

\
\

.. ./

Note ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-.

Before using this information and the product it supports, be sure to read the general

information under "Notices" on page vii.

First Edition (December 1991)

The following paragraph does not apply to the United Kingdom or any country where such provisions are

inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES

THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow

disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to

you.

This publication could include technical inaccuracies or typographical errors. Changes are periodically made

to the information herein; these changes will be incorporated in new editions of the publication. IBM may

make improvements and/or changes in the product(s) and/or the program(s) described in this publication at

any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines

and programs), programming, or services that are not announced in your country. Such references or

information must not be construed to mean that IBM intends to announce such IBM products,

programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM Authorized Dealer or

your IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries, in

writing, to the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY 10577.

COPYRIGHT LICENSE: This publication contains printed sample application programs in source

language, which illustrate OS/2 programming techniques. You may copy and distribute these sample

programs in any form without payment to IBM, for the purposes of developing, using, marketing or

distributing application programs conforming to the OS/2 application programming interface.

Each copy of any portion of these sample programs or any derivative work, which is distributed to others,

must include a copyright notice as follows: "©(your company name) (year) All Rights Reserved."

Contents

Chapter 1. Introduction to REXX
Features of REXX .

Ease of Use
Free Format
Interpreted
Built-in Functions .
Typeless Variables
Parsing Capabilities .
Debugging

REXX and the OS/2 Program .
About REXX and SAA .
About Programming .

If You Have Never Written a Computer Program
If You Are Already Familiar With Another Language
Exercises and Examples .
The REXX Reference .

Chapter 2. How REXX Works .
Basics .. .

A Computer Conversation .
What Goes into a Program .
Fixing Syntax Errors .
Summary

Advanced Topics .
More about Clauses .
Types of Clauses .
For More Information

Chapter 3. Variables .
Basics .. .

Handling Data with Symbols .
Assignments
Naming Variables
Other Assignments .
Summary

Advanced Topics .
Variables as Symbols

Using Compound Symbols .
Filling a Two-Dimensional Array
Variables in Programs and Subroutines
SYMBOLQFunction .
Other Types of Data Storage .

Chapter 4. Expressions .
Basics .. .

Transforming Data .
Operator Precedence
Using Functions
Comparing Data .
Using Comparisons for Program Control .
Using Expressions in Instructions
Tracing Evaluation .

1-1
1-1
1-1
1-1
1-1
1-1
1-1
1-2
1-2
1-2
1-2
1-2
1-3
1-3
1-3
1-4

2-1
2-1
2-1
2-4
2-6
2-9

2-10
2-10
2-10
2-11

3-1
3-1
3-1
3-2
3-3
3-4
3-6
3-7
3-7
3-8

3-14
3-15
3-16
3-18

4-1
4-1
4-1
4-3
4-4
4-5
4-7
4-7
4-7

Contents iii

iv REXX User's Guide

Summary . 4-9

Advanced Topics . 4-10

Precedence . 4-10

Using Parentheses . 4-11

More about Numbers . 4-11

Concatenation . 4-11

Substring Functions . 4-12

Parsing . 4-13

Comparisons . 4-13

Comparing Numbers 4-13

Comparing Characters . 4-14

Translating and Converting Data . 4-19

Chapter S. Commands . 5-1

Basics . 5-1

Environment . 5-1

From REXX to the OS/2 Program . 5-2

From the OS/2 Program to REXX . 5-9

The REXXTRY Program . 5-10

Summary . 5-12

Advanced Topics . 5-13

REXX and Batch Files 5-13

Subcommand Processing . 5-14

Trapping Command Errors . 5-14

Using PMREXX . 5-17

Chapter 6. Program Control . 6-1

Basics . 6-1

Changing the Flow of a Program . 6-1

Repetitive Tasks . 6-11

Conditional Loops 6-12

Using Counters to Exit Loops 6-20

Exiting a Program 6-23

Summary . 6-24

Advanced Topics 6-25

Nesting IF Instructions . 6-25

ITERATE Instruction . 6-30

Compound DO Instructions . 6-32

Nested Loops . 6-33

Chapter 7. Program Structure . 7-1

Basics . 7-1

Subroutines . 7-1

External Subroutines . 7-4

Using Arguments . 7-5

Subroutines and Data . 7-9

Summary . 7-9

Advanced Topics . 7-10

Structured Programming . 7-10

Function Calls . 7-11

Comparing Subroutines and Functions 7-13

Jumps .. 7-14

Condition Traps . 7-15

Using CALL ON . 7-16

Chapter 8. Parsing 8-1

Basics
Conversations .
Parsing Variables and Expressions
Summary

Advanced Topics
Parsing with Patterns
Literal String Patterns
Character Position
Variables in Patterns
String Functions

Chapter 9. Arithmetic
Basics .. .

About REXX Numbers .
Checking Input Numbers .
Calculating
Formatting Output
Summary

Advanced Topics .
Putting Numbers into Columns .
Formatting Errors
Rounding Errors .
Conventional and Scientific Notation
Changing Precision
Comparing Numbers
Powers (** Operator) .
A Square-Root Function

8-1
8-1
8-9
8-9

8-10
8-10
8-10
8-11
8-12
8-13

9-1
9-1
9-1
9-1
9-3
9-6
9-8
9-9
9-9
9-9

9-10
9-14
9-16
9-17
9-17
9-19

Chapter 10. Input and Output . 10-1
Basics . 10-1

A Stream of Information . 10-1
Text File Processing . 10-3
Writing Data to a File . 10-4
Reading Data from a File . 10-5
Printing a Text File . 10-7
Queues . 10-11
Summary . 10-14

Advanced Topics . 10-15
More about Data Streams . 10-15
Default Streams . 10-15
STREAMO Function . 10-18
Accessing Data within a Stream . 10-20
More about Queues . 10-21
Examples . 10-21

Chapter 11. Program Style
Basics

Consider the Data .
Define the Tasks
Create Modules .
Planning the Program .
Putting It All Together .
Testing and Debugging .
Summary

Advanced Topics .
Making Programs Easy to Read .

11-1
11-1
11-1
11-3
11-4
11-7
11-8
11-8

11-10
11-11
11-11

Contents V

Chapter 12. Using REXX with Applications . 12-1

Basics . 12-1

Customizing OS/2 Programs . 12-1

Accessing Command Environments 12-1

Using External Functions . 12-2

Summary . 12-2

Advanced Topics . 12-2

The REXXUTIL external function package 12-3

Index X-1

vi REXX User's Guide

\ Notices

Trademarks

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights or other legally protectible rights may be used instead of
the IBM product, program, or service. Evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly
designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States and/or other countries:

OS/2
SAA
CUA

Operating System/2
Systems Application Architecture
Common User Access

Double-Byte Character Set (DBCS)
Throughout this publication, you will see references to specific values for character
strings. The values are for single-byte character set (SBCS). If you use the
double-byte character set (DBCS), note that one DBCS character equals two SBCS
characters.

Notices vii

viii REXX User's Guide

/

About This Book

The IBM Operating System/2 Procedures Language 2/REXX User's Guide (referred
to as User's Guide in the rest of this book) describes the programming language
known as RE:XX. RE:XX is an integral part of IBM OS/2* 2.0. This guide describes
how to write programs using RE:XX.

Before You Begin

What You Need

Before reading this book, it is important that you consider the following items:

This is what you need to get started:

• Your computer with the OS/2 program installed.

• A text-editing or word-processing program such as the system editor supplied
with the OS/2 program. Whatever editor you use must be able to create
straight-ASCII files (nearly all such programs can).

• OS/2 2.0 Procedures Language 2/REXX Reference.

It is also useful, though not essential, to have a printer so you can print your
programs.

What You Need to Know
To use this book, you should know:

• What a file is and how to create a text file

• How to use an editor or word processor

• The basic OS/2 commands for manipulating files, such as COPY, DELETE,
DIR, and so on.

If you have little or no experience with the OS/2 program or with personal
computers, you may want to read the following publications:

• OS/2 2.0 Overview
• OS/2 2.0 Installation Guide

Who Should Read This Guide
Both inexperienced and experienced computer users should read this guide to learn
about RE:XX. The guide shows how RE:XX is a useful programming language for
both the experienced programmer and the user new to programming.

• Trademark of IBM Corporation

About This Book ix

How This Guide Is Structured

X REXX User's Guide

Each chapter, except chapter 1, is divided into two parts:

• The first part of each chapter, Basics, is a tutorial guide to the most frequently
used features of REXX. "Basics" in each chapter builds on the preceding
chapters and prepares you for those that follow.

• The second part of each chapter, Advanced Topics, discusses more advanced
information about REXX and includes descriptions and examples of the more
specialized features of REXX.

Each chapter of this Guide concentrates on a single topic.

• Chapter 1, "Introduction to REXX," is a brief introduction to programming
and REXX.

• Chapter 2, "How REXX Works," describes how the program works.

• Chapter 3, "Variables," tells about handling data in terms of symbols.

• Chapter 4, "Expressions," shows how REXX computes information.

• Chapter 5, "Commands," describes using REXX with OS/2 and other programs.

• Chapter 6, "Program Control," tells about refining and automating programs.

• Chapter 7, "Program Structure," tells about running programs within programs.

• Chapter 8, "Parsing," tells about reading and analyzing data.

• Chapter 9, "Arithmetic," shows how REXX calculates numbers.

• Chapter 10, "Input and Output," describes using REXX with outside data.

• Chapter 11, "Program Style," describes how to plan and correct programs.

• Chapter 12, "Using REXX with Applications," describes how to use certain
REXX features to get the most from the operating system.

Chapter 1. Introduction to REXX

The REstructured eXtended executor language, or REXX, is a versatile, easy to use
structured programming language that is an integral part of the os12· program. Its
simplicity makes it a good first language for beginners. For more experienced users
and computer professionals, REXX offers powerful functions, extensive
mathematical capabilities, and the ability to issue commands to multiple
environments.

Features of REXX

Ease of Use

Free Format

Interpreted

Built-in Functions

The following REXX features contribute to its versatility and function.

REXX is easy to learn and use because many instructions are meaningful English
words. Unlike some programming languages that use abbreviations, REXX
instructions are common words such as SAY, PULL, IF ... THEN ... ELSE,
DO ... END, and EXIT.

REXX has few rules about format. A single instruction can span many lines or
multiple instructions can be entered on a single line. Instructions do not have to
begin in a particular column and can be typed in uppercase, lowercase, or mixed
case. Spaces can be skipped in a line or entire lines can be skipped. There is no line
numbering.

REXX is an interpreted language. When a REXX program runs, its language
processor reads each statement from the source file and runs it, one statement at a
time. Languages that are not interpreted must be compiled into machine language
(in separate files) before they can be run.

REXX has built-in functions that perform various processing, searching, and
comparison operations for both text and numbers. Other built-in functions provide
formatting capabilities and arithmetic calculations.

Typeless Variables
REXX regards all data as character strings. This means that there is no need to
predefine variables or variable arrays as strings or as numbers. REXX performs
arithmetic operations on any string that represents a valid number, including those
in exponential formats.

• Trademark of IBM Corporation

Chapter 1. Introduction to REXX 1-1

Parsing Capabilities

Debugging

REXX includes capabilities for manipulating character strings. This allows
programs to read and separate characters, numbers, and mixed input.

REXX displays messages with meaningful explanations when a REXX program
encounters an error. In addition, the TRACE instruction provides a powerful
debugging tool.

REXX and the OS/2 Program
The most vital role REXX plays is as a procedural language for the OS/2 program.
A RE:XX program can serve as a script for the OS/2 program to follow. By using
REXX, long, complex, or repetitious tasks can be reduced to a single command or
program that can be run from Presentation Manager.

REXX is a built-in feature of the OS/2 program, so programs are run directly from
an windowed or full-screen command prompt. There is no installation process or
separate environment. Anywhere that an OS/2 command or batch file can be used,
a RE:XX program can be run. Any REXX program can call OS/2 commands.

About REXX and SAA
REXX is one of the programming languages included in the IBM Systems
Application Architecture* (SAA*). SAA is a framework of standards and definitions
intended to promote consistency among different IBM products. Programs written
in RE:XX according to SAA specifications are portable to all other SAA
environments. For example, a REXX program written for OS/2 environment can be
run in a CMS or TSO/E environment, if the program does not use OS/2-specific
features.

To learn more about using REXX in SAA environments, see the Common
Programming Interface Procedures Language Reference, SC24-5549.

About Programming
A program is a list of instructions that have a basic sequence. Some instructions
indicate actions and some instructions specify the number and sequence of these
actions. There are also instructions to tell you how to execute other instructions.
Those that specify repetitious actions are iterative. Those that indicate when an
action should begin or end are conditional.

You may think of programming as a skill practiced only by computer experts, but
that is not true. You do not need to know how a computer works to write a
program. Anyone can write a program, and almost everyone who uses a computer
eventually needs to do so. With a little programming knowledge, you can reduce a
long or repetitious series of commands into a single command. You can also
customize OS/2 programs and other programs to work in a way that will best suit
your needs. Programming helps you make the computer work faster or better. That
is what REXX was meant for, and this book should make REXX easier to
understand.

1-2 REXX User's Guide

If You Have Never Written a Computer Program
\ If you are inexperienced at programming, you will find it fairly easy to learn and

write programs in REXX. Start by reading "Basics" in each chapter. After you
have read "Basics," go back and read "Advanced Topics" in each chapter to learn
more about specific topics.

If You Are Already Familiar With Another Language
If you are an experienced programmer, reading "Basics" in each chapter gives you
an overview of the REXX language. Or, you may prefer to read about individual
topics, one at a time. Here are some areas you may want to investigate:

• If you now use OS/2 CMD files to automate your work, you will find that
REXX gives you more flexibility in controlling program flow and in handling
parameters. Refer to Chapter 5, "Commands," which discusses how REXX
works with OS/2 commands.

• If you are skilled in BASIC, you may want to note these ways that REXX
differs from BASIC:

There is no line numbering.
There are no GOSUB or GOTO statements. Use CALL and SIGNAL
instead (see "Subroutines" on page 7-1).
REXX variables have no data type.
There are no DIM arrays. Use compound variables instead (see "Using
Compound Symbols" on page 3-8).

• If you are familiar with development languages, such as C and Pascal, you will
find REXX somewhat similar. Again, the main difference is that a REXX
program is interpreted; that is, the source code of the program is processed line
by line. There is no compiling process.

Refer to Chapter 5, "Commands," for examples of command-passing and
Chapter 10, "Input and Output," for examples of file and queue processing.

Exercises and Examples
As with other programming languages, you do not learn REXX by reading about it.
Exercises and examples are included to help you learn REXX by using it. To get the
most out of this book:

• Test yourself with the exercises as you read.

• Examine the examples and sample programs in the text. Type them exactly as
they are shown.

• Try your own variations of each program. See if you can find a different or
better way to do what the sample program does.

Note: When your REXX program issues an OS/2 command, REXX passes the
command to the OS/2 command handler for processing. This processing includes
displaying the command on the screen (echoing).

For the sake of simplification, the examples in this book do not include echoing of
the commands.

Chapter 1. Introduction to REXX 1-3

The REXX Reference
The REXX Reference contains a more complete description of how to use the REXX
language. You should have a copy of this book, so you can look up any instruction
or function not completely defined here. Think of the REXX Reference as a
dictionary for REXX and this User's Guide as a book of directions and ideas.

The Procedures Language/2REXX is available online. It contains information on
REXX features, functions, and instructions.

1-4 REXX User's Guide

/

Chapter 2. How REXX Works

Basics

A REXX program is a list of instructions for your computer. The program is simply
a text file that you create with a text-editing or word-processing program.
Sometimes a computer runs a program with no guidance. Other times it may need
additional information from the user to do its work. One way that a computer
communicates with the user is to ask questions and then compute results based on
the responses. The programmer (you) can include instructions that let the computer
converse with the user.

In this chapter:~~~~~~~~~~~~~~~~~~~~~~~~

Basics

.... A computer conversation-creating and running your first REXX program
and how REXX interprets it

... What goes into a program-elements in the grammar of REXX.

... Syntax errors-how to read REXX messages.

A Computer Conversation
Figure 2-1 shows a sample REXX program. It asks users to type their names. Then
the program greets the user by that name. For example, if the user types Jean, the
program displays Hello JEAN on the screen. If the user does not type anything, the
program displays Hello stranger! on the screen.

/* A conversation */
say "Hello! What is your name?"
pull who
if who= 1111 then say 11 Hello stranger!"
else say "Hello" who

Figure 2-1. HELLO.CMD

This sample program consists of five statements called clauses. The various pieces of
this program are:

/* ... */

say

11 Hel 1o! ••• 11

pull

The first clause is a comment explaining what the
program is about. All REXX programs must start with
a comment beginning in column 1. Except for this, all
other comments are ignored.

The second clause is the keyword instruction say, which
displays text on the screen.

Anything in quotes after say is displayed on the screen
exactly as it was typed. This is called a literal string.

The third clause is the keyword instruction pull, which
reads and stores the response typed by the user of the
program.

Chapter 2. How REXX Works 2-1

who This is a variable: a name given to the place in memory
where the user's response is stored.

if The fourth clause is the keyword instruction if, which
tests for a given condition.

who= 1111 The condition to be tested: whether the variable who is
empty.

then Tells the program to process the instruction that follows,
if the tested condition is true.

say "Hello stranger! 11 Displays Hello stranger! on the screen if the condition
is true.

else This final clause gives an alternative direction: process
the instruction that follows, if the tested condition is not
true.

say "Hell 0 11 who Displays He 11 o, followed by whatever data is stored in
who, if the tested condition is not true.

Creating Your First Program
Follow these steps to create your first program by:

1. Using a word processor or editor to create a text file named HELLO.CMD. Be
sure to make it a straight-ASCII or nondocument file, without special formatting
characters.

2. Typing the HELLO.CMD program exactly as shown in Figure 2-1 on page 2-1.
Be sure that the first line begins with/* and ends with * /.

3. Saving the file and then returning to Presentation Manager.

Running the Program
Follow these steps to run the sample program from the OS/2 command prompt by:

1. Typing the file name of the program. In this example, type he 11 o at the OS/2
prompt and press the Enter key.

2. Typing your name and pressing the Enter key. If your name is Fred, Hello
FRED is displayed on the screen.

When you run this program:

2-2 REXX User's Guide

1. The SAY instruction displays Hello! What is your name? on the screen.

2. You type fred on the command line and press the Enter key.

3. The PULL instruction puts FRED into the variable (the place in memory) called
who.

Problems

4. The IF instruction tests, is who equal to nothing?

who= 1111

To find out, REXX substitutes the stored value for the variable name. Now the
question is, is FRED equal to nothing?

"FRED" = 1111

5. Not true. The SAY instruction after then is not processed. Instead, REXX
processes the SAY instruction after e 1 se.

6. The SAY instruction displays "He 110 11 who, which is evaluated as He 11 o FRED on
the screen.

The following is displayed on the screen, if you press the Enter key without typing a
response.

'
Hello stranger
[C:\]

When you run this program:

1. The PULL instruction puts nothing('"') into the variable (the place in memory)
called who.

2. The IF instruction tests is who equal to nothing?

who= 1111

When the stored value of who is substituted, this is:
1111 = 1111

3. This time, it is true. The SAY instruction after then is processed, and the SAY
instruction after e 1 se is not.

Did you get your version of HELLO.CMD to run? If not, check that you have
correctly typed it in. Also, be sure that you used the nondocument mode of your
text editor to create the program file.

The most common error is forgetting the comment on the first line. Be sure that the
first line begins with the /* and ends with the * / characters. If you mistype or omit
these characters, you get a message on the screen from REXX that looks something
like this.

r ~

[C:\] hello
e +++;

REX0006: Error 6 running C:\HELLO.CMD, line 0: Unmatched "/*" or quote
' ~

Chapter 2. How REXX Works 2-3

This means that REXX found the beginning /* but not the ending * / of the
comment. Edit your HELLO.CMD program file to match the sample in Figure 2-1
on page 2-1.

If you do not start the first line with /*, you get a message like this.

SYS1041: The name specified is not recognized as an
internal or external co11111and, operable program or batch file.

This means that the operating system did not recognize HELLO.CMD as a REXX
program. (See "First-line Comments" in the following text.)

If you get another error, refer to "Fixing Syntax Errors" on page 2-6.

Stopping a Program
If you need to stop a program, press the Control (Ctrl)+Break keys. That is, press
and hold down the Ctrl key and then press the Break key once. REXX stops
running the program and returns to the OS/2 command prompt.

What Goes into a Program

Comments

To explain what happens when you run a REXX program, a number of terms have
been introduced. There will be more; so before continuing, here are definitions of
the terms used so far.

When you write a program, you will want to read it later (for example, before
improving it). Other users of your program will also want to read it to know what
the program is for, what kind of input it can handle, what kind of output it
produces, and so forth. You may also want to write remarks about individual
instructions. All these things, words that are to be read by people but not
interpreted by REXX, are called comments.

To indicate comments, use /* to mark the start of a comment and * / to mark the
end of a comment.

The /* causes REXX to stop interpreting the program. Interpreting starts again
only after a * / is found, which may be a few words or several lines later. For
example:

/* This is a co11111ent. */

say ••• /*This is a C011111ent on the same line as the instruction*/

/* Comnents may
occupy more
than one line. */

First-line Comments: The first line of a REXX program must start with a
comment. The OS/2 program can be programmed with its built-in Batch Facility
and in REXX. Both Batch Facility and REXX programs can use the file name
extension CMD. Each type requires its own special processing, so the OS/2 program
checks the first line of the program. If it finds a REXX-style comment, the program
is processed as REXX. Therefore, to recognize that your program is written in

2-4 REXX User's Guide

REXX, the first line of the file must be or begin a comment. For example:

/* this is a REXX program. */
Also, the first-line comment must begin in column 1. It is sufficient to use /* * /,
but a better use for the space is to give a brief description of your program. You
can also do it this way.

/*************************************
* HELLO.CMD written by J. Smith *
* June 30, 1989 *
* A program to greet a user by name. *
*************************************/

Keyword Instructions

Literal Strings

Words such as SAY, PULL, and IF are part of the REXX language called
instructions. The words themselves are referred to as keywords. You will notice that
they are usually verbs. They are the directions that tell REXX what to do with
information at a certain point in the program.

SAY (display on screen) he 11 o.
PULL (accept and store) information from the user.
IF (test) this situation is true, then perform this action.

When you list these instructions in the order you want REXX to execute. them, you
have created a program.

Clauses: A REXX program is made up of clauses; that is, complete instructions,
including the information it works on and any options that may be used. REXX
reads each clause and processes it before going on to the next. That is why REXX is
an interpreted language.

In the previous sample program, each line of text corresponds to a single clause.
REXX allows exceptions to this (see "More about Clauses" on page 2-10). The
examples and sample programs in this book follow the convention of one clause to a
line, except where noted.

When REXX finds a quote (either 11 or '),it stops processing and looks ahead for
the matching quote. The string of characters inside the matching quotes is used as it
is and is called a literal string. Examples of literal strings are:

'Hello'
"Final result:"

If you need to use quotation marks within a literal string, use quotation marks of the
other type to delimit the string. For example:

"Don't panic"
'He said, "Bother"'

There is another way. Within a literal string, a pair of quotes (the same type that
delimits the string) is interpreted as one of that type. For example:

'Don' 't panic'
"He said, ""Bother"""

(same as "Don't panic")
(same as 'He said, "Bother"')

Chapter 2. How REXX Works 2-5

Variables

Uppercase Translatlon: When a clause is processed, any letters that are not in
quotes are translated to uppercase. For example, the letters a, b, c, ••• z are
changed to A, B, C, • • • Z. This translation applies only to clauses written in
English.

REXX also ignores some of the spaces that you may have written into your
program, keeping only one space between words. Figure 2-2 shows an example
using quotes to get more than one space between words.

/* Example: cases and spaces */
say Hello! What is your name?

say "Hello! What is your name?"

say Hello! 11 "stranger!

Figure 2-2. HELL02.CMD

The following is displayed on the screen, when you run the HELL02 program.

name?"

Note: In the HELLO.CMD sample program, the user's input fred was changed to
FRED. That translation is not the process described here, but is a feature of the
PULL instruction. The PULL instruction always converts the input to uppercase,
which allows the user to type any combination of uppercase and lowercase letters.

When you need to work with changeable information (such as the user's name in
HELLO.CMD), you can reserve a place in memory to store it. That place is called
a variable.

When REXX processes a clause containing a variable, it substitutes the stored data
for the variable. That is how the stored entry FRED took the place of the variable
name who in the HELLO.CMD program.

Refer to Chapter 3, "Variables," for more information on variables.

Fixing Syntax Errors
The rules governing the arrangement of words and punctuation marks in a language
are called syntax. The actions described are part of the syntax for the REXX
language. If REXX encounters something that does not make sense according to its
syntax, it stops running your program, displays the incorrect instruction line and an
error message saying what is wrong, and returns to the OS/2 program.

2-6 REXX User's Guide

Test Yourself

Figure 2-3 shows the HELLO.CMD program with a syntax error. The * / is missing
at the end of the second comment.

/* A conversation */
say "Hello! What is your name? 11

pull who
if who = 1111 then say "Hello stranger! 11

else say 11 Hello 11 who

Figure 2-3. HELLO.CMD with a syntax error

/* Get the answer!

The following is displayed on the screen, when you run the program and enter fred.

[C:\]

This error message means:

• REX0006: is the REXX error number. If you need more information, type help
followed by the error number (REX0006) at the command prompt and press the
Enter key. More information about the error is displayed. You can also find
error message help in the REXX Reference.

• The phrase in l i ne 3 means REXX was processing the clause that started on
line 3 when the error occurred.

Leaving out a final quotation mark at the end of a literal string causes REXX to
issue a similar error message.

1. Read the following program and write down what each clause is and what
REXX will do with it, depending on how the user responds.

/* Who Am I? game */
say 11 What is my name? 11

pull guess
if guess= 11 REXX 11 then say 11 You win! 11

else say no but guess 11 is a good guess. 11

Figure 2-4. WHOAMl.CMD

Create a file called WHOAMl.CMD, type the program shown in Figure 2-4,
and run it.

.I

Did everything happen as you expected? If not, read this chapter again and then
study the explanation below.

Chapter 2. How REXX Works 2-7

2. Figure 2-5 shows a program with an error in it. Create a file called
TROUBLE.CMD, type the program, and run it.

/* Example: a syntax error */
say Unfortunately, there is an error here

Figure 2-5. TROUBLE.CMD

Using the error number, find the cause of the error in the REXX Reference.
Correct the error and run the program again.

Answers:

2-8 REXX User's Guide

1. The syntax of the WHOAMI.CMD program shown in Figure 2-4 on page 2-7
is:

• /* Who Am I? game * / is a comment describing the program. (The first line
of a REXX program must start with a comment.)

• say is an instruction that displays, What is .my name?

• pull is an instruction that stores the user response in the variable guess

• if is an instruction that tests to see if the user typed REXX.

Note: Because pull translates the entry to uppercase, you can type it in any
combination of uppercase and lowercase letters (rexx, Rexx, rExX, and so
on).

• If guess = REXX, then say displays You win!.

• If the user types something other than REXX, then the clause beginning with
else is interpreted and say displays the result as follows:

no but is a string, but it is not in quotes. Therefore, it is changed to
uppercase and is displayed as NO BUT.

guess is the name of a variable. The user's response, translated to
uppercase, is substituted.

"is a good guess. 11 is a literal string. It is displayed as is, even though
guess is also the name of a variable.

The following is displayed on the screen, if the user guesses correctly.

Summary

The following is displayed on the screen, if the user guesses incorrectly.

The following is displayed on the screen, if the user presses the Enter key
without typing a response.

NO BUT is a good guess.
\.

The variable guess was empty, so the say instruction displayed nothing. Only
the blank before and after the variable in the program remain.

That last response does not make much sense. See if you can think of a way to
fix WHOAMI.CMD so that it does. (Hint: Take another look at
HELLO.CMD.)

2. The error number for the program TROUBLE.CMD is 37. The error message
displays Unexpected 11

,
11 or 11

)
11

•

REXX found a comma where it did not belong. It may not be obvious what to
do about it. When you get a message like this, refer to the REXX Reference for
a list of error messages and explanation of their causes.

The comma has a special meaning when it is used outside of a literal string (see
"More about Clauses" on page 2-10). Figure 2-6 shows that to use a comma as
it is intended, it must be enclosed in matching quotes.

/* Example: a syntax error fixed */
say Unfortunately"," there is an error here

Figure 2-6. TROUBLE2.CMD

This completes "Basics" in this chapter. You have learned that REXX reads a
literal string. In addition, you have learned how to:

• Write a program
• Run a program
• Use the SAY and PULL instructions.

"Advanced Topics" in this chapter discusses more about the structure of REXX
programs.

To continue with "Basics," go to page 3-1.

Chapter 2. How REXX Works 2-9

Advanced Topics
In this chapter: -------------------------.

Advanced Topics

... Kinds of clauses-more about REXX syntax.

More about Clauses

Types of Clauses

Null Clauses

Your REXX program is made up of a number of clauses. REXX processes clauses,
one at a time, reading from left to right.

Usually, each clause occupies one line of the program, but that is only a convention.
It is sometimes useful to be able to write more than one clause on a line or to extend
a clause over many lines. The rules for writing clauses are:

• If you want to put more than one clause on a line, you must use a semicolon (;)
to tell REXX where one clause ends and the next begins.

• If you have a long quoted string that you would like to span several lines, write
it as several separate strings and concatenate them. Quoted strings cannot span
more than one line.

• If you want a clause to span more than one line, you must put a comma (,) at
the end of the line to tell REXX that the clause continues on the next line.

• If you use a comma in the middle of a string, REXX interprets the comma as
part of the string. A comma inside a comment is ignored.

What is displayed on the screen, when the program shown in Figure 2-7 is run?

/* Example: there are six clauses in this program */
say "Everybody cheer!"
say 11211

; say 11411
; say 11 611

; say 11811
;

say "Who do we 11
,

11 appreciate? 11

Figure 2-7. RAH.CMD

If you are not sure, create a file called RAH.CMD, type the program, and run it.

The three types of clauses are:

• Null clauses
• Labels
• Instructions.

A clause that is empty (a blank line) or consists only of blanks or comments is called
a null clause. REXX ignores all null clauses, except to check for a comment in the
first line of a program. This means you can use spaces and blank lines to make your
program more readable without affecting its performance.

2-10 REXX User's Guide

Labels

Instructions

Labels are symbols that mark positions or portions of a program, internal

subroutines, condition traps, and so forth. They are distinguished by a trailing colon

(for example, ERROR:). Except for their use with the CALL and SIGNAL

instructions and for internal function calls, labels are regarded as null clauses.

Unlike null and instruction clauses, labels are self-delimiting. They do not require

semicolons or carriage returns to separate them from other clauses.

The three types of instruction clauses are:

Keywords

Assignments

Commands

Clauses that begin with words, such as PULL and SAY, that

REXX recognizes as instructions. Keywords are not reserved

words, but the language processor recognizes them by their context

(see "Variables as Symbols" on page 3-7). Certain keyword

instructions may comprise one or more clauses, such as the IF

instruction.

The keyword instructions are listed alphabetically in the REXX

Reference.

Clauses that assign values to variables. An assignment normally

takes the form symbol = expression. The PARSE instruction and

its variants PULL and ARG also assign values to variables. Refer

to Chapter 3, "Variables," for a description of variable

assignments.

Clauses that are processed by other programs. A clause that is an

expression by itself is interpreted as a command to be passed to the

current environment (the application that initially called REXX).

You can also use the ADDRESS instruction to pass commands to

other environments. Refer to Chapter 5, "Commands," for a

description of more commands.

For More Information
For a more complete discussion of REXX syntax, refer to "General Concepts" in the

REXX Reference.

Chapter 2. How REXX Works 2-11

2-12 REXX User's Guide

Chapter 3. Variables

Basics

Variables are a means of handling changeable information by representing it in terms

of symbols. This chapter explains why variables are important when writing

programs and describes the basic rules for using them.

In this chapter: -------------------------.

Basics

• Handling data with symbols
• Assignments
• Naming variables
• Other assignments.

Handling Data with Symbols
One basic requirement of any program is that it must work with information that is

unknown when the program is written.

You could write a program that totals a fixed list of numbers. For example:

say 11 2 + 3 equals" 2 + 3

This example displays the result 5 each time you run it, but that is all you would get.

This is a reliable program but not a very useful one. A program that is more useful

can process different information each time it is run. You can do this by using

variables to stand in for values to be processed. A variable is a symbol (one or more

characters) that represents a value.

Figure 3-1 shows a program that contains a simple calculation.

/* the sum of two numbers */
say "Type a number:"
pull first /*waits for entry*/
say "Type another number:"
pull second /*waits for entry*/
say "The sum is" first + second

Figure 3-1. ADD2NUM.CMD

Chapter 3. Variables 3-1

Names and Values

Assignments

The following is displayed on the screen, when you run the program.

Two PULL instructions are used, allowing the user to type the two numbers to be
added and then assign (store) them in the variables first and second. The SAY
instruction displays the sum of the two.

The information stored in a variable is called its value. The value can be one or
more words of text, numbers, or nothing. The value of a variable can change any
time you want it to. It can be different each time the program is run, or it can
change niany times in a single run. If the value of a variable changes, the name of
the variable stays the same. It will be easier to remember variables if you choose
names that are meaningful to you.

You can think of a variable as a name for the type of values you want it to hold.

An instruction that stores a value in a variable or changes its value is called an
assignment. The simplest form of assignment is the equal sign, a REXX clause in the
form name = value where:

name

value

is the name you give the variable

is the value it will hold.

In more formal terms, the syntax of an assignment is in the form symbol
expression where:

symbol is a valid variable name

expression is the information to be stored, such as a number, a string, or some
calculation that you want REXX to perform.

REXX evaluates (computes) the expression and then puts the result of that
evaluation into the variable called symbo 1. The assignment instruction means
"Evaluate the expression and store the result as symbo 1."

In an assignment, you name a variable and give it a value. For example:

• To give a variable called total the value a, use the assignment total = e.
• To give another variable, called price, the same value as tota 1, use the

assignment price = tota 1.

• To give the variable called total a new value, the old value of total plus the
value of something, use the assignment total = total + something.

3-2 REXX User's Guide

In a different type of assignment, pul 1 something, the PULL instruction gives the

variable something a value that the user types while the program is running.

Displaying the Value of a Variable
To display the value of a variable while a program is running, use the SAY

instruction, as shown in Figure 3-2.

/* some assignments */
amount = 100
money = "dollars"
say amount money
amount = amount + 25
say amount money

/* assigns 100 to AMOUNT */
/* assigns 11dollars 11 to MONEY */
/*displays 11 100 dollars" */
/* adds 25 to AMOUNT */
/* displays 11 125 dollars" */

/* Now get some input from the user */

say "Type a line, then press the Enter key" /* prompts the user to type */
pull anything /* waits for user to press the Enter key*/
say "You typed:" anything /* displays the input on screen */

Figure 3-2. ASSIGN.CMD

If you use a SAY instruction with a variable that has not been assigned a value,

some languages would generate an error. In REXX, the default value of a variable

is its own name, converted to uppercase letters, as shown in Figure 3-3.

/* display unassigned variables */
say amount /* displays AMOUNT */
say first /* displays FIRST */
say price /* displays PRICE */
say who /* displays WHO */

Figure 3-3. NOASSIGN.CMD

Note: Another way to display the value of a variable while a program is running is

with the TRACE instruction, used for correcting programs. Refer to "Tracing

Evaluation" on page 4-7.

Naming Variables
You can name variables almost anything you want. There are a few rules that

REXX imposes and a few conventions that should be observed. A variable name

can be any symbol (group of characters), containing up to 250 characters, with the

following restrictions:

• The first character must be A-Z, a-z, ! , 1, or _ . REXX translates lowercase

letters to uppercase before using them.

• The rest of the characters may be A-Z, a-z, ! , 1, _, . , or 0-9.

• The period(.) has a special meaning for REXX variables. Do not use it in a

variable name until you understand the rules for forming compound symbols.

See "Using Compound Symbols" on page 3-8.

Chapter 3. Variables 3-3

Test Yourself

Here are some tips for good programming practice:

• Give variables names that describe the data they represent.

• Give variables names that are different from REXX keywords or OS/2
commands.

• Give variables names that will not be confused with each other.

• Do not abbreviate unnecessarily. Itis better that the name is long rather than
obscure.

• Use each variable for only one purpose. Do not use the same variable for a user
entry that you used elsewhere to accumulate a total.

Which of the following could be used as the name of a REXX variable?

1. DOG
2. K9
3. 9T
4. nine_to_five
5. ?7

Answers:

1. OK
2. OK
3. Invalid, because the first character is a numeric digit.
4. OK, same as NINE_TO_FIVE
5. OK

Other Assignments
You can also use variables to store information that is unknown when you are
writing the program.

Assigning User Input
One use for variables that has already been discussed is as a holding place for
information typed by the user. The PULL and ARG keyword instructions are
commonly used for this purpose.

The PULL instruction pauses the running of a program to let you type one or more
items of data, which are then assigned to variables. For example, the PULL
instruction was used in the program shown in Figure 3-1 on page 3-1 to get two
numbers to add.

say "Type a number:"
pull first
say "Type another number:"
pull second

/* waits for entry */

/* waits for entry */

Each PULL instruction pauses the program and displays a ? to prompt you to type
a number and press the Enter key. It then assigns the entry to the variable named in
the instruction.

