

OS/2 Version 2.0
Volume 3: Presentation Manager and Workplace Shell

Document Number GG24-3732-00

April 1992

International Technical Support Center
Boca Raton

Before using this information and the product it supports, be sure to read the general information under
"Special Notices" on page xv.

First Edition (April 1992)

This edition applies to OS/2 Version 2.0.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications
are not stocked at the address given below.

A form for reader's comments appears at the back of this publication. If the form has been removed, address
your comments to:

IBM Corporation, International Technical Support Center
Dept. 91J, Building 235-2 Internal Zip 4423
901 NW 51 st Street
Boca Raton, Florida 33432 USA

When you send information to IBM, you grant IB~ a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Abstract

This document describes the Presentation Manager component of OS/2 Version
2.0. It forms Volume 3 of a five volume set; the other volumes are:

• OS/2 Version 2.0 - Volume 1: Control Program, GG24-3730

• OS/2 Version 2.0 - Volume 2: DOS and Windows Environment, GG24-3731

• OS/2 Version 2.0- Volume 4: Application Development, GG24-3774

• 0512 Version 2.0- Volume 5: Print Subsystem, GG24-3775

The entire set may be ordered as OS/2 Version 2.0 Technical Compendium,
GBOF-2254.

This document is intended for IBM system engineers, IBM authorized dealers,
IBM customers, and others who require a knowledge of Presentation Manager
features, functions, and implementation under OS/2 Version 2.0.

This document assumes that the reader is generally familiar with the function
provided in previous releases of OS/2.

PS (142 pages)

C> Copyright IBM Corp. 1992 Ill

Iv OS/2 V2.0 Volume 3

Acknowledgements

The project leaders and editors for this project were:

Hans J. Goetz
International Technical Support Center, Boca Raton

Giffin Lorimer
International Technical Support Center, Boca Raton

The authors of this document are:

Alan Chambers
IBM United Kingdom

Karsten Doring
IBM Germany

Gert Ehing
IBM Germany

Franco Federico
IBM United Kingdom

Dennis Lock
ISM, South Africa

Joachim MOiier
IBM Germany

Jouko Ruuskanen
IBM Finland

Neil Stokes
IBM Australia

Katsutoshi Suzuki
IBM Japan

This publication is the result of a series of residencies conducted at the Interna
tional Technical Support Center, Boca Raton.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Lori Brown
IBM Programming Center, Boca Raton.

Sam Casto and his staff
IBM Programming Center, Boca Raton.

Ann Ford
IBM Programming Center. Boca Raton.

Cl Copyright IBM Corp. 1992 v

YI 05/2 V2.0 Volume 3

Alfredo Gutierrez
IBM EMEA Education Center, Boca Raton.

Steve Robinson and his staff
IBM PRGS 1 Cary.

David Kerr
IBM Programming Center, Boca Raton.

Peter Magid
IBM Programming Center, Boca Raton.

Michael Perks
IBM Programming Center, Boca Raton.

Tom Richards
IBM PRGS, Cary

Thanks also to the many people, both within and outside IBM, who provided sug
gestions and guidance, and who reviewed this document prior to publication.

Thanks to the following people who created the excellent tools used during the
production of this document:

Dave Hock (CUA Draw)
IBM PRGS, Carry.

JOrg von Kanel (PM Camera)
IBM Yorktown Heights.

Contents

Abstract . iii

Acknowledgements . v

Special Notices . xv

Preface xvii

Related Publications . xix
Prerequisite Publications . xix
Additional Publications . xix

Chapter 1. Introduction to the Presentation Manager and Workplace Shell . . 1
1.1 The Vision . 1

1.1.1 The Workplace Shell User with Older Applications 2
1.1.2 What About the Experienced PC User? 3

1.2 What is Presentation Manager? . 3
1.3 What is the Workplace Shell? . 4

1.3.1 Workplace Shell as an Operating System Shell 4
1.3.2 Workplace Shell as an Application Environment 5
1.3.3 WPS Objects versus SOM Objects . 5

1.4 Presentation Manager Enhancements in OS/2 Version 2.0 5
1.4.1 New Controls and Dialogs . 5
1.4.2 Information Presentation Facility Enhancements 6

1.5 Programming Environment . 7
1.6 Summary . 8

Chapter 2. Presentation Manager Components 9
2.1 Windows . 9

2.1.1 Frame Area 11
2.1.2 Client Area 12
2.1.3 Parent and Child Windows 13

2.2 Dialog Boxes 13
2.3 Message Boxes . 14
2.4 Control Windows . 15
2.5 Icons . 16
2.6 Clipboard . 17

2.6.1 Shared Memory and the Clipboard . 19
2. 7 Summary . 19

Chapter 3. New Presentation Manager Features 21
3.1 New Window Classes 21

3.1.1 Container . 21
3.1.2 Notebook . 23
3.1.3 Slider . 25
3.1.4 Value Set 26
3.1.5 Progress Indicator 27

3.2 Standard Dialogs . 28
3.2.1 File Dialogs . 28
3.2.2 Font Dialog . 29

3.3 Information Presentation Facility 30

CC) Copyright IBM Corp. 1992 vii

VIII OS/2 V2.0 Volume 3

3.4 Summary 31

Chapter 4. Workplace Shell Components . 33
4.1 CUA and the Workplace Shell . 34

4.1.1 Icons . 35
4.2 An Introduction to the WPS 35

4.2.1 The Desktop . 36
4.2.2 Objects On The Standard Desktop 36
4.2.3 Objects And Views . 37
4.2.4 Customizing The Workplace Shell Objects 38
4.2.5 Arranging Folders and Objects According to Tasks 40

4.3 Workplace Shell Objects 41
4.3.1 Device Objects . 42
4.3.2 Container Objects . 42
4.3.3 Data Objects 42
4.3.4 Reference Books 43
4.3.5 Program References and Shadows 43
4.3.6 Drives . 43
4.3.7 The Shredder Object 44
4.3.8 Printer Objects . 45
4.3.9 Templates 46

4.4 The LAN Independent Shell . 47
4.4.1 Using the LAN Independent Shell . 48
4.4.2 Main Functions . 49
4.4.3 LAN Server and Novell Netware Support 50

4.5 Summary . 51

Chapter 5. Using the Workplace Shell . 53
5.1 WPS Navigation and Techniques 53

5.1.1 Mouse 53
5.1.2 Keyboard . 53
5.1.3 Accelerators 54
5.1.4 Object Manipulation Techniques 54

5.2 Basic Operation of the Workplace Shell . 56
5.2.1 Accessing a Context Menu . 56
5.2.2 Opening a Window 56
5.2.3 Finding Open Windows 57
5.2.4 Creating A New Object . 57
5.2.5 Creating a Shadow Object . 58
5.2.6 Deleting and Undeleting an Object . 58
5.2.7 Printing . 58
5.2.8 Creating a Startup Environment 59

5.3 Advanced Operation of the Workplace Shell 60
5.3.1 Changing the Characteristics of an Object 60
5.3.2 Modifying the Context Menu of an Object 60
5.3.3 Changing the Default View on "Open,, 61
5.3.4 Changing the Icon for an Object . 62
5.3.5 Associating an Object with a Program 62

5.4 Giving OS/2 V2.0 the Look and Feel of OS/2 Version 1.3 64
5.5 Summary . 65

Chapter &. Installing and Supporting the Workplace Shell 67
6.1 Allocating Disk Space . 67

6.1.1 Partitioning the Disk for OS/2 with the Workplace Shell 67
6.1.2 HPFS or FAT Format? 68

6.1.3 Keeping the Desktop Separate from the System 69
6.1.4 Moving the Print Spooler 69

6.2 Setting Up Programs and Files 70
6.2.1 Extended Attributes . 70
6.2.2 EAs for Files Used by DOS Programs 70
6.2.3 Using Files Outside the WPS Directory Structure 71
6.2.4 Setting Up Programs in the Workplace Shell 71

6.3 Problem Determination and Resolution 73
6.3.1 Error Symptoms of a Malfunctioning Desktop 73
6.3.2 Shadow Copies of Programs 73

6.4 Backup and Restore with the Workplace Shell 74
6.4.1 Critical System Files 74
6.4.2 How to Back Up OS2.INI 74
6.4.3 Restoring a Backup Version of OS2.INI 75
6.4.4 Backup Programs 76

6.5 Using the Workplace Shell in a LAN Environment 76
6.5.1 Organization of a LAN Workplace . 76

6.6 Workplace Shell Performance . 79
6.7 Training Users to Use the Workplace Shell 79

6.7.1 Training and Desktop Configuration . 79
6.8 Utilities for the Workplace Shell . 80

6.8.1 Prevent Programs Restarting at IPL . 80
6.8.2 File Transfer to a Host Session . 81
6.8.3 Limiting a User's Access to Settings 82
6.8.4 Creating and Populating Folders 82
6.8.5 Adding New File Types . 84
6.8.6 Removing WPS Objects . 84

6.9 Customizing OS/2 V2.0 for the Inexperienced User 84
6.9.1 User Requirements . 85
6.9.2 Operating System Set Up 86
6.9.3 Setting up the Users Work Area 87

6.10 Summary . 89

Chapter 7. Presentation Manager and Workplace Shell Application
Development . 91

7.1 The Presentation Manager Application Model 91
7.1.1 Windows 91
7.1.2 Messages 94
7.1.3 Presentation Spaces and Device Contexts 97
7.1.4 Presentation Manager API Enhancements in OS/2 V2.0 97

7.2 The Workplace Shell Application Model . 99
7.2.1 Workplace Shell Objects and Applications 99
7.2.2 System Object Model . 100
7.2.3 Using Workplace Shell Classes . 101
7.2.4 The Structure of a Workplace Shell Application 103

7.3 Writing PM Applications to Work with the Workplace Shell 103
7.3.1 The Workplace Shell and PM . 104
7.3.2 How Much Can You Do with PM? . 104
7.3.3 Migrating Existing Applications . 104

7.4 Summary . 109

Chapter 8. Workplace Shell Implementation 111
8.1 The Workplace Shell as an OS/2 Program 111

8.1.1 Workplace Shell and the System Object Model 112
8.1.2 Workplace Shell Object Types . 112

contents Ix

X OS/2 V2.0 Volume 3

8.1.3 Relationship of the Shell to the File System 113
8.2 Workplace Shell Objects . 1'15

8.2.1 Folders . 115
8.2.2 File System Objects . 117
8.2.3 Shadows . 119
8.2.4 Abstract Objects . 119
8.2.5 Transient Objects . 120

8.3 Workplace Shell Facilities . 120
8.3.1 Object Registration . 120
8.3.2 File Associations . 121
8.3.3 Direct Manipulation . 121
8.3.4 WPS Events/Messages . 122
8.3.5 Persistence . 123

8.4 Extended Attributes . 124
8.4.1 Directory Extended Attributes .. · . 124
8.4.2 File Extended Attributes . 125

8.5 The OS2.INI File . 126
8.6 Multiple Instances of Objects . 129
8.7 Summary . 130

Appendix A. Using RE.XX in OS/2 V2.0 131

Appendix 8. CUA Conformance In the Workplace Shell 133
8.1 Fundamental Items . 134
8.2 Recommended Items . 135
B.3 Other Items . 136

B.3.1 Navigation . 136
B.3.2 Emphasis . 136
B.3.3 Mnemonics . 136
B.3.4 Push Buttons . 137
B.3.5 Miscellaneous . 137

Glossary . 139

Index . 143

Figures

1. Presentation Manager Window . 10
2. Presentation Manager Dialog Box . 14
3. Presentation Manager Message Box . 14
4. Clipboard Copy from an OS/2 Window into an OS/2 PM Editor 18
5. Container Control Used in Folder Window 22
6. Presentation Manager Notebook for Desktop Setting 24
7. Presentation Manager Notebook used in Master Help Index 25
8. Slider Control . 26
9. Value Set Control 27

10. Progress Indicator Control . 28
11. Standard File Dialog for "Open" 29
12. Standard Font Dialog . 30
13. Workplace Shell Desktop Appearance 33
14. Different Views of the Same Objects . 38
15. System Setup 39
16. Keyboard Settings Notebook . 40
17. Workplace with Objects . 41
18. Local Drives and LAN Drives 43
19. Shredder Object With A Folder For Deletion 44
20. Job List View of Print Object . 45
21. Templates After Full Installation 46
22. Example of a Folder With User Templates 47
23. Example of a Menu Showing the Association 47
24. Tree View of the LAN Server . 48
25. Different Objects - Different Functions . 56
26. Expanded Desktop Menu . 60
27. Setup of an Expanded Menu . 61
28. Starting XCOPY From the First Line in CONFIG.SYS to Back Up the INI

Files ... 75
29. Building Back Up History of the INI Files from STARTUP.CMD 75
30. A REXX Procedure To Prevent Programs Restarting 80
31. REXX Procedure for Host Upload 81
32. REXX Procedure to Create a New Folder 83
33. REXX Procedure to Add a Program to a Folder 83
34. REXX Procedure to Register a New WPS Class 83
35. REXX Procedure to Deregister a WPS Class 84
36. Workplace Shell Quotations Work Area 88
37. Presentation Manager Application Structure 92
38. Message Queues . 95
39. Workplace Shell Class Hierarchy . 102
40. An ASSOCTABLE Resource Script File Statement 108
41. Workplace Shell Class Hierarchy . 112
42. Disk Structure Supporting the Workplace Shell 113
43. Drag/Drop - Physical Implementation . 114
44. Relationship of Folder to Directory and OS2.INI File 116
45. Effect of Changing Description on HPFS file names 118
46. Effect of Copying Files on Filenames . 118
47. Contents of Directory Extended Attribute (ICONPOS) 124
48. Contents of Directory Extended Attribute (CLASSINFO) 125
49. Contents of File Extended Attributes . 125
50. Running Programs Stored in OS2.INI . 127

@Copyright IBM Corp. 1992 XI

51. Abstract Object Reference for Shredder in 082.INI 127
52. Abstract Objects Contained in Folder 5506 128
53. Association Filters for File Extensions . 128
54. Association Filters for File Types . 129

XII OS/2 V2.0 Volume 3

Tables

1. Mouse Button Settings . 53
2. Workplace Shell Object Persistence Summary 130
3. Fundamental Items . 134
4. Recommended Items . 135

CC> Copyright I BM Corp. 1992 XIII

XIV OS/2 V2~0 Volume 3

Special Notices

This publication is intended to help customers and system engineers to under
stand and utilize the new features in Version 2.0 of OS/2. The information in this
publication is not intended as the specification of the programming interfaces
th.at .are provided by OS/2 V2.0. Presentation Manager and the Workplace Shell.
See the PUBLICATIONS SECTION of the IBM Programming Announcement for
OS/2 Version 2.0 for more information about what publications are considered to
be product documentation.

References in this publication to IBM products. programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program. or service is not intended
to state or imply that only IBM's product. program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified. and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations. IBM Corporation. Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(''vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy completeness. The use of this information
or the implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the customer's
operational environment. While each item may have been reviewed by IBM for
accuracy in a specific situation, ttiere is no guarantee that the same or similar results
will be obtained elsewhere. Customers attempting to adapt these techniques to
their own environments do so at their own risk.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals. companies, brands. and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

©Copyright IBM Corp. 1992 xv

XVI OS/2 V2.0 Volume 3

The following terms, which are denoted by an asterisk(*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

AIX
C/2
Common User Access
CUA
IBM
Micro Channel
Office Vision
Operating System/2
OS/2
Personal System/2
PS/2
SAA
Systems Application Architecture
WIN-OS/2
Workplace Shell

The following terms, which are denoted by a double asterisk(**) in this publica
tion, are trademarks of other companies:

286, 386, 486, SX are trademarks of Intel Corporation.
dBase IV is a trademark of Ashton-Tate, Inc.
Intel is a trademark of Intel Corporation.
Lotus, 1-2-3 are trademarks of the Lotus Development Corporation.
Microsoft, Windows are trademarks of Microsoft Corporation.
Novell, Advanced Netware are trademarks of Novell, Inc.
SY-TOS is a trademark of Sytron Corporation.
Smalltalk/V is a trademark of Digitalk, Inc.
WordPerfect is a trademark of WordPerfect Corporation.

Preface

This document gives a description of the functions and facilities provided by the
Presentation Manager and Workplace Shell in OS/2 Version 2.0 and their imple
mentation.

The document discusses the migration of Presentation Manager applications
from previous versions of OS/2 and the considerations for deciding whether to
implement new applications as Presentation Manager or as Workplace Shell
applications.

This document is intended for planners and technical support personnel who
require an understanding of the function provided by the Presentation Manager
and Workplace Shell in OS/2 Version 2.0, and the implementation of that func
tion.

Sample code relating to the Workplace Shell is available in electronic form via
CompuServe** or through a local IBM Support BBS, as package RB3774.ZIP.
IBM employees may obtain the code examples from the GG243774 PACKAGE on
OS2TOOLS.

This sample code was developed primarily for OS/2 Version 2.0 - Volume 4:
Application Development and therefore has the same package name.

The document is organized as follows:

• Chapter 1, "Introduction to the Presentation Manager and Workplace Shelr
provides a brief introduction to the topics covered in this document.

This chapter is recommended for all readers of the document.

• Chapter 2, "Presentation Manager Components" provides an overview of the
Presentation Manager graphical user interface, describing the components of
the interface and the interaction between them.

This chapter is recommended for those readers who are not familiar with
Presentation Manager and its operation.

• Chapter 3, "New Presentation Manager Features" describes the new con
trols, dialogs and functions provided by Presentation Manager.

This chapter is recommended for those readers who are familiar with Pres
entation Manager and wish to learn how it has been enhanced in OS/2
Version 2.0.

• Chapter 4, "Workplace Shell Components" gives a brief introduction to the
Workplace Shell and its role in CUA. It provides an overview of the
Workplace Shell user interface components, including both local resources
and those available through the LAN Independent Shell.

This chapter is recommended for those readers who are not familiar with
CUA concepts or the Workplace Shell facilities.

• Chapter 5, "Using the Workplace Shell" explains how the components of the
Workplace Shell work and gives guidance on how to use them effectively in a
number of user scenarios.

This chapter is recommended for those readers who are not familiar with the
Workplace Shell and its use.

<C> Copyright I BM Corp. 1992 xvii

XVIII OS/2 V2.0 Volume 3

• Chapter 6, "Installing and Supporting the Workplace Shell" gives guidance
on the installation and configuration of the Workplace Shell and some advice
on sorting out problems that may arise.

This chapter should be read by anyone planning to install or to support OS/2
Version 2.0 Workplace Shell.

• Chapter 7, "Presentation Manager and Workplace Shell Application
Development" provides a conceptual introduction to the Presentation
Manager and Workplace Shell application models, describing the major com
ponents of the two styles of application and their interaction. It also dis
cusses the question of how far a Presentation Manager application can
integrate with, and make use of, Workplace Shell facilities such as printers
and the shredder.

This chapter is recommended for readers considering any application devel
opment for OS/2 Version 2.0

• Chapter 8, "Workplace Shell Implementation" discusses how Workplace Shell
is implemented on OS/2 and Presentation Manager. In particular, this
chapter describes Workplace Shell's use of such OS/2 facilities as Extended
Attributes and OS2.INI for its data.

This chapter is recommended for those readers who will be supporting OS/2
Version 2.0 and for whom an understanding of the implementation of
Workplace Shell should prove invaluable when problems arise.

• Appendix A, "Using REXX in OS/2 V2.0" provides information on using
Workplace Shell commands in REXX and gives an overview of a few of the
most important commands.

• Appendix B, "CUA Conformance in the Workplace Shell" discusses the
degree to which the Workplace Shell is compliant with CUA 91. It also pro
vides some guidance to application developers on which behaviors are
determined by the WPS and which should be set in the program.

Related Publications

The following publications are considered particularly suitable for a more
detailed discussion of the topics covered in this document.

Prerequisite Publications
• IBM Systems Application Architecture CUA Advanced Guide to User Interface

Design, SC34-4289

Additional Publications
• OS/2 Version 2.0- Volume 1: Control Program. GG24-3730

• OS/2 Version 2.0 - Volume 2: DOS and Windows Environment, GG24-3731

• OS/2 Version 2.0 - Volume 4: Application Development, GG24-3774

• OS/2 Version 2.0- Volume 5: Print Subsystem, GG24-3775

• OS/2 Version 2.0 Remote Installation and Maintenance, GG24-3780

• IBM Systems Application Architecture CUA Advanced Interface Design Refer-
ence, SC34-4290

• IBM Personal Systems Developer, Winter 1992

• IBM Icon Reference Book, SC34-4348

• IBM OS/2 Version 2.0 Application Design Guide, 10G6260

• OS/2 2.0 Programming Guide Volume II. 10G6494

@ copyright I BM Corp. 1992 xix

XX OS/2 V2.0 Volume 3

Chapter 1. Introduction to the Presentation Manager and Workplace
Shell

1.1 The Vision

os12• Version 2.0 brings new levels of computing power to users' desktops, and
is designed to deliver this power to a very wide range of users, many of whom
may have little experience with computers.

Power and sophistication could mean complexity for the user, but OS/2 Version
2.0 has been provided with an advanced user interface designed to provide
users with this power in a way that is easy to learn and, as far as possible, intui
tive, enabling them to make the most of their investment in hardware and soft
ware.

The components of OS/2 Version 2.0 that provide this user interface are Presen
tation Manager* and the Workplace Shell*. These are the subjects of this docu
ment.

This introductory chapter:

• Describes a vision of what is made possible with the Workplace Shell

• Describes what Presentation Manager and the Workplace Shell are and how
they fit with one another and the rest of OS/2

• Includes a summary of the enhancements to Presentation Manager.

Those who have worked with computers for many years are very happy to· talk
about files, programs, directories, records, spoolers, etc. The inexperienced
computer user is not. We are used to the idea that when editing a document we
must first load the data from disk into memory and later, when we have finished
editing it. save it back onto disk. The new computer user is not.

While we are using a computer we can visualize what is going on in the com
puter - programs being loaded into memory, print files being written to disk
before being printed, and the whole hierarchy of disks, directories and files. The
user interface, for us, is a means by which we control these processes. There
have been good user interfaces and bad user interfaces, but so far they have all
been designed to allow the knowledgeable user to control a system he under
stands to some degree. Becoming proficient in the use of a personal computer
meant understanding what it does internally.

With Presentation Manager and the Workplace Shell a new user can enjoy much
of the function of OS/2 and its applications, without needing to understand these
things. He does not even need to think of what he sees on the screen as an
interface - that would imply that he is aware that there is something beyond it to
which he is interfacing. What he sees on the screen is all he needs to know
about. And what he sees there are representations of everyday items such as
folders, documents, an alarm clock, a shredder, and printers.

These items - known as objects and represented on the screen by little images
known as icons - behave in familiar ways; for example to destroy a document a
user would probably guess that he had to put it through the shredder. With
Workplace Shell this is almost exactly what he would do - using the mouse he

Cl Copyright IBM Corp. 1992 1

would drag the icon representing the document onto the icon representing the
shredder. Having discovered that, he might then guess that moving a document
to a printer would cause it to be printed, or moving it onto a mailbox icon would
result in its being sent to another user.

Of course, if all you could do with OS/2 Version 2.0 were the same things you
could do without it, there would be no need to have a computer at all. The point
is, of course, that though the objects with which the OS/2 user works do familiar
things in familiar ways, they also have capabilities far beyond their real-life
counterparts. Consider, for example:

• A folder that will, on request, automatically give you all the monthly cashflow
summaries, from its contents of 1000 miscellaneous papers

• A pad of order forms that never runs out

• A desk on which you can leave all your papers at the end of the day and be
sure that they are still as you left them when you come in the next day, with
no fear of their being moved by the cleaners, or of confidential documents
being removed

• A sheet of paper which automatically corrects the spelling of everything you
write on it.

(This would be the Workplace Shell equivalent of a word-processor with a
spellcheck function - the difference is that the user need not know of the
existence of any word-processing package; to him, the spell-checking capa
bility is a characteristic of the document itself. This is the essential differ
ence between object-oriented and application-oriented interfaces.)

OS/2's Workplace Shell can do all this and, moreover, do it in a way that the
inexperienced user will find a straightforward and natural extension to the real
life behavior of the objects concerned. Furthermore, the Workplace Shell allows
application developers to extend the range of objects available to the user to
include many more sophisticated or specialized types than those provided as
standard with OS/2.

1.1.1 The Workplace Shell User with Older Applications

2 OS/2 V2.0 Volume 3

In reality, relatively few users will be able to work in this way all the time. The
chances are they will want to use some applications that were written for OS/2
1.3, or for DOS or Windows. These generally work in ways that are not con
sistent with the purely object-oriented interface described above.

For these users the Workplace Shell provides a very flexible desktop environ
ment from which to launch their non-object-oriented applications. For example,
the Program Reference allows the user to represent any program as a Workplace
Shell object. This lets it be placed on the desktop or in any convenient folder
and started when required. Furthermore, the Workplace Shell provides the
ability to associate any program with particular types of data files, so that the
user need only open the data file for the associated program to be automatically
invoked. This provides an object-oriented technique for starting some programs
that were not written with this in mind.

1.1.2 What About the Experienced PC User?
Although the Workplace Shell can provide the inexperienced user with this ideal
working environment requiring n9 knowledge of how OS/2 works, there are many
users who are already quite comfortable with basic computing concepts. These
users could feel frustrated if they were denied the ability to access the files,
directories and programs with which they are familiar.

The Workplace Shell does not prevent this. For example, it provides the Drives
object, offering similar function to the file managers of OS/2 Version 1.3 or Micro
soft Windows**. The Program Reference object class provides a way to install
and run ordinary - non-Workplace Shell - programs. OS/2 and DOS command
prompts may be invoked, allowing the use of commands some of which date
back over 10 years to the first releases of DOS. Workplace Shell is also so flex
ible that a user can set it up to look and behave very much like OS/2 Version 1.3
or Windows, if that is what is preferred.

So, experienced PC users may find the Workplace Shell unfamiliar at first, and
may not even fully understand the point of it, but they have the option of working
in whatever way they choose - using a command prompt if they want to, or
perhaps an interface similar to OS/2 Version 1.3 or Windows. In time, they may
learn to to think in a less computer-oriented way and start using the additional
productivity features of the Workplace Shell.

1.2 What is Presentation Manager?
Presentation Manager provides a windowed graphical user interface for OS/2
applications. The user interacts with these applications using interface con
structs controlled by Presentation Manager, with either the keyboard or the
mouse. For example, when a program asks you to enter a short piece of text
such as a file name, you type it into a Presentation Manager control known as
an Entry Field, when a program wishes to display a scrollable list it uses a
control known as a List Box, and so on. Presentation Manager has two basic
objectives:

• To provide a consistent user interface for both the operating system and
applications, so that users may more easily interact with a number of appli
cations, without the need to learn different sets of interface rules.

• To provide an intuitive interface for the end user, in order to ease the task of
learning applications and reduce the amount of formal training required by
encouraging learning through exploration.

The Presentation Manager user interface is based on icons, which are used to
represent the objects with which the user wishes to work, and windows, which
typically provide views of the contents of those objects. For example, an icon
might represent a document which the user wants to modify; in order to do this
he would open a view of the document in the form of a window displaying the
text in an editable form. When he has finished working on the document he
would close the view.

The basics of the Presentation Manager user interface are described in
Chapter 2, "Presentation Manager Components."

The implementation of Presentation Manager under OS/2 Version 2.0 has been
enhanced over previous versions of OS/2. Presentation Manager itself has been
rewritten to take advantage of the 32-bit functions available in Version 2.0,

Chapter 1. Introduction to the Presentation Manager and Workplace Shell 3

resulting in improved performance, particularly for complex graphical applica
tions, and several new user interface controls and standard dialogs have been
introduced in conformance with the 1991 Systems Application Architecture*
(SAA*) Common User Access* (CUA*) Workplace Environment. The Information
Presentation Facility (IPF) has also been enhanced.

1.3 What is the Workplace Shell?
The Workplace Shell is both a user interface to OS/2 itself and an application
environment in which user-written programs can integrate themselves with one
another, and with OS/2's user interface. This section describes these two
aspects of the Workplace Shell.

1.3.1 Workplace Shell as an Operating System Shell

4 OS/2 V2.0 Volume 3

Any operating system must provide a user interface that allows the user to make
use of the functions of the system, for example to start programs, manage files
and so on. This interface is known as its shell, and in some operating systems
is no more than a command line and a set of commands; the user has to know
the correct commands to start programs, manipulate files, tailor the system, and
so on. An example of such a shell is the command line interface of DOS 3.3.

OS/2 1.1 had a shell that used the Presentation Manager interface. This con
sisted of a collection of utility programs allowing for starting, stopping and
switching between programs (the Desktop Manager), manipulating directories
and files (the File Manager), altering system settings (the Control Panel), and
managing printers, print queues and the spooler (the Print Manager).

This shell provided a degree of consistency for the user through its use of Pres
entation Manager. However, it was still no more than a collection of separate
programs, each working in its own way and having to be learned by the user.
Furthermore, it made no attempt to hide from the user the complexities of the
operating system, requiring him to understand concepts such as programs, files,
and directories. Nevertheless, this shell remained, with only minor changes,
through OS/2 Releases 1.2 and 1.3.

OS/2 Version 2.0 introduces a new shell - the Workplace Shell - which takes this
development one stage further. It provides a shell that is more consistent, and
allows the inexperienced user to remain largely ignorant of the operating system
itself. The Workplace Shell implements a type of interface known as an Object
Oriented User Interface because with it the user interacts with icons representing
familiar objects, such as documents, printers, shredders, and folders. The user's
attention is focused on these objects, rather than on the programs and files that
lie behind them, as with most other kinds of user interface.

The Workplace Shell provides all the function of the old OS/2 Version 1.3 shell in
a more consistent and easily learned way, while at the same time providing
much greater flexibility for the user to organize his work in the way that suits
him.

1.3.2 Workplace Shell as an Application Environment
The Workplace Shell provides a programming environment, in which suitably
written programs can add user-defined object types to those provided with the
system. Such objects may simply be modified versions of the supplied object
types - such as a new type of folder that requests a password before the user is
allowed to open it - or object types related to specific productivity applications,
such as a spreadsheet object, or even object types that are specific to a partic
ular user's business, such as Customer, Order or Motor Insurance Policy.

It has been found that a natural and productive way to implement this kind of
user interface is to use object-oriented programming techniques. The Workplace
Shell itself is written in this way, using a new component of OS/2 V2.0 called the
System Object Model (SOM). SOM is a set of tools and APls that allows object
oriented programs to be written in a mixture of programming languages,
including languages that are not themselves object-oriented, such as C. All the
Workplace Shell object types - folders, data files, printers, etc. - are implemented
as SOM objects.

1.3.3 WPS Objects versus SOM Objects
Please note that in this book, and in most other discussion of the Workplace
Shell, we use the word object in two quite distinct. but closely related, senses:

• A Workplace Shell object is something that a user interacts with and manipu
lates, and is represented by an icon. It normally represents some real-world
item that the user understands, such as a printer or an order form.

• A SOM object is a programming construct and is the basis of SOM's imple
mentation of object-oriented programming (OOP). It may represent some
thing quite meaningless to the user such as a database table, or an APPC
conversation; fortunately, a user would not normally know anything about
SOM objects.

Workplace Shell objects are implemented as SOM objects, but SOM objects do
not necessarily have anything to do with Workplace Shell; indeed a SOM object
may not have any visible form at all, being no more than a piece of program
code and data.

It should normally be clear from the context which sense of the word object is
intended.

1.4 Presentation Manager Enhancements in OS/2 Version 2.0
This section introduces the Presentation Manager enhancements in OS/2
Version 2.0, all of which are discussed in more detail later in this document.

1.4.1 New Controls and Dialogs
A number of new control window classes are provided under OS/2 Version 2.0.
These are primarily used to aid in the implementation of the Workplace Shell
and the 1991 SAA CUA Workplace Environment, and are available for use by
application developers. They are:

Chapter 1. Introduction to the Presentation Manager and Workplace Shell 5

1.4.1.1 Container
The purpose of the container control is to hold other objects within the
Workplace Shell, in order to allow grouping of objects on the desktop in a logical
manner determined by the end user. A container control may display objects in
various formats or views, where each view displays different information about
the objects.

1.4.1.2 Notebook
The notebook control provides a method for organization and navigation of user
dialogs, where the required information and prompts may not be easily dis
played in a single dialog box. A notebook control looks like a multi-page note
book, with a dialog on each page. The user can interact with the top page, and
can move to the others either page-by-page or directly, by using tabs attached to
the edges of the pages.

1.4.1.3 Slider
The slider control looks rather like the slider controls found on some audio
equipment, and is used where a value must be chosen from a continuous but
finite range of settings. It is ideal for setting approximate values and properties,
particularly analog values which are not easily enumerated or expressed in
other ways. The slider indicates a particular quantity and the range of allowable
values for that quantity.

1.4.1.4 Value Set
The value set control is similar in function to the radio button control imple
mented in previous versions of OS/2, but provides additional flexibility in that it
may be used to display a set of values in graphical, numeric, or textual format,
whereas the radio button is limited to textual format only. As with a radio
button, selecting one item in the set deselects any previously selected value.

1.4.1.5 Progress Indicator
The progress indicator control is used to display the progress of a long-running
operation, such as file transfer or disk backup/restore, by means of a hollow bar
that fills with color from one end like a thermometer.

1.4.2 Information Presentation Facility Enhancements

6 OS/2 V2.0 Volume 3

A number of functional enhancements have been made to the Information Pres
entation Facility (IPF), which provides context-sensitive help panels and online
documentation. These enhancements are as follows:

• The ability to predefine default sizes for help panels; these sizes are used
unless overridden by the calling routine.

• The ability to define hypertext and hypergraphic links across multiple concat
enated help or documentation files.

• Support for multiple viewports within a panel, allowing different types of com
plimentary inform~tion to be displayed together but to be manipulated inde
pendently.

• Dynamic data formatting, allowing help text or explanatory information to be
formatted and placed into a help panel at run time, thereby allowing help
information to be closely tied to the current user action.

• Support for tables in help files and online documentation.

• Support for multiple fonts and text sizes.

These enhancements are described in greater detail in Chapter 3, "New Presen
tation Manager Features."

1.5 Programming Environment
The Presentation Manager programming environment under OS/2 Version 2.0
has changed very little from that provided under OS/2 Version 1.3. Presentation
Manager applications written for previous versions of OS/2 will execute without
modification under Version 2.0.

A high degree of source code compatibility is also provided which allows such
applications to be recompiled for execution in a 32-bit environment. providing
enhanced performance, with only very minor modifications in most cases.

A number of new API functions have been added to Presentation Manager under
OS/2 Version 2.0, providing additional function to applications. These include the
WinPopUpMenu() function which allows the creation of context menus and a
number of other functions to simplify tasks such as checking or unchecking
menu items, that were previously achieved by means of PM messages. some
enhancement to the Gpi graphical functions, and some other minor changes to
function names etc.

A number of standard CUA-conforming dialogs for file and font manipulation
have been included within the operating system. removing the need for applica
tion developers to write these commonly needed functions as part of their appli
cation code.

Presentation Manager applications under OS/2 Version 2.0 may also mix 16-bit
and 32-bit executable modules, in the same way as other applications. The
operating system provides a "thunk" layer for the PM APls as it does for the
kernel APls. Some additional considerations arise, however, when registering
windows between environments and when passing pointers as message param
eters, due to the difference in addressing schemes; this is handled automat
ically for the standard message classes. Functions are provided to enable
programmers to implement thunks for their user-defined messages classes. For
a general explanation of thunks see OS/2 Version 2.0 - Volume 1: Control
Program and for examples of their use see OS/2 Version 2.0 - Volume 4: Appli
cation Development.

In order to implement application objects that integrate fully with those provided
with the Workplace Shell one must write parts of one's application in a new way,
using the System Object Model. The System Object Model provides a language
for defining object classes, their methods and instance data. known as Object
Interface Definition Language (OIDL) and some utility programs to assist in the
generation of the language source files that are needed to build those object
classes. Although currently only implemented for the C language, the System
Object Model has been designed to enable object classes to be written in a
variety of both object-oriented and non-object-oriented languages.

All the object classes that the user sees when using Workplace Shell, such as
folder. data file and printer. are implemented internally as SOM classes
(wpFolder, wpDataFile, wpPrinter, etc.). By sub-classing these and other
Workplace Shell classes, programmers can develop new classes for the partic
ular needs of his users, inheriting all the useful instance data and methods while
adding to or replacing them with those that their new objects require.

Chapter 1. Introduction to the Presentation Manager and Workplace Shell 7

1.6 Summary

8 OS/2 V2.0 Volume 3

Programming for the Presentation Manager and Workplace Shell environments
under OS/2 Version 2.0. including the use of the System Object Model and the
Workplace Shell classes, is described in detail in OS/2 Version 2.0 - Volume 4:
Application Development.

Presentation Manager provides the strategic grap.hical-based user interface and
programming environment for OS/2 Version 2.0. The implementation of Presen
tation Manager under Version 2.0 has been significantly enhanced over previous
versions of OS/2 by exploiting the 32-bit application environment, and by pro
viding additional controls and functions. These can make development more pro
ductive for the programmer and the interface more consistent for the user.

The object-oriented Workplace Shell, which replaces the PM shell of previous
releases, implements the SAA CUA Workplace Model. both for itself and for
applications written to exploit the programming environment it provides. Such
applications behave in a more intuitive manner, allowing the user to spend less
time learning system-specific operations and more time concentrating on the
work tasks to be performed. The functions previously implemented in desktop
utilities have been combined within the Workplace Shell. insulating the user from
the complexities of the system.

A number of new Presentation Manager control windows and functions have
been added under Version 2.0, providing additional function to applications and
enhancing the flexibility of user dialogs by providing additional mechanisms for
displaying information and receiving user input. Standard dialogs have also
been provided for common file and font manipulation functions. ensuring SAA
CUA conformance and removing the need for applications to include such func
tions within the application code.

