

OS/2 Version 2.0
Volume 2: DOS and Windows Environment

Document Number GG24-3731-00

April 1992

International Technical Support Center
Boca Raton

Before using this information and the product it supports, be sure to read the general information under
"Special Notices" on page xvii.

First Edition (April 1992)

This edition applies to OS/2 Version 2.0.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, International Technical Support Center
Dept. 91J, Building 235-2 Internal Zip 4423
901 NW 51st Street
Boca Raton, Florida 33432 USA

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes both the Multiple Virtual DOS Machines (MVDM) com­
ponent of OS/2 Version 2.0 and the implementation of Microsoft Windows appli­
cation support under OS/2 Version 2.0. It forms Volume 2 of a five volume set;
the other volumes are:

• OS/2 Version 2.0- Volume 1: Control Program GG24-3730

• 0512 Version 2.0 - Volume 3: Presentation Manager and Workplace Shell
GG24-3732

• OS/2 Version 2.0 - Volume 4: Application Development GG24-3774

• OS/2 Version 2.0- Volume 5: Print Subsystem GG24-3775

The entire set may be ordered as OS/2 Version 2.0 Technical Compendium,
GBOF-2254.

This publication is intended for IBM customers, IBM system engineers, and IBM
authorized dealers, and other individuals who require a knowledge of the fea­
tures, functions, and implementation of DOS and Microsoft Windows application
support under OS/2 Version 2.0.

This document assumes that the reader is generally familiar with the DOS oper­
ating system and Microsoft Windows, and with the function provided in previous
releases of OS/2.

PS (290 pages)

<C> copyright IBM Corp. 1992 Ill

Iv OS/2 v2.o Volume 2

Acknowledgements

The project leader and editor for this project was:

Hans J. Goetz
International Technical Support Center, Boca Raton

The authors of this document are:

Robert Beck
IBM United Kingdom

Herman Benders
IBM Netherlands

Bo Falkenberg
IBM Denmark

Dorie Hecker
IBM Germany

Patrick Lee
IBM Australia

Robert Penrose
IBM Canada

Dwight Ronquest
ISM South Africa

Laurie Rose
IBM UK

Karl-Peter Schweder
IBM Germany

Tim Sennitt
IBM UK

Neil Stokes
IBM Australia

Bernd Westphal
IBM Germany

This publication is the result of a series of residencies conducted at the Interna­
tional Technical Support Center, Boca Raton.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Terri Beck
IBM Programming Center, Boca Raton.

®Copyright IBM Corp. 1992 v

VI OS/2 V2.0 Volume 2

Sam Casto and his staff
IBM Programming Center, Boca Raton.

Monte Copeland
IBM Programming Center, Boca Raton.

Mark Fiechtner
IBM Programming Center, Boca Raton.

George Fulk
IBM Programming Center, Boca Raton.

Alfredo Gutierrez
IBM EMEA Education Center, Boca Raton.

Kip Harris
IBM Programming Center, Boca Raton.

David Kerr
IBM Programming Center, Boca Raton.

Bill Madden
IBM Programming Center, Boca Raton.

Martin McElroy
IBM European Personal Systems Center, Basingstoke.

Jeff Muir
IBM Programming Center, Boca Raton.

Frank Schroeder
IBM Programming Center, Boca Raton.

Jerry Stegenga
International Technical Support Center, Boca Raton.

John Tyler
IBM Programming Center, Boca Raton.

David Young
IBM Western Area Systems Center, Los Angeles.

Thanks also to the many people, both within and outside IBM, who provided sug­
gestions and guidance, and who reviewed this document prior to publication.

Thanks to the following people for providing excellent tools, used during pro­
duction of this document:

Dave Hock (CUA Draw)
IBM Cary.

Jurg von Kanel (PM Camera)
IBM Yorktown Heights.

Contents

Abstract . iii

Acknowledgements . v

Special Notices . xvii

Preface xix

Related Publications . xxi ii
Prerequisite Publications . xxiii
Additional Publications . xxiii

Chapter 1. Overview
1.1 OS/2 Version 2.0 .

1.1.1 OS/2 Version 2.0 Overview .

1
1
1

1.1.2 Memory and Task Management . 1
1.1.3 User Interface . 3

1.2 Multiple Virtual DOS Machines . 3
1.2.1 MVDM Architecture . 6
1.2.2 Virtual Device Drivers . 7
1.2.3 Expanded and Extended Memory Support 8
1.2.4 DOS Settings 10

1.3 Windows Application Support . 11
1.4 Summary . 11

Chapter 2. MVDM Architecture . 13
2.1 Introduction . 13
2.2 Virtual DOS Machine Manager (VDMM) . 15

2.2.1 VDM Address Space Management 17
2.2.2 VDM Creation 19
2.2.3 VDM Termination . 21

2.3 8086 Emulation . 21
2.4 DOS Emulation . 22
2.5 Virtual Device Drivers . 22
2.6 VDM Page Faults . 24
2.7 VDM Window Management 24

2.7.1 Virtual Display Management 25
2.7.2 Virtual Keyboard Management . 25
2.7.3 Virtual Mouse Management 26

2.8 VDM Interprocess Communication . 26
2.8.1 About Pipes . 27
2.8.2 Named Pipes . 27

2.9 Summary . 28

Chapter 3. 8086 Emulation . 29
3.1 Virtual 8086 Mode . 29
3.2 DOS Software Interrupt Handling . 31

3.2.1 Virtualizing Interrupts . 31
3.2.2 Disabling Interrupts 32

3.3 110 Port Trapping . 32
3.4 A20 Line Services (64KB Wraparound) 33

C> Copyright IBM Corp. 1992 vii

VIII OS/2 V2.0 Volume 2

3.5 Summary . 34

Chapter 4. MVDM DOS Emulation . 37
4.1 DOS Emulation Overview . 37
4.2 DOS Emulation Implementation . 38

4.2.1 Initialization and VDM Creation . 38
4.2.2 Requesting System Services 41
4.2.3 System Service Call Behavior . 42
4.2.4 System Callback Procedures 43
4.2.5 VDM Termination 44
4.2.6 Standard Devices . 44

4.3 Maximizing VDM Memory 44
4.3.1 CONFIG.SYS . 45
4.3.2 AUTOEXEC.BAT 46

4.4 Command Compatibility 47
4.4.1 MEM . 47
4.4.2 FC (File Compare) . 48
4.4.3 DOSKEY . 48
4.4.4 DEBUG 48
4.4.5 UNDELETE . 49
4.4.6 DIR . 50
4.4.7 ATIRIB 50
4.4.8 RESTORE . 50
4.4.9 FIND 50

4.5 Summary . 51

Chapter 5. Device Drivers . 53
5.1 Device Driver Architecture . 53
5.2 Physical Device Drivers 54
5.3 Virtual Device Drivers 55

5.3.1 Loading Virtual Device Drivers . 57
5.3.2 Virtual Device Driver Structure · . 58
5.3.3 ROM BIOS Compatibility . 59
5.3.4 Hardware Interrupt Simulation . 60
5.3.5 Protection . 61

5.4 Standard Virtual Device Drivers . 61
5.4.1 VBIOS Device Driver . 62
5.4.2 Virtual CMOS Device Driver . 62
5.4.3 Virtual OMA Device Driver . 63
5.4.4 Virtual Disk Device Driver . 64
5.4.5 VFLPY Device Driver 64
5.4.6 Virtual Keyboard Device Driver . 64
5.4.7 Virtual Printer Device Driver 66
5.4.8 Virtual Numeric Coprocessor Device Driver 69
5.4.9 Virtual Programmable Interrupt Controller 70
5.4.10 Virtual Timer Device Driver 74
5.4.11 Virtual COM Device Driver . 75
5.4.12 VDPMI Device Driver . 78
5.4.13 VD PX Device Driver . 78
5.4.14 VXMS Device Driver 78
5.4.15 VEMM Device Driver . 79
5.4.16 VWIN Device Driver 80
5.4.17 Virtual Mouse Driver . 80
5.4.18 VCDROM Device Driver 81
5.4.19 Virtual Video Device Driver . 81

5.5 Virtual Device Helper Services . 87
5.5.1 Memory Management . 87
5.5.2 Semaphore Services . 88
5.5.3 Freeze/Thaw Services . 88
5.5.4 Timer/Priority Services 88
5.5.5 Page Fault Services . 88
5.5.6 Other Services . 88
5.5. 7 VDH Functions . 88

5.6 VDM Termination . 89
5.6.1 Normal Termination . 89
5.6.2 Abnormal Termination . 90

5. 7 Summary . 91

Chapter 6. Memory Extender Support . 93
6.1 Expanded Memory Support . 94

6.1.1 Virtual Expanded Memory Manager 94
6.1.2 EMS Object Mapping . 99
6.1.3 Per-VDM Data Allocation . 101
6.1.4 Problems with Expanded Memory . 101

6.2 Expanded Memory (EMS) and Upper Memory (UMB) 102
6.3 Extended Memory Support . 103

6.3.1 Extended Memory Manager . 105
6.3.2 High Memory Area (HMA) . 110
6.3.3 Upper Memory Blocks (UMBs) . 110
6.3.4 Extended Memory Blocks (EMBs) . 112
6.3.5 Allocating/Deallocating Memory . 113

6.4 Problems with Extended Memory . 114
6.5 Summary . 114

Chapter 7. Installing and Migrating Applications 117
7.1 Installing DOS Programs . 117

7.1.1 General Installation Procedure for DOS Programs 117
7.1.2 Installation Programs with Special Requirements 118

7.2 Planning Hard Disk Partitions . 118
7.3 Installing Windows Programs . 119
7.4 AUTOEXEC.BAT and CONFIG.SYS 120
7.5 Migrating Programs . 121
7.6 Creating a Customized Migration Database 122

7.6.1 PARSEDB . 122
7.7 Summary 127

Chapter 8. Windows Applications . 129
8.1 Windows 3.0 Execution Modes . 130

8.1.1 Real Mode . 130
8.1.2 Standard Mode . 130
8.1.3 386 Enhanced Mode . 131

8.2 Windows Applications under OS/2 Version 2.0 132
8.2.1 Supported Components . 133
8.2.2 Methods of Execution . 134

8.3 Installing WIN-OS/2 Support Under OS/2 Version 2.0 143
8.4 Migrating to OS/2 Version 2.0 . 144
8.5 Defining Windows Applications . 145

8.5.1 Defining a Single Application VDM (SAVDM) 146
8.5.2 Defining a Multiple Application VDM (MAVDM) 146
8.5.3 Defining a "Seamless" WIN-OS/2 VDM 147

Contents Ix

X OS/2 V2.0 Volume 2

8.6 Starting Windows Applications . 148
8.6.1 SAVDM . 148
8.6.2 MAVDM . 148
8.6.3 "Seamless" WIN-OS/2 VDM . 149

8.7 Windows Environment Settings . 150
8.7.1 WIN.INI . 152
8.7.2 PROGMAN.INI . 152
8.7.3 CONTROL.IN! . 152
8.7.4 SYSTEM.IN! . 152
8.7.5 DOS and WIN-OS/2 Settings . 153

8.8 Windows Device Drivers . 154
8.9 Print Support for Windows Applications 155

8.9.1 Print Subsystem Architecture . 155
8.10 Font Support . 160

8.10.1 Adobe Type Manager Overview . 160
8.10.2 ATM File Formats . 161

8.11 ATM for WIN-OS/2 . 163
8.11.1 Installing ATM for WIN-OS/2 . 163
8.11.2 Installing Additional Fonts for WIN-OS/2 ATM 163
8.11.3 Deleting Fonts for WIN-OS/2 ATM . 165

8.12 Clipboard Support . 166
8.12.1 WIN-OS/2 Clipboard Support . 169
8.12.2 Using Cut and Paste . 170

8.13 Dynamic Data Exchange . 172
8.13.1 ODE Concepts . 172
8.13.2 Windows Application to Windows Application 173
8.13.3 Windows Application to Presentation Manager Application 175

8.14 Object Linking and Embedding . 177
8.14.1 OLE Concepts . 177
8.14.2 Linking versus Embedding . 178

8.15 Summary . 179

Chapter 9. DOS Protected Mode Interface . 181
9.1 DPMI Introduction . 181
9.2 Virtual Control Program Interface . 182
9.3 The DPMI Specification . 183

9.3.1 DPMI Hosts and Clients . 184
9.3.2 DPMI Services . 185

9.4 DOS Extenders . 187
9.4.1 Loading DPMI Clients and Extended Applications 187
9.4.2 Processing in DOS Extenders . 188
9.4.3 Session Termination . 188

9.5 DPMI Implementation in OS/2 Version 2.0 188
9.5.1 DPMI Services . 189
9.5.2 Kernel Support . 192
9.5.3 Ring 0 Exceptions . 194
9.5.4 DPMI API Layer Communication with the Kernel 194
9.5.5 Installation of DPMI . 195
9.5.6 DPMI and Microsoft Windows . 195

9.6 Summary . 195

Chapter 10. Running DOS Appllcatlons . 197
10.1 Defining a DOS Application . 197

10.1.1 Creating a Representative Object . 197
10.1.2 Adding TSRs to the Workplace Shell 200

10.1.3 Customizing the VDM Environment 200
10.1.4 Using the Migrating Applications Facility 201

10.2 Starting a DOS Application . 201
10.2.1 Starting From the Workplace Shell 202
10.2.2 Starting From the Command Line . 202

10.3 Applications With Special Requirements 203
10.4 Summary . 203

Chapter 11. DOS Settings . 205
11.1 Registration . 205

11.1.1 Changing Settings Prior to Execution 206
11.1.2 Changing Settings During Execution 206
11.1.3 Starting a VDM From Another Application 206

11.2 Standard DOS Settings . 207
11.2.1 Communications 207
11.2.2 DOS Environment . 208
11.2.3 DPMI . 212
11.2.4 EMS . 213
11.2.5 Hardware Environment . 214
11.2.6 Idle Detection . 215
11.2. 7 Keyboard . 217
11.2.8 Memory Extenders {EMS and XMS) 218
11.2.9 Mouse . 219
11.2.10 Printer . 220
11.2.11 Video . 220
11.2.12 XMS . 224
11.2.13 WIN-OS/2 . 225

11.3 Summary . 225

Chapter 12. Virtual Machine Boot . 227
12.1 VMB Environment . 227
12.2 Configuring Virtual Machine Boot . 228

12.2.1 Preparing AUTOEXEC.BAT and CONFIG.SYS 228
12.2.2 Mouse, EMS and XMS Support . 232
12.2.3 Booting from Diskette . 233
12.2.4 Booting from Diskette Image . 235
12.2.5 Booting from a DOS Partition . 235
12.2.6 Putting the Virtual Machine Boot Session in the Workplace Shell . 237

12.3 Managing the VMB Session . 240
12.4 VMB Limitations . 241
12.5 Summary . 241

Appendix A. Running Personal Communications/3270 Version 2 for
Windows .. 243

A.1 Installing PC/3270 under WIN-OS/2 . 243
A.1.1 Installing the Corrective Service Diskettes 245

A.2 Creating a PC/3270 Batch File for OS/2 V2.0 245
A.2.1 Checking the WIN-OS/2 Initialization File 245
A.2.2 Creating the PC/3270-0S/2 Batch File 245
A.2.3 Communications Manager Mouse Support {CMMOUSE) 246

A.3 Setting up PC/3270 as a WIN-OS/2 Application 247
A.3.1 Create a New Object on the Desktop 247
A.3.2 Setting the Attributes of the PC/3270 WIN-OS/2 Object 247

A.4 Additional Setup for LAN Connections . 248
A.4.1 Installing LAN Support Program and RESETOKN.SYS 248

Contents Xi

Xii OS/2 V2.0 Volume 2

A.4.2 Updating the PC/3270 Object for LAN Device Drivers 249
A.5 Operating PC/3270 for Windows under OS/2 V2.0 249

A.5.1 A Couple of Warnings and Suggestions 249
A.5.2 Limitations . 250

Appendix B. Running DOS PC Support/400 in OS/2 V2.0 253
B.1 Installation Preparation . 253
B.2 Installation . 253
B.3 Restrictions . 254

Appendix C. Running Lotus 1·2·3 in a VDM 257
C.1 Lotus 1-2-3 Release 2.3 . 257
C.2 Lotus 1-2-3 Release 3.1 + . 258

Appendix D. Memory Extender Architectures 261
D.1 Expanded Memory Specification (EMS) 261

D.1.1 EMS Overview . 261
D.1.2 EMS Functions . 262

D.2 Extended Memory Specification {XMS) . 264
D.2.1 XMS Overview . 264
D.2.2 XMS Functions . 266

Appendix E. Multiple Virtual DOS Machines Lab Sessions 269
E.1 Lab Exercises . 269
E.2 Requirements . 269

E.2.1 Lab Session 1: VDM Configuration . 270
E.2.2 Lab Session 2: Reboot Virtual DOS Machine 275
E.2.3 Lab Session 3 - The Clipboard Viewer 277
E.2.4 Lab Session 4: VDM Use of the Speaker 279
E.2.5 Lab Session 5: VDM Interprocess Communications 281
E.2.6 Lab Session 6: VDM Boot . 284
E.2.7 Lab Session 7: Windows Clipboard 285

Glossary . 287

Index . 293

Figures

1. Concurrent DOS Applications under the Workplace Shell 4
2. MVDM Architecture . 6
3. MVDM System Structure Overview . 7
4. MVDM System Structure and Control Flow 15
5. MVDM Protected Mode processes . 16
6. VDM Exception Handling . 17
7. Typical VDM Address Space Map . 18
8. VDM Initialization . 19
9. Virtual Display Management 25

10. Virtual Keyboard Management . 25
11. Virtual Mouse Management . 26
12. VDM Exceptions and Interrupt Handling in a V86 Mode Task 30
13. Descriptor Privilege Levels . 32
14. A20 Line Service (64KB Wraparound) 34
15. V86 Memory Map Prior to DOS Emulation Initialization 39
16. V86 Memory Map at Initial V86 Mode Entry 40
17. V86 Memory Map after Initialization 41
18. Default AUTOEXEC.BAT File 46
19. Physical and Virtual Device Drivers under OS/2 Version 2.0 54
20. Structure of Bi-Modal Device Drivers in OS/2 V1 .x 55
21. Physical Device Driver Statements in CONFIG.SYS 55
22. Virtual Device Driver Statements in CONFIG.SYS 56
23. Virtual COM and Physical COM Device Drivers 58
24. Virtual Printer Device Driver Operation 67
25. Virtual Programmable Interrupt Controller 71
26. General Overview of Different Types of Memory for DOS Applications . 93
27. Expanded Memory Manager Control Flow 95
28. Memory Map of Areas Supported by Extended Memory 104
29. Extended Memory Manager Control Flow 105
30. CONFIG.SYS - Loading Device Drivers into UMBs 111
31. LOADHIGH Command - Loading TSRs into UMBs 112
32. The Migrate Applications Windows . 121
33. User Definitions for other Applications 127
34. Windows Applications Running under OS/2 Version 2.0 129
35. Single Windows Application Running under OS/2 Version 2.0 136
36. Single Windows Application(s) Running "Seamless" on the OS/2

Version 2.0 Desktop . 138
37. Implementation of "Seamless" WIN-OS/2 VDM in OS/2 Version 2.0 . . 140
38. Installing Windows Support under OS/2 Version 2.0 143
39. Defining a Windows Application to OS/2 Version 2.0 146
40. Migrating the Windows Initialization Files 151
41. Detailed View of the WIN-OS/2 Data Connections 156
42. Low Level View of the WIN-OS/2 Printing Data Flow 158
43. File Structure of Adobe Type Manager 162
44. OS/2 Version 2.0 Clipboard Environment 167
45. DOE Process between Windows Environments 174
46. ODE Process between Presentation Manager and Windows 176
47. Client/Server Structure for Operating System Extenders 185
48. The Program Page of the Settings Notebook 198
49. The Session Page of the Settings Notebook 199
50. The DOS Settings Dialog of the Settings Notebook 199

© Copyright I BM Corp. 1992 xiii

51. Setting Up a TSR Program . 200
52. The DOS Settings Dialog of the Settings Notebook 207
53. The Program Page of the Settings Notebook for a VMB 237
54. DOS Settings - DOS_STARTUP _DRIVE 238
55. VMS from an OS/2 V2.0 Program . 240
56. Personal Communications/3270 for Windows running under OS/2 V2.0 243
57. Memory Map of Extended Memory (HMA, LIMA, and EMBs) 266
58. QENV.BAT Batch File 273
59. C Source Code for ENVIRON.EXE . 274
60. INT19.BAS Source Code . 276
61. GRAPHIC.BAS Source Code 278
62. SOUND.BAS Source Code . 280

xiv OS/2 v2.o Volume 2

Tables

1. PIC Initialization Control Words . 72
2. PIC Operation Control Words . 73
3. List of Supported Video Configurations 82
4. Graphical Applications Programs Support under OS/2 Version 2.0 86
5. Drive Letter Assignment . 119
6. Free Base Memory . 228
7. Location of AUTOEXEC.BAT and CONFIG.SYS 228
8. Types of Expanded Memory . 265

© Copyright IBM Corp. 1992 xv

. XVI 0$/2 V2.0Volume 2

Special Notices

This publication is intended to help customers and system engineers to under­
stand and utilize the new features in Version 2.0 of OS/2. The information in this
publication is not intended as the specification of any programming interfaces
that are provided by OS/2 Version 2.0. See the PUBLICATIONS section of the
IBM Programming Announcement for OS/2 Version 2.0 for more information
about what publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(nvendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy completeness. The use of this infor­
mation or the implementation of any of these techniques is a customer responsi­
bility and depends on the customer's ability to evaluate and integrate them into
the customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee that
the same or similar results will be obtained elsewhere. Customers attempting to
adapt these techniques to their own environments do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible. the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

<C> Copyright IBM Corp. 1992 xvii

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

AIX
C/2
IBM
Micro Channer
Operating System/2
OS/2
Personal System/2
Presentation Manager
SAA
Systems Application Architecture
Workplace Shell

The following terms, which are denoted by a double asterisk (* *) in this publica­
tion, are trademarks of other companies.

Adobe is a trademark of Adobe Systems Inc.
AST is a trademark of AST.
CP/M is a trademark of Digital Research Inc.
CompuServe is a trademark CompuServe Inc.
DR-DOS is a trademark of Digital Research Inc.
Excel is a trademark of Microsoft Corporation.
Helvetica is a trademark of Linotype Company.
HP and Hewlett-Packard are trademarks of Hewlett-Packard Corporation.
Intel is a trademark of Intel Corporation.
LaserJet is a trademark of Hewlett-Packard Corporation.
Lotus and Lotus 1-2-3 are trademarks of Lotus Development Corporation.
Microsoft is a trademark of Microsoft Corporation.
MS-DOS is a registered trademark of Microsoft Corporation.
SPF/2 is a trademark of Command Technology Corporation.
Times New Roman is a trademark of Monotype Corporation Limited.
Windows is a trademark of Microsoft Corporation.
WordPerfect is a trademark of Wordperfect Corporation.
386, 486, SX are trademarks of Intel Corporation.
80286, 80386 and 80486 are trademarks of Intel Corporation.

XVIII 05/2 V2.0 Volume 2

Preface

This document provides an understanding of the architecture and function of the
Multiple Virtual DOS Machines (MVDM) component of OS/2 Version 2.0, which
allows concurrent execution of multiple DOS applications, each in its own virtual
DOS machine. Further, this document describes the support for Windows appli­
cations under OS/2 Version 2.0.

This document contains information on the MVDM architecture and components,
including the use of device drivers by DOS applications, and support for
expanded and extended memory. Other MVDM-related topics discussed in this
document include the DOS Settings feature, which allows the user to determine
the way in which a DOS application runs and the resources available to it, and
Virtual Machine Boot, which allows the user to load any version of DOS into a
virtual DOS machine to support the execution of version-dependent DOS applica­
tions.

Support for Windows applications on the OS/2 Version 2.0 platform is another
important topic examined in this document. The document includes a discussion
of Windows device drivers, inter-process communication between Windows,
DOS, and OS/2 applications (including DOE and clipboard capabilities), and com­
patibility issues as they relate to Windows applications in the OS/2 Version 2.0
environment.

This document is intended for:

• Customer planners and technical support personnel who require an under­
standing of DOS and Windows implementation in OS/2 Version 2.0.

• IBM and IBM authorized dealer technical support personnel.

• Programmers of DOS and Windows applications who wish to ensure compat-
ibility of their applications with the OS/2 Version 2.0 platform.

The information contained in this document assumes that readers have a
general familiarity with the DOS and Windows environments and the applications
which run in these environments.

The code examples used in this document are available in electronic form via
CompuServe** or through a local IBM Support Bulletin Board System (BBS), as
package RB3731.ZIP. IBM employees may obtain the code examples from the
GG243731 PACKAGE on OS2TOOLS.

The document is organized as follows:

• Chapter 1. "Overview" provides a brief introduction to the topics covered in
this document.

This chapter is recommended for all readers of the document.

• Chapter 2, "MVDM Architecture" describes the architecture of the Multiple
Virtual DOS Machines component of OS/2 Version 2:0, including information
regarding the creation and management of virtual DOS machines.

This chapter is recommended for those readers who require an under­
standing of the way in which OS/2 Version 2.0 manages virtual DOS machine
resources and an understanding of how MVDM implementation differs from

© copyright I BM Corp. 1992 xix

XX 05/2 V2.0 Volume 2

the implementation of the DOS Compatibility Box in previous versions of
OS/2.

• Chapter 3, "8086 Emulation" discusses 8086 emulation under OS/2 Version
2.0.

This chapter is recommended for those readers who desire an overview of
the 8086 emulation capabilities of the Intel 80386 processor, which are
exploited by OS/2 Version 2.0, and who wish to compare the functions this
environment provides to DOS applications with those available to DOS appli­
cations under previous versions of OS/2.

• Chapter 4, "MVDM DOS Emulation" describes the way in which DOS emu­
lation is achieved by the MVDM component, and compares the functions
available in a virtual DOS machine to those available in native DOS 5.0.
Considerations for running a DOS application under OS/2 Version 2.0 versus
running it under native DOS are also discussed.

This chapter is recommended for those readers who wish to compare the
VDM environment under OS/2 Version 2.0 with that of DOS 5.0.

• Chapter 5, "Device Drivers" discusses MVDM device drivers. It describes
the device drivers which are supported in a virtual DOS machine under OS/2
Version 2.0 and explains how device drivers are implemented, differentiating
between physical device drivers and virtual device drivers. Virtual DOS
machine interrupt support is also discussed.

This chapter is intended primarily for programmers who plan to write device
drivers for DOS applications that will run under OS/2 Version 2.0 and for
technical support personnel who wish an in-depth understanding of virtual
DOS machine device driver support.

• Chapter 6, "Memory Extender Support" describes the support for DOS
memory extenders provided in the MVDM component. This chapter explains
expanded and extended memory support.

This chapter is recommended for those readers who wish to understand the
way in which MVDM supports applications which make use of more than
640K8 of conventional memory.

• Chapter 7, "Installing and Migrating Applications" describes installing and
migrating DOS and Windows applications to OS/2 V2.0 It also discusses the
use of the utility for creating a customized migration database.

This chapter is recommended for system administrators responsible for
setting up applications for OS/2 V2.0 users.

• Chapter 8, "Windows Applications" describes the implementation of
Windows application support under OS/2 Version 2.0.

This chapter is intended for those readers who wish to run Windows applica­
tions under OS/2 Version 2.0.

• Chapter 9, "DOS Protected Mode Interface" describes the implementation of
the DOS Protect Mode Interface, DPMI.

This chapter is intended for those readers who wish to run Windows applica­
tions under OS/2 Version 2.0 and who also need a deeper understanding of
the technical implications of this programming interface.

• Chapter 10, "Running DOS Applications" describes the way to define, con­
figure and start DOS applications under OS/2 Version 2.0.

This chapter is recommended for those readers who wish to run DOS appli­
cations under OS/2 Version 2.0, and who wish to define and configure their
application environment for optimum compatibility and performance.

• Chapter 11, "DOS Settings" describes the DOS Settings feature of MVDM.
This feature allows the user to customize parameters which affect how an
application runs in a VDM and the resources available to it.

This chapter is recommended for every reader who plans to run DOS appli­
cations under OS/2 Version 2.0.

• Chapter 12, "Virtual Machine Boot" describes the Virtual Machine Boot
feature of MVDM, which allows a specific version of DOS to be started within
a virtual DOS machine, thereby providing full compatibility for those applica­
tions which require version-specific DOS features.

This chapter is recommended for readers who need to run such applications
in a VDM.

The following appendixes are Included in this document:

1. Appendix A, "Running Personal Communications/3270 Version 2 for
Windows" explains how to set up and run Personal Communications/3270
Version 2 for Windows in a WIN-OS/2 window.

2. Appendix B, "Running DOS PC Support/400 in OS/2 V2.0" explains how to
set up and run DOS PC Support/400 in a Virtual Machine Boot session.

3. Appendix C, "Running Lotus 1-2-3 in a VDM" explains how to set up and run
Lotus 1-2-3 in a virtual DOS machine session with EMS or DPMI support.

4. Appendix D, "Memory Extender Architectures" provides a brief overview of
the Lotus-Intel-Microsoft (LIM) Expanded Memory Specification (EMS)
Version 4.0 and LIMA Extended Memory Specification (XMS) Version 2.0, for
those readers who desire an understanding of these specifications in the
context of their support by MVDM.

5. Appendix E, "Multiple Virtual DOS Machines Lab Sessions" provides a series
of lab exercises designed to illustrate the new functions and features of the
Multiple Virtual DOS Machines component of OS/2 Version 2.0. The exer­
cises cover such topics as virtual DOS machine configuration, use of the
OS/2 clipboard, virtual DOS machine device drivers, and virtual DOS
machine video mode restrictions.

Preface XXi

xxll os12 v2.o Volume 2

Related Publications

The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

Prerequisite Publications
• OS/2 Version 2.0 Installation Guide

• OS/2 Version 2.0 Overview Guide

• OS/2 Version 2.0 Online Documentation.

Additional Publications
• OS/2 Vt.2 Standard Edition Internals and Evaluation, GG24-3466

• OS/2 Vt.3 Volume 1: New Features, GG24-3630

• OS/2 Vf.3 Volume 2: Print Subsystem, GG24-3631

• OS/2 Version 2.0 - Volume 1: Control Program, GG24-3730

• OS/2 Version 2.0 - Volume 3: Presentation Manager and Workplace Shell,
GG24-3732

• OS/2 Version 2.0 - Volume 4: Application Development, GG24-3774

• OS/2 Version 2.0 - Volume 5: Print Subsystem, GG24-3775

• OS/2 Version 2.0 Remote Installation and Maintenance, GG24-3780

• IBM DOS 5.0. Windows 3.0. Windows Connection 2.0, Personal
Communications/3270 2.0, GG24-3612

• Intel 80386 System Software Writer's Guide, ISBN 1-55512-023-7

• Virtual Control Program Interface (VCPI) Specification Version 1.0

• DOS Protect Mode Interface (DPMI) Specification. Version 0.9

• Expanded Memory Specification (EMS), Version 4.0

• Extended Memory Specification (XMS). Version 2.0

• IBM Personal System Technical Solutions Journal

• IBM Personal System Developer Journal

• Microsoft Systems Journal

• Microsoft Windows Programming Reference

• DOS 5.0 User's Guide and Reference

• DOS 5.0 Technical Reference.

©Copyright IBM COrp. 1992 xxlii

xxlv os12 v2.o Volume 2

Chapter 1. Overview

A significant new feature of IBM* OS/2* Version 2.0 is the ability to execute mul­
tiple DOS applications concurrently, with pre-emptive multitasking and full
memory protection for each application. Microsoft** Windows** applications are
also supported in the same way. These capabilities allow the use of OS/2
Version 2.0 as an integration platform for DOS applications, Windows applica­
tions, and OS/2 applications in a seamless, fully functional environment.

This chapter provides a brief overview of the OS/2 Version 2.0 product and the
Multiple Virtual DOS Machines component which provides support for DOS and
Windows applications. DOS and Windows application support is then described
in more detail in the remainder of the document.

1.1 OS/2 Version 2.0
While this document focuses on Multiple Virtual DOS Machines and the support
of Windows applications under OS/2 Version 2.0, it is useful to briefly review the
highlights of OS/2 Version 2.0.

1.1.1 OS/2 Version 2.0 Overview
OS/2 Version 2.0 is an advanced multitasking, single-user operating system for
IBM Personal System/2* computers and other computers equipped with the
Intel** 80386**, 80486**, or compatible processors. It exploits a rich set of fea­
tures from previous versions of OS/2, such as support for multitasking, multi­
threading, dynamic linking, interprocess communication, a graphical user
interface, and the High Performance File System. OS/2 Version 2.0, however,
provides significant enhancements over previous versions of OS/2.

The following new features have been implemented in OS/2 Version 2.0:

• Support for the Intel 80386 32-bit microprocessor instruction set.

• 32-bit memory management.

• Enhanced hardware exploitation.

• Multiple Virtual DOS Machines.

• Support for Microsoft Windows applications.

• 32-bit programming environment.

• Object-code compatibility with previous versions of OS/2, allowing 16-bit
applications written for previous versions to execute under Version 2.0
without modification.

• Enhanced Presentation Manager* user shell, which implements the 1991
SAA** CUA Workplace Environment.

1.1.2 Memory and Task Management
The foundation for OS/2 Version 2.0 capabilities is its support for the Intel 80386
microprocessor. This support means that a powerful set of 32-bit features now
becomes available to the operating system and applications, including enhanced
memory management and more sophisticated multitasking.

<C> Copyright IBM COrp. 1992 1

2 OS/2 V2.0 Volume 2

OS/2 Version 2.0 requires the features of the Intel 80386 or compatible 32-bit
microprocessors, and therefore does not run on computers that use the Intel
80286** processor, or its predecessors. In order to maintain compatibility,
however, OS/2 Version 2.0 supports applications written for previous versions of
OS/2 by providing both a 16-bit as well as a 32-bit application programming
interface, allowing 16-bit applications to execute under OS/2 Version 2.0 without
modification. The Intel 80386 can address 4 gigabytes of physical memory and
up to 64 terabytes of virtual memory.

OS/2 Version 2.0 supports execution of the following types of applications:

• DOS applications, in full-screen mode or in window-mode on the Presenta­
tion Manager desktop.

• Microsoft Windows applications, in windows on the Presentation Manager
desktop.

• 16-bit OS/2 applications developed for previous versions of OS/2.

• 32-bit applications developed for OS/2 Version 2.0.

All applications execute as protected mode processes under OS/2 Version 2.0,
and are therefore provided with pre-emptive multitasking and full memory pro­
tection between processes.

Memory management is the way in which the operating system allows applica­
tions to access the system's memory. The operating system must check how
much memory is available to an application, and handle the event when there is
no longer any real memory left to satisfy an application's requests.

In OS/2 Version 2.0, memory management has been enhanced to provide a flat
memory model, which takes advantage of the 32-bit addressing scheme provided
by the Intel 80386 architecture. This means that through memory management,
the system's memory is seen as one large linear address space of 4GB. This
32-bit programming environment is free from the limitations and inherent com­
plexity of the segmented memory model used by DOS and previous 16-bit ver­
sions of OS/2. Memory management within applications is greatly simplified,
allowing applications to be developed faster, with better performance due to
reduced memory manipulation overhead. Through the use of the flat memory
model, applications may be more easily ported to or from other operating
system platforms.

Task Management, the management of processes and threads executing in a
system, is greatly simplified and streamlined under OS/2 Version 2.0. This is
due primarily to the fact that support for processes executing in real mode (such
as the DOS Compatibility Box in previous versions of OS/2) is no longer
required, since the execution of DOS applications is supported using virtual DOS
machines which run as protected mode processes under OS/2 Version 2.0.

Interrupt handling under OS/2 Version 2.0 is simplified by removal of the need to
handle real mode software interrupts. Interrupts issued by DOS and Windows
applications are trapped by a virtual programmable Interrupt controller (VPIC)
which translates the interrupts to the appropriate device access commands for
the protected mode environment. The virtual programmable interrupt controller
is described in Chapter 5, "Device Drivers."

1.1.3 User Interface
OS/2 Version 2.0 also provides an enhanced user shell, known as the Workplace
Shell**, through enhancements to Presentation Manager. The Workplace Shell is
object-based and implements the 1991 SAA CUA Workplace Environment. This
shell is more intuitive than the Presentation Manager shell implemented in pre­
vious versions of OS/2, and allows users to become familiar with the system
more quickly.

In the Workplace Shell, system resources, such as files and printers, are
regarded as objects, and represented by graphical icons on the screen. Users
may manipulate objects (open them for editing, copy them, and print them, for
example) by direct manipulation of the icons. For example, a file is copied from
one location to another by pointing to it with the mouse, dragging the object's
icon to the required destination, and dropping the icon by releasing the mouse
button. This is known as drag and drop manipulation.

Presentation Manager and the Workplace Shell are described in more detail in
OS/2 Version 2.0- Volume 3: Presentation Manager and Workplace Shell.

1.2 Multiple Virtual DOS Machines
OS/2 Version 2.0 provides the user with the ability to run multiple concurrent
DOS applications, and to multitask these applications with OS/2 applications. In
previous versions of OS/2, support for DOS applications was limited to a single
DOS session, known as the DOS Compatibility Box, in which the amount of
memory available to the DOS application was restricted. Applications running in
the DOS Compatibility Box could operate in full-screen mode only, and were sus­
pended when switched to the background.

Support for DOS applications has been completely redesigned in OS/2 Version
2.0, which now provides for the execution and management of multiple concur­
rent DOS applications, where each application is executed as a single-threaded!
protected mode OS/2 program. This capability is provided by a component of
OS/2 Version 2.0 known as Multiple Virtual DOS Machines (MVDM).

MVDM introduces powerful DOS application support to OS/2 by exploiting the
virtual 8086 (V86) mode of the Intel 80386 processor. This mode of operation
allows the emulation of an Intel 8086 processor and associated hardware devices
within a protected mode 80386 task. OS/2 Version 2.0 uses the virtual 8086 mode
to allow the creation of multiple instances of independent virtual DOS machines.
Through this technique, a virtual interface is provided to each virtual DOS
machine, giving the impression that the application running in that machine
owns all the required resources, both hardware and software.

Each virtual DOS machine runs as a protected mode process, in a manner
similar to an OS/2 application. The use of protected mode allows pre-emptive
multitasking of DOS applications and provides a protected system environment
in which DOS applications can execute. This means that system memory and all
other applications (both DOS and OS/2), are protected from ill-behaved applica­
tions, and the user can terminate a DOS application which is "hung." An errant
DOS application can affect only its own virtual DOS machine; other applications
in the system will not be affected.

Chapter 1. Overview 3

C:\>ver

A:\>OOS-VergnOgen

Lotus <HJ 1-·Z···:CJ (HJ llnli!MStt 3.1•
£200007-9l.171Z4

C'-OlMP'lght. 1990 Lot.u& ~·~· (~t.lon. Al I right&

Usft1'Ntflft:

ConPA~ Nlfte:
Hans Goetz
1811

3.30

i[oR:M
!%L2F70

Figure 1. Concurrent DOS Applications under the Workplace Shell

4 OS/2 V2.0 Volume 2

Each virtual DOS machine has a great deal more available memory than did the
DOS Compatibility Box implemented in previous versions of OS/2. Depending on
the use of DOS device drivers and TSR programs, it is possible to have as much
as 630KB of available memory for application execution. In addition, OS/2
Version 2.0 supports the use of the Lotus**-lntel-Microsoft (LIM) Expanded
Memory Specification (EMS) and the Lotus-Intel-Microsoft-AST** (LIMA) Extended
Memory Specification (XMS) to provide additional memory for those DOS appli­
cations which are capable of using such memory extenders. OS/2 Version 2.0
maps this expanded or extended memory into the system's linear memory
address space, and manages it in the same manner as any other memory.

Each virtual DOS machine may run either in full-screen mode or within a Presen­
tation Manager window. A window containing a DOS application may be sized
and manipulated in the same manner as any other Presentation Manager
window, and other Presentation Manager desktop features are readily available
such as the ability to cut/copy/paste information between applications using the
clipboard, or the ability to change fonts.

From the user's perspective, DOS applications behave exactly like VIO applica­
tions. DOS applications have the following characteristics:

• They may run in either full-screen mode or in window-mode.

• They can run in the background if doing text screen output.

• Windowed DOS applications have all the same system menu controls as do
OS/2 windowed applications, including font adjustment and clipboard func­
tions such as mark, copy and paste.

Furthermore, DOS applications under OS/2 Version 2.0 have advantages over
VIC applications:

• They may be switched between windowed and full-screen while running.

• A full-screen graphics-mode DOS application may be switched into a window
and the graphics bitmap will be rendered in the window. This allows the user
to copy graphics to the Presentation Manager clipboard and gives the viewer
more flexibility when running multiple applications.

• For single-plane graphics modes (CGA, and VGA 320 x 200), DOS graphics
applications will execute in a window and continue to update while in the
background.

The sole restriction for DOS applications running in a virtual DOS machine when
compared with VIO applications is that DOS applications in virtual DOS machines
cannot be used in process subtrees. That is, VDMs cannot be run as child proc­
esses of either an OS/2 session or another VDM session.

There are some DOS applications and products that cannot be supported by
DOS emulation, due to the nature of the emulation code and the multitasking and
protection demands of OS/2 Version 2.0. Unsupported products/functions
include:

• DOS applications which have internal DOS structure dependencies, such as
Windows 1.0x and MS/PC Net.

• DOS applications which do not work in a multitasking environment, such as
Norton Disk Utilities**, DOS block device drivers, and Fastback**.

• DOS network drivers, because DOS emulation uses an implementation dif­
ferent from DOS to control its 1/0. However, DOS applications running in
VDMs may access network services through the normal OS/2 network driver.

Some of these applications may be run under OS/2 Version 2.0 by booting a spe­
cific version of DOS in a virtual DOS machine, using the Virtual Machine Boot
feature of MVDM. This feature is described in detail in Chapter 12, "Virtual
Machine Boot."

Application compatibility in the virtual DOS machine is also enhanced over pre­
vious versions of OS/2. A virtual DOS machine can be used to execute
DOS-based communications applications and other applications which address
hardware 1/0 devices, through the use of virtual device drivers, which map
device driver calls from DOS applications to the appropriate physical device
driver within the operating system. Applications using hardware devices which
do not have to be shared with DOS applications in the same system may access
these devices using the standard DOS device drivers, without the need for a
virtual device driver. Certain restrictions still apply with respect to communi­
cations line speed and time-critical interrupt handling.

A powerful new feature called DOS Settings allows an individual to easily tailor,
via Presentation Manager windows, the resources, such as video and memory,
available to an application running in a virtual DOS machine, and thus optimize
the way in which a DOS application runs.

Chapter 1. Overview 5

1.2.1 MVDM Architecture
MVDM is designed to exploit the virtual 8086 (V86) mode of the 80386 processor,
which allows operating systems such as OS/2 Version 2.0 to execute multiple
DOS applications within the 80386 protected mode environment. Under OS/2
Version 2.0, each DOS application executes in a virtual DOS machine (VDM),
which runs as a single-threaded protected mode process. The operating system
scheduler controls task switching of VDMs in the same way as it does OS/2
application processes.

Figure 2. MVDM Architecture

6 OS/2 v2.o Volume 2

The MVDM kernel controls the state and operation of concurrent VDMs, and is
composed of the following four major components as shown in Figure 2.

1. The Virtual DOS Machine Manager (VDMM) contains the mechanism to start
and interact with DOS applications. It creates, initializes, and terminates
VDMs. The VDMM manages system resources such as memory, timers,
semaphores, and files for all VDMs active in the system. The VDMM is
responsible for loading and initializing all virtual device drivers, in conjunc­
tion with the Virtual Device Driver Manager. The VDMM is described in
more detail in Chapter 2, "MVDM Architecture."

2. 8086 Emulation manages communication between 8086 instruction streams
and virtual device drivers. This emulation performs 8086 instruction
decoding, controls the 80386 processor's 1/0 Privilege Map for each VDM,
manages the reflection of software interrupts for each VDM, routes IN/OUT
instruction traps to the appropriate virtual device driver, and manages
various control structures required by each virtual device driver. 8086 emu­
lation is described in more detail in Chapter 3, "8086 Emulation."

3. DOS Emulation emulates the function and operation of the DOS operating
system on a per-VDM basis. Each VDM emulates an entirely independent

instance of DOS. DOS services are emulated within the MVDM kernel, or by
invoking protected-mode services provided by the OS/2 kernel. For example,
most DOS file 1/0 functions are provided by the OS/2 file system. DOS 5.0
compatibility is provided. DOS emulation is described in more detail in
Chapter 4, "MVDM DOS Emulation."

4. The Virtual Device Driver Manager (VDDM) loads, initializes, and comr~uni­
cates with virtual device drivers. Virtual device drivers are required to
virtualize the hardware and ROM BIOS, thereby allowing DOS applications to
access hardware devices and BIOS without affecting other VDMs or other
non-V86 mode processes in the system. The VDDM provides various system
services, known as Virtual Device Helper (VDH) services, to virtual device
drivers. The Virtual Device Driver Manager is described in more detail in
Chapter 5, "Device Drivers.,,

These four components interact with one another and with the OS/2 Version 2.0
operating system kernel to provide requested services to DOS applications exe­
cuting in VDMs.

1.2.2 Virtual Device Drivers
In order for multiple DOS applications, each running in its own VDM, to access
physical hardware devices, each VDM must be provided with a set of "virtual
interfaces" to these devices, so that the actions of one application do not affect
the state of the device as perceived by applications in other VDMs.

V86Task 1 -
--------- .. .

V86Task2

··------- .. .
V86 Task 3,.. __ _.

---------"'

Figure 3. MVDM System Structure Overview

These virtual interfaces are provided by OS/2 Version 2.0 using virtual device
drivers. Virtual device drivers are installable modules responsible for
virtualizing the hardware and ROM BIOS aspects of the DOS environment for

Chapter 1. Overview 7

virtual DOS machines. A virtual device driver manages shared access to hard­
ware 1/0 devices for multiple VDMs, allowing an application running in a VDM to
act as though it exercised sole control over 1/0 devices. Virtual device drivers
are implemented whenever possible, allowing the BIOS in the system to perform
its functions without interference from DOS applications. Virtual device drivers
are used to control hardware such as the keyboard, mouse, and serial and par­
allel ports.

Virtual device drivers are responsible for the following functions:

• Maintaining a virtual hardware state for each virtual DOS machine (VDM)

• Preventing a VDM from corrupting the state of another VDM, or the system
as a whole

• Supporting fast screen 1/0

• Supporting fast communications 1/0.

The virtual device driver architecture implemented in OS/2 Version 2.0 provides
support for all standard hardware utilized by DOS applications and supports
installable virtualization, so that new hardware may be added and supported by
VDMs without requiring an upgrade to the operating system.

Virtual device drivers obtain and release system resources via the Virtual Device
Helper (VDH) services, provided by the MVDM kernel. A virtual device driver
typically performs 1/0 through a physical device driver using a direct call inter­
face. However, a virtual device driver may directly access an 1/0 control device.
The virtual video device driver performs such direct access under OS/2 Version
2.0 for performance purposes. A virtual device driver may also simulate hard­
ware interrupts into one or many VDM processes.

Under OS/2 Version 2.0, a virtual device driver is inherently protected from a
VDM because it is not visible in the VDM address space, although a virtual
device driver must be careful to check all parameters coming in from a VDM to
ensure that it does not damage itself or some other part of the system by exe­
cuting an invalid instruction.

1.2.3 Expanded and Extended Memory Support

8 OS/2 V2.0 Volume 2

Many popular DOS applications use EMS (expanded) and/or XMS (extended)
memory extenders to gain access to memory in protected mode on the 80286,
80386, or 80486 processors. These extenders allow DOS applications to access
memory above the 1 MB real-mode addressing limit, in order to have total code
and data space larger than the available base memory, and to have very large
code or data objects loaded into memory for enhanced function and perform­
ance. The standard configuration of OS/2 Version 2.0 provides both EMS and
XMS functions as part of MVDM.

Under MVDM, EMS and XMS memory allocations are managed as OS/2
pageable virtual memory in the same way as any other memory allocated under
OS/2 Version 2.0, and not as fixed physical memory as is the case under DOS.
As such, the total expanded/extended memory allocated can exceed the amount
of physical memory installed in the system.

1.2.3.1 LIM EMS Version 4.0 Support
The LIM (Lotus-Intel-Microsoft) Expanded Memory Specification (EMS) Version
4.0 provides a standard interface for the use of expanded memory with Intel
80x86 computers. The specification allows for up to 32MB of expanded memory,
with up to 255 expanded memory objects. Regions within these objects can be
mapped into the 8086 address space (below 1MB) as required, allowing DOS
applications to access large address spaces.

Under OS/2 Version 2.0, EMS emulation provides the following function:

• Implements all the required functions in the LIM 4.0 EMS.

• Provides each VDM with a logically separate EMS emulation. Each VDM has
its own set of expanded objects so that features like interprocess communi­
cation work as they would if each VDM were running on a different physical
8086. A VDM cannot affect the availability of objects in other VDMs or
access expanded memory "owned" by other VDMs.

• Provides for remapping of conventional memory (below 640KB) for use by
programs such as Windows 2.0.

• Provides configurable limits for how much expanded memory is available for
all VDMs, as well as a limit per VDM. An installed program in the start list
allows the user to override the per-VDM limit, subject to the constraints
imposed by the overall limit.

• Supports multiple physical to single logical mappings. Different 8086
addresses can map to the same expanded memory object address. This is
required by programs like Lotus 1-2-3**.

EMS emulation is provided in MVDM by the Virtual Expanded Memory Manager
(VEMM). VEMM is a virtual device driver offering a separate EMS emulation for
each VDM. This is accomplished by placing most EMS control structures for a
VDM in a per-VDM instance data area outside the V86 application's address
space.

Unlike most virtual device drivers, VEMM does not have a corresponding phys­
ical device driver. Rather, VEMM traps software interrupts for EMS services
using a system call and manages the appropriate memory. VEMM depends
upon the memory management capabilities of the OS/2 Version 2.0 operating
system kernel. Allocation, reallocation, or deallocation of EMS memory objects
is accomplished by requesting corresponding services from VDH services.

1.2.3.2 LIMA XMS Version 2.0 Support
The LIMA Extended Memory Specification (XMS) V2.0 provides a standard inter­
face for the use of extended memory on Intel 80286, 80386, and 80486 computers.
XMS functions allow for the moving of code and data objects from base memory
into extended memory, and from extended memory to base memory. Two of the
best known programs using XMS functions are print spoolers and virtual disks
(RAM disks).

The XMS specifications manage three distinct regions of memory:

• The High Memory Area (HMA) is located immediately above 1 MB and is
exactly 65520 bytes (64KB -. 16 bytes) in size.

• The Upper Memory Area (UMA), consisting of Upper Memory Blocks (UMBs),
is located between 640KB and 1MB.

• The Extended Memory Blocks (EMBs) are used only for data storage.

Chapter 1. Overview 9

Under OS/2 Version 2.0, LIMA XMS emulation provides the following function:

• Implements all LIMA V2.0 XMS functions.

• Provides each VDM with a separate XMS emulation. Each VDM has its own
high memory area, upper memory area, and extended memory blocks, so
that features like interprocess communication work as they would if each
VDM were running on a different physical 8086 processor. VDMs cannot
affect the availability of objects in other VDMs or access memory "owned" by
other VDMs.

• Provides configurable limits for how much extended memory is available
across all VDMs, as well as a limit per VDM. An installed program in the
start list can override the per-VDM limit, subject to the constraint given by
the overall limit, and can disable XMS support altogether for a particular
VDM if its installation conflicts with the program being run in the VDM.

The Virtual Extended Memory Manager (VXMS) is a virtual device driver that pro­
vides a separate XMS emulation for each VDM. As with VEMM, this is accom­
plished by placing most VXMS control structures for a VDM in a per-VDM
instance data area outside the V86 application's address space. The amount of
memory available to a VDM, the number of handles, and the existence of upper
memory blocks are all configurable parameters which may be altered on a
per-VDM basis.

Like the VEMM virtual device driver, VXMS does not have a corresponding phys­
ical device driver, and utilizes the memory management capabilities of the oper­
ating system kernel. XMS object allocation, reallocation and deallocation are
accomplished by requesting corresponding services from the memory manager.

1.2.4 DOS Settings

10 05/2 V2.0 Volume 2

MVDM provides the user with the ability to customize the operation of DOS
applications via a feature called DOS Settings. This feature allows the user to
control special properties which affect the behavior of DOS applications running
in a VDM.

The DOS Settings feature further enhances the DOS compatibility of a VDM
because it allows a user to configure the VDM for DOS applications which might
otherwise not work well (or not work at all) with the default settings for a VDM.
The DOS Settings feature also gives the user more control over the consumption
of system resources by a DOS application. Help is provided for each setting to
assist users in tuning their applications' operation.

DOS sessions have many more customizable properties than OS/2 sessions.
MVDM provides a common mechanism that supports both a standard comple­
ment of settings, and allows virtual device drivers to register custom settings.
The standard settings are a subset of the configuration settings available in the
CONFIG.SYS file, plus some additional settings required for MVDM. The primary
reason for the existence of the option to alter these settings is that DOS applica­
tions are typically not careful about consuming system resources, such as
memory and processor time. Hence, MVDM itself must provide a flexible envi­
ronment for these applications in order to preserve the integrity and perform­
ance of the system as a whole.

DOS settings are managed on a per-VDM basis and are accessed through Pres­
entation Manager windows. The dialog boxes presented allow the user to
change a setting while the VDM is running. Only those settings that can be

changed for that VDM are presented. There are many settings which can be
tuned. One parameter, for example, the Idle Detection Threshold, detects idle
DOS applications and allows the user to configure the system such that
processor time is not wasted by idle DOS applications.

Note that while the DOS Settings feature provides significantly enhanced control
over the behavior and capabilities of a virtual DOS machine, this level of control
is not necessarily obvious to the end user. Most DOS applications will execute
quite satisfactorily with the default VDM settings, and the user is therefore not
required to use the DOS Settings feature. This approach therefore provides the
increased functionality without necessarily increasing the complexity of user
interaction.

1.3 Windows Application Support

1.4 Summary

OS/2 Version 2.0 provides the capability for Microsoft Windows applications to
run under OS/2 Version 2.0. This support allows applications written for
Windows 3.0 and previous versions of Windows (except V1.x) to coexist with
OS/2 and DOS applications under OS/2 Version 2.0.

Each Windows application executes in a virtual DOS machine, and is thus a pro­
tected mode process. As such, Windows applications are subject to the same
application protection facilities provided to other protected mode processes
under OS/2 Version 2.0. Windows applications are protected from other
Windows applications and from DOS and OS/2 applications executing in the
system. This is in contrast to the native Windows 3.0 environment, where limited
protection is provided for Windows 3.0 applications, and none at all for DOS
applications unless Windows is running in enhanced mode.

The execution of Windows applications as protected mode tasks also allows
these applications to take full advantage of the pre-emptive multitasking capabili­
ties of OS/2 Version 2.0, with full pre-emptive multitasking between Windows
applications, OS/2 applications, and DOS applications. This is again in contrast
to the native Windows 3.0 environment, where pre-emptive multitasking is avail­
able only when Windows 3.0 is running in enhanced mode, thereby impacting
performance and preventing many applications written for previous versions of
Windows from executing. OS/2 Version 2.0 has no such restriction.

Windows applications running under OS/2 Version 2.0 will run in a mode equiv­
alent to the real or standard modes of Windows 3.0; the enhanced mode of
Windows 3.0 is not required since the OS/2 Version 2.0 operating system itself
provides equivalent function.

Support for Microsoft Windows applications under OS/2 Version 2.0 is discussed
in more depth in Chapter 8, "Windows Applications."

OS/2 Version 2.0 provides significantly enhanced DOS application support capa­
bility over previous versions of OS/2, using a component known as Multiple
Virtual DOS Machines. MVDM offers many significant functions and features,
including:

• Ability to run multiple DOS sessions concurrently, with full pre-emptive multi­
tasking and memory protection

Chapter 1. Overview 11

12 05/2 V2.0 Volume 2

• Ability to run DOS applications in Presentation Manager windows

• Ability to switch between DOS applications via Presentation Manager

• High amount of available free memory for DOS applications (630KB and
more)

• Expanded (EMS) and extended (XMS) memory emulation support

• Clipboard support.

OS/2 Version 2.0 provides DOS 5.0 compatibility within the virtual 8086 mode of
the 80386 processor, and allows execution of multiple concurrent DOS applica­
tions, each operating in its own 1MB virtual address space. This brings true
multiprogramming to the DOS environment under OS/2. A user may run multiple
DOS applications in much the same way as they run multiple OS/2 applications.
DOS and OS/2 applications can be started in the same ways:

1. From a desktop group window.
2. From the Drives folder.
3. From a command prompt.
4. From the OS/2 START command.

The DOS environment is more DOS-compatible than the DOS Compatibility Box
implemented under previous versions of OS/2, since OS/2 Version 2.0
encapsulates the entire DOS environment in a virtual machine. This provides
better protection for other processes in the system and for the operating system
environment itself. With MVDM, an errant DOS application can only "hang" its
own virtual DOS machine, which may then be terminated by the user without
affecting other applications in the system.

DOS applications may be run full-screen, windowed, or iconized in the back­
ground. Besides being better protected, providing better compatibility and more
concurrent DOS applications, the OS/2 Version 2.0 MVDM environment leaves
applications with more than 630KB of memory in which to execute.

OS/2 Version 2.0 also provides support for the execution of Microsoft Windows
applications (written for Windows 3.0 and/or previous versions of Windows,
except version 1.0x) to execute under the control of OS/2 Version 2.0. Each
Windows application executes as a separate protected mode task, and is there­
fore provided with the same pre-emptive multitasking and memory protection as
other protected mode tasks under OS/2 Version 2.0.

Support for both the Expanded Memory Specification (EMS) and the Extended
Memory Specification (XMS) is provided. DOS asynchronous communications
applications can support communication speeds of up to 9600 baud. Since the
DOS environments are swappable, starting many DOS sessions will not increase
requirements for more physical (real) memory.

The MVDM environment also provides an extendable architecture that allows the
environment to be custom tailored to emulate any DOS environment. The virtual
device driver architecture supports this flexible environment. All of the low-level
DOS support, which in previous versions of OS/2 resided in physical device
drivers, has been moved into virtual device drivers. In virtual 8086 mode, all
interrupt processing is done in protected mode; bimodal device drivers are no
longer needed. The new driver architecture provides physical device drivers for
basic device support and virtual device drivers for supporting virtual devices to
the DOS environments. DOS settings allow the user to tailor the functioning of
DOS applications in the VDM environment.

Chapter 2. MVDM Architecture

2.1 Introduction

The Multiple Virtual DOS Machines component of OS/2 Version 2.0 is itself com­
prised of a number of subcomponents, which interact with one another and with
the OS/2 Version 2.0 operating system kernel to provide services to DOS appli­
cations running in virtual DOS machines. This chapter describes each subcom­
ponent of MVDM, and explains the interaction between subcomponents.

OS/2 Version 2.0 is designed to fully exploit the advanced features of the Intel
80386 processor. A major innovation of the 80386 is its support for the execution
of multiple 8086 tasks within the 80386 protected mode environment. An 8086
task in this environment is called a virtual 8086 (V86) task. Under OS/2 Version
2.0, V86 tasks are implemented as virtual DOS machines (VDMs), and each runs
as a single-threaded, protected mode process. See also Figure 3 on page 7.
The OS/2 scheduler controls task switching for V86 processes in a way similar to
the manner in which it controls other OS/2 application processes. When a task
switch occurs, the VM bit in EFLAGS contained in the V86 process's task state
segment indicates the type of the current process. If the VM bit is set, indicating
that the process is a VDM, the processor switches to V86 mode.

In this area, performance has been improved over previous versions of OS/2,
since the processor is never switched to real mode. Switching from protected
mode to real mode takes a long time since all CPU register contents must be
saved and paging must be disabled before DOS registers are loaded. Switching
to real mode is often accomplished by resetting the CPU, which is very time con­
suming. The V86 mode of the processor allows the system to run both OS/2 and
DOS applications in protected mode.

Compared to previous versions of OS/2, DOS applications running in VDMs may:

• Run full-screen or in a window
• Run in a background session and not be suspended
• Use the clipboard

- Copy text
- Copy graphics as bitmaps

• Run graphics in full-screen mode
• Switch between full-screen and windowed mode
• Use LIM EMS Version 4.0 expanded memory services
• Use LIMA XMS Version 2.0 extended memory services.

Full-screen graphics applications may be switched to windowed mode where the
graphics will be displayed as a bitmap. Switching between modes can be done
via the system icon menu when in windowed mode. If in full-screen mode, the
user must first switch to the Presentation Manager screen group. Selecting Win­
dowed in the menu of the DOS program icon switches the application to win­
dowed mode. To facilitate mode switching, the hot-key combination Alt+Home
may be used.

While in full-screen mode, the user may copy only the entire contents of the
screen to the clipboard. Switching to windowed mode enables the user to copy
parts of the screen to the clipboard by selecting areas with the mouse.

<C> Copyright IBM Corp. 1992 13

14 OS/2 V2.0 Volume 2

DOS compatibility is achieved through a combination of hardware and software
which ensure the successful execution of DOS applications. Since DOS compat­
ibility is something of a "moving target," MVDM has been architected to provide
the maximum possible flexibility. When attempting to ensure the proper exe­
cution of a DOS application, typical variable factors to be considered are the
hardware and ROM BIOS of the machine, as well as DOS and the application
itself.

DOS Operating System
+ Hardware
+DOS Application

=Compatibility

The following DOS functions are supported by virtual DOS machines:

• All documented DOS system interfaces

• Most direct ROM BIOS interfaces

• Memory extenders

- LIM EMS Version 4.0
- LIMA XMS Version 2.0

• Direct manipulation of common hardware devices.

VDMs have certain restrictions:

• Single tasking only; no child processes
• No active background graphics
• No DOS block device drivers; such device drivers are not written for a multi­

tasking environment, and may compromise the integrity of other VDMs, or of
other processes in the system.

• No direct manipulation of hard disk data (that is, bypassing, in this case, the
OS/2 file system); this may also compromise the integrity of other processes
in the system.

• No DOS network device drivers, due to differences in the internal implemen­
tation of DOS 1/0. However, DOS applications running in VDMs may access
LAN resources through the normal OS/2 network drivers, and therefore no
function is lost.

Figure 4 on page 15 provides an overview of the OS/2 Version 2.0 system struc­
ture, showing the MVDM kernel and virtual device drivers in relation to key com­
ponents of the operating system kernel and physical device drivers which
provide services to MVDM.

Physlcal Device Drivers

Figure 4. MVDM System Structure and Control Flow

Note that virtual device drivers typically access hardware devices through a
physical device driver. Direct communication between virtual device drivers and
the hardware (as shown in Figure 4) is used only in exceptional circumstances.
One such case is the virtual video device driver, VVIDEO.SYS, which communi­
cates directly with hardware in order to achieve the highest possible level of per­
formance.

2.2 Virtual DOS Machine Manager (VDMM)
OS/2 Version 2.0 enables the user to start multiple DOS applications in multiple
concurrent VDMs, all of which are controlled by the Virtual DOS Machine
Manager (VDMM).

Chapter 2. MVDM Architecture 15

16 05/2 V2.0 Volume 2

Figure 5. MVDM Protected Mode processes

The VDMM creates a VDM by:

1. Allocating and mapping the required memory

2. Loading and initializing the virtual device drivers required to virtualize the
hardware and ROM BIOS

3. Access to the virtual device helper services and system resources, such as
memory, semaphores, timers, and files, is provided by the VDMM for all
VDMs.

-
-

Exception Handler

Instruction

80386

Figure 6. VDM Exception Handling

The VDMM is responsible for handling those 8086 instructions which cannot be
executed in V86 mode, such as interrupts. Such instructions cause an exception
to be generated by the 80386 processor; this exception is passed to an exception
handler within the operating system, which checks the VM bit in the current
process's EFLAGs control area. If the VM bit is set, control is passed to the
VDMM. The VDMM therefore runs as a protected mode system level process at
privilege level 0.

2.2.1 VDM Address Space Management
At initialization, each VDM has a linear address space of 4MB, because a single
page table is assigned for each VDM. The page table itself is a single 4KB page,
and can hold a maximum of 1024 page table entries. Each of these entries is a
doubleword and points to a page with a size of 4KB, hence the 4MB size of the
initial address space. The size of the address space can be expanded beyond
4MB if required; for instance, an application running in the VDM may request the
allocation of a large amount of expanded memory, in which case the VDMM will
allocate the memory as needed.

Note that when memory is allocated OS/2 V2.0 merely reserves a linear address
range. The range is not backed by physical memory until the memory is com­
mitted. Memory may not actually be committed until a later time, and it may be
committed in portions. Allocation without commitment does not use any physical
memory and therefore does not waste resources.

A typical VDM address space map is shown in Figure 7 on page 18.

Chapter 2. MVDM Architecture 17

18 OS/2 V2.0 Volume 2

·~~-

0
4MB

1 MB

0
~.,..__4MB

1 MB

Figure 7. Typical VDM Address Space Map

V86 Task# n

V86Task#2

V86Task#1

Each VDM task executes in the first megabyte of the linear address space,
thereby allowing the physical addresses used within the DOS applications to be
mapped directly to the process address space of the VDM. DOS system areas
such as the ROM BIOS area and the Interrupt Vector table, are mapped from
physical memory into the VDM's address space by the virtual device driver
VBIOS.SYS.

Page 0 contains, for example, the ROM BIOS area, the Interrupt Vector table,
and the DOS communication area. ROM areas used by hardware devices are
mapped by the virtual device drivers into the linear address space of the VDM.
The same applies to other linear memory objects, such as EMS objects and
display memory.

A virtual device driver uses the VDHQueryFreePages() device helper service to
find a region where no memory in the linear address space has been allocated
or mapped. If a free region is found, the VDHReservePages() service is used to
reserve the memory region. Mapping cannot take place where memory has
already been allocated. On the other hand, memory may not be allocated where
mappings already exist. The operating system's memory manager takes care of
this. Page faults are generated if a process attempts to access memory which
has previously been invalidated because it was unmapped, or if the page has
been swapped out to disk.

The 64KB memory area above 1 MB (also known as the high memory area) must
be treated in a special way. This is described in further detail in 3.4, 11 A20 Line

Services (64KB Wraparound),. on page 33 and in 6.3.2, "High Memory Area
(HMA)" on page 110.

2.2.2 VDM Creation

5 LDT

A number of tasks are performed when a VDM is initialized. The four main tasks
managed by the Virtual DOS Machine Manager are:

1. Task state segment (TSS) initialization

2. Virtual DOS machine process initialization

3. 8086 Emulation initialization

4. DOS Emulation initialization.

2.2.2.1 Task State Segment Initialization
The task state segment describes the current machine state, including CPU reg­
ister contents, and the current software state of a task, such as file descriptors
and priority information. The following steps are necessary to initialize the TSS:

Task State Segment (TSS)

TR Register 6 1/0 Va_p_ j@t!M@mm@1@1@U T
Selector }i---- ~~~M~~~t~~~~j~j~;j;~tttj~l::;i;i:i;i;j LDT

r~J~~~~~;

GDT

EDI
ESI
EBP
ESP
EBX
EDX
ECX
EAX

1 EFLAGS 2 .._ ______, _________ ~
a,__ ______,.sP,__ ______ ~

CR3

ESP2

~;l;i~t~tjf~~tftfttjj;:j sso
ESPO

Figure 8. VDM Initialization

1. The VM bit in EFLAGS is set to 1, indicating that the process is a virtual DOS
machine.

2. The IOPL indicator in EFLAGS is set to 3

3. The instruction pointer is set to the task's entry point

4. The code segment (CS) register is set to the linear base address of the
task's initial code segment

Chapter 2. MVDM Architecture 19

20 OS/2 V2.0 Volume 2

5. An LDT is not used in V86 mode, but one must be initialized since interrupt
or exception routines might use an LDT

6. 1/0 access rights are defined in the 1/0 permission map.

2.2.2.2 VDM Process Initialization
The VDM process initialization is very similar to the creation of a protected mode
session:

1. The Per-Task Data Area (PTDA) is created

2. A process slot and a process ID are allocated

3. The operating system's memory manager provides a 4MB linear address
space

4. A 4MB global Page Directory Entry, which references the 4MB linear space,
is created

5. The VDM process is started.

2.2.2.3 8086 Emulation (V86) Initialization
The 8086 Emulation initialization then proceeds as follows:

1. The 8086 Emulation code is loaded

2. VDM kernel data is allocated in per-VDM memory below 4MB

3. Virtual device driver instance data is allocated in per-VDM memory below
4MB

4. All known VDM creation hooks (registered by VDHlnstallUserHook) are
invoked to initialize virtual device drivers on a per-VDM basis

5. The VEMM (expanded memory) virtual device driver (if used) allocates a
block of memory in a mappable window either between 640KB and 1 MB or in
the area between 256KB and RMSIZE (as specified in CONFIG.SYS), and
maps it into the VDM address space.

2.2.2.4 DOS Emulation Initialization
The DOS Emulation initialization then proceeds as follows:

1. VDM-related kernel structures are initialized

2. DOS Emulation kernel (DOSKRNL) is loaded

3. Virtual processor mode is started

4. Standard file handles are opened

5. Virtual device driver and DOS device driver 0 stubs" are initialized

6. DOS device drivers are initialized

7. DOS shell is loaded and executed.

DOS Emulation initialization and VDM creation are discussed in greater detail in
Chapter 4, "MVDM DOS Emulation."

Once DOS Emulation is complete, the Virtual DOS Machine Manager then issues
the VDM_CREATE_DONE event handler to install default 110 hooks, page fault
hooks, or INT hooks. Control is then passed to the DOS Emulation kernel to ini­
tialize and start the user application program.

Once the VDM creation process is complete, the name of the DOS program and
other customization parameters are passed to the new VDM. Customization
parameters for a specific DOS application can be specified in the Workplace
Shell folder in which the name of the DOS program is contained. To change
these parameters select the DOS Settings pushbutton.

DOS Settings allow the user to tune the VDM environment in which a DOS appli­
cation runs in order to achieve optimal execution of the program.

2.2.3 VDM Termination
A VDM is terminated when the DOS application running within it terminates, or
when a virtual device driver terminates the VDM due to some illegal operation.
Termination is carried out in the following way:

1. All registered VDM termination hooks are called

2. The 8086 emulation releases all its per-VDM resources

3. The VDMM releases all its per-VDM resources

4. The VDM is destroyed in a way similar to an OS/2 process.

The criteria for abnormal termination of a VDM by a virtual device driver are dis­
cussed in 5.6, "VDM Termination 11 on page 89.

2.3 8086 Emulation
OS/2 Version 2.0 MVDM 8086 Emulation provides "pure" 8086 emulation support
for the V86 mode of the Intel 80386 SX and DX processors.1 In a native 8086
processor environment, an application can access all available memory up to
1 MB and can execute all 8086 processor instructions when running as a single
task in an unprotected environment. However, virtual DOS machines run only in
protected mode, and an application running in the V86 mode environment there­
fore has limited access to system memory and cannot execute all CPU
instructions; only the OS/2 Version 2.0 operating system itself has full access to
memory and the processor.

Each VDM runs as a single V86 mode process, emulating all DOS operating
system functions and providing a compatible DOS environment unaffected by
other VDMs in the system. In the VDM environment, therefore, an application
behaves as if it has complete control over system processor and memory
resources. In this way, full application function is provided while preserving the
integrity of other applications and of the system as a whole.

The 8086 Emulation component provides the following:

• Software interrupt reflection support
• IOPL sensitive instruction emulation support
• 1/0 port trapping
• 1/0 simulation support
• Context hook services
• Hook software interrupt virtual device driver service
• Change VDM execution flow services.

1 The Intel 80486 SX and DX processors also provide a compatible V86 mode, and are therefore supported by MVDM.

Chapter 2. MVDM Architecture 21

8086 Emulation is described in more detail in Chapter 3, "8086 Emulation. 11

Note that the 8086 Emulation component does not provide DOS or hardware­
specific emulation. These emulations are provided by the DOS Emulation com­
ponent {described in more detail below and in Chapter 4, "MVDM DOS
Emulation") and virtual device drivers (described in more detail below and in
Chapter 5, "Device Drivers") respectively.

2.4 DOS Emulation
Provision of DOS compatibility requires a combination of hardware, operating
system, and application software support. The MVDM DOS Emulation compo­
nent of OS/2 Version 2.0 addresses only the software aspects of providing DOS
compatibility; the VDM Manager, 8086 Emulation and virtual device drivers work
together to provide hardware and ROM BIOS compatibility.

DOS Emulation provides DOS services to DOS applications running in a virtual
DOS machine in such a way as to provide maximum compatibility with the same
services provided to DOS applications running under native DOS 5.0.

DOS Emulation is implemented by running a very small portion of the DOS Emu­
lation kernel in V86 mode and a much larger portion of code in protected mode
outside the VDM. In OS/2 Version 2.0, physical device drivers are loaded above
1MB and only the DOS Emulation kernel resides below 1MB; hence, any user­
installed OS/2 device drivers will not affect the amount of application space
available to a DOS application running in a VDM. Similarly, adding LAN drivers
to the OS/2 configuration to support the network server or redirector functions
does not take up DOS application space, even though DOS applications may
make use of these network devices. Virtual device drivers are also loaded
outside the VDM address space, and therefore do not reduce the amount of
memory available to a DOS application.

In this way, the MVDM architecture makes available to DOS applications the
maximum amount of memory. In fact, up to 630KB is free for multiple DOS ses­
sions; this represents an increase of about 100KB over memory available to the
single DOS session that was available under OS/2 Version 1.3. Note that this
amount may be reduced if DOS device drivers and/or TSR programs are loaded
in a VDM.

DOS Emulation supports all documented DOS interrupts and features. In addi­
tion, some undocumented aspects of these functions (especially INT 21h) are
supported because a large number of significant DOS applications rely upon
these interfaces.

DOS Emulation is described in more detail in Chapter 4, "MVDM DOS
Emulation."

2.5 Virtual Device Drivers

22 OS/2 V2.0 Volume 2

Virtual device drivers are installable modules responsible for virtualizing the
hardware and ROM BIOS aspects of the DOS environment for virtual DOS
machines. A virtual device driver manages shared access to hardware 1/0
devices for multiple VDMs, allowing an application running in a VDM to act as
though it exercised sole control over 1/0 devices. See also Figure 3 on page 7.

Virtual device drivers are implemented whenever possible, allowing the BIOS in
the system to perform its functions without interference from DOS applications.
Virtual device drivers are used to control hardware, such as the keyboard,
mouse, and serial and parallel ports.

The virtual device driver architecture implemented in OS/2 Version 2.0 provides
compatible support for all standard hardware utilized by DOS applications and
supports installable virtualization, allowing new hardware to be added in the
field and supported by VDMs without requiring an upgrade to the operating
system.

Virtual device drivers are responsible for the following functions:

• Maintaining a virtual hardware state for each virtual DOS machine (VDM)

• Preventing a VDM from corrupting the state of another VDM, or the system
as a whole

• Supporting fast screen 1/0

• Supporting fast communications 1/0.

Since DOS may be emulated more than once in OS/2 Version 2.0, virtual device
drivers must virtualize the following features to maintain a separate hardware
state for each VDM:

• ROM BIOS services
• Direct manipulation of ROM BIOS data area
• Direct manipulation of video RAM
• Direct programming of 1/0 ports
• Direct manipulation of device memory
• Hardware interrupts
• Software interrupts.

A virtual device driver typically performs 1/0 through a physical device driver,
using a direct call interface. However, a virtual device driver may directly
access an 1/0 control device; this technique is used by the virtual video device
driver, VVIDEO.SYS, for performance reasons. A virtual device driver may simu­
late hardware interrupts into one or many VDM processes.

Virtual device drivers use a minimal amount of memory. Virtual device drivers
do not have to reserve arrays of data structures for each VDM (as did device
drivers under previous versions of OS/2). They may be made swappable, so that
each device driver does not increase the amount of conventional (or real)
memory space consumed. Conventional memory is used only for code and data
that must be accessible at hardware interrupt time (for example, when calling a
physical device driver).

Under OS/2 Version 2.0, a virtual device driver is inherently protected from a
VDM because it is not visible in the VDM address space, although the device
driver must be careful to check all parameters coming in from a VDM to ensure
that it does not damage itself or some other part of the system by executing an
invalid instruction.

Virtual device drivers obtain and release system resources via the Virtual Device
Helper (VDH) services provided by the MVDM kernel. These helper services are
accessed via a published programming interface so that manufacturers of hard­
ware devices may develop virtual device drivers for their own devices. Virtual
device drivers are installed using the DEVICE= statement in CONFIG.SYS.

Chapter 2. MVDM Architecture 23

Note that a virtual device is required only if a device will be shared with other
virtual DOS machines. If a particular device is to be used exclusively by one
DOS application, a normal DOS device driver (that is, one that is written for DOS)
may be used, and a virtual device driver is not required.

2.6 VDM Page Faults
A page fault exception may occur in a VDM where a particular page in real
memory has been swapped to disk. When a page fault occurs for a linear region
which has been initialized as an alias by a virtual device driver, the exception is
routed to an exception handler, which has been registered previously by the
virtual device driver for the linear address region in which the page fault
occurred. The exception handler may cause the page to be loaded or may allow
the memory reference to default into a temporary data page, several of which
are provided by the MVDM kernel at initialization time.

Exception handlers are registered by virtual device drivers at initialization time
using the VDHlnstallFaultHook() helper function. If no exception handler is regis­
tered for the linear region in which the page fault occurred, the page is mapped
to temporary data pages in memory.

The start address and size of each aliased region, and the exception handler
address for each aliased region, is kept in a table, which is set up via the
VDHlnstallFaultHook() helper service. When a page fault occurs in the VDM
address space, this table is searched for a matching region, and the exception
handler for that address is called. The page address and the type of fault which
occurred are passed to the exception handler.

2.7 VDM Window Management

24 OS/2 V2.0 Volume 2

OS/2 Version 2.0 provides for the ability to run a V86 task in a window. The
PMShield manages windowed VIO sessions input/output and windowed VDM
input/output.

The video VDD (Virtual Device Driver) intercepts all 1/0 instructions to the video
adapter, and all screen updates will be redirected/mapped to a logical video
buffer (LVB) maintained by the Video VDD. When the Video VDD detects changes
in a VDM's video state, it notifies a new PMShield thread, providing it with
update information for a specified VDM window. This thread is a high-priority
thread that serves the needs of all windowed VDMs.

For keyboard and mouse input, the PMShield must simply transform keystroke
and mouse event messages into calls to the keyboard and mouse VDDs.

2.7.1 Virtual Display Management

DOS

Application

Video

VDD
PM Shield PMGRE

Video

.PDD

Figure 9. Virtual Display Management

The PMShield is notified by the Video VDD of different changes, which are prior­
itized, for example "change in video mode," "change in palette," "change in
LVB,., "scroll of LVB," "string output," "change in curs~r," "input notification"
when the window scroll has to be adjusted based on the cursor position, "paste
notification."

Having received notification of one of these changes, it is the PMShield's respon­
sibility to make appropriate changes to the VDM window, usually through the use
of one or more PM Graphics Engine call(s).

When a windowed VDM is found with a dirty page, the PMShield thread is noti­
fied of a LVB change, along with rectangles describing which areas of the VDM's
LVB may be dirty. The PMShield finds the smallest rectangle(s) of change, and
updates the window using appropriate Graphics Engine services.

The PMShield obtains access to the VDM's LVB indirectly, by requesting the
Video VDD to copy some rectangular portion of it into a "shield buffer." The
PMShield compares the "shield buffer" against a "shadow buffer," which con­
tains the previously displayed contents of the VDM window, to find the smallest
areas of change. The roles of the two buffers are then interchanged in prepara­
tion for the next update, as it is now the "shield buffer," which contains the last
data displayed.

If the VDM changes video modes before the PMShield is able to copy the VDM's
LVB, an error will be returned to the PMShield on the copy request. The
PMShield's action will be to query the new mode and recopy the LVB.

