal to hexadecimal 4-21
formatting numbers 4-23
hexadecimal to binary 4-45
hexadecimal to character 4-45
hexadecimal to decimal 4-46

conversion functions 4-5-4-46
COPIES function 4-15
copying a string using COPIES 4-15
count from stream 4-12
counting words in a string 4-44
create external data queue 4-47
C2D function 4-15
C2X function 4-16

Index X-3

D
data length 2-8
data terms 2-7
DATATYPE function 4-16
date and version of the language processor 3-26
DATE function 4-17
DBADJUST function B-12
DBBRACKET function B-13
DBCENTER function B-13
DBCS functions

DBADJUST B-12
DBBRACKET B-13
DBCENTER B-13
DBLEFT B-14
DBRIGHT B-14
DBRLEFT B-15
DBRRIGHT B-15
DBTODBCS B-16
DBTOSBCS B-16
DBUNBRACKET B-17
DBVALIDATE B-17
DBWIDTH B-18

DBCS handling B-1
DBCS strings 3-24, B-1
DBCS (Double-Byte Character Set) characters B-1
DBLEFT function B-14
DBRIGHT function B-14
D BRLEFT function B-15
DBRRIGHT function B-15
DBTODBCS function B-16
DBTOSBCS function B-16
DBUNBRACKET function B-17
DBVALIDATE function B-17
DBWIDTH function B-18
debugging programs

See interactive debug
See TRACE instruction

debug, interactive 3-37
decimal arithmetic 6-1-6-9
decimal to character conversion 4-20
decimal to hexadecimal conversion 4-21
Default character streams 8-1
default environment 2-17
Delayed state

of NOTREADY condition 8-8
deleting part of a string 4-19
deleting words from a string 4-19
delimiters in a clause

See colon
See semicolons

DELSTR function 4-19
DELWORD function 4-19
derived name 2-14
derived names of variables 2-14
DIGITS function 4-19
DIGITS option of NUMERIC instruction 3-22, 6-2

X-4 REXX Reference

DIRECTORY function 4-20
displaying data

See SAY instruction
division

definition 6-4
operator 2-9

dll functions 4-49
DO instruction 3-9-3-13

See also loops
DosAllocMem 9-3, 9-7, 9-10, 9-18, 9-27
DosFreeMem 9-6, 9-7, 9-8, 9-19, 9-22, 9-47, 9-48
Double-Byte Character Set (DBCS) strings 3-24, B-1
drop external function 4-4 7
DROP instruction 3-14
dummy instruction

See NOP instruction
dynamic link library (RexxUtil) 4-49
D2C function 4-20
D2X function 4-21

E
editing commands, OS/2 system 2-19
elapsed time saved during subroutine calls 3-8
elapsed-time clock 3-8, 4-38
ELSE keyword

See IF instruction
END clause

See also DO instruction
See also SELECT instruction
specifying control variable 3-10

ENDLOCAL function 4-21
engineering notation 6-8
environment variable, OS/2 4-41
environments

addressing of 3-2
default 3-3, 3-26
determining current using ADDRESS function 4-7
SAA supported 1-1
temporary change of 3-2

equal operator 2-9
equal sign in parsing 5-5
equality, testing of 2-9
error codes A-1
ERROR condition of SIGNAL and CALL

instructions 7-4
error messages

retrieving with ERRORTEXT 4-22
error messages and codes A-1
errors

during execution of functions 4-4
during stream input and output 8-6
from commands 2-17
syntax A-1
traceback after 3-40

errors, trapping 7-1
ERRORTEXT function 4-22

ETMODE 3-24
EUROPEAN option of DATE function 4-18
evaluation of expressions 2-8
Examples of programs 8-8
exception conditions saved during subroutine calls 3-8
exclusive OR operator 2-10
exclusive ORing character strings together 4-10
execution by language processor 2-1
execution of data 3-17
EXIT instruction 3-15
EXMODE 3-24, B-2
exponential notation

definition 6-7
description of 6-1
usage. 2-5

exponentiation
definition 6-7
operator 2-9

EXPOSE option of PROCEDURE instruction 3-27
expressions

evaluation 2-8
examples 2-11
parsing of 3-26
results of 2-8
tracing results of 3-38