The Presentation Manager programming environment has changed very little
under OS/2 Version 2.0. Applications written and compiled for previous versions
will normally run with no changes. For applications to take full advantage of the
32-bit environment and new Presentation Manager functions, some changes to
the source code are required, though these are mostly minor.

A new. object-oriented, programming model is introduced in the System Object
Model, which. in conjunction with the object classes supplied by the Workplace
Shell. enables application objects to be developed that integrate seamlessly with
the Workplace Shell. Applications written in this way can inherit useful behavior
from the supplied Workplace Shell object classes and add function unique to the
requirements of a user's business.

In general, Presentation Manager under OS/2 Version 2.0 provides improved per
formance through the use of a 32-bit graphics engine and the Workplace Shell
provides improved usability. The redesigned shell with its more intuitive inter
face helps to insulate the user from the inherent complexity of OS/2. allowing the
user to concentrate on the task being performed. The result is improved produc
tivity with reduced training requirements.

Chapter 2. Presentation Manager Components

2.1 Windows

The OS/2 Presentation Manager user interface was introduced in OS/2 Version
1.1, replacing the textual interface provided by OS/2 Version 1.0. Presentation
Manager provides a graphical, windowed presentation environment that lets a
user execute and view multiple applications on the screen at the same time.
The user can interact with those applications using an event-driven, object-action
user interface which conforms to the guidelines laid down in the IBM Systems
Application Architecture CUA Advanced Guide to User Interface Design.

The Systems Application Architecture CUA component has two major objectives:

1. To provide a consistent interface to applications, in order that users may
more easily interact with a variety of applications and operating system envi
ronments without the need to learn and remember a different set of interface
rules and guidelines for each application or system.

2. To implement the aforementioned consistency objective in such a way that
the interface to applications is highly intuitive, in order to minimize the
amount of formal application training required by affording an easy to use
interface which encourages users to learn by exploration.

Both of these objectives can be fulfilled by the Presentation Manager compo
nents. This chapter will outline some of the major features of the Presentation
Manager user interface, for those readers who may be unfamiliar with it.

The Workplace Shell is not a complete implementation of the CUA 91 Workplace
Environment. Differences are discussed in Appendix B, "CUA Conformance in
the Workplace Shell" on page 133. In this chapter, we use standard Presenta
tion Manager terminology. This is consistent with the terminology used in the
accompanying OS/2 Version 2.0 - Volume 4: Application Development. It is also
more correct than using CUA terminology with objects which are not
CUA-compliant.

Presentation Manager applications revolve around the concept of windows. A
window appears as a rectangular area on the screen, in which information may
be displayed and user input entered.

CC> copyright IBM COrp.1992 9

System Icon

J

Frame-

Title Bar

'
Minimize Icon Maximize Icon

\ I
Menu Bar

Menu

' Selected Choice

Check Mark

... ~

,Messa e line
~scro1112ars

.Botate buttons
Info at top

.._, ,frompting Scroll Bar
,.__J

·roggle display of message I ine on and oft

Client Area L_ Information Area

Figure t. Presentation Manager Window

10 OS/2 V2.0 Volume 3

An application may create multiple windows, and multiple windows created by
one or more applications may be displayed concurrently on the screen.

While the Presentation Manager interface is graphics-oriented, the information
input and output through a window need not be graphical; text may be manipu
lated in windows without the complication of using graphics fonts. While a
mouse is recommended for user interaction in the Presentation Manager envi
ronment, many Presentation Manager functions can be achieved by the use of
the keyboard only.

Windows are displayed on the screen overlaying a background known as the
desktop. This desktop may be altered to any color, or a bitmapped image may
be displayed, using utilities provided with Presentation Manager as part of OS/2
Version 2.0.

An application may create multiple windows; the desktop may simultaneously
display multiple windows created by multiple applications, and these windows
may be updated concurrently by their parent applications, due to the multi
tasking nature of the OS/2 operating system. However, since OS/2 is a single
user system, the user provides input to only one window at a time. This window
is said to possess the Input focus. The user may switch the input focus from one
window to another by pointing to the desired window with the mouse and
pressing mouse button 1, or with the keyboard using the Ctrl + Esc or Alt+ Esc
key combinations.

The use of the mouse button depends on whether the user is left- or right
handed. It can be selected during the installation process of OS/2 Version 2.0.
In this document we conform to the CUA convention of using mouse button 1
(MB1) for "select" and mouse button 2 (MB2) for "drag" functions. More infor
mation on this is provided in 5.1, "WPS Navigation and Techniques" on page 53.

When many windows are displayed on the desktop at one time, the desktop can
become cluttered and almost unworkable. To avoid this situation and remove

unwanted windows from the screen without terminating their associated applica
tions, Presentation Manager allows the user to minimize a window. When a
window is minimized, it is removed from the desktop and its Icon is placed in the
Minimized Window Viewer folder. See 2.5, "lcons 11 on page 16 for a further dis
cussion of this.

Clicking MB2 on an icon causes Presentation Manager to display a context (or
pop-up) menu. This lets the user restore, move or close the window (that is,
terminate the application). If the user "double clicks" MB1 on the icon, Presen
tation Manager will restore the window to its previous size and position on the
screen, without displaying the menu.

In order to display a window to the full size of the display screen, a user may
maximize a window. The window is then resized to the maximum defined by the
program. For some programs this will be the whole screen. A window may also
be restored to its former size and position on the screen. See 2.1.1, "Frame
Area" for a description of the way in which this is achieved.

A window on the screen consists of two distinct areas; the frame area and the
client area. The frame area allows the user to manipulate the window (that is,
resize the window, move the window on the screen, etc.) while the client area is
used by the application to display information and solicit user input.

2.1.1 Frame Area
The frame area contains a number of other windows, such as the system menu,
title bar and menu bar, which allow the user to perform window manipulation
functions. These control windows partly conform to the definitions laid down in
the IBM Systems Application Architecture CUA Advanced Guide to User Interface
Design. They are illustrated in Figure 1 on page 10 and explained below:

Sizing Border A standard window has a sizing border, which allows the
window to be sized (that is, made smaller or larger) using the
mouse or a function:-key sequence. When the mouse pointer is
moved over the sizing border, the pointer changes from the
standard (arrow) pointer to a special sizing pointer. The user
clicks and holds one of the mouse button while moving the
mouse, and the window is sized accordingly.

Title Bar A standard window has a title bar, which performs two func
tions. Firstly, it identifies an application or window to the user.
Secondly, it acts as a uhandle" whereby the window may be
repositioned on the screen. The user moves the mouse pointer
over the title bar, clicks and holds mouse button 2 while moving
the mouse, and the window moves accordingly.

Menu Bar

The 1991 SAA CUA guidelines stipulate that the title bar for a
window should contain both the system menu icon and a title
bar icon for that window.

The main window of an application also has a menu bar, which
acts as a primary menu for the application. Entries in the menu
bar are selected by pointing with the mouse pointer and clicking
a mouse button. Each menu bar entry is associated with a pull·
down menu; (a list of actions associated with the entry), which
appears when the bar entry is selected. The pull-down menu
provides submenus for the menu bar. Multiple levels of pull
down menus may be used in an application, although the

Chapter 2. Presentation Manager Components 11

number of levels is normally minimized for the sake of sim
plicity.

Minimize Icon In the top-right corner of a standard window, two icons are dis
played; the left one is the minimize icon. When it is selected,
the window itself is reduced to an icon. The icon may be gener
ated by the application controlling the window, or may be a
default icon supplied by the Presentation Manager.

Maximize Icon The maximize icon ·is displayed in the top-right corner of a
standard window along with the minimize icon. When selected,
the maximize icon causes the window to be resized to the
maximum defined by the program. Other windows on the
screen may be made invisible (although they are still present,
logically "behind 11 the maximized window). If a maximized
window is explicitly resized using the sizing border, other
windows may become visible again. A maximized window may
be restored to its former size and position on the screen by
using the restore icon (see below).

Restore Icon In a maximized window only, the restore icon replaces the maxi
mize icon. When selected, this icon causes the window to
return to the size and position it occupied before it was maxi
mized.

Small Icon In the top-left corner of a standard window, a small icon is dis
played. This is a minimized version of the object icon. When
selected using the mouse pointer, it displays a system menu
with move, size, minimize, maximize and restore options. This
menu provides an alternative to the use of the frame area
border, title bar and icons for these operations.

Scroll Bars If the information in the client area is too big to fit into the size
of the window on the screen, scroll bars should be created to
allow the user to scroll through the information. A scroll bar
can be either vertical or horizontal. It consists of a slider with
arrow icons at each end of the bar. Clicking the mouse on an
arrow scrolls one line in the indicated direction, while clicking
on the bar between the arrow and the slider scrolls one page in
the indicated direction. Clicking and holding down MB1 while
dragging the slider up or down the scroll bar results in contin
uous scrolling.

Note that these facilities are common to most, if not all Presentation Manager
applications, and their processing is handled by Presentation Manager rather
than by the application. Thus the user is provided with a consistent interface for
interacting with and manipulating windowed applications on the screen, which
mostly conforms to the guidelines laid down in the IBM Systems Application
Architecture CUA Advanced Guide to User Interface Design.

2.1.2 Client Area

12 OS/2 V2.0 Volume 3

The client area of a window contains information which is specific to the applica
tion, and thus the contents and layout of the client area will vary from one appli
cation to the next. To preserve the ideal of a consistent user interface, however,
Presentation Manager provides a number of standard control windows which
may be used to display and receive information to and from the user.

For further information about control windows see 2.4, "Control Windows" on
page 15.

2.1.3 Parent and Child Windows
An application will normally have one main window and may have one or more
child windows, subordinate to this main window. The main window is known as
the parent of these child windows, and the child windows themselves may be the
parents of other child windows. An application may thus have a hierarchy of
windows. Too deep a hierarchy, however, can be very confusing to the user.
Windows which exist at the same level in the hierarchy and have the same
parent window are known as siblings.

While multiple windows may be visible on the screen at any time, the keyboard
can only be associated with one window at a time; this window is said to have
"input focus." Input focus is normally attributed to a control window on the client
area, such as an entry field or list box. The window that contains the control
with input focus, is then called the "active window." Presentation Manager auto
matically indicates this by making the active window the top window and
changing the colors of its sizing border and title bar. The active window and
input focus can be easily changed by the user. The same technique is used for
both windows and controls; move the mouse over the desired window and select
it using mouse button 1. Alternatively, a user may key combinations, such as
ALT+ ESC or ALT+ TAB, to move between windows.

2.2 Dialog Boxes
A dialog box is a special type of window for use in certain circumstances where
an additional interaction with the user is required. Dialog boxes may be of two
distinct types; modal or modeless.

A dialog box is created as a short-lived window to receive and/or display a par
ticular set of information required for the correct performance of an action by the
application.

With a modal dialog box, the user may not interact with another window until the
dialog is complete. This modality may be within an application (preventing inter
action with other windows controlled by this application program, while allowing
interaction with other applications in the system) or system-wide (preventing
interaction with any other window until the dialog is complete).

With a modeless dialog box, the user may continue to work with the primary
application window, for example using the "Find" window with the OS/2 System
Editor. Modeless dialogs are preferred by CUA.

One difference between a dialog box and a standard window is that the dialog
box may not be sized on the screen, nor may it be maximized or minimized
except in certain circumstances. This property of a dialog box is crucial in main
taining the integrity of the dialog with the end user. Note that although a dialog
box is not sizable, it may be moved on the desktop.

An example of a dialog box is shown in Figure 2 on page 14.

Chapter 2. Presentation Manager Components 13

Boot DR DOS 5 .0 · ·

An object in the target folder has the same title.

iJ Rename object to: laoot IBM DOS 5.0

Bepll:\ce exist.inn object.

~.A.pr.lend to existing obiect.

OK Cancel Help

Figure 2. Presentation Manager Dialog Box

For example, if a user selects "Open" from the "File" pull-down menu, the appli
cation requires the name of the file before it can be opened; this information will
be requested using a modal dialog box. For confirmation with the user, a
message box may be used as an alternative to a dialog box; see 2.3, "Message
Boxes" for further information.

2.3 Message Boxes

14 OS/2 V2.0 Volume 3

A message box is a short-lived window, similar to a dialog box, which is used to
display a message to the user and to receive acknowledgement and a simple
decision from the user. A message box is used to inform the user of an event in
situations where the information to be conveyed is relatively simple, and the
response returned by the user is limited to a single choice from a finite set of
options. In such a case, the range of facilities provided by a dialog box is not
required. Message boxes and their uses are discussed in detail in OS/2 Version
2.0 - Volume 4: Application Development. An example of a message box is
given in Figure 3.

OS/2 2 .0 Deskto ·

Are you sure that you want to close all
windows and active programs and
shutdown your system? Select OK to
continue shutdown. Select Cancel to
end this task.

r •
lQig Cancel Help

Figure 3. Presentation Manager Message Box

A message box displays an application-supplied text string, along with one or
more push buttons such as "OK," "Cancel," "Help," etc. The user selects one
of these buttons in response to the text displayed in the message box.

As defined in the IBM Systems Application Architecture CUA Advanced Guide to
User Interface Design, a message box is a modal dialog with the user, since the
user is required to acknowledge and act upon the message before continuing
interaction. Presentation Manager allows both application-modal messages,
which prohibit the user from interacting with any other window in the same
application before responding to the message, and system-modal messages,
which block interaction with any other window in the system until the message
has been acknowledged.

2.4 Control Windows
The window areas and dialog boxes contain a number of control windows to
display and receive information. These control windows are in fact specialized
classes of window defined by Presentation Manager. The various types of
control window are briefly explained below: complete definitions of the appear
ance and behavior of each type of control window are given in the IBM Systems
Application Architecture CUA Advanced Guide to User Interface Design.

Static Text This is constant text, displayed in the dialog box for information
purposes only; such text does not change from one invocation of
the dialog to the next.

Entry Field This is an area, of a defined size, where a user may enter alpha
numeric or numeric data. An application may also place a
default entry in an entry field to simplify the user's task of
entering information; the user may then edit the existing data or
replace it with new data.

Entry fields may be single-line or multi-line.

List Box This is an area which contains a list of items, one or more of
which may be selected by the user. If a list contains more infor
mation than will fit into the designated area, a list box may
contain vertical and/or horizontal scroll bars.

Combo Box The combo box or prompted entry field is a combination of the
entry field and list box types; by default, an entry field is dis
played into which the user may enter text. At the right-hand side
of the entry field however, is an icon which when selected,
causes a drop-down list box to appear below the entry field, con
taining a list of valid entries. The user may enter a value directly
into the entry field or, if unsure, may use the list box to select a
valid entry.

Check Box This is a square area, surrounded by a border with accompa
nying text, which denotes an option that may be toggled on and
off by the user. For instance, in a text search the option to ignore
case may be implemented as a check box.

Radio Button Radio buttons are small round areas which are usually displayed
in groups; a group of radio buttons denotes a series of mutually
exclusive options from which the user may select one option
only. Making a selection immediately deselects any previous

Chapter 2. Presentation Manager components 15

2.5 Icons

16 OS/2 V2.0 Volume 3

choice. The selected option in a group of radio buttons is indi
cated by a dark center in the button.

Push Button This is a square or rectangular area containing some brief text
and surrounded by a border. It denotes an option which may be
selected for immediate action. Selections such as "Enter" and
"Cancel" to complete or cancel a dialog are normally imple
mented in this way.

Spin Button The spin button is used to display a currently selected option
from a finite range of options. The items displayed in the spin
button control are textual, and may represent any alphanumeric
item. It consists of a single-line entry field, and up and down
arrows that are stacked on top of one another.

Slider This is a scale with an index which may be moved along the
scale using the mouse or keyboard. The slider allows the
selection of a value from a contiguous set of values.

Value Set This is similar in concept to a group of radio buttons, except that
items within the group may be icons, bitmaps or color patches as
well as text strings. The value set control window allows the
selection of a non-textual item from a set of mutually exclusive
options.

Container A container acts as a repository and provides a mechanism to
organize the desktop to suit the requirements of the user. Its
basic function is to hold objects such as files, applications and
devices represented by icons.

Notebook A notebook is a visual component that organizes information on
individual pages so that a user can find and display that informa
tion quickly and easily. This component simulates a real note
book but improves on it by overcoming the real notebooks
natural limitations.

These control windows are defined as child windows with the main window as
their parent.

Note also that control windows are not restricted to use in the main window
client area, and may also be created within dialog boxes. Control windows are
clipped to the boundaries of their parent window according to the same rules as
other child windows.

An Icon is a small graphical image on the screen, used as a visual represen
tation of an object such as an application or a window. While the use of icons is
not restricted to object-oriented applications, the implementation of an icon
based user interface, where icons representing objects are directly manipulated
on the screen by the user to achieve a desired result, is the essence of the
object-oriented workplace environment implemented by the Workplace Shell
under OS/2 Version 2.0. For more information see Chapter 6, 11 lnstalling and
Supporting the Workplace Shell" and Chapter 8, "Workplace Shell
Implementation."

2.6 Clipboard

Icons are designed using the Icon Editor program supplied with OS/2 Version 2.0.
This utility offers the interactive design of icons. pointers and bitmaps by the
user. The resulting objects are saved in files for subsequent use by applications.

The implementation of an icon depends on the associated application. There are
three different possibilities:

1. For a full-screen protected-mode application (that is. those which do not
utilize Presentation Manager facilities) or for an application which executes
in a text window under Presentation Manager. an icon can be provided for
use with the application. It must be in the same directory and with the same
file name as the application executable module. For example. the icon for
the application MBOOGLE.EXE would have the name MBOOGLE.ICO. When
loading the application. the Presentation Manager automatically checks the
directory for a corresponding icon file. If it exists, it will use it to represent
the application. Otherwise a default icon will be used.

2. For Presentation Manager applications, icons are generally incorporated into
the executable modules when the applications are created. See OS/2
Version 2.0 - Volume 4: Application Development for further information on
creating icons and including them in Presentation Manager applications.

3. If there is no default icon available for the application. the user can associate
an icon by using the "General" page in the Settings notebook. This dialog
box allows the user to create a new one or to search for another available
icon with the find command.

Data files generally have a default icon, but this can be changed in the same
way as for an application.

The clipboard provides a temporary storage area for a piece of text, a bitmap or
a metafile. It enables the user to move data within a single application or
exchange data among applications. Typically. a user selects data in the applica
tion using the mouse or keyboard, then initiates a cut or copy operation on that
selection. Using the paste command the user can insert this data into another
place in the same application or in another application. All these operations are
performed by applications.

Generally an application should first verify that no other applications are trying
to retrieve or set clipboard data. Finally, when the application finishes its access
to the clipboard data, it releases the clipboard so that other applications can use
it.

These operations are described below:

Operation Description

Cut Deletes the selected data from the application and copies it to the
clipboard. Any previous contents of the clipboard are destroyed.

Copy Copies the selected data to the clipboard. The selection remains
unchanged. Previous contents of the clipboard are destroyed. Before
an application performs a cut or copy operation, it removes any previ
ously stored data in the clipboard. Then it writes its data to the clip
board in as many standard formats as possible.

Chapter 2. Presentation Manager Components 17

18 OS/2 V2.0 Volume 3

Paste Deletes any selected data from the application and replaces it with
the contents of the clipboard. The contents of the clipboard are not
changed. When the application performs a paste operation it verifies
the format where the data are stored. If the clipboard contains one of
the requested formats, such as text data, the application gets a
pointer to a shareable memory object containing the text. For bitmap
data or metafile, it gets a corresponding handle.

The clipboard is a small amount of system memory for user-driven data
exchange. The clipboard only stores pointers to data. A set of API functions
enables the application to move and exchange data. Figure 4 is an example of
copying data from one application and pasting it to another, by way of the clip
board.

Restore
Move
~ize
Minimize
Maximize
Hide

,C.lose

Help ...
.Eont Size ...
Scroll

.Untitled

Alt+F11

.file Edit ~earch .Qptions Command Help
1=== Top of File===
PATH C:\OS2:C:\OS2\M DOS;C:\OS2\M DOS\WINOS2;C:\:
LOADHIGH APPEND C:\OS2;C:\OS2\SYSTEM
REM LOADHIGH DOSKEY FINDFILE=DIR /A IS IB $*
REM SET DIRCMD=IA

Bottom of File ~

Line 4 of 4 Column 18 1 Fiie Insert Modified

Figure 4. Clipboard Copy from an OS/2 Window into an OS/2 PM Editor

The data in the clipboard is maintained in memory only. Clipboard data is lost
when the computer is turned off.

2.6.1 Shared Memory and the Clipboard

2.7 Summary

An application must store, in shared memory, text data that is destined for the
clipboard. The application passes the clipboard a pointer, which the clipboard
uses to access the shared memory object. To pass a bit map or metafile to the
clipboard, an application passes the clipboard a bit map or metafile handle. The
clipboard functions make the bit map or metafile shareable.

The Presentation Manager user interface provides the capability for the user to
interact with applications in a consistent, intuitive manner. Presentation
Manager components conform to the guidelines laid down in the IBM Systems
Application Architecture CUA Advanced Guide to User Interface Design.

The Presentation Manager user interface makes extensive use of windows and a
series of defined user interface constructs which appear and behave in a con
sistent manner, and which may be used by applications to interact with the user.
Special-purpose windows such as dialog boxes and message boxes are also
supported by the interface for use in specific circumstances, and their appear
ance and behavior is also defined and regulated by CUA guidelines. The· use of
such predefined constructs by applications allows a high level of consistency
between applications in terms of their interaction with the user, thus simplifying
the level of training required to use those applications.

The event-driven, object-action style of the user interface implemented by Pres
entation Manager is highly intuitive. This fact, combined with the high level of
consistency between applications, encourages learning by exploration. In turn,
this helps reduce the need for formal training and enables users to become
more productive with new applications in a shorter period of time.

Chapter 2. Presentation Manager Components 19

20 OS/2 V2.0 Volume 3

Chapter 3. New Presentation Manager Features

The component of the operating system which is responsible for interaction with
the end user is known as the user shell. The PM Shell in OS/2 V1.3 has been
replaced in OS/2 Version 2.0 by an enhanced, object-oriented user shell known
as the Workplace Shell, which implements the 1991 CUA Workplace Environment.

The Workplace Shell allows users to become more task-oriented by simplifying
the user interface and reducing the amount of system-specific knowledge
required to perform work tasks. The high degree of consistency in the operating
system also reduces the amount of user education needed to operate the
system.

The shell has been redesigned for OS/2 Version 2.0 to give the user a single
interface to manage multiple types of objects, including devices (printer and
drives), files, and programs. Each defined printer or attached drive is a separate
icon. These objects are arranged at will on the desktop or in specific shell
windows. The user interacts with the objects using a well-defined drag and drop
environment and is able to manipulate files without needing to be concerned
about the file directory hierarchy. However, if the user wishes, multiple directory
trees are accessible simultaneously. Views, selection techniques, and actions
are consistent throughout the shell.

This chapter reviews the changes to Presentation Manager. Some of the infor
mation has been abstracted from articles written by the developers in the IBM
Personal System Developer, Winter 1992.

3.1 New Window Classes

3.1.1 Container

A number of new control window classes have been added to Presentation
Manager under OS/2 Version 2.0. These controls aid in the implementation of
the Workplace Shell and provide enhanced function and flexibility for user
dialogs in Presentation Manager applications.

This chapter describes these new controls and their interaction with the end
user. More information on using these controls in applications can be found in
OS/2 Version 2.0 - Volume 4: Application Development. and the OS/2 Version 2.0
Programmers Guide, Volume II.

Folders are extensively used within the Workplace Shell to logically group
objects (represented by their icons) on the desktop. A folder consists of a
standard window frame plus a container control which occupies the whole of the
client area. A folder can contain other folders, objects representing work items
such as reports, or physical items such as printers. The objects displayed by a
container control are determined by the application.

~Copyright IBM Corp. 1992 21

22 OS/2 V2.0 Volume 3

c:i
Hans• Letter to Me Template for all my Letters

:RI ~
DeScribe Word Processor WordPerfect 5.1 for Windows

(32-bit Version)

Archived Documents Redbook Proposal for 1993 PM Chart

Figure 5. Container Control Used in Folder Window

Various types of objects may be displayed within a container; these include
objects representing printers and other physical devices, as well as those
representing items such as files or documents. Information about these objects
can be presented in a variety of views. Each view describes the objects in a
different format, some giving different and/or additional information. The con
tainer supports the following views of its data:

Icon view This view displays either icons or bitmaps, with accompanying
text beneath them, to represent the items in the container. This
is the default view for a container.

The user may group the objects as he chooses. He can overlap
them, in a "messy desktop" fashion, or can have them automat
ically positioned. The default icon view is not "gridded"; that is,
it has free-form characteristics so data can be placed in various
relative positions and still have meaning. However, if a gridded
display format is preferred, the objects can also be arranged in
rows from left to right and from top to bottom.

The name view This displays either icons or bitmaps with accompanying text to
the right of each icon or bitmap, representing the items in the
container. Items are arranged in a single column. A variant of
the name view is the flowed name view, where items are
arranged in multiple columns.

Text view This view is similar to the Presentation Manager list box in
OS/2. Text strings are displayed in columns. This view also
offers the option of flowing the text into multiple columns to fit
the windows when it is sized.

Details view This view allows the user to display detailed information about
items in an unlimited number of scrollable columns. The data
within each column may be icons, bitmaps, text strings, or
national language support (NLS) formatted date or time strings.
An optional splitbar may be used to divide the display area into
two ·windows which scroll independently horizontally and
dependently vertically.

3.1.2 Notebook

Tree view This presents data in a hierarchical format, similar to the direc
tory layout used in the OS/2 Version 1.3 File Manager. The left
most items displayed in the tree view are at the root level. Root
level items can contain other items called children. These can
be displayed in the tree view. If the children are not displayed,
the parent item can be expanded to display them as a new
branch in the tree view.

Each instance of text in the container can consist of unlimited lines with unlim
ited characters in each line. In addition, the container control does not limit the
number of objects within a container. Objects are automatically arranged within
the client area of the container.

Direct manipulation is supported in all views of the container control. This
allows the user to drag container items within a current window or from one
window to another.

Containers and their use by applications are further explored in OS/2 Version 2.0
- Volume 4: Application Development.

3.1.1.1 User Interaction
The end user can alter any text field in the container, including the container
title, column headings in details view and all container items, through direct
editing. Text strings can also be individually set to a "read-only" state.

Objects within a container may be selected through marquee, touch swipe,
range swipe, and first letter selection techniques. The container control supports
single, extended, and multiple selection types; these are described in the IBM
Systems Application Architecture CUA Advanced Interface Design Reference.

The notebook control is used to provide an easy and intuitive method for a user
to navigate through a complex dialog, where multiple related dialog boxes are
displayed. The notebook control allows the programmer to assemble a col
lection of dialog boxes which relate to a single topic. It is designed to visually
resemble a bound notebook with multiple pages.

The notebook control provides an easy-to-use user interface component that is
consistent across multiple products. In this way, it helps products to conform to
the Common User Access user interface guidelines.

The notebook used to provide the desktop setting is shown in Figure 6 on
page 24.

Chapter 3. New Presentation Manager Features 23

24 OS/2 V2.0 Volume 3

~iew

Include
Last changed:

4-2-92 7:10:46PM

4-2-92 7:10:46PM

4-2-92 7:10:46PM

Sort

21

Background

Menu

file

Extended attributes: 996 Window

!fil:fidden

il!SY5t;mi

.General

Lockup

Undo I I Help Page 2of3

Figure 6. Presentation Manager Notebook for Desktop Setting

Data in the notebook is presented on pages bound together on one edge. Pages
appear recessed on two edges of the book, thus providing a three-dimensional
appearance.

The notebook control supports the use of both a pointing device, such as a
mouse, and the keyboard for displaying notebook pages and tabs, and for
moving the selection cursor from the notebook tabs to the top page. The end
user can turn from page to page or may go quickly from one tab page to
another. The following navigation components are provided:

Section dividers Across from the notebook binding are the major section
dividers (called major tabs). The section dividers provide a
means of organizing the data within the book. Each section
within the notebook may contain single or multiple pages. The
notebook provides a method for the end user to turn the pages
within a section and also to skip from one section to another
easily. Just as dividers provide an indication of where the user
is within the book, methods are supported to indicate where
the user is within a section.

Page buttons In the bottom right corner of the notebook in Figure 6 are the
page buttons. These buttons are used to view one page of the
notebook at a time. Selecting the forward page button {the
right-pointing arrow) causes the next page to be displayed,
while selecting the backward page button (the left-pointing
arrow) causes the previous page to be displayed.

The visible area of the notebook is the top page. The application uses this top
page to display information and facilitate user interaction. The top page may

3.1.3 Slider

contain application-created windows or dialogs. Only one page is visible at any
time. The notebook handles the hiding and showing of the topmost window or
dialog when pages are turned.

If all the tabs currently inserted cannot be displayed, scroll arrows are provided
to scroll the tabs forward and backward. Figure 7 shows a notebook used by the
Master Help Index:

setting up servers
network translation buffer, changing settings
new objects

creating (create another)
creating (template)

non-~ro-am files, descrifttion of
1a.1m111.1 Aam1.1~nm114111!1.t.1n.1-
N otepad, using the
objects

arranging
associating program and data-file objects
bytes, displaying size in
changing names

_·j -

Figure 7. Presentation Manager Notebook used in Master Help Index

The notebook control is comprised of various regions which may be dynamically
. resized. Whenever the notebook window is resized or any of the notebook visual

regions are resized the notebook dynamically recalculates the sizes of all
affected regions for future display.

The slider control supports the setting of approximate values and properties in
an analog rather than digital form. It is designed to be used where settings are
intuitively expressed in analog or relative form, rather than exact numeric
values.

Chapter 3. New Presentation Manager Features 25

3.1.4 Value Set

26 OS/2 V2.0 Volume 3

Slider shaft

De1en1

Slider arm
/ /Slider buttons

I I I I I I I I I I ltl I I I ~iJl.IJil
40d8 60 ~ 80 dB

Scale

Figure 8. Slider Control

The slider control consists of a slider shaft, within which is a slider arm. The
arm is used to change the setting of the slider control. The arm can be moved
by the user by dragging it with the mouse or by using the cursor arrow keys on
the keyboard.

An application may also change the setting of a slider control from within the
application, independently of user action. The application creating the slider
control must specify the range of available values or increments for the slider
and may also specify the spacing for items in the rulers.

In previous versions of OS/2, the scroll bar control was often used to provide the
same effect as the slider; for example, setting colors in the control panel. The
slider control is better than the scroll bar in such cases, since it is more flexible
and typically easier to control within an application. Providing a slider control
also means that the scroll bar can be used only for its intended purpose of
scrolling information within a window, which results in a more consistent user
interface.

The value set control is similar to the existing radio button control since its
purpose is to allow a user to select an item from an existing set. However,
unlike radio buttons, the value set provides a graphical set of selectable items.
Suppose an application, like the one shown in Figure 9 on page 27, provides the
ability to select a drawing tool. Using the value set, the application can provide
a graphical image of the different tools so that the user can see all the available
choices when he makes his selection.

••• EJ~•
•••

Figure 9. Value Set Control

Value set

The value set control offers great flexibility to the interface designer because it
can be extended as the application grows. The system drag protocol is sup
ported by the value set control. This means that users could, for example, select
a color from a value set and then drag that color to the target item. For
example, he could drag the color to the client area of a window to change that
window's background color.

The items within a value set control may include:

• Bitmaps

• Icons

• Text strings

• Colors.

Items of different types may be mixed in the same value set control.

While a value set control may be used to display textual or numeric data, it is
recommended that a radio button be used for this purpose, and that the use of
the value set control be confined to the display of graphical data.

3.1.5 Progress Indicator
The progress indicator displays the progress of a long-running command to the
user. It is typically used for operations such as uploading or downloading files
to or from a remote system, backing up a fixed disk etc. The progress indicator
provides an easy way for different applications to display such progress to the
end user in a consistent manner.

Chapter 3. New Presentation Manager Features 27

"Disk A>-·~Format Pro ress · ·. · · . . · .. - ·.

Percent Complete

0 50 100

Total space on disk:

Space available:

llQ]---·-11 ~top 11 Help

Figure 10. Progress Indicator Control

The progress indicator includes push buttons which allow the user to control the
operation in progress. The user may pause or resume the operation; the opera
tion may be cancelled when in the paused state. The progress indicator control
passes messages to the application when the user selects any push button.

3.2 Standard Dialogs
OS/2 V2.0 provides a number of standard, CUA-conforming dialogs which may be
used by applications to perform common operations such as file handling and
font selection. The provision of these dialogs within the operating system avoids
the need for applications to individually develop dialog boxes and procedures for
these functions. This delivers a high degree of consistency between similar
operations in different applications.

Both forms of the standard file dialog are accessed by an application using the
WinfileDlg() function. This function is explained further in OS/2 Version 2.0 -
Volume 4: Application Development.

3.2.1 File Dialogs

28 OS/2 V2.0 Volume 3

There are two standard dialogs provided for file manipulation: the Open dialog
and the Save as dialog. Each provides similar function, but has slightly different
behavior due to the different function being performed with the dialog. The use
of these dialogs enables application developers to provide these functions in a
consistent manner, without having to code such function into their application
programs.

The standard "Open" dialog box, used to select and open directories and files
from within an application, is shown in Figure 11 on page 29.

O en · · · ·
Open filename:

IMEMLAB2.C

Type of file: Drive:
._l<_A_ll _Fi_le_s> _________ ..__.1111 E: (H PFS 1-1]

File: Directory:

ENVIRON.C aE:\
MEMLAB1.C slabs

r::i memlab3

~ll=-~~~~~~~~~~~~IJ= . ~

.....__o_pe_n___.l I Cancel I _j _He_IP_

Figure 11. Standard File Dialog for "Open"

The file dialogs are required by application-oriented programs wishing to
conform to the 1991 CUA guidelines. By standardizing the commonly performed
file manipulation tasks across different programs, they help to eliminate minor
inconsistencies in dialog operation, which results in fewer user errors.

3.2.2 Font Dialog
The Workplace Shell also provides a standard font dialog. The font dialog is
available to any application that wants to let a user view and select fonts. The
basic functions of the font dialog provided include the ability to select from:

1. A list of font family facenames installed on the system

2. Styles for each font

3. Available sizes for each font

4. Emphasis styles available for each font.

The font family facename is defined as the name of the typeface, for example,
Courier, Times New Roman, and Helvetica. Type styles include normal, bold,
italic, and bold italic. Size is defined as the point size, or vertical measurement
of the type. Font emphasis styles include outline, underline, and strikeout.

Figure 12 on page 30 shows the appearance of the standard font dialog.

Chapter 3. New Presentation Manager Features 29

tr Font
Name Size
I Helvetica l•I 124 l•I
S~le

l•I
111.Qisplay

!t:J611t1; !ti Printer

r-Sample ..-Emphasis
fa OutJine

ab.c.ctA BC.D
Ill Underline
lit ~trikeout

I OK II Apply II Cancel II Help I
Figure 12. Standard Font Dialog

The font dialog also has a viewing area that is updated dynamically when the
user makes selections of fonts, styles. etc. This viewing area lets the user
preview any font prior to applying it.

3.3 Information Presentation Facility

30 OS/2 V2.0 Volume 3

OS/2 Version 2.0 provides a number of enhancements to IPF in addition to the
capabilities available under OS/2 Version 1.3. This section briefly describes
these enhancements; more complete information may be found in the IBM OS/2
Version 2.0 Information Presentation Reference.

The Information Presentation Facility (IPF) allows application developers to
provide online, context-sensitive help information for Presentation Manager
applications. IPF also allows online manuals and documentation to be built and
viewed independently of applications. Automatic table of contents, searching
and printing facilities are provided by IPF.

The hypertext links have been extended to include bitmaps and metafiles, in
addition to text phrases. These hypergraphic links provide enhanced flexibility
for the display of online documentation, particularly procedure manuals and tuto
rials. Hypergraphic links may be used to display additional information, send a
message to an application, or start a new process in a similar manner to
hypertext links.

Under OS/2 Version 2.0, links may be made between panels which reside in dif
ferent source files; these files are concatenated and the resulting information
may be viewed as a single entity. Both hypertext and hypergraphic links are
supported in this manner. This enables larger amounts of information to be
viewed, and allows the separation of volatile information into separate files for
easier update.

The split screen support provided by I PF under OS/2 Version 2.0 allows a
window to be regarded as multiple viewports, each of which may be manipulated
separately by the author and the user.

3.4 Summary

Under OS/2 Version 2.0, all windows are composed of one or more vlewports.
The default viewport is simply the entire window. IPF Version 2.0 allows sec·
ondary viewports to be opened, to display related information which may be
scrolled and manipulated separately from the parent information.

IPF provides two different types of viewport within a window:

• !PF-controlled (IC) viewports are created, controlled and manipulated by IPF
in a similar way to normal IPF windows.

• Application-controlled (AC) viewports are controlled by the application, and
are typically used for the display of specialized information. For example, an
AC viewport might be used to display animation or full-motion video.

These different types of viewports may be mixed within the same parent window.

Dynamic data formatting allows applications to place customized information in
help windows or online documents at run time. For example, this facility could
be used in a help window to display the data from a current transaction to the
user, along with the required steps to complete that transaction. The help infor
mation is thereby made more relevant to the immediate task.

IPF allows items within help windows to be defined as hypertext. When the user
selects such items, actions may be triggered (for example, opening another help
window to display more detailed explanatory text, posting a message back to the
application's window procedure to invoke an application event, or starting
another process under OS/2).

Under OS/2 Version 2.0. IPF supports the use of multiple fonts within help
windows or online documentation, as well as multiple character sizes for each
font. By default, all help windows and online documentation windows appear in
the system font. The Courier, Helvetica (Helv), and Times Roman (Tms Rmn)
fonts are available in all display adapters supported by Presentation Manager.
Where the specified size is not available for the required font, the closest match
is used.

