.
Personal Systemlz | ue
Hardware Interface Technlcal Reference i
- Common Interfaces -

84F9735

First Edition (October 1990)

The following paragraph does not apply to the United Kingdom or any country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM
Authorized Dealer or your IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Commercial
Relations, IBM Corporation, Purchase, NY 10577.

© Copyright International Business Machines Corporation 1989, 1990.
All rights reserved.

Note to U.S. Government Users — Documentation related to restricted
rights — Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

Special Notices

References in this publication to IBM products, programs, or services
do not imply that IBM intends to make these available in all countries
in which IBM operates. Any reference to an IBM product, program or
service is not intended to state or imply that only IBM’s product,
program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM’s
intellectual property rights or other legally protectible rights may be
used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, programs,
or services, except those expressly designated by IBM, are the user’s
responsibility.

IBM may have patents or pending patent applications covering
subject matter in this document. The furnishing of this document
does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations,
IBM Corporation, Purchase, NY 10577.

The following terms, denoted by an asterisk () in this publication, are
trademarks of the IBM Corporation in the United States and/or other
countries:

IBM

Micro Channel
Personal Computer AT
Personal System/2
PS/2

The following terms, denoted by a double asterisk () in this
publication, are trademarks of other companies as follows:

Hitachi Hitachi Corporation

Intel Intel Corporation
Motorola Motorola, Incorporated

Preface

The Technical Reference library provides hardware and software
interface information for IBM Personal System/2 products. The
volumes in the library are:

IBM Personal System/2 Hardware Interface Technical Reference —
Architectures:
This volume describes the architectures used with Personal
System/2 products that are based on the Micro Channel
architecture.

IBM Personal System/2 Hardware Interface Technical Reference —
Common Interfaces:
This volume describes those devices and interfaces that are
common to PS/2 systems. It includes the technical
information describing devices, such as the serial port and
parallel port controllers, and general information, such as the
microprocessor instruction set and the characters associated
with each keystroke.

IBM Personal System/2 Hardware Interface Technical Reference —
System-Specific Information:
These technical references provides information concerning
hardware implementation and performance information for
specific models of PS/2 systems.

IBM Personal System/2 and Personal Computer BIOS Interface
Technical Reference:
This volume provides BIOS and Advanced BIOS interface
information.

Option and Adapter Technical References:
These technical references provide hardware and
programming information about individual PS/2 options and
adapters.

© Copyright IBM Corp. 1989, 1960 v

Suggested Reading:

BASIC for the IBM Personal Computer

IBM Disk Operating System (DOS)

IBM Operating System/2

Macro Assembler for the IBM Personal Computer

o o o o

Warning: In this technical reference, the term “reserved” is used to
describe certain signals, bits, and registers. Use of reserved areas
can cause compatibility problems, loss of data, or permanent damage
to the hardware.

When modifying a register, the state of the reserved bits must be
preserved. When possible, read the register first and change only the
bits required.

Note: The vertical bars in the left margin indicate technical changes.
The technical changes consist of additions or corrections to
the previous information. Only the changes from the last
release of that specific technical reference are indicated.

vi

Microprocessors and Instruction Sets

80286 MicroproCessort
Real-AddressMode,
Protected Virtual AddressMode

80287 Math Coprocessor
Programming interface,
Hardwareinterface

80386 Microprocessor
Real AddressMode
Protected Virtual AddressMode
Virtual 8086 Mode
80386 Paging Mechanism

80387 Math Coprocessoruuii...

| 80387 To 80486 Math Coprocessor Compatibility

Programming Interface

Hardware Interface
| 80486 MicroproCessor
| CacheControl
| CachePagingControl
| Page ProtectionFeature
| New AlignmentCheck
| Newlnstructions

80286 Microprocessor InstructionSet
DataTransfer
Arithmetic
LogiC e
String Manipulation
Control Transfer
ProcessorControl
ProtectionControl

80287 Math Coprocessor InstructionSet
DataTransfer
Comparison
Constants e
Arithmetic
Transcendental
ProcessorControl

Introduction to the 80386 InstructionSet
Code and Data Segment Descriptors
Prefixes
InstructionFormat,
Encoding
AddressMode

© Copyright IBM Corp. 1990

Operand Length (w) Field 53

Segment Register (sreg)Field 54
General Register (reg) Field 54
Operation Direction (d) Field 55
Sign-Extend (s) Field 55
Conditional Test (tttn) Field 55
Control, Debug, or Test Register (eee) Field 56
80386 Microprocessor InstructionSet 57
DataTransfer 0 57
SegmentControl 60
Flag Control 61
Arithmetic 62
Logic e 67
String Manipulation o L. 71
Repeated String Manipulation 72
Bit Manipulation 74
Control Transfer 75
Conditional Jumps 76
Conditional ByteSet 81
Interrupt Instructions L 83
ProcessorControl, 84
Processor Extension 85
Prefix Bytes e 85
ProtectionControl 86
Introduction to the 80387 InstructionSet 89
80387 Usage of the Scale-Index-BaseByte 89
Instruction and Data Pointers 89
New Instructions 92
80387 Math Coprocessor InstructionSet 93
DataTransfer, 93
Comparison e 94
Constants 95
Arithmetic 96
Transcendental 98
ProcessorControl 98
80486 Microprocessor InstructionSet 100

il Microprocessors and Instruction Sets — October 1990

Figures

1. 80287 DataTypes,
2. 80386 Addressing
3. PagingMechanism
4. Data Type Classifications and Instructions
5. 80387 DataTypes
6. ControlRegister0
7. 80386 Compatible Operation
8. 80486 Protection Operation
9. 2-BitRegisterField
10. 3-BitRegisterField
11. 80287 Encoding Field Summary
12. 80386 Code and Data Segment Descriptor Format
13. InstructionFormat,
14. 80386 Instruction Set Encoding Field Summary
15. Effective Address (16-Bit and 32-Bit Address Modes) .
16. Scale Factor (s-i-b BytePresent)
17. Index Registers (s-i-b Byte Present)
18. Base Registers (s-i-bByte Present)
19. Effective Address (32-Bit Address Mode — s-i-b Byte
Present)
20. Operand Length Field Encoding
21. Segment Register Field Encoding
22. General Register Field Encoding
23. Operand Direction Field Encoding
24. Sign-Extend Field Encoding
25. Conditional Test Field Encoding
26. Control, Debug, and Test Register Field Encoding
27. 80387 Encoding Field Summary
28. Instruction and Pointer Image (16-Bit Real Address Mode)
29. Instruction and Pointer Image (16-Bit Protected Mode) .
30. Instruction and Pointer Image (32-Bit Real Address Mode)
31. Instruction and Pointer Image (32-Bit Protected Mode)

© Copyright IBM Corp. 1990

Notes:

iv Microprocessors and Instruction Sets — October 1990

80286 Microprocessor

The 80286 microprocessor subsystem has the following:

24-bit address

16-bit data interface

Extensive instruction set, including string 1/0

Hardware fixed-point multiply and divide

Two operational modes:

— 8086-compatible Real Address

— Protected Virtual Address.

¢ 16MB (MB equals 1,048,576 or 220 bytes) of physical address
space

* 1GB (GB equals 1,073,741,824 or 230 bytes) of virtual address

space.

Real-Address Mode

In the real-address mode, the address space of the system
microprocessor is a contiguous array of up to 1MB. The system
microprocessor generates 20-bit physical addresses to address
memory.

The segment portion of the pointer is interpreted as the upper 16 bits
of a 20-bit segment address; the lower 4 bits are always 0. Therefore,
segment addresses begin on multiples of 16 bytes.

All segments in the real-address mode are 64KB (KB equals 1024
bytes) and can be read, written, or executed. An exception or
interrupt can occur if data operands or instructions attempt to wrap
around the end of a segment (for example, a word with its low-order
byte at offset hex FFFF and its high-order byte at hex 0000). If, in the
real-address mode, the information contained in the segment does
not use the full 64KB, the unused end of the segment can be overlaid
by another segment to reduce physical memory requirements.

Protected Virtual Address Mode

The protected virtual address mode (hereafter called protected mode)
offers extended physical and virtual memory address space, memory
protection mechanisms, and new operations to support operating
systems and virtual memory.

The protected mode provides a virtual address space of 1GB for each
task mapped into a 16MB physical address space. The virtual

Microprocessors and Instructions Sets — October 1990 1

address space may be larger than the physical address space,
because any use of an address that does not map to a physical
memory location will cause a restartable exception.

Like the real-address mode, the protected mode uses 32-bit pointers,
consisting of 16-bit selector and offset components. The selector
specifies an index into a memory-resident table rather than the upper
16 bits of a real address. The 24-bit base address of the desired
segment is obtained from a table in memory. The 16-bit offset is
added to the segment base address to form the physical address.
The system microprocessor automatically refers to the tables
whenever a segment register is loaded with a selector. All
instructions that load a segment register refer to the table without
additional program support. Each entry in a table is 8-bytes wide.

80287 Math Coprocessor

The optional 80287 Math Coprocessor enables the system to perform
high-speed arithmetic, logarithmic, and trigonometric operations.
The coprocessor works in parallel with the microprocessor. The
parallel operation decreases operating time by allowing the
coprocessor to do mathematical calculations while the
microprocessor continues to do other functions.

The coprocessor works with seven numeric data types, which are
divided into the following three classes:

* Binary integers (three types)
¢ Decimal integers (one type)
¢ Real numbers (three types). x

Programming Interface

The coprocessor offers extended data types, registers; and
instructions to the microprocessor. The coprocessor has eight 80-bit
registers, which provide the equivalent capacity of forty 16-bit
registers. This register space allows constants and temporary results
to be held in registers during calculations, thus reducing memory
access, improving speed, and increasing bus availability. The
register space can be used as a stack or as a fixed register set.

When used as a stack, only the top two stack elements are operated
on.

2 Microprocessors and Instruction Sets — October 1990

The following figure shows representations of large and smalli
numbers in each data type.

Significant
Digits

Data Type Bits (Decimal) Approximate Range (Decimal)
Word Integer 16 4 -32,768 < x £ +32,767
Short Integer 32 9 -2x10° £ x< +2x10°
Long Integer 64 19 -9x10'® £ x< +9x10'®
Packed Decimal 80 18 -9..99 < x £ +9..99 (18 digits)
Short Real * 32 6-7 8.43x10%7 < x <3.37 x 10%®
Long Real * 64 15- 16 4.19x10%%7 < x < 1.67x

10308
Temporary Real ** 80 19 34x10%9%2 < x<1.2x

104932
* The short-real and long-real data types correspond to the single-precision and
double-precision data types.
** The temporary-real data type corresponds to the extended-precision data

Type.

Figure 1. 80287 Data Types

Hardware Interface

The coprocessor uses the same clock generator as the
microprocessor and operates in the asynchronous mode. The
coprocessor is wired so that it functions as an I/O device through 1/0
port addresses hex 00F8, 00FA, and 00FC. The microprocessor sends
opcodes and operands through these 1/0 ports. It also receives and
stores results through the same /O ports. The coprocessor ‘busy’
signal informs the microprocessor that it is executing; the
microprocessor Wait instruction forces the microprocessor to wait
until the coprocessor is finished executing.

The coprocessor detects six different exception conditions that can
occur during instruction execution:

Invalid operation
Denormal operand
Zero-divide
Overflow
Underflow
Precision.

® © o o o o

Microprocessors and Instruction Sets — October 1990 3

If the appropriate exception-mask bit within the coprocessor is not
set, the coprocessor activates the ‘error’ signal. The ‘error’ signal
generates a hardware interrupt (IRQ 13) causing the ‘busy’ signal to
be held in the busy state. The ‘busy’ signal may be cleared by an
8-bit I/0 Write command to address hex 00F0, with D7 through DO
equal to 0. This action also clears IRQ 13.

The power-on self-test code in the system ROM enables IRQ 13 and
sets up its vector to point to a routine in ROM. The ROM routine
clears the ‘busy’ signal latch and then transfers control to the address
pointed to by the nonmaskable interrupt (NMI) vector. This maintains
code compatibility across the IBM Personal Computer and Personal
System/2 product lines. The NMI handler reads the coprocessor
status to determine if the coprocessor generated the NMI. If it was
not generated by the coprocessor, control is passed to the original
NMI handier.

The coprocessor has two operating modes: real-address mode and
protected mode. They are similar to the two modes of the
microprocessor. The coprocessor is in the real-address mode if reset
by a power-on reset, system reset, or I/O write operation to port hex
00F1. This mode is compatible with the 8087 Math Coprocessor used
in IBM Personal Computers. The coprocessor is placed in the
protected mode by executing the SETPM ESC instruction. It is placed
back in the real-address mode by an I/O write operation to port hex
00F1, with D7 through DO equal to 0.

Detailed information for the internal functions of the 80287 Math
Coprocessor is in the books listed in the Bibliography. Also see
“Compatibility” for more information.

80386 Microprocessor

The 80386 microprocessor subsystem has the following:

32-bit address

32-bit data interface

Extensive instruction set, including string 1/0
Hardware fixed-point multiply and divide
Three operational modes:

— Real Address

— Protected Virtual Address

— Virtual 8086.

e o o o o

4 Microprocessors and Instruction Sets — October 1990

* 4GB of physical address space

¢ 8 general-purpose 32-bit registers

e 64TB (TB equals 1,099,511,627,776 or 240 bytes) of total
virtual-address space.

Real Address Mode

In the real-address mode, the address space of the system
microprocessor is a contiguous array of up to 1IMB. The system
microprocessor generates 20-bit physical addresses to address
memory.

The segment portion of the pointer is interpreted as the upper 16 bits
of a 20-bit segment address; the lower 4 bits are always 0. Therefore,
segment addresses begin on multiples of 16 bytes.

All segments in the real-address mode are 64KB and can be read,
written, or executed. An exception or interrupt can occur if data
operands or instructions attempt to wrap around the end of a segment
(for example, a word with its low-order byte at offset hex FFFF and its
high-order byte at hex 0000). If, in the real-address mode, the
information contained in the segment does not use the full 64KB, the
unused end of the segment can be overlaid by another segment to
reduce physical memory requirements.

Protected Virtual Address Mode

The protected virtual-address mode offers extended physical and
virtual memory address space, memory protection mechanisms, and
new operations to support operating systems and virtual memory.

The protected mode provides up to 64TB of virtual address space for
each task mapped into a 4GB physical address space.

From a programmer’s point of view, the main difference between the
real-address mode and protected mode is the increased address
space and the method of calculating the base address. The protected
mode uses 32- or 48-bit pointers, consisting of 16-bit selector and 16-
or 32-bit offset components. The selector specifies an index into one
of two memory-resident tables, the global descriptor table (GDT) or
the local descriptor table (LDT). These tables contain the 32-bit base
address of a given segment. The 32-bit effective offset is added to the
segment base address to form the physical address. The system
microprocessor automatically refers to the tables whenever a
segment register is loaded with a selector. All instructions that load

Microprocessors and Instruction Sets — October 1990 5

a segment register refer to the memory-resident tables without
additional program support. The memory-resident tables contain
8-byte values called descriptors.

The paging option provides an additional way of managing memory in
the very large segments of the 80386. Paging operates in the
protected mode only, beneath segmentation. The paging mechanism
translates the protected linear address (which comes from the
segmentation unit) into a physical address. When paging is not
enabled, the physical address is the same as the linear address. The
following figure shows the 80386 addressing mechanism.

32- or 48-Bit Pointer

Selector Offset Physical Memory
(16 Bits) | (16 or 32 Bits) 4G
Linear Physical
Address Paggli_‘wg Address
Descriptor Mechanism Memory Operand
(Optional)
LDT or GDT
0

Figure 2. 80386 Addressing

Virtual 8086 Mode

The virtual-8086 mode ensures compatibility of programs written for
8086- and 8088-based systems by establishing a protected 8086
environment within the 80386 muititasking framework.