External character streams 8-1
external data queue

counting lines in 4-30
creating and deleting queues 4-47
detachedprocesses 8-6
in REXX and OS/2 8-4
naming and querying 4-47
private 8-5
reading from with PULL 3-29
RXQUEUE function 4-47
session 8-5
writing to with PUSH 3-30 ·
writing to with QUEUE 3-31

external function interfaces 8-10
external functions

description of 4-2
search order 4-3

external routine invoking 3-6
external subroutines

description of 4-2
External variables

access with VALUE function 4-41
extracting a substring 4-37
extracting words from a string 4-37

F
FAILURE condition of SIGNAL and CALL

instructions 7-1
FIFO (first-in/first-out) stacking 3-31
FILECOPY example program 8-8
filename, extension, path of program 3-26

Files 8-1
FILESPEC function 4-22
finding a mismatch using COMPARE 4-13
finding the length of a string 4-25
flow control

abnormal, with CALL 7-1
abnormal, with SIGNAL 7-1
with CALL/RETURN 3-6
with DO construct 3-9
with IF construct 3-16
with SELECT construct 3-34

FOR phrase of DO instruction 3-9
FOREVER repetitor on DO instruction 3-9
FORM function 4-23
FORM option of NUMERIC instruction 3-22, 6-8
FORMAT function 4-23
formatting

DBCS blank adjustments B-12
DBCS bracket adding B-13
DBCS bracket stripping B-17
DBCS EBCDIC to DBCS B-16
DBCS string width B-18
DBCS strings to SBCS B-16
numbers for display 4-23
numbers with TRUNC 4-41
of output during tracing 3-39
text centering 4-11
text left justification 4-25, B-14
text left remainder justification B-15
text right justification 4-31, B-13, B-14
text right remainder justification B-15
text spacing 4-33
text validation function B-17

functions
built-in 4-5, 4-6
description of 4-1
external 4-2
forcing built-in or external reference 4-2
internal 4-2
invocation of 4-1
numeric arguments of 6-9
return from 3-32
variables in 3-27

function, built-in.
See built-in functions

FUZZ
controlling numeric comparison 6-7
option of NUMERIC instruction 3-22, 6-7

FUZZ function 4-24

G
Global variables

access· with VALUE function 4-41
GOTO, abnormal 7-1
greater than operator 2-9
greater than or equal operator 2-9

Index X-5

greater than or less than operator (> <) 2-9
grouping instructions to execute repetitively 3-9
group, DO 3-9

H
HALT condition of SIGNAL and CALL

instructions 7-1
halt, trapping 7-1
hexadecimal

See also conversion
checking with DATATYPE 4-16

hexadecimal digits 2-3
hexadecimal strings 2-3
host commands 2-17
hours calculated from midnight 4-38

I
IF instruction 3-16
implied semicolons 2-7
imprecise numeric comparison 6-7
inclusive OR operator 2-10
indefinite loops 3-10
indentation during tracing 3-39
indirect evaluation of data 3-17
inequality, testing of 2-9
infinite loops 3-9
initialization

of arrays 2-16
of compound variables 2-16

Input and output streams 8-1-8-10
Input from the user 8-1
input to PULL from STDIN 3-29
input to PULL from the keyboard 3-29
Input/Output model 8-1
Input, errors during 8-6
INSERT function 4-24
inserting a string into another 4-24
instructions

ADDRESS 3-2
ARG 3-4
CALL 3-6
defined 2-13
DO 3-9
DROP 3-14
EXIT 3-15
IF 3-16
INTERPRET 3-17
ITERATE 3-19
LEAVE 3-20
NOP 3-21
NUMERIC 3-22
OPTIONS 3-24
PARSE 3-25
PROCEDURE 3-27
PULL 3-29
PUSH 3-30