The new control window classes provided under Presentation Manager in OS/2
Version 2.0 help in the implementation of the Workplace Shell and enable appli
cation developers to create applications which more easily integrate with the
1991 SAA CUA Workplace Environment.

Icons and containers are fundamental to the Workplace Shell. and their inclusion
as control window classes provides the means for consistent behavior of such
objects between all applications on the desktop. The notebook control allows
the display and navigation of complex user dialogs in an organized manner,
within the context of the Workplace Shell.

The slider, value set, and spin button control window classes provide additional
flexibility for end-user dialogs, enabling applications to present properties to the
user in a more meaningful and less confusing manner than was the case in pre
vious versions of OS/2.

The progress indicator control window class allows applications to display
progress information for long-running operations, in a consistent manner. The

Chapter 3. New Presentation Manager Features 31

32 OS/2 V2.0 Volume 3

implementation of this capability as a control window eliminates the need for
application developers to explicitly code such function into their programs.

Functional enhancements have been made to IPF under OS/2 Version 2.0,
resulting in greater functionality and flexibility in information panels produced for
help files or online documentation. This enhancements includes support for mul
tiple viewports, support for multiple fonts and character sizes.

Chapter 4. Workplace Shell Components

,:.:,,':2:'fi''••'
. IBM~D29 (PPOS)

•
:0
lntormmicn

.....
.........

;:::/~······
' Minimir&rJ
::~\~Y.18W8(>
. ,, ······ ,,,

:·::y;.·~.

·:.:: .. :.:; .. :.:-•:_,::_·,.·•

,;;:::::.::::::":' •···-·

: .. ::@::i1·m·•;:
······'.•·:!e~ita···.·'

OS/2 Version 2.0 provides an improved user shell, that is, the component of the
operating system which is responsible for the appearance and behavior of the
user interface. This shell is based upon the 1991 IBM Systems Application Archi
tecture {SAA) Common User Access {CUA) Workplace Environment, and is
known as the Workplace Shell.

One of the historical drawbacks of the OS/2 environment has been the power
and therefore the complexity of the operating system. Much of this complexity
has, in the past, been allowed to transfer itself to the user interface, thus often
requiring a large amount of user effort to complete a task.

The objective of the Workplace Shell is to simplify and facilitate the performance
of work tasks by an end user through the use of graphics and the direct manipu
lation of icons on the screen. The Workplace Shell aims to insulate the end user
from the complexity of the OS/2 operating system, requiring less effort to com
plete a particular task, thereby reducing the level of knowledge and experience
required for the user to successfully manipulate the system.

file .Edit .search S!yle Sgell
.Qptions ,Window .Help

l:\PM\DeScrlbe\Tutorial\Fish

Fish, page 1.

: Boot DR DOS S.O

DR DOS Release 5.0

OJ2jects .Qraw .Utilities

1 Productivit

C3 £:§ ~ • Enhcnced Edrtcr Seek anti Scan Files lconfdrtor PM Terminal

~ 11 lllil : 0 CD
Pulse PMOlart Calc1.1lator Notepad Alarms Calender

fl, [il 00 . . [fill " .

Planner Arcfwe Deity Plenne! A.ctlvi1les LJst Mon!h!y Pte.nner

5J rm itttd
To-Oc ListArchrve To-Oc List Tune Editor Spreadsheet

GI ttJ oio
Sticky Pad Cl!pboerd Viewer Data Update

m
Copyright (c) 1976,82,88,90 Digitc Pict11reViewer 08/2 System Edr.cr

Drive A
Wa

snrvccer :\>xcopy d:\test*.* f:\ITSC\BOCA\RATON Is

Figure 13. Workplace Shell Desktop Appearance

In addition, the Workplace Shell provides a more consistent user interface by
implementing the additional control window classes and standard CUA functions

Cl Copyright I BM Corp. 1992 33

provided under osn V2.0, thereby easing the task of working with multiple appli
cations concurrently, and of learning new applications.

4.1 CUA and the Workplace Shell

34 OS/2 V2.0 Volume 3

In previous versions of OS/2, the user shell was designed to conform to the 1989
SAA CUA Graphical Model. The Workplace Shell of OS/2 Version 2.0 now
reflects the 1991 SAA CUA Workplace Environment.

In May 1989 (as part of the OfficeVision* announcement) IBM announced an
extended role for th1~ programmable workstation in the SAA environments. Part
of this announcement, known as CUA 89, introduced the Workplace extension to
CUA's graphical mc>del. This workplace environment defined a more object
oriented approach to interaction with the system through direct manipulation of
objects.

In September 1991 IBM announced extensions to the SAA architecture. Included
in these extensions was CUA 91, an orderly growth from CUA 89. CUA 91
enhances the object-based user interface defined in CUA 89. Rather than inter
acting with applications, users interact with objects which represent the inputs
and outputs of their jobs. The Workplace Environment is based upon the meta
phor of the user's working environment, with objects such as forms, letters, an
address book, printE!rs etc., represented on an electronic desktop using graphical
symbols known as h:ons.

CUA 91 has an increased emphasis on direct manipulation; that is, the manipu
lation of workplace objects through their representative icons on the desktop.
This allows the user to concentrate more on the task at hand, and less on the
mechanism that must be employed. The user is presented with a number of
icons, each of which is a pictorial representation of the real underlying object
which in fact controls the data.

CUA 91 also introduces a number of new controls. Perhaps the most noticeable
of these is the notebook control. This control allows an application to present a
multi-page dialog (for example, a pad of blank forms, a log or register, or a set
of reference notes). The notebook control provides a more meaningful way of
providing an electronic metaphor of complex objects than a series of dialog
boxes or other secondary windows.

Extensive documentation for CUA 91 exists in the form of the IBM Systems Appli
cation Architecture CUA Advanced Guide to User Interface Design and the IBM
Systems Application Architecture CUA Advanced Interface Design Reference.
However, the best way to appreciate the spirit behind CUA 91 is to view the
demonstration "The CUA Vision - Bringing the Future into Focus." This demon
stration is based on a version of CUA beyond CUA 91. It does, however, bring
home very vividly tile essence of CUA 91: pervasive interaction with workplace
objects (represente•d by icons and other graphical controls) through direct
selection and manipulation. As will be seen in this demonstration, the user is
not aware of applications as such. Business processes are completed as a
result of a natural and meaningful interaction with objects.

4.1.1 Icons
Studies have shown that the human eye can identify and distinguish graphical
information more easily and effectively than textual information, and that visual
appeal is an important motivating factor in the workplace. The Workplace Envi
ronment makes extensive use of icons to represent objects related to user's
work tasks. Icons provide a very effective means of identifying a required object,
particularly where many possibilities are displayed to the user. Still it is advis
able not to put too many icons into any workplace. Depending on the user, more
than 10 to 20 icons in a given area may be confusing. A graphical environment
encourages an orderly arrangement.

The icon is a two-dimensional depiction of the object. It should resemble the
physical object it represents but it should also resemble what the user recog
nizes as an object of that type. For example, if the user expects a printer to look
like the one in Figure 13 on page 33, then an accurate portrayal of an IBM 4029
Page Printer is not going to be easy for that user to recognize and find; the user
will have to read the title below the icons to locate a printer.

A detailed discussion of these issues can be found in the Icon Reference Book,
SC34-4348.

The icon editor is part of OS/2. The user can change the icon of any object from
its Settings view. The "General" page shows the current icon and offers the
option to edit that icon. When "Edit" is selected, the Icon Editor is invoked.

4.2 An Introduction to the WPS
The Workplace Shell is radically different from previous versions of OS/2. At
first, it can make users of former versions of OS/2 feel insecure and it takes
some time to really appreciate the many advantages of the new interface.

OS/2 comes with a tutorial program that can help both experienced and new
users learn how to use the elements of the Workplace Shell. This is started
automatically once after the installation but can be called later at any time.

The shell consists of an electronic desktop, on which are placed various icons.
These icons represent objects such as folders, data files, program references
and physical devices. The icon tells the user about the object it represents.
Some icons look like folders, while others took like printers. Others may look
like a book, a car or an order form.

It is important to understand that the symbols on the screen are just that. A
symbol (or icon) may represent a real object or it may be a shadow copy of a
real object. The icon provides no differentiation between an object and its
shadow copy, although description text of the shadow is gray.

Deleting a shadow copy does not delete the real object. Therefore many large
customers may prefer that their users work with shadow copies to prevent them
accidentally deleting the real objects.

Chapter 4. Workplace Shell Components 35

4.2.1 The Desktop

4.2.1.1 Background
The background is the total space on the desktop. It is a special form of a con
tainer but follows all basic rules for a folder. It has a context menu which is
activated using mouse button 2. Not all of the background may be visible.

4.2.1.2 Size
The desktop allows you to organize (or disorganize) documents and files the way
you would on a real desktop. It cannot be smaller than the physical screen.
This desktop concept helps the user to organize things and thereby focus on
specific groups of objects.

4.2.1.3 Enlarging the Desktop
The size of the desktop starts out as large as the screen. When more objects
are put on the desktop than the basic size can hold the desktop will be extended
automatically. Scroll bars are added to the desktop if objects are put beyond the
edges of the screen.

4.2.1.4 Changing the Background
The Workplace Shell allows the user to specify a color or a bitmap to use for the
desktop background. Individual colors or bitmaps may also be chosen for any
folder in the system.

The desktop background is specified from the Background page of the desktop
Settings view. The user may specify one of the following:

• An Image uses a single bitmap to cover the entire desktop. The user has the
option to display:

A normal image, where the bitmap is displayed at its normal size, cen
tered on the desktop or folder

A tiled image, where the bitmap is repeated many times to cover the
entire desktop or folder

A scaled image, where the bitmap is stretched to cover the entire
desktop or folder.

• A color simply sets the entire desktop background to the required color.

A bitmap may be designed using various graphics packages, or may be standard
bitmap-format files obtained from other sources. A number of public bulletin
board services contain repositories of such bitmaps.

4.2.2 Objects On The Standard Desktop

36 OS/2 V2.0 Volume 3

In previous versions of OS/2 the icons represented applications, but in the
Workplace Shell they may represent both applications and objects. The appear
ance of an object can be either "general" or "personal."

The general appearance is usually inherited from the class to which the object
belongs. There is no way, short of programming, to change the class icons,
such as folders and data files, which are shipped with the Workplace Shell.
However, any icon can be individually changed, or "personalized," by the user.
Icons which have been changed are stored in the Extended Attributes of the
object.

When the user starts OS/2 V2.0, the following objects are visible on the desktop:

Printer This is the default printer attached to LPT1.

Shredder This deletes any object (icon) dropped on it.

Minimized Window Viewer
All minimized window's icons will be put into this folder for easy
access.

OS/2 System This folder contains the objects which allow the user to tailor
certain properties of the operating system, such as mouse char
acteristics, screen colors and fonts.

Start Here This provides the user with a quick overview of the system.
Details are found in the folder "Information."

Information Several objects containing information, like Tutorial and
Command Reference, are held in this folder.

Master index This object provides an index to all on-line documentation.

Templates The contents of this folder allow the user to create new files,
folders, programs and various other objects.

Drive A: This container contains a directory listing of the diskette in drive
A:.

Most data objects are presented to the user in folders, which act as containers
to logically group sets of objects. The objects within a folder may be rearranged
by the user, and objects may be moved or duplicated between folders, allowing
users to customize the desktop to suit their own working style. A user may place
commonly accessed objects onto the desktop itself to avoid having to open a
folder to access the required object. A typical example of a desktop is shown in
Figure 15 on page 39.

4.2.3 Objects And Views
An object may have several visual representations, depending upon the nature
of the user's interaction with the object. These representations (or views) can
be changed by the user in order to show a different view of the objects.
Figure 14 on page 38 shows two views of the objects on the desktop.

Cnapter 4. Workplace Shell Components 37

l Drive c - Tree View r"· .;mJI :::! Drives - lco ;mQ.i
i ~m····~--C: 13, 124 KB free, 61 i440 KB tot! fj1 fEj) ~~:~:~:;:~:

Drive C\OSl2 2.0 Desktop\OSl2 Sy:! .•. :: .. r.
1 Drive /1. Drive B Drr"a C 1---~-~--~~-.~.-----------J}

8 ··: · · ~ Drive c i

I
! I

I Q_.:::LJ i f--·d:J I SPOOL !

I
~o PMDDs

~ffi I] OS2
I
[--[] ddriver

E::IJ
Dr1veO

!· 1····:1

011vt1G

!· \ .. \:.1 !·.::.\·I

Drh.-e E Drive F

I· ,.,.:1, I !· ·•·'''·'
DriwH Duval

El .:.._...

.:..-- .
·
Drives

al Iree view It
1_c_r_e-at_e_!_h_a_d_o_w-.-.. -• ,Details view

111---------tONFIG.SYS File.ext
~indow

find ...
Sglect
~ort

Arrange
Chee~ disk ...
Format disk ...

+

+ PMTestAppiiC811on

-WAL'4866.TMP

i ~-:."~/

LG r;.:~;--~ OS/2 2.0 Desktop
· Close ,,

-""•"".J.•.••••,·~·rt~":!~:":"~!:"t::"!~~~~~'!:'.',!t•,.'.:P":llPP; ----·-----·-·-------""

j 1:,,-,:· ,,: jm f-l±l ~ Drives
I . ""
[-- Ji::t Drive A

~ ~ Windows Progr

I
[-- rGr) Templates
I

E:J Drive C - Details View Bii
lcor. Tr.le P.eelnei~e Size Last write dale Last write time L!9st cccess d

~ ~ "
OS/2 2 0 Desktop OS!2 2.0 Desktop 0 .11·2·92 710:'l6PM

[J ddriver ddriver 0 4·2-92 720:12PM

Ll 052 082 0 4·2-92 652:26PM

LJ PMDDs PMDDs 0 4·2-92 707:412PM

c:J SPOOL SPOOL 0 4·2·92 710:32PM

~ AEAr>ME AEAr>ME 76.743 3-30-92 1200:COPM

§ AUTOE~C8AT AlJT(JE~C8AT 300 4-2-9~ 704:14PM
. ~ .

f-8 lfliiWm
I I-- iiiQ Startup
I !
I l--1

[~ Filet<t Filat<t 23 4-6-92 438:36PM

~ KLONDIKE.IN! KLONOIKE.INI 20 4-6-92 730:54PM

L!:i OS2LDRMSG OS2LDRMSG 0.440 3-36-92 1200:00PM

I QJ PM Test Appliceli(PM Tasl Applicelion 23 4-6-92 439:20PM

[':I 'lllp3158 TV.P •t;lp315B TMP 4i .11-4-92 635:~6PM

~ n!l'¥i ''f'!i ~

Figure 14. Different Views of the Same Objects

4.2.4 Customizing The Workplace Shell Objects
The user may want to place the most frequently used objects in a way that is
most comfortable for him. Furthermore, the user may want to add or change
colors. Some of these requirements are supported on a global scale, others on
an individual object basis.

38 OS/2 V2.0 Volume 3

There are a few settings that are general to all applications. They can be found
within the 052 System folder under System Setup.

r!1 S stem Se tu .;..'··icon View ··. .,,~!!II

x
&

System Clock Keyboard Selective Install Mouse Device Driver Install

s D ~ •••• ••••• :::::
Migrate Applications Sound

ABC ••••• ••••• .
'

Scheme Palette Spooler

Figure 15. System Setup

4.2.4.1 Colors

System Countiy Font Palette Color Palette

A Color Palette and a Scheme Palette can be set for later use in modifying the
appearance of windows. Included in the Color Palette is the setting for the
border width. The information is stored in 082.INI and can be changed easily for
the whole system.

4.2.4.2 Font Palette
The palette of fonts available in the system can be changed by adding or
deleting fonts. Certain display attributes like underlining and bold display can be
set from here. Items can be dragged from the palette and dropped on the
desired object{s).

4.2.4.3 Mouse
Quite a number of settings are available to control the behavior of the mouse
buttons. Changing them, however, may cause trouble if more than one person is
using the system.

4.2.4.4 Keyboard
Timing, special needs {see Figure 16 on page 40) like sticky keys, and the
mapping of the function keys are defined in this selection.

Chapter 4. Workplace Shell Components 39

[Settings activation

i)On t!iOff

Keyboard response--___,

Acceptance delay

~fmJ

liming

Mappings

Settings time-out-------. Special Needs

General

Short

1060 Seconds

~l!l!J
~

Long

Short Long

Delay until repeat

~ml

Short

Repeat rate

Long

~[il!I

Slow Fast

Undo 11 llefault I I Help

ll!!l

Figure 16. Keyboard Settings Notebook

4.2.4.5 Sound
This variable can be used by an application to find out if beeps are generally
wanted. It does not stop an application from generating sound output.

4.2.4.6 Clock
The system clock can be displayed and various settings can be altered.

4.2.4.7 Country
The installation determines the settings like language group, keyboard, date and
time formats. They can be changed at any time.

4.2.5 Arranging Folders and Objects According to Tasks
The user is free to create folders for all kinds of purposes. The major reason for
folders is the organization of tasks. One folder may have all the objects in it
which are needed for word processing, another one may be related to book
keeping, and so on. The user opens only the folder that is needed at the time
and therefore the desktop can be kept tidy.

The user can "personalize" the folder for each task. For example, he can
change the icon to help him find the folder more quickly. He can also make the
folder into a work area; this tells the WPS to close any objects within the folder
when the folder is closed and reopen them automatically when the folder is next
opened.

40 OS/2 V2.0 Volume 3

... .. ··-· ,., ··:·

!UIJ ··· ••CJ :;i:,,:::: ct(
" ;()S~~rn) i}.~~1:$,-. '::: '/: :::,:f:~~~~i~~ . · Miniiliiisd , ...

Windcr~Viewet

~
Cl

OeScnbC1 ebWorct ~~essor
· C32- 11 V'er&1on1

Mt Letter to Hans

c:J

COREL - Icon View

c:J ' ~.INK CORELDRW.!NI CORELORW.EXE

Archived Dowmsnts Hans' Letter ID me

c:J
Redhook Proposal for 1993

Figure 17. Workplace with Objects

4.3 Workplace Shell Objects
There are three main classes of objects defined by CUA 91 and implemented in
the Workplace Shell:

• Device objects (such as printers and shredders)

• Container objects (such as folders and work areas)

• Data objects (such as files).

Each object is represented on the desktop by an icon.

Objects typically have a default action which is performed on other objects which
are dropped on the object. For example, a printer Is a device from the user's
perspective. However, it also is a container since it can queue several files. A
shredder is a device which deletes the objects dropped on it. A diskette is a
container which stores the objects dropped on it.

The objects found in the Workplace Shell are discussed in this section.

Chapter 4. Workplace Shell Components 41

4.3.1 Device Objects
Device objects have certain common behaviors; they perform some physical
action on an object dropped on them. Objects such as containers and data also
perform an action on the objects dropped on them, but the user does not
normally perceive a physical connection between the icon and a "real-world"
object.

4.3.2 Container Objects
As the name implies these objects are organizational helpers. As in an office, a
container holds the objects you are dealing with. They can store any WPS
object, including other containers. The standard container in the Workplace
Shell is the folder. A folder icon looks, by default, like a manila (cardboard)
folder. They are often "personalized" by the user or administrator for easier
identification on a cluttered desktop.

Container objects may be folders or work areas. Both types of containers
appear and behave in a similar manner; the user can copy or move an object
between any container, either folder or work area.

4.3.2.1 Folders
A folder can store and display any kind of Workplace Shell object, but it has a
"passive" nature. Even while objects can be opened or started from within a
folder, it just stores them and doesn't know anything about them.

4.3.2.2 Work Areas
In contrast to folders, a work area is not completely passive. If an object in a
work area has been opened with a different view and the work area is being
closed, all the "dependent" views will be closed too.

4.3.3 Data Objects

42 OS/2 V2.0 Volume 3

Data objects may be text files, drawings and spreadsheets. These are said to be
of different "types." The object type can be set by the user and is used in a
variety of operations such as sorting and assigning associations. Data objects
are associated with an "object handler"; this is a generic term for a program
that is used with the object.

When the user double clicks the mouse on the icon, the contents of the object
are displayed by the object handler in a window. When the window is closed,
the object handler saves its data and the location and state of the window for the
next time it is opened.

When an object is dragged to a container it is moved there. When it is dragged
to a device, the default action depends on the device; the contents are copied to
a printer or diskette, but moved to a shredder. When an object is dragged to
another data object, the result depends upon whether the target object knows
what to do with the object being dragged. To achieve this, there must be a com
munications protocol by which the objects may communicate with one another,
and an agreement on which commands are understood. These considerations
are discussed in Chapter 7, "Presentation Manager and Workplace Shell Appli
cation Development."

4.3.4 Reference Books
The Information folder contains the reference books that were selected during
the installation of OS/2 V2.0 and any other materials added later. The installa
tion process allows the user to select from:

• Command Reference

• REXX Reference

• Glossary.

4.3.5 Program References and Shadows

4.3.6 Drives

Many of the items a user works with are program references and shadow copies
of objects. This arrangement allows him to have objects in many places and still
use them as if the original was used. The Workplace Shell supports this concept
through various functions like drag and drop, menu selections and object set
tings. The user has to make sure that this support system is not violated
through copies and deletions from the command line or from a program.

The Drives icon opens to a view of all disk drives in the system; these are called
Drive icons. After "login,, to the LAN, any network drives assigned to the user
will also be shown here.

Drive icons are container objects which display the contents of the directories
available to the user. A Drive object represents the "disk partition,, and is,
therefore, an abstract, non-copyable object. When a Drive icon is opened, the
same Drive icon is seen within it; the difference is that the icon now represents
the root directory of that partition and is copyable. Thus a root folder can be
copied but a disk partition can't.

The following figure shows the drives icon and two drives folders, one before
and one after Login.

(8J Drives·- Icon View ;.,!

Drive A Drive 8 Drive C

I
I· ,,-,;-,:;;I I- ::::,;;; I !- :;;;;;;: I

Drive D Drive E Drive F Drive G

I ······ isP.
! Ia

I- ,;;;;;;-,-, I l~ ;-,-,,-,;::_~

Drive H Drive I Drive Z Drive R Drive J

Figure 18. Local Drives and LAN Drives

Directories contain, as before, data, programs and so on. Information pertaining
to some of the files may, however, be stored in the OS2.INI file as described in
Chapter 8, "Workplace Shell Implementation" on page 111. Copying or deleting
a file is therefore a non-trivial exercise for OS/2 V2.0 and should be done
through the Workplace Shell to ensure integrity. The folder mechanism allows
files to be moved and copied within the subdirectories of the main desktop direc
tory. The Drive icons provide the equivalent mechanism for all the directories
accessible to the user.

Chapter 4. Workplace Shell components 43

More information can be seen through the Settings view. This makes it easy for
the end user but harder for the administrator who now needs to understand
much more about how the system works.

The Drives folder is, partially, what the File Manager was in OS/2 Version 1.3.
The main differences stem from the object-oriented view which is different from
the hierarchical nature of the PM File Manager. The only hierarchy visible is in
the tree view of a drive or a folder.

"Sort" can be selected in both the details and icon views. The sort criteria here
are different from the purely filename-oriented view of the File Manager because
the extension of a filename has limited importance. The type of a file is deter
mined by either OS/2 V2.0 or by the user. It can then be used to sort the folder
contents.

For example, when "sort by type" is selected, all executable files are in one
group and are sorted by name within that group. This block can thus include
files with the extensions EXE, CMD and COM mixed within it.

The drives folders do not display only the files contained in a directory. They
also show any shadow copies or program references which may exist in the
folder associated with that directory. Folders are linked to subdirectories of the
main desktop directory. This information is stored in the 082.INI file, as
described in 8.5, "The 082.INI File" on page 126, and in the directory Extended
Attributes (EAs). This applies to both local objects on the workstation and
objects on the LAN drives used by the workstation.

4.3.7 The Shredder Object

44 OS/2 V2.0 Volume 3

The Workplace Shell includes a shredder object, which allows a user to easily
delete an object from the system. The shredder object is represented on the
desktop by an icon resembling a paper shredder, as shown in Figure 19 below.
An object can be deleted by dragging the object over the shredder icon and
dropping it there.

I~~
Shredder

Figure 19. Shredder Object With A Folder For Deletion

Objects may, of course, also be discarded by selecting the Delete option from
any File or Object Class pull-down menu.

4.3.8 Printer Objects
Within the Workplace Shell, each possible print object is represented as a sepa
rate printer icon. The print object is composed of the printer queue and the
ports serviced by that queue. However, the joint nature of the printer object is
not apparent to the end user, who sees only the printer object, both when
installing and when using a printer. This removes a major source of confusion
with previous versions of OS/2.

Each printer object has an object name and is represented on the desktop by an
icon. A user may direct objects to be printed by dragging and dropping the
required object over the printer object.

A printer object may be opened, and displays a window containing the name and
status of each print job currently in the queue, as shown in Figure 20. The user
may select any job and view information on that job, hold or release the job in
the queue, or discard the job from the queue. A printer object may be accessed
for drag and drop operations when opened, as well as in its closed icon state.

Text Processin - Icon Vi l~iJ.Q.;; :- : ..:tl Qpen [!I a 'J!J I .~tatus: 5 Job(s) - ~ocessing hel~,_.l::l_e_lp;.__ ____ r!I_·,

~ DeSc(~~:.-e~,~gessor ! ~ Create another r!I
~opy .. .
,Move .. .

WordPerfect 5.1 for \111\ndows My Let.erto Hons
RedbookProposalfor 1993 Income 1991

Create .5,hadow ...
J;2elete ...

!"I.
Cz::Q

~
l Income 1992
I

I .;._ ____________ __,

Cl
Archived Documents

CJ
Har.s' Letter to rne

+

PMChwt

+
Redhook Proposal for 1993

B Statistics - Icon View i·~ :: ;~ ,i

'* Ii • ~ CJ [] CJ
ObjecMs1on 1-2· 3 far OS/2 Cclculctor Lotus 1·2"3 VJ.1 • lnooma1991 =~m Taxes 1991

Figure 20. Job List View of Print Object

The printer object window includes a menu with items allowing the user to view
and alter properties of the printer object. Selecting an option from this menu
causes a notebook control to be displayed, allowing the following items to be
viewed or altered:

• Printer port used by the print object

• Name of the printer driver

• Printer options

• Queue options

• Network options

• Pooling options.

Chapter 4. Workplace Shell components 45

4.3.9 Templates

46 OS/2 V2.0 Volume 3

In order to create a new printer object, a user may select the Copy option which
creates a new printer object identical to the current printer object. The desired
properties may then be altered and the new object renamed to reflect the
changes. For example, the original may print "portrait, 11 but the copy can be
changed to print "landscape" on the same printer.

For more information on printing, refer to OS/2 Version 2.0 - Volume 5: Print
Subsystem.

A very important part of the object-oriented philosophy is that the user does not
load a program and subsequently create a file from the program. Instead, the
user works with objects he creates by "cloning" from an existing template. The
Workplace Shell allows the user to create unique templates for the different file
layouts and use them with the same application. This is discussed further in
6.9.3, "Setting up the Users Work Area" on page 87.

4.3.9.1 Contents after Installation of OS/2
The templates folder contains several common templates like data files, bit
maps, folders, and icons which can serve as models for the user's objects. A
template behaves like a pad of paper that you can drag a page off but the pad
never ends.

§J~§J§J
Printer Data File Foider Progrem Font pelette Color pelette Scheme pelette Bitmep BMP

~ ~ BJ
Pointer.PTA lcon.ICO Metafile.MET

Figure 21. Templates After Full Installation

4.3.9.2 Changes a User Can Make
Users can create an object from the template that comes closest to the type of
object that is needed. This object then can be modified to conform precisely to
the users' needs and made into a new template.

For example, a "data file 11 can be dragged from the data file template and put
into a work area. The file is then modified to the company memo layout and the
standard headings and text are entered. The modified object is then made into a
template from which new company memos can be created.

Ii Text Processin - Icon View ~~

iii
IBM 4029 (PPOS) Describe Word Processor

(32-bitVersionJ

WordPerfed 5.1 for Windows My Lettar to Hens Archived Documents Hans' Letter to Me

[:J tf [§J [§J
Redbook ProposeJ for 1993 PM Chart Redbook Layout Chart Templates

Figure 22. Example of a Folder With User Templates

The administrator has to make sure that the program that is intended to work
with this template has the appropriate association. Now, when an object has
been created from the template and has been named properly, a double click on
the object starts the program to work with that object. Figure 23 shows an
object derived from a user template with a cascaded menu showing the associ
ation with a program.

Temple.le tor ell my Letters IBM '1029 (PPDS)

'J1J ~ [:)
!ettings

vWordPerfect 5.1 for Windows
Des9f2~:e~!:n~essor WordPertect~.1 forWlndows MyL.eltertoHen Create another ~ ~

&opy ...
,Move ...

Arcllived Oocumems Redbook. Prcposel tcr 1993 PM Cnert Create .§hadow ...
Jlelete ...

Chert Temple.las
frint al

Figure 23. Example of a Menu Showing the Association

4.4 The LAN Independent Shell
The LAN Independent shell is part of OS/2 V2.0 and an integral part of the WPS.
If you have one or more requesters started in your CONFIG.SYS, an icon
appears on the desktop labelled Network. Opening the Network folder shows an
icon for each network type, such as LAN Server or Novell Netware**.

The objective of the LAN independent shell is make the use of LAN resources as
simple as possible while still giving users the information they require. There is
no longer any need for a user to switch to the full screen interface of the LAN
Requester to use LAN resources, they are now integrated into the Workplace
Shell

Chapter 4. Workplace Shell Components 47

Access to the LAN is provided by a series of folders:

• Network folder on the desktop

• LAN Server folder(s) controlling the access

• LAN Server(s) structure within the network.

The LAN independent shell is loaded into the Workplace Shell when the LAN
Requester is installed. The system indicates to the user that the LAN resources
are available by displaying the Network icon. Any folders that the user does not
have access to are not displayed.

The LAN Server folder settings show whether a server can be accessed with or
without "login ... Figure 24 shows the relationship of the Network and LAN Server
folders to the LAN servers and the available folders within them. The LAN folder
structure is similar to the structure on the user's own local disk.

II - : .. i LAN Server

11 Aliases for the Logon Domain -- g ITSC Boca Raton, LAN Server 1 I Files

d Home directory

El d Image Support Program Directory

(!) d OS/2 Device Drivers (EE 1.3) t d Home directory

-CJm
Cl BACKUP

Cl WORK

Cl TEMPLATE

[)TEMP

Figure 24. Tree View of the LAN Server

4.4.1 Using the LAN Independent Shell

48 OS/2 V2.0 Volume 3

Opening the LAN Server domain icon shows all the servers you are connected
to. However, you cannot open this folder until you are logged on. If you try to
open it before being logged on, you are prompted for a "user ID" and password
before this folder will be opened. Each server can then be opened to show the
network resources of either disks or printers. The Public Applications folder is
provided by the LAN Server and not the shell, hence it is just placed on the
desktop.

LAN disks behave just like local drives and the LAN printers behave like local
printers. You can drag any network objects onto your desktop to be used later
or the next time you start your machine; this saves going back to the network
folder. Note that this process creates shadow copies of these objects, not real
copies; these will be grayed out until the "login" is completed.

Now you have folders, files and printers that behave just like local objects. All
the standard shell operations of drag/drop, move, copy, shadow, opening and
settings are available. For example, you can associate a program on the
network with a data file on your local disk or network disk. The only restriction
is that if you do operations on a network disk that affect the contents of that disk.
then you need Read/Write (R/W) permission for that disk.

There is one aspect of the LAN independent shell which may appear as an
inconsistency to some users. While you can see any program and data files on
remote servers, you cannot see program references or shadow copies within the
server. This is due to the design of the Workplace Shell. The WPS only knows
about shadows and program reference objects stored in its own OS2.INI file.
The WPS on your system cannot read the OS2.INI file on another (remote)
system. Therefore any shadows or program references defined within that
remote system are rendered invisible to it.

For example, if a user could access the root drive of an OS/2 V2.0 LAN Server,
he could use Drives to view the desktop structure on that system. However, the
System Setup folder would appear to be empty. This is because the objects
stored in that folder are program references, that is, they are pointers to pro
grams in the OS2.INI file on the server.

See Chapter 8, "Workplace Shell Implementation 11 on page 111 for a detailed
explanation of how Workplace Shell objects are implemented.

4.4.2 Main Functions
The LAN independent shell allows you to move or shadow the Network folder in
any other folder. It has the following functions and features:

• Ability to access multiple networks at the same time

IBM LAN Server requester for 2.0 (requires a LAN Server Version 1.3 or
2.0)
Novell Netware requester for 2.0 (requires a Novell Netware Version 2.2,
3.10 or 3.11 server).

• Ability to login/logout to networks/servers or resources through the WPS

The appropriate login dialog is displayed (if necessary) before a network
object can be accessed
This is also available from the login/logout context menu items.

• Ability to browse available servers and resources on the LAN

Resources are either shared disks or shared printers
- To open a resource, double click on the network or server icons

required.

• Resources can be moved onto the desktop (or any folder) for easy, conven
ient use both now and later. This Information is not affected by the system
initial program load (IPL).

Chapter 4. Workplace Shell components 49

Servers and shared disks can be shadowed into any folder including the
desktop
Shared printers can be moved, copied or shadowed into any folder
including the desktop.

• Seamless access to network folders and files

Disk resources can be opened to show folders and files (which behave
just like those in the regular shell). The user can use programs or data
files from this network disk.
Some applications may not be able to accept the universal naming con
vention (LINC) filenames provided by the server, such as
\ \SERVER\DISK\MYFI LE.DAT.

• Seamless access to network printers

Printer resources can be opened to show queued jobs and job status
Printer configuration automatically is set up on the requester's system
(the user only needs to install a printer driver as required)
The user can only manipulate (hold, release or delete) his own jobs
The administrator can manipulate all jobs and hold or release the
printer.

• Network printers can be defined to be the default printer

No need for users to have local printers defined. If you use the COPY
command to print to a Novell server by assigning a port, you must
ensure you use the port name \DEV\LPT rather than just LPTn, where n
takes a value between 4 and 9.

• A drive letter or port name can be assigned to a network disk or printer.

Disks with assigned letters (for example X:) appear in the Drives folder
Most applications are not network aware and cannot be run from a LINC
path (use the "assign drive" context menu item instead).

4.4.3 LAN Server and Novell Netware Support

50 OS/2 V2.0 Volume 3

In order to run both LAN Server and Netware requesters in the same machine
the following configuration file changes are required:

C:\CONFIG.SYS ensure DEVICE and RUN statements are in correct
order

C:\NETWARE\NET.CFG use the correct protocol bindings for Novell

C:\IBMCOM\PROTOCOL.INI use the correct protocol bindings for LAN Server.

The COEXIST.TXT file that is shipped with the Novell requester provides more
information on this.

4.4.3.1 APls for the LAN Independent Shell
The LAN Independent API is currently supported by Novell Netware and IBM LAN
Server.

4.5 Summary
This chapter discussed many characteristics of the Workplace Shell, including
the main WPS objects, the LAN independent shell objects and how they are com
bined to provide a comprehensive and consistent user interface.

There are three main classes of objects within the Workplace Shell: devices,
containers and data objects. Within each class there are many types or "sub
classes,, which have specific features to enable them to perform specialized
functions. For example, both folders and work areas are a type of container but
work areas have a unique characteristic of being able to close any programs
which were started from them when the work area is closed.

LAN integration in OS/2 V2.0 is now much easier, thanks to the LAN independent
shell. Access to LAN resources is seamless, and objects can be accessed on
the LAN, and then acted on, as if they were local objects. Several new icons,
such as the Network folder, are placed on the desktop when LAN support is
installed.

Chapter 4. Workplace Shell Components 51

52 OS/2 V2.0 Volume 3

Chapter 5. Using the Workplace Shell

To use the Workplace Shell (WPS) a user must understand the topics covered
below. The user must know how to select an object. how to open a view (or
window) of that object. and how to perform some basic actions on that object,
such as printing. copying. creating, tailoring, and deleting.

Most importantly, however. the user must start thinking about objects instead of
applications. The metaphor be~ind the Workplace Shell is data-centric rather
than application-centric. Once the object/data is found. the operating system
does the rest. Some of the navigation and operation can be done using the key
board but it is almost impossible to work without a mouse.

5.1 WPS Navigation and Techniques

5.1.1 Mouse

5.1.2 Keyboard

This section discusses the main techniques used to navigate around the
Workplace Shell. The WPS supports user interaction through both mouse and
keyboard although it should be stressed that the WPS focus on direct manipu
lation makes it much easier to use OS/2 V2.0 with a mouse than from the key
board.

Many actions can be performed upon an object simply by using the mouse.
Table 1 provides a list of the main shell functions which can be activated using a
mouse.

Function Mouse Button - Action

Select mb1 - Click

Open icon to window mb1 - Double-click

Context (pop-up) menu mb2 - Click

Edit icon description Alt - Down plus select

Drag mb2 - Down on source

Drop mb2 - Up on target

Drag and drop mb2 - Down then mb2 - Up

Create on drag Ctrl -Down plus drag and drop

Create shadow Ctrl - Down plus Shift - Down plus drag and drop

Change desktop scheme Alt - Down plus drag and drop

Window Ust mb1 plus mb2 - Click simultaneously

Table 1. Mouse Button Settings. mb1 mouse button 1, mb2 = mouse button 2

Note: To click simultaneously on mb1 plus mb2 is called "chording"

Though the graphical interface encourages the use of a mouse. the keyboard is
still the main data entry device. Once much of the work is done using the key
board in applications like word processing the user may find the keyboard much
faster and easier to use than the mouse.

@Copyright IBM Corp. 1992 53

Besides the convenience aspect, some users may have a special need to
operate OS/2 from the keyboard. This may be helpful for handicapped people or
in a certain environment where two or more keys cannot be depressed at the
same time. This is supported by the so-called sticky keys. The sticky keys allow
the use of several keys in a sequence instead of pressing them at the same
time.

