

NetBIOS Final Return Codes

OOh
Olh
03h
OSh
o6h
07h
OSh
09h
OAh
OBh
ODh
OEh
OFh
11h
I2h
I3h
I4h
ISh

I6h
I7h
ISh
I9h
IAh
2Ih
22h
23h
24h
2Sh
26h
30h
34h
3Sh
36h
37h
38h
40h
4Ih
42h
43h
4Eh
4Fh
SOh-F6h
F7h
F8h
F9h
FAh
FBh
FCh
FDh
FFh

Successful completion, good return
Invalid buffer length
Invalid command
Command timed-out
Incomplete received message
Local No-Ack command failed
Invalid local session number
No resource available
Session has been closed
Command was canceled
Duplicate name in local NetBIOS name table
NetBIOS name table full
Name has active sessions and is now de registered
NetBIOS local session table full
Session open rejected because no Listen is outstanding
Illegal name number
Cannot find name called or no answer
Name not found, or cannot specify asterisk (*) or OOh as first byte of NcbName,
or the name is de registered and cannot be used
Name in use on remote adapter
Name deleted
Session ended abnormally
Name conflict detected
Incompatible remote device (PC Network)
Interface busy
Too many commands outstanding
Invalid number in NcbLanaNum field
Command completed while pncel occurring
Reserved name specified for Add Group Name
Command not valid to cancel
Name defined by another process (OS/2 Extended Edition only)
NetBIOS environment not defined (OS/2 Extended Edition only)
Required operating system resources (OS/2 Extended Edition only)
Maximum applications exceeded (OS/2 Extended Edition only)
No SAPs available for NetBIOS (OS/2 Extended Edition only)
Requested resources not available (OS/2 Extended Edition only)
System error (PC Network)
Hot carrier from a remote adapter detected (PC Network)
Hot carrier from this adapter detected (PC Network)
No carrier detected (PC Network)
Status bit 12, 14, or 15 on longer than one minute (Token-Ring)
One or more of status bits 8-11 on (Token-Ring)
Adapter malfunction
Error on implicit DIR.INITIALIZE
Error on implicit DIR.OPEN.ADAPTER
IBM LAN Support Program internal error
Adapter check
NetBIOS program not loaded in PC
DIR.OPEN.ADAPTER or DLC.OPEN.SAP failed-check parameters
Unexpected adapter close
Command-pending status

c
Programmer's Guide to

NetBIOS

HOWARD W SAMS &.. COMPANY
HAYDEN BOOKS

Related Titles

C Programmer's Guide to
Serial Communications
Joe Campbell

C with Excellence:
Programming Proverbs
Henry Ledgard with John Tauer

QuickC ™ Programming for
the IBM®
Carl Townsend

Turbo C® Developer's Library
Edward R. Rought and Thomas D.
Hoops

C Programmer's Guide to
Microsoft® Windows 2.0
Carl Townsend

The Waite Group's Advanced
C Primer++
Stephen Prata

The Waite Group's C++
Programming (Version 2.0)
Edited by The Waite Group

The Waite Group's Microsoft®
C Bible
Naba Barkakati

The Waite Group's Microsoft®
C Programming for the IBM®
Robert Lafore

The Waite Group's Turbo C®
Bible
Naba Barkakati

The Waite Group's Turbo Cc&
Programming for the IBM®
Robert Lafore

Hayden Books
C Library

Programming in C, Revised
Edition
Stephen G. Kochan

Programming in ANSI C
Stephen G. Kochan

Advanced C: Tips and
Techniques
Paul Anderson and Gail Anderson

Portability and the C
Language
Rex Jaeschke

Hayden Books UNIX®
System Library

Topics in C Programming
Stephen G. Kochan, Patrick H. Wood

For the retailer nearest you, or to order directly from the publisher,
call800-428-SAMS. In Indiana, Alaska, and Hawaii call 317-298-5699.

C
Programmer's Guide to

NetBIOS
w. DAVID SCHWADERER

#f
HOWARD W. SAMS &,COMPANY

A Division of Macm/lJan, Inc.

4300 West 62nd Street

Indianapolis, Indiana 46268 USA

Send code corrections that may be incorporated into the sample programs,
helpful insights, suggestions, and requests for technical assistance to:

W. David Schwaderer
c/o Howard W. Sams & Company
Public Relations Department
4300 West 62nd Street
Indianapolis, IN 46268

Please note the author may use and distribute the material you submit in any
way he believes is appropriate without incurring any obligation.

©1988 by W. David Schwaderer

FIRST EDITION
SECOND PRINTING - 1988

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission from the publisher. No
patent liability is assumed with respect to the use of the information contained
herein. While every precaution has been taken in the preparation of this book,
the publisher and author assume no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the use of the
information contained herein.

International Standard Book Number: 0-672-22638-3
Library of Congress Catalog Card Number: 88-62228

Acquisition Editor: James S. Hill
Development Editor: James Rounds
Production Coordinator: Marjorie Colvin
Editor: Albright Communications, Incorporated
Illustrator: Donald B. Clemons
Cover Artist: Ned Shaw
Keyboarder: Lee Hubbard, Type Connection, Indianapolis
Indexer: Brown Editorial Service
Compositor: Shepard Poorman Communications Corporation

Printed in the United States oj America

Trademark Acknowledgments

All terms mentioned in this book that are known to be trademarks or service
marks are listed below. In addition, terms suspected of being trademarks or
service marks have been appropriately capitalized. Howard W. Sams & Company
cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service mark.

The following are trademarks of International Business Machines Corporation:
IBM, Personal System/2, PS/2, Operating System/2, OS/2, Operating System/2
Extended Edition, OS/2 EE, PC-DOS, IBM XT, and IBM AT.

Ethernet and Xerox are registered trademarks of Xerox Corporation.
Microsoft and Microsoft C are registered trademarks of Microsoft Corporation.
UNIX and AT&T are registered trademarks of American Telephone and Telegraph.

1b my family: Barbara, Greg, and Melissa
and

1b the incandescent intellects
of james T Brady and Larry K Raper

Contents

Foreword

Preface

Part I Introduction to NetBIOS

1 Overview

Where Does NetBIOS Fit in the Scheme of Things?
Where Did NetBIOS Come From?
What Is "True NetBIOS"?
How Do I Get NetBIOS?
What IBM NetBIOS Reference Material Is Available?

2 NetBIOS and IBM's LAN Adapters

Token-Ring Environment
IBM PC Network Broadband Environment
IBM PC Network Baseband Environment
Ethernet Environment
IBM LAN Programming Interfaces

3 Application Services

NetBIOS Name Support
Datagram and Session Support
General Commands

xiii

xv

1

3

3
5
6
6
9

11

11
13
14
15
15

19

19
23
30

vii

viii C Programmers Guide to NetBIOS

Issuing NetBIOS Commands 32
Testing for the Presence of NetBIOS 34

4 Ncb/Mcb Fields 37

Command 39
Return Code 40
Local Session Number 41
Name Number 41
Buffer Address 41
Buffer Length 41
Call (Remote) Name 41
(Local) Name 42
Receive Time Out 42
Send Time Out 42
Post Routine Address 43
LANA Number 43
Command Complete Flag 43
Reserved 43
Sample C Program to Test for NetBIOS Presence 44

5 The IBM PC-DOS LAN Support Program 47

What Is Its Role? 47
NetBIOS Parameter Summary 48

6 NetBIOS Relationships to Other IBM Products 57

IBM PC-DOS Version Requirements 57
IBM PC LAN Program Considerations 57

7 LAN Data Integrity and Security 63

LAN Data Integrity 63
LAN Data Security-A Word to the Wise 63
The Uneasy Conclusion 65

Part II NetBIOS Support Programming 67

8 General Support Programming 69

The NetBIOS RESET Sample Program 69

Contents

The NetBIOS Adapter Status Sample Program
The Adapter Reset and Adapter Status Synergy
The NetBIOS Cancel Sample Program
The NetBIOS Unlink Sample Program

9 Name Support Programming

The NetBIOS Name Activity Sample Program

10 Datagram Support Programming

The main() Function
InitDatagramNcb() and XmitDatagram()

11 Intermediate Datagram Applications

A Date and Time Server Application
A Date and Time Client Application

12 Real-Time LAN Conferencing Application

The main() Function
EditArgs()
NetBIOS Add Name Processing Routines
Participate()
ServiceDatagramNcbs()
ProcessReceivedDatagram()
ServiceKeyboard()
SendKeyboardMsg()
ApplyKeystroke()

13 C File Transfer Applications

Application Overview

14 Medialess Workstations, RPL, and Redirectors

Clients and Servers
Data Layers
A Redirector Implementation
A Block Device Driver Implementation
The INT 13 BIOS Interface

ix

77
86
88
92

95

95

101

104
104

105

105
109

119

133
134
134
134
135
136
136
137
137

139

152

155

155
156
159
159
160

x C Programmer's Guide to NetBIOS

A NetBIOS RPL Implementation-Or How Does PC-DOS
Get in There? 160

Part III A Cyclic Redundancy Check (CRC) Treatise 167

15 CRC Fundamentals 169

The Need for CRC Checking 169
The XMODEM Check Sum 170
CRC Mathematics 170
CRC Calculation 174
Prevalent CRC Polynomials 177

16 CRC-16 and CRC General Mechanics 181

CRC Hardware 183
Generalized CRC-16 Shifting 189
Thble Look-Up Schemes 192
CRC Compatibility Caveats 198

17 CRC-CCITT and Minimum Look-Up Table Sizes 199

The Table Look-Up Approach 200

18 CRC-32-Token-Ring, PC Network, and Ethernet 207

Part IV NetBIOS Technical Reference 219

19 Network Control Block 221

Ncb Fields 221
Command Completion 228

20 NetBIOS Commands 231

The Commands 231
Special Value Summary 260
Complex Hang Up Scenario 261
Return Code Summary 261

Contents

Appendixes

A NetBIOS2.h Listing

B C Post Routine Listing·

C Error Codes, Reasons, and Actions

D Ncb Command and Field Relationship

E Send No-Ack and Chain Send No-Ack

F OS/2 Extended Edition and LAN Manager

Bibliography

Index

xi

263

265

271

275

287

291

295

301

303

Foreword

NetBIOS is an extremely important network programming interface. In
the PC-DOS arena NetBIOS provides a consistent interface for communi­
cation systems using IBM, XNS, TCp, IEEE and OSI protocols, among
others. As we networkers migrate our systems to new protocols such as
OSI, to new LAN operating systems such as the OS/2 LAN Manager, and
to new hardware platforms such as the PS/2 and Macintosh II, NetBIOS's
importance expands.

Schwaderer's C Programmer s Guide to NetB/OS gives clarity and
stability to a heretofore illusory de facto standard. It provides historical
perspective as well as a working NetBIOS reference. It illustrates princi­
ples and techniques for developing the growing variety of NetBIOS ap­
plications that operate on the many evolving LAN systems.

Dr. Robert M. Metcalfe
Ethernet Inventor
Founder, 3Com Corporation

xiii

Preface

Network Basic Input/Output System (NetBIOS) is nearly a communica­
tion programmer's dream come true. Is NetBIOS perfect? I doubt it, but
it takes so little effort to master and provides such a remarkably powerful
LAN communications programming platform that I feel compelled to
share it with the uninitiated-its innate simplicity as well as some of its
more obscure areas.

With the information in this book, you will learn

• a history of NetBIOS and how it interrelates with other IBM hard-
ware and software

• name, datagram, and session support programming
• the Ncb fields
• LAN data security and integrity
• CRC fundamentals
• NetBIOS commands

Example listings throughout the book demonstrate application prin­
ciples and the Appendixes provide ready reference tables and programs.

Acknowledgments

Two friends are mentioned in the dedication. The first, Jim Brady, is cur­
rently my second-level manager. I am especially indebted to him for as­
signing me to LAN-related projects for most of the two and one-half years
I have worked in IBM's disk-drive division. My aSSignments allow me to
keep abreast of developments in LAN technology in a way that is presum­
ably useful to our division. Thankfully, Jim has not wandered too far into
communication subjects, or my life at work would be doubly difficult.

xv

xvi C Programmer's Guide to NetBIDS

The second fellow is Larry Raper. He occasionally calls me at mid­
night to suggest an approach for a program I am working on. This is re­
markable because midnight in San Jose means Larry is calling at 3:00
A. M. from the east coast. The sample C Post Routine in Appendix B
is a direct c;:onsequence of one of these calls. Larry is one of the most
brilliant programming craftsmen and system designers in the industry.
Simply put, there are some as good, but none better anywhere. The in­
ternal clarity, design elegance, and concussion of Larry's programs can
reduce even the most gifted programmers to despondency.

I am most grateful that the paths of these two fellows have crossed
mine to change it immeasurably for the better. In the event that you
know or come to know them, you might not want to mention this tribute
to them as they would likely immolate in crimson distress. It can be a
secret we share.

Finally, my deepest thanks to Nancy Albright for her remarkable edit­
ing skills, to Jim Rounds and Marj Colvin for their coordinating efforts, to
Ned Shaw for his spectacular cover, and to my acquisition editor, Jim Hill.
His personal integrity is the principal reason I initially signed with How­
ard W. Sams, and my regard for him has yet to change.

This book was written on an IBM PC-AT using Wordproof and
the Personal Editor II. The programs were compiled using the Microsoft
C 5.0 compiler and were debugged using the compiler's CodeView de­
bugger assisted by an Atron Miniprobe.

Good luck with NetBIOS and drop a line if you will. I'd love to hear
your thoughts on what might have been done better in this book or how
you are using NetBIOS to improve your work. If you find any errors or
have any suggestions, please write me in care of the publisher. I will do
everything I can to personally reply and fix the problem in the next print­
ing. Thanks in advance.

W. David Schwaderer
San Jose, California
August 1988

Part!

Introduction to NetBIOS

Overview, 3
NetBIOS and IBM's LAN Adapters, 11
Application Services, 19
NcblMcb Fields, 37
The IBM PC-DOS LAN Support Program, 47
NetBIOS Relationships to Other IBM Products, 57
LAN Data Integrity and Security, 63

Chapter 1

Overview

The Network Basic Input/Output System (NetBIOS) is an application
programming interface for data exchange between data sources and data
sinks. Loosely speaking, NetBIOS is a programming gateway to sets of
services that allow computer applications and devices to communicate.
Application programs must generally invoke these various NetBIOS serv­
ices using specific command sequences. Hence, NetBIOS has explicit,
though minimal, protocols associated with some of its services.

Typically, data exchange occurs between NetBIOS applications resid­
ing within separate machines connected by a Local Area Network (LAN).
However, two applications within the same machine can also use Net­
BIOS for data communication without a LAN. Thus, though all IBM Net­
BIOS implementations require a LAN adapter, NetBIOS use is not
restricted to LAN environments.

Where Does NetBIOS Fit in the Scheme of Things?

If you are f~miliar with data communication theory, you might recall the
International Standards Organization (ISO) Open Systems Interconnec­
tion (OSI) Reference Model depicted in Figure 1-1. This conceptual
model divides the various activities, typically required to effect orderly
data communication between two applications residing in distinct ma­
chines, into seven discrete processes or "layers." NetBIOS's location
within this conceptual model is also illustrated in Figure 1-1.

During application-to-application communication, each layer within
a given machine directly coordinates message-passing activities with the

3

4 Part !- Introduction to NetBIDS

Adjacent
Layers

.... t---------- Peer ----------i ...
Layers

computer 1 Computer 2

Application <Om A " .. ~Application "or, "

" ,;.

A " Presentation .:.\ln~nIM .. "I';r:;!IWN:;i'> Presentation

" v
NetBIOS - . '- NetBIOS

I' A J'\..
Session /~.: ~~ Session

" "
A J'\..

Transport Transport

" 'V

A III..
Network Network

" v

A t...
Data Link fmV1j'\'0'1£Iidi;ii£j.ii Data Link

" V

!I..
Physical " Physical ..

Physical Media (air, fiber optic cable, twisted-pair wire, etc.)

Fig. 1-1. ISO/OSI Reference Model.

adjacent layers immediately above and below it. This type of communi­
cation is called adjacent-layer communication. In addition, each layer
within a machine also indirectly coordinates its message-passing activi­
ties with its peer-level counterpart within the other machine. This type
of communication is called peer-layer communication.

NetBIOS is situated high within the reference model hierarchy, so ap­
plications that program to the NetBIOS interface are largely isolated and
essentially insulated from the precise way the lower layers interact with
their peer and adjacent layers. For example, two NetBIOS applications
may communicate using IBM PC Network adapters. The underlying
communication may be accomplished using the native Session Manage­
ment Protocol (SMP) located on the adapter card. The applications may
also use the IBM PC LAN Support Program which uses IEEE 802.2 Logi-

Chapter 1: Overview 5

cal Link Control (LLC) protocols. In any event, the application programs
are insulated from the precise protocols used.

This immunity allows general NetBIOS application portability across a
spectrum of communication environments, though the portability is usu­
ally not total. For example, each type of IBM LAN has a specific NetBIOS
implementation, or will have according to one of IBM's statements of direc­
tion issued at the introduction of the IBM PC Network. Because of the vari­
ety of IBM's LAN offerings, the precise effect of some NetBIOS commands
does vary by LAN offering and the same is generally true for other NetBIOS
implementations within other communication environments. However,
because of the significant portability of NetBIOS applications and Net­
BIOS's intuitive simplicity, NetBIOS has rapidly become an uncontested de
facto industry standard. Moreover, while not a perfect fit, NetBIOS inter­
faces are also appearing for other communication environments such as
the popular TCP/IP and emerging MAP/TOP environments.

NetBIOS is rapidly becoming a pervasive data communication pro­
gramming platform within a variety of operating environments such as
PC-DOS, OS/2, and UNIX. Thus, if you are facile with NetBIOS program­
ming, you possess a very marketable skill within an exploding market.

Where Did NetBIOS Come From?

NetBIOS first appeared in August 1984 with the IBM PC Network adapter
card designed for IBM by Sytek Inc. The IBM PC Network was IBM's first
LAN. It provides a 2-megabit per second data transmission burst rate
across a broadband coaxial cable, using the popular industry standard
Carrier Sense Multiple Access Carrier Detect (CSMA/CD) access method
that first appeared with IEEE 802.3 Ethernet.

Located on the IBM PC Network LAN Adapter (LANA) is an extended
BIOS ROM referred to as theLAN~s Network Adapter BIOS. This ROM
module occupies 8K bytes of memory, starting at memory segment
CCOOh, and contains the LANA initialization routines, diagnostics,
coprocessor and PC memory interface routines, and part of the first Net­
BIOS implementation. The remainder of this implementation is located
on a second adapter ROM referred to as the adapter's protocol ROM. The
adapter ROM also contains routines that allow a medialess (no bootable
hard disk or available diskette) IBM PC to boot from a boot-server con­
nected to the same network. The surrogate diskette boot process is re­
ferred to as Remote Program Load (RPL) and invokes the coresident ROM
NetBIOS services to achieve its purpose.

6 Part r Introduction to NetBIOS

What Is "True NetBIOS"?

The industry standard TCP/IP NetBIOS implementations, first demon­
strated in December 1987, required NetBIOS extensions for resolution of
internetwork routing between, and name resolution within, intercon­
nected network environments. Because the MAP/TOP implementations
are in their embryonic stages as of this writing, differences are likely to
appear there as well.

Within the IBM product line, the current version of the IBM LAN
Support Program provides the "true NetBIOS" implementation because
it provides NetBIOS support for all of IBM's LAN adapters through a vari­
ety of PC-DOS device drivers.

One significant advantage of this program is that it allows IBM's vari­
ous adapters to communicate with each other via an intermediary PC or
PS/2 * running the IBM Token-Ring/PC Network Interconnect Program.
This enables IBM PC Network LAN workstations to communicate with
Token-Ring based workstations, among other things. Thus, strategic rea­
sons alone dictate that the IBM LAN Support Program's NetBIOS imple­
mentation supersede the original implementation as the true NetBIOS
industry standard.

How Do I Get NetBIOS?

If you are using an IBM LAN, the answer to this question requires a histor­
ical product survey, which follows. Otherwise, consult your system ven­
dor.

Original PC Network LANA Card

NetBIOS is automatically included on each IBM PC Network Adapter
LANA card. However, because the LANA ROM is a PC BIOS extension, it,
like the PC-XT Fixed Disk Adapter, Extended Graphics Adapter (EGA),
etc., requires the presence of the PC BIOS Extended BIOS Option. This
feature is automatically included with every IBM PC model except the
original IBM PC (i.e., is available with the IBM PC-XT, IBM PC-AT, etc.).

In the case of the original IBM PC, this requires a BIOS-ROM upgrade

'PC includes the IBM PC family (excluding the PC Junior) and the PS/2 family, unless
explicitly stated otherwise.

Chapter 1: Overview 7

before the NetBIOS is usable. The effect of the upgrade is that after exe­
cuting its Power-On-Self-Tests (POST) and initialization routines-but
before loading PC-DOS-the PC scans PC memory for BIOS extensions.
The BIOS starts at memory location C800:0000 and looks for the ex­
tended ROM signature value of AA55h every 2K bytes. Because IBM no
longer provides BIOS ROM upgrade kits, check with your systems sup­
plier for alternate ways to install this capability.

If the AA55h value is found, a BIOS extension is detected and exe­
cuted by calling the instruction three bytes beyond the AA55h value.
This permits the ROM extension to perform various activities, such as
adapter and interrupt vector initialization. When complete, each ROM
extension returns to the PC BIOS, allowing the PC BIOS to continue its
memory scan for more ROM extensions. Hence, individual or multiple
BIOS extensions initialize in an orderly manner.

Subsequent to the availability of the first LANA NetBIOS, IBM up­
graded the Network Adapter BIOS with another version of the ROM. If
you have a LANA adapter, you can determine whether you have the ini­
tial NetBIOS ROM or the upgraded one. Using PC-DOS's DEBUG.COM
program, you can display the value at memory location CCOO:OOOO. Near
that location you see the Network Adapter BIOS part number, which is
either 6360715 for the original version or 6480417 for the upgraded ver­
sion.

You can also visually inspect the actual LANA NetBIOS chip, which is
positioned in an upside-down orientation on the lower edge of the card
immediately above the lefthand side of the adapter's PC bus connector.
Figure 1-2 illustrates the position of the ROM chip.

The original ROM's copyright date has the year 1984 and the updated
version, 1985. These dates are also displayed in memory near the Net­
work Adapter BIOS part number.

NetBIOS ROM---D

Fig. 1-2. Location of the PC Network LANA NetBIOS ROM chip.

8 Part L Introduction to NetBIOS

NETBIOS.COM

NETBIOS.COM is a complete NetBIOS replacement for the PC Network
LANA NetBIOS. It is included with versions of the IBM PC LAN Program.
Unlike the NetBIOS ROM version, NETBIOS.COM occupies memory
within the 640K PC memory address space. When the IBM PC LAN Pro­
gram executes, and when the adapter's NetBIOS ROM has an earlier date
than the NETBIOS.COM module, the IBM PC LAN Program automati­
cally loads and executes NETBIOS.COM as part of its initialization pro­
cess. This completely replaces the ROM's NetBIOS services, upgrading
the NetBIOS ROM.

Note that NETBIOS.COM can be executed as part of an AUTOEXEC.
BAT initialization procedure (or AUTOUSER.BAT in instances where the
IBM PC LAN Program has usurped AUTOEXEC.BAT) if you wish to use
NetBIOS prior to running your licensed copy of the IBM PC LAN Pro­
gram.

In the event you have the Original NetBIOS and do not have an au­
thorized copy of NET BIOS. COM, contact your authorized IBM sales rep­
resentative for replacement policy information.

The IBM Token-Ring's NETBEUI

When IBM introduced the IBM Token-Ring in October 1985, it provided
it with a NetBIOS programming interface. The NetBIOS support ap­
peared as a separately purchased module named NETBEUI.COM, which
is an acronym for NetBIOS Extended User Interface.

NETBEUI.COM requires another module named TOKREUI.COM
(Token-Ring Extended User Interface). TOKREUI.COM is included on
the Token Ring Guide To Operations Diskette and provides another com­
munication programming interface known as Data Link Control (DLC),
which uses a different set of communication protocols than LLC.
NETBEUI.COM translates NetBIOS commands into DLC commands and
presents them to the DLC interface. The Token-Ring's Technical Refer­
ence Manual documents NETBEUI.COM's services, which have minor
deviations from the IBM LANA NetBIOS services.

The IBM LAN Support Program

IBM's latest implementation of NetBIOS is an IBM LAN Support Program
component named DXMTOMOD.SYS which works in conjunction with

Chapter 1: Overview 9

other Program modules. All DLC and NetBIOS support is provided by
combinations of members within the Program's PC-DOS device drivers
families. The specific device drivers you select depend on your particu­
lar PC and optional software. DXMTOMOD.SYS can have 26 parameters
which customize the installation of the Program.

What IBM NetBIOS Reference Material Is Available?

The PC Network Technical Reference Manual, the Token-Ring Network
PC Adapter Technical Reference Manual, and the IBM NetBIOS Applica­
tion Development Guide provide documentation and assistance in appli­
cation and implementation of NetBIOS.

PC Network Technical Reference Manual

The PC Network Technical Reference Manual (IBM Part Number
6322505) documents the original PC Network LANA NetBIOS program­
ming interface and includes a Network Adapter BIOS listing in Appendix
D. However, the LANA protocol ROM largely implements the actual Net­
BIOS and no LANA protocol ROM listing is provided. Using PC-DOS DE­
BUG.COM to examine the code shipped on the first version of the
Network Adapter BIOS, and comparing it to the code in the listing,
quickly reveals that the two are not identical. On page D-17, the listing
mentions two PC-DOS include files that are not listed in the manual. One
of them, NetBIOS.LIB, is present on the IBM PC Network Sample Pro­
gram Diskette accompanying the Manual. The other, LANAS.INC, is un­
documented.

For these and other reasons, the Manual has limited utility in provid­
ing an example NetBIOS implementation, although it has important RPL
information as well as RPL sample program listings on the Diskette. Curi­
ously enough though, the 1984 LANA NetBIOS code listing compares
the BIOS model signature byte to an FCh constant (for a PC-AT) and asks
the question "On a PC-3?" as a comment.

Token-Ring Network PC Adapter Technical Reference Manual

Chapter 5 of the Token-Ring Network PC Adapter Technical Reference
Manual (IBM Part Number 69X7830) documents the NETBEUI.COM

10 Part l· Introduction to NetBIOS

programming interface, which varies slightly from the original PC Net­
work LANA NetBIOS programming interface. Specifically, two additional
commands are provided, as well as additional return codes, use of a pre­
viously reserved area, and different status information reflecting the dif­
ferences between a CSMAICD and Token-Ring environment. The Sample
Diskette contains some of the same program listings as the PC Network
Technical Reference Manual Sample Diskette.

IBM NetBIOS Application Development Guide

The IBM NetBIOS Application Development Guide (IBM Part Number
S68X-2270) describes the NetBIOS programming interface and provides
pseudocode for the NetBIOS commands as well as the NetBIOS com­
mands used with the PC Network Protocol Driver Program. The PC Net­
work Protocol Driver Program allows PC Network II and PC Network
IliA adapters to communicate with the original PC Network LANA
adapter cards using the original LANA protocols.

DXMINFO.DOC

The IBM LAN Support Program device drivers are provided on a PC disk­
ette along with a printable file named DXMINFO.DOC. This file contains
several pages of critical late-breaking NetBIOS and adapter configuration
information. It also documents the 26 DXMTOMOD.SYS NetBIOS input
parameters (discussed in Chapter 5). Be warned the information has a
definite LLC terminology orientation.

NetBIOS is a pervasive communications programming interface
available within a variety of operational environments. Its several imple­
mentations vary in minor ways, reflecting differences within specific
communication environments. Because of its innate simplicity and intu­
itive approach, NetBIOS has become an uncontested industry de facto
standard. For the sake of simplicity, this book only discusses IBM's PC
LANs, though the discussion is generally extendable to numerous other
environments.

Chapter 2

NetBIOS and mM's LAN Adapters

IBM offers a variety of PC LAN adapters spanning five LAN environ­
ments:

• Token-Ring
• PC Network Broadband
• PC Network Baseband
• Ethernet
• the IBM Industrial Network

IBM currently provides a NetBIOS implementation for each of these
offerings except the Industrial Network and issued an August 1984 state­
ment of direction that it would provide a NetBIOS interface for an "IBM
Industrial local area network using the token-bus protocol."

The following hardware discussion is brief and illustrates the wide
spectrum of IBM LAN adapter offerings. For a more detailed discussion
of the individual adapters and the LAN technologies involved, consult
IBM's Local Area Networks: Power Networking and Systems Connectiv­
ity (Schwaderer 1988).

Token-Ring Environment

IBM's strategic LAN, the Token-Ring, provides a 4-megabit burst trans­
mission rate on shielded and unshielded twisted-pair wiring using a to­
ken access method within a ring topOlOgy. All IBM Token-Ring adapters
transmit data signals on shielded twisted-pair copper wire using electri­
cal voltage-level variations.

11

12 Part l- Introduction to NetBIOS

IBM has also announced work on a 16-megabit shielded twisted-pair
version, as well as a 100-megabit fiber optic Token-Ring based on the
ANSI X3T9.5 Fiber Distributed Data Interface (FDDI) draft standard.

Currently, IBM provides five Token-Ring Adapters:

• IBM Token-Ring Network PC Adapter
• IBM Token-Ring Network PC Adapter II
• IBM Token-Ring Network Adapter/A
• IBM Token-Ring Network Trace and Performance Adapter II
• IBM Token-Ring Network Trace and Performance Adapter/A

The IBM Token-Ring Network PC Adapter operates in IBM PCs, PC­
XTs, PC-ATs, and PS/2 models 25 and 30, and contains 8K bytes of on­
board shared-RAM for network functions and an empty socket which al­
lows installation of an 8K-byte RPL feature EPROM.

The 8K bytes are referred to as shared-RAM because both the PC's
microprocessor and the LAN adapter's microprocessor directly access
this memory. The RPL EPROM feature's protocols are LLC-based. Hence,
they are incompatible with the PC Network LANA RPL protocols that are
NetBIOS/SMP-based. However, they are compatible with the onboard
RPL capability of the IBM PC Network Broadband Adapter II(/A) adapters
and the IBM PC Network Baseband Adapter(/A) adapters.

The IBM Token-Ring Network PC Adapter II also operates in IBM PCs,
PC-XTs, PC-ATs, and PS/2 models 25 and 30, and contains 16K bytes of
onboard shared-RAM for network functions as well as an empty socket
for an 8K-byte RPL feature EPROM.

The additional 8K bytes of shared-RAM on the Adapter II allows it to
use larger size transmission packets (essentially 2K bytes versus 1 K bytes)
than the Adapter 1. Therefore, in high-transmission rate applications typi­
cal for file servers, bridges, and gateways, the Adapter II has a significant
performance advantage over the Adapter 1.

The IBM Token-Ring Network Adapter/A operates in all IBM PS/2s ex­
cept PS/2 models 25 and 30, and contains 16K bytes of shared-RAM for
improved network performance as well as an empty socket for an 8K­
byte LLC-protocol RPL feature EPROM.

The IBM Token-Ring Network Trace and Performance Adapter II op­
erates in members ofthe original PC, PC-XT, PC-AT, and PS/2 models 25
and 30, and with the IBM Token-Ring Network Trace and Performance
Program. It also functions as a normal network adapter.

The IBM Token-Ring Network Trace and Performance Adapter/A op­
erates in members of the PS/2 except models 25 and 30, and with the

Chapter 2. LAN Adapters 13

IBM Token-Ring Network Trace and Performance Program. It also func­
tions as a normal network adapter.

IBM PC Network Broadband Environment

The IBM PC Network provides a 2-megabit burst rate on broadband ca­
bling using the popular industry-standard IEEE 802.3 CSMA/CD access
method within a branching-tree topology. IBM PC Network broadband
adapters transmit data signals on coaxial cable using radio frequency (RF)
techniques. Currently, IBM provides three PC Network broadband
adapters, though two of them can operate at different frequencies by
changing their adapter transceiver (RF modem):

• IBM PC Network Adapter
• IBM PC Network Adapter II
• IBM PC Network Adapter IlIA

The IBM PC Network Adapter was discussed in Chapter 1. The IBM
PC Network Adapter II operates in IBM PCs, PC-XTs, PC-ATs, and PS/2
models 25 and 30, and contains 8K bytes of shared-RAM for network
functions.

The IBM PC Network Adapter IlIA operates in all IBM PS/2s except
models 25 and 30, and contains 8K bytes of shared-RAM for network
functions.

Both the Adapter II and the Adapter II/A are available with transceiv­
ers that operate at one of three different frequencies. Table 2-1 illustrates
the relationships.

Table 2-1. IBM PC Network Adapter II and Adapter II/A
Frequency Options

Broadband
Channels IBM PC Adapter IBM PS/2 Adapter

Chan. Tl4 &J IBM PC Network Adapter II IBM PC Network Adapter IIIA

Chan. 2' & 0 IBM PC Network Adapter II IBM PC Network Adapter IIIA

Frequency 2 Frequency 2

Chan. 3' & P IBM PC Network Adapter II IBM PC Network Adapter IIIA

Frequency 3 Frequency 3

14 Part L Introduction to NetBIOS

IBM PC Network Baseband Environment

The IBM PC Network Baseband provides 2-megabit burst transmission
rates on twisted-pair wiring using the popular industry-standard IEEE
802.3 CSMA/CD access method within star and single-bus topologies.
Currently, IBM provides two PC Network baseband adapters:

• IBM PC Network Baseband Adapter
• IBM PC Network Baseband Adapter/A

The IBM PC Network Baseband Adapter operates in IBM PCs, PC­
XTs, PC-ATs, and PS/2 models 25 and 30, and contains 8K bytes of
shared-RAM for network functions.

The IBM PC Network Baseband Adapter/A operates in all IBM PS/2s
except PS/2 models 25 and 30, and contains 8K bytes of shared-RAM for
network functions.

The individual members of the IBM PC Network baseband family of
adapters are low-cost and have nearly identical counterparts within the
IBM PC Network broadband family of adapters. The only essential differ­
ence is that the baseband adapter transceivers drive twisted-pair media
and the broadband adapter transceivers drive broadband media. In this
sense, Adapter II(/A) and the Baseband Adapter(lA) are excellent exam­
ples of "layered hardware" design. In fact, applications that use Broad­
band II and lIlA adapters must go to some length to determine whether
they are actually running on Baseband Adapter and Baseband Adapter/A,
respectively.

An application must read the LAN adapter Transceiver Interface Regis­
ter at the primary (alternate) port address 062Eh (062E). If the two high­
order bits have a value of 00, then the adapter's transceiver is a broadband
transceiver. Otherwise, the two high-order bits have a value of 01 and the
transceiver is a baseband transceiver. This inconsequential difference
clearly illustrates that base adapters are absolutely identical, differing only
in their transceivers, which are attached in the final assembly phases.

Indeed, you ~ould switch transceivers between Adapter II(lA) and
Baseband Adapter(lA) and reinstall the adapters in the appropriate net­
work without application impact other than changing the network
adapter's serial number. Thus, assumptions that given applications can
run on IBM PC Network Broadband Adapter IIs (lAs) but not on IBM PC
Network Baseband Adapters (lAs) are largely statements of support, not
capability. In the final analysis, nothing prevents applications from going
the extra mile to detect that they are executing on a PC Network base­
band adapter and to terminate execution on that basis. Caveat emptor.

Chapter 2: LAN Adapters 15

Ethernet Environment

IBM markets Ethernet adapters manufactured by Ungermann-Bass of
Santa Clara, California. The adapters are available from a business unit
known as IBM Academic Computing Information Systems (ACIS), which
works closely with academic institutions under joint development
agreements involving a variety of technologies and communication envi­
ronments.

IBM LAN Programming Interfaces

NetBIOS is one of five communication programming interfaces provided
by IBM for its LANs. The various interfaces are

• adapter card
• Advanced Program-to-Program Communications (APPC)
• Data Link Control (DLC)
• direct
• NetBIOS

The relationships of these interfaces to NetBIOS are illustrated in Figure
2-1. Detailed discussion of the other four major interfaces is beyond the
scope of this book, but the following discussion summarizes their pur­
poses.

Adapter Card Interface

The adapter card interface is the most difficult programming interface, re­
quiring timing-sensitive logic, tricky interrupt processing, and nimble
management of shared-RAM. For example, the IBM Token-Ring PC
Adapter has a variety of independent interrupts that must be correctly
handled in isolation or in mass. The adapter's interrupt fecundity, com­
bined with an error in the PC BI OS's timer tick handler, eventually led IBM
to introduce the CONFIG.SYS STACKS parameter (with DOS 3.2) and the
TIMERINT.SYS device driver (with the IBM LAN Support Program), re­
spectively. In other words, this is an interface of last resort, though it is the
interface used by LAN monitors to observe network traffic.

16 Part 1: Introduction to NetBIOS

APPC
Requests

APPC/PC

or

OS/2 DLC Direct
Extended Rqsts. Rqsts.

Edition

DXMCnMOD.SYS

NetBIOS
Rqsts.

" DXMTOMOD.SYS
(installed

last)

or (installed second)
DXMGnMOD.SYS

DXMAOMOD.SYS (installed first)

~----------~----------~I~

LAN Adapter

Adapter
Card

IBM LAN
Support
Program

or

OS/2
Extended

Edition

Fig. 2-l. IBM PC LAN programming interface relationships.

APPC Interface

APPC is the interface provided for Systems Network Architecture (SNA)
communication. It has numerous command sequences and control
blocks associated with it, and is useful for peer-to-peer communications
with IBM mainframes and other IBM processor applications that require
SNA LV 6.2 communication capability.

DLC Interface

DLC provides the IEEE 802.2 LLC communication interface for IBM's
LAN adapters, which supports the IEEE type 2 LLC protocol guarantee-

Chapter 2: LAN Adapters 17

ing notification of unsuccessful transmissions. DLC also provides the
IEEE type 1 "connectionless" communications, sometimes referred to
as "send and pray" communication, in which no guarantee of message
delivery is provided and no notification is given in the event of transmis­
sion problems.

DLC offers the potential of higher performance communication than
NetBIOS because it is "closer to the adapter." As earlier indicated, Net­
BIOS commands are converted into one or more DLC commands and
then presented to the DLC interface. This is why NetBIOS data transmis­
sion throughput rates often cannot exceed DLC data transmission
throughput rates.

Direct Interface

The direct interface provides the ability to open, initialize, and close
adapters, and permits programs to read and reset adapter logs, trace
adapter activities, obtain status information, and operate adapter timers.

IBM provides a wide spectrum of LAN adapters and programming in­
terfaces, including NetBIOS. Clearly, a mechanism is needed to support
these diverse adapters while simultaneously presenting a stable, uniform
set of programming interfaces to applications. This is provided by the
IBM LAN Support Program, which insulates applications from imple­
mentation details of the specific LAN they operate on, allowing users to
select the appropriate LAN for their requirements.

Chapter 3

Application Services

NetBIOS provides four categories of application services:

• name support
• datagram support
• session support
• general command

NetBIOS Name Support

An individual NetBIOS LAN adapter is distinguished from other adapters
on its respective network by one or more network names, which allow
LAN applications to direct their messages to specific adapters and indi­
cate that their adapter originated the message.

Each network name consists of 16 characters. Within a network
name, each of the 16 characters is significant and uppercase is different
than lowercase. The names you can create cannot have a value of binary
zero or an asterisk (*) as the first character. IBM reserves the values of OOh
to IFh for the 16th character and uses some of the reserved character val­
ues with the IBM PC LAN Program. This is why you can only have a 15-
character IBM PC LAN Program machine name. Finally, IBM reserves the
use of "IBM" as the first three characters of any name. For a more com­
plete discussion of Net BIOS naming considerations, refer to the NetBIOS
Adapter Status Program discussion in Part II, of this book.

The number of names an adapter can use (or is using) will vary, as can
the number of adapters using a given name, but before an adapter can use
any name, it must acquire the rights to register and use the name on the
LAN.

19

20 Part I· Introduction to NetBIOS

NetBIOS initiates name registration activities in response to either of
the two types of NetBIOS add-name commands: Add Name and Add
Group Name. An adapter registers a network name by first broadcasting a
network petition (a name-claim packet) to use the name. The type of
packet, Name_Claim or Add_Group_Name_Claim, indicates whether
the adapter wants to register the name as a unique name or as a group
name respectively.

Finally, once a name is successfully registered, any registered name
except the first can be deregistered by issuing a NetBIOS Delete Name
command. NetBIOS Adapter Reset commands erase the NetBIOS name
table (except the first name), as does a system reset (Ctrl-Alt-Del) and
powering off the workstation.

Unique Names

If an adapter tries to register a name as a unique name, then no other
adapter operating on the LAN can have the same registered name or the
registration attempt fails. If the name is currently registered, either as a
unique name or as a group name, the offended adapter(s) issues a network
complaint and the pending name registration command is refused. Other­
wise, the adapter has the exclusive right to use the name on its LAN.

Group Names

If an adapter tries to register a name as a group name, then no other
adapter can be using that name as a unique name or the registration at­
tempt fails. If the name is in use as a unique name, the offended adapter
issues a network complaint and the command to use the name is refused.
Otherwise, the adapter has the nonexclusive right to use the name on the
LAN. This allows other adapters to register the name as a group name,
though not as a unique name. Group names are useful for sending mes­
sages to collections of workstations such as departments or teams.

The Name Table and Name Number

If an attempted name registration fails, the failure is reported to the work­
station application for subsequent analysis along with an appropriate er­
ror return code. In the absence of network complaints, the adapter's
NetBIOS support places the name in a locally maintained, internal table

Chapter 3: Application Services 21

known as the NetBIOS name table. It then reports the name registration
success to the LAN application along with a one-byte value.

The one-byte value is an unsigned number referred to as the name's
NetBIOS name number. The name number is subsequently used in various
NetBIOS commands associated with the name. NetBIOS assigns the value
of the name number in an incremental, modulo 255, roundrobin manner.
The values zero and 255 are never assigned, and the first entry is perma­
nently assigned by the adapter based on its internal serial number. Thus,
the numbers are assigned in the order 1, 2, 3, ... 254,2,3,4, ... 254, etc.

Placing the name in the name table authorizes the adapter to subse­
quently scrutinize registration petitions of other adapters wishing to reg­
ister names. And, once added, a name can be deleted from the table,
potentially allowing some other name to use it as a unique name.

Note that the NetBIOS name table is a temporary table contained
within RAM and is reconstructed after each system boot or adapter reset.
Because each adapter has its own private name table, NetBIOS name res­
olution is highly autonomous across the LAN, requiring no central name
administration. If a NetBIOS module is supporting more than one LAN
adapter within a workstation, each adapter also has its own independent
NetBIOS name table.

The Permanent Node Name

All IBM LAN adapters have a unique six-byte number associated with
them, guaranteed to be unique for every IBM LAN adapter and contained
in an adapter ROM. The number is referred to by a variety of names:

• permanent node name
• permanent node address
• burned-in address (BIA)
• universally administered address
• unit identification number
• physical address
• local node name

For all IBM LAN adapters other than the PC Network LANA card, this
address is in the range that is universally administered by the standards
committees for LANs and has the two high-order bits set to zero. Under
the native ROM NetBIOS, PC Network LANA adapter cards always have
two bytes of binary zeros as the last two bytes of their permanent node
name. The values of the two high-order bits in the remaining four bytes
vary by adapter.

22 Part [. Introduction to NetBIOS

The permanent node name can be overridden at boot time with a six­
byte locally administered address whose high-order bytes must have a
value of X'4000'. This provides a new LAN hardware address for the
adapter that replaces the permanent node name and is accomplished by
specifying an appropriate value on the LAN adapter's IBM PC LAN Sup­
port Program device driver. DXMINFO.DOC has the appropriate details.

If overridden, the locally administered address temporarily replaces
the permanent node name as the adapter's LAN hardware address until
the system is rebooted. This provides the opportunity to omit or
respecify the overriding locally administered address value or to replace
the adapter with another that uses the same locally administered address.

Note: NetBIOS applications cannot detect when a permanent node
name has been overridden either on a local or remote adapter. NetBIOS
always uses and returns the original permanent node name when an ap­
plication obtains an adapter's name. The only ~ay to obtain both the per­
manent node name and the current LAN hardware address is to issue a
local DIR.STATUS request. This is not a NetBIOS request and is beyond
the scope of this book.

When any LAN adapter is initialized and active on a LAN, it has a
unique six-byte number associated with it, the burned-in permanent node
name. The number is also guaranteed to be unique on the LAN because it
is registered in the NetBIOS name table as a unique name during adapter
initialization (the six bytes are appended to 12 bytes of binary zeros to con­
struct a unique 16-byte name). Because the registration happens during
system initialization, the permanent node name is always the first entry in
an adapter's NetBIOS name table. Zero is an invalid NetBIOS name num­
ber value, so permanent node name always has a name number value of
one.

The permanent node name serves as a LAN address that fingerprints
all messages transmitted by an adapter, and serves as an identification
anchorpoint for all messages transmitted to an adapter. Specifically, it is
used to tell the adapter's communication circuitry which messages
should be ignored and which messages should be admitted into the
workstation. This unique 48-bit value constitutes an adapter's electronic
message sieve.

Symbolic Names

Suppose you wrote a program to send a message to an associate named
Melissa and you wished to send it to her workstation's permanent node
name, which you believe is X'4001020003404'.

Chapter 3: Application Services 23

This type of approach would be error prone because
X'4001020003404' is an invalid address (it has one too many digits), and
the program may need rewriting if Melissa's workstation adapter is
changed, perhaps for maintenance reasons. Thus, it would be conven­
ient to personalize the LAN adapter address by using your associate's nat­
ural name, Melissa. Such pseudonyms are called symbolic names and are
registered in the NetBIOS name table as either unique names or group
names.

Adapters can receive messages that are addressed to it using only

• their 48-bit unique address derived from their unique serial num-
ber

• an indiscriminate general broadcast address of X'FFFFFFFFFFFF'
• bit-mapped functional addresses
• one value-mapped group address

The last two of these methods are beyond the scope of this book.
The name registration process is actually a LAN protocol for early

name-usage conflict detection, and is an indiscriminate broadcast proto­
col in preparation for subsequent communication requiring translation
of symbolic names to 48-bit LAN addresses.

Once a symbolic name has been resolved into an appropriate 48-bit
address, NetBIOS needs only that address to conduct the communica­
tion. The name used to make the association is nonessential until it is
needed to resolve another, perhaps a different 48-bit address, to the sym­
bolic name. Remember, symbolic names can be registered and de regis­
teredo

Datagram and Session Support

Once an adapter becomes active in a network, application programs
within the workstation can use NetBIOS to communicate with other ap­
plications residing in the same or different workstations. The applica­
tions can communicate using either datagrams or sessions.

Datagram Support

Datagrams are short messages whose size varies by NetBIOS implementa­
tion and have no guarantee of delivery beyond a "best effort" by the

24 Part L Introduction to NetBIOS

adapter. Regardless of whether the messages arrive safely, no receipt indi­
cation is provided by NetBIOS. The intended recipient machine may

• not exist
• be powered off
• not be expecting a datagram

In these instances, and in the case of network problems, the
datagram may never be received by any workstation. Datagram commu­
nication is "send and pray" communication unless the receiving applica­
tion takes explicit action to transmit a receipt acknowledgment. The
primary advantage of datagram communication is that it can consume
less workstation resource than session communication.

There are two types of datagram communication: broadcast
datagrams and plain datagrams. In both cases, the NetBIOS datagram
transmission command references an existing local NetBIOS name num­
ber, perhaps the permanent node name's, that serves as the datagram s
origin name. This name number may be associated with a local unique
or group name. Finally, plain datagrams transmitted to group names and
broadcast datagrams have a very low level of data security because they
can be intercepted with very little effort.

Broadcast Datagrams
Broadcast datagrams are totally indiscriminate datagrams transmitted
with a NetBIOS Send Broadcast Datagram command. Any adapter, in­
cluding the transmitting adapter, can receive a broadcast datagram if it
has previously issued a NetBIOS Receive Broadcast Datagram command.

In general, broadcast datagram communication should be avoided
because two applications within the same workstation could easily re­
ceive broadcast datagrams intended for the other application. In addi­
tion, applications that execute in workstations running the IBM PC LAN
Program are specifically warned against using broadcast datagram com­
munication.

Plain Datagrams
Plain datagrams are discriminate datagrams transmitted with a NetBIOS
Send Datagram command. Unlike NetBIOS Send Broadcast Datagram
commands, applications specify a recipient NetBIOS name with the
Send Datagram command. Any adapter, including the transmitting
adapter, can receive a datagram if it has previously added the appropriate
recipient name and issued a Receive Datagram command to NetBIOS ref­
erencing the number of the name specified in the command.

Chapter 3: Application Services 25

If an application specifies a name number of FFh in a receive
datagram, the application can receive a datagram for any name in the Net­
BIOS name table. This is referred to as a receive-any datagram. However,
Receive Datagram commands for a specific name number have priority
over Receive-Any Datagram commands. Figure 3-1 summarizes the rela­
tionship between the two forms of Receive Datagram commands.

Application Name/NcbNum LSN

Greg/O3h
05h

Receive Datagram
NcbNum=03h 33h

~'~""C ACh

Melissa/F2h
2Dh

4Ch

Receive Datagram for a specified name number

Application Name/NcbNum LSN

Greg/O3h

05h

33h

Receive Datagram
NcbNum= FFh ACh

Melissa/F2h
2Dh

r--

4Ch

Receive-Any Datagram (lowest priority)

Fig. 3-1. Receive Datagram command flavors.

26 Part I: Introduction to NetBIOS

Finally, plain datagrams can be transmitted to adapters using the
name as a unique name, or to groups of adapters that share a group name.

Session Support

The second form of NetBIOS application communication is session
communication. NetBIOS session support creates a reliable two-way
data communication connection between two applications that can exist
for extended periods. Such connections are sometimes referred to as vir­
tual circuits.

The communicating applications may reside within the same work­
station (local sessions) or within different workstations (remote ses­
sions). Each application constitutes one half or side of the session.

The primary advantage of session communication over datagram
communication is that message-receipt status is presented to the trans­
mitting application for every message it transmits. Datagram communi­
cation provides message transmission status. However, session
communication reliability comes with the slight overhead of creating
and maintaining sessions and the packet acknowledgment protocol be­
tween adapters.

Creating Sessions
Sessions are created when one application issues a NetBIOS Listen com­
mand referencing a name in its NetBIOS name table. The application may
use an existing name in the table such as the permanent node name or
add one of its own.

The Listen command also specifies the remote name that a petition­
ing application must use to qualify as a session partner, and may use an
asterisk (*) as the first character of the remote name. In this case, the re­
maining 15 characters are ignored and the local NetBIOS allows the sec­
ond application to use any name to qualify as a session partner. (Since
session security depends on matching both names, one might correctly
suspect such promiscuous behavior has its hazards.)

A second application then issues a NetBIOS Call command, which
references the name in its NetBIOS name table that the first application is
expecting as a partner's name. The Call command also references the
name the first application referenced in its own NetBIOS name table.
The double name match fulfills the criteria of both applications to create
a session and the pending Listen and Call commands then complete.
Note the sequence: first the Listen, then the Call. This sequence cannot
be successfully reversed.

Chapter 3: Application Services 27

Each application then receives notification of session establishment
and a one-byte unsigned value referred to as the NetBIOS Local Session
Number (LSN) that the adapter associates with the session. The LSN is
analogous to a PC-DOS file handle.

NetBIOS assigns the LSN value in an incremental, modulo 255, round­
robin manner. The values zero and 255 are never assigned. Thus, the num­
bers are assigned in the order 1, 2, 3, ... 254, 1,2, 3,4, ... 254, etc.

Even if both sides of the session are local sessions, note that two
numbers are assigned-one for each side. In this case, either application
can use either LSN. In general, there is no restriction that the two LSNs
have the same value, even if they are both local sessions. The session cre­
ation procedure is summarized in Figure 3-2.

Application 1

Add name "Greg" (optional)

Listen for "Melissa"
using the name "Greg"

Application 2

Add name "Melissa" (optional)

1_1Il1ll1ll1ll1 Call "Greg" using
~ the name "Melissa"

Session established, LSN == X Session established, LSN == Y

Fig. 3-2. Session establishment.

Receive Command Flavors
After establishing a session, both sides can issue NetBIOS Send and Re­
ceive commands to transfer data. If a given name is used to create several
sessions, an application can also issue a NetBIOS Receive-Any-for-a-Spec­
ified-Name (Receive-Any) command, which provides received data from
any session associated with a specified name. More generally, the applica­
tion can issue a NetBIOS Receive-Any-for-Any-Name (Receive-Any-Any)
command, which provides received data from any existing session the
adapter has actively established.

In the event a message arrives that could satisfy more than one of
these types of NetBIOS Receives, the following hierarchy is observed:

1. Receive (highest priority)

2. Receive-Any-for-a-Specified-Name
3. Receive-Any-for-Any-Name (lowest priority)

The behavior of the various Receive flavors is summarized in Figure 3-3.

28 Part 1: Introduction to NetBIOS

Send Command Flavors
Applications issue NetBIOS Send commands to transfer data to the other
application. The Send command allows the application to send messages
ranging in size from zero bytes to 64K minus 1 bytes of data; the data
must be in contiguous memory. The application can also issue a NetBIOS
Chain Send command that allows data to reside in buffers located in two
different storage areas.

Application Name/NcbNum LSN

GreglO3h
OSh

Receive
NcbLsn = 33h 33h

ACh

Melissa/F2h
2Dh

4Ch

Receive

Application Name/NcbNum LSN

GreglO3h
OSh

Receive-Any
NcbNum =03h 33h

ACh

Melissa/F2h
2Dh

4Ch

Re cel ve- A n y-fo r-a -S pe cl fl e d -N a m e

Fig_ 3-3- Receive command flavors_

Chapter 3: Application Services 29

With a Chain Send command, data within each of the buffers must be
in contiguous memory, though the two buffers themselves do not have
to be contiguous. Moreover, each data block can range from zero bytes to
64K minus one bytes, allowing up to 128K minus two bytes to transfer
with one Chain Send command.

Send and Receive Considerations
First note that a NetBIOS Chain Send command exists, but a NetBIOS
"Chain Receive" command does not. NetBIOS allows applications to re­
ceive part of a transmission and issue subsequent NetBIOS Receives to
receive the remainder of the message. This is true for messages that origi­
nate from both Send and Chain Send commands. Conversely, a single
NetBIOS Receive command can usually receive messages transmitted
with a Chain Send command provided the message is not too large. In
any event, the receiving application cannot detect whether a message
was transmitted with a Send versus a Chain Send unless the size of the
total message exceeds 64K minus one bytes. This is because Chain Send
command data originating in two separate buffers always arrives seam­
lessly with no indication of the original buffer boundaries.

The only stipulation for an application that partially receives a mes­
sage is that it not delay "too long" to receive the entire message. Specific­
ally, when the session is established, each side specifies Receive and Send
time-out threshold periods. If the Send threshold period is exceeded be-

Application Name/NcbNum LSN

Greg/O3h
05h

33h

Receive-Any ACh
NcbNum = FFh

Melissa/F2h
2Dh

4Ch

Receive-Any-for-Any-Name (lowest priority)

Fig. 3-3. (Cont.)

~~---~-~--

30 Part I: Introduction to NetBIOS

fore the message is completely received, the Send times-out and the entire
session is terminated by the sending adapter. In this instance, both sides of
the session are notified of the consequences of the receiver's lethargy.

Send No-Ack and Chain Send No-Ack Considerations
The Send No-Ack and Chain Send No-Ack commands first appeared with
version 1.02 of the IBM LAN Support Program. They differ from the Send
and Chain Send commands, respectively, by eliminating unnecessary
NetBIOS-to-NetBIOS data-receipt acknowledgments occurring with
prior IBM NetBIOS implementations.

Caution: The Send No-Ack and Chain Send No-Ack commands are
not in the original NetBIOS definition and may not be universally recog­
nized by other NetBIOS implementations, including prior IBM NetBIOS
implementations and the IBM PC Network Protocol Driver Program. Us­
ing them may produce nonportable results because they require new
command codes and generate new return code values for themselves
and the Send, Chain Send, Receive, and Receive-Any commands.

Ending Sessions Gracefully
Sessions are ended by one or both sides issuing a NetBIOS Hang Up com­
mand that specifies the LSN of the session to be terminated. The other
application is notified of the session termination when it issues a subse­
quent session command. An application can issue a NetBIOS Session Sta­
tus command that will indicate the status of a session-existing or
cancelled.

General Commands

The NetBIOS general commands provide such NetBIOS services as

• Reset
• Adapter Status
• Cancel and Unlink
• Find Name
• Trace

Reset Command

The Reset command forces the adapter to an initialized state. This termi­
nates all sessions and removes all names from the NetBIOS name table ex-

Chapter 3: Application Services 31

cept for the permanent node name. The Reset command optionally
specifies the maximum allowable number of NetBIOS commands that can
be pending at one time as well as the maximum number of sessions that
concurrently exist within the adapter. Minimizing these values can increase
performance by freeing up valuable work space for more network buffers.

Adapter Status Command

The Adapter Status command allows you to query a NetBIOS adapter and
retrieve operational information such as detected LAN error counts and
the adapter's NetBIOS name table. The queried adapter could be a local
adapter or a remote adapter on the LAN. In some environments, using
the Adapter Status command to query a remote adapter is an excellent
way to determine whether the adapter and a workstation is hung or just
the workstation is hung. (Adapters can sometimes operate from LAN in­
terrupts though the workstation is hung.)

Cancel and Unlink Commands

The NetBIOS Cancel command allows applications to cancel commands
that have not completed. The NetBIOS Unlink command allows a PC
Network LANA adapter that has booted using RPL to disconnect from the
RPL server machine. The Unlink command is intercepted by the PC Net­
work LANA NetBIOS and converted to a Hang Up command that uses
information stored in high RAM.

The Unlink request is only valid for the primary adapter and always
returns a zero (successful) return code. For all other IBM LAN adapter
NetBIOS implementations, the Unlink command is provided as a com­
patibility feature for the PC Network LANA card and performs no func­
tion. See Part III for a complete discussion of the RPL process.

Find Name Command

The NetBIOS Find Name command locates adapters that are using a sym­
bolic name specified in the Find Name command. This is similar to an
Adapter Status command except NetBIOS returns one adapter response
at most to an Adapter Status command. (Several adapters sharing a group
name may respond, but only one response is returned to a requesting
application.)