X-6 REXX Reference

instructions (continued)
QUEUE 3-31
RETURN 3-32
SAY 3-33
SELECT 3-34
SIGNAL 3-35
TRACE 3-37

integer arithmetic 6-1-6-9
integer division

definition 6-5
description of 6-1
operator 2-9

interactive debug 3-37
See also TRACE instruction

internal functions
description of 4-2
return from 3-32
variables in 3-27

internal routine invoking 3-6
INTERPRET instruction 3-17
interpretive execution of data 3-17
invoking

built-in functions 3-6
routines 3-6

ITERATE instruction

K

See also DO instruction
description 3-19
use of variable on 3-19

keyword instructions 3-1
See also instructions

keywords

L

conflict with commands 11-1
mixed case 3-1
reservation of 11-1

label
as targets of CALL 3-6
as targets of SIGNAL 3-35
description of 2-12
duplicate 3-35
in INTERPRET instruction 3-17
search algorithm 3-35

language processor date and version 3-26
language structure and syntax 2-2
LANGUAGE (local) option of DATE function 4-18
LASTPOS function 4-24
leading blank removal with STRIP function 4-36
leading zeros

adding with the RIGHT function 4-31
removal with STRIP function 4-36

LEA VE instruction
See also DO instruction
description of 3-20

LEA VE instruction (continued)
use of variable on 3-20

leaving your program 3-15
LEFT function 4-25
LENGTH function 4-25
less than operator 2-9
less than or equal operator 2-9
less than or greater than operator (< >) 2-9
LIFO (last-in/first-out) stacking 3-30
Line input and output 8-1
LINEIN function 4-25

role in input and output 8-1
LINEIN option of PARSE instruction 3-25
LINEOUT function 4-27

role in input and output 8-1
lines from a program retrieved with

SOURCELINE 4-33
lines from stream 3-25, 4-25
LINES function 4-28

role in input and output 8-1
lines remaining in stream 4-28
list 2-14
literal string patterns 5-3
literal strings 2-3
logical bit operations

BITAND 4-9
BITOR 4-9
BITXOR 4-10

logical NOT character, OS/2 2-6
logical operations 2-10
logical OR operator, OS2 2-6
looping program
loops

See also DO instruction
active 3-19
execution model 3-12
modification of 3-19
repetitive 3-10
termination of 3-20

lower case symbols 2-4

M
macrospace interfaces 8-10
manipulate external data queue 4-47
MAX function 4-29
messages, error A-1
MIN function 4-29
minutes calculated from midnight 4-39
mixed DBCS string 4-16
Model of input and output 8-1
MONTH option of DATE function 4-18
multi-way call 3-7, 3-36
multiple
multiple assignments 5-6
multiple strings, parsing 5-10
multiplication

definition 6-4

multiplication (continued)
operator 2-9

N
names

of functions 4-1
of programs 3-26
of subroutines 3-6
of variables 2-5

negation
of logical values 2-10
of numbers 2-9

nesting of control structures 3-8
nibbles 2-4
NOP instruction 3-21
Normal option of DATE function 4-18
not equal operator 2-9
not greater than operator 2-9
not less than operator 2-9
NOT operator 2-6, 2-10
notation

engineering 6-8
scientific 6-8

NOTREADY condition
condition trapping 8-8
raised by stream errors 8-8

NOV ALUE condition
not raised by VALUE function 4-42
on SIGNAL instruction 7-2
use of 11-1

null clauses 2-12
null instruction

See NOP instruction
null strings 2-3, 2-8
number from stream 4-13
numbers

arithmetic on 2-9, 6-1, 6-3
checking with DATATYPE 4-16
comparison of 2-9, 6-6
definition 6-2
description of 2-5, 6-1
formatting for display 4-23
in DO instruction 3-9
truncating 4-41
use in the language 6-9