3-4 REXX User's Guide

You can also use the PULL instruction to collect more than one item in an entry as
long as the items are separated by spaces. The four lines in the preceding example
could be replaced with:

say 11 Type two numbers (leave a space between) and press the Enter key 11

pull first second

The PULL instruction pauses the program so you can type the two numbers to be
added. When you press the Enter key, PULL reads the two numbers and assigns
them, in the order they were typed, to the list of variables (first and second). This
process of reading and separating information is called parsing.

The ARG instruction is another way to assign data from the user. ARG works
similar to PULL, except that items are typed at the command prompt with the
program name. The calculation in the program shown in Figure 3-1 on page 3-1
could also be done by the program shown in Figure 3-4, which follows.

/* the sum of two numbers, this time */
/* typed at the co11111and prompt */
arg first second /*collects entries */
say 11 The sum is" first + second

Figure 3-4. ADD.CMD

The following is displayed on the screen, when you run ADD.CMD.

(
[C: \]add 25 32 J
~-T_h_e~s_um~i_s_5_7~~~~~~~~~~~~~~~--

Notice that with the ARG instruction the program does not pause. The numbers to
be added are typed with the ADD command that starts the program.

Assigning an Expression Result
The instruction amount = amount + 25 in the program shown in Figure 3-2 on
page 3-3 shows how variables can represent another type of unknown
information-data that must be calculated or otherwise manipulated. You can assign
to a variable the result of a calculation or expression, as shown in Figure 3-5.

/* area of a 3 by 5 in. rectangle */
area = 3 * 5
say area "sq. in."

/* area of a 5 in. circle */
diameter = 5
radius = diameter/2

/*displays 11 15 sq. in." */

area = 3.14 * radius * radius
say area 11 sq. in. 11 /*displays "19.6250 sq. in." */

Figure 3-5. AREAS.CMD

REXX expressions can have very complex forms and they can work with all kinds of
information.

Chapter 3. Variables 3-S

Summary
This completes "Basics" in this chapter. You have learned how to:

• Assign a value to a variable using the equal sign
• Display the value of a variable
• Name variables
• Assign user input to a variable.

"Advanced Topics" in this chapter discusses:

• How RE:XX recognizes and processes variables
• Using variables in ordered groups called arrays
• Using variables in complex programs.

To continue with "Basics," go to page 4-1.

3-6 RE:XX User's Guide

)

Advanced Topics
In this chapter: ------------------------.

Advanced Topics

... Variables as symbols

... Using compound symbols

... Variables in programs and subroutines

... Other types of data storage.

Variables as Symbols
Variables are part of a class of REXX language elements called symbols. These
include:

• REXX keywords and instructions

• Labels used to call internal subroutines (see "CALL Instruction" on page 7-2)

• Constants

• Variables.

REXX uses the context of a symbol to determine if it is a keyword, a label, or a
variable. For each symbol it encounters, REXX takes the following steps to
determine how it will be handled:

1. If the first token is a symbol and is followed by:

a. An equal sign (=), the clause is an assignment instruction. The symbol is a
variable and is assigned the expression that follows the equal sign.

b. A colon(:), the clause is a label, signalling the beginning of a subroutine.

2. If the symbol is in the list of REXX keyword instructions or is a keyword used
in a control structure, such as while or then, REXX interprets the keyword
accordingly. (See Chapter 6, "Program Control.")

3. If the symbol begins with a number, it is a constant (an unchangeable value).

If none of these steps determine how the symbol is to be handled, REXX evaluates
the symbol as a variable and replaces the variable name with the stored value of the
symbol.

Constants and Variables
Symbols that begin with a digit (0-9), a period, or a sign (+ or -) are constants.
They cannot be assigned new values and, therefore, cannot be used as variables.
Some examples of constants are:

77 a valid number
.8884 begins with a period (decimal point)
1.2e6 Scientific notation (equal to 1 200 000)
42nd Not a valid number; its value is always 42ND.

All valid numbers are constants, but not all constants are valid numbers. The
symbol 3girls is not a valid number; it cannot be used as a variable name. Its value
is always 3GIRLS.

Chapter 3. Variables 3-7

The default value for a symbol is its own name, translated into uppercase letters. A
variable that has not been assigned a value contains this default value.

Using Compound Symbols
There is a special class of symbols, called compound symbols, in which variables and
constants are combined to create groups of variables for easy processing. A
variable containing a period is treated as a compound symbol. Some examples of
compound symbols are:

fred.3
row.column
array. I.J.
gift.day

You can use compound symbols to create a collection of variables that can be
processed by their derived names. An example of a collection is:

gift.1 = 'A partridge in a pear tree'
gift.2 = 'Two turtle doves'
gift.3 = 'Three French hens'
gift.4 = 'Four calling birds'

If you know what day it is, you know what gift will be given. Assign a variable
called DAY a value of 3.

day = 3

Then the instruction say gift.day, in the program shown in Figure 3-6 on page 3-9,
displays Three French hens on the screen. When the program is run:

1. REXX recognizes the symbol gift.day as compound because it contains a
period.

2. REXX checks if the characters following the period form the name of a variable.
In this example, it is the variable name day.

3. The value of day is substituted for its name, producing a derived name of gift.3.

4. The value of the variable gift. 3 is the literal string 'Three French hens'.

If day had never been given a value, its value would have been its own name; day
and the derived name of the compound symbol gift.day would have been GIFT .DAY.

3-8 REXX User's Guide

Figure 3-6 is a collection of consecutively numbered variables, sometimes called an
array.

/*What my true love sent ••• */

/* First, assign the gifts to the days */
gift.1 'A partridge in a pear tree'
gift.2 'Two turtle doves'
gift.3 'Three French hens'
gift.4 'Four calling birds'
gift.5 'Five golden rings'
gift.6 'Six geese a-laying'
gift.7 'Seven swans a-swimming'
gift.8 'Eight maids a-milking'
gift.9 'Nine ladies dancing'
gift.le= 'Ten lords a-leaping'
gift.11 = 'Eleven pipers piping'
gift.12 = 'Twelve drummers drumming'

/* list all gifts from the 12th day to */
/* the 1st day; refer to the discussion */
/* of loops on page 6-11. */
do day=12 to 1
say gift.day

end

/* now display the gift for a chosen day */
say "Type a number from 1 to 12. 11

pull day

/* check for proper input */
/* see page 9-1 *I
if \ datatype{day,n) then

exit
/* if the entry is not a number */
/* then exit the program */

if day < 1 I day > 12 then
exit

say gift.day

Figure 3-6. TWELVDAY.CMD

/* same if it is out of range */

Chapter 3. Variables 3-9

Test Yourself
1. Write a program to display the days of the week repeatedly, as:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Monday

You will need to create an endless loop, using the DO instruction. (See
"Repetitive Tasks" on page 6-11 for information about loops.)

Note: To stop this program, press the Control (Ctrl)+Break keys if you are
running the program in an OS/2 command prompt session. Select Interactive
trace on from the Options menu if you are running it in PMRE:XX. This stops
any RE:XX program.

2. Extend this program to display the days of the month, as:

Sunday 1st January
Monday 2nd January

Answers:

1. Figure 3-7 shows one solution.

/* To display the days of the week indefinitely */
do forever

end

say "Sunday"
say 11 Monday 11

say "Tuesday"
say "Wednesday"
say "Thursday"
say 11 Friday 11

say 11 Saturday 11

Figure 3-7. DAYSl.CMD

3-10 REXX User's Guide

In view of the preceding discussion, Figure 3-8 shows a solution that uses
compound variables.

/* to display the days of the week indefinitely */
day.1 = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"

do j = 1
say day.j
if j = 7 then j = e

end

Figure 3-8. DA YS2.CMD

2. Figure 3-9 shows how to extend the idea using the SELECT instruction.

/* to display the days of the month for January */
day.1 = "Sunday"
day.2 = "Monday"
day.3 = "Tuesday"
day.4 = "Wednesday"
day.5 = "Thursday"
day.6 = "Friday"
day.7 = "Saturday"

do dayofmonth = 1 to 31
dayofweek = (dayofmonth+6)//7 + 1

select

end

when dayofmonth = 1 then th = "st"
when dayofmonth = 2 then th = 11 nd 11

when dayofmonth = 3 then th = 11 rd 11

when dayofmonth = 21 then th = "st"
when dayofmonth = 22 then th = 11 nd 11

when dayofmonth = 23 then th = "rd"
when dayofmonth = 31 then th = "st"
otherwise th = 11 th"

say day.dayofweek dayofmonthl Ith "January"
end

Figure 3-9. MONTHl.CMD

Chapter 3. Variables 3-11

A Scoreboard Array
Figure 3-10 shows how you can use compound symbols to collect and process data.
In the first part of the program, the first player's score is entered into SCORE. I, the
second player's into SCORE. 2, and so on. By using compound symbols, the SCORE
array is processed to give the result in the required form.

/* This is a scoreboard for a game. Any number of */
/* players can play. The rules for scoring are these: */
/* */
/* Each player has one turn and can score any number of */
/* points; fractions of a point are not allowed. The */
/* scores are entered into the computer and the program */
/* replies with */
/* */
/* the average score {to the nearest hundredth of */
/* a point) */
/* the highest score *I
/* the winner {or, in the case of a tie, */
/* the winners) *I

/*--*/
/* Obtain scores from p 1 ayers * /
/*--*/
say "Type the score for each player in turn. When all"
say "have been typed, enter a blank line!"
say
n=l
do forever

say 11 Please type the score for player "n
pull score.n
select

when datatype{score.n,whole) then n=n+l
when score.n= 1111 then leave
otherwise say "The score must be a whole number."

end
end

n = n - 1 /* now n = number of players */
if n = e then exit
/*--*/
/* compute average score */
/*--*/
total = e
do player = 1 to n

total = total + score.player
end

say "Average score is",
format{total/n,,2,0) /* format 11 total/n 11 with */

/* no leading blanks, */
/* round to 2 decimal places,*/
/* do not use exponential */
/* notation */

/* continued */

Figure 3-10 (Part 1 of 2). GAME.CMD

3-12 REXX User's Guide

Stems and Tails

/*--*/
/* compute highest score */
/*--*/
highest = e
do player = I to n

highest = max(highest,score.player)
end
say "Highest score is" highest

/*--*/
/* Now compute: */
/* * W, the total number of players that have a score */
/* equal to HIGHEST */
/* *WINNER.I, WINNER.2 ••• WINNER.W, the id-numbers */
/* of these players */
/*--*/
w = e /* number of winners * /
do player = I to n

end

if score.player = highest then do
w = w + I
winner.w = player

end

/*--*/
/* announce winners */
/*--*/
if w = I

then say "The winner is Player #"winner.I
else do

say "There is a draw for top place. The winners are"
do p = I to w

say 11 Player #11 winner.p
end

end
say

Figure 3-10 (Part 2 of 2). GAME.CMD

The stem of a compound symbol is the portion up to and including the first period.
That is, it is a valid variable name that ends with a period.

The stem is followed by a tail, comprised of one or more valid symbols (constants or
variables) separated by periods. You can refer to all the variables in an array by
using the stem of the array. For example:

player. = e
say player.I player.2 player.golf /* displays '0 e e• */

It is often convenient to set all variables in an array to 0 in this way.

Chapter 3. Variables 3-13

Filling a Two-Dimensional Array
You can have more than one period in a compound symbol. For example, here is
the beginning of a program for playing checkers. BOARD is a 2-dimensional array, 8
squares by 8 squares. The squares on the board are called BOARD.ROW.COL and there
are 64 of them. Figure 3-11 shows how the men are set at the start of the game.

8 II • • II • 6 • • • • • • • 4 II II
• • • Row 2 • • • • • • • 2 3 4 5 6 7 8

Column

Figure 3-11. Checker Board

3-14 REXX User's Guide

Figure 3-12 shows a program that sets the men on the checker board.

/* This program simulates a board on which the game of */
/* checkers can be played. */

/* In the internal representation, Red's 11 men 11 are */
/* represented by the character 11 r 11 and Red's "kings" */
/* by the character 11 R11

• Similarly, Black's 11men 11 and */
/* "kings" are represented by 11 b11 and 11 811

• */
/*--*/
/* Clear the board */
/*--*/
board. = 11 11

/*--*/
/* Set out the men */
/*--*/
do col = 1 by 2 to 7

board.1. col = 11 r 11

end
do col = 2 by 2 to 8

board.2.col = 11 r 11

end
do col = 1 by 2 to 7

board.3.col = 11 r 11

end
do col = 2 by 2 to 8

board.6.col = 11 b11

end
do col = 1 by 2 to 7

board.7.col = 11 b11

end
do col = 2 by 2 to 8

board.8.col = 11 b11

end

Figure 3-12. CHECKERS.CMD

Variables in Programs and Subroutines

Special Variables

Here are some considerations for using variables in RE:XX programs. For more

information about variables, including how programs written in other languages can

use RE:XX variables, see the REXX Reference.

RE:XX has three special variables that are assigned values automatically as needed:

RESULT holds the value set by a RETURN instruction in a subroutine. (See

"RETURN Instruction" on page 7-3.)

SIGL holds the line number of the last call to a label. (See "CALL

Instruction" on page 7-2 and "SIGNAL Instruction" on page 7-14.)

RC holds the return code from the last OS/2 command issued. (See

"Reading Return Codes" on page 5-9.)

Chapter 3. Variables 3-15

SVMBOL()Function
It is sometimes useful to check whether a symbol has already been used as a name of
a variable. To do this, use the SYMBOLO function, SYMBOL(name), where name is
the name of the symbol that you want to test. The SYMBOLO function returns:

BAD if name is not a valid symbol

VAR if name has been used as a variable in the program

LIT if the symbol name is a valid variable that has not yet been assigned a value,
or if it is a constant symbol (such as a number).

One use of SYMBOLO is to ensure initialization of a variable; that is, making certain
that the variable is set to a proper starting value before it is used in an operation.
For example, you can use SYMBOLO to make sure REXX does not try to add a
variable called payment to one named cash until cash has been set to a numeric
value.

if symbol ("CASH") = "LIT" then cash = 0

cash = cash + payment

Put CASH in quotes to test the symbol rather than its value. Notice what happens if
the argument of SYMBOLO is not in quotes.

cash = 100

say symbol(CASH)

say symbo1(11 CASH 11
)

/*displays 'LIT', because the value*/
/* of CASH is 100 - a constant */

/*displays 'VAR', because CASH is */
/* the name of a variable */

Without the enclosing quotes, CASH is treated as a variable and its value is
substituted before the function is performed.

PROCEDURE Instruction
When you are writing a subroutine, you may not know the names of all the variables
in the main program. You could check by reading the entire program every time
you wanted to create a new name, but this is tedious and prone to error. To delete
all variables, for the sake of the subroutine, use the REXX PROCEDURE
instruction.

Once this instruction has been processed, new variables can be created that are
regarded as different, even if some of them have the same names as variables that
existed before the PROCEDURE instruction was processed.

When a RETURN instruction is processed, the new variables are deleted and the
original variables are restored.

A PROCEDURE instruction can only be used within an internal routine. It can be
used only once and must be the first instruction in the routine. For further details
on the PROCEDURE instruction, see the REXX Reference.

3-16 REXX User's Guide

Figure 3-13 shows count being used for two separate purposes.

count = 999
list = 3 4 5 6 7

CALL average list-----------.
l

~
/* At this point:
/*

EXIT

+ AVERAGE:

COUNT = 999 */
RESULT = 5 */

/*The argument must be a list */
/* of numbers, delimited by blanks.*/
/* The average is returned. */

PROCEDURE

/* At this point the value of LIST */
/* would be LIST */
/*and COUNT would be COUNT. */

+ ARG inputlist
sum = e
do count= 1 to words(inputlist)

sum= sum+ word(inputlist,count)
end

RETURN
J

sum/words(inputlist)

Figure 3-13. PROCEDURE.CMD

PROCEDURE EXPOSE Instruction
To share a limited set of variables between the main routine and the subroutine

(leaving all the other variables protected), use PROCEDURE EXPOSE name [name]
[name] ••. , where name is the name of a variable to be shared.

You can also name a list of variables to be shared. By specifying the stem of an

array (PROCEDURE EXPOSE p 1 ayer.), you can share all of the variables therein.

For further details, see the discussion of the PROCEDURE instruction in the REXX

Reference.

Chapter 3. Variables 3-17

Other Types of Data Storage
Variables are the principal means of manipulating data within a REXX program.
REXX features other ways to work with data outside the program and to share data
with other programs, such as:

Queues

Files

store sequential data in memory.

provide more permanent storage on disk.

Refer to Chapter 10, "Input and Output," for the REXX instructions and functions
that work with external data.

3-18 REXX User's Guide

Chapter 4. Expressions

Basics

An expression is a description of information that you want REXX to compute. It

can be as simple as adding two numbers or as complex as you want to make it.

In this chapter: -------------------------.

Basics

... Transforming data

... Operator precedence

... Using functions

... Comparing data

... Using comparisons for program control

... Using expressions in instructions

... Tracing evaluation.

Transforming Data
The process of REXX reading an expression and producing a result is called

evaluating the expression. REXX has many rules for evaluating expressions.

Expressions are made up of terms, the data that is computed, and operators, the

computations that are performed.

Some examples of REXX expressions are:

/* some arithmetic */
say 3 + 2 /* displays 11511 */
say 3 * 2 /* displays 11611 */
say 3 2 /* displays 113 211 */
say 3I12 /* displays 113211 */

/* some literal strings */
say 11 box 11 11 car11 /* displays "box car" */
say 11 box 1111 car11 /* displays 11 box 11 car11 */
say 11 box 11 I l 11car11 /* displays "boxcar" */

/* some variables */
x = 6
y = 7
say x + y /* displays 11 13 11 */
x = x + y
say x /* displays 11 13 11 */

Chapter 4. Expressions 4-1

Terms

Basic Operators

The terms of an expression are the individual pieces of information that you want
REXX to work on. The types of terms that make up expressions are:

Numbers

Literal strings

Variables

Function calls

Strings that REXX can calculate. REXX recognizes them as
constant values. For example:

25 3.14159 -6 1989

Anything within matched quotes REXX accepts as is. For
example:
11Wednesday 11 1 C: \PROGRAMS\' 11 09 June 89 11

Symbols that stand for changeable data. When you use a
variable in an expression, REXX evaluates it and uses its value
as the expression. For example:

date = 30 /* stores the number 30 */

month = 11 March 11

say month date

/* in the variable DATE */

/* stores the literal string */
/* "March" in the variable MONTH */

/* displays "March 30 11 on screen */

These are special computations, some built into RE:XX, others
that you can create. When you use a function call in an
expression, REXX performs the function's calculation first, then
uses its result as the expression term. For example:

say time() /* displays the current time */

say substr(11 REXX 11 ,2,1) /*displays 11 E11 on screen; */
/*i.e., 1 character from the */
/* string 11 REXX 11 beginning */
/* with the 2nd character */

The most commonly used operators are those used for arithmetic and concatenation.
Arithmetic performs adding, subtracting, multiplying, and dividing. Some examples
of arithmetic operators are:

/* add, subtract, multiply */
say 14 + 5 /* displays 11 19 11 */
say 14 - 5 /* displays 11 911 */
say 14 * 5 /* displays 11 70 11 */

/* ••• and three ways to divide */
say 14 / 5 /* displays 112.811

- */

say 14 % 5

say 14 // 5

/* nonnal division */

/* displays 11211
- the */

/* integer result only */

/* displays 11411 -the */
/* remainder only */

4-2 REXX User's Guide

For more information about using numbers in RE:XX, see Chapter 9, "Arithmetic."

Concatenation joins strings together with:

• A single blank, if you leave one or more blanks between the terms of an

expression

• No intervening blanks, if you put the terms together. This is called abutta/. For

abuttal to work, RE:XX must be able to recognize the terms as separate.

• No intervening blanks, if you use the concatenation operator vbar.I (two vertical

bars). Use this operator where abuttal does not work (such as with two
variables) or to state exactly how you want the strings joined.

Note: On the OS/2 operating system, RE:XX uses ASCII character 124 as the
concatenation operator and as the logical OR operator. This character
may appear as a solid vertical bar (I) or as a split vertical bar (I). The

character on the screen may not match the character engraved on the
key. If you receive error 13, invalid character in program on an

instruction including a vertical bar character, make sure this character is
ASCII 124.

Some examples of concatenation are:

say "slow" "coach" /* displays 'slow coach' */

adjective = "slow"
say adjective "coach" /* displays 'slow coach'

say adjective 11 coach 11 /* displays 'slowcoach'
/* (using abuttal)

say "slow" I l 11 coach 11 /*displays 'slowcoach'

say 4 5
say 4115

tens = 4
units = 5
say tensunits

say tens I I units
say (4115) I 3

/* displays '4 5'
/* displays 1 45 1

/* displays 'TENSUNITS' (abuttal
/* produces a new symbol)

/* says 145 1

/*displays 1 15 1

*/

*/
*/

*/

*/
*/

*/

*/

*/

*/

Concatenation works with numeric as well as non-numeric strings. In the previous

example, parentheses are used to force RE:XX to concatenate the 4 and the 5 before

dividing the result by 3.

Operator Precedence
Without parentheses in the previous example, RE:XX would have performed the

division first, then the concatenation. It would divide 5 by 3 (result 1.6666667) and

then join the 4 in front. For example:

say 4115 / 3 /* displays 1 41.6666667 1 */

RE:XX gives precedence, or priority, to division over concatenation. This means that

RE:XX has a set of built-in rules for the order in which operations are performed.

Chapter 4. Expressions 4-3

Using Functions

Basically, REXX evaluates an expression by reading it from left to right. Before it
does, it takes into account:

• Any parentheses you have used.

• The built-in operator precedence of REXX, which means some operations get
higher priority than others, no matter where they are in the expression.
Multiplication and division come before addition and subtraction; addition and
subtraction before concatenation. See page 4-10 for a listing of REXX operator
precedence.

You can always use parentheses to override the precedence rules of REXX. It is a
good practice to use parentheses because they help make your program more
readable.

For more extensive computations, REXX has built-in/unctions. A function always
returns (produces) a value. This value is represented in an expression by a symbol
referred to as a function call. All function calls consist of a name, followed by
parentheses. There is no space between the name and the first parenthesis. For
example:

length(11 Madison 11
)

• The value you want the function to work on is called the function's argument.
In this example, the argument is the literal string "Madi son".

• The value a function call produces is its return value. The return value depends
on what you put inside the parentheses. In this example, the LENGTHO
function returns the value 7, the number of characters in Madison.

The instruction, say length ("Madi son Avenue") displays the return value 14.

The argument of a function can itself be an expression. For example, the function
ABSO returns the absolute (positive) value of a given number. Given an arithmetic
expression as an argument, ABSO first evaluates the expression and gets the result.
In the following example, the ABSO function calculates the result -98 and returns
the absolute value of that result, which is 98.

say abs(2 - (50 * 2)) /* displays '98' */

If a function allows for or requires more than one argument, the arguments are
separated by commas. For example:

say copies("=",80) /*displays 80 "=" characters */

Some functions need no arguments. For example, the DATEO function gets the
date from your system clock. It has several optional arguments.

say date() /* displays '15 Mar 89' */
say date(w) /* displays 'Wednesday' */
say date(s) /* displays '19890315' */

The DAT ATYPEO function reports the type of data an expression evaluates as:

strl = "ABC" /* a character string */
str2 = "12" /* a numeric string */
say datatype(strl) /* displays 'CHAR' */
say datatype(str2) /* displays 'NUM' */

4-4 REXX User's Guide

Comparing Data

You can include a function call anywhere within an expression. REXX performs the
function's computation and then substitutes the return value for the function call
before it evaluates the entire expression.

For more information about functions, see Chapter 7, "Program Structure."

Refer to the REXX Reference for descriptions of the REXX built-in functions.

Comparisons test data rather than manipulate it. The following is an example of a
comparison in a program (see Figure 2-1 on page 2-1).

if who= 1111 then say •••

What happened next in the program depended on the test: was the variable who
empty?

Comparisons are performed using the following operators:

Operator Meaning

= Equal

\= Not equal

<>or>< Not equal

> Greater than

\> Not greater than

< Less than

\< Not less than

The comparison operators can be combined so that >= stands for greater than or
equal and\>= means not greater than or equal (same as<).

The backslash character(\) negates a comparison operator, turning equal to not
equal and so on. This character is also used for not in expressions generally. (See
NOT Operator (\) on page 4-17.)

The equal sign (=) can have different meanings in REXX depending on its position
in a clause. For example:

amount = 5 /* The variable AMOUNT gets the value 5 */

say amount = 5 /* Compare the value of AMOUNT with 5 */
/* If they are the same, displays 1 11 */
/* Otherwise, displays 'O' */

The rule is that a clause beginning with symbol = ••. is an assignment. An equal
sign anywhere else in a clause usually stands as a comparison operator. There are
exceptions. The equal sign has a special use in the PARSE instruction, and it is a
character, not an operator, in a comment or literal string.

Chapter 4. Expressions 4-5

Testing for True or False
The result of a comparison expression is either true (1) or false (G). For example:

/* some comparisons */
say 5 = 5
say 5 <> 5
say 5 = 4
say 2 + 2 = 4
say 2 + 2 = 5

howmuch = 2 + 3

say "apples" = "oranges"

fruit = "oranges"

say fruit = "apples"

say fruit = "oranges"

say howmuch fruit

/* displays 'l' */
/* displays •e• */
/* displays •e• */
/* displays '1' */
/* displays 'G' */

/* assigns the sum */
/* of 2 and 3 to the */
/* variable HOWMUCH */

/* displays '0' */

/* assigns the string */
/* "oranges" to the */
/* variable FRUIT */

/* displays 'G'

/*displays '1'

*/

*/

/* displays 11 5 oranges" */

say howmuch fruit = 11 4 oranges" /* displays '0' */
say howmuch fruit = 11 5 plums" /* displays 'G' */
say howmuch fruit= 11 5 oranges" /*displays '1' */

Combining Expressions
It is often useful to combine two or more comparisons to find a single true-or-false
value. You can have REXX evaluate a set of comparisons and compute an overall
value of l or 0 for the set. You can combine comparisons so that REXX evaluates
them as:

4-6 REXX User's Guide

• True (1) only if all of the comparisons in the set evaluate as 1, but false (G) if any
one or more of them evaluates as G. This is called an AND condition. To
combine comparisons this way, use the AND(&) operator. For example:

fruit = "grapes"
howmuch = 10
say fruit = "apples" & howmuch = 10
say fruit = "grapes" & howmuch = 5
say fruit = "grapes" & howmuch = 10

/* displays 'G'
/* displays 'G'
/*displays 1 11

*/
*/
*/

Only in the third example are both of the comparisons true, so only, then, is the
combined result evaluated as 1.

• True (1) if any one or more of the comparisons in the set evaluate as 1, and false
(0) only if all the comparisons evaluate as e. This is called an OR condition. To
combine comparisons this way, use the OR (I) operator. For example:

fruit = "grapes"
howmuch = le
say fruit = "apples" howmuch = le /* displays '1' */
say fruit = "grapes" howmuch = 5 /* displays '1' */
say fruit = "grapes" howmuch = le /* displays '1' */
say fruit = "apples" howmuch = 5 /* displays •e• */

Both comparisons, individually, had to evaluate as e in order for their combined
value to be e.

Using Comparisons for Program Control
REXX has a set of instructions that control the program and choose the action a
program is to take in a given situation. That situation is determined by
comparisons.

Instructions, such as IF expression THEN ••• , must be given an expression that
computes toe or 1. In the example of IF ... THEN ... , a result of 1 means the clause
following THEN is processed; a result of e means that it is not processed.

The following two examples give the same result.

ready = "YES"

if ready= "YES" then •••

or

ready = 1

if ready then

You can use whichever form you prefer.

For more information about how comparisons can control a program's processing,
see Chapter 6, "Program Control."

Using Expressions in Instructions
The REXX Reference and the online OS/2 Procedures Language/2 REXX provide an
alphabetical listing of all REXX instructions and their syntax. Where the syntax of
an instruction calls for or allows an expression, you can use any of the rules
described here.

Tracing Evaluation
If your program produces unexpected results, the problem may be that an expression
was mis-stated. When your program will not run, use the TRACE instruction.
TRACE displays how REXX evaluates expressions while the program is actually
running. The options most often used are:

TRACE Intermediates

TRACE Results

Displays the immediate result of each operation.

Displays only the final result of each expression, after it
has been evaluated.

Chapter 4. Expressions 4-7

When a TRACE instruction is being interpreted, the first letter of the option
determines the type of tracing that is switched on; the rest of the word is ignored.

For example, to TRACE intermediate results for an expression, you could write:

TRACE I
••• expression

Figure 4-1 shows a program that uses the TRACE I instruction.

/* Example: to show how an expression
/* is evaluated, operation by operation
x = 9

*/
*/

y = 2
trace I
if x + 1 > 5 * y then

say 11 x is big enough. 11

/* Switch on tracing. */
/* If the comparison */
/*evaluates as 'l' */
/* ••• display this. */

Figure 4-1. TTRACE.CMD

The following is displayed on the screen when you run the program.

[C:\]
\.

The symbols mean:

- An instruction is being traced. The number on the left is the line number in
your program.

>V> Value of a Variable.

>l> Value of a Literal.

>O> Result of an Operation.

»> The final result of the evaluation.

4-8 REXX User's Guide

Summary

The output information below Figure 4-1 on page 4-8 shows that the final result is

false (0). Because the IF expression is false, the THEN clause is not processed.

You may not need a trace of every intermediate result. For example, to display only

the final evaluation results, use TRACE results.

TRACE R
••• expression

Figure 4-2 shows a program that uses the TRACER instruction.

/* Example: to show how an expression is evaluated, */
/* operation by operation using TRACE R */
x = 9
y = 2
trace R /* Switch on tracing. */
if x + 1 > 5 * y then /* If the comparison */

/*evaluates as '1' */
say "x is big enough." /* •.• display this. */

Figure 4-2. RTRACE.CMD

The following is displayed on the screen when you run the program.

>>> "8"
[C:\]

\.

Here too, the symbol »> indicates the final result. Again, the final result is false (8).

Because the IF expression is false, the THEN clause is not processed.

This completes "Basics" in this chapter. You have learned how to:

• Use basic REXX arithmetic
• Join strings by concatenation
• Test data using comparison operators
• Use trace evaluation while a program runs.

"Advanced Topics" in this chapter discusses:

• Operator precedence
• Using parentheses
• Manipulating strings with functions
• More about comparisons.

To continue with "Basics," go to page 5-1.

Chapter 4. Expressions 4-9

Advanced Topics

Precedence

In this chapter: ------------------------.

Advanced Topics

.... Precedence

.... Using parentheses

.... More about numbers

.... Concatenation

.... Substring functions

.... Comparisons

.... Translating and converting data.

When evaluating an expression, REXX reads the operations from left to right. But
some operators are given a higher precedence (priority) than others and are
processed first regardless of their position. The complete order of precedence of the
operators by group (highest priority at the top) is:

Prefix operators

Power

Multiply and divide

Add and subtract

Concatenation
with/without blank

Comparison operators

\ - +

**

*I%//

+ -

11 11 II abuttal

== = \==
\=
> < >> << ><
<> >= \<
>>= \<<
<= \> <<=
\>>

Logical and &

Logical or I &&
(inclusive/exclusive)

Note: For the OS/2 operating system, 11 can also be used as the concatenation
operator and as the logical OR operator. See "Basic Operators" on page 4-2
for additional information.

From this list, you can determine the sequence of operations for any expression. For
example:

Say 3 + 2 * 5 /* displays 1 13 1 */

Because multiply (*) has a higher priority than add (+), the multiply operation is
done before the operation on its left. Similarly, because add (+)has a higher

4-10 REXX User's Guide

priority than concatenate (blank), the add operation is done before the concatenate

operation. For example:

Say 3 2+2 5 /* displays '3 4 5' */

Using Parentheses

Test Yourself

You can use parentheses to force evaluation in a different order since expressions

inside parentheses are evaluated first. For example the value of:

6 - 4 + 1 IS 3.
6 - (4 + 1) is 1.
3 + 2112 + 3 is 55.
3 +(2112)+ 3 is 28.

What is the value of:

1. 4 + 20 "tailors"
2. 24 = 4 + 20
3. "eggs" = "eggs" & 2*2 = 4
4. 3 I 2*5
5. 3 11 7+7
6. 3(2+2)
7. (2+2)3.

Answers:

1. 24 tailors (add before concatenate)
2. 1 (add before comparison)
3. 1 (comparison before AND, multiply before AND, comparison before AND)

4. 7.5 (operators that have the same priority are processed left to right)

5. 314 (add before concatenate)
6. calls the function 3 with the argument 4 (or gives a syntax error if a function or

subroutine named 3 does not exist)
7. 43 (evaluate expression in parentheses first; then do the abuttal).

More about Numbers

Concatenation

REXX regards everything in a program as a string to be evaluated. REXX treats

certain strings as numbers that can be calculated, such as:

• A number begins with a digit, decimal point, or sign (+ or -).

• Powers of 10 are indicated by E. These are called floating point numbers.

• Numbers may be in quotes, and spaces are allowed around the plus or minus

sign.

For more information about valid numbers, see "About REXX Numbers" on
page 9-1.

The three concatenation operations are:

• Leave one or more spaces between the terms. REXX joins the terms with a
single blank.

• Put the terms together with no space. You can do this so long as REXX can

recognize the terms as separate

Chapter 4. Expressions 4-11

• Use the II operator to join the terms without a blank.

For the OS/2 operating system, 11 can also be used as the concatenation
operator. See "Basic Operators" on page 4-2 for further information.

Substring Functions
The following two substring functions are useful when working with strings.

Getting Pieces of Strings
To select a part of a string (a substring), use the SUBSTRO function. For example:

substr(string,n)
substr(string,n,length)

where:

string is the string from which the substring is taken.

n is the position of the character in string that is the first character of the
substring. (Characters in a string are numbered 1,2,3, ...)

1 ength (optional); is the number of characters in the substring. If you omit it, the
rest of string (from the nth position to the end) is returned.

An example using the SUBSTRO function is:

say substr('revealing',1,6) /*displays 'reveal' */
verb= substr('revealing',1,6) /*stores 'reveal' */

say substr(verb,2)
say substr(verb,2,3)
say substr(verb,3,4)

Finding Lengths of Strings

/* in a variable */

/*displays 'eveal' */
/* displays 'eve' */
/*displays 'veal' */

To find out the length of the result of any string or string expression, use the
LENGTHO function, length(n), where n is the number of characters in the string.
For example:

verb= "reveal"
say length(verb)

4-12 REXX User's Guide

/* displays 1 6 1 */

Parsing

Comparisons

Figure 4-3 shows a program that uses these two functions. The program checks a

file name typed by a user.

/* Checking a file name */
say "Type a file name"
pull fname 11

•
11ext

if length(fname) > 8
then

do

/* Pull reads the file name
/* up to the period (if an
/* extension is entered)

fname = substr(fname,1,8)

end

say "The file name you typed was too long. 11
,

fname "will be used. 11

Figure 4-3. CHKFNAME.CMD

*/
*/
*/

For more information about substrings, see "String Functions" on page 8-13.

Another way to manipulate and analyze string expressions is by parsing. See

Chapter 8, "Parsing."

Comparisons are performed using these operators:

(equal)

\=or<> or><

>

\>
<

\<

(not equal)

(greater than)

(not greater than)

(less than)

(not less than).

Comparing Numbers
Use comparison operators in an expression to compare the terms. The result is 1 if

the comparison is true; (:) if the comparison is false.

For strings that are numbers, on which REXX can perform arithmetic, comparisons

work differently. If both the terms being compared are numbers, comparison is

numeric, rather than character-by-character. For example the value of:

5 > 3 is 1 (true)
2.0 = 002 is 1 (true)
3E2 < 299 is 0 (false).

Chapter 4. Expressions 4-13

Comparing Characters
Comparing characters is performed by using one of two methods, normal comparison
or strict comparison. Normal comparison ignores leading and trailing blanks and
compares character-by-character. Strict comparison compares character-by-character
including any blanks.

The value of a character is less than another character according to this sequence of
lowest to highest value.

Lowest------------------- Highest

Highest

... I
e ... 9
: ••• iJ
A ••• z
[... '
a ••• z
{ ...•

blank
special characters
numbers
special characters
uppercase letters
special characters
lowercase letters
special characters

Note: Special characters are mixed between the previously listed categories of
numbers and letters as shown. Only unaccented characters and numbers are in
numerical order in any of the code pages supported by the OS/2 program. All
characters are compared through pure binary sorting according to their order in the
code page you are using. For more information on the special characters for the
primary code page you are using, see Keyboards and Code Pages.

Normal Comparison
If either of the terms is not a number, leading and trailing blanks are ignored. The
shorter string is padded on the right with blanks and then the strings are compared
from left to right, character-by-character. If the strings are not equal, the first pair
of characters that do not match determine the result.

For example, if 11 Cheese" is compared with 11 Chal k 11
:

leading blanks
ignored

n
I I iclhlelelslel

I I I
== *----- 'a' < 'e', so 'Chalk' <<' Cheese'
I I I

4-14 REXX User's Guide

shorter string
padded with blanks

Test Yourself

Strict Comparisons

1. What is the value of each of the following expressions?

a. "3" < "five"
b. "Kilogram" < "kilogram"
c. "a" > "#"
d. "q" > "?"
e. "9a" > "9"
f. "?" > " "

2. What is displayed on the screen when the program shown in Figure 4-4 is run?

/* A fair comparison */
say 11Apples 11 = "Apples"

Figure 4-4. F AIR.CMD

Answers:

1. All are 1 (true).

2. The following is displayed on the screen; because "Apples" is equal to "Apples",

the resultis 1 (true).