Since the address space of an 8086 is limited to 1MB, the logical
addresses generated by the virtual-8086 mode lie within the first IMB
of the 80386 linear address space. To support multiple virtual-8086
tasks, paging can be used to give each virtual-8086 task a TMB
address space anywhere in the 80386 physical address space.

On a task-by-task basis, the value of the virtual-8086 flag (VM86 flag

in the Flags register) determines whether the 80386 behaves as an
80386 or as an 8086. Some instructions, such as Clear Interrupt Flag,

6 Microprocessors and Instruction Sets — October 1990

can disrupt all operations in a multitasking environment. The 80386
raises an exception when a virtual-8086 mode task attempts to
execute an I/0 instruction, interrupt-related instruction, or other
sensitive instruction. Anytime an exception or interrupt occurs, the
80386 leaves the virtual 8086 mode, making the full resources of the
80386 available to an interrupt handler or exception handler. These
handlers can determine if the source of the exception was a
virtual-8086 mode task by inspecting the VM86 flag in the Flags image
on the stack. If the source is a virtual-8086 mode task, the handler
calls on a routine in the operating system to simulate an 8086
instruction and return to the virtual-8086 mode.!

80386 Paging Mechanism

The 80386 uses two levels of tables to translate the linear address
from the segmentation unit into a physical address. There are three
components to the paging mechanism:

¢ Page directory
¢ Page tables
¢ Page frame (the page itself).

The figure on the following page shows how the two-level paging
mechanism works.

1 The routine in the operating system, called a virtual machine monitor, simulates a
limited number of 8086 instructions.

Microprocessors and Instruction Sets — October 1990 7

4G
80386 J : |/
31 22 12 0 >
y Directory l Table I OffsetJ I «
inear
Address —_
I 4K
4K
31 0 81 0 Address I Physical
Page
1
CRO ’ 80 & . y
CR1 Page
-f-\ Frame 4K
CR2 Page Table Address
CR3 |ROOT hA
Page Directo
Control Registers g Yy Q N/
0 :___]

Physical
Memory

Figure 3. Paging Mechanism

CR2 is the Page-Fault Linear-Address register. It holds the 32-bit
linear address that caused the last detected page fault.

CR3 is the Page Directory Physical Base Address register. It
contains the physical starting address of the page directory.

The page directory is 4KB and allows up to 1024 page-directory
entries. Each page-directory entry contains the address of the next
level of tables, the page tables, and information about the page
tables. The upper 10 bits of the linear address (A22 through A31) are
used as an index to select the correct page-directory entry.

Each page table is 4KB and holds up to 1024 page-table entries.
Page-table entries contain the starting address of the page frame and
statistical information about the page. Address bits A12 through A21
are used as an index to select one of the 1024 page-table entries.
The upper 20 bits of the page-frame address (from the page-table
entry) are linked with the lower 12 bits of the linear address to form
the physical address. The page-frame address bits become the
most-significant bits; the linear-address bits become the
least-significant bits.

8 Microprocessors and Instruction Sets — October 1990

80387 Math Coprocessor

The optional 80387 Math Coprocessor enables the system to perform
high-speed arithmetic, logarithmic, and trigonometric operations.
The 80387 effectively extends the 80386 register and instruction set
for existing data types and also adds several new data types. The
following figure shows the four data type classifications and the
instructions associated with each.

Classification Size Instructions)

Integer 16, 32, 64 Bits Load, Store, Compare, Add, Subtract,
Multiply, Divide

Packed BCD* 80 Bits Load, Store

Real 32, 64 Bits Load, Store, Compare, Add, Subtract,
Multiply, Divide

Temporary Real 80 Bits Add, Subtract, Multiply, Divide, Square

Root, Scale, Remainder, Integer Part,
Change Sign, Absolute Value, Extract
Exponent and Significand, Compare,
Examine, Test, Exchange Tangent,
Arctangent, 2X—1, Y*Logy (X+1),
Y*Log, (X), Load Constant (0.0, m, etc.),
Sine, Cosine, Unordered Compare

* BCD = Binary-coded decimal

Figure 4. Data Type Classifications and Instructions

The 80386/80387 configuration fully conforms to the ANSI2 and IEEE?
floating-point standard and are upward, object-code compatible from
80286/80287- and 8086/8087-based systems.

2 American National Standards Institute
3 |[nstitute of Electrical and Electronics Engineers

Microprocessors and Instruction Sets — October 1990 9

| 80387 To 80486 Math Coprocessor Compatibility

| The 80387 floating-point coprocessor is integrated into the 80486

| microprocessor. All numeric 80387 instructions are fully compatible

| with the 80486 floating-point unit. The 80486 microprocessor supports
| the 80486 floating-point error reporting modes to ensure DOS

| compatibility with 80386/80387 systems.

| The coprocessor presence test will always show the presence of a
| coprocessor in the 80486.

| Programs for the 80386/80387 systems that explicitly reset the

| coprocessor by writing to hex 00F1 will no longer function because
| the coprocessor is an integral part of the microprocessor.

| Coprocessor reset or initialization must be accomplished through

| FINIT/FSAVE.

| For DOS compatibility, the numeric exception bit Control Register 0
| must be set to 0.

Programming Interface

The 80387 is not sensitive to the processing mode 6f the 80386. The
80387 functions the same whether the 80386 is executing in
real-address mode, protected mode, or virtual-8086 mode. All
memory access is handled by the 80386; the 80387 merely operates
on instructions and values passed to it by the 80386.

All communication between the 80386 and 80387 is transparent to
application programs. The 80386 automatically controls the 80387
whenever a numeric instruction is executed. All physical and virtual
memory is available for storage of instructions and operands of
programs that use the 80387. All memory address modes, including
use of displacement, base register, index register, and scaling are
available for addressing numeric operands.

The coprocessor has eight 80-bit registers. The total capacity of
these eight registers is equivalent to twenty 32-bit registers. This
register space allows constants and temporary results to be held in
registers during calculations, thus reducing memory access,
improving speed, and increasing bus availability. The register space
can be used as a stack or as a fixed register set. When it is used as a
stack, only the top two stack elements are operated on.

The following figure shows the seven data types supported by the
80387 Math Coprocessor.

10 Microprocessors and Instruction Sets — October 1990

Data Type Range Precision
Word Integer 104 16 Bits
Short Integer 108 32 Bits
Long Integer 1019 64 Bits
Packed BCD 1018 18 Digits (2 digits per byte)
Single Precision 10138 24 Bits
(Short Real)

Double Precision 104308 53 Bits
(Long Real)

Extended Precision 10£4932 64 Bits
(Temporary Real)

Figure 5. 80387 Data Types

Hardware Interface

The 80387 Math Coprocessor uses the same clock generator as the
80386 system microprocessor. The coprocessor is wired so that it
functions as an 1/0 device through 1/0 port addresses hex 00F8, 00FA,
and 00FC. The system microprocessor sends opcodes and operands
through these 1/0 ports. The coprocessor ‘busy’ signal informs the
system microprocessor that it is executing an instruction; the system
microprocessor Wait instruction forces the system microprocessor to
wait until the coprocessor is finished executing the instruction.

The coprocessor detects six different exception conditions that can
occur during instruction execution:

Invalid operation
Denormal operand
Zero-divide
Overflow
Underflow
Precision.

If the appropriate exception mask bit within the coprocessor is not
set, the coprocessor activates the ‘error’ signal. The ‘error’ signal
generates a hardware interrupt (IRQ 13) causing the ‘busy’ signal to
be held in the busy state. The ‘busy’ signal can be cleared by an 8-bit
1/0 Write command to address hex 00F0, with D7 through DO equal to
0. This action also clears IRQ 13.

The power-on self-test code in the system ROM enables IRQ 13 and
sets up its vector to point to a routine in ROM. The ROM routine
clears the ‘busy’ signal latch and then transfers control to the address
pointed to by the (NMI) vector. This maintains code compatibility
across the IBM Personal Computer and Personal System/2 product
lines. The NMI handler reads the status of the coprocessor to

Microprocessors and Instruction Sets — October 1990 11

determine if the coprocessor generated the NMI. If it was not
generated by the coprocessor, control is passed to the original NMI
handler.

Detailed information about the internal functions of the 80387 Math

Coprocessor is in the books listed in the Bibliography. Also see
“Compatibility” for more information.

12 Microprocessors and Instruction Sets — October 1990

| 80486 Microprocessor

| The 80486 microprocessor subsystem has the following:

| 32-bit address

| 32-bit data interface

| Extensive instruction set, including string 1/0
| Hardware fixed-point multiply and divide
| Three operational modes:

| — Real Address

| — Protected Virtual Address
I

I

I

|

|

I

— Virtual 8086

4GB of physical address space

8 general-purpose 32-bit registers

64TB of total virtual-address space

Internal 8KB, set-associative cache with controller
Internal 80387 coprocessor.

e & o o o

| The 80486 microprocessor is compatible with the 80386 in the
| following areas:

| Real Address Mode

Protected Virtual Address Mode
Virtual 8086 Mode

80386 Paging Mechanism

All published 80386 instructions
All published 80387 instructions.

e o o o o o

| The complete 80387 Math Coprocessor instruction set and register set
| have been included in the 80486 as a floating-point unit. No I/0

| cycles are executed during floating-point instructions. The 80486

| microprocessor is 80386/80387 compatible except for resets to the

| floating-point unit. Software must use FINIT/FSAVE to reset the

| floating-point unit (math coprocessor). The instruction and data

| pointers are set to zero after FINIT/FSAVE.

| Cache Control

| The 80486 microprocessor contains an 8KB integrated cache for code
| and data. The cache is managed in two ways, and the operation of

| the cache has no effect on the operation of any program.

| The cache is managed by bit 30 — Cache Disable (CD) and bit 29 —
| Not Write Through (NW) in Control Register 0 (CRO):

Microprocessors and Instruction Sets — October 1990 13

|| Bitse Bit 29
|| cp NW Operating Mode
1 1 Cache fills disabled, write-through and invalidate

disabled

l 1 0 Cache fills disabled, write-through and invalidate
enabled

| 1 Reserved

‘ 0 0 Cache fills enabled, write-through and invalidate
enabled (Normal operating mode)

I

|

Figure 6. Control Register 0

| Cache Paging Control

| The page-write-through (PWT) bit and the page-cache-disabled (PCD)
| bit are two new bits defined in entries in both levels of the page table
| structure, the page-directory table and the page-table entry, and in

| Control Register 3.

| The PWT bit (bit 4) controls cache write policy. When this bit is set to
| 1, a write-through policy for the current 4KB page is defined. When

| this bit is set to 0, it allows the possibility of write-back policy. This

| bit is ignored internally because the 80486 microprocessor has a

| write-through-only cache. The PWT bit can be used to control the

| write policy of a second-level (external) cache.

| The PCD bit (bit 3),in conjunction with the KEN# (cache enabled) input
| signal and the cache-enable and write-transparent bits in Control

| Register 0 (CRO), controls the ability of cache. When this bit is set to

| 1, caching is disabled for the 4KB page regardless of the KEN#,

| cache-enable bit, and write-through bit. These two bits are also

| driven external to the processor during memory access to manage a

| second-level cache, if one exists.

| The page-write-through and page-cache-disable bits for a bus cycle

| are obtained either from Control Register 3, the page-directory entry,
| or the page-table entry, depending on the type of cycle performed.

14 Microprocessors and Instruction Sets — October 1990

Page Protection Feature

The 80486 microprocessor has a new protection feature. The
write-protect (WP) bit in CRO has been added to the 80486
microprocessor to protect read-only pages from supervisor write
accesses. The 80386 microprocessor allows a read-only page to be
written from protection level 0, 1, or 2. When the WP bit is set to 0,
the 80486 microprocessor is in the 80386-compatible mode. When the

. WP bit is set to 0, the supervisor write access to a read-only page

| (Read/Write is set to 0) causes a page fault (exception 14).

| The write-protect bit has a new feature. This feature involves the use
| of three new bits in CRO:

| o User/Supervisor — U/S
| o Read/Write — R/W
| o Write/Protect — WP.

| The compatible protection feature is described by the following table.

|| urs RIW WP User Access Supervisor Access

|l o 0 0 None Read/Write/Execute
[l o 1 0 None Read/Write/Execute
| 1 0 0 Read/Execute Read/Write/Execute
| 1 1 0 Read/Write/Execute Read/Write/Execute
|

Figure 7. 80386 Compatible Operation

| The new protection feature is given by the following table.

|| urs R/W WP User Access Supervisor Access

|1 o 0 1 None Read/Execute

|1 o 1 1 None Read/Write/Execute
Il 1 0 1 Read/Execute Read/Execute

| 1 1 1 Read/Write/Execute Read/Write/Execute
I

Figure 8. 80486 Protection Operation

Microprocessors and Instruction Sets — October 1990 15

| New Alignment Check

| The Flag register in the 80486 microprocessor contains a new bit not
| available in the 80386. The new bit, alignment check, is bit 18 of the
| Flag register and enables fault reporting on accesses to misaligned
| data (through interrupt 17 with an error code 0).

| When alignment check is set to 1, it enables fault reporting if memory
| reference is to a misaligned address. A misaligned address is a

| word access to an odd address, a doubleword access to an address

| not on a doubleword boundary, or an 8-byte reference to an address

| that is not on a 64-bit boundary.

| Alignment faults are generated only by a program running at
| privilege level 3. The alignment-check bit is ignored at privilege
| levels 0, 1, and 2.

| The alignment-check bit is conditioned by a new alignment mask bit,

| defined as bit 18 in Control Register 0. The alignment-mask bit

| controls whether the alignment-check bit in the Flag register can

| allow an alignment fault. When the alignment-mask bit is set to 0, the
| alignment-check bit is disabled and compatible with the 80386

| microprocessor. When the alignment-mask bit is set to 1, the

| alignment-check bit is enabled.

| New Instructions

| In addition, the 80486 has six unique instructions that control cache
| operation:

| Byte Swap (BSWAP)

Compare and Exchange (CMPXCHG)
Exchange-and-Add (XADD)

Invalidate Data Cache (INVD)

Invalidate TLBN Entry (INVLPG).

Write-Back and Invalidate Data Cache (WBINVD).