32 Part L Introduction to NetBIOS

In the case of the Find Name command, several adapters can also re­
ply if they share a group name, but theoretically speaking, all the re­
sponses are eligible to be returned to the requesting application. An
Adapter Status command returns all names within the target adapter's
NetBIOS name table and the NetBIOS Find Command returns the
adapter routing information for the adapters that are using the name.

The adapter routing information is only relevant in interconnected
LANs such as the IBM Token-Ring because the information indicates the
route(s) a message can take to arrive at a specific workstation. This rout­
ing information identifies the bridges connecting separate physical rings.
Messages must traverse these bridges to reach the LAN the recipient
workstation is on.

Trace Command

The Trace Command activates a trace of all commands issued to the Net­
BIOS interface. Its primary objective is to provide support for diagnostic
programs. In the event your implementation does not have a Trace com­
mand, you can write one yourself by intercepting all INT SC requests.
You should only analyze interrupt requests where the ES:BX register pair
point to a byte in memory that has a value greater than 02h. When ES:BX
point to values ofOOh, Olh, and 02h, the request is a DLC IEEE 802.2 LLC
request. This topic and the general Trace command is beyond the scope
of this book.

Issuing NetBIOS Commands

Applications issue NetBIOS commands by first zeroing out a 64-byte area
of memory. This prevents residual data from causing NetBIOS to wildly
branch into random memory when the command completes. The appli­
cation then uses the area to construct a NetBIOS Control Block or Ncb.
Completing the control block consists of filling various fields that are re­
quired by the particular command that will be issued. Failure to com­
plete the Ncb fields correctly can hang the user's machine because
uncompleted fields are initialized to all zeros. For example, in the case of
PC-DOS, if the Ncb specifies a Receive command and the receive data
buffer address is inadvertently not specified, the arriving data will oblig­
ingly be placed at address 0000:0000 overlaying and corrupting your
machine's interrupt vectors. That can be a difficult error to isolate
though its effect is more than somewhat obvious.

Chapter 3: Application Services 33

After filling in the Ncb, the application then points the ES:BX register
pair at the Ncb and issues an INT 5C interrupt request. When NetBIOS
can report status on the request, it does. However, the particular way it
does this varies with the way the particular request was issued.

C Example

Listing 3-1 shows how to issue a NetBIOS interrupt request using the C
language. This particular figure issues a NetBIOS interrupt directly to the
native NetBIOS interrupt. For IBM PCs, an alternate method uses a PC­
DOS INT 2Ah request specifying a value of 0400h or 040l h in the AX
register. In both cases, the ES:BX register pair point to a valid Ncb.

Listing 3-1. C Fragment Illustrating a Direct NetBIOS
Interrupt Request

#define USGC unsigned char
#define USGI unsigned
#define USGL unsigned Long

#define Netbioslnt21FunctionCode «USGC) Ox2A)
#define Netbioslnt5C «USGC) Ox5C)

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{

}

struct SREGS SegRegs;
union REGS InRegs, OutRegs; 1* defined in dos.h *1
struct Ncb far *NcbPtr = <struct Ncb far *) NcbPointer;

segread(&SegRegs);

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x(Netbioslnt5C, &InRegs, &OutRegs, &SegRegs);

An AX value of 040l h indicates PC-DOS should not automatically re­
try the command if the command failed. An AX value of 0400h indicates
PC-DOS should retry the command if the command failed because

• the adapter does not have the resources necessary to complete the
command successfully

• the adapter is busy and cannot handle the request

34 Part l- Introduction to NetBIOS

• the other workstation rejected our application's attempt to start a
communication session with it

The INT 2A approach is sometimes necessary for total coexistence
with the IBM PC LAN Program. However, before first using this interface,
an application must test the version of PC-DOS to verify it is version 3.1
or later, and then determine whether the IBM PC LAN Program is in­
stalled (see Chapter 6).

MASM Example

Listing 3-2 illustrates how to issue a NetBIOS interrupt request using
MASM. Again, this particular figure issues a NetBIOS interrupt directly to
the native NetBIOS interrupt in lieu of a PC-DOS INT 2Ah request with
AH set to 0400h or 0401h.

NetbiosInt

Listing 3-2. MASM Fragment Illustrating a Direct NetBIOS
Interrupt Request

equ 5Ch ; NETBIOS interrupt vector

mov BX,offset Ncb

mov AX,CS
mov ES,AX ES:BX ==> Ncb

int NetbiosInt

Testing for the Presence of NetBIOS

Before an application can safely issue a NetBIOS request, it must deter­
mine if NetBIOS is present. For IBM PCs, this process varies with the
model.

The Original IBM PC and PC-XT Test

The original IBM PC and PC-XT BIOS POST procedures initialize inter­
rupt vectors that BIOS does not need to OFFSET:SEGMENT values of
0000:0000. Issuing a NetBIOS request in one of these machines to an
uninitialized interrupt is virtually guaranteed to hang the machine.

Chapter 3: Application Services 35

The Test for Other IBM pes

The IBM PC-AT and follow-on machine BIOS POST procedures point
the interrupt vectors that BIOS does not need at an immediate IRET in­
struction. The SEGMENT value of the IRET instruction is always FOOOh.
Thus, issuing a NetBIOS request to an uninitialized interrupt in one of
these machines is harmless though unproductive. Chapter 4 contains a
program that tests correctly for NetBIOS presence.

To summarize, there are four categories of Net BIOS commands, each
with several members:

Name Support

Datagram Support

Session Support

Add Name

Add Group Name

Delete Name

Receive Datagram

Receive Broadcast Datagram

Send Datagram

Send Broadcast Datagram

Call

Listen

Send

Send No-Ack

Chain Send

Chain Send No-Ack

Receive

Receive-Any

Hang Up

Session Status

General Commands Reset

Cancel

Adapter Status

Unlink

Offset

+00

+01

+02

+03

+04

+08

+10

+26

+42

+43

Chapter 4

Ncb/Mcb Fields

IBM Token-Ring literature refers to the Ncb as the Message Control block
or Mcb, but we will use the term Ncb exclusively.

The Ncb is 64 bytes, with 13 fields and one 14-byte reserved area.
Table 4-1 diagrams the Ncb and its fields. The C language Ncb structure is
illustrated in Listing 4-1 and the MASM structure is illustrated in Listing 4-
2. The chart on the inside front cover illustrates when a field is an input
field and when it is an output field. The fields are discussed in greater
detail in Part IV.

Table 4-1. The Ncb Fields

Length
Field Name in Bytes Field Structure

Command 1 0

Return Code 1 0

Local Session Number 1 0

Name Number 1 0

Buffer Address 4 0000

Buffer Length 2 00

Call Name 16 0000000000000000

Name (Local) 16 0000000000000000

Receive Time Out 1 0

Send Time Out 1 0

37

38

Offset

+44
+48

+49

+50

Part L- Introduction to NetBIOS

Thble 4-1. (cont.)

Length
Field Name in Bytes Field Structure

Post Routine Address 4 DODD
LANA Number 1 0
Command Complete Flag 1 0
Reserved Field 14 00000000000000

Listing 4-1. A C Ncb Structure

#define USGC unsigned char
#define USGI unsigned
#define USGl unsigned long

struct Ncb
{

USGC NcbCommandi 1* command code *1
USGC NcbRetCodei 1* return code *1
USGC Ncblsni 1* local session number *1
USGC NcbNumi 1* Datagram ADD NAME table entry *1

char * NcbBufferOffseti 1* 1/0 buffer offset *1
USGI NcbBufferSegmenti 1* 1/0 buffer segment *1

USGI Ncblengthi 1* length of data in 1/0 buffer *1

char NcbCallName[161i 1* remote system name for CAll *1
char NcbName[161i 1* local adapter network name *1

USGC NcbRtoi
USGC NcbStoi

1* receive timeouts in 1/2 second units *1
1* send timeouts in 1/2 second units *1

char * NcbPostRtnOffseti 1* offset of post routine *1
USGI NcbPostRtnSegmenti 1* segment of post routine *1

USGC NcblanaNumi
USGC NcbCmdCplti

1* network adapter number to execute cmd *1
1* OxFF ==> command pending, else cmplted *1

char NcbReservedArea[141i 1* work area for network card *1
} ZeroNcbi 1* prototype NCB for sizeof cales *1

Chapter 4: NcblMcb Fields

Listing 4-2. A MASM Ncb Structure

Ncb Structure

Ncb
Ncb_Command
Ncb_RetCode
Ncb_Lsn

struc
db DOh
db DOh
db DOh

Ncb_Num db DOh
Ncb_BufferOff dw OOOOh
Ncb_BufferSeg dw OOOOh
Ncb_Length dw OOOOh
Ncb_CallName db 16 dup(O)
Ncb_Name
Ncb_Rto
Ncb_Sto
Ncb_PostOff

db 16 dup(O)
db DOh
db DOh
dw OOOOh

Ncb_PostSeg dw OOOOh
Ncb_Lana_Num db DOh
Ncb_Cmd_Cplt db DOh
Ncb_Reserve db 14 dup(O)

Ncb ends

Command

;Ncb command field
;Ncb return code
;Ncb local session number
iNcb name number from AddName
iNcb message buffer offset
;Ncb message buffer segment
;Ncb message buffer length (in bytes)
iNcb remote name
iNcb AddName
;Ncb receive timeout
iNcb send timeout
iNcb post routine offset
;Ncb post routine segment
iNcb adapter number
iNcb oFFh ==> command pending indicator
;Ncb reserved area

39

The Ncb command field is a one-byte field containing the NetBIOS com­
mand code for the desired operation. If the high-order bit of the com­
mand code is zero, NetBIOS accepts the request and returns to the
application when the command is completed. This is referred to as the
wait option. Clearly, only one wait-option command can be pending at a
time.

Although some commands such as Reset, Cancel, and Unlink are
guaranteed to complete, other commands only complete under certain
conditions. If such a command never completes, NetBIOS never returns
and the machine hangs in an infinite NetBIOS command completion
spin-loop. To avoid this, applications can set the high-order bit of the
command field to a binary one value for all commands except the Reset,
Cancel, and Unlink commands. This is referred to as the no-wait option.
In this situation, NetBIOS returns immediately with an initial return code
(in AL for the IBM PC) and expects that the Ncb and all associated data
areas will remain undisturbed until the command can complete.

40 Part 1· Introduction to NetBIOS

If NetBIOS accepts the command, it queues it for subsequent action
which allows several requests to be pending at one time. It also places an
FFh in the Ncb command complete field, indicating the command has
been queued but has not completed. When the command completes,
NetBIOS posts the final return code in both the Ncb return code field
and the Ncb command complete field. It also inspects the Ncb post
routine address field to see if it is all zeros. If it is not, NetBIOS immedi­
ately enters the code in a disabled state as if the code were an interrupt
routine.

The code must subsequently return to NetBIOS with an IRET in­
struction and should enable interrupts if i~ activities require any signifi­
cant time to accomplish. Moreover, a post routine should not issue PC­
DOS requests because they may have been interrupted to invoke the post
routine and PC-DOS is not reentrant. However, a post routine can issue
other NetBIOS requests.

Finally, some programs occasionally terminate execution and return
to the operating system with NetBIOS commands still pending. This is
equivalent to leaving without disabling enabled hardware interrupts.
NetBIOS will destroy memory in the 64-byte Ncb area if the Ncb eventu­
ally completes. At the very worst, NetBIOS will see that the NetBIOS
post routine address is not zero when the command completes, perhaps
because your word processor has overlaid the area where the Ncb re­
sided. Thus, NetBIOS might wildly branch into memory based on the
unpredictable post routine address value, causing your machine to peri­
odically hang for inexplicable reasons, such as divide-by-zero interrupts
during periods of apparent workstation inactivity.

Be warned. Pending NetBIOS requests must be canceled before an
application completes and returns to the operating system. This is done
by explicitly canceling all pending Ncbs or possibly by issuing an adapter
Reset command. Failing to do this can result in debugg~ng sessions that
are memorably excruciating.

Return Code

The Ncb return code field is a one-byte field that eventually contains the
value of the command's final return code. If it is zero after command
completion, the command completed successfully. Otherwise, a prob­
lem was detected, though it may not be of any consequence. Appendix C
lists the NetBIOS Ncb return codes.

Chapter 4: Ncb/Mcb Fields 41

Local Session Number

The Ncb local session number field is a one-byte field containing the lo­
cal session number associated with a command. NetBIOS assigns the
value of the local session number in an incremental, modulo 255, round­
robin manner. The values zero and 255 are never assigned.

Name Number

The Ncb name number field is a one-byte field containing the NetBIOS
name table name number associated with a command. NetBIOS assigns
the value of the name number in an incremental, modulo 255, round­
robin manner. The values zero and 255 are never assigned. The first en­
try's number, name number one, is always the permanent node name's
number.

Buffer Address

The Ncb buffer address field is a four-byte field containing a memory
pointer to a data buffer. In the case of the IBM PC, the data is in the OFF­
SET:SEGMENT format.

Buffer Length

The Ncb buffer length field is a two-byte field indicating the size of the
buffer pointed at by the Ncb buffer address field.

Call (Remote) Name

The Ncb call name field is a 16-byte field typically, but not always, con­
taining a remote name associated with the request. All 16 bytes are signifi­
cant and are used. In some instances, such as local session creation, the
name may be a local name instead of a remote name.

42 Part l Introduction to NetBIOS

In the case of a Chain Send Command, the Ncb call name field does
not contain a name. The first two bytes are used to indicate the length of
the Chain Send's second buffer. The next two bytes contain the second
buffer's offset, and the last two bytes contain the buffer's segment ad­
dress. While using the Ncb call name field in this manner may seem a bit
odd, it has the advantage of minimizing the Ncb size while satisfying field
alignment requirements for many C compilers.

(Local) Name

The Ncb (local) name field is a 16-byte field containing a local name asso­
ciated with the request. All 16 bytes are significant and are used. The first
character cannot have a value of binary zero or be an asterisk (*). In addi­
tion, IBM reserves the values ofOOh to IFh for the 16th character and the
values "IBM" as the first three characters of any name.

Receive Time Out

The Ncb receive time out field is a one-byte field used with Call and Lis­
ten commands. It specifies the number of half-second periods that a Re­
ceive (Receive, Receive-Any) command can wait for completion before
timing-out and returning an error. The time-out threshold is established
at session creation and cannot be subsequently altered. Specifying a
value of OOh indicates that there is no time-out threshold for Receive
commands associated with the session.

Send Time Out

The Ncb send time out field is a one-byte field used with Call and Listen
commands. It specifies the number of half-second periods that a Send
command (Send, Send No-Ack, Chain Send, Chain Send No-Ack) can
wait for completion before timing-out and returning an error. The time­
out threshold is established at session creation and cannot be subse­
quently altered. If a Send command times-out, the session is terminated.
Specifying a value of OOh indicates that there is no time-out threshold for
Send commands associated with the session.

Chapter 4: NcblMcb Fields 43

Post Routine Address

The Ncb post routine address field is a four-byte field containing a mem­
ory pointer to a routine that is executed when the command completes.
NetBIOS only inspects this field when the command has specified the
no-wait option; otherwise, it is ignored. In the case of the IBM PC, the
data is in the OFFSET:SEGMENT format. See the related Ncb command
field for more information.

LANA Number

The Ncb LANA number field is a one-byte field indicating which adapter
should handle the command. In the case of the IBM PC LAN adapters,
there are at most two adapters. The primary adapter is LANA adapter
zero; the alternate adapter is LANA adapter number one.

Command Complete Flag

Reserved

The Ncb LANA number field is a one-byte field that indicates whether a
command that specified the no-wait option has completed. If the value
in this field is FFh, the command has not completed. Otherwise, the field
contains the final command return code. See the Ncb command field for
more information.

The Ncb reserved field is a 14-byte reserved area that NetBIOS may use to
return extended error information. In addition, NetBIOS uses it as an in­
termittent scratchpad during request processing. Application programs
should never use the Ncb reserved field because if it is tampered With,
NetBIOS's behavior may be unpredictable.

---- ---------,-----.. -. -_._- --- - -

44 Part I: Introduction to NetBIOS

Sample C Program to Test for NetBIOS Presence

We now look at our first C NetBIOS program. Listing 4-3, PRESENCE.C,
is a sample C program that should correctly test for the presence of Net­
BIOS on all IBM PC models. In the event that this program does not work
correctly with your machine or future IBM machines, you should use a
debugger to inspect the INT 5C interrupt vector at segment OOOOh, offset
0l70h, and correct to program accordingly.

#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include "netbios2.h"

struct SREGS SegRegs;

#if defined(LINT_ARGS)

Listing 4-3. PRESENCE.C

extern int main(int argc,char * *argv);
extern int CheckDosIVs(void);
extern void IssueInvalidNetbiosRequest(void);
extern void ClearNcb(struct Ncb *NcbPtr);
extern void NetbiosRequest(struct Ncb *NcbPointer);
extern void Logo(void);
#endif

int main(argc, argv)
int argci

char *argv[]i
{

}

unsigned char tempi

LogoO i

if (CheckDosIVs())
IssueInvalidNetbiosRequest()i

printf("\n\nProgram ending ... \n")i

return Oi

#define DOS_INT_21 Ox21
#define DOS_FETCH_IV Ox35

Chapter 4: NcblMcb Fields

Listing 4-3. (cont.)

int CheckDosIVs()
{

}

}

union REGS InRegs, OutRegsi
struct SREGS SegRegsi

InRegs.h.ah = DOS_FETCH_IVi
InRegs.h.al = NetbiosInt5Ci

int86x(DOS_INT_21, &InRegs, &OutRegs, &SegRegs)i

printf("\n\nNetBIOS Int 5Ch IV SEGMENT:OFFSET == %04X:%04X ••• ",
SegRegs.es, OutRegs.x.bx)i

switch (SegRegs.es) {

case OxOOOO : printf("\n\nNetBIOS IV segment == OxOOOO\x07")i
return FAILUREi
breaki

case OxFOOO printf("\n\nNetBIOS IV segment == OxFOOO\x07")i
return FAILUREi

default
breaki
printf("\n\nNetBIOS IV segment appears valid •.• ");
return SUCCESSi
breaki

#define ERROR_INVALID_COMMAND Ox03

void IssueInvalidNetbiosRequest()
{

struct Ncb PresenceNcbi

ClearNcb(&PresenceNcb)i

PresenceNcb.NcbCommand = NETBIOS_INVALID_COMMAND;

NetbiosRequest(&PresenceNcb);

if (PresenceNcb.NcbRetCode == ERROR_INVALID_COMMAND)
printf("and NetBIOS is present .•. ");

else
printf("but NetBIOS is not present ••• \x07");

45

-----~.-.-----~---.-.. -. - ... -.-'---

46 Part L Introduction to NetBIOS

Listing 4-3. (cont.)

}

void CLearNcb(NcbPtr)
struct Ncb *NcbPtr;
{

}

int i;
char *CharPtr;

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++
*CharPtr++ = OxOO;

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{

}

union REGS InRegs, OutRegs; 1* defined in dos.h *1
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs);

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x(Netbioslnt5C, &InRegs, &OutRegs, &SegRegs);

void LogoO
{

}

printf("\n*- NetBIOS Presence Test Program");
printf(" © Copyright 1988 W. David Schwaderer -*");

Note that the program also issues an invalid NetBIOS request to en­
sure that the NetBIOS interrupt vector is actually being used by NetBIOS
and has not been captured by some other program. However, if the inter­
rupt vector has been captured by another program that reflects the
request to an uninitialized NetBIOS interrupt, the results may be cata­
strophic. The NetBIOS presence testing process is significantly compli­
cated by the existence of the NETBIOS.COM module. NETBIOS.COM
can be loaded anywhere and is generally indistinguishable from a debug­
ging program that may pass the interrupt (reflect) to an uninitialized in­
terrupt vector.

The mM PC-DOS LAN
Support Program

Chapter 5

As indicated in Figure 2-1, the IBM LAN Support Program provides sup­
port for the NetBIOS, DLC, and direct interfaces in PC-DOS environ­
ments. It replaces the predecessor NETBEUI.COM and TOKREUI.COM
programs and provides communication interface support for all of IBM's
LAN adapters.

The IBM LAN Support Program can simultaneously support up to
two adapters within the same machine and they do not have to be of the
same type. One adapter is referred to as the primary and has a program­
ming address of zero, and the other, if present, is referred to as the alter­
nate adapter and has a programming address of one.

Since a given adapter requires specific support programming, the IBM
LAN Support Program provides families of device drivers that enable users
to configure the specific support they require. As an example, this allows
the original IBM PC Network LANA card to use standard LLC protocols.

Conversely, using another program named the IBM PC Network
Protocol Driver allows IBM PC Network Adapter II and IlIA cards to com­
municate with IBM PC Network LANA cards using the original SMP
protocols. In any event, the protocol used is invisible to NetBIOS appli­
cations unless an application that uses one protocol tries to communi­
cate with an application using another. That would never work in any
circumstance. Hence, the operative concept throughout IBM LAN sys­
tem offerings is communication flexibility within protocols.

What Is Its Role?
The IBM LAN Support Program provides users of IBM LAN adapters a
significant degree of independence from the specific programming and

47

48 Part L Introduction to NetBIOS

operating characteristics of the particular LAN they are using. This en­
ables users to select the appropriate type of media and LAN topology for
their environments, independent of their particular application require­
ments. However, this independence is not universally granted without
restrictions.

It is rather remarkable to folks familiar with the original PC Network
LANA card's design that it can communicate using the 802.2 LLC proto­
cols. Among other things, this capability enables PCs using the original
PC Network LANA card to communicate with Token-Ring devices via an
intermediary PC running the IBM Token-Ring/PC Network Interconnect
Program. However, the PC Network adapter card used in the gateway
cannot be an original PC Network LANA card. It has to be a PC Network
Broadband Adapter II or IIIA because there must be no other communi­
cation adapter in a PC if an original PC Network LANA card using LLC
protocols is present.

The IBM LAN Support Program provides the "glue" for the various
IBM LAN adapters, and that is a very significant role though it sometimes
involves a few restrictions.

NetBIOS Parameter Summary

The IBM LAN Support Program NetBIOS device driver, DXMTOMOD.
SYS, is one of eight device drivers included on the Program diskette.
DXMTOMOD.SYS has 26 parameters that can optionally appear on the
CONFIG.SYS device driver specification line. One of the parameters,
STATIONS, helps determine the number of transmit buffers as well as the
size of both the transmit and receive buffers. This parameter can signifi­
cantly affect NetBIOS performance. Other parameters such as DLC.
MAXIN, DLC.MAXOUT, DLC.T1, and DLC.T2 parameters affect Net­
BIOS performance as well.

The rest ofthe parameters either affect memory consumption or per­
formance during error recovery (see Table 5-1). Consult DXMINFO.DOC
for details concerning the other device drivers and how to specify the
parameter values for primary and alternate adapters.

DLC, LLC, SAPs, and Link Stations Preliminaries

A Service Access Point (SAP) is a constructed code point that identifies
applications to the DLC and LLC software (see Table 5-1). All 802.2

Chapter 5: LAN Support Program 49

Table 5-1. Effect of the DXMTOMOD.SYS STATIONS Parameter

Link Station Count Transmit Buffer Count Transmit Buffer Size Receive Buffer Size

01-06

07-12

13-18

19-24

) 24

01-32

33-48

49-64

) 64

01-32

33-48

49-64

) 64

Token-Ring I Adapter (8K-byte shared-RAM)

2 1048

1

1

1

1048

600

600

600

280

192

144

112

96

Token-Ring II Adapter and Token-Ring/A Adapter (16K-byte shared-RAM)

2 2040 280

2 1048 280

1048 280

1 600 144

PC Network Adapter

2 2040 280

2 1048 280

1 1048 280

1 600 144

Source: DXMINFO.DOC version l.02

frames (transmitted packets) contain a one-byte SAP value. DLC and LLC
logic use this value to determine the destination application and where
to obtain resources (e.g., storage) to handle a frame. The NetBIOS SAP
value is OFh and the SNA value is 04h; there are others. DLC and LLC
software both permit multiple simultaneous active SAPs.

SAPs own link stations and can own more than one link station simul­
taneously. Link stations are components which DLC and LLC use to iden­
tify communicating adapters. When NetBIOS establishes a session, a
local link station connects with a remote link station, establishing a path.
The session uses this path for all frames associated with the session. LLC
insures the integrity of the data and handles the acknowledgment and
sequencing of the frames. When a session abnormally ends, there is a
connection problem between two link stations.

For each of the parameters we are going to discuss, the expression in
parentheses indicates the parameter's abbreviation as well as its allowa­
ble range or values. Where appropriate, the value following the "default
=" is the default value. Parameters that begin with DLC are given to LLC

50 Part l- Introduction to NetBIOS

software to specify characteristics of NetBIOS link stations. Note that
this information is extracted from the DXMINFO.DOC version 1.02 and
is subject to change. For more current information, consult the
DXMINFO.DOC file on your current IBM PC LAN Program Diskette.

ADAP.ADDR. NOT. REVERSED

The ADAP.ADDR.NOT.REVERSED (ANR=Y/N, default = N) parameter
specifies the order in which an Adapter Status command should present
the bytes composing an adapter's permanent node name.

PC Network LANA Adapter Cards
Using native ROM NetBIOS, PC Network LANA adapter cards always
have two bytes of binary zeros as the last two bytes of their permanent
node name. If a PC Network LANA adapter has a permanent node name
of X'112233440000', specifying ANR=Y causes an Adapter Status to
present the value as X'000011223344'. Otherwise, the value is presented
as X'443322110000'. This means, with either selection of the ANR value,
the PC LAN Program version 1.02 does not provide the value a native
LANA NetBIOS provides. (Refer to Figure 5-1.)

Non·LANA Permanent Node Name -+ X'112233445566'

ANR = Y -+ X'112233445566'
ANR = N -+ X'665544332211'

LANA Permanent Node Name -+ X'112233440000'

ANR = Y -+ X'000011223344'
ANR = N -+ X'443322110000'

Fig. 5-1. Effect of ANR parameter, LAN Support Program version 1.02.

Other Network Adapter Cards
If the ADAP.ADDR.NOT.REVERSED parameter is specified as Y, an
Adapter Status command presents the adapter's permanent node name
the way it exists on the adapter. If omitted or specified as N, an Adapter
Status command presents the adapter's permanent node name in a byte­
reversed format. (Refer to Figure 5-1.)

Chapter 5: LAN Support Program 51

CLOSE.ON.RESET

The CLOSE.ON.RESET (CR=Y/N, default = N) parameter specifies
whether NetBIOS should close and reopen the adapter whenever a Net­
BIOS Reset command is issued. An adapter close and reopen can take a
few seconds to complete.

If omitted or specified as N, the close and reopen is not performed
when the adapter is Reset. In this case, the Reset command takes signifi­
cantly less time to complete because it only clears the NetBIOS name ta­
ble and changes the resettable maximum command and session values.
This also does not disrupt DLC communication that may exist at the time
of the Reset command.

COMMANDS

The COMMANDS (0 < = C < = 254, default = 12) parameter specifies the
maximum number of Ncbs that may be waiting for completion at one
time. If omitted or specified as 0, the default value of 12 is used.

DATAGRAM. MAX

This DATAGRAM.MAX (DG=Y/N, default = N) parameter specifies that
the maximum length datagram transmitted by NetBIOS is computed
from the adapter's transmit buffer size (data hold buffer or DHB) rather
than arbitrarily using the normal 512 bytes. If specified as Y, a datagram's
maximum length is the transmit buffer's size less 96 bytes (DHB Size -
96).

DRB.NUMBER

The DHB.NUMBER (DN, default = NetBIOS selected) parameter speci­
fies the number of adapter transmit buffer(s). If omitted or specified as 0,
the value is determined by the NetBIOS device driver.

DRB.SIZE

The DHB.SIZE (0 or 200 < = DS < = 9999, default = NetBIOS selected)
parameter specifies the size of the adapter's transmit buffer(s) data hold

52 Part I: Introduction to NetBIOS

buffer(s) or DHB(s). If omitted or specified as 0, the value is determined
by the NetBIOS device driver.

DLC.MAXIN

The DLC.MAXIN (I < = MI < = 9, default = 1) parameter specifies the
MAXIN value for all NetBIOS device driver link stations. If omitted or
specified as 0, the default value of 1 is used.

DLC.MAXOUT

The DLC.MAXOUT (I < = MO < = 9, default = 2) parameter specifies the
MAXOUT value for all NetBIOS device driver link stations. If omitted or
specified as 0, the default value of 2 is used.

DLC. RETRY. COUNT

The DLC.RETRY.COUNT (1 <= RC <= 255, default = 8) parameter de­
termines the number of retry attempts to be made by the adapter's LLC
code. If omitted or specified as 0, the default value of 8 is used.

DLC.Tl

The DLC.TI (DLC.tee-one)(O < = TI < = 10, default = 5) parameter deter­
mines the value of the TI (response) timer in the adapter's LLC code. If
omitted or specified as 0, the default value of 5 is used. For more informa­
tion on the response timer, consult the Token-Ring Technical Reference
Manual.

DLC.T2

The DLC.T2 (0 < = T2 < = 11, default = 2) parameter determines the value
of the T2 (receiver acknowledgment) timer in the adapter's LLC code. If
the value is 11, the T2 timer function is not used. If omitted or specified
as 0, the default value of 2 is used. For more information on the receiver
acknowledgment timer, consult the Token-Ring Technical Reference
Manual.

Chapter 5: LAN Support Program 53

DLC.TI

The DLC.TI (DLC.tee-eye) (0 (= TI (= 10, default = 3) parameter deter­
mines the value of the Ti (inactivity) timer in the adapter's LLC code. If
omitted or specified as 0, the default value of 3 is used. For more informa­
tion on the inactivity timer, consult the Token-Ring Technical Reference
Manual.

ENABLE

The ENABLE (E, positional parameter) parameter is the only
DXMTOMOD.SYS positional parameter, and must be the first parameter
if it is present and can be abbreviated E. The ENABLE parameter should
be present when the host PC has an asynchronous communication
adapter that is operating at "high-speed" (a speed equal to or greater than
1,200 bits per second according to IBM's field support representatives).
The effect of this parameter, when present, is a potential "loss in perfor­
mance" according to the DXMINFO.DOC documentation.

EXTRA. SAPS

The EXTRA.SAPS (0 (= ES (= 99, default = 0) parameter requests that
the NetBIOS device driver obtain additional SAPs when it implicitly
opens the adapter by first attempting to execute a command before the
adapter is open. These SAPs are not used by the NetBIOS device driver. If
omitted or specified as 0, no additional SAPs are requested.

EXTRA. STATIONS

The EXTRA. STATIONS (0 (= EST (= 99, default = 0) parameter re­
quests the NetBIOS device driver to obtain additional link stations when
it implicitly opens the adapter. These link stations are not used by the
NetBIOS device driver. If omitted or specified as 0, no additional stations
are requested.

NAMES

The NAMES (0 (= N (= 254, default = 17) parameter specifies the maxi­
mum number of NetBIOS names that may exist in the NetBIOS name ta-

54 Part I: Introduction to NetBIOS

bIe, including the universally administered address in the case of the
Token-Ring. If omitted or specified as 0, the default value of 17 is used.

OPEN.ON.LOAD

If the OPEN.ON.LOAD (O=Y/N, default = Y) parameter is specified as Y,
the NetBIOS device driver opens the adapter at load time during CON­
FIG.SYS processing. This eliminates the delay caused by an adapter open
when the first Ncb is subsequently issued. If omitted, the default value of
Y is used.

RECEIVE. DUFFER. SIZE

The RECEIVE.BUFFER.SIZE (R, default = NetBIOS selected) parameter
specifies the size of the adapter's receive buffers. If omitted or specified
as 0, the value is determined by the NetBIOS device driver.

REMOTE. DATAGRAM. CONTROL

The REMOTE.DATAGRAM.CONTROL (RDC=Y/N, default = N) parame­
ter is meaningless if the REMOTE.NAME.DIRECTORY (RND) (0 (= RND
(= 255) parameter is omitted or specified as 0.

If specified as Y, Send Datagram also uses the remote name directory
for transmitting to remote nodes. If omitted or specified as N, Send
Datagram does not use the RND.

REMOTE. NAME. DIRECTORY

If omitted or specified as 0, all Calls, Status Queries, and Send Datagrams
are broadcast to all NetBIOS nodes, as in previous levels of NetBIOS.

If a nonzero value is coded, the RND value specifies the number of
remote names that may be saved by the local node. Note, the minimum
number of name entries is 4 and the value of 4 is used if it is specified as 1,
2, or 3. After the local station has located a remote name, the remote
node address is saved in the remote name directory.

Subsequent Calls, Status Queries, and Send Datagrams to that name
are to the specific node rather than broadcast to all nodes. Issuing a Find
Name command with a receive buffer-length of zero forces a remote name
directory update when there is a failing bridge in the transmission path.

Chapter 5: LAN Support Program 55

RESET. VALUES

If specified as Y, the RESET.VALUES (RV=Y/N, default = N) parameter
has two options.

When the number of sessions is specified as ° in a subsequent Reset,
the default is the SESSIONS value rather than the normal default value of
6. When the number of commands is specified as ° in a subsequent Re­
set, the default is the COMMANDS value rather than the normal default
value of 12.

If omitted or specified as N, RESET works as it does in earlier releases
of NetBIOS.

RING. ACCESS

The RING .ACCESS (0 (= RA < = 3, default = 0) parameter specifies a To­
ken-Ring adapter's ring access priority for NetBIOS device driver mes­
sages. Higher numbers indicate a higher priority. If omitted or specified
as 0, the default value of ° is used.

SESSIONS

The SESSIONS (0 < = S < = 254, default = 6) parameter specifies the max­
imum number of NetBIOS sessions that may be defined. If omitted or
specified as 0, the default value of 6 is used.

STATIONS

The STATIONS (0 < = ST < = 254, default = 6) parameter specifies the
maximum number of NetBIOS link stations that may be defined. If omit­
ted or specified as 0, the default value of 6 is used.

TRANSMIT. COUNT

The TRANSMIT. COUNT (1 < = TC < = 10, default = 6) parameter speci­
fies the number of times queries (Call, Remote Adapter Status Query, Add
Name, Add Group Name, and Find Name) are transmitted. If omitted or
specified as 0, the default value of 6 is used.

56 Part L Introduction to NetBIOS

TRANSMIT. TIMEOUT

The TRANSMIT. TIMEOUT (0 < = TT < = 20, default = 1) parameter spec­
ifies the number of half-second intervals between transmission of que­
ries (Call, Remote Adapter Status Query, Add Name, Add Group Name,
and Find Name). If omitted or specified as 0, the default value of 1 is used
for a half-second interval.

OLC.MAXIN, OLC.MAXOUT, OLC. Tl, and OLC. T2 Relationship

DLC.MAXIN is the number of frames a local link station receives before
issuing an acknowledgment. The DLC.T2 timer specifies how long the
receiving LLC component waits before sending the acknowledgment. If
DLC.MAXIN is five and the local link station has received two frames,
LLC acknowledges the two received frames when DLC.T2 expires.

The DLC.MAXOUT specifies the number of frames a local link sta­
tion sends before expecting an acknowledgment. The DLC.Tl timer
specifies how long the transmitting LLC component waits for this ac­
knowledgment. If DLC. T 1 expires before an acknowledgment, the link
station enters checkpointing which causes a sequence-information ex­
change and network integrity validation by the link stations.

The DLC.MAXOUT and DLC.MAXIN default values of 2 and 1, re­
spectively, allow NetBIOS and LLC to operate in maximum parallel
mode. A transmitting link station sends two back-to-back frames to a re­
ceiving link station. The receiving station receives the first frame and im­
mediately acknowledges it. Typically, by the time the second frame is
transmitted, the acknowledgment for the first has arrived. This allows
maximum utilization of the network.

IBM provides a wide spectrum of LAN adapters. Combined with the
IBM LAN Support Program's versatility, IBM's LAN system offerings pro­
vide a significant degree of isolation from the underlying hardware sup­
port, including LAN media. This allows users to select the hardware and
topology best suited to their requirements, confident that their programs
will function correctly independent of their specific hardware choices.

Chapter 6

NetBIOS Relationships to Other IBM
Products

There is a common misconception that NetBIOS requires some version
of PC-DOS. Since NetBIOS operates on UNIX-based operating systems,
this is clearly false. Moreover, if you use an IBM PC Network LANA
adapter, you can write NetBIOS programs that execute on PC-DOS l.0.

IBM PC-DOS Version Requirements

PC-DOS 3.1, and later PC-DOS versions, contain LAN considerations for
the PC-DOS redirector. The redirector provides PC-DOS services neces­
sary for the operation of the IBM PC LAN Program. REDIR.EXE module
actually provides the redirector services and is an IBM PC LAN Program
component.

IBM PC LAN Program Considerations

The IBM PC LAN Program expects to be the first NetBIOS user of a LAN
adapter. If there are any existing sessions or names registered in the Net­
BIOS name rable, the Program will not provide network services and ter­
minates operation. This happens because the Program may reset a LAN
adapter in an attempt to increase the maximum number of sessions and
pending commands.

Appendix B of the IBM PC Local Area Network Program User's
Guide contains a list of additional restrictions that must be observed by

57

58 Part I: Introduction to NetBIOS

coexisting NetBIOS applications if the IBM PC LAN Program is to operate
correctly in a server configuration.

Coexistence Restrictions

NetBIOS applications may need to determine if the IBM PC LAN Program
is operating. If it is, the applications should observe the following con­
siderations as mentioned in the Guide.

• They should not use all the available sessions and pending com­
mands, because the IBM PC LAN Program needs some.

• They should not issue a NetBIOS Reset command because this
removes the names the IBM PC LAN Program has added to the
NetBIOS name table.

• They should not use any of the names added to the NetBIOS name
table by the IBM PC LAN Program.

• They should not use the Receive-Any-for-Any Name command be­
cause the IBM PC LAN Program needs to receive its messages.

• They should not use the values OOh to 1 Fh for the 16th byte value
in NetBIOS names because these are reserved for the IBM PC LAN
Program. Application programmers are encouraged to use a blank
(20h) as the 16th character in NetBIOS Names.

• They should carefully reflect appropriate captured hardware and
software interrupts and do so in a disabled state to simulate correct
entry into the IBM PC LAN Program.

• To avoid overlaid data problems, destroyed FATs, and destroyed
directories, they must not do direct disk or diskette accesses to
write data.

• They should not directly program the display controller (e.g.,
6845) to avoid the possibility of the IBM PC LAN Program's im­
properly restoring the display settings. The controller settings
should be changed only with application BIOS calls.

• They should not use the NetBIOS Receive Broadcast Datagram
command. Application designers are warned that using Receive
Broadcast Datagram "will probably result in PC LAN or applica­
tion failures that will require the user to reset (Ctrl-Alt-Del) the ma­
chine:' Application designers are advised to use plain datagrams
sent to group names if necessary.

• Where appropriate, they should use DOS file-handle functions
with sharing modes and avoid using FCBs because FCBs do not
support file sharing or locking functions. If this is not pOSSible,

Chapter 6: Other IBM Products 59

applications should not construct their own FCBs, change FCB re­
served areas, or close the FCB and continue to use it as though it
were still open. The last restriction includes saving an FCB in a file
for use at another time. Moreover, to insure data integrity, applica­
tions should periodically close and reopen files that are accessed
via FCBs.

• They should use the PC-DOS Create Unique File function (INT
21h AH=SAh) to create temporary files. To avoid file contention
and collisions in multiuser environments, they should not use
fixed names for temporary files.

• They should use the PC-DOS Create New File function (I NT 21h
AH=SBh) to create a file instead of simply creating one to see if it
already exists.

• To avoid "unpredictable problems" they should not change the
timer tick rate from its natural 18.2 times per second rate.

For more information, consult Appendix B of the Guide.

Detecting the Program

The IBMLANPG. C sample program in Listing 6-1 illustrates the proper
way a program should determine whether the IBM PC LAN Program is
installed. The application should first check that the PC-DOS version is
3.10 or later, then check to see if the Program is installed. If so, the appli­
cation can request the machine name that the Program is using.

The machine name is returned as a IS-character name, padded at the
end with blanks. A 16th byte holds an ASCII zero. In reality, the 16th byte
of the machine name in the NetBIOS name table is a blank. For more de­
tails, check the Guide and the PC-DOS Technical Reference Manual,
which documents the Get Machine Name function.

#define LINT_ARGS

#incLude <dos.h>
#incLude <stdio.h>
#incLude "netbios2.h"

#if defined(LINT_ARGS)

Listing 6-1. IBMLANPG.C

extern int main(int argc,char * *argv)i
extern int CheckDosVersion(void)i
extern void CheckForlbmLanProgram(void)i

60 Part I: Introduction to NetBIOS

Listing 6-1. (cont.)

extern void GetMachineName(void);
extern void Logo(void);
lIendif

IIdefine DOS_INT_21 Ox21
IIdefine DOS_INT_2A Ox2A
IIdefine DOS_INT_2F Ox2F

IIdefine PC_LAN_PGM_CHECK OxB800
IIdefine DOS_FETCH_VERSION Ox30
IIdefine GET_MACHINE_NAME OxSEOO

IIdefine REDIRECTOR_FLAG
IIdefine RECEIVER_FLAG
IIdefine MESSENGER_FLAG
IIdefine SERVER_FLAG

int main(argc. argv)
int argc;
char *argv [];
{

LogoO;

Ox0008
Ox0080
Ox0004
Ox0040

if (CheckDosVersion(»
CheckForIbmLanProgram();

printf<"\n\nProgram ending •.• \n");

return 0;
}

int CheckDosVersion()
{

union REGS InRegs. OutRegs;

InRegs.h.ah = DOS_FETCH_VERSION;

int86(DOS_INT_21. &InRegs. &OutRegs);

printf(lI\n\nThe PC-DOS Version is %u.%u ,
OutRegs.h.al. OutRegs.h.ah);

if (OutRegs.h.al < 3) /* check the major version number */

Chapter 6: Other IBM Products

}

Listing 6-1. (cont.)

return FAILURE;

if (OutRegs.h.ah < 10) 1* check the minor version number *1
return FAILURE;

InRegs.h.ah = 0;

int86(DOS_INT_2A, &InRegs, &OutRegs);

if (OutRegs.h.ah 1= 0)
printf<"\n\nThe INT 2A NetBIOS interface is avaiLabLe ... ");

eLse
printf<"\n\nThe INT 2A Net BIOS interface is not avaiLabLe ... \x07");

return SUCCESS;

void CheckForIbmLanProgram()
{

USGC temp;
union REGS InRegs, OutRegs;

int86(DOS_INT_2F, &InRegs, &OutRegs);

if (OutRegs.h.aL == 0) {

}

printf("\n\nThe IBM PC LAN Program is not instaL Led ... \x07");
return;

printf<"\n\nThe IBM PC LAN Program is installed II);

printf<"and operating as a II);

temp = OutRegs.h.bL & (REDIRECTOR FLAG RECEIVER_FLAG
MESSENGER_FLAG SERVER_FLAG);

1* The order of testing is important because
the bit settings are cumuLative as are the
configurations.

if (SERVER_FLAG & temp)

61

62 Part l- Introduction to NetBIOS

}

Listing 6-1. (cont.)

printf("Server.") ;
else if (MESSENGER_FLAG & temp)

printf("Messenger.");
else if (RECEIVER_FLAG & temp)

printf("Receiver.");
else if (REDIRECTOR_FLAG & temp)

printf("Redirector.");
else {

printf("and operating in an unknown configuration.\x07");
return;

}

GetMachineName();

void GetMachineName()
{

}

struct SREGS SegRegs;
union REGS InRegs, OutRegs;
char Buffer[16J, far *BufferPtr = Buffer;

InRegs.x.ax = GET_MACHINE_NAME;

SegRegs.ds = FP_SEG(BufferPtr)i
InRegs.x.dx = FP_OFF(BufferPtr);

int86x(DOS_INT_21, &InRegs, &OutRegs, &SegRegs);

if (OutRegs.h.ch != 0) {
printt<"\n\nThe machine name is ==>%s<== ", Buffer);
printf("\n\nThe machine name's NetBIOS Name Number is %u."

,OutRegs.h.cl);
} else

printf("\n\nThe machine name is not defined ... ");

void LogoO
{

}

printt<"\nIBM Local Area Network Program Presence Test Program");
printf("\n© Copyright 1988 W. David Schwaderer ");

Chapter 7

LAN Data Integrity and Security

This material merits its own discussion because the issues of LAN data
integrity and security are becoming critical as LANs become more perva­
sive within business environments.

LAN Data Integrity

The good news is that LAN communication is typically very reliable.
However, some LAN adapters do not have Cyclic Redundancy Checking
(CRe) for message transmission and reception verification, and some do
not have parity checking for onboard adapter memory.

The chilling fact is that if sections of a network's transmission path
do not have these or comparable facilities, end-to-end data integrity can­
not be guaranteed without some extra application programming effort.
It may be worthwhile to check with your potential vendor to see if your
LAN has sufficient data integrity features to satisfy your requirements.

LAN Data Security-A Word to the Wise

LANs provide all the data security that cordless telephones provide their
users. Just as a cordless phone broadcasts conversations for passers-by
and neighbors to monitor, all LAN communication is broadcast to all LAN
adapters.

The adapter determines whether the data enters the workstation's
memory or is simply discarded. Given enough guidance from a deter-

63

64 Part 1: Introduction to NetBIOS

mined programmer, many LAN adapters can be coaxed into what is re­
ferred to as promiscuous mode, receiving all LAN-transmitted data for
subsequent distribution to and leisurely review by affluent or otherwise
interested third parties. Consider the following IBM statements ..

IBM Statement 1

Above the copyright notice, the Token-Ring Network PC Adapter Tech­
nical Reference Manual states:

Note: This product is intended for use within a single establish­
ment and within a single, homogeneous user population. For
sensitive applications requiring isolation from each other, man­
agement may wish to provide isolated cabling or to encrypt the
sensitive data before putting it on the network.

Remember that achieving, not to mention maintaining, user population
homogeneity could present a challenge.

IBM Statement 2

The IBM NetBIOS Application Development Guide Introduction states:

It is the responsibility of the operating system or application pro­
gram to make sure that data or devices are secure on the network
as network security is not built into the NetBIOS .

. Permanent Node Name Capers

You might suppose you can use an adapter's permanent node name to
identify workstations involved in communication activities. However,
unfriendly LAN users may alter their locally administered name or even
covertly exchange LAN adapters among workstations.

This potentially allows a user to obtain a coveted permanent node
name and subsequently "impersonate" other LAN users authorized with
special LAN privileges by virtue of their permanent node names. Such
privileges might include using the LAN to silently eavesdrop on other
LAN workstation activities and inspection or manipulation of sensitive
files-all unobtrusively from behind closed doors.

Chapter 7: Data Integrity and Security 65

Thus, while IBM LAN adapter initialization procedures and support­
ing software guarantee that a node's permanent node name or locally ad­
ministered ID is unique on a given LAN, be vigilant when you use adapter
numbers as the only mechanism for user identification or LAN-user priv­
ilege administration.

You may not know who is really using a privileged permanent node
name. While you might want to keep these numbers confidential from
users, this is generally a futile effort against determined or sophisticated
LAN penetrations.

The Uneasy Conclusion

As of this writing, portable LAN monitors are commercially available that
can selectively or indiscriminately record and display everything trans­
mitted on an Ethernet and IBM Token-Ring LAN. Though they are some­
what expensive, you should not discount their eventual use within your
establishment.

If you would not project your spreadsheets, personal mail, financial
data, etc., on a neighborhood drive-in theater's screen, you would be
well advised to consider encrypting your data before transmitting it on a
LAN.

NetBIOS Support
Programming

General Support Programming, 69
Name Support Programming, 95
Datagram Support Programming, 101
Intermediate Datagram Applications, 105
Real-Time LAN Conferencing Application, 119
C File Transfer Applications, 139
Medialess Workstations, RPL, and Redirectors, 155

Part II

67

Chapter 8

General Support Programming

Our first NetBIOS program resets an adapter that is assumed to be con­
trolled by the IBM LAN Support Program. Examine this program in detail
because it presents many NetBIOS programming principles used, but not
discussed, in later programs. If you only study one program completely,
this should be it. Note that all programs assume compatibility with
Microsoft Corporation's C 5.0 compiler.

First note the #define LINT _ARGS statement. All programs contain
this statement to include subsequent function prototype statements in
the compilation. The compiler produces these statements when invoked
with the /Zg parameter. (Redirecting the compiler output to a file allows
the generated prototypes to be included in the source listing or separate
header file.) All program function declarations observe pre-ANSI X3Jll
conventions but can easily be replaced by modified function prototype
statements if supported by your compiler.

Second, note the test for the adapter in the maine) routine. To elimi­
nate repetition, all subsequent program listings do not include this test.

Finally, note that the netbios2.h include file listed in Appendix A de­
fines all symbolic values (e.g., SUCCESS, MAX_ADAPTER_NUMBER,
etc.).

The NetBIOS RESET Sample Program

The RESET.C program in Listing 8-1 resets a NetBIOS adapter, and ac­
cepts three integer parameters. In order, they are:

1. the number of the adapter to reset (0 or 1)

69

70 Part IL Support Programming

2. the maximum session count (0 to 254)

3. the maximum pending command count (0 to 255)

If no parameter or an incorrect parameter is entered, the program dis­
plays a usage message. Note, the actual maximum allowable values for
the session and command counts varies and may be controlled by IBM
LAN Support Program IS and Ie parameter values, respectively. Exceed­
ing the ceiling values specified as IBM LAN Support Program parameter
values forces NetBIOS to compute its own values. To dynamically deter­
mine these ceiling values, a program must issue an Adapter Status re­
quest.

#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include "netbios2.h"

#if definedCLINT_ARGS)

Listing 8-1. RESET.C

extern int main(int argc,char * *argv);
extern void Logo(void);
extern int CheckDosIVs(void)i
extern int IssuelnvalidNetbiosRequest(void)i
extern int EditP~rms(int argc,char * *argv)i
extern void ResetAdapter(unsigned int AdapterNumber,

unsigned int SessionCount,
unsigned .int CommandCount);

extern void ClearNcb(struct Ncb *NcbPtr);
extern void NetbiosRequest(struct Ncb *NcbPointer);
extern void AnalyzeResetError(int ResetErrorCode);
extern void Explain(void)i
extern void ExitNow(void);
#endif

struct Ncb ResetNcb;

struct SREGS SegRegsi

int main(argc, argv)
int argc;
char *argv [];
{

Chapter 8: General Support

}

Listing 8-1. (cont.)

LogoO;

if CC!CheckDosIVsC» :: CIIssueInvaLidNetbiosRequestC») {
printfC"\n\nNetBIOS not present. .. program ending ... \n\n\x07");
ExitNowO;

}

if CIEditParmsCargc, argv» {
ExpLainO;
ExitNowO;

} eLse ResetAdapterCatoiCargv[1]),
atoi Cargv[2]),
atoiCargv[3]»;

return 0;

void LogoO
{

}

printfC"\n
printfC"\n

NETBIOS Adapter Reset SampLe Program");
© Copyright 1988 W. David Schwaderer");

#define DOS_INT_21 Ox21
#define DOS_FETCH_IV Ox35

int CheckDosIVsC)
{

union REGS InRegs, OutRegs;
struct SREGS SegRegs;

InRegs.h.ah DOS_FETCH_IV;
InRegs.h.aL = NetbiosInt5C;

int86xCDOS_INT_21, &InRegs, &OutRegs, &SegRegs);

switch CSegRegs.es) {

case OxOOOO return FAI LURE;
break;

case OxFOOO return FAILURE;
break;

defauLt: return SUCCESS;
break;

71

72 Part II· Support Programming

Listing 8-1. (cont.)

}

}

int IssueInvalidNetbiosRequest()
{

}

struct Ncb PresenceNcb;

ClearNcb(&PresenceNcb);

PresenceNcb.NcbCommand = NETBIOS_INVALID_COMMAND;

NetbiosRequest(&PresenceNcb);

if (PresenceNcb.NcbRetCode == (USGC) Ox03)
return SUCCESS;

else"
return FAI LURE;

int EditParms(argc, argv)
int argc;
char *argv[];
{

int ReturnFlag = SUCCESS;

if (argc != 4) {

}

printf("\n\n\x07Incorrect number of parameters •.• ");
. return FAILURE;

if «atoiCargv[1]) < 0> :: (MAX_ADAPTER_NUMBER < atoi (argv[l]) » {
printf("\n\n\x07Incorrect adapter-number parameter value (%d) ... ",

atoi (argv[1]);
ReturnFlag = FAILURE;

}

if «atoi (argv[2]) < 0) :: (MAX_SESSION_COUNT < atoi (argv[2]») {
printf("\n\n\x07Incorrect session-count parameter value (%d) ••• ",

atoi(argv[2]»;
ReturnFlag = FAILURE;

}

if «atoi(argv[3]).< 0> :: (MAX_COMMAND_COUNT < atoi(argv[3]») {
printf("\n\n\x07Incorrect command-count parameter value (%d) ••• ",

Chapter 8: General Support

Listing 8-1. (cont.)

atoi (argv[3]);

}

ReturnFlag FAILURE;
}

if (ReturnFlag == FAILURE)
return FAILURE;

if (atoi(argv[2]) == 0) {
printf("\n\nWarning ... ");
printf("NetBIOS selects the session count vaLue ... \x07");

}

if (atoi(argv[3]) == 0) {
pri nt f("\n \nWa rn i ng ... II) ;
printf("NetBIOS selects the command count value ... \x07");

}

return SUCCESS;

void ResetAdapter(AdapterNumber, SessionCount, CommandCount)
unsigned AdapterNumber, SessionCount, CommandCount;
{

printf("\n\nNETBIOS adapter %d reset parameters ==>", AdapterNumber);
printf(" %d session%s and %d command%s ... ",

SessionCount, (SessionCount -- 1) ? "" "5",
CommandCount, (CommandCount == 1) ? "" "5");

printf("\n\nPlease wait for the adapter to reset ..• ");

ResetNcb.NcbCommand = NETBIOS_RESET_WAIT_ONLY; 1* reset command code *1

ResetNcb.NcbLanaNum AdapterNumber; 1* adapter number
ResetNcb.NcbLsn = SessionCount; 1* concurrent session count
ResetNcb.NcbNum = CommandCount; 1* concurrent command count

NetbiosRequest(&ResetNcb); /* Ncb was aLready zero

if (!ResetNcb.NcbRetCode) {
printf("\n\nThe return code was %x.\n", ResetNcb.NcbRetCode)i

}

else {
printf("\n\n\x07The return code was %x ", ResetNcb.NcbRetCode);
AnaLyzeResetError(ResetNcb.NcbRetCode);

*1
*1
*1

*/

73

74 Part II: Support Programming

Listing 8-1. (cont.)

printf("\n") ;
}

}

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;
{

}

int i;
char *CharPtr;

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = OxOO;

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{

}

union REGS InRegs, OutRegs;
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x(NetbiosInt5C, &InRegs, &OutRegs, &SegRegs);

void AnalyzeResetError(ResetErrorCode)
int ResetErrorCode;
{

if (ResetErrorCode == Ox03) {
printf("[invalid command codeJ");
return;

}

if (ResetErrorCode == Ox23) {

}

pri ntf(" [adapter not i nsta lledJ ");
return;

if «Ox3F < ResetErrorCode) && (ResetErrorCode < Ox50» {
printf("[unusual network condition -or- unacceptable ring-statusJ");
return;

Chapter 8: General Support

}

Listing 8-1. (cont.)

}

if COx4F < ResetErrorCode) {

}

printfC"[adapter malfunction -or- II);

printfC"Adapter/PC unusual condition/error]11);

return;

printf C"[undocumented errorl \x07");

void ExplainO
{

}

printfC"\n\nusage: reset adapter-number session-count command-count");
printfC"\n\n where: 0 <= adapter-number <= %d", MAX_ADAPTER_NUMBER);
pri ntfC"\n 0 <= sessi on-count <= %d", MAX_SESSION_COUNT>;
printfC"\n 0 <= command-count <= %d", MAX_COMMAND_COUNT>;

void ExitNowO
{

}

printfC"\n\nEnding RESET because of parameter input errors ... \n");
exit(1);

Support Routines

75

The main() routine first invokes Logo() which displays a logo. It then
calls CheckDosIVs() and IssuelnvalidNetbiosRequest() to verify that
NetBIOS is present. Part I discusses these tests in more detail.

If NetBIOS is not present, the program terminates after issuing an
acerbic comment. Otherwise, control passes to EditParms() which
checks the command-line parameters.

EditParms()

The various EditParms() routine checks are:

1. The parameter count should be four.

2. The adapter number should have a nonnegative value of zero or a
value not greater than MAX_ADAPTER_NUMBER.

76 Part If- Support Programming

3. The requested number of sessions should be less than the maxi­
mum allowable (MAX_SESSION_COUNT).

4. The requested number of maximum outstanding commands al­
lowable should be less than the maximum allowable (MAX_
COMMAND_COUNT).

If the session or command value is zero, a warning is presented to the
user stating that NetBIOS will compute the parameter value.

If the parameters are not acceptable, main() invokes Explain() to dis­
play the appropriate parameter values and then exits by invoking Exit­
N owe). Otherwise, the parameters are acceptable and maine) invokes the
ResetAdapter() routine to reset the adapter.

ResetAdapter()

The ResetAdapter() routine first displays the adapter number, session
count, and pending command count values it uses in its Reset command.
Because the NetBIOS reset may take a few seconds, it issues a request for
user patience. Whether it actually delays the few seconds is controlled
by the IBM LAN Support Program CR parameter discussed in Part I.

ResetAdapter() completes the required fields in the Ncb structure
named ResetN cb located near the top of the listing, and invokes N etbios­
Request() to issue the request. If NetBIOS is not present in the machine,
the machine generally freezes at this point. Note that the symbolic value
of the Reset command code (NETBIOS_RESET _ WAIT _ ONLY) clearly
indicates that a no-wait version of the command does not exist.

After NetBiOS returns, ResetAdapter() inspects the return code. If it
is zero, then ResetAdapter() displays a success message and returns to
maine) which then exits. Alternatively, ResetAdapter() displays the non­
zero return code and invokes AnalyzeResetError() to display an English
explanation before it exits.