[

~C:\] fair l
__ [_c:_\]~~~~~~~~~~~--

By using strict-comparison operators, we can specify character-by-character

comparisons, with no padding of either of the strings. They do not try to perform

numeric comparisons because they test for an exact match between the two strings.

To find out whether two strings are exactly equal, use the double-equal sign(==)

operator. For example:

The value of "cookies" = " cookies" is 1 (true)

The value of "cookies" \ = " cookies" is 0 (false)

The value of "cookies" = = " cookies" is 0 (false)

The value of "cookies"\== " cookies" is 1 (true)

Blanks are lower in the ASCII sequence than letters. Strict comparison compares the

leading blanks in its evaluation.

Chapter 4. Expressions 4-15

To find out whether two strings are exactly greater than or exactly less than, use the
double-greater-than(>>) and double-less-than(<<) operators. A character is less
than another character if it comes earlier in the sequence, see "Comparing
Characters" on page 4-14. For example the value of:

"cookies" > > '1c~rrots" is 1 (true)

"$10" > > "nine" is 0 (false)

"steak" < < "fish" is 0 (false)

" steak" < < "steak" is 1 (true).

Since the blank is lower in the sequence of characters, 11 steak" is strictly less than
"steak".

See the difference now when we strictly compare 11 Cheese" and "Chal k11
:

leading blanks
counted

n
I I lclhlelelslel

I
*-------•a blank< 'C' so ' Cheese' << 'Chalk'

no padding of the
shorter string

Strict-comparison operators are especially useful when you want to compare strings
for leading and trailing blanks.

4-16 REXX User's Guide

Boolean Operators

Strict comparison is not usually applied to numeric strings, because the reason for

such a comparison is generally to compare values rather than characters. Given that

x = 11 211 and y = 11 +2 11
, the value of:

x = y is 1 (true)

x \ = y is 0 (false)

x = = y is 0 (false)

x \= = y is 1 (true).

Strict comparison is also useful if you want to check for nonsignificant zeroes or

exponential notation. For example, the value of:

32.000 = 32 is 1 (true)

32.000 = = 32 is 0 (false)

000000 = OEOOOO is 1 (true)

000000 = = OEOOOO is 0 (false).

The logical or Boolean operators modify and combine expressions. The Boolean

operators are:

• NOT Operator (\)-A not operator(\) placed in front of a term changes its value

from true to false or from false to true.

A NOT operator(\) reverses the result of any comparison it precedes. An

expression that REXX otherwise evaluates as 1 is changed toe when you put

the NOT operator in front of it. Similarly, an expression that REXX would

otherwise evaluate as e is evaluated as 1 when preceded by a NOT operator.

For example:

say \ e /*displays '1' */
say \ 1 /* displays •e• */
say \ 2 /* returns a syntax error */

say \ (3 = 3) /* displays •e• */

fruit = "oranges" /* assigns "oranges" to */
/* the variable FRUIT */

say fruit = 11 oranges 11 /* displays '1' */
say fruit = "apples" /* displays ·e· */
say \(fruit = "apples") /* displays 'l' */
say \(fruit = "oranges") /* displays '0' */

To combine comparisons, to get the overall true-or-false value of more than one

condition, use the logical operators AND and OR.

• AND Operator (&)-To write an expression that is only true when every one of

a set of comparisons is true, use the AND(&) operator. For example:

If ready = "YES" & steady = "RIGHT"
then say "GO"

This means that if ready has a value of YES and steady has a value of RIGHT,

then say GO. Otherwise, do nothing.

• Inclusive OR Operator (1)-The single vertical bar (I) is an inclusive OR. It

combines comparisons so that the whole expression evaluates as 1 (true) if any of

the comparisons are true.

Chapter 4. Expressions 4-17

Test Yourself

To write an expression that is true when at least one of a set of comparisons is
true, use the inclusive OR (I) operator. For the OS/2 operating system, 11 can
also be used as the concatenation operator and as the logical OR operator. See
"Basic Operators" on page 4-2 for additional information.

For example:

If ready = 11 YES 11 I steady = "RIGHT"
then say 11 G0 11

This means that if either ready has a value of YES or steady has a value of
RIGHT, or both, then say GO. Otherwise, do nothing.

• Exclusive OR Operator (&&)-The double ampersand(&&) is an exclusive OR.
It combines comparisons so that the expression evaluates as 1 (true) when one
and only one of the comparisons is true.

city = 'NEW YORK'
state= 'NJ'
local = 'NO'
if city = 'NEW YORK' && state = 'NJ' then
local = 'YES'
say local /* displays 'NO' */

What is displayed on the screen, when the program shown in Figure 4-5 is run?

/* Example: comparing numbers */
dozen = 12
score = 20
say score = dozen + 8

/* Using the AND operator */
say dozen = 12 & score = 21

/* Using the OR operator */
say dozen = 12 I score = 21

Figure 4-5. MEASURES.CMD

Answer: The following is displayed on the screen when you run the program.

For the expression using the AND operator:

• The first comparison (dozen = 12) produces the result 1 (true).

• The second comparison (score = 21) produces the result e (false).

The result of the AND operation is e (false). The AND operation evaluates as 1
(true) only when both comparisons evaluate as 1.

4-18 REXX User's Guide

For the expression using the OR operator:

• The first comparison (dozen = 12) produces the result 1 (true).

• The second comparison (score = 21) produces the result 0 (false).

The result of the OR operation is 1 (true). The OR operation evaluates as 1 (true)

when at least one of the comparisons evaluate as 1.

Translating and Converting Data

Number Systems

REXX functions can translate data from one character set to another. Translation

is especially useful when a REXX program must process output that is in binary or

hexadecimal form. If you are a beginning programmer, you may not need these

functions. However, you may want to read this discussion if you want to use REXX

with your printer or with other programs.

For more information on how REXX works with external data in files and queues,

refer to Chapter 10, "Input and Output."

For more information about the following functions, refer to "Functions" in the

REXX Reference.

The OS/2 program uses a standard character set, called the ASCII (American

Standard Code for Information Interchange) set, to represent information. In

ASCII, each character has a unique number that may be represented in different

ways. For example, the character? has the value 63.

Computers operate in binary terms such as on and off, yes and no, true and false.

They regard numbers in the same way. The decimal number 63 in a binary

numbering system is 00111111. Each digit stands for a power of two. In this

example the binary number stands for 32+16+8+4+2+1, or 63. That is how a

computer sees a question mark. Every character is rendered as a byte: a set of eight

binary digits, each having a value of 0 or 1. Binary numbers are difficult for people

to read.

Programmers use another numbering system, based on 16 digits, called hexadecimal

or hex, for short. Each digit of a hex number represents four binary digits.

Therefore, a byte can be represented by just two digits. The 16 possible hex digits

are:

0 1 2 3 4 5 6 7 8 9 A B C D E F (hex)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (decimal)

The hexadecimal equivalent of decimal 63 is 3F. That is 3*16 plus 15*1, or 63,

which translates to the question-mark (?) character.

Note: For some decimal or hexadecimal numbers, the ASCII character is different,

depending on the code page that you are using (see Keyboard Layouts).

In addition to ASCII and decimal numbers, REXX also accepts strings expressed in

these forms:

Binary If a string is to be expressed as one or more binary numbers, enclose

it in matching quotes and put the letter B (uppercase or lowercase)

immediately following the closing quote. Spaces within the string are

allowed only to separate digits into groups of four or eight.

Chapter 4. Expressions 4-19

Hexadecimal If a string is expressed in hex, place the letter X (uppercase or
lowercase) immediately following the closing quote. Spaces within
the string are allowed only to separate the digits into pairs. For
example:

say 37 /* displays '37' (decimal number) */
say 11%11 /* displays 1%1 (ASCII character 37) */
say '25'x /* '37' in hex; says '%' (ASCII 37) */
say '0010 0101'b /* '37' in binary; says '%' (ASCII 37) */
Note: If you use x or b as variables, RE:XX gives precedence to their use as
number-base indicators. For example:

x = 'mno' /* assign a string to variable X */
say '3F'x /* displays the character '?' */

/* ... not '3Fmno' */

Using Functions to Convert Data
The following RE:XX built-in functions convert numbers from one form to another
or convert character data to its numeric form.

B2XO
C2XO
C2DO
X2BO
X2CO
X2DO
D2CO
D2XO

Binary to hexadecimal
ASCII to hexadecimal
ASCII to decimal
Hexadecimal to binary
Hexadecimal to ASCII
Hexadecimal to decimal
Decimal to ASCII
Decimal to hexadecimal.

The following function calls represent the conversions they perform.

2 means translate to
B means binary
C means characters (that is, ASCII)
X means hexadecimal.
D means decimal.

Thus the value of:

B2X(0011 1111) is 3F
X2B(3F) is 00111111
C2X(?) is 3F
X2C(3F) is?
C2D(?) is 63
D2C(63) is?
D2X(63) is 3F
X2D(3F) is 63.

All these functions accept strings more than 1 byte long.

Note: For some decimal or hexadecimal numbers, the ASCII character is different,
depending on the code page that you are using (see Keyboard Layouts).

Binary numbers can only be translated to and from hexadecimal numbers. To
translate binary into other forms, use nesting. For example, the value of:

4-20 REXX User's Guide

X2C(B2X(OO 11 1111)) is ?
X2B(D2X(63)) is 00111111.

Figure 4-6 on page 4-21 shows a table of conversion functions.

To Change n To Binary To ASCII To Hex To Decimal
From

Binary X2C(B2X(n)) B2X(n) X2D(B2X(n))

ASCII X2B(C2X(n)) C2X(n) C2D(n)

Hex X2B(n) X2C(n) X2D(n)

Decimal X2B(D2X(n)) D2C(n) D2X(n)

Figure 4-6. Conversion Table

For complete descriptions of these functions, refer to the REXX Reference.

Chapter 4. Expressions 4-21

4-22 REXX User's Guide

Chapter 5. Commands

Basics

Environment

Commands are instructions that REXX passes to another environment. You can use
a program written in REXX to control other programs, including the operating
system (OS/2 program) for your computer.

If you use an application program, such as a word processor, that is controlled by
subcommands (the application commands, typed at a user prompt), you can use
REXX to create macros, programs that issue a series of subcommands to an
application. You can, in effect, create your own commands.

You may now be using the OS/2 Batch Facility to automate the OS/2 tasks. Using a
REXX program instead, with its variables, its control structures, and its math and
parsing capabilities, can make these procedures much more powerful.

In this chapter: ----------------------­

Basics

... Environment

... From REXX to the OS/2 Program

... From the OS/2 Program to REXX

... Trying out REXX Instructions.

Environment is a term used to describe the workspace that the OS/2 program and
certain applications create for themselves. You may already be familiar with the
idea of an environment with respect to the OS/2 command set, which defines (or
displays) various settings such as default paths and files.

Using RE:XX, the term environment refers not so much to individual features of the
OS/2 program or other applications, but rather to the way they operate generally.
REXX does not impose an environment of its own. Instead, it operates entirely
within the environment (default environment) from which it is called. This could be
the environment of the OS/2 program or of any application program that can use
REXX as a macro or scripting language.

The basic rule is that whatever REXX cannot process, it evaluates and then passes
the result to the default environment.

The concept of environment becomes important when you use a REXX program to
issue commands to other programs. Fortunately, the REXX language makes this
easy. Starting your REXX programs from the OS/2 command line makes the OS/2
program the default environment for REXX commands.

Chapter 5. Commands 5-1

From REXX to the OS/2 Program
There are three ways to issue a command to the OS/2 program. You can:

• Let REXX evaluate part or all of a clause as an expression. The resulting string
is automatically passed to the OS/2 program.

• Enclose the entire clause in quotes. That renders it a literal string to be passed
to the OS/2 program.

• Send a command explicitly to the OS/2 program by using the ADDRESS
instruction.

Issuing a Command Expression
REXX processes your program one clause at a time. It examines each clause to
determine if it is:

• A keyword instruction, such as:

say "Type total number"

or

pull input

• A variable assignment (any valid symbol followed by an equal sign), such as:

price = cost * 1.2

• A label for calling other routines (see "Subroutines" on page 7-1)

• A null (empty) clause.

If the clause is none of the above, REXX evaluates the entire clause as an expression
and passes the resulting string to the OS/2 program.

If the string is a valid OS/2 command, then the OS/2 program processes it as though
you had typed the string at the command prompt and pressed the Enter key.

Figure 5-1 shows a REXX clause that uses the DIR command in the OS/2 program
to display a list of files in the current directory.

/* display current directory */
say 11 DIR command via REXX 11

dir

Figure 5-1. DIRREX.CMD

The clause di r is not a REXX instruction or a label, so REXX evaluates it and
passes the resulting string to the OS/2 program. The OS/2 program recognizes the
string DIR as one of its commands and processes it. This is also true if the PATH
command is used to display the current search path for processible files (see
Figure 5-2).

/* display current path */
say "PATH command via REXX 11

path

Figure 5-2. PATHREX.CMD

S-2 REXX User's Guide

REXX evaluates the clause path and passes the string PATH to the OS/2 program as
a command.

Figure 5-3 shows a program using the DIR and PATH commands. The PAUSE
command is added to wait for the user to press a key before issuing the next
instruction or command. Also, borders were added.

/* Issue DIR and PATH co11111ands to OS/2 */

say copies(1 =1 ,40)

dir

pause

say copies(1=1 ,40)
path

Figure 5-3. DP.CMD

/*display line of 11 =111 s */
/* for a border */

/*display listing of */
/* the current directory */

/* pauses processing and */
/* tells user to 11 Press */
/*any key to continue. 11 */

/*display line of 1=1 */
/* display the current */
/* PATH setting */

The following is displayed on the screen when you run the program.

\..

==

The volume label in drive C is 052.
Directory of C:\EXAMPLES

<DIR> 10-16-88 12:43p
<DIR> 10-16-88 12:43p

EX4_1 CMD nnnn 10-16-88 1:08p
DEMO TXT 117 10-16-88 1:10p

4 File(s) 12163072 bytes free
Press any key when ready • • •

==
PATH=C:\OS2;C:\OS2\UTIL;C:\OS2\INSTALL
[C:\]

Echoing of OS/2 Commands:
When your REXX program issues an OS/2 command, REXX passes the command
to the OS/2 command handler for processing. This processing includes displaying
the command on the screen (echoing). Commands are also echoed in old-style
(non-REXX) .CMD files.

This echo can be distracting. To suppress it, issue the ECHO OFF command from
your REXX program. This tells the OS/2 program to suppress all echoing for the
remainder of your REXX program. To suppress echoing for one command, put an
at sign(@) in front of the command.

Note: For simplification, the examples in this book do not echo commands.

Chapter 5. Commands 5-3

Issuing a Command to Call a .CMD File

Using Variables

If you are issuing a command to have the OS/2 program run one of its built-in
commands or other programs, you can call it by name as previously shown.
However, to have the OS/2 program run another .CMD program from your REXX
program, you must call it using a CALL instruction instead of calling it by name.
There are two kinds of calls you can use:

• The REXX CALL instruction

• The OS/2 CALL command.

The REXX CALL instruction calls other REXX programs. To call a REXX
program named mysubl, you could write the CALL instruction, call mysubl.
REXX recognizes the CALL instruction, handles the call, and processes mysubl as a
REXX program.

The REXX CALL instruction does not work to call a non-REXX .CMD file.
Instead, you would use the OS/2 CALL command. To call a non-REXX .CMD
program named mysub2, you could write the CALL instruction, "call mysub2 11

•

REXX evaluates the expression and passes it to the OS/2 command handler for
processing. The command handler recognizes the CALL command and processes
mysub2 as a .CMD program.

The quotation marks around ca 11 mysub2 indicate that this is the OS/2 CALL
command instead of a REXX CALL instruction.

Figure 5-4 shows a program that builds a command string using a variable for user
input. It prompts the user to type a file name and then builds a variable to hold the
TYPE command and the input file name.

To have REXX issue the command to the operating system, put the command string
on a line by itself. REXX evaluates the string and tries to issue it as a command,
which is passed to the OS/2 program.

/* Issue TYPE command with an input file name */

/* prompt the user for a file name
say "Type a file name:"

*/

/* assign the response to variable FILENAME */
pull filename

/* build a command string by concatenation */
commandstr = 11 TYPE 11 filename

/* If the user typed "demo. txt": * /
/* Now the variable COMMANDSTR contains */
/*the string "TYPE DEMO.TXT 11 and so... */

commands tr /* ••• REXX passes the */
/* string on to OS/2 */

Figure 5-4. SHOFIL.CMD

5-4 REXX User's Guide

Using Quotes

The following is displayed on the screen when you run the program.

This is a sample text file. Its sole
purpose is to demonstrate how OS/2
commands can be issued from REXX
programs.

The rules for forming a command from an expression are exactly the same as those
for forming expressions. Be careful of symbols that have meanings for both REXX
and OS/2 programs. To determine how REXX evaluates a command when the
command name and a variable name are the same, use the program DIRREX.CMD
(see Figure 5-1 on page 5-2) and assign a value to the symbol DIR as shown in
Figure 5-5.

/* assign a value to the symbol DIR */
say "DIR command via REXX"
dtr = "echo This ts not a directory!"

/* pass the evaluated variable to OS/2 */
dir

Figure 5-5. DIRREX2.CMD

Now dir is a variable with the string, "echo This is not a directory! 11
, as the

assigned value.

The following is displayed on the screen when you run the program.

Chapter 5. Commands 5-5

To Summarize

RE:XX evaluates a literal string, a string enclosed in matching quotes, exactly as it is
found. To ensure that a symbol in a command is not evaluated as a variable,
enclose it in matching quotes as shown in Figure 5-6.

/* assign a value to the symbol DIR */
say "DIR conmand via REXX 11

dir = "echo This is another string now!"

/* pass the literal string 11dir 11 to OS/2 * /
"dir"

Figure 5-6. DIRREX3.CMD

The result displayed on the screen is now a directory listing.

The best way to ensure that RE:XX passes a string to the OS/2 program as a
command is to enclose the entire clause in quotes. This is especially important when
you use OS/2 symbols that RE:XX uses as operators.

If you were trying to erase a set of files by wildcard pattern, the clause,
delete *. bak, would result in a syntax error. RE:XX would read the * as its
multiplication operator, and RE:XX would try to multiple the value of "delete" by
the value of ". bak". Those values are not numbers; therefore, the multiplication
would fail.

The same thing happens with the character /. It denotes command options in the
OS/2 program, but to RE:XX, it is the division operator:

w = 11 anything 11

dir/w

This would also result in a syntax error, because you can only divide with numbers.
The correct way would be:

delete 11*.bak11

dir 11 /w 11

or

"delete *.bak 11

11dir/w 11

If you want to use a variable in the command string (see Figure 5-4 on page 5-4),
leave the variable outside the quotes. For example:

extension = 11 BAK 11

"delete *. 11 1 !extension

option = 11 /w 11

11 dir 11 l loption

The basic points of using commands are:

• RE:XX always examines each clause for RE:XX syntax.

• If RE:XX finds no valid instruction or label and the clause is not empty, then it
evaluates the clause as an expression.

5-6 REXX User's Guide

• The result of the expression, a string, is then passed on to the environment from

which REXX was originally called-the default environment.

ADDRESS Instruction

Test Yourself

A more explicit way to send a command to the environment is by using the

ADDRESS instruction, ADDRESS environment expression, where:

environment is the destination of the string. To address the OS/2 program, use the

symbol CMD.

expression is evaluated by REXX as a string to be passed to the environment.

The ADDRESS instruction works like this:

address CMD 11dir11 /* pass the literal string */
/* "dir" to the OS/2 program */

cmdstr = 'dir *.txt' /*assign a string
/* to a variable

*/
*/

address CMD cmdstr /* REXX passes the string */
/* "dir *.txt" to the OS/2 program */

When you use the ADDRESS instruction this way, REXX first evaluates the string

expression that follows the CMD. Then, it sends the resulting string to the OS/2

program.

The ADDRESS instruction in this example works exactly the same way as in the

methods already described. If you want to send a literal string to the OS/2 program,

you must enclose it in quotes. Otherwise, REXX evaluates the terms and operators

and passes the resulting string to the OS/2 program.

The ADDRESS instruction lets a single REXX program issue commands to two or

more environments. This can be used when using REXX as a macro language.

Figure 5-7 shows a program that passes the DIR command and SORT filter to the

OS/2 program.

/* */
say 'Type fragment'
pull frag
if frag = '' then

say 'You asked for it!'
'DIR' frag II'*.* I SORT'

Figure 5-7. FILFRAG.CMD

1. What does each line of the program do?

2. What happens if the user types who at the prompt message?

3. What happens if the user presses the Enter key without typing anything?

4. What happens if no files fit the pattern?

Chapter 5. Commands 5-7

Answers:

1. Here is what the program does:

• The first line is a comment.

• The second line displays the prompt message, Type fragment:, on the
screen.

• The third line reads the user's entry and stores it in the variable frag.

• The fourth line tests if frag is empty, as in HELLO.CMD, see Figure 2-1
on page 2-1.

• If frag is empty, then the fifth line displays the message, You asked for it!,
on the screen.

• The sixth line is evaluated as a string expression and concatenates the
contents of frag into a DIR command with a wildcard file-pattern. The
directory is sorted and displayed on screen.

2. The OS/2 program displays a directory for the command
DIR WHO*.* I SORT

3. The program displays the message You asked for it! and then a listing of all
files in the current directory, as if the command DIR *. * I SORT had been typed.

4. The OS/2 program displays the message, The system cannot find the file
s pee i f i ed., on the screen.

The following is displayed on screen when you run the program.

[C:\]filfrag
Type fragment
who
<sorted directory display>
[C:\]

The following is displayed on the screen if you make no entry and press the Enter
key.

\..

5-8 REXX User's Guide

You asked for it!
< full directory listing >
[C:\]

The following is displayed on the screen if no files in the current directory match the

given pattern.

SYS0002 The system cannot find the file specified.

From the OS/2 Program to REXX
Information between REXX and OS/2 programs is passed both ways; this is an

essential part of using REXX with other environments. If a command fails to

operate the way you intended, such as if you try to copy a file that does not exist,

you get a message that tells you that file cannot be found and you can respond

accordingly.

The same thing happens when a REXX program tries to copy a nonexistent file,

except that for REXX to respond, it must be apparent that a system error has

occurred. Otherwise, the program continues running, unaware that neither the

source file nor the copy of it exists.

A system error alone does not stop the running of a REXX program. Without some

provision to stop the program, called a trap, REXX continues running. You may

have to press the Control (Ctrl)+ Break keys to stop processing.

With each command it processes, the OS/2 program produces a number called a

return code. When a REXX program is running, this return code is automatically

assigned to a special built-in REXX variable named RC.

If the command was processed with no problems, the return code is nearly always 0.

If something goes wrong, the return code issued is another nonzero number,

depending on the command itself and the error encountered.

In the previous example, the file not found error occurred at the end of the program,

so there was no great problem. But a system error that occurs in the middle of a

program can indeed cause trouble.

Reading Return Codes
Figure 5-8 shows a program that can read a return code.

/* RC report */
"TYPE nosuch.fil"
say "the return code is" RC

Figure 5-8. GETRC.CMD

Chapter 5. Commands 5-9

Figure 5-9 shows a program that displays a response to the return code.

/* Simple if /then error-handler. */
say "Type a file name:"
pull filename
11 TYPE 11 filename
if RC \= 0
then say "Could not find" filename

Figure 5-9. REPORTRC.CMD

This program tells you only that the OS/2 program could not copy a nonexistent file.
This program does not do much more than the OS/2 program does, but you have
the basic idea of how to capture a return code.

Programs need to respond more effectively to whatever situation occurs. This
applies not only to OS/2 errors, but also to the choices of a program user and even
the data that the program processes. For that kind of response, REXX has
instructions, such as IF, that control the processing of the program itself, sometimes
called its flow. For more information about program flow, refer to Chapter 6,
"Program Control."

More and Better Traps
When you have completed "Basics" in this guide, you may want to explore other
methods of controlling system errors, particularly the instructions:

• CALL ON ERROR
• CALL ON FAILURE
• SIGNAL ON ERROR
• SIGNAL ON FAILURE.

These instructions are discussed in "Advanced Topics" in this chapter (see "Trapping
Command Errors" on page 5-14) and "Instructions" in the REXX Reference.

The REXXTRY Program
REXXTRY is a REXX command that lets you run different REXX instructions

and observe the results. REXXTRY is also useful when you want to do a REXX
operation only once, since it is easier than creating, running, and erasing a .CMD
file. REXXTRY can be used as a learning tool. It allows you to experiment with
different REXX instructions and observe the results. As with other REXX
programs, REXXTRY may be run in full screen or in a window.

Beginning and ending a REXXTRY session is easy. To start a REXXTRY session,
type the following:

REXXTRY

To end a REXXTRY session, type:

EXIT or RETURN

Here are some examples of how to use the REXXTRY command:

5-10 RE:XX User's Guide

REXXTRY say 1+2

REXXTRY say 2+3; say 3+4

REXXTRY sum= 1+2+3+4; say 'average is' sum/4

Figure 5-10. REXXTRY Example

/* Displays 3

/* Displays 3
/* Displays 4

/* Displays 2.5

*/
*/
*/

*/

Note that when you run REXXTRY from a command line and provide some REXX
instructions on that command line, the OS/2 command interpreter processes the
command line in its usual way. That means it may treat part of your input in a way
you do not expect. For instance, if you type:

REXXTRY Say AB>CD

the REXXTRY program is not run with the argument "Say AB> CD." Instead, it is
run with the argument "Say AB," and the output of the program will be redirected to
the file CD. This is because the OS/2 command interpreter recognizes the >
character as a redirection operator.

However, when you start REXXTRY without a parameter and then enter an
instruction, for example, Say AB> CD, REXX processes the instruction directly.
REXXTRY performs the comparison between AB and CD and writes the result, "O."

Figure 5-11 shows how to run REXXTRY interactively.

fHC:\ 11 rexxtry
REXXTRY.CMD lets you interactively try REXX statements.
Each string is executed when you hit Enter.
Enter 'call tell' for a description of the features.
Go on - try a few... Enter 'exit' to end.

say AB > CD

e
REXXTRY.CMD on OS/2

sum = 1 + 2 + 3 + 4

REXXTRY.CMD on OS/2

say 'average is' sum/ 4

average is 2.5
REXXTRY.CMD on OS/2

exit

fHC:\ 11

Figure 5-11. REXXTR Y Interactive Example

Chapter 5. Commands S-11

Summary
This completes "Basics" in this chapter. You have learned how to:

• Pass commands from REXX programs to the OS/2 program:
- Using expressions
- Using the ADDRESS instruction.

• Read the RC variable that the OS/2 program returns to REXX
• Run REXX instructions by using the REXXTRY command.

"Advanced Topics" in this chapter discusses:

• Using REXX as a substitute for batch files
• Using REXX as a macro language
• Using SIGNAL and CALL to trap errors and failures
• Using PMREXX to run programs.

To continue with "Basics," go to page 6*1.

S-12 REXX User's Guide

Advanced Topics
In this chapter:

Advanced Topics

... REXX and Batch Files

... Subcommand processing

... Trapping command errors

... Running REXX programs in a window.

REXX and Batch Files
You can use a REXX program anywhere you now use OS/2 batch files. Figure 5-12

shows an example of an OS/2 batch file that processes user input to display a help

message.

@echo off
if %1.==. goto msg
if %1 == on goto yes
if %1 == off goto no
if %1 == ON goto yes
if %1 == OFF goto no
if %1 == On goto yes
if %1 == oN goto yes
if %1 == OFf goto no
if %1 == OfF goto no
if %1 == Off goto no
if %1 == oFF goto no
if %1 == oFf goto no
if %1 == ofF goto no
helpmsg %1
goto exit
:msg
helpmsg
goto exit
:yes
prompt $ i [$p]
goto exit
:no
els
prompt
:exit

Figure 5-12. HELP.CMD (OS/2-batch version)

Chapter 5. Commands S-13

Figure 5-13 shows an example of an equivalent program in REXX.

/* HELP.CMD - Get help for a system message */
arg action •
select

when action=• 1 then
when action= 1 0N 1 then
when action= 1 0FF 1 then do

'helpmsg'
'prompt $i[$p]'

'els'
•prompt'
end

otherwise 'helpmsg' action
end

exit

Figure 5-13. HELP.CMD (REXX version)

Subcommand Processing
REXX programs can issue commands or subcommands to programs other than the
OS/2 program. The specifics about other application environments are beyond the
scope of this book. However:

• If your application permits access to the OS/2 system prompt, you can call
REXX programs that way.

• To use REXX as a macro or scripting language in applications such as word
processors, the application must be registered with the language processor. This
is done by the producer of the program.

• If you have programs of your own that you want to register with the language
processor, refer to ''Applications Programming Interfaces" in the REXX
Reference.

Trapping Command Errors
The most efficient way to detect errors from commands is by creating condition
traps, using the SIGNAL ON and CALL ON instructions, with either the ERROR
or the FAILURE condition. When used in a program, these instructions enable
(switch on) a detector in REXX that tests the result of every command. Then, if a
command signals an error, REXX stops normal program processing, searches the
program for the appropriate label (ERROR: or FAILURE:) or a label that you created,
and resumes processing there.

The SIGNAL ON and CALL ON instructions also tell REXX to store the line
number (in the REXX program) of the command instruction that triggered the
condition. That line number is assigned to the special variable SIGL. Your
program can get even more information about what caused the command error
through the built-in function CONDITIONO.

Using the SIGNAL and CALL instructions to handle errors has several advantages.
Programs:

• Are easier to read, because you can confine error-trapping to a single, common
routine

5-14 REXX User's Guide

• Are more flexible, because they can respond to errors by clause (SIGL), by
return code (RC), or by other information (CONDITIONO)

• Can catch problems and react to them before the environment issues an error
message

• Are easier to correct, because you can tum the traps on and off (SIGNAL OFF
and CALL OFF).

For other conditions that may be detected using SIGNAL ON and CALL ON, see
"Condition Traps" on page 7-15.

Instructions and Conditions

Disabling Traps

The instructions to set a trap for errors are:

SIGNAL ON condition [NAME trapname]
CALL ON condition [NAME trapname]

SIGNAL ON

CALL ON

Initiates an exit subroutine that ends the program

Initiates a return subroutine that returns processing to the clause
immediately following the CALL ON instruction. Use this
instruction to recover from a command error or failure.

The two command conditions that can be trapped are:

ERROR Detects any nonzero error code issued by the default environment
as the result of a REXX command

FAILURE Detects a severe error preventing the system from processing the
command.

A failure, in this sense, is a particular category of error. If you use SIGNAL ON or
CALL ON to set a trap only for ERROR conditions, then it traps failures as well as
other errors. If you also specify a FAILURE condition, then the ERROR trap
ignores failures.

As an option, you can also use the NAME keyword to specify a particular subroutine,
trapname, to be run. When an ERROR or FAILURE condition occurs and:

• If a trap is specified by name, REXX jumps to the clause following the
appropriate label (the trapname followed by colon).

• If you do not specify a trapname in the SIGNAL ON or CALL ON instruction,
REXX searches for a label matching the appropriate condition. It looks for the
label ERROR: or FAILURE:).

For more information about other conditions that can be trapped, see "Condition
Traps" on page 7-15. For more information about how labels are used to call
subroutines, refer to Chapter 7, "Program Structure."

To tum off a trap for any part of a program, use the same instruction with the OFF
keyword, such as:

SIGNAL OFF ERROR
SIGNAL OFF FAILURE
CALL OFF ERROR
CALL OFF FAILURE

Chapter 5. Commands S-15

Using SIGNAL ON ERROR
Figure 5-14 shows an example of how a program might use SIGNAL ON to trap a
command error in a program that copies a file. In this example, an error occurs
because a nonexistent file name is stored in the variable FILEl. Processing jumps to
the clause following the label error:.

/* example of error trap */
signal on error

[
"COPY~

exit •
error:

filel fi le2

say "Error" re "at line" sigl
say "Program can not continue."

/* Set the trap */

/*When an error occurs ... */

/* ••• REXX jumps to here */

exit /* and ends the program. */

Figure 5-14. SIGNAL ON Trap

Using CALL ON ERROR
If there were a way to recover, such as by typing another file name, you could use
CALL ON as shown in Figure 5-15 to recover and resume processing.

/* example of error recovery */
call on error

[

"COPY" filel file2
say "Using" file2 ·~--------

exit
error:
say "Can not find" filel
say "Type Y to continue anyway."
pull ans
if ans = 11 Y11 then

do
/* create dummy file */

fil e2 = "dummy. fi 111

RETURN ----------'
end

else exit

Figure 5-15. CALL ON Trap

5-16 REXX User's Guide

\l't\

/

A Common Error-handling Routine

Using PMREXX

Figure 5-16 shows an example of a simple error trap that can be used in many

programs.

/* Here is a sample "main program" */
signal on error /* enable error handling */
'ersae myfiles.* 1 /*mis-typed 'erase' instruction */
exit

/* And here is a fairly generic error-handler for this */
/*program (and many others •••) */
error:

say 'error' re 'in system call.'
say
say 'line number=' sigl
say 'instruction=• 11 sourceline(sigl)
exit

Figure 5-16. SIGERR.CMD

Earlier you learned to run REXX programs from the OS/2 command line. You can

also run REXX programs with the PMREXX command. The PMREXX command

runs a REXX program in a Presentation Manager window. The Presentation

Manager window gives you:

• A window for REXX output from:
The SAY instruction

- Output and error messages from OS/2 commands
- REXX TRACE output.

• An input window for:
- The PULL and PARSE PULL instructions

- Input to OS/2 programs and commands
• REXX output browsing, scrolling, and clipboard capability

• A selection of fonts for the output window
• Menu options to trace or end a REXX program.

Starting the PMREXX Program
Using PMREXX to run a REXX program is easy. Just add the command

"PMREXX" to the front of your command line:

PMREXX rexxtry say "Hello Stranger!"

PMREXX displays "Hello Stranger! 11 in a Presentation Manager window, then

displays a Presentation Manager message box to inform you that the REXX

program has ended.

Figure Figure 5-17 on page 5-18 shows a simple REXX program for displaying

OS/2 files.

Chapter 5. Commands S-17

/**/
'@echo off'
Do Forever

Say 'Please enter a file or directory name'
Parse Pull filename
If filename = 1 1

Then Leave
1dir 1 filename

End

Figure 5-17. FILES.CMD

Run the program FILES.CMD and type the following response when the program
pauses:

C:\OS2

There are very many files in the C:\OS2 directory, more lines that will fit in an OS/2
command window. The first files in the list will scroll off the top of the screen
before FILES.CMD pauses again. Press enter one more to end the program, then
type in the command:

pmrexx files

PMREXX will display the prompt from FILES.CMD in the PMREXX window and
pause until you type in a file name. You must type the file name in the input box at
the top of the PMREXX window. Again, type the response

C:\052

When the FILES.CMD pauses again, you can use the PMREXX window scroll bars
to see the first lines the DIR command displayed. You can move or size the
PMREXX.EXE window or select PMREXX menu-bar choices:

Menu-Bar Choice

File

Edit

Options

Actions

Help

The RxMessageBox Function

Description

Save the PMREXX output or exit PMREXX

Copy to the clipboard, paste the clipboard to the input
box, clear the PMREXX output window, and select all
lines in the PMREXX output window.

Restart the REXX program, tum on REXX interactive
Trace, and change the PMREXX output window font.

Halt the REXX program, trace next REXX instruction,
redo the last REXX instruction, and tum off REXX
tracing.

PMREXX help.

When you run your REXX programs with PMRE:XX, you can also use the
RxMessageBox function to display messages. For example, you can use
RxMessageBox to display an error message:

5-18 REXX User's Guide

/* Check the input parameter * /
arg count
if datatype(count, 'Whole') < > 0 then do

Rx.MessageBox("Argument" count "is not a whole number")
exit

end

Figure 5-18. ERROR.CMD

Rx.MessageBox displays a Presentation Manager message box with a title of "Error!"
and an "OK" button. The REXX program will wait until you press the "OK"
button.

You can change message box title and buttons. You can also add a colorful icon to
the message box:

/* Does the file exist? *I
if stream(file, 'Command', "Query Exists") < > ''

then do
reply = Rx.MessageBox(11 Do you want to replace file" file"",,

"Replace File?", 11YesN0 1~, "Question")
if reply = 7 then exit /*user pressed 'No' */

end

Figure 5-19. FILECHK.CMD

FILECHK.CMD displays a question in a message box with a question mark icon
and two buttons; one labeled "Yes," the other labeled "No." When you press the
Yes or No button, gives your program the number of the button you chose. The
Yes button is number 6 and the No button is number 7.

The PMREXX Trace Option
The PMREXX /T option turns on interactive tracing for the REXX program. You
must place the /T option before the name of the REXX program name:

PMREXX /T files

You can use the PMREXX menu to control how REXX traces the program.

With PMREXX you can also tum tracing on while a program is running. Select
Interactive trace from the Options menu to do this.

Chapter 5. Commands S-19

5-20 REXX User's Guide

Chapter 6. Program Control

Basics

So far, the sample programs have been fairly straightforward lists of clauses.
Various instructions have been used to input, store, display, and manipulate
information.

In this chapter, another class of instructions, keywords that manipulate the program
itself, are discussed. One of these, IF ... THEN ... ELSE, was already used to choose
between two possible directions a program might take.

In this chapter: -------------------------.

Basics

... Changing the flow of a program

... Repetitive tasks

... Conditional loops

... Using counters to exit loops

... Exiting a program.

Changing the Flow of a Program
A program can be:

• A single list of instructions

• A number of short lists connected by instructions that determine which list to
process and how many times to process it.