I
I
I
|
I

16 Microprocessors and Instruction Sets — October 1990

80286 Microprocessor Instruction Set

Data Transfer

MOV = Move

Register to Register/Memory

| 1000100w | modregr/m

Register/Memory to Register

[1000101w | mod reg r/m

Immediate to Register/Memory

| 1100011w | mod000w/m data | dataitw=1 |
Immediate to Register

[1011wreg | data dataifw=1 |

Memory to Accumulator

| 1010000w | addr-low addr-high |

Accumulator to Memory

[1010001w | addr-low addr-high |

Register/Memory to Segment Register

[10001110 | modoregr/m

Segment Register to Register/Memory

[10001100 [mod 0 reg r/m

Microprocessors and Instruction Sets — October 1990

17

PUSH = Push

Memory
[11111111 | mod110rw

Register
| o1010reg |

Segment Register
| 000reg110 J

Immediate
[011010s0 | data dataifs = 0

PUSHA = Push All

[01100000 |

POP = Pop

Register/Memory
| 10001111 | modo00r/m

Register
| 01011reg |

Segment Register
[oooreg111 [reg#01

18 Microprocessors and Instruction Sets — October 1990

POPA = Pop All

[01100001 |

XCHG = Exchange

Register/Memory with Register

| 1000011w I mod reg r/m j

Register with Accumulator
| 10010reg |

IN = Input From

Fixed Port

| 1110010w | port

Variable Port
[1110110w |

OUT = Output To

Fixed Port

[1110011w | port

Variable Port
[1110111w |

XLAT = Translate Byte to AL

[11010111 |

Microprocessors and Instruction Sets — October 1990

19

LEA = Load EA to Register

[10001101 | modregr/m

LDS = Load Pointer to DS

' 11000101 [mod regr/m mod # 11

LES = Load Pointer to ES

| 11000100 | modregr/m mod # 11

LAHF

Load AH with Flags

| 10011111 |

SAHF

Store AH with Flags

[10011110

PUSHF = Push Flags

[10011100 |

POPF = Pop Flags

[10011101 |

20 Microprocessors and Instruction Sets — October 1990

Arithmetic

ADD = Add

Register/Memory with Register to Either
[000000dw ‘ mod reg r/m I

Immediate to Register/Memory
| 100000sw [modooorm | data | dataifsw=01

Immediate to Accumulator
| 0000010w | data | dataitw=1 |

ADC = Add with Carry

Register/Memory with Register to Either
u00100dw l mod reg r/m l

Immediate to Register/Memory
| 100000sw | modo10rm | data | dataifsw =01

Immediate to Accumulator
| ooo1010w | data | dataitw=1 |

INC = Increment

Register/Memory
[1111111w | mod000r/m

Register

| 01000reg |

Microprocessors and Instruction Sets — October 1990 21

SUB = Subtract

Register/Memory with Register to Either
| 001010dw I mod reg r/m J

Immediate from Register/Memory
| 100000sw | mod101r/m | data | dataifsw=01 |

Immediate from Accumulator
| oo10110w | data | dataitw=1 |

SBB = Subtract with Borrow

Register/Memory with Register to Either
| 000110dw | modregrim |

Immediate from Register/Memory
| 100000sw | modo11rm | data | dataifsw =01

Immediate from Accumulator
| 0oot111ow | data | dataifw=1 |

DEC = Decrement

Register/Memory
[1111111w | modoo1r/m |

Register
! 01001reg |

22 Microprocessors and Instruction Sets — October 1990

°MP = Compare

Register/Memory with Register
0011101w | mod reg r/m |

Register with Register/Memory
0011100w] mod reg r/m]

Immediate with Register/Memory
| 100000sw [mod111/m | data | dataifsw=01

Immediate with Accumulator
[0011110w | data | dataitw=1 |

NEG = Change Sign

[1111011w | mod011r/m |

AAA = ASCII Adjust for Add

[00110111 |

DAA = Decimal Adjust for Add

[00100111 |

AAS = ASCII Adjust for Subtract

[00111111 |

DAS = Decimal Adjust for Subtract

[00101111 |

Microprocessors and Instruction Sets — October 1990 23

MUL = Multiply (Unsigned)

[1111011w [mod100rm |

IMUL = Integer Multiply (Signed)

[1111011w [mod101m |

IIMUL = Integer Inmediate Multiply (Signed)

| 011010s1] mod reg r/m l data

| dataifs =0

DIV = Divide (Unsigned)

| 1111011w [mod110mm |

IDIV = Integer Divide (Signed)

[1111011w [mod111rm |

AAM = ASCII Adjust for Multiply

| 11010100 | 00001010 |

AAD = ASCII Adjust for Divide

| 11010101 [00001010

CBW = Convert Byte to Word

[10011000 |

CWD = Convert Word to Doubleword

| 10011001 |

24 Microprocessors and Instruction Sets — October 1990

Logic
Shift/Rotate Instructions

Register/Memory by 1
| 1101000w | modTTTrm |

Register/Memory by CL
[1101001w | modTTTem |

Register/Memory by Count

| 1100000w | modTTTrm | count
TTT Instruction
000 ROL
001 ROR
010 RCL
011 RCR
100 SHL/SAL
101 SHR
111 SAR
AND = And

Register/Memory and Register to Either
L001000dw l mod reg r/m |

Immediate to Register/Memory
| 1000000w | mod 100 r/m | data | dataiftw =1

Immediate to Accumulator
| oo10010ow | data | dataitw=1 |

Microprocessors and Instruction Sets — October 1990 25

TEST = AND Function to Flags; No Result

Register/Memory and Register
| 1000010w | modregrm |

Immediate Data and Register/Memory

[1111011w | modoo0orm | data | dataifw =1

Immediate Data and Accumulator
| 1010100w | data | dataitw=1 |

Or = Or

Register/Memory and Register to Either
| 000010dw | modregr/m |

Immediate to Register/Memory

| 1000000w | modooirm | data | dataifw =1

Immediate to Accumulator
| 00oo11ow | data | dataitw=1 |

XOR = Exclusive OR

Register/Memory and Register to Either
[001100dw | mod reg r/m |

Immediate to Register/Memory

| 1000000w J'mod110r/m' [data I dataifw = 1

Immediate to Accumulator
| oo11010w | data [dataitw=1 |

26 Microprocessors and Instruction Sets — October 1990

NOT = Invert Register/Memory

[1111011w | modo10rm |

String Manipulation

MOVS = Move Byte Word

[1010010w |

CMPS B/W = Compare Byte/Word

[1010011w |

SCAS = Scan Byte/Word

[1010111w |

LODS = Load Byte/Word to AL/AX

| 1010110w |

STOS = Store Byte/Word from AL/AX

[1010101w |

INS = Input Byte/Word from DX Port

[o110110w |

OUTS = Output Byte/Word to DX Port

[0110111w |

Microprocessors and Instruction Sets — October 1990

27

REP/REPNE, REPZ/REPNZ = Repeat String

Repeat Move String
[11110011 | 1010010w |

Repeat Compare String (z/Not z)
[1111001z | 1010011w |

Repeat Scan String (z/Not z)
| 1111001z | 1010111w |

Repeat Load String
[11110011 | 1010110w |

Repeat Store String
[11110011 | 1010101w |

Repeat Input String

| 11110011 | o110110w |
Repeat Output String
[11110011 | o110111w |

28 Microprocessors and Instruction Sets — October 1990

Control Transfer

CALL = Call

Direct within Segment
[11101000 | disp-low | disp-high

Register/Memory Indirect within Segment
[[11111111] modotovm |

Direct Intersegment

10011010 Segment Offset Segment
Selector

Indirect Intersegment

[11111111 [mod011r/m(mod # 11) |

JMP = Unconditional Jump

Short/Long
| 11101011 | disp-low |

Direct within Segment
[11101001 | disp-low | disp-high

Register/Memory Indirect within Segment
[11111111 | mod100r/m |

Direct Intersegment

11101010 Segment Offset Segment
Selector

Microprocessors and Instruction Sets — October 1990 29

Indirect Intersegment
[11111111 | mod 101 r/m (mod # 11) |

RET = Return from Call

Within Segment
[11000011 |

Within Segment Adding Immediate to SP
| 11000010 | data-low | data-high J

Intersegment
[11001011 |

Intersegment Adding Immediate to SP
[11001010 | data-low | data-high

JENZ = Jump on Equal/Zero

[01110100 | disp]

JL/UNGE = Jump on Less/Not Greater, or Equal

[01111100 | disp |

JLE/UNG = Jump on Less, or Equal/Not Greater

[01111110 | disp |

JB/JNAE = Jump on Below/Not Above, or Equal

[01110010 | disp |

30 Microprocessors and Instruction Sets — October 1990

JBE/JNA = Jump on Below, or Equal/Not Above

[01110110 [disp |

JP/IJPE = Jump on Parity/Parity Even

[01111010 | disp |

JO = Jump on Overflow

[01110000 | disp

JS = Jump on Sign

| 01111000 [disp

JNE/UNZ = Jump on Not Equal/Not Zero

[01110101 | disp |

JNL/JGE = Jump on Not Less/Greater, or Equal

[01111101 | disp |

JNLE/JG = Jump on Not Less, or Equal/Greater

[01111111 [disp |

JNB/JAE = Jump on Not Below/Above, or Equal

[01110011 [disp |

JNBE/JA = Jump on Not Below, or Equal/Above

[01110111 | disp |

Microprocessors and Instruction Sets — October 1990 31

JNP/JPO = Jump on Not Parity/Parity Odd

[01111011 | disp]

JNO

Jump on Not Overflow

[01110001 | disp

JNS = Jump on Not Sign

[01111001 | disp |

LOOP = Loop CX Times

[11100010 | disp]

LOOPZ/LOOPE = Loop while Zero/Equal

| 11100001 | disp |

LOOPNZ/LOOPNE = Loop while Not Zero/Not Equal

[11100000 | disp |

JCXZ = Jump on CX Zero

[11100011 [disp

ENTER = Enter Procedure

l 11001000 T data-low l data-high]

LEAVE = Leave Procedure

[11001001 |

32 Microprocessors and Instruction Sets — October 1990

INT = Interrupt

Type Specified

[11001101 |

Type 3
[11001100 |

INTO = Interrupt on Overflow

[11001110 |

IRET = Interrupt Return

[11001111 |

BOUND = Detect Value Out of Range

| 01100010 | modregrim |

Processor Control

CLC = Clear Carry

[11111000 |

CMC = Complement Carry

[11110101 |

STC = Set Carry

[11111001]

Microprocessors and Instruction Sets — October 1990

33

CLD = Clear Direction

[11111100 |

STD = Set Direction

[i111101 |

CLI = Clear Interrupt

[11111010 |

STI = Set Interrupt Enable Flag

[11111011 |

HLT = Halt

[11110100 |

WAIT = Wait

[10011011 |

LOCK = Bus Lock Prefix

11110000 |

CTS = Clear Task Switched Flag

| 00001111 | ooooo110 |

ESC = Processor Extension Escape

| 11011TTT | modLLL/m |

34 Microprocessors and Instruction Sets — October 1990

Protection Control

LGDT = Load Global Descriptor Table Register

| 00001111 | 00000001 | modot10orm |

SGDT = Store Global Descriptor Table Register

| 00001111 | 00000001 | modooorm |

LIDT = Load Interrupt Descriptor Table Register

| 00001111 | 00000001 | modotirm |

SIDT = Store Interrupt Descriptor Table Register

[00001111 [00000001 | modoot1rm |

LLDT = Load Local Descriptor Table Register from Register/Memory

| 00001111 | 00000000 | modotorm |

SLDT = Store Local Descriptor Table Register from Register/Memory

| 0oooo1111 | 00000000 | modooOrm |

LTR = Load Task Register from Register/Memory

| 00001111 | 00000000 | modOt11r/m |

STR = Store Task Register to Register/Memory

[00001111 | 00000000 | mod0Oirm |

LMSW = Load Machine Status Word from Register/Memory

[00001111 | 00000001 | modi1omm |

Microprocessors and Instruction Sets — October 1990 35

SMSW = Store Machine Status Word

| 00001111 | 00000001 | mod100rm |

LAR = Load Access Rights from Register/Memory

| 00001111 | 00000010 | modregrim |

LSL = Load Segment Limit from Register/Memory

| 00001111 | 00000011 | modregrm |

ARPL = Adjust Requested Privilege Level from Register/Memory

[01100011 | modregrim |

VERR = Verify Read Access; Register/Memory

| 00001111 | 00000000 [modioowm |

VERW = Verify Write Access

| 00001111 | 00000000 [modi01wm |

The effective address (EA) of the memory operand is computed
according to the mod and r/m fields:

If mod = 11, then r/m is treated as a reg field.

If mod = 00, then disp = 0, disp-low and disp-high are absent.
If mod = 01, then disp = disp-low sign-extended to 16 bits,
disp-high is absent.

If mod = 10, then disp = disp-high:disp-low.

If r/m = 000, then EA = (BX) + (SI) + DISP
If r’/m = 001, then EA = (BX) + (DI) + DISP

If r/m = 010, then EA = (BP) + (Sl) + DISP
If /m = 011, then EA = (BP) + (DI) + DISP
If r/m = 100, then EA = (Sl) + DISP
if /m = 101, then EA = (DI) + DISP
if ry/m = 110, then EA = (BP) + DISP
if /m = 111, then EA = (BX) + DISP

36 Microprocessors and Instruction Sets — October 1990

The disp field follows the second byte of the instruction (before data if
required).

Note: An exception to the above statements occurs when mod =00
and r/m=110, in which case EA = disp-high; disp-low.

Segment Override Prefix

| oot1reg110 |

The 2-bit and 3-bit reg fields are defined in the following figures.

Reg Segment Reg Segment
Register Register

00 ES 10 SS

01 CS " DS

Figure 9. 2-Bit Register Field

Figure 10. 3-Bit Register Field
16-Bit(w = 1) 8-Bit(w = 0)

000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 8i 110 DH
111 DI 111 BH

The physical addresses of all operands addressed by the BP register
are computed using the SS Segment register. The physical
addresses of the destination operands of the string primitive
operations (those addressed by the DI register) are computed using
the ES segment, which may not be overridden.

Microprocessors and Instruction Sets — October 1990 37

80287 Math Coprocessor Instruction Set

The following is an instruction-set summary for the 80287 Math
Coprocessor.

The following figure shows abbreviations used in the summary.

Field Description Bit Information
escape 80286 Extension Escape Bit Pattern = 11011
MF Memory Format 00 = 32-Bit Real
01 = 32-Bit Integer
10 = 64-Bit Real
11 = 16-Bit Integer
ST(0) Current Stack Top
ST(i) ith Register Below the Stack
Top
d Destination 0 = Destination is ST(0)
1 = Destination is ST(i)
P Pop 0 = No pop
1 = Pop ST(0)
R Reverse” 0 = Destination (op) source
1 = Source (op) destination

* When d=1, reverse the sense of R.