AnalyzeResetError()

Properly analyzing error codes is a challenge because different IBM Net­
BIOS implementations provide different adapter-dependent error codes.
The error code analysis presented in AnalyzeResetError() is for errors
applying to the PC Network LANA NetBIOS. Note that IBM Token-Ring
4Xh and FXh error codes reflect an unacceptable ring status and an
adapter/PC unusual condition/error, respectively. Clearly, the applicabil-

Chapter g. General Support 77

ity of an unacceptable ring status error code to a CSMA/CD PC Network
adapter controlled by the IBM LAN Support Program is inappropriate.
Thus, you must refer generally to the adapter's NetBIOS documentation
before you can correctly interpret error codes.

Why Didn't ResetNcb Get Zeroed by ClearNcb()?

Because of its position in the program, ResetNcb is located in static stor­
age, which is always initialized to zeros. Thus, ResetNcb does not require
zeroing before ResetAdapter() uses it. However, if ResetNcb is a Reset­
Adapter() automatic variable or was used in a previously completed Net­
BIOS command, it requires zeroing by invoking ClearNcb(). Part I
discusses the ClearNcb() and NetbiosRequest() routines in more detail.

The NetBIOS Adapter Status Sample Program

The primary challenge of any adapter status program is displaying the
large amount of returned data. The job is significantly complicated be­
cause different IBM versions of NetBIOS return different data or return the
same data at different displacements within the returned information.

For example, IBM LAN Support Program NetBIOS implementations
return the maximum datagram packet size at offset 48 (decimal). The
original LANA NetBIOS does not return this data at all and offset 48 re­
sides within a reserved area for this NetBIOS version. Moreover, the IBM
LAN Support Program returns the major NetBIOS version number at off­
set 06 (decimal). However, the LANA NetBIOS returns the adapter
jumper settings at offset 06 and the NetBIOS major version number at
offset 08.

Finally, Token-Ring adapter status data may contain extended status
information, valid only for adapter status commands for local adapters.
This information may also contain adapter counter information that is
valid "only if no ring-status appendage is defined" according to the To­
ken-Ring PC Adapter Technical Reference Manual. There is no method
to determine whether such a ring-status appendage is defined. See Part
IV of this book for more details.

Because the primary purpose of this book is to teach basics, the
Adapter Status sample program takes the simple road and illustrates a par­
tial NetBIOS Adapter Status command applicable to adapters controlled
by the IBM LAN Support Program. A complete general program is left as a

78 Part Il· Support Programming

reader exercise. Note that the netbios2.h include file provides sample
adapter status structures for both IBM adapter status formats. The IBM
LAN Support Program format and the PC Network LANA format are Dlc­
Status and LanaStatus structures, respectively. The PC Network II and
lIlA adapters use the DlcStatus structure.

The main() Function

The maine) routine displays a simple logo and invokes EditArgs() to vali­
date the single valid input parameter. Assuming the parameter passes the
tests, RequestStatus() issues the Adapter Status command. If the com­
mand is not successful, a complaint is displayed containing the failing
return code and the program ends. Otherwise, DlcStatus() displays the
returned adapter type and permanent node name information fields. Fi­
nally, maine) displays the number of NetBIOS names in the adapter Net­
BIOS name table before exiting. Note that each name in the table requires
18 bytes and that the minimum buffer size is 60 bytes. Since the IBM LAN
Support Program N parameter allows a maximum of 254 names in the
NetBIOS name table, a buffer size of 4,632 bytes (60 + 18 X 254) is gener­
ally required to hold all possible returned data.

EditArgs()

The Adapter Status sample program accepts one input parameter- the
name of the adapter to provide the adapter status information. It may be a
local or remote adapter.

Input Parameter Name Format
The name may be a unique name, a group name, or a permanent node
name. A NetBIOS name generally consists of 16 arbitrary characters.
However, the Adapter Status program does not support this because
some characters (e.g., carriage return) cannot be specified on the PC­
DOS command line. The permanent node name specification technique
overcomes this limitation.

Parameter Processing-Special Cases
There are three special cases that are distinguished by the first character
of the input parameter:

1. If the first character is a question mark (?), no name is specified
and the program returns usage information before exiting.

Chapter 8: General Support 79

2. If the first character is an asterisk (*), the local adapter specified in
the Adapter Status command's NcbLanaNum field provides the
data.

3. If the first character is a backslash (\), the parameter specifies a
local or remote adapter permanent node name. The actual format
of the parameter is: \x.hh.hh.hh.hh.hh.hh.

where each h represents a valid hexadecimal digit. In this case, the six
specified bytes are appended to 10 bytes of binary zeros to create the ac­
tual network permanent node name. Note that the length of this type
specification is exactly 20 characters. A valid 20-character parameter is
converted to a six-byte value invoking sscanf(). This should produce ex­
actly six hexadecimal characters.

These six characters are placed in the six-element HoldNodeId char­
acter array. After zeroing the first 10 characters of the 16-element
HoldNetworkName character array, these six characters are then moved
into the last six characters of the HoldNetworkName character array,
completing the permanent node name specification later used in the
Adapter Status command. Finally, note that NetBIOS names can use spe­
cial characters such as the ASCII carriage return value or a binary zero
character. However, users cannot enter such characters on the PC-DOS
prompt line as part of a 16-character name.

Allowing an alternate parameter length of exactly SO characters and
extending the switch statement logic permits general 16-character Net­
BIOS name specifications as implied above. This is left as a straight-for­
ward reader exercise. The format of such a parameter is:

\x.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh.hh

Parameter Processing-Normal Case
If the parameter is not a special-case parameter, it is treated as a normal
symbolic network name and is copied directly into the 16-element
HoldNetworkName character array. In this case, all characters are signifi­
cant and lowercase letters are different than uppercase letters.

If the name has less than 16 characters, the remaining uninitialized
HoldNetworkName array character elements are set to ASCII blanks.
Warning! While some programs such as the IBM Token-Ring Network/PC
Network Interconnect Program require blanks as the 16th character, arbi­
trarily selecting blanks as a filler character value can be a significant pro­
gramming hazard. Other programs may use different filler character

80 Part II: Support Programming

values resulting in name parameters that look the same on the PC-DOS
command lines but have different NetBIOS name table values.

Perhaps binary zeros would be more appropriate, as a filler or even
ASCII carriage returns. The important thing is to recognize that such an
arbitrary decision is likely inappropriate. The only alternative is to allow
a 50-character input parameter that allows users to specify the hexadeci­
mal value of every name character.

DlcStatus() and DisplayNetbiosLevel()

DlcStatus() in Listing 8-2 first invokes DisplayNetbiosLevel() to display
the level of the NetBIOS supporting the target adapter. DisplayNetbios­
Level() assumes that the IBM LAN Support Program provided the adapter
status data, so it displays the NetBIOS level as well as the type of parame­
ters used to initialize the DXMTOMOD.SYS device driver (NetBIOS) be­
fore returning to the DlcStatus routine. Note that DXMINFO.DOC
contains critical information on the data format that is incorporated in
the netbios2.h header file.

Like DisplayNetbiosLevel(), DlcStatus() assumes the IBM LAN Sup­
port Program provides the adapter status data, and so determines and dis­
plays what type adapter has provided it, concluding its operation by
displaying the permanent node name of that adapter. Note that Dlc­
Status() could display much more data but a complete listing results in
excruciatingly boring pages of printf() statements, so that task is left as a
reader exercise.

#define LINT_ARGS

#include <dos.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include <process.h>
#include "netbios2.h"

struct SREGS SegRegs;

struct Ncb StatusNcb;
struct DlcStatus DlcData;

Listing 8-2. STATUS.C

1* LAN Support Program Status Structure *1

unsigned char HoldNodeId[61;
unsigned char HoldNetworkName[161;

Chapter 8: General Support

Listing 8-2. (cont.)

#if defined(LINT_ARGS)
extern int main(int argc,char * *argv);
extern unsigned char RequestStatus(void);
extern void DisplayDlcStatus(char * *argv);
extern void DisplayNetbiosLevel(void);
extern void ClearNcb(struct Ncb *NcbPtr);
extern void NetbiosRequest(struct Ncb *NcbPointer);
extern int EditArgs(int argc,char * *argv);
extern void Logo(void);
extern void Explain(void);
extern void ExitNow(void);
#endif

int main(argc, argv)
int argc;
char *argv[];
{

unsigned char temp;

LogoO;

if (!EditArgs(argc, argv»
ExitNowO;

if (temp = RequestStatus(»
printf("\n\nRequest status error %02Xh ... \n", temp);

else {
DisplayDlcStatus(argv);

printf("\n\nThere II);

(DlcData.NameTableEntryCount == 1) ? printf("is") : printf<"are");
printf(" %u ", DlcData.NameTableEntryCount);
(DlcData.NameTableEntryCount == 1) ? printf<"entry")

printf("entries");
printf(" in the adapter Name Table.");

}

putchar('\n');

return 0;
}

unsigned char RequestStatus()

81

82 Part II: Support Programming

{

}

Listing 8-2. (cont.)

int temp;
char far *StatusBufferPtr = (char far *) &DLcData;

CLearNcb(&StatusNcb);

StatusNcb.NcbBufferOffset = (char *) FP_OFF(StatusBufferPtr);
StatusNcb.NcbBufferSegment = (unsigned) FP_SEG(StatusBufferPtr);

StatusNcb.NcbCommand
StatusNcb.NcbLength
StatusNcb.NcbLanaNum

= NETBIOS_ADAPTER_STATUS;
= sizeof(DLcData);
= 0;

for (temp = 0; temp < 16; temp++)
StatusNcb.NcbCaLLName[temp) = HoLdNetworkName[temp);

NetbiosRequest(&StatusNcb);

return StatusNcb.NcbRetCode;

void DispLayDLcStatus(argv)
char *argv[);
{

int i, j;

DisplayNetbiosLeveL();

1*------------------ Adapter Type --------------------*1

switch (DLcData.LanAdapterType) {
case TOKEN_RING ADAPTER

}

defauLt

printf("Token Ring Adapter.");
break;

printf(lIpC Network Adapter.");
break;

printf(IIUnknown Adapter ..• \x07");
break;

1*--------------- Permanent Node Name -----------------*1

Chapter 8: General Support

Listing 8-2. (cont.)

printf("\n\nAdapter Permanent Node Name: II);

for (i = 0; i < sizeof(DlcData.PermanentNodeName); i++)
pri ntf("%02X", «unsi gned char) OxFF) & 0 lcData. PermanentNodeName[i]);

}

void DisplayNetbiosLevel()
{

}

1*--- NETBIOS Version Information ---*1

printf("\n\nUsing NetBIOS Version %u.%u ",
(DlcData.MajorVersionNumber & VERSION_MASK),
(DlcData.MinorVersionNumber & VERSION_MASK»;

switch (DlcData.MinorVersionNumber & PARM_MASK) {
case OLD_PARMS

default

}

printf("with \"old\'''');
break;

pri ntf (llwi th \"new\"");
break;

printf(II?? - Undefined input parameter format\x07");

printf(1I parameters on a II);

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;
{

}

int i;
char *CharPtr;

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = OxOO;

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{

83

84 Part If- Support Programming

Listing 8-2. (cont.)

union REGS InRegs, OutRegsi /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointeri

}

segread(&SegRegs)i

SegRegs.es = FP_SEG(NcbPtr)i
InRegs.x.bx = FP_OFF(NcbPtr)i

int86x(NetbiosInt5C, &InRegs, &OutRegs, &SegRegs)i

int EditArgs(argc, argv)
int argci
char *argv[]i
{

char Ci
int tempi
char *NodeNamePointeri

if (argc < 2) {
ExpLainO i
return FAILUREi

}

if (argc > 2) {

}

printf("\nToo many parameters ..• \n")i
ExpLainO i
return FAILUREi

switch (*argv[1]) {

case '?'

case '\\'

ExpLainO i
return FAILUREi
breaki

if (strLen(argv[1]) != 20) {

}

printf("\nParameter has the incorrect Length.")i
printf("\nShouLd be 20 characters Long.II)i
return FAILUREi

Chapter 8: General Support

default:

Listing 8-2. (cont.)

temp = sscanf(argv[ll, "\\x.%Zx.%Zx.%Zx.%Zx.%2x.%2x",
&HoldNodeld[OJ, &HoldNodeld[1J,
&HoldNodeld[ZJ, &HoldNodeld[3J,
&HoldNodeld[4J, &HoLdNodeld[SJ);

if (temp != 6) {
pri ntf("\nscanf 0 prob lem wi th input parameter ... ");
printf("\nplease clean up your input parameter ... ");
printf("\nformat ==> \\x.HH.HH.HH.HH.HH.HH");
printf("\nparameter ==> %s", argv[1]);
return FAILURE;

}

printf("\nRequesting status for network node \\x.");
printf("%02X.%02X.%02X.%02X.%02X.%OZX",

HoldNodeld[OJ & OxOOFF, HoldNodeld[1J & OxOOFF,
HoldNodeld[ZJ & OxOOFF, HoldNodeld[3J & OxOOFF,
HoLdNodeld[4J & OxOOFF, HoLdNodeld[SJ & OxOOFF);

for (temp = 0; temp < 10; temp++) {
HoldNetworkName[tempJ = OxOO;

}

for (temp = 0; temp < 10; temp++) {
HoldNetworkName[temp+10J = HoldNodeld[tempJ;

}

break;

if (strlen(argv[1J) > 16) {

}

printf("\nParameter has the incorrect length.");
printf("\nShould be one to sixteen characters long.");
return FAILURE;

for (temp = 0, NodeNamePointer = argv[1J;
(temp <16) && (c = *NodeNamePointer);
temp++, NodeNamePointer++) {

HoldNetworkName[tempJ = c;
}

for (; temp < 16; temp++) {
HoldNetworkName[tempJ = I ';

}

85

86 Part Il· Support Programming

Listing 8-2. (cont.)

if (*argv[11 == '*')
printf("\nRequesting status for local primary adapter.");

else
printf("\nRequesting status for %s", argv[11);

break;
}

return SUCCESS;

}

void LogoO
{

}

printf("\n
printf("\n

void ExplainO
{

NetBIOS Adapter Status Progra~I);
© Copyright 1988 W. David Schwaderer\n");

printf("\nusage: status Node-IO\n");
printf("\n Node-IO: \\x.hh.hh.hh.hh.hh.hh for Permanent Node 10");
printf("\n -or- 1234S!@#$*aBcOeF for Network Name");
printf("\n -or- * for Local Primary Adapter Status");

}

void ExitNowO
{

}

printf("\n\n\x07Program ending •.• \n");
exit (1);

The Adapter Reset and Adapter Status Synergy

Resetting PC Network LANA adapters with varying maximum session
and pending command values determines the maximum message size
packet the adapter can transmit. (Note this does not apply to other IBM
LAN adapters and the maximum datagram size is always 512 bytes for PC
Network LANA adapters.)

It is possible to reveal the exact undocumented effect these com-

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

ISES 16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Chapter 8: General Support 87

bined parameters have on the maximum packet size by issuing Adapter
Reset commands while varying their values from 1 to 32 and by issuing
intervening Adapter Status commands. The results differ for the two dif­
ferent levels of NetBIOS available for PC Network LANA adapters and are
displayed in Figures 8-1 and 8-2.

32~ ____________________________ ~ ______________________________ ~

Fig. 8-1. Packet size (in bytes) as a function of ICMD and ISES for
LANA protocol level 1.23.

-------------"----- ---

88

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

ISES 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Part Il· Support Programming

32~ ____________________________ ~ ______________________________ ~

Fig. 8-2. Packet size (in bytes) as a function of ICMD and ISES for
LANA protocol level 1.33.

The NetBIOS Cancel Sample Program
The NetBIOS Cancel sample program in Listing 8-3 illustrates the proce­
dure to cancel a pending Ncb command. The program begins by invok-

Chapter 8: General Support 89

ing Logo() to display a logo. It then invokes RequestStatus() which
issues an Adapter Status command with a no-wait option for a network
name consisting of 16 uppercase X's. Since such a name is unlikely to
exist, the NetbiosRequest() routine should return before the command
completes.

#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include Inetbios2.h"

struct SREGS SegRegsi

Listing 8-3. CANCEL.C

struct Ncb StatusNcb, CancelNcbi
struct DlcStatus DlcDatai

#if defined(LINT_ARGS)
extern int main(int argc,char * *argv)i
extern void RequestStatus(void)i
extern void CancelRequestStatus(void)i
extern void AnalyzeNcbStatus(void)i
extern void ClearNcb(struct Ncb *NcbPtr)i
extern void NetbiosRequest(struct Ncb *NcbPointer)i
extern void Logo(void)i
#endif

int main(argc, argv)
int argci
char *argv[]i
{

unsigned char tempi

LogoO i

RequestStatus 0 i

CancelRequestStatus()i

AnalyzeNcbStatus()i

putchar('\n')i

return 0i

- -----~--. ------------~~~

90 Part II: Support Programming

Listing 8-3. (cont.)

}

void RequestStatus()
{

}

int temp;
char far *StatusBufferPtr = (char far *) &DlcData;

ClearNcb(&StatusNcb);

StatusNcb.NcbBufferOffset = (char *) FP_OFF(StatusBufferPtr);
StatusNcb.NcbBufferSegment = (unsigned) FP_SEG(StatusBufferPtr);

StatusNcb.NcbCommand
StatusNcb.NcbLength
StatusNcb.NcbLanaNum

= NETBIOS_ADAPTER_STATUS + NO_WAIT;
.- si~eof(DlcData);

= 0; .

for (temp = 0; temp < 16; temp++)
StatusNcb.NcbCallName[templ = 'X';

NetbiosRequest(&StatusNcb);

void CancelRequestStatus()
{

}

struct Ncb far *NcbPtr = (struct Ncb far *) &StatusNcb;

ClearNcb(&CancelNcb);

CancelNcb.NcbBufferOffset = (char *) FP_OFF(NcbPtr);
CancelNcb.NcbBufferSegment = (unsigned) FP_SEG(NcbPtr);

CancelNcb.NcbCommand
CancelNcb.NcbLanaNum

= NETBIOS_CANCEL_WAIT_ONLY;
= 0;

NetbiosRequest(&CancelNcb);

void AnalyzeNcbStatus()
(

}

printfC"\nCancel NcbRetCode ==> %02Xh", CancelNcb.NcbRetCode);
printf("\nStatus NcbRetCode ==> %02Xh", StatusNcb.NcbRetCode);

void ClearNcb(NcbPtr)

Chapter 8: General Support

Listing 8-3. (cont.)

struct Ncb *NcbPtri
{

}

int i· ,
char *CharPtr;

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++
*CharPtr++ = OxOO;

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{

}

union REGS InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointeri

segread(&SegRegs);

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr)i

int86x(Netbioslnt5C, &InRegs, &OutRegs, &SegRegs);

void LogoO
{

printf<"\n NetBIOS CanceL Program");
printf<"\n © Copyright 1988 W. David Schwaderer \n") i

}

91

The program invokes CancelRequestStatus() to cancel the presuma­
bly pending Adapter Status command. The pending command uses an
Ncb named StatusNcb that has program scope, so CancelRequestStatus()
can easily address it. Because the Cancel command has only a Wait form,
its NetbiosRequest() returns synchronously-after the command has
completed. Finally, the program invokes AnalyzeNcbStatus() to present
the NcbRetCode values of both the Adapter Status and Cancel com­
mands. If the program has successfully completed, these return codes
should be OBh and OOh, respectively.

Normally, a program should never leave a command pending before
exiting, though it is possible in this program for the Cancel command to
fail under unusual circumstances. In this situation, the Adapter Status com-

92 Part II: Support Programming

mand completes when the adapter's system time-out expires or when the
target adapter responds successfully. If the latter occurs, NetBIOS then al­
ters the memory where the Adapter Status buffer was located. In any
event, NetBIOS alters the memory where the Ncb was located. At worst,
NetBIOS then detects a nonzero Post Routine field value and begins exe­
cution at some (usually) disastrous point in memory. If you execute this
program and the Cancel command is not successful, you may wish to reset
your adapter to clear the pending Adapter Status command.

The NetBIOS Unlink Sample Program

The NetBIOS Unlink sample program in Listing 8-4 illustrates the Net­
BIOS Unlink command that disconnects a client PC Network LANA
adapter from an RPL server. The command is trapped by the adapter's
native ROM NetBIOS and is converted to a Hang Up command that uses
another Ncb.

You will likely never need to use this command, but it is supported in
many versions of NetBIOS for compatibility with IBM's original Net­
BIOS. In any event, its utility is increasingly limited with passing time.
Note that a PC Network LANA's NetBIOS virtually always returns a zero
return code unless a very unusual condition occurs. Part I discusses this
command in more detail.

#define LINT_ARGS

#incLude <dos.h>
#incLude <stdio.h>
#incLude "netbios2.h"

#if definedCLINT_ARGS)

Listing 8-4_ UNLINK.C

extern int mainCint argc,char * *argv)i
extern void LogoCvoid)i
extern void UnLinkAdapterNowCvoid)i
extern void NetbiosRequestCstruct Ncb *NcbPointer)i

. #endi f

struct Ncb UnLinkNcbi

int mainCargc, argyl
int argci
char *argv[]i

Chapter 8: General Support

{

}

LogoO;
UnLinkAdapterNow();
return 0;

Listing 8-4. (cont.)

void LogoO
{

}

printf(lI\n
printf(lI\n

NetBIOS Adapter UnLink SampLe Progra~I);
© Copyright 1988 W. David Schwaderer");

void UnLinkAdapterNow()
{

}

printf("\n\nAttempting to UnLink NetBIOS adapter 0 ... ");

UnLinkNcb.NcbCommand = NETBIOS_UNLINK_WAIT_ONLY; /* UnLink command code */

UnLinkNcb.NcbLanaNum = OxOO; /* unchecked, but shouLd be zero */

NetbiosRequest(&UnLinkNcb);

if (!UnLinkNcb.NcbRetCode) {
printf("\n\nAs hard-coded by NetBIOS, the return code was %x.\n",

UnLinkNcb.NcbRetCode);
}

eLse {
printf("\n\n\x07The return code was %x ", UnLinkNcb.NcbRetCode);

}

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{

}

union REGS InRegs, OutRegs; /* defined in dos.h */
struct SREGS SegRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x(Netbioslnt5C, &InRegs, &OutRegs, &SegRegs);

93

Chapter 9

Name Support Programming

The NetBIOS Name Activity sample program, Listing 9-1, with routines
NetbiosAddName() and FileNetbiosNameTable() illustrate how to add
and delete NetBIOS names to and from local name tables.

The NetBIOS Name Activity Sample Program

The main() routine begins by invoking Logo() which displays a logo. It
then resets the adapter insuring that the NetBIOS name table is empty
and that there are no pending commands. It then calls the NetbiosAdd­
Name() routine.

When NetbiosAddName() returns, it resets the adapter to allow
FillNetbiosNameTable to demonstrate NcbNum values beginning at 02h
after each adapter reset. It then calls FillNetbiosNameTable(). When
FillNetbiosNameTable() returns, the program resets that adapter for the
last time and exits.

#define LINT_ARGS

#incLude <dos.h>
#incLude <stdio.h>
#incLude "netbios2.h"

#if defined(LINT_ARGS)

Listing 9-1. NAME.C

extern int main(int argc,char * *argv);
extern void AddNetbiosName(void)i
extern void DeLeteNetbiosName(unsigned char NetbiosNameChar)i

95

----- ----~------.. --.---

96 Part II: Support Programming

Listing 9-1. (cont.)

extern void FiLLNetbiosNameTabLe(void);
extern void ResetAdapter(void);
extern void Logo(void);
extern void CLearNcb(struct Ncb *NcbPtr);
extern void NetbiosRequest(struct Ncb *NcbPointer);
#endif

struct Ncb NameNcb; 1* automaticaLLy set to zero in static storage *1

int main(argc, argv)
int argc;
char *argv[];
{

}

LogoO;

ResetAdapter 0;
AddNetbiosName();

ResetAdapter 0;

FiLLNetbiosNameTabLe();

ResetAdapter 0;
putchar<' \n');

return 0;

void AddNetbiosName()
{

USGC i = 0;

printf("\n\nNetBIOS Add Name ExampLe ... ");

printf("\n Adding the name 'A'+%02Xh+00h+ ... +00h. ", i);

CLearNcb(&NameNcb);

NameNcb.NcbCommand = NETBIOS_ADD_NAME;
NameNcb.NcbName[O] 'A' ;
NameNcb.NcbName[1] = i· ,
NameNcb.NcbLanaNum = 0;

NetbiosRequest(&NameNcb);

Chapter 9: Name Support

Listing 9-1. (cont.)

printf("\n Its NcbNum value is X02Xh.", NameNcb.NcbNum)i

DeleteNetbiosName(i)i
}

void DeleteNetbiosName(NetbiosNameChar)
USGC NetbiosNameChari
{

}

struct Ncb DeleteNameNcbi

printf("\n\nNetBIOS Delete Name Example •.. ")i

printf("\n Deleting the name 'A'+X02Xh+00h+ •.. +00h.
NetbiosNameChar)i

ClearNcb(&DeleteNameNcb)i

DeleteNameNcb.NcbCommand = NETBIOS_DELETE_NAMEi
DeleteNameNcb.NcbName[Ol = 'A'i
DeleteNameNcb.NcbName[11 = NetbiosNameChari
DeleteNameNcb.NcblanaNum = Oi

NetbiosRequest(&DeleteNameNcb)i

" ,

printH"\n The Delete Name command return code was %02Xh.",
DeleteNameNcb.NcbRetCode)i

void FillNetbiosNameTable()
{

USGC i = 1i

printH"\n\nNetBIOS Name Table exhaustion exercise .•• ")i

ClearNcb(&NameNcb)i

while (!NameNcb.NcbRetCode) { /* add names until there is an error */

printf("\n Adding the Group Name 'A'+X02Xh+00h+ .•. +00h now. ", Di

ClearNcb(&NameNcb)i

NameNcb.NcbCommand = NETBIOS_ADD_GROUP_NAMEi
NameNcb.NcbName[O] = 'A'i
NameNcb.NcbName[11 = i++i

97

98 Part II: Support Programming

}

}

Listing 9-1. (cont.)

NameNcb.NcbLanaNum = 0;

NetbiosRequestC&NameNcb);

if CINameNcb.NcbRetCode)
printfC/lIts NcbNum value is %02Xh./I, NameNcb.NcbNum);

else
printfC/I\n The Add Group Name command failed ••• ");

printfC/I\n The failing Add Group Name command return code was %02Xh./I,
NameNcb.NcbRetCode);

printfC/I\n\nThe adapter's name table holds %u added names •.• /I,
i-2);

printfC/I\n\nExiting the Name Table exercise./I);

void ResetAdapterC)
{

}

struct Ncb ResetNcb;

printfC/I\n\nResetting the adapter. /I);

ResetNcb.NcbCommand = NETBIOS_RESET_WAIT_ONLY; /* reset command code */

ResetNcb.NcbLanaNum
ResetNcb.NcbLsn
ResetNcb.NcbNum

= 0;
= 32;
= 32;

NetbiosRequestC&ResetNcb);

1* adapter number */
/* concurrent session count */
/* concurrent command count *1

printfC/lThe Reset command return code was %02Xh./I, ResetNcb.NcbRetCode);

void LogoO
{

}

pri ntfC/I\n
pri ntfC/I\n

NetBIOS Name Activity Sample Program/l);
© Copyright 1988 W. David Schwaderer/l);

void ClearNcbCNcbPtr)
struct Ncb *NcbPtr;

Chapter 9: Name Support

{

}

Listing 9-1. (cont.)

int i· ,
char *CharPtr;

CharPtr = Cchar *) NcbPtr;

for C i = 0; i < sizeofCZeroNcb); i++)
*CharPtr++ = OxOO;

void NetbiosRequestCNcbPointer)
struct Ncb *NcbPointer;
{

}

union REGS InRegs, OutRegs;
struct SREGS SegRegs;
struct Ncb far *NcbPtr = Cstruct Ncb far *) NcbPointer;

segreadC&SegRegs);

SegRegs.es = FP_SEGCNcbPtr);
InRegs.x.bx = FP_OFFCNcbPtr);

int86xCNetbioslnt5C, &InRegs, &OutRegs, &SegRegs);

The AddNetbiosName Routine

99

The AddNetbiosName routine adds a unique name to the NetBIOS name
table using a wait option. When the command completes, the routine
displays the name's NcbNum value which should be 02h because of the
previous Adapter Reset command. (AddNetbiosName() assumes the Add
Name command successfully completed.) Before exiting, AddNetbios­
Name() invokes DeleteNetbiosName() to delete the name from the Net­
BIOS name table. At this point, the next NcbNum value should be 03h,
but the adapter is reset by maine) after AddNetbiosName returns.

The FillNetbiosNameTable Routine

FillNetbiosNameTable() is a brute force routine that determines how
many names an adapter's NetBIOS name table can hold. It continues to

100 Part 1!- Support Programming

add unlikely group names until an Add Group Name command returns a
nonzero return code.

When a command is successful, FillNetbiosNameTable() displays the
associated NcbNum which should start at 02h because of the Adapter Re­
set that maine) issued immediately before calling FillNetbiosNameTable.
Otherwise, the command fails and the routine displays the failing return
code before exiting. Note that the return code should be OEh if the name
table has been filled.

Finally, note that this routine may take a long time to complete if the
NetBIOS name table holds many names ..

Chapter 10

Datagram Support Programming

This chapter presents a simple datagram application that determines the
maximum size datagram an adapter can transmit. If the IBM LAN Support
program controls the adapter, the value of the maximum datagram size is
available at offset 48 (decimal) in returned adapter status information.
However, other NetBIOS implementations do not provide this informa­
tion with an Adapter Status command, so another method is required.

The program in Listing 10-1 uses a brute force approach that begins
by transmitting a one-byte datagram. If the datagram transmission is suc­
cessful, the program increments the datagram size and transmits another
datagram. This continues until an error occurs.

#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include Inetbios2.h"

struct SREGS SegRegs;

struct Ncb DatagramNcb;

char Buffer [1];

Listing 10-1. MAXDG.C

char ClientName[16] = "WDS-Datagram";

#if defined(LINT_ARGS)
extern int main(int argc,char * *argv);
extern void InitDatagramNcb(void);
extern void XmitDatagram(unsigned int Length);

101

102 Part II: Support Programming

Listing 10-1. (cont.)

extern void ClearNcb(struct Ncb *NcbPtr);
extern void NetbiosRequest(struct Ncb *NcbPointer);
extern void Logo(void);
#endif

int main(argc, argv)
int argc;
char *argv[];
{

}

USGC XmitError = FALSE;
USGI LastGoodSize, SendSize 1;

LogoO;

printf("\n");

InitOatagramNcb();

while(!XmitError) {
XmitOatagram(SendSize);

}

if (OatagramNcb.NcbRetCode) {
XmitError = TRUE;
LastGoodSize = SendSize - 1;

} else {

}

SendSize++;
putchar(I. I);

printf("\n\nOatagram Send fai led; return code == %02Xh",
DatagramNcb.NcbRetCode);

printf("\n\nMaximum datagram length == %u bytes •.. \n",
LastGoodSize);

return 0;

void InitOatagramNcb()
{

USGI temp;

char far * BufferPtrFar = (char far *) Buffer;

Chapter 10: Datagram Support

}

Listing 10-1. (cont.)

CLearNcbC&DatagramNcb);

DatagramNcb.NcbCommand = NETBIOS_SEND_DATAGRAM;

DatagramNcb.NcbBufferOffset = Cchar *) FP_OFFCBufferPtrFar);
DatagramNcb.NcbBufferSegment = CUSGI) FP_SEGCBufferPtrFar);

DatagramNcb.NcbNum Ox01; 1* use Permanent Node Name NameNum *1

for Ctemp = 0; temp < 16; temp++)
DatagramNcb.NcbCaLLName[temp] CLientName[temp];

void XmitDatagramCLength)
USGI Length;
{

}

DatagramNcb.NcbLength = Length;
NetbiosRequestC&DatagramNcb);

void CLearNcbCNcbPtr)
struct Ncb *NcbPtr;
{

}

int i;
char *CharPtr;

CharPtr = Cchar *) NcbPtr;

for C i = 0; i < sizeofCZeroNcb); i++
*CharPtr++ = OxOO;

void NetbiosRequestCNcbPointer)
struct Ncb *NcbPointer;
{

union REGS InRegs, OutRegs; 1* defined in dos.h *1
struct Ncb far *NcbPtr = Cstruct Ncb far *) NcbPointer;

segreadC&SegRegs);

SegRegs.es = FP_SEGCNcbPtr);
InRegs.x.bx = FP_OFFCNcbPtr);

int86xCNetbioslnt5C, &InRegs, &OutRegs, &SegRegs);

103

104 Part 1!- Support Programming

}

void logoO
{

Listing 10-1. (cont.)

printf("\n NetBIOS Datagram Size Program");

printf("\n © Copyright 1988 W. David Schwaderer");
}

The main() Function

The main() function begins by calling Logo() to present a logo. It then
calls InitDatagramNcb(), which initializes a Send Datagram Ncb with a
wait option. After initializing the Ncb, maine) enters a while loop which
terminates when the variable XmitError becomes TRUE.

In this loop, maine) calls XmitDatagram() and provides it with a
datagram length. After XmitDatagram() returns, main() checks the re­
turn code for success. If it is successful, maine) increments the datagram
size, displays a period (.) to provi.de user feedback, and begins another
execution of the loop.

Alternatively, the command fails and the loop terminates because the
variable XmitError is set to TRUE. If the command fails because the size
is too large, the return code is Olh (Illegal Buffer Length). Before exiting,
maine) displays the failing command's return code and the size of the last
successfully transmitted datagram.

Note the program repeatedly uses the same Ncb but never reinitial­
izes it. This is generally not advisable, but is acceptable in this instance
because the command uses a wait option and the values of the Ncb fields
initialized by InitDatagramNcb() do not vary. Most importantly, the Ncb
is located in static storage and is not an automatic variable.

InitDatagramNcb() and XmitDatagram()

InitDatagramNcb() initializes all fields required for a Send Datagram with
the exception of the Ncb Length field. XmitDatagram() initializes this
field immediately before issuing the command. Since the command
specifies the wait option, control returns to XmitDatagram() synchro­
nously at the command's completion and XmitDatagram() immediately
returns to main().

Chapter 11

Intermediate Datagram Applications

This chapter presents two datagram applications that respectively act as
server and client applications. The server datagram application periodi­
cally broadcasts current date and time information to potential clients.

Using datagrams allows an unlimited number of clients to receive
date and time information from an unlimited number of servers. Having
multiple clients simultaneously use the same datagram economizes the
LAN's transmission capability, and having more than one server provides
a measure of insurance that client PCs can always receive date and time
information. Neither of these advantages are easily achieved using ses­
sion communication.

Client machines can subsequently use the date and time information
to set their current date and time during AUTOEXEC.BAT execution. This
procedure is analogous to procedures used to initialize a machine's date
and time from a battery-backed clock-calendar board.

A Date and Time Server Application

The server application uses its permanent node name to beacon
datagrams containing the current date and time. The program in Listing
11-1 terminates when a Ctrl-Break is struck at the keyboard. Note that the
implementation of this application allows multiple date and time servers
to exist simultaneously on a given network.

Listing 11-1. DATETIME.C
#define LINT_ARGS

#include <dos.h>

105

106 Part II· Support Programming

#include <stdio.h>
#include "netbios2.h"

struct SREGS SegRegsi

struct Ncb DateTimeNcbi
USGC TimeNameNumi

Listing 11-1. (cont.)

struct DateTimeStruct DateTimeInfoi

char ClientName[16] = "WDS-DateTime"i

#if defined(LINT_ARGS)
extern
extern
extern
extern
extern
extern
#endif

int main(int argc,char * *argv)i

void FetchDateAndTime(void)i
void XmitDateTime(void)i
void ClearNcb(struct Ncb *NcbPtr)i
void NetbiosRequest(struct Ncb *NcbPointer)i
void Logo(void)i

int main(argc, argv)
int argci
char *argv[]i
{

}

unsigned char tempi

LogoO i

pri ntf("\n") i

whi le(TRUE) {
FetchDateAndTime()i
Xmi tDateTi me 0 i

putchar('·')i
}

putchar('\n')i

return Oi

#define DOS_INT Ox21
#define DOS_FETCH DATE Ox2A

Chapter 11: Datagram Applications

Listing 11-1. (cont.)

void FetchDateAndTime()
{

}

union REGS InRegs, OutRegs;

InRegs.h.ah = DOS_FETCH_DATE;

int86(DOS_INT, &InRegs, &OutRegs);

DateTimeInfo.DateCX = OutRegs.x.cx;
DateTimeInfo.DateDX = OutRegs.x.dx;

InRegs.h.ah = DOS_FETCH_TIME;

int86(DOS_INT, &InRegs, &OutRegs);

DateTimeInfo.TimeCX = OutRegs.x.cx;
DateTimeInfo.TimeDX = OutRegs.x.dx;

void XmitDateTime()
{

}

USGI temp;

char far * BufferPtrFar = (char far *) &DateTimeInfo;

ClearNcb(&DateTimeNcb);

DateTimeNcb.NcbCommand = NETBIOS_SEND_DATAGRAM;

DateTimeNcb.NcbBufferOffset = (char *) FP_OFF(BufferPtrFar);
DateTimeNcb.NcbBufferSegment = (USGI) FP_SEG(BufferPtrFar);

DateTimeNcb.NcbLength = sizeof(DateTimeInfo);
DateTimeNcb.NcbNum = Ox01; /* use Permanent Node Name NameNum */

for (temp = 0; temp < 16; temp++)
DateTimeNcb.NcbCallName[templ = ClientName[templ;

NetbiosRequest(&DateTimeNcb);

void ClearNcb(NcbPtr)

107

108 Part If: Support Programming

Listing 11-1. (cont.)

struct Ncb *NcbPtr;
{

}

i nt i ;

char *CharPtr;

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++
*CharPtr++ = OxOO;

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{

}

union REGS InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs);

SegRegs.es = FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

int86x(NetbiosInt5C, &InRegs, &OutRegs, &SegRegs);

void LogoO
{

printf("\n NetBIOS Date/Time Server Program");
printf("\n © Copyright 1988 W. David Schwaderer");

}

The main() Function

The maine) function begins by calling Logo() to present a logo. It then
enters an infinite loop which invokes FetchDateAndTime() and
XmitDateAndTime(), and displays a period (.) to provide user execution
feedback. The loop ends when a Ctrl-Break is struck at the keyboard.

FetchDateAndTime()

FetchDateAndTime() issues two PC-DOS calls that fetch the current date
and time, respectively. After each respective PC-DOS call, it places the

Chapter 11: Datagram Applications 109

supplied information in the appropriate DateTimelnfo structure ele­
ment. Appendix A presents a netbios2.h listing containing a complete
structure declaration for DateTimeStruct.

XmitDateAndTime()

XmitDateAndTime() initializes all required DateTimeNcb structure ele­
ments with appropriate values and invokes NetbiosRequest() to transmit
the data. Note that it uses the permanent node NcbNum value Olh for the
NcbNum value. This allows the program to transmit datagrams without
adding or deleting a name to or from the NetBIOS name table.

The client name has a value of "WDS-DateTime" followed by four
bytes of binary zeros. These zeros result from the ClientName character
array definition's defaulting the last four characters in its specification.
The C default is binary zero.

A Date and Time Client Application

The date and time client application in Listing 11-2 is more complicated
than its server counterpart because it adds and deletes a name from the
NetBIOS name table. Moreover, it cannot assume a server is providing
date and time information. Thus, the client application issues a no-wait
option Receive Datagram command allowing it to cancel the Receive
Datagram if a prudent period elapses and no information is received.
Note some program functions are not described because they are similar
to previously described functions.

#define LINT_ARGS

#include <dos.h>
#include <time.h>
#include <stdio.h>
#include "netbios2.h"

struct SREGS SegRegsi

struct Ncb DateTimeNcbi
USGC TimeNameNumi

110 Part If- Support Programming

Listing 11-2_ (cont-)

struct DateTimeStruct DateTimeInfo;

char ClientName[16] = "WDS-DateTime";

#if defined(LINT_ARGS)
extern int main(int argc,char * *argv);
extern int AddClientName(void);
extern void IssueDateTimeRequest(void);
extern void Delay(void);
extern void DelayTick(void);
extern void SetDateTimeAttempt(void);
extern void SetDateAndTimeNow(void);
extern void CancelDateTimeRequest(void);
extern void DeleteClientName(void);
extern void DisplayDateAndTime(void);
extern void FetchDateAndTime(void);
extern void ClearNcb(struct Ncb *NcbPtr);
extern void NetbiosRequest(struct Ncb *NcbPointer);
extern void Logo(void);
#endif

#define TICK_RATE 18.2
#define SECONDS 5
#define DELAY_TICK_COUNT (TICK_RATE * SECONDS)

int main(argc, argv)
int argc;
char *argv[];
{

unsigned char temp;

LogoO;

if (AddClientName(» {
IssueDateTimeRequest();
DelayO;
SetDateTimeAttempt();
DeleteClientName();

} else
printf("\n\nProgram ending because of add-name failure.");

DisplayDateAndTime();

putchar('\n');

Chapter 11: Datagram Applications

Listing 11-2. (cont.)

return 0;
}

int AddClientName()
{

}

struct Ncb AddNameNcb;

USGI temp = 0;

ClearNcb(&AddNameNcb);

AddNameNcb.NcbCommand
AddNameNcb.NcbLanaNum

NETBIOS_ADD_GROUP_NAME;
0;

for (temp = 0; temp < 16; temp++)
AddNameNcb.NcbName[tempJ = ClientName[tempJ;

printf("\n\nAdding the client name ... please wait. .. ");

NetbiosRequest(&AddNameNcb);

if (!AddNameNcb.NcbRetCode) {
printf<"\n The add-name was successful ... ");
printf<"\n The client's NcbNum value is %02Xh.",

AddNameNcb.NcbNum);
TimeNameNum = AddNameNcb.NcbNum;
return SUCCESS;

} else {
return FAILURE;
printf<"\n The add-name was not successful ... ");

}

void IssueDateTimeRequest()
{

char far * BufferPtrFar = (char far *) &DateTimeInfo;

ClearNcb(&DateTimeNcb);

DateTimeNcb.NcbCommand = NETBIOS_RECEIVE_DATAGRAM + NO_WAIT;

DateTimeNcb.NcbBufferOffset = (char *) FP_OFF(BufferPtrFar);
DateTimeNcb.NcbBufferSegment (uSGI) FP_SEG(BufferPtrFar);

111

112 Part !I .. Support Programming

Listing 11-2. (cont.)

DateTimeNcb.NcbLength = sizeof(DateTimeInfo);
DateTimeNcb.NcbNum TimeNameNum;

NetbiosRequest(&DateTimeNcb);
}

voi d De lay 0
{

}

USGC Quit = FALSE;
USGI DelayedTicks = 0;

printf("\n\nAttempting to fetch the date and time from the network ... ");
pri ntf (llplease wai t. .. II);

while (IQuit) {

}

if (DateTimeNcb.NcbCmdCplt != OxFF) {
retu rn;

} else {

}

DelayTi ckO;
if (DelayedTicks++ > DELAY_TICK_COUNT)

return;

#define DOS_INT Ox21
#define DOS_FETCH_TIME Ox2C

void DelayTickO
{

union REGS InRegs, Out Regs;
USGC EntryHundredths;

InRegs.h.ah = DOS_FETCH_TIME;

int86(DOS_INT, &InRegs, &OutRegs);

EntryHundredths = OutRegs.h.dl;

whi le(TRUE) {

int86(DOS_INT, &InRegs, &OutRegs);

Chapter 11: Datagram Applications

Listing 11-2. (cont.)

if CEntryHundredths != OutRegs.h.dl)
break;

}

return;
}

void SetDateTimeAttemptC)
{

if CCDateTimeNcb.NcbCmdCplt
CDateTimeNcb.NcbCmdCplt
SetDateAndTimeNowC);

} else {

! = OxFF) &&
== OxOQ)

printfC"\n\nNo network response ... ");

) {

printfC"\n Canceling the pending receive datagram .•• ");
CancelDateTimeRequestC);

}

}

#define DOS_SET_DATE Ox2B
#define DOS_SET_TIME Ox2D

voi d SetDateAndTi meNow 0,
{

union REGS InRegs, OutRegs;

printfC"\n\nSetting date and time from the network •.• ");

InRegs.h.ah = DOS_SET_DATE;
InRegs.x.cx = DateTimelnfo.DateCX;
InRegs.x.dx = DateTimelnfo.DateDX;

int86CDOS_INT, &InRegs, &OutRegs);

InRegs.h.ah = DOS_SET _TIME;
InRegs.x.cx = DateTimelnfo.TimeCX;
InRegs.x.dx = DateTimelnfo.TimeDX;

int86CDOS_INT, &InRegs, &OutRegs);
}

void CancelDateTimeRequestC)
{

struct Ncb CancelNcb;

113

114 Part II: Support Programming

}

Listing 11-2. (cont.)

struct Ncb far *NcbPtr = (struct Ncb far *) &DateTimeNcb;

ClearNcb(&CancelNcb);

CancelNcb.NcbBufferOffset = (char *) FP_OFF(NcbPtr);
CancelNcb.NcbBufferSegment = (unsigned) FP_SEG(NcbPtr);

CancelNcb.NcbCommand
CancelNcb.NcbLanaNum

NETBIOS_CANCEL_WAIT_ONLY;
= 0;

NetbiosRequest(&CancelNcb);

if (!CancelNcb.NcbRetCode) {
printt<I/\n The cancel was successful. .. 1/);

} else {
printf(I/\n The cancel was not successful ..• 1/);

}

void DeleteClientName()
{

struct Ncb DeleteNameNcb;
USGI temp;

printt<I/\n\nDeleting client name .•. 1/);

ClearNcb(&DeleteNameNcb);

DeleteNameNcb.NcbCommand = NETBIOS_DELETE_NAME;
DeleteNameNcb.NcbLanaNum = 0;

for (temp = 0; temp < 16; temp++)
DeleteNameNcb.NcbName[templ = ClientName[templ;

NetbiosRequest(&DeleteNameNcb);

if (!DeleteNameNcb.NcbRetCode)
printf(I/\n The delete-name was successful •.• 1/);

else {

}

printf(I/\n The delete-name was not successful ••. 1/);

printf(I/\n The "return code was %02Xh.I/,
DeleteNameNcb.NcbRetCode);

Chapter 11: Datagram Applications

Listing 11-2. (cont.)

}

void DisplayDateAndTime()
{

}

FetchDateAndTime()i

printf<"\n\nThe current date is %02u-%02u-%04u •.• ",
(USGC) (DateTimeInfo.DateDX» 8),
(USGC) (DateTimeInfo.DateDX),
(USGI) (DateTimeInfo.DateCX))i

printf<"\n\nThe current time is %02u:%02u:%02u •.. ",
(USGC) (DateTimeInfo.TimeCX» 8),
(USGC) (DateTimeInfo.TimeCX),
(USGC) (DateTimeInfo.TimeDX» 8))i

#define DOS FETCH_DATE Ox2A
#define DOS_FETCH_TIME Ox2C

void FetchDateAndTime()
{

}

union REGS InRegs, OutRegsi

InRegs.h.ah = DOS_FETCH_DATEi

int86(DOS_INT, &InRegs, &OutRegs)i

DateTimeInfo.DateCX = OutRegs.x.cXi
DateTimeInfo.DateDX = OutRegs.x.dxi

InRegs.h.ah = DOS_FETCH_TIMEi

int86(DOS_INT, &InRegs, &OutRegs)i

DateTimeInfo.TimeCX = OutRegs.x.cXi
DateTimelnfo.TimeDX = OutRegs.x.dxi

void ClearNcb(NcbPtr)
struct Ncb *NcbPtri
{

int ii

char *CharPtri

115

116 Part II: Support Programming

}

Listing 11-2. (cont.)

CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb)i i++)
*CharPtr++ = OXOOi

void NetbiosRequest{NcbPointer)
struct Ncb *NcbPointeri
{

}

union REGS InRegs, OutRegsi /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointeri

segread(&SegRegs)i

SegRegs.es = FP_SEG(NcbPtr)i
InRegs.x.bx = FP_OFF(NcbPtr)i

int86x(Netbioslnt5C, &InRegs, &OutRegs, &SegRegs);

void LogoO
{

printf("\n NetBIOS Date/Time Client Program")i
pri ntf("\n © Copyright 1988 W. David Schwaderer");

}

The main() Function

The main() function begins by calling Logo() to present a logo. It then
calls AddClientName() which attempts to add the client name as a group
name. If the Add Group Name is successful then the NcbNum value of
the client name is saved in TimeNameNum, and AddClientName() re­
turns to main() with a successful return code indication. Then, main()
calls IssueDateTimeRequest() to issue the Receive Datagram request
which uses the TimeNameNum value.

After the Receive Datagram command is issued, maine) calls Delay()
to pause for an appropriate amount of time before calling SetDate­
TimeAttempt() which tries to set the date and time. The program ends
after displaying the machine's current date and time, which may not be
accurate if date and time information was not received.

Chapter 11: Datagram Applications 117

Delay()

Delay() displays a message that informs the user it is attempting to fetch
the date and time from the network. It then enters a while loop that ter­
minates when the variable Quit becomes TRUE.

In this loop, Delay() repeatedly checks the NcbCmdCplt field to see
if it has changed from a command-pending state. If it has, the variable
Quit becomes TRUE and Delay() returns to main(). Otherwise, Delay()
calls DelayTick() which waits a machine tick (18.2 ticks per second) be­
fore returning to Delay(). DelayTick() senses a tick has occurred by re­
peatedly fetching the current time from PC-DOS and watching for a
change in the DL register.

Delay() keeps track of how many ticks have occurred while the
NcbCmdCplt remains in a command-pending state. After a number of
ticks greater than DELAY_TICK_COUNT have occurred, Delay() re­
turns to IssueDateTimeRequest() even though the Receive Datagram
may still be pending.

SetDateTimeAttempt()

SetDateTimeAttempt() inspects the NcbCmdCplt field for a command­
pending status. If the command is still pending, SetDateTimeAttempt()
invokes CancelDateTimeRequest() to cancel the Receive Datagram com­
mand and returns to main(). Otherwise, SetDateTimeAttempt() calls
SetDateAndTimeNow() which uses the received information to set the
date and time with respective PC-DOS calls.

DisplayDateAndTime()

DisplayDateAndTime() invokes FetchDateAndTime() which fetches the
current date and time with respective PC-DOS calls. FetchDateAnd­
Time() places this current date and time information in appropriate
DateTimeInfo structure elements before returning to DisplayDateAnd­
Time(). Subsequently, DisplayDateAndTime() displays this information
before returning to main().

Chapter 12

Real-Time LAN Conferencing
Application

This chapter presents a datagram application providing a real-time LAN­
conferencing capability. The program in Listing 12-1 allows several users
to communicate with one another within a given conference, with each
user seeing what the other users have entered from their keyboards. Mul­
tiple conferences can also simultaneously exist, but input from one is not
received by any other conference.

Listing 12-1. CB.C

#define LINT _ARGS

#include <dos.h>
#include <conio.h>
#include <stdio.h>
#i nclude "netbios2.h"

#define BIOS_VIDEO_REQUEST Ox10
#define CB_NAME_TERMINATOR Ox80
#define COLUMN_1 00
#define COLUMN_80 79
#define ENTIRE_SCREEN 00
#define ESC Ox1B
#define FETCH_CURSOR_POSITION Ox03
#define GROUP_NAME 2

#define MAX_KEYBOARD_MSG 60
#define MAX_NCBS 5

#define NAME_SIZE 16
#define NORMAL_ATTRIBUTE 07
#define ONE_LINE 01
#define PAGE_ZERO 00
#define RETURN OxOD

119

120 Part Il· Support Programming

Listing 12-1.

#define ROW_1 00
#define ROW_2 01
#define ROW_24 23
#define ROW_25 24
#define SCROLL_UP 06
#define SET_CURSOR_POSITION Ox02
#define UNIQUE_NAME 1

#if definedCLINT_ARGS)
extern int mainCint argc,char * *argv)i
extern void ParticipateCvoid)i

(cont.)

extern void IssueReceiveDatagramRequestsCvoid)i
extern void ServiceDatagramNcbsCvoid)i
extern void ProcessReceivedDatagramCunsigned int Index)i
extern void CancelReceiveDatagramsCvoid)i
extern void InitializeKeyboardInputAreaCvoid)i
extern void SetupInputLineCvoid)i
extern void ServiceKeyboardCvoid)i
extern void ApplyKeystrokeCunsigned char Keystroke)i
extern void SendKeyboardMsg(char *Message)i
extern void EmitUserStatusMsg(char *AppendMsg)i
extern int AddConferenceName(void)i
extern void DeleteConferenceNameCvoid)i
extern unsigned char AddUserName(void)i
extern void DeleteUserName(void)i
extern void ClearNcb(struct Ncb *NcbPtr)i
extern unsigned char NetbiosAddName(char *Name,int NameType)i
extern void NetbiosDeleteNameCchar *Name)i
extern void NetbiosSendDatagram(struct Ncb *NcbPtr,

struct DgStruct *BufferPtrNear,
unsigned int BufferSize)i

extern void NetbiosReceiveDatagramCstruct Ncb *NcbPtr,
struct DgStruct *BufferPtrNear,
unsigned int BufferSize)i

extern void NetbiosCancelNcbCstruct Ncb *NcbPtrNear)i
extern void NetbiosRequestCstruct Ncb *NcbPtrNear)i
extern void LogoCvoid)i
extern int EditArgs(int argc,char * *argv)i
extern void Explain(void)i
extern
extern
extern

void
void
void

ExitNowCvoid)i
Cls(void)i
ScrollScreenCunsigned

unsigned
unsigned

int BeginRow,
int EndRow,
int RowCount)i

Chapter 12: LAN Conjerencing

Listing 12-1. (cont.)

extern void FetchCursorPosition(void)i
extern void SetPreviousCursorPosition(void)i
extern void SetCursorPosition(unsigned int ROw,

unsigned int Column)i
#endif

/*---*/

struct Ncb InDgNcb[MAX_NCBS], OutDatagramNcbi

struct DgStruct { char OriginName[NAME_SIZE]i
char Text[MAX_KEYBOARD_MSG]i

}i

struct DgStruct OutDatagram, InDg[MAX_NCBS]i

#define DATAGRAM_MSG_SIZE sizeof(OutDatagram)

char *ConferenceNamePtr, *UserNamePtri
USGC ConferenceNameNum, UserNameNumi
USGI CurrentRow, CurrentColumni

/*---*/

int main(argc,argv)
int argci

char *argv[]i
{

LogoO i

if (!EditArgs(argc, argv))
ExitNowOi

ConferenceNamePtr argv[1]i
UserNamePtr = argv[2]i

if (AddConferenceName()) {

}

if (AddUserName()) {
ParticipateOi
ClsO i
printf(II\n\nOnl ine program ending at user request. .. \n") i
CancelReceiveDatagrams()i
DeleteUserName()i

}

DeleteConferenceName()i

121

122 Part 1L Support Programming

Listing 12-1. (cont.)

putchar('\n');

return 0;
}

1*---*1

USGI Participating = TRUE;

char EnterAppend[] =" has joined the conference ••• ";
char DepartAppend[] = I, has left the conference ••• ";

void ParticipateC)
{

}

printfC"\n\n\n*-- Online as user II);

printf("\"%s\" in conference \"%s\" ••• ",
UserNamePtr, ConferenceNamePtr);

IssueReceiveDatagramRequestsC);

EmitUserStatusMsgCEnterAppend);

SetupInputLineC);

whileCParticipating) {
ServiceDatagramNcbsC);
ServiceKeyboardC);

}

EmitUserStatusMsgCDepartAppend);

whi le ,COutDatagramNcb.NcbCindCplt -- COMMAND_PENDING)
1* spin until complete *1

I*~------------------ Datagram Processing -----------------*1

void IssueReceiveDatagramRequestsC)
{

}

USGI i;

for Ci = 0; i < MAX_NCBS; i++)
NetbiosReceiveDatagramC&InDgNcb[i],

&InDg[i],
sizeofCInDg[i]»;

Chapter 12: LAN Co"!ferencing

Listing 12-1. (cont.)

#define TARGET_NCB «StartingNcb + index) % MAX_NCBS)

void ServiceDatagramNcbs()
{

}

static USGI StartingNcb = 0; 1* must be static *1

USGI index = 0;

while (InDgNcb[TARGET_NCB].NcbCmdCplt 1= COMMAND_PENDING) {
ProcessReceivedDatagram(TARGET_NCB);
NetbiosReceiveDatagr~m(&InDgNcb[TARGET_NCB],

&InDg[TARGET_NCB],
sizeof(InDg[TARGET_NCB]»;

index++;
}

StartingNcb = TARGET_NCB;

void ProcessReceivedDatagram(Index)
USGI Index;
{

}

USGI i;

if (iInDgNcb[Index].NcbRetCode) {

}

FetchCursorPosition();

ScrollScreen(ROW_2, ROW_24, 1);
SetCursorPosition(ROW_24, 0);

printf<"%s => %s", InDg[Indexl.OriginName,
InDg[Index].Text);

SetPreviousCursorPosition();

void CancelReceiveDatagrams()
{

USGI i;

for (i = 0; i < MAX_NCBSi i++) {

if (InDgNcb[i].NcbCmdCplt == COMMAND_PENDING)

NetbiosCancelNcb(&InDgNcb[i])i

123

124 Part 11: Support Programming

Listing 12-1. (cont.)