2. 7 .2 Virtual Keyboard Management

Single

Queue

Present.a ti on
Manager

Figure 10. Virtual Keyboard Management

PM Shield
Keyboard

VDD

DOS

Application

The PMShield transforms keystroke messages into calls to the Keyboard VDD.
No buffering by the PMShield is necessary, since the Keyboard VDD already
maintains its own virtual keyboard buffer.

Chapter 2. MVDM Architecture 25

The only keystrokes that require special handling by the PMShield are those that
affect shift states.

There are two operations that a VDM can perform on its virtual keyboard:

• Change repeat rate

• Change shift states.

When a VDM changes the repeat rate, whether it is in the foreground, back­
ground or windowed at that time, the repeat rate is changed for the whole
system. Since the repeat rate is not a per-session attribute under OS/2, the
PMShield need not be involved. The shift state information is per-VDM and is
managed by the Keyboard VDD, in conjunction with the physical keyboard driver.

2. 7 .3 Virtual Mouse Management

Single

Queue

Presentation
Manager PM Shield

Mouse

VDD

DOS

Application

Figure 11. Virtual Mouse Management

For mouse input, the PMShield will transform mouse event messages into calls
to the Mouse VDD. The conversation will require a mapping of the physical
mouse position reported by Presentation Manager to a corresponding position
within the VDM's screen dimensions.

A VDM can change the state of its virtual pointer in various ways:

• Change pointer position

• Change pointer shape

• Change pointer scaling factors.

These special changes are of no interest to PMShield.

2.8 VDM Interprocess Communication

26 OS/2 V2.0 Volume 2

Communication between processes is valuable in a multitasking operating
system to enable concurrent processes to work together. Pipes are one of three
forms within OS/2 of interprocess communication (IPC) and the only form avail­
able for IPC from a DOS application running in a VDM to an OS/2 application.

This chapter describes how to create, manage, and use named pipes for IPC of a
DOS application in a VDM to an OS/2 program. Pipes enable two or more proc­
esses to communicate as if they were reading from and writing to a file.

2.8.1 About Pipes
A pipe is a named or unnamed buffer used to pass data between processes. A
process writes to or reads from a pipe as if the pipe were standard input or
standard output. A parent process can use pipes to control the input that a child
process receives and to receive the output that the child process produces.
There are two types of pipes - named and unnamed. The only supported pipe to
be used between a DOS application in a VDM and an OS/2 program is the
named pipe.

2.8.2 Named Pipes
Named pipes enable related or unrelated processes on the same computer
system or different systems to communicate with each other. Any process that
knows the name of a pipe can open and use a named pipe. In addition, named
pipe data can be transparently redirected across a network, such as a local area
network (LAN).

Note ---.

The current file system implementation for VDMs does not support named
pipes across the LAN. (This limitation will go away with future versions of
OS/2 V2.0). To use named pipes within a VDM and across the LAN, you
would have to boot a real DOS session (see also Chapter 12, "Virtual
Machine Boot" on page 227). You would also have to load the LAN Support
Program and the DOS LAN Requester within such a VMBOOT session. If you
do that, your network adapter will be used by that DOS session exclusively
and cannot be shared with any other session on this machine.

One process (server process) creates the pipe and connects to one end of it.
other processes that access the named pipe are called client processes; they
connect to the other end of the pipe. The server and client processes c~n then
pass data back and forth by reading from and writing to the pipe. The server
process controls access to the named pipe.

The client process can be either local or remote. A local client process is one
that runs on the same computer system as the server process. A remote client
process runs on a different system and communicates with the server process
across a local area network (LAN).

The DOS applications running in different VDMs can only work as client proc­
esses. The OS/2 application for this kind of IPC has to be the server process.
That is because there are no equivalent pipe APls in DOS to create a named
pipe, etc. there are only the standard 1/0 commands. This means that the DOS
client process can read and write from and to the pipe, but it cannot create one.
To do this the DOS client has to know the name of the named pipe to be able to
use it like it would use a flat file to open it and process the 1/0 calls.

There is an exercise included in the appendixes that demonstrates a VDM IPC
and shows you the sample code (see E.2.5, "Lab Session 5: VDM Interprocess
Communications" on page 281 for more information).

Chapter 2. MVDM Architecture 27

2.9 Summary

28 OS/2 V2.0 Volume 2

MVDM is composed of four major components:

1. The Virtual DOS Machine Manager is responsible for creating and initializing
VD Ms.

2. 8086 Emulation provides an emulation of the 8086 hardware environment,
supporting actions such as direct hardware manipulation and hardware inter­
rupts.

3. DOS Emulation provides an emulation of the DOS operating system environ­
ment, supporting actions such as software interrupts and INT 21h services.

4. Virtual device drivers provide virtualization of hardware devices, allowing
these devices to appear to a DOS application as though the application has
direct control over the device. Devices may thus be shared by multiple DOS
applications and/or protected mode (OS/2} applications.

These components operate in conjunction with the hardware and the OS/2
Version 2.0 operating system kernel to provide support for DOS applications
under OS/2 Version 2.0.

MVDM allows OS/2 Version 2.0 to exploit the capabilities of the virtual 8086
mode of the 80386 processor. MVDM provides the capability to run multiple
concurrent DOS applications in virtual DOS machines. Since each VDM is a pro­
tected mode task, MVDM provides pre-emptive multitasking and full memory pro­
tection for DOS applications, protecting other applications in the system and the
operating system itself from interference by an ill-behaved application. Exe­
cuting VDMs in protected mode (as opposed to real mode) also improves the
performance of DOS applications, since the processor is never required to
switch to real mode.

Each VDM executes in its own 4MB protected mode address space, with the DOS
application having access to the lower 1 MB of the linear address space. The
remainder of the space is occupied by the MVDM code, device drivers, and
extended or expanded memory objects. VDMs may run in window or full-screen
mode, and a user can dynamically switch between the two.

All documented DOS system interfaces, most direct ROM BIOS interfaces, and
memory extenders, such as LIM EMS Version 4.0 and LIMA XMS Version 2.0, are
supported by the MVDM architecture. Direct manipulation of common hardware
devices is also supported by MVDM. In addition, certain undocumented but com­
monly used INT 21h services are supported. DOS Emulation provides DOS 5.0
compatible support.

Chapter 3. 8086 Emulation

A significant capability of the Intel 80386 and 80486 processor families is their
ability to emulate the Intel 8086 processor. This emulated state is known as
virtual 8086 (V86) mode. The Multiple Virtual DOS Machines component of OS/2
Version 2.0 makes use of this mode to provide emulation of a native DOS envi­
ronment for applications executing in virtual DOS machines. The 8086 processor
hardware emulation is provided by the 8086 Emulation component of MVDM.
Other aspects of the DOS environment, such as program loading and execution
and device driver support, are provided by the DOS Emulation component, which
is described in Chapter 4, "MVDM DOS Emulation," and by virtual device
drivers, described in Chapter 5, "Device Drivers."

This chapter provides an overview of V86 mode, and describes the operation of
the 8086 Emulation component.

3.1 Virtual 8086 Mode
In a native 8086 environment, the processor does not constrain an application in
any way. The application may access all available memory and execute all
processor instructions, since it is running as a single task in an unprotected, real
mode environment. Operating systems and applications written for the 8086
(such as DOS) typically take advantage of this freedom to exercise direct control
over hardware and system resources.

The 80386 processor exhibits its best performance when running in protected
mode. However, in the protected mode environment, applications are restricted
to a subset of the system memory and processor instruction set, and real mode
applications written for the 8086 processor can violate the protection rules
imposed by the processor.

The virtual 8086 mode of the 80386 processor allows an operating system to inte­
grate existing applications, written for the 8086 processor, into the protected
mode multitasking environment of the 80386, and to execute such applications
concurrently with other 8086 applications and protected mode applications.

V86 mode tasks execute in the 80386 processor at privilege level 3, and are com­
patible with the virtual memory and paging facilities of the 80386. A V86 mode
task may execute most 8086 instructions, including those which reference
memory mapped or 1/0 mapped devices, or which access the 80386 interrupt
enable flag. These instructions may be executed by the 80386 processor
directly, or the 80386 operating system may trap and emulate such instructions.

Certain 8086 instructions may not be executed in V86 mode; these include
instructions which generate interrupts or exceptions, some of which are not valid
in a normal protected mode task. However, such instructions may be valid for a
V86 mode task. For example, an application running in V86 mode may issue an
interrupt 21 h operating system call. An 80386 operating system may register an
exception handler to trap and emulate such instructions at a higher privilege
level.

0 Copyright I BM Corp. 1992 29

30 0512 V2.0 Volume 2

ValldV86Taek

Invoke

Hlega1.
lnsiructlon

0

]

f

• .•. ::..:-.;;::_ .. :·.:>:··;.·.;.-... ·-····

:;·.:·;·l_1r, .• _;• .. ::_v_:_::,:·e.·:.,~_,t1.,_·.,····:.·· .•. :•.T.:m_;.,'··.",ia.'Bk_:_·· .. ~ .. :."1_1--- ·:-:-:·.·:.·.·:·:·.·.-.......
;:1·1r•11

11114:---------------
Figure 12. VDM Exceptions and Interrupt Handling in a V86 Mode Task

An interrupt or exception in the V86 mode task causes the processor to switch
from V86 mode to protected mode. An exception handler running as a protected
mode task at privilege level 0 is then invoked by the 80386 operating system.
This handler first determines that the task which issued the interrupt or excep­
tion instruction is a valid V86 mode task. It does this by checking the VM bit in
the EFLAGS register. Two possible states are possible:

• If this bit is set, the current task is a V86 mode task. The exception handler
then invokes a virtual machine monitor.

The virtual machine monitor locates the instruction which caused the inter­
rupt or exception, decodes the instruction and, if it is a valid 8086 instruction,
simulates its execution by invoking appropriate 80386 operating system ser­
vices. If the instruction is not valid (for example, a privileged 80386 instruc­
tion), the virtual machine monitor terminates the V86 mode task.

• If the bit is not set, the task has issued an illegal instruction, and is termi­
nated by the virtual machine monitor.

Once the instruction which caused the interrupt or exception has been proc­
essed, the virtual machine monitor transforms the result into the expected format
for the V86 mode task. It then advances the V86 mode task's EIP (Extended
Instruction Pointer) to the next instruction, and issues an IRET instruction which
causes the processor to switch back to V86 mode and continue execution of the
VB6 mode task.

The 8086 Emulation component of MVDM is a virtual machine monitor.

3.2 DOS Software Interrupt Handling
Upon creation of a VDM, the IOPL field in the EFLAGS register within the VDM
process's task state segment is set to 3. This has two major effects:

• It allows the VDM to access the interrupt enable flag (IF), thus permitting
compatibility with DOS applications which temporarily disable interrupts
while performing critical operations.

• It means that an interrupt issued from a VDM does not necessarily cause a
general protection exception; certain interrupt handlers may execute at privi­
lege level 3 within the VDM.

If the VDM process is running with IOPL < 3, every interrupt causes a general
protection exception; in such cases the operating system would need to
virtualize the interrupt at all times, and to emulate all IOPL-sensitive instructions
(CLI, STI, LOCK, PUSHF, POPF, INT n, and IRET). This would result in increased
mode switching (between V86 and protected mode) and higher interrupt latency,
and would therefore reduce performance.

Thus, under OS/2 Version 2.0, a VDM runs with IOPL = 3 for maximum perform­
ance. Interrupts are virtualized and, where possible, handled within the V86
mode task.

3.2.1 Virtualizing Interrupts
The behavior of 8086 Emulation in response to an interrupt is dependent upon
the descriptor privilege level (DPL) field for the interrupt handler. This is shown
in Figure 13 on page 32.

When a software interrupt occurs in a DOS application running in a VDM, the
interrupt is vectored to an interrupt handler determined by an entry in the VDM's
Interrupt Vector table. This interrupt handler has its own descriptor privilege
level (DPL). If the DPL is 3, the interrupt handler code is simply executed, and
control returns to the DOS application.

Chapter 3. 8086 Emulation 31

IOPL <3 IOPL=3
Interrupt DescrlptorTable (IDT) <-zt> •·>

GP fault handler ernulet.. DPL<3 DPL=3 the DOS Interrupt end polnte
beck to tho VDM through GP fault handler ernulet.. The DOS Interrupt vector•
the V86 Interrupt Vector the DOS Interrupt and pofnts through the corresponding
Table beck to the VDM through IDT entry

the V86 Interrupt Vector
Table

Figure 13. Descriptor Privilege Levels

If the DPL of the interrupt handler is less than 3, a general protection exception
is generated by the processor and passed to the OS/2 Version 2.0 kernel. The
general protection exception handler then determines that the exception
occurred from a V86 mode task, and invokes 8086 Emulation to simulate exe­
cution of the interrupt handler. Depending upon the type of interrupt, 8086 Emu­
lation may perform the emulation within itself, or call another component of
MVDM to handle the emulation.

3.2.2 Disabling Interrupts
Disabling interrupts from within a DOS application running in a VDM may cause
severe problems. If an error or program loop occurs while interrupts are disa­
bled, the condition cannot be handled correctly and the system may crash.

To prevent a DOS application running in V86 mode from disabling interrupts for
an extended period of time, a hardware timer is provided by the 80386 processor
known as the watchdog timer. Such lengthy disabling may cause unrecoverable
system errors. The watchdog timer is programmable and generates non­
maskable interrupts (NM) after a specified period of time which allow an oper­
ating system to detect an errant 8086 application and terminate it. OS/2 Version
2.0 provides a hardware interrupt manager. This maintains a time counter for
every VDM. All interrupts, except NMI, are checked by this hardware interrupt
manager, which resets the time counter with every occurrence of an interrupt for
the corresponding VDM.

If a counter exceeds a predefined limit {a typical value is 60 milliseconds), inter­
rupts are automatically re-enabled. The Virtual DOS Machine Manager is noti­
fied of the ill-behaved application program, and will then terminate the VDM.

3.3 1/0 Port Trapping

32 OS/2 V2.0 Volume 2

A DOS application running in a VDM may access 1/0 ports directly using the
normal 8086 110 instructions (such as, IN and OUT). These instructions are not
considered IOPL-sensitive and do not normally generate a general protection
exception; the operating system checks the l/O·privilege map in the VDM's task
state segment to determine whether to allow the instruction to execute or to gen­
erate a general protection exception. This allows DOS applications to access
hardware devices using the normal DOS df'vice drivers from within a VDM.

When access to a device must be shared with other applications, however, a
virtual device driver is required, and the VDM may not directly access the 1/0
port. At initialization time, the virtual device driver issues a call to the
VDHSetlOHookState() device helper function, which sets the appropriate bit in
the 1/0 privilege map.

When a DOS application subsequently issues an instruction for the 1/0 port:

1. A general protection exception is generated.

2. The operating system's exception handler routes the exception to 8086 Emu­
lation.

3. 8086 emulation then invokes the virtual device driver.

3.4 A20 Line Services (64KB Wraparound)
The region from 1MB to 1MB+64KB is known as the A20 wrap area. Due to the
segmented scheme for generating 20-bit physical addresses on an 8088, it is
possible for a DOS program to generate physical addresses in the range from
1MB to 1MB + 64KB. On an 8088 system, these addresses wrap to the low 64KB
of physical memory.

In the 16-bit version of OS/2, OS/2 V1.x, 80286 physical addresses are 24 bits.
The twenty-first address line of the 80286 is called the A20 line, and its setting
determines whether real-mode programs wrap low physical memory, or directly
access the range from 1MB to 1MB + 64KB. When an 80286 is started, the A20
line is disabled, causing the 80286 to emulate the 8088 environment. When the
80286 is switched to protected mode, the A20 line is enabled, since the protected
mode of the 80286 generates 24-bit physical addresses. However, the A20 wrap
area can be addressed in real mode in OS/2 V1.x if the A20 line is enabled man­
ually. OS/2 V1.x can thus use the memory in the A20 wrap area for bimodal code
(for example, OS/2 V1.x device drivers) by managing the state of the A20 line.
When running a DOS application in real mode, OS/2 V1.x disables the A20 line to
force the 8088 segment wrapping semantics on DOS applications. When
accessing bimodal code in the range from 1MB to 1MB + 64KB in real mode,
the OS/2 V1 .x kernel enables the A20 line.

In OS/2 V2.0 however, the area between 1MB and 1MB + 65519 bytes, cannot be
accessed by a DOS program in V86 mode using 20 address lines (that is lines 0
to 19). For example, addressing 1MB + 1 byte from within a DOS application in
V86 mode would access physical memory at address O; in other words, the
memory addressing would wrap around to access the extra byte of memory.
This is known as wraparound. Under OS/2 Version 2.0, the addressing of
memory beyond 1 MB would result in an addressing exception because although
address line 20 is activated, it is not valid for a V86 mode process. This is
shown in Figure 14 on page 34.

In order to avoid addressing exceptions in OS/2 Version 2.0, the wraparound
feature must be simulated with aliased pages. The 1MB V86 address space
requires a page table with 256 entries (256 x 4KB = 1MB). Sixteen additional
page table entries are used for the 65519 bytes above 1MB. These 16 entries
are identical to the first 16 entries for the 1MB area, thereby mapping the
wraparound area to the address range Oto 65519.

Chapter 3. 8086 Emulation 33

3.5 Summary

34 OS/2 V2.0 Volume 2

Segment:Offset

(upper 8086 address llmlt)

Segment value shifted left 4 bits:
Offset value:

Segment and Offset added:

Physical address:

Hex value

Binary value

Address lines 23 2019

FFFF:FFFF

FFFFOh
FFFFh

10FFEFh

11 ~1554 : i!:~~=
* 256bvte

15 .. 4kb
0 .. 64kb
1 .. 1Mb

1 Mb + 65519bvte

10FFEFh

~
1111

Unavailable~ -Ph_g._s_i_c_a_l_8_0_8_6 __ a_ddr_e_s_s ____ _

for 8086 is 65519 (PFBPh)

Figure 14. A20 Line Service (64KB Wraparound)

The wraparound feature requires some additional housekeeping by the OS/2
Version 2.0 kernel. When an aliased page is swapped to disk, both page table
entries must be flagged as not present.

The 8086 Emulation component makes use of the virtual 8086 mode of the 80386
processor to provide an emulation of the 8086 hardware environment for DOS
applications executing in virtual DOS machines. Application instructions which
cause interrupts or which cannot be executed in V86 mode are trapped by the
OS/2 Version 2.0 operating system kernel and routed to 8086 Emulation, which
may process the instruction within itself or re-route it to the appropriate compo­
nent of MVDM.

For maximum performance, not all interrupts are trapped and routed in this
manner. MVDM makes use of the IOPL field in the VDM process's task state
segment, and the Descriptor Privilege Level (DPL) field in the interrupt handler's
code segment, to allow certain interrupts to be processed in V86 mode. Only
when the interrupt handler must execute at a higher privilege level are the inter­
rupts trapped and routed by the operating system to 8086 Emulation. This
improves performance by reducing the number of processor mode-switches
required.

8086 Emulation also supports the use of the Intel 8086 64KB wraparound feature,
allowing access to the 64KB of memory immediately above the 1 MB address
line. This capability is used by some DOS software such as the LIMA XMS
memory extender, which implements its high memory area (HMA) in this region.
More detailed information regarding HMA can be found in Chapter 6, "Memory
Extender Support" on page 93.

Chapter 3. 8086 Emulation 35

36 OS/2. V2.0 Volume 2

Chapter 4. MVDM DOS Emulation

MVDM DOS Emulation provides DOS services to applications running in Multiple
Virtual DOS Machines. The environment provided is highly compatible with those
same services that are provided to DOS applications running under native DOS
5.0. It addresses only DOS compatibility aspects; processor and other hardware
aspects of the DOS environment are addressed by the 8086 Emulation compo­
nent and virtual device drivers.

This chapter describes the implementation of the DOS Emulation component,
and the DOS software services provided to support DOS applications running in
virtual DOS machines.

4.1 DOS Emulation Overview
DOS Emulation is implemented by running a very small portion of the DOS Emu­
lation kernel in V86 mode and a much larger portion of this code in protected
mode outside the VDM. In OS/2 Version 2.0, physical device drivers are loaded
above 1MB and only the DOS Emulation kernel resides below 1MB. Any user­
installed OS/2 device drivers will not affect the amount of application space
available to a DOS application running in a virtual DOS machine. Similarly,
adding LAN drivers to the OS/2 configuration to support a network server or
redirector does not impact DOS application space, even though DOS applications
may make use of these OS/2 network devices. Virtual device drivers are also
loaded outside the VDM address space, and therefore do not reduce the amount
of memory available to a DOS application.

In this way, the MVDM architecture makes the maximum amount of memory
available to DOS applications. In fact, up to 630KB are free for use by DOS
applications; this represents an increase of approximately 100KB over memory
available to the single DOS session that was available under OS/2 Version 1.3.
Note that this amount may be reduced if DOS device drivers and/or TSR pro­
grams are loaded in a VDM. The following DOS features are implemented by
the DOS Emulation:

• DOS console device driver
• DOS device driver loading/support
• DOS program loading and execution
• DOS FCB 1/0 support
• DOS memory manager
• DOS NLS support
• DOS PDB process support
• VDM entering and exiting kernel mode support
• Special DOS compatibility mechanisms.

DOS Emulation supports all documented DOS interrupts and features. In addi­
tion, some undocumented aspects of these functions (especially INT 21h) are
supported. This support is incorporated in the DOS Emulation component
because a large number of popular DOS applications rely upon these interfaces.

The following list shows the documented DOS system interrupt services which
are implemented by DOS Emulation and which are available to DOS applications
running in VDMs:

®Copyright IBM Corp. 1992 37

INT 20h

INT 21h

INT 22h/INT 23h

INT 24h

INT 25h/INT 26h

INT 27h

INT 28h

INT 2Fh

Program terminate interface

System call interface

Terminate and Ctrl-Break address interfaces

Critical error handler interface

Absolute disk read/write interfaces

Terminate and stay resident (TSR) interface

Idle loop interface

Print spool interface.

Other DOS compatibility functions are implemented by the 8086 Emulation com­
ponent of MVDM, and by virtual device drivers. The functions provided by these
components are explained in Chapter 3, "8086 Emulation" and in Chapter 5,
"Device Drivers," respectively.

4.2 DOS Emulation Implementation
A primary design goal for MVDM and the DOS Emulation component was to
provide a DOS compatible environment in which a VDM could not negatively
affect other VDMs or OS/2 protected mode processes, while at the same time
providing the greatest amount of free memory for DOS applications. This goal
was achieved by allowing as much of the DOS Emulation code as possible to
execute in protected mode, outside the VDM address space. This provides
improved protection, leaves more memory available for DOS application use,
and enhances overall performance.

4.2.1 Initialization and VDM Creation

38 OS/2 V2.0 Volume 2

Initialization of the DOS Emulation component is divided into two stages. The
first occurs during OS/2 system initialization. The second stage occurs during
creation of each virtual DOS machine.

4.2.1.1 OS/2 Initialization
DOS Emulation is involved in OS/2 system initialization because it requires
access to information contained in CONFIG.SYS. As the OS/2 initialization proce­
dure processes the CONFIG.SYS file, it records parameters relevant to DOS
Emulation. These parameters include those specified in the FCBS and RMSIZE
statements, and any DEVICE statements which specify DOS device drivers. These
parameters become the default DOS settings for all VDMs.

Note: Virtual device drivers are not loaded or initialized at this stage. Initializa­
tion of DOS settings occurs prior to loading virtual device drivers, since these
default settings may be required by the device drivers during VDM initialization
(creation).

4.2.1.2 VDM Creation Stage
Upon creation of a VDM, the Virtual DOS Machine Manager calls the creation­
time initialization routines for virtual device drivers and then passes control to
the DOS Emulation kernel. At this point, the V86 memory organization appears
as shown in Figure 15 on page 39.

CBIOSROM

Adapter Addreaa Space

EBIOS Data

Unassigned Memory

VDD Assigned Memory

VDOS Kemol Code
and Data

DOS Convnunlcatlon Area

CBIOSData
INT Vector Table

Figure 15. VB6 Memory Map Prior to DOS Emulation Initialization

During VDM creation, DOS Emulation performs the following steps:

1. Initialize VDM-Related Kernel Structures

Certain structures in the OS/2 Version 2.0 kernel are initialized in prepara­
tion for processing VDM requests. The System File Table (SFT) structures, for
example, which are used for FCB 1/0, are allocated and initialized.

2. Load DOS Emulation Kernel (DOSKRNL.COM)

The portion of the DOS Emulation kernel which runs in V86 virtual memory is
loaded at the high end of the VDM memory address space.

3. Start Virtual Processor Mode

The protected mode initialization routine returns control to the Virtual DOS
Machine Manager, which then invokes the initialization code within the V86
mode DOS Emulation kernel. This represents the first transition to V86 mode;
at this point, memory is organized as in Figure 16 on page 40.

Cha~ter 4. MVDM DOS Emulation 39

40 OS/2 V2.0 Volume 2

CBIOSROM

Adapter Address Space

EBIOSData

VDOS lnlt Code

DOS Memory Area

VDD Aaalgned Memory

VDOS Kemel Code
and Data

DOS Communication Area
CBIOSData

INT Vector Table

Figure 16. V86 Memory Map at Initial V86 Mode Entry. This diagram shows the VDM's
memory map when the V86 mode DOS Emulation kernel is first invoked.

4. Open Standard Devices

The initial five file handles (stdin, stdout, stderr, stdaux, and stdprn) are
opened.

5. Initialize Virtual Device Driver DOS Device Driver "stubs"

Some virtual device drivers provide a DOS device driver "stub"; these stubs
are inserted into the V86 address space prior to initialization of DOS Emu­
lation. As such, this step involves calling the inserted initialization code and
linking the devices into the device chain. Unlike real DOS device drivers,
however, the return from the initialization does not allow reducing the size of
the driver code. See Chapter 5, "Device Drivers" for further information.

6. Initialize DOS Device Drivers

Each DOS device driver specified in the CONFIG.SYS file is loaded into the
VDM and initialized. Any VDM-specific DOS device drivers passed in the
DosCreateProcess() function call, or configured via the DOS Settings option
DOS Device Drivers, are then loaded and initialized. This is performed one
device driver at a time to allow the device drivers to consume only the
memory that they require or to de-install themselves entirely. As each device
is initialized, it is added to the chain of devices in the VDM.

During initialization, device drivers may issue a limited set of INT 21h system
calls {functions 01h through OCh, 25h, 30h, and 35h). This restores
functionality that had been removed from previous versions of OS/2.

Note: The result is undefined when a DOS device driver issues an INT 21 h
system call other than those mentioned above. This is consistent and com­
patible with DOS. Issuing an unsupported INT 21h system call will crash the
VDM.

After all device drivers have been initialized, the initialization code is dis­
carded.

7. Load and Execute DOS Shell

The shell specified in the SHELL command in CONFIG.SYS is loaded, the
initialization code in the V86 address space is discarded, and control is
passed to the shell program. The SHELL specified in CONFIG.SYS can be
overridden in the DosCreateProcess() function call. This is a useful feature if,
for example, a software developer wishes to allow different versions of
COMMAND.COM, for such reasons as alternative national language support.

Upon invocation of the shell program, the VDM's memory map is organized as
shown in Figure 17.

CBIOSROM

Adapter Address Space ..,._ _________ ..__ 640KB

EBIOS Data
D ::: .: 7:.,,. : '·''. -:::,::: :,.:.,::::::::: :.:

<<::: DC)~. ·2;:_ :·: ·~....:: ·: :.:
1 ·· ,,,,•·:..... .:•<• c .. , ... , 7:0 <·· ·,

•.· '·'_.:_:_ •,•:· ·. ·=/ ::
COMMAND.COM

DOS Device Drivers

VDD Assigned Memory

VDOS Kemel Code
and Data

DOS Communication Area
CBIOS Data

INT Vector Table
----------.. -- oKB

Figure 17. V86 Memory Map after Initialization. This diagram shows the VDM's memory
map after initialization of the DOS environment and prior to loading a DOS application.

Before passing control, the Program Descriptor Block (PDB) of the shell is initial­
ized with the command line parameters as specified in CONFIG.SYS. As an
extension to the native DOS environment, an additional string is appended after
these parameters, separated from the command line string by a NULL byte. This
string specifies the drive and directory of the virtual DOS environment after the
shell completes its initialization. This extension provides a default working drive
and directory for real mode applications, as is provided for protect mode appli­
cations using the Presentation Manager.

4.2.2 Requesting System Services
As previously mentioned, MVDM isolates some VDM-specific code and places it
into the DOS Emulation kernel in the VDM's address space. This code provides
those DOS services which can be supported in V86 mode, such as memory man­
agement services. Other services which require protected mode execution are
provided by additional code which runs in protected mode.

When the DOS Emulation kernel requires protected mode services, it specifies
the kernel procedure via an index, and executes a processor instruction which
causes a general protection exception. The OS/2 Version 2.0 general protection

Chapter 4. MVDM DOS Emulation 41

exception handler traps the exception and invokes the 8086 Emulation compo­
nent, which in turn transfers control to the specified kernel procedure. This is
explained in detail in Chapter 3, "8086 Emulation."

4.2.3 System Service Call Behavior

42 OS/2 V2.0 Volume 2

DOS system services provided within VDMs are generally compatible with their
implementation under DOS 5.0. Some differences do exist, however, and are
described below.

INT 20h This service forwards the request to the INT 21 h function OOh service
in order to abort the application.

INT 21h All INT 21h services provided in DOS 5.0 are also provided in VDMs.
However, the internal behavior and error processing of some func­
tions may be different. Where such changes are significant, they are
listed here:

• Function OOh (ABORT)

If the CS register does not reference the current PDB, the VDM is
terminated. In certain previous DOS versions, the effect of such a
call was undefined.

• FCB Functions

Although OS/2 only provides file 110 access externally through file
handles, it supports these handles internally through the System
File Table (SFT). MVDM allows file handles to be bypassed and
SFT entries to be manipulated directly using a special set of
reserved SFT entries, in a manner similar to previous versions of
OS/2. However, since multiple VDMs are supported, these SFT
entries are allocated dynamically upon creation of a VDM

FCB functions may now be called from device drivers during
initialization; this functionality was not available in previous ver­
sions of OS/2.

• Function 38h (International)

• Function 44h (IOCTL)

IOCTL requests which are destined for device drivers within the
VDM are processed internally. IOCTL requests which are destined
for OS/2 device drivers, however, are treated specially by their
respective device drivers. Such requests may contain pointers to
data within the VDM. In these cases, it is the responsibility of the
OS/2 device driver to perform the necessary translation from V86
virtual addresses into addresses that are meaningful to the device
driver.

• Function 5Dh (Internal)

Subfunction OAh (Set Extended Error Information)

This subfunction allows the calling program to set the register
values that are returned from a call to function 59h. This pro­
vides functionality that was not present in previous versions of
OS/2.

This subfunction allows terminate and stay resident programs
(TSRs) to save and restore extended error information when
they are invoked.

• Function 66h • Get/Set Code Page

• Function 67h • Set Handle Count

This function restricts the maximum number of open device
handles to 254, including the four standard devices.

INT 25h/INT 26h
Absolute Disk Read/Write

The read function operates in the same way as in a DOS 5.0 system.
The write function however, is restricted to removable media only,
and reports a hard error on non-removable media.

4.2.4 System Callback Procedures
The system callback procedures are "hooks" into DOS (in the case of VDMs, into
the DOS Emulation kernel) which allow application programs to change the
default processing action taken for certain system events. These hooks are spec­
ified in the V86 mode interrupt vector table as trap service routines. By default,
the vectors reference a single IRET instruction if an application does not register
its own hook procedure.

The vectors used to specify the callback routines are:

INT 22h ·Terminate Address
The DOS Emulation kernel stores the termination return address at
this vector location.

INT 23h • Control·C Exit Address
The method used to invoke this callback procedure works the same
way as in a DOS 5.0 system.

INT 24h ·Critical Error Handler
Hard errors are normally generated from within the OS/2 kernel.
When such an error is detected, the file system checks to see if the
requesting task is a VDM. If so, the error indication is returned to the
protected mode portion of DOS Emulation, which determines if the INT
24h vector has been changed.

If it has not been changed, the normal OS/2 hard error monitor is
called to display the hard error information and to prompt for a reply.
If it has been changed, the specified critical error handler is invoked.

INT 28h • Idle Loop
The method used to call the INT 28h callback routine is similar to that
used in DOS 5.0, but takes into account the fact that the DOS session
is running in a multitasking environment.

The OS/2 scheduler maintains a flag in the VDM address space which
indicates if another process in the system is ready to run. While in the
idle loop, the DOS Emulation kernel repeatedly examines this flag. If
no other OS/2 tasks are ready, the loop proceeds as normal. If the
flag indicates that other tasks are waiting, DOS Emulation yields
control to the operating system, which dispatches the waiting task.

In all other respects, callback procedures operate under MVDM in an identical
manner to that experienced under DOS 5.0.

Chapter 4. MVOM DOS Emulation 43

4.2.5 VDM Termination
When a VDM is terminated, DOS Emulation closes all handles that have been
assigned to all PDB processes within the VDM. All resources associated with
open FCBs are also closed.

Since the VDM may have been terminated due to an error in a DOS application
within the VDM, no data within the VDM is relied upon when closing resources
and cleaning up. DOS Emulation explicitly closes both the files and the OS/2
devices opened by the VDM.

4.2.6 Standard Devices
As in DOS, DOS Emulation includes device drivers for the three "standard"
devices, CON, AUX, and PRN. While DOS packages these device drivers in
IBMBIO.COM (IQ.SYS), DOS Emulation links these into the DOS Emulation kernel
(DOSKRNL) to avoid the need for another file.

Unlike DOS, the AUX and PRN drivers do not include support for COM1, COM2,
LPT1, LPT2, and LPT3. These latter devices are supported directly by the OS/2
asynchronous (COM.SYS) and printer (PRINTOn.SYS) device drivers.

This approach allows the CON, AUX, and PRN drivers to behave in a highly com­
patible manner. These drivers issue ROM BIOS calls (INT 10, 14, and 17, respec­
tively) in order to perform their required tasks. At the same time, using the OS/2
device drivers directly for the numbered 1/0 devices provides higher perform­
ance than through the ROM BIOS interfaces, and allows a numbered 1/0 device
to be easily redirected to a remote device on a network, using the underlying
OS/2 mechanisms. Hence there is no INT 17 issued when printing on the num­
bered 1/0 devices (for example, LPT1, LPT2, etc.) as long as there is only the
virtual printer device driver VLPT.SYS installed as the device driver for LPTn
devices. If INT 17 is required, for example by a DOS TSR {Terminate and Stay
Resident) that intercepts INT 17, the LPTDD.SYS device driver must be installed
as well. You can find LPTDD.SYS in the subdirectory \os2\mdos.

Note-------------------------
Installing LPTDD.SYS will cause printing from a VDM to slow down.

Remember that only PRN redirection is supported. This is achieved by the
virtual printer device driver VLPT.SYS, which routes INT 17 and direct hard­
ware printing to LPT1, LPT2, or LPT3 using the OS/2 file system. This is
explained in more detail in Chapter 5, "Device Drivers."

4.3 Maximizing VDM Memory

44 05/2 V2.0 Volume 2

The OS/2 Version 2.0 CONFIG.SYS file specifies the operating system configura­
tion, and installs device drivers and other memory-resident programs. The OS/2
AUTOEXEC.BAT file is specific to the functioning of the VDM environment. More
base memory can be made available to programs running in a VDM by removing
unnecessary commands from these files.

4.3.1 CONFIG.SYS
Virtual device drivers utilized by VDMs consume very little or no memory below
the 640KB limit. These device drivers reside outside the V86 mode address
space. However, a user may install device drivers that are required by and are
specific to certain applications which will run in a VDM. If the commands to load
these device drivers (or other memory-resident programs) are added to
CONFIG.SYS, these device drivers (or programs) will be loaded into every VDM
when it is created, and will reduce the amount of conventional memory available
to DOS applications in every VDM. To ensure the maximum amount of memory
is available in each VDM, It is recommended that:

• DOS device drivers specific to a particular DOS application should be loaded
via the DOS_DEVICE option of DOS Settings. DEVICE= statements for DOS
device drivers should be eliminated from CONFIG.SYS unless the device
driver is required for every VDM.

• The number of buffers specified in the Buffers command in CONFIG.SYS
should be minimized. Each buffer consumes about 500 bytes. Be careful to
not reduce this number too much because s~me programs might not run
properly if there are too few buffers. The default number of buffers is 30; the
number should not be reduced to fewer than 10 or 15 buffers.

• If CONFIG.SYS includes the LASTDRIVE command, this should be set to a
letter such as J or K, rather than Z. Each additional drive uses about 100
bytes.

• If the CONFIG.SYS file contains an FCBS command, set FCBS to 1.

The order of the DEVICE and DEVICEHIGH commands in CONFIG.SYS is impor­
tant since it can affect both the efficient use of memory and the proper operation
of the various programs started from CON FIG.SYS.

The CONFIG.SYS statements and options related to VDM operation, and which
can be selected during installation, are shown below:

• Load the DOS Command Interpreter and load it resident into memory

- SHELL=C:\OS2\MDOS\COMMAND.COM C:\OS2\MDOS /P

• Where to load DOS in memory

- DOS=HIGH, UMB

• Optional: extended keyboard and display features

- DEVICE=C:\OS2\MDOS\ANSl.SYS

• Expanded Memory Manager

- DEVICE= C:\OS2\MDOS\ VEMM.SYS

• Extended Memory Manager

- DEVICE=C:\OS2\MDOS\VXMS.SYS /UMB

• Mouse support

- DEVICE= C:\OS2\MDOS\ VMOUSE.SYS

• DOS graphics support

- DEVICE=C:\OS2\MDOS\Vxxx.SYS

Where xxx depends on video adapter:

- VCGA.SYS (if CGA or EGA w/ 64KB)

Chapter 4. MVDM DOS Emulation 45

VEGA.SYS
VVGA.SYS
V8514.SYS

(if EGA w/ 128KB)
(if VGA or 8514)
(if 8514)

• Direct 110 serial communication support

- DEVICE= C:\OS2\MDOS\ VCOM.SYS

The following list shows the order in which device drivers should be specified in
CON FIG.SYS:

1. VEMM.SYS

2. Any device drivers that use expanded memory

3. VXMS.SYS

4. Any device drivers that use extended memory

5. Any device drivers that use upper memory blocks.

This is the optimal order in which the CONFIG.SYS file should start device
drivers. Whether these statements are included at all depends on the amount of
memory installed, the hardware configuration, and on the DOS applications to be
run.

4.3.2 AUTOEXEC.BAT

46 OS/2 V2.0 Volume 2

AUTOEXEC.BAT is specific to the virtual DOS machine environment and has no
effect on the OS/2 Version 2.0 operating system. The AUTOEXEC.BAT file starts
memory-resident programs, such as network programs, and sets up environment
variables. In addition, the AUTOEXEC.BAT file may also define the command
prompt.

The default AUTOEXEC.BAT file for all VDMs in OS/2 Version 2.0 is shown in
Figure 18.

PATH C:\OS2;C:\OS2\MDOS;C:\;
LOADHIGH APPEND C:\OS2;C:\OS2\SYSTEM
PROMPT IP$G

Figure 18. Default AUTOEXEC.BAT File

In the above AUTOEXEC.BAT file, the LOADHIGH command loads the APPEND
TSR into the High Memory Area, thus making available more memory to all DOS
applications running in every· VDM. This example assumes that the function per­
formed by the SET COMSPEC command, which is often found in AUTOEXEC.BAT,
has been moved to CONFIG.SYS.

Note: In order to maximize the amount of base .memory available to applica­
tions, any unnecessary commands should be removed from AUTOEXEC.BAT.
Commands should only be included in AUTOEXEC.BAT if they are required for
every VDM. Commands which are required only for a specific DOS application to
be run in a VDM should be placed into a batch file. This batch file should be
explicitly entered into the path and file name field of the "parameters field" in the
DOS Settings notebook on the "program page" for that specific application.

4.4 Command Compatibility

4.4.1 MEM

For maximum compatibility, OS/2 Version 2.0 now supports commands previ­
ously unique to DOS, including new commands and enhancements recently
introduced with IBM DOS 5.0. Commands new to OS/2 Version 2.0 are:

MEM
FC
DOS KEY
DEBUG
UNDELETE
QBASIC

Display memory availability and contents
Intelligent file compare utility
Command-line enhancer
Program debugger
Recover erased files
Enhanced BASIC Interpreter

UNDELETE runs in both an OS/2 session and in a VDM. The others run in DOS
MVDM mode only.

In addition, several enhancements introduced in DOS 5.0 are also supported:

DIR
ATTRIB
RESTORE
FIND

Several new output formatting options
Now supports hidden and system file attributes
Option to list backup diskette's contents
Case-insensitive search option

These command enhancements are available in both MVDM and OS/2 protect
mode.

Note: The following DOS 5.0 enhancements are not provided in OS/2 Version
2.0:

• UNFORMAT command

• Quick FORMAT

A brief summary follows for those unfamiliar with DOS 5.0 enhancements.

MEM displays the amount of used and free memory in the DOS environment. It
lists information about allocated memory areas, free memory areas, and pro­
grams that are currently loaded into memory.

The format of the MEM command is:

mem [/program I /debug I /classify]

where:

/p(rogram) displays the status of programs that are currently loaded into
memory.

/d(ebug) displays the status of currently loaded programs, internal drivers
and other programming information.

/c(lassify) displays the status of programs loaded into conventional memory
and the upper memory area.

MEM only runs in a DOS session.

Chapter 4. MVDM DOS Emulation 47

4.4.2 FC (File Compare)

4.4.3 DOSKEY

4.4.4 DEBUG

48 OS/2 V2.0 Volume 2

FC compares two files and displays their differences. The format of the FC
command to compare ASCII (text) files is:

FC [/A][/C][/L][/LBn][/N](/T][/W][/n] <filel> <file2>

FC /B [drivel:][pathl] <filel> <file2>

where:

/A Displays only first and last lines for each set of differences
/B Performs a binary comparison
IC Disregards the case of letters
/L Compares files as ASCII text
/LBn Sets the maximum consecutive mismatches to "n" lines
/N Displays the line numbers on an ASCII comparison
IT Does not expand tabs to spaces
/W Compresses white space (tabs and spaces) for comparison
/n Specifies the number of consecutive lines that must match after a

mismatch

Unlike the COMP command, FC attempts to resynchronize after a mismatch. It
recognizes inserted or deleted character sequences, then resumes the compar­
ison.

DOSKEY enhances command line editing, recalls DOS commands, and creates
macros. The format of the DOSKEY command is:

doskey [/reinstall] [/bufsize=size] [/macros] [/history]
[/insert I /overstrike] [macroname=[text]]

where:

/r(einstall) installs a new copy of the DOSKEY program
/b(ufsize)=size size of buffer (in bytes) to store commands and macros
/m(acros) displays list of all macros
/h(istory) displays list of all commands stored in memory
/i(nsert)l/o(verstrike) selects insert or overtype mode

DOSKEY stacks and recalls commands from a LIFO buffer using the up and down
cursor keys. The command line can be intuitively edited via left and right cursor
keys, with insert and non-destructive backspace. DOSKEY provides similar
command line editing to that of an OS/2 prompt with KEYS= ON specified.

DEBUG is used to assist in testing and debugging of executable files. The format
of the DEBUG command is:

debug <filename> [parameters]

where <f i 1 ename> is the file to test.

parameters are any command line parameters to be passed to the program being
debugged, not to DEBUG itself.

DEBUG allows the user to examine memory and registers, assemble and disas­
semble programs, set breakpoints, and step through programs one instruction at
a time.

4.4.5 UNDELETE

Note: DEBUG supports 8086 and 8087 instructions only. It will not assemble or
disassemble 80286/7 or later opcodes, and can only access the low 16 bits of 32
bit registers.

The UNDELE.TE utility recovers files that have been deleted or erased. When the
DEL or ERASE command is issued from any session type, the file is moved to a
specified hidden directory, along with details of where the file originated. If no
space is available, the oldest files are automatically purged to provide more
space.

The DELDIR environment variable is used to specify the name and maximum
size of the directories where files targeted for deletion are to be stored.
Normally this will be set in CONFIG.SYS, and takes the form:

SET DELDIR = drive:\path, maxsize [;drive:\path, maxsize]

The string is composed of a directory path specifier and maximum size value for
each supported logical drive. These parameters are separated by commas. The
definitions for each drive are separated by semicolons.

The path portion of the string consists of a drive letter and the fully qualified path
of the directory that will be used for storing deleted files.

The maxsi ze portion of the string defines the maximum size of the storage direc­
tory, in kilobytes.

In order to keep track of deleted files, the system also maintains a control file in
each storage directory.

When UNDELETE is specified and the file is still recoverable, it is restored to its
specified path. If the file already exists, the user is prompted to rename the file,
or to skip the current entry.

Space occupied by recoverable files is included in DIR and CHKDSK output
reports.

The format of the UNDELETE command is :

undelete <filename> [/list I /all] [/s] [/force]

where:

<filename> is the path and name of the file to recover or purge. It may be
wildcarded.

/l(ist)

/a(ll)

/s
/f(orce)

lists deleted files that are available to be recovered without recov­
ering the files.
recovers all deleted files if they are still present without prompting for
confirmation on each file.
include all files in the specified directory and all subdirectories
removes files so they cannot be recovered.

UNDELETE runs in both protect mode and in a DOS VDM.

Chapter 4. MVDM DOS Emulation 49

4.4.6 DIR

4.4.7 ATTRIB

4.4.8 RESTORE

4.4.9 FIND

50 OS/2 V2.0 Volume 2

DIR lists files and subdirectories: New options on the DIR command are:

la attribute Lists only those files with the chosen attribute:
a files not yet backed up
h hidden files
r read-only files
s system files
d directories
attribute may be preceded by a minus sign to select items which do
not have that attribute.

lo sortorder Lists items in the chosen order:
n sorted by name
e sorted by extension
d sorted by date
s sorted by size
g directories grouped before files
sortorder may be preceded by a minus sign to reverse the output
order.

lb Displays "bare" file information (no date or size)
If Displays fully qualified file and directory names.
/I Displays output in lowercase letters.
In Displays the listing in "HPFS" style format.
Is Includes all subdirectories in the search

Other enhancements to the DIR command include:

• The total byte count of matched files is given
• Ip (pause) repeats the directory name after each screen is full
• /w (wide) distinguishes directory entries from file entries via square

brackets.

ATTRIB now supports manipulation of "hidden" and "system" file attributes.

attrib + s <file>
attrib -s <file>
attrlb + h <file>
attrib ·h <file>

sets the system attribute.
clears the system attribute.
sets the hidden attribute.
clears the hidden attribute.

ATTRIB may also be used to set or clear the "Archive" and "Read-only" attri­
butes as before.

A new parameter "/d" displays a list of files on the backup diskette which match
the file's specified filename, without restoring any files.

A new parameter "/I" will ignore the case of characters when searching for the
string.

4.5 Summary
The DOS Emulation component provides an emulation of the DOS operating
system environment, including DOS features and system services, for applica­
tions running in virtual DOS machines. DOS Emulation uses the parameters
specified in CONFIG.SYS and virtual device drivers to create an application­
compatible DOS environment within the VDM address space.

During execution, DOS Emulation receives requests from DOS applications.
Depending upon the type of request, it either processes the request itself or
causes a general protection exception which results in the request being routed
by the operating system kernel to the 8086 Emulation component, which proc­
esses the request at a higher privilege level.

DOS Emulation also allows DOS applications to hook interrupts, in order to
modify the default behavior in response to particular events. This is achieved by
providing a virtual interrupt vector table within the V86 mode address space, and
routing interrupts through this table.

At VDM termination time, DOS Emulation is responsible for closing all files
opened by the VDM, and cleaning up the environment to ensure that no devices
are still held or memory objects allocated after termination.

DOS Emulation also provides support for applications which access the standard
devices CON, AUX, and PRN. These devices are emulated within DOS Emulation
itself, which processes the interrupts for these devices and returns the results to
the DOS application.

Chapter 4. MVDM DOS Emulation 51

-.52 os12v2;0 Volume 2

Chapter 5. Device Drivers

In order to provide the maximum level of hardware independence for the OS/2
Version 2.0 operating system, device driver are used to communicate with hard­
ware devices. This concept is not new, and has been implemented in previous
versions of OS/2 and in the DOS operating system. However, the implementa­
tion of device drivers under OS/2 Version 2.0 differ in several significant ways
from that seen in previous versions. This chapter describes the implementation
of device drivers under OS/2 Version 2.0.

5.1 Device Driver Architecture
The architecture and structure of a device driver differs considerably, depending
on whether the device driver is physical or virtual.

OS/2 Version 2.0 makes use of two distinct types of device driver to communi­
cate between the operating system and hardware devices:

• Physical device drivers are considered as true device drivers in the sense
that they have a unique and rigid file structure, and interface directly with the
hardware. They operate in protected mode, and are accessed by protected
mode processes and by virtual device drivers.

• Virtual device drivers are essentially a dynamic link library conforming to the
EXE32 Load Module format, and generally do not interface directly with hard­
ware devices. Instead, virtual device drivers are responsible for presenting
a virtual copy of a hardware resource to DOS applications running in virtual
DOS machines, and for coordinating physical access to that resource. DOS
applications typically address hardware devices directly using interrupts; the
virtual device driver allows the VDM environment to appear to the DOS
application as though the application had direct control over the hardware.
Virtual device drivers include a stub which executes in V86 mode within each
VDM, while the main portion of the virtual device driver executes in pro­
tected mode.

The relationship between applications, physical and virtual device drivers, and
hardware devices is shown in Figure 19 on page 54.