Take, for example, a user who needs to press Alt+ FS. With the sticky keys that
can be done using one hand and pressing the keys sequentially within a time
frame which can be set in the System Setup function.

5.1.3 Accelerators
CUA recommends that applications are written with both mouse and keyboard
use in mind. To facilitate this, menus should be accessible through accelerators.
Accelerators allow the user to access menus by depressing combinations of
keys, usually Alt plus some letter. They also permit selection of a choice from a
menu by a single letter.

This does not necessarily work in applications that use those key combinations
themselves. If, for instance, a menu provides "file" in a menu, then the capital
F cannot be used within the application for a function like "Find." In those cases
either the key combinations in the application have to be modified (often pos
sible in a profile) or the mouse or function keys have to be used. Please note
that uppercase and lowercase characters may be treated differently. This is one
of the reasons why CUA demands that applications respect a number of defi
nitions, for example F1 =HELP.

5.1.4 Object Manipulation Techniques

54 OS/2 V2.0 Volume 3

Any movement of the mouse or any key causes some message that usually
results in some selection or manipulation. Manipulation can be a copy, a
change in appearance, an activation, or some other form of action.

5.1.4.1 Traditional Approach
Though the move from the command-line interface to the full-screen interface
(with or without drop-down menus) changed the way of operation to an object
action sequence of work, the Workplace Shell is even more different.

Let's take two examples.

1. Copy a file. This involves:

• Marking a file

• Activating a menu or function key

• Naming the destination

• Performing the operation

• Updating references, profiles, paths, and other related data.

2. Change colors. This requires the user to:

• Select a function from a menu

• Define the appearance of the screen or window

• Activate the changes for the whole application.

5.1.4.2 Drag and Drop
The most obvious way to act on an object is by dragging and dropping its icon
using mouse button 2, sometimes called "direct manipulation." The user presses
mouse button 1 to select objects and mouse button 2 to drag and drop them.
The user simply moves the cursor to the object to be manipulated, depresses
mouse button 2 to start the drag, holds the mouse button down while moving the
cursor to the target, then releases mouse button 2 to drop the object.

Using drag and drop to perform the same actions described above takes just a
few simple steps in OS/2 V2.0:

1. Copy a file:

• Make the file to be copied visible

• Make the destination visible

• Point with the mouse at the file object, depress mouse button 2 and drag
the object to the destination

• Drop the object.

OS/2 does almost all changes to related data for you, such as changing
information about a shadow copy. Some information, like a changed path,
has to be updated manually.

2. Change colors

• Display the color palette or the scheme palette

• Display the object to be colored

• Drag the color icon or the scheme icon to the object and drop it.

The coloring can be done on an object basis or on an application basis.

If an icon is dragged to a printer, the contents of the object are printed. If the
object is a file, then the file's contents are printed; if it is a folder, then a list of
the folder's contents is produced. In the same way, dropping an icon on the
shredder deletes the object, while dropping it on a folder, workplace or diskette
moves it into that object.

The concept of direct manipulation implies that certain types of objects may be
dropped in certain locations. For example, a printer object cannot be dropped
over another printer object, since it is logically impossible to print a printer. It is
therefore necessary to provide some form of indication as to whether a 11 drop" is
allowed on a particular object.

This is done visually, by altering the appearance of the icon representing the
object being dragged, whenever a drop operation is not permitted. When the
icon is moved over an object or location where a drop is permitted, the destina
tion object shows a box around it. However, this does not mean that the target
object will actually be able to correctly handle the object to be dropped.

As some of the functions cannot be done with just the two mouse buttons it may
be necessary to use the Alt-, the Ctrl- or the Shift-key as a modifier. For
example, depressing the Ctrl-key when dragging an object causes a copy
instead of a move operation.

This is discussed in more detail in Chapter 7, 11 Presentation Manager and
Workplace Shell Application Development" and Chapter 8, "Workplace Snell
Implementation. 11

Chapter 5. Using the Workplace Shell 55

5.2 Basic Operation of the Workplace Shell
This section describes how to perform some of the basic tasks available to
Workplace Shell users.

5.2.1 Accessing a Context Menu
All objects have a context menu which is activated by pointing at the object and
depressing mouse button 2 (this is also known as "popping up" a menu). These
menus are contextual because the content depends on the capabilities of the
individual object. They can often be extended by the user so new functions can
be added to the object.

Usually these context menus reflect the capabilities of a single object. One has
to be careful when selecting several objects and then activating the context
menu of one of the objects. This menu then shows only those choices which
pertain to all of the selected objects.

5.2.2 Opening a Window
The user may view the contents of an object by double-clicking on the Icon. Two
things then happen: the icon background changes to inform the user that it is
open. and a window appears with the contents displayed. Most objects also
support different views; for example. a folder may have a Details view, an Icon
view and a Settings view where the user may customize certain features.

A window in OS/2 V2.0 looks almost like any window in OS/2 Version 1.3, except
that there is a different icon (called the small icon. mini-icon or title-bar icon)
instead of the system menu icon. This aids visual association of the icon with
the object on the part of the end user. This icon does not, however, support the
same drag and drop actions that can be performed by using the icon on the
desktop. The "old" minimize button has been replaced with a choice of a new
minimize button (a small square) or a "hide" button. The maximize button is
now a large square.

The user may also open a window by using its context menu; this menu is trig
gered by clicking mouse button 2. The user may then select the Open choice
from the menu.

Qpen
!::!elp

Create another ~

~opy •••
Move .••
Create .§.hadow •••

O en ~-Iv ~~!!j-~g~ _J
Help [!I

, Delete •••

[~ Move •••
Create shadow ••• :.e find ... "'· - -.,"""--'=--------~ ~- - - ,,'------==-------'

Information Shreddef

Figure 25. Different Objects· Different Functions

56 OS/2 V2.0 Volume 3

This results in a cascaded menu being displayed. In the case of a folder the
user can typically choose to look at the Settings, Details or Contents view of the
object. This is an important characteristic of the Workplace Shell; the ability to
work with different views of the same object helps the user to look beyond the
windows and icons on the desktop to see the underlying objects and their
relationships to real-world objects.

The Details view looks similar to the OS/2 Version 1.3 File Managers list style.
The Icon view is used by folders to show the objects inside them. All objects
have a Settings view which is used to change the objects' properties.

5.2.3 Finding Open Windows
With Presentation Manager under previous versions of OS/2, when a window
was minimized it would be shrunk to an icon and placed on the desktop. The
user could restore the window either by double-clicking mouse button 1 on its
icon, or by using the Task List. When the window was restored, the icon disap
peared from the desktop and was replaced by the window.

Under the Workplace Shell, when the user opens an object its icon remains on
the desktop, but its background changes to show that it is open. When the user
closes a window, the icon background changes to show that there is no longer
an open window.

If the window is minimized, the window disappears but the icon background does
not change; this shows that. the window is still open but has simply been
"hidden." The system settings allow the user to choose between "hiding" and
"minimizing" a window. There are a further two options for the minimize func
tion.

The first minimize option puts a Minimized Window folder on the desktop so that
users can access any minimized windows from it, while the second puts the min
imized windows directly on the desktop. This latter approach is more compat
ible with OS/2 Version 1.3 but may prove confusing to users.

The Workplace Shell has replaced the Presentation Manager Task List with a
Window List. The Window List represents all objects which are currently open or
active, and allows the user to find and restore windows which are open but
hidden. The Window List can be accessed at any time by chording the mouse
buttons over the desktop. Subsequent selection of a single line with mouse
button 1 and opening of the context menu with mouse button 2 offers various
choices to select the desired view of the object.

5.2.4 Creating A New Object
To create a new object, the user can either use a template or simply make a
copy of an existing object and change it. Templates may be regarded as pads of
blank forms; the user simply "peels off'' a new instance of an object such as a
folder. The Workplace Shell creates a new icon of the requested type, which the
user can then customize using the Settings view.

To make a copy of an existing object, the user may either bring up a context
menu and select the Copy choice from it, or use the Create-on-drag function by
holding down the control key while dragging the icon to the required destination.

Chapter 5. Using the Workplace Shell 57

5.2.5 Creating a Shadow Object
An interesting new feature is the ability to make shadow copies of existing
objects which can be placed in different folders or locations. These shadow
copies are linked to the original so that no matter which copy is changed, all
copies are automatically updated. Links between shadow objects are automat
ically maintained by the Workplace Shell. These links are sometimes referred to
as reference links.

The user may create a shadow copy from the icon's context menu or by holding
down the Ctrl and Shift keys while dragging the icon to the required destination.
If a shadow is created in this way, the system draws a line between the original
and the shadow until the icon is released, so that the user knows that a shadow
copy, rather than a 11 normal" copy, is being created.

Program files should not be 11 shadowed" to a folder on the desktop. Instead, a
new reference for that program should be created within that folder. This is
done by opening the Templates folder and dragging a program object to the
folder you wish to run the application from. This is described In the online refer
ence documentation.

Using a program reference to the executable (.EXE) file means that, when the
user direct edits (Alt-mouse button 1) the icon description, he will not change the
name of the executable file. Changing the filename could significantly confuse
the Workplace Shell. This is also described in 6.3.2, "Shadow Copies of
Programs" on page 73.

5.2.6 Deleting and Undeleting an Object

5.2.7 Printing

58 OS/2 V2.0 Volume 3

Almost any object can be deleted by either dropping it on the shredder or by
selecting Delete... from the object's context menu. As in previous versions of
OS/2, files and directories can be deleted from a command line.

To help the user recover from accidentally deleting files from a command
prompt, OS/2 can set up a special Delete directory on each logical drive. Each
deleted file will be put into this directory until a user-specified size is reached.
Only then will the files really be deleted from the disk. This will be done in a
FIFO (First In, First Out) sequence.

Files can be recovered easily if they are still in the DELETE directory by just
copying them back to where they were. If a file is already erased from the
DELETE directory it may still be recoverable with the UNDELETE command.

The user wants to print specific types of output in an appropriate manner on the
right paper. So it should not matter to him how the system gets this done. All
that is important is that the output is directed to some object that subsequently
produces the desired printout. Therefore the concept of logical printers in a print
manager was changed to the concept of printer objects.

A printer object represents a certain arrangement of hardware. software, and
specifications that are made to simplify the printing for the user. So, if printing is
needed on three different sizes or types of paper then there will be three dif
ferent printer objects, each for one specific type of output.

5.2.7 .1 Local OS/2 Printing
For local printing everything is installed on the individual workstation and there
fore it is simple to install a printer and the driver for it. Other printer objects
directing different output to the same printer can be quickly created using the
Workplace Shell.

5.2.7 .2 Printing from DOS Programs
The term DOS Printing refers to two different types of printing:

1. Printing from an OS/2 session with DOS-like commands (that is, PRINT,
TYPE, PrtScrn)

2. Printing from DOS applications using DOS device drivers.

As DOS printing does not happen from the Workplace Shell there are also no
icons to represent any destinations. This also means that these functions are
done in the traditional way by setting up a printer from within applications.

DOS Programs are discussed in detail in OS/2 Version 2.0 - Volume 2: DOS and
Windows Environment.

5.2.7 .3 Remote Printing
The process of remote printing can become a little bit more complicated
because the setup for the destination printer is done on the print server. For the
local user, printer objects have to be created that reflect the functions on the
server. In addition, the local printer object has to indicate the status of the
remote printer.

Printing is described in more detail in OS/2 Version 2.0 - Volume 5: Print Sub
system.

5.2.8 Creating a Startup Environment
In many cases a special setup for users is required. This setup can be created
easily by putting shadows of programs to be run (for instance Communications
Manager) into the Startup folder. This folder is opened when the operating
system is initially loaded (known as .. initial program load" - IPL - or "boot") and
the applications in it are then started.

Though a shutdown remembers the running applications and restarts them after
booting the system there is still a need for the Startup folder. Shutdown only
remembers what was running at the time, whereas the Startup folder has a fixed
set of applications to start no matter if they were running at shutdown or not.

5.2.8.1 Startup Folder Sequence
It is also possible to order items in the Startup folder. First, display the folder
using an ordered view (that is, anything except icon view non-grid). Then drag
items into the folder in the required order. This can be useful for programs
which are dependent on others being started before they are started.

Chapter 5. Using the Workplace Shell 59

5.3 Advanced Operation of the Workplace Shell
This section describes how to perform more advanced tasks for Workplace Shell
users.

5.3.1 Changing the Characteristics of an Object
The Settings view for an object can be used to change characteristics such as
color, font and icon bitmap, as well as other application-specific properties such
as use of a menu bar or a context menu.

The user may also change some attributes such as color and font by opening the
color and font dialogs in the OS/2 System folder and dragging the desired color
or font to the object. If the color or font is dragged to the Templates folder, then
the default settings are altered for all new objects created from the templates.

As well as allowing the user to change the attributes of an object to be different
from its parent, it also allows him to undo this so that the object inherits from its
parent again. For example, if a color scheme is dropped on a folder, that folder
will differ from the desktop. If a different scheme is then dropped onto the
desktop via Alt-drag, that folder's attributes do not change.

To get the folder to forget its color settings and inherit the desktop color scheme
again, just drag the same scheme that was used for the desktop onto the folder
with Alt-drag, that is, the same mechanism that was used to set the desktop
colors. The folder will release its presentation parameters and accept the
system default parameters which have been dragged to it. Any future changes
to the desktop color settings will now be inherited by that folder.

5.3.2 Modifying the Context Menu of an Object

60 OS/2 V2.0 Volume 3

The experienced user may be able to add items to the context menus of selected
objects. The procedure is basically the same for any kind of object. It is
described here using the desktop menu. This is how the menu looks after the
modification:

.Qpen ~
Refresh
Hel i+

Create .§hadow ...

,Lockup now
Shut .Qown ...

find ...
Sglect +
~ort ~
Arrange

OSl2 Window
SPF/2 Editor ~
DOS Window

Figure 26. Expanded Desktop Menu

Help index
..,..General help
·usin hel
Keys help

froduct information

All the modifications are made through the Settings view of the object. For the
desktop, this is accessed by clicking mouse button 2 on the desktop background.

E'a Menu Item Settings

~enu item name: losri Window

rProgram------------

Name: lcMD.EXEI

Find program ...

.___o_k_ .. I I Cancel Help

Figure 27. Setup of an Expanded Menu

The following sequence will add "OS/2 Window 11 to the context menu of the
desktop. When this choice is selected, an OS/2 Window Session will be started.

Step 1. In the upper part of the notebook page ("Available menus") select
11 Primary pop-up menu."

Step 2. In the lower part of the page ("Actions on menu"). select the "~reate
another ... " option. This will bring up the window shown in Figure 27.

Step 3. Enter "OS/2 Window" in the "Menu item name" entry field.

Step 4. Enter CMD.EXE in the "Program name" entry field.

Step 5. Close the "Settings" menu.

Step 6. Activate the menu and the newly added entry to verify that it was suc
cessful.

If the "Create another 11 choice under "Available menus" is selected then a
further choice of "Cascade" or "Conditional cascade" is used to determine
whether a secondary menu will be displayed.

1. Cascade means that the new entry will have a cascaded menu. This is indi
cated by an arrow.

2. Conditional cascade means that there will be a cascaded menu with a default
selection. This is indicated by a button with an arrow.

5.3.3 Changing the Default View on "Open"
The Workplace Shell allows users to change the default view of an object (that
is, the view that opens when it is double clicked on). The "Open" entry in a
primary menu is usually the only one that allows additions because it is
application-oriented. Once "Open" or one of the added entries is selected, the
cascaded menu of this entry is addressed by the lower part of the notebook
page. Here the actual program names have to be entered under "Actions on
menu." After entries have been made here it is recommended that an existing
choice be selected as the default option.

Chapter 5. Using the Workplace Shell 61

For example, a user might want to change the Drive folder and objects so that
the default view is "Details" instead of "Icons." The following steps are used:

Step 1. Open the Settings view and go to the "Menu" page. This page con
tains "Primary pop-up menu" and "Open" headings.

Step 2. Select "Open," then press the adjacent "Settings" button.

Step 3. Select the cascade arrow next to 11 Default action," then pick the new
default view you want to use when you subsequently double click on
the icon.

Step 4. Click on the 110K" push button.

Step 5. Close the Settings view.

5.3.4 Changing the Icon for an Object
The Workplace Shell makes it easy to customize the appearance of the objects
the user needs to use. The icon description can be changed by selecting it with
11 Alt-mouse button 1" or the icon and its text can both be changed from its Set
tings view.

The "General'' page of the objects Settings view gives you two ways to change
the icon: Find and Edit. Find lets the user choose a new icon from those already
created. Edit starts the icon editor to let you work with the icon; this can be
used to modify the existing icon or to work with a different one.

Please note that you must take care to edit the icon belonging to your particular
11 device"; that is, 32x32 and 16x16 icons for VGA/EGA, 40x40 and 20x20 for higher
resolutions. The "Device pull-down in the menu bar of the icon editor will let
you do this.

The Icon Editor is very flexible. A user can:

• Paste in a new icon from the clipboard, providing it was placed on the clip
board before the Edit action was started

• Use the icon editor menu bar to:

1. Select "Open ... " to choose a new icon
2. Select "Save as ... " to save it under the original filename for the old icon

that was first loaded into the icon editor (this is usually x:\OS2\WP!n.ICO,
where n is a number).

When you have finished, close the window and respond "yes" to the prompt to
save the changes.

5.3.5 Associating an Object with a Program

62 OS/2 V2.0 Volume 3

There are three ways to set up a data file object so that a program is started
when the user double clicks on the data file icon. These are:

1. Create a Filename association in the program settings
2. Create a Type association in the data file settings
3. Make the program name the default setting in the "Open" cascade menu for

the data file.

An association is a special link which can be assigned to a program object. This
link allows the user to specify which program will be invoked when the user

double clicks on specified types of flies, individual flies, or flies described by a
global file name.

5.3.5.1 Fiiename Association In a Program
The major disadvantages of this approach are that it provides little flexibility to
the user and it is not very robust. Any association is easily destroyed by
changing the file extension and it is therefore only recommended for programs
which do not support associations by "Type. 11

The inflexibility of this method can be seen when a user subsequently wants to
use a different program with his data file. To do this, he will have to either
change the filename or add a new program to the "Open" menu and make it the
default. Neither approach is suitable for the inexperienced user.

A text editor may, for example, have associations for plain text files (that is, a
type of file), the individual file CONFIG.SYS, and all files described with the
global name READ*.*. Whenever a file object that meets these criteria is
selected with a double click, OS/2 will start the appropriate program object. The
workings of the association mechanism are described in Chapter 8, "Workplace
Shell Implementation."

There are some editing strings for filenames and extensions that can be used
with associations to allow parameters to be passed without having to fully
specify the qualified filename {or parts of it):

%* Fully qualified path

%%*P

o/o o/o *D

o/o o/o *N

o/o o/o*F

%%*E

Path with last backslash

Drive with : or UNC name

Name without extension

Name with extension

Extension without period.

5.3.5.2 Type Association In a Data Fiie
This is the preferred approach. It is described in more detail in Chapter 7,
"Presentation Manager and Workplace Shell Application Development" and
Chapter 8, 'Workplace Shell Implementation. 11 The advantage of this approach is
that it is easy for a user to use a different program with his object, simply by
choosing a new "Type" in the Settings view. The process is simple:

Step 1. Open the Settings view for the object

Step 2. Select the "Type" page of the notebook

Step 3. Select from the list of "Available types"

Step 4. Press the "Add" button

Step 5. Close the Settings window.

Each program can be associated with a "Type" but, in practice, not all are. DOS
programs are very unlikely to support the concept of file type associations. It
will, therefore, probably be necessary to use the filename association technique
for such flies.

If a program does not set a file type, the user can create a new one. This is
described in 6.8.5, "Adding New File Types 11 on page 84.

Chapter 5. Using the Workplace Shell 63

5.3.5.3 Add a Default Program to the Fiie Menu
The process to do this is described in 5.3.2, 11 Modifying the Context Menu of an
Object" on page 60 and 5.3.3, 11 Changing the Default View on "Open"" on
page 61. This approach is limited to users who understand the workings of the
Workplace Shell in some detail. Its main disadvantage is found when many
existing files must be set up to use a particular program; each one must be mod
ified separately. Under these circumstances the filename association would be
preferred.

If you are setting up a system for a new user, however, you can create one data
file with the program set as the default on "Open" in the context menu, then
make that file into a template so all new files subsequently created from it will
inherit this attribute.

5.4 Giving OS/2 V2.0 the Look and Feel of OS/2 Version 1.3

64 OS/2 V2.0 Volume 3

Users of earlier versions of OS/2 or of Microsoft Windows may not feel entirely at
home when they first start the system. The graphical user interface (GUI) they
are familiar with has been replaced by an object-oriented user interface {OOUI)
which, while providing a clear, logical layout is very different. In general, if a
user thinks about objects rather than programs, he will find it much easier to
learn to use the WPS interface to its full extent.

One of the big differences is that previously a user could start a new application,
browse through the menus and scan the possible choices. This way it was fast
and fairly easy to grasp the various functions of a program. With the Workplace
Shell, however, many functions are not program-specific functions any more but
general capabilities of almost all objects. It also means that certain functions
are not needed any more in menus; they just exist as OS/2 functions. For
example, the choice of a color or a font does not need to be in the menus of
each program, the System Setup folder provide all the choices the user needs.

If a user prefers the style of OS/2 Version 1.3 he can customize the system
through the use of the .RC files that come with the installation diskettes. The
procedure is fairly simple and can be done after the completion of a normal
installation:

Step 1. Boot the system from the "Installation" diskette

Step 2. Use diskette 1 as directed

Step 3. Exit from the 11 Welcome" screen

Step 4. Change drive and current directory to C:\OS2

Step 5. Modify OS2.INI with the command:

MAKEINI 052.INI 052_13.RC

Step 6. Restart the system.

If you want to change back just follow the same procedure but make the OS2.INI
modification with the command:

MAKEINI 052.INI 052_20.RC

You should note, however, that the MAKEINI command generates a new OS2.INI
file from the resource files which were shipped with the system. This means that
the OS2.INI file is restored to the same state as when OS/2 V2.0 was first

5.5 Summary

installed and any customization performed by the user, either to the Workplace
Shell or the PM 1.3 shell, will be lost.

This chapter discussed many of the techniques supported by the Workplace
Shell.

The primary navigation techniques which let the user work with those objects
are slightly different from those used by Presentation Manager V1.3, but are at
the same time more consistent. The emphasis on direct manipulation helps
provide much of this enhanced consistency but enforces the need for a user to
have a mouse if he is to perform many basic tasks.

The new WPS objects and techniques offer greatly increased flexibility for organ
izing work to suit the user. These objects can be rearranged to provide new
ways of doing the kinds of activities most users are familiar with. In particular,
direct manipulation allows users to perform activities with greater ease, and
better feedback, than before.

The Workplace Shell makes OS/2 V2.0 much easier to "personalize" than pre
vious versions of OS/2. Users can easily change one object, the whole system
and even the menus of individual items. The shell can even be made to look like
OS/2 Version 1.3 to suit the preferences of those users who are not yet ready to
tackle an object-oriented user interface.

Chapter 5. Using the Workplace Shell 65

66 OS/2 V2.0 Volume 3 ·

Chapter 6. Installing and Supporting the Workplace Shell

This chapter discusses the issues associated with installing a system as
complex and flexible as OS/2 V2.0. This is not a trivial topic; we must balance
the needs of the user for a productive work environment with those of the admin
istrator to be able to support him if problems arise. This requires careful man
agement.

Among the many things an administrator must consider are:

• Allocating disk space

• Setting up programs and files

• Problem determination and resolution

• Backup procedures

• Use of a LAN from the Workplace Shell

• System performance

• Installing application programs.

This chapter offers some guidance on these and other matters related to the
installation, configuration and management of systems which include the
Workplace Shell. It also includes an illustration of how the system might be set
up for a particular user on his specific hardware configuration.

6.1 Allocating Disk Space
In this section we discuss how the effectiveness of the Workplace Shell may be
affected by such considerations as:

• Disk partitions

• Choice of file system (HPFS versus FAT)

• Location of the OS/2 desktop directory

• Program set up

• Placement of data and program files

• DOS programs.

6.1.1 Partitioning the Disk for OS/2 with the Workplace Shell
A commonly asked question is "Is it more convenient to have one large disk par
tition than several smaller ones?" We do not believe that single disk partitions
are the correct approach for OS/2 V2.0 workstations.

Single partitions have certain advantages. They optimize the use of available
disk space because both the operating system and applications can use what
they need while not leaving unused space in the respective partitions.

They are also simpler to set up. There can be logistical problems with multiple
partitions, such as allocating enough space for dynamic system files such as the
desktop, the SWAPPER.DAT and print spooler.

On the other hand, there are several disadvantages to the single partition
approach.

© Copyright I BM Corp. 1992 67

• Multiple partitions let you keep system and user files separate so that the
system partition can be re-formatted if necessary. This can be very impor
tant when planning to install a CSD or a new version of the operating
system.

• Performance can be impaired when a partition contains lots of directories.
For example, opening a tree view can take a long time on a large disk.

• Support for multiple operating systems or versions of the same operating
system requires multiple partitions to be manageable.

6.1.2 HPFS or FAT Format?

68 05/2 V2.0 Volume 3

The Workplace Shell introduces several new reasons for choosing the High Per
formance File System (HPFS) instead of the File Allocation Table (FAT) format for
your most heavily used disks and partitions. The main ones are:

6.1.2.1 Performance
Although the FAT file system is much faster in OS/2 V2.0 than it was in OS/2
Version 1.3, there are still areas where HPFS is faster. One major advantage is
the reduction of disk fragmentation, discussed below. Another is the perform
ance when reading large files; the "EA_DATA. SF" file on a FAT file system can
exceed 600 KB, which could impair the performance of instantiating
WPFileSystem objects.

6.1.2.2 Fragmentation
Since the WPS encourages users to move files around and create new folders
(directories), the file system is more heavily used than it would be under DOS.
Past experiences with heavily used DOS workstations and LAN Servers leads us
to feel there is a distinct possibility that fragmentation will cause performance
problems on FAT-based disks.

6.1.2.3 Use of Extended Attributes
Since Extended Attributes (EAs) are used extensively by all directories and files
within the desktop structure, there are important considerations for file transfer
between the different file systems. These EAs store settings information, such
as file type, without which the system cannot function properly.· In general, we
recommend installing a common file system on all machines to prevent potential
problems with lost EAs. EAs are discussed more fully in 6.2.1, 11Extended
Attributes" on page 70 and 8.4, "Extended Attributes" on page 124.

6.1.2.4 Long Filenames
The WPS allows a user to rename a file by editing the icon description. On
HPFS, this name will be stored as it is typed, including spaces. On FAT,
however, the name is truncated by removing vowels. Not only might this cause
problems with duplicate filenames, it also introduces an inconsistency between
what the user sees in a folder and in drives which would not otherwise occur
with HPFS.

6.1.2.5 Support for Multiple Operating Systems
Multiple operating systems may be required by some users. This would lead to
the user installing different file systems on the various partitions to support the
different operating systems. For example, a user might need to be able to boot
from DOS occasionally, to run programs that don't work in a VDM. To do this he
could format the C: partition as HPFS, for OS/2 V2.0, and the D: partition as FAT,
for DOS.

6.1.3 Keeping the Desktop Separate from the System
When OS/2 is installed it sets up a directory called 05!2 2.0 Desktop on the boot
drive. corresponding to the desktop work area. In this directory it installs some
default objects for the user which the user can work with to subsequently create
new folders and other objects for himself.

The result is that user files are created on the same partition as the operating
system. Many users would prefer to keep their data and programs in a separate
partition from the operating systems, in case they have to format their partition
to install a new release of the operating system.

Fortunately, it is possible to move the desktop to another drive or partition.
though this can only be done after installation - the OS/2 install program always
puts it on the boot partition. The process to do this is simply:

Step 1. Open the Drives object

Step 2. Open a view of the drive on which the desktop currently resides

Step 3. Drag the "OS!2 2.0 Desktop 11 directory object to the drive you want it to
be on.

This will result in the desktop structure, with all its subdirectories, being phys
ically moved to the new drive or partition. All references in OS2.INI to objects
within the corresponding folders will be updated to reflect the change.

If the user does have to reinstall his operating system, however, this approach
may cause other problems in rebuilding the desktop. Among the factors to be
considered are:

• The WPS will install the desktop into the operating system by default, so the
user will now have two desktops

• Any folders created by the user will not be in the new desktop

• Any programs created by the user will not be in the new OS2.INI file

• Programs may be given new HOBJECTs by the WPS as it installs them, so
the HOBJECTs in the users directories will now be different from those in the
OS2.INI file.

The implementation of the Workplace Shell is discussed in Chapter 8,
"Workplace Shell Implementation"; an understanding of the way in which WPS
objects are created and stored will help the user to decide how to structure his
system.

6.1.4 Moving the Print Spooler
Moving the spooler can be done at any time. The process is very straightfor
ward:

Step 1. Open the OS/2 System folder

Step 2. Find the System Setup folder and open it

Step 3. Find the Spooler folder and open it

Step 4. Specify the spool path in the dialog and close it

Step 5. Reboot and your spooler will be moved.

Remember to check that OS/2 V2.0 deleted the old SPOOL directory when it
created the new one you specified.

Chapter 6. Installing and Supporting the Workplace Shell 69

6.2 Setting Up Programs and Files
There are several issues associated with setting up programs and files. Some of
these issues, such as the physical location of programs and data, are also dis
cussed in 6.5, "Using the Workplace Shell in a LAN Environment" on page 76.
This section discusses only those issues which affect all programs and files
across local and remote disks, such as the use of Extended Attributes (EAs) and
file associations.

6.2.1 Extended Attributes
Extended Attributes (EAs) are used extensively by the Workplace Shell. The set
tings data for any object are stored in EAs. File settings are stored in file EAs
while folder settings and some content attributes are stored in directory EA files.

On an HPFS partition, Extended Attributes are stored in a special, hidden area
close to the files themselves. On a FAT file system, Extended Attributes are
stored in a hidden file in the root directory of each FAT partition; this file is
named "EA_DATA. SF"

Not all file systems support EAs and this can cause problems when transferring
files around a LAN or to diskette. For example, using files from a server using
Novell Netware before Version 3.11, or using AIX*, would lead to the EAs being
lost. This is also a problem for DOS programs, which do not understand EAs
and therefore cannot write them when they replace a file.

For a more complete discussion of how EAs are used in the Workplace Shell,
refer to 8.4, "Extended Attributes" on page 124.

6.2.2 EAs for Files Used by DOS Programs

70 OS/2 V2.0 Volume 3

While the Workplace Shell uses file EAs extensively to store settings information
for File System objects, no DOS programs know how to handle them. This can
cause problems when a DOS program does not write the EA back to the disk
along with the file. Without its settings information, the file will lose information
such as a modified icon or the file type.

The problem occurs because many applications do not write back to the same
file they read from. Instead, the applications typically perform the following
actions:

• When the user selects "Open," the program:

1. Opens the original file and reads it into memory

2. Closes the original file

3. Opens a new, temporary file

4. Lets the user edit, working with the copy in memory.

• When the user selects "Save," or "Autosave" is invoked, the program:

1. Writes from memory to the temporary file.

• When the user selects "Exit," the program:

1. Closes the temporary file

2. Erases the original file

3. Renames the new file to the original filename.

Programs do this to reduce the likelihood of the original file being corrupted if
the system crashes. The problem is that if the application does not know about
EAs, then the above sequence will lose the EAs. All DOS and Windows applica
tions are affected by this, although the problem is more likely to affect programs,
such as word processors, which work with files rather than those which work
with records within a file, like data base programs.

To get around this, you could create a command file that would use EAUTIL to
split the EAs from the file, invoke the DOS application and then, when the DOS
application has finished, use EAUTIL to join the EAs back to the file.

An alternative, though long-term, approach is replace DOS versions of these pro
grams with OS/2 versions, which will not have this problem.

6.2.3 Using Files Outside the WPS Directory Structure
Setting up files to be used by the WPS where those files reside outside the "OS!2
2.0 Desktop" directory structure may cause some problems. This could apply,
for example, to DOS programs which only look for files in a specific directory.
These files can still be placed on the desktop, however. This is done by drag
ging a shadow copy of the file from the application directory to the desktop,
using the Drives folder.

However, the WPS does not receive every message from the file system con
cerning files which lay outside its workplace directory structure (that is, not
under "OS!2 2.0 Desktop"). Notification is received if a new file is created or if
an existing file is deleted or renamed, but not if an existing file is changed
outside of the workplace. This lack of notification also applies to file EAs created
or modified for files in a non-workplace directory.

It is therefore always advisable to place all data files within the workplace direc
tory structure, where possible.

6.2.4 Setting Up Programs in the Workplace Shell
Installing programs in OS/2 V2.0 is no more difficult than under OS/2 Version 1.3.
The difference only becomes apparent after the program has been installed and
the user or administrator is trying execute it. Programs can continue to be run,
as in OS/2 Version 1.3, by double-clicking on their program icon. Taking full
advantage of the WPS, however, means setting up folders with data files and
linking these files to the programs so that they are automatically started when
the data file is double clicked on.

There are three main ways of making these links:

• Associate the program with a file type and set the "Type" in the data files

• Associate the program with some or all of a filename and extension to be
used by all the data files

• Add the program name to the data files and make it the default program to
be used when the user double clicks on the file.

All three approaches have advantages and disadvantages, which are briefly out
lined in Chapter 5, "Using the Workplace Shell."

Chapter 6. Installing and Supporting the Workplace Shell 71

72 OS/2 V2.0 Volume 3

6.2.4.1 File Type Association
Associating programs with files can be done in the programs Settings view, by
filenames, or through setting the file type in the data file settings. OS/2 provides
a default table of available file types to which programs written for the
Workplace Shell can add their entries.

So far very few programs take advantage of this feature, even though they could
very effectively be started by association if they did (that is, they are written to
expect a filename as their first command line parameter).

Where such a program is written by the user, it is a very simple matter to add
the required ASSOCTABLE to add the new type. See 7.3.3.3, "Using an
ASSOCTABLE to Add New File Types" on page 107 for details of how to do this.
In the case of any other program, however, you may want to add a file type to
the system, without having access to the source code of the program concerned.
A REXX program to do this can be found in 6.8.5, "Adding New File Types" on
page 84.

Some users have noted the format in which the table of available types is stored
in OS2.INI and have written REXX programs to add new types directly. This
approach is not recommended; it is unsupported and is dependent on the way
OS/2 stores this data, which may change in some future release.

6.2.4.2 Filename Association
The answer for programs over which you do not have control is to use associ
ation by file extension rather than file type. This is simple and easily understood
by administrators but has some serious flaws and is not recommended as the
default solution.

Consider the PMSPREAD spreadsheet program that is provided as one of the
productivity "applets" with OS/2 Version 2.0. If you invoke this program with the
name of one its saved spreadsheets as the first parameter, it will automatically
load the data as the program starts.

If you open a Settings view of the program object in the Productivity folder, you
will see that no type associations are defined for it. So, if we want to start this
program by opening one of its data files, then we will have either to add a new
file type to the system and associate the program with that, or else associate the
program with a filename and/or extension. This particular program uses the dis
tinctive extension .$$S for its files, so association by file extension is probably
the best approach in this case.

The major restriction with using filename association is, as noted above, that
HPFS filenames can be changed by editing the icon descriptions. Unless users
remember to add the correct file extension when they edit a filename (and this is
not a natural way of working with the WPS) then the program associations will
be lost. Some measure of protection is afforded by the "Confirm on rename of
files with extensions" option in the System Settings folder (it is "on" by default)
but this may not always prevent the user from renaming the file.

6.2.4.3 Adding a Program to a Data File Menu
An alternative approach to linking data files to programs is to add the program
name to the data files context menu and make it the default "Open 11 setting.
This is a useful workaround to the problem of losing a linkage when the filename
is changed by the user, which is the main drawback to the filename association,
but other factors may make even this approach unworkable in practice.

Since most of those programs which don't support file types also don't have any
mechanism to accept a filename as a parameter. starting the program from the
file is going to provide no extra benefit to the user. If anything, adopting this
approach could be counter-productive, since the user would be using the same
technique for starting both OS/2 and DOS programs but would get completely
different results.

6.3 Problem Determination and Resolution
Perhaps the most common source of problems associated with OS/2 V2.0 is the
failure to run the "shutdown" program before powering off the machine. "Shut
down" closes the system down methodically, giving all running programs an
opportunity to save their data. It also writes the contents of the disk cache to
disk if the lazy write option was set in HPFS.

Therefore, not shutting the system down methodically can result in system and
application data being corrupted on the disk. This is especially troubling if the
082.INI file becomes corrupted, since this file contains pointers to all the objects
used by the WPS.

6.3.1 Error Symptoms of a Malfunctioning Desktop
The following symptoms may help in diagnosing when something has gone
wrong with the system configuration files:

• Extra printers/queues have been defined in the INI file, but there is no printer
object on the desktop; printing doesn't work properly

• Multiple instances of the same object(s)

• Impossible to use mouse button 2 to get the desktop's context menu

• OS/2 won't fully boot; the initial OS/2 sign-on is displayed but. when the
Presentation Manager is supposed to start, the system hangs

• LAN login hangs the system.

6.3.2 Shadow Copies of Programs
Program files should not be "shadowed 11 to a folder on the desktop. Instead, a
new reference for that program should be createc;t within that folder. This pre
vents the user from writing over the name of the executable file if he directly
edits (Alt-MB1) the icon description. Consistently applying this technique will
also reduce the number of cross references within the 082.INI file and enhance
the reliability of the WPS.

Chapter 6. Installing and Supporting the Workplace Shell 73

6.4 Backup and Restore with the Workplace Shell
The Workplace Shell stores a great deal of critical data in the OS/2 initialization
file OS2.INI and in Extended Attributes associated with data files and directories.
The OS2.INI file contains system details such as the pointers for all the abstract
objects - shadows, program references, etc. A fuller discussion of what the
Workplace Shell stores in OS2.INI may be found in Chapter 8, "Workplace Shell
Implementation" on page 111.