Figure 11. 80287 Encoding Field Summary

Data Transfer

FLD = Load

Integer/Real Memory to ST(0)
[escape MF 1 J

Long Integer Memory to ST(0)
I escape 111] mod101r/m |

Temporary Real Memory to ST(0)
l escape 011 imod101r/m T

38 Microprocessors and Instruction Sets — October 1990

BCD Memory to ST(0)

rescape 111 l mod 100 r/m I
ST(i) to ST(0)

| escape 001 | 11000sT() |
FST = Store

ST(0) to Integer/Real Memory

l escape MF 1 l mod010r/m J
ST(0) to ST(i)

| escape101 | 11010sT() |

FSTP = Store and Pop

ST(0) to Integer/Real Memory
r escape MF 1 [mod 0 11r/m |

ST(0) to Long Integer Memory
| escape111 [mod111em |

ST(0) to Temporary Real Memory
l escape 011 T mod111r/m l

Microprocessors and Instruction Sets — October 1990 39

ST(0) to BCD Memory
| escape 111 | mod11omm |

ST(0) to ST(i)
| escape 101 | 110115870) |

FXCH = Exchange ST(i) and ST(0)

| escape 001 [11001sTi) |

Comparison

FCOM = Compare

Integer/Real Memory to ST(0)

| escape MF 0 I mod 010r/m]
ST(i) to ST(0)
| escape000 | 11010s1i) |

FCOMP = Compare and Pop

Integer/Real Memory to ST(0)

I escape MF 0 J mod011r/m]
ST(i) to ST(0)
| escape000 | 1101187() |

FCOMPP = Compare ST(1) to ST(0) and Pop Twice

| escape110 [11011001 |

40 Microprocessors and Instruction Sets — October 1990

FTST = Test ST(0)

| escape001 | 11100100 |

FXAM = Examine ST(0)

| escape0o1 | 11100101

Constants

FLDZ = Load +4- 0.0 into ST(0)

| escape001 | 11101110 |

FLD1 = Load +4 1.0 into ST(0)

| escapeoo1 | 11101000 |

FLDPI = Load into ST(0)

| escape001 [11101011 |

FLDL2T = Load log, 10 into ST(0)

| escape0ot1 [11101001 |

FLDL2E = Load log, e into ST(0)

| escapeoo1 [11101010 |

FLDLG2 = Load log,, 2 into ST(0)

| escape 001 | 11101100 |

FLDLN2 = Load log, 2 into ST(0)

| escape 001 | 11101101 |

Microprocessors and Instruction Sets — October 1990 41

Arithmetic
FADD = Addltlon

integer/Real Memory with ST(0)

| escape MFO | mod000rm |
ST(i) and ST(0) ,
| escape dPo | 11000s1i) |

FSUB = Subtraction

Integer/Real Memory with ST(0)

l escape MF 0] mod 10R r/m l
ST(i) and ST(0)
| escape dP 0 | 1110R r/m |

FMUL = Multiplication

Integer/Real Memory with ST(0)

| escapeMF0 | modo01rm |
ST(j) and ST(0) 4
| escape dP 0 | 11001t/m |

FDIV = Division

Integer/Real Memory with ST(0)
[escape MF 0 | mod 1 1R r/m J

ST(i) and ST(0)
| escapedP0 | 1111Rwm

FSQRT = Square Root of ST(0)

| escape 001 [11111010 |

FSCALE = Scale ST(0) by ST(1)

| escape001 [11111101 |

42 Microprocessors and Instruction Sets — October 1990

FPREM = Partlal Remainder of ST(0) <- ST(1)

| escapeoo1 | 11111000 |

FRNDINT = Round ST(0) to Integer

| escape 001 [11111100 |

FXTRACT = Extract Components of ST(0)

| escapeoot1 | 11110100 |

FABS = Absolute Value of ST(0)

| escape0o1 | 11100001 |

FCHS = Change Sign of ST(0)

| escape001 | 11100000 |

Transcendental

FPTAN = Partial Tangent of ST(0)

| escape001 | 11110010 |

FPATAN = Partial Arctangent of ST(1) < ST(0)

| escape 001 [11110011 |

F2XM1 = 25T(0) -1

| escape 001 | 11110000 |

FYL2X = ST(1) x Log, [ST(0)]

I escape 00 1 l 11110001 J

FYL2XP1 = ST(1) x Log, [ST(0) + 1]

Microprocessors and Instruction Sets — October 1990 43

| escape 001 [11111001

Processor Control

FINIT = Initialize NPX

l escape 011 l 11100011 |

FSETPM = Enter Protected Mode

| escape011 | 11100100 |

FSTSW AX = Store Control Word

[escape 111 l 11100000]

FLDCW = Load Control Word

| escape001 | mod101rm |

FSTCW = Store Control Word

Lescape001 J mod 111r/m 1

FSTSW = Store Status Word

| escape 101 l mod111r/m l

FCLEX = Clear Exceptions

| escape 011 | 11100010

FSTENV = Store Environment

| escape001 | mod110r/m

44 Microprocessors and Instruction Sets — October 1990

FLDENV = Load Environment

l escape 001 l mod 100 r/m

FSAVE = Save State

l escape 101 | mod 110r/m

FRSTOR = Restore State

| escape 101 | mod100r/m

FINCSTP = Increment Stack Pointer

| escape 001 | 11110111

FDECSTP = Decrement Stack Pointer

| escape001 | 11110110

FFREE = Free ST(i)

| escape 101 | 11000sT()

FNOP = No Operation

| escape 001 | 11010000

Introduction to the 80386 Instruction Set

The 80386 instruction set is an extended version of the 8086 and
80286 instruction sets. The instruction sets have been extended in

two ways:

* The instructions have extensions that allow operations on 32-bit
operands, registers, and memory.

* A 32-bit addressing mode allows flexible selection of registers for
base and index as well as index scaling capabilities (x2, x4, x8)
for computing a 32-bit effective address. The 32-bit effective
address yields a 4GB address range.

Microprocessors and Instruction Sets — October 1990 45

Note: The effective address size must be less than 64KB in the
real-address or virtual-address modes to avoid an
exception.

Code and Data Segment Descriptors

Although the 80386 supports all 80286 Code and Data segment
descriptors, there are some differences in the format. The 80286
segment descriptors contain a 24-bit base address and a 16-bit limit
field, while the 80386 segment descriptors have a 32-bit base
address, a 20-bit limit field, a default bit, and a granularity bit.

31 24—[23 16 l 15 08107 00]
Segment Base (SB) Bits 15-0 Segment Limit (SL) Bits 15-0 0
SB Bits 31-24 G| D| 0| 0 SL 19-16| Access Rights Byte SB Bits 23-16 4

Figure 12. 80386 Code and Data Segment Descriptor Format

Note: Bits 31 through 16 shown at offset 4 are set to 0 for all 80286
segment descriptors.

The default (D) bit of the code segment register is used to determine
whether the instruction is carried out as a 16-bit or 32-bit instruction.
Code segment descriptors are not used in either the real-address
mode or the virtual-8086 mode. When the system microprocessor is
operating in either of these modes, a D-bit value of 0 is assumed and
operations default to a 16-bit length compatible with 8086 and 80286
programs.

The granularity (G) bit is used to determine the granularity of the
segment length (1 = page granular, 0 = byte granular). If the value
of the 20 segment-limit bits is defined as N, a G-bit value of 1 defines
the segment size as follows:

Segment size = (N + 1) x 4KB

4KB represents the size of a page.

46 Microprocessors and Instruction Sets — October 1990

~0o0n -=0

Prefixes

Two prefixes have been added to the instruction set. The Operand
Size prefix overrides the default selection of the operand size; the
Effective Address Size prefix overrides the effective address size.
The presence of either prefix toggles the default setting to its
opposite condition. For example:

¢ If the opérand size defaults to 32-bit data operations, the
presence of the Operand Size prefix sets it for 16-bit data
operations.

¢ If the effective address size is 16-bits, the presence of the
Effective Address Size prefix toggles the instruction to use 32-bit
effective address computations.

The prefixes are available in all 80386 modes, including the
real-address mode and the virtual-8086 mode. Since the default of
these modes is always 16 bits, the prefixes are used to specify 32-bit
operations. If needed, either or both of the prefixes may precede any
opcode bytes and affect only the instruction they precede.

Microprocessors and Instruction Sets — October 1990 47

Instruction Format

The instructions are presented in this format:

Opcode Mode Specifier Address

Displacement

Immediate Data

Term Description

8, 16, or 32 bits.

16, or 32 bits.

bits.

Opcode The opcode may be one or two bytes in length. Within
each byte, smaller encoding fields may be defined.

Mode Specifier Consists of the “mod r/m"” byte and the
“scale-index-base” (s-i-b) byte.

The mod r/m byte specifies the address mode to be
used. Format: mod TT T r/m

The “s-i-b” byte is optional and can be used only in
32-bit address modes. It follows the mod r/m byte to
fully specify the manner in which the effective
address is computed. Format: ss index base

Address Displacement Follows the “mod r/m” byte or “s-i-b” byte. It may be

Immediate Data If specified, follows any displacement bytes and
becomes the last field of the instruction. It may be 8,

The term “8-bit data” indicates a fixed data length of 8

The term “8-, 16-, or 32-bit data” indicates a variable
data length. The length is determined by the w field
and the current operand size.

If w = 0, the data is always 8 bits.

If w = 1, the size is determined by the operand
size of the instruction.

Figure 13. Instruction Format

48 Microprocessors and Instruction Sets — October 1990

The instructions use a variety of fields to indicate register selection,
the addressing mode, and so on. The following figure is a summary
of the fields.

Field Name Description Bit Information
w Specifies if data is byte or 1

full size. (Full size is either

16 or 32 bits.)
d Specifies the direction of 1

data operation.

s Specifies if an immediate 1
data field must be
sign-extended.

reg General address specifier. 3

mod r/m Address mode specifier 2 for mod; 3 for r/m
(effective address can be a
general register).

ss Scale factor for scaled 2
index address mode.

index General register to be used 3
as an index register.

base General register to be used 3
as base register.

sreg2 Segment register specifier 2
for CS, SS, DS, and ES.

sreg3 Segment register specifier 3
for CS, SS, DS, ES, FS, and
GS.

tttn For conditional instructions; 4

specifies a condition
asserted or a condition
negated.

Figure 14. 80386 Instruction Set Encoding Field Summary

Microprocessors and Instruction Sets — October 1990 49

Encoding

This section defines the encoding of the fields used in the instruction
sets.

Address Mode

The first addressing byte is the “mod r/m” byte. The effective
address (EA) of the memory operand is computed according to the
mod and r/m fields. The mod r/m byte can be interpreted as either a
16-bit or 32-bit addressing mode specifier. Interpretation of the byte
depends on the address components used to calculate the EA. The
following figure defines the encoding of 16-bit and 32-bit addressing
modes with the mod r/m byte.

mod r/m 16-Bit Mode 32-Bit Mode (No s-i-b byte)

00 000 DS:[BX + SI] DS:[EAX]

00 001 DS:[BX + Di] DS:[ECX]

00010 SS:[BP + SI] DS:[EDX]

00 011 SS:[BP + DI] DS:[EBX]

00 100 Ds:[SI] s-i-b present (see Figure 19 on
page 53)

00 101 DS:[DI] DS:d32

00 110 d16 DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX + Sl + d8] DS:[EAX + d8]

01 001 DS:[BX + DI + d8] DS:[ECX + d8]

01010 SS:[BP + Sl + d8] DS:[EDX + d8]

01011 SS:[BP + DI + d8] DS:[EBX + d8]

01100 DS:[SI + d8] s-i-b present (see Figure 19 on
page 53)

01 101 DS:[D! + d8] SS:[EBP + d8]

01 110 SS:[BP + d8] DS:[ESI + d8]

01111 DS:[BX + d8] DS:[EDI + d8]

10 000 DS:[BX + S| + d16] DS:[EAX + d32]

10 001 DS:[BX + DI + d16] DS:[ECX + d32]

10010 SS:[BP + Sl + d16] SS:[EDX + d32]

10 011 SS:[BP + DI + d16] DS:[EBX + d32]

10 100 DS:[SI + d16] s-i-b present (see Figure 19 on
page 53)

10 101 DS:[DI + d16] SS:[EBP + d32]

10 110 SS:[BP + d16] DS:[ESI + d32]

10111 DS:[BX + d16] DS:[EDI + d32]

Figure 15. Effective Address (16-Bit and 32-Bit Address Modes)

The displacement follows the second byte of the instruction (before
data, if required).

50 Microprocessors and Instruction Sets — October 1990

The scale-index-base (s-i-b) byte can be specified as a second byte of
addressing information. The s-i-b byte is specified when using a
32-bit addressing mode and the mod r/m byte has the following
values:

100
00, 01, or 10.

* r/m=
* mod =
When the s-i-b byte is present, the 32-bit effective address is a
function of the mod, ss, index, and base fields. The following figures
show the scale factor, Index register selected, and base register
selected when the s-i-b byte is present.

88 Scale Factor
00 1
01 2
10 4
1 8

Figure 16. Scale Factor (s-i-b Byte Present)

index Index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 No Index Register The ss field must equal 00 when the
index field is 100; if not, the effective
address is undefined.

101 EBP

110 ESI

111 EDI

Figure 17. Index Registers (s-i-b Byte Present)

Microprocessors and Instruction Sets — October 1990 51

base Base Register

110
m

EAX

ECX

EDX

EBX

ESP

EBP If mod = 00, then EBP is not used to
form the EA; immediate 32-bit address
displacement follows the mode specifier
byte.

ESI

EDI

Figure 18. Base Registers (s-i-b Byte Present)

The scaled-index information is determined by multiplying the
contents of the Index register by the scale factor. The following
example shows the use of the 32-bit addressing mode with scaling
where:

e EAX s the base of ARRAY_A
e ECX is the index of the desired element
¢ 2 js the scale factor.

s ARRAY_A is an array of words
MOV EAX, offset ARRAY_A

MOV ECX, element_number

MOV BX, [EAX][ECX*2]

52 Microprocessors and Instruction Sets — October 1990

The following figure defines the encoding of the 32-bit addressing
mode when the s-i-b byte is present.

Note: The mod field is from the mod r/m byte. The base field and
scaled-index information are from the s-i-b byte.

Mod Base 32-Bit Address Mode

00 000 DS:[EAX + (scaled index)]

00 001 DS:[ECX + (scaled index)]
00010 DS:[EDX + (scaled index)]

00 011 DS:[EBX + (scaled index)]

00 100 SS:[ESP + (scaled index)]

00 101 DS:[d32 + (scaled index)]

00 110 DS:[ESI + (scaled index)]

00 111 DS:[EDI + (scaled index)]

01 000 DS:[EAX + (scaled index) + d8]
01 001 DS:[ECX + (scaled index) + d8]
01010 DS:[EDX + (scaled index) + d8]
0101 DS:[EBX + (scaled index) + d8]
01 100 SS:[ESP + (scaled index) + d8]
01 101 SS:[EBP + (scaled index) + d8]
01110 DS:[ESI + (scaled index) + d8]
01 111 DS:[EDI + (scaled index) + d8]
10 000 DS:[EAX + (scaled index) 4+ d32]
10 001 DS:[ECX + (scaled index) + d32]
10010 DS:[EDX + (scaled index) + d32]
10 011 DS:[EBX + (scaled index) + d32]
10 100 SS:[ESP + (scaled index) + d32]
10 101 SS:[EBP + (scaled index) + d32]
10 110 DS:[ESI + (scaled index) + d32]
10111 DS:[EDI + (scaled index) + d32]

Figure 19. Effective Address (32-Bit Address Mode — s-i-b Byte Present)

Operand Length (w) Field

For an instruction performing a data operation, the instruction is
executed as either a 32-bit or 16-bit operation. Within the constraints
of the operation size, the w field encodes the operand size as either
one byte or full operation.

w 16-Bit Data Operation 32-Bit Data Operation
0 8 Bits 8 Bits
1 16 Bits 32 Bits

Figure 20. Operand Length Field Encoding

Microprocessors and Instruction Sets — October 1990 53

Segment Register (sreg) Field

The 2-bit segment register field (sreg2) allows one of the four 80286
segment registers to be specified. The 3-bit segment register (sreg3)
allows the 80386 FS and GS segment registers to be specified.

sreg2 sreg3 Segment Register
00 000 ES

01 001 cs

10 010 SS

1 011 DS

- 100 FS

- 101 GS

- 110 Reserved

- 111 Reserved

Figure 21. Segment Register Field Encoding

General Register (reg) Field

The general register is specified by the reg field, which may appear
in the primary opcode bytes as the reg field of the mod reg r/m byte,
or as the r/m field of the mod reg r/m byte when mod = 11.

reg 16-Bit 16-Bit 16-Bit 32-Bit 32-Bit 32-Bit
wiow w=0 w=1 wiow w=0 w=1
000 AX AL AX EAX AL EAX
001 CcX CL CX ECX CL ECX
010 DX DL DX EDX DL EDX
011 BX BL BX EBX BL EBX
100 SP AH SP ESP AH ESP
101 BP CH BP EBP CH EBP
110 S DH Sl ESI DH ESI
11 DI BH DI EDI BH EDI

Figure 22. General Register Field Encoding

The physical addresses of all operands addressed by the BP register
are computed using the SS Segment register. For string primitive
operations (those addressed by the DI register), addresses of the
destination operands are computed using the ES segment, which may
not be overridden.

54 Microprocessors and Instruction Sets — October 1990

Operation Direction (d) Field

The operation direction (d) field is used in many two-operand
instructions to indicate which operand is the source and which is the
destination.

d Direction of Operation

0 Register/Memory <-- Register
The “reg” field indicates the source operand; “mod r/m” or “mod ss
index base” indicates the destination operand.

1 Register<-- Register/Memory
The “reg” field indicates the destination operand; “mod r/m” or “mod ss
index base” indicates the source operand.