© Copyright IBM Corp. 1992 53

: DOS Appllcatl~n

~~

: r 1 ~~f~ f~~P:~'~'·~~r I I

Ponl/O
BIOS Functions
Hardware Interrupts

Send/Receive Data

4~

Set/Query Status , r

Dos Open/Close
DosRead/Wrlte
DosDevloctl

~~~l!l.'!'!'!'!'!'!'!'!'!'!1!'!'!1!1!1!'.'!'!!~'!l!I!'!'!'.'!~ 

·······• ~Interrupt~ • 

COMVDD 

(VC.OMSYS) 

..... 

l 

Asynchronous Ports 

Hardware 

Figure 19. Physical and Virtual Device Drivers under OS/2 Version 2.0. This example 
shows the asynchronous communications port. 

5.2 Physical Device Drivers 

54 OS/2 V2.0 Volume 2 

The concept of a device driver is not new to OS/2 Version 2.0; previous versions 
of OS/2 and DOS have employed device drivers to communicate with hardware 
devices. Under previous versions of OS/2, however, many device drivers were 
required to run in both real mode and protected mode in order to accommodate 
the requirements of applications running in the DOS Compatibility Box. This 
complicated the design of device drivers under previous versions of OS/2, since 
they were required to be written in a bi-modal manner. Figure 20 on page 55 
shows the structure of bi-modal OS/2 device drivers. 



DOS Mode 

Interrupt 

Handler 

Strategy Routine 
• Initialize • IOCTL 
• Open/Close • Read/Write 

Timer 
Handler 

Hardware 
Interrupt 
Handler 

Figure 20. Structure of Bi-Modal Device Drivers in OS/2 Vt .x 

MVDM removes the need for real mode device drivers, since DOS applications 
run in virtual DOS machines, where each VDM is a protected mode task. Real 
mode device interrupts issued by DOS applications are trapped by the MVDM 
kernel and routed to device drivers which execute in protected mode. Hence 
device drivers for OS/2 Version 2.0 need not include real mode sections, and 
existing device drivers may be updated to remove the real mode components. 

Physical device drivers communicate directly with hardware devices, and are 
installed at system initialization time using DEVICE= statements in CONFIG.SYS, 
as shown in Figure 21. 

DEVICE=C:\052\MOUSE.SYS TYPE=PDIMOU$ 
DEVICE=C:\052\COM.SYS 

(Mouse POD) 
(COM port POD) 

Figure 21. Physical Device Driver Statements in CONF/G.SYS 

The advantage of physical device drivers, as with device drivers in previous ver­
sions of OS/2, is that the operating system itself need not be changed if a new 
hardware device or adapter is installed. The corresponding device driver may 
be installed with the device, and used by applications which require access to 
the device. The major enhancement in Version 2.0 over previous versions of 
OS/2 lies in the removal of the real mode component, which simplifies device 
driver development and improves performance by avoiding the need for 
processor mode switching. 

5.3 Vir1ual Device Drivers 
As mentioned previously, DOS applications typically address hardware devices 
directly using interrupts. This is permissible in a single tasking DOS environ­
ment, since it can be safely assumed that the application has complete and 
exclusive control over the hardware. However, in the OS/2 Version 2.0 environ­
ment where multiple applications may be executing concurrently in virtual DOS 
machines, it is clearly not allowable, since applications could interfere with one 
another to the detriment of application and system integrity. 

Chapter 5. Device Drivers 55 



56 05/2 V2.0 Volume 2 

Multiple DOS applications accessing the same hardware devices from within 
VDMs require those hardware devices to be virtualized; virtualization implies 
separate simulation of the physical hardware (1/0 ports, device memory, and 
ROM BIOS) for each virtual DOS machine. This virtualization is accomplished by 
installable virtual device drivers, which in turn communicate with physical device 
drivers to address hardware devices. 

The following virtual device drivers are provided with the OS/2 Version 2.0 oper­
ating system: 

VDD 

VBIOS 

VCMOS 

VDMA 

VDSK 

VFLPY 

VKBD 

VLPT 

VNPX 

VPIC 

VTIMER 

VCOM 

VDPMI 

VDPX 

VXMS 

VEMM 

VWIN 

VMOUSE 

VCDROM 

VVIDEO 

Description 

ROM BIOS support ( 1) 

CMOS data area + Real Time Clock support (1) 

Direct Memory Access (1) 

Disk, only for INT 13 copy-protection (1) 

Floppy Disk interface (1) 

Keyboard (1) 

Parallel Port Printer (1) 

Numeric Coprocessor Extension (80387) (1) 

Programmable Interrupt Controller (1) 

Timer (1) 

Asynchronous communication ports 

DOS Protected Mode Interface 

DOS Protected Mode Extender 

Extended Memory Support 

Expanded Memory Support 

WIN-OS/2 windows 

Mouse 

CD-ROM support 

Video (VCGA, VEGA, VMONO, VVGA, VXGA, V8514, VSVGA). 

These virtual device drivers are described in 5.4, "Standard Virtual Device 
Drivers" on page 61. Those indicated with an (1) form the base set of OS/2 V2.0 
and are automatically loaded at system initialization time. The others are 
installed at operating system initialization time, using DEVICE= statements in 
CONFIG.SYS, as shown in Figure 22. The first two virtual device drivers in 
Figure 22 communicate with the corresponding physical device drivers from 
Figure 21 on page 55. 

DEVICE=C:\OS2\MDOS\VMOUSE.SYS 
DEVICE=C:\OS2\MDOS\VCOM.SYS 
DEVICE=C:\OS2\MDOS\VEMM.SYS 

(Mouse VDD) 
(COM port VDD) 
(EMS VDD) 

Figure 22. Virtual Device Driver Statements in CONFIG.SYS 

Virtual device drivers perform four main functions: 

• Maintain the hardware state for each VDM 



• Prevent an application in one VDM from corrupting another VDM 

• Support fast screen 1/0 

• Support fast communications 1/0. 

5.3.1 Loading Virtual Device Drivers 
Virtual device drivers are loaded into memory when the initialization phase of 
the physical device drivers has completed. Upon loading, the virtual device 
driver verifies the communication path to the corresponding physical device 
driver, ~nd registers hooks with the Virtual DOS Machine Manager for VDM 
events such as creation, destruction, and foreground/background switching. 

Upon creation of a VDM, the virtual device driver is notified by the Virtual DOS 
Machine Manager, and the creation routine of the virtual device driver is 
invoked. This causes a stub device driver to be loaded into the VDM's V86 mode 
address space. This stub driver accepts device requests from DOS applications 
within the VDM, and routes them to the virtual device driver outside t~e V86 
mode address space. 

This is typically achieved by having the stub device driver issue an instruction 
which causes a general protection exception. This exception is passed to the 
operating system's general protection exception handler, which in turn passes it 
to the Virtual DOS Machine Manager, and finally to the appropriate virtual device 
driver. The virtual device driver then communicates with the corresponding 
physical device driver in order to access the hardware device. 

When a hardware interrupt occurs, the physical device driver is notified and 
communicates the event to the virtual device driver, which then takes the appro­
priate action to inform the DOS application. This occurs even if the VDM is not 
currently executing in the foreground, since the virtual device driver can access 
its instance data directly. 

Note that certain virtual device drivers do not have a corresponding physical 
device driver. For example, the VEMM.SYS virtual device driver is used to 
provide support for the LIM Expanded Memory Specification Version 4.0; this 
virtual device driver communicates directly with the operating system's memory 
manager to allocate and manipulate expanded memory objects. 

Virtual device drivers communicate with the OS/2 Version 2.0 kernel using virtual 
device helper (VDH) services. The use of these services is required because 
virtual device drivers execute at privilege level 0, and are thus prevented from 
issuing normal privilege level 3 function calls to the operating system kernel. 
VDH services are also used to communicate with physical device drivers, and for 
communication between virtual device drivers. 

Note that there is no fixed communication protocol between a virtual device 
driver and a physical device driver. The programmer may use any protocol that 
suits the needs of the driver. A shutdown protocol is recommended in case the 
virtual device driver has to be shut down. 

Chapter 5. Device Drivers 57 



5.3.2 Virtual Device Driver Structure 

58 OS/2 V2.0 Volume 2 

A virtual device driver is a 32-bit EXE file which runs in protected mode and sup­
ports the flat memory model. Figure 23 shows the structure of a virtual device 
driver and the interfaces to a physical device driver. 

Virtual Device Driver Physical Device Driver 

Virtual DOS Machine 
Strategy Routine 

- Initialize - IOCTL 
Event Handler -Open -Read 

-Close -Write 

---
1/0 Trap optional Timer 

Handler Handler 
VDD VDD ....... -

Interface Interface 
Software Hardware 

Interrupt Interrupt 

Handler Handler 

0:32 Protect Mode Code 16:16 Protect Mode Code 

Figure 23. Virtual COM and Physical COM Device Drivers 

Nearly all virtual device drivers provided in OS/2 V2.0 are written in a high-level 
language ("C"), although several have portions that were developed using 
assembler language. Since software interrupts and hooked 1/0 port operations 
cause a trap to privilege level 0, time critical code for these operations should 
be written in assembler language to achieve the maximum possible perform­
ance. 

A virtual device driver is a 32-bit EXE file that can contain some, all, or none of 
the following types of objects: 

• Initialization code 

• Initialization data 

• Swappable global code. 

A virtual device driver must have at least one object of the following types: 

• Swappable global data 

• Swappable instance data 

• Resident global code 



• Resident global data 

• Resident instance data. 

A virtual device driver should contain resident objects for code and data which 
must be accessed at physical hardware interrupt time, that is, when a physical 
device driver calls the virtual device driver. A virtual device driver which does 
not interact with a physical device driver needs no resident objects. Examples of 
such device drivers are VEMM and VXMS. 

A virtual device driver locates its instance data above the 1MB + 64KB line, but 
below 4MB. The instance data is therefore outside the VDM's V86 mode address 
space. This linear address range is the same for all VDMs; that is, all VDMs 
have the instance data for a particular virtual device driver at the same linear 
address. The offset from the VDM's linear base address to the virtual device 
driver's instance data is returned by the OS/2 kernel when the device driver is 
initialized. 

A virtual device driver may need to access its instance data area at physical 
hardware interrupt time. This may be required even when the VDM is not cur­
rently executing in the foreground. Since the instance data is system data 
located above the V86 addressing range, the virtual device driver may address 
the per-VDM buffer regardless of which process is currently running. VDM 
instance data is accessed by adding the VDM's handle + instance data area 
offset + data offset within the instance data area. 

Note that memory objects created by a virtual device driver for passing to a 
physical device driver must not exceed 64KB in size. This limitation results from 
the fact that many physical device drivers are still written using the 16:16 seg­
mented memory model, and cannot therefore support memory objects greater 
than 64KB in size. 

5.3.3 ROM BIOS Compatibility 
ROM BIOS provides many function calls which are typically used by a DOS appli­
cation program. To maintain the virtualization concept and ensure compatibility 
with applications which access BIOS or its functions, these functions are emu­
lated by a virtual device driver. 

The VBlOS virtual device driver contains a mechanism to map and initialize the 
system ROMs (including the ROM and EBIOS data areas) and the interrupt 
vector table into memory within each virtual DOS machine. This is done at VDM 
creation time, before any other virtual device drivers are loaded. This allows 
other virtual device drivers to hook interrupt vectors and use VBIOS services. 
Certain BIOS interfaces are not emulated directly, but are passed to other rou­
tines which provide improved performance or functionality. For example, the 
video interface routines provided by ROM BIOS are powerful but extremely slow. 
In order to increase the performance of the video output, the video virtual device 
driver intercepts the ROM BIOS video interrupt (INT 10h) and performs the 
requested operations directly, providing improved performance. 

Chapter 5. Device Drivers 59 



5.3.4 Hardware Interrupt Simulation 

60 OS/2 V2.0 Volume 2 

A virtual device driver typically establishes communications with a physical 
device driver and receives events at hardware interrupt time. Based on the 
event received from the physical device driver and the VDM's current state, the 
virtual device driver may need to send a hardware interrupt to the VDM. 
However, the virtual device driver cannot simply call the VDM's interrupt 
handler, since the interrupt handler may currently be paged out, and page faults 
cannot be taken on the VDM's interrupt handler code at hardware interrupt time. 

The solution is to "simulate" the hardware interrupt to the VDM by delaying it 
until the VDM process becomes active. This is done in three steps: 

1. The VDM's interrupt request flag for the particular interrupt level (IRQ) is set, 
and a global context hook is set to pass control to the virtual device driver 
as soon as any VDM becomes active. 

2. A VDM context hook is set, which increases the priority of the target VDM, 
based on the priority of the interrupt, thereby enabling fast interrupt proc­
essing by the VDM. 

3. When the VDM is scheduled and the interrupt request flag is noted, the 
VDM's interrupt handler code is invoked. 

The VDM's interrupt handler typically issues a request for the interrupt data or 
an EOI instruction. When the virtual device driver receives either of these, it 
calls the VDHClearVIRR() helper service to clear the interrupt request flag. If the 
interrupt request flag is not cleared before the VDM issues an EOI instruction, 
the virtual device driver immediately simulates another interrupt to the VDM. 
For example, the virtual timer device driver may leave the interrupt request flag 
set when it receives the EOI from a previously simulated interrupt, if it has 
another hardware timer interrupt pending for that VDM. 

5.3.4.1 Clearing Interrupts 
Note that a virtual device driver must call the VDHClearVIRR() helper service 
when the VDM issues an EOI instruction. Otherwise, the application may receive 
spurious interrupts because the interrupt request flag is not cleared. For this 
reason, unknown device interrupts are not supported for VDMs, since there is 
typically no virtual device driver to clear the interrupt request flag. 

Interrupts must be simulated to VDMs as quickly as possible. It is not advisable 
for a virtual device driver to have too many interrupts pending since the physical 
device driver's buffers may overflow. 

A virtual device must also be very careful when it simulates an interrupt to a 
VDM because too many nested interrupts may cause the application's stack to 
overflow. A virtual device driver should wait until the IRET instruction has been 
executed in the VDM's interrupt handler before it simulates the next interrupt; 
the virtual device driver may gain control immediately upon IRET being issued, 
via an IRET handler registered using the VDHOpenVIRQ() helper service. 



5.3.5 Protection 

5.3.4.2 Shared Interrupts 
Personal System/2 machines equipped with the IBM Micro Channel* bus archi­
tecture support multiple hardware devices on the same IRQ level. Hence, 
support may also be required for virtual device drivers to share interrupts. This 
support is provided through the VDHOpenVIRQ() helper function, which accepts a 
flag indicating that a virtual device driver is willing to share its IRQ. Note that all 
virtual device drivers using the same IRQ must pass the sharing flag; otherwise, 
an error is returned. 

Each virtual device driver receives an IRQ handle, which points to an IRQ data 
block specific to that device driver. Data not specific to the virtual device driver 
is contained in a shared IRQ data structure. 

When an interrupt is received for a VDM, the virtual interrupt request flag is set 
and a device request mask is updated. This device request mask is specific to 
each VDM, and contains a bit for every virtual device driver which has requested 
a virtual interrupt for the IRQ. When the interrupt is cleared, the device mask bit 
for the virtual device driver is cleared. However, the virtual interrupt request 
flag is not cleared until all virtual device drivers have cleared the interrupt. 

Note that EOI and IRET handler routines are called when the device mask bit is 
cleared, allowing virtual device drivers to perform correct interrupt termination 
handling. 

An application within a VDM cannot corrupt or destroy a virtual device driver, 
since the virtual device driver operates in protected mode outside the V86 mode 
address space, and is thus not accessible by the application. However, the 
parameters passed to a virtual device driver from the VDM must be carefully 
checked before being acted upon, in order to ensure that the service request is 
valid. Failure to do so may result in failure of a virtual device driver due to an 
invalid instruction or invalid data. 

System registers must not be modified by a virtual device driver. Only certain 
flags may be modified. These are as follows: 

• Arithmetic bits 
• Interrupt bit; note that this must be handled with extreme care 
• Direction bit. 

Failure to observe these rules by a virtual device driver may result in failure of 
the VDM's parent process, and possible corruption of the virtual device driver 
itself. 

5.4 Standard Virtual Device Drivers 
The following pages provide brief descriptions of each of the standard virtual 
device drivers provided with the OS/2 Version 2.0 operating system. 

Chapter 5. Device Drivers 61 



5.4.1 VBIOS Device Driver 
The VBIOS virtual device driver is like any other base virtual device driver 
except that it is loaded before any other virtual device drivers. This driver is 
loaded and initialized first, so that other virtual device drivers can use services 
provided by VBIOS. 

The system BIOS reserves physical memory for the interrupt vector table, ROM 
and EBIOS data areas. This reservation is done by an indication in the arena 
info data structure passed to the kernel. These physical pages are treated as 
"unavailable" by the virtual memory manager. 

During virtual device driver initialization, the physical interrupt vector table and 
ROM data area (previously allocated/reserved by the BIOS) are mapped with the 
VDHMapMem() function. VBIOS also installs hooks which cause its own VDM 
creation handler to be invoked, and an 110 hooking routine to be invoked when 
all virtual device drivers have been initialized for a particular VDM. 

Space is also reserved for the EBIOS data area (if the machine is a PS/2) and 
the system ROM linear address ranges. This allows virtual device drivers to use 
and modify this information globally (affecting all VDMs created thereafter). 

The following steps are taken when initializing the BIOS for a newly created 
VDM: 

1. Map the CBIOS system area to the VDM address space, using the 
VDHMapMem() service. 

2. Allocate memory for the interrupt vector table and ROM BIOS data area. 
3. Map and copy the physical interrupt vector table and ROM BIOS data area 

into the VDMs linear address space. 
4. Allocate memory for the extended BIOS data area in the VDM's linear 

address space (only on PS/2s). 
5. Map and copy the physical extended BIOS data area into the linear address 

space. 

When VBIOS's VDM_CREATE_DONE handler is called (after all virtual device 
drivers' VDM_ CREATE handlers have been invoked), VBIOS attempts to install 
1/0 hook routines for the serial and parallel ports COMx and LPTx. These hook 
routines will take effect only if the virtual COM device driver or the virtual printer 
device driver have not successfully hooked the 1/0 ports. VBIOS 1/0 hook rou­
tines are used only to display pop-up messages when the device is not 
virtualized, and to terminate the VDM on user request. 

5.4.2 Virtual CMOS Device Driver 

62 OS/2 V2.0 Volume 2 

The virtual CMOS device driver VCMOS.SYS provides support for virtualization of 
the CMOS battery backed-up RAM, the real time clock (RTC) and the non­
maskable interrupt (NMI) disable logic. It provides virtual access to CMOS 
addresses and data latches through virtual 1/0 ports. 

5.4.2.1 CMOS Memory Access 
The CMOS portion of the CMOS/RTC may be read or written. Virtual CMOS 
memory is initialized to the contents of the physical CMOS memory upon VDM 
initialization. Values written to CMOS memory by DOS applications are written 
in a buffer local to the VDM. Unlike the physical CMOS memory, however, the 
contents of the virtual CMOS buffer are lost when the VDM is terminated. 



5.4.2.2 1/0 Port Support 
The virtual CMOS device driver component monitors all accesses to its two VDM 
110 ports. The two ports are a write-only address latch and a read/write data 
latch. The address latch port has two functions: 

• NMI disable 

• CMOS/RTC device address selection. 

The data latch is a register for holding a byte being transferred to or from the 
CMOS/RTC device. 

5.4.2.3 NM I Disable 
The NMl-disable portion of the address latch may be set or reset by a DOS appli­
cation, but changes to enable or disable NMI are otherwise ignored by VCMOS. 

5.4.2.4 Real Time Clock and Interrupt Access 
The real time clock consists of a time-of-day clock, an alarm interrupt, and a 
periodic interrupt. Accesses to the real time clock to change the time of day, the 
timing mode or to set an alarm or periodic interrupt are disallowed. Thus, the 
CMOS/RTC registers related to the real time clock are supported for read-only 
access. 

Since interrupts can only be supported through write access to the ports, real 
time clock interrupts are not supported by VCMOS. 

5.4.3 Virtual DMA Device Driver 
The PC AT has eight OMA channels, each of which can be hard-wired to a slave 
device on the bus. Assignments, therefore, cannot change unless the device 
adapter is reconfigured by changing jumpers. Because of this one-to-one 
relationship, there is no separate device driver for the OMA controller. Each 
device requiring OMA services programs the corresponding OMA channel 
directly in its device driver, as though the OMA channel were part of its own 
hardware. 

In the PS/2, virtual DMA channels may also be assigned; two of the eight chan­
nels, channels 0 and 4, are virtual channels which can be dynamically assigned 
to any device. These channels can, therefore, be multiplexed to service more 
than one device. ABIOS serializes channel accesses to avoid contention. 

Device drivers for hardware devices access the OMA channels directly, with no 
device driver required for the OMA controller itself. OS/2 Version 2.0, therefore, 
does not use a physical device driver for OMA access. The virtual OMA device 
driver VDMA.SYS supports access to OMA ports from DOS applications in virtual 
machines. 

VDMA consists of port trap handlers which ignore IN/OUT commands. The sup­
ported OMA services are: 

• Memory address and page address registers for all OMA channels 

• Transfer count registers for all OMA channels 

• Status registers 

• Mask registers 

• Mode registers 

Chapter 5. Device Drivers 63 



• Byte pointer flip flop port 

• Extended function/execute ports (for PS/2 only) 

• Master clear ports 

• Command register (for PC/AT only) 

• Write request register (for PC/ AT only). 

Note that VDMA does not support direct access to the OMA controller by DOS 
applications. 

5.4.4 Virtual Disk Device Driver 
The virtual disk device driver VDSK.SYS supports access to disk via the INT 13h 
CBIOS service. Since the CBIOS accesses the hardware ports directly and may 
therefore cause problems for other processes in the system, VDSK traps the INT 
13h interrupt and emulates the processing of this interrupt. Note that VDSK does 
not provide 1/0 port level access to disk controllers. 

The processing of an INT 13h request typically proceeds as follows: 

1. The DOS application accesses the disk using INT 13h interface; the INT 13h 
request is trapped by VDSK. 

2. VDSK builds a device driver request packet and sends it to the physical disk 
device driver. The VDM is then blocked, waiting for the request to complete. 

3. The physical disk device driver processes the request packet. If the disk is 
currently busy, the request is queued. 

4. When the request is completed, the physical disk device driver notifies 
VDSK, which unblocks the VDM. 

Protected mode applications access disks via a programming interface which 
goes through the kernel's device routing mechanism and finally to the physical 
disk device driver. The physical device driver receives an access request packet 
similar to that sent by VDSK. 

5.4.5 VFLPY Device Driver 
The virtual diskette device driver (VFLPY) intercepts virtual DOS machine access 
to the diskette drive directly or through INT 13H calls in order to serialize and 
coordinate diskette 1/0 between multiple virtual DOS machines. 

5.4.6 Virtual Keyboard Device Driver 

64 OS/2 V2.0 Volume 2 

The Virtual Keyboard Device Driver VKBD.SYS provides virtualization support for 
the keyboard. It allows keystrokes to be passed from the keyboard to virtual 
DOS machines. It also allows for text to be pasted into the VDM as key strokes. 

Upon creation of the VDM, VKBD establishes communication with the physical 
keyboard device driver and initializes the portions of the CBIOS data area asso­
ciated with the keyboard. Subsequently, the physical device driver notifies VKBD 
of each scan code that is bound for the VDM. 

To allow monitoring of 1/0 activity, VKBD registers itself with the 8086 Emulation 
component. 8086 Emulation then notifies VKBD when a DOS application in a 
VDM accesses a virtual keyboard port. 

VKBD supports two virtual 1/0 ports: 



• Port 64h - Controller Status/Command 

• Port 60h - Controller Input/Output Buffer. 

These two ports may respond to requests in a variety of ways, depending on the 
state of the controller at the time of the request. 

5.4.6.1 Read Output Buffer 
An 1/0 read request to port Ox60 reads the contents of the controller output 
buffer. If the "output-buffer-full" status was set before the read request, a timer 
{T1) is started. The output-buffer-full status is then cleared. When the T1 timer 
expires, VKBD determines if another byte is ready to be placed into the output 
buffer. If so, the byte is placed into the output buffer and the "output-buffer-full" 
status is set. 

5.4.6.2 Write Output Buffer 
An 1/0 write request to port Ox60 writes the specified byte to the controller input 
buffer. The previous contents of the input buffer are lost. The port number 
(Ox60) is saved and the byte written is processed, depending on the current state 
of the keyboard controller. The "input-buffer-empty" status is never set. 

5.4.6.3 Status Read 
An 110 read request to port Ox64 simply returns the contents of the controller 
internal status register. Reading this port has no effect on the state of the virtual 
keyboard hardware. 

5.4.6.4 Write Controller Command 
An 110 write request to port Ox64, like a write request to port Ox60, writes the 
specified byte to the controller input buffer. Since the port number {Ox64) is 
saved here, the system distinguishes between a command byte and a data byte. 
As above, the byte written is processed, depending on the state of the controller, 
and the "input-buffer-empty" status is never set. 

5.4.6.5 Physical Device Driver Notification 
Since keystrokes are external events, it is the responsibility of the physical 
device driver to notify VKBD when keystrokes are available for processing. In 
particular, the physical device driver calls VKBD when hardware scan codes 
arrive, and passes each scan code received to VKBD. This occurs whenever the 
keyboard's current focus is a virtual DOS machine. 

When called, VKBD places the scan code in a queue. If the queue was previ­
ously empty, the controller "output-buffer-full" status condition is set and if inter­
rupts are enabled, the Virtual Programmable Interrupt Controller is called to 
simulate the interrupt to the VDM. If the queue was not previously empty, the 
scan code is added without any other processing. If the queue is full, the 
speaker is sounded. 

5.4.6.6 INT 09h Processing 
In a "real" DOS environment, the IRQ1 interrupt request is translated by the 
interrupt controller, causing the INT 09h interrupt service routine to be invoked. 
This interrupt vector normally points to a routine in the CBIOS. This manner of 
processing is not desirable in a VDM since the CBIOS only performs U.S. key 
translation; such processing would complicate the task of national language 
support. Instead, VKBD simulates this CBIOS function, and may thus use what­
ever key translation is appropriate for the current country and code page. 

Chapter 5. Device Drivers 65 



The INT 09h emulation code within VKBD performs all functions that the CBIOS 
would normally perform. This includes: 

• Key and scan code enqueueing 

• INT OSh (Print Screen) processing 

• INT 15h processing for monitoring scan codes and handling the SysReq key 

• INT 1 Bh for Ctrl +Break and Pause key processing 

• Key translation 

• Update of keyboard LEDs 

• Update of the CBIOS data area status. 

Upon termination, VKBD relinquishes access to the keyboard. 

5.4. 7 Virtual Printer Device Driver 

66 0512 V2.0 Volume 2 

The virtual line printer device driver VLPT.SYS supports access to three virtual 
parallel port controller devices from DOS applications running in virtual DOS 
machines. 

VLPT hooks INT 17h and processes requests for INT 17h services itself, rather 
than allowing these requests to be handled by CBIOS. INT 17h support includes 
support for function 02h (Read Status). 

VLPT does not support virtual hardware interrupts. If a DOS application attempts 
to enable interrupts (that is, it attempts to set control port bit 4, "IRQ EN"), that 
110 operation is ignored, and the application will not receive interrupts from the 
parallel port hardware. 

VLPT buffers the print data which is subsequently directed to the OS/2 spooler 
using file system services provided by the Virtual DOS Machine Manager. The 
spooler may be configured for output on each printer device (LPTx) that will be 
accessed by DOS applications from a VDM. Figure 24 on page 67 shows the 
various operations performed by the virtual printer device driver. 



7 --:· 

,:DOS 
Appllcatlon 

PIO 

DOS · .. 
App II cation 

INT17h 

... CBIOS 
INT05h 

INT17h 

_7 

_.: ... 

~l I 

'' : 'VDM .>\, 4 OS/2 ;.,r : 
Manag~; ~ Kernel 

~~ 3 

1 2 8 5 

Ring3/2 

Ringo 

~ r ~r f . 11 . , r 

VLPT r ·I Physical Device Driver 11 ~KBD I 
9 i12 ,, 13 

··parallel Port Hardware 
..::....::.. 

Figure 24. Virtual Printer Device Driver Operation 

If VLPTDD.SYS is the only virtual printer device driver installed, no INT 17 will be 
issued when printing is done on numbered 1/0 devices (for example, LPT1, LPT2, 
etc.). However, if an application such as a TSR program must catch all INT 17 
interrupts, the LPTDD.SYS device driver must be installed as well. You can find 
LPTDD.SYS in the subdirectory \os2\mdos. 

When LPTDD.SYS is available, a request from the DOS file system issuing INT 21 
is converted by LPTDD.SYS into INT 17. INT 17 is then forwarded to VLPT.SYS 
and from this point on the print request proceeds as described above in 
Figure 24. Note, however, that installing LPTDD.SYS in addition to VLPT.SYS will 
cause the printing from a VDM to slow down. 

5.4.7 .1 Spooling 
In order to support spooled print output, the OS/2 spooler must be installed. A 
new IOCTL interface is defined in order to allow the spooler to identify itself to 
the physical printer device driver. The new IOCTL functions Set Spooler Status 
and Get Spooler Status are called by the spooler and the Virtual DOS Machine 
Manager. 

The spooler invokes the Set Spooler Status function (Category 5, Function 4Ch) 
at spooler monitor registration time to inform the physical device driver that a 

Chapter 5. Device Drivers 67 



68 OS/2 V2.0 Volume 2 

particular port is actively configured as the output device for a particular spool 
queue. It also invokes this interface whenever the user manipulates the spooler 
queue setup by invoking the Print Manager's Setup Printers/Change Printers 
dialog. 

The Virtual DOS Machine Manager invokes the Get Spooler Status function (Cat­
egory 5, Function 6Ch) during an implicit open of a print device whenever VLPT 
processes the first print output (INT 17h) from a VDM. This allows the Virtual 
DOS Machine Manager to determine if the spooler is active so that it can return 
the spool queue file handle to VLPT to continue printing. 

5.4.7 .2 Print Screen 
VLPT also supports the Print Screen function by hooking INT 05h so that it is 
notified before the CBIOS INT 05h handler. The CBIOS INT 05h handler invokes 
INT 17h functions, and the VLPT INT 17h emulation in turn sends this data to a 
spool file, if the spooler is active. When the CBIOS INT 05h handler returns, 
VLPT also receives control so that it may close the spool file. 

5.4.7 .3 File Transfer 
To support DOS file transfer programs which use the parallel ports (such as the 
IBM Data Migration Facility), and which typically program the parallel port con­
troller directly, VLPT provides a mode known as direct 1/0 access. In this mode, 
the physical printer device driver grants temporary exclusive ownership of the 
parallel port hardware to the VDM in which the application is running. This 
mode allows the application to have direct access to the parallel port's data, 
status and control registers. 

If the port is not currently active (printing) under control of the physical printer 
device driver, the physical device driver will grant VLPT exclusive access to the 
port, and continue to service incoming file system 1/0 requests. Any incoming 
monitor requests from the spooler are blocked until exclusive access is released 
(no error or status monitor packets are sent to the monitor chain). 

If the physical printer device driver is actively processing a hardware 1/0 opera­
tion, when VLPT makes a request for exclusive access, the physical device 
driver will return an error code to VLPT. VLPT will then display a pop-up 
message (via the VDHPopUp() helper service), allowing the user to select the 
most appropriate system action {"End program" or "Retry"). 

Note: Due to the multitasking nature of OS/2 V2.0, data communications using 
this type of application have an increased probability of error when mul­
tiple processes are concurrently active and/or when the virtual DOS 
machine is switched to the background. 

5.4.7 .4 PS/2 Register Virtualization 
On PS/2 systems, the physical printer device driver ensures that all LPT ports 
which support extended mode (read/write 8-bit parallel 1/0) will be enabled for 
extended mode at system initialization time. On any PS/2 models which do not 
enable this mode by default, the physical printer device driver enables extended 
mode via the system's Programmable Option Select (POS) function. This 
ensures that all PS/2 LPT ports will support manipulation of the control port 
Direction Control bit. 

On all PS/2 models (but not on IBM PC/ AT systems), VLPT will virtualize the 
adapter enable/setup register. All bits of this register are virtualized for read 
operations, but only bit 7 of the enable/setup register is virtua/ized for write oper-



ations. DOS applications may modify bit 7 of this register in order to gain access 
to the system board's POS Register 2, thereby enabling or disabling extended 
mode operation of the parallel ports. When bit 7 is set to 0 (the default state), 
the parallel port is configured as an 8-bit, parallel, bidirectional interface. When 
bit 7 is set to 1, the parallel port bidirectional mode is disabled. As described 
above, the physical printer device driver ensures that all PS/2 models have this 
bit set to 0 (extended mode enabled) during system initialization. 

Note that only bit 7 is virtualized and may be manipulated; attempting to manipu­
late any other bits of this register will result in termination of the VDM. As the 
behavior is virtualized, the true state of the hardware register is not affected by 
any operations of a DOS application running in a virtual DOS machine. 

5.4.7.5 Printer Close 
VLPT exports the VDHPrintClose() service. This interface may be called by 
another virtual device driver such as VKBD to force any open printers in a VDM 
to close. This technique is used to handle a forced End-of-Job 
(Ctrl +Alt+ PrintScreen) character, and is required because some DOS applica­
tions do not explicitly close or disable the printer when their print activity is com­
pleted. 

VLPT may also close open print files whenever a VDM is terminated. VLPT reg­
isters an event hook with the Virtual DOS Machine Manager, and is therefore 
notified upon termination of a VDM. All open print files in the terminating VDM 
are closed, after any buffered data has been sent to the spooler. 

When operating in direct 110 access mode, VLPT can detect application termi­
nation in one of three ways: 

• PDB is changed or destroyed (default) 
• VDM is terminated 
• User hot-key (Ctrl +Alt+ PrintScreen). 

When this termination event is detected, direct 1/0 access mode is cancelled and 
VLPT relinquishes the VDM's exclusive control of the parallel port hardware. 
The physical printer device driver then reclaims ownership of the port and 
resumes normal 1/0 operations. 

Note that VLPT will not always close an open print file when the DOS application 
terminates. Depending on the DOS application's behavior, the VDM may remain 
active when the program ends, and the spooler print file may therefore remain 
open. If so, the user can cause the open print file(s) to close by using the 
Ctrl-Alt-PrintScreen control key sequence. Alternatively, the user can leave it to 
the system by setting the PRINT _TIMEOUT value in the DOS settings to the time 
in seconds that the operating system should wait before forcing the print job to 
the printer. Consequently there is no need to exit these DOS programs to have 
the print job released from the print spooler. For more information on 
PRINT_TIMEOUT see Chapter 11, "DOS Settings" on page 205. 

5.4.8 Virtual Numeric Coprocessor Device Driver 
The virtual numeric coprocessor device driver VNPX.SYS provides virtualization 
of the 80287/80387 numeric coprocessor hardware, allowing access to numeric 
coprocessor facilities by multiple DOS applications running in virtual DOS 
machines. 

Chapter 5. Device Drivers 69 



OS/2 Version 2.0 provides a physical device driver for the numeric coprocessor, 
within the operating system kernel. At system initialization time, VNPX registers 
a number of hooks with the physical device driver, so that VNPX is informed 
whenever a numeric coprocessor exception or emulation trap occurs. Handling 
routines are also registered with the Virtual DOS Machine Manager, and are 
invoked upon VDM creation and termination. Coprocessor 1/0 ports visible to 
V86 mode applications are hooked by VNPX. 

VNPX is informed by the physical device driver at initialization time, whether 
VDMs are permitted to use the coprocessor. Upon VDM creation, VNPX sets the 
equipment summary flag for the numeric coprocessor according to the informa­
tion received at initialization time. In the event of the coprocessor being unavail­
able to DOS applications, the equipment summary flag is turned off. An 
application interrogating the flag will therefore assume that no coprocessor is 
present, and take appropriate action. 

The first time an application in a VDM executes a coprocessor instruction within 
a particular timeslice, an exception condition (Trap 0007) occurs. The exception 
handler sets a flag within the physical device driver before allowing processing 
of the instruction to continue. This flag is checked at task switch time and if it is 
set, the coprocessor state is saved by the physical device driver. Note that the 
save operation takes place only if the coprocessor is used by an application 
during its timeslice; for those applications which do not use the coprocessor, no 
action is taken. This allows optimum performance during task switching. 

5.4.9 Virtual Programmable Interrupt Controller 

70 OS/2 V2.0 Volume 2 

The virtual programmable interrupt controller VPIC.SYS is a virtual device driver 
responsible for virtualization of hardware interrupts to virtual DOS machines. 
This device driver simulates interrupts to virtual DOS machines by providing a 
virtual interface to the 8259 Programmable Interrupt Controller (PIC). 

The virtual PIC device driver supports the hardware interrupt-related services 
needed by virtual device drivers and DOS Sessions. The services include setting 
handlers to trap EOI and IRET events, simulating interrupts to DOS Sessions, and 
handling PIC 1/0 accesses by DOS Sessions. The virtual PIC device driver main­
tains a per-DOS Session virtual PIC state so that each DOS Session appears to 
have its own independent 8259 Programmable Interrupt Controller. 

This per-DOS Session virtual PIC state contains items such as the current mask, 
the current IR (interrupt request) and IS (interrupt service) registers, base inter­
rupt vector and initialization mode for a particular VDM. A per-VDM state 
machine is used to track the initialization control word (ICW) or operation control 
word (OCW) for which VPIC is waiting. This module also invokes the virtual 
device driver's EOI handler when it receives EOI commands from a VDM. 

The interrupt simulation mechanism is similar to the way signals are handled for 
OS/2 applications. The virtual PIC device driver can be broken up into two major 
parts: 

1. The virtualization of the PIC ports, and 

2. The simulation of hardware interrupts to VDMs. 

Figure 25 on page 71 below shows this breakdown and the interfaces to other 
components, it shows the VPIC architecture and the role it plays in virtualizing 
hardware interrupts to virtual DOS machines. 



Simulated INT 

~~ IRET 
(4) 1~ 

EOI 

Figure 25. Virtual Programmable Interrupt Controller 

Notes to the numbers in the above figure: 

1. • 8259 PIC port accesses 
• VPIC initialization entry point (VDDlnit) 
• VPIC VDM creation entry point (vpicCreateVDM) 

2. • Call when interrupts enabled service (VDHArmSTIHook) 
• Return to VDM interrupt code service (VDHPushlnt) 

3. •Set the global and the VDM context hook service (VDHArmContextHook) 
• Start the timer service (VDHArmTimerHook) 
• Set the VDM priority service (VDHSetPriority) . 

4. • Set the IRET and EOI handlers service (VDHOpenVIRQ) 
• Set the virtual IRR request service (VDHSetVIRR) 
• Clear the virtual IRR request service (VDHClearVIRR) 
• Get virtual IRQ status service (VDHQueryVIRQ) 
• Send virtual EOI service (VDHSendEOI) 
• Wait for simulated interrupt service (VDHWaitVIRRs) 
• Wake up the VDM waiting for a simulated interrupt (VDHWakeVIRRs) 

5. • Physical PIC hardware interrupt requests and EOI 
• VPIC requests an IRQ level will be dispatched to VPIC if no physical 

device driver services the interrupt (INTSetVDMIRQ) 
• VPIC notifies the interrupt manager of the end of the interrupt processing 

Chapter 5. Device Drivers 71 



72 OS/2 V2.0 Volume 2 

(INTEOIVDMIRQ) 

6. • Hardware Interrupt dispatching 
•The interrupt manager transfers control to the VPIC for hardware interrupts 

that the VPIC has set, and no physical device driver has serviced 
(VPIClntHdlr) 

Not all combinations of ICWs or OCWs are supported. Some seldom used initial­
ization modes and operation commands are ignored. These unsupported fea­
tures are: 

• Slave PIC on any IRQ other than IRQ2 
• Level-triggered initialization 
• Special fully nested mode 
• Auto EOI mode 
• 8080/8085 mode 
• Buffered mode 
• Special mask mode 
• Set IRQ priority command 
• Poll command 
• Rotate on specific and non-specific EOI commands. 

The following figures show in detail which 8259 PIC initialization and operation 
commands from a VDM are supported by the VPIC. Table 1 shows the sup­
ported and unsupported initialization control words. 

Table 1 (Page 1 of 2). PIC Initialization Control Words 

ICW Field Explanation Supported 

ICW1 DO 1 = ICW4 needed Supported 

O = no ICW4 needed Supported 

D1 1 = single PIC Ignored 

0 = cascade mode (slaves) Supported 

D2 1 = call address interval of 4 Ignored 

0 = call address interval of 8 Ignored 

03 1 = level triggered mode Ignored 

0 = edge triggered mode Supported 

D4 1· 

D5-D7 A7-A5 of int vector in 8080 mode Ignored 

ICW2 DO-D2 Ignored 

03-07 base int vector number in 8086 mode Supported 

ICW3 Ignore if slave is not IRQ2 
(Master) 

00-07 1 = IRQ has a slave connected 

O = IRQ does not have a slave con-
nected 

ICW3 Ignore if slave is not IR02 
(Slave) 

DO-D2 slave ID 

03-D7 0 

ICW4 DO 1 = 8086/8088 mode Supported 



Table 1 (Page 2 of 2). PIC Initialization Control Words 

ICW Field Explanation Supported 

0 - 8080/8085 mode Ignored 

01 1 = auto Ignored 
EOI 

0 = normal EOI Supported 

02-03 Ox = non-buffered mode Supported 

10 = buffered mode/slave Ignored 

11 = buffered mode/master Ignored 

04 1 = special fully nested mode Ignored 

0 = not special fully nested mode Supported 

05-07 0 

Table 2 (Page 1 of 2). PIC Operation Control Words 

ocw Field Explanation Supported 

OCW1 00-07 IMR (interrupt mask register) Supported 

1 = IRQ masked (disabled) 

0 .... IRQ unmasked (enabled) 

OCW2 00-02 I RO level to be acted upon 

03-04 0 

05-07 EOI command 

000 - rotate in auto EOI mode (clear) Ignored 

001 = non-specific EOI Supported 

010 = no operand Supported 

011 = specific EOI Supported 

100 = rotate in auto EOI mode (set) Ignored 

101 = rotate on non-specific EOI Ignored 

110 = set priority command Ignored 

111 .... rotate on specific EOI Ignored 

OCW3 00-01 read register command 

00 = no action Supported 

01 = no action Supported 

10 = read IR register Supported 

11 = read IS register Supported 

02 1 ... poll command Ignored 

0 = no poll command Supported 

03 1 

04 0 

05-06 Special mask mode 

00 = no action Supported 

01 = no action Supported 

10 .... reset special mask Ignored 

Chapter 5. Device Drivers 73 



Table 2 (Page 2 of 2). PIC Operation Control Words 

ocw Field Explanation Supported 

11 .... set special mask Ignored 

07 0 

5.4.10 Virtual Timer Device Driver 
The virtual timer device driver VTIMER.SYS provides virtualization of timers used 
by DOS applications running in VDMs. Three timer ports are supported in order 
to allow reprogramming of interrupt frequency and speaker tone frequency. 
VTIMER also distributes timer ticks to VDMs and maintains a count of timer ticks. 

All accesses to the timer are simulated by VTIMER. Therefore, unlike most other 
virtual device drivers, VTIMER has no communication with the physical timer. 
VTIMER derives its timer tick directly from the system clock. 

VTIMER keeps a per-VDM cumulative timer count in the VDM's data area. When 
a periodic timer interrupt occurs, VTIMER receives control. It adds the periodic 
interval count value to the cumulative timer count of the VDM and compares it 
with the VDM's programmed count. If the cumulative timer count exceeds the 
VDM's programmed count, an interrupt is simulated to the VDM and the pro­
grammed count is subtracted from the cumulative timer count. 

5.4.10.1 Timer O 
This timer is normally used to provide periodic interrupts to DOS applications. A 
periodic system timer with an interval close to 18.2 milliseconds is set up so that 
VTIMER can accumulate virtual ticks and simulate tick interrupts if necessary. 

If a VDM attempts to program an interrupt period less than 18.2 milliseconds, the 
periodic timer interval will be changed to four times the normal frequency of 18.2 
Hz, regardless of the VDM's programmed value. A HighRate reference count is 
also kept to record the number of VDMs using a higher interrupt rate. As long 
as there is at least one VDM using a higher interrupt rate, the periodic rate is 
maintained at approximately four times 18.2 Hz. Otherwise, the timer frequency 
is reset to 18.2 Hz. 

Accesses to timer count registers from within a VDM are trapped by VTIMER. 
Read accesses to the count registers should be preceded by a counter latch 
command written to the control word register, in which case a random value 
derived from the system time is latched and stored in the virtual latch registers. 
Its purpose is to provide the applications with a sense of elapsed time, although 
the count value itself is meaningless. Read access to the count register is simu­
lated by reading the virtual latch value. Write accesses to the count registers 
are stored in the virtual count registers. 

5.4.10.2 Timer 1 
Timer 1 is used in the PC A T2 as the memory refresh request timer. Since the 
correct operation of this timer is vital to the system, no known software repro­
grams it for uses other than reading it as the random number generator speed. 

2 Although the IBM PC AT Is based on the Intel 80286 processor and therefore is not supported by OS/2 Version 2.0, many PC 
AT machines exist which have been fitted with processor upgrades from various manufacturers, which may enable them to run 
OS/2 Version 2.0. Information on the PC AT architecture is therefore included herein for completeness. 

74 05/2 V2.0 Volume 2 



Therefore, VTIMER does not support any access except counter read to this 
timer by DOS applications. Any accesses other than counter reads are trapped 
and ignored. 

5.4.10.3 Timer 2 
Timer 2 is the speaker tone generator. It is accessed by DOS applications 
directly, via programming interfaces or DevHlp services, or by the VDHBeep() 
function. Serialization of the speaker usage can be achieved by using a 
semaphore in the kernel. 

When a DOS application accesses the speaker, it typically programs timer 2 for 
the appropriate frequency and then enables the speaker by programming the 
speaker enable bits in system control port B. These programming operations 
are trapped by VTIMER and the frequency value is stored for the VDM. When 
Control Port B is programmed to enable the speaker, the kernel beep service is 
called to generate the beep. This call may be blocked due to the fact that 
another process is beeping and thus owns the speaker semaphore. After the 
semaphore is obtained, the stored frequency value is programmed into timer 2 
and the speaker is enabled. The semaphore is released when the DOS applica­
tion disables the speaker by programming the System Control Port B. 

There is one exception to the speaker serialization, and this occurs during inter­
rupt time. For example, when a process is generating a speaker tone, the key­
board buffer may be full and the keyboard interrupt handler needs to generate a 
warning beep immediately. Therefore, the kernel also provides an interrupt time 

· :~weep service which can pre-empt any ongoing beeps and use the speaker to 
generate its own beep regardless of which process currently owns the speaker 
semaphore. 

5.4.11 Virtual COM Device Driver 
The virtual COM device driver VCOM.SYS provides virtual support for the serial 
communication 1/0 ports and for the serial channel-related CBIOS entry points. 
It provides support in each VDM for up to two communication channels on the 
IBM PC AT and compatible systems, and up to four on the IBM PS/2 Model 80 
and compatible PS/2 systems. 

VCOM only supports access to communication channels which are physically 
present on a given system. It does not include support for accessing communi­
cation devices which may be redirected by network software. For each sup­
ported port, VCOM searches for the port's base address in the CBIOS data area. 
If the address is zero, indicating that the device is not present or is owned by a 
physical device driver other than the COM.SYS device driver, VCOM does not 
attempt to support that serial device. 

If the port's base address is found, VCOM verifies that the physical device driver 
has installed itself for that serial device. If the physical device driver indicates it 
is not installed for that port, VCOM does not attempt to support that serial 
device. 

Many DOS applications that support asynchronous communications include hard­
ware interrupt handler routines. These routines typically perform 1/0 directly to 
the COM port hardware. To support these DOS applications and to allow them to 
run in both background and foreground, VCOM simulates hardware interrupts in 
the task-time context of the V86 mode process. VDMs are scheduled and dis­
patched using the same preemptive task dispatching method that drives OS/2 

Chapter 5. Device Drivers 75 



76 05/2 V2.0 Volume 2 

processes. Hardware interrupts on the other hand, occur asynchronously to this 
scheduling process. By simulating hardware interrupts and presenting a virtual 
hardware state, the interrupt handling logic of the DOS application does not 
execute on the physical interrupt thread. This means that switching to V86 mode 
is not done at interrupt time, but is deferred until the scheduler dispatches the 
VDM task. 

The advantage of simulated interrupts is that mode switching and hardware 
virtualization need not be done at interrupt time. In addition, the DOS applica­
tion does not gain control at interrupt time, which helps to maintain system 
integrity. A potential disadvantage of this approach is that DOS applications with 
time-critical routines may not operate correctly under some system load config­
urations. 

5.4.11.1 Port/Channel Contention 
After VDM creation, the CBIOS data area provides a logical link between the 
virtual communication channels in the VDM and the physical serial channel hard­
ware. Since VCOM does not support a COM port if its address is not in the 
CBIOS area, it can handle its own errors and/or terminate in its usual fashion if 
the DOS application does not find the device address. 

If the CBIOS area indicates that the device is present, however, VCOM deter­
mines if the device is already in use in another VDM when the DOS application 
makes its first access to that device. If so, VCOM does not attempt to send the 
OPEN command to the physical device driver. Instead, VCOM will issue a 
pop-up message that informs the user of the resource con~ention and allows for 
a user-selected action. As a result of the user action, the conflict is resolved or 
the VDM may be terminated. 

If the port is not already in use, VCOM calls the physical device driver with the 
OPEN command. This command will succeed provided the port is not currently 
in use by a protected mode process. 

Once the device is opened, VCOM communicates directly with the physical 
device driver to perform all virtual hardware operations. These include sending 
and receiving data, detection and simulation of hardware interrupts, and setting 
or querying the status and control registers. 

5.4.11.2 CBIOS Access 
VCOM also supports access to CBIOS COM port services through software inter­
rupt 14h. Rather than allowing the CBIOS to perform the functions by accessing 
the virtual· 1/0 ports directly, VCOM emulates CBIOS functions. The CBIOS 
access emulation supports six functions: 

• Initialize 

The initialize function establishes the communication speed and framing 
options for the channel, and returns the modem and line status. To specify 
bit rates of greater than 9600 bits per second, the extended initialize function 
must be used. 

• Extended Initialize 

The extended initialize function, like the initialize function, establishes the 
communication speed and framing options for the channel and returns the 
modem and line status. This function is used if a bit rate of 19,200 bits per 



second (or greater) is desired, or if space or mark parity selection is 
desired. 

• Send Character 

The send character function sends a character to the communication 
channel. 

• Receive Character 

The receive character function waits for a character from the communication 
channel and returns the character. 

• Read Status 

The read status function returns the modem and line status. 

• Extended Port Control 

The extended port control function sets or reads the modem control register. 

DOS applications running in VDMs may access these functions using the 
standard INT 14h service, in a manner identical to that used in a native DOS 
environment. 

5.4.11.3 Virtual Interrupt Indication 
The DOS application must properly enable interrupts and the specific interrupt 
type before the interrupt will be simulated to the VDM. The following INS8250 
interrupt types are virtualized by VCOM: 

• Line Status Interrupt 

• Receive Data Available Interrupt 

• Transmitter Holding Register Empty Interrupt 

• Modem Status Interrupt. 

When the physical device driver notifies VCOM of an interrupt, VCOM passes a 
virtual interrupt to the Virtual Programmable Interrupt Controller, which in turn 
simulates the interrupt to the VDM. 

To maintain high performance on the physical serial channel, the COM physical 
device driver typically does not notify the VCOM on every interrupt. Rather, 
VCOM receives notification of certain events, and determines whether to begin 
or continue simulating interrupts to the VDM. 

5.4.11.4 Coexistence with Other Serial Device Drivers 
Since there is always the potential for other device drivers to own a serial port, 
VCOM does not assume ownership of any devices for which the physical COM 
device driver has not been installed. For example, a serial mouse device driver 
may be installed and may own the COM1 serial port. The COM physical device 
driver will not install for this port, and VCOM will therefore support only the 
higher numbered serial ports (if installed). 

If a physical device driver installs itself and zeros the COM port base addresses 
in the CBIOS data area, VCOM does not attempt to initialize for that COM port 
and will not assume any responsibility to virtualize the serial device hardware 
for that port. This may result in problems for certain DOS applications which 
rely on the CBIOS data area in order to access multiple serial ports. 

Chapter 5. Device Drivers 77 



5.4.12 VDPMI Device Driver 
The virtual DOS Protected Mode lnterface(VDPMI) device driver provides Version 
0.9 DPMI support for virtual DOS machines. DPMI applications run in protected 
mode, not V86 mode. VDPMI allows the user to specify how much protected 
mode memory should be made available to a DOS session using the 
DPMl_MEMORY _LIMIT setting in the settings notebook. 

5.4.13 VDPX Device Driver 
The virtual DOS Protected Mode Extender{VDPX) device driver provides address 
translation from protected mode to V86 mode for DPMI applications running in 
virtual DOS machines. This translation is necessary because DPMI applications 
run in protected mode but issue interrupt requests in V86 mode to perform 
systems services. 

The VDPX device driver registers the DOS Setting called DPMl_DOS_API. The 
available settings are: 

Enabled VDPX always translates the interrupts it supports from protected 
mode to V86 mode 

Auto The application must issue an INT 2FH in protected mode to begin the 
translation 

Disabled VDPX does not perform any address translation. 

5.4.14 VXMS Device Driver 

78 OS/2 V2.0 Volume 2 

The Extended Memory Specification (XMS) Version 2.0 provides a standard inter­
face for the use of three regions of extended memory on 80286 and 80386 
machines: 

• High Memory Area {HMA), accessible in real mode if the A20 address line is 
enabled 

• Extended Memory Blocks{EMBs), up to 64MB that is used for data storage 
• Upper Memory Blocks{UMBs), located between 640KB and 1MB in conven­

tional memory. 

The Virtual Extended Memory Specification(VXMS) device driver 

• Implements all the functions of XMS Version 2.0 
• Provides each virtual DOS machine with its own separate XMS emulation 
• Provides configurable limits on the amount of extended memory for each 

virtual DOS machine separately; 

The VXMS device driver is installed via CONFIG.SYS, with the following syntax 
and options: 

Syntax 

DEVICE=\OS2\MDOS\VXMS.SYS [options] 

Options 

/XMMLIMIT= g,i 
Set the global maximum memory usage of VXMS to gKB, and the per 
virtual DOS machine limit to iKB. The default is 16384,2048. 



/HMAMIN=d 
Minimum request size in KB for an HMA request to succeed. The 
default is 0, the maximum is 63. 

NUMHANDLES=n 

/UMB 

Number of handles available to each virtual DOS machine. Handles 
are used to access EMBs. The maximum is 128 and the default is 32. 

Create UMBs. The default is not to create any. 

/NOUMB Do not create UMBs. This is the default setting. 

5.4.15 VEMM Device Driver 
The Lotus-Intel-Microsoft (LIM) Expanded Memory Specification (EMS) Version 
4.0 provides a standard interface for the use of expanded memory on 8086 and 
8088 machines. The specification offers up to 32MB of expanded memory 
divided into up to 255 objects that can be mapped into conventional memory. 

The Virtual Expanded Memory Specification (VEMM) virtual device driver: 

• Implements all the INT 67H functions in LIM 4.0 EMS, except those for OMA 
registers 

• Provides each virtual DOS machine with its own separate EMS emulation 
• Supports remapping of conventional memory for use by DOS programs 
• Provides a configurable limit to EMS memory for each virtual DOS machine 
• Supports multiple physical to single logical memory mappings so that dif­

ferent 8086 addresses can be mapped to the same expanded memory object 
address. 

The VEMM device driver is installed via CONFIG.SYS, with the following syntax 
and options: 

Syntax 

DEVICE=\052\MDOS\VEMM.SYS [options] 

Options 

/S=n 

/L=n 

/H=n 

/F=xxxx 

EMS memory limit per virtual DOS machine, with the default being 
2048. This can also be set with the EMS_MEMORY_LIMIT setting in 
the settings notebook for the virtual DOS machine. 

Size of the remappable conventional memory. This can also be set 
with the EMS_LOW_OS_MAP _REGION setting in the settings notebook 
for the virtual DOS machine. 

Size of the extra mappable memory, with the default being 32. This 
can also be set with the EMS_HIGH_OS_MAP _REGION setting in the 
settings notebook for the virtual DOS machine. 

Frame location for remapping expanded memory into conventional 
memory. The default is AUTO. This can also be set with the 
EMS _FRAME_LOCATION setting in the settings notebook for the 
virtual DOS machine. The frame location may need to be moved if 
there is a conflict with the mapping address of a physical device 
driver that does not have a corresponding virtual device driver. Refer 
to Chapter 11, "DOS Settings" on page 205 on how to use the 
MEMORY _INCLUDE_REGIONS and MEMORY _EXCLUDE_REGIONS set­
tings when memory conflicts occur. 

Chapter 5. Device Drivers 79 



5.4.16 VWIN Device Driver 
"Seamless" WIN-OS/2 support is the ability to run Windows applications in a 
window right on top of the Workplace Shell desktop. This requires the Windows 
video device driver and the PM video device driver communicate and coordinate 
their access of the video hardware. Each device driver effectively owns its piece 
of the screen. Allowing the Windows display device driver to access the video 
hardware directly avoids the more cumbersome process of a thorough task 
switch. However this hardware access poses integrity problems in the areas of 
simultaneous access of hardware, rectangle invalidation handling, window man­
agement, and the exchange of window state information between PM and 
seamless VDMs supported by separate video device drivers. 

To address these problems, a high performance, interprocess communication, 
virtual device driver (VWIN.SYS) was created. It serializes the simultaneous 
accesses to the hardware, oversees the exchange of window state information 
between PM and seamless VDMs, and establishes the addressability of PM 
resources (either directly or indirectly) by the Windows display device driver. 

5.4.17 Virtual Mouse Driver 

80 OS/2 V2.0 Volume 2 

Given the diversity of mouse hardware, and the complexity of dealing with all 
possible combinations of mouse hardware and video equipment, few if any appli­
cations talk directly to mouse hardware. Most applications which support a 
mouse do so through the INT 33h interface. Virtualization of the INT 33h inter­
face is provided by the virtual mouse device driver VMOUSE.SYS. 

The INT 33h interface performs the following: 

• Position and button tracking 

• Position and button event notification 

• Selectable pixel and mickey mappings 

• Video mode tracking 

• Video pointer management (location and appearance) 

• Light pen emulation. 

The interface between the physical mouse driver and VMOUSE is straightfor­
ward. The physical mouse driver is aware at all times of which session owns 
the mouse; thus, when a foreground VDM owns the mouse, it notifies VMOUSE of 
mouse events. The events themselves remain buffered by the physical device 
driver until VMOUSE requests them. Normally, VMOUSE asks for each event 
immediately, and updates the INT 33h data structures for the foreground VDM, 
unless the application running in the VDM has registered a mouse event subrou­
tine. 

If a mouse event subroutine has been registered by the application, VMOUSE 
may have to notify the routine of a mouse event. This depends on the events for 
which the subroutine has requested notification. When a registered subroutine 
must be called, VMOUSE requests a fake interrupt to be simulated into the VDM. 
A fake interrupt service routine (loaded into each VDM upon creation) imme­
diately emulates the interrupt and then proceeds to notify the VDM's registered 
subroutine. In order to pick an IRQ that is guaranteed to not conflict with any 
other virtual device driver, VMOUSE queries the physical mouse driver at initial­
ization time for the physical IRQ used by the mouse. This ensures that no con­
flict occurs. 



5.4.17.1 Position and Button Data Tracking 
Position and button events are interrupt time events that are communicated to 
VMOUSE by the physical device driver via a "data ready" entry point. If the VDM 
is not already processing a previous event, VMOUSE calls the physical device 
driver to get the new event; otherwise, VMOUSE waits until previous event proc­
essing is complete. This avoids the need for buffering within VMOUSE. 

Normally, the VDM will not be processing any events, so position and button 
information can be immediately retrieved and stored for later query by a VDM 
application, via INT 33h. 

5.4.17.2 Position and Button Event Notification 
As events are requested and supplied by the physical mouse driver, VMOUSE 
peeks ahead to the next event (if any) and, if it is a movement-only event, 
extracts it and overlays the current event. This is continued until there are no 
more events, or the next event is not a movement-only event. This reduces the 
amount of interrupt-simulation overhead during periods of rapid mouse move­
ment. 

5.4.17 .3 Selectable Pixel-to-Coordinate and Mickey-to-Pixel 
Mappings 
Since pixel-to-virtual-coordinate mappings are often used by DOS applications 
but are not supported for protected mode applications; VMOUSE manages such 
mappings. Since mickey-to-pixel mappings are supported for protected mode, 
VMOUSE relies on the physical mouse driver to perform these mappings. Thus 
physical mouse driver interfaces are provided to set the mickey-to-pixel mapping 
and the dimensions of the screen in pixels. 

5.4.18 VCDROM Device Driver 
The VCDROM virtual device driver enables audio support for CD-ROM applica­
tions running in virtual DOS machines. In native DOS, audio and other IOCTL 
support is provided by the pass-through function of the CD-ROM file system 
driver, MSCDEX. VCDROM provides two features necessary to support DOS 
CD-ROM applications: 

• It emulates the presence of the MSCDEX 
• It translates the DOS style IOCTLs into requests that the physical CD-ROM 

device driver can understand. 

VCDROM provides only audio IOCTL support and not a full emulation of 
MSCDEX, as most DOS CD-ROM applications use the standard DOS interface for 
file system services and the MSCDEX interface for audio services only. Any 
application that calls MSCDEX for file system services will not run in a virtual 
DOS machine. 

5.4.19 Virtual Video Device Driver 
VDM video activity consists of both port 1/0 and memory operations. Virtual 
video device drivers are provided to support concurrent operations by multiple 
VDMs. A number of virtual video device drivers are provided by OS/2 Version 
2.0, and are installed depending upon the physical display adapter types present 
in the system: 

• VCGA.SYS provides support for CGA devices 

• VEGA.SYS provides support for EGA devices 

Chapter 5. Device Drivers 81 



82 OS/2 V2.0 Volume 2 

• VVGA.SYS provides support for VGA devices 

• VSVGA.SYS provides support for SVGA devices 

• VEGB.SYS provides support for VGA devices when configured to operate in 
EGA modes only 

• V8514.SYS provides support for the display adapter 8514/ A 

• VXGA.SYS provides support for the XGA display adapter. 

In the following discussion, the term VVIDEO will be used generically to refer to 
all virtual video device drivers. 

By trapping all 1/0 operations and mapping a virtual video memory buffer to the 
region where a VDM expects physical video memory, VVIDEO insulates the phys­
ical hardware from background VDM activity. Only a foreground VDM's video 
operations are allowed to write directly to the physical hardware. 

The major IBM adapter types (MONO, CGA, EGA, VGA, XGA and 8514) are fully 
supported by VVIDEO, in that it supports all standard modes of operation for mul­
tiple VDMs (concurrently, if all VDMs are running in text modes). 

The following is a list of the video configurations supported and their default 
mode of operation: 

Table 3 (Page 1 of 2). List of Supported Video Configurations 

Example Size Color Adapter Resolution Memory Colors/Grays 
Dis- (in.) 
plays 

Mono - Mono Mono Supported - -
as sec-
ondary 
display 
only 

CGA - B&W CGA 640x200 - -
ECO - B&W EGA 640x350 64K no 4-color 
Monitor support, uses 

EGA/Mono 
driver 

ECO - Color EGA 640x350 128KB 16 colors 

- - - - 640x350 192KB 16 colors 

- - - - 640x350 256KB 16 colors 

Mono - B&W EGA 640x350 any no reverse 
mem. video, blink or 
size intense support 

RGB - EGA Color 640x200 any 16 Colors 
mem. 
size 

EGA - - EGA - - Not supported 
w/2xx 
port 
con fig. 

8503 12 Mono VGA 640x480 - 16 Grays 

8512 14 Color VGA 640x480 - 16 Colors 

8513 12 Color VGA 640x480 - 16 Colors 



Table 3 (Page 2 of 2). List of Supported Video Configurations 

Example Size Color Adapter Resolution Memory Colors/Grays 
Dis- (in.) 
plays 

8514 16 Color VGA 640x480 - 16 Colors 

8503 12 Mono 8514/A 640x480 - 16 and 64 
Grays 

8512 14 Color 8514/A 640x480 - 16 and 256 
Colors 

8513 12 Color 8514/A 640x480 . 16 and 256 
Colors 

8514 16 Color 8514/A 1024x768 - 16 and 256 
Colors 

8503 12 Mono XGA 640x480 512KB 64 Grays 

1MB 64 Grays 

8513 12 Color XGA 640x480 512KB 256 Colors 

1MB 256 Colors 

8512 14 Color XGA 640x480 1MB 65536 Colors 

8515 14 Color XGA 640x480 512KB 256 Colors 

1024x768 512KB 16 Colors 

640x480 1MB 256/65536 
Colors 

1024x768 1MB 16/256 Colors 

8604 15 Mono XGA 640x480 512KB 64 Grays 

640x480 1MB 64 Grays 

8507 19 Mono XGA 1024x768 512KB 16 Grays 

1024x768 1MB 16/64 Grays 

8514 16 Color XGA 640x480 512KB 256 Colors 

1024x768 512KB 16 Colors 

640x480 1MB 256/65536 
Colors 

1024x768 1MB 16/256 Colors 

8514 - Color XGA 1024x768 512KB 16 Colors 
Com-
patible 

640x480 1MB 65536 Colors 

1024x768 1MB 16/256 Colors 

As in a native DOS environment, the default setting of the equipment flags deter­
mines which display adapter is the primary display. VVIDEO examines this to 
determine which will be the primary display. The video signal for secondary dis­
plays is initially disabled, until such time as a MODE command or user applica­
tion explicitly enables it. 

Chapter 5. Device Drivers 83 



84 OS/2 V2.0 Volume 2 

5.4.19.1 VDM Screen-Switching 
The OS/2 Version 2.0 session manager informs VVIDEO whenever a VDM's 
display state changes, ensuring that no more than one foreground VDM exists at 
any point in time, and that no VDMs are regarded as foreground processes while 
any other protected mode process, including the operating system shell, is in 
foreground. This mutually exclusive activity relationship between VVIDEO and 
OS/2 display drivers ensures screen integrity. 

VDMs in background are switchable at any time since their state is maintained in 
memory by VVIDEO, rather than in the device itself. 32KB of virtual video buffer 
memory is allocated by VVIDEO for each VDM upon creation. This is the 
maximum buffer size addressable in any text mode. When the VDM is switched 
to foreground, the video buffer is reallocated to the maximum size supported by 
the adapter, with a limit of 256KB. 

The act of switching a VDM from foreground to background or vice versa 
requires that the calling routine yield control, and hence there may be a time 
delay during the switch. In order to preserve the integrity of the video buffer, the 
VDM is suspended for the duration of the screen switch, to avoid any portion of 
the video state that was already copied to or from the hardware being changed 
before the switch is complete. 

5.4.19.2 Foreground VDM Support 
There are literally no limits to what a VDM can do with video hardware when 
running in foreground, since it has complete access to all ports and device 
memory through VVIDEO. 1/0 trapping is still operative, but only to "shadow" 
changes and ensure the ability to switch screens. 

5.4.19.3 Background VDM Support 
VDMs running in the background must always use virtual video memory, which 
is actually normal system memory that has been mapped into the VDM's video 
address space. In cases where the selected video mode (typically a graphics 
mode) requires multiple planes of video memory, normal system memory is 
inadequate to effectively virtualize video memory. 

Whenever a VDM running the in background places the video hardware in a 
multi-plane graphics mode, virtual video memory is invalidated and if touched, 
results in the VDM being "frozen." If the VDM returns to a single-plane video 
mode (implying that it never accessed video memory), then its virtual video 
memory is validated once more. This approach allows VDMs to switch between 
different text modes entirely in background, without the risk of being frozen. 

To support graphics operation in the background, VVIDEO must trap all video 
memory references and remap them to a set of simulated planes, or use some 
form of hardware-assisted virtualization that Presentation Manager and the other 
OS/2 processes know nothing about. 

Suspended Background VDM: There are three cases in which DOS graphics 
applications may be suspended (receive no processor time) when running in the 
background: 

1. A DOS multiplane graphics application that uses advanced graphics, such as 
640x480x16 or 640x350x16, will be suspended, regardless of the graphics 
adapter installed, if any other DOS application is running in the foreground in 
a full-screen session. 



2. A DOS multiplane graphics application that uses advanced graphics, such as 
640x480x16 or 640x350x16, will be suspended when a Presentation Manager 
session is running in the foreground in XGA mode. Currently, this situation 
occurs even if you have an Extended Graphics Array (XGA) and a Video 
Graphics Array (VGA) adapter connected to your system. 

3. A DOS multiplane graphics application that uses 1024x768x16 graphics mode 
will be suspended when a Presentation Manager session is running in the 
foreground in 8514/ A mode. 

Note that suspending DOS applications running in the background generally 
poses no problems unless the applications are timing-dependent, such as com­
munications or process-control applications. In these cases, suspending them 
may cause them to fail. Avoid this situation by running these applications in the 
foreground in full-screen sessions only. If they are graphics applications, run 
them only in a single-plane mode, such as 640x200x2, 320x200x256, or 640x480x2, 
in full-screen sessions. 

Note also that for WIN-OS/2 sessions, set the VIDEO _SWITCH_NOTIFICATION 
DOS setting to ON to avoid having Windows programs suspended when running 
in the background. 

Graphical Applications Programs Support: OS/2 Version 2.0 supports a broad 
variety of display-adapter hardware as you can see from Table 4 on page 86. 
This allows OS/2 programs, DOS programs, and Windows programs to run in 
both windowed and full-screen sessions. OS/2, DOS, and Windows programs 
can run successfully in both the foreground and the background. Normally, the 
OS/2 user need not be concerned with the graphics modes that are used within 
a program, or whether a program will run successfully in a background session. 

Some types of display adapters do, however, place limits on the ability of the 
OS/2 operating system to run certain classes of DOS and Windows graphics pro­
grams in the background. The limits exist because of the difficulty of providing 
virtual access to the display-adapter hardware without disturbing either the fore­
ground session or other background sessions. 

Under certain conditions, DOS applications that use graphical display modes will 
become suspended in background sessions when they attempt to write to the 
display. 

Table 4 on page 86 gives you an overview of what happens with graphical appli­
cations programs in combination with different display adapters. 

To determine under what conditions your applications will run in a background 
session in Table 4 on page 86 as described now: 

1. Find your graphical display hardware in the "Type of Video" column. 

2. Find your System Desktop Mode. 

3. Read across the table to your application column. 

For example, assume you have a DOS application using VGA mode on a system 
with VGA video. The application is in full-screen. To determine if the application 
will be suspended: 

1. Find your type of video (VGA) in the "Type of Video" column. 

2. Find your System Desktop Mode (VGA). 

Chapter 5. Device Drivers 85 



3. Read across the table to your application column (DOS Application, Matches 
Desktop Mode, Full-Screen). 

The PF indicates that the DOS application runs when PM has control of the 
screen or when the application is in a foreground session. 

Table 4. Graphical Applications Programs Support under OS/2 Version 2.0 

Windows Apps 

Full Screen (FS) DOS Apps 

Matches Matches 

System VIO 
Desktop Using VGA 

WIN-OS/2 
Desktop Using VGA 

Type of Desktop PM OS/2 
Mode Mode 

Window 
Mode Mode 

Video Mode Apps Apps A B A B (Win) FS Win FS Win 

XGA XGA R F R F R F NIA F x F x 
XGA VGA R F R PF R PF R PF PF' PF PF' 

VGA VGA R F R PF R PF R PF PF' PF PF' 

8514 VGA R F R PF R PF R PF PF' PF PF' 

8514 8514 R F R F R R NIA F x R R 

EGA EGA R F R PF NIA NIA NIA PF PF' NIA NIA 

CGA CGA R F R R NIA NIA NIA R R NIA NIA 

Legend: 
R Runs 
PF Runs when PM has control of the screen, or when the application is in a foreground session 
PF' Runs only when PM has control of the screen 
F Runs only when the application is in a foreground session 
x Not supported 
NIA Not applicable 

Note: Column A indicates the use of a Windows display driver that suppresses background output. Column B indicates the 
use of a Windows display driver that does not suppress background output. 

86 0512 V2.0 Volume 2 

5.4.19.4 Device-Independent Pointer Services 
VVIDEO provides services which allow the virtual mouse driver to define a 
pointer image and specify its position. Since the position must always be given 
relative to the physical dimensions of the VDM's screen, and since coordinates 
may change whenever the video mode is reset, the virtual mouse driver pro­
vides an entry point which is notified of such changes by VVIDEO. These inter­
faces are device-independent because dimensions are always given in terms of 
pixels or character cells, and not in predefined video mode identifiers. By sepa­
rating the pointer-drawing code from the virtual mouse driver, mouse support 
becomes automatically available on any video adapter. 

5.4.19.5 Font Support 
At VDM creation time only a single font exists; this is either a default font con­
tained in video ROM, or one specified by OS/2 if code page support is active. In 
the latter case, VVIDEO automatically loads the OS/2 code page font whenever 
the VDM restores the default ROM font by resetting the video mode. 

Note that since the process of loading a font is essentially the same as entering 
a graphics mode, background VDMs will "freeze" if they attempt this. 



5.4.19.6 Clipboard Support 
To transfer VDM screen contents to the clipboard, VVIDEO provides two services: 
one to return the VDM's video configuration, and a second to copy the video con­
tents to a shell-supplied buffer address. The shell then handles the transfer from 
this buffer to the clipboard. 

5.5 Virtual Device Helper Services 
In order to allocate, free and reallocate memory, virtual device drivers use the 
virtual device helper (VDH) memory management services. These services help 
the virtual device driver maintain a linear heap for each VDM. This heap is 
maintained as a linked list; each entry in this linked list refers to a linear region 
with attributes such as: 

• Reserved 
• Allocated 
• Mapped 
• Page granular 
• Byte granular. 

Memory allocation is always done in chunks of 4KB (page granular), but byte 
granular services are provided for handling instance data reservations and for 
memory allocation in the DOS environment. 

5.5.1 Memory Management 
VDH services provide the following support for memory management within 
virtual device drivers: 

• Allocation/reallocation/freeing services for: 

Global and per-VDM objects 
- Page and byte granular objects 
- Options for fixed, swappable allocations. 

• Allocation of memory in DOS environment 

• Reserve specified linear space 

• V86-mode stack manipulation 

• Mapping services: 

Map to physical address 
Map to linear address 
Map to invalid address 
Map to black holes (don't care) pages 

• Copy/exchange services 

• Block management services (pools of equal-size memory blocks) 

• Query services: 

Query the biggest linear space in a specified range 
Query dirty bits for set of pages 
Query amount of free virtual memory. 

Chapter 5. Device Drivers 87 



5.5.2 Semaphore Services 
These services are used to synchronize a virtual device driver with another OS/2 
process. If a virtual device driver blocks a VDM process, that VDM will not 
receive any simulated hardware interrupts until it becomes unblocked. VDH 
semaphore services are used to handle the following: 

• Mutual exclusion and event semaphores 
• OS/2 process to physical device driver communication 
• Virtual device driver/physical device driver communication 
• VDM event list management. 

5.5.3 Freeze/Thaw Services 
The virtual video device driver uses these services to freeze and unfreeze the 
operation of a VDM. This is typically required in response to a video mode 
switch in a background VDM, which would place the VDM in a video mode not 
supported when running in the background. 

5.5.4 Timer/Priority Services 
Timer services are provided to support the virtual programmable interrupt con­
troller in the event of a time out occurring in an interrupt handler. Priority ser­
vices are also used by VPIC to handle VDM scheduling priority. 

5.5.5 Page Fault Services 
A virtual device driver may register its own handler for page fault exceptions, in 
order to handle such events in an orderly manner. VDH services are provided in 
order to support this registration. 

5.5.6 Other Services 
• Error message and display 
• Terminate VDM service 

5.5.7 VDH Functions 

88 OS/2 V2.0 Volume 2 

The following list summarizes most of the VDH functions: 

VDH AP/ 
VDHAllocDosMem 
VDHAllocMem 
VDHAllocPages 
VDHArmReturnHook 
VDHArmSTIHook 

VDHClearVIRR 
VDHClearSem 
VDHCloseVDD 

VDHCopyMem 

VDHExchangeMem 
VDHFindFreePages 
VDHFreeMem 
VDHFreePages 
VDHGetDirtyPage;nfo 

Description 
Reserve memory for stub DOS device driver 
Allocate small buffers 
Allocate linear space and commit backing storage 
Used to catch return from a VDHPushFarCall 
Receive control when current DOS session enables 
simulated interrupts 
Clear interrupt request flag 
Used to protect global structures 
Terminate communication between virtual device driver 
and physical device driver 
Used by the EMM copy service and to copy device 
driver stub to VDM 
Used by the EMM exchange service 
Find a region of free linear space below 1MB + 64KB 
Deallocate small buffers 
Deallocate memory objects 
Read and clear dirty-page bits (Dirty bits indicate 
whether a page has been written to) 



VDHlnstallFaultHook 
VDHI nstalll ntHook 
VDHlnstallUserHook 

VDHLockMem 

VDHMapPages 

VDHNotldle 
VDHOpenVDD 

VDHOpenVIRQ 

VDHPoplnt 
VDHPostldle 
VDHPushFarCall 
VDHPushlnt 
VDHQueryConfigString 
VDHQueryfreePages 
VDHQuerySysValues 
VDHReallocPage 
VDHRequestSem 
VDHRequestVDD 
VDHReservePage 
VDHSetDOSDevlc 
VDHSetVIRR 
VDHUnreservePages 
VDHWakeldle 
VDHYield 

Install hook for page faults 
Used to hook INT 67h (EMS interrupt) 
Register to get notification about VDM creation and ter­
mination 
Verifies that a specified memory region is available and 
locks it 
Used to map EMS windows to EMS objects or to unmap 
pages 
Resets VDHPostldle 
Establish communication between virtual device driver 
and physical device driver 
Returns an IRQ handle for use with the other VPIC ser­
vices 
Remove ROM return address from user's CS:IP 
Put VDM into sleeping state. 
Used by the EMM map and call service 
Change control to the V86-interrupt handler 
Used to retrieve configuration data strings 
Determine amount of free virtual memory 
Determine VDM conventional memory size 
Change previous page allocation 
Used to protect global data 
Requests the operation of a VDD 
Reserve region of linear space below 1MB + 64KB 
Register DOS device driver 
Set interrupt request flag 
Unreserve region of linear space below 1MB + 64KB 
Awake VDM from sleeping state 
Yield the processor to any other thread of equal or 
higher priority 

These functions are only valid when issued from within a module executing at 
privilege level O; they cannot be issued by normal protected mode application 
processes. 

5.6 VDM Termination 
Virtual device drivers are responsible for a number of actions upon termination 
of a VDM. The nature of these actions is largely dependent on whether the VDM 
terminates normally or abnormally. 

5.6.1 Normal Termination 
A virtual device driver typically registers a VDM_ TERMINATE hook with the 
Virtual DOS Machine Manager, which causes the virtual device driver to be 
informed when a VDM is terminated. When the VDM_TERMINATE hook is called, 
the virtual device driver is responsible for freeing all resources allocated on 
behalf of the terminating VDM. 

Chapter 5. Device Drivers 89 



5.6.2 Abnormal Termination 

90 OS/2 V2.0 Volume 2 

Virtual device drivers may experience a number of different error conditions, and 
must be able to act in order to recover from such errors where possible. 

5.6.2.1 Errors Returned from VDH Services 
Requests for VDH services may be refused by the operating system or may fail 
due to lack of resources. For example, a call to VDHAllocMem() may return 0, 
indicating that the memory allocation request cannot be satisfied. 

During initialization of the virtual device driver or creation of a VDM such an 
error would cause the initialization or creation to be terminated. During exe­
cution of a DOS application, the virtual device driver should return control to the 
application, indicating the failure of the requested application service. If this 
cannot be done, the VDM must be terminated. 

5.6.2.2 Bad Parameter Passed to VDH Service 
A virtual device driver may make a service request with bad data, typically due 
to a bug in the device driver code; such events are likely during development 
and testing. For example, the virtual device driver may attempt to issue a 
VDHFreeMem() function call specifying an address which was not previously allo­
cated using VDHAllocMem(). 

Such errors are costly; since virtual device drivers operate at privilege level 0 
and hence have access to all code and data in the system, it is impossible to 
localize the effect to a single VDM, or to be certain that the event has not cor­
rupted data or control structures in the operating system kernel. In such cases, 
the Virtual DOS Machine Manager will halt the system. 

5.6.2.3 Virtual Device Driver Consistency Failures 
A virtual device driver may detect inconsistencies within its own state informa­
tion. Such inconsistencies may be experienced in either global or instance state 
data. The virtual device driver must inform the user of the error. If the error can 
be isolated to the instance data of a single VDM, that VDM must be terminated. 
If the error is in global state data, it will be necessary to halt the system. 

Note that halting the entire system is highly unfriendly behavior on the part of a 
virtual device driver. Very rarely, if ever, should such action become necessary. 
A virtual device driver should take all possible steps to isolate any state incon­
sistencies to a single VDM only. 

5.6.2.4 Illegal Operation by a DOS Application 
DOS applications running in VDMs may issue illegal instructions. For example, a 
DOS application may issue an OUT instruction to a port controlled by the virtual 
disk device driver, which does not support direct hardware control of the disk 
controller. 

In such cases, the virtual device driver must inform the user of the error condi­
tion and either ignore the error or terminate the VDM and the application within 
it. 



5.7 Summary 
OS/2 Version 2.0 provides device drivers to handle the interface between the 
operating system and the hardware. Physical device drivers are used by normal 
protected mode processes running OS/2 applications, while virtual device drivers 
are used by DOS applications running in virtual DOS machines. 

Virtual device drivers provide a means of representing hardware devices to a 
DOS application in a virtual DOS machine, such that the devices appear to the 
application as though the application had sole control over the device. In this 
way, MVDM allows DOS applications to issue instructions which directly manipu­
late hardware devices or the DOS system environment, while maintaining full 
protection of other applications in the system. Virtual device drivers typically 
access hardware by requesting services from physical device drivers. 

Virtual device drivers are used not only for shared hardware devices, but also 
for other aspects of the machine environment, such as BIOS, CMOS, and the 
(physical) programmable interrupt controller. Through the use of virtual device 
drivers for these components, DOS applications may freely access and manipu­
late them without affecting other DOS applications or OS/2 applications in the 
system. 

OS/2 Version 2.0 provides a number of standard virtual device drivers for the 
DOS system environment and common hardware devices. Hardware vendors 
may develop virtual device drivers for their own hardware adapters. Note that if 
a hardware device will be dedicated to one application (that is, sharing of the 
hardware is not required) then a virtual device driver is not needed; the normal 
DOS device driver will allow the application to access the hardware device as in 
a native DOS environment. 

A virtual device driver operates at privilege level 0, and therefore cannot access 
operating system services via the normal application programming interfaces 
provided by OS/2 Version 2.0. Instead, a set of virtual device helper services is 
provided to enable virtual device drivers to access system services. Virtual 
device drivers may be written in a high-level language such as "C." 

Chapter 5. Device Drivers 91 



92 OS/2 V2.0 Volume 2 



Chapter 6. Memory Extender Support 

Many popular DOS applications use memory extenders such as EMS and/or 
XMS to gain access to memory above the 1MB real mode addressing limit on 
the 80286, 80386, or 80486 processors. Such extenders allow DOS applications to 
have total code and data spaces larger than the available base memory, and to 
have very large code or data objects loaded into memory for enhanced exe­
cution speed. The standard configuration of OS/2 Version 2.0 provides both LIM 
EMS Version 4.0 (which includes backward compatibility with LIM Version 3.X) 
and LIMA XMS Version 2.0 functions for DOS applications running in virtual DOS 
machines. 

max.512MB 

0 

Expanded 
Memory 

max.32MB 

0 

• 

J 

~ryJ:!mlL. - -

BIOS 

Hardware 1/0 Buffers 

___ E_M_S_P_a_g_e_F_ra_m_es __ J64KB 
Video RAM (Mono, CQA, E!OA. VOA) 

DOS Bu1'fere 

·1111~~~~~~m111.:;1a11:j[lf:m11~mm 
·illll~!Bll!lltll!llll~[~ 

OKB 

- -

• i 
0 m 
t' ., 
I I 
:I :::> 

l 
:t 

t' 

I 
1 
! 
I c 
8 
~ 
Cll 

-

-

Figure 26. General Overview of Different Types of Memory for DOS Applications 

m II 
~ m 
:& :IE w 
+ ., 
m CD 

:IE I 
p ~ 

= 
.. a .8 .! CD .ta 

to ~ 

I! 
! ai 

ii CD CD 
'I m 
1 ~ 
EI m 

ii 

This chapter describes the implementation of EMS and XMS support for virtual 
DOS machines. For those readers not already familiar with the architecture of 
these memory extenders, an overview is provided in Appendix 0, "Memory 
Extender Architectures." 

@Copyright IBM Corp. 1992 93 



6.1 Expanded Memory Support 
OS/2 Version 2.0 supports expanded memory according to the LIM EMS Version 
4.0. Under DOS, special hardware is normally required to support EMS, although 
a number of software-based EMS emulation packages exist. MVDM supports 
EMS by mapping memory allocation requests into the linear process address 
space, using normal system memory. Hence no special hardware or software is 
required. 

The OS/2 Version 2.0 LIM EMS emulation provides the following function: 

• Implements all the required functions in the LIM EMS Version 4.0. 

• Provides each VDM with a separate EMS emulation. Each VDM has its own 
set of expanded objects so that features like interprocess communication 
work as they would if each VDM were running on a different real 80386. 
Each VDM cannot affect the availability of objects in other VDMs or access 
memory in other VDMs. 

• Provides for remapping of conventional memory (below 640KB) for use by 
programs like Windows 2.0. 

• Provides configurable limits for how much EMS memory is available across 
VDMs, as well as a limit per VDM. The DOS Settings feature allows the user 
to override the per-VDM limit, subject to the constraint given by the overall 
limit. 

• Supports multiple physical to single logical mappings. Different 8086 
addresses can map to the same expanded memory object address. This is 
required by programs like Lotus 1-2-3. 

• EMS can be removed and the operating system can run without loading EMS 
in any VDM session. 

Memory objects are mapped into the V86 mode address space (below 1 MB), so 
DOS applications can access very large address spaces. Applications access 
EMS services using the DOS interrupt INT 67h. 

6.1.1 Virtual Expanded Memory Manager 

94 OS/2 V2.0 Volume 2 

EMS services are implemented under MVDM using a virtual device driver known 
as the Virtual Expanded Memory Manager (VEMM), which offers a separate EMS 
emulation to each VDM. This implementation is accomplished by placing most 
VEMM control structures in a per-VDM data area outside the V86 mode address 
space. Each VDM has up to 255 handles, 15 alternate register sets, remappable 
conventional memory for operating system use, and a 16KB "raw" block size. 

VEMM prehooks interrupt vector 67h through a VDH service to catch software 
interrupts for EMS services. Prehooking means that VEMM gains control before 
the V86 mode interrupt vector is called. VEMM also provides a V86 mode stub 
driver used to indicate to DOS applications that EMS is available. This stub must 
hook INT 67h so that applications can find a particular string in the header to 
determine if EMS is available. When, as in the typical case, applications have 
not also hooked INT 67h, VEMM handles service requests at prehook time. 
When INT 67 has been hooked, VEMM handles requests when the stub's hook 
calls it by doing an INT 67h from inside the stub. 

To prevent VDM's from grabbing large amounts of EMS memory, there is a 
configurable default per VDM limit. VEMM depends heavily upon the memory 



manager. EMS object allocation, reallocation, or deallocation is accomplished 
by requesting corresponding services from VDH services. Most VEMM creation 
time setup is postponed until the first INT 67h service request is made. 
Figure 27 on page 95 shows the flow of control when a DOS application makes 
an EMS service request from within a VDM: 

1. INT 67h service requests are trapped by the Virtual DOS Machine Manager 
and routed to VEMM. 

2. The VEMM makes the appropriate requests to VDH services to allocate or 
manipulate the EMS object. 

6.1.1.1 Expanded Memory Manager Control Flow 
During the initialization of the VDM the VDM Manager loads and initializes the 
EMS DOS stub device driver into the VDM address space. 

ApplJC:etloft --------. 2 --.---
·:.:::.+:~·: 

::~:~~~:; 
- - _J 

VF.MM.SYS 

Figure 27. Expanded Memory Manager Control Flow 

The VDM Application can use either of two methods to test for the existence of 
the VEMM: 

1. Issue an open request (INT 21h Function 3DH) using the guaranteed device 
name of the VEMM driver. If the open function succeeds, either the driver is 
present or a file with the same name coincidentally exists on the default disk 
drive. To rule out the latter, the application can use IOCTL(INT 21h Function 
44H) subfunctions OOh and 07h to ensure that VEMM is present. Don't forget 
to use INT 21H Function 3Eh to close the handle that was obtained from the 
open function, so that the handle can be reused for another file or device. 

2. Look for a special signature in the EMS DOS stub device driver which signals 
the VDM Application that EMS is available. This search is done by using the 
address that is found in the INT 67h vector to inspect the device header of 
the presumed VEMM which is, in this case, the fooling EMS DOS stub device 
driver. Interrupt handlers and device drivers must use this method. If the 
VEMM seems to be present, the name field at a special offset of the device 
header contains a special string. This method is not only avoiding the rela­
tively high overhead of an VDM DOS open function but is nearly foolproof. 
However, it is somewhat less well behaved because it involves inspection of 
memory that does not belong to the application. 

Chapter 6. Memory Extender Support 95 



96 OS/2 V2.0 Volume 2 

The only task of the EMS DOS stub device driver is to tell the VDM DOS applica­
tion that EMS is available. As soon as this is done the regular EMS business can 
start as explained in the following points: 

a. The VDM Application issues a INT 67h service request. 

b. The VDM Manager loads the VEMM. 

c. The VDM Manager initialization, creation, termination calls for 
EMM-objects. 

d. The VDM Manager traps the VDM application's INT 67h service request 
and routes it to VEMM. 

e. The VDM callback for V86 call with far return. 

f. The VEMM requests corresponding services from the VDH services: 

• Creation/termination handler registration 

• INT 67h pre-hooking 

• Linear address reservation 

• Memory management. 

g. The result is returned. 

This constellation also allows a VDM application to hook INT 67h. 

Note that unlike most virtual device drivers, VEMM does not have a corre­
sponding physical device driver. Instead, VEMM manages its memory using the 
OS/2 Version 2.0 operating system kernel's memory management services. EMS 
object allocation, reallocation, or deallocation is accomplished by requesting cor­
responding services from the operating system's memory manager. For 
example, when an application requests the allocation of an expanded memory 
object, VEMM asks the memory manager to allocate a memory object in linear 
memory outside any VDM. 

6.1.1.2 Structure 
The VEMM module consists of: 

• An Initialization Component that determines the default size at boot time 

• A Creation Component that initializes per-VDM structures when a VDM is 
created 

• A Router that decodes application INT 67h (and routes the call to a service 
routine) and 30 service routines with associated sub-services. 

Each VDM has a 255-entry EMS handle table used to keep track of the size and 
allocation of expanded memory objects, 16 register sets that indicate which parts 
of the expanded objects are mapped into the VDM address space, and save 
tables to save register set contents. Only one register set is active at a time. 
That active register set indicates the actual page table contents. Switching reg­
ister sets or restoring a saved register set resets all aliases in the windows to 
those indicated by the new register set. Unmapped pages are set to "black 
hole" memory. The memory manager's page size for all these operations is 
4KB. VEMM makes the adjustment for its 16KB page size. 



6.1.1.3 Initialization 
VEMM is typically installed at system initialization time, via a DEVICE= state­
ment in CONFIG.SYS, as shown below: 

DEVICE=C:\052\MDOS\VEMM.SYS 4096, 2048 

To prevent VDMs from using all available memory, there is an overall limit on 
the amount of EMS memory, and a default limit for each VDM to prevent a VDM 
from requesting all available EMS memory. The defaults for these limits are 
specified in the DEVICE= statement for VEMM. The default limit for each VDM 
may be overridden using the DOS Settings feature. 

Setting the overall limit to zero disables EMS in all VDMs, regardless of the 
per-VDM value. Setting the per-VDM value to zero disables EMS in all VDMs 
unless their entries on the Presentation Manager desktop specify a non-zero 
EMS size. Setting the EMS size to zero for an entry on the desktop disables 
EMS for that application only. Most users need never change the default value. 
DOS settings for frame position, and the size of extra mapping regions above 
and below 640KB may be configured by the user; see Chapter 11, "DOS 
Settings." 

Upon installation, an initialization routine within VEMM supplies the entry point 
addresses of VEMM creation and close routines to the Virtual DOS Machine 
Manager. 

Most VEMM setup is postponed until the first INT 67H service request is made. 
Only remappable conventional memory is set up before that time. This assures 
that other virtual device drivers have a chance to reserve ROM and device 
memory areas. 

6.1.1.4 VDM Creation 
Upon creation of a VDM, a VDH service is used to get the EMS size for that VDM. 
This will return a string if the DOS program's entry on the desktop has an asso­
ciated EMS size. If not defined, the default size retrieved from CONFIG.SYS at 
system initialization is used. If EMS size is not zero, the following steps are then 
performed: 

1. Two mappable windows are located and reserved. 

2. Memory is mapped into the low window. 

3. Interrupt 67h is hooked using a VDH service. 

4. The V86 mode device driver stub is loaded. 

5. An initial block of the handle table is allocated. 

Upon VDM creation, VEMM allocates a block of memory in the area between 
256KB and RMSIZE3 and maps it into the VDM address space. VEMM requests 
VDH services to locate the largest free address range in the V86 mode address 
space above 640KB that is available for the mappable window. VEMM then 
reserves the largest range available that is at least 64KB and no more than 
128KB in size, and is a multiple of 16KB. If an extended BIOS data area is 
present, the returned free range will be below this area so that BIOS cannot be 
inadvertently mapped away. 

3 The RMSIZE statement in CONFIG.SYS specifies the maximum size of a VDM's address space; values up to 640KB are 
allowed. 

Chapter 6. Memory Extender Support 97 



98 05/2 V2.0 Volume 2 

Waiting until creation time to reserve this memory allows virtual device drivers 
with actual hardware to claim their addresses first, since VEMM can place its 
memory at any available address. A consequence of this technique is that the 
space is reserved only for the VDM being created. It could be in a different 
location or be a different size for other VDMs. 

VEMM performs mapping by requesting the operating system's memory 
manager to alias linear space inside a mappable window in the V86 mode 
address space to a memory region outside the V86 address space. The applica­
tion can then access this part of the expanded memory object. 

The VEMM virtual device driver prehooks interrupt vector 67h through a VDH 
service to catch software interrupts for EMS services. Prehooking means that 
VEMM gains control before the V86 mode interrupt vector is called. VEMM also 
provides a stub driver, the sole function of which is to indicate to DOS applica­
tions that EMS is available. 

VEMM then arranges for the loading of a stub device driver in the VDM. This 
driver provides a header within the V86 mode address space which can be read 
by an application searching for the name of the real mode EMS driver. It also 
responds to a few simple requests made to its strategy routine, basically 
replying that it is present and ready. The stub driver does not actually process 
EMS service requests; these are handled by VEMM. 

6.1.1.5 Routing 
The router receives notification from the Virtual DOS Machine Manager when an 
application issues an INT 67h request. The router checks the request to ensure 
that it is valid, and then causes an exception which is routed to the Virtual DOS 
Machine Manager. The Virtual DOS Machine Manager then reflects the interrupt 
back into the VDM's interrupt vector table. This technique is necessary since 
interrupt vector hooks are only allowed after application code has been exe­
cuted. The V86 mode interrupt vector for INT 67h causes another exception 
which is routed to the Virtual DOS Machine Manager which then calls VEMM. 

The EMS Alter Map and Call service allows an application to have VEMM remap 
memory to place a routine within the V86 mode address space, call that routine 
and then remap memory to its previous state again after the routine issues a far 
return. This call can occur recursively; the application code that is called can in 
turn use the Alter Map and Call service. 

VEMM does the initial remapping and stores the after-call remapping information 
on the client's stack. VDH services are used to call the application's routine and 
intercept the return. VEMM supplies the Virtual DOS Machine Manager with a 
V86 mode address to call and a VEMM handler which is invoked when the appli­
cation routine does a far return. After the routine returns, VEMM restores the 
original mapping saved on the client's stack. 

The Remap and Jump service is similar but does not require interception of an 
application routine's return or the saving of a mapping. Remapping is done and 
the CS:IP is changed to jump to the address provided by the application. 

Information calls involve at most a quick search of structures. Structures are 
maintained to provide information about handles, allocations, and VEMM capabil­
ities. Handle directory services are also provided. The number of pages VEMM 
reports as available is the minimum of the number of pages the VDM has left in 
VEMM pages and the amount the memory manager estimates is available. 



6.1.1.6 Protection 
A pseudo-random key is produced with the first protection call made by a VDM 
and also for the first protection call made after a key was returned. This key is 
given to the application which made the call that caused its generation. 
OSEnabled can be reset only by the owner of the key. The key owner can also 
return the key. OSEnabled indicates whether or not protected functions can be 
executed. The key will be generated by operations on the current time to ensure 
that the key changes, even for multiple calls between successive timer ticks. 

6.1.2 EMS Object Mapping 
Mappable windows are located by asking the Virtual DOS Machine Manager to 
provide free linear regions after other virtual device drivers have claimed the 
address ranges required for their hardware. The base window (region from 
256KB to RMSIZE) is mapped to an expanded object at VDM creation time. This 
window is used as normal memory by DOS or DOS applications, but can also be 
remapped by applications that wish to do so. 

Some applications assume mappable regions begin on 17KB boundaries, 
although this is not part of the EMS specification. OS/2 Version 2.0 follows this 
undocumented convention. 

There are multiple techniques for saving and restoring mappings in LIM. Save 
tables and copies of parts of register sets copied to application memory can be 
used to save and restore mappings. All contain a pairing of physical segment 
and <handle, logical page> P.airs. Saving of mappings is done by segment, 
handle, and logical page entries to the buffer in which the save is performed. 
For saves that save the entire mapping, the register index need not be stored. 
Mappings are restored by making a set of aliasing calls to the memory manager, 
and copying the new mapping into the active register set. 

Illegal mappings are mapped to black hole pages. A black hole page is a page 
that does not cause faults, but which need not store values written to it. Black 
hole pages can be implemented as invalid addresses that float on the bus, ROM 
pages if there is no ROM caching, a wasted physical memory page, or a 
discardable page. 

Structures returned to the client will use physical pages rather than segments 
since these are smaller for the client to store and are simpler to check for 
validity when restored. All save structures held by the V86 client use a 
checksum to detect tampering by the V86 client. 

LIM allows an application to reallocate the special handle that contains conven­
tional memory, thus allowing the expanded memory to be reused. This is sup­
posed to be done only by an operating system program that knows the special 
handle is handle 0, but may conceivably be done by any application. Note that 
applications can deallocate the DOS memory area. If they do this and fail to 
restore it, COMMAND.COM is unable to reload and the VDM will terminate. This 
behavior is identical to a native DOS environment. 

Chapter 6. Memory Extender Support 99 



100 05/2 V2.0 Volume 2 

6.1.2.1 Register Sets 
Application requests to map pages into a register set are handled by storing the 
new mappings in the register set data structure. A call is made to the memory 
manager to alias pages or set them to a black hole for unmapped pages. 

The current register set is changed to a new register set by aliasing linear 
memory through memory manager calls according to the new registers and 
changing the current register set variable. Other calls allow saving and 
restoring register sets from an application-supplied array similar to 
Save/Restore above. 

6.1.2.2 Allocating/Deallocating Objects 
Upon receiving an application request to allocate, reallocate, or deallocate an 
EMS object, VEMM transforms the request into corresponding calls to the OS/2 
Version 2.0 memory manager. Each EMS object is allocated as a separate 
memory object in a linear address range in the VDM's process address space, 
but outside the V86 mode address space. The memory manager returns the 
start address and size of each EMS object to VEMM, which then updates its EMS 
handle table accordingly. 

Allocations are made by selecting a free EMS object handle; a free handle has a 
start address of zero. VEMM then requests the memory manager to allocate the 
required memory, and records the start address and size of the object as 
returned by the memory manager. The total allocation size for each VDM and 
the total allocations across all VDMs are maintained so that the maximum allo­
cation size is not exceeded. If an allocation is of size zero, no actual allocation 
is made and a non-zero address and zero size are recorded in the handle entry. 

When a deallocation request is made, the address in the handle is changed to 0 
and the memory manager is called to free the allocation. Reallocation requests 
are serviced by passing on the request to a VDH service and recording the new 
size and start address. Since reallocations may lead to object movement, pages 
mapped from the object are unmapped before reallocation and remapped after­
ward. 

When an application reallocates to zero, VEMM has the memory manager deal­
locate the memory object, and changes the handle table entry so it has zero 
pages with a meaningless non-zero address to indicate the handle is still in use. 
Objects of size zero are allowed in- VEMM, but not in OS/2, so VEMM will free the 
memory but retain its own data for the object handle. When a non-zero reallo­
cation is performed on the object, a new object is transparently allocated. 

LIM allows an application to deallocate memory that is mapped into the current 
register set, alternate register sets, or save maps (all internal structures that 
save mappings). EMS is silent about what should happen if an application 
touches this mapped memory after deallocation. Since 8086 applications are 
generally allowed to search through the address space without harm, these deal­
located pages should be remapped to a black hole. 

Searching through all 255 SaveMaps and 15 non-current register sets is expen­
sive even with optimizations. Exhaustive search slows deallocations and 
shrinking reallocations, and keeping track of the locations of mappings slows 
mapping operations. Therefore, upon deallocation or shrinking reallocation, only 
the current register set is checked for deallocated pages. Stored registers (255 
SaveMaps and 15 RegSets for the VDM) will not be checked until they are reacti-



vated. When an invalid page is found during remapping, it is simply remapped 
to the black hole. 

6.1.3 Per-VDM Data Allocation 
Handle table entries, register sets, save tables, and handle names all require a 
good deal of space if used fully. Most of these data structures typically do not 
require their maximum possible size. For this reason, they are allocated dynam­
ically by VEMM in order to reduce memory utilization. 

Memory for a register set is allocated when clients allocate the register set. An 
array of 16 pointers will address buffers for allocated register sets; these 
pointers are null for free register sets that applications may yet allocate. 

The handle table, handle name table, and save tables are all allocated with a 
directory structure. A directory is an array of pointers to allocation blocks; each 
allocation block contains enough space for multiple entries. This allows a spe­
cific entry to be found by specifying the block and entry offset within the block. 
Since each can have at most 255 entries, both the block and offset can fit in a 
single byte. 

An allocated handle entry contains an index for its associated save table or 
name (if used). For unallocated objects, the index is zero. The smallest free 
handle will be allocated when a handle is needed, thus requiring less memory to 
be allocated for the handle table. 

The name table is kept in packed form. When an entry is freed, the last entry is 
moved into the free spot, thus reducing space requirements. 

Save table entries are larger and generally have short lifetimes. These will be 
allocated in the same way handles are allocated (that is, where the smallest 
available is allocated first). For all three of these tables, when new entries are 
needed and all blocks are full, a new block is allocated. 

6.1.4 Problems with Expanded Memory 
EMS requires a 64KB block of contiguous free memory in the address range 
640KB to 1MB for its page frame. As we can see from Figure 26 on page 93 this 
memory range is shared with BIOS, hardware buffers and device drivers. If your 
application reports that no EMS memory is available, .even if you have used the 
DOS Settings option EMS _MEMORY _LIMIT to set a non-zero value, it could be 
that a 64KB page frame location could not be found. See 6.2, "Expanded 
Memory (EMS) and Upper Memory (UMB)" on page 102 on how to resolve this 
contention. 

If a program returns an error due to insufficient expanded memory, the following 
points should be addressed: 

• Ensure that CONFIG.SYS and/or AUTOEXEC.BAT do not start unnecessary 
programs that use expanded memory. 

• Change the DEVICE= statement for VEMM.SYS in CON FIG.SYS to provide 
more expanded memory to every VDM. Alternatively, use the EMS Memory 
Size DOS Settings to allocate more memory to a specific VDM. See 
Chapter 11, "DOS Settings." 

VEMM for OS/2 was designed to install for EMS only when the DOS application 
makes its first EMS request. This was done for two reasons. First, it saves time 

Chapter 6. Memory Extender Support 101 



and memory. Second, it gives the DOS drivers or applications a chance to 
access adapters in the EMS page frame address space. OS/2 V2.0 will recog­
nize adapters with the ROM signature header, but will not see adapter 
RAM/MMPIO areas. 

VEMM determines that it has space available during DOS Session creation but a 
DOS program/driver could cause EMS to not install by accessing memory in the 
page frame before calling the EMS driver. Lotus 1-2-3 Version 2.3 was found to 
access the adapter space BEFORE calling EMS. On some machines, this caused 
no EMS to be present for Lotus 1-2-3. 

To satisfy this situation, VEMM has than been changed (after GA) to not wait for 
the first EMS call. This should clear up the EMS problems related to programs 
accessing the adapter address space (X'COOOO'-X'EOOOO'). However, it should be 
known that it is now possible for VEMM to claim areas that could actually be 
adapter address space. In general, the user should be aware of this situation. 
To resolve this we suggest to use the MEM_EXCLUDE property to force EMS not 
to use the desired address space. 

6.2 Expanded Memory (EMS) and Upper Memory (UMB) 

102 OS/2 V2.0 Volume 2 

The following section applies to both VDM DOS Emulation and DOS VMB. 

Expanded Memory Specification (EMS) is discussed in detail in Chapter 6, 
"Memory Extender Support" on page 93. One requirement of EMS is a page 
frame in real memory between 640KB and 1 MB (hex addresses X 1AOOOO 1 to 
X 1FFFFF 1

). Since IBM systems reserve addresses X 1A0000 1 to X 1BFFFF 1 for 
video, and X 1EOOOO 1 to X 1FFFFF 1 for BIOS, the EMS page frame is normally 
restricted to addresses between X 1COOOO 1 and X • EOOOO •. Th is area can also be 
used for Upper Memory Blocks, where DOS device drivers and resident pro­
grams can be loaded. This frees up valuable space below 640KB for conven­
tional DOS programs. 

Unfortunately, memory between x•coooo• and X 1E0000 1 is also needed for 
Option Adapter ROM and RAM. Indeed it can be difficult or even impossible to 
configure EMS on a system which has several intelligent adapters installed. 

There is really no solution to this problem (sometimes known as "RAM Cram") 
under DOS. However OS/2 Version 2.0 provides an elegant alternative. 

Normally a VDM inherits a memory map which mirrors the actual system hard­
ware configuration; adapter ROM and RAM addresses set by the PS/2 Reference 
Diskette (or adapter switches on non-Micro Channel systems) are mapped into 
the VDM address space and are not available for EMS or UMBs. 

But since the VDM occupies virtual memory this can easily be changed. The 
DOS Settings value MEM_INCLUDE_REGIONS parameter releases adapter 
addresses for use as EMS or UMBs. In most cases this can be set to the com­
plete X • COOOO 1-X 1 DFFFF • range. 

If a VDM uses an adapter directly (usually via a DOS device driver), the adapter 
ROM or RAM address must not be specified in MEM_INCLUDE_REGIONS. 
Addresses of adapters used indirectly by the VDM (through OS/2 Version 2.0) 
may be included. For example, the full X 1C0000 1 to X 1DFFFF 1 range may be 
included on a SCSI-based PS/2, even though the SCSI adapter ROM may occupy 



X 108000 1 to X 1DFFFF 1
• The DOS VDM does not directly access the SCSI adapter 

so it does not need SCSI ROM mapped into its address space. It can still access 
files on SCSI disks via the OS/2 Version 2.0 file system. 

Another example could be a 3270 connection adapter. Depending on the setup, 
it could occupy 8KB of memory (for example, X'DEOOO' to X'EOOOO'). If you are 
using Extended Services and Communications Manager to establish a OFT con­
nection to your /370 system, you could release this memory for use by DOS 
applications and specify this address frame in the Include Region. Of course, if 
you want to use a DOS-based emulator, such as Personal Communications/3270 
Version 2.0, you can't include this area, as the DOS application and its device 
driver want to access this adapter directly. 

Note ~----------------------------------------------------------------------------------, 

The MEM_INCLUDE_REGIONS parameter should be entered as shown above, 
using 5-digit hex addresses (not 4-digit segment addresses, as is often the 
case). Also, note that the range is inclusive - you must specify the second 
address as (for example) X 1 DFFFF 1

, not X 1EOOOO 1
• The parameter is not 

validity-checked when entered. If an invalid parameter is saved, the default 
(no include region) is used when the VDM is initialized; no error message is 
generated. 

In summary, a typical DOS VDM may have a 64KB EMS page frame and 64KB of 
UMBs (or 128KB of UMBs) regardless of the hardware adapters installed. Such a 
configuration is not possible under PC DOS. 

6.3 Extended Memory Support 
The OS/2 Version 2.0 Multiple Virtual DOS Machines architecture provides 
support for the LIMA Extended Memory Specification Version 2.0 specification, in 
a similar manner to that provided for LIM EMS Version 4.0, using normal system 
memory and emulating XMS functions. The following discusses how MVDM 
support for the extended memory specification has been implemented. 

The extended memory specification manages three different kinds of memory: 

• High Memory Area (HMA) 

• Upper Memory Blocks (UMBs) in the Upper Memory Area (UMA) 

• Extended Memory Blocks (EMBs). 

Each of these areas is discussed as they relate to the implementation of 
expanded memory support for VDMs in OS/2 Version 2.0. Figure 28 on page 104 
below shows where these memory areas or blocks reside in memory. 

Chapter 6. Memory Extender Support 103 



104 OS/2 V2.0 Volume 2 

--~~--~---------- Topoflflemory 

··'."'..·""··'.".-'.·~:.'.~·:'."'. '.·:':"~:·'."'. '.·~·.;~.:·'."'. ;.~.;.~.·.7.··'."."~·::'.":>~-·:~. '.". •··•· •. ~ .• - . ·-:~ 

~ain~~:lmei>'.J~,~~~, Memory above JMB+64KB 
is available for use 

. ······~ ......... ,, .... ·.······· ......... .,.. ..... . as Extended Memory Blocks 
~~~·!'~!~·~~'fle!Y.!'.~~~ 

~!!l]lii'~ii~lll~''l~\kftr'' :+UKB
----------~·~~---------- Upper Memory Blocks
Upper Memory Block might exist anywhere

Video RAM Buffer between 640KB and lMB

640KB

OKB

Figure 28. Memory Map of Areas Supported by Extended Memory

For more information regarding the Expanded Memory Specification, refer to
Chapter 9, "DOS Protected Mode Interface" on page 181.

The OS/2 Version 2.0 LIMA XMS emulation provides the following functions:

• Implements all LIMA XMS Version 2.0 functions.

• Provides each VDM with a separate XMS emulation. Each VDM has its own
High Memory Area, Upper Memory Blocks and Extended Memory Blocks;
hence features such as interprocess communication work as if each VDM
was running on a different real 80386. A VDM therefore cannot affect the
availability of extended memory objects in other VDMs or access memory
owned by other VDMs.