Instructions that direct the processing of the program are called control instructions.
The maneuvers they perform include:

Branching

Looping

Exiting

Grouping Instructions

Selecting one of several lists of instructions to process. The
branching instructions are IF and SELECT.

Repeating a list of instructions, either for a specified number of
times or as long as some condition is satisfied. The DO instruction
(when used with keywords like UNTIL and WHILE) does the
looping in REXX.

A program that is a single list ends when it reaches the last
instruction. To explicitly end a program, use the instructions EXIT
and RETURN.

What most control instructions have in common is that they often use groups of
clauses that act as a single clause. The simplest way to group clauses is with the
keyword DO. For example:

DO

END

clausel
clause2
clause3

Chapter 6. Program Control 6-1

Testing Conditions

Simple Branching

If the keyword DO is in a clause by itself, the list of clauses that follows (up to the
END keyword) is processed once (no loop is implied). This form of the DO
instruction and the END keyword associated with it tell REXX to treat the enclosed
instructions as a single instruction.

The enclosed instructions may be indented to the right. The indentation does not
affect how REXX processes the list. It does, however, make the program easier for
people to read. It shows that these instructions belong together.

In Chapter 4, "Expressions," a class of expressions called comparisons, which test
whether a given condition is true or false, was introduced. In a comparison, two
terms are joined by operators such as = (equal to), > (greater than), or < (less
than) in order to pose a test of the terms. The expression itself evaluates as, 1 if the
comparison is true or 0 if the comparison is false. For example:

/* some comparisons */
say 5 = 5
say 5 < 4
say 5 = 4
say 5 > 4

/* displays • 1 •
/* displays '0'
/* displays '0'
/* displays '1'

- true */
- false */
- false */
- true */

reply = "YES" /* assigns the string "YES"

say reply
say reply = "MAYBE"
say reply = "YES"

to the variable REPLY

/* displays 11 YES 11

/* displays '0' - false
/* displays '1' - true

*/

*/
*/
*/

For more complex ways to combine terms and operators to form comparisons, see
"Comparisons" on page 4-13.

To tell REXX how to make a decision about a single instruction, use:

IF expression
THEN instruction

REXX processes instruction only if expression is true, see Figure 6-1.

/* Asking confinnation */
say "Type YES to continue"
pull reply
if reply= "YES" then say "OK!"
/*program continues from here ••• */

Figure 6-1. CONFIRM.CMD

The instruction say "OK! 11 is processed only if the variable reply has the value YES.

6-2 REXX User's Guide

The IF instruction introduces a new branch of instructions to process when the IF

expression is true. Programmers often visualize the action of a decision-making

instruction by using a diagram like this, called a flowchart.

Say "OK"

The decision-making expression is represented by a diamond. If the expression (here

REPLY= 11 YES 11
) evaluates as true, then the program branches, or takes a detour,

through one additional instruction before resuming on the next line.

Using DO ... END for Multiple Clauses
To put a list of instructions after the THEN, use the DO instruction and the END

keyword. That turns the whole group into a single instruction. For example:

IF expression THEN
DO

instructionl
instruction2
instruction3
< ••• and so on>

END

With the DO and END keywords bracketing the list, REXX knows to treat the

listed instructions as a unit to:

• Process all of them if expression is true
• Ignore them all if expression is false.

Chapter 6. Program Control 6-3

Test Yourself

Figure 6-2 shows an example using DO and END.

/*Wake-up call */
if sun = "shining"
then

do
say "Get up!"
say "Get out!"
say "Meet the sun half way!"

end

Figure 6-2. WAKEUP.CMD

The flowchart diagram would look like this.

DO
SAY "Get up"

SAY "Get out"

SAY "meet the sun"
END

In the previous example, if sun = "shining" evaluates as 1 (true), then all three SAY
instructions are processed. But if sun = "shining" evaluates as e (false), then none
of the SAY instructions are processed.

The THEN and DO keywords are each on a separate line.
could also write the program as:

This is optional. You

/* ••• this way ••• */
if sun = "shining" then
do

say "Get up!"
(etc.)
end

/* ••• or this way*/
If sun = "shining" then do

say "Get up!"
(etc.)
end

Refer to Figure 6-2. What would happen if you left out DO and END keywords?

Answer: Without DO and END to mark the list as a unit, REXX assumes that
only the first instruction following THEN is processed on condition.

The instruction, say "Get up! ", would be processed only if the comparison

6-4 REXX User's Guide

Two Paths: ELSE

expression, sun = 11 shining 11
, is true. The rest of the instructions in the list would

always be processed, regardless of the true\or-false condition of expression.

Used alone, IF ... THEN adds a branch of instructions to process when the

controlling expression is true. You can also add a second branch of instructions to

process when the expression is false. The keyword ELSE introduces this alternate

list. For example:

IF expression
THEN instruction!
ELSE instruction2

When IF is used this way, RE:XX processes only one of these instructions, not the

other. It will process:

• Instructionl only if expression is true

• Instruction2 only if expression is false.

IF, THEN, and ELSE were used to control the processing of the first program in

this book, HELLO.CMD, as shown in Figure 6-3.

/* A conversation */
say 11 Hello! What is your name?"
pull who
if who = "" then say "Hello stranger"
else say "Hello" who

Figure 6-3. HELLO.CMD

The flowchart diagram would look like this.

IF

THEN

SAY
"Hello stranger!"

False

ELSE

SAY
"Hello"WHO

Chapter 6. Program Control 6-5

The same idea, with a command, is used to create a more practical program.
Figure 6-4 shows a program that takes a file name and creates a backup copy. You
may want to compare the program shown in Figure 6-4 to the REPORTRC.CMD
program shown in Figure 5-9 on page 5-10.

/* backup a REXX program */
arg fname 11

•
11 ext

if fname = 1111 then do
Say "Type a file name: 11

pull fname 11
•

11 ext
end

if ext = 1111 then ext = 11 CMD 11

11dir 11 fname"."ext

if re <> 0 then do
say "No backup performed."
say "Program ended."
exit
end

else do

/* This is a technique called */
/* "parsing a literal pattern". */
/* Use it just as you see it */
/* here for now; more about it */
/* on page 8-10. */

/* If no file name typed, then */
/* prompt user to type a name */

/* IF no extension given, then */
/*give it the extension '.CMD' */

/* displays directory entry for */
/* the input file name, thereby */
/*making sure it exists.... */

/* IF no such file exists, then */
/* EXIT the program. (More about */
/* the EXIT instruction on */
/* on page 6-23.) */

say "Backing up" fname"."ext
"copy" fname"."ext fname".BKP"
"dir" fname".BKP"

/* ELSE, copy the file to */
/* one with the extension */
/* '.BKP'; then confirm */
/* it with a "DIR" command */

say "Program ended"
exit
end

Figure 6-4. BACKITUP.CMD

The ELSE clause must also use DO and END to bracket a list of instructions.

Note: REXX features in this program that have not been introduced yet are:

6-6 REXX User's Guide

• The EXIT instruction, which tells REXX explicitly to end the program.

• The period in quotes in the ARG and PULL instructions called a literal parsing
pattern, which tells REXX to remove that quoted string (if it occurs) in the
user's file name entry. What is left is broken into two parts, which in tum are
assigned to the variable FNAME and EXT. This is the only example of a literal
pattern used in "Basics". For more information, refer to "Parsing with
Patterns" on page 8-10.

The SELECT Instruction
You are not limited to two choices. You can use the SELECT instruction to have a

REXX program select one of any number of branches. For example:

SELECT

END

WHEN expressionl THEN instructionl
WHEN expression2 THEN instruction2
WHEN expression3 THEN instruction3

OTHERWISE
instruction
instruction
instruction

• If expressionl is true, instructionl is processed. After this, processing

continues with the instruction following the END.

• If expressionl is false, then expression2 is tested. If it is true, then

instruction2 is processed and processing continues with the instruction

following the END.

• If expressionl, expression2, and so on, are all false, then processing continues

with the instruction following the OTHERWISE.

OTHERWISE is essentially the SELECT-equivalent of ELSE. If there is any

possibility that all the WHEN expressions could be false, there must be an

OTHERWISE clause.

Chapter 6. Program Control 6-7

The following is how SELECT is diagramed in a flowchart.

SELECT

THEN

instruction1

instruction2

instruction3

OTHERWISE

instruction(s)

END

To process a list of instructions following the THEN keyword, use:

DO

END

instructionl
instruction2
instruction3

A DO; ... END group is not required after the OTHERWISE keyword.

6-8 REXX User's Guide

Multiple Choice

Test Yourself

Figure 6-5 shows a short program that uses SELECT.

/* displays date/time infonnation */

arg request /* get argument; convert to uppercase */

select
when request = "DATE"
when request = 11 TIME 11

when request = 11 DAY 11

when request = 11 MONTH 11

when request = 11 SOFAR 11

then say date()
then say time()
then say date(w)
then say date(m)
then do

say time(h)
say time(m)
say time(s)

end

11 hours 11

11minutes 11

11 seconds 11

/* if no valid argument given, display help infonnation */

otherwise say "Valid arguments are: 11

say 11 date calendar date"
say 11 time - military time"
say 11 day - day of the week"
say 11 month - month"
say 11 sofar - hrs/min/sec since midnight"

end

Figure 6-5. Q.CMD

Remember that SELECT must have a corresponding END. As with DO, it makes

your program easier for people to read if you indent everything between the

SELECT and the END three spaces to the right. SELECT is a specialized form of

the IF instruction.

Write a program that asks the user to type two words on the same line and

computes if:

• The values of the words are the same (or numerically equal).

• The value of the first word is higher.
• The value of the second word is higher.

The comparison must ignore differences in case. For example, A should evaluate as

equal to a.

Chapter 6. Program Control 6-9

Answers: Figure 6-6 shows one possible program.

/* This program requests the user to supply two */
/* words and says which is higher. */

say "Type two words"
pull wordl word2 •
select

when wordl = word2 then
say "The words are the same",

"or numerically equal 11

when wordl > word2 then
say "The first word is higher"

otherwise
say "The second word is higher"

end

Figure 6-6. COMPAREl.CMD

Notice that a period appears after the PULL instruction in Figure 6-6. You've
already learned about using a period in compound symbols. (See "Using Compound
Symbols" on page 3-8.) You can use a period as a placeholder with the PULL
instruction. Refer to "Using a Placeholder" on page 8-7 for additional information.

Figure 6-7 shows an alternative program using IF.

/* This program requests the user to supply two */
/* words and says which is higher. */

say "Type two words"
pull wordl word2 •
if wordl = word2
then say "The words are the same",

"or numerically equal"
else do

end

if wordl > word2
then say "The first word is higher"
else say "The second word is higher"

Figure 6-7. COMPARE2.CMD

Some people may consider the first solution better because it is slightly easier to
understand.

For other considerations about when to use IF and SELECT, see "Nested IF and
SELECT" on page 6-26.

6-10 REXX User's Guide

Repetitive Tasks
Computers excel at repetitive tasks. An essential part of any computer language is a
loop instruction, which is a way to make a program repeat a list of instructions:

• A specific number of times
• As long as some condition is true
• Until some condition is satisfied
• Forever (until the user wants to stop).

To repeat a loop a number of times, use:

DO exprr
instructionl
instruction2
instruction3

END

where:

exprr (the expression for repetitor) gives a whole number, which is the number
of times the loop is processed.

To make your program easier for people to read, you should indent the instructions
between the DO and the END three spaces to the right.

Figure 6-8 is an example of a repetitive loop that prints three documents five times.

/* To print documents for a meeting: for each person, */
/* the agenda, minutes and accounts are printed once */

do 5

end

"PRINT AGENDA.DOC"
"PRINT MINUTES.DOC"
"PRINT ACCOUNTS.DOC"

Figure 6-8. HANDOUTS.CMD

Consider how you would write a program that would ask for the number of copies
needed and one that would ask for the names of the documents.

Chapter 6. Program Control 6-11

Figure 6-9 is an example of a repetitive loop that processes the instruction between
the DO and the END, height times.

/* The user is asked to specify the height of a */
/* rectangle (within certain limits). The rectangle */
/* is then displayed on the screen. */

say "Type the height of the rectangle",
11 (a whole number between 3 and 15)."

pull height
select

when \datatype(height,WHOLE) then say "Rubbish!"
when height< 3 then say "Too small!"
when height> 15 then say "Too big!"
otherwise

do height
say copies(11 *11 ,2*height)

end

say "What a pretty box!"
end

/* draw rectangle */

Figure 6-9. RECTANGL.CMD

Conditional Loops
A conditional expression is tested to determine how many times the loop is
processed. Conditional loops continue running as long as some condition is
satisfied. The three main ways to do this, depending on when the test takes place
are:

• DO FOREVER (with LEA VE)
• DO WHILE (a condition is true)
• DO UNTIL (a condition is true).

Note: When you are experimenting with conditional loops, you may run into a
situation where your program does not stop. This is called an endless loop, which
means that the condition that controls the loop is never false. If this happens, you
can stop the program by pressing the Control (Ctrl)+ Break keys.

6-12 REXX User's Guide

DO FOREVER with the LEAVE Instruction
The simplest way to create a conditional loop is to use the instructions DO
FOREVER and LEA VE. The LEA VE instruction causes processing to continue
with the instruction following the END keyword.

DO FOREVER

END

lnstructlon1
instruction2
instruction3

The mini-calculator program, ADD2NUM.CMD, shown in Figure 3-1 on page 3-1,
adds only two numbers. Figure 6-10 shows a program that continues running as
long as you type a number. If you do not type a number, the LEA VE instruction is
processed and processing continues with the SAY instruction after the END of the
loop.

/* This program adds up the numbers that the user is */
/* invited to type. When the user types something */
/* that is not a number, a message is displayed and */
/* the program ends. */
total = e
do forever

end

say "Type a number"
pull entry
if \datatype{entry,n)
then leave
total = total + entry
say "Total = 11 total

/*if the entry is not a valid number */
/* leave the loop */

say 11111entry111 is not a number. Returning to OS/2. 11

Figure 6-10. SUM.CMD

The other two forms of DO loops, where the conditional test (the if) is built into the
control instruction, are:

• DOWHILE
• DO UNTIL.

Chapter 6. Program Control 6-13

DO WHILE Instruction
To create a loop that repeats the list of instructions as long as a given condition is
true, use the DO WHILE instruction. For example:

DO WHILE exprw
instruction!
instruction2
instruction3

END

where:

exprw (expression for while) is an expression that, when evaluated, must give a
result of 0 or 1.

The following is a flowchart of a DO WHILE loop. The condition is tested at the
top of the loop, before the instruction list is processed. This means that if the given
condition is false at the start, the list of instructions are not be processed at all.
Compare this instruction with the flowchart showing the DO UNTIL instruction on
page 6-15.

DO WHILE

END

True instruotion1
instruotion2
instruotion3

Two fragments that produce the same results are:

DO WHILE \ finished
instruction!
instruction2
instruction3

END

or

DO FOREVER

END

6-14 REXX User's Guide

if finished then LEAVE
instruction!
instruction2
instruction3

You could use DO WHILE to prompt users for data only if they forget to type an
argument at the command prompt. For example:

/* get the argument */
arg filename
do while filename= 1111 /*if no argument given, then do ••• */

say "Type a file name (or a * to quit): 11

pull filename
if filename = 11*11 then exit
end

In the previous example, if the user types a file name as a command argument, then
the instructions within the DO WHILE loop are ignored. If no argument has been
given, the loop is processed as long as the variable filename holds an empty string.

DO UNTIL Instruction
To repeat one or more instructions until a given condition is true, you can create a
loop with the test at the bottom. For example:

DO UNTIL expru
instructionl
instruction2
instruction3

END

where:

expru (expression for until) is an expression that, when evaluated, must give a
result of e or 1.

Putting the test at the bottom of the loop means that the enclosed instruction list is
always processed at least once, even if the given condition is false at the start.
Compare the following flowchart with the previous one for the DO WHILE
instruction on page 6-14.

DO UNTIL

END

instruction1
instruction2
instruction3

Chapter 6. Program Control 6-15

To Summarize

Two fragments that produce the same results are:

DO UNTIL finished
instructionl
instruction2
instruction3

END

or

DO FOREVER
instructionl
instruction2
instruction3
if finished then LEAVE

END

The DO UNTIL instruction also provides a convenient way to check input. This
loop uses the DATATYPEO function to ensure that the user types only a number:

/* numbers only */
do until datatype(entry,num)

say 11 type a number"
say 11 (or press the Enter key alone to quit):"
pull entry
if entry = 1111 then exit
end

This loop is always processed at least once, even if the variable entry is already a
number. It continues until the user either types a number or enters an empty string
by pressing the Enter key.

By typing an asterisk in the first example or a null string in the second, the user has
a way out of the loop. It is important to include these escape clauses. Endless loops
are frustrating to the program user.

In the three kinds of conditional loops, the decision is made:

• Before processing starts. The following example of this program fl/ls bath by
repeatedly adding the value of bucket to it. If bath is already full (equal to or
greater than the value of ful 1), the body of the loop is not processed and
nothing is added to bath.

DO WHILE bath < full
bath = bath + bucket

end

• After the first pass through the loop and again after every subsequent pass. An
example is requesting valid data from a user.

DO UNTIL datatype(input,NUMBER)
say "Type a number"
pull input

end

6-16 REXX User's Guide

Test Yourself

• During each pass. For example, the decision to leave may depend on
information obtained during the loop.

DO FOREVER

end

say "Type an item of data. When there is",
11 no more data, type QUIT"

pull answer
if answer = "QUIT" then leave

/* process the data */

Be careful about the condition for repeating the loop. For DO WHILE, the
condition must be true; for DO UNTIL, the condition must be false.

1. What type of DO instruction would you use to code the following sequence?

Is job done?
instruction I
instruction2
instruction3

Is job done?
instruction I
instruction2
instruction3

Is job done?

Is job done?

2. What type of DO instruction would you use to code the following sequence?

instruction 1
instruction2
instruction3

Is job done?
instruction I
instruction2
instruction3

Is job done?

Is job done?

3. "Thirty days hath September, April, June, and November; all the rest have
thirty-one, excepting February alone ... "

Write a program that asks the user to specify the month as a number between 1
and 12 and gives the number of days in the month in response. For month 2,
the response can be 28 or 29.

Chapter 6. Program Control 6-17

Answers:

1. DO WHILE job \ = done (The first operation is to test "Is job done?").

2. DO UNTIL job = done (The first operation is to process the list of
instructions.)

3. Figure 6-11 shows a program that displays the number of days in the month.

/* This program requests the user to type a whole */
/* number from 1 through 12 and displays the */
/* number of days in that month. */

/*--*/
/* Get input from user */
/*--*/
do until datatype(month,WHOLE),

end

& month >= 1 & month <= 12
say "Type the month as a number from 1 through 12 11

pull month

/*--*/
/* Compute days in month * /
/*--*/
select

end

when month = 9 then days = 30
when month = 4 then days = 30
when month = 6 then days = 30
when month = 11 then days = 30
when month = 2 then days = 11 28 or 29 11

otherwise
days = 31

say "There are" days "days in Month" month

Figure 6-11. CALENDAR.CMD

6-18 REXX User's Guide

Using IF, SELECT, and DO
Figure 6-12 shows a program that combines three different control instructions. It

asks the user to provide a person's age and sex and, in reply, it displays a person's

status.

Note:

A person under the age of 5 is a BABY.
A person aged 5 through 12 is a BOY or a GIRL.
A person aged 13 through 19 is a TEENAGER.
A person over the age of 19 a MAN or a WOMAN.

The program uses DO UNTIL to make certain that the proper input has been typed.

It then uses SELECT to choose one of four age groups and IF, as needed, to

determine the sex. Try the program.

/*--*/
/* Get input from user */
/*--*/
do until datatype{age,NUMBER) & age >= 0

say "What is the person's age?"
pull age

end

do until sex = "M" I sex = "F"

end

say "What is the person's sex {M or F)?"
pull sex

/*--*/
/* COMPUTE STATUS */

/* */
/* Input: */
/* AGE Assumed to be 0 or a positive number. */
/* SEX 11 M11 is taken to be male; */
/* anything else is taken to be female. */

/* */
/* Result: */
/*STATUS Possible values: BABY, BOY, GIRL, TEENAGER */
/* MAN, WOMAN. *I
/*--*/
Select

end

when age < 5 then status = "BABY"
when age < 13 then do

if sex = "M"
then status = "BOY"
else status = "GIRL"
end

when age < 20 then status = "TEENAGER"
otherwise

if sex = 11M11

then status = "MAN"
else status = "WOMAN"

say "This person should be counted as a" status

Figure 6-12. CENSUS.CMD

Chapter 6. Program Control 6-19

Using Counters to Exit Loops
Number each pass through the loop in such a way that you can use that number as a
variable in your program. For example:

DO name = expri
instruction!
instruction2
instruction3

END

or

DO name = expri TO exprt
instruction!
instruction2
instruction3

END

where:

name is the control variable, sometimes called a counter. You can use it in
the body of the loop. Its value is changed (in this example, increased by
1) each time through the loop.

expri

exp rt

(the expression for the initial value) is the value you want the counter
to have the first time through the loop.

(the expression for the TO value) is the value you want the counter to
have the last time through the loop. That is, the loop ends if the next
time through, it puts the counter above the exprt value.

The following flowchart shows how the counter is changed and how the decision to
leave the loop is made.

name= expri

6-20 REXX User's Guide

False instruction1
instruction2
instruction3

Bigger Steps

Different Steps

You can use the counter to compute something different each time through the loop.

Figure 6-13 shows a program in which the counter is called count, and it computes

the width of each row of asterisks.

/* This program displays a triangle on the screen. */
/* The user is asked to specify the height of the */
/* triangle. */

say "Type the height of the triangle",
11 (a whole number between 3 and 15). 11

pull height
select

when \datatype(height,WHOLE) then say "Rubbish!"
when height< 3 then say "Too small!"
when height > 15 then say "Too big!"
otherwise

/* draw triangle */
do count = 1 to height

say copies(11 *11 ,2*count - 1)
end

say "What an ugly triangle!"
end

Figure 6-13. TRIANGLE.CMD

After you have left the loop, you can still refer to the counter. It always exceeds the

value of the TO expression (exprt).

So far, the counter has been incremented by 1 each time through the loop. This is

the default. To specify some other value, write:

DO name = expri BY exprb [TO exprt]

END

where:

exprb (the expression for BY) is the number that is to be added to name at the

bottom of the loop.

All of the expressions described for controlling loops (the TO and BY expressions

and the counter) need not be positive whole numbers. You can use expressions that

evaluate as decimal fractions and negative values as well. See the REXX Reference

for examples.

Chapter 6. Program Control 6-21

Test Yourself
1. Refer to the flowchart on page 6-20 and predict what the program in

Figure 6-14 will display.

/* Example: use of a counter */
do digit = 1 to 3

say digit
end
say 11 Now you have reached" digit

Figure 6-14. MORE.CMD

2. What will the program in Figure 6-15 display?

/* Example: use of a counter */
do count = 10 by -2 to 6

say count
end
say "Now you have reached" count

Figure 6-15. 2LESS.CMD

3. How many lines will the program in Figure 6-16 display?

/* Example: use of a counter */
do j = 10 to 8

say "Hup! Hupl Hup!"
end

Figure 6-16. 3HUP.CMD

4. How many lines will the program in Figure 6-17 display?

/* Example: use of a counter */
do NOW = 1

end

if NOW = 9 then exit
say NOW

Figure 6-17. 4NOW.CMD

6-22 REXX User's Guide

Answers:

Exiting a Program

1. The counter is updated at the bottom of the loop. The test for leaving is made
after this. So the counter is beyond the limit value.

1
2
3
Now you have reached 4

2. If exprb is negative, count down:

10
8
6
Now you have reached 4

3. None (10 already exceeds 8).

4. Eight, (on the ninth pass, the EXIT instruction ends the program before the
SAY instruction is reached).

Use EXIT [expression], to tell REXX to leave your program. If you started the
program by typing its name at the OS/2 command prompt:

• EXIT takes you back to the OS/2 program.

• The result of expression must be a whole number, which is returned to (but not
displayed by) the OS/2 program.

Figure 6-18 shows an example using EXIT.

/* Example: using EXIT with a return code */
say "Returning to the OS/2 program"
exit 22

Figure 6-18. FADE.CMD

The following is displayed on the screen, when you run this program.

[
[c:\]fade J
Returning to OS/2

__ [_c:_\J~~~~~~~~~~~~~~~~~~~~~

Chapter 6. Program Control 6-23

Summary
This completes "Basics" in this chapter. You have learned how to:

• Create branches in a program with IF and SELECT
• Group instructions with DO
• Create loops with DO FOREVER, DO UNTIL, and DO WHILE.

"Advanced Topics" in this chapter discusses complex controls, including:

• Nesting IF instructions
• Using the NOP instruction
• Using DO with LEAVE and ITERATE
• Nesting DO instructions.

To continue with "Basics," go to page 7-1.

6-24 REXX User's Guide

Advanced Topics
In this chapter: --------------------------.

Advanced Topics

... Nesting IF instructions

... The ITERATE instruction

... Compound DO instructions

... Nested loops.

Nesting IF Instructions
You can manage more complicated situations by using IF instructions in the lists

controlled by other IFs. This flowchart shows two successive decisions that lead to

one of four possible outcomes.

True

THEN

say
"shall we

play tennis?"

False

else

say
"shall we take

a stroll?"

The best way to write this as a program is:

if weather = "fine"
then do

if tenniscourt = "free"
then say "Shall we play tennis?"
else say "Shall we take a stroll?"

end
else do

end

if players = 2
then say "Shall we play chess?"
else say "Shall we play poker?"

True

THEN

say
"shall we

play chess?"

False

else

say
"shall we

play poker?"

Indenting the secondary decisions to the right three spaces does not change how

REXX processes the program. It makes it easier for someone reading the program

to see the control structure.

Chapter 6. Program Control 6-25

Nested IF and SELECT

Dangling ELSE

The previous example tests each condition and moves on to the next level. It does
not consider whether the tennis court is free until it has determined that the weather
is fine.

Compare this nested-IF example to one using the SELECT instruction. There still
are four possible outcomes, but this time they are tested in parallel.

select
when weather = "fine" & tenniscourt = 11 free 11

then say "Shall we play tennis?"
when weather = "fine" & tenniscourt \= 11 free 11

then say "Shall we take a stroll?"
when weather \= "fine" & players = 2

then say "Shall we play chess?"
otherwise say "Shall we play poker?"

end

The distinction to make here is not which version works better. Rather, it is which
of the two programs is more readable to the user who corrects and improves them.
The results of these two programs would be the same.

For this application, the nested-IF version shows more clearly how the decision
whether to play tennis depends on the weather. The only priority of
decision-making available to SELECT is the order given the WHEN keywords.
Therefore use:

• SELECT when your program must make more or less parallel decisions,
choosing one option to the exclusion of the rest.

• Nested IF when your program must make a series of decisions, each decision
dependent on the ones that precede it.

DO and END help REXX keep the ELSEs tied to the right IFs. Look at the
following example. A void writing code like this, because it is too error-prone.

/*The dangling ELSE*/

if weather = fine
then

if tenniscourt = free
then say "Shall we play tennis?"

else say "Shall we take our raincoats?"

/* REXX will take this ELSE to belong */
/* to the nearest preceding IF, but a person */
/* reading the program might easily assume that it */
/* belonged to the first IF. */

6-26 RE:XX User's Guide

Test Yourself

Programs that have IFs within IFs should use DO ... END. The following example
pairs THEN DO with END and THEN with ELSE.

if •••
then do

if •••
then do

end
else

end
else do

end

Remember, using indentation does not affect how the program is interpreted. It is
simply a convention to make the program more readable. Readability is discussed in
"Making Programs Easy to Read" on page 11-11.

What will the program in Figure 6-19 do?

/*An example of a program that does not use "DO ••• END" */
/* input data */
trace r
weather = "RAIN"
tenniscourt = "FREE"
players = 2

if weather = fine
then

if tenniscourt = free
then say "Shall we play tennis?"
/*else say "Shall we take a stroll?" (DELETED) */

else
if players = 2
then say "Shall we play chess?"
else say "Shall we play poker?"

Figure 6-19. WHATTODO.CMD

Try it! The TRACER (results) instruction at the beginning will help you see what is
happening.

Chapter 6. Program Control 6-27

Answer: Remember the ELSE keyword is associated with the nearest preceding IF.
The following flowchart shows what happens when these values are given for
weather, tenniscourt, and players.

THEN

say
"shall we

play tennis?"

True

True

True

THEN

say
"shall we

play chess?"

False

say
"shall we

play poker?"

False

else

If the weather is anything but fine, the program displays nothing. It never considers
how many players are available. The trace of WHATTODO.CMD program
displays:

[C:\]
'

6-28 REXX User's Guide

3 >>>

4 *-*
4 >>>

5 *-*
5 >>>

7 *-*
7 +++

11 RAIN 11

tenniscourt ='FREE';
11 FREE'

players = 2;
11211

If weather= 'FINE';
.. 0 ..

NOP Instruction
A THEN or ELSE keyword must be followed by an instruction. A semicolon is not
sufficient. In cases where you intend that nothing should be done, use a NOP (no
operation) instruction. You could use the NOP instruction to add an ELSE
keyword in WHATTODO.CMD in Figure 6-19 on page 6-27. For example:

if weather = fine
then

if tenniscourt = free
then say "Shall we play tennis?"
/* else say "Shall we take a stroll?" {DELETED) */
else NOP

else
if players = 2
then say "Shall we play chess?"
else say "Shall we play poker?"

The following flowchart shows how the program flow is changed to.

THEN

say
"shall we

play tennis?"

True

True

False

True

say
"shall we

play chess?"

else

IF

else

say
"shall we

play poker?"

Figure 6-20 and Figure 6-21 on page 6-30 show examples using the NOP
instruction.

/* Example: steering a course

Say "Where is the harbor?"
pull where
select

end

when where = "AHEAD" then nop
when where = "PORT BOW" then say "Turn left"
when where = "STARBOARD BOW" then say "Turn right"
otherwise say "Not understood"

Figure 6-20. PILOT.CMD

*/

Chapter 6. Program Control 6-29

/* Example: using NOP to simplify the presentation of */
/* a set of conditions. */

If gas = "FULL" & oil = "SAFE" & window = "CLEAN"
then nop
else say "Find a gas station!"

Figure 6-21. TRUCKER.CMD

ITERATE Instruction
To bypass all remaining instructions in the loop and test the ending conditions, use
the ITERATE instruction. Similar to LEA VE, ITERATE can be introduced by a
THEN or ELSE keyword. Instead of leaving the loop altogether, REXX proceeds
with the operations usually done at the bottom of the loop. If an UNTIL condition
is specified, it is tested; if a counter is specified, it is incremented and tested; and if a
WHILE condition is specified, it is tested.

If tests indicate that the loop is still active, then normal processing continues from
the top of the loop. For example:

DO j = 1 to limit by delta
instruction!
instruction2

END

6-30 REXX User's Guide

if condition
then do

instruction3
instruction4
ITERATE j

end
instruction5
instruction6

The following flowchart shows the program flow.

Yes instruction1
instruction2

instruction3
instruction4
ITERATEj

0

instruction5
instruction6

j = j +delta

Chapter 6. Program Control 6-31

Compound DO Instructions
You can combine one repetitive phrase and one conditional phrase in a single DO
instruction. You should know where in the loop the counters are updated and where
the tests for leaving the loop are made (see "Conditional Loops" on page 6-12).

Compound DO instructions can do a lot of useful work. Figure 6-22 shows an
example of how a simplified version of the POSO function may be implemented as a
REXX function.

/* Example: the POSN{) function is similar to the */
/* POS{), except that the third argument ("start") */
/* is not a 11 owed *I

if arg{) \= 2
then return /* wrong number of arguments */

if arg(l,omitted)
then return /* argument was omitted */

parse arg needle,haystack

last= length(haystack), /* compute the rightmost */
-length(needle)+l /* position that needle could */

/* be found in */

do result = 1 to last, /* Search for needle
until substr(haystack,result,length(needle))

end
if result > last then result = e
return result

Figure 6-22. POSN.CMD

6-32 REXX User's Guide

*/
= needle

Nested Loops
Sometimes a program is constructed of loops within loops. When you leave a loop,
you may need to specify which loop you want to leave. To do this, give a DO loop
a name (specify a counter in the DO instruction). If the loop does not contain a
counter already, create one. For example:

DO outer = 1

END

This is the same, for all practical purposes, as DO FOREVER. In the previous
example, outer is the counter for the loop. To leave a specific loop, put the name of
its counter after the keyword LEA VE. For example:

DO outer = 1

do until datatype(answer,WHOLE)
say "Type a number. ",

"When you have no more data, enter a blank line"
pull answer
if answer = 1111 then leave outer

end

/* process answer */
end
/* come here when there is no more data */

Chapter 6. Program Control 6-33

6-34 REXX User's Guide

Chapter 7. Program Structure

Basics

Subroutines

This chapter discusses a different type of program-control-using instructions that

run one program from within another. Using these subsidiary programs or

subroutines can actually make programming easier.

Inthischapter: ~~~~~~~~~~~~~~~~~~~~~__,

Basics

.... Subroutines

.... External subroutines

.... Using arguments

.... Subroutines and data.

A subroutine is a segment of program code that can be called from more than one

place in your main program. Subroutines can reside in the same file as the main

program or they can reside in a separate REXX program file. The following

diagram shows a subroutine that is in the same file as the main program.

CALLmysub

Main program

EXIT

MYSUB:

Subroutine

RETURN

A CALL instruction tells REXX to look through the program until it finds a

corresponding label, a clause that marks the start of the subroutine.

Chapter 7. Program Structure 7-1

CALL Instruction

REXX processes the instructions following the label until it encounters a RETURN
instruction. RETURN tells REXX to resume processing in the main program,
beginning with the instruction immediately after the CALL.

A subroutine can be called from more than one place in a program. That is, several
CALL instructions can use the same subroutine. The subroutine always returns
processing to the clause following the last CALL instruction.

Each CALL instruction can supply data, called arguments, which the subroutine can
use when called. In the subroutine, you can determine the data supplied by using
the ARGO function or the ARG instruction.

Figure 7-1 shows an example of how to have REXX run a subroutine at a particular
point in a program:

CALL subname [argument!, argument2 •••]

where:

sub name

argument

is the name of the subroutine. REXX searches first for the
corresponding label in your program. A label consists of a
symbol followed by a colon(:). For example:

subname:

If no such label is found, REXX looks for a built-in function
or program file named subname. (See the search order in
"Comparing Subroutines and Functions" on page 7-13.)

is any data that you want passed to the subroutine. The
subroutine can collect the arguments with the ARG instruction
or the ARGO function.

Figure 7-1 shows a program that displays the squares of numbers from 1 to 5. The
calculation is performed in a subroutine.

/* Simple example of using CALL instruction */
trace r /* we turn on tracing * /

/* so you can see the */
/* subroutine in action */

say "This is the main program"
do num = 1 to 5

call square
say "Back in the main program."
say num "squared is" num2

end
exit

/* remark 1

/* calls subroutine
/* remark 3
/* display result

/* end the program

*/

*/
*/
*/

*/
square: /* subroutine begins */
say "This is the subroutine."
num2 = num * num
return

Figure 7-1. SQUARIT.CMD

/* remark 2 */
/* calculate square */
/* resume main program */

Try this program without the TRACE instruction and extra remarks.

7-2 REXX User's Guide

RETURN Instruction

Test Yourself

The RETURN instruction takes processing back to the main routine. Processing

continues with the instruction following the last CALL. The full form of the

instruction is:

RETURN [expression]

where, if expression is specified, it is assigned to the REXX special variable,

RESULT, which can then be used by the main program. But, if expression is

omitted, RESULT is dropped and not assigned a value. Its value is its own

name-RESULT.

Figure 7-2 shows a program that simulates a children's race game that used to be

played with dice. Write the subroutine TELL to tell who is winning.

/* Example of a subroutine: a child's race game */
a = 0 /* Arthur starts from zero */
b = 3 /* Barry gets a headstart of 3 */
do 15

a = a + random(l,6)
call tell
b = b + random(l,6)
call tell

/* Arthur gets first turn */
/* Who's ahead now */

/* Now it is Barry's turn */
/* Who's ahead now */

end
exit /* End of main program */

Figure 7-2. RACEGAME.CMD

Copy the main program and your subroutine into another file and test your

program.

Answer: Figure 7-3 is an example of a possible solution.

/*--*/
/* Subroutine to display the position */
/* ================================== */
/* INPUT: a (Arthur's score) */
/* b (Barry 1 s score) *I
/* RESULT: displayed on user's screen */
/*--*/
TELL:
values = "Arthur =11 a 11

; Barry =11 b 11
;

11

select
when a > b then say values 11Arthur is ahead 11

when b > a then say values 11 Barry is ahead 11

otherwise say values 11 Neck and neck! 11

end
return

Figure 7-3. RACEGAME.CMD Subroutine

In this sample solution, there are no arguments on the CALL instruction.

Nevertheless, a person reading the program needs to know what data the subroutine

is using.

Chapter 7. Program Structure 7-3

A well-designed subroutine operates on a clearly defined set of data. To make your
program more readable, you should define this data in comments at the beginning of
the subroutine.

External Subroutines
The subroutines that have been discussed are internal routines. Subroutines can also
exist as a separate REXX program file. The following diagram shows a subroutine
that is a separate REXX program file.

CALL my b SU

'
MYSUB EXEC

/* */

RETURN

In an external routine, the variables belonging to the calling routine are not available
to the subroutine. Therefore, data:

• Must be formally passed to the subroutine as arguments to the CALL
instruction.

• Can only be returned to the caller by assigning a value to the variable RESULT,
using the RETURN instruction. If necessary, the calling routine can then parse
the RESULT value into a number of variables.