Figure 23. Operand Direction Field Encoding

Sign-Extend (s) Field

The sign-extend (s) field appears primarily in instructions having
immediate data fields. The s field affects only 8-bit immediate data
being placed in a 16-bit or 32-bit destination.

] 8-Bit Inmediate Data 16/32-Bit Inmediate Data
0 No effect on data No effect on data
1 Sign-extend 8-bit data to fill 16-bit or No effect on data

32-bit destination

Figure 24. Sign-Extend Field Encoding

Conditional Test (tttn) Field

For conditional instructions (conditional jumps and set-on condition),
the conditional test (tttn) field is encoded, with n indicating whether to
use the condition (n = 0) or its negation (n = 1), and ttt defining the
condition to test.

Microprocessors and Instruction Sets — October 1990 55

titn Condition Mnemonic
0000 Overflow (0]

0001 No Overflow NO
0010 Below/Not Above or Equal B/NAE
0011 Not Below/Above or Equal NB/AE
0100 Equal/Zero E/Z
0101 Not Equal/Not Zero NE/NZ
0110 Below or Equal/Not Above BE/NA
0111 Not Below or Equal/Above NBE/A
1000 Sign S

1001 Not Sign NS
1010 Parity/Parity Even P/PE
1011 Not Parity/Parity Odd NP/PO
1100 Less Than/Not Greater or Equal L/NGE
1101 Not Less Than/Greater or Equal NL/GE
1110 Less Than or Equal/Not Greater Than LE/NG
11 Not Less or Equal/Greater Than NLE/G

Figure 25. Conditional Test Field Encoding

Control, Debug, or Test Register (eee) Field

The following shows the encoding for loading and storing the Control,
Debug, and Test registers (eee).

eee Code Interpreted as Interpreted as Interpreted
Control Register Debug Register as

Test
Register

000 CRO DRO -

001 - DR1 —

010 CR2 DR2 -

011 CR3 DR3 -

100 - - —

101 -— - -—

110 -— DR6 TR6

i -— DR7 TR7

Figure 26. Control, Debug, and Test Register Field Encoding

56 Microprocessors and Instruction Sets — October 1990

80386 Microprocessor Instruction Set

Data Transfer

MOV = Move

Register to Register/Memory
| 1000100w | modregrm |

Register/Memory to Register
[1000101w Lmodregrlm l

Immediate to Register/Memory
[1100011w | modooorm | 8-, 16-, or 32-bit data |

Immediate to Register (Short Form)
[1011wreg] 8-, 16-, or 32-bit data |

Memory to Accumulator (Short Form)
[1010000w [full 16- or 32-bit displacement |

Accumulator to Memory (Short Form)
[1010001w | full 16- or 32-bit displacement |

Register/Memory to Segment Register
| 10001110 [modsregdrm |

Segment Register to Register/Memory
| 10001100 | modsregarm |

Microprocessors and Instruction Sets — October 1990 57

MOVSX = Move with Sign Extension

Register from Register/Memory
| 00001111 [1011111w | modregrm

MOVZX = Move with Zero Extension

Register from Register/Memory

[00001111 | 1011011w | modregrm |
PUSH = Push
Register/Memory

[11111111 | mod110r/m

Register (Short Form)
| 01010 reg |

Segment Register (ES, CS, SS, or Ds) Short Form
| ooosregz110 |

Segment Register (FS or GS)

| 00001111 | 10sreg3000
Immediate
[01101050 | 8-, 16-, or 32-bit data

PUSHA = Push All

[01100000 |

68 Microprocessors and Instruction Sets — October 1990

POP = Pop

Register/Memory
| 10001111 [modooorm |

Register (Short Form)
L 01011 reg]

Segment Register (ES, SS, or DS) Short Form
' 000sreg2111 l

Segment Register (FS or GS)
[00001111 [10sreg3oo

POPA = Pop All

| 01100001 |

XCHG = Exchange

Register/Memory with Register
[1000011w I mod reg r/m J

Register with Accumulator (Short Form)
| 10010 reg |

IN = Input From:

Fixed Port
I 1110010w Lportnumber]

Variable Port
[1110110w |

Microprocessors and Instruction Sets — October 1990 59

OUT = Output To:

Fixed Port
[1110011w [port number

Variable Port
[1110111w |

LEA = Load EA to Register

| 10001101 | modregr/m

Segment Control

LDS = Load Pointer to DS

| 11000101 | modregr/m

LES = Load Pointer to ES

| 11000100 | modregr/m

LFS = Load Pointer to FS

| 00001111 | 10110100 | modregr/m |

LGS = Load Pointer to GS

| 00001111 [10110101 | modregr/m

LSS = Load Pointer to SS

| 00001111 [10110010 mod reg r/m

60 Microprocessors and Instruction Sets — October 1990

Flag Control

CLC = Clear Carry Flag

[11111000 |

CLD = Clear Direction Flag

[11111100 |

CLI = Clear interrupt Enable Flag

[11111010 |

CLTS = Clear Task Switched Flag

| 00001111 | ooooo0110 |

CMC = Complement Carry Flag

[11110101 |

LAHF = Load AH Into Flag

[10011111 |

POPF = Pop Flags

[10011101 |

PUSHF = Push Flags

[10011100 |

Microprocessors and Instruction Sets — October 1990 61

SAHF = Store AH into Flags

| 10011110 |

STC = Set Carry Flag

| 11111001 |

STD = Set Direction Flag

[11111101 |

STl = Set Interrupt Enable Flag

[11111011 |

Arithmetic

ADD = Add

Register to Register
[000000dw J mod reg r/m I

Register to Memory
| 0000000w | mod regr/m |

Memory to Register
L0000001w J mod reg r/m]

Immediate to Register/Memory

[100000sw | modooorm | 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)
[0ooo0010ow | 8-, 16-, or 32-bit data

62 Microprocessors and Instruction Sets — October 1990

ADC = Add with Carry

Register to Regisier :
| 000100dw | mod reg r/m I

Register to Memory)
| 0001000w l mod reg r/m |

Memory to Register
| 0001001w | modregrm |

Immediate to Register/Memory
| 100000sw | modotorm | 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)
| ooo1010w [8-, 16-, or 32-bit data

INC = Increment

Register/Memory
[1111111w [mod000r/m

Register (Short Form)
[01000 reg |

Microprocessors and Instruction Sets — October 1990 63

SUB = Subtract

Register from Register
| 001010dw | modregrim |

Register from Memory)
l 0010100w I mod reg r/m I

Memory from Register
I 0010101w , mod reg r/m I

Immediate from Register/Memory

| 100000sw | mod101rm | 8-, 16-, or 32-bit data

Immediate from Accumulator (Short Form)
| oot0o11ow | 8 16 or32-bitdata

SBB = Subtract with Borrow

Register from Register
| 000110dw | modregrim |

Register from Memory
| 0001100w | modregrim |

Memory from Register
[0001101w | modregr/m |

Immediate from Register/Memory

| 100000sw [modot1rm | 8-, 16-, or 32-bit data

Immediate from Accumulator (Short Form)
| ooo1110w | 8-, 16-, or 32-bit data

64 Microprocessors and Instruction Sets — October 1990

DEC = Decrement

Register/Memory

[1111111w | mod001r/m

Register (Short Form)
I 01001 reg 1

CMP = Compare

Register with Register

| 001110dw | modregrm

Memory with Register

| oo11100w | modregrm

Register with Memory

[0011101w | modregrm

Immediate with Register/Memory

| 100000sw [mod111rm

8-, 16-, or 32-bit data

Immediate with Accumulator (Short Form)

[oot11110w |

8-, 16-, or 32-bit data

NEG = Change Sign

| 1111011w | modo11rm

AAA = ASCII Adjust for Add

[00110111 |

Microprocessors and Instruction Sets — October 1990 65

AAS = ASCII Adjust for Subtract

[oo111111 |

DAA = Decimal Adjust for Add

| 00100111 |

DAS = Decimal Adjust for Subtract

[0o0101111 |

MUL = Multiply (Unsigned)

Accumulator with Register/Memory
[1111011w [mod100r/m |

IMUL = Integer Multiply (Signed)

Accumulator with Register/Memory
[1111011w | mod101rm |

Register with Register/Memory
| 00001111 | 10101111 | mod reg r/m

Register/Memory with Immediate to Register

[011010s1 | modregr/m | 8-, 16-, or 32-bit data

DIV = Divide (Unsigned)

Accumulator by Register/Memory
[1111011w | mod110vm |

IDIV = Integer Divide (Signed)

Accumulator by Register/Memory
| 1111011w | mod111vm |

66 Microprocessors and Instruction Sets — October 1990

AAD = ASCII Adjust for Divide

| 11010101 | oooo1010 |

AAM = ASCII Adjust for Multiply

| 11010100 | 00001010 |

CBW = Convert Byte to Word

[10011000 |

CWD = Convert Word to Doubleword

[10011001 |

Logic

Shift/Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1

[1101000w [modTTTrm |
Register/Memory by CL
| 1101001 w | modTTTem |

Register/Memory by Immediate Count
[1100000w | modTTTrm | s-bitdata

Microprocessors and Instruction Sets — October 1990 67

Shift/Rotate Instructions
Through Carry (RCL and RCR)

Register/Memory by 1
| 1101000w | modTTTrm |

Register/Memory by CL
[1101001w | modTTTrm |

Register/Memory by Immediate Count

[1100000w [modTTTwm | 8bitdata

TTT Instruction
000 ROL

001 ROR

010 RCL

011 RCR

100 SHL/SAL
101 SHR

111 SAR

SHLD = Shift Left Double

Register/Memory by Immediate

[00001111 [10100100 | modregrm | 8-bitdata
Register/Memory by CL
[00001111 | 10100101 | modregrim |

68 Microprocessors and Instruction Sets — October 1990

SHRD = Shift Right Double

Register/Memory by Immediate

| 00001111 | 10101100 | mod reg r/m | e-bit data
Register/Memory by CL

[00001111]| 10101101 | modregrm |

AND = And

Register to Register
| 0oo1000dw | modregrim |

Register to Memory
| oo10000w | modregrim |

Memory to Register
| 0010001w | modregr/m |

Immediate to Register/Memory
| 100000sw I mod 100 r/m [8-, 16-, or 32-bit data]

Immediate to Accumulator (Short Form)
[oo10010w | 8-, 16-, or 32-bit data |

Microprocessors and Instruction Sets — October 1990 69

TEST = AND Function to Flags; No Resuit

Register/Memory and Register
[1000010w | mod regr/m |

Immediate Data and Register/Memory

[1111011w | modooorm | 8-, 16-, or 32-bit data

Immediate Data and Accumulator (Short Form)
| 1010100w | 8-, 16-, or 32-bit data |

OR = Or

Register to Register
| 000010dw | modregr/m |

Register to Memory
I 0000100w I mod reg r/m I

Memory to Register
I 0000101w J mod reg r/m]

Immediate to Register/Memory

| 100000sw | modoo1rm | 8-, 16-, or 32-bit data

]

Immediate to Accumulator (Short Form)
[oooo11ow | 8-, 16-, or 32-bit data |

70 Microprocessors and Instruction Sets — October 1990

XOR = Exclusive OR

Register to Register
f001100dw [mod reg r/m |

Register to Memory
| 0011000w I mod reg r/m J

Memory to Register
' 0011001w | mod reg r/m |

Immediate to Register/Memory
[100000sw | mod11owm | 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)
| 0011010w T 8-, 16-, or 32-bit data

NOT = Invert Register/Memory

[1111011w | modotorm |

String Manipulation

CMPS = Compare Byte Word

| 1010011w |

INS = Input Byte/Word from DX Port

[o110110w |

Microprocessors and Instruction Sets — October 1990 71

LODS = Load Byte/Word to AL/AX/EAX

[1010110w |

MOVS = Move Byte Word

[1010010w |

OUTS = Output Byte/Word to DX Port

[0110111w |

SCAS = Scan Byte Word

[1010111w |

STOS = Store Byte/Word from AL/AX/EX

[1010101w |

XLAT = Translate String

[11010111 |

Repeated String Manipulation
Repeated by Count in CX or ECX

REPE CMPS = Compare String (Find Non-Match)

[11110011 | 1010011w |

72 Microprocessors and Instruction Sets — October 1990

REPNE CMPS = Compare String (Find Match)

[11110010 [1010011w |

REP INS = Input String

| 11110010 | o110110w |

REP LODS = Load String

[11110010 | 1010110w |

REP MOVS = Move String

[11110010 [1010010w |

REP OUTS = Output String

[11110010 [0110111w |

REPE SCAS = Scan String (Find Non-AL/AX/EAX)

| 11110011 | 1010111w |

REPNE SCAS = Scan String (Find AL/AX/EAX)

[11110010 [1010111w |

REP STOS = Store String

[11110010 [1010101w |

Microprocessors and Instruction Sets — October 1990 73

Bit Manipulétion

BSF = Scan Bit Forward

mod reg r/m

[00001111 [10111100

BSR = Scan BIit Reverse

L00001111 l 10111101

mod reg r/m

BT = Test Bit

Register/Memory, Immediate

100001111 I 10111010

| mod100r/m

| 8-bit data

Register/Memory, Register

[00001111 | 10100011

I mod reg r/m

BTC = Test Bit and Complement

Register/Memory, Immediate

[00001111 [10111010

[mod111r/m

| 8-bit data

Register/Memory, Register

[00001111 | 10111011

[mod reg r/m

BTR = Test Bit and Reset

Register/Memory, Immediate

| 00001111 | 10111010

| mod110r/m

| e-bit data

Register/Memory, Register

| 00001111 | 10110011

L mod reg r/m

74 Microprocessors and Instruction Sets — October 1990

BTS = Test Bit and Set

Register/Memory, Immediate
[00001111 [10111010 [mod101rm | s-bitdata |

Register/Memory, Register
| 00001111 | 10101011 | modregrm |

Control Transfer

CALL = Call

Direct within Segment
| 11101000 | full 16- or 32-bit displacement

Register/Memory Indirect within Segment
[11111111 | modot10owm |

Direct Intersegment
| 10011010 roffset, selector

Indirect Intersegment
[11111111 | modot1wm |

JMP = Unconditional Jump

Short
[11101011 | sbitdisp. |

Direct within Segment
I 11101001 [full 16- or 32-bit displacement

Microprocessors and Instruction Sets — October 1990 75

Register/Memory Indirect within Segment
[11111111 | mod100r/m |

Direct Intersegment
r 11101010 l offset, selector |

Indirect Intersegment
[11111111 | mod101r/m |

RET = Return from Call

Within Segment
| 11000011 |

Within Segment Adding Immediate to SP

| 11000010 | 16-bit displacement

Intersegment
[11001011 |

Intersegment Adding Immediate to SP

| 11001010 | 16-bit displacement

Conditional Jumps

JO = Jump on Overflow

8-Bit Displacement
[01110000 [s-bitdisp. |

Full Displacement

[00001111 | 10000000 |

full 16- or 32-bit displacement

76 Microprocessors and Instruction Sets — October 1990

JNO = Jump on Not Overflow

8-Bit Displacement
[01110001 | s-bitdisp. |

Full Displacement

| 00001111 | 10000001 | full 16- or 32-bit displacement

JB/UNAE = Jump on Below/Not Above or Equal

8-Bit Displacement
| 01110010 | 8bitdisp. |

Full Displacement

[00001111 | 10000010 | full 16- or 32-bit displacement

JNB/JAE = Jump on Not Below/Above or Equal

8-Bit Displacement
[01110011 | e-bit disp. |

Full Displacement

[00001111 | 10000011 | full 16- or 32-bit displacement

JENZ = Jump on Equal/Zero

8-Bit Displacement
[01110100 | s-bitdisp. |

Full Displacement

| 00001111 | 10000100 | full 16- or 32-bit displacement

Microprocessors and Instruction Sets — October 1990

77

JNE/UNZ = Jump on Not Equal/Not Zero

8-Bit Displacement
[01110101 | s-bitdisp. |

Full Displacement

[00001111 [10000101 | full 16- or 32-bit displacement

JBE/JNA = Jump on Below or Equal/Not Above

8-Bit Displacement
[01110110 | s-bitdisp. |

Full Displacement

| 00001111 [10000110 | full 16- or 32-bit displacement

JNBE/JA = Jump on Not Below or Equal/Above

8-Bit Displacement
| 01110111 | 8-bit disp. |

Full Displacement

[00001111 | 10000111 | full 16- or 32-bit displacement

JS = Jump on Sign

8-Bit Displacement
[01111000 | s-bitdisp. |

Full Displacement

[00001111 | 10001000 | full 16- or 32-bit displacement

78 Microprocessors and Instruction Sets — October 1990

JNS = Jump on Not Sign

8-Bit Displacement
| 01111001 | s-bitdisp. |

Fuli Displacement
| 00001111 | 10001001 | full 16- or 32-bit displacement |

JP/JPE = Jump on Parity/Parity Even

8-Bit Displacement
[01111010 | s-bitdisp. [

Full Displacement
[00001111 | 10001010 | full 16- or 32-bit displacement

JNP/JPO = Jump on Not Parity/Parity Odd

8-Bit Displacement
| 01111011 | sbitdisp. |

Full Displacement
| 00001111 | 10001011 | full 16- or 32-bit displacement |

JL/INGE = Jump on Less/Not Greater or Equal

8-Bit Displacement
[01111100 | sbitdisp. |

Full Displacement
[00001111 [10001100 | full 16- or 32-bit displacement

Microprocessors and Instruction Sets — October 1990 79

JNL/JGE = Jump on Not Less/Greater or Equal

8-Bit Displacement
[01111101 | s-bitdisp. |

Full Displacement

| 00001111 | 10001101 | full 16- or 32-bit displacement

JLE/JNG = Jump on Less or Equal/Not Greater

8-Bit Displacement
[01111110 | s-bitdisp. |

Full Displacement

[00001111 l 10001110] full 16- or 32-bit displacement

JNLE/JG = Jump on Not Less or Equal/Greater

8-Bit Displacement
[01111111 | s-bitdisp.]