NUMERIC
DIGITS option 3-22
FORM option 3-22
FUZZ option 3-22
instruction 3-22
settings saved during subroutine calls 3-8

numeric patterns
See positional patterns

Index X-7

0
operation tracing results 3-37
operator

arithmetic 2-9, 6-1, 6-3
as special characters 2-6
comparison 2-9, 6-6
concatenation 2-8
logical 2-10
precedence (priorities) of 2-11

operators, OS/2 2-6
OPTIONS instruction 3-24
ORDERED option of DATE function 4-18
ORing character strings together 4-9
OR, logical

exclusive 2-10
inclusive 2-10

OS2ENVIRONMENT 4-41
OS/2 environment variable 4-41
OS/2 (operating system)

issuing commands to 3-2
useful commands 12-1

OTHERWISE clause
See SELECT instruction

Output to the user 8-1
Output, errors during 8-6
overflow, arithmetic 6-9
OVERLAY function 4-29
overlaying a string onto another 4-29

p
packing a string with X2C 4-45
parentheses

adjacent to blanks 2-6
in expressions 2-11
in Junction calls 4-1
in parsing templates 5-7

PARSE instruction 3-25
PARSE LINEIN

role in input and output 8-1
PARSE PULL

role in input and output 8-1
parsing 5-1-5-14

conceptual overview 5-12
definition 5-1
equal sign 5-5
into words 5-1
multiple assignments 5-6
multiple strings 5-10
patterns

conceptual view 5-13
positional 5-4
string 5-3

period as placeholder 5-2
positional patterns

absolute 5-4
relative 5-5
variable 5-8

X .;8 REXX Reference

parsing (continued)
selecting words 5-1
source string 5-1
string patterns

literal string patterns 5-3
variable string patterns 5-7

summary of instructions 5-8
template, defined 5-1
treatment of blanks 5-2
UPPER, use of 5-8
variable patterns

positional 5-8
string 5-7

with DBCS characters 5-J l
word parsing

conceptual view 5-14
description and examples 5-1

parsing templates
in ARG instruction 3-4
in PARSE instruction 3-25
in PULL instruction 3-29

patterns in parsing
conceptual view 5-13
positional 5-4
string 5-3

period
causing substitution in variable names 2-14
in numbers 6-2

period as placeholder in parsing 5-2
permanent command destination change 3-2
Persistent input and output 8-1
POS function 4-30
position

last occurrence of a string 4-24
positional patterns

absolute 5-4
relative 5-5
variable 5-8

powers of ten in numbers 2-5
precedence of operators 2-11
·precision of arithmetic 6-2
prefix operators 2-9, 2-10
presumed command destinations 3-2
PROCEDURE instruction 3-27
programming restrictions 2-1
programs

arguments to 3-4
examples 8-8
retrieving lines with SOURCELINE 4-33
retrieving name of 3-26

protecting variables 3-27
pseudo random number function of RANDOM 4-30
PULL instruction 3-29

role in input and output 8-1
PULL option-of:PARSE instruction 3.,.26
pure· DBCS string 4-16
PUSH instruction 3-30

role in input and output 8-1

Q
queue

counting lines in 4-30
creating and deleting queues 4-47
detached processes 8-6
in REXX and OS/2 8-4
naming and querying 4-47
private 8-5
reading from with PULL 3-29
RXQUEUE function 4-47
session 8-5
writing to with PUSH 3-30
writing to with QUEUE 3-31

QUEUE instruction 3-31
role in input and output 8-1

queue interface 4-47
QUEUED function 4-30

role in input and output 8-1

R
RANDOM function 4-30
random number function of RANDOM 4-30
RC (return code)

not set during interactive debug 10-1
set by commands 2-17
special variable 7-5, 11-2

Read position in a stream 8-2
register external function 4-4 7
relative positional patterns 5-5
remainder

definition 6-6
description of 6-1
operator 2-9

reordering data with TRANSLATE function 4-40
repeating a string with COPIES 4-15
repetitive loops

altering flow 3-20
controlled repetitive loops 3-10
exiting 3-20
simple do group 3-10
simple repetitive loops 3-10

reservation of keywords 11-1
restoring variables 3-14
restrictions

embedded blanks in numbers 2-5
first character of variable name 2-13
maximum length of results 2-8

restrictions in programming 2-1
Restructured Extended Executor language (REXX)
RESULT

return value from a routine 4-5
set by RETURN instruction 3-7, 3-32
special variable 11-2