If this information is lost or corrupted for any reason, the effect on the system
can be very serious. Backing up only the contents of data files is, therefore, no
longer sufficient while backing up OS2.INI has gained critical importance.

This section discusses approaches to back up and restore that will allow a user
to recover from system failures in such a way that his desktop environment is
not disrupted too badly. It also discusses some of the more popular back up
utilities in terms of their suitability for backing up a system using the Workplace
Shell.

6.4.1 Critical System Files
OS/2 V2.0 has a built-in mechanism for copying and restoring the three critical
system files: CONFIG.SYS, OS2.INI and OS2SYS.INI.

During boot, if you press Alt-F1 before the CONFIG.SYS file is read (the best time
is when disk access begins), the system will use neither the CONFIG.SYS file
found in the root nor the OS2.INI and 0525YS.INI files found in the \052 direc
tory. These versions of the CONFIG.SYS and .INI files are renamed with a
numeric extension such as CONFIG.003 or 052.015.

The system then replaces these files with versions of the CONFIG.SYS and the
.INI files that are stored in the \052\IN5TALL subdirectory. A message informs
the user of what occurred and the system continues its IPL.

This mechanism works well for replacing existing copies of these files while pre
serving the old version in case the new one generates system errors. We have
also discussed other approaches, below, which may offer additional flexibility.

6.4.2 How to Back Up OS2.INI

74 OS/2 V2.0 Volume 3

The OS2.INI file is kept open by the WPS at all times, so normal backup tech
niques cannot be used - the back up programs concerned will be denied access
to the file as it is already open. One solution that we have found useful is to
copy this file during the operating system boot before the Workplace Shell has
started.

It is not sufficient to make only one copy; if you do that, and corrupt OS2.INI, the
next time you boot the system your corrupted file will overwrite the backed up
copy. It may even be that you do not know you have a problem until after the
re-boot, by which time you will already have lost your backed up copy.

The solution to this is to make a series of generation backups of OS2.INI, by
using XCOPY from within CONFIG.SYS and some COPYs from within
STARTUP.CMD. Since these backup files are not used by the system they may
be backed up to tape or another disk just like any other data files. Although the

critical WPS data is held In OS2.INI. it is worth backing up OS2SYS.INI in the
same way.

This is illustrated in Figure 28 and Figure 29.

RUN;C:\OS2\XCOPY.EXE C:\052\052*.INI C:\052\INSTALL

Figure 28. Starting XCOPY From the First Line in CONFIG.SYS to Back Up the /NI Files

REM *** Build Backup History ***
C:
CD \OS2\IN5TALL
COPY 052.3 052.0LD
COPY 052.2 052.3
COPY 052.1 052.2
COPY 052.INI 052.1
COPY OS2SYS.3 052SYS.OLD
COPY OS2SYS.2 OS2SYS.3
COPY OS2SY5.1 0525YS.2
COPY OS25Y5.INI OS25YS.1
CD\
REM *** That's all folks ***

Figure 29. Building Back Up History of the IN/ Files from STARTUP.CMD

This scheme keeps five versions of the_ INI files on disk, .OLD being the oldest. If
something happens to an INI file you still have a chance of reverting to a pre
vious version. The space occupied by the backups depends on the size of your
INI files and the number of cascaded copies you make; from 500 KB to several
MB of disk space can be used up. You must make your own judgement as to
the number of generations to keep. based on the size of the files concerned and
the available disk space.

6.4.3 Restoring a Backup Version of 052.INI
If you should be so unfortunate as to lose or corrupt the OS2.INI file. you will
want to restore it from the most recent, clean, backup copy you have. This will
normally be the one that was copied when you last booted the system.

Since OS2.INI is kept open at all times by the Workplace Shell, you cannot
simply copy the backup over the current file. The two approaches to resolving
this are outlined below.

6.4.3.1 Reboot from Diskette
This procedure will only recover your system to the point at which it was previ
ously saved. Any objects and folders that you added since that point will be lost,
as will any colors and desktop settings which you altered.

Booting from diskette to restore the OS2.INI file requires the following steps:

Step 1. Obtain the OS/2 V2.0 "Installation" diskette and diskette 1

Step 2. Insert the OS/2 V2.0 "Installation" diskette and reboot

Step 3. When prompted, insert diskette 1 and press enter. Wait for the first
Install panel and press Escape for an 0$/2 command prompt

Chapter 6. Installing and Supporting the Workplace Shell 75

Step 4. Copy your saved INI files into the bootup drive and directory:

COPY A:*.INI C:\OS2

Step 5. Remove the diskette and reboot.

6.4.3.2 System Install from Alt-f 1
The Alt-F1 keystroke combination, described in 6.4.1, "Critical System Files" on
page 74 will copy the CONFIG.SYS, OS2.INI and OS2SYS.INI files from the
OS2\INSTALL directory into the appropriate directories before reading those
files. A fuller discussion of this technique may be found in OS/2 Version 2.0 -
Volume 1: Control Program.

6.4.3.3 What is the Effect of Restoring a Back-level OS2.INI?
If you have to restore an old OS2.INI to an otherwise intact system, there may be
conflicts between the contents of OS2.INI and the files, directories and EAs on
the disks. The relationships between these are discussed more fully in
Chapter 8, "Workplace Shell lmplementation. 11

The degree of problems caused will depend on how many program files have
been copied and how many shadow copies have been made since the date that
the OS2.INI file was copied. This is because these objects are stored in the
OS2.INI file and so will be lost when it is replaced.

The usual problem that ensues is that a folder will have a pointer to that
program or copy in its directory EA, but now the pointer no longer exists. The
solution is easy; perform a refresh on the folder, then copy the program or file
shadow again.

6.4.4 Backup Programs
The backup programs PMTAPE and SY-TOS Plus** for OS/2 are capable of
backing up the main system files (CONFIG.SYS, OS2.INI and OS2SYS.INI) as well
as the directories, files and their associated EAs.

6.5 Using the Workplace Shell in a LAN Environment
The LAN independent shell in OS/2 V2.0 is an integral part of the WPS. If you
have one or more requesters started in your CONFIG.SYS file, an icon labelled
Network appears on the desktop. Opening the Network folder shows an icon for
each network type. A user can move or shadow the Network folder to any other
folder.

6.5.1 Organization of a LAN Workplace

76 OS/2 V2.0 Volume 3

The distribution of task-oriented resources between server and workstation is
largely a matter of security, licensing, performance and the hardware capabili
ties. The planning and set up of a user environment should also consider issues
such as LAN availability.

In a stable environment with file mirroring almost all data and programs could
be stored on, and accessed from, a LAN server. The integration of the
Workplace Shell and LAN permits the following combinations:

• Common programs and data can be stored on the LAN server

• Programs and data limited to certain users can be placed in dedicated
folders on the LAN server

• Highly important programs, which must be available to a user even if the
LAN is not running, may reside on the workstation

• Shadow copies of LAN data files can be set up in local folders within the
desktop structure.

As a network is hierarchically organized it may seem to make sense to focus on
the LAN servers for the placement of folders and data objects. However, using
the Network and LAN Server folders as the standard way of providing access to
programs and data would be inconsistent with the way the user accesses local
resources.

This would mean that he would have to work his way through the hierarchy each
time he needed access to LAN-resident resources. For this reason, a better
approach would be to use shadow copies of the resources he wants to use from
the network directories.

Several different approaches to arranging local and remote folders are possible.
The possible combinations of folders and files are:

• Shadow folder with shadow files
• Shadow folder with local files
• Shadow folder with local and shadow files
• Local folder with local files
• Local folder with shadow files
• Local folder with local and shadow files.

In all cases, we assume that programs are stored remotely on the LAN server
and that only files are displayed in folders, not programs.

6.5.1.1 Shadow Folders
The shadow folder is a pointer to the real folder (and associated directory) on
the LAN Server. Any objects in the LAN folder will also be shadow copied into
the shadow LAN folder. This approach allows the directory to be maintained by
an administrator so the user can concentrate on the tasks he is paid to perform.
It ensures that sensitive data can be secured and backed up at a central point.

The shadow LAN folder has some unique behaviors. It will not open if all the
real objects reside on the LAN and the user has not logged on to the server.
This is because the logical drive on the LAN cannot be accessed by the folder;
this can be seen in the File page of the folder Settings view.

However, this situation is modified where local objects have been placed in the
shadow LAN folder. In this case the folder can be opened but if the user then
tries to access a shadow object before "login," the Workplace Shell issues a
warning.

The following sequence is used to set up a shadow LAN folder:

Step 1. Create a shadow copy for the user's "home" folder from the LAN

Step 2. Put any local, real objects in the shadow LAN folder

Step 3. Create shadow copies of the local data file objects in the shadow LAN
folder

Step 4. Create new program references for local programs in the shadow LAN
folder

Chapter 6. Installing and Supporting the Workplace Shell 77

78 OS/2 V2.0 Volume 3

Step 5. Create new program references for remote programs in the shadow
LAN folder.

Program files should not be "shadowed" to the local folder. Instead. a new
program reference for the program should be created within that folder. See
6.3.2, 11 Shadow Copies of Programs" on page 73 for more information.

There are some differences in the usage of a shadow LAN folder and a local
folder which may seem confusing to the inexperienced user. For example. if the
user has a shadow copy of a LAN folder and then tries to make a shadow copy
of a file from the LAN folder into that shadow folder, the WPS will. correctly, not
allow it.

Another example would be where the user wants to "logout" but one of the
objects in the shadow folder or the LAN Server folder is still in use. In this
event, the Workplace Shell will report an active connection and refuse to close.

There are also disadvantages to using shadow copies of either a local or a LAN
folder. For instance, the act of renaming a shadow folder by 11 direct editing" the
icon description will result in the physical name being changed. This can cause
problems on a shared directory where many users have Read/Write (RW)
access. Under such circumstances it would be better to set up local folders with
shadow copies of files, as described below.

6.5.1.2 Local Folder
Instead of a shadow copy of the LAN folder, a better approach is to use a local
folder (or work area). All types of objects, both real (local) and shadow (local
and remote), can be stored in a local folder. The advantage of this approach is
added security against loss of data and more consistency in organizing the WPS
by task.

The set up is completely transparent to the user and the behavior of shadow
copies of LAN data files does not differ from 6.5.1.1, "Shadow Folders" on
page 77.

The local folder resides in the local desktop structure. It therefore has a real
name and the disk space needed depends on the number and type of objects
stored in It.

To set up a local folder with LAN objects requires the following steps:

Step 1. Create a local folder

Step 2. Create shadow copies of the LAN data file objects in the local folder

Step 3. Create shadow copies of local data file objects in the local folder

Step 4. Create new program references for local programs in the local folder

Step 5. Create new program references for remote programs in the local
folder.

Program files should not be "shadowed" to the local folder. Instead, a new
program reference for the program should be created within that folder. See
6.3.2, "Shadow Copies of Programs" on page 73 for more information.

6.6 Workplace Shell Performance
Since users can open as many programs as they like, this is a potential cause of
performance problems. In addition, since the WPS will restart any programs
which were left running at 11 shutdown," we can conceive of a situation where
performance would slowly degenerate over some time, with the operating
system starting more and more programs each day, even if the user didn't need
them all.

There are two techniques which can help prevent these problems. The first one
is to use work areas instead of folders, then encourage users to close a folder
when they have finished with it instead of minimizing it. When a work area Is
closed, all the programs in it are also closed, so this helps free resources for the
next program(s) the user has to run.

The second technique is described in 6.8.1, "Prevent Programs Restarting at
IPL" on page 80, where any previously running programs are prevented from
restarting when the system is restarted. A REXX program is described which
performs this.

In addition, some WPS functions are inherently slower than others. For example,
opening a folder with a tree view is slower than opening it with an icon view.
Users quickly learn to use the WPS functions in the most appropriate way.

6.7 Training Users to Use the Workplace Shell
A good understanding of the basic concepts behind the workplace environment
will lead to greater user satisfaction and should help reduce their need for
support.

It is important that users understand not just the techniques used to interact with
the Workplace Shell, but also the objects that the WPS uses. They may think
that, since they make a copy of a file using Ctrl-drag but a shadow copy using
Ctrl-Shift-drag, then Ctrl-dragging a file will always make a real copy, no matter
what kind of object the source is. Of course, that's not how the WPS works; If
you copy a shadow, you get another shadow.

Shadows can cause other problems for the inexperienced user. For example, if
you have a user who wants to copy a file to a diskette, they will not differentiate
between the real file and a shadow. and will therefore fail to understand why the
WPS won't let them drag that shadow onto the diskette icon. In general, it might
be better to remove the diskette icon from the desktop and let users work with
the Drives folder for all their file system interactions.

6.7.1 Training and Desktop Configuration
An important point to note here is that training for the WPS depends on what
objects are put onto their desktop; the greater the variety of objects, the more
the user has to know. Approaches to configuring the desktop are discussed in
6.8, "Utilities for the Workplace Shell" on page 80.

Restricting the range of objects to devices, such as printers and shredders,
folders and data files is probably the best approach; it is very consistent and
requires the user to learn the least number of techniques. This is described in
6.9.1, "User Requirements" on page 85.

Chapter 6. Installing and Supporting the Workplace Shell 79

Users with previous experience of using DOS or OS/2 will wish to continue to
use programs since that is how they already know how to work with a computer.
While the WPS is more logical, consistent and simpler than its "program menu 11

predecessors, it is often difficult for some users to adjust to its new style of inter
action. Under these circumstances. modifying the shell to look more like the PM
shell in OS/2 Version 1.3 might be a better approach. 5.4, "Giving OS/2 V2.0 the
Look and Feel of OS/2 Version 1.3" on page 64 provides more information on
this topic.

6.8 Utilities for the Workplace Shell
This section discusses various techniques that may be applied to the WPS to
tailor it to the needs of specific users or groups of users. In general, REXX pro
grams are used here to illustrate the points, although for security and perform
ance these might be rewritten as C programs before widespread distribution.

These procedures assume that SysLoadFuncs has already been loaded, as
shown below:

/* Rexx program that uses RexxUtil functions */
call RxFuncAdd 'SysLoadFuncs•, 1RexxUtil •, 1SysLoadFuncs 1

call SysLoadFuncs

Refer to Appendix A, "Using REXX in OS/2 V2.0 11 on page 131 for more details.

6.8.1 Prevent Programs Restarting at IPL

80 OS/2 V2.0 Volume 3

On shutdown, a number of programs may be active which will be reactivated at
the next system IPL. A standard technique is available to override this. It is
described in the "README" file in the root directory. Press and hold the left
ctrl, left Shift and F1 keys while the operating system is IPLing. This disables
the automatic program startup feature of the desktop.

This may not be appropriate for certain classes of user, for example where
several people share the system. These people would rather find the system in
a standard state each morning, regardless of what the previous user had been
running the day before. It is unlikely that an adminstrator in a corporate environ
ment would want his users to have to learn the ctrl-Shift-F1 sequence.

A simple way to automatically prevent programs being restarted after an IPL is
to use a small REXX program to clear the Startup folder before the Workplace
Shell is activated. If this program is invoked from the STARTUP.CMD file, it will
run before the Workplace Shell is initialized to prevent previously running pro
grams from being started.

This is illustrated in Figure 30, below:

/*Clear startup programs from 052.INI */
call RxFuncAdd 1Syslni 1 ,

1 RexxUtil 1 , 1Sysini'
call Syslni, 1 PM_WorkPlace:Restart 1 , 1DELETE:'
call Syslni, 1 FolderworkareaRunningObjects 1 , 1DELETE: 1

Figure 30. A REXX Procedure To Prevent Programs Restarting

6.8.2 File Transfer to a Host Session
The following procedure is useful for uploading files from the PS/2 to a host
system. Both methods hide file transfer programs from the user and thus helps
him maintain a consistent way of working with the WPS.

Two alternative approaches are used; the first creates an icon onto which the
user can drop the file to be transferred, the second simply adds a file transfer
command to the pop-up menu.

8.8.2.1 Fiie Transfer Icon
Step 1. Create a folder to hold the files that are to be uploaded

Step 2. Copy the CMD file in Figure 31 into that folder

Step 3. Create a program reference by pulling a program template into your
folder

Step 4. Open a Settings view for the program reference

Step 5. Put your CMD file path and filename in the Physical Name field

Step 6. Put % • in the Parameters field

Step 7. Close the Settings view.

The following REXX procedure is called when an object is dropped on the
program reference icon that was created above. The name of the object is
passed to the procedure which then eliminates the path information from the
object. A target file type is set up and an appropriate send option (ASCII or
binary) is determined. Then the Communications Manager SEND command is
used to transfer the file.

/*put a file on the host*/
'@echo off'
arg file
lastdot=lastpos(1

•
1 ,file)

lastbslash=lastpos('\',file)
ext=substr(file,lastdot+l) fn=substr(file,lastbslash+l,
lastdot-lastbslash-1)
select
when ext='SCR' then ft='SCRIPT'
when ext='TXT' then ft='TEXT'
when ext='PSE' then ft='PSEBIN'
when ext='BMP' then ft= 1 BMPBIN 1

otherwise ft=ext
end
select
when ext='SCR' then opt=asc
when ext='TXT' then opt=asc
when ext='CMD' then opt=asc
when fn='CONFIG' & ext= 1SYS 1 then opt=asc
when ext='BAT' then opt=asc
when ext= 1 RC 1 then opt=asc
otherwise opt='(RECFM V'
end
if opt=asc then
opt='(ASCII CRLF RECFM V LRECL 255' 'SEND' file fn ft 'A' opt
•exit'

Figure 31. REXX Procedure for Host Upload

Chapter 6. Installing and Supporting the Workplace Shell 81

This REXX procedure does not take care of all possible problems. For instance,
if the folder is on the desktop, a filename is created with the desktop folder
name. As that name contains blanks, it needs to be enclosed in quotes, which is
not done here. Therefore the upload folder needs to be in some other folder.
However, the procedure shows how a simple REXX procedure can help create
an object-oriented environment for a user.

6.8.2.2 File Transfer from a Pop-up Menu
For an alternative to the file upload icon, you can:

Step 1. Create a folder to hold program references

Step 2. Peel a program icon off the program template in Templates and drag it
to this new folder

Step 3. Enter the path and filename of your file upload utility

Step 4. Enter the following for parameters: % * h[Enter host session letter
(a,b,c,d) >]:

Step 5. Set the working directory to the path where your file upload utility
resides

Step 6. Click on the General tab and change the name to "Upload to Host"

Step 7. Click on Associations and type an asterisk in the Names field, then
click on the "Add" push button

Step 8. Close the Settings window.

Now, when you click on any file in your system with the right mouse button, you
can click on the arrow to the right of "Open" and you will be offered "Upload to
Host" as one of the programs that may be executed against it.

6.8.3 Limiting a User's Access to Settings
This requires a Workplace Shell program to be written. OS/2 Version 2.0 -
Volume 4: Appiication Development provides some information on subclassing
WPS objects which will be needed to accomplish this. The general approach is
to subclass the object class and create a new one which doesn't allow access to
settings, then remove the "Settings" choice from the context menu.

6.8.4 Creating and Populating Folders

82 05/2 V2.0 Volume 3

One of the things an administrator will commonly wish to do is to to create and
populate new folders for a user. The process is straightforward and can be auto
mated using REXX programs. Several examples are provided below. The REXX
commands used are explained in Appendix A, "Using REXX in OS/2 V2.0" on
page 131.

The process involves:

Step 1. Creating a folder, which in turn will create a directory within the
desktop structure

Step 2. Copying data files into it (optional)

Step 3. Creating new program objects within it.

For example, if you wanted to create a new folder on the desktop and call it
MyFolder, use the following commands:

RetCode = SysCreateObject(11WPFolder 11
,,

"MyFolder",,
11 <WP_DESKTOP>11

,,

11 0BJECTID=<MYFOLDER> 11
)

if RetCode then
say 'Folder Object created'

else do
say 'Error creating object•
exit(l)
end

Figure 32. REXX Procedure to Create a New Folder

To add an editor to the folder, MyFolder, that was just created, use the following
procedure:

RetCode = SysCreateObject(11 WPProgram11
,,

if RetCode then

11 Edi tor 11
,,

11 <MYFOLDER> 11
,,

"PROGTYPE=PM;EXENAME=C:\OS2\E.EXE;•)

say 'Program Object created'
else do

say 'Error creating object•
exit(l)
end

Figure 33. REXX Procedure to Add a Program to a Folder

The above examples show how to add instances of existing classes (Folder and
Program). but you may also want to add new classes which you have created.
You must first register a class with WPS before you can create an instance of it.

The example below shows how to register a Password folder. The design and
coding of this folder is described in 05/2 Version 2.0 - Volume 4: Application
Development. To register this new folder class:

RetCode = SysRegisterObjectClass(11 PWFolder11
,

11 pwfolder•)

if RetCode then
say 'PWFolder Class registered•

else do
say 'Error PWFolder Class failed to register•
exit(l)
end

Figure 34. REXX Procedure to Register a New WPS Class

To "deregister" the class when you want to remove it from the WPS classes, use
this procedure:

Chapter 6. Installing and Supporting the Workplace Shell 83

RetCode = SysDeregisterObjectClass(11 PWFolder 11
);

i f RetCode then
say 1Uninstall successfully completed for PWFolder class•

say 1Re-boot NOW in order to release DLL 1

Figure 35. REXX Procedure to Deregister a WPS Class

6.8.5 Adding New File Types
The following REXX batch file presents a fully supported method of adding types.
It creates a new program reference plus the types associated with that program
reference. If the specified types don't exist then they are added to 082.INI. Aft
erwards, delete the program reference and the types will remain.

/* */
call RxFuncAdd usysLoadFuncsa, aRexxUtil", 11 SysLoadFuncsa
call SysLoadFuncs
call SysCreateObject 11WPProgram 11

, "Tit 1 e", 11 <WP _DESKTOP>a,
"EXENAME=EPM.EXE;ASSOCTYPE=Type 1, Type 2, Type 3,,•

Note that the call to SysCreateObject should only exist on one line in the batch
file, not on 2 lines as shown above. The two commas after the "Type 311 are
intentional.

6.8.6 Removing WPS Objects
In many cases, administrators will not want users to have access to all the
objects provided with the Workplace Shell. One permanent way to remove
objects is to create a custom 082.INI file.

For example, to remove the shredder from the desktop, edit the "INl.RC" file in
the "\OS2" directory and remove the shredder line:

apM_InstallObject 11 11 Shredder;WPShredder;<WP_DESKTOP> 11 11 1CONPOS=908;0BJECTID=<WP_SHRED>•

Then make a new OS2.INI file by typing:

MAKIN! NEW.IN! !NI.RC.

Replace OS2.INI with the contents of NEW.INI using the techniques described in
6.4.3, "Restoring a Backup Version of OS2.INI" on page 75.

6.9 Customizing OS/2 V2.0 for the Inexperienced User

84 OS/2 V2.0 Volume 3

The WPS presents a range of objects that must cater to the requirements of a
wide variety of users. For many of these users this choice can be confusing and
can, in some cases, reduce the usability of the WPS.

There is, therefore, a real need to provide a restricted range of objects which
meet the exact needs of the user. While the user may have many objects, he
will only want to use a small number of object types. The WPS allows him to
complete any task by using only three types of objects:

• Containers (folders and work areas)
• Data files
• Devices (shredder and printers).

The user need not see, or understand, the concept of a 11 program 11 to be able to
work with a file, thanks to the associations between data files and programs.
See 8.5.1.1, "Running Programs 11 on page 127 and 5.3.5, "Associating an Object
with a Program 11 on page 62 for more information on this topic.

Note that placing program icons directly in folders on the desktop can cause
problems for the Workplace Shell as well as being inconsistent with the object
oriented approach we are trying to adopt. If the user makes a shadow copy of
the program icon to another folder, then direct edits (Alt-MB1) the icon
description, he can change the program executable name. The correct tech
nique is described in 6.3.2, "Shadow Copies of Programs 11 on page 73.
However, since this technique requires the user to know a lot more about the
way the system works, it is probably better to simply eliminate this potential
source of error by only using data file objects.

OS/2 Version 2.0 also provides new ways to pass information between programs
running in different environments to provide as completely integrated a work
space as possible. This saves time and prevents the user from introducing
errors through rekeying data.

In addition, by removing extraneous objects, the user gains improved consist
ency of operation and thus enhanced usability. For example, double clicking on
any object now opens a window which presents the contents of that object. This
perspective is valid for data files, folders and devices, but not for programs.

This kind of consistency makes the system easier to learn for inexperienced
users and encourages them to explore the capabilities of the system. An
example of how to set up such a system is given in 6.9.1, "User Requirements."

6.9.1 User Requirements
This section describes the process of defining the OS/2 Version 2.0 requirements
for a typical, inexperienced user, selecting the components and setting up the
system. In this case, our user will be running on a stand-alone system. LAN
considerations are discussed in 6.5 1 "Using the Workplace Shell in a LAN
Environment" on page 76.

For instance, a user has a range of tasks to complete as part of his normal job.
These include:

• Preparing quotations

• Entering orders

• Creating invoices

• Book-keeping

• General correspondence.

We will examine the task of creating customer quotations in some detail to illus
trate how we would set up the system for any task.

Creating quotations involves:

1. Calculating a price for the goods or services requested

Chapter 6. Installing and Supporting the Workplace Shell 85

2. Filling these into a quotations document

3. Creating a cover letter

4. Printing the documents

5. Filing the documents.

Each task is represented by a work area. The reason we use a work area is that
when it is closed it closes all the programs which have been opened from within
it. Since memory and disk space may be restricted on our system, leaving pro
grams open could cause us performance problems. Closing them when we
finish one task and switch to another should help prevent that problem.

Each task involves other subtasks. For example, calculating the price might
involve looking back at the outcome of previous quotations or checking to see
whether the customer was traditionally a late payer (in which case a penalty
charge might be levied within the price quoted).

When we look at the information required we see that we need the same infor
mation in several of the subtasks. The customer name and address would be
needed in both the quotation document (which includes the terms and conditions
which apply to the quotation) and the covering letter.

From the activities above, we can see that we need the following programs:

• A spreadsheet to calculate prices

• A word processor to produce and print the documents

• A database to store names and addresses

• A folder to store the completed files in.

We decided to use the following programs to illustrate a possible mix of oper
ating systems and show what degree of interaction is possible under OS/2
Version 2.0.

• LOTUS .. 1-2-3** /G for OS/2

• WordPerfect** for Windows**

• dBase IV** for DOS.

6.9.2 Operating System Set Up

86 OS/2 V2.0 Volume 3

Our objective was to provide a working system on an IBM PS/2* model 55-060
with 8 MB of memory. For performance and cost-effectiveness, we replaced the
standard planar memory with 4 MB Single In line Memory Modules (SIMMs).
The system is partitioned as follows:

C: Operating system partition - 23MB available

D: Applications partition - 35MB available.

The partition size for the operating system was chosen on the basis of requiring
approximately 18 MB of disk storage for our operating system, plus 5 MB to
allow us to add new features in the future. This will let us install new versions of
the operating system, which might require reformatting the partition, without
impacting our applications and data.

The desktop, spooler and swapper files were moved to drive D:. This was done
as follows:

Swapper This was changed after the base installation, before completing the
selective install.

Desktop This was performed after the installation. We used the Drives folder to
move the entire desktop structure from the C: drive to the D: drive.

Spooler This was performed after the installation. We opened a "Settings" view
of the Spooler folder and changed the path there.

For this user, we performed a selective install of the following OS/2 Version 2.0
components:

CD-ROM Device Support Not installed

Documentation We chose not to install REXX or Tutorial Documenta
tion

Fonts We installed the three outline fonts plus System
Monos paced

Optional System Utlllties We installed Backup, Restore, Recover Files and
Picture Viewer

Tools and Games Not installed

OS/2 DOS and Windows Installed

HPFS Installed

REXX Not installed

Serial Device Support Installed

Serviceability Aids Not installed

Optional Bit Maps Not installed.

6.9.3 Setting up the Users Work Area
We created the Quotations work area by dragging a new folder from the folder
template onto the desktop. We then renamed it, opened the settings view and
checked the work area checkbox in the file page.

Chapter 6. Installing and Supporting the Workplace Shell 87

implementation of the Windows
graphical user interface (GUI).
You can view your fonts and
graphics right on the saeen
while you work.

WordPerfect for Wmdows
unlocks the power of desktop
publishing in a word processor.
Gtaphic images can be easily
scaled and moved on the saeen
'Rith a mouse. Kerning, word
and letter spacing, and line
height adjustments are a map.
And chmges in document format reflected .._ ____ _

Figure 36. Workplace Shell Quotations Work Area

88 OS/2 V2.0 Volume 3

Within the work area we have the following templates:

• Quote.doc

• Letter.doc

• Prices.wg2.

Quote.doc and Letter.doc are WordPerfect documents, Prices.wg2 is a Lotus
spreadsheet. They are all created in the following way:

1. Start the program. from the command prompt or by double clicking on its
icon

2. Lay out the document or spreadsheet the way you want it

3. Save the file

4. Copy the file to the Quotations directory using Drives

5. Open the files Settings view and check the template checkbox on the "File"
page

6. Close the Settings view.

The data file can be linked to the program in any of the ways described in 6.2.4,
"Setting Up Programs in the Workplace Shell" on page 71. Since the DOS pro
grams do not support the concept of file types, an association based on file
extension was set up in each program.

The Quotations folder was created in the same way as the work area, that is, a
new one was created by dragging it from the folder template and dropping it Into
the Quotations work area.

6.10 Summary

The user can now tear off a new "Prices 11 spreadsheet, rename it using some
combination of the customer name and date, open it to fill in the necessary
details, print it, then file it by dropping it in the Quotations folder.

When the user needs to switch to another task, such as creating invoices, he
closes the Quotations folder. This stops any running programs, freeing the
system memory and SWAPPER.DAT file. He then starts the next task by opening
its folder.

The structure of the WPS is heavily dependent on the critical system files:
CONFIG.SYS, OS2.INI and OS2SYS.INI. This chapter described several
approaches to backing up and recovering these files.

The Workplace Shell is capable of being tailored to meet a variety of user envi
ronments. Restricting the functions provided to the inexperienced user results in
a logical, consistent interface that is simple to learn and to use. The installation
of such a user environment was described, together with some notes ,on the
OS/2 V2.0 functions needed to support that user.

For the advanced user, OS/2 V2.0 provides a wealth of new techniques to help
him become more productive. Several techniques are available to let the
advanced user modify his environment, including adding programs to object
menus. In addition, some REXX utilities have been provided to help the
advanced user or administrator to modify the default operating characteristics of
the WPS.

Installing and customizing stand-alone workstations is only part of the adminis
trator's brief. Many factors must be considered, including disk partitioning,
problem determination and overall system performance. LAN integration is a
major enhancement to OS/2 V2.0 but this, too, must be carefully planned to
ensure that the environment created really does meet the needs of the users.

Chapter 6. Installing and Supporting the Workplace Shell 89

90 OS/2 V2.0 Volume 3

Chapter 7. Presentation Manager and Workplace Shell Application
Development

OS/2 Version 2.0 introduces a new choice for application developers: whether to
develop their applications using traditional PM programming techniques or to
use the System Object Model (SOM) interfaces and the Workplace Shell class
hierarchy to develop fully-integrated applications.

This chapter provides an overview of the two programming models, and dis
cusses the extent to which it is possible to integrate a PM program into the
Workplace Shell environment.

For more detailed information on programming for Presentation Manager and for
the Workplace Shell, see OS/2 Version 2.0 - Volume 4: Application Development.

7.1 The Presentation Manager Application Model

7.1.1 Windows

The conceptual model upon which a Presentation Manager application is based
differs somewhat from "conventional" application models. The components of a
conventional application communicate with one another via function calls and
pass information in the form of parameters. The components of a Presentation
Manager application are called windows, and communicate using messages
which are transmitted between windows by Presentation Manager on the appli
cation's behalf.

This section will examine the conceptual application model implemented by
Presentation Manager. The intent of this section is to provide the reader with an
introduction only. A more detailed examination of the application model from a
programmer's viewpoint is given in OS/2 Version 2.0 - Volume 4: Application
Development.

Presentation Manager applications are based upon the concept of windows. A
window typically represents some object, such as a file or document, a device or
a data record, upon which the application will operate. The user interacts with
the window to manipulate the object.

A window appears to the user as a rectangular area on the screen, which may
be moved and re-sized by the user with either the keyboard or mouse. From an
application viewpoint, however, the concept of a window is far more powerful
than this. Windows may be of two basic types:

• Display windows have a visual manifestation represented by a rectangular
area on the screen; in this case, the window represents a view of a concep
tual display surface known as a presentation space, which is the object upon
which the window operates. This view may be full or partial, depending
upon the current size of the window, and the size of the presentation space.
See 7.1.3, "Presentation Spaces and Device Contexts" on page 97 for more
information on presentation spaces.

• Object windows have no visual manifestation, and are merely addresses or
"handles" to which messages may be directed. An object window is typi-

© Copyright I BM Corp. 1992 91

92 05/2 V2.0 Volume 3

cally associated with an object such as a file or database, and is used to
access this object and perform actions upon it.

Windows respond to events which are communicated to them by way of mes·
sages. Messages may originate from Presentation Manager as a result of user
interaction, or from other windows in the system. Messages may be of many
different types; Presentation Manager defines a number of message classes, and
an application may define its own message classes for communication between
its own windows. Messages are routed between windows by Presentation
Manager on behalf of the applications, and are discussed in greater detail in
7.1.2, 11 Messages" on page 94.

The basic structure of a Presentation Manager application is therefore that of a
group of windows, communicating with one another by way of messages. This is
illustrated in Figure 37.

Figure 37. Presentation Manager Application Structure

--§
Remote Syatern - --,

The behavior of a window in response to messages directed to it is determined
by its window procedure, which determines the processing performed by the
window in response to each message it receives. Windows with similar charac
teristics are grouped into a window class, and share a window procedure.

Note that windows are a finite operating system resource. Under OS/2 Version
1.1 and Version 1.2, the maximum number of windows which could be created in
the system was approximately 1200. Under OS/2 Version 1.3 this limit was
increased to approximately 10000; this increased limit also applies to OS/2
Version 2.0.

Other Presentation Manager objects such as presentation spaces and device
contexts also consume storage for control information. Under OS/2 Version 2.0,
the total limit for all graphics resources used by Presentation Manager Is
approximately 64000.

Note also that when large numbers of windows are created in the system, Pres
entation Manager uses significant processor resource to handle message
routing, clipping etc. Some degradation in overall ·system performance may

therefore be experienced when running with an extremely large number of
windows open.

7 .1.1.1 Window Classes
Each window belongs to a window class. The window class determines a
number of properties of the window, including its window procedure, which in
turn determines the behavior of the window in response to the messages it
receives. A window class is registered with Presentation Manager, and may be
defined in one of two ways:

• Public, in which case the window class is registered automatically at system
initialization, and may be used by any application in the system.

A number of window classes, such as the frame window and control
windows, are publicly defined by Presentation Manager, and are hence avail
able for use by applications.

• Private, in which case an application must register the window class explic
itly during its own initialization. Windows of this class may then be used
only by that application.

Each window within a class is said to be an instance of that class. Multiple
windows of the same class may exist in the system at the same time, controlled
by the same or different applications.

7.1.1.2 Window Procedures
Each window in the system has a window procedure, which defines the proc
essing performed by the window for each message it receives. Such processing
may include general application logic, 1/0 operations or communication with
other windows. The window procedure is associated with an entire window
class rather than an individual instance of the class, and is defined when the
class is registered to Presentation Manager.

The window procedure must be provided by the application which registers the
window class. Presentation Manager provides its own window procedures for its
publicly defined window classes. Applications which register their own window
classes must provide a window procedure for each class.

The window procedure is invoked by Presentation Manager on the application's
behalf, in response to any message directed to that window, either from Presen
tation Manager itself or from another window in the system. The window proce
dure determines the class of the message, and takes appropriate action. Since
there are an extremely large number of messages which may be passed to a
window, the window procedure need only process those messages which are
required to carry out the window's functions; Presentation Manager provides
default processing for all system-defined message classes, and application
defined message classes not processed by the window procedure are simply
ignored.

Window procedures are re-entrant, and multiple instances of the same window
class share the same memory-resident copy of the window procedure. Hence
any local data defined by the window procedure is also shared by each window
in the class. To allow each window to keep its own separate data areas, Presen
tation Manager allows an application to define an area known as the window
words, which is unique to each individual window, and is maintained with Pres
entation Manager's own control block for that window. Window words are

Chapter 7. Presentation Manager and Workplace Shell Application Development 93

7 .1.2 Messages

94 OS/2 V2.0 Volume 3

normally used to store a pointer to a memory object which is dynamically allo
cated when the window is created, and used to store instance-specific data.

Messages are the mechanism by which windows communicate with one another
and are notified of system- or user-initiated events by Presentation Manager. In
a typical Presentation Manager application, all interaction between the user and
windows, or between one window and another, takes place by way of messages.
Messages may be of three types:

User-Initiated The message is generated as the direct result of the user
selecting a menu bar item, pressing a key on the key
board, etc.

Application-Initiated The message is generated by one window within the appli
cation for the communication of an event to another
window.

System-Initiated The message is generated by Presentation Manager as the
indirect result of user action such as the window being re
sized or moved, or as the result of a system event such as
window being created or destroyed.

Since almost every event which occurs within the system results in a message
being generated, a Presentation Manager application has great freedom in the
way in which it processes such events.

7 .1.2.1 Message Queues
Whenever an event occurs within the system, such as the user pressing a key or
selecting an item from a menu, a window being created or destroyed, or one
window communicating with another, a message is generated and placed on a
system message queue. Such messages are placed on the queue in the order
they originated.

Each application has its own message queue, and each thread within a multi
threaded application may also possess its own message queue. This queue is
explicitly created by the thread, via a function call to Presentation Manager, at
the time the thread is initialized. (The term "thread" will be used herein, since
message queues are always created on a per-thread basis; the application's
initial message queue is created by its primary thread.)