Full Displacement

[00001111 [10001111 | full 16- or 32-bit displacement

JCXZ = Jump on CX Zero

[11100011 | s-bit disp.

JECXZ = Jump on ECX Zero

[11100011 [s-bitdisp. |

Note: The operand size prefix differentiates JCXZ from JECXZ.

80 Microprocessors and Instruction Sets — October 1990

LOOP = Loop CX Times

[11100010 [e-bitdisp. |

LOOPZ/LOOPE = Loop with Zero/Equal

| 11100001 [s-bitdisp. |

LOOPNZ/LOOPNE = Loop while Not Zero

| 11100000 [s-bitdisp. |

Conditional Byte Set

SETO = Set Byte on Overflow

To Register/Memory
[00001111 [10010000 [modooorm |

SETNO = Set Byte on Not Overflow

To Register/Memory
[00001111 [10010001 [modooorm |

SETB/SETNAE = Set Byte on Below/Not Above or Equal

To Register/Memory
[00001111 [10010010 [modooorm |

SETNB = Set Byte on Not Below/Above or Equal

To Register/Memory
| 00001111 [10010011 [modooorm |

SETE/SETZ = Set Byte on Equal/Zero

To Register/Memory
[00001111] 10010100 | mod000r/m

Microprocessors and Instruction Sets — October 1990 81

SETNE/SETNZ = Set Byte on Not Equal/Not Zero

To Register/Memory
| 00001111 | 10010101 | mod000mm |

SETBE/SETNA = Set Byte on Below or Equal/Not Above

To Register/Memory
[00001111 [10010110 [modooorm |

SETNBE/SETA = Set Byte on Not Below or Equal/Above

To Register/Memory
[00001111 [10010111 mod000r/m |

SETS = Set Byte on Sign

To Register/Memory
| 00001111 [10011000 | mod000rm

SETNS = Set Byte on Not Sign

To Register/Memory
[00001111 [10011001 | modo00Orm

SETP/SETPE = Set Byte on Parity/Parity Even

To Register/Memory
[00001111 [10011010 | modooorm |

SETNP/SETPO = Set Byte on Not Parity/Parity Odd

To Register/Memory
[00001111 [10011011 | modooorm |

SETL/SETNGE = Set Byte on Less/Not Greater or Equal

To Register/Memory
[00001111 [10011100 | modooorm |

82 Microprocessors and Instruction Sets — October 1990

SETNL/SETGE = Set Byte on Not Less/Greater or Equal

To Register/Memory
| 00001111 [01111101 | modooowm |

SETLE/SETNG = Set Byte on Less or Equal/Not Greater

To Register/Memory
| 00001111 [10011110 | modooorm |

SETNLE/SETG = Set Byte on Not Less or Equal/Greater

To Register/Memory
| 00001111 | 10011111 | modooOrm |

ENTER = Enter Procedure

] 11001000 l 16-bit displacement 8-bit level

LEAVE = Leave Procedure

| 11001001 |

Interrupt Instructions

INT = Interrupt

Type Specified
[11001101 | type

Type 3
| 11001100 |

INTO = Interrupt 4 if Overflow Flag Set

[11001110 |

Microprocessors and Instruction Sets — October 1990

83

BOUND = Interrupt 5 if Detect Value Out of Range

[01100010 | modregr/m |

IRET = Interrupt Return

[11001111 |

Processor Control

HLT = Halt

[[11110100]

MOV = Move to and from Control/Debug/Test Registers

CRO/CR2/CR3 from Register
| 00001111 | 00100010 | 11eeereg |

Register from CR0-3
[00001111 | 00100000 [11eeereg |

DRO-3, DR6-7 from Register
| 00001111 | 00100011 | 11eeereg |

Register from DRO0-3, DR6-7
[00001111 | 00100001 [11eeereg |

TR6-7 from Register
| 00001111 | 00100110 | 11eeereg |

Register from TR6-7
[00001111] 00100100 | 11eeereg]

NOP = No Operation

| 10010000

84 Microprocessors and Instruction Sets — October 1990

WAIT = Wait until BUSY Pin is Negated

[10011011 |

Processor Extension

ESC = Processor Extension Escape

[11011777 | modLLLrm |

Note: TTT and LLL bits are opcode information for the coprocessor.

Prefix Bytes

Address Size Prefix

[01100111 |

Operand Size Prefix

[01100110 |

LOCK = Bus Lock Prefix

[11110000]

Note: The use of LOCK is restricted to an exchange with memory, or
bit test and reset type of instruction.

Segment Override Prefix

Cs:
00101110 |

DS:
| 00111110 |

Microprocessors and Instruction Sets — October 1990 85

ES:
| 00100110 |

FS:
[01100100 |

GS:
[01100101 |

SS:
[00110110 |

Protection Control

ARPL = Adjust Requested Privilege Level from Register/Memory

[01100011 I mod reg r/m I

LAR = Load Access Rights from Register/Memory

[00001111]| 00000010 | modregrm |

LGDT = Load Global Descriptor Table Register

[00001111 | 00000001 | mod010r/m

LIDT = Load Interrupt Descriptor Table Register

[00001111 | 00000001 | modo11rm |

LLDT = Load Local Descriptor Table Register to Register/Memory

[00001111 | 00000000 | modotorm |

86 Microprocessors and Instruction Sets — October 1990

-MSW = Load Machine Status Word from Register/Memory

00001111 | 00000001 | mod110r/m |

LSL = Load Segment Limit from Register/Memory

00001111 | 00000011 | modregrim |

LTR = Load Task Register from Register/Memory

| 00001111 | 00000000 | modo01rm |

SGDT = Store Global Descriptor Table Register

| 00001111 [00000001 | modooOwm

SIDT = Store Interrupt Descriptor Table Register

[00001111 | 00000001 | modo0t1rm |

SLDT = Store Local Descriptor Table Register to Register/Memory

| 00001111 | 00000000 | modoo0Orm |

SMSW = Store Machine Status Word

| 00001111 | 00000001 [mod100rm |

STR = Store Task Register to Register/Memory

| 00001111 | 00000000 [modo01rm |

VERR = Verify Read Access; Register/Memory

| 00001111 | 00000000 | modi00rm |

Microprocessors and Instruction Sets — October 1990 87

VERW = Verify Write Access

| 00001111 | 00000000 | mod101r/m

88 Microprocessors and Instruction Sets — October 1990

Introduction to the 80387 Instruction Set

The 80387 instructions use many of the same fields defined earlier in
this section for the 80386 instructions. Additional fields used by the
80387 instructions are defined in the following figure.

Field Description Bit Information
escape 80386 Extension Escape Bit Pattern = 11011
MF Memory Format 00 = 32-bit Real
01 = 32-bit integer
10 = 64-bit Real
11 = 16-bit integer
ST(0) Current Stack Top
ST(i) ith register below the stack top
d Destination 0 = Destination is ST(0)
1 = Destination is ST(i)
P Pop 0 = No pop
1 = Pop ST(0)
R Reverse* 0 = Destination (op) source
1 = Source (op) destination

* When d=1, reverse the sense of R.

Figure 27. 80387 Encoding Field Summary

Within the 80387 Instruction Set:

* Temporary (Extended) Real is 80-bit Real.
* Long Integer is a 64-bit integer.

80387 Usage of the Scale-Index-Base Byte

The “mod r/m” byte of an 80387 instruction can be followed by a
scale-index-base (s-i-b) byte having the same address mode
definition as in the 80386 instruction. The mod field in the 80387
instruction is never equal to 11.

Instruction and Data Pointers

The parallel operation of the 80386 and 80387 may allow errors
detected by the 80387 to be reported after the 80386 has executed the
ESC instruction that caused the error. The 80386/80387 provides two
pointer registers to identify the failing numeric instruction. The
pointer registers supply the address of the failing numeric instruction
and the address of its numeric memory operand when applicable.

Microprocessors and Instruction Sets — October 1990 89

Although the pointer registers are located in the 80386, they appear to
be located in the 80387 because they are accessed by the ESC
instructions FLDENV, FSTENV, FSAVE, and FRSTOR. Whenever the
80386 decodes a new ESC instruction, it saves the address of the
instruction along with any prefix bytes that may be present, the
address of the operand (if present), and the opcode.

The instruction and data pointers appear in one of four available
formats:

16-bit Real Mode/Virtual 8086 Mode
32-bit Real Mode

16-bit Protected Mode

32-bit Protected Mode

e o o o

The Real Mode formats are used whenever the 80386 is in the Real
Mode or Virtual 8086 Mode. The Protected Mode formats are used
when the 80386 is in the Protected Mode. The Operand Size Prefix
can also be used with the 80387 instructions. The operand size of the
80387 instruction determines whether the 16-bit or 32-bit format is
used.

Note: FSAVE and FRSTOR have an additional eight fields (10 bytes
per field) that contain the current contents of ST(0) through
ST(7). These fields follow the instruction and data pointer
image shown in the following figures.

The following figures show the instruction and data pointer image
format used in the various address modes. The ESC instructions
FLDENV, FSTENV, FSAVE, and FRSTOR are used to transfer these
values between the 80386/80387 registers and memory.

Bits

15 8|7 ol o
Control Word 0 :

Status Word 21 s

Tag Word 4 :

Instruction Pointer (IP) Bits 15-0 6] i

IPBits 1916 | 0 | Opcode Bits 10-0 8| "
Operand Pointer (OP) Bits 15-0 Al B

OPBits19-16 | 0]/ 0 0 0 0 0 0 0 0 0 0 0|c] E

Figure 28. Instruction and Pointer Image (16-Bit Real Address Mode)

90 Microprocessors and Instruction Sets — October 1990

Bits
{15 8l7 0

o
Control Word 0ﬂ :
Status Word 2] 8
Tag Word 4 7
Instruction Pointer Offset 6] i
CS Selector 8
Operand Offset A ?
Operand Selector C_ E
Figure 29. Instruction and Pointer Image (16-Bit Protected Mode)
Bits
31 24|23 16 |15 8l7 ol o
Reserved Control Word 0 :
Reserved Status Word 41 8
Reserved Tag Word 8 :
Reserved IP Bits 15-0 C| i
0000 | IP Bits 31-16 LOJ Opcode Bits 10-0 10 "
Reserved l Operand Pointer Bits 15-0 14 '.3
000 0| Operand Pointer Bits 31-16 |0 00000000000 18 | E
Figure 30. Instruction and Pointer Image (32-Bit Real Address Mode)
Bits
31 24 |23 1615 8|7 0 0
Reserved Control Word 0 :
Reserved Status Word 4| s
Reserved Tag Word 8 :
Instruction Pointer Offset Cl i
Reserved l CS Selector 10 "
Data Operand Offset 14 ?
Reserved i Operand Selector 18 | E

Figure 31. Instruction and Pointer Image (32-Bit Protected Mode)

Microprocessors and Instruction Sets — October 1990 91

New Instructions

Several new instructions are included in the 80387 instruction set that
are not available to the 80287 or 8087 Math Coprocessors. The new
instructions are:

FUCOM (Unordered Compare Real)

FUCOMP (Unordered Compare Real and Pop)
FUCOMPP (Unordered Compare Real and Pop Twice)
FPREM?1 (IEEE Partial Remainder)

FSINE (Sine)

FCOS (Cosine)

FSINCOS (Sine and Cosine).

92 Microprocessors and Instruction Sets — October 1990

80387 Math Coprocessor Instruction Set

The foI'Iowing is an instruction set summary for the 80387
coprocessor. In the following, the bit pattern for escape is 11011.