results
length of 2-8

retrieving argument strings with ARG 3-4
return codes

as set by commands 2-17
setting on exit 3-15

RETURN instruction 3-32
return string

setting on exit 3-15
returning control from REXX program 3-32
REVERSE function 4-31
RexxAddMacro 9-57
RexxClearMacroSpace 9-59
RexxDeregisterExit 9-42
RexxDeregisterFunction 9-23
RexxDeregisterSubcom 9-14
RexxDropMacro 9-58
RexxLoadMacroSpace 9-61
RexxQueryExit 9-43
RexxQueryFunction 9-24
RexxQueryMacro 9-62
RexxQuerySubcom 9-15
RexxRegisterExitDll 9-40
RexxRegisterExitExe 9-41
RexxRegisterFunctionDll 9-20
RexxRegisterFunctionExe 9-22
RexxRegisterSubcomDll 9-12
RexxRegisterSubcomExe 9-13
RexxReorderMacro 9-63
RexxResetTrace 9-55

description 9-56
macrospace example 9-65
macrospace functions 9-57
RexxAddMacro 9-57
RexxClearMacroSpace 9-59
RexxDropMacro 9-58
RexxLoadMacroSpace 9-61
RexxQueryMacro 9-62
RexxReorderMacro 9-63
RexxSaveMacroSpace 9-60

RexxSaveMacroSpace 9-60
RexxSetHalt 9-53
RexxSetTrace 9-54
RexxStart 9-5

example using 9-8
exit example 9-28
macrospace example 9-65
RexxStart function 9-5
using exits 9-7
using in-storage programs 9-5
using macrospace programs 9-5

rexxutil functions 4-49
RxMessage Box 4-49
SysCls 4-51
SysCreateObject 4-51
SysCurPos 4-51
SysCurState 4-52
SysDeregisterObjectClass 4-52
SysDrivelnfo 4-53
SysDriveMap 4-53

Index X-9

rexxutil functions (continued)
SysDropFuncs 4-54
SysFileDelete 4-54
SysFileSearch 4-56
SysFileTree 4-55
SysGetEA 4-58
SysGetKey 4-58
SysGetMessage 4-58
Syslni 4-59
SysMkDir 4-61
Sys0S2Ver 4-62
SysPutEA 4-62
SysQueryClassList 4-62
SysRegisterObjectClass 4-63
SysRmDir 4-63
SysSearchPath 4-64
SysSetlcon 4-64
SysSleep 4-65
SysTempFileName 4-65
SysTextScreenRead 4-66
SysTextScreenSize 4-66
SysWaitNamedPipe 4-66

Rexx VariablePool 9-45
RIGHT function 4"31
rounding

definition 6-3
using a character string as a number 2-5

routines
See functions
See subroutines

running off the end of a program 3-15
RXFUNCADD 4-47
RXFUNCDROP 4-47
RXFUNCQUERY 4-47
RxMessageBox 4-49
RXQUEUE function 4-47
RXSTRING 9-3

definition 9-3
description 9-3
null terminated 9-3
returning 9-3

RXSYSEXIT data structure 9-7
RXTRACE environment variable 10-2

s
SAY instruction 3-33

role in input and output 8-1
scientific notation 6-8
search order

external functions 4-3
for functions 4-2
for subroutines 3-6

seconds calculated from midnight 4-39
SELECT instruction 3-34
semicolons

implied 2-7
omission of 3-1

X-10 REXX Reference

semicolons (continued)
within a clause 2-2

Serial input and output 8-1
SETLOCAL function 4-32
Shift-in (SI) characters B-2, B-6
Shift-out (SO) characters B-2, B-6
SHVBLOCK structure 9-45
SIGL

set by CALL instruction 3-7
set by SIGNAL instruction 3-35
special variable 7-5, 11-2

SIGN function 4-32
SIGNAL

execution of in subroutines 3-8
in INTERPRET instruction 3-17

SIGNAL instruction 3-35
significant digits in arithmetic 6-2
simple symbols 2-14
single stepping

See interactive debug
source of the program and retrieval of

information 3-26
SOURCE option of PARSE instruction 3-26
source string 5-1
SOURCELINE function 4-33
SPACE function 4-33
special characters 2-6
special variables