Note that a secondary thread in a multi-threaded application need only create a
message queue if it will create one or more windows. A secondary thread which
does not create windows does not require a message queue.

.,l:H-~-~

Figure 38. Message Queues

Presentation Manager periodically interrogates the system queue, removes each
message and determines the window for which it is destined. It then places the
message on the message queue belonging to the thread which created the
window.

The thread's main routine, once initialization is complete, consists entirely of a
message processing loop. The thread simply retrieves a message from the
message queue via a function call to Presentation Manager, and requests Pres
entation Manager to pass the message to the appropriate window procedure,
which is already known to Presentation Manager through the window class defi
nition.

Presentation Manager then invokes the window procedure to process the
message. When the processing is complete, the window procedure passes
control back to Presentation Manager, which then returns control to the thread's
main routine to obtain the next message.

If the thread's own message queue is empty when it requests the next message,
Presentation Manager checks the system queue. Note that this is the only time
at which the system queue is accessed; hence no other window in the system can
receive a message until the currently executing window procedure returns control
to Presentation Manager.

If a window procedure does not return from processing a message within a rea
sonable period of time, the user is effectively "locked out" of the system. In
order to avoid such situations, applications which perform lengthy operations
such as document formatting or remote system access, should be implemented

Chapter 7. Presentation Manager and Workplace Shell Application Development 95

96 OS/2 V2.0 Volume 3

using multiple threads, thereby allowing the application's primary thread to con
tinue execution and return control to Presentation Manager. This technique is
discussed in OS/2 Version 2.0 - Volume 4: Application Development.

7 .1.2.2 Message Classes
Messages are defined and identified using message classes. A message class
is simply an integer used to identify the event which caused the message.

Message classes may be of two types:

• System-defined message classes are defined by Presentation Manager, and
are used to indicate standard events such as a window being created or
destroyed. sized or moved. or a key being pressed.

• Application-defined message classes are defined by an individual applica
tion. and are used to indicate events for communication between windows in
that application.

Message classes are usually defined as integer constants. All system-defined
message classes are defined in the header files which are shipped with the IBM
Developer's Toolkit for OS/2 2.0. Application-defined message classes are
usually defined in the application's own header files.

The structure of a message also includes two message parameters, which are
32-bit fields passed to the window procedure along with the message. These
fields may contain additional information to aid in the window procedure's proc
essing. or may contain pointers to memory objects which in turn contain such
information.

7 .1.2.3 Message Processing
Through its window procedures. a Presentation Manager application has the
ability to process messages of any type or class. in the following ways:

• The window procedure may ignore the message, and simply leave it for
Presentation Manager's own default window procedure. which will provide
default processing for system-defined messages classes.

• The window procedure may explicitly process the message, using its own
logic. calling subroutines and/or passing messages to other windows as nec
essary. This allows processing of application-defined message classes. and
application-specific, "non-standard" processing of system-defined message
classes.

• The window procedure may explicitly process the message and then pass
the message on to Presentation Manager's default window procedure. This
allows application-specific processing to be performed on system-defined
message classes. in addition to the default processing.

Messages may also be processed in either of two modes:

• Synchronous processing occurs where the routine which passes the
message (typically a window procedure or a subroutine invoked by a window
procedure) waits until the message is passed to the target window and proc
essed by its window procedure. Presentation Manager does not return
control to the calling routine until the window procedure has completed its
processing.

• Asynchronous processing occurs where the routine which passes the
message waits only until the message is placed in the thread's message
queue. Presentation Manager then returns control to the calling routine.

Presentation Manager also provides facilities which allow an application to
broadcast messages to multiple windows with a single function call.

7.1.3 Presentation Spaces and Device Contexts
A display window provides a view into a conceptual display surface known as a
presentation space. In terms of the above definition of a window, the presenta
tion space Is actually the object upon which the window and its window proce
dure operate. The contents of the presentation space represent application data
such as a document or graphical image. The application places text and graph
ical items such as lines, arcs. and colors, in the presentation space by means of
PM API functions (the GP/ functions).

The window therefore provides the user with a view of the presentation space,
using the screen. This view may show the entire presentation space or only a
portion, depending on the size of the window and that of the presentation space.
The size of the window is controlled by the user, although it is limited by the
physical size and resolution of the screen. The size of the presentation space is
controlled by the application and is limited by the amount of available memory
which may be used to contain the presentation space.

A presentation space is usually created by a window procedure when a window
is created. and is associated with a device context at that time.

A device context relates a presentation space to a physical device such as the
screen or a printer, by converting the device-independent information stored in
the presentation space to a device-dependent form that can be displayed on a
particular device. If the contents of the presentation space must later be drawn
on a device other than that for which the presentation space was initially
created, the presentation space may simply be re-associated with a different
device context. This may, for example, be done when a graphical picture in a
window on the screen needs to be printed. The presentation space that was ori
ginally associated with a screen device context is re-associated with a printer
device context.

7.1.4 Presentation Manager API Enhancements in OS/2 V2.0
The 32-bit Presentation Manager API remains largely unchanged In OS/2 V2.0,
though there are a number of new functions, mostly to help the programmer
rather than adding significant new function. For a complete review of the
changes and enhancements, see IBM 0512 Version 2.0 Application Design Guide,
which includes a chapter comparing 16-bit and 32-bit OS/2 functions, including a
section covering Presentation Manager. The following section is a summary of
that information.

7 .1.4.1 Functions Removed
A number of 16-bit PM functions are not included in the 32-bit set. In most cases
these have been replaced by new 32-bit functions, or are no longer appropriate
with the new shell. Areas affected are:

• Heap management functions

• Program list (group windows)

Chapter 7. Presentation Manager and Workplace Shell Application Development 97

98 OS/2 V2.0 Volume 3

• Initialization file functions

• Window locking

• Window management.

7.1.4.2 Printing
All the printing functions, which previously had names with the prefix DosPrint,
have been renamed to use the prefix Sp/.

7 .1.4.3 Workplace Shell
A number of new functions have been introduced giving PM programs an inter
face to the shell. These include, for example, the WinRegisterObjectClass() and
WinCreateObject() functions, which allow a program to register and create
Workplace Shell objects. The self-explanatory WinShutDownSystem() function
provides a capability that was missing in previous releases.

7.1.4.4 Dynamic Data Facility
These new functions, which have the function name prefix Ddf, are intended to
be used by programs that provide IPF text dynamically at run time. Such pro
grams receive messages from IPF when they are to display their information, at
which time they must build and display the text requested.

The DDF functions enable the program to format the text into paragraphs, lists
and headings in such a way that it can easily be reformatted when the window is
resized. Functions are provided to allow the creation of hypertext links, refer
ences to bitmap data, and to specify what sort of text formatting is required (left
or right justification, for example).

7 .1.4.5 Standard Font and Fiie Dialogs
Many applications offer their users the option of loading and saving files from
and to disk, and CUA defines the dialog that should be presented to the user so
that he can select the appropriate disk, directory and file to use. The standard
file dialog function, WinFileDlg(), implements this dialog with very little program
ming effort.

The standard font dialog, invoked by means of the WinFontDlg() function, does
the same for those applications that allow font selection.

These dialogs, which are also discussed in Chapter 3, "New Presentation
Manager Features," significantly improve programmer productivity when file or
font selection facilities are required. They also ensure that the dialogs used by
different applications present a totally consistent user interface.

7 .1.4.6 New Window Classes
OS/2 V2.0 introduces several new control window classes, which are described
in Chapter 3, "New Presentation Manager Features," along with some corre
sponding new messages.

7 .1.4.7 Graphics Functions
A number of new GPI functions are provided, mostly related to the use of fonts
and characters.

7.1.4.8 PM Helper Macros
A set of helper macros is provided that simplify interaction with some of the
more commonly used control window classes. The use of the macros can
reduce the need explicitly to send messages to such windows for simple tasks
such as inserting an entry into a list box, or querying the state of a checkbox.

Being macros, these functions are expanded by the C pre-compiler into PM calls
to send the relevant messages so, although they are coded as functions, no
type-checking will be applied by the compiler to the arguments.

7.2 The Workplace Shell Application Model
The Workplace Shell provides an environment in which applications may be
developed along fully object-oriented lines, integrating themselves seamlessly
into the desktop environment. The techniques for developing such applications
are discussed in this section; for more detailed information on this subject see
OS/2 Version 2.0 - Volume 4: Application Development.

7.2.1 Workplace Shell Objects and Applications
The Workplace Shell provides a number of standard object classes such as
folders and data files. The user performs his work by interacting with these
objects using their context menus or direct manipulation.

In order to extend the range of tasks that a user can perform using the
Workplace Shell, it is necessary to add new object classes to his desktop; typi
cally these may be related to specific productivity tools, such as a Spreadsheet
object, or to the user's own business, such as Order Form, Parts Catalog, or
Customer.

In the ideal, purely object-oriented, user interface, there would no longer be any
thing that a user would recognize as a program - there would only be objects,
all with their own unique behaviors and uses. As long as the user is provided
with suitable tools (that is, object classes), he can work out how to accomplish
any particular task without having to learn to use an application program specif
ically designed for that task. What we might loosely call a Workplace Shell
application is really no more than a collection of Workplace Shell object classes.

In order for a newly developed object class to be used, it must be registered to
the Workplace Shell. The classes are implemented in such a way that each
class, or possibly several classes, is contained in a dynamic link library (DLL).
Being in a DLL means that an object's methods can be called by Workplace
Shell whenever necessary, and also that the code can be shared between mul
tiple instances of the class. Registering a new class informs the Workplace Shell
of the existence of the new class, and gives it the name of the DLL containing its
methods.

The Workplace Shell itself, and all its classes including any that a user may
develop, are written using the System Object Model, a language-independent
environment for object-oriented programming. Anyone wishing to develop new
Workplace Shell classes must therefore understand SOM, and also be familiar
with the existing Workplace Shell classes, from which his new classes must
inherit at least some of their behavior.

Chapter 7. Presentation Manager and Workplace Shell Application Development 99

7.2.2 System Object Model

100 OS/2 V2.0 Volume 3

The System Object Model (SOM) is a language-independent specification for
object-oriented programming (OOP). It consists of a set of utilities and interfaces
for creating objects. This section provides a brief introduction to the System
Object Model; for a more complete explanation, see OS/2 Version 2.0 - Volume 4:
Application Development. That document also contains a fuller discussion of
OOP concepts.

SOM implements all the essentials of OOP, including inheritance, encapsulation
and polymorphism. Objects are organized into classes in a hierarchical manner
and subclasses may inherit behaviors and characteristics from their parent (or
super) classes.

SOM is language-independent. With suitable bindings any programming lan
guage may be used to implement the methods of an object class. For example,
a class written in COBOL could then be used or even subclassed by another
class written in Smalltalk/V**. However, so far the only language for which such
bindings are available is C.

One of the great benefits of building WPS objects using SOM is that SOM imple
ments the concept of inheritance. All objects are grouped into classes, and
characteristics and behavior common to more than one class can be defined as
methods in a superclass which are then inherited by all child (or sub) classes.
Many common methods such as these are defined at the system level, in object
classes supplied with OS/2 V2.0, and may be inherited by application-specific
object classes.

An application developer may choose to enhance a system-supplied method: for
example, providing a more advanced level of drag/drop functionality to a
Workplace Shell object class. The developer may create a new object class as a
subclass of the system-supplied object class. The subclass need override only
those methods that are invoked in drag/drop operations. Other methods may
simply be inherited from the super class.

It is important to understand that SOM is a general-purpose implementation of
object-oriented programming, and may be used for any OOP programming under
OS/2. On the other hand, the class hierarchy it provides is very limited, con
sisting as it does of only three classes, so a great deal of work would be
required to implement classes if SOM were to be used for general-purpose
object-oriented programming. In practice the only use to which most program
mers will put the SOM is in developing the Workplace Shell objects that will form
part of their applications.

7 .2.2.1 OIDL and the SOM Compiler
Non-OOP languages such as C lack the language constructs for defining the
classes, methods, instance data and so on that are needed when developing
OOP objects. Even OOP languages which are designed for this can only do so
for applications that are implemented entirely in one language. For these
reasons, SOM provides its own language for defining classes, called Object
Interface Dennition Language (OIDL). The details of a class, its instance vari
ables, methods and the name of its superclass, are all defined using OIDL, and
are placed in a file known as the Class Definition File.

The class definition file is used as input to the SOM compiler, which uses the
information to generate several new files, such as C header files, a module defi-

nition file to be used when linking the object. and a skeleton C source file con
taining a prototype function for each method defined in the OIDL. The
programmer inserts the application function he requires into this source file to
implement the methods he wants, and then compiles and links the program in
the usual way to produce DLL containing the object class.

A class definition file contains the following sections:

Include Section This section consists of a statement to include the class
definition file of the parent class.

Parent Class Section This section defines certain basic information about a
new class, such as its name and release level, and, by
convention. comments that describe its position in the
class hierarchy.

Release Order Section This section is used to allow a programmer to specify in
which order the methods and public data of his class will
be released. This can be important if the class is subse
quently subclassed; without the release order having
been specified, it could prove necessary to recompile
the parent class in that case.

Metaclass Section This optional section is used to give information about
the class's metaclass (that is. the class of which the new
class is itself to be an instance).

Passthru Section This section allows a programmer to include some pro
gramming language code that will be placed by the SOM
compiler into the language source file it generates. It is
typically used for such things as typdef and #define
statements.

Data Section This section specifies the instance variables to be used
by the class.

Methods Section This section lists all the methods which are to be defined
by the class. both those that are new to the class and
those of its parent class that it will be overriding.

7.2.3 Using Workplace Shell Classes
The Workplace Shell introduces several new classes derived from the
SOMObject class; for example, class definitions for a folder (WPFolder), a
program reference (WPProgram) and a printer (WPPrinter). The class hierarchy
of the classes used in the Workplace Shell is illustrated in Figure 39 on
page 102.

Chapter 7. Presentation Manager and Workplace Shell Application Development 101

102 OS/2 V2.0 Volume 3

SOM Object
~SOMClass r SOM Class Manager
LWPObject
~ WPAbstract
I I-- WPClock

WPCountry
WP Keyboard
WP Mouse
WPPalette

WPColorPalette
WPFontPalette
WPSchemes

WP Printer
WP Program
WPShadow
WPShredder
WPSound
WPSpecialNeeds

1-- WPSpooler
L__ WPSystem

WPFileSystem
WPDataFile

L_ WPinstall

WPFolder
WP Desktop
WP Disk
WP Drives
WP Startup
WPTemplates

WPProgramFile

l_ WPTransient

E WPJob
WP Port
WPPrinterDriver
WPQueueDriver

Figure 39. Workplace Shell Class Hierarchy

Notice that this hierarchy includes three so-called base classes from which all
the remaining classes are derived; these base classes are also known as base
storage classes because the fundamental difference between them, and therefore
between all their derived classes, lies in the way they store their control data.
For a fuller discussion of this see Chapter 8, "Workplace Shell lmplementation. 11

If you want to implement a new WPS class, you must first decide which of the
existing classes provides the most promising base from which to work - you
have to subclass one of them. Early experience suggests that subclassing the
existing base classes or their derivatives is usually the more practicable
approach - implementing a new base class by subclassing WPObject may be
desirable but should be regarded as a very major piece of work.

7.2.4 The Structure of a Workplace Shell Application
The Workplace Shell has been implemented in such a way that the whole shell
and all its objects, be they system supplied or user developed, run as a single
OS/2 process. This has some very significant implications:

• If an object abends for any reason, the whole shell and all its objects crash,
disrupting the user's work, and possibly resulting in lost data.

• If a method of a Workplace Shell object takes too long to complete its proc
essing, the whole user interface will be locked up until it completes.

This is a problem familiar to PM programmers, and as with PM, the solution
is to start a second thread for the long-running code. Typical situations
where this problem can arise include retrieving data from a database or
communicating with a host system.

• There is potential for data integrity problems, as it is possible for all objects
to access each others' data; this is probably more of a problem in theory
than in practice, since most accidental addressing errors will still result in
"Trap" errors.

The recommended solution to these problems is to split an application into two
parts: one part, consisting of one or more WPS objects running in the WPS
process, the other part containing most of the application logic running as a
separate OS/2 process. The two parts communicate using the interprocess com
munications (IPC) facilities of OS/2.

To avoid the problems above, it is best to put as little of the application as pos
sible into the WPS objects themselves. Clearly some functions must be there -
for example the code to create and handle an object's context menu, or to
handle direct manipulation - and we have found it best also to code PM dialog
and window creation and their dialog and window procedures within the WPS
objects. Other application functions, such as database access, communications
and calculation, should be put in a separate process.

This structure approximates to the Model-View design approach favored by
object-oriented programmers. Our recommendation effectively places the View in
the WPS process and the Model in a separate process.

The Workplace Shell documentation provides no guidance on good and bad
ways of implementing an application using IPC between the shell process and
the application processing thread. OS/2 Version 2.0 - Volume 4: Application
Development includes a discussion of this and describes one approach that has
been tried, along with programming examples.

7.3 Writing PM Applications to Work with the Workplace Shell
The Presentation Manager has been enhanced to include several new classes
for use with the Workplace Shell, notably the Container and Notebook classes.
The OS/2 V2.0 Presentation Manager would seem to have all the basic require
ments for writing programs that have the capabilities of Workplace Shell applica
tions, without programmers having to learn SOM or become familiar with the
Workplace Shell class hierarchy.

The question that arises therefore is this: how well can a straightforward PM
program that uses the new classes and the drag/drop protocols integrate itself
into the WPS environment? This section helps to answer this.

Chapter 7. Presentation Manager and Workplace Shell Application Development 103

7.3.1 The Workplace Shell and PM
The Workplace Shell along with all its registered classes, be they system
supplied or user-written, is itself just a Presentation Manager program. As such
it should be able to cooperate quite well with other PM programs, as long as it
conforms to the protocols laid down by PM, particularly for drag and drop.

The technical term for the drag/drop protocols is Rendering Mechanisms; the
standard ones are defined in the OS/2 2.0 Programming Guide Volume II. The
Workplace Shell implements the Print and the OS/2 File rendering mechanisms.
These make it possible for a PM application to provide direct manipulation
printing capabilities and, if required, file drag/drop facilities similar to those pro
vided in the OS/2 Version 1.3 File Manager.

7.3.2 How Much Can You Do with PM?
You can emulate many Workplace Shell characteristics in a straightforward PM
program. For example you can:

• Display container windows, which look very much like WPS folders, and pop
ulate them with icons that look superficially like WPS object icons.

• Implement context menus for both icons and windows.

• Provide drag/drop facilities for the items handled by the program. When
these items represent files the standard OS/2 File rendering mechanism will
allow them to be dragged in and out of WPS folders. When it makes sense
to print these items, they can support the standard Print rendering mech
anism, to allow printing by direct manipulation.

Although a PM program can participate to some extent with the Workplace Shell,
there are still things the user may want to do that cannot easily be implemented
without developing the application using SOM and WPS.

Consider a PM program that displays some icons in a container window repres
enting customers of a particular branch of a company. The user sees these
icons in a window that looks very much like a WPS folder. He may reasonably
expect to be able to drag the icon of a customer in whom he is particularly inter
ested onto the desktop or into another folder.

How can a PM program handle this? The Workplace Shell supports the OS/2 File
rendering mechanism, but that is not really suitable for customers, whose details
are more likely to share a database table than to occupy a separate file each.
The PM program may allow the drag to take place, but cannot support any ren
dering mechanism that a WPS folder will understand, so the user sees the
"inhibited" pointer while the customer icon is over the desktop and is not
allowed to drop it.

This confuses the user, who expects to be able to put any object anywhere he
chooses.

7.3.3 Migrating Existing Applications

104 OS/2 V2.0 Volume 3

Many OS/2 users will find themselves with existing PM applications that they
have developed, and may wonder whether they can modify them to exploit the
Workplace Shell environment. Ideally, one would like every application to be
built as a collection of WPS objects, interacting with one another and with the
standard WPS objects, but many users will decide that converting existing PM
programs to this application model is not justified.

There are two approaches one may take to application migration: one is simply
to make a few minor modifications so that the application works better in the
new environment. the other is to convert the whole program to the WPS/SOM
application model. carrying over as much code from the PM version as possible.

7 .3.3.1 Minimal Changes
A particularly useful facility provided by the Workplace Shell is Association; this
can be by file type. filename or extension. A program may be associated with
one or more data files. The effect of this is that the program concerned automat
ically becomes one of the views available from the Open action on the context
menu of any file with this type. Opening this view causes the associated
program to be started with the filename as its first command line parameter.

Many programs that operate on files are written to expect a filename as their
first parameter. so these programs can be used in the Workplace Shell environ
ment in a way that is consistent with the object-oriented user interface - the user
chooses the object he wants to work on and opens it; the window presented by
the program can be thought of as a view of the object.

Any program that does not accept a filename as a command-line parameter can
easily be modified to do so.

Other changes that could be considered:

• Change the way the program ends, so that by default it saves its data back
into the file from which it read it. This is more consistent with the way a
Workplace Shell object allows you to open a view. make changes, then close
the view, without having explicitly to save the data first.

• Replace the menu bar with a context menu. This may or may not be desir
able - menu bars are still a quite acceptable part of the user interface and
are required by CUA 91. but are little used within Workplace Shell itself.

• Implement some simple direct manipulation - doing this for printing can be
very straightforward, and makes the program fit much better into the
Workplace Shell environment.

Supporting drag/drop for files. even in a limited way, can be very helpful. As
an illustration. consider the Enhanced Editor provided with OS/2. This is a
standard PM program but you can drag WPS data file objects from any folder
and drop them on the open editor - the result is that the file is added to the
edit ring (the list of files currently being edited).

• If the program offers several tailoring options for the application. implement
a Settings view. similar to those provided by WPS objects.

• If the application includes many large dialogs, currently using separate
dialog boxes invoked from the menu bar, consider replacing these with a
notebook control - it can make a complex application seem a lot simpler.

• Add an ASSOCTABLE statement to the program's resource script file. This
statement sets up associations for the program so that the user is relieved of
the need to do it himself, and also provides the only way to add new file
types to those provided by the system. For details of this see 7.3.3.3, "Using
an ASSOCTABLE to Add New File Types" on page 107.

This statement allows for associations based on file extension, but our
recommendation is to use file types as they provide greater flexibility for the
user.

Chapter 7. Presentation Manager and Workplace Shell Application Development 105

106 OS/2 V2.0 Volume 3

• If necessary, modify the program so that it behaves well when provided with
an empty input file. For example, if the program normally expects the con
tents of its files to have some pre-defined structure, make the program set
up this structure automatically if it reads an empty input file, rather than
issue a message complaining that the file is invalid.

The reason for this change is that we want the user to be able to start a new
file by first dragging a new object of an appropriate type from the Templates
folder, then opening it to start the application program. Typically, the new
file will be empty at this stage, so the program must recognize and accept
that the user has chosen to start a new one. Many existing PM programs
expect the user to start a new file by selecting New from the File menu and
will only load those files that already contain valid data.

For PM programs that operate on whole files, like word processors and
spreadsheets, very good results can be achieved with these simple techniques,
without ever having to write any SOM code. With a template file available, and
associations already set up, all the user need do to start working on a new file
(document, spreadsheet, or whatever it is), is to drag a new one from the tem
plate and open it. The program will start, presenting the user with a view of the
data, and when he is finished working on it, he can close the view (that is, the
program), and the data is saved automatically.

7 .3.3.2 An Illustration
Let us illustrate this with a simple example. We have an existing PM program
that is an expenses calculator. When it starts it presents an empty window with
a menu bar that has two actions - File and Process. With the File action the user
can elect to start a new expenses form, load an existing one from disk, save the
current one to disk, or to exit. The Process pull-down menu includes actions to
calculate totals, to print the current form, or to send it to the cashier for proc
essing.

Let us see how we might modify this application to work in a way that is con
sistent with the Workplace Shell user interface:

1. Add an ASSOCTABLE statement to the program's resource script file, associ
ating the program with the new type: Expense Form.

2. Modify the program so that it expects a filename as its first command line
parameter and automatically loads an expense form from the named file. If
the program finds that the input file is empty it should start a new expense
form.

3. Modify the program so that when closed it automatically saves the current
data into the file it read in when started (after prompting the user to confirm
that this is what he wants).

4. Take the actions currently on the menu bar and implement them in a context
menu displayed when the user presses Mouse Button 2. Provide an option
for the user to turn off the menu bar, which is now redundant.

5. Provide the user with installation instructions that tell him to copy the .EXE
file onto his disk and create a Program object referring to it. This will ensure
that the Expense form file type is added to his system, and that an Expense
form template file is created.

Now the user can start a new expense form by dragging one from the template
in the Templates folder and double-clicking on it to start working with it. The

context menu will then let the user calculate totals, print the form or send the
form off for processing.

This is still not perfect; the user may well expect, as with real Workplace Shell
objects, to be able to access the context menu from the object itself, not just
from a view of it. This can be put right by making two copies of the program,
and modifying them as follows:

• The first should be modified so that it only prints forms

• The second should be modified so that it only sends forms for processing.

These programs will be easy to produce since they already contain all the
required function. All that needs to be changed is to make them perform their
specific functions automatically when started, and to remove extraneous code.

Since a large amount of code may now be duplicated between the three pro
grams, it may be worth restructuring them so that common functions reside in a
DLL accessible to all three. This provides significant benefits for run-time per
formance and program maintenance.

The user working with an expense form file will now find its context menu con
tains actions to open a form (which will start the main program), to print a form
(which will invoke the new print program), and to send the form off for proc
essing (which will invoke the other new program). These actions are also avail
able from within the main program when the user is actually working on the
form.

The user may find it odd that all these actions appear under the Open action in
the context menu. This could be improved by removing the association from the
Print and Send programs, and manually adding menu items to the template
expense form file to invoke these programs.

The user will also find that he cannot print by direct manipulation of the file itself.
If the user drags the Expense Form object onto a printer, it will print as a text
file. There is no way that our print program can be invoked automatically to
format the data in this situation. The only solution to this would be to develop a
new WPS class, derived from WPDataFile, that overrides the wpPrintObject
message. Then, when the object is asked to print itself, (typically in response to
having been dropped on a printer object), it will invoke the print program to
provide the required formatting. Developing this class would not Involve very
much work, but would require the programmer to be familiar with WPS and SOM
programming.

With only minor exceptions the expense form file object now behaves almost
exactly as it might if it had been implemented as a new Workplace Shell class
derived from WPDataFile, when in fact it is simply an ordinary data file with
some associated PM programs.

7 .3.3.3 Using an ASSOCTABLE to Add New File Types
The scenario described above requires that a new file type be added to every
user's system - in the example its name was Expense form. This section
explains how to do this for your own program. An alternative approach that is
suitable for users and administrators can be found in 6.8.5, "Adding New File
Types" on page 84.

Chapter 7. Presentation Manager and Workplace Shell Application Development 107

108 OS/2 V2.0 Volume 3

The standard programming technique to do this involves the ASSOCTABLE state
ment in a program's resource script file. (This is one of the source files that a
programmer creates when developing a PM program - for more information
about this see OS/2 Version 2.0 - Volume 4: Application Development). This
statement defines associations for the program being developed, in terms of
either file type, filename or extension. The file type can be anything you choose.
regardless of whether it is one of the existing file types defined within OS2.INI.
In the case of the example above, the Expense form file type may be used in the
ASSOCT ABLE statement, despite the fact that at that time it is not a type known
to OS/2.

An ASSOCTABLE suitable for this example is shown in Figure 40. The first
quoted string gives a file type to be used for association with this program; the
second string allows for association by filename or extension (if you want to use
only association by file type, an empty string may be specified here); the third
parameter specifies that we want this program to be automatically associated
with data files with this type; the last parameter specifies an icon to be used for
representing data files that have this attribute.

ASSOCTABLE 5 PRELOAD
BEGIN

"Expense form 11
, "*.exp", EAF_DEFAULTOWNER, expenses.ico

END

Figure 40. An ASSOCTABLE Resource Script File Statement

When the program has been built, the Settings view for the executable file
shows, on its Associations page, that associations have been set up for the
specified file type(s) - in our case Expense form.

At this stage, however, there is no way you can create a data file with this file
type - when you open the Type page of a data file's Settings view you find that
Expense form is not one of the available types.

To achieve this you must create a Program object that refers to the executable
file that you just created. (The usual way to do this is to drag a Program object
from the Program template in the Templates folder, then insert the executable
file's path and filename into the "Program" page of its Settings view). This reg
isters the program to the Workplace Shell, which finds that the program includes
a type for association, and adds this to its list of available file types. It also adds
a template file for this type to the Templates folder.

The new types are then available to be added to any data files on the system
and new files of these types can be created by the user at any time simply by
dragging from the corresponding templates.

7 .3.3.4 Converting a PM Program to WPS/SOM
To convert an existing PM application to be a full SOM/WPS application may
require a great deal of work, depending on how well structured the program is to
begin with.

Much of the code can probably be preserved - when a WPS object wants to
display a window, it does so using normal PM facilities to create the window and
has to provide a normal PM window procedure to support it; most of this code
may be transferred directly from the older program. Similarly, any application

7.4 Summary

processing code - for example for database access, communications, or calcu
lation should be equally applicable to the new version.

The steps necessary to make the conversion include:

• Consider the split between function that will be implemented as WPS objects
(with all the drawbacks of running in the WPS process), and function that will
be implemented in separate processes.

• Devise the interprocess communications {IPC) protocols to be used between
the two parts of the application.

• Design the revised user interface. Although much may be preserved, there
will inevitably be design changes needed to make the application work well
for the user in the new environment. These may include:

Increased emphasis on the use of icons to represent the data items
manipulated by the application

Changes to terminology used {for example, "views" rather than
"windows")

Use of container windows where list boxes may previously have been
used

Replacing complex dialogs with notebook controls

Adding context menus.

• Add the capability for the program to save its state when closed so that, the
next time it is started, the program's options, settings, its window position
and so on are the same as the last time it was run.

• Provide a way for the user to retrieve application windows that have been
minimized. Since in OS/2 Version 2.0 windows are not necessarily mini
mized onto the desktop, it is possible that application windows that the
program has not added to the window list may be hard to restore. Such
designs need to be revised for OS/2 Version 2.0.

Presentation Manager applications differ in structure from conventional applica
tions. Presentation Manager applications are composed of a number of
windows, which represent objects upon which the application operates.
Windows respond to events, communicated by way of messages passed to the
windows from Presentation Manager or from other windows.

Windows may be either display windows, which operate on objects known as
presentation spaces, or object windows, which operate on other objects such as
databases or remote systems. Display windows have a visual manifestation on
the screen, while object windows are typically hidden and act merely as
addresses to which messages may be sent in order to initiate actions.

Windows are grouped into classes. Each class has similar characteristics and
responds to messages in a similar way. Window classes must be registered to
Presentation Manager. Some window classes are defined as public, and may be
used by all applications in the system, while other window classes are defined
privately by an application, and are available only to that application.

Chapter 7. Presentation Manager and Workplace Shell Application Development 109

110 05/2 V2.0 Volume 3

The response of a window to the messages it receives is determined by its
window procedure. All windows of the same class share the same window pro
cedure.

Messages are also grouped into classes; Presentation Manager defines a
number of message classes, and applications may define their own classes for
communicating events between windows in the application. Message classes
are simply defined using integer constants, and are not required to be registered
to Presentation Manager.

The structure of a Presentation Manager application is therefore that of a
number of windows which communicate by way of messages. Since these mes
sages normally constitute the only means of communication with a· window and
the objects upon which it acts, this application structure forms a good basis for
the implementation of object-oriented software engineering principles. The use
of such principles in Presentation Manager applications is discussed at length in
OS/2 Version 2.0 - Volume 4: Application Development.

Workplace Shell applications are implemented using the System Object Model
component of OS/2 V2.0. This is a language-independent environment for object
oriented programming, along with a set of utilities that enable the programmer
to define object classes, and to implement them in non-COP languages such as
c.

A Workplace Shell application will typically consist of one or more objects, which
are defined by the programmer using the SOM, and inheriting characteristics
from the Workplace Shell's own existing classes.

The shell and all its objects run in OS/2 as a single process, which makes the
shell and its objects vulnerable to a single object that is unresponsive or which
abends. A well-designed Workplace Shell application should therefore be struc
tured so that the bulk of its application logic runs in a separate process, commu
nicating with the Workplace Shell objects that implements its user interface by
means of OS/2 interprocess communication.

It is possible to write PM programs that integrate to some extent with the
Workplace Shell environment, for example by supporting printing by direct
manipulation, but such programs will never behave quite like properly designed
Workplace Shell applications. Migrating existing PM applications to work better
in the Workplace Shell environment is fairly straightforward, and good results
can be obtained in many cases by exploiting the association facility of WPS.
Fully migrating a PM program to become a SOM/WPS application may be pos
sible in many cases, though this involves considerable redesign and program
ming.

We cannot give a clear recommendation as to which programming model - PM
or WPS - to adopt for new applications. It will depend on many factors, such as
the application itself, the needs and skills of the users, the skills of the program
mers, and on any other applications that may be used at the same time. The
decision must be made based on the nature of the application and the customer
environment in which it is to be used.

Chapter 8. Workplace Shell Implementation

This chapter looks at what happens "under the covers" of the Workplace Shell
(WPS). We examine the shell from several viewpoints:

• The implementation of the WPS as an OS/2 program
• The different types of shell objects
• The relationship of the shell to the file system
• Persistence in WPS objects.

This chapter will help you to understand how the Workplace Shell is imple
mented, know what kinds of objects it stores and where it stores information
about them. If you wish to understand the System Object Model, object-oriented
programming in OS/2 V2.0 and how to create your own WPS program you should
read the appropriate sections of the companion volume, 0512 Version 2.0 -
Volume 4: Application Development.

8.1 The Workplace Shell as an OS/2 Program
One of the biggest changes in OS/2 V2.0 is its support for installable interface
shells. The installable feature concept was introduced in OS/2 Version 1.3 with
the HPFS file system; OS/2 V2.0 has now extended it to the user interface. The
installable feature approach gives users the flexibility to set up their system to
meet their precise needs.

The Workplace Shell is called from the CONFIG.SYS file as follows:

PROTSHELL=C:\052\PMSHELL.EXE

Alternative shells can be implemented or, if desired, a single program, such as
Lotus 1-2-3 /G, could be started directly without having to start the WPS at all.

The Workplace Shell run in its own process, starting threads as needed. For
instance, the contents of a directory can be read while its associated folder
window is being created. In addition, the WPS starts a second process to
monitor the shell and restart it if it fails.

This in turn means that the overall system is no longer as vulnerable to shell
errors as was the case in all previous versions of OS/2. If it detects an error, the
WPS is capable of restarting itself without having to shut down and restart all the
other running programs.

The WPS does this by saving all the window information in real time and
restoring it when the shell process is restarted.

Existing PM applications are unaffected. PM programs which are implemented
with a Model/View structure, where the "view" part runs in the WPS process, will
have to be restarted and reconnected to the "model" portion of the program
running in its own process.

The Workplace Shell also notes which programs are running at any time and can
restart them when the operating system is re-IPLed.

©Copyright IBM Corp. 1992 111

8.1.1 Workplace Shell and the System Object Model
The other major new feature of the Workplace Shell is that it is built on an
object-oriented platform, called the System Object Model {SOM). SOM enables
the WPS to be written as classes which inherit attributes from their superclasses
and provides a high degree of reusability and integrity to the WPS implementa
tion. Object-oriented programming and SOM are described more fully in
Chapter 7, "Presentation Manager and Workplace Shell Application
Development."

8.1.2 Workplace Shell Object Types

112 OS/2 V2.0 Volume 3

There are three main classes in the WPS class hierarchy, descended from
WPObject. The WPS classes are shown below:

SOM Object
~SOMClass t- SOM ClassManager
LWPObject
~ WPAbstract
I ~ WPClock

WPCountry
WP Keyboard
WPMouse
WPPalette

WPColorPalette
WPFontPalette
WPSchemes

WP Printer
WP Program
WPShaaow
WPShredder
WP Sound
WPSpecialNeeds

I-- WPSpooler
L_ WPSystem

WPFileSystem
WPDataFile

L_WPinstall

WPFolder
WP Desktop
WP Disk
WP Drives
WP Startup
WPTemplates

WPProgramFile

l_ WPTransient

E WPJob
WP Port
WPPrinterDriver
WPQueueDriver

Figure 41. Workplace Shell Class Hierarchy

Classes are used to create the instances, or objects, that the user sees· on the
desktop. Each can be subclassed to create a new, derived class which inherits
some of the properties and behaviors of the parent. Two useful terms to note
here are base class, a class which is a dirt::ct subclass of WPObject, and persist
ence, which denotes that an object knows how to save its current state.

The main WPS classes are:

WPObject The superclass from which all base classes are derived.

WPAbstract A base class that provides persistence via the OS2.INI file. These
include programs, shadow copies and system objects such as the
clock. They can be copied around the Workplace Shell but not to
diskette.

WPFlleSystem A base class that provides persistence via the .CLASSINFO
extended attribute of the associated file or directory. Objects of
this class are always stored on disk. They are typically folders
and files and can be copied to any media.

WPTranslent A base class that has no persistence. Examples of WPTransient
objects are the window list and the printer drivers.

8.1.3 Relationship of the Shell to the File System
The WPS represents program and data files with icons and allows you to move
and copy them around the system in a similar way to the OS/2 Version 1.3 File
Manager. There are also new functions like "shadow copy" and new objects like
the system clock which have behaviors completely unlike those previously seen
in the File Manager.