Data Transfer

FLD = Load

Integer/Real Memory to ST(0)
[escape MF 1] mod 000 r/m |

Long Integer Memory to ST(0)
r escape 111 I mod 101 r/m I

Temporary Real Memory to ST(0)
[escape011 | modi101rm |

BCD Memory to ST(0)
I escape 111 T mod100r/m |

ST(i) to ST(0)
| escapeoot1 | 11000sT() |

FST = Store

ST(0) to Integer/Real Memory

rescape MF 1 I mod010r/m |
ST(0) to ST(i)

| escape 101 | 11010s1() |

FSTP = Store and Pop

ST(0) to Integer/Real Memory
| escape MF 1] mod011r/m]

ST(0) to Long Integer Memory
| escape111 | mod111rm |

Microprocessors and Instruction Sets — October 1990 93

ST(0) to Temporary Real Memory
l escape 011 l mod 111r/m |

ST(0) to BCD Memory
| escape111 | mod110rm |

ST(0) to ST(i)
| escapeto1 | 11011sT() |

FXCH = Exchange ST(i) and ST(0)

[escape001 | 11001sT() |

Comparison

FCOM = Compare

Integer/Real Memory to ST(0)
L escape MF 0 I mod 010r/m]

ST(i) to ST(0)
| escape0oo | 110t10sT() |

FCOMP = Compare and Pop

Integer/Real Memory to ST(0)

I escape MF 0 I mod011r/m I
ST(j) to ST(0)
| escapeooo | 11011sT() |

FCOMPP = Compare ST(1) to ST(0) and Pop Twice

| escape11i0 | 11011001 |

FUCOM = Unordered Compare Real

| escapeto1 [11100sT() |

94 Microprocessors and Instruction Sets — October 1990

FUCOMP = Unordered Compare Real and Pop

| escape 101 [11101st) |

FUCOMPP = Unordered Compare Real and Pop Twice

[escape01o [11101001 |

FTST = Test ST(0)

| escape 001 | 11100100

FXAM = Examine ST(0)

rescape001 1 11100101 J

Constants

FLDZ = Load +4-0.0 into ST(0)

| escapeoo1 | 11101110 |

FLD1 = Load 41.0 into ST(0)

escape001 | 11101000 |

FLDPI = Load 7 into ST(0)

| escape0oi [11101011 |

FLDL2T = Load log, 10 into ST(0)

[escape001 [11101001 |

FLDL2E = Load log, e into ST(0)

| escape0o1 | 11101010 |

Microprocessors and Instruction Sets — October 1990 95

FLDLG2 = Load log,, 2 into ST(0)

| escape 00 1 L 11101100]

FLDLN2 = Load log, 2 into ST(0)

| escape001 | 11101101 |

Arithmetic

FADD = Addition

Integer/Real Memory with ST(0)
| escape MF 0 I mod 000 r/m I

ST(i) and ST(0)
| escapedPo | 11000sT() |

FSUB = Subtraction

Integer/Real Memory with ST(0)
L escape MF 0 J mod 10R r/m]

ST(i) and ST(0)
| escapedPo | 1110Rvm |

FMUL = Multiplication

Integer/Real Memory with ST(0)
L escape MF 0 | mod001r/m]

ST(i) and ST(0)
| escapedPo | 11001wm |

FDIV = Division

Integer/Real Memory with ST(0)
[escape MF 0 l mod 11Rr/m j

96 Microprocessors and Instruction Sets — October 1990

ST(i) and ST(0)
[escaped PO T 1111Rr/m l

FSQRT = Square Root of ST(0)

[escape0o1 [11111010 |

FSCALE = Scale ST(0) by ST(1)

| escape001 | 11111101 |

FPREM = Partial Remainder of ST(0) <+ ST(1)

| escape0o1 | 11111000 |

FPREM1 = IEEE Partial Remainder

| escape0o1 | 11110101 |

FRNDINT = Round ST(0) to Integer

[escape0o1 [11111100 |

FXTRACT = Extract Components of ST(0)

| escape0ot1 | 11110100 |

FABS = Absolute Value of ST(0)

| escape001 [11100001 |

FCHS = Change Sign of ST(0)

| escapeoot1 [11100000 |

Microprocessors and Instruction Sets — October 1990 97

Transcendental

FPTAN = Partial Tangent of ST(0)

| escape0o1 | 11110010 |

FPATAN = Partial Arctangent of ST(1) <+~ ST(0)

| escapeoo1 | 11110011 |

FSIN = Sine

| escape001 1 11111110

FCOS = Cosine

[escape0o01]‘11111111 |

FSINCOS = Sine and Cosine

[escapeco1 | 11111011 |

F2XM1 = 257(0) -1

| escape001 | 11110000 |

FYL2X = ST(1) x Log, [ST(0)]

| escape001 | 11110001 |

FYL2XP1 = ST(1) x Log, [ST(0) + 1]

| escape001 | 11111001 |

Processor Control

FINIT = Initialize NPX

| escape011 | 11100011

98 Microprocessors and Instruction Sets — October 1990

FSTSW AX = Store Control Word

| escape111 | 11100000 |

FLDCW = Load Control Word

r escape 001 | mod101r/m ‘

FSTCW = Store Control Word

I escape 00 1] mod111r/m J

FSTSW = Store Status Word

| escape101 | mod111rm |

FCLEX = Clear Exceptions

| escape011 | 11100010

FSTENV = Store Environment

[escape 001 l mod110r/m

FLDENV = Load Environment

| escape001 | modi00rm |

FSAVE = Save State

[escape 101 | mod 110r/m

FRSTOR = Restore State

| escape 101 I mod 100 r/m

Microprocessors and Instruction Sets — October 1990 99

®

FINCSTP = Increment Stack Pointer

| escape001 | 11110111 |

FDECSTP = Decrement Stack Pointer

| escape001 | 11110110 |

FFREE = Free ST(i)

| escape101 | 11000ST() |

FNOP = No Operation

| escape001 | 11010000 |

80486 Microprocessor Instruction Set

The 80486 microprocessor uses the same instruction set that the
80386 microprocessor and the 80387 Math Coprocessor. In addition,
the 80486 has six unique instructions that control cache operation:

Byte Swap (BSWAP)

Compare and Exchange (CMPXCHG)
Exchange-and-Add (XADD)

Invalidate Data Cache (INVD)

Invalidate TLBN Entry (INVLPG)

Write-Back and Invalidate Data Cache (WBINVD).

BSWAP = Byte Swap

| 00001111 | 11001reg |

CMPXCHG = Compare and Exchange

Register 1, Register 2
| 00001111 | 1011000w | 11 reg2regt |

Memory, Register 2
| 00001111 | 1011000w | modreg2mem |

100 Microprocessors and Instruction Sets — October 1990

XADD = Exchange and Add

Register 1, Register 2
| 00001111 | 1100000w | 11 reg2regt |

Memory, Register 2
| 00001111 | 1100000w [modreg2mem |

INVD = Invalidate Data Cache

[oooo1111 | oo0o001000 |

WBINVD = Write-Back and Invalidate Data Cache

[oooo1111 [oo0o001001 |

INVLPG = Invalidate TLB Entry

[00001111 | 00000001 | mod 11 mem

Microprocessors and Instruction Sets — October 1990 101

Notes:

102 Microprocessors and Instruction Sets — October 1990

Direct Memory Access Controller (Type 1)

Description
DMA Controller Operations
Data Transfers between Memory and I/0 Devices
Read Verifications
DMAI/OAddressMap
Byte Pointer
DMA Registers
Memory Address Register,
1/0 Address Register, .
Transfer Count Register
Temporary Holding Reguster
Mask Register
Mode Register
Extended Mode Register
Status Register
DMA Extended Function Register (Hex0018)
Arbus Register
DMA Extended Operations
ExtendedCommands

© Copyright IBM Corp. 1990

i Direct Memory Access Controller (Type 1) — October 1990

Figures

DMAI/OAddressMap
DMARegisters
Set/Clear Single Mask Bit Using 8237 Compatible Mode . . .
DMA Mask Register Write Using 8237 Compatible Mode . . .
8237 Compatible Mode Register
Extended Mode Register
Status Register
DMA Extended Function Register (Hex 0018)
Arbus Register
10. DMA Extended AddressDecode
11. DMAExtendedCommands
12. DMA Channel 2 Programming Example, Extended
Commands,

XN A WN =

© Copyright IBM Corp. 1990

iv Direct Memory Access Controller (Type 1) — October 1990

Description

The Direct Memory Access (DMA) controller allows 1/0 devices to
transfer data directly to and from memory. This frees the system
microprocessor of 1/0 tasks, resulting in a higher throughput.

The DMA controller is software programmable. The system
microprocessor can address the DMA controller and read or modify
the internal registers to define the various DMA modes, transfer
addresses, transfer counts, channel masks, and page registers.

The functions of the DMA controller can be grouped into two
categories: program mode and DMA transfer mode.

In the program mode, the system microprocessor accesses the DMA
controller within the specific address range. These addresses are
identified in Figure 1 on page 3. In this mode, the DMA registers can
be read from or written to.

In the DMA mode, the DMA controller performs the data transfer. The
transfer is initiated when a DMA slave has won the arbitration bus
and the DMA controller has been programmed to service the winning
request in process. Data transfers can be a single-byte transfer, or
multiple-byte transfers (burst).

Deactivation of CD CHRDY by a device can extend accesses for slower
1/0 or memory devices.

The DMA controller supports the following:

* Register and program compatibility with the IBM Personal
Computer AT® DMA channels (8237 compatible mode)

e 16MB (MB equals 1,048,576 bytes) 24-bit address capability for
memory and 64KB (KB equals 1024 bytes) 16-bit address
capability for I/0

* Eight independent DMA channels capable of transferring data
between memory and I/0 devices

* DMA operation with a separate read and write cycle for each
transfer operation
Channel programmable for byte or word transfer
Extended operations:

Personal Computer AT is a registered trademark of the International Business
Machines Corporation.

Direct Memory Access Controller (Type 1) — October 1990 1

— Extended program control
— Extended Mode register
¢ 8- and 16-bit DMA slaves only
* Programmable arbitration levels for two channels.

DMA Controller Operations

The DMA controller does two types of operations:

Data transfers between memory and I/O devices
¢ Read verifications.

Data Transfers between Memory and I/0 Devices

The DMA controller performs serial transfers for all read and write
operations. These transfers can be between memory and I/0 on any
channel. Data is read from a device and latched in the DMA
controller before it is written back to a second device. The memory
address needs to be specified only for a DMA data transfer. A
programmable 16-bit I/0 address can be provided during the I/0
portion of the transfer as a programmable option. If the
programmable 16-bit I/O address is not selected, the I/0 address is
forced to hex 0000 during the 1/0 transfer.

Read Verifications
The DMA controller can do a memory-read operation without a

transfer. The address and the count are updated, and the terminal
count is provided.

2 Direct Memory Access Controller (Type 1) — October 1990

DMA 1/0 Address Map

Address Bit Byte
(Hex) Description Description Pointer
0000 Channel 0, Memory Address Register 00-15 Used
0001 Channel 0, Transfer Count Register 00-15 Used
0002 Channel 1, Memory Address Register 00-15 Used
0003 Channel 1, Transfer Count Register 00-15 Used
0004 Channel 2, Memory Address Register 00-15 Used
0005 Channel 2, Transfer Count Register 00-15 Used
0006 Channel 3, Memory Address Register 00-15 Used
0007 Channel 3, Transfer Count Register 00-15 Used
0008 Channel 0-3, Status Register 00-07

000A Channel 0-3, Mask Register (Set/Reset) 00-02

000B Channel 0-3, Mode Register (Write) 00-07

000C Clear Byte Pointer (Write) N/A

000D DMA Controller Reset (Write) N/A

000E Channel 0-3, Clear Mask Register (Write) N/A

000F Channel 0-3, Write Mask Register 00-03

0018 Extended Function Register (Write) 00-07

001A Extended Function Execute 00-07 Used *
0081 Channel 2, Page Table Address Register ** 00-07

0082 Channel 3, Page Table Address Register ** 00-07

0083 Channel 1, Page Table Address Register ** 00-07

0087 Channel 0, Page Table Address Register ** 00-07

0089 Channel 6, Page Table Address Register ** 00-07

008A Channel 7, Page Table Address Register ** 00-07

008B Channel 5, Page Table Address Register ** 00-07

008F Channel 4, Page Table Address Register ** 00-07

00CO Channel 4, Memory Address Register 00-15 Used
00C2 Channel 4, Transfer Count Register 00-15 Used
00C4 Channel 5, Memory Address Register 00-15 Used
00Cé Channel 5, Transfer Count Register 00-15 Used
00Cs8 Channel 6, Memory Address Register 00-15 Used
00CA Channel 6, Transfer Count Register 00-15 Used
00CC Channel 7, Memory Address Register 00-15 Used
00CE Channel 7, Transfer Count Register 00-15 Used
00D0 Channel 4-7, Status Register 00-07

00D4 Channel 4-7, Mask Register (Set/Reset) 00-02

00D6 Channel 4-7, Mode Register (Write) 00-07

00D8 Clear Byte Pointer (Write) N/A

00DA DMA Controller Reset (Write) N/A

00DC Channel 4-7, Clear Mask Register (Write) N/A

00DE Channel 4-7, Write Mask Register 00-03

Note: * Used only during extended functions, see “Extended Commands” on
page 10. ** Upper byte of memory address register.

Figure 1. DMA I/0O Address Map

Direct Memory Access Controller (Type 1) — October 1990 3

Byte Pointer

A byte pointer gives 8-bit ports access to consecutive bytes of
registers greater than 8 bits. For program 1I/0, the registers that use
it are the Memory Address registers (3 bytes), the Transfer Count
registers (2 bytes), and the I/0 Address registers (2 bytes). Interrupts
should be masked off while programming DMA controller operations.

DMA Registers

All system microprocessor access to the DMA controller must be 8-bit
1/0 instructions. The following figure lists the names and sizes of the
DMA registers.

Register Size Quantity of Allocation

(Bits) Registers
Memory Address 24 8 1 per Channel
1/0 Address 16 8 1 per Channel
Transfer Count 16 8 1 per Channel
Temporary Holding 16 1 All Channels
Mask 4 2 1 for Channels 7 - 4
1 for Channels 3-0
Arbus 4 2 1 for Channel 4
1 for Channel 0
Mode 8 8 1 per Channel
Status 8 2 1for Channels 7 - 4
1 for Channels 3-0
Function 8 1 All Channels
Refresh 9 1 Independent of DMA

Figure 2. DMA Registers

Memory Address Register

Each channel has a 24-bit Memory Address register, which is loaded
by the system microprocessor. The Mode register determines
whether the address is incremented or decremented. The Mode
register can be read by the system microprocessor in successive 1/0
byte operations. To read this register, the microprocessor must use
the extended DMA commands.

4 Direct Memory Access Controller (Type 1) — October 1990

I/0 Address Register

Each channel has a 16-bit I/O Address register, which is loaded by
the system microprocessor. The bits in this register do not change
during DMA transfers. This register can be read by the system
microprocessor in successive 1/0 byte operations. To read this
register, the microprocessor must use the extended DMA commands.

Typically, a DMA slave is selected for DMA transfers by a decode of
the arbitration level, status (-SO exclusively ORed with -S1), and M/-10.
In this case, the respective 1/0 address register must have a value of
0.

A DMA slave can be selected based on a decode of the address
rather than the arbitration level. In this case, the respective 1/0
address register must have the proper I/0 address value.

Transfer Count Register

Each channel has a 16-bit Transfer Count register, which is loaded by
the system microprocessor. The transfer count determines how
many transfers the DMA channel will execute before reaching the
terminal count. The number of transfers is always 1 more than the
count specifies. If the count is 0, the DMA controller does one
transfer. This register can be read by the system microprocessor in
successive 1/0 byte operations. To read this register, the system
microprocessor can use only the extended DMA commands.

Temporary Holding Register

This 16-bit register holds the intermediate value for the serial DMA
transfer taking place. A DMA operation requires the data to be held
in the register before it is written back. This register is not accessible
by the system microprocessor.

Direct Memory Access Controller (Type 1)— October 1990 §

Mask Register

Bit Function
7-3 Reserved = 0
2 0 Clear Mask Bit
1 Set Mask Bit
1,0 00 Select Channel 0 or 4

01 Select Channel 1or 5
10 Select Channel 2 or 6
11 Select Channel 3or 7

Figure 3. Set/Clear Single Mask Bit Using 8237 Compatible Mode

Bit Function

7-4 Reserved = 0

3 0 Clear Channel 3 or 7 Mask Bit
1 Set Channel 3 or 7 Mask Bit

2 0 Clear Channel 2 or 6 Mask Bit
1 Set Channel 2 or 6 Mask Bit

1 0 Clear Channel 1 or 5§ Mask Bit
1 Set Channel 1 or 5 Mask Bit

0 0 Clear Channel 0 or 4 Mask Bit

1 Set Channel 0 or 4 Mask Bit

Figure 4. DMA Mask Register Write Using 8237 Compatible Mode

Each channel has a corresponding mask bit that, when set, disables
the DMA from servicing the requesting device. Each mask bit can be
set to 0 or 1 by the system microprocessor. A system reset or DMA
Controller Reset command sets all mask bits to 1. A Clear Mask
Register command sets mask bits 0 - 3 or mask bits 4 -7 to 0.

When a device requesting DMA cycles wins the arbitration cycle, and
the mask bit is set to 1 on the corresponding channel, the DMA
controller does not execute any cycles in its behalf and allows
external devices to provide the transfer. If no device responds, the
bus times out and causes a nonmaskable interrupt (NMI). This
register can be programmed using the 8237 compatible mode
commands (used by the IBM Personal Computer AT) or the extended
DMA commands.