• Provides configurable limits for how much XMS memory is available across
all VDMs as well as a limit per-VDM. The DOS Settings feature can override
the per-VDM limit, subject to the constraint given by the overall limit, and
can disable XMS altogether for a particular VDM if its installation conflicts
with the program being run in the VDM.

• XMS can be removed and the operating system can run without loading XMS
in any VDM session.

Applications which use extended memory may use the XMS support in the same
manner as in a native DOS environment. In addition, portions of the DOS oper-

ating system, device drivers and TSR programs may be loaded into extended
memory, thereby conserving memory within the DOS application address space
for application use.

Note that older applications which access extended memory directly, rather than
through an extended memory manager, may not be compatible with the XMS
support under MVDM. For example, Microsoft Windows Version 2.x cannot make
use of extended memory in a VDM.

6.3.1 Extended Memory Manager
XMS services are implemented under MVDM using a virtual device driver known
as the Virtual Extended Memory Manager (VXMM) which is represented by the
file VXMS.SYS (VXMS). VXMM provides a separate XMS emulation for each
VDM by placing most VXMS control structures in a per-VDM data area outside
the V86 mode address space. The amount of memory available to a VDM, the
number of handles, and the existence of Upper Memory Blocks (UMBs) are all
configurable parameters which may be altered on a per-VDM basis.

The VXMM hooks interrupt vector 2Fh in order to announce its presence to appli­
cations. It also provides a V86 stub device driver (XMM 3X device driver), which
indicates to DOS applications that XMS is available, but more importantly acts as
a V86 mode interface between the application and the VXMM proper.

VXMM depends heavily upon the memory manager. XMS object allocation real­
location, and deallocation are accomplished by requesting corresponding ser­
vices from the memory manager. When an application requests the allocation of
a block of extended memory, for example, VXMS asks the memory manager to
allocate a memory object in linear memory outside any VDM. Reallocation and
deallocation are handled similarly.

All EMS functions are executed by calling the XMS Control Function, the address
of which can be obtained by a call to INT 2Fh. Arguments are passed in regis­
ters.

' ' ' -.. ;.
\>•• .. ·w~ Managi.r'.

• k

I
. ; VDU ··.. I
;,,.~~14--+---.

•.. vxus· ·

~
VXMS.SYS

Figure 29. Extended Memory Manager Control Flow

Chapter 6. Memory Extender Support 105

106 OS/2 V2.0 Volume 2

During the initialization of the VDM the VDM Manager loads and initializes the
XMM DOS stub device driver into the VDM address space. As soon as there is a
XMS request the VDM Manager loads the the XMS virtual device driver VXMS.

a. The VDM Application issues a INT 15h service request. VXMS directly
hooks INT 15h for function 87h and 88h. It does not provide any services
through these calls but makes sure that no program tries to use
extended memory directly. INT 15h function 88h will respond that no
normal extended memory is available. Programs that want to use
extended memory directly by using INT 15 and RAMdisks (electronic
disks) using INT 15 won't work. The MS DOS RAMDRIVE for DOS 5.0
does work because it uses XMS instead of INT 15.

b. The VDM application issues INT 2Fh to determine if an XMS driver is
installed.

c. The VDM application issues INT 2Fh to determine if an XMS driver is
installed.

d. Next the VDM application issues a INT 2Fh to obtain the address of the
XMS driver's control function. As soon as the VDM Application got the
address of the XMS driver's control function it can use any of the func­
tions and call the XMM DOS stub device driver directly.

e. The VDM application calls the XMS driver's control function to a~cess all
of the XMS functions.

f. The XMM DOS stub device driver calls breakpoint traps by the VXMM
Control Function.

g. The VDM Manager initialization, creation, termination calls for
XMS-Objects. The VDM Manager traps the VDM application's INT 15h
service request and routes it to VXMS as well as XMS control function
requests for XMS memory.

h. The VXMS requests corresponding services from the VDH services:

• Creation/termination handler registration

• INT 67h prehooking

• Linear address reservation

• Memory management

• Obtaining configuration information.

i. The result is returned.

Like VEMM and unlike most other virtual device drivers, VXMS.SYS does not
have a corresponding physical device driver. Instead, it depends heavily upon
the OS/2 Version 2.0 memory manager. XMS object allocation, reallocation and
deallocation are accomplished by requesting corresponding services from the
operating system's memory manager. For example, when an application
requests the allocation of a block of extended memory, VXMM requests the
memory manager to allocate a memory object in linear memory outside the V86
mode address space. Reallocation and deallocation are handled similarly.

6.3.1.1 Structure
The VXMS.SYS module consists of:

1. An initialization component that initializes global structures and reads the
global configuration at boot time.

2. A creation component that initializes per:-VDM structures, reads per-VDM
configuration values, and installs the DOS device driver stub when a VDM is
created.

3. A router component that receives control from the control function contained
in the stub device driver, and dispatches the call to an appropriate service
routine. In addition, the router function hooks interrupt vector 15h upon the
first non-version-query call to VXMM, as required by the specifications, in
order to:

a. Preserve the state of the A20 line across block copies (service AH= 87h).

b. Respond to service AH= 88h (Query Extended Memory) by reporting that
there is no extended memory available.

4. A number of.service routines, which perform the required XMS functions.

Applications request XMS services by calling a subroutine contained within the
VXMM, known as the Control Function. The VXMS virtual device driver hooks
interrupt vector 2Fh in order to announce its presence to applications.

6.3.1.2 Initialization
VXMS.SYS may be loaded at system initialization time by using a DEVICE=
statement in CONFIG.SYS, as shown below:

DEVICE=C:\OS2\MDOS\VXMS.SYS 8192, 2048

This statement should be placed in CONFIG.SYS after the DEVICE= statement
for VEMM.SYS, since VXMM queries VEMM to ensure that no conflicts occur in
memory allocation.

The DEVICE= statement uses parameters to specify the total amount of avail­
able XMS memory, and the default limit for each VDM. In the above example,
the overall limit is set to 8MB and the limit for each VDM is set to 2MB.

The virtual device driver VXMS.SYS can be configured as follows.

device = {path} vxms.sys {options}

The options are of the form "/keyword =value":

/XMMLIMIT=g,I Sets the global (system-wide) maximum memory usage of
the VXMS.SYS driver to g kilobytes, and a per-VDM
maximum of i kilobytes. These values should be large
enough to accommodate an automatic 64KB allocation in
each VDM for the HMA. Values are restricted to the range
0 .. 65535 (= 64Meg).

The values of g and i are rounded up to the nearest multiple
of 4.

Specifying i = O suppresses XMS installation in all VDMs
unless specifically overridden by a VDM-specific configura­
tion string. (See below.)

Default: /XMMLIMIT=4096,1024

Chapter 6. Memory Extender Support 107

108 OS/2 V2.0 Volume 2

/HMAMIN=d Sets the mm1mum request size (in kilobytes) for an HMA
request to succeed. Values are restricted to the range
0 .. 63.

Default: /HMAMIN =O

/NUMHANDLES=n Sets the number of handles available in each VDM. Each
handle occupies eight bytes. Values are restricted to the
range 0 .. 128.

/UMB

/NOUMB

Default: I NUMHANDLES=32

Instructs XMM to create Upper Memory Blocks

Default: off

Instructs XMM not to create Upper Memory Blocks

Default: /NOUMB

All other keywords are ignored. Case is ignored.

These options affect all VDMs, but can be overridden by a VDM's configuration
strings. The same option names are available to VDMs (without the prefixing
slash), except that XMMLIMIT only takes one numeric argument, corresponding
to the value i above. The value g above cannot be changed once XMM is
installed.

If a value of i = 0 was specified on the DEVICE= line, to create a VDM with XMS
installed, specify a configuration string "XMMLIMIT" with a non-zero value. Con­
versely, to have no XMS installed, specify a configuration string "XMMLIMIT"
with a value of zero.

If UMBs are being used, it is crucial that VXMS.SYS be the last device driver
loaded, for VXMS.SYS reserves all available addresses between 640KB and
1Meg for use as UMBs. Hence, any device drivers which reserve pages in that
region (for example, VEMM) will not be able to install.

VXMS.SYS will fail to install if some other device driver has already reserved the
region from 1MB to 1MB+64KB.

The overall limit comprises the only relationship between XMS memory objects
in different VDMs, and is imposed to prevent XMS from acquiring all available
memory. The default overall limit is 4MB, and the default limit for each VDM is
1MB. The default limit for each VDM can be overridden by installing an applica­
tion on the desktop and choosing to specify the XMS size with the DOS Settings
feature (see Chapter 11, "DOS Settings").

Setting the overall limit to zero disables XMS in all VDMs regardless of the
per-VDM value. Setting the default limit for a particular VDM to zero disables
XMS in all VDMs unless their start list entries specify a non-zero XMS size.
Setting the XMS size to zero for an entry in the start list disables XMS for that
application's VDM only. Novice users need never change the default values.

In addition to memory sizes, the number of handles and the presence or
absence of Upper Memory Blocks are all configurable parameters which may be
altered on a per-VDM basis using the DOS Settings feature.

Upon installation, an initialization routine within VXMS.SYS supplies the
addresses of the VXMS.SYS VDM-creation and close routines to the Virtual DOS
Machine Manager.

6.3.1.3 VDM Creation
Upon creation of a VDM, a VDH service is used to get the maximum XMS size for
that VDM. This will return a string if the program's entry on the desktop has an
associated VXMS size. If the per-VDM size is not defined, the default retrieved
from CONFIG.SYS at initialization time will be used. If VXMS size is not 0, the
following steps are then performed:

1. Upper Memory Blocks (UMBs) are found and reserved.

2. The High Memory Area (HMA) is reserved.

3. The real mode device driver stub is loaded.

4. The handle table and UMB list are initialized.

To find an available linear region to use for UMBs, VXMS requests VDH services
to locate the largest free address range in the V86 mode address space above
640KB. VXMS reserves all the pages returned until the call fails.

VXMS requests the OS/2 Version 2.0 memory manager to allocate the 64KB
region immediately above 1 MB for use as the High Memory Area. The way in
which this is accomplished depends upon a number of variables; see 6.3.2, "High
Memory Area {HMA)" on page 110 for further details.

Waiting until creation time to reserve this memory allows virtual device drivers
with actual hardware to claim their addresses first, since VXMS's UMBs can be
placed at any available address. A consequence is that the space is reserved
only for the VDM being created; it could be in a different location or be a dif­
ferent size for other VDMs.

VXMS then arranges for the loading of a stub device driver in the VDM. This
driver serves three purposes:

• The device driver header can be read by an application searching for the
name of the real mode VXMS driver. It responds to all device requests with
"done" without actually doing anything.

• The device driver's initialization code attaches VXMS to interrupt vector 2Fh.
Attaching to vector 2Fh must be delayed until after the virtual DOS environ­
ment has completed hooking all of its interrupts.

• The device driver contains the VXMS control function; calls to XMS services
are not performed by calling a software interrupt, but rather by calling a V86
mode far subroutine called the control function. Moreover, XMS specifica­
tions require the control function to have a particular physical layout. Hence,
the control function is placed in a DOS device driver so that it may have the
layout required by the specifications and can transfer control to the virtual
device driver code (the router function).

The stub device driver is used to transfer control to the router function. A DOS
application invokes XMS functions by calling the control function as a far proce­
dure, the address of which can be obtained by a different INT 2Fh call. In
response to such a request, the INT 2Fh interrupt handler returns the address of
the control function in the device driver stub. The Control Function then calls the
protected mode VXMS entry point, and the router obtains control.

The interrupt hook cannot be performed by the VXMS creation function, since the
virtual DOS environment does not establish its interrupt hooks until after all
virtual device driver creation code has completed. DOS device driver initializa­
tion code is called after the interrupt vectors are set; therefore delaying the

Chapter 6. Memory Extender Support 109

hooking of vector 2Fh until DOS device driver initialization time succeeds in
hooking the vector.

6.3.1.4 Routing
The router receives control from the control function within the stub device
driver, as described above. After checking that the XMS service request is valid,
the router calls the appropriate protected mode service routine, which in turn
requests the OS/2 Version 2.0 memory manager to allocate and manipulate XMS
objects.

Information calls involve at most a quick search of structures. The number of
kilobytes VXMS reports as available is the minimum of the number of kilobytes
the VDM has left before it hits its per-VDM XMS memory usage limit, the number
of kilobytes all VDMs have left before hitting the system-wide memory usage
limit, and the amount the memory manager estimates is available.

6.3.2 High Memory Area (HMA)
VXMS requests that the operating system's memory manager reserve the region
of memory between 1 MB and 1 MB + 64KB, so that it may use that region for
simulating the A20 address line wraparound. This region of memory is called
the High Memory Area (HMA).

When the processor's A20 address line is disabled, the HMA is mapped to the
first 64KB of conventional memory. When the A20 address line is enabled, the
mapping depends on whether the HMA is in use. If the A20 address is not
enabled, the HMA is mapped to black hole memory. Black hole memory can
safely be accessed by a VDM, but values written to it cannot be retrieved (ROM
or invalid physical addresses, for example). If the HMA is in use, VXMS requests
the memory manager to alias a linear region inside the HMA to a memory object
outside the V86 mode address space, which has been specially allocated for this
purpose.

DOS Emulation code may reside in the HMA; this is specified by including the
following statement in CONFIG.SYS:

DOS=HIGH

OS/2 Version 2.0 installation places this statement into CONFIG.SYS as a default,
and the operating system is thus installed such that DOS Emulation runs in the
HMA. The only drawback to using the HMA for DOS Emulation code is that
applications are prevented from using the HMA. This is not usually a serious
problem, since few programs require use of the HMA. It is recommended that
DOS Emulation code is loaded in the HMA as this will free base memory for
application use.

Note that if XMS size is less than 64KB for a VDM, the HMA is not emulated. All
requests for the HMA will fail.

6.3.3 Upper Memory Blocks (UMBs)

110 OS/2 v2.o Volume 2

VXMS attempts to reserve all unreserved pages in the region of memory
between 640KB and 1MB; this region is often termed the Upper Memory Area
(UMA). The address ranges reserved in this manner will be used to simulate
Upper Memory Blocks (UMBs). Note that this allocation scheme requires that
VXMS be the last device driver loaded; any device drivers loaded after VXMS
will not be able to reserve any addresses in the UMA.

When a UMB is not in use, its corresponding range of addresses is mapped to a
black hole. When it is in use, the range of addresses corresponding to the LIMB
being allocated is mapped to a memory object outside the V86 mode address
space which is allocated for this purpose. This is similar to the technique used
to map objects in the HMA.

VXMS uses a delayed LIMB allocation scheme. Unlike conventional XMS imple­
mentations, no UMBs are allocated until the first LIMB request. Upon receiving
the first UMB request, VXMS queries the UMB region to determine which
address ranges are available, and reserves those ranges. This technique sup­
ports memory mapped devices which lie in the same region from which UMBs
are taken. Advanced users can use Include/Exclude Regions in the DOS Settings
feature to tell VXMS which ranges are not to be used.

Note that by default, all UMBs are owned by the DOS Emulation kernel and are
not available for application use. If an application wishes to use UMBs, the DOS
= NOUMB statement must be included in CONFIG.SYS or the application can't
get any UMB because they are already used by DOS. Alternatively, the owner­
ship of UMBs for a single VDM may be enabled or disabled using the DOS owns
UMBs setting; see Chapter 11, "DOS Settings."

VXMS allows coexistence with EMS services, in that it queries VEMM before
reserving address ranges, so that VEMM may reserve the space it requires for
its frame. As such, it is possible that an application using both EMS and XMS
services will execute and function correctly.

6.3.3.1 DOS Device Drivers
DOS device drivers may be loaded into UMBs, thereby conserving memory
within the 640KB DOS application space; this support is functionally compatible
with that provided by DOS 5.0. Loading a DOS device driver into a LIMB requires
a number of additional statements in CONFIG.SYS; an example is given in
Figure 30.

DEVICE = C:\052\VXMS.SYS
DEVICEHIGH = SIZE = 1A00 C:\052\MDOS\ANSI.SYS
DOS = UMB

Figure 30. CONFIG.SYS - Loading Device Drivers into UMBs

The first statement causes the VXMS virtual device driver VXMS.SYS to be
loaded at initialization time. The second statement causes the ANSI.SYS device
driver to be loaded into a UMB. The SIZE parameter ensures that the device
driver is loaded into a UMB of the required size for its operation; if a UMB of
this size cannot be allocated, the device driver is automatically loaded into low
memory.

For DOS device drivers loaded into a specific VDM using DOS Device Drivers in
the DOS Settings feature, the SIZE parameter is also supported. Specifying a
SIZE parameter in DOS Settings will cause the device driver to be loaded into a
UMB if possible; if UMBs are not present or if a sufficiently large LIMB cannot be
allocated, the device driver will be loaded into low memory.

Note that device drivers are always loaded into the largest available LIMB;
hence, in order to achieve efficiency in the utilization of UMBs, device drivers
should be loaded in order of size, from largest to smallest. This is achieved by

Chapter 6. Memory Extender Support 111

placing the DEVICE= statements in CONFIG.SYS, or names of the device drivers
in the DOS Device Drivers setting, in that order.

The third statement allocates ownership of LIMBs to the DOS kernel, and pre­
vents applications from accessing LIMBs. This statement sets the default for all
VDMs; if an application running in a VDM requires LIMBs, the default may be
overridden for that VDM using the appropriate DOS Settings function.

Note that some device drivers may not function correctly in a LIMB if they rely on
having all memory above them available for their use. If incorrect operation of a
device driver is experienced in a LIMB, the value of the SIZE parameter should
be increased by modifying the DEVICEHIGH statement in CONFIG.SYS or by
altering the appropriate DOS settings for the VDM.

6.3.3.2 TSR Programs
TSR programs may also be loaded into LIMBs in order to conserve DOS applica­
tion space. TSR programs such as APPEND, which are loaded by default when a
VDM is started, are loaded into a LIMB where possible, thereby saving approxi­
mately BKB of memory. Loading a TSR program into a LIMB is performed from
the DOS command line or from a batch file using the LOADHIGH command, as
shown in Figure 31.

LOADHIGH progname <program parameters>

Figure 31. LOADHIGH Command - Loading TSRs into UMBs

Note that parameters for TSR programs are supported by the LOADHIGH
command.

TSR programs which rely on having all memory above their location available for
their use may not execute correctly when loaded in a LIMB. In such cases, the
TSR must be loaded into low memory.

6.3.4 Extended Memory Blocks (EMBs)

112 OS/2 V2.0 Volume 2

Extended Memory Blocks (EMBs) reside in the region above 1 MB, and are there­
fore not directly accessible from DOS applications running in V86 mode. The
only way a DOS application can access EMBs is by using the VXMS service
Move Extended Memory Block. VXMS then requests the memory manager to
remap the EMB into low memory, from which it may then be accessed by the
application. Each Extended Memory Block is allocated as a separate memory
object with linear addresses outside the V86 mode address space.

Note that memory requests for LIMBs and EMBs are made by applications in
units of paragraphs and kilobytes, whereas the memory manager allocates in
4KB pages. VXMS rounds all allocation requests up to the nearest integral page
multiple before passing the request on to the operating system's memory
manager.

6.3.5 Allocating/Deallocating Memory
Application requests to allocate, reallocate, or deallocate Extended Memory
Blocks are translated into corresponding call to the memory manager. A free
handle table entry, indicated by a start address of zero, is selected and updated
to contain the start address and size of the memory object. The total XMS
memory size for the system and for each VDM is checked at this point to ensure
that these limits are not exceeded.

Reallocation requests are serviced by passing the request to a VDH service and
recording the new size and start address. When an application reallocates to
zero, VXMS requests the memory manager to deallocate the memory object, and
changes the handle table entry so it has zero pages with a sentinel non-zero
address to indicate the handle is still in use. Objects of size zero are allowed in
VXMS, but not in OS/2, so VXMS will deallocate but retain its own data for the
handle. When a non-zero reallocation is performed on an object of size zero, a
new object is transparently allocated by the memory manager.

All allocations (and reallocations) are rounded up to the nearest integral page
multiple. Since there is no facility for telling the applications how much memory
was actually reserved, the extra memory is wasted.

6.3.5.1 High Memory Area
There is only one HMA per VDM, so a single pointer suffices to manage the state
of the HMA. If the pointer is zero, then the HMA is not in use. Otherwise, the
pointer contains the linear address of the block of memory being used to simu­
late the HMA. Whether the HMA region is mapped to this block of memory is
determined by the state of the simulated A20 line; see section 6.3.2, "High
Memory Area (HMA)" on page 110.

When a request for the HMA is made, the pointer is tested against zero. If the
pointer is non-zero, then the HMA is in use, and the request fails. Otherwise,
the pointer is set to a newly allocated 64KB block of memory, and the HMA
region is mapped to this block if the A20 address line is active.

When the HMA is released, the block of memory is freed, and the pointer is reset
to 0. The HMA is then mapped to a black hole if the A20 address line is active.
Once an HMA is freed, all information previously stored therein becomes invalid.

6.3.5.2 Upper Memory Blocks
For UMB allocation, a linked list of reserved address ranges is maintained. This
list contains information about the start address of each reserved range, the
base address of the physical memory block allocated and mapped into address
range, and the length of the block. If the base address is zero, then the address
range is not in use and is instead mapped to a black hole.

Allocations are made by searching through the list to find an address range for
which the base address is zero and which is large enough to satisfy the request.
If the address range exceeds the required size, it is split into two parts and a
new object is allocated to hold the unused portion.

Deallocations are made by searching the list to find a structure whose starting
address matches the one being deallocated. The physical memory into which
the address range was mapped is freed, and the address range is instead
remapped to a black hole. Finally, the newly freed object has its base address

Chapter 6. Memory Extender Support 113

set to zero to signify that it is not in use. It is then coalesced with any adjacent
free blocks.

6.3.5.3 Extended Memory Blocks
Each VDM has a fixed table of up to 255 EMB handles, the exact number of
which is under user control. Each entry of the table describes a single Extended
Memory Block.

Each entry contains a field which records the number of active locks on the
Extended Memory Block. Locking a handle prevents the corresponding Extended
Memory Block form being reallocated or freed, and also prevents the base
address from changing. As part of its function, the lock subfunction returns the
32-bit base address.

If an allocation is of size zero, no physical memory allocation is requested, but a
sentinel non-zero address and zero size are recorded in the handle entry. The
lock count for the newly created Extended Memory Block is reset to zero.

When a deallocation request is made for an Extended Memory Block with zero
lock count, the address in the handle is changed to zero, and the memory
manager is called to free the memory.

6.4 Problems with Extended Memory

6.5 Summary

114 05/2 V2.0 Volume 2

If an application in a VDM encounters an error due to insufficient extended
memory, the following points should be checked:

• Ensure the overall limit and the limit for the VDM are large enough to accom­
modate the amount of extended memory required by the application.

• Ensure that the DEVICE= statement for VMXS.SYS is in CONFIG.SYS.

• Ensure that the expanded memory driver VEMM.SYS, is not using all of the
available memory. The amount of memory allocated to VEMM may be
reduced by changing the parameters of the DEVICE= statement for VEMM to
something less than that specified (or less than the default which is 4MB). If
necessary, VEMM command may be disabled by removing or remarking out
the DEVICE= statement in CON FIG.SYS.

• Ensure that CONFIG.SYS and/or AUTOEXEC.BAT do not start unnecessary
programs that use extended memory.

If a program does not start and displays a message such as High Memory Area
(HMA) already in use, the HMA may be freed by disabling the DOS= HIGH state­
ment in CON FIG.SYS. If the statement is DOS= HIGH, UMB then the statement
should be changed to DOS= UMB.

MVDM provides support for applications which use the LIM EMS Version 4.0 and
LIMA XMS Version 2.0 memory extenders to access more than 640KB of
memory. The memory requested is allocated from OS/2 Version 2.0 system
memory, and is managed by the operating system kernel; special hardware is
not required. Each VDM has its own copy of EMS or XMS memory objects, and
the objects of one VDM are protected from access by another VDM.

Support for these memory extenders is provided by two virtual device drivers,
VEMM.SYS and VXMS.SYS. Unlike most virtual device drivers, these drivers do
not have corresponding physical device drivers, but access the operating sys­
tem's memory manager to handle memory allocation requests from applications.

MVDM supports the loading of DOS device drivers and TSR programs into XMS
Upper Memory Blocks, in order to reduce memory consumption below the 640KB
line, thereby leaving more base memory for applications. Loading of these pro­
grams into UMBs is supported by the DEVICEHIGH statement in CONFIG.SYS and
the LOADHIGH command included in AUTOEXEC.BAT or executed from the
command line.

Chapter 6. Memory Extender Support 115

116 OS/2 V2.0 Volume 2

Chapter 7. Installing and Migrating Applications

Installing DOS and Windows applications under OS/2 V2.0 is in most cases very
similar to installing them in their native environments. However, since OS/2 V2.0
is a true multitasking operating system, we should ensure that the installation
programs do not introduce incompatibilities with existing programs. The flexi­
bility in tailoring the virtual DOS machine environment for these programs, also
gives us an opportunity to easily tune DOS settings to suit our needs.

OS/2 V2.0 has a utility to help users place their application icons onto the
desktop after they have been installed. The utility uses information stored in a
migration database that is shipped with OS/2 V2.0.

Systems administrators can use another utility to create their own migration
database to install their corporation's unique applications.

This chapter discusses the installation of DOS and Windows applications under
OS/2 V2.0. It also shows how to use the application migration utilities shipped
with OS/2 V2.0.

We describe the use of the migration program in this chapter, and show an
example of how to use the PARSEDB utility to create a customized migration
database.

7.1 Installing DOS Programs
Application installation methods vary widely in the DOS world. Some installa­
tions involve nothing more than copying the software from diskette to the hard
disk. In more complex applications, the install procedure may check the work­
station configuration (both hardware and software), implement copy protection
and modify system files.

For most DOS applications, installation under OS/2 Version 2.0 is simply a matter
of starting a DOS full-screen or windowed session and following the instructions
supplied with the package as if the installation was taking place on a DOS
system. However, some may not work correctly because of the special require­
ments of the installation program.

7.1.1 General Installation Procedure for DOS Programs
To install a new DOS program:

1. Read the installation instructions for the DOS program.

2. Select the OS/2 System icon.

3. Select the Command Prompts icon.

4. Select the DOS Full Screen icon.

5. Type the installation command as specified in the installation instructions on
the command prompt.

For example:

a: i nstal 1

6. Follow the instructions on the screen.

©Copyright IBM Corp. 1992 117

7. When installation is complete, close the Command Prompts folder.

To add an icon to the desktop, you can use either:

• The Program template in the Templates folder (refer to Chapter 10, "Running
DOS Applications.")

• The Migrate Applications program (refer to 7.5, "Migrating Programs.").

7.1.2 Installation Programs with Special Requirements
Some DOS application installation programs will not run properly in the OS/2
V2.0 virtual DOS machine, or will not install the program correctly. Some of the
possible problems are as follows:

1. The installation program attempts to verify the version of DOS that is
running, and receives a response that it cannot understand. One example is
Lotus 1-2-3 Release 3.1 +.
The OS/2 V2.0 virtual DOS machine environment can be customized to return
a DOS version in response to the installation program query and thus bypass
the problem. This is accomplished by changing the DOS_Version parame­
ters in the DOS Settings facility, which is accessed by pressing the DOS Set­
tings push button on the Session page of the Settings notebook.

The DOS Settings facility and the available settings are described in detail in
Chapter 11, "DOS Settings."

2. The copy protection or user registration scheme implemented by the applica­
tion bypasses DOS and directly accesses the disk. The OS/2 V2.0 system
will not allow the installation program to do this, since it may interfere with
other applications, and will terminate the virtual DOS machine in which it is
running.

It may therefore be necessary to perform the installation in a native DOS envi­
ronment by rebooting the workstation with a DOS boot diskette. When the instal­
lation is complete, the workstation can be rebooted under OS/2 V2.0 and the
application added to the Workplace Shell.

7.2 Planning Hard Disk Partitions

118 05/2 V2.0 Volume 2

If the workstation is booted from a DOS diskette in order to perform the DOS·
application install, the installation is restricted to those logical drives that have
been formatted as FAT. This is because logical HPFS drives cannot be accessed
in a native DOS environment.

When the system is booted with DOS 5, HPFS drives are not assigned drive
letters and are invisible to the user. If DOS 4.01 with CSD UR35284 is used to
perform the boot, drive letters will be assigned to all drives, whether HPFS or
FAT. However, you cannot access the files on the HPFS drives. With earlier
versions of DOS, even FAT drives that lie beyond the first HPFS drive will not be
assigned drive letters.

Some installation programs store directory information into control files that are
used at run time. For example, WordPerfect** 5.1 records the path to its subdi­
rectories. On a hard disk with both FAT and HPFS logical drives, this can cause
the installation program run in native DOS to record drive assignments that are
wrong when the application is started from a virtual DOS machine.

Consider the following example of a hard disk setup for dual boot or with Boot
Manager:

Table 5. Drive Letter Assignment. This table shows the way drive letter assignments
may differ on a mixed FAT and HPFS hard disk when booted under DOS and OS/2
Version 2.0

PartitionfType Drive letter under OS/2 Drive letter under DOS

Primary Partition 1, Boot none none
Manager

Primary Partition 2, FAT C: C:

Extended Partition, HPFS D: none

Extended Partition, FAT E: D:

Note that FAT drive in the extended partition appears as drive E: to the OS/2
Version 2.0 virtual DOS machine, but appears as drive D: when booted under
DOS. Consequently, if the DOS application is installed on that partition when the
system was booted under DOS, the drive letter it records in its control files will
be D:. When the system is rebooted under OS/2 V2.0 and the application is run
from a virtual DOS machine, the application will be looking to drive D:, which
under OS/2 V2.0 is assigned to the HPFS drive of the extended partition. This
will cause the application to miss the information it is seeking.

The user may be able to change the control file information and correct the error
through the application. However, if the system is booted from DOS and the
application is started, it will again be looking for the wrong drive.

In order to avoid this confusion we recommend that HPFS logical drives be
placed last. In the above example, the FAT and HPFS logical drives in the
extended partition should be transposed. This will allow the drive letters for the
FAT partitions to be the same regardless of whether the workstation is booted
from DOS or OS/2 Version 2.0.

More details on hard disk management can be found in Chapter 4 of the OS/2
2.0 Installation Guide.

7.3 Installing Windows Programs
Windows programs installation are usually performed from the DOS command
prompt, or the Windows Program Manager.

To install a new Windows program:

1. Read the the program installation instructions.

2. To install the program from a DOS command prompt:

a. Select the OS/2 System icon.

b. Select the Command Prompts folder.

c. Select DOS Full Screen.

d. Enter the installation command as specified in the installation
instructions.

For example:

a:setup

Chapter 7. Installing and Migrating Applications 119

e. Follow the instructions on the screen to complete the installation.

3. To install the program from the Program Manager:

a. Select the OS/2 System icon.

b. Select the Command Prompts folder.

c. Select WIN-OS/2 Full Screen.

d. Select Run from the File pull-down on the action bar.

e. Enter the installation command as specified in the installation
instructions.

For example:

a:setup

f. Follow the instructions on the screen to complete the installation.

To add an icon to the desktop, you can use either:

• The Program template in the Templates folder (refer to Chapter 10, "Running
DOS Applications.")

• The Migrate Applications program (refer to 7.5, "Migrating Programs.").

If you use the Migrate Applications option, the program icon will be placed in the
Windows Programs folder or the Additional Windows Programs folder on the
desktop.

The Migrate Applications program always sets up Windows programs to run in a
WIN-OS/2 window session if possible. WIN-OS/2 window sessions cannot be
used for programs that have to be run in real mode, such as Windows 2.0 pro­
grams. Therefore if you use the Migrate Applications utility on Windows 2.0 pro­
grams, open the Settings Notebook to the Sessions page and select the
WIN-OS/2 full screen radio button.

7.4 AUTOEXEC.BAT and CONFIG.SYS

120 0512 V2.0 Volume 2

The installation program for a DOS or Windows application may alter the
AUTOEXEC.BAT (usually to modify the PATH statement) and CONFIG.SYS (to
modify the FILES and BUFFERS statements or add a DEVICE statement). Usually
the copies edited are the ones found in the root directory of the OS/2 V2.0 boot
drive. If the option is given the user should not allow the installation program to
make the modifications before reviewing the changes. We recommend that you
back up both of these files prior to running an installation. After installation,
inspect the date and time stamps of the files to see if they have been modified.

The most common change made to the AUTOEXEC.BAT file is to the PATH state­
ment, so that the program being installed can be started from any subdirectory.
The function of the PATH statement can be provided in a virtual DOS machine by
using the Path and file name and Working directory fields of the Program page of
the Settings notebook.

Since the CONFIG.SYS is used for every virtual DOS machine, the device driver
that an installation program adds will be loaded for all VDMs and consume
system resources unnecessarily. We recommend that when the DOS application
is added to the Workplace Shell the device driver statement be added via the
DOS_DEVICE setting in the DOS Settings facility. This setting is accessed by

pressing the DOS Settings push button on the Session page of the Settings note­
book.