The implementation of the Workplace Shell in OS/2 Version 2.0 is not inherently
file-oriented but the current implementation only supports files, not data records
or transactions. Data file and program icons may represent files on a disk. A
folder is represented by a real directory under its name. The diagram below
shows the approximate disk structure which supports the WPS:

C:\OS!2 2.0 DESKTOP
\DOCUMENTS

\SCRIPTFILES
\PERSONAL
\1992PLAN

\DRAWINGS
\MY FOLDER
\TEMPLATES
\1991SPREADSHEETS
\1992SPREADSHEETS

Figure 42. Disk Structure Supporting the Workplace Shell

As you can see, all folders are contained within the desktop and the directories
of each folder on the desktop are subdirectories of the "OS!2 2.0 DESKTOP"
directory. From the directory structure we can see that the screen will display a
Documents folder on the desktop and it, in turn, will contain three other folders;
SCRIPTFILES, PERSONAL and 1992PLAN.

Icons in any folder can be dragged (moved) into another folder or onto the
desktop. When this happens, the file system will handle it in two different ways.
If it is a data file it will be physically moved to the new directory. If it is a
program reference or a shadow copy of a data file, then a pointer to the original
object and its working directory is passed from one folder to the other.

The relationship of the de~ktop to the file system is shown in Figure 43 on
page 114 below.

Chapter 8. Workplace Shell Implementation 113

114 05/2 V2.0 Volume 3

Folder A

Directory A

OS2.INI

Folder A
Program

FolderB

Folder B

File

Directory B

Program.,_.. __

Shaoow:J-,r-----=+::=:::::::!!=

File Copy

Figure 43. Drag/Drop - Physical Implementation

Both the folder and the abstract objects in it are stored as pointers (called
HOBJECTs) in the OS2.INI file (see 8.5.1.3, "Folder Contents" on page 127 for
more details). When a program is copied to another folder, the HOBJECT of the
program is placed in that folders area within the OS2.INI file. The HOBJECT is
also placed in the EAs of the directory which corresponds to the folder, along
with its position within the folder.

Handling programs in this manner makes sense because, if the programs' main
executable modules were to be moved, the executable files could become sepa
rated from their Dlls. This approach allows a program to be copied and moved
around the desktop without having to be physically moved.

"Shadows" of file objects are handled in a similar way to programs; the original
file is left in the source folder but a pointer to it is created in the target folder.
HOBJECTs are discussed further in 8.2.1, "Folders."

There are some problems associated with the Workplace Shell implementation.
These are outlined below and discussed in more detail in the rest of the chapter:

• The system is critically dependent on a single file, OS2.INI, for much of the
information. Damage to this file can have a disastrous effect on the user's
working environment.

• The WPS uses EAs to store settings for files. However, EAs are not recog
nized by all file systems, nor by any DOS or Windows programs. This can
cause problems when setting up the working environment for a user who
needs both OS/2 and DOS programs.

• With a FAT file system, moving files can lengthen disk access times as files
become fragmented and the tables become cluttered. This would impact
users who want to migrate their systems from DOS to OS/2 V2.0.

• A program file is treated by the WPS as either a program reference object or
a data file object, depending on the view used. Once registered as a
program reference object and placed in a folder, the WPS restricts the
actions which can be performed on it. For example, copying or moving the
object moves the program reference, not the underlying file. Viewing the
object from the Drives folder, however, allows the user to work with the
physical file. Thus direct manipulation in .the WPS means that sometimes the
program file can be moved and sometimes it cannot.

• While data files and programs are handled by the shell, there is no base
class for record structures and transactions. To be able to create a per
sistent "transaction 11 object capable of interacting fully with the other WPS
objects might require us to derive a new base class from WPObject. See
OS/2 Version 2.0 - Volume 4: Application Development for a more detailed
discussion of this issue.

8.2 Workplace Shell Objects

8.2.1 Folders

This section looks at the main Workplace Shell objects and provides an introduc
tion to how they are implemented.

Every folder corresponds to a directory in the file system. The desktop is a
special type of work area and is represented by \08!2 2.0 DESKTOP in the file
system. The top-level folders on the desktop are subdirectories of \OS!2 2.0
DESKTOP. WPFolder objects and their contents are stored using a combination
of a directory and the OS2.INI file. A folder may contain any kind of WPS object.

WPFileSystem objects are real files residing in a file system directory corre
sponding to the folder. These objects are stored in the folders directory but not
in the folders section of the OS2.INI file.

WPAbstract objects are stored in the 082.INI file. The information is stored with
a pointer, called a HOBJECT. The folder stores the HOBJECTs for the abstract
objects contained within it in the OS2.INI file, as can be seen below in Figure 44
on page 116. This information is also stored in the EAs file for the directory
associated with that folder. See 8.5, "The OS2.INI File" on page 126 for more
details and some examples.

WPTransient objects can be placed in a folder but are not stored by the oper
ating system and disappear from the folder when OS/2 is shut down.

Settings information is stored in the Extended Attributes of the folder's directory.
The following figure may help to illustrate these relationships:

Chapter 8. Workplace Shell Implementation 115

116 OS/2 V2.0 Volume 3

OS2.INI MyFolder (EA)

Hl H3 MyFolder
AbstObjl Hl
Abst0bj2 H2
Abst0bj3 H3 IHl !Fl IH3

\MyFolder (directory) IF2 IF3
MyFolder
Hl H3 IF4

Fil el
Folder2 File2
H2 H4 File3

File4

Figure 44. Relationship of Folder to Directory and OS2.INI File

In the folder, /Ht is the icon for a program, IH2 is the icon for a shadow copy of a
file, and /Ft to IF4Ht are icons for data files. The data files are stored in a direc
tory - in HPFS this bears the same name as the folder. Pointers (HOBJECTs) to
the abstract objects are stored in the Extended Attributes (EA) for the directory.

The pointers are generated by the WPS when an abstract object is created (for
example, by installing a program) and are unique to each WPAbstract object.
The physical references to each WPAbstract object, together with its HOBJECT,
are stored in the ·os2.INI file. We can see that the program represented in the
folder as /Ht is called AbstObjt in the OS2.INI file and has a HOBJECT of H1.
This HOBJECT is what is stored in the directory EA. You will notice that OS2.INI
also separately records which WPAbstract objects are stored in each folder.

8.2.1.1 Folder Population
A folder populates itself with icons when it is opened and refreshed. The fol
lowing approach is used:

• The WPAbstract class keeps track of which folders its instances are in.
• Pointers to WPAbstract objects (programs, shadows, etc.) are read from the

OS2.INI file and their icons are displayed.
• The WPFindObjects method of WPAbstract, WPTransient, WPFileSystem, and

any other base class is used to retrieve the contents of a folder. For
example, in WPFileSystem this method reads the EAs for each file in the
directory, which tells it the object's class and provides its icon. A message
is sent to the appropriate class which then instantiates it. If the file doesn't
have any EAs then the default used is the base class, WPFileSystem.

• The EAs are read for the directory. This gives the name (or OS2.INI program
reference) and icon position for each object to be displayed in the folder.

• The object icon and title are displayed in the folder.

Any alteration to the contents of a folder, such as adding a file or removing a
shadow copy, is saved by the object when the event occurs. However, attributes
of the folder, such as icon positions or the size and position of an opened view of
the folder, are not saved until the contents view of that folder is closed.

A folders view will not be automatically updated when a file is created or
destroyed by a process outside the WPS process (such as from a command line
in an OS/2 window). Restarting the system may resolve this.

This is because the WPS does not receive every message from the file system
concerning files which lay outside its workplace directory structure (that is, not
under "OS!2 2.0 Desktop"). Notification is received if a new file is created or if
an existing file is deleted or renamed, but not if an existing file is changed
outside of the workplace.

8.2.2 File System Objects
A data file object in the Workplace Shell represents a real file in the file system.
If the user shreds the object by dragging its icon to the shredder, the file is
deleted.

The only view which is always available to a data file is the Settings view. Set
tings are stored in extended attribute (EA) files. Refer to 8.4, "Extended
Attributes" on page 124 for more information on EAs. Settings are displayed in
a separate window from the main window, using a notebook control.

The difference between descriptive and physical names is important. The
descriptive name (or "object title") is the name which appears under the icon. It
can be set in the "Title" field in the Settings view, or by "direct editing." The
physical name is the actual name by which the data file is known to the file
system. It can be set in the "Physical name" field in the Settings view.

The two need not be the same. This provides an advantage in that long, mean
ingful icon descriptions can be used even without HPFS.

The filename and object title are synchronized as much as possible. However,
in FAT file systems the physical name is limited to 12 characters. When the
description is longer than FAT will support, the filename is truncated. If a similar
filename already exists, a version number is appended to it, However, the WPS
always tries to ensure that the digits at the end of the filename match those in
the title of the object. For example, a file with the title "My File : 22" might have
a filename of "My_Fil22" on FAT and "My File: 22" on HPFS.

There is some possibility for confusion in both file systems, since two objects
within the same folder can have the same descriptive name even though they
have different physical names. Figure 45 on page 118 shows the effect of
"direct editing" an icon description.

Chapter 8. Workplace Shell Implementation 117

118 0512 V2.0 Volume 3

ICON ICON

Change description
OldFilename Myfile

to 11Myfile 11

~0 ~0
OldFilename.XYZ Myfile.XYZ

Figure 45. Effect of Changing Description on HPFS file names

This is another reason for using the HPFS disk format: if you change the file
description the WPS automatically changes the filename to be the same as the
description. As you can see, the description and icon for the object are stored in
the files Extended Attributes (EAs). When you copy the file under OS/2 V2.0, its
EAs are copied too.

The operating system settings determine what happens when you try to copy a
file into a directory which already contains a file of that name. If a user copies
an object to a folder where an identically named object already exists, the
Workplace Shell will prompt the user to change the name (this is the default
setting). The WPS applies a similar protection if the user tries to rename the
object using "direct editing" of the icon description, but will not prevent the user
from changing the title in the Settings view.

For example, if a user copies a file to another folder, changes the contents, then
copies it back to the original folder, the filename will be changed as follows:

Copy to Folder2 Copy back to Folderl
----~~~~~--· .

FILE 10 FILE I 0 ~0
ABCD.XYZ ABCD.XYZ ABCDl.XYZ

Figure 46. Effect of Copying Files on Filenames

When you copy the file from FOLDER1 to FOLDER2, the filename stays the same
(ABCD.XYZ). When you copy it back to FOLDER1. the user is prompted to
change the filename to ABCD1 .XYZ. This is because the WPS believes that it
should not destroy user data by default.

Sometimes this is very useful. For instance, if you copied a spreadsheet,
changed it extensively but forgot to rename it, then copied it back, you would be

8.2.3 Shadows

horrified if you then realized you had just copied over the original - which was
just as important as the new one!

A data file may associated with an executable file. This allows the program to
be started and the data file passed to it when the data file is double clicked on.
This is discussed in more detail in 8.3.2, "File Associations" on page 121.

Making a filename association in a program and setting the file type attribute in
an associated data file can sometimes cause problems. This is because
filename associations take precedence over file type associations. So if a user
subsequently wants to change the file type for an object to use a different
program with it, the file extension association will prevent him from doing so.

Shadows are II aliases n for objects. Both WPProgram and WPFileSystem objects
can be "shadowed,, but it is not recommended to make shadow copies of pro
grams. This is because a user might mistakenly edit the program title of the
shadow copy and change the original program's filename, thus preventing it
from being executed.

The behavior of a shadow is identical to the object it shadows in all respects
except one; deleting a shadow does not affect the source object. In practice, the
user may find other differences; for example, deleting an object causes the
deletion of all its shadows. Shredding an object which has shadows linked to it
will generate a message window, informing the user that this object has
shadows associated with it.

Distinguishing a shadow icon from an object icon can be difficult, as there is only
a subtle visual distinction between objects and their shadows (the text of a
shadow is "grayed,, or "dimmed,,). Some users find it difficult to distinguish
such a subtle difference and they should modify the shadow color text using the
Scheme Palette within the System Setup folder. Shadows are also differentiated
from real objects by the presence of the "Original,, choice at the bottom of their
context menus.

8.2.4 Abstract Objects
These include program references and shadow copies of files. Some can be
programs written and executing within the Workplace Shell, others can be appli
cation programs running in their own processes while others can be shadow
copies of data files. Since all objects have to have a program running behind
them somewhere, there are many of these objects in the system, stored in the
082.INI file.

The system clock is an example of a program running in the WPS process, while
the icon editor is an example of a PM program running in its own process
outside the WPS. Shadow copies are discussed in 8.2.3, "Shadows."

Since WPAbstract objects only physically exist in the OS2.INI file, they cannot be
copied to diskette. This may confuse some users, who think that dragging a
program reference or shadow copy to a diskette will cause the real file to be
copied.

Information about WPAbstract objects is held in the 082.INI file. For more infor
mation refer to 8.5, "The 082.INI File,, on page 126.

Chapter 8. Workplace Shell Implementation 119

8.2.5 Transient Objects
The main difference between these programs and abstract objects is that tran
sient objects cannot save their state, that is, they are not "persistent." Also
pointers to transient objects are not stored in directory EAs, unlike abstract
objects. The values used when transient objects are started are usually stored
within the program and there is no mechanism to write these back to disk.
Examples of these programs include the window/task list and device drivers.

8.3 Workplace Shell Facilities
In looking at how the Workplace Shell is implemented, it is useful to separate the
shell from the underlying workplace facilities, since the same facilities are
needed by both the shell and by all applications which run under the shell.
These facilities include:

• Object registration

• File associations

• Direct manipulation

• Icon interaction/messaging

• The ability to create multiple instances of objects.

These functions are implemented as WIN APls which can be accessed from any
language that has appropriate bindings. For example, 11WinCreateObject" can
be called from a C program. Some of these APls, such as
11 SysRegisterObjectClass, II have been mapped to a new version of REXX,

One of the most important points to make here is that, from an application's
viewpoint, the WPS can be totally invisible provided the application only uses
objects which are already defined in the WPS class hierarchy, such as data files.
For example, templates for data files can be created and associated with the
program.

Applications written for previous versions of OS/2 may take advantage of the
basic functions supported by the class under which they are registered (typically
WPProgram). For instance, a program can be started by dropping a data file on
the program icon providing the program will accept a file name as a parameter.

8.3.1 Object Registration

120 OS/2 V2.0 Volume 3

When the user double clicks the mouse on a data file icon in the Workplace
Shell, a window opens up to display its default view. To do this, the system has
to invoke a program and pass the file name to that program as a parameter.
This requires the system to know which application (or object handler) to invoke,
and where it is stored.

In the File Manager under OS/2 Version 1.3, the services which performed this
function were hidden and not available to applications. In OS/2 Version 2.0,
however, they are exposed and accessible through the Workplace Shell. There
are three elements to this: program registration, file registration and file associ
ation.

When an application is installed under the Workplace Shell, a program template
is used to register the application as an instance of the WPProgram class (a
subclass of WPAbstract). This makes the program a persistent object.

The program reference information and icon are stored in the OS2.INI file. The
icon is displayed in a specified folder, and a default view is defined. After regis
tration this icon can be dragged and dropped on other WPS objects, such as a
folder or the shredder.

Data files are also registered with the WPS, which creates new instances of the
WPDataFile class for them. The file is stored in a directory and its "settings"
information is stored in EAs attached to the file.

When you make a shadow copy of a file, the WPS creates an instance of the
WPShadow class and stores it in the OS2.INI file. For this shadow, as with pro
grams and files, using WPS facilities to create a new instance automatically reg
isters it with the WPS.

8.3.2 File Associations
Files are associated with their "file handler" in two ways. The Settings view for
an executable file contains an Association page. This page allows an application
to be associated with its data file. The association can be by file type or by full
or partial file name and extension.

The file type, file name, partial file name or file extension (for example WP*,
WP*.DOC, *.DOC) can be associated with a program from the program itself or
the program reference. The file type (for example, OS/2 command file or plain
text file) can be associated with a program using the Settings view for an object.
Both sets of information are stored in the OS2.INI file. See 8.5, "The OS2.INI
File" on page 126 below for further details.

A data file that "belongs" to an application will reflect this by having the applica
tion's name appear as a view that can be opened. Plain text files, for example,
may be opened as a "System Editor" view. The Association page is available for
command (CMD) files as well as executable (EXE) files.

This duplication can cause confusion to the user if the associations are set in all
three places. We recommend that if you have a program reference for a
program, use this to set the associations instead of setting the associations from
the program object itself.

8.3.3 Direct Manipulation
In OS/2 Version 1.3, a set of functions and messages were provided for direct
manipulation, but each program had to provide its own code to take advantage
of these functions, and define its own protocols to be observed during drag/drop
operations, so that each program knew what type of information was being
transferred.

These protocols are called Rendering Mechanisms. Three standard ones were
defined in OS/2 Version 1.3:

Print Provided a mechanism to enable printing by direct manipulation

OS/2 File Intended to be used by PM programs that wanted to move and copy
files by direct manipulation (such as the File Manager)

ODE Enabled Dynamic Data Exchange links to be established by direct
manipulation.

Since PM did not provide common objects, such as printers and shredders, to
implement these protocols the value of these rendering mechanisms was

Chapter 8. Workplace Shell Implementation 121

reduced. The apparent complexity of the direct manipulation functions and pro
tocols also inhibited their use.

More importantly, however, the non-object-oriented structure of most PM appli
cations made designing direct manipulation into existing programs both difficult
and largely ineffectual. The benefit of direct manipulation is directly proportional
to the granularity of the objects being manipulated; where the finest grained
object is a file, the only other objects it can interact with are containers and
devices. Such interactions can as easily be implemented by the shell, as is
shown by the implementation of the WPS.

OS/2 Version 2.0 provides many common objects which can be used by applica
tions, all of which are drag/drop enabled. When an icon (representing a WPS
object or something dragged from a PM program) is dragged over a WPS object,
that target object will send a message to the source object to try to complete a
direct manipulation operation.

That message says what the target icon does, so a successful drop depends on
the source and target object implementing a common rendering mechanism; that
is, the source object must be able to:

• Understand the message
• Perform the action carried in the message.

If the source icon represents something that is unsuitable for dropping on this
target object, then a drop will not be allowed and the user will be informed by
the pointer changing to a "no-entry" symbol.

Where possible, the WPS includes standard PM rendering mechanisms (for
example, DM_DISCARDOBJECT) as well as its own WP messages {for example,
(WP _DELETE). It is therefore possible for a PM application to interact with WPS
devices by coding appropriate responses into the application using the
drag/drop APls. To do this, the programmer must know and understand the ren
dering mechanisms used by each WPS object.

This is made more difficult because the WPS, for performance reasons, often
implements functions within the core classes rather than leaving it to objects
derived from the base classes, such as WPFileSystem, to carry out the action.
Thus, when dragging a file to the shredder, the file does not receive the
WP _Delete message; instead, the shredder program tells the OS/2 file system to
delete the file.

8.3.4 WPS Events/Messages

122 OS/2 V2.0 Volume 3

Workplace Shell makes implementing drag/drop considerably easier for the pro
grammer than it is under PM. Much of the filling of data structures and the drag
part of drag/drop is handled by WPS, so that WPS simply sends the target object
a pre-defined message if a successful drop sequence is completed.

Without this help from WPS, a program must, for example, include code to
handle the DM_DRAGOVER messages that occurs when an icon is being
dragged over another icon without being dropped on it. If each application had
to code an exchange for each device object in the system, as well as all the
other possible objects, this would significantly complicate application develop
ment. It would also increase program size and memory usage, since each appli
cation would need to be running all the time.

The Workplace Shell avoids this requirement by allowing a developer to register
a small object which understands all the capabilities of the application, and can
call the relevant parts of the main application when required. The standard
direct manipulation capabilities of the WPS include Print, Delete and File
Move/Copy.

8.3.4.1 Print
Workplace Shell implements the standard PM Print rendering mechanism
(DRM_PRINT); after a successful drop, the source icon is sent a
"DM_PRINTOBJECT" message with the name of the relevant print queue as one
of its parameters. For WPS objects, the WPS may print the object automatically;
non-WPS programs should perform the print to the specified queue when they
receive the DM_PRINTOBJECT message.

8.3.4.2 Delete
The Workplace Shell shredder object supports a rendering mechanism called
DRM_DISCARD. This is not one of the standard PM rendering mechanisms. If
an item supporting this rendering mechanism is dropped on a shredder, then the
source program is sent a 11 DM_DISCARDOBJECT 11 message. In the case of a
Workplace Shell object, it will be deleted; in the case of a non-WPS PM program,
the program must delete the dragged item in response to this message.

8.3.4.3 Fiie Move/Copy
When an item is dropped onto a folder object and the dropped item is either a
WPS object derived from WPFileSystem or a PM item whose associated data
structures indicate that it is suitable, the target initiates the 08/2 File rendering
mechanism (DRM_OS2FILE). In the case of the PM item, its suitability depends
on whether its associated DRAGITEM structure includes a reference to
DRM_OS2FILE in its hstrRMF field. For details of this see OS/2 Version 2.0 -
Volume 4: Application Development, which includes a detailed discussion of
direct manipulation.

In both cases, copy and move operations are supported according to any modi
fied keys the user may be holding down at the time. The implementation of this
rendering mechanism results in files being moved or copied between directories
on disk.

8.3.5 Persistence
Some objects will disappear when the machine is rebooted, others will reappear.
The former are called "transient" objects in the WPS and the latter are called
11 persistent" objects. Persistent objects are stored in the OS2.INI file and direc-
tory EAs. ·

When you close a work area or shut down the desktop, any opened objects are
recorded in the OS2.INI file and restarted next time the desktop or work area is
reopened. Persistence for all WPS objects, such as the system clock, programs
and shadow copies, is handled by their classes.

The OS2.INI file implementation is critical to the WPS because it represents a
single point of focus for the entire operating system. If it becomes corrupted the
system will lose all the information about how to run programs, the associations
between files and programs and which programs were previously running in the
system.

Chapter 8. Workplace Shell Implementation 123

8.4 Extended Attributes
Extended Attributes EAs) are widely used in the Workplace Shell to record infor
mation about the attributes of the WPS objects. In general, information about an
object is stored by the object itself. Thus a file stores information about its class
and the location of the icon used to represent it, while the folder stores the posi
tion of the icon within it.

On an HPFS partition, Extended Attributes are stored in a special, hidden area,
close to the files themselves. On a FAT file system, Extended Attributes for files
and directories are stored in a hidden file in the root directory of each FAT parti
tion .. This file is named 11 EA_DATA. SF."

EAs for the Workplace Shell are stored in the root directory of any logical disk
accessed by it, in a hidden file called 11WP _ROOT. SF." This file holds specific
information about setup of the desktop. It is updated after the disk is accessed
by any WPS object, such as the Drives folder.

EAs for the LAN independent shell are stored in the root directory of any logical
disk accessed through LAN utilities, such as the LAN Server folder, in a hidden
file called 11WP _SHARE. SF." This file is updated when changes are made to the
logical disk by programs which make up the LAN independent shell.

However, changes which are made to this disk from a WPS program are stored
in the 11WP _ROOT. SF" file. For example, this would happen if a user accessed
the disk by issuing a 11 NET USE" command and then used the Drives folder to
work with it.

8.4.1 Directory Extended Attributes

124 OS/2 V2.0 Volume 3

Folder attributes are stored in the Extended Attributes (EA) of the directory asso
ciated with it. The WPS creates two sections in the EAs for a directory. One
section is used to store the icon positions for the objects displayed in the folder
while the other records the folder attributes. This section discusses the directory
EAs on an HPFS disk.

The first one created is called ICONPOS and contains the following information:

•• A .•• WPShadow:A2DA0.a ••
•• J ••• WPDataFile:Fxyz •••
•• J ••• WPDataFile:Fabc .••
•• J ••• WPDataFile:FData File.V •
•• < ••• WPShadow:A48CA.@ ••• C ••••

Figure 47. Contents of Directory Extended Attribute (ICONPOS)

This folder contains five objects: three are data files, called "xyz," "abc" and
11 Data_File"; and two are shadows, with HOBJECTs "2DAO" and "48CA."

The ICONPOS section is created automatically by the WPS and 30 bytes are allo
cated for the folder position. Each file which is added to the folder is recorded
here and 21 bytes are allocated for the icon position plus 1 byte for each char
acter in the file name. Abstract objects (shadows and programs) take a fixed
number of bytes; 23. This is based on 21 bytes for the icon position and 2 bytes
for the abstract reference (HOBJECT) in the OS2.INI file.

The other section is called "CLASSINFO." This includes information such as the
class the folder belongs to (this can be changed by the "work area" checkbox in
the Settings view) .

.••.•••••.•.• WPFolder.E) •••) ••
•) •••••••• (.WPFolder ..• T •••••
0 ••• u ••• o.P ••• [••.•• 0 •••••••••
•••• 6.WPObject •••••.•••.••••••

Figure 48. Contents of Directory Extended Attribute (CLASSINFO)

Information about which WPS class the object belongs to is needed to ensure
that the correct class methods are used when the WPS is asked to create a new
instance of the folder.

Directory EAs are updated when the folder settings are changed from the Set
tings view and as the name or contents change.

8.4.2 File Extended Attributes
File settings are stored in extended attribute (EA) files. EAs are automatically
created if the file was created using one of the WPS templates, but not if the file
was copied or created directly from a command prompt.

If the Settings view is opened and the EAs do not exist, then they are created at
that time. When any of the settings are changed, the EAs are updated. This is
done when a page on the notebook is changed and when the Settings view is
closed The settings information in a file's EAs looks like this:

EA #: 1 NameLen: 10 Name: >.CLASSINFO< Valuelen: 142
••••••••• w ••• WPDataFile •. rJ .• rJ.-sJ.g ••••• T.WPObject •..••••••.•••

EA#: 2 NameLen: 9 Name: >.LONGNAME< ValueLen: 15
•••• Test 1 File

EA#: 3 NameLen: 8 Name: >.SUBJECT< ValueLen: 27
••.• Test file for LAN stuff

EA#: 4 NameLen: 5 Name: >.TYPE< Valuelen: 34
•••••••••• Plain Text •••• BASIC Code

EA#: 5 Namelen: 5 Name: >.ICON< ValueLen: 4070

Figure 49. Contents of File Extended Attributes

The file EAs are used to store:

Classlnfo This contains the WPS class to which the object belongs. This
ensures that the correct WPS methods are used to instantiate the
object when the folder is opened. Any new programs added to the
file menu are also stored here.

Longname This contains the descriptive text that is displayed below the icon.
This is needed for FAT file systems where filenames are restricted to
8 characters plus 3 for the file extension.

Chapter 8. Workplace Shell Implementation 125

Subject

Type

Icon

This data is entered in the "Subject" field of the Settings view.

This records the file type of the object. A file can have multiple file
types. They are used to provide an association with a program
through the OS2.INI file.

This stores the new icon used by the object if th.e user decides to
replace the default icon. Note that if he chooses to "Create" a new
icon, 1014 bytes are used, whereas if he "Edits" or "Finds" an icon,
4070 bytes are needed.

File EAs can shrink as well as grow. The disk space needed for the EAs grows
as options are chosen but if the choices are removed later the EAs size will be
reduced.

8.5 The 052.INI File

126 OS/2 V2.0 Volume 3

This is the most important file in the Workplace Shell. It is the only place where
information about WPAbstract objects, including which folder(s) they can be
found in, is stored. The need for sensible backup and recovery mechanisms for
OS2.INI is discussed in Chapter 6, "Installing and Supporting the Workplace
Shell" on page 67.

Because it is the only place in OS/2 V2.0 where WPAbstract objects are stored,
the Workplace Shell is limited to those WPAbstract objects defined within the
OS2.INI in the root directory. That is, the Workplace Shell user cannot see any
WPAbstract objects defined on a server, even if he can access the entire disk
and desktop structure of that server.

The OS2.INI file uses its own data structure and cannot be edited by an ordinary
text editor, so if anything goes wrong you will probably have to reinstall OS/2
Version 2.0. Taking a backup of the OS2.INI file is highly recommended.
Running MAKEINl.EXE is a possibility, but this will only restore the OS2.INI file to
the state it was in when it was originally installed and any subsequent
customization will be lost. These approaches may result in HOBJECT pointers in
the directory EAs being different from those in OS2.INI, leading to a condition
known as "unresolved abstracts."

The OS2.INI file includes the following information:

• Running programs
• Shadow copy objects
• Program reference objects
• Icons for abstract objects
• Color palette objects
• Disk objects
• Object instances in each folder
• Folder position
• File/program association filters
• File/program association types

8.5.1.1 Running Programs
When the operating system starts up it restarts any programs which were
running when the WPS stopped. The OS2.INI file contains the necessary infor
mation to support this. For example, Figure 50 shows several running programs:

FolderWorkareaRunningObjects
D:\05!2 2.0 DE5KTOP\05!2_5Y5TEM\COMMAND_PROMPT5

WPProgram:A74A6.
0:\05!2 2.0 DE5KTOP\05!2_5YSTEM

WPFolder:DCommand_Prompts.
WPDrives:DDRIVES.

Figure 50. Running Programs Stored in OS2.INI

The running programs can include programs and workplace objects, such as
folders and drives.

The above figure shows two open folders, OS!2_System and its subdirectory
COMMAND _PROMPTS. The running programs are stored together with their
location so that it is easier to reinstantiate the system as it was left. Refer to the
process of opening folders in 8.2.1, "Folders" on page 115 to understand why
this is so.

8.5.1.2 Abstract Objects
Each abstract object is also stored in the OS2.INI file so it can be located using
its reference. In the following example, we can see how a program is stored
with its instance data:

PM_Abstract:Objects
098F

•••• WPShredder •• # •• p# ••• # ••••••
•••• WPAbstract ••••••• 5hredder ••
••••••••••• G.WPObject ••••••••••

•••••••••• <WP_SHRED> •••••••••••

Figure 51. Abstract Object Reference for Shredder in OS2.INI

This object is the WPS Shredder. It is stored with its Workplace Shell class,
OBJECTID, icon description and the classes it inherits from. The hexadecimal
pair, D98F, in the upper left corner is the HOBJECT of the shredder. The location
of each abstract object is also stored within the folder section of OS2.INI, as can
be seen in the example in 8.5.1.3, "Folder Contents."

8.5.1.3 Folder Contents
Folder contents are stored in two places; in the ICONPOS EA file for each direc
tory and in the OS2.INI file as shown below. Any running programs in opened
folders are stored under the WorkAreaRunningPrograms section for
reinstantiation during the OS/2 initialization, while the FldrContent section below
includes all the abstract object references in that folder. These references are
also stored, with their window coordinates, in the ICONPOS.EA file of the direc
tory associated with the folder.

Chapter 8. Workplace Shell Implementation 127

128 OS/2 V2.0 Volume 3

PM_Abstract:FldrContent
55e6

0000 BFD9 0000 AB91 00 00
0eea 1c04 0000 1E7E ee ea
0010 E13E 0000 2205 e0 ea

Figure 52. Abstract Objects Contained in Folder 5506

The hexadecimal numbers are read as pairs, for example 8FD9 is actually D98F.
Each pair is a pointer to an abstract object (or program) in the system. Here, we
can see that the shredder (D98F) is referenced as the first item in the folder. To
help you read this, it is useful to know that

• 5506 is the HOBJECT for the folder
• D98F is the HOBJECT of a WPAbstract instance contained in this folder.

8.5.1.4 File Associations
There are two association mechanisms in the OS2.INI file; one for association
filters and the other for association types. The format for association types
works with the information stored in the settings EAs for each file. If a file
doesn't have any EAs then the association is based on its full or partial file name
or extension, using the association filter.

There are two formats for the association filters, depending on whether the
program runs in the WPS process or its own process. These trigger the appro
priate program when you double click on a data file icon. The first filter, for any
file with a .MET extension (metafile), shows that two programs can be used. The
first program is described by an OS2.INI program reference (8134). The second
program includes the pathname and file name (PICVIEW.EXE).

The second filter, for a file with a .ICO extension (Icon), also provides a program
path and file name (ICONEDIT.EXE).

PMWP_ASSOC_FILTER
*.MET

D:\OS!2 2.0 DESKTOP\OS!2_System\Productivity\WPProgram:A8134.
D:\OS2\APPS\WPPROGRAMFILE:FPICVIEW.EXE.

*.ico
D:\OS2\APPS\WPPROGRAMFILE:FICONEDIT.EXE

Figure 53. Association Filters for File Extensions

The association type uses the same two formats as the filter; we can see the
program reference 8134 again for metafiles and ICONEDIT.EXE for bitmaps in the
figure below. File types are specified for each data file in its Settings view. We
can see five file types below:

• Metafile
• Plain text
• OS/2 command file
• Executable
• Bitmap.

PMWP_A5SOC_TYPE
Metafile

D:\05!2 2.0 DESKTOP\05!2_5ystem\Productivity\WPProgram:A8134
Plain Text

0:\05!2 2.0 OE5KTOP\05!2_5ystem\Productivity\WPProgram:A7660
05/2 Command File

0:\05!2 2.0 OESKTOP\05!2_5ystem\Productivity\WPProgram:A7660
Executable

0000 00
Bitmap

D:\052\APP5\WPPROGRAMFILE:FICONEDIT.EXE

Figure 54. Association Filters for File Types

When a user &des. on an icon for an object belonging to any of these file types,
the program associated with it is started. Note that there is no association for
executable files since they themselves are started. The file name association
takes precedence over the file type association if both are specified for an
object.

8.6 Multiple Instances of Objects
Within the Workplace Shell there are many folder and printer icons; one for each
folder or attached printer in the system. There are two issues here: When we
see multiple printers icons, do they refer to the same printer or to different
printers, and do they share the same code?

Multiple copies of folders refer to different folders but they all share the same
program. They are instances of the same folder class. Multiple copies of
printers may look similar but may actually be instances of different printer
classes.

To understand this, you have to understand something about the structure of the
Workplace Shell and the System Object Model (SOM) which it is built on.
Through inheritance, the System Object Model provides folders, work areas and
other types of container objects which share their common code so the pro
grammer only has to code the differences. SOM allows multiple instances of
each class to be created and manages the memory, pointers, etc. for each of
them. It also, through inheritance, allows instances of different classes to be
created which look the same and share a significant degree of common code.

What happens when multiple instances of a data file are created depends on the
technique used to create the object. If you perform a copy, then a new file and
file EAs are created in the directory corresponding to the folder which the file
was created in. The file name and all the other details are copied verbatim.
Here, each copy is a new instance of the WPDataFile class and can be modified
without affecting the original file.

If you create the copies in the same directory as the original, however, the oper
ating system settings determine what happens when you try to copy a file into a
directory which already contains a file of that name. As a default, the WPS will
add a suffix to the file name and icon descriptive text; for the first copy a 11 1" is
added, for the second a "2," and so on. The same thing happens if you create a
copy in a different directory but then drag it back into the original directory while
the original file is still there. This mechanism prevents you from accidentally

Chapter 8. Workplace Shell Implementation 129

8.7 Summary

overwriting copies of your work, but it can be frustrating when you are trying to
replace an out-of-date version of a file.

You can also make multiple instances of the same file using the shadow copy
facility. Here, the shadow copy is an abstract object, stored as a HOBJECT
pointer in OS2.INI which points back to the original file. In both cases, we have
multiple instances of icons, but what the icons represent are instances of dif
ferent classes with different characteristics. Here, when you modify the copy you
are also affecting the original file.

The Workplace Shell is implemented using the System Object Model. Many of
the characteristics of the Workplace Shell, such as folders and icons. are imple
mented as System Object Model classes. This method of implementation allows
an application developer to use such classes and inherit characteristics and
behaviors from them.

The ability to inherit standard behaviors from existing object classes can signif
icantly simplify the task of developing a new object class. since only the differing
behaviors must be explicitly defined; all others may simply be inherited from the
parent class.

The WPS implementation also enables multiple instances of each class to be
created, as well as multiple copies of any specific instance. WPS classes
include data files. programs and shadow copies. Each class has its own
methods for instantiating and storing objects of that class and use a variety of
techniques for recording the attributes and data for each object.

The following table summarizes persistence in the Workplace Shell:

Type of Object Contents Settings Program
Object Location Options

Data file File File File EAs

Program file File File File EAs Set by
program

Shadow OS2.INI Original file Original file

Prog. ref. OS2.INI Original file OS2.INI Original
program

Folder Directory Directory, Directory EAs
OS2.INI

Table 2. Workplace Shell Object Persistence Summary

A data file stores its data in files within a disk directory and its attributes in
Extended Attributes (EAs) associated with that file. A folder stores its contents in
a disk directory and its attributes in EAs associated with that directory.

Program files are stored on disk but access to them via the WPS is controlled by
pointers in the OS2.INI file. Shadow copies do not physically exist, they are
simply pointers to the original data file which are held in the OS2.INI file. These
pointers are also stored by folders In a section of the OS2.INI file. The position
of their icons is held in the directory EAs for that folder.

130 OS/2 v2.o Volume 3

Appendix A. Using REXX in OS/2 V2.0

REXX provides access to several OS/2 APls via the the RexxUti/ functions which
have been added to OS/2 V2.0. To use these new functions in a REXX program,
SysLoadFuncs must be called to automatically load all RexxUtil functions as
follows:

/* Rexx program that uses RexxUtil functions */
call RxFuncAdd 1SysLoadFuncs 1

, 'RexxUtil 1
,

1SysLoadFuncs 1

call SysLoadFuncs

RexxUtil functions are prefixed with "Sys. 11 For a complete list of Sys* functions
please refer to the OS/2 2.0 Programming Guide Volume II. In WPS development
the following Sys* commands are most frequently used:

• SysRegisterObjectClass

• SysDeregisterObjectClass

• SysCreateObject.

The following syntax descriptions should help explain what these REXX functions
do:

<C> Copyright I BM Corp. 1992

Function: SysRegisterObjectClass
Purpose: Register a new object class definition to the system.
Syntax: result = SysRegisterObjectClass(classname, modulename)

classname
modulename
result

The name of the new object class.
The name of the module containing the object definition.
The return code from WinRegisterObjectClass.
This returns 1 (TRUE) if the class was registered
or 0 (FALSE) if the new class was not registered.

Function: SysDeregisterObjectClass
Purpose: Deregister an object class definition from the system.
Syntax: result = SysDeregisterObjectClass(classname)

classname
result

The name of the object class to deregister.
The return code from WinDeregisterObjectClass.
This returns 1 (TRUE) if the class was deregistered
or 0 (FALSE) if the class was not deregistered.