}

}

1*--------------------- Keyboard Handling -----------------*1

char *KeyboardInputPtr, KeyboardInput[MAX_KEYBOARD_MSG1;
USGI KeyboardInputLength;

void InitializeKeyboardInputArea()
{

}

int i;

for (i = 1; i < MAX_KEYBOARD_MSG; i++)
KeyboardInput[il = '\XOO';

KeyboardlnputPtr = KeyboardInput;

KeyboardInputLength = 0;

void SetupInputLine()
{

}

int i;

SetCursorPosition(ROW_25,COLUMN_1);

for (i = 1; i < 79; i ++)
putchar(' I);

SetCursorPosition(ROW_25,COLUMN_1)i

printfC"%s => ",UserNamePtr);

InitializeKeyboardlnputArea();

void ServiceKeyboard()
{

USGC Keystroke;

i f (kbh itO) {

switch (Keystroke (USGC) getch(» {

case OxOO : 1* function key *1
Keystroke = (USGC) getch();

Chapter 12: LAN Conferencing

}

void
USGC
{

}

}

}

Listing 12-1. (cont.)

break;

case Ox08 :
if (KeyboardlnputLength > 0) {

printf("\x08 \x08");
--Keyboard Input Length;

*(--KeyboardlnputPtr) = '\xOO';
}

break;

case ESC: /* quit indicator */
Participating = FALSE;
break;

case RETURN: /* send indicator */

defauLt

SendKeyboardMsg(KeyboardInput);
break;

AppLyKeystroke(Keystroke);
break;

AppLyKeystroke(Keystroke)
Keystroke;

if «KeyboardlnputLength+1) >= MAX_KEYBOARD_MSG) {

putchar('\x07');
return;

}

if «Keystroke >= ' ') && (Keystroke < 128)) {
KeyboardInputLength++;
*(KeyboardInputPtr++) = (char) Keystroke;
putchar(Keystroke);
return;

}

void SendKeyboardMsg(Message)
char *Message;
{

USGI Index;

125

126 Part If· Support Programming

}

Listing 12-1. (cont.)

if (KeyboardInputLength == 0)
return;

for (Index = 0; Index < NAME_SIZE; Index++)
OutDatagram.OriginName[Index] = '\xOO';

strncpy(OutDatagram.OriginName, UserNamePtr, NAME_SIZE);

for (Index = 0; Index < MAX_KEYBOARD_MSG; Index++)
OutDatagram.Text[Index] = '\xOO';

strncpy(OutDatagram.Text, Message, MAX_KEYBOARD_MSG);

NetbiosSendDatagram(&OutDatagramNcb,
&OutDatagram,

DATAGRAM_MSG_SIZE);

SetupInputLine();

/*--------------------- Sign On/Off -----------------------*/

char MONITOR[] = "MONITOR!\x07";

void EmitUserStatusMsg(AppendMsg)
char *AppendMsg;
{

}

strncpy(OutDatagram.OriginName,
MONITOR,
strlen(MONITOR)+1);

strncpy(OutDatagram.Text,
UserNamePtr,
strlen(UserNamePtr)+1);

strncat(OutDatagram.Text, AppendMsg);

NetbiosSendDatagram(&OutDatagramNcb,
&OutDatagram,

DATAGRAM_MSG_SIZE);

/*----------------- Name Addition/Deletion ----------------*/

int AddConferenceName()
{

Chapter 12: LAN Conjerencing

}

Listing 12-1. (cont.)

USGC Temp;

printf("\n\n\nChecking the Conference Name \"%s\" ... ",
ConferenceNamePtr);

Temp = NetbiosAddName(ConferenceNamePtr, GROUP_NAME);

if (Temp == ILLEGAL_NAME_NUM)
return FAILURE;

else {

}

ConferenceNameNum = Temp;
return SUCCESS;

void DeleteConferenceName()
{

}

printf("\n\nDeleting the conference name ... ");
NetbiosDeleteName(ConferenceNamePtr);

USGC AddUserName()
{

}

USGC Temp;

printf("\n\n\nChecking the User Name \"%5\" ... ",
UserNamePtr);

Temp = NetbiosAddName(UserNamePtr, UNIQUE_NAME);

if (Temp == ILLEGAL_NAME_NUM)
return FAILURE;

else {

}

UserNameNum = Temp;
return SUCCESS;

void DeleteUserName()
{

}

printf("\n\nDeleting your user name ... ");
NetbiosDeleteName(UserNamePtr);

/*------------------- Netbios Requests --------------------*/

127

128 Part 11: Support Programming

Listing 12-1. (cont.)

struct SREGS SegRegs; 1* defined in dos.h *1

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;
{

}

int i;
char *CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++)
*CharPtr++ = '\xOO';

USGC NetbiosAddName(Name, NameType)
char *Name;
int NameType;
{

}

struct Ncb AddNameNcb;

NetbiosDeleteName(Name);

ClearNcb(&AddNameNcb);

if (NameType == UNIQUE_NAME)
AddNameNcb.NcbCommand = NETBIOS_ADD_NAME;

else
AddNameNcb.NcbCommand = NETBIOS_ADD_GROUP_NAME;

strncpy(AddNameNcb.NcbName, Name, strlen(Name»;
AddNameNcb.NcbName[1S1 = CB_NAME_TERMINATOR;

NetbiosRequest(&AddNameNcb);

if (!AddNameNcb.NcbRetCode)
return AddNameNcb.NcbNum;

else {

}

printf("\n\nOx%02X error with add name ••• ",
AddNameNcb.NcbRetCode);

void NetbiosDeleteName(Name)
char *Name;
{

struct Ncb DeleteNameNcb;

Chapter 12: LAN Conjerencing

}

Listing 12-1. (cont.)

ClearNcbC&DeleteNameNcb);

DeleteNameNcb.NcbCommand = NETBIOS_DELETE_NAME;

strncpyCDeleteNameNcb.NcbName, Name, strlenCName»;
DeleteNameNcb.NcbName[151 = CB_NAME_TERMINATOR;

NetbiosRequest(&DeleteNameNcb);

void NetbiosSendDatagramCNcbPtr, BufferPtrNear, BufferSize)
struct Ncb *NcbPtr;
struct DgStruct *BufferPtrNear;
USGI
{

BufferSize;

}

struct DgStruct far *BufferPtrFar;

while (NcbPtr->NcbCmdCplt == COMMAND_PENDING)
/* spin here for completion! */

ClearNcbCNcbPtr);

NcbPtr->NcbCommand = NETBIOS_SEND_DATAGRAM + NO_WAIT;

BufferPtrFar = Cstruct DgStruct far *) BufferPtrNear;

NcbPtr->NcbBufferOffset = Cchar *) FP_OFFCBufferPtrFar);
NcbPtr->NcbBufferSegment = CUSGI) FP_SEGCBufferPtrFar);

NcbPtr->NcbLength = DATAGRAM_MSG_SIZE;
NcbPtr->NcbNum = UserNameNumi

strncpyCNcbPtr->NcbCallName, ConferenceNamePtr, NAME_SIZE);
NcbPtr->NcbCallName[151 = CB_NAME_TERMINATOR;

NetbiosRequestCNcbPtr);

void NetbiosReceiveDatagramCNcbPtr,BufferPtrNear,BufferSize)
struct Ncb *NcbPtr;
struct DgStruct *BufferPtrNear;
USGI
{

BufferSize;

struct DgStruct far *BufferPtrFar;

ClearNcbCNcbPtr);

129

130 Part If- Support Programming

}

Listing 12-1. (cont.)

NcbPtr->NcbCommand = NETBIOS_RECEIVE_DATAGRAM + NO_WAIT;

BufferPtrFar = (struct DgStruct far *) BufferPtrNear;

NcbPtr->NcbBufferOffset (char *) FP_OFF(BufferPtrFar);
NcbPtr->NcbBufferSegment = (USGI) FP_SEG(BufferPtrFar);

NcbPtr->NcbLength = BufferSize;
NcbPtr->NcbNum ConferenceNameNum;

NetbiosRequest(NcbPtr);

void NetbiosCancelNcb(NcbPtrNear)
struct Ncb *NcbPtrNear;
{

struct Ncb CancelNcb;
struct Ncb far *NcbPtrFar = (struct Ncb far *) NcbPtrNear;

if (NcbPtrNear->NcbCmdCplt COMMAND PENDING) {

ClearNcb(&CancelNcb);

CancelNcb.NcbCommand = NETBIOS_CANCEL_WAIT_ONLY;

CancelNcb.NcbBufferOffset = (char *) FP_OFF(NcbPtrFar);
CancelNcb.NcbBufferSegment = (USGI) FP_SEG(NcbPtrFar);

NetbiosRequest(&CancelNcb);
}

}

void NetbiosRequest(NcbPtrNear)
struct Ncb *NcbPtrNear;
{

union REGS InRegs, OutRegs;
struct Ncb far *NcbPtrFar = (struct Ncb far *) NcbPtrNear;

NcbPtrNear->NcbLanaNum = 0; /* force to adapter zero */

segread(&SegRegs); 1* init the segment regs */

SegRegs.es = FP_SEG(NcbPtrFar);
InRegs.x.bx FP_OFF(NcbPtrFar);

int86x(Netbioslnt5C, &InRegs, &OutRegs, &SegRegs);

Chapter 12: LAN Conjerencing

Listing 12-1. (coni-)

}

/*------------------ Perfunctory Routines -----------------*/

void LogoO
{

C LsO;
printf("*- NETBIOS OnLine Conference");
printf(" © Copyright 1988 W. David Schwaderer -*\n");

}

int EditArgs(argc, argv)
int argc;
char *argv[];
{

}

if (argc != 3) {
ExpLainO;

}

printf("\n\nIncorrect number of parameters .•. ");
return FAILURE;

i f (s t r Len (a rgv [1]) > 15) {
ExpLainO;

}

printf("\n\nConference name \"%s\" is too Long ..• ",
argv [1]);

return FAILURE;

if (!strcmp(argv[2], "MONITOR!"» {

}

printf("\n\nNo no ... try another handLe pLease ... ");
return FAI LURE;

if (strLen(argv[2]) > 15) {
ExpLainO;

}

printf("\n\nHandLe \"%s\" is too Long ..• ",
argv[2]);

return FAILURE;

return SUCCESS;

void ExpLainO
{

131

132 Part Il· Support Programming

Listing 12-1. (cont.)

printH"\nusage : cb conference handle")i
printH"\n\t\tconference: The conference name ••• ")i
printH"\n\t\thandle: Your personal pseudonym ••• ")i

}

void ExitNowO
{

printf("\n\n\x07Program ending because of errors ••• \n")i
exit(1)i

}

1*--------------------- BIOS Requests ---------------------*1

void ClsO
{

}

ScrollScreen(ROW_1, ROW_25, ENTIRE_SCREEN)i
SetCursorPosition(ROW_1, COLUMN_1)i

void ScrollScreen(BeginRow, EndRow, RowCount)
USGI BeginRow, EndRow, RowCounti
{

}

union REGS InRegs, OutRegsi

InRegs.h.ah = SCROLL_UPi
InRegs.h.al = RowCounti

InRegs.h.ch = BeginRowi
InRegs.h.cl = COLUMN_1i

InRegs.h.dh = EndRowi
InRegs.h.dl = COLUMN_80i

1* defined in dos.h *1

1* scroll up request *1
1* how many lines *1

1* top Left corner *1

1* lower right corner *1

InRegs.h.bh = NORMAL_ATTRIBUTEi 1* fiLL attribute *1

int86(BIOS_VIDEO_REQUEST, &InRegs, &OutRegs)i

void FetchCursorPosition()
{

union REGS InRegs, OutRegsi 1* defined in dos.h *1

InRegs.h.ah = FETCH_CURSOR_POSITIONi 1* set cursor *1
InRegs.h.bh = PAGE_ZEROi 1* page number *1

int86(BIOS_VIDEO_REQUEST, &InRegs, &OutRegs)i

Chapter 12: LAN Conjerencing

Listing 12-1. (cont.)

}

CurrentRow = OutRegs.h.dhi
CurrentColumn = OutRegs.h.dli

void SetPreviousCursorPosition()
{

/* set row
/* set column

SetCursorPosition(CurrentRow, CurrentCoLumn)i
}

void SetCursorPosition(Row,Column)
USGI Row, CoLumni
{

union REGS InRegs, OutRegsi 1* defined in dos.h *1

InRegs.h.ah = SET_CURSOR_POSITIONi 1* set cursor *1

}

InRegs.h.bh = PAGE_ZEROi

InRegs.h.dh = ROWi
InRegs.h.dl = CoLumni

1* page number

1* set row
1* set column

int86(BIOS_VIDEO_REQUEST, &InRegs, &OutRegs)i

133

The program is not only fun to use but exhibits techniques required by
datagram applications. Because it is lengthy, only significant portions
will be described. The remaining portions should closely resemble pre­
viously described programs.

The main() Function

The maine) function begins by invoking Logo() which clears the screen
and presents a logo on the first display line. Then, maine) calls EditArgs()
to validate the input parameters. If they are not acceptable, maine) exits
by invoking ExitNow(). Otherwise, it initializes the global variables Con­
ferenceNamePtr and UserNamePtr.

Next, main() calls AddConferenceName() which adds the confer­
ence name (the first" command-line parameter) as a group name. If the
Add Group Name command is successful, main() calls AddUserName()
which adds the requested user's name (the second command-line param­
eter) with an Add Name command. A unique name is useful here in an

134 Part II: Support Programming

attempt to prevent conference imposters. (Note that user pseudonyms
such as RocketMan and RedRooster may significantly add to the LAN
conferencing experience.)

Users are allowed to participate in the conference when main() in­
vokes the primary processing routine Participate(). When the user even­
tually depresses the ESC key, Participate() exits back to maine) which
clears the screen, cancels any pending Receive Datagrams, and deletes
both the conference and user name before ending execution.

EditArgs()

EditArgs() expects two command-line arguments, each of which is IS
characters or less. In addition, EditArgs does not allow the user name to
be "MONITOR!." This character string is reserved by the program for su­
pervisory use in announcing entries into and departures from confer­
ences by individual users. Note that all 15 characters are significant.

NetBIOS Add Name Processing Routines

AddConferenceName() and AddUserName() both invoke NetbiosAdd­
Name() to add the requested conference and user names, respectively.
Unlike the previous NetBIOS Add Name routine, NetbiosAddName con­
tains two formal parameter declarations, when the second parameter in­
dicating whether the name is a group or unique name. If there is a
problem adding any name, NetbiosAddName returns an illegal NcbNum
(OOh), indicating there has been an error.

Participate()

Participate() begins by displaying the requested user and conference
names. It then invokes IssueReceiveDatagramRequests() which uses
each Ncb in the InDgNcb array to issue a Receive Datagram request. Each
Ncb in this array has its receive buffer in the corresponding InDg struc­
ture array.

Participate() then calls EmitUserStatusMsg() and passes a parameter
causing each existing participant within the selected conference to re-

Chapter 12: LAN Con!erencing 135

ceive notification that a new participant has joined the conference. Be­
cause newly joining participants have previously issued conference
Receive Datagrams, they receive the message as well (no conference lurk­
ers here!).

Participate() calls SetUplnputLine() which clears display line 25 and
initializes the program's keystroke-accumulation buffer. It then enters
the primary program-processing loop which terminates only when the
variable Participating becomes FALSE (when ESC is depressed by the
user). Within this loop, the program constantly flips between processing
received datagrams from the other conference participants and process­
ing the keyboard.

When the user finally depresses the ESC key, the loop ends and Par­
ticipate() calls EmitUserStatusMsg(), passing a parameter causing each
participant within the selected conference to receive notification that
the user has departed the conference. Participate() spins on the transmis­
sion of the departure message until it completes to avoid leaving a Send
Datagram command pending after program termination.

ServiceDatagramNcbs()

ServiceDatagramNcbs() checks the InDgNcb array to see if any Receive
Datagram commands have completed. NetBIOS conveniently completes
these Ncbs in the order they were used (IssueReceiveDatagramRe­
quests() issued the Receive Datagrams using Ncb elements InDgNcb[O],
InDgNcb[l], ... InDgNcb[MAX_NCBS]), so the routine needs only to
check the first Ncb it discovered was not complete the last time it
checked.

This InDgNcb array element-checking is all done modulo MAX
_NCBS. The variable StartingNcb is defined as a static variable so that the
current starting point is remembered between routine entries and the en­
tire process is assisted by the TARGET _NCB preprocessor definition.

If an Ncb has completed, ServiceDatagramNcbs() invokes Process­
ReceivedDatagram() to display the message. ServiceDatagramNcbs()
then reuses the Ncb to issue another Receive Datagram command before
checking the next Ncb for completion. This process continues until a
pending Ncb is found, the StartingNcb variable is updated, and the rou­
tine returns to Participate().

Note it is possible for all Ncbs to be completed at a given workstation
when another conference workstation transmits a datagram. In this case,
the datagram is not received by the lethargic workstation. The only pos-

136 Part II· Support Programming

sible solution is to increase the number ofNcbs in the InDgNcb array for
that workstation. However, even this may not work because of restric­
tions on the maximum number of outstanding commands, among other
reasons.

In the final analysis, datagram communication works well in rela­
tively light message-rate situations. Its flexibility comes at the price of
data integrity problems in the general case.

ProcessReceivedDatagram()

ProcessReceivedDatagram() checks the return code of the Ncb that re­
quires processing. If the return code is not zero, Process Received­
Datagram() returns without attempting to process the received
datagram. Otherwise, ProcessReceivedDatagram() calls FetchCur­
sorPosition() to save the current screen cursor position and scrolls the
screen from line 1 (the second line) to line 24. It then displays the name
of the user that transmitted the message and the user's message.

Before exiting, ProcessReceivedDatagram() calls SetPreviousCur­
sorPosition() to restore the screen cursor to the position it had when
ProcessReceivedDatagram() was entered.

ServiceKeyboard()

ServiceKeyboard() checks to see if there have been any keystrokes since
it was last invoked. If not, it exits. Otherwise, it reads the keystroke and
examines it for significance:

• If a function key has been pressed or some other combination
keystroke results in a BIOS extended keystroke (e.g., Alt-l), the
keystroke is ignored. Note that this requires clearing the associ­
ated second keystroke value with another keyboard read.

• If the backspace key was pressed, the last displayed keystroke
character is erased and the accumulated keystroke buffer and
buffer length are adjusted appropriately.

• If the ESC key was pressed, the Participating variable is set to
FALSE.

• If the ENTER key was depressed, the accumulated keystrokes are
sent as a message by calling SendKeyboardMsg().

Chapter 12: LAN Conjerencing 137

• Otherwise, the keystroke value is given to ApplyKeystroke() for
processing (accumulation).

SendKeyboardMsg()

SendKeyboardMsg() clears out the Send Datagram buffer area before
copying the user name and message into the buffer. It then calls Netbios­
SendDatagram() to send the conference datagram. Finally, before exit­
ing, it calls SetUpInputLine() to initialize the program keystroke
accumulation buffer.

Note that SendKeyboardMsg() does not check to see if the last Send
Datagram command is still pending. Since all Send Datagram commands
in this program use the same Ncb, this could be a serious program error.
However, NetbiosSendDatagram() does this at entry. In addition, Netbi­
osSendDatagram() also uses other logic not used in previous discus­
sions, so you may wish to examine it a bit closer than other functions.

ApplyKeystroke()

ApplyKeystroke() first checks to see that the maximum number of key­
strokes have not been accumulated. If they have, ApplyKeyStroke()
beeps the workstation and returns. Otherwise, it checks to see that the
character is a valid displayable ASCII character. If so, ApplyKeystroke()
appends that keystroke to the accumulated ones and displays the charac­
ter before returning.

Chapter 13

C File 1hmsfer Applications

This chapter discusses two applications that provide file transfer capabil­
ity via a NetEIOS session. One application, SEND.C in Listing 13-1, trans­
mits a file. The other, RECEIVE.C in Listing 13-2 receives the file. While
the programs only allow one file transmission before they both end exe­
cution, they are not difficult to extend to provide multiple-file transfers
within a session, perhaps using PC-DOS wildcard file specifications. But
that topic is beyond the scope of this discussion and is left as a reader
exercise.

#define LINT_ARGS

#include <dos.h>
#include <stdio.h>
#include "netbios2.h"

#if defined(LINT_ARGS)

Listing 13-1. SEND.C

extern int main(int argc,char * *argv)i
extern int AddSessionName(char *NamePtr)i
extern int CreateSession(void)i
extern void ProcessFile(void)i
extern void TransmitFile(struct _iobuf *FilePtr)i
extern void TerminateSession(void)i
extern void DeleteSessionName(char *NamePtr)i
extern void ClearNcb(struct Ncb *NcbPtr)i
extern unsigned char NetbiosAddName(char *Name)i
extern void NetbiosCall(struct Ncb *NcbPtr)i
extern void NetbiosDeleteName(char *Name)i
extern void NetbiosHangUp(struct Ncb *NcbPtr,unsigned char TargetLsn)i

139

140 Part II: Support Programming

Listing 13-1. (cont.)

extern void NetbiosSendCstruct Ncb *NcbPtr)i
extern void NetbiosRequestCstruct Ncb *NcbPtrNear)i
extern void LogoCvoid)i
#endif

#define SESSION_NAME_TERMINATOR Ox88

USGC SessionLsni

struct Ncb ControlNcb, XmitNcbi

struct SessionMsg XmitBlocki

1* 1234567890123 *1
char SendName[] = "WDS-Send-File"i
char RecvName[] = "WDS-Recv-File"i

int mainCargc,argv)
int argci
char *argv[]i
{

}

LogoO i

if CAddSessionNameCSendName» {

}

if CCreateSessionC» {
ProcessFi leO i
TerminateSessionC)i

}

DeleteSessionNameCSendName)i

printfC"\n\nProgram ending ••• \n")i

return Oi

int AddSessionNameCNamePtr)
char *NamePtri
{

printfC"\n\nAdding the session name %s ••• ", NamePtr)i

if CNetbiosAddNameCNamePtr) == ILLEGAL_NAME_NUM)

Chapter 13: C File Transfer Applications

}

return FAILURE;
else

return SUCCESS;

Listing 13-1. (cont.)

int CreateSession()
{

}

printf("\n\nCalling to create the session ••• ");

NetbiosCall(&ControlNcb);

if (!ControlNcb.NcbRetCode) {
printf("session successfully created ••• ");
SessionLsn = ControlNcb.NcbLsn;
return SUCCESS;

} else {

}

printf("session not created ••. error Ox%02X •.. ",
ControlNcb.NcbRetCode);

return FAILURE;

void ProcessFile()
{

}

FILE *Fi lePtr;
char FileName[1001;

printf("\n\nPlease enter the file name to send ==> II);

gets(FileName);

if (Fi lePtr = fopen(Fi leName, "rb"» {
TransmitFile(FilePtr)i
fclose(Fi lePtr);

}

void TransmitFile(FilePtr)
FILE *FilePtr;
{

USGI ReadCount, ProcessFlag = TRUE, Count = 0;
USGL TransmissionSize = 0;

141

--~~.--. -. -~----- ... - .. - .. ---

142 Part II: Support Programming

}

Listing 13-1. (cont.)

printf<"\nFile Transfer beginning .•. \n");

while (ProcessFlag == TRUE) {

}

ReadCount = fread(XmitBlock.Text, sizeof(char),
sizeof<XmitBlock. Text), Fi lePtr);

if (!ferror(FilePtr» {

if «XmitBlock.TextLength = ReadCount) != 0) {

}

printf("\nTransmitting block %3u •.. size = %u",
++Count, XmitBlock.TextLength);

NetbiosSend(&XmitNcb);

if (XmitNcb.NcbRetCode) {
printf("\n\nSend error %02X •.. ",

XmitNcb.NcbRetCode);
ProcessFlag = FALSE;

} else {
TransmissionSize += XmitBlock.TextLength;

}

if (feof(Fi lePtr» {

}

printf<"\n\nFile Transmitted ... ");
ProcessFlag = FALSE;

} else {

}

printf<"\n\nError reading file ... ");
ProcessFlag = FALSE;

printf<"\n\nTotal transmission size = %lu bytes ..• ",
TransmissionSize);

void TerminateSession()
{

printf<"\n\nHanging Up on the session ••. ");

Chapter 13: C File Transfer Applications

}

Listing 13-1. (cont.)

NetbiosHangUp(&ControlNcb, SessionLsn);

if (IControlNcb.NcbRetCode)
printf("the Hang Up was successful .. ");

else
printf("the Hang Up was not successful .. ");

void DeleteSessionName(NamePtr)
char *Nameptr;
{

}

printf("\n\nDeleting the session name %5 ... ", NamePtr);
NetbiosDeleteName(NamePtr);

/*------------------- Netbios Requests --------------------*/

struct SREGS SegRegs; /* defined in dos.h */

void ClearNcb(NcbPtr)
struct Ncb *NcbPtr;
{

}

int i . ,
char *CharPtr = (char *) NcbPtr;

for (i = 0; i < sizeof(ZeroNcb); i++
*CharPtr++ = '\xOO';

USGC NetbiosAddName(Name)
char *Name;
{

struct Ncb AddNameNcb;

ClearNcb(&AddNameNcb);

AddNameNcb.NcbCommand = NETBIOS_ADD_NAME;

strncpy(AddNameNcb.NcbName, Name, strlen(Name));
AddNameNcb.NcbName[1SJ = SESSION_NAME_TERMINATOR;

NetbiosRequest(&AddNameNcb);

if (!AddNameNcb.NcbRetCode) {

143

144 Part 11· Support Programming

}

Listing 13-1. (cont.)

printf<" ••• the add-name was successful. .• ")i
return AddNameNcb.NcbNumi

} else {

}

printf<" ••. unsuccessful add-name ••• error %02X •.. ",
AddNameNcb.NcbRetCode)i

void NetbiosCall(NcbPtr)
struct Ncb *NcbPtri
{

}

ClearNcb(NcbPtr)i

NcbPtr->NcbCommand = NETBIOS_CALLi

strncpy(NcbPtr->NcbCallName, RecvName, strlen(RecvName»i
NcbPtr->NcbCallName[15] = SESSION_NAME_TERMINATORi

strncpy(NcbPtr->NcbName, SendName, strlen(SendName»i
NcbPtr->NcbName[15] = SESSION_NAME_TERMINATORi

NcbPtr->NcbSto = 30i
NcbPtr->NcbRto = 30i

NetbiosRequest(NcbPtr)i

/* 15 second time out */
/* 15 second time out */

void NetbiosDeleteName(Name)
char *Namei
{

}

struct Ncb DeleteNameNcbi

ClearNcb(&DeleteNameNcb)i

DeleteNameNcb.NcbCommand = NETBIOS_DELETE_NAMEi

strncpy(DeleteNameNcb.NcbName, Name, strlen(Name»i
DeleteNameNcb.NcbName[15) = SESSION_NAME_TERMINATORi

NetbiosRequest(&DeleteNameNcb)i

Chapter 13: C File Transfer Applications

Listing 13-1. (cont.)

void NetbiosHangUp(NcbPtr, TargetLsn)
struct Ncb *NcbPtr;
USGC TargetLsn;
{

ClearNcb(NcbPtr);

NcbPtr->NcbCommand = NETBIOS_HANG_UP;

NcbPtr->NcbLsn = TargetLsn;

NetbiosRequest(NcbPtr);
}

void NetbiosSend(NcbPtr)
struct Ncb *NcbPtr;
{

}

struct SessionMsg far *BufferPtrFar;

ClearNcb(NcbPtr);

NcbPtr->NcbCommand NETBIOS_SEND;

NcbPtr->NcbLsn = SessionLsn;

BufferPtrFar = (struct SessionMsg far *) &XmitBlock;

NcbPtr->NcbBufferOffset
NcbPtr->NcbBufferSegment

(char *) FP_OFF(BufferPtrFar);
(USGI) FP_SEG(BufferPtrFar);

NcbPtr->NcbLength = sizeof(XmitBlock);

NetbiosRequest(NcbPtr);

void NetbiosRequest(NcbPtrNear)
struct Ncb *NcbPtrNear;
{

union REGS InRegs, OutRegs;
struct Ncb far *NcbPtrFar = (struct Ncb far *) NcbPtrNear;

NcbPtrNear->NcbLanaNum = 0; 1* force to adapter zero */

segread(&SegRegs); 1* init the segment regs *1

145

146 Part If- Support Programming

Listing 13-1. (cont.)

SegRegs.es = FP_SEG(NcbPtrFar)i
InRegs.x.bx = FP_OFF(NcbPtrFar)i

int86x(NetbioslntSC, &InRegs, &OutRegs, &SegRegs)i
}

void LogoO
{

printf("\nNETBIOS SampLe Send Program")i
printf(1I © Copyright 1988 W. David Schwaderer");

}

Listing 13-2. RECEIVE.C

#define LINT_ARGS

#include <dos.h>
#incLude <stdio.h>
#include Inetbios2.h"

#if defined(LINT_ARGS)
extern int main(int argc,char * *argv)i
extern int AddSessionName(char *NamePtr)i
extern int CreateSession(void)i
extern void ProcessFile(void)i
extern void ReceiveFi le(FILE *Fi lePtr) i
extern void DeleteSessionName(char *NamePtr)i
extern void TerminateSession(void)i
extern void ClearNcbCstruct Ncb *NcbPtr)i
extern USGC NetbiosAddName(char *Name)i
extern void NetbiosListen(struct Ncb *NcbPtr)i
extern void NetbiosDeleteNameCchar *Name)i
extern void NetbiosHangUp(struct Ncb *NcbPtr, USGC
extern void NetbiosReceiveCstruct Ncb *NcbPtr)i
extern void NetbiosRequest(struct Ncb *NcbPtrNear)i
extern void Logo(void)i
#endif

#define SESSION_NAME_TERMINATOR Ox88

USGC SessionLsni

struct Ncb ControlNcb, XmitNcbi

struct SessionMsg XmitBlocki

TargetLsn)i

Chapter 13: C File Transfer Applications

Listing 13-2. (cont.)

1* 1234567890123 *1

char SendName[] = "WDS-Send-Fi le";
char RecvName[] = "WDS-Recv-Fi le";

int main(argc,argv)
int argc;
char *a rgv[];
{

}

LogoO;

if (AddSessionName(RecvName» {

}

if (CreateSession(»
ProcessFi leO;

DeleteSessionName(RecvName);

pri ntf("\n\nProgram endi ng •.. \n");

return 0;

int AddSessionName(NamePtr)
char *NamePtr;
{

}

printf("\n\nAdding the session name %5 •.. ", NamePtr);

if (NetbiosAddName(NamePtr) -- ILLEGAL_NAME_NUM)
return FAILURE;

else
return SUCCESS;

int CreateSession()
{

printf(lI\n\nListening to create the session ••• ");

NetbiosListen(&ControlNcb);

if (!ControlNcb.NcbRetCode) {
printf("session successfully created ..• ");
SessionLsn = ControlNcb.NcbLsn;

147

148 Part 11: Support Programming

}

return SUCCESS;
} else {

Listing 13-2. (cont.)

printf("sess ion not created ••• error Ox%02X •.• ",
ControlNcb.NcbRetCode);

return FAILURE;
}

void ProcessFile()
{

}

FILE *Fi lePtr;
char FileName[100J;

printf("\n\nPlease enter the file name to receive ==> II);

gets(FileName);

if (FilePtr = fopen(Fi leName, "wb")) {
ReceiveFi le(Fi lePtr);
fc lose(Fi lePtr);

}

void ReceiveFile(FilePtr)
FILE *Fi lePtr;
{

USGI WriteCount, ProcessFlag = TRUE, Count = 0;
USGL TransmissionSize = 0;

printf("\nFi le transfer beginning ... \n");

while (ProcessFlag == TRUE) {

NetbiosReceive(&XmitNcb);

if (XmitNcb.NcbRetCode) {
printf("\n\nReceive error %02X •.• ", XmitNcb.NcbRetCode);
TerminateSession();
ProcessFlag = FALSE;

} else {

printf("\nSuccessfully received block %3u ... size = %u",
++Count, XmitBlock.TextLength);

Chapter 13: C File Transfer Applications

}

}

}

Listing 13-2. (cont.)

WriteCount = fwrite(XmitBlock.Text, sizeof(char),
XmitBlock.TextLength, FilePtr)i

if (WriteCount != XmitBlock.TextLength)
printf(" •.• but only wrote %u bytes!\x07",

WriteCount) i

TransmissionSize += XmitBlock.TextLengthi

printf("\n\nTotal transmission size = %lu bytes ••• ",
TransmissionSize)i

void DeleteSessionName(NamePtr)
char *NamePtri
{

}

printfC"\n\nDeleting the session name %5 .•• ", NamePtr)i
NetbiosDeleteName(NamePtr)i

void TerminateSessionC)
{

}

printfC"\n\nHanging Up on the session ••• ")i

NetbiosHangUpC&ControlNcb, SessionLsn)i

if C!ControlNcb.NcbRetCode)
printfC"the Hang Up was successful •• ")i

else
printfC"the Hang Up was not successful •• ")i

1*------------------- Netbios Requests --------------------*1

struct SREGS SegRegsi 1* defined in dos.h *1

void ClearNcbCNcbPtr)
struct Ncb *NcbPtri
{

int i i
char *CharPtr = Cchar *) NcbPtri

149

150 Part 11: Support Programming

Listing 13-2. (cont.)

for (i = 0; i < sizeof(ZeroNcb); i++)
*CharPtr++ '\xOO';

}

USGC NetbiosAddName(Name)
char *Name;
{

}

struct Ncb AddNameNcb;

ClearNcb(&AddNameNcb);

AddNameNcb.NcbCommand = NETBIOS_ADD_NAME;

strncpy(AddNameNcb.NcbName, Name, strlen(Name));
AddNameNcb.NcbName[1SJ = SESSION_NAME_TERMINATOR;

NetbiosRequest(&AddNameNcb);

if (!AddNameNcb.NcbRetCode) {
printf(" ... the add-name was successful •.. ");
return AddNameNcb.NcbNum;

} else {

}

printf(" ... unsuccessful add-name ... error %02X •.. ",
AddNameNcb.NcbRetCode);

void NetbiosHangUp(NcbPtr, TargetLsn)
struct Ncb *NcbPtr;
USGC TargetLsn;
{

ClearNcb(NcbPtr);

NcbPtr->NcbCommand = NETBIOS_HANG_UP;

NcbPtr->NcbLsn = TargetLsn;

NetbiosRequest(NcbPtr)i
}

void NetbiosListen(NcbPtr)
struct Ncb *NcbPtr;

Chapter 13: C File Transfer Applications

{

}

Listing 13-2. (cont.)

ClearNcbCNcbPtr);

NcbPtr->NcbCommand = NETBIOS_lISTEN;

strncpyCNcbPtr->NcbCallName, SendName, strlenCSendName));
NcbPtr->NcbCallName[15] = SESSION_NAME_TERMINATOR;

strncpyCNcbPtr->NcbName, RecvName, strlen(RecvName));
NcbPtr->NcbName[15] = SESSION_NAME_TERMINATOR;

NcbPtr->NcbSto = 30;
NcbPtr->NcbRto = 30;

NetbiosRequestCNcbPtr);

1* 15 second time out *1

1* 15 second time out *1

void NetbiosDeleteNameCName)
char *Name;
{

}

struct Ncb DeleteNameNcb;

ClearNcbC&DeleteNameNcb);

DeleteNameNcb.NcbCommand = NETBIOS_DElETE_NAME;

strncpyCDeleteNameNcb.NcbName, Name, strlenCName));
DeleteNameNcb.NcbName[15] = SESSION_NAME_TERMINATOR;

NetbiosRequestC&DeleteNameNcb);

void NetbiosReceiveCNcbPtr)
struct Ncb *NcbPtr;
{

struct SessionMsg far *BufferPtrFar;

ClearNcbCNcbPtr);

NcbPtr->NcbCommand NETBIOS_RECEIVE;

NcbPtr->Ncblsn = Sessionlsn;

BufferPtrFar = Cstruct SessionMsg far *) &XmitBlock;

151

152 Part 1!- Support Programming

}

Listing 13-2. (cont.)

NcbPtr->NcbBufferOffset = Cchar *) FP_OFFCBufferPtrFar)i
NcbPtr->NcbBufferSegment = CUSGI) FP_SEGCBufferPtrFar)i

NcbPtr->NcbLength = sizeofCXmitBlock)i

NetbiosRequestCNcbPtr)i

void NetbiosRequest(NcbPtrNear)
struct Ncb *NcbPtrNeari
{

}

union REGS InRegs, OutRegsi
struct Ncb far *NcbPtrFar = Cstruct Ncb far *) NcbPtrNeari

NcbPtrNear->NcbLanaNum = Oi 1* force to adapter zero *1

segreadC&SegRegs)i 1* init the segment regs *1

SegRegs.es = FP_SEGCNcbPtrFar)i
InRegs.x.bx = FP_OFFCNcbPtrFar)i

int86x(Netbioslnt5C, &InRegs, &OutRegs, &SegRegs)i

void LogoO
{

printH"\nNETBIOS Sample Receive Program")i
pri ntH" © Copyri ght 1988 W. Dav; d Schwaderer");

}

Application Overview

SEND.C and RECEIVE.C work in tandem to transfer files. They both be­
gin by adding unique names to their NetBIOS name table. SEND.C uses
the name WDS-Send-File; RECEIVE uses the name WDS-Recv-File. Both
names are terminated in the 16th position with a nonzero value, guaran­
teeing their uniqueness from IBM reserved names.

If the Add Name commands are successful, both applications attempt
to establish a session with the other. RECEIVE.C initiates its side of Net­
BIOS session with a Listen command specifying its unique name as well

Chapter 13: C File Transfer Applications 153

as the unique name SEND.C uses. The Listen command must be pending
before the Call command issued by SEND.C times-out.

The Listen command uses a no-wait option so SEND.C must connect
to it or the machine executing RECEIVE.C must eventually be rebooted.
If the SEND.C Call command times-out, simply execute SEND.C again to
establish the session. After this is done, SEND.C and RECEIVE.C prompt
their users for the file that is respectively transmitted and received. After
the users reply to their prompts, perhaps using different names, the data
transfer begins. Note that each side of the session specifies a IS-second
time-out in its Listen and Call commands for session Receive and Send
commands, so users should not wait too long to respond to prompts af­
ter the other user responds or the session will abort. If it does abort, sim­
ply run the programs again.

If any error is detected by a session partner during the transmission
session, that partner aborts the session using a Hang Up command and
the other session partner's Send or Receive command subsequently
completes with a "Session Aborted" return code. Otherwise, the session
continues transferring data using a C structure that contains both data
and a value indicating how much data actually resides in the area re­
served for it. This structure is defined in the netbios2.h header file.

When SEND.C eventually has no more data to transfer, it issues a
Hang Up command to terminate the session. When RECEIVE.C's pend­
ing Receive command completes with an error, it attempts to abort the
session which no longer exists. The Hang Up command subsequently
fails with a "Session Closed" error code.

Everything considered, NetBIOS session communication is very
easy as Listings 13-1 and 13-2 illustrate. In fact, the program logic to read
and write the files is nearly as difficult as the actual NetBIOS session
logic. The sample programs are laced with printf() statements that pro­
vide user feedback as the session continues. These statements also con­
siderably reduce any mystery within the programs' logic, though
experienced users may find their unnecessarily chatty nature somewhat
offensive. As much logic as possible is shared between the programs to
reduce the programming effort even further. Have fun and happy file
transfers.

Chapter 14

Medialess Workstations, RPL, and
Redirectors

Medialess workstations, RPL, and redirectors share two common attri­
butes:

• Each involves the transfer of data requests (e.g., read, write, etc.)
from one workstation to another for resolution.

• Because the data request is performed elsewhere, the possibility
exists that the data is being used by many other machines, thereby
causing potential data sharing problems.

Clients and Servers

In such situations, requesting machines, referred to as clients, obtain
data storage and management services from cooperating machines, re­
ferred to as servers. Usually, clients and servers communicate via a LAN
connection. Depending on the LAN and the number of clients, it is often
possible for data requests to be processed faster and more economically
using a high-performance server rather than slower local storage devices
at client machines.

Medialess Workstations

Medialess workstations are client machines that have no local diskette or
disk storage. The primary advantage of these machines is their lower cost
and the natural data security provided by not being able to copy data
onto a diskette that may enter or leave the establishment.

155

156 Part 11: Support Programming

Remote Program Load (RPL)

Medialess workstations typically use RPL to load their operating systems
into memory. Once loaded, the operating system initializes the worksta­
tion normally, oblivious to the absence of local disk and diskette devices.
Subsequent applications similarly execute, unaware of the absence of lo­
cal storage devices.

Redirectors

Redirectors are components that intercept local data requests and redi­
rect (transfer) them to server machines. In contrast to RPL, which ini­
tially operates with no operating system present, redirectors operate as
system extensions.

Examples of popular redirectors are Microsoft Corporation's redirec­
tor in the Microsoft Networks (MS-NET) product and REDIR.EXE used in
IBM's PC LAN Program (PCLP). In the OS/2 arena, Microsoft provides a
redirector in its Microsoft LAN Manager product and IBM includes the
OS/2 LAN Requestor function in the IBM OS/2 Extended Edition version
1.1.

Data Layers

Figure 14-1 depicts a conceptual representation of the layers that resolve
data requests within popular PC-DOS machines. This figure clearly illus­
trates that data requests can be captured at any of three points in their
processing:

the INT 21 PC-DOS Interface

the Block Device Driver Call Interface

the INT 13 BIOS Interface

The INT 21 PC-DOS Interface

The INT 21 PC-DOS interface provides a variety of machine services in­
cluding data services at the file level. These services open, close, create,
modify, and erase files based on application program requests.

Chapter 14: Medialess, RPL, and Redirectors

Application program

INT 21 PC-DOS interface

PC-DOS

r-Block device driver call interface-

Block device driver

INT 13 BIOS interface

BIOS

Device adapter

Storage device

Fig. 14-1. Conceptual view of PC-DOS data request
processing layers.

157

Applications load registers and initialize various data fields with val­
ues that indicate the type of service requested and which particular file
or files the request relates to. The application then issues an INT 21 re­
quest which is intercepted by PC-DOS and acted on. PC-DOS eventually
returns after performing the task to the best of its ability.

The Block Device Driver Call Interface

PC-DOS device drivers are modules that control specific devices. Their
primary advantage is that they allow programmers to create operating
systems that are independent of any particular device-specific considera­
tions. Thus, when a new device replaces another, typically only the spe­
cific device driver needs to change-not the operating systems that
support the device.

There are two types of PC-DOS device drivers: character device driv­
ers and block device drivers. A common misconception is that character
device drivers can only handle one-character-at-a-time requests while
block device drivers can handle blocks of data at a time.

Character device drivers control the operation of devices such as
printers, keyboards, displays, etc. Using operating system services such
as I/O redirection, these devices can be regarded as filelike devices.

158 Part II: Support Programming

Block device drivers control the operation of devices such as disks,
diskette drives, CD-ROM devices, etc. These types of devices support file
systems. Thus, the primary distinction between character and block de­
vice drivers is independent of an ability to process blocks of data with a
single request.

PC-DOS invokes device driver services using a program-call interface
that is documented in the PC-DOS Technical Reference Manual. This in­
terface can be involved, depending on the device, and is beyond the
scope of this book. For further information on device drivers, consult
the Manual or Writing MS-DOS Device Drivers (Lai 1987).

The INT 13 BIOS Interface

The INT 13 BIOS interface provides the lowest level data service inter­
face. After loading registers with values that specify the type of request,
PC-DOS block device drivers issue an INT 13 interrupt request. The reg­
isters and the significance of their contents are listed in Table 14-1.

Table 14-1. Interrupt Registers

Register Meaning

AH

CH

CL

DH

DL

Request type (reset, read, write, format track, etc.)

Cylinder number

Sector number

Head number

ES :BX

Drive Number (OxOO ==) A:, OxOl :::::=) B:, etc.)

Address of buffer for reads/writes

After the BIOS performs the requested operation, it follows the fol­
lowing steps:

1. placing the operation final status in the AH register

2. placing requested device information (if any) in the CX and DX
registers

3. setting the carry flag (CY) to zero or one, respectively, indicating
request success or failure

4. returning via a FAR RET 2 instruction that preserves the existing
flag settings

Chapter 14: Medialess, RPL, and Redirectors 159

The module that issued the request resumes execution and subsequently
analyzes the results.

A Redirector Implementation

The REDIR.EXE redirector has a set of private interfaces allowing it to
determine which servers to establish NetBIOS sessions with, and to iden­
tify which client devices should have their requests forwarded to a
server. More than one client device can be serviced by a single redirector.

REDIR.EXE operates at the INT 21 PC-DOS interface by trapping INT
21 PC-DOS requests and inspecting them. If a request is not for a device
the redirector is handling, the request is passed on to PC-DOS for local
processing. Otherwise, the redirector transmits the request to the server
using the Server/Redirector protocol via a Server Message Block (SMB).
The May 1985 IBM Personal Computer Seminar Proceedings (volume 2,
number 8-1) document describes this protocol, which is beyond the
scope of this discussion.

The primary advantage of a redirector implementation is that it al­
lows servers to provide extensive services for clients because client re­
quests are intercepted at a very high level. As an example, the REDIR.EXE
redirector provides a variety of data sharing support. However, redirec­
tor implementations typically require significant programming efforts
and you must have a very intimate knowledge of PC-DOS before you can
write implementations that function transparently to applications.

A Block Device Driver Implementation

Block device drivers allow client workstations to specify disk requests
for a specific virtual drive to be passed to the device driver for forwarding
to, and processing by, a server. The target server and device are specified
during the installation of the device driver. The installation process
should also establish a communication session between the client and
server workstation. The disk space provided by the server to the client is
referred to as a Remote Virtual Disk (RVD).

In contrast to a redirector, a block device driver can typically service
requests only for a single device. Data sharing facilities are also limited
but can be crudely implemented by returning a "Media Changed" result
to client PC-DOS Media Check function calls whenever the server indi-

160 Part 1l- Support Programming

cates data has changed at the server. Client machines receiving such a
signal flush their buffers and reread the device to obtain the correct infor­
mation. (See Lai (1987) and the PC-DOS Technical Reference Manual.)

The INT 13 BIOS Interface

The INT 13 BIOS interface presents data requests at the lowest possible
interface-the BIOS interface. Because all local device requests result in
INT 13 calls, modules that operate at this level can forward requests for
several devices to one or more servers using preestablished NetBIOS ses­
sions. These modules may be PC terminate-and-stay-resident (TSR) pro­
grams or adapter RPL logic. These modules have virtually no knowledge
of why a given request is being issued because the accompanying infor­
mation is too scanty to make a determination. For example, is a sector­
read request part of a sequential read for a fragmented data file on the
server disk, or is it simply a read for a sector in another data file? While a
redirector can easily determine this, modules operating at the INT 13

- level cannot.
A module operating at the INT 13 level can make very informed deci­

sions regarding which server disk sectors should be cached locally be­
cause it can monitor the media access- patterns. On the other hand, a
redirector operates at too high a level to enjoy this degree of media access
visibility.

A NetBIOS RPL Implementation-Or How Does PC-DOS Get in
There?

The original PC Network (LANA) card provides the only NetBIOS RPL
capability within the IBM LAN product line. All other adapters provide
RPL services at the DLC level. However, the process is necessarily similar
for all RPL machines. '

The LANA adapter BIOS is entered during the final phase of the PC
BIOS initialization process. Before returning to BIOS·, the adapter BIOS:

1. initializes the adapter protocol logic

2. saves the current ROM BASIC interrupt vector (INT 18) value

Chapter 14: Medialess, RPL, and Redirectors 161

3, replaces the ROM BASIC interrupt vector with a new value that
points inside the adapter's BIOS

Eventually, BIOS attempts to load a boot sector from the A: diskette
drive, If the attempt fails, it attempts to load one from the C: disk drive, If
that fails, BIOS issues an INT 18 request in an attempt to invoke ROM
BASIC, which causes the microprocessor to begin executing the adapter
BIOS's RPL logic

Entering the RPL Logic

The RPL logic first restores the ROM BASIC interrupt vector to the value it
previously saved, Next, the adapter allocates the top 1 K of memory for its
use and builds an Ncb there, It then issues an Adapter Status command to
fetch the permanent node name. Finally, it checks to see if the LANA's WI
jumper has been removed. If not, the adapter issues the ROM BASIC in­
terrupt, permanently giving control to ROM BASIC.

If jumper WI has been removed on the LANA card, the logic issues a
NetBIOS Reset command, specifying 32 sessions and 32 pending com­
mands. Next, it issues a NetBIOS Call command to the network name
IBMNETBOOT (ten contiguous capital letters followed by six binary
zeros) using its own permanent node name and NcbSto and NcbRto val­
ues of 240 (120 seconds).

If the Call command is not successful, the logic issues the ROM BA­
SIC interrupt, permanently giving control to ROM BASIC. Otherwise, a
boot server exists on the network that should be able to help the client
machine boot. Thus, the client adapter saves the current setting of the
INT 13 interrupt vector and replaces it with another vector that points at
its INT 13 redirection logic and sets an indicator that RPL is active.

The Initial INT 13 Reset Command

Next, the RPL logic issues an INT 13 Reset command for some undeter­
mined drive number (DL is not set). This drives the adapter redirection
logic that first checks to see that the request code in the AH register does
not have a value of OX05, Ox06, Ox07, OxOA, or OxOB.

If the command is one of the unwanted commands, a value of OxOl is
loaded into the AL register and the carry flag is set indicating failure. Oth­
erwise, the logic checks to see if redirection is active. If not, the request
is passed to the original INT 13 entry point whose value was previously

162 Part If- Support Programming

saved. Since a reset request command has an AH value of OxOO, and RPL
is active for the sake of this discussion, the logic builds a message from
the register settings and sends it to the RPL server using the existing Ncb
in high memory over the previously created session (the NcbLsn must
necessarily have a value of one).

Request Message Format

This message is eleven bytes long and has the following format:

: AX : ex : OX : ES : BX : ??

+0 +2 +4 +6 +8 +10
Displacement

The eleventh byte (byte 10) is uninitialized and provides an area to hold
the returning carry flag indicator that the server must return.

Write Requests (AU = = Ox03)

At this point, the redirection logic inspects the AH register's request
code. If it specifies a write, the redirection logic computes the size of the
data from the register settings (assuming 512 bytes per sector) and sends
the data beginning at the memory location pointed at by the ES :BX regis­
ter pair with a Send command. It then issues a Receive for 11 bytes to
obtain the register values returned by the server.

Read Requests (AU = = Ox02)

If the request specifies a read, the logic issues a Receive command for an
ll-byte message. This returning message contains the returned registers
from the server. If the read operation was successful at the server, the
data was transmitted appended to the registers. This means the Receive
must complete with an error code of Ox06 (message incomplete) if the
read operation was successful at the server.

The logic computes the size of the remaining message from the origi­
nal registers and issues another receive for the pending data. The data
buffer is specified by the ES:BX register. Otherwise, the read operation
was unsuccessful at the server and no data is forthcoming.

Chapter 14: Medialess, RPL, and Redirectors 163

Other Requests

Because the request was for a reset, the redirection logic simply issues a
Receive command for 11 bytes to obtain the register values the server
must always return. Thus, regardless of the command, the redirection
logic always receives register values before returning to the RPL logic.

Returning from the Redirection Logic

Before returning to the RPL logic, the redirection code loads the correct
registers from the register values returned by the server. Next, it sets the
carry flag based on the contents of the 11 th byte (byte 10). If this byte has
a value of OxOO, the carry flag is cleared. Otherwise, the carry flag is set
indicating a problem with the request. Finally, the redirection logic re­
turns via a FAR RET 2 instruction that preserves the flag settings.

Loading the Boot Record

Remembering that the redirection logic was originally entered as a result
of the RPL logic's issuing a BIOS INT 13 reset command, control returns
to the RPL logic. The RPL logic then issues an INT 13 request after setting
the register values listed in Table 14-2. This request specifies that the
server send a boot record. However, the server only needs to have a data
file created from a bootable diskette. This type of data file is referred to as
a diskette image.

Thble 14-2. Interrupt Register Values

Register Value Meaning

AH Ox02 Read request specified

AL OxOl Read one sector

CH OxOO Read cylinder (track) number zero

CL OxOl Read sector number one

DH OxOOOO Use head number zero

DL OxOOOO Use Drive A:

ES:BX OxOOOO:Ox7COO Put the data at OOOO:7COO

Using the register settings that arrive from the client, the server only

164 Part If- Support Programming

needs to calculate a displacement into the diskette image data file to find
the correct 512 bytes to send. Once located, the data is transmitted to the
client, appended to the ll-byte header that contains the returning regis­
ter values.

Booting Up

Once the boot record arrives safely, the client m~hine jump's to location
0000 :7COO and begins executing the boot record, If the server is slightly
sophisticated, the boot record it initially transmits could actually be a
small program that contains a short list of diskette images the client can
select to actually boot from.

The program can present the list as a menu and allow the user to se­
lect the appropriate image. After selection, the bogus boot record can
relocate some of its logic to a different area of memory. This logic sends
the selection to the server and issues another request for a boot record.
Since the server knows which diskette image to use, it transmits the ac­
tual boot record from the selected diskette image.

The standard boot process now occurs:

1. The boot record begins issuing read requests to load PC-DOS.
These requests are intercepted by the adapter redirection logic
and forwarded to the server for processing.

2. The diskette image's CONFIG.SYS is processed.

3. The diskette image's AUTOEXEC.BAT is executed.

Eventually, the client machine can execute a program such as the IBM
PC LAN Program that allows it to access network servers. After doing so,
it is probably appropriate to end the session with the RPL server so the
server can reuse the session table entry for another client machine. (Note
that a slightly sophisticated RPL server can service many client machines
simultaneously, each using its own diskette image.)

Unlinking from an RPL Server

Since an RPL session must have an NcbLsn value of one at a client ma­
chine, it would be easy to issue a Hang Up command specifying an
NcbLsn value of one. However, the redirection logic would indicate that
RPL was still active.

Chapter 14: Medialess, RPL, and Redirectors 165

If the client machine actually had an A: diskette drive, it would not be
able to use it because the redirection logic would continue to attempt to
redirect all INT 13 requests over the nonexistent session. To avoid this
problem, NetBIOS provides the Unlink command.

The Unlink Command

The Unlink command is trapped by the NetBIOS interface and passed to
special logic if RPL is still active. Otherwise, the command is ignored but
returns with a zero return code. The special logic

• issues a Hang Up command for the RPL session
• releases the memory that was allocated at the beginning of the

RPL logic execution
• resets the RPL active indicator to indicate that RPL is not active

However, all INT 13 requests must continue to enter the redirection logic
because the INT 13 interrupt vector cannot be reset to its original BIOS
setting in case other TSRs may have captured the vector during the boot
process. The redirection logic continues to be driven even though it no
longer performs any useful function. It simply passes the requests to the
original INT 13 routines when it detects that RPL is no longer active. Fi­
nally, because the Unlink is tied to the LANA NetBIOS RPL, it is easy to
see that most NetBIOS coders will never have a requirement to use the
command. However, most NetBIOS implementations honor the com­
mand as a compatibility legacy.

The PC Network Technical Reference Manual has sample programs
that illustrate an RPL server program and provide a utility to build disk­
ette images. Since the programs are provided assembly listings, they pro­
vide an educational way to learn the RPL process.

Part III

A Cyclic Redundancy Check
(CRC) Treatise

CRC Fundamentals) 169
CRC-16 and CRC General Mechanics) 181
CRC-CCITT and Minimum Look-Up Table Sizes) 199
CRC-32-Token-Ring) PC Network) and Ethernet) 207

167

Chapter 15

CRC Fundamentals

LAN adapters typically provide transmission techniques to verify that
messages traverse the LAN's media without error. However, not all LAN
nodes and their adapters have the necessary hardware to guarantee that
messages are transferred between the LAN adapter and the node's mem­
ory without error.

For example, many LAN adapters do not have parity checking on the
memory that buffers their messages. Hence, sensitive applications may
require transmitter and receiver applications to provide end-to-end data
integrity checking on all LAN messages.

The Need for CRC Checking

Cyclic Redundancy Checking (CRC) processing is a powerful error
checking technique, but is often misunderstood because of its complex­
ity. Consequently, many popular CRC "implementations" do not imple­
ment CRC checking to observe existing popular conventions, and so do
not generally interact correctly outside of limited environments.

With a message CRC technique, various data fields within a message
are used to produce a value, called a CRC, which is included as the final
message field. When a message arrives at its destination, the receiving
machine uses an identical process to calculate a CRC and compares its
independently calculated CRC with the one that arrived with the mes­
sage. If the two CRCs do not match, an error occurred and the communi­
cation session"proceeds under the protocol's error recovery provisions.
However, if the two CRCs do match, chances are "good" that the mes­
sage arrived without mishap. In truth, using a CRC does not guarantee

169

170 Part III: A CRC Treatise

100% error detection, but it can significantly improve the chances of de­
tecting errors without the cost of trying to achieve perfect detection.
How "good" the chances are depends on the CRC method used. Some
are clearly more effective than others.

The XMODEM Check Sum

Ward Christensen's XMODEM protocol computes a CRC-like value (tech­
nicallya check-sum) for each message by adding together the binary val­
ues of message characters and dividing the sum by 256. The one-byte
remainder value is transmitted to, and used by, a receiving machine in
much the same manner as a CRC.

Statistical calculations indicate that XMODEM's approach detects
about 95% of all potential transmission errors for XMODEM's 128-byte
character messages, making its data transmission sessions typically suc­
cessful.

As an example of an error that XMODEM does not detect, consider
one that reverses the position of two adjacent bytes within a message.
Here, "carp" may erroneously become "crap." Since the sum of the bi­
nary values of the characters is the same, the error goes undetected with
curious and unpredictable social consequences. Because a 5 % chance
for an error to slip through is too large for many applications, CRC tech­
niques are available to replace XMODEM's check-sum approach.

CRC Mathematics

Protocols that use CRC checking often transmit messages consisting of a
header field followed by a text field. Within a typical message (Figure 15-
1), the beginning of the header portion is indicated by an SOH character
(Start of Header, Ox01).

The text field begins with an STX character (Start of TeXt, Ox02),
which also terminates the header field. The text field is terminated by an
ETX (End of TeXt, Ox03) or ETB (End of Text Block, Ox17). The CRC field
follows the ETX/B character. The particular message fields used to gener­
ate the CRC vary by specific protocol and are not addressed here.

Before discussing how CRC values are computed, let's review some
elementary concepts.

Chapter 15: CRC Fundamentals 171

s S E

0 Header T <e-viMMMMiT e xt fii&i@Mi • T CRC

H X X/B

Fig. 15-1. Format of a typical message.

Algebraic Polynomial Division

Recall the many pleasures of polynomial division. In this procedure,
one algebraic polynomial divides another to yield a quotient polyno­
mial and a remainder polynomial. For example, suppose you had the
following:

F(x) = X 5 + 9X 3 + X2 + 1

P(x) = x 2 - 1

Dividing F(x) by P(x) yields a quotient polynomial Q(x) of

Q(x) = x3 + lOx + 1

and a remainder R(x) polynomial of

R(x) = lOx + 2

Figure 15-2 has the mathematics for the division. Adding R(x) to the
product ofP(x) by Q(x) returns F(x) as a final result. That is, the process is
reversible.