7.5 Migrating Programs
OS/2 V2.0 provides a migration database (DATABASE.DAT) that contains param­
eters and settings for commonly used DOS, Windows and OS/2 programs. This
binary database file is used by the Migrate Applications program to place the
program icons onto the desktop and customize their Settings notebooks to the
recommended values.

~~~....;....;..~r=a~m=s----------~-----------1~ 
Drives Database Used for Find Option 

lc:\os2\install\database.dat 

Migrate------------------. 

IJ.QOS programs 

Remove the highlighting from any programs you do not want to migrate. 
Select 11Add Programs ... 11 to see a list or additional programs. 

Applications 

.Migrate Add programs ... Cancel Help 

Figure 32. The Migrate Applications Windows 

To use the Migrate Applications program, follow these steps: 

1. Locate and select the OS/2 System icon on the desktop. 

2. Select System Setup. 

3. Select Migrate Applications. 

The Find Programs window appears. The Database Used for Find Option 
field displays the default database (\082\INSTALL\DATABASE.DAT). The 
Migrate Applications program compares programs on the hard disk with the 
list of programs in the database and places any that match in a DOS, OS/2, 
or Windows programs folder on the desktop. 

Chapter 7. Installing and Migrating Applications 121 



4. From the Drives list, deselect the drives which should not be searched. The 
default is to search all drives. 

5. Deselect the types of programs that should not be migrated in the Migrate 
type check boxes. The default is to migrate all the listed programs. 

6. Select Find.... The Migrate Programs window appears. Programs are listed 
in the Applications list box. 

7. If your program is not on the list: 

a. Select the Add Programs... push button. The Add Programs window 
appears. Programs are listed in the Available Programs list. 

b. Highlight a program. The Working directory and Program title fields are 
filled in. Type a new title if required. 

c. Type the appropriate parameters for the selected program in the Param­
eters field. 

d. Select the types of programs to migrate in the Program type field. The 
Migrate Applications program creates the Additional Programs folders 
based on the types of programs specified. 

e. Select Add. The program moves to the Selected Programs list. 

f. Select OK. The Migrate Programs window appears. 

8. Select Migrate to migrate all the selected programs. When migration is com­
plete, the Find Programs window reappears. 

9. Select Exit. 

The Migrate Applications program creates a DOS Programs folder and a 
Windows Programs folder. The programs in these folders have the recom­
mended pre-selected settings that work best for your programs' performance. 

If the Add Programs option was used, an Additional DOS Programs folder and an 
Additional Windows Programs folder will also be created. The programs in these 
folders have default settings. If these programs do not run correctly, specify 
other settings. See Chapter 11, "DOS Settings" on the use of the settings. 

7.6 Creating a Customized Migration Database 

7.6.1 PARSEDB 

122 OS/2 V2.0 Volume 2 

Some corporate users have an installed base of unique or custom-written DOS 
and Windows applications. These programs will not be listed in the migration 
database (DATABASE.DAT) that is supplied with OS/2 V2.0. The PARSEDB.EXE 
program is provided by OS/2 V2.0 to allow a system administrator to build a cus­
tomized migration database that can be used to set up these unique applications 
on the Workplace Shell desktop. 

A customized migration database is created as follows: 

1. Create the input text_database file 

2. Run PARSEDB to create the binary database file. 

To start PARSEDB, type the following statement from a command prompt: 

PARSEDB [path] DBTAGS.DAT [path] text_database [path] binary_database 



where: 

• DBT A GS.DAT is the file name that contains the definitions for the tags used 
to define the DOS settings 

• text_database is the name of the file that contains the program settings for a 
specific DOS, OS/2 or Windows program 

• binary_database is the name of the new migration database file. 

The text_database file is the main input file for PARSEDB that has to be created. 

For example, type the following statement to create a new database named 
MYDAT A.DAT: 

PARSEDB E:\OS2\INSTALL\DBTAGS.DAT MYDATA.TXT MYDATA.DAT 

Note that you must specify a file name for the binary database file to prevent the 
PARSEDB utility program from overwriting the default database file 
DATABASE.DAT. 

When creating the text_database file, each program must have the following 
migration information: 

NAME 

TITLE 

TYPE 

Name of the file that runs the program. 

Program object name that appears below the icon. 

DOS, Windows or OS/2 

ASSOC_FILE 
File name associated with the file name specified in the Name field. 
Use this file name to uniquely identify the program. 

DEF _DIR Directory that the program is installed into. 

ASSOC_FILE and DEF _DIR can have NULL values; NULL values must be included 
when defining the program if specific values for these fields cannot be provided. 

When creating MYDATA.TXT, group the settings for a given program on consec­
utive lines. Use blank lines to mark the end of a program's settings. Begin non­
blank lines with a token. The tag file DBTAGS.DAT defines valid token settings, 
limits, and default values for various DOS properties. 

Here is the listing of DBTAGS.DAT: 

II +--------------------+ 
II I NOTE TO TRANSLATOR I 
II +--------------------+ II Do not translate keywords or data types and delete these l;nes when done. 
// a:;=~~=====caaaaaaaaaaaamaaaoaaacc:::c::n~;~;;aa:acaaaaa=asaaaaaa•••D••a•aaa 

II dbtags.dat -- DOS setting •tags• used by PARSEDB and MIGRATE. Each •tag" 
II consists of an index, a keyword, and a data type. 
II +------------------------------------------------+ II I DO NOT EDIT THIS FILE UNDER ANY CIRCUMSTANCES! I 
II +------------------------------------------------+ 
II Allows BASIC-style coll'lllents. 
II ----------------------------------------------------------------------------
! REH NOP 

II ----------------------------------------------------------------------------
11 Required •fake• DOS settings. 
II ----------------------------------------------------------------------------
2 NAME STR II Filename used to execute application 

Chapter 7. Installing and Migrating Applications 123 



124 OS/2 V2.0 Volume 2 

3 TITLE 
4 TYPE 

5 ASSOC_FILE 

6 DEF_DIR 

STR // Icon (desktop) title 
BYTE //Application type 

II Valid settings: DOS 
II Windows 
II OSl2 
II custom (for Hf crosoft 
II Windows apps which 
II must run full-screen) 

STR // Associated file (NULL ff one isn't 
II known) 

STR // Default installation directory (NULL 
/I ff there isn't one) 

II ----------------------------------------------------------------------------
// Other "fake• DOS settings. 
II ----------------------------------------------------------------------------
7 FOLDER STR // Name of folder to create and/or put 

e 
9 

PARAMETERS 
WORK_ DIR 

II the application icon in 
STR II Application's conmand line parameters 
STR II Application's working directory 

II ----------------------------------------------------------------------------
// •fake• Windows settings 
II ----------------------------------------------------------------------------
10 WIN FILES STR // Files to be copied to the WinOS2 

- // directory when the application is 
II migrated 

11 COMMON_SESSION BOOL II Default: ON -> the application is to 
11 be run in the conmon 
II session 
II OFF -> the application is to 
II be run "s tanda 1 one" 

II ----------------------------------------------------------------------------
// Real DOS settings. NOTE: WIN_RUNHODE is not supported; all Windows apps are 
/I installed with SEAMLESS and WPS handles the mapping. 
II ----------------------------------------------------------------------------
// WIN_RUNMODE INT II Valid settings: 10 (REAL) 

13 COM HOLD 
14 DOS-BREAK 
15 DOS-DEVICE 
16 DOS-FCBS 
17 DOS-FCBS KEEP 
18 DOS)ILES 
19 DOS HIGH 
20 DOS=LASTDRIVE 

21 DOS_RMSIZE 

22 oos_SHELL 

23 DOS_STARTUP_DRIVE 
24 DOS UMB 
25 DOS)ERSION 

26 DPHI_DOS_API 

27 DPHI MEMORY LIMIT 
28 EHS_FRAHE_LOCATION 

II 11 (STANDARD) 
II 12 (AUTO) 
II 13 (SEAMLESS) 

BOOL II Default: off 
BOOL // Default: off 
HLSTR II Default: empty 
INT II Limits: 0 to 255, default 16 
INT // limits: 0 to 255, default 8 
INT // Limits: 20 to 255, default 20 
BOOL // Default: off 
STR //Limits: last physical drive to 'Z', 

II default •z• 
INT /I Limits: 128 to 640, default 640 

II NOTE: increments of 16 
STR // Default: "#:\OS2\HDOS\COHHAND.COH • 

II 1'#:\0S2\HDOS\ /P 11 where fl 
II is the boot drive 

STR // Default: empty 
BOOL // Default: off 
HLSTR // Default: DCJSS02.EXE,3,40,255 

II DFIAOHOD.SYS,3,40,255 
II DXHA0HOD.SYS,3,40,255 
II IBHCACHE.COH,3,40,255 
II IBHCACHE.SYS,3,40,255 
II ISAH.EXE,3,40,255 
II ISAH2.EXE,3,40,255 
II ISQL.EXE,3,40,255 
II NET3.COH,3,40,255 
II EXCEL.EXE,10,10,4 
II PSCPG.COH,3,40,255 
II SAF.EXE,3,40,255 
II WIN2B0.BIN,10,10,4 

STR II Valid settings: AUTO (default) 
II ENABLED 
I I DISABLED 

INT II Limits: 0 to 512, default 3 
STR // Valid settings: AUTO (default) 



29 EMS_HIGH_OS_MAP_REGION 

30 EMS_LOW_OS_MAP_REGION 

31 EHS_HEHORY_LIHIT 

32 HW NOSOUND 
33 HW-ROH TO RAH 
34 HW-TIHER -
35 JDLE_SECONDS 
36 IDLE_SENSITIVITY 
37 KBD ALTHOME BYPASS 
38 KBD-BUFFER EXTEND 
39 KB(CTRL_BYPASS 

49 KBD RATE LOCK 
41 HEM-EXCLUDE REGIONS 
42 HEM-INCLUDE-REGIONS 
43 HOUSE EXCLUSIVE ACCESS 
44 PRINT=TIMEOUT -
45 VIDEO 8514A XGA IOTRAP 
46 VIDEO=FASTPASTE-
47 VIDEO_HODE_RESTRICTION 

48 VIDEO ONDEHAND MEMORY 
49 VIDEO-RETRACE EMULATION 
50 VIDEO-ROH EMULATION 
51 VIDEO-SWITCH NOTIFICATION 
52 VIDEO-WINDOW-REFRESH 
53 XHS HANDLES -
54 XHS=MEHORY_LIHIT 

55 XHS HINIMUH HMA 
56 DOS-BACKGROUND EXECUTION 
57 DPMI_NETWORK_BUFF_SIZE 

INT 

INT 

INT 

BOOL 
BOOL 
BOOL 
INT 
INT 
BOOL 
BOOL 
STR 

BOOL 
STR 
STR 
BOOL 
INT 
BOOL 
BOOL 
ENUM 

BOOL 
BOOL 
BOOL 
BOOL 
INT 
INT 
INT 

INT 
BOOL 
INT 

II NONE 
11 ceea 
II C4BB 
11 c000 
II cc00 
II Daaa 
II D4G0 
II 0000 
II DCBB 
11 0000 
II 8400 
II 8800 
II aceo 
II 9000 
II Limits: 0 to 96, default 32 
II NOTE: increments of 16 
II Limits: B to 576, default 384 
II NOTE: increments of 16 
II Limits: 0 to 32768, default 2048 
II NOTE: increments of 16 
II Default: off 
II Default: off 
II Default: off 
II Limits: 0 to 60, default 0 
II Limits: 1 to 160, default 75 
II Default: off 
II Default: on 
II Valid settings: NONE (default) 
II ALT ESC 
II CTRL ESC 
II Default: off -
II Default: empty 
II Default: empty 
II Default: off 
II Limits: 1 to 3600, default 15 
II Default: on 
II Default: off 
II Valid settings: NONE (default) 
II CGA 
II MONO 
II Default: on 
II Default: on 
II Default: on 
II Default: off 
II Limits: 1 to 600, default 1 
II Limits: e to 128, default 32 
II Limits: B to 16384, default 2048 
II NOTE: increments of 4 
II Limits: B to 63, default 0 
II Default: on 
II Limits: 1 to 64, default 8 

The layout of each line in DBTAGS.DAT is as follows: 

INDEX VALUE TYPE (optional comments) 

where: 

INDEX 

VALUE 

TYPE 

Is a sequence number 

Is the name of the setting 

Is the type of the value. 

TYPE is one of the following: 

NOP Comments; any line with this type is ignored 

STR A string value 

INT An integer value 

Chapter 7. Installing and Migrating Applications 125 



126 05/2 V2.0 Volume 2 

BOOL Boolean, with value of ON or OFF 

BYTE Program type, either DOS, OS/2, or Windows. 

MLSTR A multi-line string with component lines on individual lines in the 
text_database file. 

Using these types, various settings for programs can be defined. Do not edit 
DBTAGS.DAT or create a new one; the tag file is available only as a reference 
when creating the MYDATA.TXT file. 

PARSEDB checks the validity of all entries in MY DAT A.TXT and compares them 
to the settings definitions in DBTAGS.DAT. If all entries are valid, PARSEDB 
creates a binary database named MYDATA.DAT. 

Errors in the text file will cause PARSEDB to exit and display a message: 

• A message that a file is corrupted indicates embedded ASCII NUL characters 
in the input text file. 

• A message about an invalid setting indicates the use of a setting not found in 
DBTAGS.DAT. The message should include a line number and the name of 
the input file. 

• A message that an entry has missing parameters indicates the absence of 
the minimum settings for the entry. 

PARSEDB does not check for duplicate entries in the input text file, nor does it 
require settings to be in any particular order. It is also not case sensitive, that 
is, "Off" is treated the same as "OFF." 

We recommend that a copy of the input text file (DATABASE.TXT) for the default 
migration database file (DATABASE.DAT) be made and used as the template for 
your own input file. A sample input text file is listed below. 



7.7 Summary 

REH ---------------------------------------------------------------------------
REH Windows file browser 
REH ---------------------------------------------------------------------------

NAME WNBROWSE. EXE 
TITLE File Browser 
TYPE Windows 
ASSOC FILE WNBROWSE.HLP 
DEF DIR \WNBROWSE 
MOUSE EXCLUSIVE ACCESS OFF 
KBD CTRL BYPASS- CTRL_ESC 
COMMON SESSION ON 
VIDEO SWITCH NOTIFICATION ON 
KBD ALTHOHE BYPASS ON 
DPHI_HEHORY=LIHIT 5 

REH ---------------------------------------------------------------------------
REH WordPerfect 5.1 by WordPerfect 
REH ---------------------------------------------------------------------------

NAME WP.EXE 
TITLE WordPerfect 
TYPE DOS 
ASSOC FILE WP. FIL 
DEF DIR \WPSl 
MOUSE EXCLUSIVE ACCESS OFF 
IDLE_SENSITIVITY 88 

REH ---------------------------------------------------------------------------
REH PHCAMERA OS/2 screen capture utility 
REH ---------------------------------------------------------------------------

NAME PMCAHERA.EXE 
TITLE PH Screen Capture 
TYPE OS/2 
ASSOC FI LE PHCAHERA. HLP 
DEF _DIR \PHCAHERA 

Figure 33. User Definitions for other Applications 

DOS and Windows application installation under OS/2 V2.0 is generally per­
formed from a DOS command prompt or from the WIN-OS/2 Program Manager. 
In some cases, it may be necessary to boot from a DOS diskette to perform the 
install. Modifications made to CONFIG.SYS and AUTOEXEC.BAT by installation 
programs should be carefully reviewed. 

If the OS/2 V2.0 system is to be set up for Boot Manager or dual boot to DOS. 
the arrangement of the hard disk partitions needs to be planned. 

The Migrate Applications program is used to migrate already installed DOS, 
Windows. and OS/2 programs, and creates and places the program objects in a 
folder on the desktop. If the DOS or Windows program is in the migrate data­
base \052\/NSTALL\DATABASE.DAT, the Migrate Applications program automat­
ically selects the recommended DOS settings for the program. 

The Migrate Applications program always sets up Windows programs to run in a 
WIN-OS/2 window session. if possible. Some exceptions exist, for example, 
CorelDraw!** and Arts & Letters**. Those programs use some very special 
Windows programming techniques. which can cause some problems in a 
"seamless" WIN-OS/2 VDM. This may not happen in every user scenario but it 
was felt saver to install those applications as fullscreen SAVDMs. 

Chapter 7. Installing and Migrating Applications 127 



128 OS/2 V2.0 Volume 2 

The Migrate Applications program is used: 

• During installation of the OS/2 Version 2.0 operating system if you have DOS, 
OS/2, or Windows programs already installed on your hard disk. 

• If a DOS, OS/2, or Windows program is added to a working OS/2 Version 2.0 
system. 

A utility, PARSEDB, is supplied to help system administrators to add an organ­
ization's unique applications to the migration database, or to create their own. 



Chapter 8. Windows Applications 

OS/2 Version 2.0 provides the capability for Windows applications to run under 
OS/2 Version 2.0, using its WIN-OS/2 component. With this support, applications 
written for Windows 3.0 and Windows 2.x can coexist and execute with OS/2 and 
DOS applications in the same machine under OS/2 Version 2.0. 

Program Manager 

file Qptions '·· WordPerfect- e:\win\wp\learn\learnl 7.wkb - unmodified 

k Desktop 
\..._. •. ~ .. ··'···•··-.. ·--· .. ·. 

fdit ~iew Layout Iools fQnt ~raphics .Macro 

HALVA International 
.Annu.s.l CL.vpcu·.ste. JU:.:11vt 

The First Fifty Years 

Iransform Effe,!its Arrange D.isplay ,Special 

Group of 12 objects 

:Jm::J 
Clipboard DDE Interchange Agent ftrintManager 

Figure 34. Windows Applications Running under OS/2 Version 2.0 

Each Windows application executes as a protected mode process within a VDM. 
As such, Windows applications are subject to the same application protection 
facilities provided to other protected mode applications (both OS/2 and MVDM 
tasks) under OS/2 Version 2.0. Windows applications are protected from other 
Windows applications and from DOS and OS/2 applications executing in the 
system. This is in contrast to the native Windows 3.0 environment, where pro­
tection is limited to DOS applications (Windows applications share a common 
address space), and is only available when Windows is running in standard or 
386 enhanced modes. 

The execution of Windows applications in a protected environment allows these 
applications to take full advantage of the pre-emptive multitasking capabilities of 
OS/2 Version 2.0, with full pre-emptive multitasking between Windows applica­
tions, OS/2 applications and DOS applications. This is again in contrast to the 
native Windows 3.0 environment, where pre-emptive multitasking is available 
only for DOS applications and only when Windows 3.0 is running in enhanced 
mode, thereby impacting performance and preventing many applications written 
for previous versions of Windows from executing. OS/2 Version 2.0 has no such 
restriction. 

C> copyright 1 BM corp. 1992 129 



8.1 Windows 3.0 Execution Modes 

8.1.1 Real Mode 

The native Windows 3.0 environment has three execution modes, though the 
options available to any user depend upon the machine's processor and the 
amount of installed memory. These modes are important, as they are relevant, 
to the discussion later of the way in which OS/2 runs Windows applications. The 
initial description of each mode comes from the Microsoft Windows User's Guide. 

An operating mode that Windows runs in to provide maximum compat· 
ibility with versions of Windows applications prior to 3.0. Real mode is 
the only mode available for computers with less than 1 MB of extended 
memory. 

Real mode is equivalent to previous versions of Windows (2.x), and can address 
640KB of conventional memory, plus LIM EMS Version 4.0 expanded memory. 
Extended memory can be used for a virtual disk or disk caching only. 

Real mode requires an 8088 processor or above, and 640KB of installed memory. 
Real mode requires 384KB of free conventional memory after DOS and other 
memory resident software, including network drivers, is loaded. 

Real mode is supported for Windows and its applications under OS/2 Version 2.0, 
in either of two ways: 

• The WIN-OS/2 kernel provided by OS/2 Version 2.0 may be used to run 
Windows applications in real mode. 

• The commercially available Windows 3.0 product may be run in real mode in 
a VDM, and real mode applications started from within this VDM by the 
Windows Program Manager. 

Note that the commercially available Windows product cannot be run in standard 
or enhanced modes in a VDM due to Windows' memory management architec­
ture; Windows assumes that it is a DPMI host and cannot act as a DPMI client. 
Many Windows applications run quite adequately in real mode; in fact, some 
applications written for Windows 2.x cannot run in any other mode. 

8.1.2 Standard Mode 

130 OS/2 v2.o Volume 2 

The normal operating mode for running Windows. This mode provides 
access to extended memory and also lets you switch among non­
Windows applications. 

Standard mode uses the 80286 processor's protected mode to provide direct 
access for Windows and Windows applications to up to 16MB of extended 
memory. Expanded memory for DOS applications is only supported with phys­
ical expanded memory cards (emulation of expanded memory using extended 
memory is not supported). 

Standard mode requires an 80286 processor or above, and at least 1 MB of 
installed memory, with a minimum 192KB of free extended memory. The XMS 
driver HIMEM.SYS must also be loaded. Windows applications must be written 
to comply with the memory management rules for Windows 3.0 in order to run in 
standard mode. 



Standard mode is recommended by Microsoft when running only Windows appli­
cations (that is, no DOS applications) in certain configurations, even on an 80386 
machine. In the Windows 3.0 manual, on page 429, it is suggested that users 
running only Windows 3.0 applications should run in standard mode, even on 
80386 systems with 2-3MB of memory, as there is a performance improvement in 
doing so. 

Standard mode is necessary for some Windows applications (for example, Micro­
soft Excel** Version 3.0). To accommodate such applications, OS/2 Version 2.0 
must provide additional support. Basically, these applications need to access 
DPMI services for extended memory support, which is available under Windows 
3.0 when running in standard or enhanced modes. See Chapter 9, "DOS Pro­
tected Mode Interface" for further information on DPMI support under OS/2 
Version 2.0. 

The other requirement is to supply Windows services to Windows applications. 
This service is provided in OS/2 Version 2.0 by modifying the Windows kernel 
and running it in standard mode in a VDM. As part of the joint development and 
cross-licensing agreement between IBM and Microsoft, IBM has access to the 
Windows source code. IBM has modified the source to provide a Windows kernel 
(WIN-OS/2) capable of running as a DPMI client within a VDM (the retail version 
of Windows 3.0 can only function as a DPMI host), and includes this kernel as 
part of the OS/2 Version 2.0 product. 

OS/2 therefore supports Windows applications running in standard mode in a 
VDM. Use of the VDM design, which provides a self-contained DOS environ­
ment, means that the environment is identical, from the application's point of 
view, to running under Windows loaded in standard mode, on DOS. This design 
therefore provides the maximum compatibility with the DOS/Windows environ­
ment. In fact, it offers a wider range of compatibility, since Windows 2.x applica­
tions, which require real mode operation under Windows 3.0 in DOS, can be run 
concurrently with Windows 3.0 applications running in standard mode. This com­
bination is not possible at the same time under DOS/Windows 3.0. 

8.1.3 386 Enhanced Mode 
A mode that Windows runs in to access the virtual memory capabilities 
of the Intel 80386 processor. This mode allows Windows to use more 
memory than is physically available and to provide multi-tasking for non­
Windows applications. 

386 enhanced mode uses the 80386 processor's protected mode to provide direct 
access for Windows and Windows applications to up to 16MB of extended 
memory. In addition, the virtual 8086 mode of the 80386 is used to provide mul­
tiple DOS environments for non-Windows applications. Most DOS applications 
can be run in a window. Virtual memory support is provided, for Windows appli­
cations only, using the demand paging feature of the 80386 processor. 

386 enhanced mode requires an 80386 processor or above, at least 2MB of 
installed memory, with a minimum 1 MB of free extended memory. The XMS 
driver HIMEM.SYS must also be loaded. Windows applications must be written to 
comply with the memory management rules for Windows 3.0 to run in 386 
enhanced mode. 

The 386 enhanced mode of Windows 3.0 provides a number of additional capabil­
ities over standard mode: 

Chapter 8. Windows Applications 131 



• The capability for pre-emptive multitasking of DOS sessions 

• Demand paging for efficient virtual memory. 

Both of these capabilities are provided by OS/2 Version 2.0 itself for both DOS 
and Windows applications, independent of the Windows kernel. There is hence 
no need to provide such functions within the Windows kernel. 

There are, however, a small number of Windows applications which require 
enhanced mode to run. Such applications require enhanced mode either 
because they rely on features only available in enhanced mode, such as 
Windows 3.0's permanent swap file capability (such as Caere Omnipage**), or 
have been coded using the WINMEM32.DLL, a set of routines that provide some 
32-bit functions for Windows applications, such as Wolfram Research's 
Mathematica**. 

It is believed that there are only, at maximum, three or four such applications on 
the market, which represents less than 0.3% of Windows 3.0 applications 
(assuming Microsoft's quoted figure of 1500 Windows applications). It is unlikely 
there will ever be many in the latter category of applications, since the 
WINMEM32.DLL is very difficult to use, and Microsoft itself warns in Appendix E 
of the Windows Programmer's Reference: "only experienced Windows applica­
tion programmers with extensive experience writing assembly-level code should 
attempt to use these functions in an application." 

This warning is necessary because even something as basic as memory man­
agement using these routines can be very complex, and requires the pro­
grammer to create assembly language interfaces between the 16- and 32-bit 
parts of a program (note that such "thunks" are provided by OS/2 Version 2.0 
between 16-bit and 32-bit modules; see OS/2 Version 2.0 - Volume 1: Control 
Program). Charles Petzold, possibly the most widely respected authority on 
Windows programming, whose book on the subject is a standard reference work, 
concluded on this subject that "something is seriously wrong when memory 
access becomes difficult," and contrasted the current Windows approach with 
the ease of 32-bit memory management under OS/2 Version 2.0. 

Applications which require enhanced mode will not be supported by OS/2 
Version 2.0. Support of this mode requires Windows to run at the Ring 0 privi­
lege level in the 80386 processor, which allows Windows or a Windows applica­
tion to access a// system memory and resources, including those belonging to 
the operating system itself. This could result in a serious breach of system 
integrity, and is therefore not permitted under OS/2 Version 2.0. 

So, although there will almost certainly be a very small minority of Windows 
applications that will not run under OS/2 Version 2.0, the vast majority will run, 
and in a mode which allows access to their full function. Indeed, to the Windows 
application, the environment will appear exactly the same as if the application 
were running under DOS/Windows in standard mode. 

8.2 Windows Applications under OS/2 Version 2.0 

132 OS/2 V2.0 Volume 2 

Under OS/2 Version 2.0, Windows applications are treated as special cases of 
DOS applications, which need a special environment in which to run. Therefore, 
the key to Windows application compatibility is to provide these applications with 
as similar an environment as possible to that experienced under DOS, while 
taking advantage of the inherent design superiority of OS/2. 



8.2.1 Supported Components 
The following components of Windows 3.0 are supported and available within the 
OS/2 V2.0 Windows kernel: 

• Windows real mode kernel (WINOS2.COM and KERNEL.EXE) 

• Modified Windows standard mode kernel (OS2K286.EXE) 

• Modified DOS Extender (VDPX.SYS) 

• Print Manager (Spool Function) 

• Program Manager: 

- Permits the starting of multiple Windows applications in a VDM 
- Permits switching between Windows applications in the VDM 

• Help Manager 

• Video device drivers 

• Keyboard, mouse and communications device drivers 

• Task Manager 

• Windows user and GDI DLLs 

• Printer device drivers 

• Clipboard support 

• Setup, with only one function left in order to install Windows network device 
drivers (DLLs). 

Note ~~~~~~~~~~~~~~~~~~~~~~~---. 

This is really not necessary to do if you are already running any network 
requester code under OS/2 itself. This would be transparent to the entire 
system and therefore every VDM and WIN-OS/2 session will have full 
access to the network, printers, files, etc. 

• Control Panel, with functions limited to: 

Printer Install 
Color 
Fonts 
Sound 
Mouse 
International 
KBD (Keyboard rate). 

The Clock program is available in a Multiple Application VDM (MAVDM) {see 
8.2.2, "Methods of Execution" on page 134). 

The following Microsoft Windows 3.0 components are not included within OS/2 
V2.0 (even though they would run just as any other Windows application): 

• File Manager 
• Systems Editor (SYSEDIT) 
• Games 
• Write 
• Terminal 
• Notepad 
• Cardfile 
• Calendar 

Chapter 8. Windows Applications 133 



• Calculator 
• PIF Editor 
• Paintbrush 
• Recorder 
• Wallpaper bitmaps 

For each of these functions, equivalent capabilities are provided by OS/2 Version 
2.0, or these functions are not required within the OS/2 Version 2.0 environment. 

8.2.1.1 Multimedia Extensions (MME) for Windows 
Multimedia Extensions for Windows can be installed under WIN-OS/2 and are 
fully supported. 

Some multimedia applications may require more than the default DPMI memory. 
If that happens, the WIN-OS/2-Setting DPMl_MEMORY _LIMIT should be adjusted 
to the appropriate value. 

8.2.2 Methods of Execution 

134 OS/2 V2.0 Volume 2 

Windows applications may be run under OS/2 Version 2.0 in five ways: 

• The original licensed Windows V3.0 or Windows V2.x may be started in a 
VDM, and will allow Windows V3.0 and Windows V2.x, and its applications, to 
be run in real mode. 

• A Single Application VDM (SAVDM) may be started, for a single Windows 
application. The icon supplied with the Windows application will be defined 
within the Workplace Shell desktop. 

• A Multiple Application VDM (MAVDM) may be started, which activates the 
Windows Program Manager, allowing the user to access a number of 
Windows applications. 

• A Separate "seamless" WIN·OS/2 VDM may be used, which is basically a 
SAVDM running in its own window under the Workplace Shell. See 8.2.2.3, 
""Seamless" WIN-OS/2 VDM" on page 137 for further information. 

• A common "seamless" WIN·OS/2 VDM may be used, which is a special kind 
of MAVDM. WIN-OS/2 will start all "seamless" WIN-OS/2 VDMs in a single 
session, but in separate windows running under the Workplace Shell. See 
8.2.2.4, "Common "Seamless" WIN-OS/2 VDM" on page 141 for further infor­
mation. 

• A separate "seamless" WIN·OS/2 VDM may be used, and the WIN·OS/2 
Program Manager may be launched from there. This will allow to launch 
other Windows applications from there and therefore, this would actually be 
a MAVDM running in its own window under the Workplace Shell. Every 
Windows application launched from there would run in its own window under 
the Workplace Shell but share the same WIN-OS/2 kernel. 

No license of Windows V3.0 or Windows V2.x is necessary to run Windows appli­
cations, as the Windows environment is an implementation of Windows V3.0 and 
Windows V2.x within OS/2 V2.0 (WIN-OS/2) itself. Multiple instances of any of the 
above methods may be started in the same system. 

However, note that in the current release, "seamless" WIN-OS/2 VDMs and 
common "seamless" WIN-OS/2 VDMs may only be started on machines with 
VGA graphics. Seamless execution of Windows applications is not supported 
using other graphics modes. 



The following applications are started (iconized) when the first VDM (either 
SAVDM or MAVDM) is started: 

• Modified Windows Clipboard Viewer Program 

• DOE Server/ Agent Application 

• Presentation Manager icon 

• Task Manager (no icon) 

• Windows Program Manager (not visible in a SAVDM) 

• Clock (MAVDM only) 

• Windows Control Panel (MAVDM only). 

Each of these methods is described in the following sections. 

8.2.2.1 Single Application VDM (SAVDM) 
A SAVDM is the recommended way of running Windows applications under 
OS/2 Version 2.0 in a non-VGA system, such as a PS/2 with an XGA or 8514/ A 
display adapter, because seamless execution is only supported with VGA 
graphics. Using a SAVDM is also recommended if the user wishes to run 
Windows applications in real mode (seamless execution is supported only in 
Windows standard mode). 

Since the Windows application runs in a self-contained Windows environment in 
its own VDM, it is fully protected from other applications, and the system is pro­
tected from it. This means that if the application crashes for any reason, it only 
affects its own VDM, and thus only that one application. Other Windows or DOS 
applications running in other VDMs are not affected, nor are OS/2 applications. 
This represents a significant improvement in reliability over DOS/Windows, in 
which a failure in one Windows application may bring down the entire Windows 
system or corrupt the data areas of other Windows programs, since all Windows 
applications and Windows itself share the same address space. 

Chapter 8. Windows Applications 135 



Ii 
Cip~oard 

Query .•• 

,Connect to External... aunt Percent 
.External Options ~ ted invested 

3.20% 2.27% 9.50% 
9.20% 6.44% 3.80% 
7.80%. 7.80% 2.70% 
8.90% . 6.23% 0.00% 

:JHCJ 
D9E Interchange Agent 

Figure 35. Single Windows Application Running under OS/2 Version 2.0 

136 05/2 V2.0 Volume 2 

Also, by running in SAVDMs, Windows applications are timesliced more effec­
tively than in a MAVDM or native DOS/Windows environment, since each appli­
cation is under the control of OS/2's scheduler and its pre-emptive multitasking. 
In a MAVDM environment, all Windows applications are still subject to the coop­
erative multitasking under Windows itself. 

Ctrl-Esc is the key combination used to display the Windows "Window List." 

Alt-Esc is the key combination used to switch to the next session as defined in 
the Workplace Shell. 

The SAVDM provides a simple approach to Presentation Manager integration. 
The application is loaded from the Workplace Shell in a very similar way to a 
DOS application, and the user may easily switch back to Presentation Manager, 
as well as share data via clipboard or ODE with other Windows or Presentation 
Manager applications. The icon displayed on the Workplace Shell desktop is 
the application's own Windows icon. 

Each SAVDM will indicate the Windows execution mode based on the file type 
specified in the EXE header of the Windows application. Real mode will be indi­
cated for Windows applications written for versions of Windows prior to 3.0. 
Auto-Select (real or standard mode) is selected by default for Windows 3.0 appli­
cations, based on processor type. 



8.2.2.2 Multiple Application VDM (MAVDM) 
The MAVDM is almost identical to running Windows 3.0 on a DOS-based 
machine. The MAVDM uses the Windows 3.0 Program Manager to start multiple 
Windows applications within the same VDM, running on a separate Windows 
desktop. It therefore provides maximum "look and feel" compatibility for the 
DOS/Windows user migrating to OS/2 Version 2.0. 

Note that the use of a MAVDM or the common "seamless" WIN-OS/2 VDM is a 
requirement where Windows applications must communicate with one another 
via shared memory. 

Ctrl-Esc is used within the VDM to display the Windows "Window List." 

Alt-Esc is used to switch to the next session defined in the Workplace Shell. 

For a MAVDM, the Workplace Shell icon will represent the MAVDM itself, rather 
than the applications executing within the VDM. Terminating an application 
within the VDM will not terminate the VDM itself. The user must select Exit 
Windows in the Windows Program Manager to terminate the VDM, or close the 
VDM from the Workplace Shell. 

In the MAVDM and the common "seamless" WIN-OS/2 VDM environment, all 
Windows applications are still subject to the cooperative multitasking of Windows 
itself. Since several Windows applications are typically loaded in the same VDM, 
the MAVDM environment shares some of the pitfalls of DOS/Windows in terms of 
robustness. If one Windows application crashes within a MAVDM, it may cause 
all the applications within that VDM to fail. However, the effect is only within that 
VDM; other VDMs running DOS or Windows applications, and other processes 
executing under OS/2 Version 2.0, are not affected and continue execution. So 
even here there are benefits from running Windows applications under OS/2, for 
greater resilience from system crashes. Furthermore, the MAVDM environment 
provides additional error checking and handling over that provided by Windows 
3.0 itself. 

8.2.2.3 "Seamless" WIN-OS/2 VDM 
One of the goals of OS/2 2.0 is to be the integrating platform of choice; that is, to 
provide a desktop environment from which all types of applications: 

• 16-bit OS/2 
• 32-bit OS/2 
• DOS 
• Windows 

may be executed in a uniform manner. Although OS/2 V2.0 is able to support 
Windows applications effectively in SAVDMs, the additional ability to launch a 
Windows application from a Workplace Shell object, and execute it on the OS/2 
desktop along with Presentation Manager and DOS applications, achieves the 
goal of creating an environment that is explicitly simple and uniform enough that 
the end user need not be concerned with the implicit differences between the 
types of applications that need to be executed in it. OS/2 V2.0 will concern itself 
with the differences and "seamlessly" accommodate the applications. This level 
of support extends not only to execution but to installation and configuration of 
the application as well. 

Chapter 8. Windows Applications 137 



·,· 

.. 
-

= 
+I-

~ ? 

' 4 

c 1 

AC " 
o-; 

Paintbrush - ITSCLOGO.BMP •• 

5 6 

2 3 

= + 

WordPerfect - (e:\win\wp\macro.doc - unmodified) 
file Edit ~iew .Layout Iools Fnnt §raphics 

Window Help 

.~~; 
Using the Macro Facility you can convert a number of Wor "'f.J; 
(WPS I DOS) macro commands and codes into WordPerf e ~ti 
Win) format. Not all macro commands and codes found in t-:'f 
WPS 1 Win format. Commands and formatting codes that do • 

• ~ :·,-~::~ ~ ~ 
-~-: - ~; 

OSl2Window Templates OSl2System 
Drive A Shreddet 

Figure 36. Single Windows Application(s) Running "Seamless" on the OS/2 Version 2.0 Desktop 

138 OS/2 V2.0 Volume 2 

The appearance of Windows applications on the Workplace Shell desktop 
requires that the Windows video device driver and the Presentation Manager 
video device driver communicate and coordinate their access of the video hard­
ware. Each device driver effectively "owns" its area of the screen. Allowing the 
Windows display device driver to directly access the video hardware avoids the 
more cumbersome process of a complete task switch. However, this hardware 
access poses integrity problems in the areas of simultaneous access of hard­
ware, rectangle invalidation handling, window management, and the exchange of 
window state information between Presentation Manager and seamless VDMs 
supported by separate video device drivers. 

To address these problems, a high performance virtual device driver named 
(VWIN.SYS), capable of interprocess communication, was created. This VDD 
serializes the simultaneous accesses to the hardware, oversees the exchange of 
window state information between Presentation Manager and seamless VDMs, 
and establishes the addressability of Presentation Manager resources (either 
directly or indirectly) by the Windows display device driver. 

When the system is initialized, the Presentation Manager display driver calls the 
VWIN.SYS driver, and passes a pointer to an array of structures that specify the 
protocol required to enable the Windows device driver to access Presentation 
Manager resources. To prevent a seamless Windows application from hanging 
the entire Workplace Shell desktop, the Windows video device driver and the 
Presentation Manager video device driver together implement and monitor a 
VDM "heartbeat" or counter. This counter is stored in the Presentation Manager 
display driver's data area and is made available to the Windows display driver. 



The "heartbeat" counter information is made available to the Windows DD to 
indicate that hardware access is in progress by the Windows DD. The 
"heartbeat" counter is incremented by the Windows DD prior to the video hard­
ware access. If a Windows application is locking up the Workplace Shell 
desktop, it is the responsibility of VWIN.SYS to identify the current owner of the 
semaphore, terminate the VDM and tell the Presentation Manager DD to clean 
up. 

In the event that the Presentation Manager display device driver requests hard­
ware resources and the time interval allotted for this access to occur is 
exceeded. then: 

1. If it is the first request. the Presentation Manager display driver records the 
heartbeat value. process ID and thread ID of the process in control of the 
hardware, and raises an internal nag. 

2. If it is the second request, and the heartbeat value, PIO and TIO have not 
changed, the Presentation Manager display driver calls the Windows display 
driver before clearing the nag, and passes it the PIO and TIO. 

• It is the responsibility of the Windows driver to use the PIO and TIO to 
identify the process that is monopolizing the hardware resources and 
inform the Presentation Manager driver. 

• If it is an active, seamless VDM, WIN-OS/2 will terminate the VDM and 
inform the Presentation Manager driver to clean up. 

• If the PIO and TIO are invalid, the Windows driver will inform the Presen­
tation Manager driver to clean up. 

• If the PIO and TIO belong to a Presentation Manager application, the 
Windows driver will tell the Presentation Manager driver to attempt 
access again. 

This algorithm is relatively simple but not totally fail-safe. It is quite possible to 
create a serialization mechanism that would safeguard the Workplace Shell 
desktop to a greater degree. However, when one considers the remoteness of 
the possibility of its failure {which requires a bogus PIO or TIO), the costs, in 
terms of a performance impact, would far outweigh the benefits incurred. 

Some important points about "seamless" WIN-OS/2 VDMs: 

• Note that the use of a MAVDM or a common "seamless" WIN-OS/2 VDM is a 
requirement where Windows applications must communicate with one 
another via shared memory. 

• Only standard mode is supported in this mode of operation. 

• Presentation Manager must provide extensive support for this implementa­
tion of WIN-OS/2. Basically, Presentation Manager supports a "black hole" 
and allows the WIN-OS/2 kernel to control it. A modified WIN-OS/2 and Pres­
entation Manager display device driver is built into OS/2 Version 2.0 to 
support this mechanism. 

• The "seamless" WIN-OS/2 VDM is only supported if OS/2 is configured for 
VGA mode, because only the Windows VGA display device driver is sup­
ported. This means that, on an 8514 or XGA equipped system, the Presenta­
tion Manager display device driver must be configured in VGA mode to be 
able to run Windows applications in a "seamless" WIN-OS/2 VDM. If the 
user selects a higher resolution display device driver such as XGA, Windows 
applications may only run in a SAVDM or MAVDM environment. 

Chapter 8. Windows Applications 139 



140 05/2 V2.0 Volume 2 

Notes: 

1. Over time, more display device drivers will be enhanced to support this 
seamless mode of WIN-OS/2. Once available, installed and configured 
appropriately, WIN-OS/2 will provide seamless execution on other sup­
ported graphics modes. 

2. Readers should check the ReadMe file in the Information folder for the 
latest information on this subject. Information in this folder explains how 
to reconfigure the system to have seamless WIN-OS/2 support as well as 
high resolution MAVDM and/or SAVDM sessions. 

• A VDD (VWIN.SYS) provides the necessary services to the Windows kernel 
and Presentation Manager. 

-J~= VDM -~;.;:smrt 
l 1 Window Proc T'hread ,, ~~---~~~~~ 

Quay Sesllion Type 

•t11 •ti:-----.--------. 
Quay Jl ,, ,, LDT 
Info 

==i~ .. t-. -1 .. 1-.. --i .• _ .. _ .. _ .. _._· .-+. ·_· _·· _··-+-·--·-1·==~··••11•-1111- ..... 
l 

Ringo 

Figure 37. Implementation of "Seamless" WIN-OS/2 VDM in OS/2 Version 2.0 

As shown in the figure above, PMVIOP.DLL contains a PMShield routine which is 
responsible for maintaining the entire Workplace Shell desktop, including the 
"black holes" which correspond to and are maintained by each "seamless" 
WIN-OS/2 VDM. 

WinShield is the Windows VDM's counterpart of PMShield. The Workplace Shell 
desktop windowing state must be maintained in its entirety by this component. 
WinShield registers a service routine with VWIN.SYS, giving it the ability to post 
a message to PMShield whenever the Workplace Shell desktop state changes. 



Upon creation of the first "seamless" WIN-OS/2 VDM, PMShield spawns three 
dedicated threads under the Workplace Shell to specifically service its 
"seamless" WIN-OS/2 VDM clients: 

• Thread 1 is the /PC Read Thread, which normally suspends itself within 
VWIN.SYS, waiting for window-related events to occur in the "seamless" 
WIN-OS/2 VDM. The typical events sent by the WinShield are Create, Move, 
Size, Show Activate, etc. These events are duplicated by PMShield on the 
Workplace Shell desktop for the purpose of tracking the "black hole" 
windows. 

• Thread 2 is the Control Windows Procedure Thread that the PMShield regis­
ters with PMWIN.DLL. This thread handles all relevant events that alter the 
state of the Workplace Shell desktop. Once in control, this thread will broad­
cast all Workplace Shell desktop initiated events asynchronously to all VDMs 
by calling VWIN.SYS. This causes a previously registered WinShield routine 
to be dispatched, giving it an opportunity to post an asynchronous message 
to itself. 

• Thread 3 is the Error Handling Thread. All non-fatal errors on all "seamless" 
WIN-OS/2 VDM related operations will be reported through this mechanism 
where a Presentation Manager dialog box will pop up explaining to the user 
what went wrong. 

On successful creation of a "seamless" WIN-OS/2 VDM, the Presentation 
Manager Session Start thread will notify VVGA.SYS to allow the started VDM to 
access the video hardware directly. 

8.2.2.4 Common "Seamless" WIN-OS/2 VDM 
There is no visible difference between Windows applications running in a 
"seamless" WIN-OS/2 VDM and those running in a common "seamless" 
WIN-OS/2 VDM. The technical differences between them are described in the 
following paragraphs. Everything else discussed in 8.2.2.3, ""Seamless" 
WIN-OS/2 VDM" is common to both. 

To reduce the system resource usage in a low memory environment, users are 
given the option to start all "Seamless" WIN-OS/2 applications in the same VDM. 
This also helps to reduce startup time for Windows applications, and reduces the 
swap file space required. By default, Windows applications migrated from a 
DOS/Windows system at OS/2 installation time are migrated to a common 
"seamless" WIN-OS/2 VDM. The user has the option of prestarting one or more 
Windows applications in the common "seamless" WIN-OS/2 VDM by using the 
Startup folder in the Workplace Shell. 

There is only one common "seamless" WIN-OS/2 VDM in the system. If the 
system is not currently configured to run "seamless" WIN-OS/2 VDMs, any 
Windows application which is defined for common "seamless" WIN-OS/2 VDM 
will be loaded and run in a fullscreen SAVDM. 

By default, only the first Windows program launched from the Workplace Shell as 
a "seamless" WIN-OS/2 VDM will create a new VDM. Any subsequent Windows 
programs will share this environment, in exactly the same way as in a MAVDM 
full-screen session. This is known as the common .. seamless" WIN-OS/2 environ­
ment. 

However, the user may wish to protect these Windows programs from each 
other, and to maximize the timeslicing efficiency of Windows applications. This 

Chapter 8. Windows Applications 141 



142 OS/2 V2.0 Volume 2 

can be done by checking the Separate session option on the Session page of the 
Settings notebook for any Windows program object under the Workplace Shell. 
That procedure would activate a "normal" "seamless" WIN-OS/2 VDM session. 

The Workplace Shell Window List will contain an entry for the common 
"seamless" WIN-OS/2 VDM itself, in addition to an entry for each Windows 
program running in this VDM This provides also a mechanism for terminating 
this VDM from the Workplace Shell desktop, along with all the active Windows 
applications in it. As the user has a visual representation of the "contents" of 
the common "seamless" WIN-OS/2 VDM, the user knows which applications will 
be terminated if the Close option is chosen. If the common "seamless" 
WIN-OS/2 VDM hangs because one of the Windows programs is not behaving 
properly, the Close option on the entry for the common "seamless" WIN-OS/2 
VDM will close down the entire VDM, including all Windows programs running in 
it. This behavior is similar to that of a MAVDM. 

In the MAVDM and the common "seamless" WIN-OS/2 VDM environment, all 
those Windows applications are still subject to the cooperative multitasking 
under Windows itself. Since several Windows applications are loaded in the 
same VDM, the common "seamless" WIN-OS/2 VDM shares the same pitfalls as 
does the MAVDM. If one Windows application crashes within a common 
"seamless" WIN-OS/2 VDM, it may cause all the applications within that VDM to 
fail. However, as in a MAVDM, the effect is only within that VDM; other VDMs 
running DOS or Windows applications, and other processes executing under 
OS/2 Version 2.0, are not affected and continue execution. So even here there 
are additional benefits running Windows applications seamlessly under OS/2. 
Furthermore, as for the MAVDM environment, enhancements are made to 
provide additional error checking and handling for the common "seamless" 
WIN-OS/2 VDM. 

A number of restrictions apply to the use of a common "seamless" WIN-OS/2 
VDM. These are as follows: 

• The DOS settings which will be in effect for the common "seamless" 
WIN-OS/2 VDM will be those which are defined by the first Windows program 
to start in this VDM. Changes to the settings for any subsequent Windows 
program in that VDM will not affect the actual settings of the common 
"seamless" WIN-OS/2 VDM. To make this obvious to the user, the WIN-OS/2 
Settings button on the Session page of the Settings notebook is grayed for all 
Windows applications running in the common "seamless" WIN-OS/2 VDM 
once it is active. This implies that WIN-OS/2 settings cannot be viewed or 
changed once this VDM is started. 

• The DPMI limit for the common "seamless" WIN-OS/2 VDM is higher than 
when defined for "seamless" WIN-OS/2 VDM, since multiple applications are 
likely to require more DPMI memory. 

• Each Windows program running in the common "seamless" WIN-OS/2 VDM 
will have the same HAPP application handle), PIO (process ID), and SGID 
(screen group ID). Any action taken on one of these values will cause that 
action against the entire VDM and not against only a specific instance inside 
the common "seamless" WIN-OS/2 VDM. For example, if a 
WinTerminateApp() call is issued, which uses the HAPP as input, then all 
applications running within the common "seamless" WIN-OS/2 VDM will be 
terminated. The user will be warned by a dialog that multiple Windows 
applications will be ended. 



8.3 Installing WIN-OS/2 Support Under OS/2 Version 2.0 
Windows application support is provided by default during the installation of 
OS/2 Version 2.0. If the user wishes not to install Windows support, the appro­
priate option must be chosen during OS/2 installation. 

The OS/2 installation program detects the video resolution of the machine on 
which it is being installed. If Windows support is selected during "first time" 
installation, then the following configurations will be applied according to the 
detected video resolution: 

CGA, EGA 

VGA 

8514/A, XGA 

Configured for full-screen (only) Windows support. 

Configured for "seamless" WIN-OS/2 VDM support. 

During installation, a panel with the option to select seamless 
support (and downgrade to VGA graphics mode) is provided 
(see Figure 38). If full-screen (only) Windows support is 
selected, then the higher resolution is maintained. 

Figure 38. Installing Windows Support under OS/2 Version 2.0 

Readers should check the ReadMe file in the Information folder for the latest 
information on this subject. This folder contains information on how to recon­
figure the system to have seamless WIN-OS/2 support as well as high resol­
ution MAVDM and/or SAVDM sessions. Additional support information for 
SVGA display device drivers will be provided as well. OS/2 Version 2.0 -
Volume 1: Control Program also discusses several installation and configura­
tion aspects of OS/2 V2.0. 

Chapter 8. Windows Applications 143 



When Windows support is selected at installation time, all the files necessary to 
provide this support are installed in the following subdirectories: 

• \OS2\MDOS\WINOS2 

• \OS2\MDOS\WINOS2\SYSTEM 

If the user decides to install Windows application support, DOS application 
support is automatically installed. OS/2 Version 2.0's CONFIG.SYS file is 
updated to include the above directories in the PATH statement. 

Since Windows real mode requires 640KB of conventional memory and several 
MB of expanded memory (EMS), the EMS virtual device driver is also required. 
If the user did not select standard mode at installation time and wishes to add it 
at later time, the OS/2 Version 2.0 CONFIG.SYS must be modified by adding the 
following statements: 

• DEVICE= C:\OS2\MDOS\VDPMl.SYS (DOS Protect Mode Interface) 

• DEVICE= C:\OS2\MDOS\VDPX.SYS (DOS Extender Virtual Device Driver). 

If these device drivers are not loaded, the Windows kernel will execute in real 
mode. 

Windows can use expanded memory which conforms to the LIM EMS 4.0 specifi­
cation when running in real mode. This memory is primarily used for storing 
background applications. In a DOS/Windows environment, an appropriate 
Expanded Memory Manager must be installed. Under OS/2 V2.0 this is not nec­
essary, as the virtual device driver already provides that service. In standard 
mode, Windows may also use extended memory (XMS). 

8.4 Migrating to OS/2 Version 2.0 

144 05/2 V2.0 Volume 2 

Upon completion of the installation process, the user is given the opportunity to 
migrate installed Windows applications (defined to the Windows Program 
Manager) to the OS/2 Version 2.0 Workplace Shell. All Windows applications 
which are to be migrated must have the appropriate DOS and Windows settings 
defined in the Certified Application Database (CAD), which is shipped as a 
standard component of OS/2 Version 2.0. See also Chapter 7, "Installing and 
Migrating Applications." 

Only the settings for those applications which have been certified via 
approved IBM testing channels will be held in the Certified Applications Data­
base (CAD), and only those settings which differ from the default settings will 
be recorded. 

If a referenced Windows application is found on any of the available disk 
volumes during OS/2 installation, the existing *.INI and *.GRP files will be read, 
the necessary changes applied to them, and the updated versions stored in the 
\OS2\MDOS\WINOS2 directory. This will effectively migrate the user's Windows 
desktop, including all Windows applications, into a MAVDM, SAVDM or seamless 
environment. 

The CAD provides information enabling the installation procedure to automat­
ically set the DOS settings for certified DOS and Windows applications. The user 



is presented with a list of the certified applications found, which can then be 
migrated. The user may select any or all of these applications. The CAD is 
searched for each of the selected applications, and DOS and/or Windows set­
tings information found in the database will be used to automatically assign set­
tings to applications. Windows applications will be placed in a single "Windows 
Applications" folder. DOS applications are placed in a single 11 DOS 
Applications" folder. 

The CAD is a binary database, generated from an ASCII database and a prede­
fined tag file. Each field in the ASCII database starts with a descriptive tag that is 
associated with a value between 0-225 in the predefined tag file; the maximum 
number of tags is therefore 256. When the binary CAD generation tool 
encounters one of the descriptive tags, it generates an entry in the binary CAD 
with a 0-255 value specified in the predefined tag file. To add new or additional 
DOS properties, a short descriptive tag is created for the ASCII file and associ­
ated with an unused value between 0-255 in the predefined tag file. A length 
specification is also provided for the value in the tag file. 

Each field in the binary CAD starts with a predefined tag value of 0-255 that iden­
tifies the field. This tag is followed by a size field, which in turn is followed by the 
actual value of the field. 

Each application in the CAD has the following minimum information: 

• The filename used to start the application 

• The title of the application 

• A pointer to the next application. 

The filename that starts the application is used to identify the application on the 
hard drive. The next application pointer points directly to the next application 
entry in the CAD. This provides the ability to jump from one entry to the next 
without parsing all of the tags between entries in the CAD. The application title is 
displayed to the user if the application is found on the hard drive. The user will 
use this information to specify if the application is to be migrated. 

The filename extensions held in the CAD will determine what files are searched 
for; that is all EXE, COM and BAT files. 

When the applications have been migrated into the OS/2 Version 2.0 Workplace 
Shell, information for DOS applications is stored in the OS2.INI file. Windows 
settings for Windows applications are stored in the WIN.INI file, while their 
DOS-related settings are stored in the OS2.INI file. 

8.5 Defining Windows Applications 
As mentioned in the previous section, Windows applications may be automat­
ically migrated to the Workplace Shell desktop at OS/2 installation time. 
However, for applications which are not defined in the Certified Application Data­
base, or which are installed after OS/2 installation, a Workplace Shell object may 
be created from a template in the Templates folder. For such applications, the 
WIN-OS/2 application execution environment is defined to the Workplace Shell 
using the Program page of the program object's Settings notebook. 

Chapter 8. Windows Applications 145 



Path and file name: 

11:\WIN\AMIPRO\AMIPRO.EXEI find ... 

Parameters: 

Working directory: 

11:\WIN\AMIPRO 

Undo I I Help 

Figure 39. Defining a Windows Application to OS/2 Version 2.0 

Session 

Association 

Window 

General 

The Session page allows the user to change Windows settings via the Windows 
Settings dialog. This page defines whether the Windows kernel will execute in 
real, standard, or Auto-Select mode. Auto-Select mode is highlighted as the 
default. All DOS settings are selectable for Windows applications via the 
Windows Setting dialog; Windows settings are included in the same list. 

8.5.1 Defining a Single Application VDM (SAVDM) 
For a SAVDM, the Windows application name is entered into the Path and 
Filename field on the Program page of the Settings notebook. The Workplace 
Shell then determines the application type. Upon detecting that the application 
is a Windows application, the Program Type in the Session page of the notebook 
will be set to Windows Full Screen. When a user interactively creates a ·program 
object for a Windows application and the Workplace Shell determines it is a 
real mode application, Windows Full Screen will be marked as the default and 
the application will be started as a SAVDM. 

Each SAVDM has its own icon on the Workplace Shell desktop, for the applica­
tion within the SAVDM. This icon is the normal Windows icon for this applica­
tion. The icon title text will be the text specified in the Title field in the General 
page of the Settings notebook. 

8.5.2 Defining a Multiple Application VDM (MAVDM) 

146 OS/2 V2.0 Volume 2 

When defining a MAVDM, the user specifies WINOS2.COM for the Path and 
Filename field in the Program page of the Settings notebook. As explained 
above, the Workplace Shell detects that the application is a Windows application 
and sets the Program Type field in the Session page to Windows Full Screen. 

The user may also define one or more Windows applications which will be acti­
vated when the VDM is started. This is achieved as follows: 

1. The applications to be started are specified in the Parameters field of the 
Program dialog. Full path name and parameters should be specified. 

The syntax for the parameters field is: 



/Rl/S [{][!IA]Appl App-parms [,] .[!IA]App2 App-parms 

• IR Windows real mode 

• IS Windows standard mode 

These parameter are active for the whole VDM and not on an applic~tion 
base. 

• [ ] Optional Parameters 

• ! Start the Windows Application Minimized 

• "Start the Windows Application Maximized. 

No blank must be specified between '!' or w and the application name. 

A MAVDM will be created if one of the following are present: 

• {}Braces 

• Comma separating the application names 

• An application name is not passed as a parameter. 

If neither the exclamation mark nor the caret is specified, the Windows appli­
cation will start "normalized," approximately one third of the screen size. 

Changes are effective immediately and are saved when the Settings note­
book is closed or when the system is shut down. The Default button resets 
all settings to their previous values. 

2. In the Session dialog WIN-0512 full screen must be selected. 

The icon will be the Windows full-screen icon defined by WINOS2.COM. Indi­
vidual icons for applications running in the MAVDM are not displayed on the 
Workplace Shell desktop. 

8.5.3 Defining a "Seamless" WIN-OS/2 VDM 
In order to obtain the highest integration of the Windows V3.0 and Windows V2.x 
application into the OS/2 V2.0 Workplace Shell, the following definitions must be 
provided in order to have the application execute in seamless mode: 

1. Select the Program page of the program object's Settings notebook. 

2. Enter the Windows application name in the Path and Filename field. A fully 
qualified path and filename is necessary. 

3. Select the Session page of the program reference object's Settings notebook. 

4. Click on the WIN-OS/2 window radio button. 

5. All DOS settings are selectable for Windows applications via the Windows 
Settings page dialog; Windows settings are included in the same list. 

The "WIN-OS/2 Window" radio button indicates that the associated Windows 
application program is to be initiated in a "seamless" Windows VDM. This is a 
single application VDM. However, the WIN-OS/2 Program Manager may be reg­
istered with the Workplace Shell as a "seamless" WIN-OS/2 program object. 
Once the Program Manager is up and running, the user may launch any other 
Windows program from it. Of course, this assumes that other Windows pro­
grams were installed through the Program Manager, and that they all run in the 
same WIN-OS/2 session. 

A new parameter is added to the SYSTEM.IN! file: 

Chapter 8. Windows Applications 147 



WOS2VDMApps = !clipwos2,!ddeagent 

The WIN-OS/2 Program Manager reads this line for "seamless" WIN-OS/2 VDM, 
to determine which applications to pre-start. 

Since "WIN-OS/2 Window 11 is the default Windows application setting, all 
Windows program objects that are created through the Windows Migration utility 
(for standard mode Windows applications) will default to that setting. If a user 
chooses to execute a Windows application by double clicking its program file's 
icon in the Drives folder, rather than its program object icon (if any), then the 
Workplace Shell will attempt to initiate it in a "seamless" Windows environment. 

8.6 Starting Windows Applications 

8.6.1 SAVDM 

8.6.2 MAVDM 

148 05/2 V2.0 Volume 2 

The following methods may be used to start Windows applications: 

1. Select the application's program file from within the Drives folder. This 
method is not recommended, as it will not pick up any optimized DOS and/or 
Windows settings. 

2. Enter the application name at an OS/2 command line prompt. This method is 
not recommended, for the same reason as stated above. 

3. Install the application in a folder, in the Workplace Shell desktop as 
described in 8.5, "Defining Windows Applications" on page 145, and start it 
by double-clicking the mouse on its icon. This is the preferred method for 
starting a Windows application. 

If the application is started from either the Drives Folder or an OS/2 command 
prompt, a SAVDM will be created. If the application is started from an icon, 
either a SAVDM, a MAVDM or a "seamless 11 WIN-OS/2 VDM will be created, 
depending on how the application was defined at installation. 

A SAVDM is created for the execution of a single Windows application. The 
Workplace Shell actually starts WINOS2.COM as the application in the VDM, and 
the application to be started in the VDM is passed as a parameter to WINOS2. 
This process is transparent to the user; the definition of the SAVDM in the Set­
tings notebook uses the Windows application name only. 

If WINOS2 is to execute in real mode, the Ir option will be automatically inserted 
into the parameter list for the VDM creation, based on the WIN-OS/2 settings. If 
standard mode was highlighted, /s is passed as a parameter to WINOS2. The 
default is to pass no Windows options, only the application name. 

When the Windows application is terminated, WINOS2.COM terminates, which in 
turn causes the VDM to be terminated. 

In the case of a MAVDM, the Windows Program Manager is loaded in the VDM, 
transparently to the user. The Program Manager's window is displayed maxi­
mized, and applications are then launched from the Windows Program Manager. 
In this case, the Workplace Shell's Window List will display the name of the 
Windows kernel (WINOS2.COM) executing in the VDM. It will not show each indi­
vidual Windows application running within that MAVDM. This is different from a 



SAVDM, where the Workplace Shell's Window List will display the name of the 
Windows application. 

8.6.3 "Seamless" WIN-OS/2 VDM 
OS/2 Version 2.0 does not allow a "seamless" WIN-OS/2 VDM to be started from 
a DOS or OS/2 command prompt, nor is there any programmed interface for 
starting a "seamless" WIN-OS/2 VDM application from a Presentation Manager 
application. In addition, a SAVDM or MAVDM cannot be switched to a 
"seamless" WIN-OS/2 VDM once the virtual DOS machine is running. 

The "seamless 11 WIN-OS/2 VDM execution mode allows Windows applications to 
run from the Workplace Shell desktop in a manner that is virtually indistinguish­
able from other OS/2 and DOS applications. Double clicking a "seamless" 
WIN-OS/2 VDM application icon will cause that application to be run in a window 
on the Workplace Shell desktop. This single application "seamless" WIN-OS/2 
VDM environment will be a separate Windows VDM, where the Program 
Manager is not visible. 

In order to be perceived as a compatible part of the Workplace Shell environ­
ment, the "seamless" WIN-OS/2 VDM application's execution must be control­
lable in the same manner as the execution of other OS/2 and DOS applications. 
This has several implications: 

• The name of each active "seamless 11 WIN-OS/2 VDM application will be 
included in the Workplace Shell Task List. 

• Each "seamless" WIN-OS/2 VDM supports an appropriate context menu. 

• The user is able to cycle through all open Workplace Shell windows in the 
standard Alt-Esc manner. 

• The minimize/hide icons on Windows applications function consistently with 
other such icons on the Workplace Shell desktop. 

• The window controls on a "seamless" WIN-OS/2 VDM window operate in the 
same fashion as analogous Workplace Shell controls. The display style of the 
window controls on a "seamless" WIN-OS/2 VDM window will be "Windows­
style" however. 

• When a "seamless" WIN-OS/2 VDM Windows application terminates, its 
Workplace Shell window is also terminated. 

This approach allows the appearance of a Windows application executing in a 
"seamless" WIN-OS/2 VDM to conform as closely as possible to that seen when 
running in a native DOS/Windows environment, while its behavior is as close as 
possible to that of a normal Presentation Manager/Workplace Shell application. 

8.6.3.1 If You can't get a "Seamless" WIN-OS/2 VDM to Work 
Starting a Windows application requires a number of configuration options to be 
correctly completed prior to starting the application. Failure to do so may result 
in the application failing to start. This is typically due to one of three problems: 

1. Failures that are due to the configuration of the overall OS/2 V2.0 system. 

2. Failures that are due to the configuration of the overall Windows environ­
ment. 

3. Failures that are due to the nature of a particular Windows application. 

Chapter 8. Windows Applications 149 



The first two classes result from not being "seamless capable"; that is, some 
part of the system's configuration is not set up properly for "seamless" 
WIN-OS/2 VDM operation. For example: 

• An OS/2 V2.0 video device driver other than the "seamless" VGA driver is 
installed. 

• VWIN.SYS is not installed, due to the following line being missing in 
CONFIG.SYS: 

DEVICE= C:\OS2\MDOS\VWIN.SYS 

• The Windows video device driver referenced by the SDISPLAY.DRV = state­
ment in SYSTEM.INI file does not point to the "seamless" Windows VGA 
device driver. The correct entry in the SYSTEM.IN/ is: 

SDISPLA Y = SWINVGA.DRV 

The third class arises because the "seamless" execution environment will be a 
SAVDM that runs in standard mode only. This means that real mode Windows 
applications will not be able to run in "seamless" WIN-OS/2 VDM ("seamless" 
VDMs). The Workplace Shell is able to gracefully handle the initiation of real 
mode Windows applications, because it can determine the mode of a Windows 
application from its program header. Such Windows applications will be auto­
matically initiated in full-screen SAVDMs. 

In addition, groups of applications which depend on the sharing of global 
Windows memory will not be able to run in a "seamless" WIN-OS/2 VDM, unless 
it is possible to manually initiate one application in the set and then have that 
application programmatically spawn the rest of the applications in the set. In 
theory, this situation should never occur because the casual sharing of Windows 
global memory is expressly against the Microsoft guidelines for Windows system 
programming. However, if there are applications that depend on such sharing, 
the user will have to explicitly know to run them in a full-screen MAVDM. 

8.7 Windows Environment Settings 

150 OS/2 V2.0 Volume 2 

When Windows application support is selected during installation of OS/2 
Version 2.0, a WIN.IN! file is built. The options for devices selected for the OS/2 
environment are included in this file. 

Should the user migrate from a DOS/Windows 3.0 environment, the original 
WIN.INI created by Windows will be left unchanged. At installation time, the 
Windows installation process will examine the original AUTOEXEC.BAT file and 
search in all directories specified in the PATH statement in there for the original 
Windows WIN.COM file. If one exists, it will copy all Windows *.INI files and all 
the Windows application *.INI files from that same subdirectory into the 
\OS\MDOS\WINOS2 subdirectory. It will then modify these copies to adjust for 
the appropriate video, mouse, country and keyboard settings. This happens in 
accordance with the answers provided during the initial OS/2 setup. 



Configure WIN·OS/2 Desktop 

WIN-OS/2 

~ Install standard WIN-OS/2 desktop 

~ Copy WIN-OS/2 desktop from existing Windows** desktop 

(i Preserve WIN-OS/2 desktop currently installed 

Addltlonal lnfonnatlon 

Path to existing Windows system: 

!:a Update Windows desktop when WIN-OS/2 desktop is modified 

Figure 40. Migrating the Windows Initialization Files 

The Windows group files (*.GRP) and other Windows application-specific *.INI 
files are also copied. The modified WIN.INI and PROGMAN.INI files will have 
their path statements modified to point to the new locations of these files. 

Printer definitions for the Windows environment will also depend on the OS/2 
setup, rather than on any previously defined printer device driver. Of course, all 
path statements in these files will be modified to point to the appropriate directo­
ries. 

If a user installs OS/2 V2.0 over a previous version of OS/2 V~.o. the Windows 
install process will look for the existence of \OS2\MDOS\WINOS2\WINOS2.COM. 
If found, it will perform the same migration process from that base environment. 
If none of these files can be found, the Windows installation process will start 
from scratch, in the same way that a first-time Windows 3.0 installation would do 
it. 

The following initialization files are created/modified: 

• WIN.IN! 

• PROGMAN.INI 

• CONTROL.IN! 

• SYSTEM.IN!. 

The initialization and group files are required to restore a corrupted Windows 
environment. Backups of these files should be taken prior to making any 
changes to this environment. 

These files and their contents are described in the following sections. 

Chapter 8. Windows Applications 151 



8.7.1 WIN.INI 
WIN.IN! contains a number of sections which may be customized by the user, 
including which applications should be started or run when a Windows MAVDM 
is started. Each Windows application is recorded in a separate section indicating 
the drive and path to execute the application. The supported file extensions, for 
each application installed, are recorded in the Extensions section. 

Users need to be careful when applying any changes to this file, especially when 
it comes to configuring of any device drivers. The user might install a device 
driver which either does not exist or is not supported under OS/2 V2.0, such as 
specialized video device drivers. 

Most, but not all, Windows applications also have their private entries in the 
WIN.IN! file. Usually, such entries consist merely of a pointer. to the application's 
own working directory. However, some applications register all their installation­
dependent configuration information, and may therefore be very dependent upon 
finding their data in this file. The migration process will take care of these 
entries and migrate them appropriately. 

8.7.2 PROGMAN.INI 
PROGMAN.INI contains the Windows Program Manager settings. This file con­
tains the following sections: 

• Setting: Describes the settings of the Program Manager, along with the 
user's preferences. 

• Groups: Specifies the Program Groups that exist in Program Manager and 
the path name to their group files (*.GRP). 

8.7.3 CONTROL.INI 
CONTROL.INI contains the color and desktop settings for the Windows Control 
Panel. The following options are available: 

• Current: Specifies the window color setting 

• Color Schemes: Specifies the available color options 

• Custom Colors: Specifies up to 16 customization colors 

• Patterns: Specifies options for the desktop pattern. 

8.7.4 SYSTEM.INI 

152 OS/2 V2.0 Volume 2 

SYSTEM.IN! contains the global system information used by Windows when it 
starts. Changes are not effective until Windows is restarted. 

The following sections are included: 

• Boot: Lists the drivers and Windows modules. The OS/2 file contains new 
Boot section keywords which cover MAVDM and SAVDM default applications: 

GOPM This program returns the user to the Workplace Shell 

Clipboard The modified WIN-OS/2 Clipboard View program 

DDEAGENT 
The WIN-OS/2 DOE (Dynamic Data Exchange) program 

Prlntman The modified WIN-OS/2 Print Manager program, in MAVDM only. 



• Boot.description: Lists the names of devices the user can change using 
Windows Setup 

• Keyboard: Contains information about the keyboard 

• NonWindowsApp: This section should not contain any information, since non­
Windows applications are started from the OS/2 desktop. In the case of a 
migrated Windows environment, this section might contain information, but 
under OS/2 V2.0 it will be ignored. 

• Standard: Contains information required by Windows to run in standard 
mode 

• 3B6Enh: Contains information used by Windows to operate in 386 enhanced 
mode. This section is not used as OS/2 provides equivalent function. 

8.7.5 DOS and WIN-OS/2 Settings 
The following DOS settings are automatically defined for any Windows applica­
tion under the Workplace Shell. If a user explicitly modifies these entries, fol­
lowing these settings is recommended: 

WIN_RUNMODE 

KBD_CTRL_BYPAS 

AUTO 

OS/2 V2.0 will decide whether the Windows 
application will run in real or standard mode, 
unless the user specifically selects a mode. 

CTRL_ESC 

This keyboard sequence is required in a 
WIN-OS/2 MAVDM in order to bring up the 
Windows List. If not bypassed, the Ctrl + Esc 
sequence is trapped by the Workplace Shell. 

MOUSE_EXCLUSIVE_ACCESS ON 

DPMl_MEMORY _LIMIT 

IDLE_ SENSITIVITY 

Only necessary if the user wishes to run this 
SAVDM or MAVDM in a window under the 
Workplace Shell. Note this pertains to running 
the entire VDM in a Presentation Manager 
window, not to running in seamless mode. 

2 (MB) 

This is the default for the Windows environ­
ment and can always be increased when 
needed. However, decreasing this value is not 
recommended. 

75 

This is the default value. The performance of 
some Windows applications can be improved 
by re-adjusting this value to their specific 
needs. In particular, applications which make 
extensive use of the mouse may exhibit 
11jumpy" mouse movement when 
IDLE_SENSITIVITY is allowed to default; for 
such applications, IDLE_SENSITIVITY should be 
set to 100, which disables idle detection. 

Chapter 8. Windows Applications 153 



8.8 Windows Device Drivers 

154 OS/2 V2.0 Volume 2 

Upon installation, the WIN.INI file is updated with the appropriate information for 
the following options. Installation will install the following Windows device 
drivers in the appropriate directories: 

• Keyboard 

• Mouse 

• Video 

• Printer 

• Codepage/country. 

If a device driver is supported in Windows but not supported by OS/2, the 
Windows version will not be supported. 

Note ~~~~~~~~~~~~~~~~~~~~~~~~~---. 

Any "illegal" combination of OS/2 and Windows display device drivers may 
cause the Windows environment to crash or not to come up at all. 

On the other hand, the user can configure a useful dual screen configuration, 
which will actually run the Workplace Shell on one screen and Windows on the 
other simultaneously. OS/2 V2.0 may be run with the standard system display, 
such as VGA, XGA and so on, and in addition, another display adapter may be 
installed to run Windows applications, such as the IBM PS/2 Image Adapter/A, 
which is a Micro Channel card and supported on PS/2s. This requires the appro­
priate Windows display device driver to run exclusively on that adapter and the 
screen connected to it. Of course, the user must change several things (exam­
ples shown relate to the Image Adapter/ A): 

CONFIG.SYS Add "DEVICE=C:\MYSUB\IADOSRFS.SYS" 

This may be done via the DOS Settings for that particular 
Windows session object under the Workplace Shell. 

SYSTEM.INI Change "display.drv=IAA.DRV" 

IASETUP.EXE This is a DOS program which needs to be run once after instal­
lation. This utility will actually add some special entries to the 
WIN.INI file, which will tell the IAA.DRV display device driver 
what resolution and color setup to use on the Image Adapter. 

These device drivers and programs can be found on the Image Adapter support 
diskette. 

Do not confuse the scenario above with OS/2's standard dual screen support, 
which is installed and configured automatically if a VGA and 8514 (or XGA) 
are found during initial installation. In that case, only one screen will be 
active at any given moment, while the display of the other will be frozen. 



8.9 Print Support for Windows Applications 
The installation procedure will update the new WIN.IN! file to include the printer 
device driver details required by Windows for printers selected under OS/2. 
Installation selects a Windows printer device driver comparable with the OS/2 
printer device driver for that printer. The Windows printer device driver will ini­
tially operate in its default mode. If the printer device driver must be configured 
in a mode other than the default mode, the printer should be configured from 
within the Windows Control Panel. 

If there is no equivalent OS/2 printer device driver, the Windows device driver 
should be installed and configured via the Windows Control panel. The user 
should also use a printer port which is associated with the IBMNULL.DRV PM 
printer device driver on the OS/2 side. This will ensure the print data is passed 
straight through the port without OS/2's print subsystem modifying anything 
within the data stream. Even the usual "printer reset" should not occur. 

8.9.1 Print Subsystem Architecture 
There are some interesting and significant changes to the OS/2 print subsystem 
architecture which are used to support Windows applications, and which are 
worth noting: 

• The print subsystem has been expanded to provide printing support for 
Windows applications running on WIN-OS/2. 

• The OS/2 file system now intercepts ALL print jobs routed to an LPTx port, 
even those directed to WIN-OS/2 LPT1 to LPT3 and WIN-OS/2 LPT1.0S2 to 
LPT2.0S2 ports, and routes them to the OS/2 spooler. Jobs routed to a COM 
port are not intercepted by the file system and can proceed directly to the 
physical port via the serial port device driver. 

Figure 41 on page 156 shows the WIN-OS/2 details of the print subsystem archi­
tecture in more detail. The interesting feature to note here is that a second 
spooler is present; that is, the WIN-OS/2 spooler. The WIN-OS/2 spooler is the 
OS/2 V2.0 implementation of the Windows spooler. Similarly, the WIN-OS/2 Print 
Manager and WIN-OS/2 Control Panel represent the OS/2 V2.0 implementation of 
the Windows Print Manager and Windows Control Panel. There are minor user 
changes apparent in the WIN-OS/2 Control Panel, but these provide extra func­
tion rather than take it away. 

Chapter 8. Windows Applications 155 



156 OS/2 V2.0 Volume 2 

- !llllll~lll~llli!l!I 

COMx 

.. 
Figure 41. Detailed View of the WIN-OS/2 Data Connections 

For WIN-OS/2 printing, raw print data is generated via the WIN-OS/2 printer 
driver and GDI (Graphical Device Interface). The WIN-OS/2 printer driver directs 
the data to the appropriate port but the data route then taken varies depending 
on whether or not the OS/2 spooler is enabled, as shown in Figure 42 on 
page 158. 

If the OS/2 spooler is enabled, an INT21 is issued which provides a direct path 
for the print data to come into the OS/2 V2.0 file system. Jobs directed to LPTx 
or LPTx.OS2 ports are intercepted by the file system and are sent on to the 
SplQmxxx interface. The print data is then processed by the print subsystem as 
though it was raw data arriving from a PM queued application. Note that for this 
scenario, the print data is processed by the WIN-OS/2 printer driver and also 
part 2 of the equivalent OS/2 printer driver. 



It is important to ensure that the WIN-OS/2 and OS/2 printer drivers match to 
avoid conflict between them. If you use a WIN-OS/2 driver which has no OS/2 
equivalent then use the IBMNULL driver. 

Print jobs directed to COMx ports are not intercepted by the file system as for 
LPTx/LPTx.OS2 ports. Instead, they are passed directly to the serial kernel 
device driver. 

Chapter 8. Windows Applications 157 



158 OS/2 V2.0 Volume 2 

··:·:···:·;·:···· ~· ·.· ·.·:•_•:·:·:;:::::·:· ··:· -::::· ·.·.;.·.·.·:. · .. ·::: .. :·:::~n~~~=:•11~9~# 
LPTx I LPTx.OS2 COMx 

Enabled Disabled 

... :.·.·.-.·.··:·:···:•(·-·'.-:·:·····,·.· .. • .·.· 

~:.ti:!mt4.t~~!~r.:::::;:·Hm•• llI~I~ ,~~~ 

i:.t&~QHI@i' tiliii~~htii!J11 ~ 

itl~llll1lil 
l\l\!r'.~laia~:= .. t>fl~ir::·:.:: 
:::::;:::;::.·· .. -.. -.; ........ -.-·.·.·.·.·.·.,·.·,--· .... ···.·.· 

lilllltf~i 
~ 

Figure 42. Low Level View of the WIN-OS/2 Printing Data Flow 

If the OS/2 spooler is disabled, the print data bypasses many of the print sub­
system components. In this scenario, the WIN-OS/2 spooler will be called upon 
to spool the print job, which is actually written to the root directory of the fixed 
disk. The queued spool files are distinguished by having the file extension .TMP. 



If the WIN-OS/2 spooler is also disabled then the print job passes straight 
through. 

With the OS/2 spooler disabled, there are three routes that print jobs can take, 
according to their port destination: 

1. When it is the turn of a COMx job to be printed, the WIN-OS/2 spooler passes 
the print job to the COM VDD (Virtual Device Driver). The reason for this is 
that the job will ultimately be printed through the OS/2 serial KOO (Kernel 
Device Driver) which is COM.SYS. A VDD cannot call upon physical device 
drivers, such as COM.SYS, directly. Instead it must call on the services of 
the VDH (Virtual Device Helper) which is a programming interface that is 
able to do this on behalf of the VDD. Consequently, the VDD passes the print 
data to the serial KOO via the VDH. 

Note -----------------------------------------------------------------------------------------------

If you are printing to a COMx port, the WIN-OS/2 printer device driver 
needs to initialize that port and know about the handshaking protocol. To 
specify the correct settings, you will have to use the WIN-OS/2 Control 
Panel and click on the Ports icon. 

You should also make sure that you have installed the matching PM 
printer device driver under the Workplace Shell. If you don't have a 
matching version, use the IBMNULL printer device driver. This printer 
object needs to be assigned to the same COMx port and the settings 
must match the settings on the WIN-OS/2 side as well as the current 
printer setup. 

If you don't do that, the printing result will be unpredictable, especially for 
large and complex print jobs. 

2. Jobs directed to LPTx are routed to the parallel· physical device driver, 
PRINTOx.SYS.SYS, via INT21. 

3. Jobs sent to LPTx.OS2 are routed directly to the parallel physical device 
driver from the WIN-OS/2 spooler. 

Recommendation ---------------------------------------------------------------------------

It is strongly recommended that users operate the print subsystem with both 
spoolers enabled. Otherwise, print data from different jobs may become 
mixed up, and individual applications may have to wait until printing is com­
pleted before resuming execution. 

For more details about the entire print subsystem, including DOS and WIN-OS/2 
sessions, readers should refer to 0512 Version 2.0 - Volume 5: Print Subsystem. 

Chapter 8. Windows Applications 159 



8.10 Font Support 
The following discussion can also be found in OS/2 Version 2.0 - Volume 5: Print 
Subsystem, including more details about Presentation Manager, the Workp.face 
Shell, and the print subsystem. 

Fonts are used for output by the system to two devices: 

1. Displays 

2. Printers. 

With the many types of displays and even more numerous types of printers one 
can imagine the complexity of tracking who can use which fonts and what do 
they look like on a 75 dot display as well as a 300 dot printer. 

OS/2 Version 2.0 utilizes Adobe** Type Manager (ATM) for this specific purpose. 
There are two ATMs present in OS/2 Version 2.0, one for OS/2 PM applications 
and the other for WIN-OS/2 applications. These ATMs allow the system to 
provide a seamless look and consistent output while using most applications. 
Because there are two ATMs with some duplicate files, however, user installa­
tion and management is critical. 

8.10.1 Adobe Type Manager Overview 

160 OS/2 V2.0 Volume 2 

A TM provides WYSIWYG text to all OS/2 V2.0 PM and WIN-OS/2 supported 
printers and displays. WYSIWYG (What You See Is What You Get) implies that 
what you see on the display is what you will see on the printed page. In reality, 
a 75 dot per inch display can not show you what a 300 dot per inch printer will 
produce. It is physically impossible. What it will give you is fully formed charac­
ters in virtually any size and a sense of the "balance" of the page with respect 
to line, word and letter spacing. With A TM you have the ability to install and use 
a"ny of the hundreds of Type 1 Fonts compatible with the Postscript** Page 
Description Language. Thirteen Type 1 fonts are included in OS/2 V2.0 in four 
font groups (Times New**, Helvetica**, Courier and Symbol). This group pro­
vides a satisfactory basic working set, to which extra fonts can be added. 

With ATM. users now have a wider choice of fonts, and can display and print 
them even on lower-cost devices. For example, Postscript-quality fonts can now 
be printed on non-Postscript devices such as the IBM 4019 and 4029, and the 
HP** LaserJet** series without the need to add the additional Postscript inter­
preter option. You still get excellent results, though slower performance, as the 
fonts will be rasterized in the PS/2 rather than the printer. Even an IBM 4201 or 
an IBM 5152 or other low-cost matrix printers can print Type 1 fonts but, of 
course, not with the same quality as laser printers. These same fonts can also 
be "installed" as downloadable fonts to be sent to Postscript printers for faster 
print performance. 

The list of available fonts for most applications is a combination of the list in the 
printer device driver you have selected for output and the fonts you have 
installed in the ATMs. Tests with Lotus 1-2-3 for Windows, Aldus** PageMaker, 
and Describe** indicated that as soon as ·additional fonts were installed in the 
Font Palette of OS/2 PM and the ATM Control Panel of WIN-OS/2, all of these 
applications were able to include them in their font choice list, display them and 
print them. Some applications like CorelDraw!** 2.0 and Micrographx** Designer 
use their own internal outline format for fonts. They will use the same Type 1 
fonts as ATM but the fonts must be installed seperately in each application. 



Consult your application documentation to determine how each one handles 
fonts. 

8.10.2 ATM File Formats 
Flies: .FON 

These files hold the standard OS/2 V2.0 bitmap fonts and are copied there by the 
OS/2 V2.0 install procedure. 

Flies: .PSF 

Postscript font files are the new Type 1 Font files in internal-to-PM format which 
is designed (for efficiency) for the core fonts only (Times New, Courier and 
Helvetica). 

Files: .AFM 

These files hold the Adobe Font Metrics and are used by OS/2 PM ATM. Infor­
mation such as character widths and kerning pairs are in this file. 

Flies: .PFB 

These files hold the Printer Font Binary and are used by both OS/2 PM A TM and 
WIN-OS/2 ATM. These are the files that can be downloaded into printer storage. 

Flies: .PFM 

These files hold the Printer Font Metrics and are used by the Postscript device 
driver to download fonts and by WIN-OS/2 ATM. 

Flies: .PFA 

These files hold the Printer Font ASCII and are embedded by the Postscript 
device driver into the Postscript print job if you installed them as downloadable 
fonts. 

For non-A TM file formats, such as the native formats for PCL, PPDS and 420X 
printers. 

Chapter 8. Windows Applications 161 



162 OS/2 V2.0 Volume 2 

lolq OS/2 2.~ 
ATM 
Install 

OS/2PM / ~ WIN .. QS/2 

'-1 0 
update 

\CONRG.SYS / 

update 

~ 
\OS2'SYSTEM\OS2.INI I I . \OS2\MDOS\WINOS2\SYSTEM.INI 

install install 

' ~ 
\OS2\DLL\PMA lM.DU. 

IBM •eore Fonts• In \OS2\DLL 

\OS2\MDOS\WINOS2\A TM.INI 
\OS2\MDOS\WINOS2\ATMCNTRLEXE 
\OS2\MDOS\WINOS2\SYSTEM\ATMSYS.DRV 
\OS2\MDOS\WINOS2\SYSTEM\ATM16.0LL 

update 

Font Palette 

Type 1 
Font 
Install 

0 

Display Fonts 

20 

~=-'~ ·m!" • -~~~~· -:::?'% 

ll ·IL ~~1 ..... Jrr.u 
~~ 

ATM Control Panel 

' ' D ' I 
update install ~ install/create update 

\OSiDLL\font.AFM{. n. . . }\PSFONTJFM\font.PFM \082\DLL\fonlPFB ,.. \PSFONTS\fonlPFB 

\0 2\SYSTEM\052.INI l Non~rlpt 
· Postscript Driver \OS2\MDOS\'WINos2~ ATM.INI 

Downloadable '' '"" 
Font Install 

, also if using PSCRIPT.DRV 

\052\DLL\PSCRIP~r:A{~. }·· \::~~Np::WIN~PN~ 
\OS2\DLL\PSCRIPT\'ont PFM ~~=im;w~=:~,:=======:U ' 

,,1 • r.m~~~~~ 

Postscript 
Printing 

Figure 43. File Structure of Adobe Type Manager 



8.11 ATM for WIN-OS/2 
While ATM for OS/2 PM is integrated into the operating system, ATM for 
WIN-OS/2 is a separate program that is automatically installed into the WIN-OS/2 
desktop for you. ATM for WIN-OS/2 is accessed by using the ATM Control Panel 
in the WIN-OS/2 Main group. If you plan to manage fonts frequently after your 
initial installation it is recommended that you create a program icon on your 
OS/2 PM desktop for the WIN-OS/2 ATM control panel. The next section will 
describe how to do this. 

8.11.1 Installing ATM for WIN-OS/2 
ATM for WIN-OS/2 is automatically installed when you install the OS/2 base 
code. However, the 13 "IBM Core Fonts" that are automatically installed for you 
in OS/2 PM are not installed under WIN-OS/2. In fact ATM for WIN-OS/2 is itself 
not active until you install at least one font. This is why you will see an "X" over 
the ATM icon when you start the WIN-OS/2 Full-Screen command prompt if you 
have not installed any fonts. Included on the device drivers diskettes are the 
necessary font files to install these "IBM Core Fonts" for WIN-OS/2. They are 
currently located on device driver diskette #5. 

As mentioned previously, it is a good idea to have the WIN-OS/2 ATM icon on 
your OS2 PM desktop if you manage fonts frequently. There are two ways to do 
this: 

1. You can use the Migrate Applications program in the System Setup folder. 
However, this action will place the icon in a folder called "Additional 
Windows Programs." You will then have to open that folder and drag-and­
drop the ATM Control Panel icon onto your desktop. 

2. You can also open the Templates folder and drag-and-drop the Program icon 
on your desktop and type in the prompts. A TM for WIN-OS/2 is located in 
\OS2\MDOS\WINOS2\ATMCNTRL.EXE. Use \OS2\MDOS\WINOS2 as your 
working directory. Under Session select WIN-OS/2 window if available, oth­
erwise select WIN-OS/2 full screen. 

Under certain conditions ATM may become disabled or you may want to remove 
it for performance reasons if you only use standard fonts. In either case ATM for 
WIN-OS/2 is activated based on entries in the SYSTEM.IN! file located in the path 
\OS2\MDOS\WINOS2. If installed correctly you will see the following statements: 

1. system.drv = atmsys.drv 

2. atm.system.drv= system.drv 

To disable ATM: 

1. Delete the atm.system.drv=system.drv statement 

2. Change system.drv=atmsysdrv to system.drv=system.drv. 

8.11.2 Installing Additional Fonts for WIN-OS/2 ATM 
Before installing any additional fonts for WIN-OS/2 make sure that a// of your 
printers are installed and that they are configured for the correct output port. 
WIN-OS/2 maintains its font information in the ATM.INI for non-Postscript printers 
and in the WIN.INI for Postscript printers. For Postscript printers this means that 
Postscript printers installed after the font installation will not have those fonts in 
their list. Also if you change the output port of an installed Postscript printer 

Chapter 8. Windows Applications 163 



164 OS/2 V2.0 Volume 2 

then your fonts will disappear unless the new port also had a Postscript printer 
assigned to it while the fonts were being installed. 

To install an additional font: 

1. Open the ATM Control Panel 

2. Click on Add .•. 

3. Double Click on the source of the new font(s) 

4. Click on the Font flies you wish to add 

5. Click on Add 

6. Click on Exit 

You must restart Windows to access the new fonts. The system will prompt you 
to do this. 

Important~-~--~---~----~-~-~----~ 

When you install the fonts the system will prompt you with suggested paths 
for the files. Although you may change the path, remember one thing: 082 
PM ATM will be installing the .PFB file as well and will place it in a different 
directory. You will be tempted to use the same directory for both OS/2 PM 
and WIN-OS/2. We recommend that you use the default settings because 
when you delete a font with the OS/2 PM Font Palette it will also delete the 
.PFB font file! This will make the font unusable, although still installed, in 
WIN-OS/2. Allowing the system to keep your OS/2 PM and WIN-OS/2 fonts 
separate will save a lot of confusion in managing fonts. 

These files would have been added to the \PSFONTS directory after installing the 
Berthold Badoni Antiqua fonts. 

\PSFONTS. 

5-01-90 8:00a 39648 0 bpbi_.pfb 
5-01-90 8:00a 38664 0 bpb __ .pfb 
5-01-90 8:00a 36930 0 bpi __ .pfb 
5-01-90 8:00a 37381 0 bpli_.pfb 
5-01-90 8:00a 35979 0 bpl __ .pfb 
5-01-90 8:00a 38740 0 bpmi __ .pfb 
5-01-90 8:00a 38098 e bpm __ .pfb 
5-01-90 8:00a 35837 0 bprg_.pfb 

And these files would have been added to the \PSFONTS\PFM directory after 
installing the Berthold Badoni Antiqua fonts. 

\PSFONTS\PFM. 

4-10-92 10:42a 7016 e BPBI .PFM -4-10-92 10:42a 5830 0 BPB .PFM --4-10-92 10:43a 6019 0 BPI .PFM --
4-10-92 10:43a 5934 0 BPLI .PFM --4-10-92 10:42a 5700 0 BPL __ .PFM 
4-10-92 10:43a 7869 0 BPMI .PFM --4-10-92 10:43a 5571 0 BPM __ .PFM 
4-10-92 10:43a 6004 e BPRG_ .PFM 



Note: The internal file format is different from the standard core fonts delivered 
with OS/2 V2.0. Those have been modified for performance reasons, where these 
fonts are installed as standard Type 1 fonts. 

As information is added to the ATM.INI file, don't try to install or remove fonts 
just by copying or erasing files. Adding or deleting fonts must be done with 