Note: The variables of the CALL are available to an internal subroutine unless you
use the PROCEDURE instruction (see "PROCEDURE Instruction" on page 3-16).

7-4 REXX User's Guide

Using Arguments
In the example shown in Figure 7-4, type the program name, add, followed by the

two numbers to be added. The numbers are assigned to variables first and second
by the ARG instruction. Information given to a program in this manner is called an

argument. That is, the numbers given ADD.CMD to add together are arguments to

the startup command, ADD.

/* the sum of two numbers, this time */
/* typed at the co111nand prompt */
arg first second /*collects entries */
say "The sum is 11 first + second

Figure 7-4. ADD.CMD

In much the same way, you can provide a subroutine with the needed information

by arguments passed by the CALL instruction that starts the subroutine. To assign

the arguments to variables, you can use the ARG instruction or the PARSE ARG

instruction.

The difference is:

ARG assigns argument data to variables, translating lowercase letters
into uppercase. In this way, ARO is similar to PULL. ARO is the
short form of the instruction PARSE UPPER ARG.

PARSE ARG assigns the information to variables exactly as it is entered, with no
translation to uppercase.

For example, here is a CALL instruction:

CALL BAKE 11white 11
,

11 fresh 11
,

11 sweet 11
,

11 dessert 11

If you want the results of these four expressions assigned to fl our, butter, sugar,
and cookies, you would write:

PARSE ARG flour, butter, sugar, cookies

But, if you wanted the four arguments to be translated to uppercase, you would
write:

ARG flour, butter, sugar, cookies

As there are commas between the expressions in the CALL instruction, there are

likewise commas between the symbols in the PARSE ARG or ARO instruction
when it is used in this way. For example, the instruction:

CALL words 11a string of words 11 ,S

might be parsed using:

WORDS:
PARSE ARG first second third fourth rest, number

Chapter 7. Program Structure 7-5

The result would be that:

first
second
third
fourth
rest
number

gets a
gets string
gets of
gets words
gets (blank)
gets 5

Figure 7-5 is an example of the main program, that shows how:

• CALL passes arguments to a subroutine.
• ARG assigns the argument values to variables.
• RETURN assigns a value to the RESULT variable.
• RESULT is used by the main program.

/* Main program to gather input and display result */
Say "To calculate the material you need to make a box, 11

/* Input the dimensions of the desired box (meters) */

say "type the desired length of the box:"
pull length

say "type the desired width:"
pull width

say "type the height:"
pull height

/* call the subroutine program BOX.CMD with arguments */

CALL box length, width, height

/* report the returned value from the RESULT variable */
SAY 'Material required =' RESULT 'square meters'
exit

Figure 7-5. MAKEBOX.CMD

Figure 7-6 is the subroutine program called by MAKEBOX.CMD.

/* computes area of a box */
/* including a lid */

ARG long, wide, high

/* total area is base and top plus */
/* short sides plus long sides */

area = 2*(1ong*wide) + 2*(wide*high) + 2*(long*high)

RETURN area

Figure 7-6. BOX.CMD

7-6 REXX User's Guide

When you run MAKEBOX, the data you enter is gathered by the PULL instructions
and then passed, as arguments of CALL, to BOX.CMD. The calculation of the area
of the box is then passed back to MAKEBOX.CMD by the RETURN instruction to
the variable RESULT. Processing of MAKEBOX then resumes with the next clause
following the CALL.

The following diagram shows the flow of data between the two programs.

MAKEBOX.CMD

/* Main program to gather input and display result */
say 11 To calculate the material you need to make a box, 11

say "type the desired length of the box: 11

pull length

. +
r-1+ SAY 'Material required =1 RESULT •square meters•

exit

/* Computes area of a box, including a lid */

+ + +
ARG long, wide, high

area = 2*(long*wide) + 2*(wide*high) + 2*(long*high)

RETURN •r•
BOX.CMD

If program variables are referred to by the same names both outside and inside an
internal routine (a routine that exists in the same file as the CALL instruction), then
it is not necessary to include them as arguments on the CALL or ARO instructions.
However, not including them could make it more difficult for a user reading your
program to understand what your subroutine does. So it is a good idea to give a list
of the arguments in the comments that introduce the subroutine.

Chapter 7. Program Structure 7-7

ARG() Function
Another way to pass arguments to a subroutine is to use the ARG function. For
example:

CALL subname [argumentl, argument2 •••]

where:

subname

argumentl, argument2, •••

is the name of the subroutine.

are expressions. The value of each is computed and can
be obtained in the subroutine by using the ARGO
function.

ARG(l) returns the first argument
ARG(2) returns the second argument
and so on ...

You can have up to 20 arguments on a CALL
instruction.

Figure 7-7 shows an example that calls a subroutine using arguments.

/* Example: calling a subroutine with arguments */
do 3

call triple 11 R11

call triple 11 £8
call triple •x•
call triple "X11

say
end
say "R ••• !"
say "E ••• ! 11

say 11X ••• ! 11

say "X ••• ! 11

say
say nREXX!•
exit /* end of main program * /
/*--*/ /* Subroutine to repeat a shout three times */
/* */
/* The first arg1.111ent is displayed on the screen, three */
/* times on one line, with suitable punctuation. */
/*--*/
TRIPLE:
say arg(l)•, •arg(t)•, •arg(1)•1•
return

Figure 7-7. CHEER.CMD

7-8 REXX User's Guide

The following is displayed on the screen when you run the program.

The EXIT instruction in Figure 7-7 on page 7-8 stops the main program from
running on into the subroutine.

Subroutines and Data

Summary

Passing arguments to a subroutine is one form of parsing input information. This is
a particularly important concept in REXX.

The best starting point for a large program is to study the information that you want
REXX to work with. The next few chapters concentrate on how to analyze and
calculate data and how REXX shares information with other programs and devices.

This completes "Basics" in this chapter. You have learned how to:

• Use subroutines with the CALL and RETURN instructions
• Use subroutines in the same program file as the main program or in a separate

file
• Pass data to a subroutine, using the ARG instruction and the ARG function.

"Advanced Topics" in this chapter discusses advanced elements of program
structure, including:

• Modular programming
• Creating your own functions
• Jumps and condition traps.

To continue with "Basics," go to page 8-1.

Chapter 7. Program Structure 7-9

Advanced Topics
In this chapter: ------------------------

Advanced Topics

.... Structured programming

.... Function calls

.... Comparing subroutines and functions

.... Jumps

.... Condition traps.

Structured Programming
Using the CALL instruction to call a subroutine is part of an approach to
programming called structured programming.

Experienced programmers rarely write complex programs as a single list of
instructions. Rather, they separate a large job into smaller units called modules.
Then, they create a single main module that calls all the others, either in a specific
listed order or by means of control instructions such as IF, SELECT, and DO. For
example:

Main program module Subroutine modules

CALL a al _______ __,

CALL b bl ______ __,

SELECT I I cl..._ ______ ___,
WHEN ••• THEN CALL c ~ ...----------.
WHEN ••• THEN CALL d d I
WHEN ••• THEN CALL e TL ______ _____.

-- OTHERWISE SIGNAL q I
END e

.__ _______ __.

DO UNTIL done
CALL f ------- f

END

q:
EXIT

Structured programming helps programmers in the following ways:

• It makes planning a program easier because large projects can be separated into
smaller tasks that are easier to understand.

7-10 REXX User's Guide

Function Calls

Creating a Function

• It makes the finished program more readable by users. This is a definite help
when correcting and improving the program. You can fix and enhance one
module at a time. Errors are easier to trace, and the overall structure is clearer.

• As you become more fluent in the REXX language, you become more adept at
defining the work a program can do. You can define clearly what a module
should do before you write a line of program code. For example, the program
code you write will have applications beyond the task it was written for. A
clever routine for sorting a directory might prove useful in another
file-management program.

For more information about structured programming, refer to Chapter 11,
"Program Style."

A subroutine can produce a computed result, or return value, that the calling
procedure can use. The RETURN instruction does this (see "RETURN
Instruction" on page 7-3). You have the following options:

• Use CALL to call the subroutine and then get the return value from the built-in
variable RESULT.

• Call the subroutine as a function call, the same way that you call the REXX
built-in functions.

A subroutine called by a function call is essentially no different than any other
subroutine that returns a value. That is an important distinction, because the very
definition of a function is that it always returns a value, even if that value is a null
string.

Arguments of the function (the input that goes between the parentheses in the
function call), can be read with the ARG instruction or with the ARG function.

Since functions always return a value, they are normally used in expressions, such as
in a SAY instruction. If you write a function call on a line by itself, the value
returned by the function is passed to the system as a command. For example, if you
write Word { 1 Now is the ti me 1

, 3), RE.XX passes 1 the 1 to the system as a command.
If you are calling a function but do not need the value returned, call the function as
a subroutine.

Figure 7-8 on page 7-12 shows a subroutine that calculates and returns the average
number of letters per word.

Chapter 7. Program Structure 7-11

/* Returns the average letters per word in an input line */
arg 1 i ne /* get the 1 i ne; set TOTAL to e * /
total = e

do num = 1 until line= "" /* repeat until LINE is empty, */
/* adding 1 to NUM with each */
/* iteration */

parse var line word line /* take out just the first word */
/* remaining in LINE */

total = total + length(word) /* add its length to TOTAL */

end /*see if LINE is empty yet ••• */
/* if so, the loop ends.

avg = format(total/num,,0) /* now, divide TOTAL (letters) */
/* by NUM(ber of words) to get */
/* the average per word */

return avg /* return the number AVG */

Figure 7-8. WORDAVG.CMD

You can also create functions that return non-numeric values, as shown in
Figure 7-9.

/* Returns today's date in 'natural language' format */

/* First, use DATE() function and its options to... */
month= date(m) /* ... get the month */
day = date(w) /* ••• get the weekday */
parse value date() with cdate • • /* ... get the date */

/* The RIGHT() function returns the last digit of the date */
/* so we can add on the proper suffix (similar to the way */
/* we used for Figure 3-9 on page 3-11.*/
select

end

when right(cdate,1) = 1 then th = "st"
when right(cdate,1) = 2 then th = "nd"
when right(cdate,1) = 3 then th = "rd"
otherwise th = 11 th 11

return day", 11 month cdate 11th /* return the date */

Figure 7-9. DATESTMP.CMD

7-12 REXX User's Guide

Comparing Subroutines and Functions
There are differences and similarities between subroutines and functions.

The differences are:

• To call a subroutine, you use a CALL instruction:

CALL routine [argument!, •••]

To call a function, you use a function call:

routine([argumentl, •••])

• A subroutine need not return a result, but a function must return a result.

In a subroutine, you can write:

RETURN

In a function you must at least write:

RETURN 1111 /* This returns a null string */
• A subroutine sets the value of the special variable RESULT. The result returned

by a function is used in the expression where the function call appeared.

The similarities are that both:

• Use the ARO and PARSE ARO instructions and the ARGO function for
obtaining the values of their arguments.

• Can be internal (starting with a label in the same file as the CALL instruction or
the function call) or external (located in a different file).

• Have the same search order. When a call to routine is recognized:

1. REXX first looks for the label routine: in the same file.
2. If no label by that name is found, REXX looks for a built-in function called

routine().
3. If none of its own functions have that name, REXX looks for an external

routine; that is, a program in a file named routine.

There are many kinds of external routines that REXX can use, including those
written in other languages. These are made available to REXX through function
packages, which are described in the REXX Reference.

Using a Call of the Other Kind
There is another similarity between functions and subroutines. Where convenient,
programs designed as functions can be called as subroutines. If they always return a
result, programs designed as subroutines can be called as functions. Both, when they
are internal, can use the PROCEDURE instruction.

You could eliminate the CALL instruction in MAKEBOX.CMD (see Figure 7-5 on
page 7-6) and simply call the subroutine BOX.CMD (see Figure 7-6 on page 7-6) as
a function in the final SAY instruction. For example:

say "Material required =" box(length,width,height) "sq. meters"

In the following example, the POSO function returns the character position of a
substring (needle) within a larger string (haystack).

POS(needle,haystack)

Chapter 7. Program Structure 7-13

Jumps

SIGNAL Instruction

Figure 7-10 shows an example that is called as a subroutine.

/* to remove NEEDLES from haystack */
do forever

call pos needle,haystack
if result = e
then leave
else haystack= delstr{haystack,result,length{needle))

end

Figure 7-10. NEEDLE.CMD

This routine removes every instance of one string within another. It uses the
DELSTRO and LENGTHO functions, which are also built into RE:XX, and are
called here as functions. In this example:

1. POSQ, called as a subroutine, searches in the string stored in haystack for the
first occurrence of the string in needle.

2. That character position (a number) is then assigned to the RESULT variable. If
no occurrence if found, the loop ends.

3. DELSTRO then removes the needle substring from haystack, deleting from the
RESULT starting position, for the length of needle (determined by the
LENGTHQ function).

A jump shifts REXX processing to a different point in the program. After the jump,
the program does not automatically return to the calling instruction.

The SIGNAL instruction can jump (transfer control) to another part of your
program. SIGNAL is a one-way path. When REXX encounters a SIGNAL
instruction in the middle of a program, any SELECT constructs or DO loops it has
been processing are abandoned. SIGNAL cannot be used to jump back into or
jump around within a DO loop. This means that you should use SIGNAL only to
bring your program to an exit. For other purposes, it is better to manipulate
program control using IF, SELECT, or DO.

To tell REXX to go to another part of the same file, use the instruction:

SIGNAL symbol

This causes a jump to the specified label, the symbol followed by a colon(:). REXX
searches from the top ofthe file for the clause symbol: and processing continues
from there.

The SIGNAL instruction always stores its line number in the REXX special variable
SIGL.

7-14 REXX User's Guide

Condition Traps

This is an example of an abnormal end to a program using SIGNAL.

SIGNAL abend

EXIT /* end of ordinary code */
/*--*/
/* This code handles abnormal ends */
/*--*/
ABEND:
say "Abnormal end signalled at l ine 11 sigl,
I I". Cannot continue."

exit

The first EXIT instruction is there to stop the normal program from running on into
the abend: (abnormal end) routine.

SIGNAL is not a go to statement similar to the BASIC instruction GOTO, because
SIGNAL causes the logic of other control structures to be abandoned. The concept
of go to does not really apply to a structured language such as REXX. Most tasks
or routines that are to be performed according to some condition are better handled
as subroutines. They are easier to read that way, and they are easier to correct.

The exception is when you use SIGNAL to call an exit routine. This is a specific
application of SIGNAL, to act as a detector to bring a program to an end whenever
a specific condition occurs. In other words, you can set a trap.

The SIGNAL instruction by itself initiates a jump from one particular point in a
program (the SIGNAL clause) to another, indicated by a label.

Another way to use SIGNAL is with the keyword ON and the name of a specific
condition that you want REXX to test for. Whenever the specified condition is
detected, processing immediately jumps to the corresponding label. For example:

SIGNAL ON condition [NAME trapname]

When a SIGNAL ON instruction is in effect (enabled) and the given condition
occurs, REXX jumps to a label that can be either:

• The name of the condition itself (the default)

• An optional trapname, specified by the NAME keyword.

This trap remains enabled for the rest of the program or until issued the instruction:

SIGNAL OFF condition

These are the conditions that can be trapped by SIGNAL ON instruction:

ERROR Sets a trap to a subroutine with the label ERROR:. An ERROR
condition occurs whenever a REXX program issues a
command (a string expression passed to the environment) that
results in an error in the default environment. This includes
commands that produce nonzero return codes and commands
that are unknown to the system. (This includes failures only
when a FAILURE condition trap is not set.)

Chapter 7. Program Structure 7-15

Using CALL ON

Useful Functions

FAILURE

NOTREADY

NOVALUE

SYNTAX

Sets a trap to a subroutine with the label FAILURE:. A
FAILURE condition occurs whenever a REXX program issues
a command to the default environment and the system
encounters a severe error preventing it from processing the
command.

Refer to "Trapping Command Errors" on page 5-14 for more
information.

Sets a trap to a subroutine with the label NOTREADY:. A
NOTREADY condition occurs whenever an error occurs
during an input or output operation. (Refer to Chapter 10,
"Input and Output," for more information.)

Sets a trap to a subroutine with the label NOVALUE:. A
NOVALUE condition occurs whenever a symbol that could be
the name of a variable is encountered and the variable does
not exist. This can be especially useful for finding misspelled
variable names.

Sets a trap to a subroutine with the label SYNTAX:. A
SYNTAX condition occurs whenever a REXX syntax error is
detected. This is especially useful for debugging programs in
which syntax errors occur, but the user is unable to provide an
accurate description of the problem.

If the trap you have set with SIGNAL ON detects one of the previous conditions:

1. REXX stops whatever instruction it is processing.

2. The line number of that instruction is assigned to the special variable SIGL.

3. The condition is disabled; it is set to SIGNAL OFF.

4. Processing then jumps (as in a normal SIGNAL) to the appropriate label (to
t rapname:, if given; otherwise, to condition:).

In certain instances, it is possible to resume program processing after a condition is
trapped. In such an instance, use the instruction:

CALL ON condition [NAME trapname]

See "Trapping Command Errors" on page 5-14 for an example comparing the
CALL ON and SIGNAL ON instructions.

The following two functions you may find useful:

CONDITIONO Returns the keyword (CALL or SIGNAL) used to trap the
condition. Used with its options, CONDITIONO can also supply
the name of the trapped condition (for example, ERROR), its
status (ON, OFF, or DELAY), or an associated description.

VALUEO Returns or sets the value of a variable whose name may be a string
expression. VALUEO does not trigger a NOVALUE condition.

For more information about these instructions and functions, refer to "Conditions
and Condition Traps" in the REXX Reference.

7-16 REXX User's Guide

Chapter 8. Parsing

Basics

Conversations

Parsing is a way of analyzing information for your program to use. It is one of the

most powerful and practical features of the REXX language. You may have noticed

that it has already been used in many examples. This chapter discusses these ideas

and examines the parsing options one by one.

Parsing is separating input data and assigning it to one or more variables. Some

examples of sources of the input data are:

• The keyboard-more specifically, any data a user types in while a program is

running

• An input parameter-an option typed after the command that starts a program

• An external data source-such as a queue or a disk file.

In this chapter: ------------------------.

Basics

.,.. Conversations

.,.. Parsing variables and expressions

.,.. Specialties.

The most common source of input data is the person using the program. The

following is a review of the instructions you use to converse with the user of your

program-that is, to allow that person to direct the program's processing.

Prompting the User for Input
To display information on the screen, use SAY expression. The expression is

evaluated and the result is displayed as a new line on the screen. For example, say

3 * 4 11= twel ve 11 causes the following to be displayed on the screen.

(~1_2 __ =_t_w_e_l_ve ___________________________)

Chapter 8. Parsing 8-1

If you want to display a clause that occupies more than one line in your program,
use a comma at the end of a line to indicate that the expression continues on the
next line. For example, the instruction:

say "What can not be done today, will have to be put off",
"until tomorrow."

causes the following to be displayed on the screen:

What can not be done today, will have to be put off until tomorrow.

The continuation comma is replaced by a blank when the expression is displayed.
Remember that the continuation comma cannot be enclosed in quotes or REXX will
consider it part of the string.

Having asked the user a question using SAY, you can collect the answer using
PULL. When pu 11 symbo 1 is processed, the program pauses for the user to type
data on the command line and press the Enter key. Whatever the user types is
translated to uppercase and then assigned to the variable symbo 1.

The PULL instruction is a short version of the instruction PARSE UPPER PULL,
which converts lowercase letters in the user input to uppercase. The program
recognizes a user's response whether it is in uppercase, lowercase, or mixed case. To
get the data as it is, without this conversion, use the form:
PARSE PULL symbol

Figure 8-lshows an example that uses both PULL and PARSE PULL.

/* Another conversation */
say "Hello! What is your name?"
parse pu 11 name
say "Say," name", are you going to the party?"
pull answer
if answer = "YES"
then say "Good. See you there!"

Figure 8-1. CHITCHAT.CMD

The user's name is displayed exactly as it was typed, but answer is translated to
uppercase. This simplifies the program by ensuring that the same action is taken
regardless of the way the user types the word yes.

8-2 REXX User's Guide

Test Yourself
l. Figure 8-2 shows a program that asks a question.

/* Simple question {?) */
say "Mary, Mary, quite contrary"
say "How many letters in that?"
pull ans
if ans = length{that)
then say "Quite right!"
else say 11 0h! 11

Figure 8-2. RIDDLE.CMD

What is displayed on the screen, if the user responds:

• 21
• 4
• Four.

2. What is displayed on the screen when you run the program shown in

Figure 8-3?

/* Example: expressions that continue for more */
/* than one line. */
x = 3
say "x =11 x
say
say 11 Ham, 11

,

"Shem",
"and Japheth"

say "Silly"
"Billy"

Figure 8-3. NOAH.CMD

3. Create a file called PULLIN.CMD, type the program shown in Figure 8-4, and

try to run the program.

/* Example: appending input, using PULL,
/* to a REXX variable
text = 1111

do until input = 11 QUIT 11

say "Text so far is:"
say text
say "Would you like to add to that?",

11 If so, type your message.",
11 If not, type QUIT."

pull input
text= textllinput

end

Figure 8-4. PULLIN .CMD

*/
*/

Chapter 8. Parsing 8-3

Did the program run correctly? If not, study the error messages and make sure
you copied everything correctly. Notice that:

• When you run the program, everything you type is changed to uppercase
letters.

• There are not any blanks between the old text and the new input.

4. Change pull input to parse pull input. Change the concatenate operator
"II" to a single blank, then try the program again. On the OS/2 operating
system, I can also be used as the concatenation operator. See "Basic Operators"
on page 4-2 for additional information.

Notice that:

• Your input does not get changed to uppercase.

• There is always one blank between the old text and the new input.

• You cannot exit the program by typing quit, but you can exit by typing
QUIT.

Answers:

1. This is displayed on the screen:

• Oh!
• Quite right!
• Oh!

2. This is displayed on the screen:

Ham, Shem and Japheth
Silly

[C:\]BILLY
SYS1041: The name specified is not recognized as an
internal or external command, operable program or batch file.
[C:\]

Because there is no comma after Silly, Billy is treated as a command. If no
such command exists, then the OS/2 program issues an error message.

Getting Data When the Program Starts
When you want to run your program, type its file name at the command prompt.
This can be followed by information for the program to use in the form of
arguments. To use these arguments in the program, use the ARG instruction. ARG
parses command arguments in the same way that PULL parses data from the
keyboard, except that the first word typed (the name of the program) is ignored.

8-4 REXX User's Guide

Figure 8-5 shows an example of how a parsed argument can be used in a SELECT

instruction.

/* telephone tickler: displays the phone number */
/* of a person whose NAME is given as the */
/*argument; e.g., the co11111and "phone anne" */
/* displays "ANNE'S NUMBER IS 555-3434 11 */

arg name

select
when name = "WILLIAM" then

number = 11 555-1212 11

when name = "ANNE" then
number = 11 555-3434 11

when name = "LOUISE" then
number = 11 555-5656 11

when name = "STEVE" then
number = 11 555-787811

when name = "HELEN" then
number = 11 555-9090 11

otherwise

/* get the name */

say "I do not have that number."
exit

end

say namell"'S NUMBER IS" numberll". 11

exit

Figure 8-5. PHONE.CMD

The ARG instruction is the short form of the PARSE UPPER ARG instruction. To

obtain arguments without the uppercase translation of letters, use the PARSE ARG

instruction instead.

Multiple-Variable Assignment
PULL and ARG can also fetch each word into a different variable. In the following

example, first, second, third, and leftover have been chosen as the names of

variables.

say "Please enter three or more words:"
pull first second third leftover

say first second third leftover

The following is displayed on the screen.

Chapter 8. Parsing 8-S

Please type three or more words

three wise men on camels t----- the user types

THREE WISE MEN I" CAMELI i------ the program displays

first

second

third

leftover

The program pauses and the user can type something on the command line. When
the user presses the Enter key, the program continues and the variable:

first is given the value THREE.
second is given the value WISE.
third is given the value MEN.
1 eftover is given the value ON CAMELS.

In general, each variable gets a word (without blanks) and the last variable gets the
rest of the input, if any (with blanks). If there are more variables than words, the
extra variables are assigned the null value.

The same thing can be done with ARG. Figure 8-6 shows a program that accepts
user input and then displays it in a different order.

/* Example: this program starts by assigning the words */
/* from the comnand line to REXX variables and then */
/* displays them, swapping the first and third arguments. */

arg first second third rest
say third second first rest

Figure 8-6. MIX.CMD

8-6 REXX User's Guide

The following is displayed on the screen.

When the ARG instruction is processed, the variable:

first is given the value JAMES.
second is given the value JOE.
third is given the value JACK.
rest is given the value ANO JEFF.

l ./

You can then use the SAY instruction to display the variables in any order you
choose.

Checking for Input Errors
To ensure that the user types in the right number of words, provide one extra
variable and test that it is empty. Also, test the variable that holds the last word
that the user is expected to type. By testing both variables for a null value, you can
be sure that each of your variables contains exactly one word.

Figure 8-7 shows an example that ensures that the user has typed the correct
number of words.

/* Example: getting the number of words that you want */

good = 0
do until good

say "Please type exactly three words"
pull first second third rest
select

end
end

when third = 1111 then say "Not enough words"
when rest \= 1111 then say "Too many words"
otherwise good = 1

Figure 8-7. FUSSY.CMD

Using a Placeholder
The period symbol (.) by itself may not be used as a name, but it may be used as a
place-holder with the PULL instruction. For example, pull • • 1 astname • ,
would discard the first two words, assign the third word into 1 astname, and discard
the remainder of the input.

Chapter 8. Parsing 8-7

Test Yourself
1. What is displayed on the screen when you run the program shown in

Figure 8-8?

/* Example: the PULL instruction */
Say "Where did Jack and Jill go?"
parse pull one two three four five six •

/* User replies 1 To fetch a pail of water' */

say one two six
say
Say 11Will you buy me a diamond ring? 11

pull reply •

/* User replies 'Yes, if I can afford it' */

say reply

Figure 8-8. PULLING.CMD

2. Write a program that asks users for their name and then greets them by first
name only. Your program should ignore any other names.

Answers:

1. The following is displayed on the screen.

Will you buy me a diamond ring?
Yes, if I can afford it
YES,

2. Figure 8-9 shows an example of a possible answer.

/* Example: selecting a single word */
say "Howdy! Say, what is your name?"

pull reply • /* The period causes second */
/* and subsequent words to */
/* be ignored */

say "Pleased to meet you," reply

Figure 8-9. HOWDY.CMD

8-8 REXX User's Guide

Parsing Variables and Expressions
PULL and ARG are the short versions of options of the PARSE instruction. As
well as parsing replies from the user and the data from the command line, you can
also parse:

• The values of variables by using PARSE VAR symbol vl v2 v3 •••

• The results of expressions by using PARSE VALUE expression WITH vl v2 v3

Figure 8-10 shows an example of parsing variables and expressions.

/* Examples of parsing variables and expressions */
phrase= "Three blind mice 11

PARSE VAR phrase number adjective noun
say number /* says 'Three' * /
say adjective /* says 'blind' */
say noun /* says 'mice ' * /
PARSE VALUE copies(phrase,2) WITH . a . b . c
say b a c /* says 'Three blind mice' */

/* Here is a very useful trick for taking */
/* the first word away from a sentence */
PARSE VAR phrase first phrase
say first /* says 'Three' * /
say phrase /* says 'blind mice' */

Figure 8-10. PARSING.CMD

You can use parsing to analyze data from sources other than user input, such as
from files, queues, or hardware devices. For more information, see Chapter 10,
"Input and Output."

Parsing Numeric Data

Summary

Only parsing text data has been discussed, but all of the parsing options that have
been described work equally well with numeric data.

The way REXX handles numbers is another measure of its flexibility. Most
computer languages have many rules about the differences between text data and
number data. In REXX, a number is simply a string that can be calculated.

This completes "Basics" in this chapter. You have learned how to:

• Prompt, receive, and check user input
• Manipulate variable templates
• Use the period as a placeholder
• Parse variables and expressions.

"Advanced Topics" in this chapter discusses parsing using:

• Literal-string patterns
• Character positions
• Variables in patterns
• String functions.

To continue with "Basics," go to page 9-1.

Chapter 8. Parsing 8-9

Advanced Topics
In this chapter: -------------------------.

Advanced Topics

... Parsing with patterns

... Literal string patterns

... Character position

... Variables in patterns

... String functions.

Parsing with Patterns
By using patterns in a parsing template, you can have your programs analyze all
types of information. In this chapter, several kinds of parsing patterns are discussed.

For more information about the use of patterns refer to "Parsing" in the REXX
Reference.

Literal String Patterns
One way to parse data is by literal pattern. If your PARSE instruction template
specifies a literal string (one or more characters enclosed in quotes), the data being
parsed is split at the point where the string is found.

Figure 8-11 shows an example where the ARG instruction parses the data given with
the command TAKE. The first literal pattern is the first / and the second literal
pattern is the second /.

/* Example: recognizing options */

arg drink fonn shelf "/" typl typ2 typ3 "/" rest
say drink fonn shelf":" typl typ2 typ3 "("rest")"

Figure 8-11. TAKE.CMD

The following is displayed on the screen.

Ir [C:\] take coffee beans /kenya decaf /in bags ']
COFFEE BEANS : KENYA DECAF (IN BAGS)

' /

When the ARG instruction is processed:

• The words in front of the first pattern are parsed in the usual way into drink,
form, and she 1 f. In this example, she 1 f is set to null; that is, an empty string or
1111

• The SAY instruction keeps the space following the variable name. That is
why there is a space before the colon.

• The words between the first pattern and the second pattern (if there is one) are
parsed into typl, typ2, and typ3. Here, typ3 is set to null, but SAY still displays
the extra space before the parenthesis.

8-10 REXX User's Guide

• If there is a second pattern, the words that follow it are assigned to the variable
rest. In this example, rest is assigned the two-word string IN BAGS.

This technique of parsing using literal patterns can be used with any of the parsing
instructions.

Character Position

Absolute Position

Relative Position

Another way to parse a string is by the position of the individual characters. There
are two types of positions, absolute and relative.

Usually, the breaks in a parsed string occur at the spaces. For example:

PARSE VALUE 11 Five golden rings 11 WITH varl var2 var3

This instruction assigns:

varl the string 11 Five 11
•

var2 the string 11golden 11
•

var3 the string 11 rings 11
•

If you want to refer to the specific character position in the input string where you
want the parsing to break, specify the number of characters from the beginning of
the string. That is, the first character is 1, the second is 2, and so forth.

PARSE VALUE 11 Five golden rings" WITH varl 10 var2 15 var3

This template assigns:

varl the string "Five gold" (up to the 9th position)
var2 the string "en ri" (positions 10 to 14)
var3 the string 11 ngs 11 (position 15 to the end)

Figure 8-12 shows an example that uses PARSE VALUE to parse the string
returned by REXX's built-in TIMEO function. The TIMEO string has two digits
each for hours, minutes, and seconds that are separated by colons. For example,
12:34:55.

/* parsing TIME() by absolute character position */
PARSE VALUE time() WITH hr 3 • 4 mn 6 • 7 SC •

say 'Hours : 1 hr
say 'Minutes : 1 mn
say 'Seconds : 1 sc

Figure 8-12. ABSPTRN.CMD

You can also specify breaks by relative position; that is, by a given number of
characters from the last break. To parse this way, use signed numbers, which are
numbers preceded by plus or minus signs to indicate the direction to move the break.
For example:

PARSE VALUE "Five golden rings" WITH varl 10 -5 var2 +8 var3 17

This instruction assigns:

Chapter 8. Parsing 8-11

varl the string "Five gold"
var2 the string 'golden'
var3 the string 'ring'

(up to the 10th position)
(back 5, forward 8; note the leading space)
(stopped at position 16)

Figure 8-13 shows an example that uses PARSE VALUE as applied to the TIMEO
string.

/* parsing TIME() by relative character position */
PARSE VALUE time() WITH hr 3 +1 mn 6 +l sc •
say 'Hours :' hr
say 'Minutes:' mn
say 'Seconds :' sc

Figure 8-13. RELPTRN.CMD

Though PARSE VALUE was used for these examples, you can use positional
patterns with any PARSE instruction.

Variables in Patterns

To Summarize

In place of a literal string or a position, you can use a variable containing the string,
the absolute position, or the relative position. To do this, enclose the variable name
in parentheses, as in Figure 8-14.

char= ':'
parse value time() with hr (char) mn (char) sc •
say 'Hours :' hr
say 'Minutes:' mn
say 'Seconds : 1 sc

Figure 8-14. VARPTRNl.CMD

In fact, you can use a variable assigned in the same template, as in Figure 8-15.

parse value time() with hr 3 char +1 mn (char) sc •
say 'Hours : 1 hr
say 'Minutes : 1 mn
say 'Seconds:' sc

Figure 8-15. VARPTRN2.CMD

Any data can be parsed using patterns in the template of a PULL, ARG, or PARSE
instruction. A token within a template is recognized as a pattern where there is:

• A literal string, such as/ in the example TAKE.CMD (see Figure 8-11)

• A symbol in parentheses, which means that it is the name of a variable

• An unsigned number, which means that parsing continues at the specified
character position

• A signed number, which means that parsing continues at the specified character
position, relative to the first character of the last match.

8-12 REXX User's Guide

String Functions

Getting Pieces

Editing

Deleting

Formatting

Counting

Another kind of parsing can be performed using REXX' s built-in string functions.
They are grouped here by the tasks they perform. For more information, refer to
"Functions" in the REXX Reference.

You can use the following functions to separate and change input strings.

Substring functions that get (return a piece of a larger string) are:

SUBSTRO Gets a piece of a string by numbered position

LEFTO Gets the leftmost substring; can add trailing spaces

RIGHTO Gets the rightmost substring; can add leading spaces

WORDO Gets a word from a string (by number)

SUBWORDO Gets a substring beginning with a given word.

Functions that change a string are:

INS ER TO

OVERLAYO

REVERSEO

COPIESO

Inserts a substring into a string

Overlays part of one string with another

Swaps the characters in a string, end for end

Replicates a string a given number of times.

Functions that delete substrings are:

DELSTRO Deletes a substring from. the input string

DELWORDO Deletes a substring from the input string, beginning with a given
word.

Functions that change a string by adding or removing spaces or other characters are:

SPACEO

CENTERO

STRIPO

Adds or deletes intervening spaces (or other delimiting characters)
between words

Centers the input string within a larger string of a given length;
adds spaces (or other characters)

Removes leading or trailing spaces (or both) from a string.

Note: The previously described LEFT and RIGHT functions can also add spaces.

Functions that get the lengths of strings, compare strings, or locate a particular
character position within a string are:

LENGTHO Counts the characters in a string

WORDSO Counts the words in a string

WORDLENGTHO Returns the length of a word (specified by number).

Chapter 8. Parsing 8-13

Comparing

Finding Positions

Functions that return a number, based on a comparison of two strings are:

VERIFYO Determines whether one string is made up of characters in another.
It can return the position of either the first matching character or
the first nonmatching character (the default).

ABBREVO Returns 1 (true) if one string matches the leading characters of
another.

COMPAREO Determines if two strings are identical.

Functions that return a number that is a sought-after character position are:

POSO

LASTPOSO

WORDINDEXO

WORDPOSO

Searches one string, from the beginning, for the presence of a
given substring and returns the substring' s position

Searches one string, from the end, backward, for the presence
of a given substring and returns the substring's position

Searches for a word by number and returns the initial
character position

Seaches for a word by the word itself and returns the initial
character position.

8-14 REXX User's Guide

Examples
Figure 8-16 shows an example of a REXX program that may be called as a string
function. It changes an input number into a string in currency format. It uses
PARSE VAR with a literal pattern and PARSE VALUE with a character-position
pattern.

/*Takes a number and returns a string in co11111a-delimited */
/* dollar format; e.g., DOLLAR(1234.5555) returns '$1,234.56' */

arg number /* get the argument NUMBER */

/* Round off the argument to the nearest cent, then */
/*parse the result into the integer (DOLLARS), the */
/* decimal point and the decimal fraction (CENTS) */
/* (NOTE: More about the FORMAT() function on page 9-6.) */

PARSE VALUE fonnat(number,,2,8) WITH dollars "." cents

dollars = abs(dollars)

backin = reverse(dollars)

backout = 1111

do while length(backin) > 3

PARSE VAR backin group 4 backin

backout = backoutllgroupl 111
,

11

end

backout = backoutllbackinll 11 $11

if number < e then
backout = backoutl 111

-
11

/* make DOLLARS positive */

/* reverse the digits in */
/* DOLLARS so we can parse */
/* them into groups of 3 */
/* (see REVERSE(), above) */

/* initialize a variable
/* for re-concatenation

*/
*/

/* while three digits or */
/* more remain in BACKIN, */
/* take each group of three */
/* remaining digits, and */
/* then join it to the end */
/* of the BACKOUT variable */
/* and add a co11111a */

/* concatenate the digits */
/* that remain; add '$' */

/* if the argument was */
/* negative, restore the */
/* minus sign */

bucks= reverse(backout)I 111
•

11 1 lcents /*restore the proper order*/
/* of the digits; add the */
/* decimal point and cents */

return bucks /* return the string */

Figure 8-16. DOLLAR.CMD

Chapter 8. Parsing 8-15

Figure 8-17 shows an example of how DOLLAR.CMD could be used as a function
in the program SUM.CMD (see Figure 6-10).