Function: SysCreateObject
Purpose: Create a new instance of an object class.
Syntax: result = SysCreateObject(classname, title, location <,setup>)
classname The name of the object class. ·
title The object title.
location The object location. This can be specified as either a

descriptive path (for example,
OS/2 System Folder\System Configuration)
or a file system path (for example, C:\bin\mytools).

setup A WinCreatepbject setup string.
result The return code from WinCreateObject.

This returns 1 (TRUE) if the object was created
or 0 (FALSE) if the object was not created.

131

j,

132 OS/2 V2.0 Volume 3

Appendix B. CUA Conformance in the Workplace Shell

Some differences exist between the CUA architecture and the Workplace Shell
implementation in OS/2 V2.0. Some of these differences may force applications
to diverge from the CUA architecture, either because of the effort required to
override OS/2, or because of the negative impact to system consistency or
customization if the CUA guidelines are followed.

This is of particular importance for CUA Fundamental items, which provide the
foundation for many of the enhancements to CUA described in the "CUA Vision"
demonstration and video. Some of the discrepancies between OS/2 and CUA
are beyond the control of an individual application; under these circumstances
the application has no choice but to use the OS/2 conventions.

However, in other situations it is quite easy for an application to comply with the
CUA guidelines rather than following the example of OS/2. To aid in this deter
mination, an assessment of each OS/2 item has been made, and the results are
summarized below in Table 3 on page 134.

The same assessment has been made for non-fundamental (Recommended)
items in Table 4 on page 135. Again, where the OS/2 implementation does not
force an application to differ from the CUA architecture, the developer might
simply use the OS/2 Workplace Shell as an example. In such cases the product
could just as easily follow the CUA recommendations and should do so for
improved consistency and ease of use.

OS/2 Version 2.0 - Volume 4: Application Development provides several exam
ples of how to modify WPS objects and their behaviors, including subclassing
folders and changing their icon description. These examples should prove
useful to programmers who wish to implement CUA-conforming behaviors in
their OS/2 V2.0 applications.

The relevant page in the IBM Systems Application Architecture CUA Advanced
Interface Design Reference is indicated in the Reference Page column in both
tables, together with an indication of which entry on that page is being applied.
Each page of the IBM Systems Application Architecture CUA Advanced Interface
Design Reference contains a definition, a "When to use" and a "Guidelines"
section. The numbering scheme used refers to the item number within a
section; W is "When to use" and G is "Guidelines," so 216/G2 is read as Page
216, second item in the Guidelines section.

=>Copyright IBM corp. 1992 133

B.1 Fundamental Items

Table 3 (Page 1 of 2). Fundamental Items

Description Reference
Problem Statement Page•
Recommendations/Alternatives

There are several areas where OS/2 V2.0 mouse behavior is inconsistent with that described 153/G13,
in CUA 91. 184/G2,

In general, applications should follow OS/2 for UI consistency since consistency between OS/2 257/G10

and application is of primary importance to users. However, they must use logical messages
rather than responding to particular mouse buttons, so that user customization, or a future
change in OS/2, will automatically be reflected in the application.

OS/2 does not contain visible menu bars on object container windows. Lack of menu bars is 141/G2
likely to cause coexistence and migration difficulties. Testing also indicates that users prefer
to have menu bars present.

Applications have control over the window frame and should therefore provide menu bars.

OS/2 has merged the system menu icon and title bar icon along with some of their functions. 113/G3,
Title bar icons~ when provided, must behave as a manipulable item which behaves the same 253/W1 and
as the object's icon; the merged icon in OS/2 does not exhibit this behavior. Definition

One problem with this is that the consistency of the 00 user interface, which requires clear
separation of model, view and controller functions, is reduced. Many applications will choose
not to add a separate title bar icon because the title bar will then present two identical icons
side-by-side; they look the same but act differently.

Unless an application has subclassed WPS objects, such as Folders, they have control over
the System Menu contents and should conform to CUA 91. If a program provides a title bar
icon then it must conform to CUA rules.

OS/2 does not allow users to change the view in a window. The IBM Systems Application 268/W1
Architecture CUA Advanced Interface Design Reference requires applications to support
changing the view in a window, so that users are not forced to open another window onto the
same object,

Applications have control over views and should follow the CUA architecture recommenda-
tions.

OS/2 has implemented "conditional" cascade menus which behave differently from CUA rules 36/G1
on cascade menus. Selecting a cascading choice can cause a default action to occur unless
the user clicks on the arrow portion of the choice.

The CUA architecture recommends avoiding conditional cascade menus.

OS/2 currently does not display scroll bars in windows if all objects are displayed. CUA main- 216/W1, W2,
tains that scroll bars must always be displayed, following unavailable-state emphasis guide- G2
lines; this presents the user with a visual cue that the object extends beyond the window
boundary.

If the application has implemented its own container control, then it should conform to the
CUA guidelines.

DOS Session Settings uses a scroll bar to set numeric values for such things as FILES, FCBS, 216/G3
RMSIZE, etc. This is inconsistent with the behavior of scroll bars in windows.

Both slider or spin button controls are available in OS/2 V2.0 and should be used to set
numeric values; scroll bars should only be used for scrolling.

134 OS/2 V2.0 Volume 3

Table 3 (Page 2 of 2). Fundamental Items

Description Reference
Problem Statement Page•
Recommendations/Alternatives

Message windows must have title bars and correct window frames. Some OS/2 message 272/G1
windows lack these features.

Since applications have control over the generation of these windows they should conform to
CUA guidelines.

Note: 'Wis "When to use" and G is "Guidelines," so 216/G2 is read as Page 216, second item in the Guide-
lines section.

B.2 Recommended Items

Table 4. Recommended Items

Description Reference Depend·
Problem Statement Page• ency on
Recommendations/Alternatives OS/2

OS/2 does not provide a separate title bar icon. These are recommended by the 272/G2, YES
CUA architecture. 113/G3

Many programs will wish to wait until this is supported in OS/2.

Changing a folder into a work area and vice versa should result in an immediate 114/G2 YES
change in visual appearance of the object icon.

If a program implements its own containers using the container control, it should
adhere to CUA guidelines, but most applications will probably prefer to use the
OS/2 facilities.

OS/2 does not always provide progress indicators during lengthy operations 191/W1 NO
which indicate percent completion, and allow users to halt system execution.

Applications should provide these progress indicators. OS/2 does provide con-
trols for implementing progress indicators.

OS/2 does not provide and use an information area in its windows. These are 119/W1 NO
very useful in providing timely feedback to users.

Adherence to CUA is required.

OS/2 does not display a count of objects in containers. The container control 51/G7 YES
keeps track of count (CM_QUERYCNRINFO). However, OS/2 does not display it
on WPS containers.

If a program implements its own containers using the container control, it should
adhere to CUA guidelines, but most applications will probably prefer to use the
OS/2 facilities.

Note: 'Wis "When to use" and G is 11Guidelines," so 216/G2 is read as Page 216, second item in the Guide-
lines section.

Appendix B. CUA COnformance in the Workplace Shell 135

B.3 Other Items

B.3.1 Navigation

B.3.2 Emphasis

In a shell with as many objects as the Workplace Shell. it is almost inevitable
that some of the windows may contain elements which do not comply with CUA
guidelines. Application developers should not assume that these elements and
their behaviors are sanctioned by CUA; they should continue to implement
objects and behaviors which conform to the rules laid out in the IBM Systems
Application Architecture CUA Advanced Interface Design Reference.

This section provides a few examples of non-compliant behaviors in the following
areas:

• Navigation
• Emphasis
• Mnemonics
• Push buttons
• Miscellaneous.

Notebook Up Arrow key moves the cursor from the notebook page to
notebook tab

Glossary Settings On Properties page. Tab key moves the cursor within push
button field

Mouse Settings On Mappings page. Arrow key moves the cursor between
radio button field and checkbox field.

Dialog Editor Help menu choice and all the choices in the pull-down are
displayed with unavailable-state emphasis

Clipboard Viewer In the "File" menu, Import and Export choices are never
available yet they are displayed with unavailable-state
emphasis

Font Palette Target emphasis is not displayed during direct manipulation
operations.

B.3.3 Mnemonics
Shredder Mnemonic is missing from Refresh choice in pop-up menu

136 05/2 V2.0 Volume 3

Format In Progress window. mnemonic is missing from Stop push
button

Menu Settings Incorrect terminology and no mnemonic for predefined push
button

DOS Settings Mnemonics are incorrectly assigned to Help and Cancel push
buttons.

B.3.4 Push Buttons
Glossary List Push buttons are not justified from the left

Format In Progress window, Close push button is missing

Device Driver Install Exit push button performs Close function.

B.3.5 Miscellaneous
Edit Font Pressing Enter key does not cause default action to begin in

Action window

Notebook Cursor is not visible on notebook page when focus is moved
from tab to page using the keyboard

System Error Message window is missing the system menu icon and pull
down

Shell Alt+ Tab key switches between unassociated windows

Clipboard Viewer Exit is redundant in the File menu; Close in the system menu
performs this same function

Appendix B. CUA Conformance In the Workplace Shell 137

·..... -·

138 OS/2-V2.Q Volume 3

Glossary

API. Application Programming Interface; term used
to describe the set of functions by which an applica
tion may gain access to operating system services.

application-controlled viewport. Viewport within a
help window or online document window. where the
display of information within that viewport is con
trolled by an application, which is specified by the
developer of the source information. Application
controlled viewports may be used to display image.
video or other types of information under the control
of the Information Presentation Facility. See also
IPF-controlled viewport.

bit. A binary digit, which may be either zero or one.
Bits are represented within a computing device by the
presence or absence of an electrical or magnetic
pulse at a particular point. indicating a one or a zero
respectively.

Boot Manager. Boot Manager; feature of OS/2
Version 2.0 which allows multiple partitions to exist on
fixed disks in the same machine, with a separate
operating system on each partition. At boot time, the
user may select the desired operating system with
which to start the machine.

byte. A logical data unit composed of eight binary
digits (bits).

Common User Access. Component of IBM Systems
Application Architecture, which defines standards and
guidelines for user interfaces in both character-based
and GUI applications.

compatability region. In the OS/2 Version 2.0 flat
memory model. the address region below 512MB,
which may be addressed by a 16-bit application using
the 16:16 addressing scheme and tiled local
descriptor tables. Under OS/2 Version 2.0, this region
is equivalent in size to the process address space.

container object. An object in the SAA CUA
Workplace Environment which allows logical grouping
of objects in a manner determined by the user. A
container object may contain work items, physical
devices and/or other container objects. A new class
of control window is implemented under OS/2 Version
2.0 to facilitate the creation and manipulation of con
tainers.

context menu. A menu associated with an object or
view, which appears when the user moves the mouse
cursor over the object or view and clicks mouse
button 1. The context menu allows actions to be per
formed upon the object or view, in a similar manner
to that available with a menu bar under OS/2 Version
1.3.

C> copyright IBM corp. 1992

CUA. See Common User Access.

DDE. Dynamic Data Exchange; interprocess commu
nication protocol used by applications to define
dynamic links. Information updated in one application
is automatically reflected in other applications linked
to the first application via ODE.

desktop. In the context of the SAA CUA Workplace
Environment and the Workplace Shell, the background
of the computer display. which represents an elec
tronic analogy of the user's work environment. Icons,
representing objects to be manipulated. are moved on
the desktop in order to perform work tasks. in a style
known as direct manipulation.

direct manipulation. Term used to describe a style of
interface whereby icons representing objects or work
items are moved on the desktop to perform oper
ations by dropping the icons over other icons repres
enting physcial devices such as printers or conceptual
devices such as an 'out basket' in an electronic mail
system. Also known as drag and drop manipulation.

DLL Dynamic link library; application module con
taining routines and/or resources. which is dynam
ically linked with its parent application at load time or
runtime rather than during the linkage editing
process. The use of DLLs enables decoupling of
application routines and resources from the parent
program. enhancing code independence, facilitating
maintenance and reducing resident memory consump
tion.

drag and drop manipulation. See direct manipulation.

Extended Attributes. Information which may be asso
ciated with a file under OS/2 Version 1.2 or above
(including Version 2.0), to indicate various properties
of that file. Extended attributes are available with
both the FAT and HPFS file systems. An application
may define extended attributes for files which it
creates. and may update the extended attributes of
files upon which it operates. A number of standard
extended attributes are defined by the operating
system for commonly-used information.

FAT. File Allocation Table; term used to describe the
file system implemented by DOS and OS/2. This file
system uses a file allocation table to contain the
physical sector addresses of all files on the disk. The
FAT file system is supported by OS/2 Version 2.0,
along with the newer HPFS and other installable file
systems.

flat memory model. Conceptual view of real memory
implemented by OS/2 Version 2.0, where the oper
ating system regards memory as a single linear
address range of up to 4GB.

139

folder. See container object.

general protection exception. Operating system error
which occurs when an application attempts to access
memory in a page which has not been allocated to
that process. OS/2 Version 2.0 allows an application
to trap a general protection exception using an excep
tion handler registered with the operating system. If
an exception handler is not registered, the operating
system will terminate the application as a result of a
general protection exception. Also known as a Trap
OOOD.

guard page. Page within a memory object, for which
the PAG_GUARD attribute has been specified. Any
attempt by the application to reference memory
within the guard page results in a guard page excep
tion.

guard page exception. Operating system warning
condition which occurs when an application accesses
memory within a page which has been declared as a
guard page. This exception may be trapped using an
exception handler registered by the application in
order to handle such occurrances. The typical proc
essing performed by the exception handler is to
commit more memory within the memory object. If
an exception handler is not registered, the operating
system's default handler commits the next available
page within the memory object and sets its attribute
to PAG_GUARD.

CUI. Graphical User Interface; term used to describe
a user interface which typically uses windows and
graphical representation to allow an application to
interact with the end user. Examples of such inter
faces include OS/2 Presentation Manager and Micro
soft Windows.

HPFS. High Performance File System; file system
first implemented under OS/2 Version 1.2, offering
enhanced performance over the original FAT file
system implemented in DOS and prior versions of
OS/2. HPFS is an optional installation item under
OS/2 Version 2.0; the FAT system may also be used
to retain compatibility with DOS. ·

hypergraphics. Under the Information Presentation
Facility, a portion of a bitmap displayed in a help
panel or online document, which may be selected by
the end user. Selecting such an item causes an event
to occur, such as the display of another help panel, a
popup window, the dispatch of a message to the
parent application or the start of a new application.
See also hypertext.

hypertext. In the Information Presentation Facility, a
word or phrase in a help panel or online document,
which may be selected by the end user. Selecting
such an item causes an event to occur, such as the
display of another help panel, a context menu, the
dispatch of a message to the parent application or the
start of a new application. See also hypergraphics.

140 OS/2 V2.0 Volume 3

Icon. A graphical image on a computer display,
which represents an object such as a file or a physical
device such as a printer or plotter. In the SAA CUA
Workplace Model, icons are used to electronically rep
resent objects in the user's work environment, which
are manipulated by moving icons on the desktop.

Information Presentation Facility. Facility provided by
OS/2 Presentation Manager which allows applications
to create embeddded, context-sensitive help windows
for their windows and dialog boxes. Features include
built-in indexing and hypertext. Under OS/2 Version
2.0, the Information Presentation Facility is enhanced
to include the ability to display hypergraphics.

IPF. See Information Presentation Facility.

IPF-controlled viewport. Viewport within a help
window or online document window, where the for
matting and display of information within that window
is controlled by the Information Presentation Facility.
This is the default case for information displayed
using the Information Presentation Facility. See also
application-controlled viewport.

Initial Program Load. Term used to describe the
process of loading a program (operating system) into
memory when a machine is switched on. Also known
as "boot," a reference to "lifting oneself up by ones
bootstraps."

IPL. See Initial Program Load.

MB. Megabyte; 1024 kilobytes, or 1024 x 1024 bytes.

memory object. Logical unit of memory requested by
an application, which forms the granular unit of
memory manipulation from the application viewpoint.
A memory object may be up to 512MB in size under
OS/2 Version 2.0.

Multiple Virtual DOS Machines. Feature of OS/2
Version 2.0 which enables multiple DOS applications
to execute concurrently in fullscreen or windowed
mode under OS/2 Version 2.0, in conjunction with
other 16-bit or 32-bit applications, with full pre
emptive multitasking and memory protection between
tasks. See also virtual DOS machine.

MVDM. See Multiple Virtual DOS Machines

notebook control. New class of control window imple
mented under OS/2 Version 2.0, which provides for
the display and navigation of complex user dialogs
involving multiple related dialog boxes.

NULL. A binary zero. In C programming terms,
NULL is typically used to refer to a pointer which is set to
the binary zero value.

object. A physical entity such as a printer or fixed
disk device, or a logical entity such as file or docu-

ment, which is manipulated within the Workplace Shell
under OS/2 Version 2.0, in order to perform a work
task. Objects are typically represented within the
Workplace Shell using icons.

page. Granular unit for memory management using
the 80386 and 80486 processors. A page is a 4KB
contiguous unit of memory, which the processor
manipulates as a single entity for the purpose of
memory manipulation and swapping.

page fault exception. Operating system error which
occurs when an application attempts to access
memory which has been allocated but not committed.
This exception may be trapped by an application
using an exception handler registered with the oper
ating system. If an exception handler is not regis
tered, the operating system's default handler will
terminate the application as a result of a page fault
exception. Also known as a Trap OOOE.

pop-up menu. See context menu.

printer object. In the Workplace Shell, an icon on the
desktop which represents a printer device to which
output may be directed. Objects such as files or doc
uments are printed by moving their icons over the
printer object and releasing the mouse button,
thereby dropping the object onto the printer.

protected mode. Mode of operation for the Intel
80286 and 80386/80486 processors, whereby the
address space is expanded to 16MB (80286) or 4GB
(80386/80486), and memory references are translated
via segment selector and offset, enabling full memory
protection between processes executing in the
system. With the 80386 and 80486, paging is avail
able in protected mode.

RAM. Random Access Memory; term used to
describe memory which may be dynamically read and
written by a processor or other device during system
operatons. RAM is typically used to store program
instructions and data which not being operated upon
by the processor at the current moment in time, but
which are required for the logical unit of work cur
rently being carried out.

real mode. Default mode of operation for the Intel
80286 and 80386/80486 processors, and the only
mode of operation for the 8086 processor. In real
mode, the processor acts as a 16-bit device, its phys
ical memory address space is limited to 1MB, and
memory references translate directly to physical
addresses. With the 80386 and 80486, paging is not
supported in real mode.

reference link. Mechanism by which a shadow object
is associated with the 11real" object to which it per
tains. See also shadow object.

ROM. Read-Only Memory; term used to describe
memory which may be read, but not written to, during

system operations. ROM is typically used to store
basic hardware initialization instructions, BIOS or self
testing code, which is required to be available prior to
accessing the disk subsystem.

SAA. See Systems Application Architecture.

segment. Unit of memory addressable by the Intel
80x86 processors. With the 8086 and 80286
processors, a sgement may be from 16 bytes to 64KB
in size. With the 80386 and 80486 processors, a
segment may be up to 4GB in size.

segment selector. Field which specifies the base
address of a memory segment when using the seg
mented memory model. The selector is 16 bits in
length on an 80286 processor, and 32 bits in length on
an 80386 or 80486 processor.

semaphore. Construct used under OS/2 Version 2.0.
and previous versions of OS/2 to enable synchroniza
tion between processes and between threads in the
same process. OS/2 Version 2.0 provides enhanced
semaphore facilities over previous versions.

service layer. Executable code which performs the
operating system function requested by an application
using an API.

shadow object. An object on the desktop or in a
folder, which actually references another object.
Shadow objects allow an object such as a device to
be defined in multiple locations. For example, a high
quality printer object may be defined in both a Word
Processing folder and a Spreadsheets folder. A
shadow object is associated with a "real" object via a
reference link.

shredder object. Object on the Presentation Manager
desktop which allows an object such as a file or docu
ment to be erased from the system, by dropping the
object onto the shredder object's icon.

slider control. New class of control window imple
mented under OS/2 Version 2.0, for use when a partic
ular property or value should be set by analogue
rather than exact digital means.

SOM. See System Object Model

sparse object. Memory object for which a linear
address range has been reserved, but for which no
physical memory has yet been committed. This capa
bility is used to reserve storage in the process
address space for use by an application, without
causing an adverse impact on system performance by
requesting large amounts of physical memory.

Systems Application Architecture. Set of rules,
standards and guidelines introduced by IBM in 1987 to
facilitate ease-of-use of applications, and portability
between different operating system environments.
Systems Application Architecture consists of three

Glossary 141

components; Common User Access, Common Pro
gramming Interfaces and Common Communications
Support.

System Object Model. Language-independent,
object-oriented mechanism in which the Workplace
Shell is written. It consists of a specification for
language-independent message passing and
inheritance for objects, some base classes from which
the WPS class hierarchy is derived, and language
bindings for C.

thunk. Term used to describe a routine which per
forms address conversion, stack and structure rea
lignment, etc. Thunklng is used to pass control
between 16-bit and 32-bit application modules.

Trap OOOD. See general protection exception.

Trap OOOE. See page fault exception.

value set. New class of control window implemented
under OS/2 Version 2.0, for use when selecting an
item from a finite set of mutually exclusive choices.
Similar in function to a radio button, but has the
added flexibility of being able to display graphical
items such as color patches, icons or bitmaps.

view. Particular visual representation of an object
under the Workplace Shell. An object may have
several available views; for example, and icon view
depicts the objects as an icon, whereas a settings
view enables the user to set properties and define the
appearance of other views.

viewport. Under the Information Presentation
Facility, a portion of a help window or online docu
ment window which may be separately manipulated.
The use of multiple viewports in a window enables the
display or different types of information in the same
window, with separate formatting and scrolling.
Viewports may be either simple or complex, and may
be I PF-controlled or application-controlled.

VDM. See Virtual DOS Machine

Virtual DOS Machine. A protected mode process
under OS/2 Version 2.0 which emulates a DOS oper
ating system environment, such that DOS applications
executing within the virtual machine operate exactly

142 OS/2 V2.0 Volume 3

as if they were running under DOS. virtual DOS
machines support both text and graphics applications,
and make use of the virtual 8086 mode of the 80386
and 80486 processors.

Workplace Environment. User interface model for
GUI systems under IBM 1991 Systems Application
Architecture Common User Access. The Workplace
Environment defines guidelines for an interface where
icons are manipulated using a mouse or keyboard, to
perform work tasks electronically in a way analagous
to that in which they would be performed manually.
Such an interface facilitates user training and allows
greater productivity through its intuitive nature.

Workplace Shell. Object-oriented user shell imple
mented by Presentation Manager in OS/2 Version 2.0.
The Workplace Shell uses icons to represent objects
such as files or devices, and allows the user to
perform work tasks by directly manipulating these
icons on the desktop with the mouse or keyboard.

WPS. See Workplace Shell

0:32. Term used to describe the addressing scheme
used for the 32-bit flat memory model, where a
memory address is expressed as a 32-bit offset within
the linear address range.

16:16. Term used to describe the addressing scheme
used for the 16-bit segmented memory model, where
a memory address is expressed as a 16-bit segment
selector, and a 16-bit offset within that segment.

16-blt. Term used to describe an application which
uses the 16:16 addressing scheme implemented under
DOS and previous versions of OS/2. In fact, such
applications use a 24-bit address since the segment
selector and offset are normally overlapped. Such
applicaitions typically use the 16-bit instruction set
implemented under the Intel 80286 processor.

32-blt. Term used to describe an application which
uses the 0:32 addressing scheme implemented under
OS/2 Version 2.0. Such applications may make full
use of the 80386 instruction set.

80386. Intel 80386 microprocessor; the 32-bit
processor upon which the OS/2 Version 2.0 operating
system is based.

Index

A
Abstract objects 112

programs 119
shadows 119

Active wi~dow 13
Advanced operation of the Workplace Shell 60
API

direct manipulation 121
dynamic data facility 98
LAN Independent Shell 50
PM access to WPS 120
PM enhancements 97
PM Graphics Programming Interface 98
PM printing functions 98
SOM/WPS 120

Application model
Presentation Manager 91
Workplace Shell 99

Application structure 103
Applications

integrating with WPS 103
migrating 104

Arranging the desktop
arranging folders and objects 40

Association 105
adding new file types 107
ASSOCTABLE 71, 105, 107
by file name 121
by file name and extension 62, 63
by file type 62, 63, 121

B
Backup and restore

backup programs
PMTAPE software 76
SY-TOS Pl us software 76

critical system files
CONFIG.SYS 74
effect of restoring OS2.INI 76
how to backup OS2.INI 74
OS2.INI 74
OS2SYS.INI 74
restoring OS2.INI 75

restoring OS2.INI
booting from diskette 75
system install from Alt-F1 76

Base classes, WPS 112
Basic operation of the Workplace Shell 56

c
Changing an objects icon 62

Cl Copyright IBM COrp. 1992

Check box 15
Class

definition file 101
deregistering 82
implementing a new, 102
registering 82, 99

Classes
hierarchy 101
using 101

Client Area
use of control windows 15

Clipboard
definition 17

Combo box 15
Container control

definition 6
details view 22
flowed name view 22
icon view 22
name view 22
text view 22
tree view 23

Container object 42
Context menu 7

modifying 60
mouse button 1 56
popping up 56

Control windows
check box 15
combo box 15
container 6, 21
entry field 15
list box 15
notebook 6, 23
progress indicator 27
push button 16
radio button 15
slider 6, 25
spin button 16
use in client area 15
use in dialog box 15
value set 6, 26

Creating a new object 57
Creating a shadow copy 58
Creating a startup environment 59
Creating new file types 84
CUA perspective on WPS 34
Customizing an object 60
Customizing the desktop

colors 39
country 40
fonts 39
keyboard 39
mouse 39

143

Customizing the desktop (continued)
sound 40
system clock 40

Customizing the Workplace Shell 80
Customizing the Workplace Shell objects 38

D
Data object 42
DDF

see Dynamic Data Facility
Desktop background 36
Desktop placement 69
Details view, container 22
Device context 97
Device object 42
Dialog box

definition 13
modal 13
modeless 13
use of control windows 15

Direct manipulation 120, 121
printing by 107
rendering mechanisms 104

Directory
EA contents 124
WPS structure 113

Disk partitions
Desktop placement 69
FAT format 68
HPFS format 68
print spooler placement 69

Display window 91
DM_DISCARDOBJECT message 123
DM_DRAGOVER message 122
DM_PRINTOBJECT message 123
Drag/Drop

see Direct Manipulation
DRM_OS2FILE message 123
Dynamic Data Facility 98

E
Entry field 15
Existing applications 2
Experienced users 3
Extended Attributes 115

directory 124
EA_DATA. SF file 124
file 124, 125
in FAT file systems 70
in HPFS file systems 70
support by DOS programs 70
WP _ROOT. SF file 124
WP _SHARE. SF file 124

144 OS/2 V2.0 Volume 3

F
Facilities, WPS 120
File 62

association with a program 121
associations 62
EA contents 125
file associations 120
settings 117
shadow copies 119
views 117

file contents 115
File dialog, "Open" 28
File dialog, "Save as" 28
File System objects 112, 117
File transfer to a host session

context menu 82
Icon 81

File type
adding new types 107
associating data files with 63

Finding open windows 57
Flowed name view, container 22
Folder 21, 37, 42

implementation 115
local 78
population 116
settings 116

Font dialog 29
Frame Area

menu bar 11
minimize icon 11
sizing border 11
title bar 11

Frame controls
maximize icon 12
menu bar 11
minimize icon 12
restore icon 12
scroll bars 12
sizing border 11
small icon 12
system menu 12
title bar 11
title bar icon 12

G
Graphics Programming Interface 98

see Presentation Manager

H
Helper macros 99
Hypergraphics 30
Hypertext 30, 31

I
Icon Editor 17
Icon view, container 22
Icons 11, 16
Implementation of the Workplace Shell 111
Information Presentation Facility

appearance 30
enhancements 6
external links 30
hypertext 31
split screen support 30

Inheritance 100
Input focus 10, 13
Installation 67 1 71

for an inexperienced user 84
programs 71
restricted users system 86
Workplace Shell, considerations 67

Interprocess communications 103
IPF

See Information Presentation Facility

L
LAN Independent Shell

API 50
configuration files 50
description 47
local folders 49, 78
making shadow copies 49
moving objects 49
multiple network support 49
multiple server support 49
Network folder 47, 48
Network icon 47
Novell Netware support 50
organization of a LAN workplace 76
OS/2 LAN Server support 50
printer support 49
Public Applications folder 47
servers 47
shadow folder 77
shadow folders 49
shared access to resources 49
universal naming convention 49

Limiting a users access to settings 82
List box 15
Local printing 59

M
Major tabs, notebook 24
MAKEINI command 84
Making OS/2 look like OS/2 Version 1.3 64
Maximize icon 12
Menu bar

definition 11
pulldown menu 11

Message box
definition 14

Messages
classes 96
definition 94
processing 96
queues 94

Minimize icon 12
Mixed model programming 7
Modifying an objects menus 60

N
Name view, container 22
Navigation 53

accelerators 54
keyboard 53
mouse 53

Network folder 48
Notebook control

appearance 23
definition 6
major tabs 24
scrol I arrows 25
top page 24

Novell Netware 47, 491 50, 70

0
Object Interface Definition Language 100
Object window 91
Object-oriented programming 100

model-view design 103
Objects 21, 44

abstract 112, 119
classes 41
creating a shadow copy 58
device 42
direct manipulation 55
drag and drop 55
File System 112, 117
manipulation techniques 54, 55

traditional approach 54
registration 120
shredder 44
transient 112, 120
types 41, 112
versus applications 99
WPS versus SOM 5
WPS, multiple instances of 120, 129
WPS, standard 41

OIDL
see Object Interface Definition Language

Opening a window 56
Organization of a LAN workplace 76
OS/2 Version 1.3, making OS/2 look like 64
OS2.INI 115, 119, 127

abstract objects references 127
adding file types 108

Index 145

OS2.INI (continued)
association filters 128
association types 128
folder contents 127
MAKEINI command 84
modifying 84

p

removing WPS items 84
running programs 127
structure and contents 126

Page buttons 24
Performance considerations 79

restarting programs 79
using work areas 79

Persistence 123
Pop-up menu

see Context menu
Presentation Manager

API enhancements 97
definition 9
device context 97
dynamic data facility 98
enhancements in V2.0 · 5
file dialog 98
font dialog 98
functions removed in V2.0 97
GPI 98
graphics functions 98
helper macros 99
icons 11, 16
message queues 94
messages 94
new window classes 98
objectives 3
presentation space 97
printing functions 98
programming environment 7
what is it? 3
windows 91
workplace functions 98

Presentation space 97
Prevent programs restarting at IPL 80
Printing

from DOS programs 59
local 59
PM APls 98
printer objects 58
remote 59
spooler placement 69

Problem determination
Desktop malfunction

extra printers 73
multiple instances 73
system hangs 73

HPFS 73
OS2.INI 73
Shutdown 73

146 OS/2 V2.0 Volume 3

Program 108
ASSOCTABLE 71
installing 71
registration 108

Programming environment
16-bit application compatibility 7
context menu 7
memory management 7
mixed model programming 7
standard dialogs 7

Programs, adding to a data file context menu 64
Programs, associating filenames with 63
Progress indicator control

appearance 27
push button 28

Pulldown menu 11
Push button 16

R
Radio button 15
Remote printing 59
Rendering mechanisms 104

OS/2 file 104
print 104

Requirements, restricted user 85
Resource script file 105, 108
Restarting programs 79
Restore icon 12
Restricted user

installation 86
requirements 85

Restricting user access to functions 84
REXX utilities 80

s

administrators 82
notes on using with OS/2 V2.0 131
RexxxUtil functions 131
SysCreateObject. 131
SysDeregisterObjectClass 131
SysloadFuncs 131
SysRegisterObjectClass 131

SAA CUA Workplace environment 34
Scroll bars 12, 26
Settings view 60, 62
shadow 77
Shadow copies

file 119
Shadow copy 58

creating 58
Shadow folder 77
Shell, user interface 4
Shredder object 44
Sizing border 11
Slider control

appearance 25
definition 6

Slider control (continued)
slider arm 26
slider shaft 26

Small icon 12
SOM

converting a PM program 108
see System Object Model

Spin button 16
Standard dialogs

definition 7
file dialogs 28
font dialog 28
Open 28
Save as 28

Startup folder sequence 59
Supporting the Workplace Shell 67
System menu 12
System Object Model 100, 112, 130

compiler 100
Systems Application Architecture

T

Common User Access
control windows 11, 15
graphical model 12
objectives 9
workplace environment 16

Templates
contents after installation 46
user perspective 46

Text view, container 22
Title bar 11
Training users on the WPS 79
Transient objects 112, 120
Tree view, container 23

u
UNC

Universal Naming Convention 49
User

requirements 85
restricted 85

User interface 9
Using the Workplace Shell 53
Utilities, REXX 80

v
Value set control

appearance 26
definition 6

View ports
definition 30

Views 37, 56

w
Window 91

active window 13
child window 13
classes 93
client area 11, 12
clipboard 17
control window 15
definition (application view) 91
definition, user view 9
dialog box 13
display window 91
frame area 11
input focus 10, 13
menu bar 11
message box 14
minimize icon 11
object window 91
parent window 13
sizing border 11
title bar 11
window procedure 93
window words 93

Window list 57
customizing 57

Work area 42
creation 87
performance considerations 79
restricted user 87
using 79

Workplace Shell 33
abstract objects 112, 119
advanced operation 60
application environment 5
application structure 103
association 62
basic operation 56
common objects 41
container 42
context menu 56
creating a Shadow Object 58
creating folders 82
customizing for specific users 80

creating new file types 84
File transfer to a host session 81, 82
installing OS/2 for an inexperienced user 84
Limiting a users access to settings 82
prevent programs restarting at IPL 80
removing WPS objects 84
restricting user access to functions 84
Startup folder sequence 59

data objects 42
delete 58
desktop 36
desktop background 36
direct manipulation 120, 121
drives 43
EA_DATA. SF file 124

Index 147

Workplace Shell (continued)
events/messages

delete 123
DM_DISCARDOBJECT message 123
DM_DRAGOVER message 122
DM_PRINTOBJECT message 123
DRM_OS2FILE message 123
file move/copy 123
print 123

Extended Attributes
directory 124
EA_DATA. SF 124
file 125
WP_ROOT. SF 124
WP_SHARE. SF 124

facilities 120
file associations 1201 121
File System objects 112, 117
folder population 116
folders 37, 42, 113, 115
icons 113
implementation 111, 112
installation considerations 67

Desktop placement 69
disk partitions 67
Extended Attributes 70
FAT partitions 68
H PFS partitions 68
planning the disk layout 67
print spooler placement 69
setting up programs 71
setting up programs and files 70

LAN independent shell 76
modifying OS2.I NI 84
multiple instances of WPS objects 120, 129
multiple threads 111
navigation 53
object registration 120
object types 41, 112
objects 115
objects and menus 56

changing default view on "open" 61
modifying 60

OS2.INI structure and contents 126
performance considerations

restarting programs 79
using work areas 79

persistence 123
populating folders 82
print objects 45
program references 43
programming environment 7
reference books 43
relationship to file system 113
REXX utilities 80

RexxxUtil functions 131
SysCreateObject. 131
SysDeregisterObjectClass 131
SysLoadFuncs 131

148 OS/2 V2.0 Volume 3

Workplace Shell (continued)
REXX utilities (continued)

SysRegisterObjectClass 131
SAA CUA Workplace environment 34
shadow copies 43, 119
single process 111
support considerations 67

backing up OS2.INI 74
backup and restore 7 4
backup programs 76
critical system files 7 4
file EAs used by DOS programs 70
files outside the WPS directory structure 71
LAN independent shell 76
problem determination 73
restoring OS2.INI 75
symptoms of desktop malfunction 73

System Object Model 112, 130
transient objects 112, 120
user training 79
user's perspective 33
using 53
utilities, REXX 80
views 37, 56
what is it? 4
window list 57
work areas 42
WP _ROOT. SF file 124
WP _SHARE. SF file 124
WPS as an OS/2 program 111

WPS as an OS/2 program 111

Readers' Comments

OS/2 Version 2.0
Volume 3: Presentation Manager
and Workplace Shell

Publication No. GG24-3732-00

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make sug
gestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com
ments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Readers' Comments
GG24-3732-00

Fold and Tape Please do not staple

===-= = Cut = =-= ~== Alor .:. ..:: :5~5: ®

Fold and Tape

---·rrr·--------------------~;i~;1~~::~·:·-----

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Center
Department 91J, Building 235-2
Internal Zip 4423
901 NORTHWEST 51ST STREET
BOCA RATON FL 33431-1328

1 .. 11 ... 11 •• 1 .. 1 .. 11 11 ... 11 .. 11 ... 1.11 .. 1 ... 1.11

U N ITE D STATES

·---·-------------------------- - -------- -------- -- - ---- -- -------------------- - -------------------------- ---- - -- -------------- - -------------- ------··----------- t

Fold and Tape Please do not staple Fold and Tape

GG24-3732-00
Cut
AIOI

Readers' Comments

OS/2 Version 2.0
Volume 3: Presentation Manager
and Workplace Shell

Publication No. GG24-3732·00

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make sug
gestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com
ments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Readers' Comments
GG24-3732-00

Fold and Tape Please do not staple

::: ?-S = Cut c
- - -- Alon
:5:~:5v5:®

Fold and Tape

--- --··1rrnr··-----------··-a;i~~ii~~::~·:··-----

Fold and Tape

GG24-3732-00

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Center
Department 91J, Building 235-2
Internal Zip 4423
901 NORTHWEST 51ST STREET
BOCA RATON FL 33431-1328

1 .. 11 ... 11 •• 1 .. 1 .. 11 11 ... 11 .. 11 ... 1.11 .. 1 ... 1.11

Please do not staple

U N ITE D STATES

Fold and Tape

Cu1
Ale