the ATM Control Panel and/or the Print Manager. 

For faster performance and better typeset quality don't forget to either install 
these fonts as downloadable, or download them directly, if you are using 
them with a Postscript printer, which does not have them already built-in. 

8.11.3 Deleting Fonts for WIN-05/2 ATM 
The standard core fonts and the additional Type 1 fonts have to be deleted with 
the ATM Control Panel. To delete them: 

1. Open the ATM Control Panel 

2. Click on the font(s) to be removed 

3. Click on Remove 

4. Click on Yes in the confirmation box 

5. Click on Exit 

You must restart Windows to use the updated font list in the ATM.INI file. The 
system will prompt you to do this. The soft font entries in the WIN.INI file, 
however, will not be deleted. This means that you will still "see" the deleted 
fonts in the font list for your applications if you choose a printer(usually 
Postscript) that has these entries. Although the font name will appear, when you 
select it you will not get the expected screen font as it has been deleted from 
ATM. Instead you will get an installed font, usually Times or Helv, depending on 
the font you selected. 

In order to remove the deleted fonts from the lists you must edit the 
\OS2\MDOS\WINOS2\WIN.INI file. The following example shows you a before 
and after version of the WIN.INI file if you wanted to remove all Berthold Bodoni 
Antiqua fonts from your application font lists. 

Chapter 8. Windows Appllcatlons 165 



WIN.INI after ATM delete but before manual edit. ---------....... 

[PostScript,LPT2.0S2] 
device=36 
f eedl=l 
f eed3=1 
f eed5=1 
feedl5=1 
softfonts=12 
softfontl=c:\psfonts\pfm\archi~.pfm,c:\psfonts\archi~.pfb 
softfont2=c:\psfonts\pfm\balleeng.pfm,c:\psfonts\balleeng.pfb 
softfont3=c:\psfonts\pfm\bpb~~·Pfm,c:\psfonts\bpb~~·Pfb 
soft font4=c:\ps fonts\pfm\bpbi __ • pfm, c:\ps fonts\bpbi __ • pfb 
softfont5=c:\psfonts\pfm\bpl~~·Pfm,c:\psfonts\bpl~~·Pfb 
softfont6=c:\psfonts\pfm\bpl i_. pfm,c:\psfonts\bpl i __ • pfb 
softfont7=c:\ps fonts\pfm\bprg __ • pfm,c: \psfonts\bprg __ • pfb 
softfontB=c:\psfonts\pfm\bpm~~·Pfm,c:\psfonts\bpm~~·Pfb 
softfont9=c :\psfonts\pfm\bpmi __ • pfm,c:\psfonts\bpmi __ • pfb 
softfont10=c:\psfonts\pfm\bpi~~·Pfm,c:\psfonts\bpi~~·Pfb 
softfontll=c:\psfonts\pfm\blackcha.pfm,c:\psfonts\blackcha.pfb 
softfontl2=c:\psfonts\pfm\saintfra.pfm,c:\psfonts\saintfra.pfb 

WIN.INI after manual edit. -----------------~ 

[PostScript,LPT2.0S2] 
device=36 
feedl=l 
f eed3=1 
f eed5=1 
feedl5=1 
softfonts=4 
softfontl=c:\psfonts\pfm\archi~.pfm,c:\psfonts\archi~.pfb 
softfont2=c:\psfonts\pfm\balleeng.pfm,c:\psfonts\balleeng.pfb 
softfont3=c:\psfonts\pfm\blackcha.pfm,c:\psfonts\blackcha.pfb 
softfont4=c:\psfonts\pfm\saintfra.pfm,c:\psfonts\saintfra.pfb 

Note: In addition to deleting the line entries you must also renumber the 
remaining lines and edit the total number in the softfonts= statement. If you 
have more than one printer installed you may have to edit other groups in the 
WIN.INI under other port entries. 

8.12 Clipboard Support 
OS/2 Version 2.0 provides clipboard support between Windows applications, in 
the same or separate VDMs, as well as support between Windows applications 
and OS/2 Presentation Manager' applications. The clipboard serves as a data­
exchange feature acting as a common area to store data handles through which 
applications exchange formatted data. The same data may be represented in a 
number of different formats as specified by the application. Note that objects in 
the clipboard may be of any size and format. 

4 OS/2 VIO applications may also use the Presentation Manager clipboard, by using the appropriate Win calls; for example, 
CTC's SPF/2** editor provides this function. 

166 05/2 V2.0 Volume 2 



The combined OS/2 and Windows clipboard environment under OS/2 Version 2.0 
is shown in Figure 44 on page 167 s. 

OS/2 PM Clipboard 

OS/2 PM Bitmap 

OS/2 PM Metafile • 
OS/2 Image Fiie 

ASCII Text t Private Format 

OS/2 PM Clipboard 
View Utlllty 

DPMI Global Clipboard 
Data Translation 

· WIN-OS/2 Clipboard 
View Utlllty 

* WIN-OS/2 Clipboard 

Windows Bitmap 

• 
OS/2 PM Appllcatlons 

DOS Appllcatlons 
In aVDM 

OS/2 Clipboard 
Server 

Windows Metafile 

Windows Palette 
..... --.. •~ Windows Appllcatlons 

ASCII Text 

Private Format 

Figure 44. OS/2 Version 2.0 Clipboard Environment 

Chapter 8. Windows Applications 167 



Data is formatted in either a predefined or private format, before being copied to 
the clipboard. In most cases the data is copied to pre-allocated global memory 
and a function .call is used to copy the memory handle to the clipboard. 
Windows provides a number of predefined data formats: 

TEXT Null-terminated text 

OEMTEXT Null-terminated text using an OEM character set 

PICTURE Metafile picture structure 

BITMAP Device-dependent bitmap 

DIB BITMAP 

SYLK 

DIF 

TIFF 

Device-independent bitmap 

SYLK Standard data interchange format 

DIF standard data interchange format. 

Tag Image File Format 

Any Private Format 
· Will be kept in the same format. This will be usable only by appli­
cations which know about this private format. 

These formats will be recognized and exported/imported by the global clipboard 
server. 

Data formats which are not supported by the clipboard server, cannot be trans­
ferred. Such formats can only be handled by the local clipboards. This means 
that such formats may only be used to exchange data between Presentation 
Manager applications, or between Windows applications running in the same 
VDM. In addition, some of the data formats will also be converted, because of 
several differences between Windows and Presentation Manager data structures. 
This is further discussed on page 171. 

The OwnerDraw feature in the Windows clipboard is only supported within a 
MAVDM, as shared memory is required. OwnerDraw is a process whereby a 
Windows application takes control over the appearance of menu items and has 
responsibility for managing these menu items. 

The native Microsoft Windows 3.0 clipboard provides support for both Windows 
applications and non-Windows applications. Non-Windows applications (that is, 
"native" DOS applications) run in either full-screen or "windowed" mode. This 
kind of environment is not supported in a MAVDM, because it is supported by 
the Workplace Shell directly. Therefore, clipboard support for native DOS appli­
cations is provided through Presentation Manager. 

Should the user wish to capture the contents of a VDM running in full-screen 
mode, the following approach is adopted: 

1. Switch to the Presentation Manager screen containing the VDM 

2. Select the System menu on the VDM icon 

3. Select Copy All. 

15 Note that not all data formats shown in this diagram will be supported by the global clipboard server. This is discussed In 
detail on the following pages. 

168 OS/2 V2.0 Volume 2 



This procedure will copy the VDM's video buffer to the Presentation Manager 
clipboard (either in ASCII format or as a Presentation Manager bitmap). 

Selective copy is available in windowed mode. When a VDM is running in a 
window, the user may mark a specific rectangular area which will then be copied 
into the clipboard. 

This level of clipboard data exchange is fully supported by the VDM itself. The 
Windows kernel is not involved at all. 

8.12.1 WIN-OS/2 Clipboard Support 
The WIN-OS/2 clipboard view utility will display the captured data in a number of 
formats, either predefined or private. Auto displays the data in the format it had 
when placed onto the clipboard. 

The clipboard view program CLIPWOS2.EXE, installed in C:\OS2\MDOS\WINOS2, 
is available within each SAVDM and MAVDM by default. This is a modified 
version of the original Windows 3.0 clipboard program. 

A Clipboard Server (Global Clipboard) runs as a protected mode background 
process under OS/2 Version 2.0, to service clipboard functions between VDMs. If 
the Clipboard Server is not executing, clipboard functions are limited to within a 
single VDM. The Clipboard Server (\OS2\MDOS\WINOS2\VDMSRVR.EXE) is 
automatically started with the first WIN-OS/2 VDM. 

Should a user elect to exit from the Windows clipboard, a warning message will 
be displayed, advising that exiting will terminate public clipboard functions. The 
clipboard functions within each VDM are public by default, unless explicitly set to 
LOCAL, which restricts clipboard activity to that WIN-OS/2 session only. 

The WIN-OS/2 clipboard viewer pull-down menus have been enhanced to include 
support for an Options menu, which contains the Public Clipboard option. 
Selecting this option causes changes to the local clipboard to be reflected in the 
public clipboard and vice versa. When deselected, the contents of the public and 
local clipboards will not affect each other. 

The File pull-down menu now supports Import/Export functions; Public must be 
deselected from the Options pull-down menu before Import/Export can be 
selected. 

Export will copy the current contents of the local clipboard to the Public clip­
board. 

Import will copy the contents of the public clipboard to the Local clipboard. 

Implementation Notes ---------------------. 

The Import/Export functions communicate via named pipes to the 
\pipe\CLPAgent to the clipboard program (CLIPWOS2.EXE) within each VDM. 
This could cause performance problems on systems which already· utilize 
named pipes heavily for other purposes or when the content of the clipboard 
data is too big, for example huge bitmaps. If you don't need to exchange 
clipboard data outside a MAVDM, you could keep it local and therefore get 
around any possible performance problems. 

Chapter 8. Windows Applications 169 



8.12.2 Using Cut and Paste 

170 OS/2 V2.0 Volume 2 

The following three scenarios describe the clipboard functions: 

1. Cut and Paste from a Windows Application in a VDM to another application 
in a separate VDM; Public is deselected. 

2. Cut and Paste between two Windows applications within the same VDM 
(MAVDM). 

3. Cut and Paste between the OS/2 and Windows environments. Cut and Paste 
within the OS/2 environment remains essentially unchanged. 

8.12.2.1 Scenario 1 - Cut/Paste Between Independent WIN-OS/2 
Sessions 

1. Cut the data into the local Windows VDM clipboard. 

2. Select Export from the clipboard pull-down menu. The data is copied into the 
external clipboard. 

3. Select the VDM containing the destination Windows application. 

4. Select Import from the clipboard pull-down menu. The data is copied from 
the external clipboard into the local clipboard of the receiving VDM. 

5. Paste the data into the destination Windows application. 

Note: Steps 2 and 4 above are not necessary if the clipboard is public in the 
source and destination VDM. 

8.12.2.2 Scenario 2 - Cut/Paste Within A MAVDM 
1. Cut the data into the Windows VDM clipboard 

2. Paste the data from the clipboard into the destination application. 

8.12.2.3 Scenario 3 - Cut/Paste Between OS/2 And WI N-OS/2 
The OS/2 V2.0 clipboard is activated upon loading the operating system. A new 
OS/2 utility named CLIPVIEW.EXE is located in the OS2\APPS\ directory, and has 
been provided to support the extended clipboard functions. CLIPVIEW.EXE must 
be started in order to view and transfer the contents of the OS/2 V2.0 clipboard. 

With the exception of the File option of the Windows clipboard, the same pull­
down menus are provided. The Render option is the same as the Display option 
in the Windows clipboard. Render will display the contents of the clipboard in a 
number of different formats. Because the contents of the clipboard are stored in 
separate areas in memory, it is possible to view both the ASCII (text) and 
graphics contents of the clipboard. 

An application may or may not clear the entire contents of the clipboard, 
prior to copying data to it. For example, the system editor will always erase 
the entire Presentation Manager clipboard, and therefore any public Windows 
clipboard as well, before it copies its text data into it. On the other hand, 
some of the Presentation Manager applications do not behave that way. 
They will only override the specific data areas which are copied into the clip­
board and leave the other ones in the clipboard unchanged. 

The global Windows VDM clipboard is visible to the Presentation Manager clip­
board. CLIPVIEW.EXE has been enhanced to perform the following two activities: 



1. Update the Presentation Manager clipboard when changes are made to the 
global VDM Clipboard 

2. Update the global Windows VDM clipboard when changes are made to the 
Presentation Manager clipboard. 

The Presentation Manager clipboard server application is registered as "clip­
board viewer" to receive notification of clipboard updates. This ensures that the 
following messages are forwarded to the clipboard server, so that when updates 
are made to the Presentation Manager clipboard, messages are sent to the 
Presentation Manager CLIPVIEW.EXE. 

• WM_DESTROYCLIPBOARD: Signals that the contents of the clipboard are 
being destroyed 

• WM_DRAWCLIPBOARD: Signals an application to notify the next application 
in the chain of a change to the clipboard 

• WM_HSCROLLCLIPBOARD: Requests horizontal scrolling of the clipboard 
contents 

• WM_PAINTCLIPBOARD: Requests painting of the contents of the clipboard 

• WM_RENDERALLFMTS: Notifies the owner of the clipboard that it must 
render clipboard data in all possible formats 

• WM-RENDERFMT: Notifies the clipboard owner that it must format the last 
data copied to the clipboard 

• WM_SIZECLIPBOARD: Notifies the clipboard owner that the clipboard appli­
cation's window size has changed 

• WM_VSCROLLCLIPBOARD: Requests vertical scrolling of the clipboard con­
tents. 

No changes have been made to the Presentation Manager API functions to 
accommodate this design. Presentation Manager applications will not notice 
any difference; there appears to be just one (Presentation Manager) clip­
board as it always used to be. The same is true for Windows applications as 
well. 

Data formats are translated from Presentation Manager to Windows formats and 
vice versa, as required. This translation is performed when data is placed in the 
global clipboard. The following data formats will be translated between Presenta­
tion Manager and Windows: 

Windows DIB bitmaps: 

Windows bitmaps: 

Windows Metafiles: 

The Windows device-independent bitmaps are translated 
to/from OS/2 Presentation Manager bitmaps. 

This translated pre-Windows 3.0 formatted bitmaps to 
OS/2 Presentation Manager bitmaps. 

Note: This is a one way only translation. 

Windows metafiles are first internally converted to the 
Windows DIB format by the Windows clipboard viewer, 
before being forwarded to the global clipboard. 

Chapter 8. Windows Applications 171 



PM Metaflles: 

Text: 

PM metafiles are first internally converted to the PM 
bitmap format by the PM clipboard viewer, before being 
forwarded to the global clipboard. 

ASCII text will be translated in both directions. If the 
sending and receiving environment are using a different 
codepage, the appropriate codepage translation will take 
place. 

8.13 Dynamic Data Exchange 
This section describes Dynamic Data Exchange (DOE) support between Windows 
applications in a full-screen VDM. 

8.13.1 D DE Concepts 

172 OS/2 V2.0 Volume 2 

DOE is a message protocol for dynamic data exchange between Windows pro­
grams. Data may be shared among applications, the intention being to create an 
integrated Windows environment. 

Client, Server and Conversation: 

Two applications participating in dynamic data exchange are said to be engaged 
in a DOE conversation. The application which initiates the conversation is the 
client application. The application which responds to the client is the server 
application. An application may be engaged in several conversations at the 
same time, acting as a client in some conversations and as a server in others. 

A ODE conversation takes place between two windows, one for each of the par­
ticipating applications. The window may be the main window of the application, 
a secondary window associated with the application, or a hidden window. A 
hidden window is typically used to process DOE messages. 

DOE identifies the units of data passed between the client and server with a 
three-level hierarchy of: 

• Application name 

• Topic 

• Item. 

Each DOE conversation is uniquely identified by the application name and topic. 
The application name is normally the name of the server application. The topic 
is a general classification of data, within which multiple data items may be 
exchanged during the conversation. The item is the actual information related to 
the conversation topic that is exchanged between the applications. Values for 
the data item can be passed from the server to the client, or from client to 
server. The format of the data item may be any one of the clipboard formats (see 
8.12, "Clipboard Support" on page 166). 

Once a DOE conversation has been initiated, the client may establish one or 
more permanent data links with a server. A data link is a communication mech­
anism by which the server notifies the client whenever the value of a given data 
item changes. The link is permanent in the sense that the notification process 
continues until the data link or ODE conversation is terminated. 



The ODE link may be warm or hot. In a warm data link, the server notifies the 
client that a value of a given data Item has changed, but the server does not 
actually send the data value to the client until the client requests it. In a hot data 
link, the server immediately sends the changed data value to the client. 

Applications which support ODE typically provide a Copy/Paste command in the 
Edit menu to allow the user to establish a DOE link. 

8.13.2 Windows Application to Windows Application 
In a native Windows 3.0 environment, a Windows application (client) will broad­
cast a DDE Initiate message. Windows serially posts a message to every 
Windows application currently running and then awaits a reply. As described 
above, the Initiate Conversation message contains the DOE topic to which any 
Windows application can respond. The client application continues execution 
when all other applications have serviced the message. At this time, the client 
application communicates directly with the server applications, as opposed to 
the initial broadcast message. 

OS/2 Version 2.0 provides two applications to support communications between 
VDMs, without altering the Windows code: 

• A resident Windows application referred to as the ODE ServerAgent (SA) 

• A DOS protected mode application referred to as the DDEServer 
(VDMSRVR.EXE). 

8.13.2.1 ServerAgent 
The Windows VDM's resident Server Agent consists of two parts: 

• A "ServerAgent" which sends and receives messages outside of the VDM 

• One or more "agents" (each agent is a child window of the ServerAgent), 
which act as "clones" of applications running in other VDMs. 

If either the DDEServer or the VDM's ServerAgent is not executing, ODE is not 
available outside of the VDM. The ServerAgent is automatically started when 
the Windows VDM is started. When started, ODE is in public mode. To keep it 
local, simply kill (close) the ODE Interchange Agent. To make it public again, 
simply start the Interchange Agent once more. 

Should the user choose to kill the ODE Interchange Agent, an information 
message will be displayed indicating that DOE activity will be visible only to the 
Windows applications executing in the current VDM, discontinuing ODE commu­
nication with Presentation Manager applications and other Windows applications. 

The ServerAgent is responsible for all routing of ODE messages, including 
broadcast messages beyond the confines of the VDM to the DDEServer. The 
ServerAgent communicates with the DDEServer (VDMSRVR.EXE) via named 
pipes. 

Agent applications communicate with Windows applications in their VDM and the 
ServerAgent executing in their VDM. Only the ServerAgent uses named pipes. 
Agents send requests to the Server Agent to be forwarded outside of the VDM. 

Chapter 8. Windows Applications 173 



8.13.2.2 DDEServer (VDMSRVR.EXE) 
The DDEServer is responsible for routing requests from ServerAgents to the 
appropriate VDMs. The ODE process is schematically represented below: 

Appllcatlon B Appllcatlon D 

Figure 45. DDE Process between Windows Environments 

174 OS/2 V2.0 Volume 2 

The sequence of events for ODE communication between applications running in 
different WIN-OS/2 VDMs is as follows: 

1. A DOE Initiate message is broadcast from Windows application A. 

2. The message is forwarded by the ServerAgent to the DDEServer. 

3. The DDEServer forwards this message to all other OOEAgents. 

4. Each DDEAgent broadcasts this initiate message to all Windows applications 
in their VDM. 

5. Windows application D responds affirmatively to this ODE initiate message. 

6. The DDEAgent creates a child task ServerAgent A to act as an agent to 
Windows application A. 

7. The DDEAgent forwards an acknowledgement to the DOEServer. 

8. The DOEServer forwards this acknowledgement to the DDEAgent for the 
Windows application A. 

9. This DDEAgent creates a child task ServerAgent D to act as an agent to 
Windows application D. 



10. The DDEAgent forwards the response from Windows application D to the 
Windows application A. 

From here on, the two Windows applications communicate through this estab­
lished path. 

Appl. A <-> DDEChildAgent D <-> DDEAgent A <-> DDEServer <-> 
DDEAgent D < -> DDEChildAgent A <- > Appl. D. 

This mechanism isolates all named pipe transactions (Steps 2, 3, 7 and 8) to the 
DDEAgents and the DDEServer. It also gives the Windows application A the illu­
sion of a point-to-point connection to Windows application D (because it will actu­
ally communicate with Windows applicatiC?n D's child agent in the same VDM). 

The interprocess communication protocol used between the Windows applica­
tions and the DDEAgents is the original and unmodified DOE protocol. 

If two Windows applications require significant amounts of DOE, these applica­
tions should be executed from within the same MAVDM. In such instances, the 
ServerAgent and DDEServer applications would not be required, thereby 
improving performance and usability. Once this is done, the user need only kill 
(close) the participating DOE Interchange Agent to ensure that all ODE mes­
saging is kept local. 

8.13.3 Windows Application to Presentation Manager Application 
DOE support between Windows applications and Presentation Manager applica­
tions requires that the DDEServer be linked with the Presentation Manager DOE 
APls. Both DOE messages and data formats are translated during the data 
exchange between Presentation Manager and any given VDM running a 
Windows application. This process consists of a protected mode DDEServer, a 
Windows DOE ServerAgent, as described above, and a Presentation Manager 
DOE ServerAgent. The Presentation Manager DOE ServerAgent is a mirror to the 
Windows DOE ServerAgent. The ServerAgent is responsible for routing all ODE 
messages beyond the confines of Presentation Manager to the DDEServer. The 
ServerAgent communicates with the DDEServer via named pipes. 

The ODE process between Presentation Manager applications and Windows 
applications may be represented as follows: 

Chapter 8. Windows Applications 175 



176 05/2 V2.0 Volume 2 

Windows Appllcatlon A 

DOE Initiate Message 

DOE Conversation 

DOE Server Agent 
for Appllcatlon A 

Named Pipes 

Data 
Translation 

PM Appllcatlon B 

DOE Initiate Message 

DOE Conversation 

DOE Server Agent 
for Appllcatlon B 

Figure 46. DDE Process between Presentation Manager and Windows 

The following data formats are translated between the Presentation Manager 
environment and the Windows environment: 

Bitmaps: Windows DIB format to/from OS/2 BITMAPINF02 and 
Presentation Manager BITMAPINFO to/from Windows 018 
format. 

Windows Device Dependent Bitmaps: 

Windows Metafiles: 

PM Metafiles: 

Text: 

Pre-Windows 3.0 format to Windows DIB format to/from 
Presentation Manager BITMAPINFO. 

Metafiles are converted to Window DIB format prior to 
being translated as above. 

PM metafiles are first converted to Window DIB format 
prior to being translated as above, and are then for­
warded to the global clipboard. 

Codepage translation is provided in both directions, if 
required. 

Any data format which is not supported by the global DDEServer translation rou­
tines, can still be used on a local base, that means within the same VDM. 

The Presentation Manager ODE ServerAgent will reside as a utility in a Produc­
tivity folder on the Workplace Shell. Where there is a demand to provide DOE 
support between Presentation Manager applications and Windows applications, 
the Presentation Manager ODE ServerAgent should be placed in the Workplace 
Startup folder. The DOE ServerAgent runs only as a minimized icon. To shut 



down global ODE, the Presentation Manager ODE ServerAgent must be termi­
nated through the Window List. 

If a seamless Windows session is started, the DOE ServerAgent will automatically 
be started, so that this particular Windows application can automatically use 
ODE. Otherwise, it would appear to be isolated and this would confuse the 
novice user. 

Existing DOE support between Presentation Manager applications remains 
essentially unchanged. Where ODE is only used between Presentation Manager 
applications, the ODEServer should be deactivated to improve performance. 

8.14 Object Linking and Embedding 
Object Linking and Embedding (OLE) focuses on document formats rather than 
on an application's ability to exchange data, as implemented using the DOE 
approach. OLE is concerned with sharing functionality as opposed to sharing 
data. The better the application of OLE, the less the concern with programs as 
opposed to their data. 

All OLE transactions involve a client application and a server application. The 
server creates the embedded or linked document and is activated when any 
activity beyond display is required; the client packages and renders the object 
within its own document. 

OLE objects are packaged within client documents either statically (embedded) 
or dynamically (linked). The entire contents of an embedded object, including 
references to the server application, are included in the client document. 

OLE defines a format for compound documents which contain multiple forms of 
data. The data formats are understood and managed by multiple applications. 
The application uses various combinations of data to construct a compound doc­
ument. 

8.14.1 OLE Concepts 
The concepts used in OLE are best described by contrasting them with the 
approach adopted by clipboard and ODE: 

• When using the clipboard, an application obtains data from another applica­
tion in a standard format, usually ASCII, a bitmap or a metafile. This data 
exists only as data; there is no link with the application that originally placed 
the data in the clipboard. 

• When using DOE, an application also obtains data from another application in 
a standard format, such as ASCII, bitmap or metafile. However, the client 
can establish and maintain a link with the application which delivered the 
data. Should the data change in the server application, the client applica­
tion's data is also updated. 

OLE also enables an application to obtain data from another application; in this 
instance the data can be in two formats: 

• One format is understood only by the application sending the data 

• The display format (ASCII, bitmap or metafile) is understood by the receiving 
application, and is used to display the data on the screen. 

Chapter 8. Windows Applications 177 



When an object is linked, only the references to the actual data, including the 
name of the server application, are embedded within the client document. In 
both cases, the references allow the OLE libraries to execute the server and 
properly instruct it. 

When initially embedding or linking objects, client and server applications typi­
cally exchange data using the Windows clipboard. When the server puts data on 
the clipboard, it uses various combinations of four types of data: 

1. Native data is specific to the server and likely to be alien to the client. 

2. Presentation data uses one of several display formats commonly used by 
Windows programs to render data. 

3. OwnerLink data is the name and address identifying the object or application 
that owns the data. 

4. ObjectLink data uses the same format as Ownerlink data but describes the 
application and object from which the data originated. 

The order in which this data is put on the clipboard, or otherwise presented to 
the client, determines what type of object is intended. 

For example, if OwnerLink data is presented first, then a linked object is 
intended. If Native data is first and OwnerLink is second, then the object can be 
embedded (though not necessarily rendered properly). 

In fact, a presentation format is optional for an embedded object, partly because 
some objects are meant to be invisible. If no presentation data is available and 
understood by the client and no object handler is provided by the server, the 
object will not be properly rendered by the client. 

The significance of this approach may be appreciated by way of an example. 
Voice annotation may be attached to a word processing application; the word 
processing application need not have any facility to support or manage voice. 
The word processor will store the data in two formats; the digitized sound and a 
display format (an icon). When the icon is selected in the document, a voice 
application is invoked and the word processing application passes the digitized 
sound to the voice application, which then plays the sound. 

8.14.2 Linking versus Embedding 

178 OS/2 V2.0 Volume 2 

When an object is embedded, information from one document is inserted into a 
document in a different application. Embedding is similar to copying, but with 
one significant difference; to make changes to an embedded object, the user 
simply selects the object from within the destination document. The application 
in which the object was created is invoked, and the user may make the required 
changes. There is no need to switch among applications to view or change dif­
ferent kinds of information; it is all in one document. 

When an embedded object is modified, the source document is not affected. For 
example, if a drawing is embedded into a report, changes made to the drawing 
within the report do not affect the original drawing which resides in its own file. 

When an object is linked, many documents can share a single item of informa­
tion. The object itself is not placed into the destination document; rather, a rep­
resentation, or placeholder, for the object being linked is placed into the 
document. The object still exists in the source document, and the destination 
document merely contains a link to the object's location in the source document. 



8.15 Summary 

When changes are made to a linked object, the source document and any other 
documents linked to the object will reflect the changes. For example, if a drawing 
is linked to a report, any changes you make to the drawing appear in the source 
document and in any other reports linked with the drawing. 

Access may be gained to the object from any document that contains a link to it, 
and changes may be made to the object from within any such document. The 
updated version automatically appears in all the documents that have a link to 
this object. Linking makes it easy to track information that appears in more than 
one place and which must be identical. 

Only objects from saved documents may be linked. For example, if a drawing is 
created using Paintbrush, the drawing must be saved as a document before it 
may be linked from another document. 

Not all applications can provide and accept objects. Some may only be the 
source of objects (server applications). Others (client applications) may only 
accept objects. 

OS/2 Version 2.0 provides support for the execution of Windows applications 
within the MVDM architecture. This support allows the concurrent execution of 
multiple Windows applications, using both real mode and standard mode, with 
DPMI and Windows services provided as required by a Windows kernel. 

Windows applications running under OS/2 Version 2.0 are provided with pre­
emptive multitasking by the operating system. Full memory protection is also 
provided for the Windows applications; an errant application may not affect other 
applications executing in the system. A bug in an application will cause the ter­
mination of that application only. 

Windows applications may be run under OS/2 Version 2.0 in three ways: 

• Each application may run in its own VDM. This method of execution provides 
full protection for the application from other processes running in the system, 
and protects these other processes from errors in the Windows application. 

• Applications may share a VDM, and may be started and controlled within this 
VDM using the Windows Program Manager. This method of execution pro­
vides protection for the Windows applications within the VDM from other 
processes, and protection for other processes from errors in the Windows 
VDM's applications. However, the applications within the VDM may affect 
one another since they share a common address space, just as if they were 
running natively under DOS/Windows. 

• Windows applications may run "seamlessly" on the Workplace Shell 
desktop, along with windowed VDMs and Presentation Manager applications. 
This method of execution is similar to the case of a single application in a 
VDM, except that the Windows application shares the Workplace Shell 
desktop rather than running in its own full-screen session. 

Any combination of these three methods may be used concurrently. 

Windows applications may be defined on and started from the Workplace Shell 
desktop. Where a single application is defined for a VDM, or where the applica­
tion will run seamlessly, the icon used to represent the application on the 

Chapter 8. Windows Applications 179 



180 OS/2 V2.0 Volume 2 

desktop is the icon embedded within the Windows program which runs the appli­
cation. 

During installation of OS/2 Version 2.0 over an existing DOS/Windows 3.0 
system, existing applications defined to the Windows Program Manager will be 
detected and migrated where possible to the OS/2 Version 2.0 Workplace Shell. 
The installation procedure uses application definition information contained in 
the Certified Application Database, which is shipped as part of the OS/2 Version 
2.0 product. 

OS/2 Version 2.0 allows communication between Windows applications running 
in the same or different VDMs, and between Windows applications and Presenta­
tion Manager applications. This communication is provided through clipboard, 
DOE and OLE support. Communication between Windows applications using 
shared memory is also supported, but only where Windows applications are exe­
cuting in the same VDM. 

In summary, OS/2 Version 2.0 provides an integration platform which allows 
Windows applications to coexist with one another and with DOS and OS/2 appli­
cations in a multitasking, fully protected environment, and which allows these 
applications to communicate with one another. 



Chapter 9. DOS Protected Mode Interface 

Perhaps the most significant limitation of real mode operation, as used by DOS 
and similar operating systems, is the 1MB addressing limitation. This limitation 
can be overcome by executing applications in protected mode, but since the 
DOS operating system and most TSR applications must run in real mode, prob­
lems arise when applications attempt to access interrupts, TSRs or operating 
system facilities. 

The DOS Protected Mode Interface (DPMI) is a protected mode programming 
interface for DOS applications, allowing such applications to run on an 80286 or 
80386 processor in protected mode, while utilizing the real mode services of the 
operating system and device drivers. When an application wishes to access a 
DOS service, it makes a request to DPMI, which handles the appropriate address 
translations, switches the processor to real mode and makes the service request 
to DOS. The result of the request is then translated to the correct format for the 
protected mode application, the processor is switched back to protected mode, 
and control is returned to the application. 

DPMI has been implemented in the Multiple Virtual DOS Machines component of 
OS/2 Version 2.0, and provides functions such as memory allocation and inter­
rupt management for applications which use DPMI services. This support is pro­
vided through a component, implemented as a virtual device driver, known as 
the DPMI API Layer, in conjunction with the MVDM kernel. 

This chapter provides a brief overview of DPMI, and describes its implementa­
tion under OS/2 Version 2.0. 

9.1 DPMI Introduction 
Most processor instructions that are available in real mode may also be exe­
cuted from a protected mode task. Hence an application may overcome the limi­
tations of real mode simply by executing in protected mode. However, direct 
access to physical hardware and interrupts is typically not permitted from a pro­
tected mode task running at Ring 3 privilege, and therefore DOS itself and many 
TSR programs must run in real mode. Protected mode specifications are such 
that communication between protected mode and real mode programs is diffi­
cult, making it difficult for an application to request services from DOS or a 
device driver. 

For example, a TSR, with which an application communicates through a software 
interrupt or a shared buffer, cannot run in protected mode. The real mode 
address of the TSR, if used by the protected mode application, will not point to 
the same location in memory as would the same address if used in real mode, 
since the segment portion of the address is interpreted differently in the two 
modes. Address conversion is therefore required when passing between the two 
modes. 

DPMI provides an interface between protected mode and real mode programs. 
DPMI consists of a set of protected mode functions which allow a DOS applica­
tion to enter protected mode, allocate real mode memory, simulate real mode 
interrupts and function calls, intercept real mode interrupt vectors, etc. By using 

©Copyright IBM Corp. 1992 181 



these calls, an application running in protected mode can communicate with 
DOS or a TSR running in real mode. 

DPMI facilitates the following: 

• Allows DOS applications to run in protected mode 

• Provides DOS applications with access to a large memory address space 

• Provides DOS applications with mode switching and calls between real mode 
and protected mode 

• Provides DOS applications running in protected mode with access to hard­
ware facilities such as debug registers, in a way that maintains system integ­
rity. 

The term real mode is used to refer to code that runs in the low 1MB address 
space and uses segment:offset addressing. Under many implementations of 
DPMI, so-called real mode software is actually executed in virtual 8086 mode. 
Since virtual 8086 mode closely approximates real mode, V86 mode and real 
mode are interchangeable in the DPMI context. 

One of the major benefits offered by DPMI is that of allowing DOS extenders to 
work effectively in a multitasking, protected mode environment. DOS extenders 
allow DOS applications to access extended memory while running in protected 
mode. These extenders switch between modes as required to: 

• Execute application code in protected mode, in order to realize the enhanced 
addressing capabilities and protection facilities of protected mode 

• Access DOS services and TSRs in real mode, to perform functions which 
cannot be performed in protected mode. 

The Microsoft Windows/286 DOS extender (running under DOS on an 80286 
processor) was able to switch modes of its own accord. However, when running 
in virtual 8086 mode on an 80386 processor, a task cannot switch to protected 
mode; the required instruction is not legal for a V86 mode task. The architecture 
of DPMI, however, allows DOS extenders to request services using INT 31h DPMI 
calls; DPMI itself handles the mode switching and address conversion necessary 
to invoke the real mode services. 

9.2 Virtual Control Program Interface 

182 05/2 V2.0 Volume 2 

The forerunner to DPMI was the Virtual Control Program Interface (VCPI), devel­
oped by Phar Lap Software** and Quarterdeck Office Systems**. VCPI allowed 
80386-based protected mode DOS extenders to coexist with 80386-specific 
memory managers and expanded memory (EMS) emulators, such as QEMM-386 
by Quarterdeck. Most current 80386-specific software products support, or are 
capable of using, the VCPI interface. 

In VCPI, the DOS extender acts as a client and the EMS emulator acts as a 
server. The client invokes the VCPI server to: 

• Switch between real mode and protected mode 

• Allocate memory 

• Program the interrupt controller(s) 

• Inspect or set the 80386 debug registers. 



If a DOS extender is loaded and a VCPI server is not present, the DOS extender 
may assume total control of the system and perform hardware-dependent manip­
ulations directly. This can lead to system and data integrity problems. 

Note ~~~~~~~~~~~~~~~~~~~~~~~~~~ ....... 

Do not confuse VCPI (Virtual Control Program Interface) with VPIC (Virtual 
Programmable Interrupt Controller). 

While VCPI performs well for that which it was intended, it does not provide a 
platform for multitasking DOS extender applications. The deficiency lies in VCPI 
allowing client programs to run in Ring 0, the highest privilege level possible 
under the 80386 processor. 

What was required was an interface capable of managing and controlling device 
initialization and providing centralized virtual memory management. Most 
important the interface had to shield one client from another. 

9.3 The DPMI Specification 
DPMI was devised by a committee of major software vendors. The first (and 
current) DPMI version is Version 1.0. 

DPMI was defined to allow DOS programs to access extended memory while 
maintaining system protection. DPMI defines a specific subset of DOS and BIOS 
calls that can be made by DOS programs running in protected mode. These ser­
vices are accessed via software interrupt 31h, using a defined series of functions 
which protected mode programs may use to allocate memory, modify descriptors 
and call real mode software. 

Like VCPI, a DPMI host (or server) program provides mode switching and 
extended memory management services to client programs. Unlike a VCPI 
server, however, a DPMI host runs at a higher privilege level than its clients. A 
DPMI host supports demand-paged virtual memory and maintains complete 
control over the address space and hardware access of its clients. 

Some DPMI implementations execute multiple protected mode programs in inde­
pendent virtual machines. In such implementations, DPMI applications behave 
exactly like any other standard DOS programs. For example, they can run in the 
background or in a window, provided the environment supports these features. 
Programs that run in protected mode gain all the benefits of virtual memory and 
can utilize a 32-bit flat memory model if desired. OS/2 Version 2.0 provides a 
DPMI implementation of this nature. 

DPMI services accessed via INT 31h are only available to protected mode pro­
grams. Programs running in real mode cannot use these services. The only 
exception to this rule is the service which allows an application to enter pro­
tected mode, which must be called by real mode programs before calling any 
other DPMI service. 

Note that the majority of software vendors who released applications using the 
VCPI specification have since released versions which use DPMI instead, or 
have produced upgrades to their software to take advantage of DPMI. 

Chapter 9. DOS Protected Mode Interface 183 



9.3.1 DPMI Hosts and Clients 

184 05/2 V2.0 Volume 2 

DPMI services are provided by a DPMI host program. Programs which use DPMI 
services are known as DPMI clients. Generally, DPMI clients fall into two cate­
gories: 

1. Extended applications 

2. Applications that use DPMI directly. 

Most DPMI applications are likely to be extended applications. These applica­
tions are bound with a DOS extender, which is the actual DPMI client since it 
requests DPMI services on the application's behalf. The application calls DOS 
extender services, which are then translated by the DOS extender into DPMI 
service calls. The advantage of an extended application over one that calls 
DPMI services directly is that generally, an extender will support functions other 
than DPMI services. In fact, it is recommended that extenders look for extension 
services in the following order: 

1. DPMI 

2. VCPl/EMS 

3. XMS 

4. Top-down {INT 15h). 

Extended memory may be allocated "top-down" by hooking the BIOS extended 
memory size system call {INT 15h, function 88h) and reporting less memory 
available than is actually present on the machine. This method may be used by 
DOS extenders to allocate a contiguous block of memory starting at the top of 
extended memory and growing downward. Since other applications querying the 
amount of memory available in the system will not be able to "see" this upper 
portion of memory, the memory is available solely to the DOS extender. 

A DPMI client can provide a single set of functions to an application, and then 
translate these functions to one or more underlying services (for example, DPMI, 
EMS, and/or XMS) provided by the client. Where the corresponding host's ser­
vices are lacking in a particular function, the extender must itself provide that 
function for the application. This is illustrated in Figure 47 on page 185. 



.__ ______________ A_p_p_lic_a_ti_o_n_c_o_de _______________ _ 

g~~~ Extender Base (including APls) 
--------. VCPI 

Client 

DPMI 
Host VCPI 

EMS 

XMS 
Client 

XMS 

Top-Down 
CUent 

Tor-down 
_{in 15hl I 

________________ o_p_e_ra_t_in_g_S_y_s_te_m ______________ I 

Figure 47. Client/Server Structure for Operating System Extenders 

As shown in Figure 47, application code directly accesses a set of base extender 
functions. The extender then has separate modules for each type of extension 
service, and itself contains code to provide functions in which the underlying 
service layers are lacking. 

Readers should refer to the DPM/ 1.0 Specification published by the DPMI com­
mittee for information concerning the external interfaces available to DPMI appli­
cations. Copies of the specification may be obtained by contacting Intel 
Literature Sales, P.O. Box 58130, Santa Clara, CA 95052. 

9.3.2 DPMI Services 
The following is a brief outline of the DPMI services. For details regarding invo­
cation of DPMI services from an application via INT 31 h, please refer to the DPMI 
0.9 Specification. 

DPMI provides six main classes of services: 

• Local Descriptor Table management 

• Memory management 

• Page management 

• Interrupt management 

• Translation 

Chapter 9. DOS Protected Mode Interface 185 



186 OS/2 V2.0 Volume 2 

• Debug watchpoint. 

Each of these services is briefly described in the following sections. 

Note that DPMI services are normally never called by an application program 
itself, but are intended to be used by DOS extenders which request DPMI ser­
vices on an application's behalf. 

9.3.2.1 LDT Descriptor Management Services 
The LDT descriptor management service provides interfaces for allocating, 
freeing, and creating protected mode descriptors in the. current task's Local 
Descriptor Table (LDT). Access to the Global Descriptor Table is not provided, 
so that the DPMI server can protect itself from protected mode applications and 
isolate these applications from one another. 

9.3.2.2 DOS Memory Management Services 
The DOS memory management services provided an interface from protected 
mode applications to real mode INT 21 h functions which are used to allocate, 
free and resize memory blocks. These services allow a protected mode applica­
tions to use memory below 640KB, to exchange data with DOS, ROM BIOS 
device drivers, TSRs and other real mode programs which are incapable of 
accessing data in extended memory. 

9.3.2.3 Extended Memory Management Services 
The extended memory management services are used to allocate, free and 
resize memory blocks above the 1 MB boundary. If the DPMI server is an 80386 
or 80486 control program and paging is enabled, the extended memory blocks 
are always allocated in units of 4KB. 

9.3.2.4 Page Management Services 
Under DPMI implementations which support virtual memory, applications may 
discard memory blocks or may not access them for long periods of time, in 
which case the memory block's contents may be swapped out to disk. In certain 
circumstances, such as interrupt handling code, this swapping must be disabled 
and the appropriate pages locked in physical memory. The page management 
services allow pages to be individually locked or unlocked. 

9.3.2.5 Interrupt Management Services 
These services allow protected mode applications to intercept real and protected 
mode interrupts and hook processor exceptions. Certain services allow a pro­
tected mode program to intercept hardware or software interrupts which occur in 
real mode or protected mode, or to install handlers for processor exceptions. 
Other interrupt services permit a process to enable or disable its own servicing 
or hardware interrupts without affecting the interrupt status of the entire system. 
DPMI accomplishes this by maintaining a virtual interrupt flag on a per-process 
basis. 

9.3.2.6 Translation Services 
The translation services permit control to be passed between operating modes. 
A protected mode program may transfer control to a real mode routine using a 
simulated far call or a simulated interrupt. Translation services also allow a pro­
tected mode program to declare a real mode callback, or entry point which can 
be invoked by the a real mode program. 



9.3.2.7 Debug Watchpoint Services 
The 80386 processor supports special registers that are used for debugging. 
Since the instructions to modify these registers can only be executed by code 
running at privilege level zero, protected mode debugging tools running in DPMI 
environments cannot modify the registers directly. These services provide 
mechanisms for setting and clearing debug watchpoints and detecting when a 
watchpoint has caused a fault. 

9.4 DOS Extenders 
Programs which use DPMI services are normally bound to DOS extenders, in 
order to run under any DOS environment. Most DOS extenders provide an inter­
face to applications using an INT 21h multiplex. For functions which utilize DPMI 
services, the DOS extender then makes the appropriate INT 31 h request. 

Extenders that support DPMI will need to initialize differently when they are run 
under DPMI environments. They will need to enter protected mode using the 
DPMI real to protected mode entry point, install their own API handlers, and then 
load the DOS extended application program. 

DOS extenders should check for the presence of DPMI before attempting to allo­
cate memory or enter protected mode using any other API. When DPMI services 
are detected, extenders that provide interfaces that extend or are different from 
the basic DPMI interface will switch into protected mode and initialize any 
internal data structures. DPMl-compatible extenders that provide no API exten­
sions should simply execute the protected mode application in real mode. 

9.4.1 Loading DPMI Clients and Extended Applications 
All DPMI applications begin execution in real mode. An application must run 
first as a real mode DOS program, but can then switch to protected mode by 
making a call to DPMI (or to a DOS extender). Once in protected mode, all INT 
31 h calls supported by DPMI may be issued by the application or its associated 
DOS extender functions. 

A DOS extender and its application under DPMI are loaded and initialized as 
described below. The DOS extender: 

1. Loads in real mode (or V86 mode on an 80386/80486 machine). 

2. Checks for presence of a DPMI server. 

3. Switches the CPU from real mode to protected mode, and loads registers 
with the appropriate selectors. 

If no DPMI server is present, the DOS extender checks for the existence of a 
VCPI server or XMS device driver before assuming total control of the CPU's 
execution mode, privileged control registers, and memory management 
hardware. 

4. Uses DPMI services to build the protected mode environment to be used by 
the application. 

5. Allocates extended memory segments to hold the application's code, data, 
and stacks. 

6. Allocates selectors to be used by the application to execute in and/or 
address the memory segments. 

Chapter 9. DOS Protected Mode Interface 187 



7. Reads the application's code and data from disk into the segments. 

The DOS extender can mark pageable memory it uses below 640KB so as to 
reduce the demand for physical memory. 

8. Installs its own handlers for any software interrupts {such as DOS INT 21h) 
that the application will execute. 

Control is then passed to the application. 

9.4.2 Processing in DOS Extenders 
The way in which a DOS extender processes interrupts varies. Some INT 21 h 
requests are passed directly to DOS. The DOS extender simply switches to real 
mode, calls DOS, and then switches back to protected mode when DOS returns 
after completing the function. File input and output, however, may demand that 
the DOS extender translate addresses, while other INT 21h functions such as 
DOS memory management must be replaced entirely by the DOS extender. 

Unless the A20 address line has been explicitly enabled through the XMS inter­
face, it cannot be assumed that memory from 1 MB to 1MB+64KB-16 {the High 
Memory Area) is addressable once a program is running protected mode. If 
HMA is to be accessed, the A20 address line must be enabled through XMS 
before entering protected mode. XMS calls are not supported in protected 
mode. 

This restriction is only important for software that wishes to access the HMA. 
Under all implementations of DPMI, the physical A20 address line will always be 
enabled while executing protected mode code. However, some 80386 specific 
DPMI implementations simulate 1MB address wrap for compatibility reasons. 
Under these DPMI implementations, the HMA will not be accessible unless the 
A20 address line is enabled through the XMS interface. This is the case under 
OS/2 Version 2.0. 

9.4.3 Session Termination 
When the DOS extender or its application issue the DOS terminate interrupt, 
DPMI traps the interrupt and releases all of the application's protected mode 
resources. The DPMI server passes the interrupt to real mode so as to permit 
DOS to clean up the program's real mode resources, including file and device 
handles and any memory blocks below 640KB. 

9.5 DPMI Implementation in OS/2 Version 2.0 

188 OS/2 V2.0 Volume 2 

OS/2 Version 2.0 provides DPMI services to applications running in VDMs. The 
DPMI Version 0.9 specification is fully supported, and the architecture of the 
DPMI implementation is such that both the API functions and the underlying ser­
vices are independently expandable to cope with future versions of DPMI. 

DPMI support under OS/2 Version 2.0 is divided into three components: 

• The DPMI API is implemented using the DPMI API Layer, a virtual device 
driver which services INT 31 h requests from applications. 

• The operating system kernel provides support for the DPMI VDD and the 
Virtual Programmable Interrupt Controller {VPIC). 

• Protected mode hardware interrupts are routed via the VPIC. 



DPMI is service request driven. An application first makes an INT 31 H service 
request, which is handled by the DPMI VDD, calling the kernel for basic services 
such as allocating memory. 

9.5.1 DPMI Services 
DPMI services are requested using INT 31 h requests, which are trapped by the 
DPMI virtual device driver, and either serviced by the VDD itself or routed to the 
operating system kernel. 

The DPMI API Layer performs input parameter checking on all service requests, 
to validate requests and to enforce restrictions mandated by the DPMI specifica­
tion. 

9.5.1.1 LDT Descriptor Management 
The 8086 Emulation component of MVDM arranges for allocation of a task's LDT 
upon initialization of the VDM. Under DPMI 0.9, all tasks in a VDM share the 
same LDT. Applications may modify descriptors only through DPMI service 
calls. 

Three types of descriptors must be kept track of: 

1. Per-task DPMI descriptors that the client may modify 
2. V86 segment to selector mappings with descriptors that cannot be modified 
3. Per-task DOS descriptors that the client cannot modify. 

Memory used by a DPMI application is allocated by the OS/2 Version 2.0 oper­
ating system to the parent process of the VDM within which that application exe­
cutes. Full memory protection is therefore provided for applications using DPMI 
services. 

9.5.1.2 DOS Memory Management 
DOS memory management services are implemented under OS/2 Version 2.0 in 
various ways, according to the nature of the service. 

• Allocate DOS memory and selector set 

This service allocates DOS memory along with a set of descriptors to cover 
the allocation. For 32-bit clients, a single descriptor is set to cover the entire 
allocated region. For 16-bit clients, this descriptor is followed by descriptors 
to cover the rest of the region in 64KB segments. This allows 16-bit applica­
tions to refer either through a single large segment or through tiled selec­
tors. 

A V86 mode DOS call is used to allocate memory from the DOS arena. 
Therefore, after initial setup, the DPMI API Layer switches back into V86 
mode to issue the DOS call, and then traps the return from DOS in order to 
finish the service. 

• Free DOS memory and selector set 

The allocated list is searched to make sure the region being freed is allo­
cated. The allocation record is moved to the pending list with the request 
marked as free. A switch is then made to V86 mode and the INT 21h is simu­
lated as above with the return trapped. When the return is trapped, return 
values are set up. If the call succeeded, the selectors that were allocated 
are freed. If a selector other than the allocated selector was passed in the 
free call, that selector set is freed as well. 

Chapter 9. DOS Protected Mode Interface 189 



190 OS/2 V2.0 Volume 2 

• Resize DOS memory and selector set 

Resizing is done in the same way as the original allocation. The allocation 
record is moved to the pending list. The desired size is listed in the allo­
cation record and new selectors are allocated if the size increases and new 
selectors are needed. Descriptors are allocated before reflection so the call 
can fail before allocating DOS memory in V86 mode if they are not available. 
The DOS call is then done as above. 

If the call failed, the new selectors are freed when the hook regains control. 
If it succeeded, new descriptors are set up if they were needed or descrip­
tors are freed if the resize made some unnecessary. The return values for 
the client are set up and the allocation record is returned to the allocated list 
with its new size noted. 

9.5.1.3 Extended Memory Management 
Extended memory management services are also implemented in a number of 
ways, depending on the service. 

• Get memory information 

This service uses memory management calls to load an application buffer 
with a variety of information about the memory. A VDH service is used to 
copy the data to user space, with appropriate exception handling. 

• Allocate 

Memory is allocated using a memory management service. Record of the 
allocation noting the start address, allocated size, and sparse linear address 
size are kept in a hash table. The allocation records are kept in the DPMI 
API Layer per DPMI task area so that they can be cleaned up when the task 
terminates. 

• Free 

This function is implemented quite simply; the DPMI API Layer per-task data 
area is checked for the allocation records, and the corresponding memory is 
freed via a call to the operating system kernel. 

• Resize 

DPMI changes a memory object's size in one of two ways: 

If the size of the object is to be decreased, pages at the end of the object 
are decommitted. 
If the size of the object is to be increased, a new and larger object is 
allocated and a kernel worker is used to move the pages from the ori­
ginal object to the new one. 

9.5.1.4 Page Locking 
Page locking services are necessary on systems which deliver interrupts at 
interrupt time or which use DOS for paging. On a system that simulates inter­
rupts and has its own file system (such as OS/2 Version 2.0) the calls are 
no-ops. They will simply return a success indication to the client. 



9.5.1.5 Interrupt Hooking 
8086 Emulation maintains a table of the current handler for each protect mode 
hook and exception. These services are implemented by calling 8086 Emulation 
to get the current value from this table or to set a new value in the table. 

8086 Emulation offers a service to change the client's virtual interrupt state (the 
IF flag). 

9.5.1.6 Translation (Protect/VB& Control Transfer) 
These services provide cross-mode calls, state saving, and raw mode switching. 

• Real mode callback (call protected mode from real mode) 

This service allocates a real mode callback breakpoint. When this break­
point is called, the DPMI API Layer handler arranges a protect mode call. 

• Free real mode callback 

If a real mode callback is still waiting to be completed, the callback record is 
marked to indicate it is no longer active. Freeing the callback record and the 
breakpoint are done when no outstanding calls are in progress. 

• State save/restore for each mode 

This service returns a set of addresses, one for V86 mode and one for 
protect mode, which, if called by the client, save or restore the current reg­
ister state for the other mode. This is necessary for applications which 
perform raw mode switching, to keep them from overwriting the task state 
for the alternate mode. 

• Raw mode switching 

This service returns a set of addresses, one for V86 mode and one for 
protect mode, which, if called by the client, switch to the other mode. The 
breakpoints have the DPMI task identifier in the breakpoint data area. When 
the breakpoint is reached, if the ID is different from the current one, 8086 
Emulation is called to report the switch. A VDH service is then used to do 
the requested mode switch. 

Under OS/2 Version 2.0, an extension to the DPMI specification has been imple­
mented, and is known as DOS API services. Protected mode applications 
issuing DOS or BIOS calls must pass buffers that can be accessed in V86 mode. 
The DOS API services relieve the application from having to do this work for 
DOS calls and some BIOS calls. This permits protected mode applications to 
use protect mode buffers (referenced by protected mode selectors) in DOS 
service requests. The translation services perform any necessary buffer 
copying. 

Applications detect the presence of a DOS API translator by performing an INT 
2Fh multiplex passing the name "MS-DOS" as an argument. The translator 
responds when it detects this name, indicating that translation will be performed. 
Applications that do not require translation may simply use the INT 31 h simulate 
interrupt function to avoid translation. 

Chapter 9. DOS Protected Mode Interface 191 



9.5.1.7 Debug Registers 
The Task Management component of 08/2 Version 2.0 manages watchpoints for 
08/2 applications, the kernel debugger and VDMs. Interfaces for allocating, 
setting and freeing watchpoints and getting the Bx bits for allocated watchpoints 
are used by the DPMI API Layer to carry out these services. The DPMI API 
Layer keeps track of allocated watchpoints in the per DPMI task area so that it 
can clean up at termination and uses the tasking watchpoint services to manipu­
late watchpoints. 

9.5.1.8 Other DPMI Services 
A number of other services are provided under the DPMI specification. Their 
implementation under 08/2 Version 2.0 is described below. 

• Physical Address Mapping 

In OS/2 Version 2.0, there is no way of knowing which addresses are used by 
device drivers. It is therefore not safe to allow direct access to devices 
which do not have VDDs. However, direct access from within VDMs is 
allowed. 

VDH services for reserving linear space, mapping, and page fault handling 
are all restricted to regions below 1MB +64KB. As such, a VDD with a linear 
address above 1 MB cannot virtualize hardware. All requests to this service 
will fail. The DPMI specification allows this so the operating system can 
protect devices. 

• Get Vendor Specific Entry Point 

Vendors that add extensions to DPMI typically look for the name of their 
extension by hooking INT 31h. If the extension is requested by a DPMI client, 
the vendor-supplied routine issues an IRET instruction without jumping down 
the INT 31 h protect mode chain. If the request is for a DPMI service not sup­
plied by the vendor's routine , the routine continues down the INT 31h chain. 
Since the DPMI API Layer router is called at the end of the chain, any unrec­
ognized service requests are signalled to the client by setting the carry flag 
to indicate that the call failed. 

9.5.2 Kernel Support 

192 OS/2 V2.0 Volume 2 

As well as providing support for DPMI service requests issued by applications, 
the operating system must also provide support for the internal control functions 
of the DPMI host. This support is provided by various components of the oper­
ating system kernel. 

9.5.2.1 8086 Emulation 
The 8086 Emulation component of MVDM emulates the 8086 hardware environ­
ment, and therefore provides a number of services which are used by DPMI. 

• DPMI task entry, termination, mode tracking, control 

When the application calls the protect mode entry to switch to protected 
mode, 8086 Emulation sets up tables for reflection of interrupts and 
exceptions. If the DPMI API Layer fails to complete the creation call, 8086 
Emulation cleans up and returns the error to the application. 

• VDH service support 

All support for VDH services to the DPMI API Layer is provided through 8086 
Emulation. 



• Get/set support for protected mode handler interrupt and exception handlers. 

Protected mode applications get and set vectors as in DOS. 8086 Emulation 
maintains tables of protected mode interrupt handlers and exception han­
dlers. 

• Interrupt and exception reflection to protected mode 

8086 Emulation virtualizes interrupts for VDMs. The reflection of "real mode" 
interrupts to protected mode for DPMI applications is therefore performed 
with the aid of 8086 Emulation. 

• Protected mode interrupt flag virtualization 

8086 Emulation virtualizes the IF flag while in protected mode. In V86 mode, 
IOPL is usually 3 and applications directly change IF without trapping. IF flag 
virtualization is not done while in V86 mode because IOPL must be 3 to cut 
down on overhead. In protected mode, IOPL cannot be 3; otherwise no port 
protection is possible. Therefore, the IF flag is virtualized. This prevents 
VDMs from blocking real interrupts when running in protected mode. 

To determine if interrupts are allowed in a VDM that has a DPMI application 
running, the real IF bit in the CRF is checked. If interrupts are disabled here, 
then they are disabled. Otherwise, the virtual IF flag indicates whether inter­
rupts are disabled. 

• HW interrupt support for the Virtual Programmable Interrupt Controller 

8086 Emulation exports a VDH service to accept notification from the VPIC 
when it starts and stops hardware interrupt reflection. 8086 Emulation also 
tracks which hardware interrupts are hooked. The VPIC allocates and initial­
izes the buffer at creation time in each VDM. 

Any VDD can use this structure to determine if a particular IRQ is hooked. 
The timer VDD, for example, can use this to avoid delivering timer ticks 
when the timer tick interrupts are not hooked in either protected mode or in 
V86 mode. 

When software interrupts are hooked, 8086 Emulation refers to this structure 
to determine if the interrupt is a hardware interrupt. 

• Services to read/write user space with exception handling 

• Kernel and VDH service changes for exception handling when accessing user 
address space. 

Services called when the client is in protected mode, and which manipulate 
the protected mode client address space, must be written to handle pro­
tected mode user space access exceptions. Services that cannot be called 
when the client is in protected mode must specify this in their headers. 

When a service can fault in protected mode, it must return a failure indi­
cation to the DPMI client. The client then cleans up and exits protected 
mode so that the exception can be reflected to the VDM (in V86 mode). This 
error also indicates whether a protected mode exception handler will be 
called. 

Chapter 9. DOS Protected Mode Interface 193 



9.5.2.2 Debug Watchpoint Management 
Coordinates watchpoint use with OS/2 protected mode and kernel debugger. 

9.5.2.3 Memory Management 
Among the kernel services provided by the Virtual Memory Manager are: 

• Al locate VDM LDT 

• Free VDM LDT 

• Allocate contiguous set of LDT descriptors 

• Free descriptor 

• Query maximum private linear address and ranges of physical memory 

• Query maximum linear region and swap space available 

• Other memory management services generally used by the kernel, such as 
services to allocate, free, and set sparse allocations, are also used. 

Once descriptors are allocated they are changed directly by the DPMI API layer. 
Applications set descriptors only through requests to the DPMI API layer, which 
prevents settings that compromise protection. 

9.5.3 Ring 0 Exceptions 
All VDM linear addresses below 1MB + 64KB can be accessed by Ring 0 code 
(such as 8086 Emulation or DOS Emulation), without any exceptions being visible 
to the V86 mode application. This meant that there was no need to recover from 
faults at ring 0 when VDM applications ran only in V86 mode. 

DPMI protected mode applications, however, do have addresses in their address 
space that can cause visible exceptions at ring 0. Most virtual device drivers are 
not affected because they never execute while the client is in protected mode. 
VDDs are affected only if both of the following conditions are true: 

• The VDD runs while the client is in protected mode. 

• The VDD accesses the client address space above 1MB + 64KB or using 
client selectors while the client is in protected mode. This can happen indi­
rectly if a VDH service is called which manipulates the client's protected 
mode stack. 

In such cases, the virtual device driver must include handlers for the exceptions. 

9.5.4 DPMI API Layer Communication with the Kernel 

194 OS/2 V2.0 Volume 2 

The DPMI API Layer has a small, well defined interface with the kernel. At 
system initialization time, the DPMI API Layer is registered with the kernel 
through a VDH call and reports which version of DPMI it supports. If the VDD 
supports only DPMI Version 0.9, the kernel (which supports DPMI Version 1.0) 
adjusts the way in which it handles certain DPMI tasks. 

Kernel services that may be useful to VDDs other than the DPMI API layer are 
exported as VDH services. Services that should have use restricted only to the 
DPMI API layer are made available through structures exchanged when the 
DPMI API Layer virtual device driver is registered. 



9.5.5 Installation of DPMI 
The OS/2 Version 2.0 installation procedure copies the DPMI API Layer virtual 
device driver DPM.SYS into the \OS2\MDOS directory on the user's system. If 
users decide to use selective install, they can choose any combination of EMM, 
XMS, or DPMI. When they select any of these memory options, the appropriate 
DEVICE= statement is added to CONFIG.SYS. The default memory statement in 
CONFIG.SYS is: 

DEVICE=C:\OS2\MDOS\VEMM.SYS 

If the user does not select DPMI support at installation time and wishes to add it 
at a later time, CONFIG.SYS must be modified by adding the statement: 

DEVICE=C:\052\MDOS\VDPMI.SYS 

9.5.6 DPMI and Microsoft Windows 

9.6 Summary 

DPMI 0.9 support is necessary for Windows 3.0 to run applications in protected 
mode (that is, in Windows standard mode). With DPMI implemented in Windows 
3.0, Windows 3.0 applications (running in protected mode) are freed from the 
restrictive 640KB DOS address space. 

Windows 3.0 is not a standard DPMI client and cannot run under DPMI in a VDM 
without completely subverting the operating system's memory protection and 
thereby potentially compromising system integrity. 

Even with DPMI, Windows cannot run in 386 enhanced mode under OS/2 Version 
2.0. The reason for this is that when Windows runs in enhanced mode it oper­
ates at Ring 0. Running Windows in 386 enhanced mode would therefore require 
bypassing the operating system's protection mechanisms, and would potentially 
compromise the integrity of the system. 

Applications which experience memory constraints under DOS may ovarcome 
many of the inherent limitations of real mode by running protected mode. 
However, an application running in protected mode cannot easily access the 
facilities of real mode software such as the DOS operating system or TSR pro­
grams. DPMI provides an interface which allows an application to execute in 
protected mode, and to make DOS requests through DPMI. All mode switching 
and address conversion is handled by DPMI on the application's behalf. 

DPMI resolves problems relating to device virtualization, intertask protection, 
and demand paging that occur when multiple protected mode DOS extender 
applications are run in a multitasking environment, in conjunction with memory 
managers and control programs. 

DPMI is implemented under OS/2 Version 2.0 using a combination of virtual 
device driver services and kernel services to provide DPMI functions to client 
applications. The provision of these functions allows applications written to use 
DPMI services, such as applications which run under Microsoft Windows in 
standard mode, to run in a VDM under OS/2 Version 2.0. 

Chapter 9. DOS Protected Mode Interface 195 



196 OS/2 v2.o Volume 2 



Chapter 10. Running DOS Applications 

OS/2 Version 2.0 allows the user to run multiple DOS applications concurrently, 
with each application running in its own virtual DOS machine, with pre-emptive 
multitasking and full memory protection. 

This chapter describes the way in which a DOS application can be defined to the 
OS/2 Version 2.0 Workplace Shell, and the ways in which an application may be 
started. It also discusses the way in which version-specific DOS applications 
may be run in virtual DOS machines under OS/2 Version 2.0. 

10.1 Defining a DOS Application 
A DOS application is typically defined to the Workplace Shell by creating a repre­
sentative object for the application, and configuring the properties of that object 
using the settings view. Configuring an object in this way allows the application 
to take advantage of the many customizable properties of the OS/2 Version 2.0 
VDM environment, and to tailor this environment to provide optimum perform­
ance and application compatibility. 

10.1.1 Creating a Representative Object 
To define a DOS application as an object under the Workplace Shell, do the fol­
lowing: 

© Copyright I BM Corp. 1992 

1. Open the Templates folder on the desktop, and copy the Program object by 
pointing to it with the mouse pointer, holding down mouse button 2 and drag­
ging the icon to the desktop or to the folder in which the DOS application will 
reside. 

2. The settings view for the new object will automatically open. On the 
Program page of the settings notebook, complete the Program title and Path 
and file name fields for the application. The Parameters and Working direc­
tory fields are optional, and depend on the application being installed. Users 
should check the documentation supplied with the DOS application. 

197 



198 05/2 V2.0 Volume 2 

Path and file name: 
Session 

_lo_:\D_B_A_S_E_\D_B_A_S_E_.E_X_E _ _.I I find ... 
Association 

Window 
Parameters: 

General 

Working directory: 

lo:\DBASE 

Undo I I Help 

Figure 48. The Program Page of the Settings Notebook 

3. On the Session page, select either DOS Window or DOS Full Screen, 
depending on how the DOS application will be run. In most cases, it is suffi­
cient to select DOS Window since when maximized, the window will allow 
the full 25 rows by 80 columns to be displayed. 

Another advantage of selecting DOS Window is that the user can use the 
copy and paste functions of the VDM to selectively transfer data between the 
DOS application, the clipboard, and any other application on the desktop that 
supports the clipboard. However, some graphics applications suffer perform­
ance degradation when run in windowed mode. For such applications, DOS 
Full Screen should be selected. 

Note that once the VDM is started, a user can switch between DOS Window 
and DOS Full Screen modes by holding down the Alt key and pressing the 
Home key. 

Do not confuse running a DOS application full screen with running it in a full 
screen window (a maximized window that fills the entire screen). There can 
be a significant performance difference between the two. 

Note that clipboard function Copy All is also available for full screen virtual 
DOS machi11es. This allows the user to copy the entire DOS full screen to 
the clipboard (there is no way to mark only a portion of the screen). To 
perform this function, the user must press Ctrl + Esc to return to the desktop, 
click on the application icon with mouse button 2, and select Copy All. 

4. On the General page, complete the Title field. The user can optionally 
choose to display a different icon from the default DOS Window or DOS Full 
Screen icons. 



,{,}.S/2 foll scret"m 

OS/2 Y.-~.indow 

:.') DOS full screen 

'J Wlr+OSJ2 fuJI smeen 

'~ Wlr+·OS(.2. w.!ndow 

Separnte session 

~Start minimized 

~.Close window on exit 

DOS §ettings ... 

.Undo I I Default I I Help 

Figure 49. The Session Page of the Settings Notebook 

Association 

Window 

General 

5. If you select the DOS settings push button, the system brings up another 
dialog. In this dialog, you can setup all DOS/VDM relevant characteristics, 
unique to this particular program object. 

DOS Sett in s ,.: · ·· · · . " · · · .. · · . ; · · .. :,: .: · · - · .... .., : ... ·. ·: ... "· ..... · " :,. .. · · 

Setting: 
DOS_SHELL 
DOS_STARTUP _DRIVE 
DOS UMB 

0.10 •L'ii& 

DPMl_DOS_API 
DPMl_M EMORY _LIMIT 
DPMl_NETWORK_BUFF _SIZE 
EMS_FRAME_LOCATION 
EMS_HIGH_OS_MAP _REGION 
EMS_LOW_OS_MAP _REGION 
EM S_M EM 0 RV_ LIMIT 
HW_NOSOUND 
HW_ROM_TO_RAM 
HW_TIMER 
IDLE_SECONDS 
IDLE_SENSITIVITY 
l~ 

I .S.ave I .Qef a ult I I ~ancel 

Value: 

.DBAS°E.EXE~S,0,255 --------~]. 

DBASE1 .EXE,5,0,255 

~ 
U:i 

i-~~=.·: -:.-:.-:.-:_-:_-:_-:_-:_-:_-:_-:_.-_-_-_-_-_-_-_-_-_-_-_-_-_...__......;.>.LI 

Help 

Description--------------. 

Use this setting to select program 
versions compatible with the DOS version 
used in this DOS session. 

Figure 50. The DOS Settings Dialog of the Settings Notebook 

When the settings notebook is closed, the application will appear on the desktop 
or in the folder, with the specified application name beneath its icon. 

Chapter 10. Running DOS Applications 199 



10.1.2 Adding TSRs to the Workplace Shell 
TSRs (Terminate-and-Stay-Resident) are DOS programs that stay resident in 
memory after terminating. This allows another DOS application to be loaded, 
while the TSR can still be accessed by a software or hardware interrupt, such as 
a hot-key sequence. An example is the dial-up terminal emulator FTTERM. 

A TSR will not work if it is added to the Workplace Shell using the steps in the 
previous section. The virtual DOS machine closes when it detects the TSR ter­
minating and gives it no chance to become resident. 

Path and file name: 

..__I· ____ ____.I I find ... 

.Session 

Association 

Window 

Parameters: General 

ltK D:\FT\FTTERM .BAT 

Working directory: 

lo:\FT 

Undo I I Help 

Figure 51. Setting Up a TSR Program 

To add a TSR to the Workplace Shell, do the following: 

1. Open the Templates folder on the desktop, and copy the Program object to 
the desktop or the required folder. 

2. On the Program page of the settings notebook, complete the Program title 
field with an asterisk ("*"). 

3. Fill in the Parameters field with a "/k" followed by the path and program 
name of the TSR. 

4. Complete the Session and General pages of the settings notebook as for 
other DOS applications. 

10.1.3 Customizing the VDM Environment 

200 OS/2 V2.0 Volume 2 

The OS/2 Version 2.0 virtual DOS machine environment may be extensively cus­
tomized to suit the requirements of a particular DOS application. Such proper­
ties as DOS device drivers, EMS/XMS memory configurations, and even the 
interface to hardware facilities can be specified individually for each VDM. 

This customization is achieved using the DOS Settings facility, which is accessed 
by pressing the DOS settings pushbutton on the Session page of the settings 
notebook. 



ITSC Technical Bulletin Evaluation 

Technical Bulletin Title: 

Technical Bulletin Form Number: 

This is an evaluation form to assess the quality of ITSC publications. Your feedback will help maintain the 
high quality of ITSC standards. Please fill out this questionnaire and send it to the address on the back of 
this page. No postage stamp is required if mailed in the U.S. Elsewhere, you may choose to have your 
IBM Marketing Representative forward your reply ~o the address listed on the reverse side of this form. 

Date publication was ordered (MM/DD/YY) __ / __ / __ 

Date publication was received (MM/DD/YY) __ / __ / __ 

Please rate on a scale of I to 5 the subjects below. 
(I = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor) 

Technical Bulletin organization 
Accuracy of the information 
Relevance of the information 
Completeness of the information 
Value of illustrations 

Grammar /punctuation/spelling 
Ease of reading and understanding 
Ease of finding information 
Lack of redundant information 
Overall satisfaction 

Please answer the following questions: 

a) Was the level of detail of the information adequate? 

b) Did you find information duplicated that was available in other 
IBM publications? 

If yes, please name the publication: 

c) Was the bulletin published in time for your needs? 

d) Did this bulletin meet your needs? 

If no, please explain: 

Comments/Suggestions: 

Thank you for your feedback. 

Your name, company name, and address (optional): 

Yes __ No __ 

Yes __ No __ 

Yes __ No __ 

Yes No __ 



ITSC Technical Bulletin Evaluation Form 

, ...... ,.,. P11111 II Ill ll1pl1 

I II II I 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 
IBM International Technical Support Center 
Department H52, Building 930 
P.O. Box 950 
Poughkeepsie, New York 12602 
U.S.A. 

A lTN: Quality Coordinator 

, ... 

--------- ----- - ----- ---- - ----~-------· 

, ...... ,.,. 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

, ... 



The DOS Settings facility and the available settings are described in detail in 
Chapter 11, "DOS Settings." 

10.1.4 Using the Migrating Applications Facility 
Many common DOS applications can be set up on the Workplace Shell with their 
virtual DOS machine customized automatically by using the Migrate Applications 
facility of the Systems Setup. There is a file in the \OS2\INSTALL subdirectory 
called DATABASE.DAT that contains information on commonly available DOS, 
Windows V3.0 and OS/2 Version 1.3 applications. For DOS and Windows V3.0 
applications this file includes the recommended DOS settings for the virtual DOS 
machine setup for that application. 

After installing the DOS application, start the Migrate Applications facility and 
follow the dialog boxes to select the DOS application. If the migration is suc­
cessful, an icon will be created for the application in a folder called DOS Applica­
tions. 

Refer to Chapter 7, "Installing and Migrating Applications" on page 117 on using 
the Migrate Applications program. 

10.2 Starting a DOS Application 
A DOS application can be started in a virtual DOS machine by a user in one of 
several ways: 

• By double-clicking mouse button 1 on the application's representative object 
on the desktop or in a folder 

• By starting the application from an OS/2 or DOS command line 

• By running an OS/2 batch file containing the Start command with the appro­
priate switches 

Note that an OS/2 application may also start a DOS application by issuing a 
DosExecPgm() function call. The DOS application can be started as a dependent 
or independent child process of the OS/2 application. 

There are certain limitations to starting DOS programs from an OS/2 V2.0 
command prompt. For example, neither output redirection (using the ">" char­
acter) nor piping (using the ":" character) works as it would from a DOS 
command prompt. When starting a DOS application from the OS/2 command 
prompt, OS/2 Version 2.0 calls the DOS command processor (COMMAND.COM), 
which then receives the application's name and parameters and starts it. The 
OS/2 V2.0 command processor does not start the application itself but transfers 
all control to the DOS COMMAND.COM. When we use redirection or piping from 
the OS/2 command prompt, it is only effective for the OS/2 session. Since OS/2 
starts COMMAND.COM, and not the DOS application itself, OS/2 will only redi­
rect the output of COMMAND.COM, not the application. 

Thus with a DOS program XYZ, neither: 

XYZ > DUMMY. FIL 

nor: 

XYZ : more 

Chapter 10. Running DOS Applications 201 



would work from the OS/2 command prompt the way it does from a DOS 
command prompt. 

One solution to the above limitation is to put the redirection or piping statement 
into a DOS batch file and call the batch file instead. 

10.2.1 Starting From the Workplace Shell 
In order for an application to be started from within the Workplace Shell, it must 
first be defined and configured as described in 10.1, "Defining a DOS 
Application" on page 197. Once this has been done, the application may be 
started simply by double-clicking mouse button 1 on the application's icon on the 
desktop or in a folder. 

Note that when the application is started, the background of the icon will change 
to indicate that the application is in use. By default, if the user double-clicks 
mouse button 1 on the icon a second time, the operating system will not start a 
second instance of the application, but will simply bring the already started 
instance to the foreground. 

If the user wishes to create a second instance of the application, a second repre­
sentative object can be created by copying the original instance. Alternatively, 
the user can change the default behavior in the Window page of the settings 
notebook. 

10.2.2 Starting From the Command Line 

202 OS/2 V2.0 Volume 2 

A DOS application can also be started from a DOS or OS/2 command line. Note, 
however, that starting the application in this way provides no opportunity to con­
figure the VDM environment to support particular application requirements. 
Certain settings may be changed during application execution. However, such 
settings will be saved and will remain in effect until explicitly reset by the user. 

The default settings also allocate resources for EMS, XMS and DPMI support, 
which may not be required by the DOS application. For these reasons, it is 
recommended that DOS applications which require non-default settings be con­
figured and started from the Workplace Shell wherever possible. 

When starting the application from a DOS command line, the application loads 
and executes within the VDM which displayed the command line. All DOS envi­
ronment settings used by the application are those in effect for the VDM when 
the application was started. When the application terminates, control is returned 
to the command line. 

When starting the application from an OS/2 command line, the operating system 
reads the program file from disk, and determines from the executable file header 
that the program is a DOS or Windows application rather than an OS/2 applica­
tion. The operating system then automatically creates a VDM and loads the 
application into the VDM. When the application terminates, the VDM is also ter­
minated and control returns to the OS/2 command line. 

Note that in either case, execution is synchronous, and the command line is not 
available for use while the application is running. An application may be started 
asynchronously from an OS/2 command line using the START command. In this 
case, the operating system creates an asynchronous VDM and loads the applica­
tion into this VDM. The OS/2 command line remains available even though the 
DOS application is still running. 



10.3 Applications With Special Requirements 

10.4 Summary 

The virtual DOS machine environment normally runs a specialized version of 
DOS known as the DOS Emulation kernel, in which most DOS services are actu­
ally provided by components of the OS/2 operating system, transparently to the 
application and outside of the real mode address space in which the DOS appli­
cation executes. This kernel is described in Chapter 4, "MVDM DOS Emulation." 

For this reason, many DOS control structures are not accessible to DOS applica­
tions running in VDMs. Applications which access these control structures 
cannot be run in a "normal" VDM due to the lack of these structures. The DOS 
Emulation kernel does not support the use of block device drivers, and applica­
tions which require such device drivers are unable to use the DOS Emulation 
kernel. 

In order to allow such applications to be run in VDMs under OS/2 Version 2.0, 
the Virtual Machine Boot facility is provided. This facility allows a "real" version 
of DOS to be loaded into a VDM, either from a DOS bootable diskette or from a 
diskette image stored on fixed disk. Since the real version of DOS is therefore 
running in the VDM, all features, characteristics and internal control structures of 
that version are available to an application running in the VDM. 

An example of an application that needs to be run in this way is PC Support/400. 

The Virtual Machine Boot facility is described in detail in Chapter 12, "Virtual 
Machine Boot." 

Multiple DOS applications may be run concurrently under OS/2 Version 2.0, in 
virtual DOS machines with pre-emptive multitasking and full memory protection. 
By default, these applications access DOS and hardware services using an emu­
lated version of DOS, which provides these services through the OS/2 operating 
system. Most of these DOS services are provided outside the 640KB real mode 
address space in which the DOS application executes, thereby allowing more 
memory (up to 630KB) for the application and its data. 

DOS applications can usually be installed by starting a virtual DOS machine and 
running the install program from the command prompt. If the installation fails 
the user can boot the system from a DOS diskette to run the install, provided the 
hard disk has at least one FAT partition. 

A DOS application may be defined as an object on the OS/2 Version 2.0 
Workplace Shell desktop or in a folder, and started from the Workplace Shell. 
Applications defined in this way have their VDM environment configured to 
support particular application requirements and to allow the application to take 
full advantage of VDM features. Alternatively, the Migrate Applications facility 
can be used to place the application in the Workplace Shell and customize the 
DOS settings 

A DOS application may also be started from the DOS or OS/2 command line. 
However, applications started from the DOS command line inherit the DOS envi­
ronment settings of the VDM in which the command line is executing, and those 
started from the OS/2 command line inherit the default settings. 

Chapter 10. Running DOS Applications 203 



204 OS/2 V2.0 Volume 2 

DOS Applications which require access to internal DOS control structures or 
block device drivers not supported by the DOS Emulation kernel may use the 
Virtual Machine Boot facility of OS/2 Version 2.0 tc:> load a "real" version of DOS 
from a diskette or a diskette image stored on fixed disk. This capability allows 
such applications to run in a VDM. 



Chapter 11. DOS Settings 

In order to provide the highest possible level of compatibility with DOS applica­
tions which make use of particular DOS properties or attributes, MVDM provides 
virtual DOS machines with many more customizable properties than comparable 
OS/2 sessions. MVDM provides a common mechanism which supports standard 
settings, and allows virtual device drivers to register custom settings. The 
CONFIG.SYS file contains a number of standard DOS settings; these are applied 
to all VDMs as they are created. Other settings may be specified for individual 
VD Ms. 

When running Windows applications in VDMs under OS/2 Version 2.0, certain 
DOS settings should be altered from their default values. The recommended 
values for these settings when running Windows applications are discussed in 
8.7.5, "DOS and WIN-OS/2 Settings" on page 153. 

DOS settings are used during creation and initialization of a VDM. and certain 
settings may also be altered dynamically during VDM execution. During initial­
ization of the VDM, the VDM_CREATE hooks for all virtual device drivers defined 
for that VDM are called by the Virtual DOS Machine Manager. At this point. the 
virtual device drivers may call the VDHQueryProperty() helper service to get the 
values for required settings. 

11.1 Registration 
Information on DOS settings is stored in a "database" in the operating system 
kernel. This database is used to support all operations related to DOS settings. 
The following information is registered for each setting: 

Name 

Ordinal 

Help File 

Help ID 

Type 

The name presented to the user. This may contain blanks, and 
related settings should have common prefixes so that they sort 
together in the list presented to the user (such as Printer buffer 
size, Printer timeout, Printer automatic close). 

For the "standard" settings, specific ordinals are used so that the 
kernel may obtain the value independently of the name string. 

The name of the help file containing help information on this 
setting. 

The help ID of the main topic for this setting. 

The setting type. The following types are supported: 

• Boolean 
• Integer 
• Enumeration (list of valid strings) 
• Single-line strings 
• Multi-line strings. 

This allows the user interface to display an appropriate control for 
each setting. 

Flags These control aspects of the setting. In particular, the flags deter­
mine whether the setting can be changed while a VDM is running. 

Default Value If the user does not supply a value, this default value is used. 

© Copyright IBM Corp. 1992 205 



Validation information 

Function 

This information allows the user interface (and the kernel) to vali­
date settings without involvement from the virtual device driver. 
For strings, this is the maximum string length. For integers, this is 
the minimum, maximum, and step values. For enumerations, this 
is the list of valid strings. 

This function is used for validating string settings, and for notifying 
the VDD when the user has changed a setting value for a running 
VDM. 

11.1.1 Changing Settings Prior to Execution 
The Workplace Shell enables a user to define objects which represent OS/2 and 
DOS applications, using the Settings notebook. For DOS applications, a DOS 
Settings ... button is provided in the Session page of the notebook. Pressing this 
button causes the DOS Settings dialog box to be displayed. The user may then 
manipulate the DOS settings (which are initially set to their default values), and 
then save them. 

The DOS Settings dialog box uses the DosQueryDOSProperty() function to get the 
list of settings and detailed information on each setting. It uses the 
DosSetDOSProperty() function to validate string settings. 

11.1.2 Changing Settings During Execution 
MVDM inserts a DOS Settings ... menu item on the system menu for all VDMs. 
Selecting this menu item causes the DOS Settings dialog box to be displayed, 
which in turn allows the user to modify settings for the VDM. For full screen 
VDMs, the user must switch to the Presentation Manager Window List using the 
Ctrl + Esc key sequence, and display the context menu for the VDM session by 
clicking mouse button 2 on the VDM's entry in the Window List. The DOS Set­
tings... option is displayed in the context menu. 

Note that only those settings that have bee.n registered as being modifiable at 
run time may be altered in this way; other settings are not presented in the 
dialog box. 

11.1.3 Starting a VDM From Another Application 

206 OS/2 V2.0 Volume 2 

The DosStartSession() function under OS/2 Version 2.0 provides an environment 
pointer as one of its parameters. This pointer references a buffer which is used 
when creating a VDM. This buffer contains the buffer length, followed by one or 
more DOS settings. For each setting, the buffer specifies the type, name and 
value. The operating system parses the settings buffer as part of the 
DosStartSession() processing, in order to create initial values for these settings. 
Default values are assumed for any registered settings not specified in the 
DosStartSession() cal I. 

For any settings which have not been registered, the information in the buffer is 
ignored. This allows the system to run without errors in the case where the 
virtual device driver that registered a setting is not loaded (for example, 
CONFIG.SYS was changed), and yet the Presentation Manager shell has saved a 