In Figure 15-2, every polynomial has a numeric degree determined
by the value of the highest power of x found in a term that is nonzero. In
this example, the degree of P(x) is two; the degree of F(x) is five. When
one polynomial divides another, the remainder R(x) always has a degree
less than the degree of the divisor polynomial, P(x). Thus, the remainder
polynomial always has equal to or fewer terms than the degree of the di-

172 Part III: A CRC Treatise

3 2
x + Ox + 1 Ox + 1 = Q(x)

2 1 5 4 3 2
x + Ox - 1'J x + Ox + 9x + x + Ox + 1

5 4 3
x+Ox-x

4 3 2
Intermediate Remalnder- Ox + 10x + x

4 3 2
Ox + Ox + Ox

Intermediate
3 2

Remalnder_ 10x + x + Ox

3 2
10x + Ox - 10x

2
Intermediate Remalnder_ x + 10x + 1

2
x + Ox - 1

Final Remainder- 10x + 2 = R(x)

Fig. 15-2. Algebraic polynomial division.

visor polynomial. In the figure, R(x) has two terms and its degree is one,
which is less than the degree of P(x).

The last two terms of F(x) (Ox + 1) are not divided by P(x) because
they have a smaller degree than the divisor. Their presence is reflected in
the remainder R(x), but not the quotient Q(x). Stated differently, the divi­
sor polynomial was not directly applied to the low-order terms of F(x).

All arithmetic in this example uses normal decimal arithmetic within
standard polynomial division procedures, which produce intermediate
remainders used in the next step of the division process.

When subtracting or adding one term from or to another, borrowing
or carrying from an adjacent term is not permitted because the terms are
independent.

Now consider Figure 15-3 which uses a shorthand method to summa­
rize the steps in this example.

Modulo 1\vo Arithmetic and Polynomial Division

Modulo two arithmetic is easy to confuse with base-two (binary) arith­
metic because both types allow only digits having a value of zero or one.
However, in base-two arithmetic, 1 + 1 equals 10 and in modulo two
arithmetic, 1 + 1 equals zero.

Chapter 15: CRC Fundamentals

1 0

1 0 10 1

o 9

1 0 -1

o 10 1

o 0 0

o

10 1 0

10 0 -10

10

o -1

10 2

173

Fig. 15-3. Algebraic polynomial division, shorthand form.

Table 15-1 has the complete addition and subtraction tables for mod­
ulo two computing, as well a corresponding exclusive-OR table. Clearly,
there is no difference between the modulo two arithmetic operations
and the exclusive-OR operation.

Th.ble 15-1. Modulo Two Arithmetic vs. Exclusive-OR

Difference Exclusive-OR
First Value Second Value Sum of Values of Values of Values

0 0 0 0 0

0 1 1 1 1

1 0 1 1 1

1 1 0 0 0

Thus, if we have two polynomials,

P(x) = x2 + 1

F(x) = X S + x3 + 1

dividing F(x) by P(x) using modulo two arithmetic yields

Q(x) = x3 and R(x) = 1

174 Part Ill: A CRC Treatise

See Figure 15-4 for the details.

3
x = Q(x) == 1 0 0 0

P(x) = x 2 + 1 == 1 0 pj 1 0 1 0 0 1 == F(x) = x 5 + x 3+ 1

1 0 1

Intermediate Remainder - 0 0 0

000

Intermediate Remainder - 0 0 0

000

Final Remalnder- 0 0 1 == 1 = R(x)

Fig. 15-4. Modulo two division, shorthand form.

Adding R(x) to the product of P(x) and Q(x) recovers the original P(x):

P(x) [x] Q(x) + R(x) = F(x)

Since modulo two subtraction is equivalent to an exclusive-OR oper­
ation,

P(x) [x] Q(x) = F(x) - R(x) = F(x) + R(x) = F(x) exclusive-OR R(x)

Thus, under modulo two arithmetic rules, dividing a dividend polyno­
mial F(x) by a polynomial Q(x) produces a remainder polynomial R(x).
Then, the sum of F(x) and R(x) is evenly divisible by Q(X). Finally, in all
cases, the coefficients of all polynomial terms is zero or one.

CRC Calculation

In eRe calculations, a message's bit pattern is treated as a shorthand rep­
resentation of a corresponding polynomial's coefficients. Assuming
eight bits per message byte, a given ten-byte message would have 80 bits
that uniquely define an 80-term polynomial (having terms with degree
79 through zero). By definition, these polynomial term coefficients all
have a value of zero or one.

To compute a message eRe, a selected polynomial (P(x)) divides a
polynomial (F(x)) derived from the message using the rules of modulo

Chapter 15: CRC Fundamentals 175

two arithmetic. This yields a remainder polynomial (R(x)) whose coeffi­
cients have the same shorthand representation as the bits of the mes­
sage's CRC value.

Message Bit Patterns

Suppose a message consists of three data characters: A, B, and C (Figure
15-5). To transmit the message, the first byte (A) is transmitted, then the
second (B), followed by the last (C). However, because the bits of a byte
are traditionally transmitted low-order bit first, the bits must be reversed
on a byte-by-byte basis to obtain the corresponding polynomial actually
representing the message's bit pattern. *

"A" Transmitted first "C" Transmitted last

\/
Message start --+ ABC _ Message end

Fig. 15-5. Message byte transmission order.

Thus, the ASCII character, A, equivalent to a binary 01000001, is
bitwise reversed to become 10000010. This new value corresponds to
the polynomial

CRC Preconditioning

Once a message's bit pattern is determined, a number of binary digits
typically having the same value (all zeros or ones) and equal in number to
the degree of the polynomial divisor are prepended to the message bit
pattern (Figure 15-6). This introduces an initial intermediate value re­
mainder for the subsequent CRC division.

'One exception to the low-order bit-first transmission rule is the ANSI/IEEE 802.5
Standard observed by IBM's Token-Ring adapters. However, since LAN adapters
traditionally provide CRC checking on the LAN media, all programs in this book
assume that the low-order bit first convention will be observed. This allows the
programs to be useful in other telecommunication environments as well as in LAN
environments.

176 Part III: A CRC Treatise

PP ... PMM ... MZZ ... Z

Legend: P -.- Prepended bit values
M -.- Message bits
Z -.- Appended binary zeros

Fig. 15-6. Prep ending a CRC preconditioning value.

Binary Zero Padding

Next, a number of binary zeros, equal in number to the degree of the
polynomial divisor, are appended to the message bit pattern. This allows
the divisor polynomial to be applied against every bit position of the
original message polynomial.

Modulo 1\vo Division

The polynomial created by the original message bit pattern and the
prep ending and padding steps is divided using a selected eRe divisor
polynomial under modulo two arithmetic division rules.

CRC Postconditioning

The resulting quotient is discarded and the remainder is subject to fur­
ther processing under the rules of the eRe generation procedures. Typi­
cally, the value is left alone or is, at most, subject to a bitwise inversion
where all binary zeros are transformed to binary ones and vice versa.

CRC 1ransmission Procedure

The calculated eRe value is transmitted immediately following transmis­
sion of the original message. The eRe is transmitted high-order bit first
as a single unit, even if it consists of more than eight bits. All the eRe bits
are transmitted, even high-order zero bites).

Transmitting the eRe after the original message characters has the ef­
fect of subtracting the calculated eRe value from the polynomial created
by the prepending, message bit reversal, and padding steps (Figure 15-7).
Prepending eRe bits to the message bit stream has the same effect as sub­
tracting the eRe value from the message bit stream appended with bi­
nary zeros.

Chapter 15: CRC Fundamentals

MM ... MZZ ... Z
-CC ... C

MM ... MCC ... C

Legend: C ~ CRC bit values
M ~ Message bits
Z ~ Appended binary zeros

Fig. 15-7. Prep ending CRC bits to the message bit stream.

Message Receipt Procedure

177

The receiving machine calculates the CRC on the arriving data characters
and includes the arriving CRC characters as though they were part of the
original message. It also omits the CRC postconditioning procedure.

Processing the original message bytes and the CRC bytes in this man­
ner results in a value called a residue. Because the receiving machine
does not perform a CRC postconditioning procedure, the final value is a
residue and not a CRe. Each CRC implementation expects a specific resi­
due value for a successful message reception. If the calculated residue
differs from the expected value, an error occurred during the transfer.

Prevalent CRC Polynomials

The mathematical theory involved in selecting effective divisor poly­
nomials for CRC computations is beyond most graduate mathematics
courses. It involves mathematical field theory at levels that make all but
the most dedicated math aficionados blanch in bewilderment. Luckily,
we can present the results of the mathematics without understanding the
process used to derive them.

The most commonly used CRC polynomials, their associated pre­
conditioning values and postconditioning procedures, and receiving sta­
tion-specific final remainders are indicated in Table 15-2.

Because the remainder for degree 16 divisor polynomials is degree 15
or less, using one of the first two polynomials (CRC-16 or CRC-CCITT)
results in a 16-bit remainder. This allows detection of all errors spanning
16 bits or less and about 99.995 % of the others.

178 Part Ill- A CRC Treatise

Table 15-2. Popular CRC Values

Polynomial Preconditioning Postconditioning Final
Polynomial Name Value Procedure Residue

CRC-16 OxOOOO None OxOOOO

CRC-CCITT

X 16 + X 12 + X S + 1

X32 + X 26 + X 23 +
X 22 + X 16 + X 12 +

(SDLC/HDLC)

CRC-32

OxFFFF

OxFFFFFFFF

Bit Inversion OxFOB8

Bit Inversion OxDEBB20E3

xl! + x lO + x 8 +
x7 + X S + X4 +
x 2 + X + 1

Which Polynomial Should You Use?

Statistical analysis shows that the SDLC/HDLC polynomial is slightly bet­
ter suited to some communication environments. This advantage is pri­
marily due to the data link layers associated with this polynomial that
typically use bit-stuffing techniques to guarantee the absence of SDLC/
HDLC frame flag bytes within messages. So, if you are not doing bit-stuff­
ing, the CRC-16 and CRC-CCITT polynomials are virtually equivalent in
their ability to detect errors.

For messages less than 4,000 characters, either the CRC-16 or CRC­
CCITT polynomials are excellent. However, the 99.995 % error detec­
tion rate for the 16-bit CRC polynomials decreases as the message size
becomes larger than 4,000 bytes. So, if you are sending large messages or
want an extra measure of data integrity, use the CRC-32 polynomial.

Chapter 15: CRC Fundamentals 179

The CRC-16 and the CRC-CCITT polynomials have reversed forms.
The reversed form of CRC-16 is

X 16 + X14 + X + 1

and of CRC-CCITT is the following:

Chapter 16

CRC-16 and CRC General Mechanics

Suppose we wish to compute the CRC-16 CRC for a message consisting of
the three characters "ABC." Remembering the bit reversal on a byte-by­
byte basis, the CRC preconditioning step, and padding of 16 binary zero
bits forced by division by a polynomial of degree 16, the division is set
up as illustrated in Figure 16-1. Note that the preperiding step can be omit­
ted for CRC-16 because it only prepends binary zeros.

"A" = 01000001 - 100000010

"B" = 01000010 - 010000010

"C" = 01000011 _ 110000010

1 10000000 00000101\1 00000000 00000000 100000010 010000010 110000010 00000000 00000000
~CRC-16 divisor~t+--16 zeros~~A---+tI+-B-II+-C~I_16 zeros~

(preconditioning) Bitwise Bitwise Bitwise (padding)

Reversed Reversed Reversed

Fig. 16-1. Sample CRC-16 division setup.

For those interested in performing the computation, the division re­
mainder is Ox4521 or binary 0100010100100001. If the result is not obvi­
ous, don't worry-it isn't. Although the task of hand-computing the
remainder of a 4,000-character message is formidable, the thought is
completely unnerving!

A C function that performs the individual bit reversals and related
computations is illustrated without further comment in Listing 16-l.
While looking at this program, you might well imagine the computa­
tional pressure on the engine to produce CRCs with all the bit selection,

181

~-~----~-~---~ ~~~---~---.

182 Part 111: A eRe Treatise

shifting, and exclusive-ORing involved that occurs for each message
byte. Moreover, the CRC itself must be reversed bitwise before transmit­
ting (not illustrated). Surely there must be a better way, and there is. How­
ever, many programs continue to use the slow, inefficient method
despite the existence of superior approaches.

Listing 16-1. Bit-Oriented CRC Calculation

unsigned CrcAccum; 1* keep intermediate remainders here ... *1

WdsCrcCalc2(NewChar)
unsigned char NewChar;
{

/* inefficient, traditional CRC-16 routine */
/~ this is the next character to compute on */

}

i nt i;
long X;
unsigned char ReversedChari

ReversedChar = ReverseChar(NewChar); 1* reverse the byte's bits *1

x = ((long) CrcAccum « 8) + ReversedChar; 1* append byte to
intermediate remainder *1

for (i = 0; i < 8; i++) { 1* loop here */

x «= 1; /* stage'up the high-order bit */

if x & Ox01000000) 1* high-order bit a one? */
x "= Ox01102100; 1* if so, subtract the divisor *1

}

CrcAccum = (((x & OxOOFFFFOO) » 8 »; 1* eliminate debris and save *1

unsigned ReverseChar(c)
unsigned char c;
{

unsigned i, ShiftRight, ShiftLeft;
unsigned char ReversedC;

ReversedC = 0;
ShiftRight = Ox0080; /* beware, below right-shifting isn't portable */
ShiftLeft = Ox0001;

for (i = 0; i < 8; ShiftLeft «= 1, ShiftRight »= 1, i++) {

if(c & ShiftRight) /* found a one-bit? */

Chapter 16: CRC-16 and General Mechanics 183

Listing 16-1. (cont.)

ReversedC := ShiftLeft; 1* if so, set it reversed *1
}

return(ReversedC);
}

CRC Hardware

Because CRC approaches existed before the widespread availability of
microprocessors, CRC computation was usually accomplished in hard­
ware. A preliminary representation of hardware circuitry necessary to
produce CRC-16 CRCs is illustrated in Figure 16-2. Note the bits are or­
dered differently in the data and intermediate remainder registers.

1t4l t
Data Register ~

High bits • Low bits

Shifting direction •
D D D D D D D D
8 7 6 5 4 3 2

16 15 2 0
x x x x

+~ I I.-+~ I 1.-+
c c c c c c c C

2 3 12 13 14 15 16

<!llilm. _______________ mShifting direction

High bits Low bits

~ji y'; ; MM. Intermediate Remainder Register _mmmmmm.~

Fig. 16-2. Preliminary CRC-16 hardware arrangement.

At the beginning of each message, the intermediate remainder regis­
ter is initialized to the appropriate preconditioning value (OxOOOO for

184 Part Ill- A CRC Treatise

CRC-16). Each message data byte is sequentially placed in the data regis­
ter, which shifts from left to right. For each byte, the illustrated circuitry
emulates the CRC-16 modulo two polynomial division process by using
the value of the intermediate remainder register's high-order bit (C[I]) to
subtract the lower order terms of the divisor polynomial, when appro­
priate (x* * 15, x* *2, and x* *0), and create new intermediate remainders.

The subtraction is accomplished by exclusive-OR gates on the inter­
mediate remainder's lower order bits. They are moved from right to left
as the high-order bit rotates out of the intermediate remainder shift regis­
ter circuitry.

Each nonzero divisor polynomial term requires an exclusive-OR
gate, which is situated so that adding the value of the subscript of the bit
intermediate remainder register immediately to the left of the OR gate to
the exponent of the corresponding polynomial divisor term produces a
sum of sixteen. (Here, 1 plus 15, 14 plus 2, and 16 plus 0 all equal 16.)

If the current intermediate remainder register high-order bit (C[I]) is
a zero bit, then the lower order bits are promoted untouched and a sub­
traction of all zero bits results. If the intermediate remainder register
high-order bit is a one bit, the lower order bits of the divisor polynomial
are exclusive-ORed at the appropriate positions as the bits are promoted
to the next bit position.

Each time the current high-order bit shifts out of the intermediate re­
mainder register, the current low-order bit in the data register shifts into
the low-order bit of the intermediate remainder register, perhaps being
modified by the value of the latter's high-order bit in the process. This
emulates the polynomial division process which introduces new bits
into the current intermediate remainders by having them drop down
from the dividend.

When the data register has shifted eight times (assuming eight bits to a
byte), the next sequential message data byte is placed in the data register.
When there are no more data bytes to transmit, two bytes of zeros are
sequentially placed in the data register to achieve the necessary padding
of binary zeros for a 16th-order CRC divisor polynomial. Since there is
no postconditioning step, this completes the CRC calculation process
and the 16-bit CRC value can be transmitted. However, the 16-bit value
must be transmitted high-order bit first as a contiguous unit (e.g., as bits
C[1], C[2], ... , C[16]). This requires a bit reversal of the CRC value to
compensate for the transmission circuitry's transmitting the low-order
bit first. Rather than do this in hardware, the circuitry can compute the
entire CRC in a bit-reversed manner. This is illustrated in Figure 16-3 and
explains why the register bit positions were numbered differently in Fig­
ure 16-2.

Chapter 16: CRC-16 and General Mechanics

~, """,,61,,1 Data Register !Ii§*,m:"ilI*~
High bitsPll"%F'" "&''''''''41'' Low bits

Shilting direction thjo:dhc:@'p,',",w>",V:w>

D D D D D D D D
8 7 6 5 432

+----------~--------------------------------,--------.

o
x

c C
16 15

2
x

+ -J I I L.....-I 1...-...J.---I1 ____ l-. +

c C
14 13

c c c C
543 2

15
x

c

Low bits High bits

ic::<!@l+"""""W'4kY"",,, !Intermediate Remainder RegisterNdlt, $&W_w":",,w,,-r,~
S h i I tin g d ire ct ion c::::TIJi'iZ1Ji'iZ1Ji'iZ1Ji'iZ1Ji'iZ1Ji'iZ1Ji'iZ1l11i3!Ji'iZ1l11i3!lIIi3!lIIi3!lIIi3!Ji'iZ1l11i3!lIIi3!~!>

Fig. 16-3. Improved CRC-16 hardware arrangement.

185

16
x

Note, the two final binary zero padding bytes have the effect of multi­
plying the message polynomial by 2 * * 16, but advancing the introduc­
tion of the data bits by 16 positions has the same effect. So, using the
popular circuitry illustrated in Figure 16-4 eliminates the requirement to
process the final two bytes of binary zeros and accelerates the eRe calcu­
lation in the process. In this scheme, the right-most bits of both registers
are exc1usive-ORed together to produce an intermediate bit value of ei­
ther a zero or one. (In the case of the data register, the right-most bit is the
low-order bit; in the case of the intermediate remainder register, it is actu­
ally the high-order bit.) The registers are then shifted to the right one bit
position.

During the shift, the intermediate bit value is also exc1usive-ORed
with the bits leaving eRe register bit positions 15 and 2. The results of
these operations are then placed in positions 14 and 1, respectively. In
addition, the intermediate bit value is placed in the intermediate remain­
der's register bit position 16. Finally, the data register is shifted right one
position to present the next bit for processing.

186 Part 111: A CRC Treatise

1cI11.-- Data Register EI!lIIII_ •• ~1
High bits -----mtlli> Low bits

D D D D D D D D
8 7 6 5 4 3 2

+
2 15 16

x x x

+-J I I 1 1-.+
c c c c c c c c C

16 15 14 13 5 4 3 2

Low bits I High bits

r1 Intermediate Remainder Register II
Fig. 16-4. Final CRC-16 hardware arrangement.

Observations

All data bits are naturally processed in reverse order on a byte-by-byte
basis, so bit-reversal provisions are not required in this method. In addi­
tion, inserting data bits at the new position eliminates processing the two
bytes of zero padding. Finally, the CRC register is arranged so that it can
be right-shifted as a unit for proper transmission. This is done by trans­
mitting the right-most byte first followed by the left-most byte.

If it seems a bit mysterious, it really isn't. Let's shift a byte through a
CRC-16 generator by hand. The data byte is binary 00000001.

Start : Data = 0000000

v
---------------------- +

I A
I

V V :
->00 + 0000000000000 + 0

Intermediate value = 1

Chapter 16: CRC-16 and General Mechanics

Result after shift 1

Result after shift 2

Result after shift 3

Result after shift 4

Data = XOOOOOO 0

v
---------------------- + New Intermediate value

I 1\
I

v V
->10 + 1000000000000 + 1

Data XXOOOOO 0

V

---------------------- + New Intermediate value
I 1\
I

V V

->11 + 1100000000000 +

Data = XXXOOOO 0

V

---------------------- + New Intermediate value =
I 1\
I

V V

->11 + 0110000000000 + 1

Data XXXXOOO 0

V

---------------------- + New Intermediate value
I 1\
I

V V

->11 + 0011000000000 + 1

187

188 Part III: A eRe Treatise

Result after shift 5

Result after shift 6

Result after shift 7

Result after shift 8

Final Value

Data = XXXXXOO 0

v
---------------------- + New Intermediate value =

I 1\
I

v V

->11 + 0001100000000 + 1

Data = XXXXXXO 0

V

---------------------- + New Intermediate value
I 1\
I

V V

->11 + 0000110000000 + 1

Data = XXXXXXX 0

V

---------------------- + New Intermediate value = 1
I " I

V V

->11 + 0000011000000 + 1

Data = XXXXXXX X Need another data byte

V

---------------------- + ???
I 1\
I

V V

->11 + 0000001100000 + 1 New Intermediate value
cannot be determined until
the next data byte is loaded
into the data register

When manually computing the CRC for this byte using modulo two
polynomial division, be sure to perform the necessary bit reversal and bit
padding of the dividend value.

Chapter 16: CRC-16 and General Mechanics 189

Because CRC-16 has no postconditioning, the CRC-16 value for this
operation is equal to the value that is left in the intermediate remainder
register. This value is subsequently transmitted and processed as though
it were a single value spanning two data bytes.

If the receiving station has the same CRC value in its CRC register (as
it is on a successful transmission), it receives the right-most CRC byte
first. Thus, the intermediate bit value produced by the exclusive-ORing
process during the receipt of the inbound CRC-16 CRC value is always a
zero bit. Similarly, the intermediate values produced by processing the
left-most byte of the CRC-16 CRC value should always yield an intermedi­
ate bit value of binary zero at each step. Thus, when the receiving station
completes processing the incoming CRC bytes, there should always be a
zero value in the receiving station's intermediate CRC-16 register.

This is the test for a successful transmission using CRC-16 and corres­
ponds to our observation that there should be no remainder because

P(x) [x] Q(x) = F(x) - R(x) = F(x) Exclusive-OR R(x) = F(x) + R(x)

Here, F(x) is the message polynomial multiplied by X* * 16 (padded with
two bytes of binary zeros). In other words, transmitting the CRC and pro­
cessing it as part of the inbound message is equivalent to adding it to a
message that has been right-shifted 16 bits resulting in an evenly divisible
polynomial.

The zero residue test does not hold for all CRCs, however. Because
the CRC-CCITT calculation process has a bit-inverting postconditioning
step, the remainder is not transmitted-only its inverse. This means the
inbound data stream is guaranteed not to be evenly divisible and always
leaves a nonzero residue after processing. This is clear because, during
receipt of the inbound CRC-CCITT CRC value, the bit inversion step al­
ways forces the intermediate bit values to have a value of one.

One small problem remains. The programming to achieve this ap­
proach is no faster or easier than for the preceding polynomial division dis­
cussion example. What is needed is an approach that is fast and easy to
code.

Generalized CRC-16 Shifting

Suppose that you want to calculate the CRC-16 of an arbitrary byte for an
arbitrary value in the intermediate remainder register. Assume the follow­
ing layout:

190 Part 1Il: A CRC Treatise

Hi gh Low

Oata Byte: 08 07 06 05 04 03 02 01

Low High

:<--------- Intermediate Remainder Register ---------->:
C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1

Using the procedure outlined above, we can apply the arbitrary byte to
the arbitrary CRC value. As before, DI and CI are exclusive-ORed to­
gether. The result is exclusive-ORed to bits CIS and C2 as they shift to the
left and the result of exclusive-~Ring D 1 and C 1 is placed in C 16. The
data byte and intermediate remainder register look like this:

Oata Byte: X 08 07 06 05 04 03 02

:<--------- Intermediate Remainder Register ---------->:
o C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3 C2
V1 V1 V1

where VI = D1 + CI and all values within a CRC intermediate register
column are exclusive-ORed together to provide the bit value for that bit
position within the register. In general, let Vi = Di + Ci.

After processing two bits, the data byte and intermediate remainder
register look like this:

Oata Byte: X X 07 06 05 04 03

:<--------- Intermediate Remainder Register ---------->:
o 0 C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4 C3

V1 V1
V2 V2

V',

V2

After processing three bits, the data byte and intermediate remainder reg­
ister look like this:

Oata Byte: X X X 07 06 05 04

:<---------- Intermediate Remainder Register --------->:
o 0 0 C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5 C4

V1 V1
V2 V2

V3 V3

V1
V2
V3

Chapter 16· CRC-16 and General Mechanics 191

After processing four bits, the data byte and intermediate remainder reg­
ister look like this:

Data Byte: X X X X 07 06 05

:<---------- Intermediate Remainder Register --------->:
o 0 0 0 C16 C15 C14 C13 C12 C11 C10 C9 C8 C7 C6 C5

V1 V1
V2 V2

V3 V3
V4 V4

V1
V2
V3
V4

After processing 8 bits, elimination of canceling instances of the same
bits involved in a bit position's exclusive-OR calculation, and rearrange­
ment of values, the data byte and CRC register look like this:

: <-------------
0 0 0 0
V1 V1 V7 V6
V2 V2 V8 V7
V3 V3
V4 V4
V5 V5
V6 V6
V7 V7
V8

Data Byte: X X X X X X X X

Intermediate Remainder Register ------------->:
o 0 0 0 C16 C15 C14 C13 C12 C11 C10 C9
V5 V4 V3 V2 V1 V1 V1
V6 V5 V4 V3 V2 V2

V3
V4
V5
V6
V7
V8

This is equivalent to the following diagram:

Data Byte: X X X X X X X X

:<-------------- Intermediate Remainder Register ------------->:
o 0 0 0 0 0 0 0 C16 C15 C14 C13 C12 C11 C10 C9
V1 V1 V8 V7 V6 V5 V4 V3 V2 V1
V2 V2
V3 V3
V4 V4
V5 V5
V6 V6
V7 V7
V8 V8

V8 V7 V6 V5 V4 V3 V2 V1

V1
V2
V3
V4
V5
V6
V7
V8

192 Part HI: A eRe Treatise

Noting that P = VI + V2 + V3 + V4 + V5 + v6 + V7 +V8 is simply the
parity of the data byte (even or odd), the figure collapses to

Data Byte: X X X X X X X X

: <-------------- Intermediate Remainder Register ------------->:
o 0 0 0 0 0 0 0 C16 C15 C14 C13 C12 C11 C10 C9

VB V7 V6 V5 V4 V3 V2 V1
VB V7 V6 V5 V4 V3 V2 V1

p p p

which provides an ultrahigh-performance CRC-16 computation ap­
proach for assembly language programs on machines providing parity
values for data characters.

1able Look-Up Schemes

These diagrams all indicate that the new intermediate remainder of a CRC-
16 calculation is computable from the initial values of the data byte and the
intermediate remainder register. Specifically, if you create an intermediate
byte value V that is the exclusive-OR of the left-most byte of the existing
CRC intermediate remainder and the new data byte, the new CRC interme­
diate remainder is created by right-shifting by eight bits (with zero filling in
the high-order positions) the existing CRC intermediate remainder, and
exclusive-ORing a value that can be derived from the various bits of V.
Since V can only have 256 values, it is possible to construct a table that
holds the 256 unsigned integer values. Then, the value corresponding to a
particular value of V is quickly located, using V as an index.

The CRC-16 calculation algorithm now becomes:

1. At the beginning of each message, set the intermediate remainder
register to zero (the CRC-16 preconditioning step).

2. Fetch the first byte of the message.

3. Exclusive-OR the fetched byte with the low-order byte of the in­
termediate remainder to obtain a byte V.

4. Right-shift the intermediate remainder eight bits with the high-or­
der bits (being zero) filling in the process.

5. Using V as an index, fetch a 16-bit unsigned integer value from the

Chapter 16: CRC-16 and General Mechanics 193

CRC table and exclusive-OR it to the shifted intermediate remain­
der.

6. The result of the exclusive-OR operation is the new value of the
intermediate remainder.

7. For each unprocessed byte in the message, sequentially fetch the
byte and go to step 3.

8. The intermediate remainder is transmitted left-most byte first, fol­
lowed by the right-most byte.

This approach processes entire bytes of data using a look-up table. Hence
the popular name Bytewise Table Look-up CRC.

The C program in Listing 16-2 computes the CRC-16 look-up table and
shows how to use it. The first CRC-16 computation is on the binary value
OxOlOO which produces a bitwise-reversed CRC value of Ox9001. The sec­
ond example calculates the CRC-16 of OxOlOO followed by its bytewise-re­
versed CRC (Ox0190). In this case, the CRC is zero as it should be.

The third example illustrates that a string's CRC calculation should
not include the terminating NULL character. In general, the C function
strlen cannot be used to compute the length of a message because the
message may contain NULL characters, which cause the strlen function
to return an incorrect (shorter) message length.

Listing 16-2. CRCI6.C

1*--*1
1* High Performance CRC-16 Computation Routine *1
1* *1
1* Copyright 1988 W. David Schwaderer *1
1* All rights reserved *1
1* *1
1* Warning .•. this program uses bit fields! *1
1* For warnings on bit field hazards see: *1
1* *1
1* C Wizard's Programming Reference *1
1* W. David Schwaderer *1
1* Wiley Press, 1985 *1
1* *1
1*--*1

#define LINT_ARGS

#include <stdio.h>
#include "netbios2.h"

194 Part III: A eRe Treatise

Listing 16-2. (cont.)

#if defined(LINT_ARGS)
extern int main(int argc,char * *argv);
extern void GenerateTabLe(void);
extern void PrintTabLe(void);
extern unsigned int GenerateCRC(unsigned int Length,char *TextPtr);
extern void Logo(void);
#endif

USGI crc_tabLe[256]; 1* gLobaLLy accessibLe *1

main(argc, argv)
int argc;
char *argv[];
{

USGI Length, crc;

1* crc = Ox9001 *1
static char TestArray1[] = { '\x01', '\xOO'};

static char TestArray2[] {'\x01', '\xOO', '\x01', '\x90'};
1* bytewise bytewise *1
1* unreversed reversed *1

static char TestMsg[] = "This is a test message.";

Logo ();

GenerateTabLeO; 1* compute the crc_tabLe *1

PrintTabLeO; 1* dispLay the tabLe *1

Length = sizeof(TestArray1); 1* exampLe *1
crc = GenerateCRC(Length, TestArray1); 1* caLcuLate CRC *1
printf("\n\n\nTestArray1 CRC = Ox%04X", crc);

Length = sizeof(TestArray2); 1* exampLe 2
crc = GenerateCRC(Length, TestArray2); 1* caLcuLate eRC *1
printf("\n\n\nTestArray2 CRC = Ox%04X", crc);

1* exampLe 3 *1
Length = sizeof(TestMsg) - 1; 1* avoid terminating NUL *1
crc = GenerateCRC(Length, TestMsg); 1* caLcuLate a CRC *1
printf("\n\n\nText = [%s]\nCRC = %04X\n\n", TestMsg, crC>;

Chapter 16: CRC-16 and General Mechanics

Listing 16-2. (cont.)

return 0;
}

void GenerateTable() 1* generate the look-up table *1
{

int temp;
union { int i;

struct {

} Bit;
} iUn;

USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI

union { USGI Entry;
struct {

USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI
USGI

i 1 : 1 ; 1* low order bit */
i2 : 1 ;
i3 :1 ;
i4 :1 ;
is : 1 ;
i6 : 1 ;
i7 : 1 ;
iB : 1 ; 1* high order bit *1

:B; 1* unused byte *1

b1 : 1 ; 1* low order bit *1
b2 : 1 ;
b3 : 1 ;
b4 :1 ;
b5 :1 ;
b6 : 1 ;
b7 : 1 ;
bB : 1 ;
b9 : 1 ;
b10 : 1 ;
b11 : 1 ;
b12 : 1 ;
b13 :1 ;
b14 : 1 ;
b15 : 1 ;

USGI b16 : 1 ; 1* high order bit *1
} EntryBit;

} EntryUn;

for (iUn. i = 0; iUn.i < 256; iUn. i ++) {

EntryUn.Entry = 0; 1* bits 2 thru 6 zeroed out now *1

195

196 Part IIr A eRe Treatise

}

}

Listing 16-2. (cont.)

temp = (iUn.Bit.i7 A iUn.Bit.i6 A iUn.Bit.i5 A

iUn.Bit.i4 A iUn.Bit.i3 A iUn.Bit.i2 A

iUn.Bit. i1>;

EntryUn.EntryBit.b16 = (i Un • Bit. i 8 A temp);
EntryUn.EntryBit.b15 = (temp);
EntryUn.EntryBit.b14 = (iUn.Bit. i8 1\ iUn.Bit.i7);
EntryUn.EntryBit.b13 = (iUn.Bit. i7 A i Un. Bit. i 6) ;
EntryUn.EntryBit.b12 = (i Un. Bit. i 6 A iUn.Bit.i5);
EntryUn.EntryBit.b11 = (i Un. Bi t. i 5 1\ i Un. Bit. i 4) ;
EntryUn.EntryBit.b10 = (iUn.Bit. i4 1\ iUn.Bit. i3);
EntryUn.EntryBit.b9 = (iUn. Bit. i 3 1\ iUn.Bit. i2);
EntryUn.EntryBit.b8 (iUn.Bit. i2 1\ iUn.Bit. i1);
EntryUn.EntryBit.b7 (i Un. Bit. i 1) ;
EntryUn.EntryBit.b1 = (iUn.Bit. i8 1\ temp);

crc table[iUn.i] = EntryUn.Entry;

void PrintTable()
{

1* print out the look-up table *1

}

int i;

for (i = 0; i < 256; i++) {
if (!(i % 8))

}

printf("\n Ox%02X - %04X", i, crc_table[iJ>;
else

printf(" %04X", crc_table[i]);

USGI GenerateCRC(Length, TextPtr)
USGI Length;

{

char *TextPtr;

int i, index;
USGI crc;

crc = 0; 1* crc starts at zero for each message *1

Chapter 16: CRC-16 and General Mechanics 197

Listing 16-2. (cont.)

for (i = 0; i < Length: i++, TextPtr++) {
index = ((ere A *TextPtr) & OxOOFF);
ere = ((cre » 8) & OxOOFF) A ere_table[index];

}

return ere;

}

void LogoO
{

printf("\n\n High Performance CRC-16 Computation Routine");
printfC"\n Copyright 1988 W. David Sehwaderer\n\n");

}

/* *-------------------- Program Output -------------------*

OxOO - 0000 COC1 C181 0140 C301 03CO 0280 C241
Ox08 - C601 06CO 0780 C741 0500 C5C1 C481 0440
Ox10 - CC01 OCCO 0080 C041 OFOO CFC1 CE81 OE40
Ox18 - DADO CAC1 CB81 OB40 C901 09 CO 0880 C841
Ox20 - 0801 18CO 1980 0941 1BOO OBC1 OA81 1A40
Ox28 - 1 EOO OEC1 OF81 1F40 0001 10CO 1C80 OC41
Ox30 - 1400 04C1 0581 1540 0701 17CO 1680 0641
Ox38 - 0201 12CO 1380 0341 1100 01 C1 0081 1040
Ox40 - F001 30 CO 3180 F141 3300 F3C1 F281 3240
Ox48 - 3600 F6C1 F781 3740 F501 35CO 3480 F441
Ox50 - 3COO FCC1 F081 3040 FF01 3FCO 3E80 FE41
Ox 58 - FA01 3ACO 3B80 FB41 3900 F9C1 F881 3840
Ox60 - 2800 E8C1 E981 2940 EB01 2BCO 2A80 EA41
Ox68 - EE01 2ECO 2F80 EF41 2000 EOC1 EC81 2C40
Ox70 - E401 24CO 2580 E541 2700 E7C1 E681 2640
Ox78 - 2200 E2C1 E381 2340 E101 21CO 2080 E041
Ox80 - A001 60CO 6180 A141 6300 A3C1 A281 6240
Ox88 - 6600 A6C1 A781 6740 A501 65CO 6480 A441
Ox90 - 6COO ACC1 A081 6040 AF01 6FCO 6E80 AE41
Ox98 - AA01 6ACO 6B80 AB41 6900 A9C1 A881 6840
OxAO - 7800 B8C1 B981 7940 BB01 7BCO 7A80 BA41
OxA8 - BE01 7ECO 7F80 BF41 7000 BOC1 BC81 7C40
OxBO - B401 74CO 7580 B541 7700 B7C1 B681 7640
OxB8 - 7200 B2C1 B381 7340 B101 71CO 7080 B041
OxCO - 5000 90C1 9181 5140 9301 53CO 5280 9241
OxC8 - 9601 56CO 5780 9741 5500 95C1 9481 5440
OxOO - 9C01 5CCO 5080 9041 5FOO 9FC1 9E81 5E40

198 Part 11I: A CRC Treatise

Listing 16-2.

Ox08 - 5AOO 9AC1 9B81 5B40
OxEO - 8801 48CO 4980 8941
OxE8 - 4EOO 8EC1 8F81 4F40
OxFO - 4400 84C1 8581 4540
OxF8 - 8201 42CO 4380 8341

TestArray1 CRC = Ox9001

TestArray2 CRC = OxOOOO

Text = [This is a test message.]
CRC = 906A

9901
4BOO
8001
8701
4100

(cont.)

59CO 5880 9841
8BC1 8A81 4A40
40CO 4C80 8C41
47CO 4680 8641
81 C1 8081 4040

CRC Compatibility Caveats

A number of "CRC implementations" exist that do not provide the re­
sults the example CRC programs in this book provide. Typically, the dif­
ferences in the other implementations are a consequence of their
ignoring one or more of the following conventions:

• the bit reversal legacy of message characters
• the convention of transmitting a CRC in a contiguous bit-reversed

manner, high-order bit first
• international preconditioning and post conditioning standards for

different CRC computation approaches

The CRC example programs in this book operate correctly in a variety
of hardware and software environments. Ignoring data communication
legacies, arcane as they may be, precludes the other "CRC implementa­
tions" from successfully operating in the same environments, though the
other implementations can operate with each other when each ignores
the identical conventions.

Each of the CRC programs in this section builds a table and then uses
it. Clearly a more efficient approach is to define the table as an array of
constants so that it does not have to be generated each time the program
executes.

Chapter 17

CRC-CCITT and Minimum Look-Up
Table Sizes

The CRC-CCITT polynomial is:

Using the discussion in Chapter 16 as a reference, the appropriate CRC­
CCITT generation hardware is illustrated in Figure 17-1.

o
x

5
x

~'+iiM%"§I@m Data Register k"1K'+¥'hJt~
High bits FlWi@4""4'K"i' A'Ai,~ Low bits

12
x

c c c c C
16 15 14 13 12

c
11

c c c c C
5 4 3 2

Low bits f:%IiiM.!> High bits

~iiMiiMiiMiiMiiMiiMiiMiiM%IiiMl1iiMiiMlE Intermediate Remainder Register @@biiH!W&il4¥WP?4!hi$"'+"W'~

S hilt i n 9 d i reet ion _%IiiMl1%1iiMl1%1iiMl1%1iiMl1%1iiMl1%1iiMl1%1iiMl1iiMiiM%IiiMl1%1iiMl1%1iiMl1%1iiMl1%1iiMl1%1iiMl1%1iiMl1%1iiMl1%1iiMl1%1iiMl1Jt>

Fig. 17-1. Typical CRC-CCITT hardware representation.

16
x

199

200 Part fI!' A eRe Treatise

After processing 1 bit, the intermediate remainder register value is:

o C16 C15 C14 C13 C12 C11 C10 C09 C08 CO? C06 cos C04 C03 C02
V01 V01 V01

After processing 2 bits, the intermediate remainder register value is:

o 0 C16 C15 C14 C13 C12 C11 C10 C09 C08 CO? C06 cos C04 C03
'V02 V01 V02 V01 V02 V01

After processing 3 bits, the intermediate remainder register value is:

o 0 0 C16 C15 C14 C13 C12 C11 C10 C09 C08 CO? C06 COS C04
V03 V02 V01 V03 V02 V01 V03 V02 V01

After processing 4 bits, the intermediate remainder register value is:

o 0 0 0 C16 C15 C14 C13 C12 C11 C10 C09 C08 CO? C06 COS
V04 V03 V02 V01 V04 V03 V02 V01 V04 V03 V02 V01

After processing 8 bits, the intermediate remainder register value is:

a 0 0 0 0 0 0 0 C16 C15 C14 C13 C12 C11 C10 C09
V08 va? V06 V05 V04 V03 V02 V01 V04 V03 V02 V01
V04 V03 V02 V01 V08 VOl V06 vas

V04 V03 V02 V01

The 1able Look-Up Approach

V08 VOl V06 V05
V04 V03 V02 V01

Ifa C program uses a CRC-CCITT bytewisetable look-up approach, the
table requires an array of 256 unsigned integers occupying 512 bytes of
memory for a typical machine. Thus, there would be no space savings.
However, a program processes each byte's nibbles independently, just as
it processes each message byte independently. Reexamining the CRC­
CCITT intermediate register after processing four bits indicates this is
very easy to do.

This approach only requires 16 unsigned integers that occupy a mere
32 bytes in a typical machine. The only requirement is that two table
look-ups are required for each byte instead of one table look-up. Clearly
this is a classic trade-off between storage conservation versus conserva­
tion of machine cycles.

Chapter 17: CRC~CCJTT and Look~Up Table 201

A program can also process two bits at a time, requiring four table
look-ups using a table having four entries and requiring a total of 8 bytes.
However, the program instructions to achieve the four passes for each
byte may take more memory than the 24 bytes saved by using a four-en­
try table instead of a larger 16-entry table.

The program in Listing 17-1 uses a nibblewise table look-up approach
to compute CRC-CCITT values. Its structure is similar to the CRC-16 sam­
ple program, so it is presented without much discussion. The primary
differences are:

• It illustrates the compact table-generation principles.
• It illustrates the proper CRC-CCITT postconditioning step.
• It illustrates the proper CRC-CCITT preconditioning step.
• It demonstrates that the CRC-CCITT residue, computed by pro­

cessing a message and its CRC-CCITT bytes, has a value of
OxFOB8.

The only catch is that the program's GenerateCRC() routine always in­
verts its computed values before returning them. That is not appropriate
when computing a CRC residue, so there is a nonintuitive value inver­
sion to undo the unwanted inversion performed by the CRC calculation
routine.

Listing 17-1. CRC-CCITT

/*--*/
/* High Performance Compact */
/* CRC-CCITT Computation Routine */
/* */
/* Copyright 1988 W. David Schwaderer */
/* ALL rights reserved */
/* *1
1* Warning ... this program uses bit fieLds! *1
/* For warnings on bit fieLd hazards see: */
/* */
/* C Wizard's Programming Reference */
/* W. David Schwaderer *1
/* WiLey Press, 1985 */
/* */
/*--*/

#define LINT_ARGS

#incLude <stdio.h>
#include Inetbios2.h"

202 Part III: A CRC Treatise

Listing 17-1. (cont.)

#if defined(LINT_ARGS)
extern int main(int argc,char * *argv)i
extern void GenerateTable(void)i
extern void PrintTable(void)i
extern unsigned int GenerateCRC(unsigned int Length,

unsigned char *TextPtr)i
extern void Logo(void)i
#endif

USGI crc_table[161i

char TestArray1[1 = { 'X' ,

char TestArray2 [1 = { 'X' ,

'y' ,

'V' ,
1* bytewise

'z'

'Z' ,

1* unreversed

main(argc, argv)
i nt argc i
char *argv[]i
{

USGI length, crc, residuei

LogoO i

1* what a tiny table!

}i 1* crc = Ox7ADD

'\xDD' , '\x7A'}i
bytewise *1
reversed *1

*1

*1

GenerateTableO i 1* compute the crc_table *1

}

PrintTableO i 1* display the table *1

length = sizeof(TestArray1)i 1* example 1 *1
crc = GenerateCRC(length, TestArray1)i 1* calculate CRC *1
printf("\n\nTestArray1 CRC = Ox%04X", crc)i 1* display the CRC *1

length = sizeof(TestArray2)i 1* example 2 *1
residue = GenerateCRC(length, TestArray2)i 1* calculate residue *1

1*-- To display the residue you must invert the returned "crc"! --*1
1*------ The residue must always be OxFOB8 for CRC-CCITT •.• ------*1

printf("\n\nTestArray2 residue = Ox%04X\n", Nresidue)i 1* invert! *1

return Oi

void GenerateTable()
{

1* generate the look-up table *1

Chapter 17: CRC-CCITT and Look-Up Table

Listing 17-1. (cont.)

USGI temp;
union { USGI i;

struct {
USGI i1 : 1 ; /* low order bit */

USGI i2 : 1 ;
USGI i3 : 1 ;
USGI i4 : 1 ;
USGI is : 1 ;
USGI i6 : 1 ;
USGI i7 : 1 ;
USGI i8 : 1 ; /* high order bit *1
USGI :8; /* unused byte */

} Bit;
} iUn;

union { USGI Entry;
st ruct {

USGI b1 :1 ; /* low order bit */

USGI b2 : 1 ;
USGI b3 : 1 ;
USGI b4 : 1 ;
USGI b5 : 1 ;
USGI b6 : 1 ;
USGI b7 : 1 ;
USGI b8 : 1 ;
USGI b9 : 1 ;
USGI b10 : 1 ;
USGI b11 : 1 ;
USGI b12 :1 ;
USGI b13 : 1 ;
USGI b14 : 1 ;
USGI b15 : 1 ;
USGI b16 : 1 ; /* high order bit */

} Ent ryBi t;
} EntryUn;

for (iUn. i = 0; iUn. i < 16; iUn. i++) { /* only 16 entries! */

EntryUn.Entry = 0; /* zeros out unreferenced bits */

EntryUn.EntryBit.b16 =
EntryUn.EntryBit.b11 =
EntryUn.EntryBit.b4 = iUn.Bit.i4;

EntryUn.EntryBit.b15 =

203

204 Part III: A CRC Treatise

}

}

Listing 17-1. (cont.)

EntryUn.EntryBit.b10 =
EntryUn.EntryBit.b3 = iUn.Bit.i3j

EntryUn.EntryBit.b14 =
EntryUn.EntryBit.b9 =
EntryUn.EntryBit.b2 = iUn.Bit.i2j

EntryUn.EntryBit.b13 =
EntryUn.EntryBit.b8 =
EntryUn.EntryBit.b1 iUn.Bit.i1j

crc_table[iUn.i] = EntryUn.EntrYj /* save the computed value */

void PrintTable()
{

/* print out the look-up table */

}

USGI ij

printf("\n\n Look at this Tiny CRC-CCITT Look-Up Table ... \n");

for (i = OJ i < 16j i++) {
if (! (i % 8))

}

printf("\n Ox%02X - %04X", i, crc_table[i])j
else

printf(II %04X", crc_table[i]) j

USGI GenerateCRC(Length, TextPtr)
USG I Lengt h j

{

USGC *TextPtr;

USGC TempCharj
USGI i, index, CrcTempj

CrcTemp = OxFFFF; /* CRC-CCITT preconditioning ==> OxFFFF */

for (i = OJ i < Length; i++, TextPtr++) {

TempChar = *TextPtrj

index = «CrcTemp A TempChar) & OxOOOF); /* isolate low-order nibble */
CrcTemp = «CrcTemp » 4) & OxOFFF) A crc_table[index]j /* apply it */

TempChar »= 4; /* stage the next four bits *1

Chapter 17: CRC-CCITT and Look-Up Table

}

}

Listing 17-1. (cont.)

index = «CrcTemp A TempChar) & OxOOOF); 1* isolate low-order nibble *1
CrcTemp = «CrcTemp » 4) & OxOFFF) A crc_table[index]; 1* 2nd nibble *1

return -CrcTemp; 1* CRC-CCITT post conditioning ==> bit inversion *1

void LogoO
{

printH"\n\n
printf("\n
printH"\n

}

High Performance Compact");
CRC-CCITT Computation Routine");

Copyright 1988 W. David Schwaderer");

1* ---------------- End of Program Logic -------------------*

1*

16 12 5
polynomial = x + x + x + 1

After 4-bit processing cycles ...

b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1

o 0 0 0 C16 C15 C14 C13 C12 C11 C10 C09 C08 C07 C06 C05
V04 V03 V02 V01 - V04 V03 V02 V01 - V04 V03 V02 V01

Each 4-bit processing phase is independent of any other ...

---------------- Program Output ---------------------
Look at this Tiny CRC-CCITT Look-Up Table ...

OxOO - 0000 1081 2102 3183 4204 5285 6306 7387
Ox08 - 8408 9489 A50A B58B C60C 0680 E70E F78F

TestArray1 CRC = Ox7ADD

TestArray2 residue = OxFOB8

*/

205

Chapter 18

CRC-32-Token-Ring, PC Network,
and Ethernet

The CRC-32 polynomial is the CRC divisor in IBM Token-Ring, IBM PC
Network and a variety of other CSMA/CD LANs including Ethernet. Un­
like the SDLC/HDLC polynomial, CRC-32 provides a 32-bit CRC value
that is useful to the receipt of messages that are too large for the SDLC/
HDLC CRC, though it uses a similar preconditioning and postcondition­
ing process.

The CRC-32 preconditioning process loads the intermediate remain­
der register with OxFFFFFFFF. The postconditioning process inverts the
final remainder to produce the 32-bit CRC which is transmitted high-or­
der bit first as a contiguous 32-bit sequence. The appropriate CRC-32 re­
sidual value is OxDEBB20E3L.

Using this discussion as a backdrop, the derivation of a CRC-32 gen­
eration program is essentially trivial. The following diagrams should be
obvious at this point in the book:

008 007 006 DOS 004 D03 002 D01 -->

Initial State Before Shifting

v
<----<----<-----<---<----<--<---<--<---<---<----<----<---<---<---<--<----<--<---<----<--<-- +

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 A

I I
v V V V V V V V V V V V

C32 C31 C30 C29 C28 C27 C26 C25 C24 C23 C22 C21 C20 C19 C18 C17 C16 C15 C14 C13 C12 C11 C10 COO COS C07 C06 COS C04 C03 C02 C01->

207

-- -----------

208 Part Ill- A CRC Treatise

After Shi ft 1 x D08 D07 D06 DOS 004 003 D02

o C32 C31 C30 C29 C28 C27 C26 C25 C24 C23 C22 C2l C20 C19 C18 C17 C16 C15 C14 C13 C12 C11 Cl0 C09 C08 C07 C06 COS C04 C03 CO2

VOl VOl VOl VOl V01 V01 VOl VOl V01 VOl VOl VOl VOl VOl

After Shi ft 2 x X 008 007 006 DOS 004 D03

o 0 C32 C31 C30 C29 C28 C27 C26 C25 C24 C23 C22 C2l C20 C19 C18 C17 C16 C15 C14 C13 C12 Cl1 Cl0 C09 cas C07 C06 C05 C04 C03

V01 V01 ID1 VOl VOl VOl V01 V01 VOl VOl VOl

V02 V02 V02 V02 V02 V02 V02 V02 V02 V02 V02

After Shi ft 3

VOl VOl

V02 V02 V02

V01

x X X D08 007 006 005 004

o 0 C32 C3l C30 C29 C28 C27 C26 C25 C24 C23 C22 C2l C20 C19 C18 C17 C16 C15 C14 C13 C12 C11 C10 COO C08 C07 C06 C05 C04

VOl VOl VOl VOl VOl VOl V01 VOl VOl VOl

V02 V02 V02 V02 V02 V02 V02 V02 V02 V02 V02

V03 V03 V03 V03 V03 V03 V03 V03 V03 V03 V03

After Shi ft 4

V01 VOl VOl

V02 V02

V03 V03 V03

V01

V02

X X X X 008 007 006 005

o 0 0 0 C32 C3l C30 C29 C28 C27 C26 C25 C24 C23 C22 C21 C20 C19 C18 C17 C16 C15 C14 C13 C12 Cll Cl0 C09 C08 C07 C06 C05

VOl V01 VOl VOl VOl VOl VOl VOl V01 VOl VOl

V02 V02 V02 V02 V02 V02 V02 V02 V02 V02 V02

V03 V03 V03 V03 V03 V03 V03 V03 V03 V03 V03

V04 V04 V04 V04 V04 V04 V04 v04 v04 V04 V04

After Shift 8 (Final Shift)

V01 V01

V02 V02

V03 V03 V03

V04 V04 V04

VOl

V02

X X X X X X X X

o 0 0 0 0 0 0 0 C32 C3l C30 C29 C28 C27 C26 C25 C24 C23 C22 C21 C20 C19 C18 C17 C16 C15 C14 C13 C12 C1l Cl0 C09

V01 V01 V01 VOl V01 VOl VOl VOl VOl V01

V02 V02 V02 V02 V02 V02 V02 V02 V02 V02

V03 V03 V03 V03 V03 V03 V03 V03 V03 V03

V04 V04 V04 V04 V04 V04 V04 V04 V04 V04 V04

V05 V05 V05 V05 V05 V05 V05 V05 V05 V05 V05

V06 V06 V06 V06 V06 V06 V06 V06 V06 V06 V06

V07 V07 V07 V07 V07 V07 V07 V07 V07 V07 V07

V08 V08 V08 V08 V08 vas V08 vas vas V08 vas

V01 V01 VOl VOl V01 VOl V01 VOl VOl VOl VOl

V02 V02 V02 V02 V02 V02 V02 V02 V02 V02 V02

V03

VOl

V02

V01 V01

V02 V02

V03 V03

V04 V04 V04

V05 VOS

V06 V06

V07 V07

V08 vas

V01 V01

V02 V02

V08

V02

VOS

V06

V07

V01

V03

The program in Listing 18-1 illustrates a bytewise table look-up to
generate CRC-32 values. Note that the look-up table occupies 1,024 bytes

Chapter 18: CRC-32-Token-Ring and Ethernet 209

of memory in a typical machine (256 entries, each requiring four bytes),
and a nibblewise look-up approach only requires a 64-byte table (16 en­
tries, each requiring four bytes). Clearly, a nibblewise table look-up ap­
proach can provide a substantial advantage in many environments. The
creation of a nibblewise look-up table approach is left as a trivial exercise
for the reader.

Listing IS-I. CRC32.C

/*--*/
/* High Performance CRC-32 Computation Routine */
/* */
/* Copyright 1988 W. David Schwaderer */
/* ALL rights reserved */
/* */
/* Warning ... this program uses bit fieLds! */
/* For warnings on bit fieLd hazards see: */
1* */
1* The C Wizard's Programming Reference *1
1* W. David Schwaderer */
1* WiLey Press, 1985 */
1* *1
1*--*/

#incLude <stdio.h>
#incLude "netbios2.h"

#define GOOD_CRC32_RESIDUAL OxDEBB20E3L

#define LINT_ARGS

#if defined(LINT_ARGS)
extern int main(int argc,char * *argv);
extern unsigned Long GenerateCRC32(unsigned int Length,char *TextPtr)i
extern void GenerateTable(void);
extern void PrintTabLe(void);
extern void Logo(void);
#endif

USGC TestArray1 [] {'T', 'e', 's', 't'}; /* Crc == Ox78.4D.D1.32 */

USGC TestArray2[] {'T' , lei, I s I, It' , Ox32, OxD1, Ox4D, Ox78};

1* byte-wise byte-wise *1
1* unreversed reversed *1
/* message msg Crc */

210 Part 11l A eRe Treatise

Listing 18-1. (cont.)

char TestMsg[] = "This is a test message.";

USGL CrcTable[256]; 1* globally accessible *1

1* ====================================== *1

int main(argc, argv)
int argc;
char *argv[];
{

USGL Crc;
USGI i, Length;

LogoO;

GenerateTable 0; 1* fill in the CrcTable *1

Pri ntTab leO; 1* display the table *1

Length = sizeof(TestArray1); 1* can't generally use strlen *1
Crc = GenerateCRC32(Length, TestArray1); 1* calculate CRC-32 *1
printH"\n\nTestArray1 CRC == Ox%08lX", Crc);

Length = sizeof(TestArray2);
Crc = GenerateCRC32(Length, TestArray2); 1* calculate CRC-32 *1

Crc = -Crc; 1* we want the actual CRC residue, not its complement *1
printH"\n\nReversed CRC32 of TestArray1+its CRC == Ox%08lX", Crc);

if (Crc == GOOD_CRC32_RESIDUAL)
printH"\n\nThe CRC-32 Calculation is correct. .• ");

else
printH"\n\nThe CRC-32 Calculation is NOT correct. •. ");

printH"\n\n<TestArray1 + its CRG) Residual as Un-reversed Binary:\n==> II);

for (i = 0; i < 32; i++) {

if «i > Q) && (!(; % 8»)
printH" II);

else if « i > Q) && (! (i % 4»)
pri ntH". II);

if («long) Ox01 « i) & Crc)

Chapter 18: CRC-32-Token-Ring and Ethernet

}

}

pri ntf(II1 II);
else

printf("O");

printfC" <==\n");

Listing 18-1. (cont.)

Length = sizeofCTestMsg) - 1; 1* avoid terminating NUL *1
Cre = GenerateCRC3ZCLength, TestMsg); 1* calculate a CRC *1
printf("\n\n\nText = [%s]\nCRC = %08lX\n\n", TestMsg, Crc);

return 0; 1* end now .•.....••.. *1

1* ====================================== *1

USGL GenerateCRC32CLength, TextPtr)
USGI Length;

{

}

int i, index;
USGL Crc;

char *TextPtr;

Crc = OxFFFFFFFFL; 1* CRC starts as all Fs for each message *1

for Ci = 0; i < Length; i++, TextPtr++) {
index = C CCrc A *TextPtr) & OxOOOOOOFFL);
Crc = «Crc » 8) & OxOOFFFFFFL) A CrcTable[index];

}

return -Crc; 1* return a 1's complement *1

1* ====================================== *1

void GenerateTable()
{

1* generate the look-up table *1

union { USGI i;
struct {

USGI i1 :1; 1* MSC low order bit *1
USGI i2 :1;
USGI i3 :1;
USGI i4 :1;

211

212 Part Ill: A CRC Treatise

Listing 18-1. (cont.)