/* using the function DOLLAR() in a program */
total = e
do forever

say "Type amount:"
pull entry
if \datatype{entry,n)
then leave
total = total + entry
say "Total = " DOLLAR(total)

end

/*if entry is not a valid number */
/* leave the loop */

/* display TOTAL in dollar format */

say entry "is not a number. Returning to OS/2. 11

Figure 8-17. SUMCASH.CMD

Figure 8-18 shows an example of a useful search-and-replace string function. Notice
how the second PARSE instruction uses a variable as a pattern.

/* Function: CHANGE(string,old,new) */
/* Changes all occurrences of "old" in "string" */
/*to 11 new 11

• If 11 old 11 == 1111
, then 11 new 11 is prefixed */

/* to "string". */

parse arg string, old, new
if o l d== 1111 then return new 11 string

out= 1111

do while pos(old,string)\= e

end

PARSE VAR string prepart (old) string
out=outllprepartllnew

return out I I string

Figure 8-18. CHANGE.CMD

Figure 8-19 shows an example using the CHANGEO function.

/* using the CHANGE() function */
direction = "north by northwest"
wrong = "north"
right = "south"
say direction
say change(direction,wrong,right) /* displays "south by southwest" */

Figure 8-19. CHNGDEMO.CMD

8-16 REXX User's Guide

Chapter 9. Arithmetic

Basics

This chapter discusses using REXX for calculating and displaying numbers. For

more detailed information, refer to the REXX Reference.

In this chapter: --------------------------.

Basics

.,.. About RE:XX numbers

.,.. Checking input numbers

.,.. Calculating

.,.. Formatting output.

About REXX Numbers
Character strings on which REXX can perform arithmetic operations are referred to

as numbers.

In RE:XX, a number is a string of digits (O through 9). A number must begin with a

digit, a plus sign (+), or a minus sign (-). A single decimal point is permitted. The

letter E (ore) can be used to denote powers of 10.

The NUMERIC DIGITS instruction controls the number of decimal places allowed.

The default is nine places.

REXX ignores leading and trailing spaces in number strings. It does not allow

spaces or commas within a number.

These are some examples of valid REXX numbers:

12

-5

0.5

3.5E6

Checking Input Numbers

This is a whole number or integer.

This is a signed number (minus five).

This is a decimal fraction or decimal (one half).

This is a floating point number (three and one-half million). It uses

exponential notation. This notation is useful when dealing with very large

or very small numbers. The portion that follows the E is the number of

places the decimal point must be moved to the right to make it into an

ordinary number.

Before a program tries to do arithmetic on data typed from the keyboard, the data

should be checked to verify that it has valid numbers to work with. You can do this

by using the DATATYPEO function. For example:

datatype(expression,[type])

where

expression is the value to be tested.

type is an optional argument, the kind of data you are testing for.

Chapter 9. Arithmetic 9-1

In its simplest form, DATATYPEO returns the string NUM if the argument (the
expression inside the parentheses) is accepted by REXX as a number that could be
used in arithmetical operations. Otherwise, it returns the string CHAR.
The value of
datatype(49)
datatype(5.5)
datatype(5.5.5)
datatype("5,eee")
datatype(5 4 3 2)

is the string
"NUM"
"NUM"
"CHAR"
"CHAR"
"CHAR"

Figure 9-1 shows an example that requires the user to keep trying until a valid
number is typed.

/* Example requiring numeric input */
do until datatype(howmuch) = "NUM"

say "Type a number"
pull howmuch
if datatype(howmuch) = "CHAR" then

say "That was not a number. Try again!"
end

say "The number you typed was" howmuch

Figure 9-1. VALNUM.CMD

To test for a particular type of data, such as whole numbers, use the alternative form
of the DATATYPEO function. This form requires two arguments:

• The expression to be tested

• The type of data to be tested; for example, whole for a whole number.

Only the first character of type is inspected. To test for whole numbers, it
would be sufficient to write W or w. In this book, whole is used to remind you of
the meaning of this argument.

This form of the function, DATATYPE(number,whole), returns 1 (true) if number is a
whole number, e (false) if otherwise. For example:

do until datatype(howmany,whole)

pull howmany

end

If you also want to restrict the input to numbers greater than 0, you could write:

do until datatype(howmany,whole) & howmany > e

pull howmany

end

9-2 REXX User's Guide

Calculating

The ampersand(&) is an operator that combines conditions (see "Combining

Expressions" on page 4-6). In this example, both datatype (howmany,whole) and

howmany > e must be true for the loop to end.

The DATATYPEQ function can test for other types of data, as well. For examples,

see the REXX Reference.

Addition and Subtraction
These operations are performed in the usual way. You can use both whole numbers

and decimal fractions.

Operator

+ (plus sign)
- (minus sign)

Operation

Add
Subtract

Example

say 7 + 2
say 7 - 2

I* displays 1 91 *I
I* displays 1 51 *I

Multiplication and Powers
Operator Operation Example

Division

* (asterisk)
** (double asterisk)

Multiply
Raise to a whole
number power

say 7 * 2
say 7**2

I* displays 1 14 1 *I
I* displays 1 49 1 *I

When you divide, you determine whether or not you want the answer expressed as a

whole number (integer). The operators you can use are:

I (one slash)

% (percent sign)

11 (two slashes)

Divide. For example:

say 7 I 2 I* displays 1 3.5 1 *I
Integer divide. The result is a whole number. Any remainder

is ignored. For example:

say 7 % 2 /* displays 1 31 *I
Remainder after integer division. For example:

say 7 II 2 I* displays 1 11 *I

Chapter 9. Arithmetic 9-3

Notice which of these operators is used in the example shown in Figure 9-2.

/* This program works out how to share zero or more */
/* sweets between one or more children, assuming that */
/* a single sweet cannot be split. */

/*--*/
/* Get input from user */
/*--*/
do until datatype(sweets,whole) & sweets >= 0

say "How many sweets?"
pull sweets

end

do until datatype(children,whole) & children > 0
say "How many children?"
pull children

end

/*--*/
/* Compute result */
/*--*/
say "Each child will get" sweets%children "sweets",

"and there will be" sweets//chil dren "left over. 11

Figure 9-2. SHARE.CMD

Do not to try to divide by 0. If you do, a syntax error results. That is why, in
Figure 9-2, the user was not allowed to answer 0 to the question "How many
children?".

Because apples and oranges can be cut into pieces, you can use the /division
operator. For example: '

children = 5; apples = 7;
say "Each child gets" apples/children "apples."

/*displays 'Each child gets 1.4 apples.' */

Fractions are usually computed with an accuracy of nine significant digits. For
example:

children = 3; oranges = 7;
say "Each child gets 11 oranges/children "oranges."

/*displays 'Each child gets 2.33333333 oranges.' */

To summarize:

9-4 REXX User's Guide

• The result of a% operation is always a whole number, the quotient only.

• There may be a remainder. To compute the remainder, write the expression
using the// operator.

• The result of a/ operation can be a decimal.

Range and Precision
REXX calculates the result correct to nine digits if necessary. This means nine

significant digits, not counting the zeros that come immediately after the decimal

point in very small decimal fractions. For example:

say 1*2*3*4*5*6*7*8*9*19*11*12 /* displays '479991699' */

say 7/39999999999 /* displays •0.000000000233333333• */

The accuracy of computed results can be changed using the NUMERIC DIGITS

instruction. See "Changing Precision" on page 9-16.

Exponential Notation
Numbers much larger or smaller than those previously discussed are difficult to read

and write, because it is easy to make a mistake counting the zeros. It is simpler to

use exponential notation. Very large numbers can be written as an ordinary number,

followed by a letter E, followed by a whole number, called the exponent. The

exponent is how many places to the right (positive exponent) or left (negative

exponent) that the decimal point of the fixed-point number would have to be moved

to obtain the same value as an ordinary number. For example:

4.5E6 is the same as 4 500 000 (four and one-half million)

23E6 is the same as 23 000 000 (twenty-three million)
1El2 is the same as 1 000 000 000 000 (a million million)
4.5E-3 is the same as 0.004 5 (four and one-half thousandths)

IE-6 is the same as 0.000 001 (one millionth).

Write numbers this way in expressions and also when entering numeric data

requested by REXX programs. REXX uses this notation when displaying results

that are too large or too small to be expressed conveniently as ordinary numbers or

decimals. When REXX uses this notation, the part of the number that comes before

the E (the mantissa) is usually a number between 1 and 9.999 999 99. For example:

j = 1
do until j > le12

say j /* displays 'l' */
j = j * 11 /* '11' */

end /* 1 121 1 */
/* 1 1331 1 */
/* 1 14641 1 */
/* 1 161951 1 */
/* 1 1771561 1 */
/* 1 19487171 1 */
/* 1 214358881 1 */
/* '2.35794769E+9' */
/* 1 2.59374246E+le 1 */
/* '2.85311671E+ll' */

Numbers written in exponential notation, such as l .5E9, are sometimes called

floating-point numbers. Conversely, ordinary numbers, such as 3.14, are sometimes

called fixed-point numbers.

Chapter 9. Arithmetic 9-5

Test Yourself
What is displayed on the screen when you run the program shown in Figure 9-3?

/* Example: arithmetical operations */
quarter = 25
deuce = 2
say quarter + deuce
say quarter - deuce
say quarter * deuce
say quarter / deuce
say quarter % deuce
say quarter// deuce
x = quarter"E"deuce
say x + 0

Figure 9-3. ARITHOPS.CMD

Answer: The following is displayed on the screen.

The last two lines of the program require some explanation. First, x gets the value
25E2. This is the same as 25.00 with the decimal point moved two places to the
right (in other words, 2500). When xis used in the arithmetical expression, the
number 25E2 is added to 0, giving a result of 2500.

Formatting Output
Your program has accepted numbers from its user and made calculations. Now it
must display the results.

When formatting output, RE:XX:

9-6 REXX User's Guide

• Rounds numbers automatically before every operation, if necessary. Rounding
is to the current precision value set by a NUMERIC DIGITS instruction (see
page 9-16) or to the default value of nine decimal digits.

• Removes all leading zeros from the integer part of number, but leaves in the
trailing zeros in the decimal portion.

You may want to keep the precision of the calculations to the ninth place, but you

do not need to display all those extra zeros. That is what the following two

functions are for:

TRUNC(number,places)

TR UN CO returns just the integer part of number and the number of decimal p 1 aces
you specify. The only remaining decimals are truncated or cut off. That is, TRUNC

rounds down. For example:

say trunc(321.765,2) /* displays 321.76. */

Likewise, FORMATO function leaves a specified number of decimals, but it does

conventional rounding. The last decimal remaining is increased by one if the next

(truncated) decimal is 5 or greater. For example:

FORMAT(number,before,after)

The first three arguments of the FORMATO function are:

The number to be formatted
How many digits to be shown before the decimal point
How many digits to be shown after the decimal point.

For example:

say format (321.765,3,2) /* displays 321.77 */

Note: 321.7649 rounded to two places is 321.76, because FORMATO only uses the

first truncated digit to determine rounding.

Figure 9-4 shows an extended example to compare FORMATO and TRUNCO.

/* An example of rounding and displaying numbers */
say
say 11 At full
say 11 prec1s10n
say copies(11

-
11 ,45)

do num = 1 to 9
quotient = 23 / num

Round w/
FORMAT()

Round w/ 11

TRUNC() 11

norm= FORMAT(quotient,3,3) /* rounding normally to 3 decimal places */
down = TRUNC(quotient,3) /* rounding down to 3 decimal places */

/* Now, we will use FORMAT() to put the numbers into columns */

say 11 23/"num 11 =11 FORMAT(quotient,2,8) FORMAT(norm,6,3) FORMAT(down,6,3)

end

Figure 9-4. ROUNDING.CMD

Chapter 9. Arithmetic 9-7

The following is displayed on the screen, when you run ROUNDIT.CMD.

/"

""' [C:\]roundit

At full Round w/ Round w/
precision FORMAT() TRUNC()

23/1 = 23.00000000 23.000 23.000
23/2 = 11.50000000 11.500 11.500
23/3 = 7.66666667 7.667 7.666
23/4 = 5.75000000 5. 750 5.750
23/5 = 4.60000000 4.600 4.600
23/6 = 3.83333333 3.833 3.833
23/7 = 3.28571429 3.286 3.285
23/8 = 2.87500000 2.875 2.875
23/9 = 2.55555556 2.556 2.555
[C:\]

.I

Summary
This completes ''Basics" in this chapter. You have learned how to:

• Check user input
• Make REXX do the calculating
• Display the results on the screen.

"Advanced Topics" in this chapter discusses:

• Additional formatting techniques
• How to control the precision of REXX arithmetic
• Comparing number strings
• Scientific notation and exponentiation.

To continue with "Basics," go to page 10-1.

9-8 REXX User's Guide

Advanced Topics
In this chapter: -------------------------.

Advanced Topics

~ Putting numbers into columns
~ Formatting errors
~ Rounding errors
~ Conventional and scientific notation
~ Changing precision
~ Comparing numbers
~ Powers(** operator)
~ A square-root function.

Putting Numbers into Columns
Columns of figures are easier to read if the numbers are aligned with the units in the
same column. The FORMATO function helps you to do this (see Figure 9-5).

/* Example showing how columns of figures are formatted */

qty.1 = 101;
qty.2 = 500;
qty.3 = 60000;
qty.4 = 500;

say "Quantity

do item = 1 to 4

unitprice.1 = 0.73;
unitprice.2 = 1995;
unitprice.3 = 70000;
unitprice.4 = 400/12;

remark.1 = OK
remark.2 = OK
remark.3 = OK
remark.4 = OK

Unit Price Total Price Observations"

say format(qty.item, 5,0),
format(unitprice.item, 11,2),
format(qty.item * unitprice.item, 12,2),
11 11 remark.item

end

Figure 9-5. INVOICE.CMD

The following formatted data is displayed on the screen.

Formatting Errors

Quantity
101
500

60000
500

Unit Price
0.73

1995.00
70000.00

33.33

Total Price Observations
73.73 OK

997500.00 OK
4.20E+9 OK

16666.67 OK

The numbers to be formatted should always be small enough to fit into the space
you have reserved for them with FORMAT.

A simple rule is to always specify at least nine spaces for the before the decimal point
argument. To ensure that numbers with more than nine digits are displayed in

Chapter 9. Arithmetic 9-9

Rounding Errors

exponential notation. The extra characters required causes fields to the right of the
number to shift to the right, thus drawing attention to the exception.

Look at item 3 in the previous example. The quantity times the unit price (60 000
times 70 000) gives a total price of 4 200 000 000, which is too large for the
nine-digit field that was specified. The result has therefore been displayed in
exponential notation. This in tum has caused OK to be shifted right.

If we add qty.5 = 880 000, unitprice.5 = 1, and remark.5 = "Big deal" and
change the 4 to a 5 in the DO instruction, then the following is displayed on the
screen.

~ ~

[C:\]invoice
Quantity Unit Price Total Price Observations

101 0. 73 73. 73 OK
500 1995.00 997500.00 OK

60000 70000.00 4.20E+9 OK
500 33.33 16666.67 OK

12 +++ say fonnat(qty.item, 5,0), fonnat(unitprice.item, 11, 2),
fonnat(qty.item * unitprice.item, 12,2), 11 11 remark.item

REX0040: Error 40 running C:\INVOICE.CMD, line 12: Incorrect call to
routine

[C:\]

The error could have been avoided by:

• Testing the input values for a maximum number of 99 999

or

./

• Allowing space enough for at least nine digits for the integer part. For example:

say format(qty.item, 9,0},
format(unitprice.item, 9,2},
format(qty.item * unitprice.item, 11,2},
11 11 remark. i tern

The following formatted data is displayed on the screen.

Unit Price
0.73

1995.00
10000.00

33.33
1.00

Total Price Observations
73.73 OK

997500.00 OK
4.20E+9 OK

16666.67 OK
aa0000.00 Big deal

When your program performs a series of arithmetical operations, additional errors
can be inadvertently introduced. Look at the fourth item in the INVOICE.CMD
program shown in Figure 9-5 on page 9-9. The customer seems to have been
overcharged by $1.67. The price was $400 a dozen. FORMATO has rounded this
to 33.33 each. But Total Price was not rounded until after it had been multiplied
by 500.

9-10 REXX User's Guide

Test Yourself

For rounding numbers, use FORMATO at the point in your calculations where you
want rounding to occur. For rounding down, use TRUNCQ.

Write a program that accepts input liquid quantities and unit prices and displays the
price per gallon and per liter.

Answer: Figure 9-6 shows an example, divided into six parts, of one way to do
this.

/* Calculate a conversion table for input liquid quantities

/* Simple variables (input and program control):
/* INPUTQTY Quantity
/* INPUTUPR Unit price
/* UNIT Unit of measure (G or L)
/* RPTUPR Unit price of previous entry
/* RPTUNIT Unit of measurement of previous entry
/* ITEM Item number (each purchase)

/* Compound symbols (for each item of output):
/* QTYINGAL.ITEM Quantity in gallons
/* UPPGAL.ITEM Unit price per gallon
/* QTYINLIT.ITEM Quantity in liters
/* UPPLIT. ITEM Unit price per 1 i ter
/* TTLPRC.ITEM Total price of purchase

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

/*MAIN PROGRAM: Calls input subroutines GETQTY, GETUPR, and GETUNIT */
/* and CALCULATE subroutine ; results are then displayed in table. */

inputqty = 1111 /* Initialize variable for quantity input */
/* (also controls end of input). */

do item = 1 /* For each item... */

end

call getqty /* - get input for quantity */
if inputqty = 1111 then /* if none entered, then quit the loop */

leave /* and display results */

call getupr
call getunit
ca 11 ca lcu 1 ate
inputqty = 1111

/* - get input for unit price
/* - get unit of measurement for input
/* - do the calculations
/* re-initialize input variable

/* and repeat the loop

*/
*/
*/
*/

*/

Figure 9-6 (Part 1 of 6). LIQUID.CMD

Chapter 9. Arithmetic 9-11

/* When all data have been input, display a header */
say
say 11 I IN LITERS IN GALLONS TOTAL"
say 11 I quantity unit quantity unit PRICE"
say 11 I price price
say copies(11 =11 ,56)
/* ••• then display the calculated values in columns using FORMAT(). */
last = item -1
do item = 1 to last

say,

end
exit

format(item,3,0) 11 I 11,

format(qtyinlit.item,5,2),
format(uppl it. item,3,3) 11 I 11,

format(qtyingal.item,5,2),
format(uppgal. item,3,3) 11 I 11,

format(ttlprc.item,7,2)

Figure 9-6 (Part 2 of 6). LIQUID.CMD

/* Item number */
/*Qty. in liters */
/* Price per liter */
/* Qty. in gallons */
/* Price per gallon */
/* Total purchase */

/* Following are the subroutines for data input */

getqty: /* Accept input quantity for each item. */
/* The DO loop allows the user to type only a number or (by */
/* pressing the Enter key alone) a null string, ending the input loop.*/

do until datatype(inputqty,n) I inputqty = 1111

say
say "Type quantity for item number 11 item
say 11 or press the Enter key alone to end the program. 11

pull inputqty
end
return

Figure 9-6 (Part 3 of 6). LIQUID.CMD

9-12 REXX User's Guide

getupr: /* Accept input for each item's unit price. */
/* The SYMBOL() function tests whether previous input exists */
/* (i.e., if the variable REPTUPR has been assigned a value). */
/* If so, the user can 'carry over' that previous input by */
/* simply pressing the Enter key. */

say
say "Type unit price"
if symbol(11 reptupr 11

) <> 11 LIT 11 then
say 11 (or press the Enter key for" reptupr 11

)
11

/* Again, the DO loop allows only numeric input. */

do until datatype(inputupr,n)
pull inputupr /*Entering a null string (i.e., */
if inputupr = 1111 then

inputupr = reptupr
else reptupr = inputupr

end

/* pressing the Enter key only) */
/* 'carries over' the previous item's */
/* unit price; otherwise this input is */
/*stored for later 'carry-over.' */

return

Figure 9-6 (Part 4 of 6). LIQUID.CMD

getunit: /*Accept input for measure (liters or gallons); */
/* again, the SYMBOL function checks for prior use of repeat variable */

say "Type G for gallons or L for liters"
if symbol(11 reptunit 11

) <> 11 LIT 11 then
say 11 (or press the Enter key for" reptunit 11

)
11

/* The DO loop allows only a 11 611 or 11 L11 as input */

do until unit = 11 611 I unit = 11 L11

pull unit
if unit = 1111 then /* A null string is changed to */

unit = reptunit /* the previous input; otherwise */
else reptunit = unit /* this entry is stored for next time. */

end
return

Figure 9-6 (Part 5 of 6). LIQUID.CMD

Chapter 9. Arithmetic 9-13

calculate: /* Calculate the output values according to unit */

select

end

when unit ="G" then do
qtyingal.item = inputqty
qtyinlit.item = inputqty*3.7853
uppgal.item = inputupr
upplit.item = inputupr/3.7853
end

when unit ="L" then do
qtyinlit.item = inputqty
qtyingal.item = inputqty/3.7853
upplit.item = inputupr
uppgal.item = inputupr*3.7853
end

ttlprc.item = inputqty * inputupr
return

Figure 9-6 (Part 6 of 6). LIQUID.CMD

Conventional and Scientific Notation

/*if input is in gallons ••• */
/* store the input quantity */
/* convert to liters */
/* store the unit price */
/* compute 'per liter' price */

/* if input is in liters... */
/* store the input quantity */
/* convert to gallons */
/* store the unit price */
/* compute 'per gallon' price */

/* compute total price of item */

You can control whether numbers are expressed in conventional or scientific
notation with the FORMATO function.

Fixed-point (Conventional) Notation
To stop FORMATO from returning floating-point numbers (when results would
usually be expressed in floating-point numbers), use the fourth argument of
FORMAT. This argument specifies the number of character positions reserved for
the exponent. Exponential notation is not used if you write:

FORMAT(number,before,after,0)

Be sure that the amount of space you have allowed for before and after is
sufficient.

Floating-point (Scientific) Notation
To make FORMATO return floating-point numbers (called exponential or scientific
notation) when the results would usually be expressed in fixed-point numbers, use
the fifth argument of FORMATO. This argument specifies the threshold for
expressing the result in exponential notation. Exponential notation is used if you
write:

FORMAT(number,before,after,,0)

Note: When a floating-point number has an absolute value between 1 and
9.999 999 99 (that is, when the exponent is 0) the characters E+0 are always
omitted, even when floating-point has been specified.

For other uses of the FORMATO function, see the REXX Reference.

9-14 REXX User's Guide

Test Yourself
1. Write a program called REFORMAT that expresses numbers typed by the user

in both fixed-point and exponential notation.

2. Test your program with the numbers:

123 456 789
0.000 000 000 001 234 5
999 999 999 999e-6
l.2el0
1.2
1.2e+O

Answers:

1. Figure 9-7 shows an example of a possible answer.

/* Example: to change the format of a number */
do forever

end

say "Type a number"
pull answer
if \ datatype(answer,number) then exit
say "Fixed-point equivalent:" format(answer,,,e)
say "Exponential equivalent:" format(answer,,,,e)

Figure 9-7. REFORMAT.CMD

2. Figure 9-8 shows a table that lists the results you should get when using the test
numbers with the REFORMAT.CMD.

Number typed Fixed point equivalent Exponential equivalent

123 456 789 123 456 789 1.234 567 89E + 8

0.000 000 000 001 234 5 0.000 000 000 001 234 5 l.2345E-12

999 999 999 999e-6 1000000.00 1.000 000 OOE + 6

l.2e10 1 200 000 000 000 l.2E+ 10

1.2 1.2 1.2

l.2e+O 1.2 1.2

Figure 9-8. REFORMAT.CMD Results

Chapter 9. Arithmetic 9-15

Changing Precision
If you want to avoid using exponential notation, or if you want to control the
precision of your calculations, use the NUMERIC DIGITS instruction to change the
number of significant digits (see Figure 9-9). (The default setting for NUMERIC
DIGITS is 9.)

/*examples of numbers with unusually high precision */

numeric digits 10
say "The largest signed number that can be held"
say "in a C long integer is" 2**31 - 1 "exactly."
say

numeric digits 48
say 11 1/7 =11 1/7

Figure 9-9. ACCURATE.CMD

The following is displayed on the screen when you run the program.

1/7 = 0.142857142857142857142857142857142857142857142857
[C:\]

To check the current setting of the NUMERIC DIGITS instruction, use the
DIGITSO function, digits{). If you have not used the NUMERIC DIGITS
instruction to change precision, then the DIGITSO function returns 9 (the default
setting).

Rounding and Precision
The NUMERIC DIGITS instruction specifies the maximum number of significant
digits in the result of a REXX calculation. Whatever the setting you give for
NUMERIC DIGITS, REXX carries out its calculations to an even higher precision.
Extra guard digits are provided for each input number. Multiplication and division
are calculated out to twice the NUMERIC DIGITS setting.

This means that the only arithmetic errors that can occur are in the final rounding.
For example:

numeric digits 3
say 100.3 + 100.3 /* displays 201

/* 200.6 is rounded to '201'
*/
*/

Unless you have a specific need for high-precision calculations, leave NUMERIC
DIGITS at the default setting of 9. Higher settings can slow your programs down
needlessly. Lower settings can affect calculations in a way you do not intend (for
example, how DO loop counters are incremented). When you need to round final
results for printouts or displays, use the FORMATO function.

For more information about rounding, see "Numerics and Arithmetic" in the REXX
Reference.

9-16 REXX User's Guide

Comparing Numbers
There are times when an accurate comparison is inconvenient (see Figure 9-10).

/* Example: no approximation here */

say 1 + 1/3
say 1 + 1/3 + 1/3 + 1/3

/*displays 1 1.33333333 1 */
/*displays 1 1.99999999 1 */
/* displays •e• (false) */ say 1 + 1/3 + 1/3 + 1/3 = 2

Figure 9-10. NOFUZZ.CMD

To make REXX comparisons allow for approximate values (make them less accurate

than ordinary REXX arithmetic), use the instruction, NUMERIC FUZZ n, where n is the

number of digits (at full precision) that REXX should ignore when comparing

numbers. The number n must be a whole positive number (or any expression that is

so evaluated), and it must be less than the current NUMERIC DIGITS setting (see

Figure 9-11).

/* Example: allowing approximation*/
say 1 + 1/3 + 1/3 + 1/3 = 2 /* displays •e• (false) */
numeric fuzz 1
say 1+1/3 + 1/3 + 1/3 = 2 /*displays 1 11 (true) */

Figure 9-11. FUZZ.CMD

To check the current setting of the NUMERIC FUZZ instruction, use the function,

FUZZ(). If no NUMERIC FUZZ setting has been given, FUZZO returns 0 by

default. This means that the 0 digits are ignored during a comparison operation.

Powers (** Operator)
The operator** means raised to the whole-number power of. For example:

2**1 = 2
2**2 = 2*2
2**3 = 2*2*2
2**4 = 2*2*2*2

As in ordinary algebra:

2**0 = 1

2 (2 to the power of 1)
4 (2 to the power of 2, or 2 squared)
8 (2 to the power of 3, or 2 cubed)
16 (2 to the power of 4).

2**-1 = 1/(2**1) = 0.5 (2 to the power of minus 1)
2**-2 = 1/(2**2) = 0.25 (2 to the power of minus 2).

Note: The number on the right of the ** must be a whole number.

In the order of precedence built into RE:XX, the powers (**) operator comes below

the prefix operators and above the multiply and divide operators. For example:

say -5**2 /* displays 1 25 1
• Same as (-5)**2 */

say 10**3/2**2 /*displays 1 250 1
• Same as (10**3)/(2**2) */

Chapter 9. Arithmetic 9-17

Test Yourself
1. Examine the program shown in Figure 9-12.

/* Example of a negative exponent */
if 2 ** -3 = 1/(2**3) then say "True"
else say "False"

Figure 9-12. EXPONENT.CMD

a. What is displayed on the screen when you run this program?
b. Are the parentheses in this expression really necessary?

2. What value is computed for the expression:

say 9 ** (1/2)

Answers

1. In EXPONENT.CMD

a. The word True is displayed on the screen.
b. No. The** operator has a higher priority than the/ operator, so REXX

evaluates the expression in the same way if the parentheses were removed.

2. The result is a syntax error. The decimal form (9 ** 0.5) does not work either.
True, in mathematics, x to the power of 1/2 means the square root of x. But in
REXX, the ** operator must be followed by a whole number or by an
expression that, when evaluated, gives a whole number.

9-18 REXX User's Guide

A Square-Root Function
Figure 9-13 shows an example of a SQRTO function written as a RE:XX program.

/* The SQUARE ROOT function */
/* */
/* SQRT (number) *I
/* */
/* where "number" is a non-negative REXX number, */
/* returns the square root of 11 number11

• Precision is */
/* nine significant figures, independent of the setting */
/*of NUMERIC DIGITS (explained on page 9-16). */

/* */
/* Implementation details: 11 number 11 is nonnalized to */
/* give an even exponent (so that the exponent can be */
/* dealt with separately later) and a mantissa between */
/* 1 and 100. The most significant digit of the result */
/* is found. */

/* */
/*The mantissa is multiplied by rne, the exponent is */
/* reduced by 2 to compensate, the partial result */
/* (ROOT) is multiplied by 10 (leaving a 0 in the */
/* units position) and the units digit of this partial */
/* result is then found, and so on. */

/* */
/* Finally, the result is adjusted using the computed */
/* exponent. */

/*--*/
/* Set precision */

/*--*/
numeric digits 10 /* for partial results */

/* use one digit more */
/* than final precision */

/*--*/
/* Check arguments */

/*--*/
if arg() \= 1

then return /* wrong number arguments */
arg x
if \ datatype(x,number)

then return /* argument not a number */
if x < 0

then return /* argument is negative */

/*continued .•• */

Figure 9-13 (Part 1 of 2). SQRT.CMD

Chapter 9. Arithmetic 9-19

/*--*/
/*Normalize: */
/* FROM */
/* x the argument *I
/* COMPUTE */
/* mant the mantissa, where e < mant < 1ee */
/* exp the exponent, where exp is even */
/*--*/

/* Format so that e < mant < 1e */
parse value format(x,, ,,e) with mant 11 E11 exp

/* Modify so that exp is even */
if exp = 1111 then exp = e
if exp//2 \= e then do

mant = mant * 1e
exp = exp - 1

end

/*--*/
/* Find root by successive approximation */
/*--*/
root = e
do le

do digit = 9 by -1 to e, /* find largest digit, */
while, /* such that */

(root + digit)**2 > mant /* (root+digit)squared */
end /* is \> mant* /
root = root + digit
if root**2 = mant then leave
root = root * 10
mant = mant * 1ee
exp = exp - 2

end

/*--*/
/* Adjust for computed exponent * /
/*--*/
numeric digits 9
return root * 10**(exp/2)

Figure 9-13 (Part 2 of 2). SQRT.CMD

9-20 REXX User's Guide

Chapter 10. Input and Output

Basics

REXX can do more than manipulate the information that the user has typed at the

keyboard and then process it for display on the screen. REXX can store, access,

print, and organize data outside the program.

In this chapter: -----------------------~

Basics

.... A stream of information

.... Text file processing

.... Writing data to a file

.... Reading data from a file

.... Printing a text file.

A Stream of Information
In computing, the form in which information comes is often as important as its

content. A spreadsheet file, for example, contains not only the numbers and

formulas put into it, but a good deal of other information that you never see, such

as information about the structure of the file. This additional data describes how

the file is organized and how it is stored and displayed.

The structure of a spreadsheet file is very different from that of a document

formatted by a word processor. Information takes on other forms when it moves

among the various devices in a system: the keyboard, the display, the printer, and so

on.

The goal of the REXX language is to keep things as simple as possible. Therefore,

REXX takes the simplest possible view of the information it receives. The simplest

way to look at information is one character at a time. REXX sees external
information as a stream, a long, single-file row of characters.

Chapter 10. Input and Output 10-1

For example, in a REXX program that reads from a text file and then sends the text
to a printer, both the file and the device to which the printer is connected are
character streams:

~Twas-br1111g-and-th

Output stream PRT

In the preceding diagram:

Input stream JAB.TXT

text file
(JAB. TXT)

a REXX

program

• printer
(PRT)

- sl1thy-toves-d1d-gyre-and •••

• The text file being read (JAB.TXT) is the input stream.
• The printer device written to (PRT) is the output stream.

-

In this discussion, a stream means any source or destination of external information
used by a REXX program. A stream can be a disk file, the input from the keyboard
or a data port, or the output to a printer or display.

In certain instances, as with text files, REXX can work with a stream in entire lines
of data; that is, as strings of characters separated by carriage returns. For example:

lines

-line 1---+
--1 ine2----
--1 ine3·----
-1 ine4---+
Twas brillig•And the slithy toves•did gyre and gimble•in the wabe•all mi

t t t t
carriage returns

REXX can arrange these lines into ordered lists, called queues.

The input and output operations of REXX fall into these broad categories:

• Streams of characters
• Lines, or segments of a stream, separated by carriage returns
• Queues, which are ordered lists of lines.

The way you use data streams in a program depends upon the kind of information
you are working with and what you want to do with it.

10-2 REXX User's Guide

Text File Processing

LINEOUT() Function

Calling LINEOUT()

You begin text file processing by putting line data into more or less permanent form,

such as in simple text files on disk. You already know some ways to create, read,

and write disk files, either through application programs, such as your text editor, or

through the OS/2 program.

In RE:XX, file processing is performed with a set of stream functions that read and

write data a single character at a time or line-by-line. Because text files are usually

organized into lines, the first function you try is one that writes in lines.

To write a line of text to a file, use the LINEOUTO function. For example:

lineout(stream,linedata)

where:

stream is name of the file (that RE:XX regards as a stream) to which the text is

written.

linedata is a line of text (or any data) to be written.

The first time a program uses LINEOUTO in this way, the named stream is opened

for writing and the line 1 inedata is written to the end of the stream.

The stream remains open, and each subsequent LINEOUTO call writes a new line to

the end of stream.

When the program ends, RE:XX automatically closes stream. Or, you can close

stream explicitly at any time by omitting the 1 i nedata argument. For example:

lineout(stream)

LINEOUTO is a function call rather than a keyword instruction. That means that it

not only performs a given task (writing data to a file, in this example), but that it

also returns a value of.

• {:) if 1 i nedata was successfully written to stream.

• 1 if for any reason 1 i nedata could not be written. For example, if you try to

write to a read-only file.

The return value can be used by your program to detect whether something has gone

wrong in the course of writing to a stream.

Note: If you use LINEOUTO without the 1 i nedata argument, the return value tells

you if stream was successfully closed.

LINEOUTO is a function call; therefore, you have a choice about how you can use

it. You can call LINEOUT:

• As part of a RE:XX instruction. For example, with the keyword SAY:

say lineout("mybook.txt","Chapter 1. 11
) /*displays "{:)" if successful */

or as a variable assignment:

ready= lineout("mybook.txt","Chapter 1. 11
) /*assigns"{:)" to READY */

/* if successful */

Chapter 10. Input and Output 10-3

• As a subroutine with arguments (this is true of all function calls). For example:

call l ineout "mybook. txt", "Chapter 1."

When you use LINEOUTO (or any function call) in this way, the return value of the
function is automatically assigned to the RE:XX variable RESULT. For more
information about calling functions in this way, see "Using a Call of the Other
Kind" on page 7-13.

Writing Data to a File
Figure 10-1 shows an example of a simple text editor. It only writes new text to a
file. Look closely at how the LINEOUTO function is used.

/* World's smallest editor */
say "Type file name 11

pu 11 f il ename
say "Type as many lines as you like. 11

,

"To finish, press the Enter key only."
do forever

end

parse pull line

if line = 1111 then /* empty line? */
do

call lineout filename /* if so, close the file */
exit /* and end the program * /
end

/* otherwise, write LINE to the end of the file */
call lineout filename, line
if result = 1 then leave

say "Error, return code" result
exit

Figure 10-1. EDDY.CMD

The user types a file name, which is then parsed by the PULL instructions and
stored in the variable f i 1 ename. As each line is typed:

• The PARSE PULL instruction stores it as a string in the variable l i ne.

• The LINEOUTO function (called as a subroutine) writes the string contained in
l i ne to the file name stored in the variable filename.

• The DO loop continues until the user presses the Enter key twice, thereby
entering a null string.

• The program then calls LINEOUTO with only the filename (closing the file),
and then exits.

10-4 REXX User's Guide

Reading Data from a File

LINEIN() Function

LINES() Function

To read the file and display the data on the screen, you could use the OS/2
command TYPE. Use a REXX program to add some extra features.

To read a line from a stream into a REXX program, use the LINEINO function.
For example:

linein(stream)

where:

stream is name of the data stream (such as a file) from which the line is read.

The first time LINEINO is called in a program, it opens the named stream and
returns the first line of data. The second time it is called, it reads the second line
and returns the second line of data, and so on until the program ends (or you close
the stream with LINEOUTO). In other words, LINEINO keeps track of its place in
the stream with a kind of bookmark, called the read position. LINEOUTO uses a
similar marker, called the write position. For more information, see "Accessing Data
within a Stream" on page 10-20.

LINEINO has no way of knowing when there are no more lines to read in a stream,
such as when it gets to the end of a text file. To know when the read position has
reached the end of the file, use the LINESO function.

To find out if any lines remain between the read position and the end of a stream,
the function, 1 ines(stream), returns:

0 if no complete lines remain to be read

1 if any lines remain.

Chapter 10. Input and Output 10-5

Figure 10-2 shows an example, where stream is a text file, so LINESO would return
e when the end of the file has been reached.

/* Program to display an entire file */
/* exits when end-of-file is reached */

say 11 Type a file name 11

pull filename

lineno = 1

do until lines{filename) = e

/* get the name of the file
/* from the user

/* initialize a counter to display
/* the line number

/* repeat this loop until no lines
/*remain in the selected file ••.