RC 7-5, 11-2
RESULT 3-7, 3-32, 4-5, 11-2
SIGL 3-7, 7-5, 11-2

Standard input and output 8-1
STANDARD option of DATE function 4-18
stem of a variable

assignment to 2-16
description of 2-14
used in DROP instruction 3-14
used in PROCEDURE instruction 3-27

stepping through programs
See interactive debug

storage
Stream
Stream command 4-34, 8-3
Stream errors 8-6
STREAM function 4-33

function overview 8-3
strictly equal operator 2-9
strictly greater than operator 2-9, 2-10
strictly greater than or equal operator 2-10
strictly less than operator 2-9, 2-10
strictly less than or equal operator 2-10
strictly not equal operator 2-9
strictly not greater than operator 2-10
strictly not less than operator 2-10
string

as literal constants 2-3
as names of functions 2-3
as names of subroutines 3-6

string (continued)
binary specification of 2-4
comparison of 2-9
concatenation of 2-8
description of 2-3
hexadecimal specification of 2-3
interpretation of 3-17
length of 2-8
null 2-3, 2-8
quotation marks in 2-3
verifying contents of 4-43

string from stream 4-11
string patterns

literal 5-3
variable 5-7

STRIP function 4-36
structure and syntax 2-2
subcommand destinations 3-2
subcommand interfaces 8-10

definition 9-9
description 9-9
registering 9-9
RexxDeregisterSubcom 9-14
RexxQuerySubcom 9-15
RexxRegisterSubcomDll 9-12
RexxRegisterSubcomExe 9-13
subcommand errors 9-9
subcommand failures 9-10
subcommand handler example 9-11
subcommand return code 9-10

subcommands
addressing of 3-2
programming interface

subkeyword 2-13
subroutines

calling of 3-6
forcing built-in or external reference 3-6
naming of 3-6
passing back values from 3-32
return from 3-32
use of labels 3-6
variables in 3-27

subsidiary list 3-14
substitution

in expressions 2-7
in variable names 2-14

SUBSTR function 4-37
subtraction

definition 6-4
operator 2-9

SUBWORD function 4-37
symbol

assigning values to 2-13
classifying 2-14
compound 2-14
constant 2-14
description of 2-4
simple 2-14

symbol (continued)
uppercase translation 2-4
use of 2-13
valid names 2-5

SYMBOL function 4-37
syntax checking

See TRACE instruction
SYNTAX condition of SIGNAL instruction 7-2
syntax diagrams 1-2
syntax error

traceback after 3-40
trapping with SIGNAL instruction 7-1

syntax, general 2-2
SysCls 4-51
SysCreateObject 4-51
SysCurPos 4-51
SysCurState 4-52
SysDeregisterObject Class 4-52
SysDrivelnfo 4-53
SysDriveMap 4-53
SysDropFuncs 4-54
SysFileDelete 4-54
SysFileSearch 4-56
SysFileTree 4-55
SysGetEA 4-58
SysGetKey 4-58
SysGetMessage 4-58
Syslni 4-59
SysMkDir 4-61
Sys0S2Ver 4-62
SysPutEA 4-62
SysQueryClassList 4-62
SysRegisterObjectClass 4-63
SysRmDir 4-63
SysSearchPath 4-64
SysSetlcon 4-64
SysSleep 4-65
system exits

definition 9-26
description 9-26
exit functions 9-40
External function exit 9-30
External HALT exit 9-37
External trace exit 9-38
Host command exit 9-32
Initialization exit 9-39
Queue exit 9-33
registration example 9-41
RexxDeregisterExit 9-42
RexxQueryExit 9-43
RexxRegisterExitDll 9-40
RexxRegister ExitExe 9-41
RXCMD exit 9-32
RXFNC exit

RXCMDHST subfunction 9-32
RXFNCCAL subfunction 9-30
RXINIEXT subfunction 9-39
RXTEREXT subfunction 9-39
RXTRCTST subfunction 9-38