USGI i5 : 1 ;
USGI i6 : 1 ;
USGI i7 : 1 ;
USGI i8 : 1 ; 1* MSC high order bit *1
USGI :8; 1* unused bits *1

} Bit;
} iUn;

union { USGL Entry;
st ruct {

USGI b1 : 1 ; 1* MSC Low order bit *1
USGI b2 : 1 ;
USGI b3 : 1 ;
USGI b4 : 1 ;
USGI b5 : 1 ;
USGI b6 : 1 ;
USGI b7 : 1 ;
USGI b8 : 1 ;
USGI b9 : 1 ;
USGI b10 : 1 ;
USGI b11 : 1 ;
USGI b12 : 1 ;
USGI b13 : 1 ;
USGI b14 : 1 ;
USGI b15 : 1 ;
USGI b16 : 1 ;
USGI b17 : 1 ;
USGI b18 : 1 ;
USGI b19 : 1 ;
USGI b20 :1;
USGI b21 : 1 ;
USGI b22 : 1;
USGI b23 : 1;
USGI b24 : 1 ;
USGI b25 : 1 ;
USGI b26 :1;
USGI b27 : 1 ;
USGI b28 : 1 ;
USGI b29 : 1 ;
USGI b30 :1;
USGI b31 : 1 ;
USGI b32 : 1 ; 1* MSC high order bit *1

} EntryBit;
} EntryUn;

Chapter 18: CRC-32-Token-Ring and Ethernet

Listing 18-1. (cont.)

for (iUn.i = 0; iUn.i < 2S6; iUn.i++) {

EntryUn.Entry = 0; 1* zero out the value *1

EntryUn.EntryBit.b32 = (iUn.Bit.i2 A iUn.Bit.iS);
EntryUn.EntryBit.b31 = (iUn.Bit.i1 A iUn.Bit.i2 A

iUn.Bit.i7 A iUn.Bit.iS);
EntryUn.EntryBit.b30 = (iUn.Bit.i1 A iUn.Bit.i2 A

iUn.Bit.i6 A iUn.Bit.i7 A

iUn.Bit.iS);
EntryUn.EntryBit.b29 = (iUn.Bit.i1 A iUn.Bit.iS A

iUn.Bit.i6 A iUn.Bit.i7);

EntryUn.EntryBit.b2S = (iUn.Bit.i2 A iUn.Bit.i4 A

iUn.Bit.iS A iUn.Bit.i6 A

i Un. Bit. is) ;
EntryUn.EntryBit.b27 = (iUn.Bit.i1 A iUn.Bit.i2 A

iUn.Bit.i3 A iUn.Bit.i4 A

iUn.Bit.iS A iUn.Bit.i7 A

iUn.Bit. is);
EntryUn.EntryBit.b26 = (iUn.Bit.i1 A iUn.Bit.i2 A

iUn.Bit.i3 A iUn.Bit.i4 A

iUn.Bit.i6 A iUn.Bit.i7);
EntryUn.EntryBit.b25 = (iUn.Bit.i1 A iUn.Bit.i3 A

iun.Bit.iS A iUn.Bit.i6 A

iUn.Bit.iS);

EntryUn.EntryBit.b24 = (iUn.Bit.i4 A iUn.Bit.iS A

iUn.Bit.i7 A iUn.Bit.iS);
EntryUn.EntryBit.b23 = (iUn.Bit.i3 A iUn.Bit.i4 A

iUn.Bit.i6 A iUn.Bit.i7);
EntryUn.EntryBit.b22 = (iUn.Bit.i3 A iUn.Bit.iS A

iUn.Bit.i6 A iUn.Bit.iS);
EntryUn.EntryBit.b21 = (iUn.Bit.i4 A iUn.Bit.iS A

iUn.Bit.i7 A iUn.Bit.iS);

EntryUn.EntryBit.b20 = (iUn.Bit.i2 A iUn.Bit.i3 A

iUn.Bit.i4 A iUn.Bit.i6 A

iUn.Bit.i7 A iUn.Bit.iS);
EntryUn.EntryBit.b19 = (iUn.Bit.i1 A iUn.Bit.i2 A

iUn.Bit.i3 A iUn.Bit.iS A

iUn.Bit.i6 A iUn.Bit.i7);
EntryUn.EntryBit.b1S = (iUn.Bit.i1 A iUn.Bit.i2 A

213

214 Part III: A CRC Treatise

}

}

Listing 18-1. (cont.)

iUn.Bit.i4 A iUn.Bit.iS A

iUn.Bit.i6);
EntryUn.EntryBit.b17 = (iUn.Bit.i1 A iUn.Bit.i3 A

iUn.Bit.i4 A iUn.Bit.iS);

EntryUn.EntryBit.b16 = (iUn.Bit.i3 A iUn.Bit.i4 A

iUn. Bit. i 8) ;
EntryUn.EntryBit.b1S = (iUn.Bit.i2 A iUn.Bit.i3 A

iUn.Bit.i7);
EntryUn.EntryBit.b14 = (iUn.Bit.i1

iUn.Bit. i6);
EntryUn.EntryBit.b13 = (iUn.Bit.i1

i Un. Bi t. i 5);

A iUn.Bit.i2 A

EntryUn.EntryBit.b12 = (iUn.Bit.i4);
EntryUn.EntryBit.b11 = (iUn.Bit.i3);
EntryUn.EntryBit.b10 = (iUn.Bit.i8);
EntryUn.EntryBit.b9 = (iUn.Bit.i2 A iUn.Bit.i7 A

iUn.Bit.i8);

EntryUn.EntryBit.b8 = (iUn.Bit.i1 A iUn.Bit.i6 A

iUn.Bit.i7);
EntryUn.EntryBit.b7 (iUn.Bit.iS A iUn.Bit.i6);
EntryUn.EntryBit.b6 = (iUn.Bit.i2 A iUn.Bit.i4 A

iUn.Bit.iS A iUn.Bit.i8);
EntryUn.EntryBit.bS = (iUn.Bit.i1 A iUn.Bit.i3 A

iUn.Bit.i4 A iUn.Bit.i7);

EntryUn.EntryBit.b4 = (i Un . Bit. i 2 A iUn.Bit. i3 A

iUn.Bit.i6);
EntryUn.EntryBit.b3 = (iUn.Bit. i1 A iUn.Bit. i2 A

i Un. Bit. is) ;
EntryUn.EntryBit.b2 = (iUn.Bit. i1 A iUn.Bit.i4);
EntryUn.EntryBit.b1 = (iUn.Bit. i3);

CrcTable[iUn.i] = EntryUn.Entry;

1* ====================================== *1

void PrintTable()
{

1* print out the look-up table *1

i nt i;

Chapter 18: CRC-32-Token-Ring and Ethernet 215

Listing 18-1. (cont.)

for (i = 0; i < 256; i++) {

if (! (i % 4))
printf(lI\n %02X - %08 LXOI, i, CrcTabLe[i]);

eLse
pri ntf(OI %08LXOI, CrcTabLe[i]);

}

}

void LogoO
{

printf(OI\n\n High Performance CRC-32 Computation Routine Ol);
printf(OI\n Copyright 1988 W. David Schwaderer\n\nOl);

}

/*================== End of Program Logic ======================*

/*

--------- Program Output Start ---------

00 - 00000000 77073096 EEOE612C 990951BA
04 - 076DC419 706AF48F E963A535 9E6495A3
08 - oEDB8832 79DCB8A4 EoD5E91E 97D2D988
DC - 09B64C2B 7EB17CBD E7B82D07 90BF1D91
10 - 1 DB71064 6AB02oF2 F3B97148 84BE41DE
14 - 1ADAD47D 6DDDE4EB F4D4B551 83D385C7
18 - 136C9856 646BA8CO FD62F97A 8A65C9EC
1C - 14015C4F 63066CD9 FAOF3D63 8D080DF5
20 - 3B6E20C8 4C69105E D56041E4 A2677172
24 - 3C03E4D1 4B04D447 D20D85FD A50AB56B
28 - 35B5A8FA 42B2986C DBBBC9D6 ACBCF940
2C - 32D86CE3 45DF5C75 DCD60DCF ABD13D59
30 - 26D930AC 51DE003A C8D75180 BFD06116
34 - 21B4F4B5 56B3C423 CFBA9599 B8BDA50F
38 - 2802B89E 5F058808 C60CD9B2 B10BE924
3C - 2F6F7C87 58684C11 C1611 DAB B6662D3D
40 - 76DC4190 01DB7106 98D22oBC EFD5102A
44 - 71B18589 06B6B51F 9FBFE4A5 E8B8D433
48 - 7807C9A2 OFOOF934 9609A88E E10E9818
4C - 7F6AODBB 086D3D2D 91646C97 E6635C01
50 - 6B6B51F4 1C6C6162 856530D8 F262004E
54 - 6C0695ED 1 B01 A57B 8208F4C1 F5OFC457
58 - 65BOD9C6 12B7E950 8BBEB8EA FCB9887C
5C - 62DD1DDF 15DA2D49 8CD37CF3 FBD44C65

216 Part 111: A eRe Treatise

Listing 18-1. (cont.)

60 - 4DB26158 3AB551CE A3BC0074 D4BB30E2
64 - 4ADFA541 3DD895D7 A4D1C46D D3D6F4FB
68 - 4369E96A 346ED9FC AD678846 DA60B8DO
6C - 44042D73 33031DE5 AAOA4C5F DDOD7CC9
70 - 5005713C 270241AA BEOB1010 C90C2086
74 - 5768B525 206F85B3 B966D409 CE61E49F
78 - 5EDEF90E 29D9C998 BOD09822 C7D7A8B4
7C - 59B33D17 2EB40D81 B7BD5C3B COBA6CAD
80 - EDB88320 9ABFB3B6 03B6E20C 74B1D29A
84 - EAD54739 9DD277AF 04DB2615 73DC1683
88 - E3630B12 94643B84 OD6D6A3E 7A6A5AA8
8C - E40ECFOB 9309FF9D OAOOAE27 7D079EB1
90 - FOOF9344 8708A3D2 1E01F268 6906C2FE
94 - F762575D 806567CB 196C3671 6E6B06E7
98 - FED41B76 89D32BEO 10DA7A5A 67DD4ACC
9C - F9B9DF6F 8EBEEFF9 17B7BE43 60B08ED5
AO - D6D6A3E8 A1D1937E 38D8C2C4 4FDFF252
A4 - D1 BB67F1 A6BC5767 3FB506DD 48B2364B
A8 - D80D2BDA AFOA1B4C 36034AF6 41047A60
AC - DF60EFC3 A867DF55 316E8EEF 4669BE79
BO - CB61B38C BC66831A 256FD2AO 5268E236
B4 - CCOC7795 BBOB4703 220216B9 5505262F
B8 - C5BA3BBE B2BDOB28 2BB45A92 5CB36A04
BC - C2D7FFA7 B5DOCF31 2CD99E8B 5BDEAE1D
CO - 9B64C2BO EC63F226 756AA39C 026D930A
C4 - 9C0906A9 EBOE363F 72076785 05005713
C8 - 95BF4A82 E2B87A14 7BB12BAE OCB61B38
CC - 92D28E9B E5D5BEOD 7CDCEFB7 OBDBDF21
DO - 86D3D2D4 F1D4E242 68DDB3F8 1FDA836E
D4 - 81BE16CD F6B9265B 6FB077E1 18B74777
D8 - 88085AE6 FFOF6A70 66063BCA 11010B5C
DC - 8F659EFF F862AE69 616BFFD3 166CCF45
EO - AOOAE278 D70DD2EE 4E048354 3903B3C2
E4 - A7672661 D06016F7 4969474D 3E6E77DB
E8 - AED16A4A D9D65ADC 40DFOB66 37D83BFO
EC - A9BCAE53 DEBB9EC5 47B2CF7F 30B5FFE9
FO - BDBDF21C CABAC28A 53B39330 24B4A3A6
F4 - BAD03605 CDD70693 54DE5729 23D967BF
F8 - B3667A2E C4614AB8 5D681B02 2A6F2B94
FC - B40BBE37 C30C8EA1 5A05DF1B 2D02EF8D

TestArray1 CRC == Ox784Do132

Reversed CRC32 of TestArray1+its CRC == OxDEBB20E3

Chapter 18: CRC-32-Token-Ring and Ethernet

Listing IS-I. (cont.)

The CRC-32 Calculation is correct •••

(TestArray1 + its CRC) Residual as Un-reversed Binary:
==> 1100.0111 0000.0100 1101.1101 0111.1011 <==

--------- Program Output End --------
*1

217

Part IV

NetBIOS Technical Reference

Network Control Block, 221
NetBIOS Commands, 231

219

Chapter 19

Network Control Block

As discussed in Chapters 3 and 4, applications access NetBIOS services
using the Network Control Block (Ncb) which is identical to the IBM To­
ken-Ring's Mcb. The following material assumes an IBM PC LAN Support
Program implementation with one or more IBM LAN adapters present in
a machine. In the case of more than one adapter, each adapter has its own
NetBIOS interface and tables.

Ncb Fields

Table 19-1 outlines the Ncb format. USGC signifies unsigned char and
USGI signifies unsigned into Field names ending with "@" indicate an
offset:segment address field. The Chain Send command uses the Ncb­
CallName field to specify the length and location of a second data buffer.

NcbCommand

The NcbCommand field is a I-byte field specifying the NetBIOS com­
mand. The high-order bit of the field specifies the command's wait/no­
wait option.

The Wait/No-Wait Option
If the high-order bit of the value in the NcbCommand field is a binary
zero, the wait option is specified (see Figure 19-1). Otherwise, the high-

The material in this chapter and Chapter 20 is excerpted and paraphrased from IBM's
Technical Reference PC Network Manual, with the permission and courtesy of IBM.

221

222 Part IV: NetB/OS Technical Reference

Thble 19-1. Ncb Format

MASM
Offset Field Name Len Type CType Description

+00 +OOh NcbCommand DB USGC Command
+01 +01h NcbRetCode DB USGC Return code

+02 +02h NcbLsn 1 DB USGC Local Session Number

+03 +03h NcbNum 1 DB USGC Name number

+04 +04h NcbBuffer@ 4 DD char far * Buffer pointer

+08 +08h Ncb Length 2 DW USGI Buffer length (in bytes)

+10 +OAh NcbCallName 16 DB char[] Local/Remote NetBIOS name
+26'+IAh NcbName 16 DB char[] Local NetBIOS name

+42 +2Ah NcbRto 1 DB USGC Receive time-out value

+43 +2Bh NcbSto 'I 'DB USGC Send time-out value

+44 +2Ch NcbPost@ .4 DD void far *() Post routine pointer

+48 +30h NcbLanaNum 1 DB USGC Adapter number

+49 +31h NcbCmdCplt 1 DB USGC Command status
+50 +32h NcbReserve 14 DB char[] Reserved area

USGC = unsigned char, USGI = unsigned into

order bit is a binary one and the no-wait option is specified. The Cancel,
Reset, and Unlink commands have only a wait option.

1- No-Wait
Command Code

O-Wait

7 6 5 4 ,3 2 o <!I:4.----- BIT-____ eml.~

Fig. 19-1. Format of the NcbCommand field.

Selecting the wait option requests NetBIOS to return control when
the adapter completes the command. In this sense, a no-wait NetBIOS
option behaves like an ordinary application program subroutine call.

When the command completes, the AL register and the NcbRetCode
field contain the completion code. Care must be taken to assure that the
command s:ompletes within a satisfactory period of time because Net­
BIOS enters an enabled spin-loop and does not resume application pro­
cessing until the command completes.

Chapter 19: Network Control Block 223

Selecting the no-wait option requests that NetBIOS return control to
the application while the command is pending completion. The post
routine, if specified, is given control when the adapter completes the
command.

Selecting the no-wait option allows maximum throughput by permit­
ting several simultaneous pending commands. However, while a com­
mand is pending, application programs must not change either the Ncb
or any data field (e.g., the post routine address) associated with the com­
mand.

Immediate and Final Return Codes
When the no-wait option is selected, two return codes may be returned.
The first return code, referred to as the immediate return code, returns
after the command is initially scanned by NetBIOS. The other return
code, referred to as the final return code, returns when the command is
completed.

If the first return code is not OOh, NetBIOS has rejected the command
and does not proceed with processing the command. In this instance,
NetBIOS does not provide a second return code, nor does it invoke a
post routine. In any case, all immediate return codes are also valid final
return codes.

NcbRetCode

The NcbRetCode field is a I-byte field containing a value of FFh while a
no-wait option is pending. It also contains the command's final comple­
tion code when NetBIOS completes the command.

If the no-wait option is used without specifying a post routine, both
the NcbCmdCplt field and the NcbRetCode field contain the final return
code after command completion:

• A return code value of OOh indicates successful command comple­
tion .

• Return code values of 1 through 254 (FEh) indicate an unsuccess­
ful command completion.

Applications should never loop on the NcbRetCode field looking for com­
mand completion; they should loop on the NcbCmdCplt field. This is be­
cause the NcbRetCode field is set before the NcbCmdCplt field is set.

After completing the NcbRetCode field, the Ncb may be placed on an
internal NetBIOS POST processing queue. The NcbCmdCplt is not set un-

224 Part IV: NetBIOS Technical Reference

til the Ncb is dequeued from the POST processing queue. This applies to
all Ncbs that have a no-wait option, even if the post routine address is
0000:0000. In the case that the post routine address is 0000:0000, the Ncb
is dequeued and the determination is made not to invoke a post routine.

NcbLsn

The NcbLsn field is a I-byte field referring to an existing Local Session
Number (LSN). The LSN value must be between I and 254 (FEh) inclu­
sive. NetBIOS assigns the LSN value in an incremental, !TIodulo 255,
roundrobin manner. The values zero and 255 (FFh) are never assigned.

An LSN value is valid only after a Call or Listen command successfully
completes and is a session number the local application has with another
application. It is logically equivalent to an application's open file-handle.
The applications may be local or remote, and the LSN value assigned to
one side of a session is independent of the value assigned to the other
side. Two adapters within the same machine may have sessions with the
same LSN value, but they are differentiated by their adapter's Ncb Lana­
Num values.

The NcbLsn field is required for Send, Chain Send, Receive, Receive­
Any, and Hang Up commands but is not used for datagram commands.
For Reset commands, the NcbLsn value can specify the maximum num­
ber of sessions NetBIOS allows for the adapter. (See the Reset command
description in Chapter 20 for details.)

NcbNum

The NcbNum field is a I-byte field that NetBIOS completes after an Add
Name or Add Group Name command successfully completes. This num­
ber, and not its associated name, is used with all Receive-Any commands
and all datagram commands. NetBIOS assigns the value ofNcbNum in an
incremental, modulo 255, roundrobin manner. The values zero and 255
(FFh) are never assigned and the value Olh is always used by the perma­
nent node name.

For Reset commands, the NcbNum value can specify the maximum
number of pending commands the NetBIOS allows for the adapter. (See
the Reset command description in Chapter 20 for details.) Specifying an
NcbNum valu'e' of FFh with Receive-Any and Receive Datagram com­
mands indicates that data can be received for any existing session or reg­
istered name, respectively.

Chapter 19: Network Control Block 225

NcbBuffer@

The NcbBuffer@ is a 4-byte field containing the address of an application
buffer. This field is in offset:segment format and must be a valid memory
address.

For Adapter Status and Session Status commands, the NcbBuffer@
field contains the address where NetBIOS should place the information
it returns. The Ncb Length field specifies the length of the buffer.

For Cancel commands, the NcbBuffer@ field points to an Ncb that
should be canceled.

For Chain Send, Send, Send Datagram, and Send Broadcast Datagram
commands, the NcbBuffer@ field specifies the address where the data
resides that should be transmitted. The Ncb Length field specifies how
much data should be sent.

For Receive, Receive-Any, Receive Datagram, and Receive Broadcast
Datagram commands, the NcbBuffer@ field specifies the address where
received data should be placed; the NcbLength field specifies how much
data should be placed at that location.

Ncb Length

The NcbLength field is a 2-byte field indicating the length, in bytes, of an
application receive or transmission buffer.

For Chain Send, Send, Send Datagram, and Send Broadcast Datagram
commands, an application uses the NcbLength field to indicate the num­
ber of bytes to send.

For Receive, Receive-Any, Receive Datagram, Receive Broadcast
Datagram, Adapter Status, and Session Status commands, an application
uses the NcbLength field to indicate the size of the data-receive buffer.
For these commands, NetBIOS updates the Ncb Length field with the
number of bytes actually received when the commands complete.

NcbCallNarne

The NcbCallName field is a 16-byte field containing a network name or
second application buffer specification.

For Call, Listen, and Send Datagram commands, an application
places a name the application wants to communicate with in the Ncb­
CallName field. Usually the name is a remote name, though the name can
be a local name for local sessions.

226 Part IV: NetBIOS Technical Reference

In the case of a Listen command, placing an asterisk (*) in the first
position of the NcbCallName (byte 0) indicates that the Listen can be sat­
isfied by any Call to the name specified in the NcbName field.

In the case of an Adapter Status command, placing the asterisk in the
first position of the NcbCallName (byte 0) indicates that the Adapter Sta­
tus command is for a local adapter.

For a Chain Send command, an application uses the NcbCallName
field to specify the size and location of a second application buffer. In
this case, only the first six bytes of the NcbCallName field are used and
the others ignored. The first two bytes (bytes 0 and 1) specify the second
buffer's length and the remaining four bytes (bytes 2 and 5)are the offset:
segment address of the second buffer.

NcbName

The NcbName field is a 16-byte field containing a local network name.
For Add Name and Add Group Name commands, the NcbName field

contains a name for which the application is requesting network registra­
tion. For the Delete Name command, the field contains a name that the
application is requesting to be deleted from the NetBIOS name table.

For Call or Listen commands, the field contains a local network name
that the application wishes to use to conduct a session.

For Session Status commands, placing the asterisk in the first byte
(byte 0) of the NcbName field indicates that NetBIOS should return data
for all sessions that the adapter currently supports.

Applications may use permanent node names as names. NetBIOS·
constructs permanent node names by appending the 6 bytes of an
adapter's permanent ID ROM value to 10 bytes of binary zeros. The maxi­
mum number of names that an adapter may be known by is determined
by the config.sys DXMTOMOD.SYS NAMES parameter. This value does
not include the permanent node name as one of its entries.

NcbRto

The NcbRto field is a I-byte field used by Call and Listen commands to
specify time-out periods for Receive-Any and Receive commands associ­
ated with a requested, but yet unestablished, session.

A nonzero value specifies a time-out period in increments of 1/2
seconds. For example, a value of255 (FFh) indicates a time-out period of
127.5 seconds. A value of OOh indicates there is no time-out.

Chapter 19: Network Control Block 227

Time-out periods may vary for each session, but are fixed for a given
session and are not changeable once the session is established. In addi­
tion, time-out periods for both sides of a session may be different.

Unlike Send and Chain Send time-out expirations, if a Receive-Any or
Receive command's time-out period expires, the session does not termi­
nate (see NcbSto).

NcbSto

The NcbSto field is a I-byte field that Call and Listen commands use to
specify a time-out period for all Send and Chain Send commands associ­
ated with a requested, but yet unestablished, session. It has no effect on
Send No-Ack and Chain Send No-Ack commands.

A nonzero value specifies a time-out period in increments of 1/2
seconds. For example, a value of 255 (FFh) indicates a time-out period of
127.5 seconds. A value of OOh indicates there is no time-out.

Time-out periods may vary for each session, but are fixed for a given
session and are not changeable once the session is established. In addi­
tion, the time-out periods for both sides of a session may be different.

Send and Chain Send time-outs should be used with caution because
they terminate the session when they expire. Canceling Send and Chain
Send commands with a Cancel command also terminates the session as­
sociated with the canceled commands.

NcbPost@

The NcbPost@ field is a 4-byte field pointing to a routine, referred to as
the post routine, NetBIOS executes when it accepts and subsequently
completes.

The NcbPost@ field only applies to no-wait option and is ignored
when the wait option is specified. This field uses an offset:segment for­
mat. If the post address is all zeros, NetBIOS does not call a post routine.
In this case, the application must check the NcbCmdCplt field for a
change from a value of FFh.

Alternatively, the post address is not all zeros and NetBIOS calls the
post routine as an interrupt. NetBIOS enters the routine with the AL reg­
ister set to the return code, the CS:IP registers set to the post routine en­
try point, and the ES:BX registers pointing to the completed Ncb. Post
routine entry is made in a disabled state and the post routine should re­
turn to NetBIOS with an IRET instruction.

228 Part IV: NetBIOS Technical Reference

The post routine does not have to save or restore registers and can
issue NetBIOS requests. However, it should not issue PC-DOS requests
because PC-DOSis not reentrant and such a request may have been inter­
rupted to invoke the post routine.

NcbLanaNum

The NcbLanaNum field is a I-byte field indicating which adapter card
NetBIOS should use to process the command.

The NcbLanaNum must contain either OOh for the first (primary)
adapter or OIh for the second (alternate) adapter. The adapter must be
initialized for the appropriate primary/alternate setting. The Ncb Lana­
Num values 02h and 03h are reserved for IBM PC LAN adapters.

NcbCmdCplt

The NcbCmdCplt field is a I-byte field indicating the status of a pending
no-wait option command. A value of FFh signifies the command is still
pending. Any other value indicates that the command has completed;
the value is the final return code.

If a no-wait option is specified and the NcbPost@ is all zeros, Net­
BIOS places the command return code in both the NcbRetCode and the
NcbCmdCplt fields when Ncb processing is complete. Applications
should loop on the NcbCmdCplt field looking for command comple­
tion; they should never loop on the NcbRetCode field.

NcbReserve

The NcbReserve field is a 14-byte reserved area. NetBIOS uses this field
for Ncb processing and to return extended error information.

Command Completion

When an application presents an Ncb to NetBIOS, NetBIOS provides a
return code to the requesting application. The particular way it does this
depends on whether the command specifies a wait option or a no-wait

Chapter 19: Network Control Block 229

option. If the NcbCommand high-order bit has a value of binary 1, the
no-wait option is selected. Otherwise, the wait option is specified.

Wait Option

If a command specifies a wait option, control does not return to the ap­
plication until the adapter completes the command. When the command
completes, the final return code is in the AL register as well as the Ncb­
RetCode and NcbCmdCplt fields. Control returns to the instruction im­
mediately following the NetBIOS request interrupt.

No-Wait Option

If a command specifies a no-wait option, NetBIOS presents two return
codes. After initially scanning the Ncb, control returns to the instruction
immediately following the NetBIOS request interrupt with an immediate
return code in the AL register. If the immediate return code is not OOh,
the adapter cannot successfully execute the command.

If the Immediate return code is OOh, the adapter queues the request
pending final completion and provides a final return code when the
adapter completes the command. If the NcbPost@ field of the Ncb is
zero, NetBIOS places the final return code in the NcbCmdCplt field,
which must be checked for change by the application program.

If the application checks the NcbCmdCplt field, a value other than
FFh indicates command completion and this value is the final return
code. Applications should never loop on the NcbRetCode field looking
for command completion, but rather on the NcbCmdCplt field because
the NcbRetCode field is set first. After completing the NcbRetCode field,
the Ncb may be placed on an internal NetBIOS POST processing queue.
The NcbCmdCplt is not set until the Ncb is de queued from the POST
processing queue. This applies to all Ncbs that have a no-wait option,
even if the post routine address is 0000:0000. In the case that the post
routine address is 0000:0000, the Ncb is dequeued and the determina­
tion is made not to invoke a post routine.

No-Wait Option with a Post Routine
If the NcbPost@ field is not zero, NetBIOS sets the final return code in
both the AL register and the NcbRetCode field. NetBIOS then saves its reg­
isters, points the ES:BX register pair at the completed Ncb, pushes the

230 Part IV: NetBlOS Technical Reference

flags, disables maskable interrupts, and executes a far call to the post rou­
tine.

In the application post routine, the final return code may be obtained
from either the AL register or the NcbRetCode field. The post routine
should return to NetBIOS with an IRET instruction. The post routine
does not have to save or restore registers and can issue NetBIOS requests.
However, it should not issue PC-DOS requests because PC-DOS is not
reentrant and such a request may have been interrupted to invoke the
post routine.

No-Wait Option with No Post Routine
If the NcbPost@ field is zero, no post routine is specified. The final re­
turn code is in both the NcbCmdCplt field and in the NcbRetCode field.
Again, applications should never loop on the NcbRetCode field looking
for command completion, but should monitor the NcbCmdCplt field to
see when it changes from a value of OFFh.

Chapter 20

NetBIOS Commands

The following information applies to NetBIOS requests for PC-DOS and
NetBIOS. Appendix F contains additional information for OS/2 NetBIOS
requests.

The Commands

Adapter Status

NcbCommand

NcbRetCode

NcbLsn

NcbNum

NcbBuffer@

NcbLength

NcbCallName

NcbName

NcbRto

NcbSto

NcbPost@

NcbLanaNum

NcbCmdCplt

NcbReserve

In Out

x

x
X

X

?

X

X

X

X

?

33h Wait; B3h No-Wait

Immediate Return Codes

OOh 03h
21h 22h 23h

4Xh
SOh-FEh

Final Return Codes

OOh Olh 03h OSh 06h OBh

19h

21h 22h 23h

4Xh
SOh-FEh

231

232 Part IV: NetBIOS Technical Reference

The Adapter Status command requests the NetBIOS status of either a lo­
calor remote adapter.

The NcbCallName field specifies from which adapter to obtain the
status. The field may contain a permanent node name, group name, or
unique name. If the first byte of the NcbCallName field contains an aster­
isk (*), the local NetBIOS status of the adapter specified by the Nc­
bLanaNum field returns. The status information returns in the buffer
pointed to by the NcbBuffer@ field.

The minimum buffer size is 60 bytes. The maximum status informa­
tion size is 60 plus 18 times the maximum number of names. The maxi­
mum number of names is determined by the adapter's IBM LAN Support
Program NAMES parameter.

A message incomplete status (06h) returns for two reasons:

1. The buffer is not large enough to hold all the generated data.

2. The status information generated for a remote Adapter Status com­
mand exceeds the maximum datagram length.

In either case, the final amount of data returning in the buffer is the lesser
of the buffer's size or the maximum datagram length.

Token-Ring Adapter Status Information Format

I-Frame is an IEEE 802.2 term for an information frame, which is used in
session communication. LLC logic transmits I-Frames and signifies their
receipt with an acknowledgment (ACK).

UI-Frame is an IEEE 802.2 term for an unnumbered information
frame, used for datagrams and query frames. LLC logic transmits UI­
Frames but does not acknowledge their receipt with an ACK.

An appendage is similar to a NetBIOS post routine. It is defined by
the CCB adapter handler interface. (Ncb commands are broken into CCB
commands and passed to the adapter handler logic for processing.) Ap­
pendages are executed as part of CCB command completion processing.

The CCB DIR.OPEN.ADAPTER command RING.STATUS.APPEND­
AGE field pointer identifies an appendage. NetBIOS issues a DIR.OPEN.
ADAPTER specifying a RING.STATUS.APPENDAGE as part of the com­
mand and uses the appendage to update status counters. However, Net­
BIOS does not open the adapter if it is already open. In that case,
NetBIOS does define a RING.STATUS.APPENDAGE and consequently
has no way of updating the status counters. In any event, there can only

Chapter 20: NetB/OS Commands 233

be one RING .STATUS.APPENDAGE for an adapter and there is no way for
any other application to determine who owns it.

The Frame Rejected Receive Count is the number of received and re­
jected I-Frames. The maximum-size I-Frame used in a session is the small­
est DHB.SIZE of the two communicating adapters and is determined at
session start-up. Received I-Frames larger than the maximum value are
received and rejected by LLC logic. When NetBIOS is used, the Frame
Rejected Receive Count should always have a value of zero.

The Frame Rejected Transmit Count is the number of I-Frames re­
jected before transmission. The maximum-size I-Frame used in a session
is the smallest DHB.SIZE of the two communicating adapters and is de­
termined at session start-up. Requests to transmit I-Frames larger than the
maximum value are rejected by LLC logic. When NetBIOS is used, the
Frame Rejected Transmit Count should always have a value of zero.

The I-Frame Receive Error Count normally indicates the number of
I-Frames received out of sequence. In this event, LLC logic enters a
checkpointing state to establish data integrity.

The Transmit Abort Count should always have a value of zero since
there is no way to abort a transmission.

The Successful Frame Transmit/Receive Count value includes the
number of successfully transmitted/received I-Frames and UI-Frames.

The I-Frame Transmit Error Count is similar to the I-Frame Receive Er­
ror Count except that it reflects the number of out-of-sequence frames that
were sensed by other adapters. This value may be nonzero since I-Frames
may disappear before arriving at their destination, subsequently causing
the next successfully arriving frame to appear out of sequence. The check­
pointing sequence informs the local adapter the condition has occurred.

The Remote Request Buffer Depletion Count indicates the number of
times NetBIOS has run out of SAP buffers. Because this cannot happen,
this value should always be zero. Otherwise, this is a NetBIOS error.

The Expired Tl Timer Count indicates the number of times the Re­
sponse Timer has expired. The response timer expires when a local link
station has transmitted DLC.MAXOUT frames without receiving an ACK.
In this event, the LLC logic enters checkpointing and requests an ACK
from the remote link station. An excessive Expired T 1 Timer Count value
indicates an adjustment is required.

The Expired Ti Timer Count indicates the number of times the inac­
tivity timer has expired. The inactivity timer expires when there is no
activity on the session. The count is informational only and is no cause
for concern. The returned Token-Ring Adapter Status command informa­
tion is summarized in Table 20-1. All counters, except for the remote re­
quest buffer depletion count counter, roll over from F ... Fh to O ... Oh.

234 Part IV: NetBIOS 713chnical Reference

Thble 20-1. Token-Ring Adapter Status Information Format

Offset Size MASM C Field Contents

+00 +OOh 6 DB char Permanent node name [6]

+06 +06h 1 DB USGC NetBIOS major version number (low-
order nibble-only)

+07 +07h 1 DB USGC Always set to zero

+08 +08h 1 DB USGC Lan adapter type

+09 +09h 1 DB USGC Minor version number

+10 +OAh 2 DW USGI Reporting period in minutes

+12 +OCh 2 DW USGI Frame rejected receive count

+14 +OEh 2 DW USGI Frame rejected transmit count

+16 +lOh 2 DW USGI I-Frame receive error count

+18 +12h 2 DW USGI Transmit abort count

+20 +14h 4 DW USGL Successful frame xmit count

+24 +18h 4 DW USGL Successful frame receive count

+28 +ICh 2 DW USGI I-Frame transmit error count

+30 +IEh 2 DW USGI Remote request buffer depletion count

+32 +20h 2 DW USGI Expired T 1 timer count

+34 +22h 2 DW USGI Expired Ti timer count

+36 +24h 4 DD far * Local extended status information
pointer

+40 +28h 2 DW USGI Free command blocks

+42 +2Ah 2 DW USGI Current maximum pending Ncbs

+44 +2Ch 2 DW USGI Maximum commands

+46 +2Eh 2 DW USGI Transmit buffer depletion count

+48 +30h 2 DW USGI Maximum datagram packet size

+50 +32h 2 DW USGI Pending session count

+52 +34h 2 DW USGI Maximum pending session count

+54 +36h 2 DW USGI Maximum sessions

+56 +38h 2 DW USGI Maximum session packet size

+58 +3Ah 2 DW USGI Name Table entry count

+60 +3Ch ?? Name Table entry(ies)

The Token-Ring extended status information address field at offset 36
(24h) is valid only for local status commands; the field's value is unde-
fined for remote status commands. The field points to the fixed memory

Chapter 20: NetBIOS Commands 235

location of adapter-specified status. An application program should not
modify the data, though it can inspect and use it. The extended status
information address field has the following format:

Bytes 00-01: DIR.lNITIALIZE bring-up error code

Bytes 02-03: DIR.OPEN.ADAPTER error code

Bytes 04-05: Latest ring status

Bytes 06-07: Latest adapter check reason code

Bytes 08-09: Latest PC-detected error (from the AX register)

Byte 10: Latest operational error code (4X or 5X)

Byte 11: Return code of latest implicit CCB command

Bytes 12-13: Line errors

Bytes 14-15: Internal errors

Bytes 16-17: Burst errors

Bytes 18-19: A/C error

Bytes 20-21: Abort delimiter

Bytes 22-23: Reserved

Bytes 24-25: Lost frame

Bytes 26-27: Receive congestion

Bytes 28-29: Frame copied errors

Bytes 30-31: Frequency errors

Bytes 32-33: Token errors

Bytes 34-35: Reserved

Bytes 36-37: Reserved

Bytes 38-39: Reserved

When NetBIOS initializes, DIR.INITIALIZE and DIR.OPEN.
ADAPTER commands are sometimes executed followed by a DLC. OPEN.
SAP command. Byte 10 provides the last of the executed CCB command
codes and byte 11 contains its CCB return code. Bytes 10 and 11 help de­
termine conditions resulting in certain 4Xh return codes.

Adapter counters (bytes 12 through 39) are valid only if a ring status
appendage is defined and wraps from FFFFh to OOOOh. When no ap­
pendage is defined, these counters are updated when a ring status
counter overflow is reported. These counters are the same as obtained
with a DIR.READ.LOG command through any application program. Is­
suing a DIR.READ .LOG command resets these counters. If an appendage

236 Part IV: NetBIOS Technical Reference

is defined, it is the application's responsibility to maintain the adapter
counters. The number of pending sessions (offset 50) is computed using
the following procedure:

Pending sessions are

• pending Call and Listen commands
• pending and completed Hang Up commands
• established and aborted sessions

Each NetBIOS local name table (offset 60) entry is 18 bytes long and has
the following format:

• The first 16 bytes (bytes 0-15) contain a NetBIOS name that has
been added with an Add Name or Add Group Name command.
The permanent node name is not included in the NetBIOS name
table entries, but is reported separately.

• The 17th byte (byte 16) is the name's NetBIOS name number
(NcbNum).

• The 18th (byte 17) byte is ANDed with 87h to provide the name's
status.

Possible status values are (x = reserved bit, N = 0 if the name is a unique
name, and N = 1 if the name is a group name):

NxxxxOOO: The name is in the registration process

NxxxxlOO: The name is registered

NxxxxlOl: The name is deregistered

NxxxxllO: The name is a detected duplicate name

Nxxxxlll: The name is a detected duplicate name that is pending
deregistration

Registered Name: If a name is a registered name, it has been added to
the local NetBIOS name table.

Deregistered Name: If a name is a deregistered name, a Delete Name
command was issued for it while it had active session(s). When a name is
deregistered, NetBIOS does not permit subsequent Call or Listen com­
mands to use the name. After the session(s) terminates, NetBIOS removes
the name from the local NetBIOS name table and the name can be added
again for use by Call and Listen commands.

Duplicate Name: If a name is a detected duplicate name, it is a unique

Chapter 20: NetBIOS Commands 237

name added to two different NetBIOS name tables as a result of a net­
work error. Duplicate names should be deleted as soon as they are de­
tected.

PC Network Adapter Status Information Format

The returned PC Network Adapter Status command information has the
format outlined in Table 20-2. The PC Network LANA adapter's external
jumper status is illustrated in Figure 20-1.

I W2 I W1 I x
I

x I x I x I
7 6 5 4 3 2

• wm- M@M&M&£%dtM BIT

W2 = 1 --.- W2 Jumper on adapter (RPL-disabled)
W2 = 0--'- W2 Jumper off adapter (RPL-enabled)

W1 = 1 --.- W1 Jumper on adapter (reserved)
W1 = 0--'- W1 Jumper off adapter (reserved)

x I x I
0

•

Fig. 20-1. Format of the external jumper status field.

The self test results values are

80h: Successful completion

81 h: Processor test failed

82h: ROM checksum test failed

83h: Unit ID Prom test failed

84h: RAM test failed

8Sh: Host interface test failed

86h: +/- 12V test failed

87h: Digitalloopback test failed

8Eh: Possible constant carrier

8Fh: Analog loopback test failed

When the reporting period, collision count, aborted transmission,
successful transmission, successful receive, and retransmission counters
reach FFFFh, they roll over to OOOOh. When the CRC error, alignment
error, and resource depletion counters reach FFFFh, they do not roll over
to OOOOh.

238 Part IV: NetBIOS Technical Reference

Thble 20-2. PC Network LANA Adapter Status Information Format

Offset Size MASM C Field Contents

+00 +OOh 6 DB USGC Permanent node name [6]

+06 +06h DB USGC External jumper setting

+07 +07h DB USGC Self test results

+08 +08h DB USGC Adapter protocol layer major version
number

+09 +09h DB USGC Adapter protocol layer minor version
number

+10 +OAh 2 DW USGI Reporting period in minutes (rolls
over)

+12 +OCh 2 DW USGI CRC error count (does not roll over)

+ 14 +OEh 2 DW USGI Alignment errors (does not roll over)

+16 +1Oh 2 DW USGI Collision count (rolls over)

+18 +12h 2 DW USGI Transmit abort count (rolls over)

+20 +14h 4 DD USGL Successful transmits (rolls over)

+24 + 18h 4 DD USGL Successful receives (rolls over)

+28 + lCh 2 DW USGI Retransmit count (does not roll over)

+30 +IEh 2 DW USGI Resource depletion count

+32 +20h 1 DB char Reserved area 1 [8]

+40 +28h 2 DW USGI Free command blocks

+42 +2Ah 2 DW USGI Current maximum Ncbs

+44 +2Ch 2 DW USGI Hardware maximum command blocks

+46 +2Eh DB char Reserved area2 [4]

+50 +32h 2 DW USGI Pending session count

+52 +34h 2 DW USGI Current maximum pending sessions

+54 +36h 2 DW USGI Hardware maximum session count

+56 +38h 2 DW USGI Maximum packet size

+58 +3Ah 2 DW USGI NetBIOS name table entry count

+60 +3Ch ?? struct NetBIOS name table entry(ies)
[16]

The local name table entries have the same format as discussed in the
Token-Ring Adapter Status command.

Chapter 20: NetBIOS Commands 239

Add Group Name 3Gb Wait; BGb No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h

NcbRetCode X 21h 22h 23h

NcbLsn 4Xh

NcbNum X SOh-FEh

NcbBuffer@

NcbLength

NcbCallName Final Return Codes

NcbName X

NcbRto OOh 03h ODh OEh

NcbSto ISh 16h 19h

NcbPost@ ? 21h 22h 23h

NcbLanaNum X 4Xh

NcbCmdCplt X SOh-FEh

NcbReserve ?

The Add Group Name command adds a nonunique 16-character name
that the network adapter is known by to an adapter's NetBIOS name ta­
ble. The name cannot be used as a unique name, but can be used as a
group name, by any other network adapter.

NetBIOS processes this command by repeatedly broadcasting a
network name query. The number of times it transmits the query is
determined by the config.sys DXMTOMOD.SYS TRANSMIT COUNT
parameter.

If no reply to a name query request is received after a period deter­
mined by the config.sys DXMTOMOD.SYS TRANSMIT.TIMEOUT pa­
rameter, another name query is broadcast until TRANSMIT. COUNT
queries have occurred. If still no reply has arrived, NetBIOS assumes the
name is nonunique and adds it to the local NetBIOS name table as a
group name.

The adapter returns the number of the name in the NcbNum field.
This number is used in datagram support and for Receive-Any com­
mands.

240 Part IV: NetBIOS 7echnical Reference

Add Name 30h Wait; BOh No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h

NcbRetCode X 21h 22h 23h

NcbLsn 4Xh

NcbNum X SOh-FEh

NcbBuffer@

NcbLength

NcbCallName Final Return Codes

NcbName X

NcbRto OOh 03h ODh OEh

NcbSto ISh 16h 19h

NcbPost@ ? 21h 22h 23h

NcbLanaNum X 4Xh

NcbCmdCplt X SOh-FEh

NcbReserve ?

The Add Name command adds a unique 16-character name to an
adapter's NetBIOS name table. This is a name the adapter is known by
and must be unique across the network.

NetBIOS processes this command by repeatedly broadcasting a
network name query. The number of times it transmits the query is
determined by the config.sys DXMTOMOD.SYS TRANSMIT.COUNT
parameter.

If no reply to a name query request is received after a period deter­
mined by the config.sys DXMTOMOD.SYS TRANSMIT.TIMEOUT pa­
rameter, another name query is broadcast until TRANSMIT.COUNT
queries have occurred. If still no reply has arrived, NetBIOS assumes the
name is unique and adds it to the local NetBIOS name table as a unique
name.

The adapter returns the number of the name in the NcbNum field.
This number is used in datagram support and for Receive-Any com­
mands.

Call

Chapter 20: NetBIOS Commands 241

10h Wait; 90h No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h
NcbRetCode X 2Ih 22h 23h

NcbLsn X 4Xh

NcbNum SOh-FEh
NcbBuffer@

Ncb Length

NcbCallName X Final Return Codes

NcbName X
NcbRto X OOh 03h OSh 09h OBh

NcbSto X llh I2h I4h ISh ISh I9h

NcbPost@ ? 2Ih 22h 23h
NcbLanaNum X 4Xh

NcbCmdCplt X SOh-FEh
NcbReserve ?

The Call command opens a session with a destination name specified by
the NcbCallName field. The command uses a local name specified by the
NcbName field. The destination name adapter must have a Listen com­
mand pending for successful session establishment.

Sessions may be established between any valid names whether they
are local or remote names. Multiple sessions may be established with the
same pair of names or even with the same name. All Send (and Chain
Send) or Receive commands for sessions abort if they do not complete
before their specified session time-out intervals expire (NcbSto and
NcbRto, respectively). For session Send and Chain Send, this aborts the
session. The session time-out intervals are specified in 112 second units.
(A value of zero means that no time-out occurs.)

A Call fails if it is not successful before the system time-out expires.
The system time-out is calc.ulated by multiplying the system interval and
system retry count. The values are NetBIOS constants that are deter­
mined by the config.sys DXMTOMOD.SYS TRANSMIT TIMEOUT and
TRANSMITCOUNT parameters, respectively.

When a Call is completed, NetBIOS assigns a Local Session Number
(LSN) to the established session. NetBIOS assigns the LSN value in an in-

242 Part IV· NetBIOS Technical Reference

cremental, modulo 255, roundrobin manner. The values zero and 255
are never assigned. The LSN value must be between 1 and 254 (FEh) in­
clusive.

Cancel

NcbCommand
NcbRetCode
NcbLsn
NcbNum
NcbBuffer@

NcbLength
NcbCallName
NcbName

NcbRto
NcbSto
NcbPost@
NcbLanaNum

NcbCmdCplt
NcbReserve

In

X

X

X

Out

X

X

?

35h Wait

Final Return Codes

OOh 03h
23h 24h 26h
4Xh
50h-FEh

The Cancel command cancels the NetBIOS command, whose Ncb is at
the address given by NcbBuffer@. Canceling pending Send or Chain
Send commands always aborts their respective session, though you can
cancel their No-Ack variants without aborting their respective sessions.

You cannot cancel the following NetBIOS commands:

• Add Group Name
• Add Name
• Cancel
• Delete Name
• Reset
• Send Datagram
• Send Broadcast Datagram
• Session Status
• Unlink

Chapter 20: NetBIOS Commands 243

Chain Send 17h Wait; 97h No-Wait
Chain Send No-Ack 72h Wait; F2h No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h
NcbRetCode X 21h 22h 23h
NcbLsn X 4Xh
NcbNum 50h-FEh
NcbBuffer@ X
NcbLength X
NcbCallName* X Final Return Codes
NcbName
NcbRto OOh 03h 05h 07h OSh OAh OBh
NcbSto ISh
NcbPost@ ? 21h 22h 23h
NcbLanaNum X 4Xh
NcbCmdCplt X 50h-FEh
NcbReserve ?

The Chain Send No-Ack command is a variant of the Chain Send com­
mand. Its differences are discussed in Appendix E.

The Chain Send command sends data on the session specified by the
NcbLsn field value. The data is in two independent buffers pointed to by
the NcbBuffer@ and the NcbCallName fields. NetBIOS concatenates the
second buffer's data to the first buffer's data and sends the aggregate data
as a single, seamless message. Each buffer can contain between zero and
64K-l bytes inclusive.

The first 6 bytes of NcbCallName field specify the length (2 bytes)
and address (4 bytes) of the second buffer in offset:segment format.
When the remote side of the session closes a session with a Hang Up, all
local Chain Send commands pending for the closed session return with a
session-closed status.

If a local Hang Up command is issued with session-pending Chain
Send commands, they complete before the Hang Up completes. If a ses­
sion aborts, a session-ended-abnormally status is returned. If a Chain
Send time-out expires, the session aborts and a command-timed-out sta-

• For NcbCallName: bytes 0-1 = NcbLength2, and bytes 2-5 =NcbBuffer2@ in offset:
segment format.

244 Part IV: NetBIOS Technical Reference

tus is returned. The time-out value for a Chain Send command is deter­
mined when the session's Call or Listen completes and cannot be
specified with this command.

The total message size must be between zero and 128K-2 bytes inclu­
sive. If more than one Send or Chain Send is pending within a session,
the data is transmitted in a first-in, first-out (FIFO) order. If the Chain
Send cannot be completed for any reason, the session aborts to guaran­
tee data integrity.

Chain Send commands without corresponding Receives at the ses­
sion partner consume NetBIOS resources. It is not advisable to issue
many Chain Sends without corresponding Receives.

Chain Sends canceled by a Cancel command terminate their session.

Delete Name

NcbCommand
NcbRetCode
NcbLsn
NcbNum

NcbBuffer@

Ncb Length
NcbCallName
NcbName
NcbRto
NcbSto
NcbPost@
NcbLanaNum
NcbCmdCplt
NcbReserve

In Out

x

x

?

X

X

X

?

3th Wait; Bth No-Wait

Immediate Return Codes

OOh 03h
21h 22h 23h
4Xh
50h-FEh

Final Return Codes

OOh 03h OFh
15h
21h 22h 23h
4Xh
50h-FEh

The Delete Name command deletes a 16-character name from a NetBIOS
name table.

If the Delete Name command is issued when the name has active ses­
sions, the command completes after deregistering the name. (See the
Adapter Status command.) The command's return code has a value of
OFh, indicating the name has active sessions.

Chapter 20: NetBIOS Commands 245

In this instance, the actual name deletion is delayed, with the name
occupying an entry in the adapter's NetBIOS name table, until all ses­
sions associated with the name are dosed by a Hang Up command's
abort. A deregistered name is not usable by subsequent NetBIOS Call and
Listen commands. Send and Receive commands for existing sessions
continue to work until the sessions end but datagram commands cannot
use the name.

If the name has only pending nonactive session commands when the
Delete Name command is issued, the name is removed and the com­
mand-completed status is returned to the user. The pending nonactive
session commands terminate immediately with the-name-was-deleted
(17h) status.

Nonactive session commands are:

• Listen
• Receive-Any
• Receive Datagram
• Receive Broadcast Datagram

Hang Up 12h Wait; 92h No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h
NcbRetCode X 2Ih 22h 23h
NcbLsn X 4Xh

NcbNum 50h-FEh
NcbBuffer@
Ncb Length
NcbCallName Final Return Codes

NcbName
NcbRto OOh 03h 05h 08h OAh OBh
NcbSto I8h
NcbPost@ ? 2Ih 22h 23h
NcbLanaNum X 4Xh
NcbCmdCplt X 50h-FEh
NcbReserve ?

246 Part IV- NetBIOS Technical Reference

The Hang Up command closes the session specified by the NcbLsn
value.

When the session closes normally, a good-return status returns. A ses­
sion-closed status or an illegal session number returns if the session does
not exist (is already closed or never eXisted).

All local pending Receive commands for the session terminate and
return with session-closed status in the NcbRetCode field when a Hang
Up command is issued. They terminate whether they have received any
data.

If local Send or Chain Send commands are pending for the session,
the Hang Up command delays until the Send or Chain Send commands
complete. This delay occurs whether the commands are transferring
data or are waiting for the remote side to issue Receive or Receive-Any
commands. The Hang Up completes when any of the following condi­
tions occur:

1. The Send or Chain Send completes.

2. The Send or Chain Send aborts.

3. The Send or Chain Send fails because the session terminated in
response to a Hang Up command issued by the other application.

4. The Send or Chain Send fails because the time-out specified at ses­
sion creation expired.

If one of these conditions does not occur within the system time-out pe­
riod after the Hang Up command is issued, the Hang Up command re­
turns with a command-timed-out status and the session aborts. The
system time-out is calculated by mUltiplying the system interval and sys­
tem retry count. The values are NetBIOS constants that are determined
by the config.sys DXMTOMOD.SYS TRANSMIT.TIMEOUT and TRANS­
MIT.COUNT parameters, respectively. When the session aborts, all pend­
ing commands on that session return to the issuer with session-ended­
abnormally status.

When the session closes, all Send, Chain Send, and Receive com­
mands pending on the terminated session return with a session-closed
status. If a single Receive-Any command is pending on the local name
used by the session, it returns with a session-closed status. However, if
multiple Receive-Any commands are pending, only one returns with a
session-closed status.

Note that just one (of possibly many) Receive-Any commands pend­
ing on the session returns, though all Send, Chain Send, and Receive
commands pending on the session return.

Chapter 20: NetBIOS Commands 247

When a session terminates, all remote pending commands on that
session return to the issuer with a session-closed status.

Listen llh Wait; 9th No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h
NcbRetCode X 21h 22h 23h
NcbLsn X 4Xh
NcbNum 50h-FEh
NcbBuffer@
NcbLength
NcbCallName* X X Final Return Codes
NcbName X
NcbRto X OOh 03h 09h OBh
NcbSto X lIh ISh 17h ISh 19h
NcbPost@ ? 21h 22h 23h
Ncb LanaNum X 4Xh
NcbCmdCplt X 50h-FEh
NcbReserve ?

The Listen command opens a session with the name specified in the Ncb­
CallName field, using the local name specified by the NcbName field.

If the first position of the NcbCallName field is an asterisk (*), a session
is established with any network adapter that issues a Call to the local name.
The name making the Call is returned in the NcbCallName field. A Listen
command for a specific name has priority over a Listen for any name.

Sessions may be established with either a local or remote name. Mul­
tiple sessions may be established with the same pair of names. All Send
and Chain Send commands, but not their No-Ack variants, for a session
that are unsuccessful after the specified time-out interval specified by the
Listen command's NcbSto field value abort the session. If a Send or
Chain Send command is canceled by a subsequent Cancel command, the
session aborts.

NetBIOS returns the NcbCallName field if the application specifies an asterisk () as
the first character of the NcbCallName field.

248 Part Iv.: NetBIOS Technical Reference

Time-out intervals are specified in 112 second intervals. A value of zero
means that no time-out occurs. A Listen command does not time-out, but
occupies a session entry and is reported as a pending session by Adapter
Status commands. NetBIOS assigns the LSN value in an incremental, mod­
ulo 255, roundrobin manner. The values zero and 255 are never assigned.
The LSN value must be between 1 and 254 (FEh) inclusive.

The name-conflict-detected error returns if, during the completion
of a Listen command, a unique name exists in more than one table. All
adapters with the name registered, except the one where the Call com­
mand returns successfully, report the name-conflict-detected error."

Receive

NcbCommand
NcbRetCode
NcbLsn
NcbNum
NcbBuffer@
Ncb Length
NcbCallName
NcbName
NcbRto
NcbSto
NcbPost@

NcbLanaNum
NcbCmdCplt
NcbReserve

In

X

X

X
X

?

X

Out

X

X

X
?

I5h Wait; 95h No-Wait

Immediate Return Codes

OOh 03h
21h 22h 23h
4Xh
50h-FEh

Final Return Codes

OOh 03h 05h 06h 07h 08h OAh OBh
18h

21h 22h 23h
4Xh
50h-FEh

The Receive command receives data from a specified session partner that
Sends or Chain Sends data on the session. A Receive command cannot
detect that data may have been sent to it by a Send No-Ack or Chain Send
No-Ack versus a Send or Chain Send command, respectively.

If more than one command that can receive data on a specific session
is pending, they are processed in the following priority:

1. Receive

Chapter 20; NetBlOS Commands 249

2. Receive-Any-for- a-Specified-Name

3. Receive-Any-for-Any-Name

Once the commands are sorted by priority, they are processed in a first­
in, first-out order within a priority. The Receive time-out value is specified
with the session Call or Listen command and cannot be specified with this
command. Use the wait option with this command with care because all
application processing stops until the command completes.

When a session closes, either by a local Hang Up command or by the
remote Hang Up command, all Receives pending for the session return
with a session closed status.

If the Receive buffer is not large enough for the message being re­
ceived, a message-incomplete status (06h) is returned. To obtain the rest of
the information before a Send time-out occurs at the other side of the ses­
sion, the local application should issue another Receive or Receive-Any
command. However, if the data was sent with a Send No-Ack or Chain
Send No-Ack, the data is lost already, though the session continues.

Receive-Any

NcbCommand
NcbRe'tCode

NcbLsn
NcbNum*
NcbBuffer@

NcbLength
NcbCallName
NcbName
NcbRto
NcbSto
NcbPost@
NcbLanaNum
NcbCmdCplt
NcbReserve

In

X

X
X
X

?

X

Out

X
X

?

X

X
?

16h Wait; 96h No-Wait

Immediate Return Codes

OOh 03h
21h 22h 23h
4Xh

50h-FEh

Final Return Codes

OOh03h06h07hOAhOBh
13h 17h 18h 19h
21h 22h 23h
4Xh
50h-FEh

*NcbNum = FFh = Receive-Any-for-Any-Name.

250 Part IV: NetB/OS Thchnical Reference

The Receive-Any command receives data from any session partner that
Sends or Chain Sends data on a session associated with a specified local
name. A Receive-Any command cannot detect that data may have been
sent to it by a Send No-Ack or Chain Send No-Ack command versus a
Send or Chain Send command, respectively. The local application speci­
fies the local name with the name's NcbNum when issuing this com­
mand. If the application program sets NcbNum field to FFh, the Receive
is for any remote name the adapter has a session with, for any of its
names. This is referred to as a Receive-Any-for-Any-Name command.

If more than one command that can receive data on a specific session
is pending, they are processed in the following priority:

1. Receive

2. Receive-Any-for-a-Specified-Name

3. Receive-Any-for-Any-Name

Once the commands are sorted by priority, they are processed in a
first-in, first-out order. When the return code is presented, NetBIOS sets
the NcbNum field to the number of the name for which the data was re­
ceived. The Receive time-out value is specified with the sesSion's Call or
Listen command and cannot be specified with this command.