value for that setting. 



11.2 Standard DOS Settings 

DOS Settin s . . · . . . . ' 

Setting: Value: 
DOS_SHELL 
DOS_STARTUP _DRIVE 
DOS UMB DBASE1 .EXE,5 10 1255 

DBASE.EXE,5,0,255 ~ ... ·---·--·-·-----------!: 
ao 
DPMl_DOS_API ff{ 
DPMl_M EMORY _LIMIT 
DPMl_N ETWORK_BU FF _SIZE 
EMS_FRAME_LOCATION 
EMS_HIGH_os_MAP _REGION 
EMS_LOW_OS_MAP _REGION 
EMS_M EM ORY _LIMIT 
HW_NOSOUND 
HW_ROM_TO_RAM 
HW_TIMER 

1-..------------~.---..~ 
·~-------------~~ 

Description-------------. 

Use this setting to select program 
versions compatible with the DOS version 
used in this DOS session. 

IDLE_SECONDS 
IDLE_SENSITIVITY 

Aave I .Qefault I I ~ancel I 1:1.elp 

Figure 52. The DOS Settings Dialog of the Settings Notebook 

The standard DOS settings which affect the operation of virtual device drivers 
supplied with OS/2 Version 2.0 are described on the following pages. The set­
tings are grouped according to the general DOS system function to which they 
apply. 

DOS settings may be changed in either of two ways: 

• Settings which are described as settable "at VDM creation only," may only 
be changed prior to starting the VDM. If the DOS application is defined as 
an object under the Workplace Shell, this is done by selecting the DOS Set­
tings button from the Session page in the application's Settings notebook. 

• Settings which are described as settable at any time may be set in the 
manner described above, or they may be changed while an application is 
running in a VDM, using the DOS Settings .. option from the system menu. 

Note that certain settings may be changed in both of the above ways. 

11.2.1 Communications 
The following settings control the communications environment (COM ports) 
used by a VDM. 

11.2.1.1 COM_HOLD 
Function: When set on, provides exclusive access to COM ports for the 

specified VDM, preventing other processes from using the port 
and preventing the operating system from releasing the port until 
the VDM terminates. 

Chapter 11. DOS Settings 207 



Advantages: For certain applications which use COM ports and which require 
multiple programs to access the COM port (for example, this 
setting prevents the COM port from being released when the first 
program terminates). 

Drawbacks: If not required by the application running in a VDM, this setting 
may prevent other applications from accessing COM ports. 

Default: Off. 

Settable: At VDM creation only. 

Examples: Certain bulletin board applications use one program to dial the 
BBS and another to exchange information; setting COM_HOLD on 
prevents the operating system from releasing the COM port when 
the first program terminates. 

11.2.2 DOS Environment 

208 OS/2 V2.0 Volume 2 

The following settings affect the behavior of the DOS emulation environment 
within a virtual DOS machine. 

11.2.2.1 DOS_BACKGROUND_EXECUTION 
Function: When set off, suspends execution of the program when it is in the 

background. 

Advantages: Many DOS applications are written on the assumption that they 
are single tasking and that all the resources of the workstation can 
be monopolized. It is not uncommon for a DOS program to con­
tinually poll for keyboard input (Examples are WordPerfect 5.1 and 
Lotus 1-2-3 R2.2). In a multitasking environment, this can impact 
system performance, especially when more than one such 
program is running. Turning the DOS application off when its 
virtual DOS machine is in the background reduces its demands on 
the system. 

Also see 11.2.6.2, "IDLE_SENSITIVITY" on page 216 and 11.2.6.1, 
"IDLE_SECONDS" on page 216. 

Drawbacks: Communications programs will fail if background execution is 
turned off, as will DOE for Windows applications. 

Try changing the values of IDLE_SECONDS and IDLE_SENS/TIVITY 
before turning DOS_BACKGROUND_EXECUT/ON off. 

Default: On (Background execution is enabled). 

Settable: At any time. 

Examples: If more than two DOS programs are running and tuning with 
IDLE_SENSITIVITY and IDLE_SECONDS does not provide sufficient 
improvement, turn DOS_BACKGROUND_EXECUTION off for the 
least used application. 

11.2.2.2 DOS_BREAK 
Function: Enables or disables Ctrl +Break for the specified VDM. Also 

check for the BREAK statement in the CONFIG.SYS. Set 
BREAK=ON in the CONFIG.SYS to make Ctrl+Break and Ctrl+C 
working in addition to setting DOS_BREAK on. 



Advantages: Enables a DOS application running in the VDM to be interrupted 
using the Ctrl +Break or Ctrl + C key sequences. 

Drawbacks: This setting is useful only if an application must be quickly inter­
rupted; the user may easily terminate a VDM by closing it from the 
Window List. 

Default: Off (Ctrl +Break is disabled). 

Settable: At VDM creation only. 

Examples: If the user wishes to have the option to interrupt a DOS batch file 
running in a virtual DOS machine, this setting should be turned on. 

11.2.2.3 DOS _DEVICE 
Function: 

Default: 

Settable: 

Examples: 

This setting can be used to add or modify information about DOS 
device drivers for the specified VDM, in addition to the information 
specified in CONFIG.SYS. 

When this setting is selected, a list is displayed which contains 
information about each DOS device driver specified in 
CONFIG.SYS. The information consists of the path and file name 
of each DOS device driver and its current parameters, if appli­
cable. For example: 

c:\os2\mdos\ansi.sys 

The user may: 

• Type the name of a DOS device driver to add it. Typing should 
begin on a new line. 

• Delete all the information about a device driver to remove it. 
• Type or delete to add, change, or delete a value. 

At VDM creation only. 

A program to support hardware such as a scanner may include a 
device driver that is needed only for itself. The device driver 
should be loaded with the DOS_DEVICE setting instead of in the 
CON FIG.SYS. 

11.2.2.4 DOS _FCBS 
Function: Specifies the maximum number of file control blocks (FCBs) which 

may be opened by applications running in the VDM. Note that this 
setting affects only those modules which use file-sharing. 

Advantages: Reducing this setting may improve DOS application performance 
in a resource-constrained networking environment. When the 
maximum number of FCBs is opened by an application, the least 
recently used FCB is closed to allow additional files to be opened; 
see DOS_FCBS_KEEP below. 

Drawbacks: Reducing this setting to an excessively low number may inhibit the 
performance of applications which use large numbers of files. 
Check application documentation for recommended FCB settings. 

Default: 16. 

Settable: At VDM creation only. 

Examples: None. 

Chapter 11. DOS Settings 209 



210 05/2 V2.0 Volume 2 

11.2.2.5 DOS_FCBS_KEEP 
Function: Specifies the number of FCBs that will be protected against auto­

matic closure. 

Advantages: If this setting is specified as 11 n," the first "n" files are protected 
against automatic closure as described in 11.2.2.4, "DOS_FCBS" 
on page 209. This may improve application performance. 

Default: 8. 

Settable: 

Examples: 

At VDM creation only. 

None. 

11.2.2.6 DOS_FILES 
Function: Specifies the maximum number of file handles which may be 

opened in a VDM. 

Advantages: Setting this value higher than the default may improve perform­
ance for applications which use a large number of files. Check 
application documentation for recommended settings. 

Drawbacks: Setting the number of file handles higher than necessary reduces 
the available memory. 

Default: 20. 

Settable: At any time. 

Examples: DBASE IV requires a DOS_FILES setting of at least 40. 

11.2.2.7 DOS_HIGH 
Function: Determines whether DOS is loaded outside the 640KB low memory 

address space. 

Advantages: Loading DOS into high memory allows more available memory for 
application code and data within the 640KB address space. 

Drawbacks: Applications which require access to DOS internal control struc­
tures require DOS to be loaded into low memory, and therefore 
cannot use this setting. 

Default: Off (DOS is loaded into low memory). 

Settable: At VDM creation only. 

Examples: None. 

11.2.2.8 DOS_LASTDRIVE 
Function: 

Default: 

Settable: 

Examples: 

Specifies the highest available logical drive letter for the specified 
VDM. This setting is similar to the LASTDRIVE= statement in a 
DOS CONFIG.SYS. 

z. 
At VDM creation only. 

Each additional drive letter uses about 100 bytes. Setting the 
LAST _DRIVE to a lower letter such as J or K provides more con­
ventional memory for an application. 



11.2.2.9 DOS_RMSIZE 
Function: Specifies the DOS memory size. This is the amount of memory 

which is available to DOS applications. 

Advantages: The virtual video device driver uses this setting on certain video 
adapters to set even more than 640KB. 

Drawbacks: This setting is of little use to most users as there is no point speci-
fying less than 640KB. 

Default: The default is 640KB. 

Settable: At VDM creation only. 

Examples: None. 

11.2.2.10 DOS_SHELL 
Function: To specify the DOS command processor, or to add parameters to 

affect the command processor. This setting points by default to 
COMMAND.COM. If a user has a different command processor, it 
should be specified here. 

Advantages: The user may specify a command processor other than the default 
COMMAND.COM, if required by a specialized application, or may 
alter the environment space available for the VDM. 

Default: 

Settable: 

Examples: 

C:\OS2\MDOS\COMMAND.COM C:\OS2\MDOS /P 

At VDM creation only. 

C:\OS2\MDOS\COMMAND.COM /E:1024 /P 

11.2.2.11 DOS_STARTUP _DRIVE 
Function: Specifies the location of the DOS kernel to be loaded into the 

VDM. 

Advantages: Allows specific versions of DOS to be loaded into a VDM using the 
VMS facility, allowing the execution of version-dependent DOS 
applications. 

Drawbacks: Performance may not be as good as the VDM kernel, which is 
optimized for the OS/2 V2.0 environment. 

Default: The DOS Emulation kernel is loaded. 

Settable: At VDM creation only. 

Examples: See Chapter 12, "Virtual Machine Boot." 

11.2.2.12 DOS_UMB 
Function: Specifies whether DOS owns Upper Memory Blocks (UMBs) and 

manages the loading of device drivers and TSR programs. 

Advantages: Setting DOS_UMB on allows use of the DEVICEHIGH = and 
LOADHIGH statements, to load device drivers and TSR programs 
into Upper Memory Blocks, thereby preserving space in low 
memory for use by applications. 

Drawbacks: Certain applications which make use of UMBs need to access and 
manage the UMBs directly; such applications will not run when 
DOS_UMB is set on, because DOS owns the UMBs. 

Chapter 11. DOS Settings 211 



11.2.3 DPMI 

212 OS/2 V2.0 Volume 2 

Default: 

Settable 

Examples: 

Off (UMBs are owned by certain types of TSR programs and DOS 
device drivers if necessary). 

At VDM creation only. 

None. 

11.2.2.13 DOS_VERSION 
Function: Allows the operating system to report a "fake" DOS version 

number in response to a request from a program in the VDM, in 
order to support applications which check for a DOS version 
number. 

Advantages: Allows some programs that will not start unless they detect a pre­
requisite DOS version to run in DOS Emulation 

Defautt: 

Settable: 

Examples: 

20 

Before application initiation. 

Lotus 1-2-3 R3 + will run in DOS Emulation if it is "fooled" into 
thinking that it is running under DOS 3.3 by putting the following 
lines into the DOS_ Version list box: 

• 123DOS.EXE,3,30,255 
• 123.EXE,3,30,255 
• LOTUS.EXE,3,30,255 

The following settings control the DPMI interface for a VDM. 

11.2.3.1 DPMl_DOS_API 
Function: 

Default: 

Settable 

Examples: 

Determines whether DOS API translation is enabled for the speci­
fied VDM. 

AUTO (API translation is enabled if required). 

At VDM creation only. 

None. 

11.2.3.2 DPMl_MEMORY_LIMIT 
Function: Specifies the maximum amount of protected mode memory (in 

megabytes) available to DPMI applications running in the VDM. 

Advantages: For applications which require large amounts of DPMI memory, 
this setting may be used to increase the amount of available 
memory up to 512MB. 

Default: 

Settable 

Examples: 

2MB. 

At VDM creation only. 

None. 

11.2.3.3 DPMl_NETWORK_BUFF _SIZE 
Function: 

Default: 

Specifies the size, in kilobytes (KB), of the network translation 
buffer for DPMI programs in this session. The range is from 1 to 
64 KB. 

8KB. 



11.2.4 EMS 

Settable 

Examples: 

At VDM creation only. 

This setting allows you to configure the size of the translation 
buffer for Windows programs that transfer data over a network. If 
a network-specific Windows program does not run correctly under 
OS/2 V2.0, increase this setting, then restart the session. 

The following settings control the behavior of EMS memory used by the VDM. 

11.2.4.1 EMS_FRAME_LOCATION 
Function: This DOS setting allows you to change the location of the LIM EMS 

region. LIM EMS uses a 64KB address region known as an EMS 
page frame, through which programs can access expanded 
memory. (This allows programs to use more than 640KB of 
memory.) 

Advantages: If a user has problems when running a program that uses both a 
hardware device and LIM EMS expanded memory, the problem 
may be due to conflicting use of addresses by LIM EMS and the 
hardware device. If this occurs, the user should first use the 
EMS_HIGH_OS_MAP _REGION setting to set the extra address 
region used by EMS to 0. This may solve the problem. If the 
problem persists, the EMS _FRAME_LOCATION setting can be used 
to select a 64KB region that does not conflict with hardware. 

The user can choose where to place the frame from a list of 
choices or can choose to have no EMS frame for programs which 
do not require a frame. The user can also reduce the DOS 
Memory Size setting and place the frame below 640KB. 

Drawbacks: The best solution, when problems due to hardware conflicts occur, 
is to use the MEM_EXCLUDE_REGIONS and 
MEM_INCLUDE_REGIONS settings to specify the addresses that 
the hardware uses rather than using this setting. 

Default: The default AUTO setting will lead to correct. choices of LIM EMS 
addresses. Most users will never need to change this setting. 

Settable: At VDM creation time only. 

Examples: In some cases the default choice may conflict with addresses used 
by hardware on the machine. This can happen only for devices 
that are not supported by a virtual device driver. 

11.2.4.2 EMS_HIGH_OS_MAP _REGION 
Function: In addition to the EMS page frame, some programs can use addi­

tional addresses to access expanded memory. This setting gives 
advanced users the capability to adjust the size of the additional 
EMS region. · 

See also 11.2.4.1, "EMS_FRAME_LOCATION." 

Advantages: An advanced user can use the MEM_EXCLUDE_REGIONS and 
MEM_INCLUDE_REGIONS settings to specify the addresses used 
by devices that do not have virtual device drivers, and can then 
set the size of the EMS_HIGH_OS_MAP _REGION appropriately for 
their program. This helps avoiding conflicts with addresses used 
by devices and programs. 

Chapter 11. DOS Settings 213 



Default: 

Settable: 

Examples: 

The value set is the size of the region in kilobytes. The default is 
32KB. 

At VDM creation only. 

None. 

11.2.4.3 EMS_LOW_OS_MAP _REGION 
Function: 

Default: 

Settable: 

Examples: 

Some programs can use remappable conventional memory. 
Others do not use this feature. This setting allows advanced users 
to set the size of the remappable conventional memory available 
in a VDM. 

The value set is the size of the region in kilobytes. The default is 
384KB. 

At VDM creation only. 

None. 

11.2.4.4 EMS_MEMORY _LIMIT 
Function: This setting controls the amount of EMS memory available to a 

VDM. 

Advantages: The user can set this to a higher value for running programs that 
require a large amount of EMS memory. Other programs do not 
use EMS at all. The size can be set to 0 in such cases, to disable 
EMS support for that VDM. Programs generally state whether they 
use EMS on the box or in their manuals. 

Default: The value set is the size of the region in kilobytes. The default 
size is 2MB. 

Settable: At VDM creation time only. 

Examples: If a spreadsheet runs out of memory, the amount of EMS memory 
can be increased and the VDM restarted. 

11.2.5 Hardware Environment 

214 05/2 V2.0 Volume 2 

The following settings affect the virtual hardware environment provided by the 
virtual DOS machine. 

11.2.5.1 HW_NOSOUND 
Function: Enables or disables sound started by a DOS program. 

Advantage: Any sound from a program is heard unless sounds is disabled. An 
"x" in the check box indicates that the sound is to be heard. 

Drawbacks: No error sound will be heard if HW _NOSOUND is turned on. 

Default: OFF. 

Settable: At any time, including while a program is running in a VDM. 

Examples: Output from a music program may be disabled when the user 
wishes to hear another music program, or switch to another 
process to do something else. 



11.2.5.2 HW_ROM_TO_RAM 
Function: 

Default: 

Settable: 

Examples: 

Enabling HW _ROM_ TO _RAM causes the operating system to copy 
read-only memory (ROM) and run the copy in 32-bit random 
access memory (RAM). With this setting enabled, BIOS operations 
run faster and system utilities may patch BIOS. 

OFF. 

At VDM creation only. 

This setting is useful if debugging the kernel. The change would 
allow normal breakpoints to be set in ROM and allow stepping 
over calls and loops. 

Warning: If an application writes to a memory address used by the 
ROM while this setting is enabled, it may cause unpredictable 
results for that application and for every application run thereafter 
in the VDM. 

11.2.5.3 HW_TIMER 
Function: When enabled, allows an application to have direct access to the 

8253 timer ports and prevents the operating system from trapping, 
or intercepting, the timer request and emulating a timer. 

Advantages: Certain timing-critical applications will not run (or will run much 
slower) if accesses to timer ports are trapped and virtualized. In 
addition, the values they read do not accurately reflect the amount 
of time passed because they do not take trapping overhead into 
account. Enabling this setting allows certain timing-dependent 
code to run more effectively. 

Drawbacks: Applications that change the divisor before this setting is enabled 
and then read the timer ports after the setting has been enabled 
may not function properly. If the setting is enabled first, the VDM 
will not detect changes to the divisor correctly, and the simulated 
interrupt frequency will be incorrect. Also, multiple applications 
using this setting may interfere with one another. 

Default: Off. Most applications will operate normally with timer 
virtualization. 

Settable: At any time. It is useful to alter this setting dynamically and watch 
for changes in application performance. 

Examples: The ROMs on some machines implement very brief delays by 
polling the timer ports. These delays become unacceptably long 
unless direct timer port access is allowed. 

11.2.6 Idle Detection 
The following settings determine the way in which the operating system detects 
that an application in a VDM is currently idle. These settings should be used 
when an application exhibits poor performance, or where mouse movement in a 
DOS application is "jerky." 

Chapter 11. DOS Settings 215 



216 OS/2 V2.0 Volume 2 

11.2.6.1 IDLE_SECONDS 
Function: When programs appear to be doing nothing but waiting for input, 

the operating system gives them less time to run. This is done to 
give preference to programs that are doing useful work. Some 
programs periodically appear to be waiting for input, but then 
change their behavior and continue after a time. This setting disa­
bles the "IDLE_SENSITIVITY" function for a period of time after 
useful work has been detected. 

Also see 11.2.6.2, "IDLE_SENSITIVITY" below for more details on 
idle detection. 

Advantages: If a program appears to run slowly when there is an option for the 
user to provide input, this value should be increased. 

Drawbacks: Setting the value too high gives the DOS program more resources 
than it needs. 

Default: This value is in seconds. The default is no idle time allowed. 

Settable: The setting can be changed while the program is running to tune it 
to the proper value. 

Examples: 

• A game may pause, for instance, to wait for the user to make 
a choice, but then continues if the user does not react. 

• When DOS 5 is run in a virtual machine boot session, (See 
Chapter 12, "Virtual Machine Boot") the DOS shell may fail to 
complete displaying the directory of the C: drive if 
IDLE_SENSITIV/TY is set toQ low. /DLE_SECONDS should then 
be raised. 

11.2.6.2 IDLE_SENSITIVITY 
Function: The idle sensitivity level sets a threshold for judging when applica­

tions will be considered idle. The value is the percentage of the 
maximum possible polling rate the application can perform. If an 
application polls at a rate higher than this value, it is considered 
"idle." 

DOS programs often "poll" for input when they are waiting for a 
user response. For instance, a program may wait for a response 
by repeatedly checking to see if the user has hit a key. In a multi­
tasking environment such as OS/2 Version 2.0, this wastes time 
when other programs could be running instead. The operating 
system detects idle programs by looking for a high rate of polling 
for input. When programs are judged to be waiting for input, they 
are given less time to run. 

For example, if idle sensitivity is set to 75%, then an application 
repeatedly checking to see if input is available would have to do 
this checking at more than 75% of the maximum possible rate 
before it would be judged idle. 

Idle detection is a "best guess" of what the program is doing. It 
could be that the program is polling at a very high rate, but is still 
doing useful work in between checking. It may be that the applica­
tion checks at a fairly slow rate but still is doing nothing but 
waiting. The idle sensitivity threshold allows adjustment of the 
threshold for a particular application. 



11.2.7 Keyboard 

Also see 11.2.6.1, "IDLE_SECONDS." 

Advantages: If an application receives input while running and seems to run 
slower than expected, the idle sensitivity should be set to a higher 
value. This lets the application poll at a higher rate without being 
judged idle. Setting the level to 100 turns idle detection off alto­
gether. The application will be allowed to poll for input as often as 
it likes. 

Default: 

Settable: 

Examples: 

If an application is waiting for input and other applications do not 
appear to be running, the idle sensitivity should be adjusted down­
ward. This lowers the threshold for judging the application idle. 

The defa~lt is 75%. 

The setting can be changed while the program is running to tune it 
to the proper value. 

Overall system performance can usually be improved when there 
are multiple DOS applications running if IDLE_SENSITIVITY is 
turned down. 

Also see 11.2.2.1, "DOS_BACKGROUND_EXECUTION" on 
page 208. 

The following settings affect the behavior of the keyboard and the interpretation 
of control key sequences issued within a VDM. 

11.2.7.1 KBD_ALTHOME_BYPASS 
Function: When enabled, prevents the Alt+ Home key sequence from 

switching the VDM between full screen and windowed mode. 

Advantages: Enabling this setting allows normal behavior for applications which 
themselves make use of the Alt+ Home key sequence. 

Drawbacks: When enabled, the user must use the Ctrl + Esc sequence to 
switch to Presentation Manager from a full screen VDM, then use 
the context menu of the class to switch the VDM to windowed 
mode. 

Default: 

Settable: 

Examples: 

Off (Alt+ Home will cause a switch between full screen and win­
dowed mode). 

At any time. 

None. 

11.2.7.2 KBD_BUFFER_EXTEND 
Function: Increases a VDM's keyboard type-ahead buffer size. 

Advantages: Provides greater keystroke buffering, consistent with the level 
available in VIC windows. Note that Ctrl-Break will flush the entire 
buffer, just as it does with the standard buffer. 

Drawbacks: Applications which bypass the ROM BIOS input buffer and/or INT 
16h may not benefit from this feature. There is also a small 
amount of additional memory overhead for every VDM. 

Default: On. Most applications will benefit, and those that do not should 
not be adversely affected. 

Chapter 11. DOS Settings 217 



Settable: 

Examples: 

At any time. This facilitates easy experimentation by the user in 
the (rare) event that a problem does arise. 

None. 

11.2.7.3 KBD_CTRL_BYPASS 
Function: When enabled, inhibits one or more control key sequences, 

allowing an application in the VDM to use these sequences for its 
own purposes. 

Advantages: Enabling this setting ·allows normal behavior for applications which 
make use of control key sequences normally used by OS/2 
Version 2.0. 

Drawbacks: Enabling this setting may prevent certain operations from being 
performed with OS/2 Version 2.0 and the Workplace Shell. 

Default: NONE (All control key sequences behave in the normal manner). 

Settable: At any time. 

Examples: None. 

11.2.7.4 KBD_RATE_LOCK 
Function: Prevents a DOS application in a VDM from changing the system 

keyboard repeat rate. 

Advantages: Insulates machine from applications that modify the repeat rate in 
an uncontrolled or undesirable way. 

Drawbacks: Prevents the application's repeat rate from taking effect even 
when the application is the focus session. 

Default: Off. Most applications do not modify the repeat rate, and those 
that do are generally in accordance with the user's wishes. 

Settable: At any time. 

Examples: None. 

11.2.8 Memory Extenders (EMS and XMS) 

218 OS/2 V2.0 Volume 2 

The following settings affect the behavior of the EMS and XMS memory 
extenders, if used in the VDM. For an explanation about the implementation of 
EMS and XMS support in VD Ms, see Chapter 6, "Memory Extender Support." 

11.2.8.1 MEM_EXCLUDE_REGIONS 
Function: This setting is used to specify address ranges which should be 

protected from use by EMS/XMS and direct access by applica­
tions. This setting is intended for experienced users who under­
stand the hardware. 

Advantages: This setting restricts the use of EMS/XMS on certain ranges in the 
region between RMSIZE and 1MB. It also protects these ranges 
from being touched by user applications by portraying ROM there. 

Drawbacks: Some hardware adapters stop functioning if their addresses are 
touched in random fashion. If these ranges are defined exces­
sively, they will adversely impact the function and performance of 
EMS and XMS services. 



11.2.9 Mouse 

Default: 

Settable: 

Examples: 

By default, this setting is void. Each address is specified in hex 
and if there is no range specified, the length taken is a page 
(4KB). 

At VDM creation only. 

None. 

11.2.8.2 MEM_INCLUDE_REGIONS 
Function: Specify regions which should be made available to EMS/XMS. 

This setting is used to specify some address ranges between 
RM SIZE and 1 MB for use by EMS and XMS. 

Advantages: If there is a hardware adapter in this range which the user knows 
is not going to be used by a particular VDM session, then the 
address range used by this adapter should be made available to 
EMS and XMS. This will improve the performance of EMS and 
XMS services. Only advanced users who know the addresses used 
by a card should use this setting. 

Default: By default, this setting is void. 

Settable: At VDM creation only. 

Examples: See discussion in 6.2, "Expanded Memory (EMS) and Upper 
Memory (UMB)" on page 102. 

The following settings affect the behavior of the mouse in a VDM. 

11.2.9.1 MOUSE_EXCLUSIVE_ACCESS 
Function: This setting allows VDMs to run applications which maintain their 

own mouse pointers. Some DOS applications manage their own 
mouse positions and movements; in many cases, the application's 
values for mouse sensitivity and/or double speed threshold are 
different from those of Presentation Manager. As a result, a Pres­
entation Manager mouse pointer may be outside the VDM window 
while the application pointer is somewhere in the window not 
receiving any mouse events. This means having two asynchro­
nous mouse pointers on the screen. 

Advantages: The user forces the physical mouse driver to send its events 
directly to the virtual mouse driver without going through Presen­
tation Manager. Only one mouse pointer appears when the partic­
ular VDM window has the focus. 

Default: 

Settable: 

Examples: 

OFF. 

At any time. 

However, this only marks the VDM window and does not actually 
activate the setting. In order to activate it, the user must press a 
mouse button within the VDM window. The Presentation Manager 
pointer disappears, leaving only the application pointer. In order 
to regain the Presentation Manager pointer, the user must press 
any of the hot-keys {Alt, Ctrl + Esc, Shift+ Esc). 

WordPerfect 5.1 has its own block-shaped mouse pointer, which 
will appear together with the system mouse pointer when the 
window has the focus. Turning MOUSE_EXCLUSIVE_ACCESS on 

Chapter 11. DOS Settings 219 



11.2.10 Printer 

11.2.11 Video 

220 OS/2 V2.0 Volume 2 

allows the user to remove the system mouse pointer when in 
WordPerfect. 

The following settings affect print functions within a VDM. 

11.2.10.1 PRINT_TIMEOUT 
Function: Use this setting to adjust the amount of timel in secondsl that the 

OS/2 V2.0 print subsystem waits before forcing a print job to the 
printer. In DOS, information sent by a program for printing goes 
directly to a printer. However, the OS/2 V2.0 print subsystem 
assembles print information in a spool file. After a specified 
period of time, during which the spool file does not grow larger, 
OS/2 V2.0 print subsystem sends the information to the printer as 
a single print job. 

Advantage: There is no need to exit the DOS program before the print job is 
released by the OS/2 V2.0 print subsystem. This is useful for 
applications which do not explicitly close their print jobs. 

Default: 15 seconds 1 configurable from 0 to 3600 seconds (0 seconds is no 
timeout). 

Settable: At any time. 

Examples: A timeout of 1 or 2 seconds is sufficient for small print jobsl such 
as copying the contents of the screen. However, when printing 
large files, formatting documents, or running calculationsl the 
value must be set high enough to allow all print results to reach 
the spooler before the time limit expires. If not, results go in two 
or more spool files instead of one, and the resulting output may be 
unsatisfactory. 

The following settings control screen 1/0 operations within a VDM. 

11.2.11.1 VIDEO_FASTPASTE 
Function: Speeds up input from other sources than the keyboard. 

Advantages: Improves the speed of paste operations from the clipboard to a 
DOS application. 

Drawbacks: Does not work with all applications (in particular, some applica­
tions which monitor keyboard interrupts directly may experience 
errors). 

Default: 

Settable: 

Examples: 

Off. 

At any time. This facilitates easy experimentation by the user. 

Pasting into the DOS command prompt, or any application using 
DOS Console 1/0 functions, will generally work. However, the 
Microsoft Editor (M) and its successorl Programmer's Workbench 
(PWB), can fail when using fast pasting because they rebuffer key­
strokes in an internal buffer, which can overflow. 



11.2.11.2 VIDEO_MODE_RESTRICTION 
Function: Extends the 640KB DOS address space by limiting video mode 

support. 

Advantages: For text-based or CGA graphics based applications, the video 
memory normally reserved just above 640KB for high-resolution 
graphics modes can be remapped to conventional memory, pro­
viding an additional 64KB (or 96KB, depending on graphics mode) 
for DOS applications, TSRs, and other programs. This is valuable 
for applications that do not take advantage of EMS or XMS 
memory extenders. 

Drawbacks: It is not possible to completely hide the fact that the video adapter 
is high-resolution graphics-capable; some applications may 
attempt to enable those modes and use the memory above 640KB 
as video memory, inadvertently corrupting application data. Care 
must therefore be taken when using this feature. 

Default: NONE. The complete list of settings is: 

Settable: 

Examples: 

• None 

• CGA modes only (adds 96KB) 

• MONO modes only (adds 64KB). 

At VDM creation only. 

None. 

11.2.11.3 VIDEO_ONDEMAND_MEMORY 
Function: Reduces swap space requirements for fullscreen VDMs. 

Advantages: Allows a full-screen VDM to run without pre-allocating a virtual 
video buffer for the worst-case video modes (high-resolution 
graphics modes). Using this setting does not prevent execution of 
graphics applications; it simply means that allocation of the buffer 
is delayed until it is needed. This can save a substantial amount 
of memory/swap space, which might be important under certain 
low-memory conditions. It also enables you to start a program 
quickly. 

Drawbacks: If allocation of a virtual video buffer for a full-screen VDM fails at 
the time the application changes video modes, the session must 
be frozen and switched back to the shell. Unless the user is able 
to free memory from another session, he may be unable to get the 
DOS application running again. This is a concern if the application 
contains unsaved data. 

Default: 

Settable: 

Examples: 

Off. 

At any time. This allows the user to save memory the next time 
the session is switched to full-screen. 

None. 

Chapter 11. DOS Settings 221 



222 OS/2 V2.0 Volume 2 

11.2.11.4 VIDEO_RETRACE_EMULATION 
Function: Simulates the video retrace status port to provide faster access. 

Advantages: DOS applications that poll the video retrace status port often write 
to the screen only during the retrace interval, even though it is 
safe (on EGA and VGA adapters) to draw at any time without 
causing interference (also known as "snow"). This feature causes 
most applications to write to the screen more often, and compen­
sates for the performance drag imposed by monitoring the port in 
the first place. 

Drawbacks: Some applications may poll the port in such a way that overall 
performance is worse; this is sometimes true of applications that 
draw only during vertical (not horizontal) retrace. Unfortunately, 
while turning off trace emulation will restore performance, there is 
a risk that screen-switching will not be as reliable. 

Default: On. Reliable screen-switching has higher priority over the 
minority of applications that will experience some drag in perform­
ance. 

Settable: 

Examples: 

At any time. This allows the user to experiment with different set­
tings in the event of a performance problem. 

None. 

11.2.11.5 VIDEO_ROM_EMULATION 
Function: Emulates selected INT 10h ROM Video functions. 

Advantages: Provides faster output for selected video functions than ROM ser­
vices typically provide. This also has a dramatic effect on the per­
formance of those functions in a window. 

Drawbacks: Some ROMs may offer enhanced services that are not included in 
the emulation. Applications which rely upon these services may 
not execute correctly. 

Default: 

Settable: 

Examples: 

On. Because the INT 10h ROM Video services are well­
documented, incompatibilities are unlikely and the performance 
benefits of using the emulation are quite significant. · 

At any time. This allows the user to experiment in the event of a 
compatibility problem. 

None. 

11.2.11.6 VIDEO_SWITCH_NOTIFICATION 
Function: Notifies a DOS application of a switch to/from full-screen mode. 

Advantages: Allows applications that monitor this notification to redraw their 
screens as needed. This may be necessary for some video 
adapters that provide modes (and applications that use those 
modes) which are not fully supported by the OS/2 video driver or 
which are slightly incompatible. It is also valuable in situations 
where an OS/2 video driver has not allocated a virtual video buffer 
(see 11.2.11.8, "VIDE0_8514_XGA_IOTRAP" on page 223). Use this 
setting if you use the VIDEO_ONDEMAND_MEMORY DOS setting, 
because concurrent buffer allocation and screen switching can 
make a screen go black. 



Drawbacks: When used indiscriminately, this feature may cause unnecessary 
and time-consuming screen redrawing. For standard 
MONO/CGA/EGA/VGA video modes, the OS/2 video driver should 
be able to restore application screens without assistance. 

Default: Off. For standard hardware and standard video modes, this 
feature is not necessary. 

Settable: At any time. This allows the user to experiment in the event of a 
compatibility problem. 

Examples: Windows 2.x and 3.x understand this notification and will redraw 
themselves accordingly. For WIN-OS/2 sessions, set this setting 
on. 

11.2.11.7 VIDEO_WINDOW_REFRESH 
Function: Adjusts the window update frequency for a given VDM. 

Advantages: For applications (particularly graphics) that write frequently to 
video memory, this value can be increased to reduce time spent 
updating the window and provide more processor time for the 
application. 

Note: This has no effect on updates based on other events such 
as keyboard input or synchronous scrolling operations or 
any video events other than refresh. 

Drawbacks: A large refresh period can make an application unusable (or at 
least, very hard to use). 

Default: 0.1 seconds. This has been found to yield the best overall per­
formance. 

Settable: At any time, in increments of 0.1 seconds. This allows for exper­
imentation. The range is from 0.1 to 60.0 seconds. 

Examples: This setting affects normal TTY-style output. Compare a DIR or 
TYPE operation before and after altering this setting. 

11.2.11.8 VIDE0 _8514_XGA_IOTRAP 
Function: When set OFF, unrestricted access to 8514/A display adapter hard­

ware. Note that this setting is only available for systems with 
8514/ A display adapters installed. 

Advantages: Achieves higher performance for 8514/A applications and elimi­
nates the overhead of the 1MB 8514/A virtual video buffer normally 
allocated for each VDM when set OFF. 

Drawbacks: Screen-switching away from the application will result in imme­
diate freezing of the application, and the system may not be able 
to reliably switch back; that is, the screen image may not be 
correct. This may be overcome by setting 
VIDEO_SWITCH_NOTIFICATION on, which notifies applications to 
redraw their own screen images. Note however, that not all appli­
cations will take advantage of the notification. 

Note: An application with this setting enabled may not be run in 
windowed mode, or copied to the clipboard, because there 
is no complete information about its state. 

Default: Off. 

Chapter 11. DOS Settings 223 



11.2.12 XMS 

224 05/2 V2.0 Volume 2 

Settable: 

Examples: 

No; may be set at VDM creation only. 

When executing Windows 3.0 with the 8514/ A display driver, 
certain operations such as painting dithered backgrounds will run 
significantly faster. 

11.2.12.1 XMS_HANDLES 
Function: Specifies the number of XMS extended memory block (EMB) 

handles. A handle is used with each XMS EMB. This number is 
required because XMS pre-allocates all the handle space to be 
compatible with XMS specifications. This setting should be used 
only if an application uses a large number of handles. 

Advantages: This setting restricts the number of block handles, thereby 
reducing memory consumption. 

Drawbacks: Specifying a large number of handles will increase memory con-
sumption and adversely impact system performance. 

Default: The default value of this setting is 32. 

Settable: At VDM creation only. 

Examples: None. 

11.2.12.2 XMS_MEMORY_LIMIT 
Function: Specifies the per VDM XMS memory limit. This setting should be 

used under the same guidelines as described above in 11.2.12.1, 
"XMS_HANDLES." The global limit is the overall maximum XMS 
memory consumption, and the per-VDM limit is the maximum 
allowed for each VDM. See also 6.3.1.2, "Initialization" on 
page 107 for defining global and per-VDM limit in the 
CONFIG.SYS. 

Drawbacks: Specifying a large number may adversely affect system perform­
ance. 

Default: 

Settable: 

Examples: 

The default value is 2MB per-VDM. 

At VDM creation only. 

4096; this specifies a limit for each VDM. 

11.2.12.3 XMS_MINIMUM_HMA 
Function: Specifies the minimum HMA memory request allowed. This 

setting allows the user to fine tune the XMS. HMA is slightly less 
than 64KB in size. Only one request can be fulfilled from this area 
at a time. 

Advantages: If a TSR takes a very small allocation, then it will waste this area 
for other applications. In such cases a limit can be specified. 

Default: The default value is zero, which means all the requests will be 
allowed. 

Settable: At VDM creation only. 

Examples: 2048; this sets a limit of 2KB. 



11.2.13 WIN-OS/2 

11.3 Summary 

The following setting is available when the selected virtual DOS machine type is 
WIN-OS/2 full screen or WIN-OS/2 window: 

11.2.13.1 WIN_RUNMODE 
Function: 

Default: 

Settable: 

Examples: 

OS/2 V2.0 can use two modes to run Windows programs: 

• Real 
• Standard 

Real mode is the mode that Windows 2.0 programs run in. 
Windows 3.0 programs usually run in standard mode. For a 
detailed discussion, see Chapter 8, "Windows Applications." Use 
this setting to specify WIN-OS/2 mode for your session. 

AUTO (the system selects standard mode as long as it has the 
OS/2 V2.0 Virtual Device Drivers required to support a standard 
mode WIN-OS/2 session in the OS/2 V2.0 operating system). 
AUTO enables the system to automatically choose between real 
and standard. 

At VDM creation time only. 

None. 

The DOS Settings feature of MVDM provides the user with the ability to selec­
tively configure and tune the virtual DOS machine environment to meet the 
requirements of particular applications. Since some DOS applications require 
certain features while other applications operate better without them, a VDM 
may be individually configured to provide the optimum execution environment for 
the application which will run within it. 

DOS settings may be set by the user when adding an application to a group on 
the desktop, or in certain cases, during execution while an application is running 
within the virtual DOS machine. In the case where a VDM is created by another 
process using a DosStartSession() function call, a buffer may be provided con­
taining the required DOS settings and their values. 

Chapter 11. DOS Settings 225 



·.·. 

226 .OS/2 V2.0 Volume 2 



Chapter 12. Virtual Machine Boot 

An important goal of OS/2 Version 2.0 is the ability to run past, current, and 
future DOS programs; indeed most DOS applications available today run 
unchanged in the MVDM environment. 

However, it should be remembered that the "DOS" which runs in this case is 
highly optimized for (and specific to) an OS/2 Version 2.0 virtual 8086 machine. 
Because of this, there are fundamental internal differences between the DOS 
Emulation provided under OS/2 Version 2.0 and "real" DOS. Two problems may 
therefore arise: 

1. Some programs may depend on specific DOS features such as internal 
control blocks, LAN Redirector hooks, or even undocumented functions, 
which are not present in MVDM's DOS Emulation. 

2. Only DOS character device drivers can be loaded in MVDM's DOS Emulation. 
The user may own a block device (such as a special disk or tape drive) for 
which no OS/2 driver is available. (A block device is one accessed via a 
drive letter, such as E:). 

Virtual Machine Boot (VMB) solves both these problems. It allows the user to 
boot "off-the-shelf" DOS and use block device drivers in an OS/2 Version 2.0 
virtual DOS machine, ensuring greater compatibility for DOS applications. 

Another possible use of VMB is to run DOS of a different National Language to 
that of OS/2 Version 2.0 itself. This may be useful in a multilingual environment. 

12.1 VMB Environment 
The 80386 processor and VDM component of OS/2 Version 2.0 together emulate 
a 8086 processor, keyboard, display, BIOS and other supporting hardware; in 
effect, a complete "virtual Personal Computer." It is therefore possible for 
"real" DOS to be loaded in a VDM session. Control is passed to the boot 
record (the first sector) of the DOS system diskette, which in turn loads and ini­
tializes the rest of the DOS kernel, just as it does when booting on a physical 
PC. 

Indeed, the VDM environment is so similar to a real PC environment that VMB 
can actually support any 8086 operating system kernel, such as Digital 
Research's DR-DOS** and CP/M**, Microsoft MS-DOS**, or even a PS/2 refer­
ence diskette (but do not attempt to run diagnostics or change the configuration 
from a VDM; the results are unpredictable). However, since the purpose of VMB 
is to run current DOS applications, formal IBM support is announced for IBM PC 
DOS 3.x, 4.0, and 5.0 only. 

Table 6 on page 228 shows the amount of available base memory for MVDM 
DOS Emulation, DOS in a VMB session, and native DOS. These figures show the 
amount of memory available after loading the operating system and mouse, EMS 
and XMS support. 

©Copyright IBM Corp. 1992 227 



Table 6. Free Base Memory 

Setting VDM DOS DOS 5.0 DOS 4.0 DOS 3.3 
Emulation 

DOS low 610 KB 566 KB 588 KB 545 KB 

DOS high 633 KB 612 KB - -
With mode 728 KB 707 KB 653 KB 670 KB 
restriction 
(CGA) 

native DOS - 564 KB (low) 545 KB 562 KB 

614 KB (high) 

Note: Each configuration has HIMEM, EMS and Mouse drivers loaded. Values are 
approximate. 

A VDM using VMB is similar in function to any other virtual DOS machine. Mul­
tiple VDMs may be started and operated concurrently using Virtual Machine 
Boot. Each runs in its own virtual 8086 machine; access to hardware and other 
system resources is managed by MVDM and the underlying OS/2 Version 2.0 
operating system. 

12.2 Configuring Virtual Machine Boot 
The DOS operating system loaded into a VDM by VMB may be: 

1. An actual DOS system diskette 
2. An image of a DOS system diskette saved to hard disk 
3. A DOS partition on hard disk. 

For any of the alternatives, we need to do the following: 

1. Set up the start-up batch file AUTOEXEC.BAT 

2. Set up the configuration file CONFIG.SYS 

3. Provide OS/2 V2.0 with the real DOS to boot. 

12.2.1 Preparing AUTOEXEC.BAT and CONFIG.SYS 

228 05/2 V2.0 Volume 2 

The AUTOEXEC.BAT and CONFIG.SYS that will be used by the VMB at initializa­
tion are not the ones found in the root directory of the OS/2 V2.0 boot drive. The 
following table explains which AUTOEXEC.BAT and CONFIG.SYS will be used for 
the different DOS session types under OS/2 V2.0. 

Table 7. Location of AUTOEXEC.BAT and CONFIG.SYS 

VDM Type Location 

Virtual Machine Boot from diskette drive A: 

Virtual Machine Boot from diskette imbedded in diskette image file on the 
image hard disk 

Virtual Machine Boot from DOS boot DOS boot partition 
partition 

OS/2 V2.0 DOS emulator root directory of OS/2 boot drive 

CONFIG.SYS requires special attention for the following reasons: 



1. Write access to the hard disk is denied the Virtual Machine Boot session to 
preserve system integrity, since the real DOS is unaware of OS/2 V2.0 and 
the other applications running. 

The OS/2 device driver FSFILTER.SYS is provided to address the above 
problem. 

2. HPFS partitions are not visible to the real DOS running. 

FSFILTER.SYS allows the DOS in the Virtual Machine Boot to access HPFS 
files. 

3. OS/2 V2.0 provides its own mouse, EMS and XMS to each virtual DOS 
machine, so there is no need to load the equivalent drivers available for 
native DOS. Those provided with the real DOS should not be used. 

However, some DOS programs test for the presence of these drivers. OS/2 
V2.0 provides the equivalent "stub" drivers to satisfy these programs that the 
services actually are available. 

The following types of device drivers should also be omitted from 
CON FIG.SYS: 

• Disk cache 
• Print spooler 
• RAM disk 

These facilities are already provided by OS/2 Version 2.0 and may be 
accessed by virtual DOS machines and VMB sessions; including them with 
DOS leads to unnecessary duplication, and may impact overall performance. 

When the Virtual Machine Boqt is started from a diskette image on the hard disk, 
the real DOS sees the diskette image as drive A:. The real drive A: cannot be 
accessed. OS/2 V2.0 provides a DOS program, FSACCESS.EXE, that can be used 
from the DOS command prompt or inserted in AUTOEXEC.BAT to overcome this 
problem. 

We will cover each of these special requirements in detail in the following 
sections. 

12.2.1.1 Drive Letter Allocation and Access 
Drive letter allocation and access is one of the more complex areas of VMB, 
mainly due to the automatic drive letter allocation performed by DOS, and the 
limitations of earlier DOS versions. The following possible areas of confusion 
may arise for the user: 

• If DOS is booted from an image file, it sees this image file as its A: drive. 
This prevents access to the real A: diskette drive. Attempts to write to the 
apparent A: drive will fail. 

• Unlike the DOS Emulation kernel provided Dy OS/2 Version 2.0, the "real" 
DOS booted by VMB cannot see or access an HPFS partition on the hard 
disk. 

• A DOS 3.x VDM cannot see a large (>32MB) FAT partition on the fixed disk, 
or FAT partitions beyond an HPFS partition on the disk. 

• Even if the booted DOS can otherwise see the hard disk partition, it is only 
given read access. Attempts to write will fail with simulated errors such as 
"General failure writing drive C: ". The user might mistake this for a 
genuine hardware fault. 

Chapter 12. Virtual Machine Boot 229 



230 OS/2 V2.0 Volume 2 

• If the booted DOS loads a block device-driver, the allocated drive letter may 
be the same as that of a different device outside this VDM, thereby pre­
venting access to that device from within the VDM. 

The results could be somewhat disorienting for the user. To help resolve these 
issues, two utilities FSFILTER and FSACCESS are provided with OS/2 Version 
2.0. 

It is recommended that disk volumes should always be given a meaningful 
name, either when formatting or later using the LABEL command. This name will 
remain constant regardless of drive letter allocation, and will aid in identifying a 
particular volume, even if the assigned drive letter is different. 

12.2.1.2 FSFIL TER 
FSFILTER.SYS is a device driver which manages DOS VDM access to OS/2 disks. 
FSFILTER.SYS should be copied from the \OS2\MDOS directory to the DOS 
diskette, and the following statement added to the CONFIG.SYS file of the 
beatable DOS diskette or image. 

device=a:fsfilter.sys 

This statement should precede any DEVICE= statements which load block 
device drivers. 

Note that FSFILTER.SYS gives DOS full access to all OS/2 partitions, regardless 
of their file system type or partition size. 

This is an important and somewhat surprising point. For example, DOS 3.3 (in a 
VDM) has no problem accessing a 300MB HPFS partition, once FSFILTER is 
loaded. 1/0 calls within the DOS virtual machine are passed transparently to 
OS/2 Version 2.0. DOS itself is unaware of the underlying file system. DOS can 
read, write and modify files on the hard disk, and for most configurations the 
drive letter mapping within the VMB session will match those of OS/2 Version 
2.0. 

The FSFILTER device driver occupies approximately 11KB of memory. It can be 
loaded into high memory under DOS 5.0 by specifying the command 
DEVICEHIGH = FSFILTER.SYS in CONFIG.SYS. 

The users should also specify the path to COMMAND.COM in the SHELL= state­
ment of CONFIG.SYS. For ex.ample, if DOS files have been copied to C:\DOS, 
the CONFIG.SYS file on a diskette intended for VMB should contain the following 
statement: 

SHELL=c:\DOS\COMMAND.COM c:\dos /p 

The first parameter specifies the command processor to be loaded. The second 
parameter specifies the reload path {that is, the COMSPEC path). This is prefer­
able to a SET COMSPEC = command in AUTOEXEC.BAT. 

Each block device driver loaded in DOS CONFIG.SYS is allocated the next free 
OS/2 letter excluding LAN drives. This can result in a drive letter clash. An 
example may illustrate the point. OS/2 drives are: 

A: Diskette drive O 
B: Diskette drive 1 
C: Hard disk 
D: External diskette drive 
E: Remote LAN drive on a server 



FSFIL TER will ensure that a booted DOS sees these drives by the same letter. 
The booted DOS has the same access to the external diskette drive and LAN 
resources as does OS/2 itself. This is true whether the VMB session is started 
before or after user logon to the network, when remote drive letters are 
assigned. 

However, a block device driver in a VMB session will also initialize as E:, so LAN 
drive access is lost. To remedy this, issue an 11 fsaccess f=e 11 command. The LAN 
drive is now accessible as F: within the DOS session. 

Note that even when FSFILTER is loaded, the following restrictions still apply: 

• A VMB session cannot see HPFS files or directories which have: 

Long file names (9 or more characters) 
- Invalid FAT characters (for example, plus, comma, blank) 
- Multiple dot separators. 

• HPFS file names containing lowercase letters are folded to uppercase. 

• PC DOS commands which require low-level disk access will fail. These 
include: 

CHKDSK 
SYS 
UNDELETE 
FORMAT 
UNFORMAT 
MIRROR. 

In such cases OS/2 Version 2.0 will simulate a disk error condition. DOS may 
interpret this as a hardware fault, or report that the command is not sup­
ported on a network or assigned drive. 

12.2.1.3 FSACCESS 
FSACCESS.EXE is a utility supplied with OS/2 Version 2.0 but intended to run in a 
VMB session. It cooperates with FSFILTER to manage drive letters within the 
VMB session. This serves three purposes: 

1. Drives may be registered for filtering. 

2. The drive letter for a device can be changed, giving consistency across ses­
sions. 

3. Letters can be removed in order to hide the OS/2 device from the VMB 
session. 

The syntax of the FSACCESS command is: 

FSACCESS J 
L ' J 

DOSletter 

DOSletter - DOSletter ~ 

DOSletter = OS2drive -

FSACCESS Lists the current drive mapping. For example: 

Chapter 12. Virtual Machine Boot 231 



FSACCESS F: 

FSACCESS !F: 

FSACCESS F:-H: 

FSACCESS M:=C: 

Local C: is mapped to OS/2 C: 
Local D: is mapped to OS/2 D: 
Local E: is mapped to OS/2 K: 

Registers DOS letter F: for filtering. References to F: will be 
sent to OS/2 Version 2.0. 

De-registers DOS letter F: from filtering. 

Registers DOS letters F: through H: for filtering. 

Routes requests for DOS letter M: to OS/2 drive C: 

Parameters can be combined on a single command line, and the colon is 
optional. 

When booting from an image file, it is often desirable to issue the command 
FSACCESS A: in order to access the A: diskette drive. This will remove access 
to the image file, so the booted DOS will be unable to reload its COMMAND.COM 
when necessary. It may be useful to copy all the DOS files to a subdirectory on 
hard disk, ensuring the PATH and COMSPEC point there. 

An alternative is to access the diskette drive via a different letter. For example, a 
user may issue the command FSACCESS G: =A, then use G: to access the real 
A: drive. The image file remains as A:, avoiding PATH and COMSPEC prob­
lems. 

12.2.2 Mouse, EMS and XMS Support 

232 OS/2 V2.0 Volume 2 

The booted DOS in a VMB session receives XMS (HIMEM), EMS, DPMI and 
mouse support services from its VDM environment {assuming the virtual DOS 
machine has default DOS settings). DOS should not therefore load its own 
HIMEM, EMS or mouse drivers; ind~ed they may cause errors in the VDM. 

DOS programs call these services via appropriate API register parameters and a 
designated interrupt: 

Mouse 
XMS 
EMS 

INT 33h 
INT 2Fh {multiplex) 
INT 67h 

These interrupts are trapped by the VDM environment, routed outside the virtual 
machine and handled by the OS/2 Version 2.0 operating system itself. This may 
present a problem for certain programs which first test for the presence of such 
services by issuing an OPEN command to the associated device driver, or which 
check that a valid interrupt handler is referenced by the Interrupt Vector Table. 
When a VMB session is started, these device driver names are not present, and 
the interrupt vectors point to null handlers. The application will therefore assume 
that the required services are not useable. 

In order to avoid this problem, OS/2 Version 2.0 provides three alternative "stub" 
drivers: 

• MOUSE.COM 
• HIMEM.SYS 
• EMM386.SYS 

These stub drivers are very small {and use minimal memory when loaded) but 
satisfy programs which depend on drivers with such names bein'J present. They 
respond to OPEN commands, and also set handler addresses in the Interrupt 



Vector Table, thereby satisfying applications which check for the presence of the 
device drivers in either of these ways. 

The user must load these OS/2 files rather than any similarly named files which 
may be shipped with DOS or applications, such as: 

DOS 4.0 XMAEM.SYS, XMA2EMS.SYS 

DOS 5.0 HIMEM.SYS, EMM386.EXE, MOUSE.COM 

DR DOS HIDOS.SYS, EMM386.SYS, EMMXMA.SYS 

Other MOUSE.SYS 

There are two ways to achieve this. Assuming OS/2 Version 2.0 is installed on 
drive E: 

1. Copy the above OS/2 files from E:\OS2\MDOS to the DOS diskette, and edit 
CONFIG.SYS and AUTOEXEC.BAT accordingly to load these files from the A: 
drive. VMDISK may then be run to create a bootable image if desired. 

device=a:himem.sys 
device=a:emm386.sys 
device=a:fsfilter.sys 

This method should be used if FSFILTER will be loaded into high memory 
using DOS 5.0: 

device=a:himem.sys 
device=a:emm386.sys 
devicehigh=a:fsfilter.sys 

2. Edit CONFIG.SYS and AUTOEXEC.BAT to load these files directly from 
E:\OS2\MDOS. (FSFILTER.SYS must be loaded first if the OS/2 drive would 
otherwise be inaccessible to the booted DOS). 

device=a:fsfilter.sys 
device=e:\os2\mdos\himem.sys 
device=e:\os2\mdos\emm386.sys 

The second method has one notable advantage; if and when Corrective 
Service is applied to the OS/2 Version 2.0 system, and HIMEM, EMM386 or 
MOUSE are updated, it is not necessary to update your DOS diskettes and 
recreate image files. FSFILTER itself will have to be updated manually 
(unless the OS/2 Version 2.0 partition is directly accessible to DOS and 
FSFIL TER is also loaded from here). 

Note that EMS memory size and frame location are determined by DOS Settings, 
and not by parameters on the DEVICE= statement for EMM386.SYS. It is recom­
mended that EMS and XMS support should not be configured unless required by 
the application running in the VMB session, since this can impact overall system 
performance. 

We now look at the three different ways to prepare the real DOS to be booted in 
the VMB. 

12.2.3 Booting from Diskette 
The user may load a specific version of DOS or an equivalent 8086 operating 
system into a VMB session directly from a bootable diskette, by specifying A: at 
the value for DOS_STARTUP _DRIVE under DOS Settings. Note that this may 
affect the way in which applications in the VMB sP.ssion may access the diskette 

Chapter 12. Virtual Machine Boot 233 



234 OS/2 V2.0 Volume 2 

drives; see 12.2.1.1, "Drive Letter Allocation and Access" on page 229 for 
further discussion. 

Here is an example using DOS 5: 

1. From a system running DOS 5, format a diskette with the /s option. 

2. Copy FSFILTER.SYS from the OS/2 V2.0 subdirectory \OS2\MDOS onto the 
diskette. 

3. Create CONFIG.SYS and AUTOEXEC.BAT on the diskette. 

A sample CONFIG.SYS to use is as follows (OS/2 V2.0 is installed in E: drive 
in this example): 

REM Load FSFILTER driver 
DEVICE=A:FSFILTER.SYS 
REM load the stub XMS and EMS memory drivers from OS2. 
DEVICE=E:\OS2\MDOS\HIMEM.SYS 
DEVICE=E:\OS2\MDOS\EMM386.SYS 

A sample AUTOEXEC.BAT to use is as follows: 

@ECHO OFF 
PROMPT $P$G 
REM set the path to where the DOS files were copied 
SET PATH=C:\DOS 
SET COMSPEC=C:\DOS\COMMANO.COM 
REM load the stub mouse driver from OS/2 V2.0 
LH E:\OS2\MDOS\MOUSE 

4. Create a DOS subdirectory on the hard disk and copy the real DOS files 
there. 

5. Insert the DOS boot diskette in the A: drive. 

6. Locate the Command Prompts folder. It is usually a folder in the OS/2 
System icon on the Workplace Shell. 

7. Open the Command Prompts folder. 

8. Locate the DOS from drive A: icon and double click on it. 

The DOS_STARTUP _DRIVE setting of this icon is pre-set to the value A:. 

The user cannot specify "B:" or an external diskette drive as the startup drive. 
There may be situations where it is desired to boot from a 5% inch diskette; typi­
cally the B: drive on PS/2 systems. One way to do this is by creating an image 
of the diskette, then booting this image (See 12.2.41 "Booting from Diskette 
Image" on page 235). 

If a 5% inch diskette must be booted directly for some reason, this is possible if 
drive remapping is supported by the system (such as a PS/2 Model 57, 90 or 95). 
Normally A: is Drive O (3% inch), and B: is Drive 1 (5% inch, if fitted). To change 
this, run "Set Startup Sequence" from the reference diskette, and ensure Drive 1 
appears before Drive 0. Then the 5% inch drive will become the A: drive. 

Some 5 % inch drives (such as the IBM External 1.2MB drive and associated 
adapter) require a device driver, and are accessed as D: or higher. They cannot 
be specified as a startup drive, nor can they be readdressed as A:, but can be 
the source drive when creating a bootable image file. 



12.2.4 Booting from Diskette Image 
A user may also load a specific version of DOS or another 8086 operating 
system into a VMB session from a diskette image stored on the hard disk. This 
is achieved by specifying the fully qualified filename of the diskette image file as 
the value for DOS_STARTUP _DRIVE under DOS Settings. 

Here is an example using the DOS 5 boot diskette created in the 12.2.3, 
"Booting from Diskette" on page 233 above: 

1. Edit CONFIG.SYS on the diskette and add the following statement: 

E:\OS2\MDOS\FSACCESS G: = A: 

2. Create the image of the boot diskette on the hard disk. 

Images may be created using the VMDISK utility supplied with OS/2 Version 
2.0. The syntax of the VMDISK command is: 

vmdisk <source drive> <image filename> 

For example: 

VMDISK a: c:\bootimg\dos50.vmb 

The image file is a complete binary "dump" of the diskette, consisting of a 
short header record followed by the diskette's boot sector, FAT(s), and all 
data clusters. Its file size corresponds to the size of the source diskette, 
regardless of the amount of space actually used on the source diskette. No 
compression of the image is performed. 

The diskette must have a standard DOS format (FAT, 512 byte sectors). It is 
not possible to create, then boot, an image of a copy-protected diskette 
which has a non-DOS format. It may be possible to boot such a diskette 
directly in a VDM. 

The VMDISK utility can run under either DOS or OS/2, and supports all 3% 
inch (720KB, 1.44MB and 2.88MB) and 5 % inch (360KB and 1.2MB) source 
diskette formats. 

Note that VMDISK works one way only; it is not possible to create a diskette 
from a VMDISK image. 

3. Proceed to add an icon to the OS/2 V2.0 Workplace Shell to launch VMB. 
Refer to 12.2.6, "Putting the Virtual Machine Boot Session in the Workplace 
Shell" on page 237 on customizing the Virtual Machine Boot, in particular 
the DOS_STARTUP _DRIVE setting. 

12.2.5 Booting from a DOS Partition 
If VMB will be used regularly, the most convenient method may be to do so from 
a DOS partition on hard disk, rather than via diskettes or diskette images. This 
may be achieved by specifying C: as the value for DOS_STARTUP _DRIVE under 
DOS Settings. Loading DOS from a DOS partition proceeds more quickly and 
offers the user a more "familiar" working environment. It is also easier to apply 
DOS Corrective Service to a disk partition than to diskettes or images. 

Note that this method is different from that of a single hard disk partition with the 
Dual Boot feature available under previous versions of OS/2. 

In order to load DOS from a DOS partition, the following requirements must be 
satisfied: 

1. Boot Manager must be installed 

Chapter 12. Virtual Machine Boot 235 



236 OS/2 V2.0 Volume 2 

2. DOS must be installed on a primary partition on the first hard disk in the 
machine 

3. OS/2 Version 2.0 must be installed on an extended partition on the first fixed 
disk, or on another hard disk. 

This will require re-partitioning on single-drive systems if the disk initially con­
tains DOS alone, or earlier versions of OS/2. 

Loading DOS from a DOS partition presents one significant problem. The DOS 
partition is itself bootable directly via Boot Manager, should the user so choose, 
and there may a requirement to boot this DOS partition directly on occasions. 
OS/2 Version 2.0 provides stub device drivers for functions such as EMS, XMS 
and mouse support in the VMB session, and these must be used in place of the 
normal DOS device drivers when DOS is booted in a VMB session. Since the 
same CONFIG.SYS and AUTOEXEC.BAT in the C: root directory is used, the 
question arises of which drivers should be specified for functions such as EMS 
and XMS support: 

• If the partition is booted via VMB, the DOS drivers are inappropriate 

• If the partition is booted directly via Boot Manager, the OS/2 stub drivers are 
inappropriate. 

It might appear that the user would have to maintain multiple configuration files 
and rename or copy them depending upon whether the partition was being 
booted into a VMB session or directly from Boot Manager. This is clearly unsat­
isfactory. Fortunately there is a solution which avoids this. The key is to specify 
both sets of drivers, in the correct order, in CONFIG.SYS and AUTOEXEC.BAT. 

The following example assumes: 

• DOS 5.0 is installed on the C: Primary partition 
• OS/2 Version 2.0 is installed on the E: Extended partition 

CONFIG.SYS on the C: drive contains: 

device=c:\dos\setver.exe 
device=c:\dos\himem.sys 
device=c:\dos\emm386.exe noems 
device=e:\os2\mdos\himem.sys 
device=e:\os2\mdos\emm386.sys 
dos=high,umb 

••• etc ••• 

When this file is processed in an OS/2 VMB session, the DOS HIMEM load fails 
as it sees no available extended memory. EMM386.EXE cannot load as it sees 
protect-mode software already running. Then, the OS/2 HIMEM and EMM386 stub 
device drivers load as normal. 

When this file is processed as part of a native DOS boot, the DOS HIMEM and 
EMM386 load as normal, but the OS/2 stub device drivers detect that they are 
not running under OS/2 and do not load themselves. 

A similar technique works for mouse support in AUTOEXEC.BAT: 



@echo off 
prompt $p$g 
set path=c:\dos 
LH e:\os2\mdos\mouse 
LH c:\dos\mouse 

••• etc ••• 

Note that here the OS/2 driver is listed first. When this file is processed in an 
OS/2 VMB session, the OS/2 stub loads first. The DOS mouse driver sees that a 
mouse driver is already present, and hence it does not install itself. When 
booting DOS natively, the OS/2 mouse stub device driver detects that it is not 
running under OS/2, and does not load itself. The DOS mouse driver then loads 
as normal. 

12.2.6 Putting the Virtual Machine Boot Session in the Workplace Shell 
We are now ready to put the VMB session as an object on the OS/2 Version 2.0 
Workplace Shell desktop. 

1. Locate the Templates folder. It is usually an icon on the Workplace Shell. 

2. Open the Templates folder. 

3. Locate the Program icon template. 

4. Drag the Program icon template on to the desktop. This will cause the 
Program Settings notebook to appear. 

5. Enter an asterisk"*" in the Path and file name field. 

See the example as shown in Figure 53. 

Path and file name: 

.___H _____ __.I I find ... 

Parameters: 

Working directory: 

.Undo I j Help 

fro gram 

Session 

Association 

Window 

.General 

Figure 53. The Program Page of the Settings Notebook for a VMS. All that is needed in 
the Path and file name field is an asterisk. 

6. Select the Session notebook tab. 

Chapter 12. Virtual Machine Boot 237 



The Session notebook allows the user to specify the session type and DOS 
Settings for the VMB session. 

7. Select either DOS full screen or DOS window and then select the DOS Set­
tings ... button. 

8. Select the DOS_STARTUP _DRIVE list item. 

The difference between a VMB session and a "normal" VDM is that the DOS 
Settings value of DOS_STARTUP _DRIVE is set. This setting determines the 
location of the DOS kernel to be booted. By default, MVDM's DOS Emulation 
is loaded. However, the user may specify a location from which to load DOS, 
in which case the version of DOS residing at that location is loaded. 

· DOS·Settin s · · ·· ... . . · ·. . ·· · · ·· "'·. · ·· "". .· ··.· .· " . 

Setting: Value: 
COM_HOLD 
DOS_BACKGROUN D_EXECUTION 
DOS_BREAK 

le:\vmboot\dr-dos50. vmb 

DOS_DEVICE 
DOS FCBS 
oos:FCBS_KEEP 
DOS_ FILES 
DOS_HIGH 
OOS_LASTDRIVE 

Description-------------. 

Use this setting to specify the location of 
the DOS kernel to boot. 

DOS_RMSIZE 
DOS SHELL 

OOS_UMB 
DOS_ VERSION 
DPMl_DOS_API 
DPMl_MEMORY LIMIT 

I .§ave I .Qefault I I ~ancel I .Help 

Figure 54. DOS Settings - DOS_STARTUP _DRIVE. This illustration shows the specification of a DOS diskette 
image named DR-DOS50.VMB. located on hard disk. 

238 OS/2 V2.0 Volume 2 

Example values for DOS startup drive are: 

DOS Start up setting 
a: 
c:\bootimg\dosSO.vmb 
c: 

Meaning 
Boot using the diskette in drive A: 
Boot using the specified DOS image file 
Boot using the primary partition of the C: drive 

The following restrictions apply: 

• A second diskette drive (B:) or hard disk (D:) cannot be specified as the 
startup drive. 

• To boot DOS from the C: partition, Boot Manager must be installed, and 
OS/2 Version 2.0 must reside in an extended partition on the first hard 
disk, or on another hard disk. See 12.2.5, "Booting from a DOS Partition" 
on page 235. 

9. Select the Save button to save the DOS settings and return. 

10. Select the General notebook tab. 

11. Change the Title field to your own name describing the new object. 



12. Close the Settings notebook by double clicking on the system menu in the 
upper left corner of the window. 

12.2.6.1 Other DOS Settings 
DOS settings which control the VDM hardware environment are applicable to the 
VMB session and operate in the same way as for a DOS Emulation windowed or 
full-screen session. Those which modify the virtual DOS environment are 
ignored; the equivalent settings are instead determined by the CONFIG.SYS file 
of the booted DOS kernel. Ignored settings include: 

• DOS_BREAK 
• DOS_DEVICES 
• DOS_UMB 
• DOS_SHELL 
• DOS_HIGH 
• DOS_LASTDRIVE 
• DOS_VERSION 

The FCB limit is the lesser of either the booted DOS, or OS/2 Version 2.0 
CONFIG.SYS value. The VMB session will by default have 640KB of real 
memory, mou se support, 2MB Expanded (EMS) memory, 2MB DPMI, and 2MB 
XMS memory. 

12.2.6.2 Booting from an OS/2 V2.0 Program 
By using DosStartSession it is possible to start a VMB session from an OS/2 V2.0 
program. For more details see the following sample which shows how to boot 
from the disk drive A:. Of course, by changing startd.Environment, this sample 
can also be used to start a VMB from another hard disk partition or a boot image 
file from your hard disk. 

Chapter 12. Virtual Machine Boot 239 



/* 
* BOOTA: A simple program to start a DOS Boot session under OS/2 2.0. 
* 
* 
* 

This program can be run from an OS/2 command prompt and it 
then starts to Boot DOS from the A: drive. 

* Last Hodfied: 04/02/92 
* 
* Author: Stacey Barnes 
* Modified: Jeff Muir 
*/ 

#define INCL DOSSESMGR 
#define INCL-DOSMISC 
#include <os2.h> 

/* messages used by BOOTA */ 
PSZ pBootAHsg .. 11 BOOTA: Booting DOS from A: Drive.\r\n"; 
PSZ pBootSuccess .. "Session started.\r\n"; 
PSZ pBootFailure = "Session could not be started.\r\n"; 

STARTDATA startd; /* Session start infonnation */ 
USHORT SessionID, ProcessID; /* Session and Process ID for new session*/ 

void main(void) 
{ 

USHORT re; 

/* Print header message */ 
DosPutHessage(l,strlen(pBootAMsg),pBootAMsg); 

/* Init fields to Boot from A: 
startd.Length 

drive */ 

startd.Related 
startd.FgBg 
startd.TraceOpt 
startd.PgrnTitle 
startd.PgmName 
startd.Pgmlnputs 
startd.TennQ 
startd.Environment 
startd.InheritOpt 
startd.SessionType 

/* Start the DOS Boot Session */ 

.. sizeof(STARTDATA); 

.. SSF RELATED INDEPENDENT; 
• SSF-FGBG FORE; 
.. SSF-TRACEOPT NONE; 
= ·soot A: Drive"; 
.. NULL; 
11 NULL; 
11 NULL; 
.. "DOS STARTUP DRIVE=A:\811

; 

.. SSF INHERTOPT PARENT; 

.. SSF=TVPE_VDH;-

re 11 DosStartSession( &startd, &SessionID, &ProcesslD ); 

/* Print out either Success or Failure message */ 
if(rc) 

DosPutHessage(l,strlen(pBootFailure),pBootFailure); 
else 

DosPutHessage(l,strlen(pBootSuccess),pBootSuccess); 

return; 
} 

Figure 55. VMS from an OS/2 V2.0 Program. This sample shows how to start a VMS 
from a DOS diskette by using an OS/2 V2.0 program. 

12.3 Managing the VMB Session 

240 OS/2 V2.0 Volume 2 

The user may interact with a VMB session in a similar way to any other virtual 
DOS machine. The session may be scaled, minimized, maximized and switched 
between windowed and full-screen mode, and is subject to the same graphics 
mode limitations when windowed. However, a VMB session cannot be ended by 
typing EXIT at its command prompt. The session can only be closed from its 
system icon or the Window List. 



Note that Ctrl-Alt-Del will reboot the entire OS/2 Version 2.0 operating system, 
not just the foreground virtual machine session. 

12.4 VMB Limitations 

12.5 Summary 

VMB does not support: 

• VCPI and other non-DPMI DOS extenders 
• 1/0 to disk which bypasses the file system 
• Feature adapter sharing without a virtual device driver 
• Real-time or timing-critical DOS applications 
• Some copy-protection schemes. 

These limitations arise in the most part from the limitations of the MVDM envi­
ronment, which are imposed in order to protect overall system integrity. 

The DOS Emulation kernel which is normally used to support the execution of 
DOS applications in a VDM is exactly what its name implies; an emulation of the 
DOS operating system and associated services. While this suffices for most DOS 
applications, certain applications exist which take advantage of unique and/or 
undocumented features which exist only in specific versions of DOS. 

To allow such applications to be successfully run under OS/2 Version 2.0, the 
VMB (Virtual Machine Boot) feature is provided. This feature allows a "real" 
DOS operating system, or indeed most other 8086 operating systems, to be 
booted in a virtual DOS machine. The operating system may be booted from 
either a diskette in drive A:, a diskette image on a hard disk, or a partition on a 
hard disk. 

Applications which run using Virtual Machine Boot may take advantage of the 
EMS, XMS and mouse support provided to virtual DOS machines by OS/2 
Version 2.0. This support is provided through stub device drivers supplied with 
OS/2 Version 2.0; these should be used in preference to the device drivers sup­
plied with the operating system or applications. 

Chapter 12. Virtual Machine Boot 241 



242 os12 v2.o Volume 2 



Appendix A. Running Personal Communications/3270 Version 2 for 
Windows 

Personal Communications 3270 Version 2 for Windows offers a high-function 3270 
emulator for the Windows environment. It supports a variety of host connections, 
including OFT, LAN via IEEE 802.2 protocol, LAN via NETBIOS and SDLC. It is 
possible to run this 3270 emulator in an OS/2 V2.0 "seamless" WIN-OS/2 VDM. 

0 Display IBM Laser Printer 4029 on LPTl .OS2 

IBM OuietWriter Ill on LPT2.0S2 
IBM Laser Printer 4029 on LPTl .OS2 

IFMHI Stuedder 

Figure 56. Personal Communications/3270 for Windows running under OS/2 V2.0. In this picture it is using the 
Token-Ring LAN gateway and running as a "seamless" WIN-OS/2 application on the Workplace Shell desktop. 

We will describe below the procedure for installing and running Personal 
Communications/3270 for Windows for a host connection via a LAN using the 
IEEE 802.2 protocol. We will also describe how to install any Corrective Service 
Diskettes for this emulator package. 

A.1 Installing PC/3270 under WIN-OS/2 
You must have installed OS/2 Version 2.0, including the WIN-OS/2 support in 
order for this to work. 

©Copyright IBM Corp. 1992 

1. From the OS/2 Desktop: 

• Open the OS/2 System Folder 
• Open the Command Prompts Folder 
• Select WIN-OS/2 full-screen 

This will start up the WIN-OS/2 environment. You will get the WIN-OS/2 
Program Manager screen, just as you would if you had started Windows 

243 



244 OS/2 V2.0 Volume 2 

natively. From here the installation of the product and the corrective service 
is just as it would be under Windows. 

2. From the Program Manager Menu Bar: 

• Select File 
• Select Run 
• Insert PC/3270 Windows Diskette 1 in the A: drive 
• On the command line enter: A:INSTALL 

Now you will fill out the installation and configuration screens just as you 
would have installing PC/3270 directly under Windows. 

In this sample installation we will use the following throughout this part of 
the document: 

C: 
C:\PC3270W 
PC3270W 

is the drive where OS/2 Version 2.0 is installed 
is the drive and subdirectory where PC/3270 is installed 
is the name of the configuration file we create 

3. Select OK on·the PC/3270 Installation logo screen. 

4. On the Installation Start screen: 

• Select Create New Configuration file 
• Select OK 

5. On the Customize Configuration screen: 

• Select Connection type. 

Our sample will use OFT, but you can select the one you want. We have 
tested OFT, LAN 802.2, SDLC and llN Async at 9600bps. 

If you select other than OFT, you will need to configure your communi­
cations parameters before you can continue. You will need to refer to 
other documentation for this configuration information. 

• Select 2 for Number of Host sessions. 
Yours will probably vary, but start simple. 

• Select OK. 

6. On the Installation End screen: 

• Enter a Configuration File name of PC3270W 
• Select Copy Necessary Files only (or if you want: All files) 
• Enter Drive and Directory of C:\PC3270W\ 
• Select OK 

(These are the defaults) 

7. On the Add PC/3720 to Program Manager screen: 

• Select WIN-OS/2 Main in the to Group section 
• Select OK 

There will be three more pop-up screens with information about the installa­
tion completion, just select OK on each of them to complete the installation. 

Note ~~~~~~~~~~~~~--~~~~~~~~~~--

If you are configuring 802.2 LAN installations, you will probably get a PCS121 
error at the completion of the install. This is because the install process is 
trying to update the CONFIG.SYS file and is having problems. Just continue 
with installing the corrective service diskette in the next section. 



A.1.1 Installing the Corrective Service Diskettes 
Now install the PC/3270 Corrective Service Diskette(s). 

1. From the Program Manager Menu Bar: 

• Select File 
• Select Run 
• Insert PC/3270 Corrective Service Diskette in the A: drive 
• On the command line enter: A:INSTCSD 

You will get a pop-up telling you that the CSD will replace files in the 
C:\PC3270W\ directory, select OK to continue the update. 

When the CSD installation is complete you will get a pop-up telling you that it 
is complete, select OK. 

2. Close the WIN-OS/2 full-screen session. 

3. On the Program Manager menu bar: 

• Select the Title Bar Icon (upper left corner) 
• Select Close 
• Select OK on the Exit WIN-OS/2 pop-up 

Be sure to read the README.TXT file on the CSD diskette. It will have additional 
information about the corrective service that might apply to your installation. 

A.2 Creating a PC/3270 Batch File for OS/2 V2.0 
You now need to check the WIN-OS/2 initialization file and create a batch file for 
PC/3270. This batch file will be used in the setup of the PC/3270 desktop object 
later. 

A.2.1 Checking the WIN-OS/2 Initialization File 
The PC/3270 Windows installation should have updated the WIN.INI file. Check 
the C:\OS2\MDOS\WINOS2\WIN.INI file for the following: 

[PCS3270] 
DIR=C:\PC3270W\ 

A.2.2 Creating the PC/3270-0S/2 Batch File 
We will now create a new batch file that can be used to start any of the various 
PC/3270 configurations. Depending on the communications link you are using, 
you may need to execute a PC3270W.BAT file to invoke the WIN-OS/2 environ­
ment. The other types of links invoke WIN-OS/2 directly. This batch file will 
check for the presence of PC3270W.BAT and use it if it exists. 

Create the file C:\PC3270W\PC3270WO.BAT 

@ECHO OFF 
IF EXIST PC3270W.BAT GOTO TSR 
WINOS2.COM PCS3270.EXE 
GOTO END 
:TSR 
PC3270W.BAT PCS3270.EXE 
: END 

Appendix A. Running Personal Communications/3270 Version 2 for Windows 245 



A.2.3 Communications Manager Mouse Support (CMMOUSE) 

246 OS/2 V2.0 Volume 2 

IBM CM Mouse Support (product 5799-PNJ, RPQ P85221) provides advanced 
mouse support for Personal Communications/3270 in the Windows environment. 
CM Mouse must be started in the same VDM (Virtual DOS Machine) as PC/3270. 
To achieve this, the batch files used to start Windows and PC/3270 must be mod­
ified as described in the following sections. 

When PC/3270 is modified as described below, CM Mouse will automatically be 
started when you start PC/3270. CM Mouse may display a "waiting for PC/3270 
to start ... " message since both CM Mouse and PC/3270 will begin running at the 
same time. After PC/3270 starts and the host sessions are established, CM 
Mouse will automatically continue its initialization (the message "reading BDF 
files ... 11 will be displayed). It is suggested that you enable the automatic startup 
feature of PC/3270 so that the host sessions are established automatically. 

A.2.3.1 Installing CM Mouse 
Install CM Mouse from any OS/2 or DOS command line as described in the CM 
Mouse documentation. Note that you must have installed CSD 4002 or later for 
PC/3270. 

The following sections assume that you have installed CM Mouse in the default 
C:\CMMOUSE directory. If you install CM Mouse in some other directory, 
change the directory names as necessary. 

A.2.3.2 Modifying the PC/3270 OS/2 V2.0 Batch File 
The batch file created above should be modified as follows (the file is 
C:\PC3270W\PC3270WO.BAT). The changes from above are shown with this 
emphasis below: 

@ECHO OFF 
IF EXIST PC3270W.BAT GOTO TSR 
WINOS2.COM C:\CMMOUSE\CMMOUSE.EXE,C:\PC3270W\PCS3270.EXE 
GOTO ENO 
:TSR 
PC3270W.BAT C:\PC3270W\PCS3270.EXE 
:END 

A.2.3.3 Modifying the PC/3270 Execution Batch File 
Depending on the configuration of your system, there may or may not be a 
PC/3270 execution batch file on your system. If there is, it is named 
C:\PC3270W\PC3270WX.BAT. If this file does not exist on your system then skip 
this section. 

Modify the line of this batch file which runs the WIN-OS/2 program (the modifica­
tion is shown with this emphasis): 

C:\OS2\MDOS\WINOS2\WIN C:\CMMOUSE\CMMOUSE.EXE,%1 %2 %3 %4 %5 %6 %7 %8 %9 

Note that there must be no blank spaces on either side of the comma character. 
There may be other commands in this file; do not modify them. 



A.3 Setting up PC/3270 as a WIN-OS/2 Application 
Now we have PC/3270 installed and the batch and configuration files ready to go. 
The next step is to create an object on the desktop and set the various attributes 
of that object. 

A.3.1 Create a New Object on the Desktop 
To create an object for PC/3270, from the desktop: 

• Open the Template Folder 
• Select the Program folder with the right mouse button 
• Select Create Another from the pop-up 
• Select OS/2 Desktop from the list of folders 
• Select Create on the bottom the window 

The Program-Settings folder will now open for this new object so you can set the 
attributes in the next section. 

A.3.2 Setting the Attributes of the PC/3270 WIN-OS/2 Objed 
Now we have to set the attributes of this new object so that it will start PC/3270 
as a Windows application. 

The following are common to all types of connections. The LAN 802.2 and 3174 
Peer connections will require some additional steps covered at the end (they 
need some unique device drivers). 

You are now on the Program Settings for this Object. This is where you need to 
set up all of the various attributes that will go with this object. You move around 
by selecting the proper tab on this notebook. 

1. Select the Program tab (should be selected): 

• Enter a Path and File name of: C:\PC3270W\PCS3270.EXE 
• Enter a Working Directory of: C:\PC3270W 

The Icon should now show the PC/3270 Icon. If not then the path and/or 
file name is entered incorrectly. 

·2. Select the General tab: 

• Enter a Title of: PC/3270 for WIN·OS/2 (or something else you want) 

3. Select the Window tab: 

• Select Minimize window to desktop for the Minimized Button Behavior 
(this will minimize the PC/3270 Icon on the desktop instead of the mini­
mized window viewer folder). 

4. Select the Session Tab: 

• Select WIN-OS/2 window. 
• Select Separate session (this will allow PC/3270 to load required 

Terminate-Stay-Resident (TSR) programs even if it is not the first 
WlN-OS/2 session started). 

• Select WIN-OS/2 settings. 

5. From the WlN-OS/2 settings screen: 

• Select and set COM_HOLD =ON (for async only). 
• Select and set DOS_HIGH =ON (al1ows DOS to be loaded above 640KB). 

Appendix A. Running Personal Communications/3270 Version 2 for Windows 247 



• Select and set DOS_UMB=ON (allows TSR programs to be loaded in 
upper memory blocks). 

• Select and set IDLE_SENSITIVITY = 100 (disables the idle detection so 
PC/3270 will get the maximum amount of processor time). 

• Select and set KBD_ALTHOME_BYPASS=ON (so PA2 will work). 
• Select and set DOS_SHELL to: 

C:\052\MD05\COMMAND.COM C:\052\MD05 /P /C C:\PC3278W\PC3278WO.BAT 

Note: This is the batch file we created in the previous step. 

• Select SAVE when complete. 

6. Close the Settings window: 

• Select the Title Bar Icon (small PC/3270 Icon in upper left hand corner of 
Settings screen), or press F10. 

• Select Close to close and save these object changes. 

A.4 Additional Setup for LAN Connections 
The LAN connections require some additional device drivers in order to commu­
nicate with the adapter. 

Note--------------------------. 

When PC/3270 is using a LAN Adapter, then that adapter cannot be used by 
any other program on this workstation. At this time there is no virtual IEEE 
802.2 device driver available to allow adapter sharing, which means that 
PC/3270 will have exclusive use of this adapter when it is running. 

We will set up PC/3270 to use a Token-Ring adapter. You could set it up to use 
Ethernet, PC Network or 3174 Peer (LAN over Coax) using the same technique. 

A.4.1 Installing LAN Support Program and RESETOKN.SYS 

248 05/2 V2.0 Volume 2 

You must install the PC LAN Support program so that you will have the proper 
device drivers. You should use the COPY command to copy the device drivers 
from the LSP 1.2x diskette in drive A:. 

MO C:\L5P 
COPY A:\DXMA0MOD.5Y5 C:\L5P 
COPY A:\DXMC0MOD.SY5 C:\L5P 

Additionally you should get the RESETOKN.SYS device driver and copy it into the 
C:\LSP directory. 

COPY A:\RE5ETOKN.SYS C:\LSP 

The RESETOKN.SYS device driver will reset the Token-Ring adapter when it is 
invoked, it is not required, but suggested. This will allow you to stop and restart 
PC/3270 in a Token-Ring environment. 

RESETOKN.SYS can be retrieved from: 

• CompuServe by issuing GO IBMOS2 and downloading RESTKN.ZIP from 
SECTION 17, IBMFILES. 

• IBM National Support Center Bulletin Board System by downloading 
RESTKN.ZIP. 

• Internal IBM users can GET the RESTKN PACKAGE from OS2TOOLS. 



A.4.2 Updating the PC/3270 Object for LAN Device Drivers 
What we will be doing is updating the WIN-OS/2 session attributes to add some 
DEVICE_DRIVER statements. 

From the OS/2 Desktop: 

• Select the PC/3270 Icon with the right mouse button. 
• Select the arrow just to the right of Open. 
• Select Settings. 

You are now on the Program Settings for the PC/3270 object, just like we 
were before when we did the majority of the setup above. 

• Select the Sessions tab. 
• Select WIN-OS/2 settings. 
• From the WIN-OS/2 settings screen: 

Select and Set DOS_DEVICE and enter the following in the Value window: 

C:\LSP\RESETOKN.SYS 
C:\LSP\DXMA0MOD.SYS 001 
C:\LSP\DXMC0MOD.SYS 400000010135 
C:\PC3270W\PCS802.SYS V=N 

Note ------------------------. 

"400000010135" is the locally administered address (LAA) for the 
LAN, it may be optional and different for your installation. 

Select SAVE when complete. 
• Close the Settings window. 

Select the Title Bar Icon (small PC/3270 Icon in upper left hand corner of 
Settings screen), or press F10. 
Select Close to close and save these object changes. 

A.5 Operating PC/3270 for Windows under OS/2 V2.0 
You should now have the PC/3270 for Windows Icon on the desktop and are 
ready to start PC/3270. Just open the object and wait for the sessions to start. 

For some of the configurations you will get the Communications/3270 Manager 
screen, and you will have to Start Communications. If you want, you can go into 
Profile and set Start Automatically so that it will automatically start the sessions 
subsequently. 

You will see that you get the A, B, etc., sessions as well as a 
Communications/3270 Manager session. All of the Icons look the same, but they 
have different titles. If you minimize them, they will go to the Minimized Window 
Viewer folder. 

A.5.1 A Couple of Warnings and Suggestions 
• If you have an XGA or 8514/ A display adapter, be sure that you had selected 

VGA mode for WIN-OS/2 during OS/2 installation. This is mandatory for 
PC/3270 for Windows to run in a "seamless" WIN-OS/2 VDM. 

• Remember that the adapter is in use EXCLUSIVELY by PC/3270. This is true 
for all of the adapters {OFT, SDLC, LAN). 

Appendix A. Running Personal Communications/3270 Version 2 for Windows 249 



• If you included the RESETOKN.SYS mentioned earlier then you can shutdown 
and restart PC/3270 Token-Ring connections. This package also comes with 
a RESETOKN.EXE file that can be used to close the adapter so other applica­
tions can use it, if desired. You would have to invoke this after shutting down 
PC/3270 or it will become very upset! 

• If you get message PCS232 - PCS802.SYS Module not found, you probably 
set up the DOS_DEVICE statements incorrectly, or forgot to install the LSP 
code. 

• If you get message PCS234 - The Current Configuration File Does Not Include 
Valid TSR Information; when you click on the CM/3370 Manager Start Com­
munication Icon, then you either forgot to update the DOS_SHELL option, or 
have a bad PC3270WO.BAT. The problem is that the PC3270W.BAT does 
exist, but was not executed (loads the TSRs). 

• If you get message PCS212 - PC/3270 is installed incorrectly, you probably 
installed PC/3270 under Windows 3.0 running in enhanced mode. You will 
need to reinstall PC/3270. 

• If you open the new PC/3270 object and it closes after a few seconds, then 
you probably have the DOS_SHELL or the PC3270 Batch file PC3270WO.BAT 
set up incorrectly. 

• If you open the PC/3270 object a second time, and it just sits there or hangs 
the machine, you might not have set Separate Session set on or you did not 
include the RESETOKN.SYS driver. 

• Sometimes OS/2 does not know when a Windows application closes. There­
fore when you do a shutdown, the desktop thinks that the application is still 
running. When you start OS/2 the next time, it will automatically start the 
application again. 

There is a way around this: 

Bring up the OS/2 Window List (Ctrl-Esc). 
Select the line that says WIN-OS/2 and has PC/3270 listed under it. 
Click the right mouse button. 
Select Close, this will close all the applications, and the WIN-OS/2 envi­
ronment. 

A side effect is that all Windows Applications that OS/2 thinks are still open 
will be officially closed. The applications will no longer have hash marks 
over their icons. You can now Shutdown gracefully. 

You can circumvent this effect by running Personal Communications/3270 for 
Windows a separate WIN-OS/2 session. 

A.5.2 Limitations 

250 OS/2 V2.0 Volume 2 

The limitations of running Personal Communications/3270 for Windows under 
OS/2 V2.0 should be noted: 

1. If Personal Communications/3270 for Windows is started after OS/2 V2.0 LAN 
requester is running, it will cause the LAN requester to fail. 

2. File transfer can only be performed from the virtual DOS machine in which 
Personal Communications/3270 for Windows is running. 

3. The adapter card used by Personal Communications/3270 for Windows for 
communication with the host cannot be accessed by another program. Since 
the 802.2 device driver is not (yet) virtualized, Personal 
Communications/3270 for Windows has direct access to the Token-Ring card. 



No other LAN services can be made available via another program using the 
same card. 

Note ~~~~~~~~~~~~~~~~~~~~~~~--.. 

A possible solution for this problem could be to install a second Token­
Ring adapter. However, this will not help because the LAN Support 
Program will try to initialize both Token-Ring adapters, if installed. This 
can cause trouble for OS/2 device drivers which are using the second 
adapter at the same time. 

4. You need to run the program RESETOKN.EXE before starting this virtual DOS 
machine and after closing this virtual DOS machine. This will reset the 
adapter and make it available to another process. If you don't use 
RESETOKN, the Personal Communications/3270 for Windows virtual DOS 
machine cannot be stopped and restarted, as the IEEE 802.2 device driver is 
not (yet) virtualized. 

Appendix A. Running Personal Communications/3270 Version 2 for Windows 251 



252 OS/2 V2.0Volume 2. 



Appendix B. Running DOS PC Support/400 in OS/2 V2.0 

This appendix covers the instructions for the installation of DOS PC 
Support/400under OS/2 V2.0, and the restrictions for this environment. 

In DOS PC Support/400, the Shared Folders device driver is a block device 
driver. Since the virtual DOS machine of OS/2 V2.0 does not support block 
device drivers, DOS PC Support/400 must be run in a Virtual Machine Boot 
session. We will describe below the setup of DOS PC Support/400 in a DOS 5.0 
Virtual Machine Boot. The process creates a DOS 5.0 boot diskette, which is 
then copied as a diskette image to the hard disk. This enables the DOS PC 
Support/400 Virtual Machine Boot to be started from the hard disk rather than a 
diskette. 

B.1 Installation Preparation 

B.2 Installation 

The following are required before starting the installation: 

1. Basic DOS PC Support/400 Installation diskette(s) V2R1 or later 

2. DOS 5.0 bootable diskette, formatted with the system (/S) option 

3. If using a LAN, the LAN Support Program diskette 1.22 or later 

4. DOS PC Support/400 Installation and Administration Guide (SC41-0006). 

If DOS PC Support/400 is to use a LAN, we must first install the LAN device 
drivers on the DOS 5.0 diskette with the LAN Support Program diskette. This 
puts the DXMxOMOD.SYS drivers in the CONFIG.SYS of the DOS 5.0 diskette. 

1. Run the DOS PC Support/400 installation program. 

a. During the installation, you will be asked which "Drive your personal 
computer starts from?". This must be answered as "A" drive. 

b. When you are asked to "Insert diskette from which you will start the per­
sonal computer in drive A.", insert the DOS 5.0 diskette. 

Further instructions on how to use the Install program are in the guide. 

2. When the DOS PC Support/400 installation program has stopped, add the fol­
lowing line to the top of the CONFIG.SYS file on the DOS 5.0 diskette: 

DEVICE=C:\052\MDOS\FSFILTER.SYS 

NOTE: if you have installed OS/2 V2.0 on a drive other than C:, use that drive 
letter instead. 

FSFILTER.SYS is a special DOS device driver that allows a Virtual Machine 
Boot session to access (read/write) all OS/2 V2.0 drives (both FAT and 
HPFS). Without this driver, the Virtual Machine Boot session can only READ 
from OS/2 V2.0 FAT drives. 

3. Create a Virtual Machine Boot diskette image file from your DOS 5.0 diskette 
with the following steps: 

a. Put your DOS 5.0 diskette in drive A: 

C> copyright IBM Corp. 1992 253 



B.3 Restrictions 

254 OS/2 V2.0 Volume 2 

b. At a OS/2 or DOS command prompt, enter: 

VMDISK A: C:\PCSDOS50.DSK 

This will create a file that contains an image of the DOS 5.0 diskette. 

4. Create a new VDM object on the Workplace Shell desktop. 

a. Locate the Templates folder. It is usually an icon on the Workplace Shell. 

b. Open the Templates folder. 

c. Locate the Program icon template. 

d. Drag the Program icon template on to the- desktop. This will cause the 
Program Settings notebook to appear. 

e. Enter an asterisk "*" in the Path and file name field. 

f. Select the Session notebook tab. 

g. Select either DOS full screen or DOS window and then select the DOS 
Settings ... button. 

h. Select the DOS_STARTUP _DRIVE list item and then enter: 

C:\PCSDOS50.DSK 

in the upper right entry field. 

i. Select the Save button to save the DOS settings and return. 

j. Select the General notebook tab. 

k. Change the Title field to DOS PC Support/400 or your own name 
describing the new object. 

I. Close the Settings notebook by double clicking on the system menu in 
the upper left corner of the window. 

Now there will be a DOS PC Support/400 icon on your desktop. Double click on it 
to bring up DOS PC Support/400. 

The following general restrictions apply to this environment: 

1. Only the Basic DOS (Not Extended DOS) version of DOS PC Support/400 is 
supported. 

2. Only V2R1 or greater versions of DOS PC Support/400 are supported. 

3. Only a single DOS PC Support/400 virtual DOS machine(VDM) is supported. 

4. If OS/2 Version 2.0 Extended Services is used, the OS/2 version of PC 
Support must be run instead of the Basic DOS version, as the device drivers 
used by DOS PC Support/400 requires exclusive control of any adapter used 
for DOS communications. 

5. When a Virtual Machine Boot session is started from a diskette image file, 