Index X-11

system exits (continued)
RXHLT exit

RXHLTCLR subfunction 9-37
RXHL TTST subfunction 9-37

RXINI exit 9-39
RXMSQ exit

RXMSQNAM subfunction 9-34
RXMSQPLL subfunction 9-33
RXMSQPSH subfunction 9-33
RXMSQSIZ subfunction 9-34

RXSIO exit
RXSIODTR subfunction 9-36
RXSIOSA Y subfunction 9-35
RXSIOTRC subfunction 9-35
RXSIOTRD subfunction 9-35

RXSYSEXIT structure 9-27
RXTER exit 9-39
RXTRC exit 9-38
sample exit 9-28
Session I/O exit 9-35
Termination exit 9-39

SysTempFileName 4-65
SysTextScreenRead 4-66
SysTextScreenSize 4-66
SysWaitNamedPipe 4-66

T
tail 2-14
templates, parsing

general description 5-1
in ARG instruction 3-4
in PARSE instruction 3-25
in PULL instruction 3-29

template, definition of 5-1
temporary command destination change 3-2
ten, powers of 6-8
terminals

reading from with PULL 3-29
writing to with SAY 3-33

terms and data 2-7
text formatting

See formatting
See word

THEN
as free standing clause 3-1
following IF clause 3-16
following WHEN clause 3-34

TIME function 4-38
TO phrase of DO instruction 3-9
tokenization 2-19
tokens 2-2
TRACE function 4-40
TRACE instruction 3-37

See also interactive debug
TRACE setting

altering with TRACE function 4-40
altering with TRACE instruction 3-37

X-12 REXX Reference

TRACE setting (continued)
querying 4-40

trace tags 3-39
traceback, on syntax error 3-40
tracing

action saved during subroutine calls 3-8
by interactive debug 10-1
data identifiers 3-39
execution of programs 3-37

tracing flags
+ + + 3-40
- 3-40
>C> 3-40
>F> 3-40
> L> 3-40
>O> 3-40
> P> 3-40
>V> 3-40
>. > 3-40
> > > 3-40

trailing blank removed using STRIP function 4-36
trailing zeros 6-3
Transient input and output 8-1
TRANSLATE function 4-40
translation

See also uppercase translation
with TRANSLATE function 4-40

trap conditions 4-14
trapping of conditions 7-1
TRUNC function 4-41
truncating numbers 4-41
type of data checking with DATATYPE 4-16
Typewriter input and output 8-1
typing data

See SAY instruction

u
unassigning variables 3-14
unconditionally leaving your program 3-15
underflow, arithmetic 6-9
unpacking a string with B2X 4-10
unpacking a string with C2X 4-16
UNTIL phrase of DO instruction 3-9
UPPER option of PARSE instruction 3-25
uppercase translation

during ARG instruction 3-4
during PULL instruction 3-29
of symbols 2-4
with PARSE UPPER 3-25
with TRANSLATE function 4-40

USA option of DATE function 4-18
User input and output 8-1-8-10
Utterances 8-1

v
VALUE function 4-41
VALUE option of PARSE instruction 3-26
VAR option of PARSE instruction 3-26

. variable names 2-5
variable patterns, parsing with

positional 5-8
string 5-7

variable pool interfaces 8-10
description 9-45
direct interface 9-50
dropping variables 9-45
fetch next variable 9-46
fetching private information 9-45
fetching variables 9-45
restrictions 9-50
return codes 9-46, 9-49
returning variable names 9-47
returning· variable values 9-48
RexxVariablePool example 9-51
setting variables 9-45
shared variable request block 9-45
SHVBLOCK structure 9-45
symbolic interface 9-50

variable positional patterns 5-8
variable reference 5-7
variable string patterns 5-7
variables

compound 2-14
controlling loops 3-10
description of 2-13
dropping of 3-14
exposing to caller 3-27
external collections 4-41
getting value with VALUE 4-41
global 4-41
in internal functions 3.:.27
in. subroutines 3-27
new level of 3-27
parsing of 3-26
resetting of 3-14
setting new value 2-13
simple 2-14
special