When a session terminates by a Hang Up command (session-abort),
one Receive-Any or Receive-Any-for-Any-Name returns with session­
closed (aborted) status, regardless of the number that may be pending.
The NcbLsn field of the returning command contains the terminating
session number. A Receive-Any-for-Any-Name returns only ifno Receive­
Any is pending for the terminating session.

If the Receive buffer is not large enough for the message being re­
ceived, a message-incomplete status (O<$h) is returned. To obtain the rest
of the information before a Send time-out occurs at the other side of the
session, the local application should issue another Receive or Receive­
Any command. However, if the data was sent with a Send No-Ack or
Chain Send No-Ack, the data is lost already, but the session continues.

Application programs should use the Receive-Any-for-Any-Name
command with caution because it may receive messages for other pro­
grams running in the workstation. Use the wait option with this com­
mand with care because all application processing stops until the
command completes.

Chapter 20: NetB/OS Commands 251

Receive Broadcast Datagram 23h Wait; A3h No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h
NcbRetCode X 21h 22h 23h
NcbLsn 4Xh
NcbNum X SOh-FEh
NcbBuffer@ X
Ncb Length X X
NcbCallName X Final Return Codes
Ncb Name
NcbRto OOh 03h o6h OBh
NcbSto 13h 17h 19h
NcbPost@ ? 21h 22h 23h
NcbLanaNum X 4Xh
NcbCmdCplt X SOh-FEh
NcbReserve ?

The Receive Broadcast command receives a datagram message from any
adapter issuing a Send Broadcast Datagram.

There is no time-out associated with this command. A message-in­
complete status (06h) returns if the receive buffer is not large enough to
receive all the data, and the remaining data is lost. Use the wait option
with this command with care because all application processing stops
until the datagram is received.

252 Part IV: NetBIOS Technical Reference

Receive Datagram 2lh Wait; Alh No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h
NcbRetCode X 21h 22h 23h
NcbLsn 4Xh
NcbNum* X SOh-FEh
NcbBuffer@ X
NcbLength X X
NcbCallName X Final Return Codes
NcbName
NcbRto OOh 03h 06h OBh
NcbSto 13h 17h 19h
NcbPost@ ? 21h 22h 23h
NcbLanaNum X 4Xh

NcbCmdCplt X SOh-FEh
NcbReserve ?

The Receive Datagram command receives datagrams directed to the local
name associated with the value in the NcbNum field. Any network name
can transmit the datagram and the local name can be a unique (induding
the permanent node name) or group name.

Though this command does not receive broadcast datagrams, if the
NcbNameNum field contains the value FFh, the command receives a
datagram directed to any local network name. Receive Datagram com­
mands for a specific name have priority over a Receive Datagram for any
name.

If the local application does not have a Receive Datagram command
pending when the datagram is transmitted, the message is not received.
If the receive buffer is not large enough to receive all the data, a message
incomplete status (06h) returns and the remaining data is discarded. If an
adapter has several Receive Datagram commands pending for the same
name, the next Send Datagram command satisfies only one of the Re­
ceive Datagram commands.

There is no time-out associated with this command. Use the wait op-

*NcbNum = FFh '" Receive Datagram for any name.

Reset

Chapter 20: NetBJOS Commands 253

tion with care because all application processing stops until a datagram is
received.

32h Wait

In Out Final Return Codes

NcbCommand X OOh 03h
NcbRetCode X 23h
NcbLsn X 4Xh
NcbNum X 50h-FEh
NcbBuffer@

Ncb Length
NcbCallName
NcbName
NcbRto
NcbSto
NcbPost@
NcbLanaNum X
NcbCmdCplt X
NcbReserve

The Reset command resets the specified adapter by clearing the NetBIOS
name and session tables and aborting any existing sessions. This also sets
the next available LSN value and NcbNum value to Olh and 02h, respec­
tively. Whether the Reset command closes and reopens the adapter
depends on the IBM LAN Support Program CLOSE.ON.RESET (CR)
parameter. If it is specified as NO, then NetBIOS does not close the
adapter, leaving all existing DLC communication facilities intact. If the
CLOSE. ON. RESET parameter is specified as YES, then the adapter is
closed and reopened, aborting existing DLC communication.

In either case, if the RESET.VALUES parameter is specified as YES:

• When the number of sessions specified in the NcbLsn is zero, the
default maximum number of sessions is the IBM LAN Support
Program SESSIONS parameter rather than the normal default
value of 6.

• When the number of commands specified in the NcbNum field is

254 Part IV: NetBIOS Technical Reference

Send

zero, the default maximum number of pending commands is the
IBM LAN Support Program COMMANDS value rather than the
normal default value of 12.

Otherwise, the RESET.VALUES parameter is specified as NO and the
adapter is reset with the maximum number of sessions specified by the
lesser ofthe NcbLsn field value and the SESSIONS parameter. This maxi­
mum is specified by the lesser of the NcbNum field value and the COM­
MANDS parameter. Note that the network traffic and statistics are reset
for Token-Ring Adapters, but not for PC Network Adapters.

t4h Wait; 94h No-Wait
Send No-Ack 7th Wait; Fth No-Wait

NcbCommand
NcbRetCode
NcbLsn
NcbNum
NcbBuffer@

Ncb Length

NcbCallName
NcbName
NcbRto
NcbSto
NcbPost@

NcbLanaNum
NcbCmdCplt
NcbReserve

In

X

X

X
X

?

X

Out

X

X
?

Immediate Return Codes

OOh 03h
21h 22h 23h
4Xh
SOh-FEh

Final Return Codes

OOh 03h OSh 07h 08h OAh OBh
18h
21h 22h 23h

4Xh
SOh-FEh

The Send No-Ack command is a variant of the Send command. Its differ­
ences are explained in Appendix E.

The Send command sends a message to the session partner specified
by the LSN value in the NcbLsn field. The NcbBuffer@ field points at the
data to send.

When the remote side closes a session with a Hang Up command, all
local Send commands pending for the closed session complete with a

Chapter 20: NetB/OS Commands 255

session-closed status. If a local Hang Up command is issued with any
pending Send commands, the Send commands complete before the
Hang Up command completes. If a session aborts, a session-ended­
abnormally status returns.

If the Send time-out expires, the session aborts and a command­
timed-out status returns. The time-out value for a Send command is de­
termined when the session's Call or Listen completes and cannot be
specified with this command. The message size must be between zero
and 65,535 (64K-I) bytes inclusive.

If more than one Send or Chain Send is pending for a session, the
data is transmitted in a first-in, first-out order within the session. If the
Send does not complete for any reason, the session aborts to guarantee
data integrity.

Send commands without corresponding Receives at the session part­
ner consume NetBIOS resources. It is not advisable to issue many Sends
without corresponding Receives.

Sends canceled by a Cancel command terminate their session.

Send Broadcast Datagram 22h Wait; A2h No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h
NcbRetCode X 2lh 22h 23h

NcbLsn 4Xh

NcbNum X 50h-FEh

NcbBuffer@ X

Ncb Length X

NcbCallName Final Return Codes

NcbName

NcbRto OOh Olh 03h

NcbSto 13h 19h
NcbPost@ ? 2lh 22h 23h

NcbLanaNum X 4Xh

NcbCmdCplt X 50h-FEh

NcbReserve ?

256 Part IV: NetSIOS Technical Reference

The Send Broadcast Datagram command sends a datagram message to
every network adapter.

Remote adapters not having a Receive Broadcast Datagram command
pending do not receive the message. If an adapter issues a Send Broad­
cast Datagram and has a Receive Broadcast Datagram pending, the
adapter receives its own message. If an adapter has several Receive
Broadcast Datagram commands pending, the next Send Broadcast
Datagram command satisfies all Receive Broadcast Datagram commands.

Send Datagram 20h Wait; AOh No-W3.it

In Out Immediate Return Codes

NcbCommand X OOh 03h
NcbRetCode X 2Ih 22h 23h
NcbLsn 4Xh
NcbNum X 50h-FEh
NcbBuffer@ X
Ncb Length X
NcbCallName X Final Return Codes
NcbName
NcbRto OOh 0Ih 03h
NcbSto I3h I9h
NcbPost@ ? 2Ih 22h 23h
NcbLanaNum X 4Xh
NcbCmdCplt X 50h-FEh
NcbReserve ?

The Send Datagram command sends datagrams to specified network
names. The specified name may be a unique (including a permanent
node name) or group name.

Adapters having the name but not having a pending Receive Datagram
command for that name discard the datagram. If an adapter has a Receive
Datagram pending for a name and issues a Send Datagram for that name,
the adapter receives its own message. The Send Datagram command satis­
fies only one pending Receive Datagram command if an adapter has sev­
eral Receive Datagram commands pending for the same name.

Chapter 20: NetBIOS Commands 257

Session Status 34h Wait; B4h No-Wait

In Out Immediate Return Codes

NcbCommand X OOh 03h

NcbRetCode X 2Ih 22h 23h
NcbLsn 4Xh

NcbNum X SOh-FEh
NcbBuffer@ X

Ncb Length X

NcbCallName Final Return Codes

NcbName X

NcbRto OOh 0Ih 03h o6h

NcbSto ISh I9h
NcbPost@ ? 2Ih 22h 23h

NcbLanaNum X 4Xh

NcbCmdCplt X SOh-FEh

NcbReserve ?

The Session Status command obtains the status of one or all sessions as­
sociated with a local name. If an asterisk (*) is specified as the first byte of
the Ncb Name field, this command obtains the status for all of the names
in the NetBIOS name table.

The minimum valid buffer length is 4 bytes. An illegal buffer length
status (Olh) is returned if the Ncb Length field is less than 4. A message
incomplete status (06h) is returned if the NcbLength field is less than the
generated status data. To obtain all status data, the buffer length must be
at least 4 plus 36 times the number of reported sessions.

A remote Adapter Status command fails if it is not successful before
the system time-out expires. The system time-out is calculated by multi­
plying the system interval and system retry count. The values are Net­
BIOS constants that are determined by the config.sys DXMTOMOD.SYS
TRANSMIT. TIMEOUT and TRANSMIT.COUNT parameters, respectively.
The returned data has the format outlined in Table 20-3.

If adequate buffer space is available, the contents of bytes 4-39 are
repeated for every session associated with the specified name (36 bytes
for each session). Otherwise, the excess data is lost.

The session state field has the following values:

258 Part IV: NetBIOS Technical Reference

Olh: Listen pending

02h: Call pending

03h: Session established

04h: Hang Up pending

OSh: Hang Up complete

06h: Session aborted

Table 20-3. Returned Data Format

Offset Length MASM C Field Contents

OOOOh 1 DB USGC Name Number for reported sessions

01 O1h 1 DB USGC Number of sessions associated with this
name

0202h DB USGC Number of pending Receive Datagram
and Receive Broadcast Datagrap1
commands

0303h DB USGC Number of pending Receive-Any
commands

0404h 1 DB USGC Local Session Number

0505h 1 DB USGC Session state

0606h 16 DB char[] Local name

22 16h 16 DB char[] Remote name

3826h 1 DB USGC Number of pending Receive commands

3927h 1 DB USGC Number of pending Send and Chain
Send commands

Chapter 20: NetBIOS Commands 259

Unlink 70h Wait

In Out Final Return Codes

NcbCommand X OOh 03h

NcbRetCode X 21h 22h 23h

NcbLsn 4Xh

NcbNum SOh-FEh

NcbBuffer@

NcbLength

NcbCallName

NcbName

NcbRto

NcbSto

NcbPost@

Ncb LanaNum X

NcbCmdCplt X

NcbReserve ?

The Unlink command provides compatibility with the original PC Net­
work LANA NetBIOS which uses the Unlink command to disconnect
from an RPL server.

OOh is the only valid NcbLanaNum value for an Unlink command. A
value ofOlh may appear to be accepted, but only because NetBIOS does
not inadvertently reject the value during processing.

If the Unlink command is for an original PC Net'York LANA adapter
and RPL is active, NetBIOS subsequently issues an internal Hang Up
command with a wait option using an internal Ncb located in high mem­
ory: This Ncb contains a value of OOh in its NcbLanaNum field because
NetBIOS RPL activities use the primary adapter exclusively.

Alternatively, the adapter may not be an original PC Network LANA
adapter or an original PCNetwork LANA adapter with RPL active. In this
case, NetBIOS does not execute a Hang Up command for an RPL session,
but treats the command as a no-operation and simply returns a good-re­
turn code. In any instance, OOh virtually always returns as the return code
for any Hang Up command that specifies a valid NcbLanaNum field value.

260 Part IV: NetBIOS Technical Reference

Special Value Summary

NetBIOS treats four values as special values. Their NetBIOS meaning var­
ies by the context of their use.

Special Value OOh

OOh is invalid as a first character of any name except a permanent node
name.

OOh is an invalid NcbLsn value.
OOh is an invalid NcbNameNum value.
Using OOh in a Call or Listen command's NcbRto field indicates ses­

sion Receive and Receive-Any commands should not time-out.
Using OOh in a Call or Listen command's NcbSto field indicates that

session Send and Chain Send commands should not time-out.
Using OOh in the NcbLsn and NcbNum fields for a Reset Command

indicates NetBIOS should determine the maximum number of allowable
simultaneously existing sessions and pending control blocks, respectively.

OOh is the only valid NcbLanaNum value for an Unlink command. A
value of Ol h may appear to be accepted, but only because NetBIOS does
not inadvertently reject the value during processing.

Special Value Olh

NetBIOS reserves Olh for the permanent node name NetBIOS name
number. The permanent node name is always used in NetBIOS commu­
nication even if the value is overridden for use as a LAN address.

For the original PC Network LANA adapter, the RPL session always
has an LSN value of Olh because it is always the first NetBIOS session.

Special Value FFh

FFh is an invalid NcbLsn value.
FFh is an invalid NcbNameNum value.
Using FFh as the NcbNum value in a Receive-Any command specifies

the command is a Receive-Any-for-Any-Name command.
Using FFh as the NcbNum value in a Receive Datagram command

specifies the command can receive a datagram directed to any local name.

Chapter 20: NetBJOS Commands 261

Special Value *

Using an asterisk (*) as the first character of a Listen command's Ncb­
CallName field indicates that any adapter calling the name specified in
the Listen's NcbName field is a valid session partner.

Using * as the first character of an Adapter Status command's Ncb­
CallName field indicates the status request is for the local adapter speci­
fied by the NcbLanaNum field value.

Using * as the first character of a Session Status command's Ncb­
CallName field indicates the status request is for all names in the local
adapter specified by the NcbLanaNum field value.

Complex Hang Up Scenario

Assume two workstations are conducting a communication session. As­
sume further that each station has two Receive commands, two Receive­
Any commands, a Chain Send command and a Send command pending
on their respective side of the session. Finally, assume that one station,
station XXX, issues a Hang Up command specifying the given session. The
following discussion illustrates the various outcomes of this situation.

First, all Receive commands for the session at station XXX are imme­
diately completed with a session-closed NcbRetCode, but only one of
the Receive-Any commands is completed with a session-closed NcbRet­
Code. The absence of these pending commands may cause pending
Send and Chain Send commands to time-out on the other side of the ses­
sion, immediately aborting the session.

Alternatively, the Hang Up command is delayed at station XXX until
the local pending Send and Chain Send commands complete. In the
event they do not complete before the system time-out period expires,
the Hang Up command itself times-out and the session is aborted. The
system time-out period is computed by multiplying the system interval
and system retry count. The values are NetBIOS constants that are deter­
mined by the config.sys DXMTOMOD.SYS TRANSMIT.TIMEOUT and
TRANSMIT.COUNT parameters, respectively.

Return Code Summary

For wait option commands, the AI register contains the final command
return code. Alternatively, for no-wait option commands, the AL register

262 Part IV: NetBIOS Technical Reference

contains the immediate return code. If the return code is not OOh, then
no further processing is done on the command. Finally, the AL register
provides the final return code to the post routine if the command is ini­
tially accepted and specifies a post routine.

The NcbRetCode Field contains the final return code for commands
that specify the wait option or the no-wait option without a post routine.

The NcbCmdCplt Field contains the final return code if a no-wait
command option is used with an accepted command that does not spec­
ifya post routine.

Appendixes

NetBIOS2.h Listing, 265
C Post Routine Listing, 271
Error Codes, Reasons, and Actions, 275
Ncb Command and Field Relationship, 287
Send No-Ack and Chain Send No-Ack, 291
OS/2 Extended Edition and LAN Manager; 295

263

NetBIOS2.h Listing

#define TRUE 1
#define FALSE 0

#define SUCCESS 1
#define FAILURE 0

#ifndef USGC
#define USGC unsigned char
#endif

#ifndef USGI
#define USGI unsigned
#endif

#ifndef USGL
#define USGL unsigned long
#endif

#define Netbioslnt21FunctionCode «USGC) Ox2A)
#define Netbioslnt5C «USGC) Ox5C)

#define COMMAND_PENDING «USGC) OxFF)

#define Mcb Ncb

#define MAX_ADAPTER_NUMBER
#define MAX_SESSION_COUNT
#define MAX_NAMES
#define MAX_COMMAND_COUNT

254
254
255

Appendix A

265

266 Appendix A

«USGC) Ox8Q)

#define NETBIOS_RESET_WAIT_ONLY «USGC) Ox32)
#define NETBIOS_CANCEL_WAIT_ONLY «USGC) Ox3S)
#define NETBIOS_ADAPTER_STATUS «USGC) Ox33)
#define NETBIOS_UNLINK_WAIT_ONLY «USGC) Ox70)
#define NETBIOS_TRACE

#define NETBIOS_ADD_NAME
#define NETBIOS_ADD_GROUP_NAME
#define NETBIOS_DELETE_NAME
#define NETBIOS_FIND_NAME

#define NETBIOS_CALL
#define NETBIOS_LISTEN
#define NETBIOS_HANG_UP
#define NETBIOS_SEND
#define NETBIOS_SEND_NO_ACK

«USGC) Ox79)

«USGC) Ox3Q)
«uSGC) Ox36)
«USGC) Ox31)
«USGC) Ox78)

«uSGC) Ox1 Q)
«USGC) Ox11)
«USGC) Ox12)
«USGC) Ox14)
«USGC) Ox71)

#define NETBIOS_CHAIN_SEND «USGC) Ox17)
#define NETBIOS_CHAIN_SEND_NO_ACK «USGC) Ox72)
#define NETBIOS_RECEIVE
#define NETBIOS_RECEIVE_ANY
#define NETBIOS_SESSION_STATUS

#define NETBIOS_SEND_DATAGRAM

«USGC) Ox1S)
«USGC) Ox16)
«uSGC> Ox34)

«USGC) Ox2Q)
#define NETBIOS_RECEIVE_DATAGRAM «USGC) Ox21)
#define NETBIOS_SEND_BDATAGRAM «USGC) Ox22)
#define NETBIOS_RECEIVE_BDATAGRAM «USGC) Ox23)

#define NETBIOS_INVALID_COMMAND «USGC) Ox7F)

1* LAN Adapter Types *1

#define TOKEN_RING_ADAPTER «USGC) OxFF)
#define PC_NETWORK_ADAPTER «USGC) OxFE)

1* NETBIOS Version Numbers *1

#define VERSION_MASK «USGC) OxOF)

#define PARM_MASK «USGC) OxFO)
#define OLD_PARMS «USGC) Ox10)
#define NEW_PARMS «USGC) Ox20)

NetBIOS2.h

struct Ncb
{

USGC NcbCommand; 1* command code *1
USGC NcbRetCode; 1* return code *1
USGC NcbLsn; 1* LocaL session number *1
USGC NcbNum; 1* Datagram ADD NAME tabLe ent ry *1

char * NcbBufferOffset; 1* 1/0 buffer offset *1
USGI NcbBufferSegment; 1* I/O buffer segment *1

USGI NcbLength; 1* Length of data in 1/0 buffer *1

char NcbCa L LName[161; 1* remote system name for CALL *1
char NcbName[161; 1* LocaL adapter network name *1

USGC NcbRto; 1* receive timeouts in 1/2 second units
USGC NcbSto; 1* send timeouts in 1/2 second units

char * NcbPostRtnOffset; 1* offset of post routine *1
USGI NcbPostRtnSegment; 1* segment of post routine *1

USGC NcbLanaNum; 1* network adapter number to execute cmd *1
USGC NcbCmdCpLt; 1* OxFF ==> command pending, eLse cmpLted *1

char NcbReservedArea[141; 1* work area for network card *1
} ZeroNcb; 1* prototype NCB for sizeof caLcs *1

#define MIN_NAME NUM 2
#define MAX_NAME_NUM 254
#define ILLEGAL_NAME_NUM o

#define MIN_LSN
#define MAX_LSN 254
#define ILLEGAL LSN 0 -

struct NameTabLeEntry {

char EntryName[161; 1* symboLic network name *1
USGC EntryNameNum; 1* associated name number *1
USGC EntryNameStatus; 1* & with Ox0087 for status *1
};

struct DLcStatus {
1* +00 *1 USGC PermanentNodeName[61;
1* +06 *1 USGC MajorVersionNumber; 1* Low-order nibbLe onLy *1
1* +07 *1 USGC ALwaysZero;

267

*1
*1

268 Appendix A

1* +08 *1
1* +09 *1
1* +10 *1
1* +12 *1
1* +14 *1
1* +16 *1
1* +18 *1
1* +20 *1
1* +24 *1
1* +28 *1
1* +30 *1
1* +32 *1
1* +34 *1
1* +36 *1
1* +40 *1
1* +42 *1
1* +44 *1
1* +46 *1
1* +48 *1
1* +50 *1
1* +52 *1
1* +54 *1
1* +56 *1
1* +58 *1
1* +60 *1

}

USGC LanAdapterTypei
USGC MinorVersionNumberi
USGI ReportingPeriodMinutesi
USGI FrameRejectedReceiveCounti
USGI FrameRejectedXmitCounti
USGI I_FrameReceiveErrorCounti
USGI XmitAbortCounti
USGL SuccessfulFrameXmitCounti
USGL SuccessfulFrameRcvCounti
USGI I_FrameXmitErrorCounti
USGI RmtRqstBufferDepletionCounti
USGI ExpiredT1TimerCounti
USGI ExpiredTiTimerCounti
struct LocalTrAdapterStatus far * LocalExtStatPtri
USGI FreeCommandBlocksi
USGI CurrentMaxNcbsi
USGI MaximumCommandsi
USGI TransmitBufferDepletionCounti
USGI MaximumDatagramPacketSizei
USGI PendingSessionCounti
USGI MaxPendingSessionCounti
USGI MaximumSessionsi
USGI MaximumSessionPacketSizei
USGI NameTableEntryCounti
struct NameTableEntry TableEntry[MAX_NAMES]i

struct LocalTrAdapterStatus {
1* +00 *1 USGI DirlnitBringUpErrorCodei
1* +02 *1 USGI DirOpenAdapterErrorCodei
1* +04 *1
1* +06 *1
1* +08 *1
1* +10 *1
1* +11 *1
1* +12 *1
1* +14 *1
1* +16 *1
1* +18 *1
1* +20 *1
1* +22 *1
1* +24 *1
1* +26 *1
1* +28 *1
1* +30 *1

USGI LatestRingStatusi
USGI LatestAdapterCheckReasonCodei
USGI LatestPcDetectedErrorCodei
USGC LatestOperationalErrorCodei
USGC LatestlmplicitCcbReturnCodei
USGI AdapterLineErrorsi
USGI AdapterlnternalErrorsi
USGI AdapterBurstErrorsi
USGI AdapterAcErrori
USGI AdapterAbortDelimiteri
USGI AdapterReserved1i
USGI AdapterLostFramei
USGI AdapterReceiveCongestioni
USGI AdapterFrameCopiedErrorsi
USGI AdapterFrequencyErrorsi

NetBIOS2.h 269

1* +32 *1 USGI AdapterTokenErrors;
1* +34 *1 USGI AdapterReserved2;
1* +36 *1 USGI AdapterReserved3;
1* +38 *1 USGI AdapterReserved4;

};

struct LanaStatus {

1* +00 *1 USGC PermanentNodeName[6J;
1* +06 *1 USGC ExternaLJumperSetting;
1* +07 *1 USGC SeLfTestResuLts;
1* +08 *1 USGC SoftwareVersionMajor;
1* +09 *1 USGC SoftwareVersionMinor;
1* +10 *1 USGI ReportingPeriodMinutes;
1* +12 *1 USGI CrcErrorCount;
1* +14 *1 USGI ALignmentErrors;
1* +16 *1 USGI CoLLisionCount;
1* +18 *1 USGI XmitAbortCount;
1* +20 *1 USGL SuccessfuLXmits;
1* +24 *1 USGL SuccessfuL Revs;
1* +28 *1 USGI RetransmitCount;
1* +30 *1 USGI ResourceDepLetionCount;
1* +32 *1 char ReservedArea1[8J;
1* +40 *1 USGI FreeCommandBLocks;
1* +42 *1 USGI CurrentMaxNcbs;
1* +44 *1 USGI HwMaxCommandBLocks;
1* +46 *1 char ReservedArea2[4J;
1* +50 *1 USGI PendingSessionCount;
1* +52 *1 USGI CurrentMaxPendingSessions;
1* +54 *1 USGI HwMaxSessionCount;
1* +56 *1 USGI MaximumPacketSize;
1* +58 *1 USGI NameTabLeEntryCount;
1* +60 *1 struct NameTabLeEntry TabLeEntry[16J;

}

st ruct DateTimeStruct { USGI DateCX;
USGI DateDX;
USGI TimeCX;
USGI TimeDX;

}-,

#define NB ILLEGAL_BUFFER - LENGTH Ox01
#define NB_INVALID_COMMAND Ox03
#define NB_COMMAND_TIMED_OUT Ox05
#define NB_MESSAGE_INCOMPLETE Ox06
#define NB NO ACK_FAILURE Ox07

270 Appendix A

#define NB_ILLEGAL_LSN Ox08
#define NB_NO_RESOURCE_AVAILABLE Ox09
#define NB_SESSION_CLOSED OxOA
#define NB_COMMAND_CANCELED OxOB
#define NB_DUPLICATE_LOCAL_NAME OxOD
#define NB_NAME_TABLE_FULL OxOE
#define NB_NAME_HAS_ACTIVE_SESSIONS OxOF

#define NB_LOCAL_SESSION_TABLE_FULL Ox11
#define NB_SESSION_OPEN_REJECTED Ox12
#define NB_ILLEGAL_NAME_NUMBER Ox13
#define NB_CANNOT_FIND_CALLED_NAME Ox14
#define NB_NAME_NOT_FOUND_OR_ILLEGAL Ox15
#define NB_NAME_USED_ON_RMT_ADAPTER Ox16
#define NB_NAME_DELETED Ox17
#define NB_SESSION_ENDED_ABNORMALLY Ox18
#define NB_NAME_CONFLICT_DETECTED Ox19
#define NB_INCOMPATIBLE_RMT_DEVICE Ox1A

#define NB_INTERFACE_BUSY Ox21
#define NB_TOO_MANY_COMMANDS_PENDING Ox22
#define NB_INVALID_ADAPTER_NUMBER Ox23
#define NB_CMD_COMPLETED_DURING_CANCEL Ox24
#define NB_RESERVED_NAME_SPECIFIED Ox25
#define NB_CMD_NOT_VALID_TO_CANCEL Ox26

#define NB_LANA_SYSTEM_ERROR Ox40
#define NB_LANA_REMOTE_HOT_CARRIER Ox41
#define NB_LANA_LOCAL_HOT_CARRIER Ox42
#define NB_LANA_NO_CARRIER_DETECTED Ox43
#define NB_UNUSUAL_NETWORK_CONDITION Ox44

#define NB_ADAPTER_MALFUNCTION Ox 50

#define MAX_SESSION_BUFFER_SIZE 8192
struct SessionMsg { USGL TextLengthi

char Text[MAX_SESSION_BUFFER_SIZE]i
}i

C Post Routine Listing

#define LINT_ARGS

#incLude <dos.h>
#incLude <stdio.h>
#include "netbios2.h"

struct SREGS SegRegsi

struct Ncb DatagramNcbi

char Buffed1 J i

char CLientName[16J = "WDS-DG"i

#if defined(LINT_ARGS)
extern int main(int argc,char * *argv)i
extern void SendNoWaitDatagram(void)i
extern void cdecL interrupt far PostRoutine(

extern
extern
#endif

void
void

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

NetbiosRequest(struct Ncb
Logo(void)i

USGC PostRoutineDriven = FALSEi

int es, unsigned
int di, unsigned
int bp, unsigned
int bx, unsigned
int ex, unsigned
int ip, unsigned
int fLags)i
*NcbPointer)i

int ds,
int si,
int sp.
int dx,
i nt ax,
int cs,

Appendix B

271

272 Appendix B

int main(argc, argv)
int argc;
char *argv[);
{

}

LogoO;

SendNoWaitDatagram();

while(PostRoutineDriven == FALSE)
1* spins here unti l PostRoutineDriven -- TRUE *1

printf("\n\nThe return code was %02Xh •.. ",
DatagramNcb.NcbRetCode);

printf("\n\nProgram ending \n");

return 0;

void SendNoWaitDatagram()
{

}

USGI temp;

char far * BufferPtrFar = (char far *) Buffer;
void (far *PostRoutinePtr)() = (void (far *)(» PostRoutine;

DatagramNcb.NcbCommand = NETBIOS SEND_DATAGRAM + NO_WAIT;

DatagramNcb.NcbLength = 1;

DatagramNcb.NcbBufferOffset = (char *) FP_OFF(BufferPtrFar);
DatagramNcb.NcbBufferSegment = <USGI> FP_SEG(BufferPtrFar);

DatagramNcb.NcbPostRtnOffset = (char *) FP_OFF(PostRoutinePtr);
DatagramNcb.NcbPostRtnSegment = <USGI> FP_SEG(PostRoutinePtr);

DatagramNcb.NcbNum Ox01; 1* use Permanent Node Name NameNum *1

for (temp = 0; temp < 16; temp++)
DatagramNcb.NcbCallName[temp) = ClientName[temp);

NetbiosRequest(&DatagramNcb);

C Post Routine

void edeel interrupt far PostRoutine(es, ds, di, si,
bp, sp, bx, dx,
ex, ax, ip, es,flags)

USGI es, ds, di, si, bp, sp, bx, dx, ex, ax, ip, es, flags;
{

}

PostRoutineDriven = TRUE; /* no DOS calls allowed! I! */
printf("\nNcb SEG:OFF == %04X:%04X", es, bx); /* tsk tsk */

void NetbiosRequest(NcbPointer)
struct Ncb *NcbPointer;
{

}

union REGS InRegs, OutRegs; /* defined in dos.h */
struct Ncb far *NcbPtr = (struct Ncb far *) NcbPointer;

segread(&SegRegs);

SegRegs.es FP_SEG(NcbPtr);
InRegs.x.bx = FP_OFF(NcbPtr);

printf("\n\nNcb SEG:OFF -- %04X:%04X", SegRegs.es,
InRegs.x.bx);

int86x(Netbioslnt5C, &InRegs, &OutRegs, &SegRegs);

void LogoO
{

}

printf("\n NetBIOS C Post Routine Sample Program");
printf("\n © Copyright 1988 W. David Schwaderer");

273

Appendix C

Error Codes, Reasons, and Actions

Return Code

OOh
Olh

03h
05h
06h
07h
OSh

09h
OAh

OBh
ODh

OEh

OFh
llh

I2h

I3h
I4h

I5h

I6h

I7h
ISh

I9h
IAh

Meaning

Successful completion, good return

Invalid buffer length
Invalid command

Command timed-out

Incomplete received message
Local No-Ack command failed

Invalid Local Session Number

No resource available

Session has been closed

Command was canceled
Duplicate name in local NetBIOS name table

NetBIOS name table full

Name has active sessions and is now deregistered
NetBIOS local session table full

Session open rejected because no Listen is outstanding

Illegal name number

Cannot find name called or no answer
Name not found, or cannot specify asterisk (*) or OOh as first byte of
NcbName, or the name is deregistered and cannot be used

Name in use on remote adapter

Name deleted

Session ended abnormally

Name conflict detected
Incompatible remote device (PC Network)

275

276

Return Code

21h

22h

23h

24h

25h

26h

30h

34h

35h

36h

37h

38h

40h

41h

42h

43h

4Eh

4Fh

50h-F6h

F7h

F8h

F9h

FAh

FBh

FCh

FDh

FFh

Appendix C

Meaning

Interface busy

Too many commands outstanding

Invalid number in NcbLanaNum field

Command completed while cancel occurring

Reserved name specified for Add Group Name

Command not valid to cancel

Name defined by another process (OS/2 Extended Edition only)

NetBIOS environment not defined (OS/2 Extended Edition only)

Required operating system resources exhausted (OS/2 Extended Edition
only)

Maximum applications exceeded (OS/2 Extended Edition only)

No SAPs available for NetBIOS (OS/2 Extended Edition only)

Requested resources not available (OS/2 Extended Edition only)

System error (PC Network)

Hot carrier from a remote adapter detected (PC Network)

Hot carrier from this adapter detected (PC Network)

No carrier detected (PC Network)

Status bit 12, 14, or 15 on longer than one minute (Token-Ring)

One or more of status bits 8-11 on (Token-Ring)

Adapter malfunction

Error on implicit DIR.INITIALIZE

Error on implicit DIR.OPEN.ADAPTER

IBM LAN Support Program internal error

Adapter check

NETBIOS program not loaded in PC

DIR.OPEN.ADAPTER or DLC.OPEN.SAP failed-check parameters

Unexpected adapter close

Command-pending status

OOh, Successful Completion, Good Return

Meaning: The command completed without error.
Required Action: No action is required. This is normal after each suc­

cessful command.

Error Codes, Reasons, and Actions 277

Olh, Invalid Buffer Length

Meaning: A Send Datagram or Send Broadcast Datagram command can­
not send more than 512 bytes. For Adapter Status and Session Status com­
mands, the specified buffer length was less than the minimum required.

Required Action: Specify the correct size for the buffer and try the
command again.

03h, Invalid Command

Meaning: The command code used is incorrect.
Required Action: Reissue the correct command code.

05h, Command Timed-Out

Meaning: For a Call or an Adapter Status command, the system time-out
elapsed before the command completed. For Send, Chain Send, or Re­
ceive commands, the time-out period specified in the Call or Listen com­
mand establishing the session expired. For a Hang Up command, the time­
out period expired for an outstanding Send or Chain Send to complete.

Required Action: For a Call, try again later. For an Adapter Status com­
mand, use a correct name. For a Send command, the session has been
aborted. Establish another session, synchronize the session, and reissue the
Send making sure a receive is outstanding on the other side of the session.

06h, Incomplete Received Message

Meaning: Part of a message was received because the specified buffer
length is not big enough to receive the full message.

Required Action: For Receive and Receive-Any command: Issue an­
other Receive to get the rest of the message before the remote side times­
out, but not if the data was sent using a Send No-Ack or Chain Send No­
Ack. (It is already discarded.) For Status, Session Status, Receive
Datagram, and Receive Broadcast Datagram commands, the remaining
data is lost.

If the command was a remote Status command, the error occurs
when the remote side cannot transmit the entire status data because it is
larger than the maximum-length transmittable UI-frame.

278 Appendix C

07h, Local No-Ack Command Failed

Meaning: One or more Send No-Ack and/or Chain Send No-Ack com­
mands issued within this workstation for this LSN was unsuccessful.

Required Action: The session is still active. Resynch the data flow
however possible and continue.

08h, Invalid Local Session Number

Meaning: The specified session number is not for an active session.
Required Action: Reissue the command specifying an active session

number.

09h, No Resource Available

Meaning: A session cannot be established with a remote application pro­
gram because there is no more room in its session table.

Required Action: Reissue the command at a later time.

OAb, Session Has Been Closed

Meaning: The session partner closed the session.
Required Action: None.

OBh, Command Was Canceled

Meaning: The command was canceled by a Cancel command.
Required Action: None.

ODh, Duplicate Name in Local NetBIOS Name Table

Meaning: An Add Name command specified a registered name that is
currently in the local name table.

Required Action: Reissue the command and specify another name or
use the name without trying to add it.

Error Codes, Reasons, and Actions 279

OEh, NetBIOS Name Table Full

Meaning: The number of names in the NetBIOS name table already
equals the value previously specified in the DIR.OPEN.ADAPTER com­
mand.

Required Action: Wait until a name is deleted causing an available
entry.

OFh, Name Has Active Sessions and Is Now Deregistered

Meaning: The name specified in a Delete Name command is active in a
session, but is now marked as deregistered. The name is unusable for any
new sessions though it still active-sessions and occupies a slot in the ta­
ble.

Required Action: Close all the sessions using this name so the name
can be deleted and its name table slot can be freed.

llh, NetBIOS Local Session Table Full

Meaning: There are no available entries in the local session table. (The
number of sessions is user-specified in Reset or DIR.OPEN.ADAPTER
commands.)

Required Action: Wait until a session closes making an entry available.

12h, Session Open Rejected because No Listen Is Outstanding

Meaning: No Listen command is pending on the remote NetBIOS Inter­
face.

Required Action: Wait until a Listen command is issued at the remote
NetBIOS Interface.

13h, Illegal Name Number

Meaning: The specified name number no longer exists or was never
specified.

Required Action: Use the most recent number that was assigned to
the name.

280 Appendix C

14h, Cannot Find Name Called or No Answer

Meaning: No response to the Call command was received.
Required Action: Try the Call command later.

15h, Name Not Found

Meaning: The specified name is not in the NetBIOS name table, or the
first character of the name is either an ASCII asterisk or 00, or the name is
deregistered and cannot be used.

Required Action: Try a valid name.

16h, Name in Use on Remote Adapter

Meaning: The specified name is already registered as a unique name on
another table.

Required Action: Specify another name or have the name deleted and
changed at the other adapter.

17h, Name Deleted

Meaning: The name has been deleted and cannot be used.
Required Action: Add the name to the NetBIOS name table again and

reissue the command.

ISh, Session Ended Abnormally

Meaning: A Send command terminated because of a time-out or hard­
ware problem.

Required Action: Issue a remote Adapter Status command for the
other adapter and check your adapter's cable. Reestablish and synchro­
nize the new session.

19h, Name Conflict Detected

Meaning: Network protocols have detected two or more identical
unique names on the network.

Required Action: Remove the identical network names.

Error Codes, Reasons, and Actions 281

lAb, Incompatible Remote Device

Meaning: An unexpected protocol packet has been received.
Required Action: Verify that all adapters onthe network observe the

network's protocols.

2lh, Interface Busy

Meaning: The NetBIOS Interface is either busy or out of local resources.
This condition can also be caused by having any of the ring status bits 12,
14, or 15 on.

Required Action: Try the command later.

22h, Tho Many Commands Outstanding

Meaning: The number of commands currently pending equals the maxi­
mum number allowed.

Required Action: Try the command later.

23h, Invalid Number in NcbLanaNum Field

Meaning: The only valid values for the NcbLanaNum field are OxOO and
OxOl, or the specified adapter is not present.

Required Action: Verify that the adapter is present, or correct the
value and retry the command using 00 for the primary adapter and 01 for
the alternate adapter.

24h, Command Completed while Cancel Occurring

Meaning: A command completed that was in the process of being can­
celed by a Cancel command.

Required Action: None.

25h, Reserved Name Specified for Add Group Name

Meaning: An Add Name or Add Group Name command specified an IBM
reserved name.

Required Action: Undocumented.

282 Appendix C

26h, Command Not Valid to Cancel

Meaning: The command specified in a Cancel command is not valid to
cancel.

Required Action: Verify the correctness of the cancel command.

30h, Name Defined by Another Process (OS/2 Extended Edition
only)

Meaning: The command refers to a locally defined NetBIOS name. Re­
sources reserved for a given process within the workstation can only be
used by that process and the specified local NetBIOS name is already re­
served for another process.

Required action: Use another name or remove the process using the
specified name.

34h, NetBIOS Environment Not Defined (OS/2 Extended Edition
only)

Meaning: The Reset command must be the first command issued by a
process. This return code value does not apply to the Reset command.

Required action: Issue the Reset command.

35h, Required Operating System Resources Exhausted (OS/2
Extended Edition only)

Meaning: NetBIOS cannot initiate the requested command because OS/
2 Extended Edition resources are not available to support the command.
This return code does not apply to the Reset command.

Required action: Retry later.

36h, Maximum Applications Exceeded (OS/2 Extended Edition
only)

Meaning: NetBIOS services requested in the Reset command are not
available to this process because the number of processes it is currently
serving is the maximum allowed by the NetBIOS load time parameters.
This return code value only applies to the Reset command.

Error Codes, Reasons, and Actions 283

Required action: Eliminate a process that is using NetBIOS services
or increase the value of the NetBIOS Application (APP) load time parame­
ter and reboot.

37h, No SAPs Available for NetBIOS (OS/2 Extended Edition only)

Meaning: Another process has allocated an insufficient number of SAPs
in its DIR.OPEN adapter request. All allocated adapter SAPs are already in
use and none are left for NetBIOS. Thus, NetBIOS services are not avail­
able to any process. Note that NetBIOS requires only one SAP to support
all its processes. This return code value only applies to the Reset com­
mand.

Required action: Fix the first process.

38h, Requested Resources Not Available (OS/2 Extended Edition
only)

Meaning: The requests for NetBIOS resources exceeds the number spec­
ified at NetBIOS load time. The resources are names, commands, ses­
sions, and the use of name number Olh which can only be used by one
process. NetBIOS is available for the application but with fewer re­
sources. This return code value only applies to the Reset command.

Required action: Adjust the necessary load time parameter.

40h, System Error

Meaning: Undocumented.
Required Action: Undocumented.

4th, Hot Carrier from a Remote Adapter Detected

Meaning: A remote adapter has a hot carrier.
Required Action: Remove the offending adapter from the network

and turn off your machine before trying to use the network again.

284 Appendix C

42h, Hot Carrier from This Adapter Detected

Meaning: A local adapter has a hot carrier.
Required Action: Remove the offending adapter from the network

and replace it.

43h, No Carrier Detected

Meaning: A local adapter cannot detect a carrier signal from the transla­
tor unit.

Required Action: Determine why the adapter cannot detect a carrier
signal and turn off your machine before trying to use the adapter again.

4Eh, Status Bit 12, 14, or 15 on Longer than One Minute (Token­
Ring)

Meaning: One or more ofthe ring status bits (12, 14, or 15) have been on
longer than 60 seconds. This return code is not reported at all if ring sta­
tus bits 8 through 11 are also on.

Required Action: Check the extended status last ring status code. The
only NetBIOS Interface command that may be issued is Reset.

4Fh, One or More of Status Bits 8-11 On

Meaning: One or more of ring status bits 8 through 11 are on.
Required Action: Check the extended status last ring status code. The

only NetBIOS Interface command that may be issued is Reset.

50h-F6h, Adapter Malfunction

Meaning: A local adapter is producing an invalid error code.
Required Action: Use another adapter.

F7h, Error on Implicit DIR.INITIALIZE

Meaning: NetBIOS experienced an error when it attempted to initialize
the LAN adapter.

Error Codes, Reasons, and Actions 285

Required Action: Check the extended status bring-up error code.
The only NetBIOS Interface command that may be issued until this is
done is Reset.

F8h, Error on Implicit DIR.OPEN.ADAPTER

Meaning: NetBIOS experienced an error when it attempted to open the
LAN adapter.

Required Action: Check the extended status bring-up error code.
The only NetBIOS Interface command that may be issued until this is
done is Reset.

There is a possibility that a DIR.OPEN.ADAPTER could fail because
of a temporary timing condition. Because of this the DIR.OPEN.
ADAPTER is retried twice at 30 second intervals before reporting this re­
turn code.

F9h, IBM LAN Support Program Internal Error

Meaning: The IBM Lan Support Program has experienced an internal er­
ror.

Required Action: Check the error code. The only NetBIOS Interface
command that may be issued until this is done is Reset.

FAh, Adapter Check

Meaning: The adapter has experienced an internal error.
Required Action: Check the adapter check reason code. The only

NetBIOS Interface command that may be issued is Reset.

FBh, NetBIOS Program Not Loaded in PC

Meaning: The IBM LAN Support Program is not loaded and available.
However, it has received a control block with a value greater than X'03'
in the first byte indicating a NetBIOS command has been issued.

Required Action: Load and start the IBM LAN Support Program and
reissue the command or correct the control block.

286 Appendix C

FCh, DIR.OPEN.ADAPTER or DLC.OPEN.SAP Failed-Check
Parameters

Meaning: As stated.
Required Action: Correct the parameters causing the error and exe­

cute the DIR.OPEN.ADAPTER command again. Note, the DLC.OPEN.
SAP command is executed on initial start and restart of the NetBIOS
Interface. The parameters used are obtained from the DIR.OPEN.
ADAPTER command (executed either explicitly or implicitly).

There is a possibility that a DIR.OPEN.ADAPTER could fail because
of a temporary timing condition, so before reporting this return code,
the DIR.OPEN.ADAPTER is tried again twice at 30 second intervals.

FDh, Unexpected Adapter Close

Meaning: The adapter was closed while the NetBIOS interface was exe­
cuting a command.

Required Action: Issue a Reset command.

F7h-FDh Error Notes

Required Action: The condition reported in the NcbRetCode is the last
occurring error.

Extended status information, excluding adapter counters, is available
in the NcbReserve field. For Reset commands, it is the status prior to the
Reset.

Ring Status Information

If any of ring status bits 8-11 are on, they cause error code Ox4F.
If any of ring status bits 12, 14, or 15 are on for longer than 60

seconds, they cause error code Ox4E. Ox4F errors have priority over
Ox4E errors.

Ring status bits 6 and 7 do not cause errors. If ring status bit 7
(counter overflow) is on, nothing is reported. Bit 6 (single station) is ig­
nored.

If a ring status appendage is not defined, local NetBIOS Interface
counters are updated via the DIR.READ.LOG command.

Appendix D

Ncb Command and Field Relationship

Commands Listed by Command Code

Command Call Lana
Command Code Retcode LSN Num Buffer@ Length Name Name Rto Sto Post@ Num

Call 10h,90h 0 0 I D=O D=O C

Listen llh,91h 0 0 I/C D=O D=O C
(*)

Hang Up 12h,92h 0 C

Send 14h,94h 0 C

Receive ISh,9Sh 0 I/O C

Receive- 16h,96h 0 0 I/C I/O C
Any (FFH)

Chain 17h,97h 0 C
Send

Send 20h,AOh 0 C
Datagram

Receive 21h,Alh 0 I I/O 0 C
Datagram (FFH)

Send 22h,A2h 0 C
Broadcast
Datagram

Receive 23h,A3h 0 I/O 0 C
Broadcast
Datagram

Add 30h, BOh 0 0 C
Name

Delete 31h, Blh 0 C
Name

Legend: I Input, a Output, C Conditional

287

288 Appendix D

Commands Listed by Command Code (cont.)

Command Call Lana
Command Code Retcode LSN Num Buffer@ Length Name Name Rto Sto Post@ Num

Reset 32h 0

Adapter 33h,B3h 0 I C
Status (*)

Session 34h,B4h 0 I/O I C
Status (*)

Cancel 35h 0

Add 36h,B6h 0 0 C
Group
Name

Unlink 70h 0

Send 71h, Flh 0 C
No-Ack

Chain 72h, F2h 0 C
Send
No-Ack

Commands Listed by Categories

Command Call Lana
Command Code Retcode LSN Num Buffer@ Length Name Name Rto Sto Post@ Num

General
Reset 32h 0

Adapter 33h,B3h 0 I C
Status (*)

Cancel 35h 0

Unlink 70h 0

Name
Add 30h,BOh 0 0 C
Name

Delete 3lh,Blh 0 C
Name

Add 36h,B6h 0 0 C
Group
Name

Session
Call lOh,90h 0 0 D=O D=O C

Ncb Command and Field Relationship 289

Commands Listed by Categories (cont.)

Command Call Lana
Command Code Retcode LSN Num Buffer@ Length Name Name Rto Sto Post@ Num

Listen llh, 91h 0 0 lIC D=O D=O C
(*)

Hang Up 12h,92h 0 C

Send· 14h,94h 0 I C

Receive 15h,95h 0 I 1/0 C

Receive- 16h,96h 0 0 lIC lIO C
Any (FFH)

Chain 17h,97h 0 C
Send

Session 34h,B4h 0 lIO I C
Session (*)
Status

Datagram
Send 20h,AOh 0 I I C
Datagram

Receive 21h, Alh 0 I lIO 0 C
Datagram (FFH)

Send 22h,A2h 0 C
Broadcast
Datagram

Receive 23h, A3h 0 lIO 0 C
Broadcast
Datagram

Appendix E

Send No-Ack and Chain Send No-Ack

When NetBIOS first appeared with the IBM PC Network LANA card, Net­
BIOS insured data integrity for session traffic by sending an acknowledg­
ment (ACK) for all messages successfully received with a Receive or
Receive-Any command. When the IBM Token-Ring Network appeared,
the IEEE 802.2 LLC layer also provided data receipt acknowledgments at
a lower level in the communication layer hierarchy. However, the Token­
Ring Network NetBIOS implementation continued to observe the prac­
tice of NetBIOS-to-NetBIOS ACKing as a legacy, though it was somewhat
unnecessary in theory.

The Send No-Ack and Chain Send No-Ack commands, new with the
IBM LAN Support Program version 1.02, are variants of the Send and
Chain Send commands, respectively. Their purpose is to addtess the
presence of redundant ACKing in IBM's NetBIOS implementations.
Their use potentially provides modest performance improvements for
session-oriented communication by eliminating both the theoretically
unnecessary adapter NetBIOS session overhead and LAN traffic caused
by IBM's NetBIOS-to-NetBIOS ACKing.

IBM recommends (but does not require) that these commands be
used with the IBM PC LAN Program 1.3 and beyond. While the Send No­
Ack and Chain Send No-Ack commands require the same input fields as
the Send and Chain Send commands, their use has serious side effects
that need to be completely understood by programmers.

Some NetB/OS implementations do not have these commands and
the new 07h return code value they introduce. Use of these commands
may produce nonportable results with side effects such as 03h (invalid
command) return code values in NetBIOS implementations not recog­
nizing their command codes.

291

292 Appendix E

A LAN may have different levels of NetBIOS in use. If a NetBIOS im­
plementation is presented a local Send No-Ack or Chain Send No-Ack
command and determines that the remote NetBIOS cannot respond to
the request appropriately, the local NetBIOS treats the request as a Send
or Chain Send command, respectively. In other words, there is no advan­
tage in using the No-Acks in this scenario.

A No-Ack command is not guaranteed delivery of its data. When a
No-Ack command fails, the session remains intact because the NcbSto pa­
rameter specified in the Call or Listen command that created the session
has no effect on No-Ack commands. Moreover, aNo-Ack command can
be canceled without aborting the session.

In these senses, a No-Ack command is somewhat like a Send
Datagram command. However, No-Ack commands differ from Send
Datagram commands because the message size can be 64K-l characters
for a Send No-Ack command and 128K-2 characters for a Chain Send No­
Ack command. In addition, No-Ack commands specify an NcbLsn value
and Send Datagram commands specify an NcbNum value.

A No-Ack command may return with a final return code value of
zero, but may have actually failed. The failure may be due to the target
application's not having any Receive or Receive-Any command outstand­
ing. Here, the command completely fails but may have already reported
its "success." Or, if a Receive or Receive-Any command is outstanding, its
buffer may not be large enough to hold all the arriving data. In this in­
stance, the buffer is filled with data, and the remainder is discarded by
NetBIOS.

No-Ack command failures are reflected in other session commands.
No-Ack commands that failed but return a final return code with a zero
value cause other local session commands associated with the same LSN
value to fail with a 07h final return code value. These commands are the
Send, Send No-Ack, Chain Send, Chain Send No-Ack, Receive, and Re­
ceive-Any commands.

Whichever command NetBIOS finds first gets the lucky number 07h
as a final return code. Hence, failure determination logic is complicated
by the fact that the failure detection point is generally not predictable. In
this sense, NetBIOS's indiscrimination is most democratic.

A 07h return code value is ambiguous in many ways. The 07h re­
turn code value alerts an application that one or more No-Ackcommands
on the session have failed. No indication is given whether the command
was one or more Send No-Ack command(s) and/or one or more Chain
Send No-Ack command(s) or even how many No-Ack commands may

Send No-Ack and Chain Send No-Ack 293

have failed. One 07h return code represents all of them in unison. Finally,
if only one failed, no indication is given regarding how much data was
actually successfully received.

Receive or Receive-Any commands that receive data transmitted by
a No-Ack command are given no indication that the data was transmit­
ted by the No-Ack variant. If a Receive or Receive-Any command's buffer
is not large enough, the command completes with a o6h (incomplete re­
ceived message) return code value as it does if the data was sent by a Send
or Chain Send command. However, the application cannot issue another
Receive or Receive-Any to obtain the remainder of the data because it has
already been discarded by the local NetBIOS. Yet the receiving applica­
tion has no way of knowing this.

Applications such as the PC Network's RPL logic depend on the abil­
ity to issue a subsequent Receive to pending data. Here, as in many ex­
isting programs, the RPL logic issues a Receive to obtain a message
header which indicates the remaining data size that should be received
with a subsequent Receive command.

Conclusion

No-Ack commands generally have the curious characteristic of unpre­
dictably reflecting their problems in other commands. Clearly, tech­
niques that work with the Send and Chain Send commands cannot be
used with their No-Ack counterparts. Oddly enough, when things go
wrong while using No-Ack commands, the most straightforward ap­
proach is to use traditional Send and Chain Send commands to effect
damage control. In any event, it is the application's responsibility to
maintain data integrity in No-Ack error sessions.

It would seem that since traditional NetBIOS programming practices
are generally inappropriate with the No-Ack commands, their use may be
restricted to new applications. Otherwise, they may require significant
restructuring of existing programs, exciting debugging opportunities, or
both.

OS/2 Extended Edition
and LAN Manager

Appendix F

IBM's OS/2 Extended Edition and Microsoft Corporation's OS/2 Lan
Manager contain extensions and changes to the PC-DOS NetBIOS Pro­
gramming Interface. In both instances, NetBIOS functions are available
via OS/2 dynamic linking. Processes present requests to NetBIOS using
FAR CALL rather than PC-DOS INT SCh or 2Ah interrupts. Instead of
pointing ES:BX to an Ncb and executing an INT SCh, OS/2 assembly lan­
guage programs use the following sequence:

push NcbSeLector
push NcbOffset
caLL NetBIOS

segment
offset
NetBIOS dynamic Link

IBM OS/2 Extended Edition

Many PC-DOS NetBIOS device driver load time parameter keywords, in­
cluding all "old parameters," are deleted and those that remain may have
different defaults. Table F-I lists the allowable parameters, their defaults,
and their allowed values. The n~w APPLICATIONS parameter, specifies the
number of processes that may simultaneously use the NetBIOS interface.

OS/2 Extended Edition Reset Conimand

In OS/2 Extended Edition, each process operates independently. A pro­
cess obtains NetBIOS resources by a Reset command, which must be the
first NetBIOS command a process issues. Processes cannot share names,

295

296 Appendix F

Table F-l. OS/2 Extended Edition Parameters

Keyword Default Valid Values

ADAPADDR.NOT.REVERSED (ANR) NO YCes)/N(o)

APPLICATIONS (APP) 2 0- 16

COMMANDS (C) 32 0-255

DATAGRAM.MAX (DG) NO Y(es)/N(o)

DLC.MAXIN* (MI) 0-9

DLC.MAXOUT* (MO) 0-9

DLC.RETRYCOUNT* (RC) 0-255

DLC.T1 (Tl) 5 0- 10

DLC.T2 (T2) 2 0- 11

DLC.TI (TI) 3 0-10

NAMES (N) 17 2 - 254

RING.ACCESS (RA) 0 0-7

REMOTE.DATAGRAM.CONTROL (RDC) NO Y(es)/N(o)

REMOTE.NAME.DIRECTORY (RND) 0 0-255

SESSIONS (S) 32 0-254

STATIONS (ST) 32 0-254

TRANSMIT.COUNT (TC) 6 0-10

TRANSMIT.TIMEOUT (TT) 1 0-20

* The adapter and interface code determines the default values for these parameters

including the permanent name, and the right to use the permanent name
is obtained using the Reset command. The OS/2 NetBIOS Reset com­
mand is significantly different from the PC-DOS Reset command and is
the only command which has redefined command field meanings.

Storage Segment Seams

In OS/2 NetBIOS requests, storage segment adjustments cannot be
made. If an offset plus the data length of a buffer exceeds 64K in a Re­
ceive, Receive-Any, Send, Send No-Ack, Chain Send, or Chain Send No­
Ack command, the command completes with a return code value ofOlh
(invalid buffer length). Because OS/2 Extended Edition locks storage
communication buffers, buffers should be maintained in as few data seg­
ments as possible.

OS/2 Extended Edition and LAN Manager 297

Wait and No-Wait Options

Commands specifying the wait option are initiated and the requesting
process threads are immediately blocked. When the command com­
pletes, execution returns to the requesting process's code. The effect is
similar to PC-DOS NetBIOS commands that specify a wait option.

OS/2 Extended Edition processes no-wait commands by generating
child threads that are immediately blocked. Execution then returns to
the requesting process's thread. When the command completes, Net­
BIOS invokes a post routine if specified in the Ncb. Post routines return
by executing a FAR RETURN instruction rather than an IRET instruction
and do not have to save or restore registers.

Because commands specifying the no-wait option require more OS/2
Extended Edition resources than commands specifying the wait option,
commands specifying the wait option may succeed when commands
specifying no-wait fail with a 35h return code value (required operating
system resources exhausted).

New Return Codes

OS/2 Extended Edition adds several NetBIOS return codes. These are
fully explained in the return codes discussion in Appendix C.

30h: Name defined by another process

34h: NetBIOS environment not defined, Reset must be issued

35h: Required operating system resources exhausted

36h: Maximum applications exceeded

37h: No SAPs available for NetBIOS

38h: Requested resource(s) not available

Allocating and Deallocating NetBIOS Resources

Processes issue the Reset command to allocate (reserve) and use or to
deallocate (relinquish) and terminate using NetBIOS resources.