the "A:" drive within the VDM will refer to the diskette image file. If you 
would like to access the physical drive "A:," OS/2 V2.0 supplies a program 
called FSACCESS.EXE to do this. See the online command reference for 
more information. 



6. The default hot-key of Alt-ESC is reserved for OS/2 V2.0 and must be 
changed in order to have hot-key support. This can be done by using the 
Configure WorkStation Function (CFGWSF.EXE) program to create/change a 
keyboard profile. 

7. For LAN connections, only the LAN Support Program Version 1.22 or later is 
supported. 

8. If you decide to close the DOS PC Support/400 Virtual Machine Boot session 
while the LAN router is active, you must wait two minutes before starting up 
the VDM again. This time will allow the card to reset itself on the LAN. The 
DOS PC Support/400 VDM will appear to hang if it is restarted too soon. 

9. For an SDLC router, if you decide to close the Virtual Machine Boot session 
while the router is active, you must stop the router or power off the modem 
first. Failing to do so could cause a system trap to occur. 

10. The ASYNC router is NOT supported at this time. 

Appendix B. Running DOS PC Support/400 in 05/2 V2.0 255 



256 0$/2 V2.0 Volume 2 



Appendix C. Running Lotus 1-2-3 in a VDM 

Lotus 1-2-3 is one of the most popular DOS programs available. Many cus­
tomer~ use one or another of the several versions on the market. Frequently, 
they encounter problems of insufficient RAM to process their large spreadsheets. 

This appendix discusses how to set up and run Lotus 1-2-3 Release 2.3 (which 
can use EMS memory), and Lotus 1-2-3 Release 3.1 + (which uses DPMI 
memory) in a virtual DOS machine in OS/2 V2.0 to handle large spreadsheets. 

C.1 Lotus 1-2-3 Release 2.3 
In order to configure EMS support for the virtual DOS machine, we must ensure 
that a contiguous 64KB block of RAM is available in the address range 640KB to 
1MB to be used as the EMS Page Frame (Refer to Chapter 61 "Memory Extender 
Support" on page 93). Do the following: 

1. Boot the system with the reference diskette and in Set Configuration take a 
look at the memory map. 

2. Print or make a note of the memory addresses of the different hardware 
device drivers. For example, 3270 Connection may have an address of 
OD6000H (06000 hexadecimal). 

If a 64KB contiguous block cannot be found the DOS Settings for the virtual 
DOS machine will have to be used to make a block available. 

3. Reboot under OS/2 V2.0. 

4. Open the Templates folder and drag a Program icon to the desktop. 

The Settings notebook should open. 

5. Enter the following in the Path and file name field (change the path according 
to your installation): 

D:\123r23\123.exe 

6. The Working Directory should be the same as the path in the Path and file 
name field. 

7. Select the Session tab. 

8. Set session type as DOS Full Screen (Window will work, but slower) 

9. Open DOS Settings. 

10. Select DOS_UMB and set it to OFF (default is ON) 

11. Select MEMORY_INCLUDE_REGIONS and enter the addresses that you do 
not need for this virtual DOS machine. For example, the 3270 Connection 
card is not used by Lotus 1-2-3 Release 2.3, so the device driver address for 
it (D~OOO) can be entered. Refer to the on line help for the syntax. 

12. Select EMS_MEMORY _LIMIT and set it to acc~mmodate the largest expected 
spreadsheet. 

13. Select SAVE to save the settings. 

14. Select the General tab and change the Title to "Lotus 1-2-3 Release 2.3." 

15. Close the Settings notebook. 

© Copyright I BM Corp. 1992 257 



The Lotus 1-2-3 Release 2.3 icon should now be available for use. 

C.2 Lotus 1-2-3 Release 3.1 + 

258 OS/2 V2.0 Volume 2 

The Lotus 1-2-3 Release 3.1 + install program checks to make sure it is running 
in true DOS. The OS/2 V2.0 virtual DOS machine DOS Settings allow you to 
create a DOS session that returns a simulated DOS value to the Lotus 
INSTALL.EXE and therefore fool it into thinking it has the real DOS. 

1. Open the OS/2 System folder. 

2. Find and open the Command Prompts folder. 

3. Drag a copy of the DOS command prompt to your desktop. 

4. Open the Settings notebook. 

5. Select the Sessions tab. 

6. Select DOS Settings. 

7. Select DOS_VERSION and enter: 

INSTALL.EXE,3,30,255 

in the list box. 

8. Save the settings and close the Settings notebook. 

9. Open the new DOS command prompt session and run A:INSTALL from the 
prompt. 

10. After installation completes, discard the icon in the shredder. 

Lotus 1-2-3 Release 3.1 + is usually started in DOS with the 123.EXE program. 
However, 123.EXE is a FAMILY API EXE file; it can be used to start both the DOS 
as well as the OS/2 version. Consequently, if we try to add a program icon to 
the desktop to start 123.EXE, OS/2 V2.0 will detect that it can be started as an 
OS/2 program and gray out the option to run it in a DOS session on the Session 
page of the Settings notebook. You also cannot use the Migrate Applications 
utility to add 123.EXE to the desktop, as it is detected as an OS/2 program. 

This problem is overcome by starting 123.EXE from a DOS batch file. We then 
enter the DOS batch file name in the Path and file name field of the Program 
page of the Settings notebook. 

Add the Lotus 1-2-3 Release 3.1 + icon to the desktop as follows: 

1. Create a 123R31.BAT file with any Editor. 

The batch file should contain the following (Adjust 123MEMSIZE to accommo­
date the largest spreadsheet): 

SET DOS16M = 2 
SET 123MEMSIZE=2048 
123.EXE 

2. Place this file in the Lotus 1-2-3 Release 3.1 + subdirectory. 

3. Open the Templates folder and drag a Program icon to the desktop. 

The Settings notebook should open. 



4. Enter the following in the Path and file name field (change the path according 
to your installation): 

D:\123R3\123R31.BAT 

5. The Working Directory should be the same as the path in the Path and file 
name field. 

6. Select the Session tab. 

7. Set session type as DOS full screen (Window will work, but slower). 

8. Select DOS_ VERSION and enter: 

123005.EXE,3,30,255 
123.EXE,3,30,255 
LOTUS.EXE,3,30,255 

in the I ist box. 

9. Save the settings and close the Settings notebook. 

10. Select DPMl_MEMORY _LIMIT. Adjust the value to be about 2MB larger than 
123MEMSIZE defined in the DOS batch file 123R31.BAT. 

11. Select SAVE to save the settings. 

12. Select the General tab and change the Title to "Lotus 1-2-3 Release 3.1 +." 
13. Close the Settings notebook. 

The Lotus 1-2-3 Release 3.1 + icon should now be available for use. 

Appendix C. Running Lotus 1-2-3 In a VDM 259 



260 OS/2 V2.0 Vol~me 2 



Appendix D. Memory Extender Architectures 

This appendix provides an overview of the LIM EMS Version 4.0 and LIMAXMS 
memory extender architectures, for those readers who require an understanding 
of their implementation and who are not already familiar with the design of these 
memory extenders. 

D.1 Expanded Memory Specification (EMS) 
The expanded memory specification (EMS) was initially developed by two com­
panies, Lotus and Intel. Microsoft later joined the consortium, and the specifica­
tion has since become known as LIM EMS. 

A number of versions of the EMS specification have been produced. LIM EMS 
Version 3.0 required a 64KB window anywhere in the area between 640KB and 
1 MB, and provided up to 8MB of expanded memory. As more hardware 
adapters with their own ROM were installed, it was often difficult to find a free 
64KB contiguous memory area for the mappable window. 

A revised version of the EMS specification has been produced, known as LIM 
EMS Version 4.0. This version allows DOS applications to allocate and access 
up to 32MB of expanded memory in up to 255 expanded memory objects. 
Regions of these objects can be mapped into the 8086 address space (below 
1 MB) allowing DOS applications to access large address spaces at the cost of 
having to explicitly remap the memory that is to be accessed. Alternate page 
tables for quick switches among mappings, function calls with remapping, and 
numerous ways to save and update mappings or move or exchange memory 
contents are provided. 

D.1.1 EMS Overview 
The EMS Specification is a document that describes 30 functions and many sub­
functions, which are called by DOS applications using software interrupt 67h. 
EMS creates memory objects in expanded memory and then provides mappings 
such that addressing below 1MB accesses parts of these expanded memory 
objects. At any given time, the 8086 application can directly access only 1 MB of 
memory, but additional expanded memory can quickly be mapped into the 
addressable 1 MB range. In effect, parts of the 8086 address space become 
moving "windows" into larger virtual memory objects. 

The Intel 8086/8088 processors need special EMS memory adapters and are not 
part of the following discussion. Special EMS memory adapters are also 
required for 80286 machines. While certain software-based EMS emulation pack­
ages are available, which utilize the normal extended memory area above 1MB 
for that purpose, those emulations are relatively slow and unstable compared to 
"real" EMS hardware adapters. However, neither of the two types of EMS sol­
utions was supported under previous versions of OS/2. 

© Copyright I BM Corp. 1992 261 



D.1.2 EMS Functions 

262 OS/2 V2.0 Volume 2 

The following is a brief summary of LIM EMS Version 4.0 functions. Note that it 
is a summary of the EMS specification itself, and not of its implementation under 
OS/2 Version 2.0. 

D.1.2.1 Allocating/Reallocating/Deallocating Expanded Memory 
An allocation request can be made for a number of expanded memory pages 
and, if successful, a handle is returned. This handle is then used by the applica­
tion to reallocate or deallocate memory. 

D.1.2.2 Mapping Expanded Memory 
Logical pages in an object can be mapped into physical address ranges 
addressable by the 8086 processor. A mapping indicates the relation between 
EMS physical pages and <EMS Handle, EMS Logical Page> pairs that the 
application requires. One example would be to map an expanded memory video 
buffer (EMS logical pages) to the mappable window (EMS physical pages) to 
create a video image in expanded memory. An EMS service request can then 
be used to move the image from expanded memory to screen memory. 

A single logical page can be mapped to multiple physical pages. This is used by 
programs such as Lotus 1-2-3. When a single logical page is mapped to multiple 
physical pages, a write to any of these physical pages writes to the same 
expanded memory. An application can write to one address and then read the 
results from another address. This feature can be used to provide independent 
mappings to a shared structure for multiple modules. To implement this ali­
asing, multiple page registers must all point to the same memory. This leads to 
a requirement for the memory manager to support aliasing of page table entries. 

A physical page can be unmapped. Reads/writes to unmapped memory do not 
kill the application, but an application cannot depend on reading what it has pre­
viously written. LIM EMS specifies that a program must unmap mappable 
windows before allowing another program to run, in order to protect the memory 
mapped by the first program. 

The specification does not stipulate what happens to programs that touch 
unmapped memory, only that the physical pages are "inaccessible for reading 
and writing". One possible implementation is to map unmapped pages to nonex­
istent physical pages (the Microsoft Windows/386 product does this). Another 
alternative is to map them to physical ROM. This can lead to problems, 
however, on some machines that cache ROM. The safest alternative is to use a 
single physical page of memory. 

D.1.2.3 Information Calls 
An application may obtain information about the EMS resources available, 
current mappings, and handle usage. In a multiprogramming environment or 
where TSRs are loaded, however, this information may be out of date by the 
time it is used. For instance, an application may determine the amount of LIM 
memory available, but before getting the opportunity to request an allocation, a 
TSR may request EMS memory. The application would find less memory avail­
able than expected. 



D.1.2.4 Saving/Restoring Mappings 
Several calls are available for an application to obtain data that can later be 
returned to EMS to restore a mapping. For some calls, this information is saved 
internally by the EMS driver. For others, it is returned to the application. 

One type of save operation automatically saves the registers pointing to the first 
64KB of the mappable window to an internal EMS buffer associated wtih an EMS 
handle supplied by the user. Typically, this is used by a TSR to save and restore 
the current mappable window by saving to an EMS buffer associated with a 
handle owned by the TSR. Other save operations return either complete or 
partial information to the application, which the application can later provide to 
restore memory mappings. Still other calls allow EMS the option to store reg­
ister information on the application's stack. There are five different ways to save 
and restore registers in addition to techniques for setting the registers. 

D.1.2.5 Alternate Register Sets 
This is an optional feature of EMS. Mapping can be done to any of a number of 
register sets. The application can thea switch the active register set. The effect 
is similar to switching page tables under OS/2 Version 2.0. Alternate Register 
Sets can be protected by the first application to claim a protection key. Only the 
application with the key will be allowed to claim a register set or switch the 
active one unless no one claims the key or the process with the key permits 
others to use the alternate sets. 

This feature is typically used by DOS extenders such as Microsoft Windows. 
Switching memory during a task switch can be accomplished by turning on per­
mission for changing register sets using the permission key, switching the 
current register set, and turning alternate set permission off. Even when alter­
nate register sets are not supported, save and restore operations for register set 
O are simulated with data passed to and from the application. 

D.1.2.6 DMA Register Sets 
This is an optional feature of EMS. These register sets allow association of a 
OMA channel with a register set. All OMA on that channel is remapped through 
the associated OMA register set allowing EMS remapping during OMA. When 
this feature is not supported, remapping of register sets may be delayed until 
OMA completes. 

D.1.2.7 Program Execution 
This function allows an application to execute a procedure or subroutine which 
lies in an expanded memory area not currently mapped into the 8086 address 
space. EMS will perform a remap to bring the procedure or routine into the 8086 
address space, and pass control to the specified entry point. This may be 
accomplished in either of two ways: 

• JUMP passes control to the specified entry point but makes no provision for 
return. 

• CALL passes control to the specified entry point and after the application 
routine returns, sets up an address mapping that will be in effect when 
control returns to the calling routine. The return address is that of the 
instruction following the INT 67h service request. 

This function allows applications to store code in expanded memory. 

Appendix D. Memory Extender Architectures 263 



D.1.2.8 Data Movement 
Copy and exchange services provide data movement between any combination 
of conventional or expanded memory. The start of a region of expanded 
memory is indicated by handle, logical page and offset. The memory being 
affected need not be currently mapped into the 8086 address space. Overlap­
ping copies succeed without corrupting data, and a return code indicates overlap 
to the application. Exchange operations may not overlap. 

This function allows applications to conveniently move portions of expanded 
objects around in expanded memory, or move them to or from conventional 
memory, without having to first remap the objects into the 8086 address space. 

D.1.2.9 EMM Protection 
Limited protection is available. The first application that requests a key can turn 
enable or disable access to alternate and OMA register sets. There is no pro­
tection for memory objects. Any application can determine all handles in use 
and perform any operations on them. Within a single EMS implementation, a 
badly behaved application can wreak havoc on any application using EMS. 

For example, one Windows application may write over the memory of any other. 
This is consistent with the general lack of protection in the DOS environment, 
where applications have free access to the machine's physical memory. 

D.1.2.10 OS Support 
On power up, an EMM implementation which supplies mappable conventional 
memory allocates all mappable conventional memory to handle 0 and maps it in. 
This is typically all memory above the memory on the system board up to 640KB. 
This occurs before the operating system starts up and allows programs like 
Windows to remap conventional memory. Programs that remap conventional 
memory are required to reset the mapping before returning to the operating 
system. EMS does not enforce this, however. 

D.2 Extended Memory Specification (XMS) 
The LIMA Extended Memory Specification (XMS) Version 2.0 provides a standard 
interface for the use of extended memory on Intel 80286, 80386, and 80486 com­
puters. XMS functions allow moving code and data objects into extended 
memory, and from extended memory to base memory. 

D.2.1 XMS Overview 

264 OS/2 V2.0 Volume 2 

LIMA XMS is a specification for an extended memory programming interface on 
the Intel 80286, 80386, and 80486 processors. The XMS specification is a short 
document offering 18 functions which are accessed through a control function 
supplied by the XMS driver. All XMS functions are ex·ecuted by calling the 
control function, the address of which is obtained by a call to INT 2Fh. Argu­
ments are passed in registers. 

It does not specify hardware or processor speeds and does not depend on any 
particular operating system. (The technique for determining if XMS is present is 
based on the DOS interrupt vector 02Fh, but can be easily provided in any OS 
that supports XMS.) 

XMS manages three different kinds of memory: 



1. High Memory Area (HMA) is the first 64KB of extended memory. By acti­
vating the A20 address line, a real mode application can access memory in 
this region as if it were conventional memory. The HMA is exactly 65520 
bytes (64KB - 16 bytes) long. 

2. Extended Memory Blocks (EMBs) are blocks of extended memory which lie 
beyond the HMA. They are not accessible from real mode and serve only for 
data storage. Memory can be moved between extended and conventional 
memory by a memory move function provided by the XMS driver. Without 
leaving V86 mode, code cannot be executed from EMBs and they serve only 
for data storage. The specification offers up to 64 megabytes of extended 
memory, divided into as many as 255 blocks. 

3. Upper Memory Blocks (UMBs) are regions of memory between 640KB and 
1 MB which may be used like conventional memory. The size and number of 
UMBs is dependent upon the hardware configuration. XMS provides a 
standard means of obtaining and using them. Once a UMB is allocated, its 
memory is always available, and since the memory lies in conventional 
memory, code may be executed in it at any time. 

The major characteristics of these three types of expanded memory are summa­
rized in Table 8. 

Table 8. Types of Expanded Memory. Memory types utilized by VDMs. 

Attribute HMA EMB UMB 

Is extended memory x x 
Accessible from real mode X* x 
Data may be stored x x x 
Code may be executed from real mode x x 
Interrupt handler may be stored x 
Size may be changed after initial allo- x 
cation 

Minimum size 64KB 1KB 16 bytes 

Maximum size for one 64KB 64MB ** 384KB ** 

Maximum size total 64KB 64MB "" 384KB ** 

Number available 1 255 24KB 

Note: 

1. * Accessible only if the A20 address line is active 

2. ** These are values implied by the specifications. Values in practice will be con-
siderably lower. More reasonable values are 1 MB for EMBs and OKB to 32KB for 
UMBs. 

The three different types of expanded memory are mapped into physical memory 
in different ways by the XMS driver, as shown in Figure 57 on page 266. 

Appendix o. Memory Extender Architectures 265 



...---------- Top of Memory 

.ExtendecfMemory Block 
::.·:~::~::~::;i.::;;;:::;;:::;;.::::;::::;;::;;;:;;; :;;:;.: •..• -:. ~ -~-- .. • • • ·;. • • Memory above 1MB+64KB 

is available for use 

J~~~;i'i!~~!Y."~•-~~A 
as Extended Memory Blocks 

1MB+64KB 

il~illll~:~ml.iij'~t1': IMB 

----------~·~~---------- Upper Memory Blocks 
Upper Memory Block might exist anywhere 

-··-----------·-----------
Video RAM Buffer between 640.KB and lMB 

640KB 

OKB 

Figure 57. Memory Map of Extended Memory (HMA, UMA, and EMBs) 

D.2.2 XMS Functions 

266 05/2 V2.0 Volume 2 

The following is a brief summary of LIMA XMA functions. This is a summary of 
the specification itself, and not of its implementation in OS/2 Version 2.0. 

D.2.2.1 Determining XMS Presence 
Calling interrupt 2Fh with AH =43h and AL=OOh will return AL=80h if an XMS 
driver is installed. Calling interrupt 2Fh with AH= 43h and AL= 10h will return 
the far entry point address of the XMS control function in ES:BX. The control 
function must be called as a far procedure. 

D.2.2.2 Requesting/Releasing HMA 
There is only one 64KB HMA and it cannot be divided. An application which 
requests the HMA is given the entire HMA, even if it uses only part of it. When 
an application has successfully requested the HMA, it is guaranteed sole access 
to it until it is released. As part of the request, the application indicates how 
much of the HMA it expects to use. If this value does not exceed a user­
specified threshhold, the request is denied. This test is performed so that the 
HMA is given only to applications which make substantial use of the HMA. 



D.2.2.3 A20 Address Line Control 
Two pairs of functions are used to control the status of the A20 address line. 
The application may control the A20 address line either globally or locally. 
Global control is used by programs which have control of the HMA. Local 
control is used by programs which need to access extended memory directly. 
Global settings are kept in a simple on/off flag, whereas local control uses a 
counter. Hence, the number of 11 local disable" calls must equal the number of 
"local enable" calls before the A20 line is actually disabled, whereas a single 
"global disable" call suffices to disable the A20 address line. regardless of how 
many "global enable" calls have been made. 

D.2.2.4 Allocating/Reallocating/Deallocating Extended Memory 
Blocks 
An allocation request can be made for a particular-sized EMB (in kilobyte units) 
and, if successful, an EMB handle is returned. This handle is used to reallocate, 
lock, unlock, or deallocate memory. It is also used to move memory between 
the EMB and conventional memory or other EMBs. An EMB may be locked and 
while locked, it may not be reallocated or deallocated, nor may its base address 
change. 

D.2.2.5 Allocating/Deallocating Upper Memory Blocks 
An allocation request can be made for a particular-sized UMB (in paragraph 
units) and, if successful, the segment number of the UMB is returned, as well as 
the actual size of the UMB. This segment number is also used to deallocate the 
UMB. UMBs may not be resized. 

D.2.2.6 Information Calls 
The application can obtain information about the XMS memory resources avail­
able and handle usage. In a multiprogramming environment or where TSRs are 
loaded, this information may be out of date before being used. For instance, an 
application may determine the amount of XMS memory available, but before 
getting the opportunity to request an allocation, a TSR may request XMS 
memory. The application would find less memory available than expected. 

D.2.2.7 Data Movement 
A move or copy function provides data movement between any combination of 
conventional or extended memory. The memory being affected need not be 
locked. The start of a region of extended memory is indicated by handle and 
offset. Overlapping copies will succeed provided the source address is below 
the destination address. Moreover, blocks being moved must be of even length; 
word alignment is not required, however. This function is the only method of 
accessing an extended memory block without leaving real mode. 

Appendix D. Memory Extender Architectures 267 



. : 

268 OS/2 V2.0 Volume 2 



Appendix E. Multiple Virtual DOS Machines Lab Sessions 

E.1 Lab Exercises 
These lab sessions provide practical demonstrations of OS/2 Version 2.0's Mul­
tiple Virtual DOS Machine capabilities. The individual topics that will be covered 
in this lab are: 

• VDM Configuration 

• The Virtual DOS Machine Manager 

• Using the Clipboard 

• VDM Use of the Speaker 

• VDM Interprocess Communications 

E.2 Requirements 
The following are required to do the labs: 

© Copyright I BM Corp. 1992 

• OS/2 Version 2.0 

• DOS Version 5.0 

• CLIPVIEW.EXE program, in the productivity folder 

• The following programs in your C:\ITSCLABS directory: 

ENVIRON.EXE program 

GRAPHIC.EXE program 

INT19.EXE program 

QENV.BAT program 

QCONFIG.EXE program 

SOUND.EXE program 

PMCHART.EXE program 

PaintBrush program 

WinGif program 

269 



E.2.1 Lab Session 1: VDM Configuration 

270 OS/2 V2.0 Volume 2 

E.2.1.1 Objective 
In this exercise, students will create a new group folder and configure a VDM 
within that folder according to specified parameters. 

First you will create a new group named Test on the desktop. Copy the OS/2 
Full Screen item from the Command Prompts folder to the newly created folder 
using the drag mechanism. 

Next, you will change the "OS/2 Full Screen" item in the folder "Test" to the fol­
lowing parameters: 

• Change the title to "My Window" 
• Match the parameters and the program type to start a DOS window. 
• Deselect device driver ANSI.SYS 
• 512KB DOS memory size 
• Select an environment size of 200 bytes 
• 1024KB expanded memory. 
• 2048KB extended memory. 

Finally, you will perform some checks to verify the changes. 

• Use the QCONFIG.EXE program to check the memory size manipulation. 

• Verify that the environment size is approximately 200 bytes. 

E.2.1.2 Steps 
Create a new folder: 

1. Peel off a folder from the Templates folder. 

2. Rename the new folder. 

3. Select an OS/2 full-screen object by single-clicking with the left mouse button 
on 11 0S/2 full-screen" in the Command Prompts folder. 

4. Press and hold Ctrl. 

5. With the mouse pointer on OS/2 fulf-screen press and hold the right mouse 
button. After pressing the mouse button release the Ctrl key. When you 
move the mouse, you "drag" the selected application around the desktop. 
As long as the mouse pointer is within an area, where you might drop the 
application, the mouse pointer appears as an icon. Otherwise, the mouse 
pointer appears as a "No Go" sign. 

6. Move the mouse pointer to the client area of your new folder and release the 
right mouse button. 

7. Bring up the "Context Menu," by clicking on it with mouse button 2. 

8. Open the "Settings." 

9. Change the Program Title. 

10. Select "DOS Windowed" as the Program type. 

11. Press push button "DOS Settings." 

12. Select "DOS memory size (KB)" and change it to 512KB. 

13. Append to the "DOS shell" property the following without the quotes: 
"/E:200." 



14. Change the "EMS memory limit (KB)" to 1024KB. 

15. Change the "XMS memory limit (KB)" to 2048KB. 

16. Press push button "Save" to save your new DOS Settings. 

17. To close that window and save your changes you must double-click on the 
system icon. 

Now, as your "My Window" object has been updated, proceed as mentioned in 
the "Expected Results" 

E.2.1.3 Expected Results 
After successfully completing the exercise, check the result by double-clicking on 
"My Window" in the folder Test. A VDM should start with a DOS command 
prompt, which should look like the following example, if you have a PROMPT 
statement included in the AUTOEXEC.BAT file like the one shown on Require­
ments section of this lab. 

-t-[37;40m[DOS] C:\> 

If the DOS prompt looks like this, the ANSI.SYS is not active. In this case, you 
did well. Otherwise, try once more, because the ANSI.SYS driver is still active. 

Now start the program QCONFIG.EXE using the following syntax: 

QCONFIG /P 

from within the DOS command prompt. Don't worry about the appearance of the 
current command prompt. The output of QCONFIG.EXE should look like this: 

2.5M 
5.9M 

16.5M 
7.4M 

Appendix E. Multiple Virtual DOS Machines Lab Sessions 271 



272 OS/2 V2.0 Volume 2 

1. If a base memory size of 512KB, and an expanded (EMS) memory size of 
1024KB is reported, then you've done well. 

2. Next, check the environment size with the ENVIRON.EXE and QENV.BAT files. 
Execute QENV.BAT shown in Figure 58 on page 273 and the following will 
occur: 

• The environment space is filled. 
• The ENVIRON.EXE file is executed. 
• The environment settings are shown. 
• The dummy environment settings are removed. 

E.2.1.4 Optional 
There is a way to check the environment size without the use of special pro­
grams like ENVIRON.EXE and QENV.BAT. It is not simple because we cannot 
display the environment size by using a command. 

The SET command shows all the current settings in the environment of 
COMMAND.COM. The environment size defaults to approximately 150 bytes. 

1. To make sure that the environment buffer is full, issue some environment 
settings like: 

SET a=12345678901234567890 
SET b=l2345678901234567890 
SET c=l2345678901234567890 

2. Execute the SET commands until you encounter an error message "Out of 
environment space." 

3. Now, save the environment settings in a file. The syntax for this action is as 
follows: 

SET > MYENV.TXT 



4. Check the size of the new file (MYENV.TXT) with the DIR command: 

DIR MYENV.TXT 

5. From the file size displayed by the DIR command, subtract the number of 
lines in MYENV.TXT. 

This is necessary because each line in the file is terminated by Crlf (ODOA) 
characters and the environment strings are terminated by a single character 
(hex 0) only. 

If you can use this method and calculate a size at 200, you did very, very well. 

@rem QENV.BAT 
@rem Purpose : Query DOS environment size 
@rem Author : Bernd Westphal 
@rem W10390 VDM Lab - VDM Configuration 
@echo off 
els 
echo Filling free environment space 
echo. 
echo Ignore any messages like •out of environment space•. 
echo. 
set Dummyl=Dummy.Text.to.fill.the.environment.space 
set Dummy2=%Dummyl% 
set Dummy3=%Dummyl% 
set Dummy4=%Dummyl% 
set Dummy5=%Dummyl% 
els 
environ.exe 
set Dummyl= 
set Dummy2= 
set Dummy3= 
set Dummy4= 
set Durnmy5= 
els 
echo The dummy environment settings have been removed. 

Figure 58. QENV.BAT Batch File 

Appendix E. Multiple Virtual DOS Machines Lab Sessions 273 



/*******************************************************\ 
* Program name: ENVIRON.C * 
* Created 5. May 1990 * 

* * Revised 
* Author 
* Purpose 
* Compile 

Bernd Westphal * 
Get DOS environment size for VDM lab * 

* Input param 
cl environ.c 
none 

* 
* 

\*******************************************************/ 

#include <stdio.h> 
#include <string.h> 
#include <ctype.h> 

void main(argc, argv, envp) 
int argc; 
char *argv []; 
char *envp [] ; 

int charcount = 0; /* # of char */ 

printf("Current environment settings:\n\n"); 
printf("-----------------------------\n"); 
while (*envp) 
{ 

printf("%s\n", *envp); 
charcount += strlen (*envp) + 1; /* add 1 for the string terminator */ 
*envp++; 

} 
printf("-----------------------------\n"); 
printf("\nTotal environment size is %d bytes.\n\n", charcount); 
printf("Press Enter to continue ••• \n"); 
getchar(); 

Figure 59. C Source Code for ENVIRON.EXE 

27 4 OS/2 V2.0 Volume 2 



E.2.2 Lab Session 2: Reboot Virtual DOS Machine 

E.2.2.1 Objectives 
When running DOS 3.3, 4.0, etc., if an INT 19h is called, the result is a reboot of 
the entire system. The objective of this lab is to show that the execution of an 
INT 19h in an OS/2 VDM is handled by the Virtual DOS Machine Manager 
(VDMM). What happens in OS/2 Version 2.0 when a program running in a VDM 
issues an INT 19h? 

E.2.2.2 Steps 
In this exercise, you are required to start a DOS application program that issues 
an interrupt INT 19h. 

Perform the following steps: 

1. Open a DOS Windowed session. 

2. Execute INT19.EXE. 

3. When prompted, select ENTER to issue the INT 19h. 

Keep in mind what happened so far. Then proceed with the following steps: 

1. Open an OS/2 Windowed session. 

2. Execute INT19.EXE. 

3. When prompted, select ENTER to issue the INT 19h. 

Did the results meet your expectations? 

E.2.2.3 Expected Results 
After you have successfully completed the exercise, please note that the inter­
rupt INT 19h did not reboot the system. Instead, the interrupt was routed to the 
Virtual DOS Machine Manager (VDMM) by the General Protection Handler. The 
VDMM terminates the VDM when receiving the INT 19h. 

If you start a DOS application program from an OS/2 command prompt, control is 
passed to the Virtual DOS Machine Manager which then starts the VDM. Exe­
cution of INT 19h does NOT terminate the OS/2 session. Instead, INT 19h termi­
nates the VDM session only. Control is returned to the OS/2 session. 

Appendix E. Multiple Virtual DOS Machines Lab Sessions 275 



The INT19.EXE is a compiled BASIC program. The source code is shown below. 

'********************************************************* 
'* Program name: INT19.BAS * 
'* Created 05/05/90 * 
'* Revised * 
'* Author Bernd Westphal * 
'* Purpose Execute INT 19h in an OS/2 * 
'* VDM environment. Only the current * 
'* should be terminated. * 
'* Compiler IBM BASIC Compiler/2 Vl.60 * 
'* Compile BASCOM INT19 /0 * 
'* Link LINK INT19; * 
'* Input param : none * 
'********************************************************* 

' Variable definition for Interrupt call 
TYPE RegType 

ax AS INTEGER 
bx AS INTEGER 
ex AS INTEGER 
dx AS INTEGER 
bp AS INTEGER 
si AS INTEGER 
di AS INTEGER 
flags AS INTEGER 

END TYPE 

DECLARE SUB Interrupt (intnum AS INTEGER, inreg AS RegType, outreg AS RegType) 

DIH InRegs AS RegType 
DIH OutRegs AS RegType 

' *** Program code *** 
CLS 
COLOR 15 
PRINT "OS/2 Virtual DOS Machine + INT 19h• 
PRINT STRING$(86, 196); 
PRINT 
PRINT "Execution of INT 19h under DOS on a 8086 processor• 
PRINT "will reboot the system.• 
PRINT 
PRINT "To prevent a system reboot running under OS/2 Version 2.0,• 
PRINT "the Virtual DOS Machine Manager terminates the current" 
PRINT "VDH if an INT 19h occurs. 0 

PRINT 
PRINT "Press Enter to execute the INT 19h interrupt" 
PRINT "or press Esc to terminate.• 
PRINT 
PRINT "Your choice: •; 

GetChr: kbS ; INPUT$(1) 
SELECT CASE kb$ 

CASE CHR$(27) 
CLS 
END 

CASE CHR$ (13) 
PRINT "OK, restarting 
CALL Int86(&Hl9, lnRegs, OutRegs) 

CASE ELSE 
GOTO GetChr 

END SELECT 

Figure 60. INT19.BAS Source Code. This program runs in compiled BASIC only, because the lnt86 function call 
is not available in interpreted BASIC. 

276 OS/2 V2.0 Volume 2 



E.2.3 Lab Session 3 - The Clipboard Viewer 

E.2.3.1 Objective 
In this exercise, you are using the clipboard support for the VDM environment. 
Partial and complete copying of text and graphical screen contents is the main 
task of this exercise as follows: 

1. Fill a VDM windowed session with text data (DIR /W) and copy the screen 
contents to the clipboard. Use the Clipboard Viewer to check your results. 

2. Create some graphics in VDM windowed session (GRAPHIC.EXE) and copy a 
part of the graphics to the clipboard. Again check the Clipboard Viewer. 

3. Copy text (more than one line!) from the clipboard into EDLIN. 

E.2.3.2 Steps 
First step: 

• Start Clipboard Viewer. 

• Create a VDM windowed session. 

• Put some text in the VDM, for example, use the DIR /W command. 

• Switch to the Presentation Manager screen group and click on the VDM's 
icon. 

• Select "Copy all" to copy the screen contents to the clipboard. 

• Check the Clipboard Viewer window which now should contain the copied 
text. 

• Check if you can paste the content of the clipboard into the PM sample appli­
cation PM Chart. 

Second step: 

• Start a VDM windowed session. 

• In the session, execute the "GRAPHIC.EXE" program. 

• Click on the system icon and select "Mark" 

• Select an area within the window with the mouse pointer. 

• Click on the system icon and select "Copy" 

• Check the Clipboard Viewer, which now should contain the copied data. 

• Check if you can paste the content of the clipboard into the PM sample appli­
cation PM Chart. 

Third step: 

• Start the famous EDLIN editor in a VDM windowed session by entering EDLIN 
at the DOS command prompt. 

• Enter "i1" to put EDLIN into a mode where you can enter text. 

• Select "Paste" from the system or icon pull-down menu. The text is copied 
from the clipboard character-by-character into the input area of the editor. 

Appendix E. Multiple Virtual DOS Machines Lab Sessions 277 



E.2.3.3 Expected Results 
After you have successfully completed each exercise, the Clipboard Viewer 
should have presented the text or graphical material you copied from the DOS 
VDM. 

'********************************************************* 
'* Program name: 
'* Created 
'* Revised 
'* Author 
'* Purpose 
'* 

GRAPHIC.BAS 
05/14/90 

* 
* 
* 

Bernd Westphal * 
Draw some graphics * 
for VOH clipboard lab session * 

'* Compiler IBH BASIC Compiler/2 Vl.60 * 
1 * Compile BASCOH GRAPHIC /0 * 
'* Link LINK GRAPHIC; * 
'* Input param : none * 
'********************************************************* 

SCREEN 2 
CLS 
FOR X~l TO 640 STEP 10 

LINE (320,199)-(X,0) 
NEXT 
FOR X0 l TO 640 STEP 10 

LINE (320,0)-(X,199) 
NEXT 
LOCATE 12,31 
PRINT SPACE$(21) 
LOCATE 13,31 
PRINT • IBM ITSC Boca Raton • 
LOCATE 14,31 
PRINT SPACES(21) 
KBS .. INPUT$ (1) 
SYSTEM 

' select 640 x 200 graphics mode 
' clear the screen 

' draw some lines 

' draw some lines 

' position the cursor 
' print 21 blanks 
' position the cursor 
• print some text 
' position the cursor 
• print 21 blanks 
' check for keystroke 
' return to DOS 

Figure 61. GRAPHIC.BAS Source Code 

278 OS/2 V2.0 Volume 2 



E.2.4 Lab Session 4: VDM Use of the Speaker 

E.2.4.1 Objective 
In this exercise, you will be asked to run multiple sessions of a DOS application 
that accesses the speaker system. The provided SOUND.EXE program plays 
music. Note the behavior of the system's sessions in view of the fact that the 
speaker is a piece of hardware which is not virtualized. 

E.2.4.2 Steps 
1. Open a VDM session. 

2. Start the program in a VDM session by issuing the following command: 

SOUND 

3. Repeat steps 1 and 2. 

E.2.4.3 Expected Results 
After starting the first session of the SOUND.EXE program, the speaker will 
produce some more or less beautiful noise. Starting a new VDM session with 
SOUND.EXE will prevent the first session's SOUND.EXE from executing because 
it is switched to the background (the speaker system is not virtualized!). 

The second session cannot access the speaker because it is blocked until it is 
granted access to the speaker. 

You cannot terminate the program by pressing "Enter" because the "PLAY" 
instruction (refer to the program listing in Figure 62 on page 280) could not be 
completed. 

If the first session is switched back to the foreground, it resumes execution. 
Pressing "Enter" ends session 1 and now session 2 has access to the speaker 
and begins to play the music. 

Appendix E. Multiple Virtual DOS Machines Lab Sessions 279 



'********************************************************* 
•• Program name: SOUND.BAS * 
'* Created 05/14/90 * 
'* Revised * 
•• Author Bernd Westphal * 
•• Purpose Access the speaker system in a * 
'* YOH environment * 
•• Only 1 YDH has access to the speaker * •• Compiler IBM BASIC Compf ler/2 * 
•• Compile BASCOM SOUND /0; * 
'* Link Link SOUND; * 
'* Input param none * 
'********************************************************* 

CLS 
PLAY ON 
ON PLAY(3) GOSUB PlayHusic 

PRINT •Press ENTER to end.• 

PLAY •Ms• 
GOSUB PlayHusic 

kb$ • 1111 

WHILE kb$ .. 
LOCATE 3, 1 
COLOR c 

• clear the screen 
• trap background music events 
• If there are less than 3 notes 
• in the buffer gosub line 1690 
• display info, how to end program 

• background option for PLAY 
• start the music 

• keyboard input buffer 
• start of loop 
• position the cursor 
• change color and print some text, 
• to show, that music executes 
1 independent 

PRINT "Playing your favorite music ••• • 
c • c + 1 ' next color 
IF c > 15 then c • 1 ' no blinking mode 
kb$ • INKEYS 1 get a character if present 

WEND ' end of 1 oop 
COLOR 7 • white on black 
SYSTEM ' return to DOS 

PlayHusic: 
PLAY 11 t180 o2 p2 pB LS GGG L2 E- p24 pB LB FFF L2 011 

RETURN 

Figure 62. SOUND.BAS Source Code 

280 OS/2 V2.0 Volume 2 



E.2.5 Lab Session 5: VDM Interprocess Communications 

E.2.5.1 Objective 
The objective of this lab is to show that an OS/2 session can exchange data with 
a DOS session in the same system. 

In this exercise, you are required to start an OS/2 application program that first 
creates a number of "named pipes." The OS/2 application then waits for a DOS 
BASIC program to connect to the pipe. This connection is performed by one 
thread. Afterward, the main OS/2 program sends data to change the screen 
colors of various (connected) DOS BASIC programs. 

E.2.5.2 Steps 
Perform the following steps: 

1. Start the "PIPEOS2.EXE" program within an OS/2 windowed session. 

Make certain that you use a numeric parameter to specify the number of 
pipes for PIPEOS2.EXE to create. 

2. When prompted, start a DOS windowed session. 
3. Run the BASIC program called "PIPEDOS.BAS." 

Type: 

BASICA PIPEDOS 

at the command line prompt. 
4. Return to the OS/2 Windowed session. 
5. Enter the letter that corresponds to the color you want the DOS window to 

display. 

To end the DOS BASIC program, send a "Q" from the OS/2 session. 

To end the OS/2 session, enter null. 

E.2.5.3 Expected Results 
The DOS session should have been able to connect to a single or many named 
pipe(s) that were created and maintained by the OS/2 session. Afterward, data 
was passed to the DOS session(s) in the form of single characters that altered 
the color of the DOS screen. 

After you have successfully completed the exercise, please note that this is only 
one way of communicating between DOS sessions and OS/2 sessions. 

Appendix E. Multiple Virtual DOS Machines Lab Sessions 281 



The source code is included here with this exercise. 

E.2.5.4 Source Code PIPEDOS.BAS 
01' **********************************************************/ 
02' **********************************************************/ 
03' *** ***/ 
04' *** Program name: PIPEDOS.BAS ***/ 
05' *** ***/ 
06' *** Created 05/10/90 ***/ 
07' *** ***/ 
08' *** Revised ***/ 
09' *** ***/ 
10' *** Author Tim Sennitt ***/ 
11' *** ***/ 
12' *** Purpose To demonstrate the use of a named ***/ 
13' *** pipe to corrmuni cate to an OS/2 ***/ 
14' *** session. ***/ 
15' *** Compile none ***/ 
16' *** ***/ 
17' *** Input param none ***/ 
18' *** ***/ 
22' **********************************************************/ 
23' **********************************************************/ 
30 CLS:KEY OFF 
40 COLOR 7,0 
50 OPEN •r 0 ,l,"\PIPE\TIHSP•,1 
60 FIELD 1,1 AS A$ 
79 GET 1 
80 IF A$="B" OR A$="b" THEN BKGRND = 9:GOTO 90 
Bl IF A$= 11 c· OR A$="c" THEN BKGRND = 3:GOTO 90 
82 IF AS="G" OR A$="g" THEN BKGRND = 10:GOTO 90 
83 IF AS="P" OR AS="p" THEN BKGRND = 5:GOTO 90 
84 IF A$= 11 R0 OR AS="r" THEN BKGRND = 12:GOTO 90 
85 IF A$= 0 W" OR AS="w" THEN BKGRND = 7:GOTO 90 
86 IF A$="Y" OR A$="y" THEN BKGRND = 6:GOTO 90 
87 IF A$="Q" OR A$="q" THEN SYSTEM 
90 COLOR 0,BKGRND:CLS:GOTO 70 

282 OS/2 V2.0 Volume 2 

' Blue 
' Cyan 
' Green 
' Purple 
' Red 
' White 
' Yellow 
' exit system 



E.2.5.5 Source Code PIPEOS2.C 
, ••••• .,.. •••••• ***••••'*•*•*••••••••1t•tit•••••*••••fll•••••••****•/ 
/•**""*****••1"1t'IU1t'lll'******"'***'lll'*fll*****"'*••'llll1tllll'•*********llll•lll•lll*•/ ,.... . ... , 
/•rd Program na1:1e: PIPEOS2.C ... , , ... ...., , . .- Created : 16th Mey 1998 ... , , .... '1111*/ , ... Revised : 26th Febru11ry 1992 . .. , , .... ...., 
I*** Author : Tim Sennitt, Dorie Hecker .... , , ... . .. , , .... Purpose : To de111onst rate the use of an OS/2 .... , , .... created named pipe connecting to ...., 
/*** aany DDS sessions *"*/ 
/"** ...... , , ... Coi:ipile : I cc /O+ pi peos2 .e .. .. , , ... or : c1386 plpeos2.c . .. , , ... ..., , ..... Input p11r11m : A m1cber between l and 255 ..., 
/"** (nlldler of pipe instances) ... , 
/••*' ..... , 
1·--·-·······-·····················-··············-·-······ / 
, ••••••••••••••••••• .,.. •••• .,.. •••••••••••••••••••••••• 1t •••••••• , 

/'"** DEFINES •u / 
1••••••••••••••••••**"'*******•****••••••••-·•-•••"'"'•••••••• I 
#define INCL DOS 
#define INCL)OSNM?IPES , ........................................................... , 
/**" INCLUDES and VARIABLES 

/••ffff.1"111:••• ·-····•*************•***********'lUll"'***"'"********* I 
Ii ncl ude <osZ.h> 
linclr.zde <stdlib.h> 
linclude <string.h> 

Ii fdef IBMC 
void- _SYste~ NewThread (ULONG threadArg); 

lelse 
vol d NewThreBd(UlDNG threndArg); 

lend if 
TIO thT'l!11dID[Sl2): 
HPIPE piphand[25S]; 
ULONG thre1111Arg, threadFl 11gs, stact_si ze: 
ULONG outbuffer, inbuffer, ticeo11t, Bytesltrit: 
USHORT re. I oopsi ze. i; 
char prep_strlng[l l); 

1•-·*············•••*•••••••••••1"•• 111••*•"••················1 
/"•• MAIN PROGRAM .... , , ................................................................ , 
ui n(argc. argv. envp) 
Int argc; 
che.r "argv [); 
ch11r •envp (); 
{ 

SODL fEnd_Correct•fALSE; 
threadfl ags ~ 8; 
stack_si ze • 1024; 
thre11dArg • l; 

/• start thread imediatly 
1• give stllck size In bytes 

if ( argc !• 2 ]) (10011size • atai (argv[l))) •• e ) 

., ., 

{ prl ntf("You have not specified the correct bacon size !\n"): 
printf("The syntllX is PIPEOS2 NNNN (where NNNN Is 11 \ 

n111".ber between l andZSSJ\n"): 
exit(&); 

} /"end·i f•/ 
for (i • l; I < loopsize+l; i++) 

{ 
re • DosCreateThrellll(&thT'l!11dlD(i]. NewThread, i. 

threadFl a;s. st11ck_si ze); 
if (re I• 8) 

{ printf("DosCreateThread error • lsd\n". re): 
exit (l): 

} /*end·i f*/ 
print f ("Pipe-Thre11d null'.ber lsd created\n", i) ; 
print f("PI ease start the DOS ell ent\n"); 

} /*end·for« / 

printf('llaw lets send sor:e data to it •••••• \n"); 

, ..........................••.................................... , 
/* At tllis point we will loop getting keyboard input 

1• and writ In; this to our ne.r:ted pl pe (unt i I we enter null) .. , 
, ........... _. ... ,., ........................ *****•***•*••·················· / 
prlntf("ENTER\n (B]lue. [C]yan, [G]reen, [P]urple, \ 

[R)ed, [W]hite. [Y]ellaw or [Q)uit\n"): 
sets(prep_strl ng): 
while (prep_string[B] !• 8) 

{ 
If (prep_string(8] •• 'q' ]] prep_strlng(B] •• 'O') 

{ far (i • l; I < laopsize+l: I++) 
{re• DosMrite(plphand[i). 

(PVOID)prep_strl ng. 
strl en(prep_strlng). 
&BytesWri t): 

If (re 1•8) printf("Return code fror:i DasMrlte•lsd\n",rc): 
} /* end•for •/ 

prep_stri ng(8)•8; fEnd_Correct•TRIJE; 
} 

else 
{for (i • l; I< loopsize+l; i++) 

{ 
re • DosMri te (pl 11hand [ i ) , 

(PVOID)11rep_string, 
strl en(11rep_strlng), 
&BytesWrl t); 

if (re !•B) prlntf("Return code frar.1 DosWrite•lsd\n",rc): 
} /" end·far */ 

printf("ENTEA\n (B) I ue, (C]y11n, [G]reen, (P)urpl e. \ 
(R]ed, [W)hite, [Y]ellow or (O)uit\n"): 

} 

gets (prep_strl ng); 

} /* end\ f •/ 
} /" endwhi I e */ 

If ( ! fEnd Correct J 
{ prep strl ng[B) •' q': 

re ·-DosMrite(piphand(i), 
(PVOID)prep string, 
strl en(prep-string), 
&BytesWrl t) 'i 

l f (re 1 •8) print f("Return code from Dosltr\ te•\d\n'' ,re); 
} 

exlt(B): 

, ....................................... ,. ..................... ,. .... , 
/• This is our threBd process which creates N n111:ed pl pes tllen •/ 
/" w11its for the DOS sessions to connect to them. •/ 
/"•••••••••••••••••••****•••••******""*• .. •••••••••••••••••••••••••I 
void NewThread(ULDNG threadArg) 
{ 

outbuffer • 25: 
i nbuffer • ZS; 
t h:eaut • 280: 

re • DosCreateNPipe{"\\PIPE\\TIMSP\8". I" create pipe •t 
&piphand(thre11dArg) • 
8x40BI, 
8x880B, 
autbuffer. 
inbuffer. 
tir.eout); 

if (re I• 8) 
{ llos8eep(388,Z88); Dos8eep(l89,2BB): 

exit(l); 
} 

DosBHp(388,288); DosBee11(589,288): 

1···················••fll•-········································ / 
/* nov we wait far our DDS session to connect to us ., 
/*•• .. •••••••••••••••••••••••••••••••••••••••••••••• .................. ,.., 

} 

re • DosConnectNPi pe (pi phand [ thre11dArg)) ; 
If (re I• el 

{ DosBeep(lBB.289): 
exit(!); 

} 
DosBee11(588,289): 
pri ntf("DOS Session n1111:ber llld connected\n• ,thra11dArg): 

Appendix E. Multiple Virtual DOS Machines Lab Sessions 283 



E.2.6 Lab Session 6: VDM Boot 

284 OS/2 V2.0 Volume 2 

E.2.6.1 Objective 
In this exercise, the student will create a new DOS Full Screen item in the 
command prompts folder. This new DOS session will be configured so as to 
boot a "shrink wrap" version of DOS 5.0 instead of utilizing OS/2 2.0s emulated 
version of DOS. 

In order to boot an 8086 kernel into a VDM, that kernel's boot record must be 
obtained from either a bootable diskette, an image file of that diskette, or a DOS 
hard disk partition. 

The student will be required to configure a VDM which can, in turn, boot DOS 
from any of these sources. 

E.2.6.2 Steps 
1. Ask your instructor for a bootable DOS 5.0 diskette. 

2. Create an image of this diskette, using the VMDISKS utility. 

3. Copy a DOS session object onto the desktop. 

4. Change the "DOS_STARTUP Drive" setting for it. 

5. Try to boot this image. 

6. Create another DOS object, using the C:\ITSCLABS\IBMDOS33.VMB image. 

7. Boot this one as well. 

8. Study the CON FIG.SYS of these DOS diskettes. 

9. Check things like HPFS, XMS, EMS, mouse, etc. 

E.2.6.3 Expected Results 
The student should learn: 

• That different versions of DOS can be booted from a VDM. 

• That these versions can all run parallel. 

• That these VMBOOT sessions have access to all OS/2 resources. 



E.2. 7 Lab Session 7: Windows Clipboard 

E.2.7 .1 Objective 
In this exercise, the student will get a feeling for the different clipboard environ­
ments and data formats. 

E.2.7.2 Steps 
1. Repeat the steps from lab session 3. 

2. Start a Windows session. 

3. Check the content of the Windows clipboard view utility. 

4. Check the content of the PM clipboard view utility. 

5. Issue the following commands: 

COPY C:\ITSCLABS\PBR*.* C:\OS2\MDOS\WINOS2 
COPY C:\ITSCLABS\WING*.* C:\OS2\MDOS\WINOS2 

6. Register the Windows programs PaintBrush and WinGif under the Windows 
Program Manager. 

7. Start these two programs. 

8. You can also install the same program directly under the Workplace Shell. 

9. Try to start them as SAVDM, versus MAVDM, and check out the differences. 

10. Try to modify the pasted data and copy it back into the clipboard. 

11. Try to do the same with metafiles. 

12. Try to do the same with text files. 

13. Try to pass data from Windows to PM. 

14. Start a second Windows Session and repeat the same steps. 

15. Switch off the "public clipboards" and check if you can transfer data. 

16. Check out the "import" and "export" features of the clipboard viewers. 

17. Also check out the system editor, the picture view utility and some other pro­
grams, installed in your productivity folder. 

E.2.7.3 Expected Results 
The student should gain a better understanding of: 

• The clipboard architecture. 

• The different data formats. 

• Their implications. 

• What can and what cannot be transferred. 

• The local versus the public clipboard. 

• The different capabilities and functions among different PM and Windows 
programs. 

• Starting Windows applications from Windows versus Workplace Shell. 

Appendix E. Multiple Virtual DOS Machines Lab Sessions 285 



286 OS/2 V2.0 Vol.ume 2 



Glossary 

aliased page. Under the 80386 paged memory imple­
mentation, a physical page in memory which is refer­
enced by two or more sets of page directory/page 
table entries, thereby enabling different memory 
addresses to reference the same physical memory 
location. This technique is used to implement the 
64KB wraparound feature for virtual 8086 mode, and 
for shared memory implementation. 

ANSI. American National Standards Institute; 
U.S.-based organization which defines standards for 
computing devices, protocols, programming lan­
guages, etc. 

API. Application Programming Interface; term used 
to describe the set of functions by which an applica­
tion may gain access to operating system services. 

A20 address line. The 21st address line of 80x86 
CPUs; the first 20 address lines are numbered 0 to 19. 
Enabling the A20 address line allows access to the 
HMA. Note, however, that many applications assume 
that the A20 address line is permanently disabled, so 
all programs which use the A20 address line should 
disable it when they terminate. 

BIOS. Basic Input/Output System; code which con­
trols the interface between a system and its attached 
devices, at the hardware level. 

bit. A binary digit, which may be either zero or one. 
Bits are represented within a computing device by the 
presence or absence of an electrical or magnetic 
pulse at a particular point, indicating a one or a zero 
respectively. 

block device driver. A device driver for a block 
device, which, like a disk drive, reads and writes 
blocks of data identified by some form of block 
address. Block devices are identified by a drive letter 
that DOS assigns (D:, E:, and so on). 

byte. A logical data unit composed of eight binary 
digits (bits). 

CD-ROM. Compact Disk Read-Only Memory; tech­
nology where data is stored on an optical disk for 
reading by a computer system equipped with an 
appropriate reading device. CD-ROM storage media 
may not be updated by the computer system, 
although certain implementations allow the media to 
be erased and re-written. 

DOE. See Dynamic Data Exchange. 

debugging. The process of removing *bugs' or errors 
from application code. 

©Copyright IBM Corp. 1992 

device driver. Code which handles the translation of 
generic device commands into specific commands for 
the required physical device and vice versa, allowing 
operating system interaction with physical devices 
attached to the system. 

DLL. Dynamic link library; application module con­
taining routines and/or resources, which is dynam­
ically linked with its parent application at load time or 
runtime rather than during the linkage editing 
process. The use of DLLs enables decoupling of 
application routines and resources from the parent 
program, enhancing code independence, facilitating 
maintenance and reducing resident memory consump­
tion. 

OMA. Direct memory addressing; technique by which 
transfers to and from system memory are made by an 
independent control chip rather than by the system's 
main processor, thereby resulting in improved overall 
performance. 

DOS. Disk operating system; generally used in refer­
ence to IBM DOS, the single-tasking 16-bit real-mode 
operating system designed for Intel 8086 processors, 
and developed by Microsoft Corporation as MS DOS 
in the early 1980s. IBM subsequently licensed MS 
DOS for use on IBM Personal Computer and Personal 
System/2 machines, and has since undertaken joint 
development of later versions of the operating system 
in conjunction with Microsoft. 

DOSEM. See DOS Emulation. 

DOS Emulation. Subcomponent of the Multiple Virtual 
DOS Machines component of OS/2 Version 2.0, which 
provides emulation of DOS software services to appli­
cations running in virtual DOS machines. DOS Emu­
lation either provides an equivalent service or 
invokes the appropriate protected mode service 
within the OS/2 Version 2.0 kernel. Also known as 
DOS EM. 

DOS partition. Fixed disk partition which is formatted 
for the DOS operating system, typically using the FAT 
file system. 

DOS Protected Mode Interface. Architecture whereby 
real mode applications may gain access to protected 
mode services in 80286, 80386 or 80486 systems, by 
acting as 11clients" and making requests to a pro­
tected mode "server" task. DPMI is typically used to 
enable DOS applications and DOS extenders to func­
tion correctly in a multitasking, protected mode envi­
ronment. 

DOS Settings. Function provided by the Multiple 
Virtual DOS Machines component of OS/2 Version 2.0 
which allows a user to customize the behavior of a 

287 



virtual DOS machine to suit the application running in 
that virtual DOS machine. Settings may be config­
ured once by the user and saved, or applications may 
provide their own configuration information which is 
used by the virtual DOS machine upon startup. 

DPMI. See DOS Protected Mode Interface. 

dynamic data exchange. Interprocess communication 
protocol used by applications to define dynamic links. 
Information updated in one application is automat­
ically reflected in other applications linked to the first 
application via DOE. ODE is supported under OS/2 
Version 2.0 between Windows applications, between 
Presentation Manager applications, and between a 
Windows application and a Presentation Manager 
application. 

EMM. See Expanded Memory Manager. 

EMS. Expanded Memory Specification; term used to 
describe the standard developed by Lotus, Intel and 
Microsoft for access to expanded memory by real 
mode 80x86 applications. 

EMS handle. EMS implementations must provide for 
between 64 and 255 virtual memory objects that can 
be allocated by EMS applications. Each memory 
object is referred to by an associated EMS handle. A 
handle to an object is returned when an allocation 
request is granted. Allocation is in page sized units. 
Handles can be named, allowing sharing between 
processes. 

EMS logical page. Each memory object that is allo­
cated is divided into logical pages. To refer to a par­
ticular piece of allocated memory, an application uses 
a handle to point to the object and a logical page 
number (starting from 0) to indicate the offset into the 
object. Logical pages are always relative to a handle. 

EMS page. Memory is allocated by EMS in page 
sized units; the standard page size is 16KB. 
Optionally, an implementation can also offer "raw" 
pages at whatever size is convenient, although 16KB 
pages must always be supported. The raw page size 
can be set to 16KB to provide only a single page size. 

EMS physical page. Just as EMS object handles use 
logical pages indexed from 0, EMS Physical Segments 
are also numbered from 0. A particular address that 
can have expanded memory mapped into it can be 
referred to either by the address of a physical 
segment or by a physical page number. These are 
two alternate ways to refer to the same location in 
the 8086 addressable space. By convention, physical 
page 0 is the beginning of the mappable window and 
succeeding physical pages occupy contiguous pages 
in the window. Mappable physical pages in conven­
tional memory ( < 640KB) follow the mappable window 
in this numbering scheme. Note that in EMS termi­
nology a "physical page" does not mean physical 

288 OS/2 V2.0 Volume 2 

memory; it is a way to refer to a particular address 
below 1MB. 

EMS physical segment. EMS works by remapping 
addresses in the 1 MB 8086 addressable space to 
expanded memory. An EMS physical segment is a 
16KB block of addresses in the 1 MB 8086 address 
space, that can be mapped to part of an expanded 
memory allocation. When a physical segment is 
mapped to an EMS logical page, accessing the phys­
ical segment accesses the logical page. Logical 
pages can only be accessed through physical seg­
ments. 

EMS register set. EMS memory mapping is accom­
plished by a set of registers, one for each mappable 
physical page. A register specifies the current associ­
ated logical page. Registers can be unmapped. EMS 
optionally offers multiple alternate register sets and 
DMA register sets. A register set is, in essence, a 
page table for mappable windows. Alternate register 
sets then, are multiple page tables, only one of which 
is active at any given time. 

enhanced mode. See 386 enhanced mode. 

expanded memory. Memory in 80x86 processors, 
typically on special hardware adapters, which is 
accessed by real mode 8086 applications using the 
LIM EMS .specification. Up to 32MB of expanded 
memory are supported by EMS Version 4.0. 

Expanded Memory Manager. Virtual device driver 
which provides emulation of LIM EMS Version 4.0 ser­
vices to DOS applications running in virtual DOS 
machines. Unlike most virtual device drivers, the 
Expanded Memory Manager does not use a physical 
device driver, but interacts directly with the operating 
system's memory manager to map EMS memory 
requests into the system's linear address space. Also 
known as EMM. 

extended memory. Memory in 80286, 80386, and 
80486-based machines which is located above the 
1 MB address boundary and accessed using the LIMA 
XMS specification. 

extended memory block (EMB). Under the XMS 
specification, a block of extended memory located at 
or above 1 MB + 64KB, which can only be used for 
data storage. 

Extended Memory Manager. Virtual device driver 
which provides emulation of LIMA XMS services to 
DOS applications running in virtual DOS machines. 
Unlike most virtual device drivers, the Extended 
Memory Manager does not use a physical device 
driver, but interacts directly with the operating sys­
tem's memory manager to map XMS memory 
requests into the system's linear address space. Also 
known as XMM. 



FAT. File Allocation Table; term used to describe the 
file system implemented by DOS and also supported 
by OS/2. This file system uses a file allocation table 
to contain the physical sector addresses of all files on 
the disk. The FAT file system is supported by OS/2 
Version 2.0, along with the newer HPFS and other 
installable file systems. 

flat memory model. Conceptual view of real memory 
implemented by OS/2 Version 2.0, where the oper­
ating system regards memory as a single linear 
address range of up to 4GB. 

FSACCESS. Utility provided with the VMB compo­
nent of OS/2 Version 2.0, which allows the user to 
redirect logical drive letters in a VMB session, in 
order to avoid clashes and ensure compatibility with 
drive letters used by other processes. 

FSFIL TER. Utility provided with the VMB component 
of OS/2 Version 2.0, which allows the operating 
system loaded within the VMB session to recognize 
and access HPFS drives and large partitions which 
would otherwise not be accessible by that operating 
system. FSFILTER traps and redirects all disk 1/0 
through OS/2 Version 2.0's own device drivers. 

GB. Gigabyte; 1024 megabytes, or 1024 x 1024 x 
1024 bytes. 

high memory area. The first 64KB of extended 
memory above 1 MB. The High Memory Area (HMA) 
is unique in that code can be executed in it while in 
real mode, using the A20 address line wraparound. 
The HMA officially starts at FFFF:0010h and ends at 
FFFF:FFFFh, making it slightly less than 64KB in 
length. 

HIMEM.SVS. The Extended Memory Manager in 
general use for DOS. 

HMA. See high memory area. 

HPFS. High performance file system; file system first 
implemented under OS/2 Version 1.2, offering 
enhanced performance over the original FAT file 
system implemented in DOS and prior versions of 
OS/2. HPFS is an optional installation item under 
OS/2 Version 2.0; the FAT system may also be used 
to retain compatibility with DOS. 

Interrupt. An electrical signal generated by a device 
or adapter within the system, to inform the operating 
system that an event, such as the completion of an 
110 operation, has occurred. The operating system 
then processes the interrupt by passing control to a 
particular piece of code which handles the appro­
priate action in response to the event indicated. 

1/0. Input/Output; term used to collectively describe 
the techniques and devices through which a computer 
system interfaces with storage devices, external 
systems and the user. 

IOPL. Input Output Privilege Level; term used in Intel 
80x86 processor terminology to refer to tasks exe­
cuting at privilege level 2, which have the authority to 
directly access physical 1/0 devices. 

KB. Kilobyte; 1024 bytes. 

LIM. Lotus-Intel-Microsoft; term used in reference to 
the consortium which developed the Expanded 
Memory Specification (EMS), which provides a 
standard interface for the use of expanded memory 
by real mode 80x86 applications. 

LIMA. Lotus-Intel-Microsoft-AST; term used in refer­
ence to the consortium which developed the Extended 
Memory Specification (XMS), which provides a 
standard interface for the use of extended memory by 
real mode 80x86 applications. 

mappable window. Under EMS, the mappable 
window is composed of EMS physical segments. 
Called the page frame in normal EMS terminology, 
this is the range of real mode addresses used by 
most applications to reference expanded memory. 
The window must be at least 64KB and located 
between 640KB and 1 MB. 

MAVDM. See Multiple Application VDM. 

MB. Megabyte; 1024 kilobytes, or 1024 x 1024 bytes. 

Boot Manager. Feature of OS/2 Version 2.0 which 
allows multiple partitions to exist on fixed disks in the 
same machine, with a separate operating system on 
each partition. At boot time, the user may select the 
desired operating system with which to start the 
machine. 

Multiple Application VDM. Method of running 
Windows applications under OS/2 Version 2.0, 
whereby the Windows Program Manager is started in 
a virtual DOS machine, and Windows applications are 
started using the Program Manager. Errors in any 
Windows application may potentially result in termi­
nation of the entire VDM This is method of running 
Windows applications is not recommended unless 
applications require communication using shared 
memory. 

Multiple Virtual DOS Machines. Feature of OS/2 
Version 2.0 which enables multiple DOS applications 
to execute concurrently in fullscreen or windowed 
mode under OS/2 Version 2.0, in conjunction with 
other 16-bit or 32-bit applications, with full pre­
emptive multitasking and memory protection between 
tasks. See also virtual DOS machine. 

MVDM. See Multiple Virtual DOS Machines. 

NPX Numeric Processor Extension; term used in ref­
erence to the exception condition generated by the 
80386 processor when an application issues a 

Glossary 289 



numeric coprocessor instruction in a machine with no 
coprocessor installed. Note that OS/2 Version 2.0 will 
trap the NPX exception and emulate the numeric 
coprocessor function within the operating system. 
returning the result to the application exactly as if a 
physical coprocessor were installed. 

NULL. A binary zero. In "C" programming terms, 
NULL is typically used to refer to a pointer which is 
set to the binary zero value. 

Object Linking and Embedding. Protocol for linking 
multiple data formats (such as text, image, voice etc.) 
to create a compound document, which may be 
viewed and manipulated as a coherent whole. 

OLE. See Object Linking and Embedding. 

OS mappable window. In addition to the normal 
mappable window, additional memory below 1 MB can 
also be remapped. This is typically all memory from 
256KB to 640KB. This is used by task management 
programs (such as Microsoft Windows) to map a dif­
ferent section of expanded memory to this region for 
each application it runs. An application can, however, 
remap this memory. No protection is provided. This 
memory is automatically allocated to a special handle 
and is mapped when EMS starts, before the operating 
system touches the memory. 

page. Granular unit for memory management using 
the 80386 and 80486 processors. A page is a 4KB 
contiguous unit of memory, which the processor 
manipulates as a single entity for the purpose of 
memory manipulation and swapping. 

physical device driver. Protected mode device driver 
used by the OS/2 Version 2.0 operating system and 
protected mode processes to access hardware 
devices. DOS applications running in virtual DOS 
machines do not directly access physical device 
drivers; virtual device drivers are utilized by these 
applications, and the virtual device driver in turn 
communicates with the physical device driver. 

PIC. Programmable Interrupt Controller; component 
of the 80386 processor complex which handles inter­
rupts generated by devices within the system. 

POST. Power-On Self-Test; code typically stored on 
ROM (although the IBM PS/2 Model 90 and 95 allow 
POST code to be stored on fixed disk) which is 
invoked when a machine is powered on, in order to 
test the hardware. 

prlvllege level. In the context of the Intel 80386 
processor architecture. the level of authority at which 
a task executes. There are four available privilege 
levels; under OS/2 Version 2.0, Level 0 is used for 
operating system kernel code; Level 1 is not used; 
Level 2 is used for applications which directly address 
1/0 devices (such as communir:itions applications); 
Level 3 is used for general application code. In many 

290 OS/2 V2.0 Volume 2 

publications, these protection levels are referred to as 
"rings," since the protection scheme of the 80386 is 
often depicted diagrammatically as a series of con­
centric circles. 

protected mode. Mode of operation for the Intel 
80286 and 80386/80486 processors, whereby the 
address space is expanded to 16MB (80286) or 4GB 
(80386/80486), and memory references are translated 
via segment selector and offset, enabling full memory 
protection between processes executing in the 
system. With the 80386/80486, paging is available in 
protected mode. 

RAM. Random Access Memory; term used to 
describe memory which may be dynamically read and 
written by a processor or other device during system 
operations. RAM is typically used to store program 
instructions and data which not being operated upon 
by the processor at the current moment in time, but 
which are required for the logical unit of work cur­
rently being carried out. 

real mode. (1) Default mode of operation for the Intel 
80286 and 80386/80486 processors, and the only 
mode of operation for the 8086 processor. In real 
mode, the processor acts as a 16-bit device, its phys­
ical memory address space is limited to 1 MB, and 
memory references translate directly to physical 
addresses. With the 80386 and 80486, paging is not 
supported in real mode. (2) Execution mode for 
Windows 3.0, which provides applications with up to 
640KB of conventional memory (384KB after loading 
DOS, Windows and other memory-resident software) 
and which supports expanded memory using LIM EMS 
Version 4.0 specifications. 

ROM. Read-Only Memory; term used to describe 
memory which may be read, but not written to, during 
system operations. ROM is typically used to store 
basic hardware initialization instructions, BIOS or self­
testing code, which is required to be available prior to 
accessing the disk subsystem. 

SAVDM. See Single Application VDM. 

Seamless Windows. Method of running Windows 
applications under OS/2 Version 2.0, whereby the 
application runs on the Workplace Shell in a similar 
manner to a normal Presentation Manager applica­
tion. The user is not normally aware that the applica­
tion is a Windows application. This is the preferred 
method of running Windows applications, and is 
similar to the Single Application VDM method. 

segment. Unit of memory addressable by the Intel 
80x86 processors. With the 8086 and 80286 
processors, a segment may be from 16 bytes to 64KB 
in size. With the 80386 and 80486 processors, a 
segment may be up to 4GB in size. 

segment selector. Field which specifies the base 
address of a memory segment when using the seg-



mented memory model. The selector is 16 bits in 
length on an 80286 processor, and 32 bits in length on 
an 80386 or 80486 processor. 

service layer. Executable code which performs the 
operating system function requested by an application 
using an API. 

signal. An event occurring within the operating 
system which will effect the execution of the current 
process; for example, the user may hit the 
Ctrl + Break key combination, which would result in a 
signal being generated, instructing the operating 
system to terminate the current process. Signals typ­
ically override the dispatching algorithms of the oper­
ating system. 

Single Application VDM. Method of running Windows 
applications under OS/2 Version 2.0, whereby a virtual 
DOS machine is created for each Windows applica­
tion. The application runs within this VDM, and is pro­
tected from any other application running in the 
system. This is the recommended way to run 
Windows applications if not running seamlessly on the 
Workplace Shell desktop. 

standard mode. Execution mode for Windows 3.0, 
available when running on 80286, 80386 or 80486 
systems. Standard mode makes use of these 
processors' protected mode to provide access to up 
to 16MB of extended memory. Windows applications 
must conform to memory management rules in order 
to use standard mode. 

stub device driver. Virtual device drivers include a 
stub so that the DOS application can detect and 
address the device driver. This stub device driver 
executes in V86 mode within each VDM, while the 
main portion of the virtual device driver executes in 
protected mode. 

stub virtual DOS kernel. Portion of the MVDM com­
ponent's DOS kernel which is loaded into each VDM. 
DOS services are either provided directly by the stub 
virtual DOS kernel, or are routed to the OS/2 pro­
tected mode kernel. 

task state segment. Area of memory containing 
information relating to the current machine state, 
including CPU register contents, and the current soft­
ware state of a task, such as file descriptors and pri­
ority information. 

TSR. Terminate and Stay Resident; term used to 
describe DOS applications which modify interrupt 
vectors to insert their own interrupt processing code. 
This technique is used frequently by low-level utility 
programs, device drivers and other system code such 
as network drivers. TSR programs use memory 
within the DOS address space, thus leaving less 
memory available for application use. 

TSS. See task state segment. 

UMB. See upper memory block. 

upper memory block. Under XMS, a block of memory 
available on some 80x86-based machines, and located 
between DOS's 640KB limit and the 1 MB address 
space boundary. The number, size, and location of 
these blocks may vary widely depending on the types 
of hardware adapter cards installed in the machine. 

VDDM. See Virtual Device Driver Manager. 

VDM. See Virtual DOS Machine. 

virtual device driver. Form of device driver used by 
DOS applications executing in a virtual DOS machine, 
in order to access devices which must be shared with 
other processes in the system, such as the screen or 
mouse. A virtual device driver typically maps DOS 
device commands to the physical device driver in the 
protected mode environment under OS/2 Version 2.0. 

Virtual Device Driver Manager. Subcomponent of the 
Multiple Virtual DOS Machines component of OS/2 
Version 2.0, which loads, initializes, and communi­
cates with virtual device drivers. Also known as the 
VDDM. 

Virtual Device Helper. Set of operating system ser­
vices used by virtual device drivers to request, 
release and manipulate system resources. 

virtual DOS machine. A protected mode process 
under OS/2 Version 2.0 which emulates a DOS oper­
ating system environment, such that DOS applications 
executing within the virtual machine operate exactly 
as if they were running under DOS. DOS virtual 
machines support both text and graphics applications. 
Virtual DOS machines make use of the virtual 8086 
mode of the 80386 and 80486 processors. 

Virtual DOS Machine Manager. Subcomponent of the 
Multiple Virtual DOS Machines component of OS/2 
Version 2.0, which provides the ability to start and 
interact with DOS applications running in virtual DOS 
machines. The virtual DOS machine manager oper­
ates in conjunction with the Virtual Device Driver 
Manager. 

VEMM. See Virtual Expanded Memory Manager. 

Virtual Expanded Memory Manager. Virtual device 
driver which provides emulation of LIM EMS Version 
4.0 services to DOS applications running in virtual 
DOS machines. Unlike most virtual device drivers, 
the Virtual Expanded Memory Manager does not use 
a physical device driver, but interacts directly with 
the operating system's memory manager to map EMS 
memory requests into the system's linear address 
space. Also known as VEMM. 

virtual machine. See virtual DOS machine. 

Glossary 291 



VMB. Component of OS/2 Version 2.0 which operates 
in conjunction with MVDM component to allow a real 
copy of DOS or another real mode operating system 
to be loaded into a virtual DOS machine. VMB allows 
the execution under OS/2 Version 2.0 of applications 
which exploit specific features of an operating system 
or version, and which cannot be supported using DOS 
Emulation. 

VMB session. A virtual DOS machine in which an 
operating system has been loaded using the VMB 
component of OS/2 Version 2.0. 

virtual machine monitor. Routine supplied by oper­
ating systems which utilize the virtual 8086 mode of 
the 80386 processor, to provide emulation of inter­
rupts and exceptions resulting when an 8086 applica­
tion issues an instruction which cannot be executed in 
virtual 8086 mode. The 8086 Emulation component of 
MVDM is a virtual machine monitor. 

Virtual Programmable Interrupt Controller. Virtual 
device driver used in the Multiple Virtual DOS 
Machines component of OS/2 Version 2.0 to emulate 
DOS interrupt services, allowing DOS applications 
running in virtual DOS machines to issue and receive 
interrupts. 

virtual 8086 mode. Mode of operation of the Intel 
80386 and 80486 processors, which allows the 
processor to execute multiple concurrent tasks with 
each regarding the processor as its own distinct 8086 
processor. This mode of operation provides full pre­
emptive multitasking and full memory protection 
between the virtual 8086 tasks. Also known as V86 
mode. 

VMDISK. Utility provided with the VMB component of 
OS/2 Version 2.0, which allows the user to create 
diskette images which may then be used to load spe­
cific versions of DOS or other real mode operating 
systems into a virtual DOS machine using VMB. 

watchdog timer. Hardware timer provided by the 
80386 processor to ensure that 8086 applications 
running in virtual 8086 mode do not disable interrupts 
for an unnecessarily long period. Such lengthy disa­
bling may cause unrecoverable system errors. The 

292 OS/2 V2.0 Volume 2 

watchdog timer generates periodic non-maskable 
interrupts which allow an operating system to detect 
an errant 8086 application and terminate it. 

windows. In this document, generally refers to Micro­
soft Windows 3.0. Exceptions are noted in the text. 

WIN·OS/2 kernel. Portion of MVDM which services 
Windows function calls from applications running 
within a VDM. The WIN-OS/2 kernel provides support 
for Windows applications in VDMs under OS/2 Version 
2.0. 

Workplace Shell. Standard user interface component 
of OS/2 Version 2.0 that provides an object-oriented 
interface for the end user. The implementation of the 
Workplace Shell is based upon the system object 
model. 

Workplace Shell object. An object created by the 
Workplace Shell, typically at the request of the user 
or an application. A Workplace Shell object is very 
similar in concept to an application object, in that it 
possesses data and methods that operate upon that 
data. See also application object. 

XMM. See Extended Memory Manager. 

386 enhanced mode. Execution mode for Windows 
3.0, available when running on 80386 or 80486 
systems only. 386 enhanced mode makes use of the 
virtual memory capabilities of the the processor, and 
allows use of certain 32-bit functions. Applications 
must conform to memory management rules in order 
to use 386 enhanced mode. 

80386. Intel 80386 microprocessor; the 32-bit 
processor upon which the OS/2 Version 2.0 operating 
system is based. 

80486. Intel 80486 microprocessor; a 32-bit processor 
which implements a superset of the 80386 processor 
instruction set. 

8086 Emulation. Subcomponent of the Multiple 
Virtual DOS Machines component of OS/2 Version 2.0, 
which provides emulation of Intel 8086 processor ser­
vices by utilizing the virtual 8086 mode of the 80386 
processor. 



Index 

Special Characters 
.TMP 158 
"seamless" WIN-OS/2 VDM 137 

Clipboard Viewer 137 
common "seamless" WIN-OS/2 VDM 141 
PM DOE 137 
Standard Mode 137 
VDD 137 
VGA 137 
VWIN.SYS 137 

"seamless" WIN-OS/2 VDM Support 
DOS Settings for Common "seamless" WIN-OS/2 

VDM 142 
Programming Interface for Common 11seamless" 

WIN-OS/2 VDM 142 
Restrictions 142 

Numerics 
64KB 33 
8086 Emulation 

definition 6, 21 
110 port trapping 33 
interrupt handling 32 
use of virtual 8086 mode 30 
VD M creation 20 

8086 Emulation (V86) 
initialization 20 

A 
A20 

wraparound 33 
Adapter memory 102 
Address line A20 33 
Adobe Type Manager 160 
Alias 24, 33 
Application compatibility 2, 10, 22, 205 
Application restrictions 5, 14, 105 
Application support 2, 1 O 
ASYNC router 255 
ATM 160 
ATM Control Panel 165 
atm.system.drv 163 
ATMCNTRL.EXE 163 
atmsys.drv 163 
ATTRIB 50 
AUTOEXEC.BAT 46, 120 

B 
BACKUP 50 
BIOS 18, 23, 59 

©Copyright IBM Corp. 1992 

bitmap font 161 

c 
Certified Application Database 144 
Client/Server 26 
clipboard 169, 198 

DOS Full Screen 198 
full screen 198 

Clipboard Viewer 137 
CLIPWOS2.EXE 169 
COM.SYS 159 
Commands 47 
Common "seamless" WIN-OS/2 VDM 141 
COMSPEC 230 
COMx port 159 
CONFIG.SYS 45, 97, 107, 110, 111, 120, 236 
CONTROL.INI 152 
Copy and Paste 198 
copy protection 117 
Creating a DOS Object 197 
Creating a VDM 19, 38 
Cut & Paste 

DOS Full Screen 198 

D 
data flow 155 
DATABASE.DAT 121 
DATABASE.TXT 126 
DBTAGS.DAT 123 
DOE 172 
DDEServer 173, 174 
DEBUG 48 
DELDIR 49 
deleting font 165 
Descriptor privilege Level 31 
Device drivers 5, 7, 53, 203 

block 203 
DEVICE statement 55, 56, 97, 107, 111 
Device-independent pointer services 86 
DEVICEH IGH statement 111 
DIR 50 
Disabling interrupts 32 
Display Management 25 
DOS 5.0 compatibility 22 
DOS application capabilities 4, 10, 13, 205 
DOS Compatibility Box (OS/2 V1 .x) 4 
DOS device drivers 111, 209 
DOS Emulation 

creation 20 
definition 6, 22 
initialization 20 
standard devices 44 
system initialization 38 

293 



DOS Emulation (continued) 
VDM creation 38 
VDM termination 44 

DOS Emulation initialization 20 
DOS Full Screen 198 
DOS PC Support/400 253 

installation 253 
DOS performance 
DOS programming interfaces 14 
DOS Settings 

COM_HOLD 207 
definition 5, 10 
DOS start-up drive 238 
DOS_BACKGROUND_EXECUTION 208 
DOS_BREAK 208 
DOS_DEVICE 209 
DOS_FCBS 209 
DOS_FCBS_KEEP 210 
DOS_FILES 210 
DOS_HIGH 210 
DOS_LASTDRIVE 210 
DOS_RMSIZE 211 
DOS_SHELL 211 
DOS_STARTUP _DRIVE 211 
DOS_UMB 211 
DOS_VERSION 212 
DPMl_DOS_API 212 
DPMl_MEMORY_LIMIT 212 
DPMl_NETWORK_BUFF _SIZE 212 
EMS_FRAME_LOCATION 213 
EMS_HIGH_OS_MAP _REGION 213 
EMS_LOW_OS_MAP _REGION 214 
EMS_MEMORY _LIMIT 214 
HW_NOSOUND 214 
HW_ROM_TO_RAM 215 
HW_TIMER 215 
IDLE_SECONDS 216 
IDLE_SENSITIVITY 216 
KBD_ALTHOME_BYPASS 217 
KBD_BUFFER_EXTEND 217 
KBD_CTRL_BYPASS 218 
KBD_RATE_LOCK 218 
MEM_EXCLUDE_REGIONS 218 
MEM_INCLUDE_REGIONS 219 
MOUSE_EXCLUSIVE_ACCESS 219 
PRINT_TIMEOUT 220 
VIDE0_8514_XGA_IOTRAP 223 
VIDEO_FASTPASTE 220 
VIDEO_MODE_RESTRICTION 221 
VIDEO_ONDEMAND_MEMORY 221 
VIDEO_RETRACE_EMULATION 222 
VIDEO_ROM_EMULATION 222 
VIDEO_SWITCH_NOTIFICATION 222 
VIDEO_WINDOW_REFRESH 223 
WIN_RUNMODE 225 
XMS_HANDLES 224 
XMS_MEMORY _LIMIT 224 
XMS_MINIMUM_HMA 224 

294 OS/2 V2.0 Volume 2 

DOS Settings for Common "seamless" WIN-OS/2 
VDM 142 

DOS window 198 
See also Virtual DOS machine 

DOS_DEVICE 120 
DOS_Version 118 
DOS EM 

See DOS Emulation 
DosExecPgm() 201 
DOSKEY 48 
Dynamic Data Exchange 172 

E 
EFLAGS 31 
EMS 102 
EMS DOS stub device driver 94 
EMS Version 4.0 

application errors 101 
cannot configure 101 
definition 9 
frame location 213 
installation 97 
insufficient memory 101 
map region 213, 214 
VEMM.SYS 9 
Virtual Expanded Memory Manager 9 
VMB 232 

Exception handling 29, 32, 41 
Expanded Memory 102 
Expanded Memory Manager Control Flow 94 
Extended Memory Blocks (EMBs) 9, 112, 114 

F 
FAT 229 
FC (File Compare) 48 
File attributes 50 
File control blocks 209 
file system 

COMx 155, 157 
LPTx 155, 157 
LPTx.OS2 155, 157 
print job routing 155, 157 

FIND 50 
Flat memory model 2 
fonts, installation with Control Panel 160 
FSACCESS 231 
FSACCESS utility 230 
FSFILTER utility 230 
FTTERM 200 
full screen 198 

clipboard 198 

G 
GDI 156 
graphical applications programs 85 



graphical data interface 156 
graphics applications 198 

H 
Hardware Interrupt Manager 32 
Hardware interrupts 60 
High Memory Area (HMA) 9, 110, 113, 224 

Upper Memory Area (UMA) 9 
Hooking interrupt vectors 43 
HPFS 229 

I 
1/0 port trapping 33 

line service 33 
IBMNULL 157 
IBMNULLDRV 155, 159 
Initializing a TSS 19 
Initializing a VDM 20 
Initializing the 8086 Emulation (V86) 20 
Initializing the DOS Emulation 20 
Installing Applications 117 
Installing DOS Programs 117 
Installing WIN-OS/2 Support Under OS/2 Version 

2.0 143 
Certified Application Database 143 
Selective Install 143 

Installing Windows Programs 119 
INT 21 h services 291 37, 42 
INT 67h 94 
Intel 80386 processor 1 
Interprocess Communication 26 

Named Pipes 26 
Interrupt handling 2, 23, 31 1 55, 60 
IPC 26 

K 
kernel device driver 

COM.SYS 159 
PRINTOx.SYS 159 

Keyboard Management 25 

L 
large partitions 229 
LIM EMS Version 4.0 

See EMS Version 4.0 
LIMA XMS Version 2.0 

See XMS Version 2.0 
LOADHIGH command 112 
Logical Video Buffer 24 
Lotus 1-2-3 257 

installation 257 
insufficient memory 257 

Lotus 1-2-3 Release 3.1 + 258 
installation 258 

Lotus 123 Release 3.1 + 118 
LPTDD.SYS 66 

M 
MAVDM 137 
MEM 47 
MEM_INCLUDE_REGIONS 102 
Memory extenders 14 

LIM EMS Version 4.0 9, 94 
LIMA XMS Version 2.0 103 
XMS Version 2.0 ·9 

Memory management 17, 38, 87 
Memory protection 3, 11 1 61 
Memory utilization 4, 22, 23, 37, 211 
Microsoft Windows support 

definition 11 
enhanced mode 11 
memory protection 11 
pre-emptive multitasking 11 
real mode 11 
standard mode 11 

Migrating Applications 117 
Migration 

Certified Application Database 144 
Windows systems to OS/2 Version 2.0 144 

migration database 121, 122 
Customized 122 

Mouse Management 26 
MSCDEX 81 
Multimedia Extensions 134 
Multiplane graphics mode 84 
Multiple Application VDM 137, 148 
Multitasking 3, 11 

N 
named pipes 26 
network 133 
new fonts 163 

0 
Object Linking and Embedding 177 
Objectlink 178 
outline font 161 
Ownerlink 178 

p 
Page alias 24, 33 
Page fault exception 24, 88 
PARSEDB 126 

Errors 126 
PARSEOB.EXE 122 
PC Support/400 203 
PCSDOSSO.DSK 254 
Personal Communications/3270 for Windows for 

Windows 243 

Index 295 



Personal Communications/3270 for Windows for 
Windows (continued) 

IEEE 802.2 243 
installation 243 
WIN-OS/2 window 243 

Physical device drivers 23, 54 
pipe 201 
Pl PEOS2. EXE 281 
Planning hard disk partitions 118 
PM DOE 137 
PMShield 24, 25, 26 
port 

COMx 155, 157, 159 
LPT.OS2 155 
LPTx 155, 157, 159 
LPTx.OS2 157, 159 

Pre-emptive multitasking 3, 11 
Presentation Manager 3 
print job routing by file system 155, 157 
print subsystem architecture 155 
PRI NTOx.SYS 159 
printer device driver 155 
printer driver 

conflict between OS/2 and WIN-OS/2 157 
IBMNULL 157 

printer driver conflict 157 
privilege levels 29, 31 
PROGMAN.INI 152 
Programming Interface for Common "seamless" 

WIN-OS/2 VDM 142 
Programming interfaces 14, 37, 42 
Protection 3, 11, 61 

R 
redirect 201 
RESETOKN.EXE 248 
RESETOKN.SYS 248 
RESTORE 50 
Restrictions 5, 14, 105 
ROM BIOS 18, 23, 59 

s 
SAVDM 135 
SDLC router 255 
seamless Windows session 177 
Semaphores 88 
serial port 159 
Single Application VDM 135, 146, 148 
SplQmxxx interface 156 
spooler 

SplQmxxx interface 156 
Standard Mode 137 
Suspended background VDM 84 
SVGA 143 
system.drv 163 
SYSTEM.IN! 152 

296 OS/2 V2.0 Volume 2 

T 
Task management 2 
Task state segment 19 
Terminate-and-Stay-Resident 200 
Terminating a VDM 21, 89 
TSR 200 
TSR programs 112 
TSS 

initialization 19 
Type 1 fonts 161 

u 
UMB 102, 211 
UNDELETE 49 
Upper Memory 102 
Upper Memory Area (UMA) 9 
Upper Memory Blocks (UMBs) 9, 110, 113 

v 
V8514.SYS 81 
V86 mode 

See Virtual 8086 mode 
VBIOS 59 
VBIOS.SYS 62 
VCDROM.SYS 81 
VCGA.SYS 81 
VCMOS.SYS 62 
VCOM.SYS 75 
VCPI 183 
VDD 137 
VDH 159 
VDH Services 

See Virtual Device Helper Services 
VDM 84 

See a/so Virtual DOS machine 
initialization 20 

VDM Screen-Switching 84 
VDM Window Management 24 
VDMA.SYS 63 
VDMlnterprocess Communication 26 
VDMSRVR.EXE 169, 173, 174 
VDPMl.SYS 78, 195 
VDPX.SYS 78 
VDSK.SYS 64 
VEGA.SYS 81 
VEGB.SYS 81 
VEMM.SYS 9, 79, 94 
VFLPY 64 
VGA 137 
VIO 24 
Virtual 8086 mode 3, 21, 29 
Virtual Control Program Interface 183 
virtual device driver 159 
Virtual Device Driver Manager 7 
Virtual device drivers 

definition 5, 7, 22 



Virtual device drivers (continued) 
device-independent pointer services 86 
graphical applications programs 85 
installation 56 
interface to physical device drivers 23 
interrupt handling 55, 60 
memory protection 61 
memory utilization 23 
multiplane graphics mode 84 
multiple planes 84 
page fault exception 88 
semaphore usage 88 
singleplane graphics mode 84 
structure 58 
suspended background VDM 84 
VDM Screen-Switching 84 
VDM termination 89 
virtual BIOS device driver 62 
virtual CD-ROM device driver 81 
virtual CMOS device driver 62 
virtual COM device driver 75 
Virtual Device Helper Services 57, 87 
virtual disk device driver 64 
virtual diskette device driver 64 
virtual OMA device driver 63 
virtual DPMI device driver 78 
virtual DPX device driver 78 
virtual EMS device driver 79 
Virtual Expanded Memory Manager 9, 94 
Virtual Extended Memory Manager 10, 105 
virtual extended memory manager device 

driver 107 
virtual keyboard device driver 64 
virtual mouse device driver 80 
virtual numeric coprocessor device driver 69 
virtual printer device driver 66 
Virtual programmable interrupt controller 70 
virtual timer device driver 74 
virtual video device driver 81 
virtual WIN-OS/2 windows device driver 80 
virtual XMS device driver 78 
WIDEO 84 

virtual device helper 159 
Virtual Device Helper Services 7, 8, 23, 57, 87 
Virtual Display Management 25 
Virtual DOS machine 

64KB wraparound 33 
BIOS 59 
capabilities 4, 10, 13, 205 
creation 19 
definition 3, 13 
device drivers 5, 7 
disabling interrupts 32 
DOS device drivers 111, 209 
DOS Settings 5, 205 
file control blocks 209 
full-screen execution 4 
hardware interrupt manager 32 

Virtual DOS machine (continued) 
hooking interrupt vectors 43 
1/0 port trapping 33 
interrupt handling 31, 55, 60 
memory management 17, 38, 87 
memory utilization 4, 22, 37, 211, 227 
page fault exception 88 
restrictions 5, 14 
supported interfaces 14, 37, 42 
termination 21, 44, 89 
TSR programs 112 
watchdog timer 32 
windowed execution 4 

Virtual DOS Machine Manager 6, 15, 57 
Virtual Expanded Memory Manager 9, 94 

VEMM.SYS 94 
Virtual Keyboard Management 25 
Virtual Machine Boot 

definition 227 
Virtual machine monitor 30 
Virtual Mouse Management 26 
Virtual Programmable Interrupt Controller 183 
VKBD.SYS 64 
VLPT.SYS 66 
VMB 

CONFIG.SYS 236 
configuration 228 
drive letter allocation 229 
FSACCESS utility 230 
FSFILTER utility 230 
limitations 241 
loading from an OS/2 V2.0 program 239 
loading from diskette 233 
loading from diskette image 235 
loading from DOS partition 235 
VMDISK utility 235 

VMDISK utility 235 
VMOUSE.SYS 80 
VNPX.SYS 69 
VPIC 183 
VPIC.SYS 70 
VTIMER.SYS 74 
WGA.SYS 81 
VWIN.SYS 80, 137 
VXMS.SYS 10, 78, 105, 107 

w 
Watchdog timer 32 
WI N-OS/2 control panel 155 
WIN-OS/2 GDI 156 
WIN-OS/2 graphical data interface 156 
WIN-OS/2 print manager 155 
WIN-OS/2 Setup program 133 
WIN-OS/2 spooler 155 
WIN.IN! 150, 152 
Windows 

auto 225 
real mode 225 

Index 297 



Windows (continued) 
standard mode 225 

Windows 2.0 programs 120 
Windows application support 129 

386 enhanced mode 131 
clipboard 166 
common "seamless" WIN-OS/2 VDM 141 
configuration 150 
DOE 172 
defining applications to the Workplace Shell 145 
device drivers 154 
DOS Settings for Common "seamless" WIN-OS/2 

VDM 142 
installation 143 
MAVDM 137 
Multiple Application VDM 137, 148 
OLE 177 
Programming Interface for Common "seamless" 

WIN-OS/2 VDM 142 
real mode 130 
Restrictions for "seamless" WIN-OS/2 VDMs 142 
SAVDM 135 
Single Application VDM 135, 146, 148 
standard mode 130 
starting applications 148 
supported components 133 

Windows network device drivers 133 
Windows support 129 
WinTerminateApp. 142 
WordPerfect 5.1 118, 126 
Workplace Shell 3 

x 
XMS Version 2.0 

application errors 114 
Extended Memory Blocks (EMBs) 9, 112, 114 
High Memory Area (HMA) 9, 110, 113, 224 
installation 107 
restrictions 105 
Upper Memory Blocks (UMBs) 9, 110, 113, 211 
Virtual Extended Memory Manager 10, 105 
VMB 232 
VXMS.SYS 10, 105 

298 OS/2 V2.0 Volume 2 



Readers' Comments 

05/2 Version 2.0 
Volume 2: DOS and Windows Environment 

Publication No. GG24-3731·00 

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want 
to express your opinion about it (such as organization, subject matter, appearance) or make sug­
gestions for improvement, this is the form to use. 

To request additional publications, or to ask questions or make comments about the functions of IBM 
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer. 
This form is provided for comments about the information in this manual and the way it is presented. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com­
ments in any way it believes appropriate without incurring any obligation to you. 

Be sure to print your name and address below if you would like a reply. 

Name Address 

Compal'ly or Organization 

Phone No. 



Readers' Comments 
GG24-3731-00 

Fold and Tape Please do not staple 

--.- -------- ---- - ---~ = ..:::5~5:® 

Fold and Tape 

------------------- -------------------- --------------------------------------------------------------------------------------------Irrrr·-----------------i;i~~ii~~ :·::·:-------

Fold and Tape 

GG24-3731-00 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM International Technical Support Center 
Department 91J, Building 235-2 
Internal Zip 4423 
901 NORTHWEST 51ST STREET 
BOCA RATON FL 33431-1328 

1 .. 11 ... 11 •• 1 .. 1 .. 11 .... 11 ... 11 .. 11 ... 1.11 .. 1 ... 1.11 

Please do not staple 

UNITED STATES 

Fold and Tape 

cu: 
Ale 

Cut 1 

Alon 



Readers' Comments 

OS/2 Version 2.0 
Volume 2: DOS and Windows Environment 

Publication No. GG24-3731·00 

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want 
to express your opinion about it (such as organization, subject matter, appearance) or make sug­
gestions for improvement, this is the form to use. 

To request additional publications, or to ask questions or make comments about the functions of IBM 
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer. 
This form is provided for comments about the information in this manual and the way it is presented. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com­
ments in any way it believes appropriate without incurring any obligation to you. 

Be sure to print your name and address below if you would like a reply. 

Name Address 

Company or Organization 

Phone No. 



Readers' Comments 
GG24-3731-00 

Fold and Tape 

Fold and Tape 

GG24-3731-00 

Please do not staple 

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM International Technical Support Center 
Department 91J, Building 235-2 
Internal Zip 4423 
901 NORTHWEST 51ST STREET 
BOCA RATON FL 33431-1328 

1 .. 11 ... 11 •• 1 .. 1 .. 11 .... 11 ... 11 .. 11 ... 1.11 .. 1 ... 1.11 

Please do not staple 

-~- ------------ ----.:.. .::: :5~5: ® 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED IN THE 
UNITED STATES 

Fold and Tape 

: CL 
Ali 

Cut 
Al or 



Readers' Comments 

OS/2 Version 2.0 
Volume 2: DOS and Windows Environment 

Publication No. GG24-3731-00 

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want 
to express your opinion about it (such as organization, subject matter, appearance) or make sug­
gestions for improvement, this is the form to use. 

To request additional publications, or to ask questions or make comments about the functions of IBM 
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer. 
This form is provided for comments about the information in this manual and the way it is presented. 

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com­
ments in any way it believes appropriate without incurring any obligation to you. 

Be sure to print your name and address below if you would like a reply. 

Name Address 

Company or Organization 

Phone No. 



Readers' Comments 
GG24-3731-00 

Fold and Tape Please do not staple Fold and Tape 

-----------------------------------------------------------------------------------------------------------------------------------r··----------------------------~~i~i?i:·:·H·E·------

BUSINESS REPLY MAIL 
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

IBM International Technical Support Center 
Department 91J, Building 235-2 
Internal Zip 4423 
901 NORTHWEST 51ST STREET 
BOCA RATON FL 33431-1328 

1 .. 11 ... 11 •• 1 .. 1 •• 11 .... 11 ... 11 .. 11 ••• 1.11 .. 1 ... 1.11 

U NITED STATES 

• • • • • • • • • ·-- ---•-• • • • • • • ---•-• •-• •• •• •• ••••••••• ••••• •••• •• •• ••••--••• •• • • .. .,. •• •••••• • • ••• •• • • • • • • • • • • • • • •• •• •• • ••••••••••• •• •• • •• •• -- •• ..... •• •• •• •• ••••••• •• • • • • • • •., • .. ••• •• • • • • •., • • • • • ... •• ••• • • • • • • • • •• I 

Fold and Tape Please do not staple Fold and Tape 

GG24-3731-00 
Cut c 
Alon! 