RC 7-5, 11-2
RESULT 3-7, 3-32, 4-5, 11-2
SIGL 3-7, 7-5, 11-2

testing for initialization 4-37
valid names 2-13

VERIFY function 4-43
VERSION option of PARSE instruction 3-26

w
WEEKDAY ·option of DATE function 4-18
WHEN clause

See SELECT instruction

WHILE phrase of DO instruction 3-9
whole numbers

checking with DATATYPE 4-16
description of 2-5

word
counting in a string 4-44
deleting from a string 4-19
extracting from a string 4-37, 4-43
finding length of 4-44
in parsing 5-1
locating in a string 4-43

WORD function 4-43
word parsing

conceptual view 5-14
description and examples 5-1

word processing
See formatting
See word

WORDINDEX function 4-43
WORDLENGTH function 4-44
WORDPOS function 4-44
WORDS function 4-44
Write position in a stream 8-3
writing to the stack

x

with PUSH 3-30
with QUEUE 3-31

XORing character strings together 4-10
XOR, logical 2-10
XRANGE function 4-45
X2B function 4-45
X2C function 4-45
X2D function 4-46

z
zeros added on the left 4-31
zeros removal with STRIP function 4-36

Special Characters
. (period)

as placeholder in parsing 5-2
causing substitution in variable names 2-14
in numbers 6-2

< 2-19
< (less than operator) 2-9
< < (strictly less than operator) 2-9, 2-10
< < = (strictly less than or equal operator) 2-10
< > (less.than or greater than operator) 2-9
< = (less than or equal operator) 2-9
+ (addition operator) 2-9, 6-3
+ + + tracing flag 3-40
I 2-19
I (inclusive OR operator) 2-10

Index X-13

II (concatenation operator) 2-8
&& (exclusive OR operator) 2-10
& (AND operator) 2-10
* (multiplication operator) 2-9, 6-3
- tracing flag 3-40
** (power operator) 2-9, 6-5
-. (NOT operator) 2-10
-. < (not less than operator) 2-9
-. < < (strictly not less than operator) 2-10
-. > (not greater than operator) 2-9
-. > > (strictly not greater than operator) 2-10
-. = (not equal operator) 2-9
-. = = 2-9
-. = = (strictly not equal operator) 2-10
I (division operator) 2-9, 6-3
lq 2-19
II (remainder operator) 2-9, 6-6
, (comma)

as continuation character 2-7
in CALL instruction 3-6
in function calls 4-1
separator of arguments 3-6, 4-1
within a parsing template 5-10
within a parsing template list 3-4

% (integer division operator) 2-9, 6-5
> 2-19
> (greater than operator) 2-9
> C > tracing flag 3-40
> F > tracing flag 3-40
> L > tracing flag 3-40
> 0 > tracing flag 3-40
> P > tracing flag 3-40
> V > tracing flag 3-40
> . > tracing flag 3-40
> < (greater than or less than operator) 2-9
> > (strictly greater than operator) 2-9, 2-10
> > > tracing flag 3-40
> > = (strictly greater than or equal operator) 2-10
> = (greater than or equal operator) 2-9
? prefix on TRACE option 3-38
: (colon)

as a special character 2-6
in a label 2-12

= (equal sign)
assignment indicator 2-13
equal operator 2-9
immediate debug command 10-1
in DO instruction 3-9

= = (strictly equal operator) 2-9
- (subtraction operator) 2-9, 6-3
\(NOT operator) 2-10
\ < (not less than operator) 2-10
\ < < (strictly not less than operator) 2-10
\ > (not greater than operator) 2-10
\ > > (strictly not greater than operator) 2-10
\ = (not equal operator) 2-10
\ = = (strictly not equal operator) 2-10

X-14 RE:XX Reference

)

® IBM, OS/2 and Operating System/2 are
registered trademarks of
International Business Machines Corporation

---- ------- -- --- - -- - ---- - - ------- --____ ,®

© IBM Corp. 1992

International Business
Machines Corporation

Printed in the
United States of America
All Rights Reserved

10G6268

S HJG-6268-00

II 1111111111 1111 II II
Pl©G6268