*/
*/

*/

*/
*/

say lineno linein{filename) /*display the line number, and then */
/* read and display a line of text, */

lineno = lineno + 1

end
exit

Figure 10-2. SHOLINl.CMD

Resetting the Read Position

/* advancing the read position */
/* with each pass though the loop */

/* increment the line-number counter*/

/* end the program */

Have the user select how many lines are displayed. If a number larger then the
number of lines in the file is typed, the program cycles back to the beginning. To do
this, use LINEINO with its second and third arguments. For example:

linein(stream,position,count)

where:

stream is the name of the stream from which the line is read.

position is the new position for the read position. The options are:

• no argument (the default}-to leave the read position where it is.
• 1-to set the read position to the beginning of the stream (line 1).

count is whether or not to actually read a line. The options are:

• 1 (the default}-to read one line and advance the read position.
• 9-to read no lines and not advance the read position.

So far, LINEINO has been used with the default values for the second and third
arguments to simply read the next line. By setting 1 for the position and e for the
count, LINEINO can be used to reset the read position to the beginning of the
stream without reading a line (or advancing the read position). For example:

linein(filename,1,9)

Since you are not interested in the return value (which would be empty anyway), you
can call LINEINO as a subroutine:

call linein filename,1,e

10-6 REXX User's Guide

Figure 10-3 shows an example calling LINEINO as a subroutine to reset the read
position.

/* Displays a given number of lines in a text file */
/* If the given number exceeds the number of lines */
/* in the file then the read position is reset back */
/* to the beginning of the fi 1 e * /

say "Type a file name"
pull filename

say "Type number of lines to display"
pull howmany

1 ineno = 1
do howmany

say lineno linein(filename)
lineno = lineno + 1

if lines(filename) = e then
do

/* if the end of file is reached */

end
exit

call linein filename,1,8
say ">>> End of File <<< 11

lineno = 1
end

Figure 10-3. SHOLIN2.CMD

Printing a Text File

/* reset the read position
/* display end-of-file marker
/* reset line counter

*/
*/
*/

Using REXX to send data to a printer is very similar to writing to a file. There are
some things you need to know:

• The name of the device that your computer is connected. Use this device name
in place of a file name. In Figure 10-4 on page 10-9, the printer device is
namedPRN.

• The control characters and escape sequences that your printer uses for various
formatting operations. Generally, these are listed in the manual for the printer.
The example uses the standard character for a form feed, which directs the
printer to start a new page.

Sending Special Characters
Printers often use certain characters as controls, such as ESC (escape) and FF (form
feed) that you cannot type from the keyboard. To use these characters, you need to
look up the ASCII number of the character. Then, you can use the built-in REXX
function D2CO (decimal-to-character) to translate the ASCII code number into the
character you need.

Chapter 10. Input and Output 10-7

For example, the character that tells the printer to start a new page is ASCII number
12. To translate that code number 12 into a character for the printer use, you would
write, d2c(12).

For more information about functions such as D2CQ, see "Using Functions to
Convert Data" on page 4-20.

CHAROUT() Function

A Printout Program

Generally, the CHAROUTO function is most useful for issuing printer controls.

CHAROUT(stream,string)

where:

stream

string

is the name of the stream to which the character is written. Figure 10-4
on page 10-9 shows an example where stream is the name of the device
connected to a printer.

is a string-the characters to be written.

Like the LINEOUT function, CHAROUTO returns 0 if all the characters in string
are successfully written to stream. Unlike LINEOUTQ, if for any reason
CHAROUTO cannot write to the named stream, it returns the number of characters
that remain unwritten.

CHAROUTO is also similar to LINEOUTO in that it is more convenient to call it as
a subroutine. For example, to tell the printer to start a new page, you could use
call charout "PRN",d2c(12).

Figure 10-4 on page 10-9 shows an example of a program for printing a file.

10-8 REXX User's Guide

I* Prints a text file *I
say 'Type file name: '
pull filename

printer = 'PRN:'
newpage = d2c(12)

I* prompt for a file name
/* ••• and get it from the user

/* save name of printer device
I* save page-eject character

/* Repeat this loop until no lines remain in the file */
I* and keep track of the line count with COUNT *I
do count = 1 until lines(filename) = e

/*Read a line from the file ••• */

output = linein(filename)

/* ••• and send it to the printer*/

call lineout printer, output

if result <> 0 then
do

say 'Error: unable to write to printer'
leave

I* if there is a *I
I* write error, *I
/* display it, and*/
I* exit the loop *I

end

if count II 50 = 0 then
call charout printer, newpage

/* if the line count is a *I
I* multiple of 50, then */
I* start a new page by *I
/* sending the form feed *I

end

call lineout filename
exit

Figure 10-4. PRINTIT.CMD

I* go back to the start of loop
I* until no lines remain

I* close the file
/* end the program normally

*I
*/

*/
*I

*I
*/

*I
*/

Chapter 10. Input and Output 10-9

To Summarize
Here is a review the input and output functions that have been used so far.

Use this function

LINEOUT {stream, 1 inedata)

LINEOUT {stream)

LINEIN(stream) or
LINEIN(stream,,1)

LINEIN(stream,1,0)

To do this

To open stream and append 1 inedata
(write it to the end of stream). Returns
1 if successful; e if otherwise.

To close stream when writing is
completed. Returns 1 if successful; e if
otherwise. (REXX automatically closes
any open streams at the end of a
program.)

To open st ream, read the first line and
advance the read position to the second
line.

If st ream is already open, then
LINEINO reads the current line and
advances the read position one line
ahead.

To put the write position at the
beginning of the stream without reading
a line or advancing the read position.

Although not discussed in this chapter, you can also:

Use this function

LINEIN(stream,1,1)

LINEIN(stream,,0)

To do this

To put the write position at the
beginning of the st ream and specifically
read the first line (advancing the read
position to the second line). The action
is the same whether or not stream is
already open.

To open stream without reading the first
line or advancing the read position. No
action is taken if st ream is already open.

Figure 10-5 is a table showing the REXX functions that read from and write to a
data stream.

Read Write Check for

Characters CHARINQ CHAROUTQ CHARSQ

Lines LINEINQ LINEOUTQ LINE SQ

Figure 10-5. Read and Write Functions

10-10 RE:XX User's Guide

STREAM() Function

Queues

Lists of Data

You can use the STREAMO function to get the following information about a
stream:

• To determine if a stream exists
• To determine if a stream is ready for input or output
• To get the size or last edit date of a file.

You can also use STREAMO for more complex input and output tasks, as when
your program must read from or write to:

• Files other than text files
• Streams other than files and printers
• A specific position in a stream.

See "STREAMO Function" on page 10-18 for examples of STREAMQ.

A queue is a means of holding a list of lines in a specific order.

A queue in REXX combines the functions of a stack (in which the last item added is
the first read) and a queue (in which the first item added is the first read). That is, it
can be either last in, first out (LIFO) or first in, first out (FIFO).

The REXX concept of a queue is different from that generally used. Throughout
this book, the REXX definition a of queue is used.

One particular advantage of using a queue is that it lets your REXX programs share
data with other programs when those programs are written in REXX or any other
language.

Data in a queue is held as a series of lines. Thus, data can only be put on or taken
off a queue one line at a time. A line of data can be added to the back or to the
front of a queue, but a line of data can only be taken off from the front.

The queue is external to REXX. Unlike variables, a queue remains even after your
REXX program ends. Once created, it is retained for the duration of the current
OS/2 session or until you delete it. This means that other programs can add or
remove data from the queue whenever your REXX program allows.

The difference between LIFO and FIFO is significant. Think of a queue as a list
that you can add to from either end. You can add items on the back of the queue
using the QUEUE instruction, or you can add items on the front of the queue, using
the PUSH instruction.

Chapter 10. Input and Output 10-11

You could picture it like this:

back front

QUEUE---+
.--pusH

The concept of a queue having a front and a back is important, because you can
only read items from the front of the queue. The command that reads data from a
queue is the PULL instruction.

Now you could picture it like this:

back front

.--pusH
QUEUE---+

Putting Data on a Queue
The QUEUE instruction puts an item of data on the queue in FIFO order:

back

QUEUE---+ 7 6 5 4 3 2 1

last ite
added

first ite
added

front

.--next item
to be read

The PUSH instruction puts an item of data on the queue in LIFO order:

back

first ite
added

10-12 REXX User's Guide

front

1 2 3 4 s 6 1 .--pusH

last ite
added

.__next item
to be read

Reading the Queue

QUEUED Function

Up to now, the PULL instruction has been used to collect user input, such as data

typed at the keyboard, to store it into variables.

What the PULL instruction actually parses is the next available line of data from the

queue. It is only when the queue is empty (as it has been so far) that PULL parses

input from the keyboard.

Try the program shown in Figure 10-6.

/* Using QUEUE and PULL */
QUEUE time() /* add the current time to the queue */
QUEUE date() /* add the current date to the queue */

PULL datal
PULL data2

/* get a string from the queue front */
/* get a string from the queue front */

say 'The first element on the queue was:• datal
say 1 The second element on the queue was:• data2

exit /* end the program normally

Figure 10-6. QUEUING.CMD

*/

Change the program by substituting PUSH for QUEUE, see Figure 10-7.

/* Using PUSH and PULL */
push time() /* add the current time to the queue */
push date() /* add the current date to the queue */

pull Datal
pull Data2

/* get a string from the queue front */
/* get a string from the queue front */

say 1The first element on the queue was:• Datal
say 1 The second element on the queue was:• Data2

exit /* end the program normally

Figure 10-7. PUSHING.CMD

*/

It would be useful to be able to determine how many items are on the queue at any

given time. That is the purpose of the REXX function QUEUED, see Figure 10-8.

/* counting the queue */
push 11 manny 11

push 11 moe 11

push 11mac 11

count = queued()
say count 11 names in queue. 11 /*displays 13 names in queue.• */

Figure 10-8. QCOUNT.CMD

Chapter 10. Input and Output 10-13

Summary

You will find that QUEUED is particularly useful for controlling a DO loop that
pulls data from the queue, see Figure 10-9.

/* Find all DEVICE= lines in C:\CONFIG.SYS, put them in */
/* the queue, and process them later */
file = "C:\CONFIG.SYS"
Do While Lines(file) > 0
line= Linein(file)
If Translate(Left(line,7)) 1 DEVICE= 1 Then Push line
End

Say 'There are' queued() 'DEVICE= lines in' file'. Here they are
Do queued()
Parse Pull line
Say line
End

Figure 10-9. DOQUEUE.CMD

This completes "Basics" in this chapter. You have learned how to:

• Read and write disk files
• Send data to the printer
• Use the REXX data queue.

To make best use of the topics discussed in this chapter, see "Data Streams" in the
REXX Reference.

"Advanced Topics" in this chapter discusses more about input and output.

To continue with "Basics," go to page 11-1.

10-14 REXX User's Guide

Advanced Topics
In this chapter: -------------------------.

Advanced Topics

• More about data streams
• Default streams
• STREAMO function
• Accessing data within a stream
• More about queues.

More about Data Streams

Default Streams

REXX regards all information from any file or device as a continuous stream of

single characters. Data read into a REXX program (whether from a disk file, the

keyboard, a device, or another program) is processed equally as a character stream.

The same is true for output data that a REXX program writes to a file or other

device. All of these are streams.

Your program can work with the information in a stream as it is, 1 character at a

time. Or, if the data is in line form (as in a text file), you can manipulate the

information from the stream (or put information into it) line-by-line.

As shown in "Basics" in this chapter, your REXX programs can access and

manipulate text files by using:

LINEINO

LINEOUTO

LINE SO

CHARINO

CHAROUTO

CHAR SO

to read a line

to write a line

to check for the end of the stream

to read 1 or more characters

to write 1 or more characters

to count the characters remaining in the stream.

Each of the I/O functions listed here has as its first argument the name of a stream

that is read or written to. Each of these functions also has a default stream that is

used if you omit the name of a specific stream. STD IN is the default input stream

(for LINEINO and CHARINO functions). STDIN is any data that is typed at the

keyboard.

This means that you can use the LINEINO function to pause processing and read a

line typed at the keyboard, as you can with the PARSE PULL instruction. But note

these differences:

• Unlike PARSE PULL, the LINEINO function reads only keyboard entries,

regardless of whether there are outstanding items on the default data queue.

• LINEINO does not prompt the user with a question mark.

Chapter 10. Input and Output 10-15

To understand how this works, use the first file-reading program, SHOLINI.CMD
(see Figure 10-2 on page 10-6) and add an instruction as shown in Figure 10-10.

/* Displays a file one line at a time */
/* as the user presses the Enter key; program */
/* ends when the end-of-file is reached */
/* OR if user types any character. */

say 11 Type a file name 11

pull filename
l ineno= 1

do until lines(filename) = e
say lineno linein(filename)
if 1 inein() \= 1111 then leave

lineno = lineno + 1
end

exit

Figure 10-10. SHOLIN3.CMD

10-16 REXX User's Guide

/* waits for user to press the Enter*/
/* key; if anything else is typed */
/* (if LINEIN() does not return */
/*an empty string), then the */
/* loop (and the program) ends */

Or, you could modify the cycling version of this program, SHOLIN2.CMD (see

Figure 10-3 on page 10-7) to let the user choose the number of lines to display. To

do this, put the display routine inside a DO FOREVER loop, as shown in

Figure 10-11.

/* Displays a file one line at a time */
/* as the user presses the Enter key, or*/
/* displays a given number of lines. */
/* Cycles back to the beginning of the */
/* file when the end-of-file is reached */
/* Program ends only when user types */
/* any non-numeric character. */

say "Type a file name"
pull filename

say "Type a number of lines to display"
say "or press the Enter key alone to advance one line"
say "Type any other character to end."
lineno = 1

do forever
howmany = linein() /* pause for user entry and store */

/* it in the variable HOWMANY */

if howmany = 1111 then howmany = 1 /* pressing the Enter key alone */
/* is the same as typing 1 11 */

if \datatype(howmany,n) then leave/* typing any non-numeric */

do howmany

end
exit

say lineno linein(filename)
lineno = lineno + 1

if lines(filename) = e then
do

end

call linein filename,1,e
say 11 >>> End of File <<< 11

lineno = 1
end

/* character ends the program */

Figure 10-11. SHOLIN4.CMD

Parsing Default Input
You can parse the input for individual words, either by using the instruction:

PARSE VALUE linein() WITH varl var2 •••

or with the shorter form built into the PARSE instruction:

PARSE LINEIN varl var2 •••

Chapter 10. Input and Output 10-17

For more information about the PARSE instruction and its options, see Chapter 8,
"Parsing." Also, see "Parsing" in the REXX Reference.

STREAMO Function
For more intricate and specialized input and output tasks, REXX provides another
function called STREAMQ. For example:

STREAM(name,operation,conmand)

where:

name

operation

is the stream you want to work on

is one of these:

conmand

C for a command or action to be taken
S for the state of the stream
D for a more detailed description.

is an action to perform. This argument must be used when and
only when you specify C as the operation.

The syntax may look a bit complicated at first, because STREAMO has a wide
variety of applications such as:

• The C (command) operation lets your program select and gain access to a named
stream.

• The operations S and D (state and description) report the current status of a
stream; that is, whether:

the stream is READY or NOTREADY for input/output
it is UNKNOWN (not yet identified)
an input or output ERROR has occurred.

For the full syntax of STREAMO and the other REXX input and output functions,
see the REXX Reference.

Getting Information about a Stream
To determine if a particular stream exists, use the stream command QUERY EXIST
with the STREAMO function call. For example:

stream(name,C,'query exists')

Note that the stream command is enclosed in matching quotes.

If the stream name exists, then this function call returns the full-path specification of
the stream. For example:

C:\WORK\MYFILE.TXT

If the stream name does not exist, then the result is a null string.

10-18 REXX User's Guide

Figure 10-12 shows an example of a program that reads a file.

/* For a program that reads a file */
say 11 Type a file name (or press the Enter key alone to exit): 11

pull fname
if fname = 1111 then exit

/* Check that the file exists: */
/* if STREAM() returns a null string, */
/* then report the stream not found */
/*and exit.... */

call stream fname, C, 'query ex;sts'
if result = 1111 then

do
say "Can not find 11 fname 11

•
11

say 11 Check for proper path specification. 11

exit
end

/* .•• else store the full pathname */
/* (in RESULT) to the variable FNAME, */
/* in case the user has typed a */
/*relative path (e.g., 11

•• \docs\my.txt 11 */

else fname = result
say 11 Full path speci fi cation is 11 fname

Figure 10-12. QRYFILEl.CMD

You can also query for information about the size of a stream and the date and time
of the last edit, see Figure 10-13.

/* How big and when last changed? */
say 11 Type a file name (or press the Enter key alone to exit): 11

pull fname

bytes= stream{fname,c,'query s;ze')
led;t = stream{fname,c,'query datet;me')
say fname 11 is 11 bytes 11 bytes. 11

say 11 Last edit of" fname 11 was 11 ledit 11
•

11

Figure 10-13. QRYFILE2.CMD

Opening and Closing Streams
The functions LINEOUTQ, LINEINQ, CHARINO and CHAROUTO do much of
their own housekeeping. They automatically open the streams they work on and
leave RE:XX to close the stream at the end of a program.

However, there are cases where it is necessary (or at least more prudent) to explicitly
open and close a stream, such as in a program that reads from more than one device
or one that writes to the middle of a file.

Chapter 10. Input and Output 10-19

This is done with the STREAMO function:

stream(name,c,uopen")

This default form opens a stream name for both reading and writing text. To open a
stream for:

• Writing only, add the word write. For example:

stream(name,c, 11open write")

• Reading only, add the word read. For example:

stream(name,c, 11 open read 0
)

When you open a stream in this way, STREAMO returns the string READY: if the
stream has been successfully opened. An error message is returned if for any reason
it was unable to open the stream.

To explicitly close a stream, use:

stream(name,c, 11 close")

In this form, STREAMO returns the string READY if the operation is successful, the
string ERROR if the operation fails.

Accessing Data within a Stream
REXX regards all external data as streams of information. Nonetheless, these
streams can take different forms. A disk file, for example, differs from the output to
a printer in that it has a static, physical form. A disk file is one example of a
persistent stream. This means a disk file can not only be read from its beginning or
written to its end, it can be read from and written to any place between.

As a program reads a file, REXX keeps a place marker, called the read position, that
points to the next character (or line) to be read.

The same is true when writing. REXX maintains a write position that marks the
next place it is to write.

When both reading and writing a file, the read position and the write position are
the same. The read position and the write position are always the same. When one
moves, the other also moves.

If you do not specify a position for these markers, REXX advances them, by default,
the number of characters read or written.

You can specify another position for the read or write positions by giving additional
arguments to the stream functions, LINEINQ, LINEOUTQ, CHARINQ,
CHAROUTO, or by using the position option of the STREAMO function. For
more information, refer to "Functions" in the REXX Reference.

10-20 REXX User's Guide

\
, .. ,,
,'

More about Queues

Examples

In certain applications, your REXX programs can organize information for use by
other programs by putting it in an external data queue. A queue is an ordered list
that can be read or written at either end, top or bottom, so that each item of the
queue constitutes a line of data.

There are two kinds of queues in REXX:

• One default queue, SESSION, is automatically provided for each active OS/2
session. SESSION is created by REXX the first time a REXX program issues a
PUSH or QUEUE instruction to a line of data. Any program, REXX or
otherwise, in a given session can access the SESSION queue, but only the
SESSION queue defined for its own session can be accessed.

• A REXX program can also create private queues for itself. A private queue
must be accessed by a unique name. You can name the queue or leave the
naming to REXX.

Private data queues are created and manipulated by the RXQUEUE function,
described in ''Applications Programming Interfaces" in the REXX Reference.

For more information about file and device input and output, refer to "Functions"
and "Data Streams" in the REXX Reference.

/* SDIR.CMD - Program to print a sorted directory. */
/* Program will read in the current directory, and */
/* then sort it using a quick-sort routine. */
list. = e
'dir I rxqueue /fifo'
j=0
do queued()

j=j+l
parse pull list.j
end

call quicksort 4, j-1
do i = 1 to j

say list.i
end
exit e
/* The quick-sort procedure */
Quicksort:
PROCEDURE EXPOSE list.
ARG bot, top
center = Qsort(bot, top)
IF center - 1 > bot THEN CALL Quicksort bot, center - 1
IF center + 1 < top THEN CALL Quicksort center + 1, top
RETURN

Figure 10-14 (Part 1 of 2). SDIR.CMD

Chapter 10. Input and Output 10-21

qsort: PROCEDURE EXPOSE list.
ARG b , t
choose= list.b
small = b
large = t + 1
DO WHILE (small + 1 < large)

next= small + 1
IF list.next<= choose THEN

DO
list.small = list.next
small = small + 1
list.next =choose
END

ELSE
DO
large = large - 1
temp= list.large
list.large= list.next
list.next= temp
END

END
RETURN sma 11

Figure 10-14 (Part 2 of 2). SDIR.CMD

/* Program printing exec - program will detennine which records */
/* in a file exceed the specified length. */

say 'Please type the name of the file to examine {filename.ext}: I

parse pull fi 1 e
say 'Please type the length to scan for: '
parse pull col
"type" file "I rxqueue /fifo"
if re <> e then exit re
1 i nes = queued()
do currline = 1 to lines

parse pull line
if length(line) > col then

say 'Line#' currline ' length=' length(line)
end

exit e

Figure 10-15. LINLEN.CMD

10-22 REXX User's Guide

Chapter 11. Program Style

Basics

The focus in this chapter is more on method than on individual features, which are
better learned by practicing and experimenting.

In this chapter: -------------------------.

Basics

.... Consider the data

.... Define the tasks

.... Create modules

..,.. Planning the program

.... Putting it all together

..,.. Testing and debugging.

As you learn more about the syntax of REXX, you can get better at deciding which

computing tasks are appropriate to a program. Translating an idea for a program
into actual code is less a matter of expert programming than of good planning. If

you plan your program thoroughly, the coding will be that much easier.

Consider the Data

Test Yourself

When you are faced with the task of writing a program, the first thing to consider is

the data you are required to process.

1. Make a list of the input data. What are the items and the possible values of
each?

2. If the input data items have a type of structure or pattern, draw a diagram to
illustrate it.

3. Do the same for the output data. What data and in what form does the user
expect as output?

4. Study your two diagrams to see if they fit together. If they do, you are well on
the way to designing your program.

5. Write a specification of input for the user. This may be a written specification, a
HELP file, or both.

You are required to write an interactive program that invites the user to play heads

or tails. The game can be played as long as the user likes. To end the game, the

user types Quit in answer to the question Heads or Tails?. The program is arranged

so that the computer always wins.

Think about how you would write this program.

Chapter 11. Program Style 11-1

The computer starts with:

Let us play a game! Type 11 Heads 11
,

11 Tails 11
, or "Quit"

and press the Enter key.

This means that there are four possible inputs:

• Heads
• Tails
• Quit
• None of these three.

And so the corresponding outputs should be:

• Sorry. It was TAILS. Hard luck!
• Sorry. It was HEADS. Hard luck!
• (no output)
• That is not a valid answer. Try again!

This sequence must be repeated indefinitely, ending with the return to the OS/2
program.

Now that you understand the specification, the input data, and the output data, you
are ready to write the program.

Write the program. If you are careful, it should run the first time.

Answer: Figure 11-1 is an example of a possible solution.

/* Tossing a coin. The machine is lucky, not the user */

do forever
say 11 Let us play a game! Type 1 Heads 1

,
1Tails 111

,

"or 1Quit 1 and press the Enter key. 11

pull answer

select

end
say

end

when answer = "HEADS"
then say "Sorry! It was TAILS. Hard luck! 11

when answer = "TAILS"
then say "Sorry! It was HEADS. Hard luck! 11

when answer = "QUIT"
then exit

otherwise
say "That is not a valid answer. Try again! 11

Figure 11-1. CON.CMD

11-2 REXX User's Guide

Define the Tasks
You are going to knit a warm, woolen, pullover sweater to wear when you go
sailing. You may:

1. Knit the front
2. Knit the back
3. Knit the left arm
4. Knit the right arm
5. Sew the pieces together.

Each of these jobs is simpler to describe than the the job of knitting. In computer
jargon, separating a job into simpler jobs is called stepwise refinement.

Look at the specification again. You may need to put on the pullover in the dark
quickly, without worrying about the front or back. Therefore, the front should be
the same as the back, and the two sleeves should also be the same. Figure 11-2
shows a way that this could be coded.

do 2
CALL Knit_body_panel

end

do 2
CALL Knit_sleeve

end

CALL sew_pieces_together

Figure 11-2. PULLOVER.CMD

Reconsider the Data
When you are refining your program, your objective is to make each piece simpler.
This means simpler:

• Input data for each segment or routine
• Output data for each segment or routine
• Processing
• Code.

In the preceding example, if your pieces really are simpler, they probably have
simpler names, too. For example:

• Knit cuff.

rather than

• Make ribbing for cuffs and waistband.

Chapter 11. Program Style 11-3

Create Modules
Using the stepwise refinement method discussed previously, you start with a
specification (which may be incomplete). Then, you separate the proposed program
into routines, so that each routine is easier to code than the entire program. You
repeat the process for each of these routines until you reach routines that you are
sure you can code correctly the first time.

While you are doing this, keep asking yourself two questions:

• What data does this routine handle?

• Is the specification complete?

Still thinking about method, which is as important as language, look at a simple
arcade-type game program called CATMOUSE.CMD, as shown in Figure 11-3.
You may want to take a moment to type it in and play it.

/* The user says where the mouse is to go. But where */
/*will the cat jump? */

@" say "This is the mouse ---------->
say "These are the cat's paws --->
say "This is the mousehole ------>
say "This is a wall ------------->

() II

say

O"
111
I

say "You are the mouse. You win if you reach",
"the mousehole. You cannot go past"

say "the cat. Wait for him to jump over you. 11
,

"If you bump into him you are caught!"
say
say "The cat always jumps towards you, but he's not",

"very good at judging distances."
say "If either player hits the wall he misses a turn"
say
say "Type a number between 0 and 2 to say how far to",

"the right you want to run. 11

say "Be careful, if you type a number greater than 2 then",
"the mouse will freeze and the cat will move!"

say

Figure 11-3 (Part 1 of 3). CATMOUSE.CMD

11-4 REXX User's Guide

/*--*/
/* Parameters that can be changed to make a different */
/* game */
/*--*/
len = 14 /* length of corridor */
hole = 14 /* position of hole */
spring = 5 /* maximum distance cat can jump */
mouse = 1 /* mouse starts on left */
cat = len /* cat starts on right */
/*--*/
/* Main program */
/*--*/
do forever

call display
/*---*/
/* Mouse's turn */
/*---*/
pull move
if datatype(move,whole) & move >= a & move <= 2
then select

when mouse + move > len then nop
when cat > mouse,

& mouse + move >= cat

then mouse = cat
otherwise
mouse = mouse + move

end

/* hits wall */

/* hits cat */
/* continued */

/* moves */

if mouse = hole then leave /* reaches hole */
if mouse = cat then leave /* hits cat */
/*---*/
/* Cat's turn */
/*---*/
jump = random(l,spring)
if cat > mouse then do /* cat tries to jump left */

if cat - jump< 1 then nop /* hits wall */
else cat = cat - jump

end
else do /* cat tries to jump right */

if cat + jump > len then nop /* hits wall */
else cat = cat + jump

end
if cat = mouse then leave

end

Figure 11-3 (Part 2 of 3). CATMOUSE.CMD

Chapter 11. Program Style 11-S

/*--*/
/* Conclusion */
/*--*/
call display
if cat =mouse then say "Cat wins"
else say "Mouse wins"
exit
/*--*/
/* Subroutine to display the state of play */
/* */
/* Input: CAT and MOUSE */
/* */
/* Design note: each position in the corridor occupies */
/* three character positions on the screen. */
/*--*/
display:
corridor = copies(" 11 ,J*len) /* corridor */
corridor= overlay("011 ,corridor,3*hole-l) /* hole */

if mouse \= len /* mouse in hole? */
then corridor= overlay(11@11 ,corridor,3*mouse-1)/* mouse */

corridor= overlay("(",corridor,3*cat-2)
corridor= overlay(11)",corridor,3*cat)
say 11 l 11 corridor11 l"
return

Figure 11-3 (Part 3 of 3). CATMOUSE.CMD

11-6 REXX User's Guide

/* cat */

Planning the Program

Designing Loops

Conclusion

The program is about a cat and a mouse and their positions in a corridor.

1. The program begins with some initial settings, such as the length of the corridor
and the positions of the cat and the mouse.

2. The player types the moves of the mouse. The cat's jumps are generated using a
random number. The resulting positions are calculated at some point.

3. At some other point, these positions are displayed on the screen.

Obviously, the whole program is too complicated to think about all at once. The
first step is to separate it into tasks such as:

• Setup-establish the initial positions.

• Main program-accept and calculate the result of each move.

• Display subroutine-display the new positions.

Now look at the main program. The user (who plays the mouse) will want to see
where everybody is before making a move. The cat will not. The next step is to
separate the main program into:

Do forever
call Display
Mouse's move
Cat's move

End
Conclusion

The method for designing loops is to ask two questions:

• Will it always terminate?
• Whenever it terminates, will the data meet the conditions required?

The loop terminates (and the game ends) when:

• The mouse runs to the hole.
• The mouse runs into the cat.
• The cat catches the mouse.

At the end of the program, the user must be told what happened by issuing the
following:

call display
say who won

Chapter 11. Program Style 11-7

Putting It All Together
Figure 11-4 shows how to put the modules together:

/*--*/ /* Main program */
/*--*/
do forever

call display
/*---*/ /* Mouse's turn */
/*---*/

if mouse = hole then leave /* reaches hole */
if mouse = cat then leave /* hits cat */
/*---*/ /* Cat's turn */
/*---*/

if cat = mouse then leave
end

/*--*/ /* Conclusion */
/*--*/
call display
if cat = mouse then say 11 Cat wins"
else say "Mouse wins"
exit

/*--*/ /* Subroutine to display the state of play */
/* Input: CAT and MOUSE */
/*--*/
display:

Figure 11-4. CATMOUSE2.CMD

Testing and Debugging
If you cannot understand why your program is giving wrong results, you can:

• Modify your program so that it tells you what it is doing

• Put extra instructions into your program, such as:

say "Checkpoint A. x =11 x

say "End of first routine"

• Use some of the REXX interactive trace facilities.

You will gradually learn which of these techniques is best for you.

11-8 REXX User's Guide

Using TRACE
The TRACE instruction is a facility that you can use to perform the following tasks.

• To find out where your program is going, use TRACE L (labels). Figure 11-5
shows an example and the trace it displays on the screen.

/* Example: two iterations of wheel, six iterations */
/* of cog. On the first three iterations, "x < 211 */
/* is true. On the next three, it is false. */
trace l
do x = 1 to 2
wheel:

do 3
cog:

if x < 2 then do
true:

end
else do

false:
end

end
end
done:

Figure 11-5. ROTATE.CMD

The following trace is displayed on the screen.

8 *-*
10 *-*
8 *-*

10 *-*
6 *-*
8 *-*

13 *-*
8 *-*

13 *-*

cog:
true:

cog:
true:

wheel:
cog:

false:
cog:

false:

• To see how the interpreter is computing expressions, use TRACE I
(intermediates).

• To find out whether you are passing the right data to a command or subroutine,

use TRACER (results).

• To make sure that you get to see nonzero return codes from commands, use
TRACEE (errors).

Chapter 11. Program Style 11-9

TRACE Symbols
The trace symbols mean:

- Identifies the source of a single clause, that is, the data actually in the
program.

+++ Identifies a trace message. This may be the nonzero return code from a
command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program.

>» Identifies the result of an expression (for TRACE R), the value assigned to a
variable during parsing, or the value returned from a subroutine call.

>.> Identifies the value assigned to a placeholder during parsing (see "Using a
Placeholder" on page 8-7).

If you are using TRACE I (intermediates), these symbols are also used:

>C> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of a
variable substituted into it.

>F> The data traced is the result of a function call.

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>O> The data traced is the result of an operation on two terms.

>P> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

Interactive Debugging

Summary

By putting a question mark in front of the TRACE option, TRACE ?R, you can tum
on the REXX interactive debugging tool. That means the program pauses after it
processes most instructions (exceptions include SIGNAL, CALL, and reiterations of
DO loops). You can examine each clause, one at a time, and advance processing by
pressing the Enter key.

For more information about interactive debug, refer to "Debug Aids" in the REXX
Reference.

This completes "Basics" in this chapter. You have learned how to:

• Define tasks and create program modules
• Plan and develop a program
• Test and debug a program.

"Advanced Topics" in this chapter discusses refining programs to make them easier
to read.

11-10 REXX User's Guide

Advanced Topics
In this chapter: ---------------------------.

Advanced Topics

..,.. Making programs easy to read.

Making Programs Easy to Read
The only sure way to determine if a program is correct is to read it. Therefore,
programs must be easy-to-read. Easy to read means different things to different
programmers. Here are examples of different styles. You can choose the style you
prefer.

A very good way to check your program is to ask someone to read it. Be sure to
choose a coding style that they find easy to read.

Most people would find the program fragment shown in Figure 11-6 difficult to
read.

/**/
/*SAMPLE #1: A portion of CATMOUSE.CMD (Page 11-4), */
/* not divided into segments and written with no indentation */
/* and no comments. This style is not recommended. */
/**/
do forever
call display
pull move
if datatype(move,whole) & move >= 0 & move <=2
then select
when mouse+move > len then nop
when cat > mouse,
& mouse+move >= cat,
then mouse = cat
otherwise
mouse = mouse + move
end
if mouse = hole then leave
if mouse = cat then leave
jump = random(l,spring)
if cat > mouse then do
if cat-jump < 1 then nop
else cat = cat-jump
end
else do
if cat+jump > len then nop
else cat = cat+jump
end
if cat = mouse then leave
end
call display
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

Figure 11-6. CATMOUSE3.CMD

Chapter 11. Program Style 11-11

Figure 11-7 shows an example that is easier to read. It is separated into segments,
each with its own heading. The comments on the right are sometimes called
remarks. They can help the reader get a general idea of what the program is doing.

/**/
/* SAMPLE #2: A portion of CATMOUSE.CMD (Page 11-4), */
/* divided into segments and written with 'some' */
/* indentation and 'some' comments. */
/**/

/**/
/* Main program */
/**/
do forever

call display
/***/
/* Mouse's turn */
/***/
pull move
if datatype(move,whole) & move >= 0 & move <=2
then select

when mouse+move > len then
when cat > mouse,

& mouse + move >=
then mouse = cat
otherwise
mouse = mouse + move

end

cat,

nop /* hits wall

/* hits cat

/* moves

*/

*/

*/

if mouse = hole then leave /* reaches hole */
if mouse = cat then leave /* hits cat */
/**/
/*Cat's turn */
/**/
jump = random(l,spring)
if cat > mouse then do /* cat tries to jump left */

if cat - jump < 1 then nop /* hits wall */
else cat = cat - jump

end
else do /* cat tries to jump right */

if cat + jump > len then nop /* hits wall */
else cat = cat + jump

end
if cat = mouse then leave

end
/**/
/* Conclusion */
/**/
call display
if cat = mouse then say "Cat wins"
else say "Mouse wins"
exit

Figure 11-7. CATMOUSE4.CMD

11-12 REXX User's Guide

)

Figure 11-8 shows an example with additional features that are popular with some
programmers. Keywords written in uppercase and a different indentation style
highlight the structure of the code. The abundant comments recall the detail of the
specification.

/**/
/*SAMPLE #3: A portion of CATMOUSE.CMD (Page 11-4), */
/* divided into segments and written with 'more' */
/* indentation and 'more• co11111ents. */
/* Note co11111ands in uppercase (to highlight logic) */
/**/

/**/
/* Main program */
/**/
DO FOREVER

CALL display
/**********************************/
/* Mouse's turn */
/**********************************/
PULL move
IF datatype(move,whole) & move >= 0 & move <=2

THEN SELECT
WHEN mouse+move > len

THEN nop
/*mouse hits wall */
/* and loses turn */

WHEN cat > mouse,
& mouse+move >= cat, /* mouse hits cat */

THEN mouse = cat /* and loses game */
OTHERWISE mouse= mouse+ move/* mouse ••• */

END /* moves to new location */
IF mouse = hole THEN LEAVE /* mouse is home safely */
IF mouse = cat THEN LEAVE /* mouse hits cat (ouch) */
/**********************************/
/* Cat's turn */
/**********************************/
jump= RANDOM(l,spring) /*determine cat's move */
IF cat > mouse /* cat must jump left */

THEN DO
IF cat-jump < 1

THEN nop
/* cat hits wall
/* misses turn

ELSE cat = cat-jump /* cat jumps left

*/
*/
*/

END
ELSE DO

IF cat+jump > len
THEN nop

/* cat must jump right */
/* cat hits wall */
/* misses turn */

ELSE cat = cat+jump /* cat jumps right */
END

IF cat = mouse THEN LEAVE
END

/* cat catches mouse */

/*continued*/

Figure 11-8 (Part 1 of 2). CATMOUSE5.CMD

Chapter 11. Program Style 11-13

/**/
/* Conclusion */
/**/
CALL display /* on final display */

IF cat = mouse /* who won? * /
THEN say "Cat wins" /* the cat */
ELSE say "Mouse wins" /* ... the mouse */

EXIT

Figure 11-8 (Part 2 of 2). CATMOUSE5.CMD

11-14 REXX User's Guide

Chapter 12. Using REXX with Applications

Basics

The early chapters in this book familiarized you with the REXX language and
showed you how to create and run REXX programs. This chapter builds on that
knowledge with some REXX features designed to get the most out of your OS/2
system. These features enable you to customize your system and write more
powerful programs.