Allocating Resources
A process must issue a Reset command as its first NetBIOS command.
Processes use the Reset command to request NetBIOS to allocate re­
sources for their exclusive use. These resources are taken from the Net-

298 Appendix F

BIOS resource pool created at NetBIOS load time from the load time
parameter values. Allocated resources cannot be used by any other pro­
cess until they are released by the owning process. The requested re­
sources are collectively called an environment and include a quantity of
sessions, commands, names, and the use of name-number one.

If the process subsequently issues a Reset command to redefine its
environment,NetBIOS deallocates all resources currently reserved for
the process and allocates the requested resources if they are available.

Resetting and Deallocating Resources
When a process issues a Reset command to deallocate its environ~ent's
resources, NetBIOS returns all the resources allocated to the process to
the NetBIOS resource pool for subsequent use by other processes. For
the requesting process, existing sessions are terminated and all added
names are deleted from the NetBIOS name table(s). Because all processes
operate independently, no other currently executing process is affected.

When an OS/2 Extended Edition process terminates, OS/2 EE implic­
itly issues a NetBIOS Reset to deallocate resources the process owns.

Microsoft Corporation's OS/2 LAN Manager

Microsoft Corporation's OS/2 LAN Manager contains new functions that
allow processes to access more than one installed NetBIOS device driver.
These drivers can support multiple LAN adapters of the same or different
types and each type has its own load time parameters.

The new NetBIOS calls and their functions are

• NetBiosEnum(): Determines the number of and names of all in­
stalled NetBIOS device drivers

• NetBiosGetInfo(): Returns il)stalled NetBIOS device driver infor­
mation for the specified driver

• NetBiosOpen(): Creates a device driver handle for sending Ncbs
to a specified NetBIOS device driver. The process specifies one of
three operating modes in the call:

Regular mode is simultaneously usable by multiple processes.
It does not allow use of the permanent name or Reset, Receive
Any-to-Any, or Receive Broadcast Datagram commands.
Privileged mode is only usable by one process (though other
processes can use or open the adapter in Regular mode simul-

OS/2 Extended Edition and LAN Manager 299

taneously). It does not allow use of Reset or Receive Any-to­
Any commands.
Exclusive mode provides a process exclusive use of a NetBlOS
device driver. This process can use any NetBIOS command .

• NetBiosClose(): Cancels the device driver handle, cancels any
outstanding Ncbs, and terminates access to a specified NetBIOS
device driver,

• NetBiosSubmit(): Passes one or multiple Ncbs to a specified Net­
BIOS device driver. A chaining option specifies whether the re­
quest is for one or multiple chained Ncbs and is an efficient way to
pass several requests to an individual NetBlOS device driver si­
multaneously.

For single Ncb requests, an error retry option specifies whether the
LAN Manager should have the NetBlOS device driver retry a failing Ncb
request a specified number of times. For chained operations, a 16-bit off­
set pointer precedes each Ncb that points to the next Ncb in the chain.
All Ncbs must be in the same segment and a value of OFFFFh specifies the
end of the chain.

A chain can contain any Ncb sequence, but some are impractical. For
example, a Send Datagram command may need an NcbNum value that is
returned by an Add Name command positioned earlier in the chain. The
Send Datagram command fails because the Lan Manager does not auto­
matically place the NcbNum value in the Send Datagram Ncb.

For chained requests, an error retry option specifies whether the
LAN Manager should have the NetBlOS device driver continue after an
error (proceed-on-error) or terminate after an error (stop-on-error).

Whether an Ncb command specifying the no-wait option is an indi­
vidual request or one within a chain, the LAN Manager implements no­
wait requests with semaphore handles. Proceed-an-error chains typi­
cally are used for no-wait option Ncb commands. Stop-an-error chains
are typically used with commands using the wait option. Ncbs not proc­
essed because of an earlier occurring error in the Ncb chain are posted
with a return code value of OBh (command cancelled).

Bibliography

3Com Corporation. 1987. NetBIOS Programmer's Reference (3260-00).
Burlington, Massachusetts.

IBM Corporation. 1984. IBM PC Network Technical Reference Manual
(6322916). Armonk, New York.

---. 1986. Token-Ring Network PC Adapter Technical Reference
(69X7862). Second edition. Armonk, New York.

---. 1988. Migration Considerations for NetBIOS. IBM Washington
Systems Center Internal Flash 8736.

---. 1988. New NetBIOS Commands in LAN Support Program
V1.02. IBM Washington Systems Center Internal Flash 8808.

Lai, Robert S. 1987. Writing MS-DOS Device Drivers. New York: The Ad­
dison-Wesley Publishing Company.

Microsoft Corporation. 1988. Programming Interface for the OS/2 LAN
Manager. Microsoft Operating System/2 Software Development Kit
Part Number 01396. Redmond, Washington.

Schwaderer, W. David. 1988. IBM's Local Area Networks: Power Net­
working and Systems Connectivity. New York: Van Nostrand Rein­
hold.

301

Index

A

ADAP.ADDR.NOTREVERSED (ANR)
parameter, 50

Adapter card interface as
communication programming
interface by IBM, 15

Adapter ROM, 5
Adapter(s), 3, 11, 16

addresses from serial numbers of,
23

baseband, 14
broadband, 13
closure of, error code for, 286
data security and, 63-64
datagram and session support for,

23-25
disconnecting, 92-93
general broadcast address for, 23
hot carrier from a, error code for

a, 284
internal error, error code for an,

285
LAN Support Program support of,

47
malfunction, error code for, 284
name in use on remote, error code

for a, 280
network protocols for, error code

for, 278

Adapter(s)-cont
numbers and names for, 21-22,

64-65
primary and alternate (second), 47,

228
promiscuous mode of, 64
resetting, 86-88
status program for, 77-86
Token-Ring, 12-13
transceiver types, 14
types of, 11, 13, 14

Adjacent-layer communication, 4
Advanced Program-to-Program

Communications (APPC)
interface as communication
programming interface by IBM,
15-16

Algebraic polynomial division,
171-73

ANSI X3T9.5 Fiber Distributed Data
Interface (FDDI) draft standard,
12

ANSI/IEEE 802.5 Standard for
transmission, 175

Appendage, 232-33
AUTOEXEC.BAT

diskette image's, 164
to execute NETBIOS.COM, 8
setting the date and time during

execution of, 105

303

304 C Programmer's Guide to NetBIOS

B

Bibliography, 289
BIOS

actions on interrupt registers,
158-59

extended keystroke, 136
LANA adapter, 160. See also

Adapter(s)
BIOS-ROM upgrade, 6-7
Block device driver call interface,

157-58
Boot record, 163-64
Booting up, 164
Buffer

Adapter Status, 92
address for read/writes, 158
application, 226
data, 41, 162
data hold, 51-52
data-receive, 225
depletion count counter, 233
length, error code for a too-small,

277
length, error code for an invalid,

277
length status, 257
offset, 42
Receive, 33,49,54,249-50
SAp, 233
segment address, 42
Send Datagram, 137
transmit, 49, 51

Burned-in address (BIA), 21-22
Bytewise Table Look-up CRC, 192-98

c

C post routine listing, 271-73
C programming language

file transfer applications, 139-53
interrupt request program, 33-34
Ncb field structure example, 38
program to test for presence of

NetBIOS, 44-46
CANCEL.C program listing, 88-92

Carrier not detected, error code for
a,284

Carrier Sense Multiple Access Carrier
Detect (CSMA/CD)

access method, 5, 13
adapter, 77
differences between Token-Ring

environment and, 10
Carry flag, 158, 161, 163
CB.C program listing, 119-37

ApplyKeystroke() routine, 137
EditArgs() routine, 134
main() function, 133-34
NetBIOS add name processing

routines, 134
Participate() routine, 134-35
ProcessReceivedDatagram()

routine, 136
SendKeyboardMsg() routine, 137
ServiceDaiagramNcbs() routine,

135-36
ServiceKeyboard() routine,

136-37
Christensen, Ward, 170
Client

date and time application, 109-17
defined, 155
medialess workstations as, 155-56,

159
CLOSE.ON.RESET NetBIOS

parameter, 51, 253
Commands, NetBIOS. See NetBIOS

commands
COMMANDS NetBIOS parameter, 51,

254
Communications between

applications
datagrams for, 23-26
sessions for, 23, 26-30

CONFIG.SYS
adapter opened during processing

of,54
device driver specification line, 48
diskette image's, 164
parameters, 226

CRC-CCITT generation hardware,
199

Index

CRC-CCITT polynomial, 177-79
and minimum look-up table sizes,

199-205
postconditioning for, 189

CRC-16 polynomial, 177-78, 181-98
generalized shifting of, 189-92
hardware, 183-89

CRCI6.C program listing, 193-98
CRC-32 polynomial, 207-17

bytewise look-up table to generate
values for a, 208-17

postconditioning process, 207
residual value, 207
shifting, 207-8

CRC32.C program listing, 209-17
Create New File function (INT 21h

AH=5Bh),59
Create Unique File function (INT 21h

AH=5Ah),59
Cyclic Redundancy Checking (CRC),

63, 167-217
binary zero padding, 176
bitwise reversal, 181-82, 184, 186
calculation, 174-77, 201
compatibility of implementations

of, 198
fundamentals, 169-79
general mechanics, 181-98
hardware, 183-89
mathematics, 170-74
message bit patterns, 175-76
message receipt procedure, 177
need for, 169-70
polynomials, prevalent, 177-79
postconditioning, 176, 188-89
preconditioning, 175-76, 183-84
process, 169-70
residue, 201
right-shifting in, 184, 186-88,

189-92
table look-up schemes, 192-98
transmission procedure, 176

D

Data

Data-cont
encryption, 65
layers, 156-59
overlaid, 58
sharing facilities, 159

305

Data communication without a LAN,
3

Data Link Control (DLC), 8
interface as communication

programming interface by IBM,
15-17

software, 48-50
Datagram

conference, 119-37
intermediate applications, 105-17
origin name, 24
sent to every network adapter

with Send Broadcast Datagram
command, 256

Datagram support, 23-24
broadcast, 24
plain, 24-26
programming application, 101-4

DATAGRAM.MAX NetBIOS parameter,
51

Date application
client, 109-17
server, 105-9

DATETIME.C program listing, 105-9
DEBUG.COM program

to examine the Network Adapter
BIOS code, 9

to show Network Adapter BIOS
part number, 7

Device driver
block, 107-8, 159-60
character, 107
CONFIG.SYS specification line for

a, 48
invoking a, 108

DHB.NUMBER NetBIOS parameter,
51

DHB.SIZE NetBIOS parameter,
51-52, 233

Direct interface as communication
programming interface by IBM,
15, 17

306 C Programmer's Guide to NetB/OS

Directories, destroyed, 58
DIR.INITIALIZE

command,235
error code for an implicit, 284

DIR.OPEN .ADAPTER
command, 232, 235
error code for a failed, 286
error code for an implicit, 285

DIR.READ.LOG
command, 235
interface counter updated with,

286
Diskette image, 163-65
Display controller, 58
DLC.MAXIN NetBIOS parameter, 48,

52, 56
DLC.MAXOUT NetBIOS parameter,

48,52,56,233
DLC.OPEN.SAP

command, 235
failure, error code for a, 286

DLC.RETRYCOUNT NetBIOS
parameter, 52

DLC.TI NetBIOS parameter, 53
DLC.T1 NetBIOS parameter, 48, 52,

56
DLC.T2 NetBIOS parameter, 48, 52,

56
DXMINFO.DOC disk documentation

file, 10, 22, 48, 50
DXMTOMOD.SYS device driver, 8-9,

48-49
DXMTOMOD.SYS NAMES parameter,

226
DXMTOMOD.SYS TRANSMIT.

COUNT parameter, 239, 240,
241,246,257,261

DXMTOMOD.SYS TRANSMIT.

E

TIMEOUT parameter, 239-41,
246, 257, 261

ENABLE NetBIOS parameter, 53
Ethernet

, adapters, 15

Ethernet -cont
LANs, CRC-32 polynomial as CRC

divisor in, 207
network security, 65

Exclusive-OR, 185, 193
byte value, 192
gates, 184
table, 173

Extended Graphics Adapter (EGA), 6
EXTRA. SAPS NetBIOS parameter, 53
EXTRA. STATIONS NetBIOS

parameter, 53

F

File allocation tables (FATs),
destroyed, 58

File control blocks (FCBs), 58-59
File transfer applications, C language,

139-53
File-handle functions for NetBIOS

applications, 58
Final return code, 223
First-in, first-out (FIFO) order, 244,

250
Frames (transmitted packets), 49, 56

information, 232-33
maximum size of, 86-87
unnumbered information, 232

H

Hardware
CRC-CCITT, 199
problem, error code ~or a, 280

Header field, 170

I

IBM Academic Computing
Information Systems (ACIS) , 15

IBM LAN Support Program, 4-6, 8-9,
16, 17,47-56,221

device driver, 22, 47

Index

IBM LAN Support Program-cont
internal error, error code for an,

285
not loaded, error code for, 285-86
resetting an adapter controlled by

the, 69-86
role of, 47-48

IBM NetBIOS Application
Development Guide, 9, 10,64

IBM PC
adding NetBIOS to an original,

6-7
IBM PC Network Adapter II

operation in all but models 25
and 30 of, 13

IBM PC Network Baseband
Adapter operation in, 14

IBM Token-Ring Network PC
Adapter operation in, 12

IBM Token-Ring Network PC
Adapter II operation in, 12

IBM Token-Ring Network Trace
and Performance Adapter
operation in, 12

test for the presence of NetBIOS in
the, 35

IBM PC LAN Adapter (LANA), 5
number, 37, 43
original PC Network card, 6-7

IBM PC LAN Program (PCLP), 57-58,
156

coexistence restrictions, 58-59
detecting the, 59-62
executing the, 164

IBM PC Local Area Network
Program User's Guide, 57-59

IBM PC Network
baseband environment, 14
broadband environment, 13
CRC-32 polynomial as CRC divisor

in, 207
Ethernet, 15
Token-Ring. See IBM Token-Ring

network
IBM PC Network Protocol Driver, 47
IBM PC Network Technical Reference

Manual, 9, 165

IBM PC-AT
IBM PC Network Adapter II

operation in, 13
IBM PC Network Baseband

Adapter operation in, 14
IBM Token-Ring Network PC

Adapter operation in, 12
IBM Token-Ring Network PC

Adapter II operation in, 12
IBM Token-Ring Network Trace

and Performance Adapter
operation in, 12

307

test for the presence of NetBIOS in
the, 35

IBM PC-DOS to run NetBIOS, 5, 57
IBM PC-XT

IBM PC Network Adapter II
operation in, 13

IBM PC Network Baseband
Adapter operation in, 14

IBM Token-Ring Network PC
Adapter operation in, 12

IBM Token-Ring Network PC
Adapter II operation in, 12

IBM Token-Ring Network Trace
and Performance Adapter
operation in, 12

test for the presence of NetBIOS in
the, 35

IBM Token-Ring network, 5, 8
adapter routing information for, 32
CRC-32 polynomial as CRC divisor

in, 207
environment, 11-13

IBM Token-Ring/PC Network
Interconnect Program, 5, 48, 79

IBMLANPG.C program listing, 59-62
IBM's Local Area Networks: Power

Networking and Systems
Connectivity, 11

IEEE 802.2 Logical Link Control
(LLC) protocols, 4-5, 16-17,48

IEEE 802.3 Ethernet, 5
Immediate return code, 223
Inactivity timer (Ti), 53
INT 13

BIOS interface, 158-60

308 C Programmers Guide to NetBIOS '

INT 13-cont
reset command, 161-63

INT 21
Create New File function (INT 21h

AH=5Bh),59
PC-DOS interface to resolve data

requests, 156-57
Integrity checking, 169
International Standards Organization

(ISO),3-4
Interrupt registers

return code summary for, 261-62
settings of, 226-29
table of, 158, 163

110 redirection for character device
drivers, 157. See also
Redirectors

K

Keystroke, reading a, 136-37

L

LANA NetBIOS, 7-8
LANA protocol ROM, 9
LANA's Network Adapter BIOS,S
LANAS.INC, 9
"Layered hardware" design, 14
Link stations, 49-50, 56

device driver, 52
obtaining additional, 53
setting the maximum number of,

55
Local area network (LAN)

data integrity and security, 63-65
group names. See Network names
monitors that record and display

all data from Ethernet or Token­
Ring, 65

NetBIOS applications residing on
different machines on a, 3

programming interfaces, IBM,
15-17

Local area network (LAN)-cont
real-time conferencing application,

119-37
Local node name, 21-22
Local Session Number (LSN), 27, 30,

241,248,253,254,260
Logical Link Control (LLC)

code retries, 52
IEEE protocol, 4-5, 16-17,48
software, 48-50
standard protocols, 47

Look-up table sizes, minimum,
199-205

Low-order bit-first transmission rule,
175

M

MAP/TOP environment
implementations of NetBIOS, 6
NetBIOS interface for,S

MASM
interrupt request program, 34
Ncb field structure example, 39

MAXDG.C program listing, 101-4
Message Control block (Mcb). See

Ncb (NetBIOS Control Block)
fields

Message received incomplete, error
code for, 277

Microsoft LAN Manager, 156
Microsoft Networks (MS-NET)

redirector, 156
Modulo two arithmetic, 172-74
Modulo two division, 176, 184, 188
Monitors that record and display all

N

data from Ethernet or Token­
Ring networks, 65

Name table, NetBIOS, 41, 53-54, 109,
152

adding a name to the, 240

Index

Name table-cont
deregistered name in the, error

code for a, 279
duplicate name in the, error code

for a, 278
full, error code for a, 279
local, 236
name deleted from the, error code

for a, 280
name missing from the, error code

for a, 280
name registration and the, 20-21
network adapter name in the, 239
program to add and delete names

from the, 95-lO0
Reset command to remove names

from the, 31, 51, 58
NAME.C program listing, 95-lO0

AddNetbiosName routine, 99
FillNetbiosNameTable routine,

99-lO0
NAMES NetBIOS parameter, 53-54,

232
Ncb (NetBIOS Control Block) fields,

32-33,37-46, 221-28
Buffer Address, 37, 41
Buffer Length, 37, 41
C language structure example, 38
Call Name, 37, 41-42
Command, 37, 39-40
Command Complete Flag, 38, 43
format, 222
LANA Number, 38, 43
Local Session Number, 37, 41
MASM structure example, 39
Name (Local), 37, 42
Name number, 37, 41
NcbBuffer@, 225, 232, 242, 243,

254
NcbCallName, 225-26, 232, 241,

243, 247, 261
NcbCmdCplt, 223, 228-30, 262
NcbCommand,221-23
NcbLanaNum, 228, 232, 259, 261,

281
NcbLength, 225, 257

Ncb (NetBIOS Control Block)
fields-cont

309

NcbLsn,224, 243, 246, 250, 254,
260

NcbName, 226, 241, 247, 257, 261
NcbNameNum, 252, 260
NcbNum, 224, 240, 252, 253, 260
NcbPost@, 227-30
NcbReserve, 228
NcbRetCode, 223-24, 229, 230,

246, 261, 262, 286
NcbRto, 226-27, 241, 260
NcbSto, 227, 241,247, 260
Post Routine Address, 38, 43
Receive Time Out, 37, 42
Reserved Field, 38, 43
Return Code, 37, 40
Send Datagram, lO4
Send Time Out, 37, 42
structure of, 37-39

NETBEUI.COM (NetBIOS Extended
User Interface) module, 8-lO,
47

NetBIOS commands, 35, 231-62,
287-89

Adapter Reset, 20
Adapter Status, 31-32, 50,70,77,

89,91-92, 101, 161,225-26,
231-38, 248, 257, 261, 280

Add Group Name, 224, 226, 239,
281

Add_Group_Name_Claim,20
Add Name, 152,224,226, 240,

281
Call, 26, 42, 54, 153, 161,225-27,

236,241-42,244-45,249,255,
280

Cancel, 31,91-92,222,225,227,
242,247,255,278,281

canceled, error code for, 278, 281
Chain Send, 28-29, 42, 221,

225-27, 241-44, 246-47, 255,
261

Chain Send No-Ack, 30, 242-44,
248

completion message, 276

310 C Programmer's Guide to NetBIOS

NetBIOS commands-cont
Delete Name, 20, 226, 236,

244-45,280
Find, 32
Find Name, 31-32, 54
Hang Up, 30, 92, 153, 164, 165,

243,245-47,249,254-55,259,
261

invalid, error code for, 277
issuing, 32
list by categories, 288-89
list by command code, 287-88
Listen, 26, 42, 152-53, 225-27,

236, 244-45, 247-49, 255, 261,
279

Name_Claim, 20
pending, error code for too many,

281
Receive, 27-29, 33, 42, 153,

162-63,225-27,241,246,
248-50

Receive-Any, 224, 225-27, 240,
246, 249-50, 261

Receive-Any Datagram, 25
Receive-Any -for-a -S pecified-Name

(Receive-Any), 27-29, 250
Receive-Any-for-Any-Name

(Receive-Any-Any), 27-29, 58,
250,260

Receive Broadcast Datagram, 58,
225, 251, 256

Receive Datagram, 24-25, 109,
116-17, 134-35,224,225,
252-53,256,260

Reset, 31, 51, 55, 58, 76, 222, 224,
253-54,260,283,284

returning to the operating system
with still-pending, 40

Send, 28-30, 42,153,162,225,
227,241-42,246-47,254-55,
261,280

Send Broadcast Datagram, 24, 225,
251,255-56

Send Datagram, 24,54, 104, 137,
225,256

Send No-Ack, 30, 242, 248,
254-·55

NetBIOS commands-cont
Session Status, 225, 226, 257-58,

261
Status Query, 54
timed-out error code, 275
Trace, 32
uncompleted, 39-40, 43, 91-92
Unlink, 31,92, 165,222,259,260

NetBIOS interrupt request
sample C, 32-33
sample MASM, 33-34

NetBIOS ROM, 7
NETBIOS.COM

to replace PC Network LANA
NetBIOS,8

testing for presence of NetBIOS
complicated by, 46

NetBIOS2.h program listing, 109,
265-70

Network Adapter BIOS, 7
listing, 9
part number, 7

Network Adapter/A (Token-Ring), 12,
49

Network Adapter II, 47-48
Broadband, 13
Token-Ring, 12,49

Network Adapter IlIA, 13,47-48
Network Basic Input/Output System

(NetBIOS)
application services, 19-35
command code, 39
command completion, 228-30
as communication programming

interface by IBM, 15
as de facto industry standard, 5
defined, 3
device driver, 51-55
error codes, 76-77, 275-86
error information, 43
history, 5
Interface, 8, 10,32,279
introduction to, 1-65
network security features not built

into, 64
no-wait option, 39, 43, 89,153,

221-23,228-29

Index

Network Basic Input/Output System
(NetBIOS)-cont

operating system environments
for, 5, 57

parameter summary, 48-56
post routine, 227-28
reference material, descriptions of,

9-10
relationships to other IBM

products, 57-62
support programming, 67-165
TCP/IP implementations of, 6
technical reference, 219-60
testing for the presence of, 34-35,

44-46
Network name(s)

failure to register, 20
group, 20
identical multiple, error code for,

280
legal characters in, 19
number, 20-21, 279
permanent node, 21-22
symbolic, 22-23
table. See Name table, NetBIOS
unique, 20

Network PC Adapter, 12
Network PC Adapter II, 12
Network Trace and Performance

Adapter/A, 12
Network Trace and Performance

Adapter II, 12
Nibblewise table look-up, 201-5, 209

o

Open Systems Interconnection (OSI)
Reference Model, 3-4

OPEN.ON.LOAD NetBIOS parameter,
54

OS/2
LAN Requestor function, 156
to run NetBIOS, 5

OS/2 Extended Edition, 16, 156

311

p

Packet acknowledgment protocol, 26
Packets. See Frames (transmitted

packets)
Parameters, NetBIOS, 48-56

processing, 79-80
Parity checking, 63, 169
PC BIOS Extended BIOS Option, 6
PC Network Adapter, 5, 12,49

information format for status of,
237-38

PC Network LANA RPL protocols, 12,
31

PC Network Protocol Driver
Program, 10

PC-DOS redirector, 57
PC-DOS Technical Reference

Manual, 59, 158, 160
PC-XT Fixed Disk Adapter, 6
Peer-layer communication, 4
Peer-to-peer communications, APPC

interface for, 16
Permanent node name, 21-22, 31,

50, 105
abuse of, 64-65
fetching the, 161

Physical address, 21-22
Polynomial division

algebraic,171-73
modulo two arithmetic and,

172-74,184,188
POST processing queue, 223-24,

229
Power-On-Self-Tests (POST), 7
PRESENCE.C program to test for

presence of NetBIOS, 44-46
Program listings

CANCEL.C, 88-92
CB.C, 119-37
CRCI6.C, 193-98
CRC32.C, 209-17
DATETIME.C, 105-9
IBMLANPG.C, 59-62
MAXDG.C, 101-4
NAME.C, 95-100
PRESENCE.C, 44-46

--- --. -. -.-.--------------~----~~-

312 C Programmer~ Guide to NetB/OS

Program listings-cont
RECEIVE.C, 146-52
RESET.C, 69-75
SEND.C, 139-46
SET_D_T.C, 109-17
STATUS.C, 78-86
UNLINK.C, 92-93

Protocol ROM, 5
PS/2

IBM PC Network Adapter II/A
operation in all but models 25
and 30 of, 13

IBM PC Network Baseband
Adapter/A operation in all but
models 25 and 30 of, 14

IBM Token-Ring Network Adapter/
A operation in all but models 25
and 30 of, 12

IBM Token-Ring Network Trace
and Performance Adapter/A
operation in all but models 25

I and 30 of, 12
PS/2 model 25

IBM PC Network Adapter II
operation in, 13

IBM PC Network Baseband
Adapter operation in, 14

IBM Token-Ring Network PC
Adapter operation in, 12

IBM Token-Ring Network PC
Adapter II operation in, 12

IBM Token-Ring Network Trace
and Performance Adapter
operation in, 12

PS/2 model 30
IBM PC Network Adapter II

operation in, 13
IBM PC Network Baseband

Adapter operation in, 14
IBM Token-Ring Network PC

Adapter operation in, 12
IBM Token-Ring Network PC

Adapter II operation in, 12
IBM Token-Ring Network Trace

and Performance Adapter
operation in, 12

Q

Queries
TRANSMIT.COUNT parameter to

specify number of times to
transmit, 55

TRANSMIT. TIMEO UT parameter
to specify number of intervals
between transmission of, 56

R

Read requests, 162
RECEIVE.BUFFEKSIZE NetBIOS

parameter, 54
RECEIVE.C program listing, 139,

146-53
Receiver acknowledgment timer (T2),

52
Redirection logic, 161-65
Redirector(s)

attributes, 155
examples of, 156
implementation, 159

REDIR.EXE redirector module, 57,
159

Remote Program Load (RPL)
attributes, 155
implementation, 160-65
to load operating systems for

medialess workstations, 156
logic, entering the, 161
server, unlinking from, 164-65,

259
surrogate diskette boot process, 5

Remote Virtual Disk (RVD), 159
REMOTE.DATAGRAM.CONTROL

NetBIOS parameter, 54
REMOTE.NAME.DIRECTORY

NetBIOS parameter, 54
RESET.C program to reset an adapter,

69-75
AnalyzeResetError() routine of

the, 76-77
EditParms() routine of the, 75-76
ResetAdapter() routine of the, 76,

77

Index

RESET VALUES NetBIOS parameter,
55, 253-54

Residue after a CRC message is
received, 177

Response timer (Tl), 52
Return code summary, 261-62
Ring status bits 8 through 11 error

codes, 284, 286
Ring status bits 12, 14, and 15 error

codes, 284, 286
RING.ACCESS NetBIOS parameter,

55
RING.STATUS.APPENDAGE field

pointer, 232-33
ROM BASIC, 161

interrupt vector (INT 18), 160-61
RPL. See PC Network LANA RPL

protocols and Remote Program
Load (RPL)

s

SDLC/HDLC polynomial, 178
SEND.C program listing, 139-46
Server

application, date and time, 105-9
defined, 155

Service Access Point (SAP), 48-50
buffer, 233
opening the, 235, 283

Session Management Protocol (SMP),
4,47

Sessions for communications
abnormally ended, error code for,

280
advantages and disadvantages of,

26
applications should not use all

available, 58
closed, error code for, 278
creating, 26-27
deregistered name error code for,

278
graceful ending for, 30
invalid number for, 278
local, 26, 275, 278

313

Sessions for communications-cont
number field, local, 41
partners in, 26
pending, 236
remote, 26
setting the maximum number of,

55
status determined with Session

Status command, 257-58
table, 164, 279

SESSIONS NetBIOS parameter, 55,
253

SET _D_ TC, 109-17
Shared-RAM, 12
Special values, 260-61
Start of Header (SOH) character, 170
Start of Text (STX) character, 170
STATIONS NetBIOS parameter,

48-49, 55
STATUS.C program listing, 78-86

DisplayNetbiosLevel() routine, 80
D1cStatus() routine, 80
EditArgs(), 78-80
maine) routine, 78

Support programming, NetBIOS,
67-165

datagram, 101-4
general, 69-93
name, 95-100

System error, 279
System reset (Ctd-Alt-Del), 20, 58
Systems Network Architecture (SNA),

APPC interface for, 16
Sytek, Inc., 5

T

TCP/IP
implementations of NetBIOS, 6
NetBIOS interface for, 5

Time application
client, 109-17
server, 105-9

Timer tick rate, 59
Token-Ring Adapters

five types of IBM, 12

314 C Programmer's Guide to NetSlOS

Token-Ring Adapters-cont
information format for adapter

status, 232-37
Token-Ring environment, 11-13

data security, 65
Token-Ring Network PC Adapter

Technical Reference Manual,
9-10,64,77

Token-Ring Technical Reference
Manual, 8, 52-53

TOKREUI.COM (Token-Ring
Extended User Interface)
module, 8, 47

Topology
branching-tree, 13
ring, 11

Transceiver Interface Register, 14
TRANSMIT COUNT NetBIOS

parameter, 55
TRANSMIT TIMEOUT NetBIOS

parameter, 56

u

Unit identification number, 21-22

Universally administered address,
21-22

UNIX to run NetBIOS, 5, 57
UNLINK.C program listing, 92-93

v

Virtual circuits, 26
Virtual drive, 159

w

Workstations, medialess
attributes, 155
RPL used to load operating system

for, 156
Write requests, 162
Writing MS-DOS Device Drivers, 158

x

XMODEM check sum, 170
XMODEM protocol, 170

The Waite Group's
Advanced C Primer + +
Stephen Prata, The Waite Group

Programmers, students, managers,
and hackers alike, will learn to
master the C programming lan­
guage. Anyone who knows the bas­
ics of C will learn practical C tips
never before published. This in­
depth coverage gives you rare and
complete examination of video ac­
cess ports, segmented memory, and
registers.
Advanced C Primer+ +takes the
reader further than most C books
on the market, showing how to
manipulate the hardware of the
IBM PC family of computers direct­
ly from C. Readers learn how to
access routines in the Read Only
Memory (ROM) of an IBM PC, how
to use system calls in PC DOS
from C and i/o ports, how to con­
trol the video screen, and to inte­
grate assembly routines into C
programs.
Topics covered include:
• Advanced C Programming
• Register and Bit Level System

Control
• Hardware Operation for Begin­

ners and Experienced Users
• Advanced Use of Pointers,

Functions, Storage Classes,
Arrays and Structures

• C Library Access
• Use of Assembly Language

Modules
• Binary and Text File Input

and Output
Includes chapter questions and
answers.
512 Pages, 7'h x 9%, Softbound
ISBN: 0-672-22486-0
No. 22486, $24.95

The Waite Group's
Microsoft® C Bible

Nabajyoli Barkakali, The Waite Group

Microsoft C Bible provides a thorough
description of the 370 functions of the
Microsoft C library, complete with prac­
tical, real-world MS-DOS-based examples
. for each function. Library routines are
broken down into functional categories
with an intermediate-level tutorial fol·

,lowed by the functions and examples.
Included are two "quick·start" tutorials,
complete ANSI prototypes for each func­
tion, extensive program examples, and
handy jump tables to help enhance
learning.
Topics covered include:
• Overview of the C Language
• Microsoft C 5.0 Compiler Features

and Options
• Process Control
• Variable Length Argument Lists
• Memory Allocation and Management
• Buffer Manipulation
• Data Conversion Routines
• Math Routines
• Character Classification and

Conversion
• String Comparison and Manipulation
• Searching and Sorting
• Time Routines
• File and Directory Manipulation
• Input and Output Routines
• System Calls
• Graphics Modes, Coordinates,

and Attributes
• Drawing and Animation
• Combining Graphics and Text
824 Pages, 71h x 9%, Softbound
ISBN: 0-672-22620.0
No. 22620. 824.95

The Waite Group's
Microsoft® C Programming

for the IBM®
Robert Lafore, The Waite Group

Programmers using the Microsoft C
compiler can learn to write useful
and marketable programs with this
entry level book on Microsoft C
programming.
This title is a tutorial geared
ically to the IBM PC family
computers. Unlike other introducto­
ry C titles, it is written for the
Microsoft C compiler. It provides
special coverage of IBM features
such as sound, color graphics in­
cluding CGA and EGA, keyboard,
telecommunications, and character
graphics.
Topics covered include:
• Getting Started
• Building Blocks
• Loops
• Decisions
• Functions
• Arrays and Strings
• Pointers
• Keyboard and Cursor
• Structures, Unions, and ROM

BIOS
• Memory and the Monochrome

Display
• CGA and EGA Color Graphics
• Files P.reprocessor
• Serial Ports and Telecom-

munications
• Larger Programs
• Advanced Variables
• Appendices: Supplementary Pro­

grams, Hexadecimal Numbering,
IBM Character Codes, and a
Bibliography

640 Pages, 7'h x 9%, Softbound
ISBN: 0-672-22515-8
No. 22515, $24.95

The Waite Group's
Turbo C® Programming for

the IBM®
Robert Lafore, The Waite Group

This entry-level text teaches readers
the C language while also helping
them write useful and marketable
programs for the IBM PC, XT, AT,
and PCI2.
This tutorial is based on Borland's
new Turbo C compiler with its
powerful integrated environment
that makes it easy to edit, compile,
and run C programs. The author's
proven hands-on intensive approach
includes example programs, exer­
cises, and questions and answers
and covers CGA and EGA graphic
modes.
Topics covered include:
• C Building Blocks
• Loops
• Decisions
• Functions
• Arrays and Strings
• Pointers
• Keyboard and Cursor
• Structures, Unions, and ROM

BIOS
• Memory and the Character

Display
• CGA and EGA Color Graphics
• Files
• Larger Programs
• Advanced Variables
• Appendices: References, Hexa­

decimal Numbering, Bibliogra­
phy, -ASCII Chart, and Answers
to Questions and Exercises

608 Pages, 7'h x 93/4, Softbound
ISBN: 0-672-22614-6
No. 22614, $22.95

Visit your local book retailer, use the order form provided, or call 800·428·SAMS.

Programming in C,
Revised Edition
Stephen C. Kochan

This timely revision provides complete
coverage of the C language, including
all language features and over 90 pro­
gram examples. The comprehensive
tutorial approach teaches the beginner
how to write, compile, and execute pro­
grams and teaches the experienced pro­
grammer how to write applications
using features unique to C. It is written
in a clear instructive style and is ideally
suited for classroom use or as a self­
study guide.

Topics covered include:

• Introduction and Fundamentals
• Writing a Program in C
• Variables, Constants, Data Types,

and Arithmetic Expressions
• Program Looping
• Making Decisions
• Arrays
• Functions
• Structures
• Character Strings
• Pointers
• Operations on Bits
• The Preprocessor
• Working with Larger Programs
• Input and Output
• Miscellaneous and Advanced Features
• Appendices: Language Summary,

ANSI Standard C, Common Program­
ming Mistakes, the UNIX C Library,
Compiling Programs under UNIX,
the Program LINT, the ASCII
Character Set

476 Pages, 7'12 x 9%, Softbound
ISBN: 0-672-48420-X
No, 48420, $24.95

Programming in ANSI C
Stephen G. Kochan

This comprehensive tutorial assumes no
previous exposure to the C language. It
teaches programmers, systems analysts,
and students, how to write, compile,
and execute C programs and how to
write applications.

The book provides a complete introduc­
tion to ANSI standard C and contains
over 90 program examples with step-by­
step explanations of each procedure.
Written in a clear, instructive style with
end-{)f-chapter exercises, it is ideal for
self-study or classroom use.

Topics covered include:

• Introduction and Fundamentals
• Writing a Program in ANSI C
• Variables, Data Types, and

Arithmetic Expressions
• Program Looping
• Making Decisions
• Arrays, Functions, Structures
• Character Strings, Pointers
• Operations on Bits
• The Preprocessor
• More on Data Types
• Working with Larger Programs
• Input and Output
• Miscellaneous Features and Topics
• Appendices: ANSI C Language Sum­

mary, The UNIX C Library, Compil­
ing Programs Under UNIX, The Pro­
gram LINT, The ASCII Character Set

450 Pages, 7'12 x 9%, Softbound
ISBN: 0-672-48408-0
No. 48408, $24.95

Advanced C: Tips and
Techniques

Paul L. Anderson and Cail C. Anderson

This in-<lepth book on C looks at porta­
bility, execution efficiency, and program­
ming application techniques. Examples
and techniques are portable across to­
day's popular operating systems, making
it appropriate for professional program­
mers, applications developers, systems
level engineers, and programming
students.

Entire chapters are devoted to special
areas of C such as debugging tech­
niques, C's run{ime environment, and
arrays and pointers. Techniques for
allocating storage for multidimensional
arrays at run-time, working with com­
plex C expression, and speeding up pro­
grams with multidimensional arrays are
presented clearly with realistic examples
that demonstrate the techniques.

Topics covered include:

• C Refresher
• The Run-Time Environment
• Bits of C
• There's No Such Thing as an Array
• C Debugging Techniques
• A Memory Object Allocator
• Appendices: Portable C Under UNIX

System V, Microsoft C Under XENIX,
Microsoft C Under DOS, Turbo C
Under DOS

325 Pages, 7'12 x 93/4, Softbound
ISBN: 0-672-48417-X
No. 48417, $24.95

Topics in C Programming
Stephen C. Kochan and Patrick H Wood

Here is the most advanced and com­
prehensive coverage of the maturing C
market. This sequel to Programming in
C describes in detail some of the most
difficult concepts in the C language­
structures and pointers. It also explores
the standard C library and standard 110
library, dynamic memory allocation,
linked lists, tree structures, and dispatch
tables.

Experienced C programmers can ex­
amine the UNIX System Interface
through discussions on controlling pro­
cesses, pipes, and terminal 110. Topics
in C Programming also explains how
to write terminal-independent programs,
how to debug C programs and analyze
their performance, and how to use
"make" for automatic generation of a
programming system.

Topics covered include:

• Structures and Pointers
• The Standard C Library
• The Standard 110 Library
• UNIX System Interface
• Writing Terminal Independent Pro­

grams with "curses" Library
• Debug and Performance Analysis of

C Programs
• Generating Program Systems

with "make"

528 Pages, 7'12 x 9%, Softbound
ISBN: 0-672-46290-7
No. 46290, $24.95

Visit your local book retailer, use the order form provided, or call 800·428·SAMS.

C Programmer's Guide to Portability and the C Language C Programmer's Guide to QuickCTM Programming
Serial Communications Rex Jaeschke Microsoft® Windows 2.0 for the IBM®

Joe Campbell Portability, the feature that distin- Carl Townsend Carl Townsend

This book offers a comprehensive guishes C from other programming This intermediate-level program- This book is an entry-level tutorial
examination and unprecedented dis- languages, is thoroughly defined ming guide shows the C program- for the beginning C programmer
section of asynchronous serial com- and explained in this definitive mer how to create applications who desires to develop programs
munications. Written for C reference work. The book primarily under the Windows environment. using the Microsoft® QuickC com-
programmers and technically ad- addresses the technical issues of Emphasizing the Microsoft C com- piler. It will also acquaint the busi-
vanced users, it contains both a designing and writing C programs piler, a sample application is ness professional or serious user
theoretical discussion of com- that are to be compiled across a presented along with the rationale with the basic aspects of program-
munications concepts and a practi- diverse number of hardware and behind its development. ming in C.
cal approach to program design for operating system environments. Written as a tutorial, the book The book includes hands-on inter-
the IBM® PC and Kaypro en- Organized around the ANSI C Stan- shows the experienced programmer action between the high-speed, low-
vironments. dard, it explains the C preprocessor how to exploit the extended fea- cost compiler and the IBM® PC.

Topics covered include: and the run-time library and tackles tures of Windows, providing an al- Topics covered include: portability from a C language per- phabetical list of functions and an
• The ASCII Character Set spective, discussing implementation- easy-to-use guide to those extended • Getting Started
• Fundamentals of Asynchro- specific issues as they arise. features including printing, • Representing Data

nous Technology Topics covered include: accelerators, and the GDI interface. • Basic Input and Output
• Errors and Error Detection Topics covered include: • Arithmetic Operations
• Information Transfer • Introduction and Overview • Program Control: IF, CASE,
• Modems and Modem Control • The Environment • Windows Overview and Iteration Structures
• The UART -A Conceptual • Conversions, Expressions, • The User Interface • Using Functions and Macros

Model Declarations, and Statements • The Role of Messages • Managing the Storage of
• Real-World Hardware: • The Preprocessor • The WinMain Program Variables

Two UARTs • Diagnostics, Character Handling, • Managing Text with Windows • Arrays and Pointers
• The Hayes Smartmodem Errors • Creating Menus and Using • Using Character Strings, Data
• Designing a Basic Serial 110 • Numerical Limits and Locali- Dialog Boxes ' Structures, Files and Other

Library zation • The Graphic Interface 110, and Graphics
• Portability Considerations • Mathematics; Non-Local Jumps, • Windows, 110, and Memory • Introduction to Structured
• Timing Functions Signal Handling Management Programming
• Fun.ctions for Baud Rate and • Variable Arguments and • Creating and Managing Libraries • Developing Programs with

Data Format Common Definitions • Data Transfer QuickC
• RS-232 Control • Input/Output, General Utilities, • Debugging Strategies • Managing Databases with
• Formatted Input and Output String Handling • Appendices: Installation, QuickC
• Smartmodem Programming • Date and Time Message Boxes, Keyboard Inter- • High-level Design: Menus
• XMODEM File Transfers • Appendix: Keywords and face, Function Summary, Using • Adding Database Records
• CRC Calculations Reserved Identifiers Windows with Pascal or As- • Editing and Deleting Records
• Interrupts 400 Pages, 71/2 x 9 %, Softbound sembly Languages, Glossary • Reporting and Processing
672 Pages, 71f2 x 9%, Softbound ISBN: 0-672-48428-5 440 Pages, 71!2 x 9 %, Softbound Programs
ISBN: 0-672-22584-0 No. 48428, $24.95 ISBN: 0-672-22621-9 400 Pages, 711z x 9 %, Softbound
No. 22584, $26.95 No. 22621, $24.95 ISBN: 0-672-22622-7

No. 22622, $22.95

Visit your local book retailer, use the order form provided, or call 800·428·SAMS.

C with Excellence:
Programming Proverbs
Henry £edgard with John Tauer

C programmers will learn how to in­
crease their programming skills and to
write carefully constructed and readable
programs with this handbook on C
programming. Its clear and concise style
provides both the novice and the expert,
programmer with guidelines or
"proverbs" for writing high-quality,
error-free softWare.
The reader familiar with the fundamen­
tals of C, BASIC, or Pascal will be able
to apply these principles to develop sys­
tems and applications software as well
as write C programs that can be easily
ported from one microcomputer to
another.
After introducing the 24 "proverbs" and
their applications, this handbook focuses
on the entire development pFOcess from
conceptualizing to coding, documenting,
testing, debugging, and maintaining and
modifying programs.
Topics covered include:
• Programming Proverbs
• Structure Is Logic
• Coding the Program
• Global Variables, Selecting Names,

Recursion, and Efficien~y
• Top-down Programming
• Appendices: Summary of Program

Standards and a Program for
Kriegspiel Checkers

272 Pages, 7'h x 9%, SoftbQund
ISBN: 0-672-46294-X
No_ 46294, $18.95

C++ Programminl!: Guide
for the IBM~

John Berry and Mitchell Waite,
The Waite Group

C++ Programming Guide for the
[BM is a complete guide and tutori­
al to the C++ language specifical­
ly adapted to the IBM PC family.
Aimed at developers and students,
it teaches the use of object-oriented
programming skills and introduces
the major features of the language
with explanations followed by prac­
tical examples. lt builds three
professional libraries-cEntry,
cGraphics, and cWindows-which
enable programmers and developers
to find shortcuts to the often cum­
bersome programming process.
Topics covered include:
• How the C++ Translator

Works
• New C+ + Syntax
• The C++ Stream h. Library
• The lnline Functions
• What the New C++ Pointers

Offer
• Memory Allocation Functions
• Void Type Pointer to Generic

Object
.• New C++ Structured Data
· Type Versus the Old
• Private and Public Structures
• Hiding the Implementation
• Access by Non-member

Functions
• Constructors and Destructors
• Overloading Functio'ls and

Operators
400 Pages, 7'h x 9%, Softbound
ISBN: 0-672-22619-7
No. 22619, $24.95

The Waite Group's
Turbo C Bible

Naba Barkakati

Clear and well-written tutorials
point out the different purposes
and appropriate uses of each Turbo
C function to make programming
more organized, complete, and
powerful. The library routines are
organized into functional categories
with explanations that include the
purpose, syntax, example call, in­
cludes, common uses, returns, com­
ments, cautions and pitfalls, and
cross-reference for that function.
Unique compatibility check boxes
show portability with Microsoft C
versions 3.0, 4.0, and 5.0; Microsoft
QuickC, and the UNIX System V
compilers.
Topics covered include:
• Overview of the C Language
• Turbo C 1.0 Compiler Features
. and Options

• Process Control
• Variable-Length Argument Lists
• Memory Allocation and Manage-

ment
• Buffer Manipulation
• Data Conversion Routines
• Math Routines
• Character Classification and

Conversion
• String Comparison and

Manipulation .
• Searching and Sorting
• Time Routines
• File and Directory Manipulation
• Input and Output Routines
• System Calls
• Graphics Modes
• Drawing and Animation
• Combining Graphics and Text
950 Pages, 7% x 9%, Softbound
ISBN: 0-672-22631-6
No. 22631, $24.95

Turbo C Developer's Library
Edward R. Rought and Thomas D. Hoops

Designed for the programmer and
applications developer, this book
contains a wealth of information to
eliminate the dreary task of creat­
ing all the background routines that
make up a high-quality professional
application. It is a comprehensive
collection of high-performance rou­
tines created by applications de­
velopers. The routines allow the
reader to concentrate on what the
application will accomplish rather
than on the tools needed to create
it.
This complete set of procedures
and functions includes routines for
menu management, data base de­
velopment, data entry, printing, and
many other areas that are used
daily in applications development.
Topics covered include:

• Introduction
• How to Use the Libraries
• How to Use the Routine

Descriptions
• Hardware and Software

Configurations
• Main Library Routines
• Btrieve File System Routines
• Novell Networking Routines
• Sample Applications and

Utilities
• Appendices: Cross References,

Keyboard Scan Code Table,
Bibliography

450 Pages, 7'h x 9%, Softbound
ISBN: 0-672-22642-1
No. 22642, $24.95

Visit your local book retailer, use the order form provided, or call 800·428·SAMS.

10 Order the Sample Programs Diskette

As a convenience and learning aid, you may order a diskette containing the current version
of all C program source code and header files listed in this book, as well as errata and late­
breaking NetBIOS news. The source code files are shipped on an unsupported, as-is basis.
Neither Howard W. Sams & Company nor Sacramento Distribution Service assumes any lia­
bility with respect to the use, accuracy, or fitness of the information contained within the
diskette.

Send this form with payment to:

Sacramento Distribution Service
P.O. Box 3014

Sacramento, California 95611-3014

Diskette Order Form
Schwaderer, C Programmer's Guide to NetBIOS, #22638

Name ____________________________ Company __________________________ __

Address ___________ City __________ State _____ _

Country _____________________________________ Zip __________________ _

Phone (for collect calls about order problems) .>..(__ -'-__________________________ _

Place of book
purchase ________________________ __

5 114" Disks 360 KB (DOS 2.0 or higher)
Quantity: ___ @ $22.95 U.S.

3 liz" Disks 720 KB (DOS 3.2 or higher)
Quantity: ___ @ $24.95 U.S.

California reSidents, add 6.5 %

Santa Clara County, CA reSidents, add 7%

U.S. orders--$2.50
Foreign orders--$4.00

• __ Check or money order enclosed.

1)rpe of computer
used ____________________________ _

Total: $ _________________ __

Total: $ ___________________ __

Thx: $

Shipping &

Handling: $

Total Order
Amount: $

Please allow six weeks for delivery within the U.S.

C
Programmer's Guide to

NetBIOS
REFERENCE CARD

©1988 by W. David Schwaderer

#f
HOWARD W. SAMS &. COMPANY

A Division of Macmillan, Inc.

4300 West 62nd Street

Indianapolis, Indiana 46268 USA

Commands Listed by Categories

Command Call Lana
Command Code Retcode LSN Num Buffer@ Length Name Name Rto Sto Post@ Num

General
Reset 32h 0
Adapter 33h,B3h 0 I C
Status (*)

Cancel 35h 0
Unlink 70h 0

Name
Add 30h,BOh 0 0 C
Name
Delete 3Ih,BIh 0 C
Name
Add 36h,B6h 0 0 C
Group
Name

Session
Call lOh,90h 0 0 I D=O D=O C
Listen llh,9lh 0 0 I/C D=O D=O C

(*)
Hang Up I2h,92h 0 C
Send I4h,94h 0 I C
Receive I5h,95h 0 I I/O C
Receive- I6h,96h 0 0 I/C I/O C
Any (FFH)
Chain 17h,97h 0 C
Send
Session 34h,B4h 0 I/O I C
Status (*)

Datagram
Send 20h,AOh 0 I I C
Datagram
Receive 21h, Alh 0 I I/O 0 C
Datagram (FFH)
Send 22h,A2h 0 C
Broadcast
Datagram
Receive 23h,A3h 0 I/O 0 C
Broadcast
Datagram

Commands Listed by Command Code

Command Call Lana
Command Code Retcode L8N Num Buffer@ Length Name Name Rto 8to Post@ Num

Call IOh,90h 0 0 D=O D=O C

Listen lIh,9lh 0 0 I/C D=O D=O C

(*)

Hang Up 12h,92h 0 C

Send 14h,94h 0 C

Receive ISh,9Sh 0 I/O C

Receive- 16h,96h 0 0 I/C I/O C
Any (FFH)

Chain 17h,97h 0 C
Send

Send 20h,AOh 0 C
Datagram

Receive 21h,Alh 0 I I/O 0 C
Datagram (FFH)

Send 22h,A2h 0 C
Broadcast
Datagram

Receive 23h,A3h 0 I/O 0 C
Broadcast
Datagram

Add 30h,BOh 0 0 C
Name

Delete 31h,Blh 0 C
Name

Reset 32h 0

Adapter 33h,B3h 0 I C
Status (*)

Session 34h,B4h 0 I/O I C
Status (*)

Cancel 3Sh 0

Add 36h,B6h 0 0 C
Group
Name

Unlink 70h 0

Send 71h, Flh 0 C
No-Ack

Chain 72h, F2h 0 C
Send
No-Ack

Legend: I Input, 0 Output, C Conditional

The Ncb Fields

Length
Offset Field Name in Bytes Field Structure

+00 Command 0
+01 Return Code 0
+02 Local Session Number I 0
+03 Name Number 1 0
+04 Buffer Address 4 0000
+08 Buffer Length 2 DO
+10 Call Name 16 0000000000000000
+26 Name (Local) 16 0000000000000000
+42 Receive Time Out 1 0
+43 Send Time Out 1 0
+44 Post Routine Address 4 DODD
+48 LANA Number 1 0
+49 Command Complete Flag 1 0
+50 Reserved Field 14 00000000000000

A C Ncb Structure

I#define USGC unsigned char
I#define USGI unsigned
I#define USGL unsigned Long

struct Ncb
{

USGC NcbCommandi
USGC NcbRetCodei
USGC NcbLsni
USGC NcbNumi

char * NcbBufferOffseti
USGI NcbBufferSegmenti

USGI NcbLengthi

char NcbCaLLName[161i
char NcbName[161i

USGC NcbRtoi
USGC NcbStoi

char * NcbPostRtnOffseti
USGI NcbPostRtnSegmenti

1* command code
1* return code
1* LocaL session number
1* Datagram ADD NAME tabLe entry

1* 1/0 buffer offset
1* 1/0 buffer segment

1* Length of data in 1/0 buffer

1* remote system name for CALL
1* LocaL adapter network name

*1
*1
*1
*1

*1

*1
*1

1* receive timeouts in 1/2 second units
1* send timeouts in 1/2

1* offset of post routine
1* segment of post routine

second units

USGC NcbLanaNumi
USGC NcbCmdCpLti

1* network adapter number to execute cmd *1
1* OxFF ==> command pending, eLse cmplted *1

char NcbReservedArea[141i 1* work area for network card *1
} ZeroNcbi 1* prototype NCB for sizeof calcs *1

A MASM Ncb Structure

Ncb Structure

Ncb struc
Ncb_Command db
Ncb_RetCode db
Ncb_Lsn db
Ncb_Num db
Ncb_BufferOff dw
Ncb_BufferSeg dw
Ncb_Length dw
Ncb_CalLName db
Ncb_Name db
Ncb_Rto db
Ncb_Sto db
Ncb_PostOff dw
Ncb_PostSeg dw
Ncb_Lana_Num db
Ncb_Cmd_Cplt db
Ncb_Reserve db

Ncb ends

OOh
OOh
OOh
OOh
OOOOh
OOOOh
OOOOh
16 dup(Q)
16 dup(Q)
OOh
OOh
OOOOh
OOOOh
OOh
OOh
14 dup(Q)

iNcb command field
iNcb return code
iNcb local session number
iNcb name number from Add Name
iNcb message buffer offset
iNcb message buffer segment
iNcb message buffer Length (in bytes)
iNcb remote name
iNcb AddName
iNcb receive timeout
iNcb send timeout
iNcb post routine offset
iNcb post routine segment
iNcb adapter number
iNcb OFFh ==> command pending indicator
iNcb reserved area

*1
*1

OOh
Olh
03h
05h
06h
07h
08h
09h
OAh
OBh
ODh
OEh
OFh
llh
12h
13h
14h
15h

16h
17h
18h
19h
1Ah
21h
22h
23h
24h
25h
26h
30h
34h
35h
36h
37h
38h
40h
41h
42h
43h
4Eh
4Fh
50h-F6h
F7h
F8h
F9h
FAh
FBh
FCh
FDh
FFh

NetBIOS Final Return Codes

Successful completion, good return
Invalid buffer length
Invalid command
Command timed-out
Incomplete received message
Local No-Ack command failed
Invalid local session number
No resource available
Session has been closed
Command was canceled
Duplicate name in local NetBIOS name table
NetBIOS name table full
Name has active sessions and is now deregistered
NetBIOS local session table full
Session open rejected because no Listen is outstanding
Illegal name number
Cannot find name called or no answer
Name not found, or cannot specify asterisk (*) or OOh as first byte of NcbName,
or the name is de registered and cannot be used
Name in use on remote adapter
Name deleted
Session ended abnormally
Name conflict detected
Incompatible remote device (PC Network)
Interface busy
Too many commands outstanding
Invalid number in NcbLanaNum field
Command completed while cancel occurring
Reserved name specified for Add Group Name
Command not valid to cancel
Name defined by another process (OS/2 Extended Edition only)
NetBIOS environment not defined (OS/2 Extended Edition only)
Required operating system resources (OS/2 Extended Edition only)
Maximum applications exceeded (OS/2 Extended Edition only)
No SAPs available for NetBIOS (OS/2 Extended Edition only)
Requested resources not available (OS/2 Extended Edition only)
System error (PC Network)
Hot carrier from a remote adapter detected (PC Network)
Hot carrier from this adapter detected (PC Network)
No carrier detected (PC Network)
Status bit 12, 14, or 15 on longer than one minute (Token-Ring)
One or more of status bits 8-11 on (Token-Ring)
Adapter malfunction
Error on implicit DIR.INITIALIZE
Error on implicit DIR.OPEN.ADAPTER
IBM LAN Support Program internal error
Adapter check
NetBIOS program not loaded in PC
DIR.OPEN.ADAPTER or DLC.OPEN.SAP failed-check parameters
Unexpected adapter close
Command-pending status

HOWARD W. SAMS &. COMPANY

C
Programmer's Guide to

NetBIOS
NetBIOS (Network Basic Input/ Output System) is a pervasive Local Area Network
(LAN) communications programming interface. Its many implementations sup­
port a spectrum of operating environments, including PC-DOST"'; OS/ 2T"'; UNIX® ,
the IBM® Token-Ring Network, EthernetT"'; IEEE 802.2 LLC, XNS, and TCP/ IP, to
name a few. This prolific NetBIOS availability within virtually every significant
LAN environment has propelled it to the status of a de facto industry standard .

Mastering NetBIOS provides you with a highly marketable, leading-edge skill
within the exploding LAN communications market. To enable you to understand
how to harness the blistering capabilities of LANs, you'll discover within these
pages:

• what NetBIOS is, where it came from, and how it is related to other
LAN hardware and software

• the essentials and intricacies of NetBIOS session, datagram, and name
programming as illustrated by insightful Microsoft® C 5.0 sample
programs available on diskette for experimentation

• a discussion of LAN data security and integrity, including a treatise on
high performance Cyclic Redundancy Check (CRC) programming

• a NetBIOS technical reference and tear-out reference card

" . . . a comprehensive survey of NetB/OS concepts and practices backed by
thorough program examples . .. a useful reference in any network
communication library. "

Leo J. Esposito
Systems Manager for Local Area Networks
IBM Corporation

W. David Schwaderer is an internationally recognized authority on data com­
munications, including LANs. He is the author of five data communications prod­
ucts sold by IBM and three books on data communications and C programming.
David is currently a senior programmer in IBM's San Jose Storage Systems
Strategy and Architecture Department, where his primary activities involve high
performance data communications exploitation .

$24.95 US/ 22638

#f
HOWARD W. SAMS &. COMPANY
A Division of Macmillan. Inc.

4300 West 62nd Street

Indianapolis. Indiana 46268 USA

ISBN 0-672-22638-3

90000

9 780672 226380