In this chapter: ------------------------.

.... Customizing OS/2 programs

.... Getting the most from OS/2

.... REXX utility functions.

Customizing OS/2 Programs
Your REXX programs can customize the way OS/2 programs work. If you always
start an application with the same set of parameters, you can write a REXX
program to call the application. This saves typing each time you use an application.
You also do not need to remember the application parameters and options; REXX
remembers them for you.

Accessing Command Environments
When you place the DIR command in a REXX program, REXX gives the command
to the CMD.EXE program. CMD.EXE processes the command and gives a return
code back to REXX. CMD.EXE is not the only program REXX can send
commands. Any application can create a command environment for REXX
programs to use. The application command environments create new sets of
commands that you can use.

For example, the IBM Extended Services/2 product provides communications
support command environment. To use the communications command environment,
you must use the REXX ADDRESS instruction. The ADDRESS instruction tells
REXX to send commands to the communications program instead of the
CMD.EXE program. The communications environment is called CPICOMM.
Figure 12-1 shows a REXX program that uses the CPICOMM command
environment.

/* Start of a program that uses SAA communications support */
Address CPICOMM
destination = 11 SYSTEMA 11 /* prepare input for CMINIT co111J1and */
"CMINIT conv_id destination cm_rc" /* Issue CMINIT command to CPICOMM. */

Figure 12-1. CPICOMM

/* The meaning of CMINIT and what */
/* its parameters are defined by */
/* the SAA communication program, */
/* not by REXX. * /

Chapter 12. Using REXX with Applications 12-1

You must run the CPICREXX command before you can use the CPICOMM
command environment. More commonly, you must use the RXSUBCOM command
to create a command environment. The RXSUBCOM command tells REXX which
program it should pass REXX program commands. For example, REXX Dialog
Manager programs use RXSUBCOM to create the ISPCIR subcommand handler:

1 RXSUBCOM REGISTER ISPCIR ISPCIR ISPCIR 1

Address ispcir

The Dialog Manager ISPCIR subcommand environment is a routine named ISPCIR
in the ISPCIR.DLL dynamic link library. You must issue the instruction
ADDRESS ISPCIR to send commands to the Dialog Manager.

Using External Functions

Summary

In addition to the REXX built-in functions, you can use functions external to REXX
in your REXX programs. An external function may be simply another REXX
program, or it may be a function written in a compiled language. Before you can
use a function in a compiled language, you must tell REXX where the function is
located with the RxFuncAdd function.

For example, the IBM Extended Services/2 product provides a REXX function for
the Emulator High Level Language Application Programming Interface (EHLLAPI).
The EHLLAPI function is in an OS/2 dynamic link library module named
SAAHLAPI.DLL. The function routine within SAAHLAPI.DLL is HllApiSrv. To
use the EHLLAPI function, you must first tell REXX where the function is found:

call RxFuncAdd 1 hllapi 1
,

1 saahlapi 1
,

1 hllapisrv 1

You can now use the function HLLAPI in your REXX programs:

re = hllapi (11 Set_session_parms 11
,

11 CONPHYS 11
)

re= hllapi(11 Connect 11 ,session)
if (re <> 0) then return re
re= hllapi(11Start_keystroke_intercept 11 ,session, 11 L11

)

You only need to register HLLAPI with RxFuncAdd one time. Once registered, a
function is available from anywhere on your OS/2 system.

This completes "Basics" in this chapter. You know how to:

• Start an application efficiently
• Send commands to applications
• Use external functions.

"Advanced Topics" in this chapter discusses REXX utilities.

Advanced Topics
I In this chapter:

I : REXX Utility Functions

12-2 REXX User's Guide

The REXXUTIL external function package
RexxUtil is a Dynamic Link Library (DLL) package of OS/2 operating system
REXX functions. These operating system functions:

• Manipulate OS/2 operating system files and directories

• Manipulate OS/2 operating system classes and objects

• Perform text screen input and output.

To use a RexxUtil function, you must first register the function with the REXX
RxFuncAdd function:

Add RexxUtil Function ---------------------.

call RxFuncAdd 'SysCls', 'RexxUtil', 'SysCls'

The RxFuncAdd function can register functions in other dynamic link libraries as
well.

The example above registers the SysCls function. You can now use the SysCls
function in your REXX programs.

The SysLoadFuncs RexxUtil function automatically loads the other RexxUtil
functions. The following instructions in a REXX program will register all of the
RexxUtil functions.

Load RexxUtil Function ----------------------.

call RxFuncAdd 'SysloadFuncs', 'RexxUtil', 'SysloadFuncs'
call SysloadFuncs

Once registered, the RexxUtil functions are available from all OS/2 operating system
sessions. If you use the RexxUtil functions frequently, you should place a call to
SysLoadFuncs in your STARTUP.CMD file.

Functions that Replace Commands
Several RexxUtil functions duplicate OS/2 operating system command functions.
The command functions are:

SysMkDir
Creates a directory

SysRmDir
Deletes a directory

SysFileDelete
Deletes (erases) a file

SysCls
Clears the screen.

The RexxUtil command functions have several advantages over the equivalent
operating system commands:

• The RexxUtil functions do not issue error messages. For example, for a file that
does not exist, the DELETE command issues the message:

SYS0002: The system cannot find the file specified.

Chapter 12. Using REXX with Applications 12-3

if you wish to unconditionally erase the file, you would need to redirect the error
message:

1del 1 file 1 >NUL 1

The RexxUtil SysFileDelete function can do this easily, without an error
message:

call SysFileDelete file

• The RexxUtil functions calls are not echoed to the screen. When using the
RexxUtil functions, you do not need to use "ECHO OFF" prevent the
command echo.

• The RexxUtil functions can be faster than the OS/2 operating system command.

Figure 12-2 shows a program called INSTALL.CMD. That program uses the
RexxUtil SysMkDir and SysFileDelete functions to install an application.

/*Application install program - Install information */
/* comes from an application control file */
parse arg product /* get product name */

call setup /* read control info */
re = SysMkDir directory /* create main directory*/
if re <> e then do /* already installed */

say product 'is already installed. Do you wish to•
say product 'continue? (Yes/No)'
pull answer
if answer<> 1 YES 1 then exit 100

/* delete old files */
do i = 1 to files.a

call SysDeleteFile 1 C: 1 files.i
end

end
/* get free space */

parse value SysDrivelnfo(1 C: 1
) with. free.
/* not enough room */

if free < required_space then do
say 'Product• product 'requires• required_space
say 'bytes of storage. You only have• free 'bytes•
say 'available. Please make more space available on•
say 'the drive and try again.•
exit 100

end

do i = 1 to directories /* make subdirectories */
call SysMkDir directories.i

end

do i = 1 to files /* copy the files */
say 'Copying C:'files.i
•@copy A:'files.i 1 C: 1 files.i 1> NUL'

end

Figure 12-2 (Part 1 of 2). INSTALL.CMD

12-4 REXX User's Guide

Setup:
file= product I I 1 .CTL 1

files = e
directories = e
call on notready
eof = e

line= linein(file)
do while \eof

parse var line type value
select

when type= 'DIRECTORY'
directory = value

/* read control file */
/* read control information */
/* no files to read */
/* no subdirectories */
/* set up end-of-file handler */
/* not at end yet */

/* get first line
/* read entire file
/* get the first word
/* process the record type
/* product root directory

then

*/
*/
*/
*/
*/

/* product subdirectories */
when type = 'SUBDIRECTORY' then do

directories = directories + 1
directories.directories = value

end
/* product files (with the */
/* target directories */

when type= 1 FILE 1 then do
files = files + 1
files.files= value

. end
otherwise nop

end
line= linein(file) /* get next line */

end
return

Figure 12-2 (Part 2 of 2). INSTALL.CMD

Functions for Saving Information
You can use use the RexxUtil SysPutEA, SysGetEA, and Sysini functions to save

information outside of your RE:XX programs:

SysPutEA
Saves information in a file's extended attributes. SysPutEA stores the
information as a named attribute. The SysGetEA retrieves the saved
information using the name you used with SysPutEA. The extended attributes
remain with the file until the file is erased.

SysGetEA
Retrieves information from a file's extended attributes. The extended attribute
may have been stored by the SysPutEA function or another program.

Syslni
Saves and retrieves information from a system profile file. Profile information

is stored as Application Names with associated Key Names. You can store
information in the system profile (OS2SYS.INI), the user profile (082.INI), or
any profile file you designate.

Information you save with SysPutEA remains with the named file as hidden

information. It not visible when you edit or type the file, but you can retrieve it

using the SysGetEA function. Information you save with the Syslni function is
written to an OS/2 operating system profile file. You save the information under an

Chapter 12. Using REXX with Applications 12-5

application name and a key name. For example, a text editor might store profile
information using an "Editor" application name with application keys of
"TempFile," "Dictionary," and "DefaultOptions."

Figure 12-3 and Figure 12-4 show how compiler option information is saved in a
file's extended attributes and in a PROJECT.IN! profile file. The DOCOMP.CMD
program uses the information stored in the extended attributes and the
PROJECT.IN! file to compile a source file.

/* Store file compilation options in extended attributes */
parse arg file options /* get the file name and options */

/* set the compile options */
call SysPutEA file, 1Compile_options 1

, options

Figure 12-3. SETCOMP.CMD

/* Store project file compilation options in profile */
parse arg options /* get the options */

/* find the profile */
profile= SysSearchPath('DPATH', 1 PROFILE.INl 1

)

if profile = 1 1 then /* find it? */
profile= 1 PROFILE.INI 1 /*place in current directory */

/* set the compile options */
call Sysini profile, 'Compiler', 'Options', options

Figure 12-4. SETPROJ.CMD

12-6 REXX User's Guide

Using the Screen

/* Compile a program using the options stored in the program */
/* source extended attributes */
parse arg file /* get the file name */

/* retrieve the file options */
re= SysGetEA file, 'Compile_options', 'options'

if re <> e then do /* no options for file? */
/* find the profile */

profile= SysSearchPath('DPATH', 'PROFILE.INI')
if profile <> '' then /* find it? */

/* retrieve default options */
options= Syslni(project, 'Compiler', 'Options')

end

'CC' options file /* compile it */

Figure 12-5. DOCOMP.CMD

When you run a REXX program in an OS/2 windowed session or an OS/2 full
screen session, you can control the screen with the RexxUtil text screen functions.
The text screen functions are:

SysCurPos
Places the cursor at a screen row and column position. You can also use
SysCurPos to obtain the current cursor position.

SysCurState
Hides the cursor or makes the cursor visible.

SysGetKey
Reads the next key from the keyboard buffer. If the keyboard buffer is empty,
SysGetKey will wait until a key is pressed.

SysTextScreenRead
Reads characters from the screen.

SysTextScreenSize
Returns the screen size.

You cannot use the text screen functions in REXX programs running under
PMREXX or called from a Presentation Manager application.

You can use the text screen functions for screen input and output functions not
possible with the REXX input and output built-in functions. For example,
Figure 12-6 contains a REXX program that reads a password from the screen

without revealing the characters typed.

Chapter 12. Using REXX with Applications 12-7

/* Read a password from the screen */
Valid= 1ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890#$@ 1

Passwd = 1 1

Maxlength = 8

ETK = d2c(13)
BS = d2c(8)
Xl = d2c(O)
X2 = d2c(224)

/* Enter key
/* Backspace
/* Extended key
/* Extended key

*/
*/
*/
*/

do forever /* Loop until complete */
Ch = translate(SysGetKey('NOECH0 1

))

select
when Ch = ETK /* Enter key pressed */

then do
say 11 /*Give a carriage return */
leave

end
when Ch = BS /* Backspace */

then if PassWd = 11

then call Beep 262, 200

else do /* Overstrike a blank */
call charout ,BS BS
PassWd = left(PassWd, length(PassWd)-1)

end
/* All other characters */

when pos(Ch, Valid) > 0
then if length(PassWd) = Maxlength

then call Beep 262, 200
else do

call charout , 1 *'
Passwd = PassWdllCh

end
otherwise do /* Swallow next for extended*/

if Ch = Xl I Ch = X2
then call SysGetKey(1 NOECH0 1

)

call beep 262, 200
end

end
end
return PassWd

Figure 12-6. GETPASS.CMD

GETPASS.CMD uses the SysGetKey function to read characters from the keyboard.
SysGetKey reads each character as you type it and does not echo the character to
the screen.

When SysGetKey is combined with the other RexxUtil text screen functions, you can
create text based menu systems. Figure_ 12-7 on page 12-9 contains an example of a
simple menu program.

12-8 REXX Users Guide

/* Place a simple menu on the screen */
** These functions are used to create the following subroutines:
**
** MakeWindow - Reserves part of a window as a sub-window.

Draws a border and returns a window handle.
WriteWindow - Writes a line into a sub-window

**
**
**
**

WriteMenu - Write a menu-line into a window, where accelerator
keys are underlined

**
**

WaitMenu - Waits until one of the menu entries are selected,
and returns the choice.

*/
handles = 0
Call SysCls

handle = Makewindow(5,5,10,50)
call writewindow handle, 5 ,10, 'This is a demo.'
call writewindow handle, 7 ,10, 'Choose an item from the Menu above.'
call writemenu handle, ·-Quit -Exit Lea-ve'
call Waitmenu handle
Call writeWindow handle, 9, 5, 'You entered' result
call syscurpos 23,0
exit

/**/
/* This routine reserves a portion of the text window as a */
/* sub-window. The window is defined by giving the position of its */
/* upper left hand corner (based on 0,0 being the upper left hand */
/*corner of the text window), and the size in rows and columns. */
/* */
/* The sub-window is blanked out and a border is drawn around it. */
/* This routine assigns a window handle to the window. That handle */
/* is passed to the other routines to identify which window they */
/* should act on. */
/* */
/* Return values: negative number if there is an error. */
/* a positive number is a valid window handle. */
/**/
MakeWindow: Procedure expose handles Windowdata.
Arg orgrow, orgcol, rows, cols

/* First make sure the requested sub-window will fit
Parse Value SysTextScreenSize() With ssrows sscols
Select

When orgrow < 0 Then Return -1
When orgcol < 0 Then Return -2
When rows < 0 Then Return -3
When cols < 0 Then Return -4
When orgrow + rows > ssrows Then Return -5
When orgrow + rows > ssrows Then Return -6
Otherwise Nop /* No error on input */

End

Figure 12-7 (Part 1 of 4). TEXTMENU.CMD

*/

Chapter 12. Using REXX with Applications 12-9

/* Record data about window for future use.
handles = handles + 1
WindowData.handles._orgrow = orgrow
WindowData.handles._orgcol = orgcol
WindowData.handles._rows = rows
WindowData.handles._cols = cols

/* Now draw the window
Fillerline = copies('t',cols -2)
Blankline =copies(' ',cols -2)

Call WritelineAbsolute orgrow, orgcol, ·~ 1 fillerline'''

Do ii = orgrow + 1 for rows -1
Call WriteLineAbsolute ii, orgcol, '~'blankline'~'

End
Call WritelineAbsolute ii, orgcol, 'l'fillerline'''

Return handles

*/

*/

/**/
/* This routine will write one line of text into a sub-window. */
/* The caller specifies the row and column number to place the text.*/
/* This location is based on the upper left hand corner of the */
/* sub-window, which is defined as 1,1. */
/*Text is not allowed to overlay the window border. */
/**/
WriteWindow: Procedure expose handles Windowdata.
Parse Arg Handle, row, col, text

/* Make sure the window handle is OK, and the text will fit in the */
/* window. */
Select

When handle < 0 Then Return -1
When handle > handles Then Return -2
When row <=1 Then Return -3
When col <=1 Then Return -4
When row >= Windowdata.handle. rows Then return -5
When length(text) + col > Windowdata.handle. cols Then return -6
Otherwise Nop

End

/* Calculate the location and write the text
AbsoluteRow = Windowdata.handle._orgrow + row
AbsoluteCol = Windowdata.handle._orgcol + col
Call WritelineAbsolute AbsoluteRow, AbsoluteCol, text
Return 0

Figure 12-7 (Part 2 of 4). TEXTMENU.CMD

12-10 REXX User's Guide

*/

/**/
/* This routine takes a string of words and writes it on the top of */
/* a window as a menu. Each word should have a - character in */
/* front of the character which will be used to select it. */
/* Each of these characters will be underlined and written as a */
/* capital letter. The caller must ensure that no duplicate */
/* selection characters are included in the word list. */
/**/
WriteMenu: Procedure expose handles Windowdata.
Parse Arg handle, orgtext

/* We make the input text all lower case, the uppercase the */
/* selection characters later. */
orgtext = Translate{orgtext, xrange{ 1 a 1

,
1 z 1

), xrange{ 1 A1
,

1 Z1
))

MenuText = ' 1

UnderlineText = 1
'

MenuCount = 0
JustDidUnderline = 0

/*output word list */
/* output underline characters */
/* how many selections so far */
/* did we just find a - character?*/

Do OrgCounter = 1 to length{orgtext)
OrgChar = substr{OrgText, OrgCounter, 1)

if Orgchar <> 1
-

1 Then Do
If JustDidUnderline Then Do /* put in uppercase letter */

MenuText = MenuText II translate{OrgChar)
JustDidUnderline = 0
MenuCount = MenuCount + 1

/* remember the accelerator keys for use by WaitMenu routine */
WindowData.handle._Accelkey.MenuCount = Translate{OrgChar)
End

Else Do /* put in lower case letter */
UnderlineText = UnderlineText I I 1 1

MenuText = MenuText I I OrgChar
End

End
Else Do /* found a - character

UnderlineText = UnderlineText II 1 t'
JustDidUnderline = 1

End
End Orgcounter

Windowdata.handle._MenuCount = MenuCount

*/

/* Now we have the menu text. Write to the top of the window, */
/* center, with the underline row below it. */
width = Windowdata.handle. cols - 3
Call WriteWindow handle, 2: 2, center{MenuText, width)
if result < 0 then Return result
Call WriteWindow handle, 3, 2, center{UnderlineText, width)
Return result

Figure 12-7 (Part 3 of 4). TEXTMENU.CMD

Chapter 12. Using REXX with Applications 12-11

/**/
/* This is a simple routine that writes a line of text to a location*/
/* defined in relation to the main text window. */
/**/
WritelineAbsolute: Procedure
Parse Argrow, col, text
Call SysCurPos row, col
call charout , text
Return

/**/
/* This routine waits for the user to select a menu choice by */
/* pressing a key that corresponds to one of the selection */
/* characters defined for a given window. */
/* Any other keys are ignored. */
/**/
WaitMenu: Procedure expose handles Windowdata.
arg handle

/* Make sure the window handle is OK. */
Select

When Handle < 0 Then Return -1
When handle > handles Then Return -2
Otherwise Nop

End

/* Turn off cursor and wait for an expected character */
Call syscurstate 1 0FF 1

Do outerloop = 0
char= translate{SysGetKey{ 1 NOECH0 1

))

do ii = 1 to Windowdata.handle._MenuCount
if char= Windowdata.handle._accelkey.ii Then Leave outerloop

End
End outerloop

/* Turn cursor back on and return uppercase of the selection char. */
Call syscurstate 1 0FF 1

return char

Figure 12-7 (Part 4 of 4). TEXTMENU.CMD

When you run TEXTMENU.CMD, a small menu box appears on the screen.

Quit Exit lea Ve

This is a demo.

Choose an item from the Menu above.

Figure 12-8. TEXTMENU.CMD Display

When you press a Q, E, or V key, the menu displays your selection and the program
ends.

12-12 REXX User's Guide

Seaching Functions
Rexx U til also includes some functions for searching files and directories. The
program FINDFILE.CMD in Figure 12-9 creates a list of files that matches a file
specification containing a given character string. FINDFILE.CMD uses the
RexxUtil SysFileTree, SysFileSearch, and SysDriveMap functions.

/* Search all drives for files with a given string */
parse arg filespec 1111 string 1111

drivelist = SysOriveMap() /* get list of drives */

do while drivelist <> 1 1 /* check each drive */
parse var drivelist drive drivelist

/*get the list of matching*/
/* files on this drive */

do i = 1 to files.a /* seach each file */
call SysFileSearch string, files.i, 'Lines.', 1 NC 1

if lines.a> a then do /* found something, */
say'===> 111 string 1111 found in file' files.i'
do j = 1 to lines.a

say 1 1 ines.j
end

end
end

end

Figure 12-9. FINDFILE.CMD

The SysFileTree and SysFileSearch functions are different from the functions you've
already tried. SysFileTree and SysFileSearch return lists of information by placing
them directly into an array of REXX compound variables. The compound variables
begin with a stem name that you provide to the SysFileTree or SysFileSearch
functions. For example, the following SysFileTree calls returns a list of file names
using the FILES. stem variable:

call SysFileTree drive'\', 'Files.', 'sf'

SysFileTree returns the list size in compound variable FILES.0. Variables FILES.l,
FILES.2, up to the size contained in FILES.O contains the members of the list.

Additional RexxUtil Functions
RexxUtil contains many more functions than are covered here. There are functions
for creating objects and object classes, functions for obtaining system values, and
even a function to put your REXX program to sleep.

For a more complete discussion of REXX utilities, refer to "Rexx Utilities" in the
REXX Reference.

Chapter 12. Using REXX with Applications 12-13

12-14 REXX User's Guide

~
I

Index

A
abuttal 4-3, 4-10
accuracy in calculations, changing 9-16
addition 9-3
addition operator 4-10, 9-3
ADDRESS instruction 5-7
AND operator 4-17
application environments 5-14
ARG instruction

description of 8-4
example of 8-6
using literal patterns 8-10

arguments
defined 7-5
of a subroutine 7-2
parsing 7-5, 8-4

arithmetic
checking data 9-1

array
checkerboard example 3-14
description of 3-9
scoreboard example 3-12
using compound symbols 3-9, 3-12
with more than one dimension 3-14

ASCII character 124 4-3
assignment

examples of 3-2

B
batch files (OS/2) 5-1, 5-13
binary numbers

converting 4-20
description of 4-19

blank (concatenation operator) 4-3, 4-10
blanks removed 2-6
built-in functions 1-1
BY expression 6-21

c
CALL instruction 7-2
CALL used to trap command errors 5-14
calling a function as a subroutine 7-13
character

comparing 4-14
conversion of 4-20

character priority when comparing 4-14
character strings 2-5
checking data 9-1
clause

and instructions 2-5
separating 2-10

clause (continued)
spanning more than one line 2-10

clause delimiter 2-10
comma to indicate continuation of a clause 2-10
commands

ADDRESS instruction 5-7
and variables 5-4
evaluation rules for 5-6

commands replaced by functions 12-3
comments 2-4
comparison operators 4-5, 4-10, 4-13
comparisons

allowing approximation 9-17
characters 4-14
exact 4-15
fuzzy arithmetical 9-17
normal 4-14
numbers 4-13
priority of characters 4-14

compound symbols
description of 3-8
in an array 3-9
use of a period 3-8

concatenation 4-3
concatenation operator 4-3, 4-10
condition traps 7-15
conditional loops

description of 6-13
DO FOREVER instruction 6-13, 6-17
DO UNTIL instruction 6-15, 6-16
DO WHILE instruction 6-14, 6-16
LEAVE instruction 6-13, 6-33

continuation
of a clause 2-10
of expression in SAY instruction 8-2

control variable 6-20, 6-33
conversion between binary, hexadecimal and decimal

characters 4-20
correcting your program 11-8

D
dangling ELSE 6-26
data types, checking 9-1
DATATYPE function 9-1
data, prompting user for 8-2
decimal number

converting 4-20
description of 9-1

default input stream (STDIN) 10-15
default output stream (STDOUT) 10-15
delimiters

clause 2-10
comment 2-4

Index X-1

derived name 3-8
designing a program 11-4
DIGITS 9-16
DIGITS option of NUMERIC instruction 9-16
division 9-3
division operator 4-10, 9-3
dll functions 12-3
DO FOREVER instruction 6-13, 6-17
DO instruction

BY expression 6-21
conditional loop 6-13
control variable 6-20
counter 6-33
DO FOREVER instruction 6-13, 6-17
DO UNTIL instruction 6-15, 6-16
DO WHILE instruction 6-14, 6-16
ITERATE instruction 6-30
LEAVE instruction 6-13, 6-33
non-looping 6-8
repetitive loops 6-11

DO WHILE instruction 6-14, 6-16
dynamic link library (RexxUtil) 12-3

E
E (exponent symbol) 9-5
echoing commands 1-3, 5-3
ELSE keyword

dangling 6-26
NOP instruction 6-29
of IF instruction 6-5

END keyword
of SELECT instruction 6-7

environment
addressing by name 5-7
application 5-14
defined 5-1
subcommands 5-14

equal operator 4-10, 4-15, 9-17
ERROR condition 5-15, 7-15
error conditions

ERROR 5-15, 7-15
FAILURE 5-15, 7-16
NOTREADY 7-16
NOVALUE 7-16
SYNTAX 7-16

error 13 4-3
evaluating expressions

order of 4-10
using parentheses 4-11

evaluation priority 4-10, 4-11
exact comparison operators 4-10, 4-15, 9-17
exactly equal operator 4-10, 4-15, 9-17
exclusive OR operator 4-10
exponent 9-5
exponential notation

description of '9-1, 9-5
NUMERIC DIGITS instruction 9-16

X-2 REXX User's Guide

exponential notation (continued)
significant digits 9-16
specifying 9-14

exponentiation 9-17
exponentiation operator 4-10, 9-3, 9-17
EXPOSE keyword of PROCEDURE instruction 3-16,

3-17
expressions

evaluating
order of 4-10
using parentheses 4-11
using the TRACE instruction 4-7

in an assignment 3-2
length of a string 4-12
parsing 8-9
using TRUE and FALSE 4-6

extended attributes 12-5
external routines

functions 7-13
subroutines 7-4, 7-i3

F
FAILURE condition 5-15, 7-16
FALSE expression 4-6
features of REXX 1-1
fixed point number

description of 9-5
specifying 9-14

floating-point number
description of 9-5
specifying 9-14

formatting output
lining up numbers 9-9

FORMAT() function 9-9, 9-11
functions

calling as a subroutine 7-13, 10-3
DATATYPE 9-1
differences with subroutines 7-13
DIGITS 9-16
external 7-13
FORMAT() 9-9
FUZZ 9-17
internal 7-13
LENGTH 4-12
search order 7-13
similarities with subroutines 7-13
SUBSTR 4-12
SYMBOL 3-16
TRUNC 9-7

functions, commands replaced by 12-3
function, register a 12-3
FUZZ 9-17
FUZZ option of NUMERIC instruction 9-17
fuzzy arithmetical comparison 9-17

G
get extended attributes 12-5
getting command-line data 8-4
getting data when you are prompted 8-2
greater than operator 4-5, 4-10
greater than or equal to operator 4-10

H
hexadecimal

converting 4-20
description of 4-19

I
IF instruction

description of 6-2
ELSE keyword 6-5
THEN keyword 6-2

increasing accuracy in calculations 9-16
input and output 10-1

default input/output streams 10-15
input and output 10-1

instructions
CALL 5-14, 7-2
DO 6-1
DO FOREVER 6-13
DO UNTIL 6-15
DO WHILE 6-14
EXIT 6-23
ITERATE 6-30
LEAVE 6-13
NOP 6-29
NUMERIC DIGITS 9-16
NUMERIC FUZZ 9-17
PARSE ARG 8-5
PARSE PULL 8-2
PARSE VALUE 8-9
PARSE VAR 8-9
PROCEDURE 3-16
PULL 8-2
QUEUE 10-11
SAY 8-1
SELECT 6-7
SIGNAL 5-14, 7-14
TRACE 4-7

integer 9-1
integer division operator 4-10, 9-3
internal routines

functions 7-13
subroutines 3-17, 7-7, 7-13

interpreter 1-1
invalid character in program 4-3
issuing commands

evaluation rules 5-6
to application environments 5-14
using ADDRESS 5-7

ITERATE instruction 6-30

J
jumping through your program 6-30, 7-14

K
keyboard input (STDIN) 10-15
keywords

L

of DO instruction
of IF instruction

ELSE 6-5
THEN 6-2

of SELECT instruction
END 6-7
OTHERWISE 6-7
THEN 6-7
WHEN 6-7

label 7-2, 7-8
LEAVE instruction 6-12, 6-33
leaving loops 6-33
LENGTH function 4-12
less than operator 4-5, 4-10
less than or equal to operator 4-10
literal patterns in parsing 8-10
load a RexxUtil function 12-3
loops

conditional 6-13
control variable 6-20
counter 6-33
DO FOREVER instruction 6-13, 6-17
DO UNTIL instruction 6-15, 6-16
DO WHILE instruction 6-14, 6-16
ITERATE instruction 6-30
LEAVE instruction 6-13, 6-33
leaving 6-33
repetitive 6-11
skipping instructions 6-30, 7-14

M
macros 5-1
macros, environments for 5-14
mantissa 9-5
messages

from OS/2 to REXX 5-9
suppressing

minus operator 4-10, 9-3
multiple clauses on a line 2-10
multiplication 9-3
multiplication operator 4-10, 9-3

Index X-3

N
naming variables 3-3
NOP instruction 6-29
not equal operator 4-10, 4-15, 9-17
not exactly equal operator 4-10, 4-15, 9-17
not greater than operator 4-10
not less than operator 4-10
NOTREADY condition 7-16
NOVALUE condition 7-16
numbers

comparing 4-13
exponential notation 9-5
fixed-point 9-5
floating-point 9-5
power of 9-3, 9-17
range of 9-5
rounding 9-7
truncating 9-11
types of 9-1
whole 9-1

NUMERIC DIGITS instruction 9-16
NUMERIC FUZZ instruction 9-17

0
operator

comparison 4-5, 4-10, 4-13
list of 4-10
priority of 4-10
using parentheses 4-11

OR operator 4-17
OS/2 publications ix
OS/2 (operating system)

as REXX environment 5-1
batch (CMD) files in 5-13
issuing commands to 5-1
REXX error handling (with RC) 5-9

OTHERWISE keyword 6-7
output format 9-9

p
parentheses 4-11
PARSE ARG instruction 8-5
PARSE PULL instruction 8-2
PARSE VALUE instruction 8-9
PARSE VAR instruction 8-9
parsing

arguments 7-5, 8-4
data when you are prompted 8-2
expressions 8-9
use of a period 8-7
using literal patterns 8-10
using patterns 8-10
variables 8-9
words 8-5

X-4 REXX User's Guide

patterns used in parsing 8-10
period

as a placeholder in parsing 8-7
in compound symbols 3-8

placeholder, period, in parsing 8-7
plus operator 4-10, 9-3
PMREXX 5-17

starting 5-17
tracing 5-19

power of a number 9-3, 9-17
precedence

of characters 4-14
operators 4-10

priority of characters 4-14
priority of operators 4-10
PROCEDURE instruction

description of 3-16
EXPOSE keyword 3-16

programs
correcting 11-8
description of 6-1
designing 11-4

prompting user for data 8-2
PULL instruction

description of 8-2
using 2-2, 8-5

putting words into variables 8-5

Q
queue described l 0-11
quotation marks

in literal strings 2-5
to avoid conflicts with OS/2 conventions 5-5

quotes
in literal strings 2-5
to avoid conflicts with OS/2 conventions 5-5

R
range of numbers 9-5
RC variable 3-15, 5-9
read and write positions 10-20
register a function 12-3
remainder 9-3
remainder operator 4-10, 9-3
repetitive loops 6-11
RESULT reserved symbol 7-3
retrieve extended attributes 12-5
return codes

reading and responding to 5-9
REXX 2-7

returning from a subroutine 7-3
REXX programs, REXXTRY 5-10
REXXTRY, using 5-10
RexxUtil functions 12-3

commands replaced by 12-3
RxFuncAdd 12-3

Rexx U til functions (continued)
SysCls 12-3
SysCurPos 12-7
SysCurState 12-7
SysFileDelete 12-3
SysGetKey 12-7
Syslni 12-5
SysLoadFuncs 12-3
SysMkDir 12-3
SysPutEa 12-5
SysTextScreenRead 12-7
SysTextScreenSize 12-7

RexxUtil functions, availability of 12-3
rounding numbers 9-7
RxFuncAdd 12-3

s
SAA 1-2
save extended attributes 12-5
search order for subroutines and functions 7-13
SELECT instruction

description of 6-7
END keyword 6-7
example of 6-9
OTHERWISE keyword 6-7
THEN keyword 6-7
WHEN keyword 6-7

separating clauses 2-10
SIGL variable

storing line numbers 7-15
SIGNAL instruction

description of 7-14
restrictions 7-14
used in jumps 7-14
used to trap command errors 5-14

signed number 9-1
significant digits 9-16
skipping instructions in a loop 6-30, 7-14
special variables 3-15
splitting

clauses 2-10
data 8-5

starting PMREXX 5-17
STDIN (default input stream) 10-15
STDOUT (default output stream) 10-15
stem

description of 3-13
example of 3-13

streams 10-1
STREAM() function 10-18
strictly greater than operator 4-10
strictly greater than or equal to operator 4-10
strictly less than operator 4-10
strictly less than or equal to operator 4-10
strictly not greater than operator 4-10
strictly not less operator 4-10

string
description of 2-5
examples of 2-5
finding the length 4-12
getting a substring 4-12

subcommand processing 5-14
subroutines

arguments for 7-2
description of 7-1
differences with functions 7-13
example of 3-17
external 7-4, 7-13
internal 3-17, 7-7, 7-13
PROCEDURE instruction 3-16
protecting variables 3-16
RETURN instruction 7-3
search order 7-13
sharing variables 3-17
similarities with functions 7-13

SUBSTR function 4-12
substring 4-12
subtraction 9-3
subtraction operator 4-10, 9-3
symbol

compound 3-8
determining if it is a variable 3-16

SYMBOL function 3-16
SYNTAX condition 7-16
syntax error

example of 2-7
FORMAT() function 9-9

syntax, description of 2-6
SysCls 12-3
SysCurPos 12-7
SysCurState 12-7
SysFileDelete 12-3
SysGetKey 12-7
Sysini 12-5
SysLoadFuncs 12-3
SysMkDir 12-3
SysPutEA 12-5

SysRmDir 12-3
system messages 5-9
Systems Application Architecture 1-2
SysTextScreenRead 12-7
SysTextScreenSize 12-7

T
THEN keyword

NOP instruction 6-29
of IF instruction 6-2
of SELECT instruction 6-7

TRACE
intermediate results 4-7
results 4-7, 4-9

TRACE flags
+ + + 11-10

Index X-S

TRACE flags (continued)
- 11-10
>C> 11-10
>F> 11-10
>L> 11-10
>O> 11-10
>P> 11-10
>V> 11-10
>.> 11-10
>>> 11-10

trace function in PMREXX
TRACE instruction 4-7
tracing

description of 4-7
example 4-7

translating

5-19

between character, hexadecimal, decimal 4-20
examples of 4-20
to uppercase 2-6

trapping command errors 5-14
TRUE expression 4-6
TRUNC function 9-7
truncating numbers 9-7

u
uppercase translation 2-6

v
variables

built-in 3-15, 5-9
in commands 5-4
length of 4-12
names and OSl2 conventions 5-5
naming conventions 3-3
parsing 8-9
protecting 3-16
setting of 8-5
sharing between routines 3-17

w
WHEN keyword 6-7
whole numbers 9-1
word, parsing 8-5
write and read positions 10-20
writing lines to the screen 8-1

Special Characters
. (as a placeholder) 8-7
. (in compound symbols) 3-8
< (less than operator) 4-5, 4-10
<< (strictly less than operator) 4-10
<<= (strictly less than or equal to operator) 4-10
<= (less than or equal to operator) 4-10

X-6 REXX User's Guide

+ (addition operator) 4-10, 9-3
+ + + tracing flag 11-10
&& (exclusive OR operator) 4-10
& (AND operator) 4-17
* (multiplication operator) 9-3
- tracing flag 11-10
** (exponentiation operator) 4-10, 9-3, 9-17
*I comment delimiter 2-4
I (division operator) 4-10, 9-3
I* comment delimiter 2-4
II (remainder operator) 4-10, 9-3
% (integer division operator) 4-10, 9-3
>(greater than operator) 4-5, 4-10
> C > tracing flag 11-10
> F > tracing flag 11-10
> L > tracing flag 11-10
> 0 > tracing flag 11-10
> P > tracing flag 11-10
> V > tracing flag 11-10
>, > tracing flag 11-10
>>(strictly greater than operator) 4-10
> > > tracing flag 11-10
>>= (strictly greater than or equal to operator) 4-10
>=(greater than or equal to operator) 4-10
= (equal operator) 4-5, 4-10, 4-15, 9-17
== (exactly equal operator) 4-10, 4-15, 9-17
- (subtraction operator) 4-10
\< (not less than operator) 4-10
\<< (strictly not less than operator) 4-10
\> (not greater than operator) 4-10
\>> (strictly not greater than operator) 4-10
\=(not equal operator) 4-10, 4-15, 9-17
\== (not exactly equal operator) 4-10, 4-15, 9-17
l l (concatenation operator) 4-3, 4-10
I (inclusive 0 R operator) 4-17
II (concatenation operator) 4-3

® IBM, OS/2 and Operating System/2 are
registered trademarks of
International Business Machines Corporation

---- --· ------ -- -.--. ---- - ---- -- ------- --____ ,®

© IBM Corp. 1992

International Business
Machines Corporation

Printed in the
United States of America
All Rights Reserved

10G6269

Sl0G-6269-00

~ 11111111111 HI 111
Pl0G6269