6 Direct Memory Access Controlier (Type 1) — October 1990

Mode Register

The Mode register for each channel identifies the type of operation
that takes place when that channel transfers data.

Bit Function

Reserved = 0

Reserved = 0

00 Verify Operation

01 Write Operation

10 Read Operation

11 Reserved

1,0 Channel Accessed

00 Select Channel O or 4
01 Select Channel 1 or 5
10 Select Channel 2 or 6
11 Select Channel 3 or 7

Lo N
[N NY)

Figure 5. 8237 Compatible Mode Register

The Mode register is programmed by the system microprocessor, and
its contents are reformatted and stored internally in the DMA
controller. In the 8237 compatible mode, this register can only be
written.

Extended Mode Register

Besides the 8237 compatible mode, all channels support an 8-bit
Extended Mode register. The Extended Mode register can be
programmed and read by the system microprocessor.

The DMA controller supports an Extended Mode register for each
channel that can be programmed and read by the system
microprocessor. This register is used whenever a DMA channel
requests a DMA data transfer.

The DMA channel must be programmed to match the transfer size of

the DMA slave on the channel. Bit 6 of this register is used to
program the size of the DMA transfer.

Direct Memory Access Controller (Type 1) — October 1990 7

Bit Function

7 Reserved = 0
6 0 = 8-Bit Transfer
1 = 16-Bit Transfer
Reserved = 0
Reserved = 0
0 = Read Memory Transfer
1 = Write Memory Transfer
2 0 = Read Verifications Operation
1 = Data Transfer Operation
Reserved = 0
0 0 = 1/0 Address equals 0000H
1 = Use programmed /O Address

[0 e]

ey

Figure 6. Extended Mode Register

Status Register

The Status register, which can be read by the system microprocessor,
contains information about the status of the devices. This information
tells which channels have reached the terminal count and which
channels have requested the bus since the last time the register was
read.

Function

Channel 3 or 7 Request
Channel 2 or 6 Request
Channel 1 or 5 Request
Channel 0 or 4 Request
TC on Channel 3 or7
TC on Channel 2 or 6
TC on Channel 1or 5
TC on Channel 0 or 4

O=aNWhM»MOON

Figure 7. Status Register

Bits 3 through 0 in each Status register are set every time a terminal
count is reached by a corresponding channel. Bits 7 through 4 are
set when a corresponding arbitration level has controlled the bus. All
bits are cleared by a system reset or following a system
microprocessor Status Read command. This register can be read
using the 8237 commands or extended DMA commands.

DMA Extended Function Register (Hex 0018)

This 8-bit register minimizes I/0 address requirements and provides
the extended program functions. The system microprocessor loads

this register using 1/0 write operations. See “Extended Commands”
on page 10 for more information.

8 Direct Memory Access Controller (Type 1) — October 1990

Bit Function

7-4 Program Command (DMA Extended Commands)
3 Reserved = 0
2-0 Channel Number (0 through 7)

Figure 8. DMA Extended Function Register (Hex 0018)

Arbus Register

This register is used for virtual DMA operations.

Bit Function
7-4 Reserved
3-0 Arbitration Level

Figure 9. Arbus Register

Virtual DMA channel operation permits programming of the
arbitration level assignment for channels 0 and 4 using the two 4-bit
Arbus registers. These registers enable the system microprocessor
to dynamically reassign the arbitration ID value by which the DMA
controller responds to bus arbitration for DMA requests. This allows
channels 0 and 4 to service devices at any arbitration level. The
value of arbitration level hex F is reserved.

DMA Extended Operations

The function register supports an extended set of commands for the
DMA channels. The extended command hex 8 programs the Arbus
registers; the upper 4 bits of the Extended Function register are set to
a value of 8 to select the Arbus register, and the lower 4 bits are set
to the channel number (0 or 4). If channel 0 = 1-3o0r5-7 then
channel 0 is active; if channel 0 = 4 then channel 0 is inactive. The
system microprocessor uses the following addresses to gain control
of the internal DMA registers.

1/0 Address

(Hex) Command
0018 Write Extended Function Register
0019 Reserved
001A Execute Extended Function Register
001B Reserved

Figure 10. DMA Extended Address Decode

Direct Memory Access Controller (Type 1) — October 1990 9

The system microprocessor uses the following steps to write to or
read from any of the DMA internal registers:

1. Write to the Extended Function register by executing an I/0 Write
instruction to address hex 0018, with the proper data to indicate
the function and the channel number. The internal byte pointer is
always reset to 0 when an I/O write to address hex 0018 is
detected.

2. Execute the Extended Function command by doing an I/O Read or
I/0 Write instruction to address hex 001A. The byte pointer
automatically increments and points to the next byte each time
port address hex 001A is used. This step is not required for
Direct commands because they are executed when the Out
command to address hex 0018 is detected.

Extended Commands

The following figure shows the available extended command set
contained in the Extended Function register.

Registers/Bits Accessed Bits Extended
Command
(Hex) Byte
(7-4%) Pointer
1/0 Address Register 00-15 0 Used
Reserved 1
Memory Address Register Write 00-23 2 Used
Memory Address Register Read 00-23 3 Used
Transfer Count Register Write 00-15 4 Used
Transfer Count Register Read 00-15 5 Used
Status Register Read 00-07 6
Mode Register 00-07 7
Arbus Register 00-07 8
Mask Register Set Single Bit ** 9
Mask Register Reset Single Bit ** A
Reserved B
Reserved C
Master Clear ** D
Reserved E
Reserved F
Note: * Bits 7-4 of the Extended Function Register. ** Direct commands to the
Extended Function register

Figure 11. DMA Extended Commands

10 Direct Memory Access Controller (Type 1) — October 1990

The following is an example showing the programming of DMA

channel 2 using the 8237 compatible mode and the extended mode.

In this example, to perform each step, write the data indicated to the

corresponding addresses.

Program Step 8237 Compatible Extended Mode
Mode Address/Data
Address/Data
Set Channel Mask Bit (000AH) x6H (0018H) 92H
Clear Byte Pointer (000CH) xxH (0018H) 22H
Write Memory Address (0004H) xxH (001AH) xxH
Write Page Table Address (0081H) xxH (001AH) xxH
Clear Byte Pointer (000CH) xxH (0018H) 42H
Write Register Count (0005H) xxH (001AH) xxH
Write Register Count (0005H) xxH (001AH) xxH
Write Mode Register (000BH) xxH (0018H) 72H

Clear Channel 2 Mask Bit

Note: x’s represent data.

(000AH) x2H

(001AH) xxH
(0018H) A2H

Figure 12. DMA Channel 2 Programming Example, Extended Commands

Direct Memory Access Controller (Type 1) — October 1990

1"

Interrupt Controller

Description
Interrupt Assignments
Interrupt Sharing
Interrupt Controller Registers
Interrupt Request Register and In-Service Register
Interrupt Mask Register
Initialization Command Registers and Operation Command
Registers
Modes of Operation
Fully-Nested Mode
Special Fully-NestedMode
Automatic RotationMode
Specific RotationMode
Special MaskMode
Poll Mode
Level-Sensitive Mode L.
Programming the Interrupt Controller
Initialization Command Byte1
Initialization CommandByte2
Initialization CommandByte3
Initialization CommandByte4
Operation Command Byte1
Operation Command Byte2
Operation CommandByte3

© Copyright IBM Corp. 1990

il Interrupt Controller— October 1990

Figures

1. Interrupt Level Assignments by Priority 1
2. Automatic RotationMode 6
3. Specific Rotation Mode when IRQ5 Has the Lowest Priority . 7
4. PollMode StatusByte 8
5. Initialization CommandByte1 9
6. Initialization CommandByte2 10
7. Initialization CommandByte3 10
8. Initialization CommandByte4 10
9. Operation CommandByte1 11
10. Operation CommandByte2 11
11. Operation Command Byte 2 (Bits7-5) 12
12. Operation Command Byte 2 (Bits2-0) 12
13. Operation CommandByte3d 12
14. Operation Command Byte 3 (Bits6and5) 12
15. Operation Command Byte 3 (Bits1andO) 13

© Copyright IBM Corp. 1990 il

iv Interrupt Controller — October 1990

Description

The system provides 16 levels of hardware interrupts. Any interrupt
can be masked, including the nonmaskable interrupt (NMI). The
interrupt controller must be initialized to the level-sensitive mode; the
edge-triggered mode is not supported. Attempts to set the controlier
to the edge-triggered mode will result in level-sensitive operation.
For more information on nonmaskable interrupt, see the
system-specific technical references.

Interrupt Assignments

The following figure shows the interrupt assignments, interrupt
levels, and their functions. The interrupt levels are listed by order of
priority, from highest (NMI) to lowest (IRQ 7). See system-specific
technical references for masking interrupts.

Level Master Function Level Slave Function

NMI Channel Check *

IRQO Timer

IRQ 1 Keyboard

IRQ 2 Cascade Interrupt Control— IRQ 8 Real Time Clock
IRQ 9 Redirect Cascade

IRQ 10 Reserved

IRQ 11 Reserved

IRQ 12 Auxiliary Device

IRQ 13 Math Coprocessor
Exception

IRQ 14 Fixed Disk

IRQ 15 Reserved

IRQ 3 Serial Alternate
IRQ 4 Serial Primary
IRQ 5 Reserved

IRQ 6 Diskette

IRQ7 Parallel Port

IRQ 8 through 15 are cascaded through IRQ 2

Note: * For channel check and other system specific functions, refer to the
system-specific technical references.

Figure 1. Interrupt Level Assignments by Priority

Interrupt Controller (Type 1) — October 1990 1

Interrupt Sharing

Hardware interrupt IRQ9 is defined as the replacement interrupt level
for the cascade level IRQ2. Program interrupt sharing should be
implemented on IRQ2, interrupt hex 0A. The following processing
occurs to maintain compatibility with the IRQ2 used by IBM Personal
Computer products:

1.

A device drives the interrupt request active on IRQ2 of the
channel.

This interrupt request is mapped in hardware to IRQ9 input on the
slave interrupt controller.

When the interrupt occurs, the system microprocessor passes
control to the IRQ9 (interrupt hex 71) interrupt handler.

The interrupt handler performs an end-of-interrupt (EOI) to the
slave interrupt controller and passes control to the IRQ2
(interrupt hex 0A) interrupt handler.

The IRQ2 interrupt handler, when handling the interrupt, causes
the device to reset the interrupt request prior to performing an
EOI to the master interrupt controller that finishes servicing the
IRQ2 request.

Note: Prior to the programming of the interrupt controllers,

interrupts should be disabled with a CLI instruction. This
includes the Mask register, EOls, initialization command
bytes, and operation command bytes.

Interrupt Controller Registers

The interrupt controller contains the following registers:

2

Interrupt Request register
In-Service register

Interrupt Mask register
Initialization Command registers
Operation Command registers.

Interrupt Controller (Type 1) — October 1990

Interrupt Request Register and In-Service
Register

These registers handle incoming interrupt requests. The Interrupt
Request register stores all interrupt levels requesting service. The
In-Service register stores all interrupt levels currently being serviced.
A priority resolver prioritizes the bits in the Interrupt Request register
and strobes the bit with the highest priority into the corresponding bit
of the In-Service register.

Both registers can be read by issuing a Read Register command
through Operation Command Byte 3, and then reading port hex 0020
or 00A0. The controllier keeps track of the last register selected;
therefore, subsequent reads of the same register do not require
another Operation Command Byte 3 to be written. See “Operation
Command Byte 3” on page 12 for more information.

Note: After initialization, the controller is set to read the Interrupt
Request register.

Interrupt Mask Register

The Interrupt Mask register contains bits that mask each of the
interrupt request lines of the Interrupt Request register. Lower
priority levels are not affected when a higher priority level is masked.

The contents of this register are placed on the output data bus when
-READ is active and port hex 0021 or 00A1 is accessed.

Initialization Command Registers and Operation
Command Registers

These registers store commands from the system microprocessor
that define initialization parameters and operating modes. See
“Programming the Interrupt Controller” on page 8 for more
information.

Interrupt Controller (Type 1) — October 1990 3

Modes of Operation

The interrupt controller can be programmed to operate in a variety of
modes through the Initialization Command bytes and the Operation
Command bytes.

Fully-Nested Mode

In the fully-nested mode, interrupts are prioritized from 0 (highest
priority) to 7 (lowest priority). This mode is automatically entered
after initialization unléss another mode has been defined.

Note: The priorities can be changed by rotating the priorities through

Operation Command Byte 2.

A typical interrupt request occurs in the following manner:

1.

One or more ‘interrupt request’ lines are set active, causing the
corresponding bits in the Interrupt Request register to be set to 1.

. The interrupt controller evaluates the requests and sends an

interrupt to the system microprocessor, if appropriate.

The system microprocessor responds with an ‘interrupt
acknowledge’ pulse to the interrupt controller.

. The controller prioritizes the unmasked bits in the Interrupt

Request register and strobes the bit with the highest priority into
the corresponding bit of the In-Service register. No data is sent
to the system microprocessor.

Note: If an interrupt request is not present (for example, the
duration of the request was too short), the interrupt
controller issues an interrupt 7.

The system microprocessor sends a second ‘interrupt
acknowledge’ pulse to the interrupt controller.

The interrupt controller responds by releasing the interrupt vector
on the data bus, where it is read by the system microprocessor.

The highest priority in-service bit remains set to 1 until the proper
End of Interrupt command is issued by the interrupt subroutine. If
the source of the interrupt request is the slave interrupt
controller, the End of Interrupt command must be issued twice,
once for the master and once for the slave. When the in-service
bit is set to 1, all other interrupts with the same or lower priority
are inhibited; interrupts with a higher priority cause an interrupt,
but the interrupt is acknowledged only if the

Interrupt Controller (Type 1) — October 1990

system-microprocessor interrupt input has been re-enabled by
software.

The End of Interrupt command has two forms, specific and
nonspecific. The controller responds to a nonspecific End of Interrupt
command by resetting the highest in-service bit of those set. In a
mode that uses a fully-nested interrupt structure, the highest
in-service bit set is the level that was just acknowledged and
serviced. In a mode that can use other than the fully-nested interrupt
structure, a specific End of Interrupt command is required to define
which in-service bit to reset.

Note: An in-service bit masked by an Interrupt Mask register bit
cannot be reset by a nonspecific End of Interrupt command
when in the special mask mode. See “Special Mask Mode” on
page 7 for more information.

Special Fully-Nested Mode

The special fully-nested mode is used when the priority in the slave
interrupt controller must be preserved. This mode is similar to the
normal nested mode with the following exceptions:

¢ When the slave’s interrupt request is in service, the slave can still
generate additional interrupt requests of a higher priority that are
recognized by the master, and initiate interrupts to the system
microprocessor.

¢ Upon completion of the interrupt service routine, software must
send a nonspecific End of Interrupt command to the slave and
read the slave’s In-Service register to ensure that the interrupt
just serviced was the only one generated by the slave. If the
register is not empty, additional interrupts are pending, and an
End of Interrupt command must not be sent to the master. If the
register is empty, a nonspecific End of Interrupt command can be
sent to the master.

The special fully-nested mode is selected through Initialization

Command Byte 4. See “Initialization Command Byte 4” on page 10
for more information.

Interrupt Controller (Type 1) — October 1990 5

Automatic Rotation Mode

The automatic rotation mode accommodates multiple devices having
the same interrupt priority. After a device is serviced, it is assigned
the lowest priority and must wait until all other devices requesting an
interrupt are serviced once before the first device is serviced again.

The following example shows the status and priorities of the
In-Service register bits before and after bit 4 of the Interrupt-Request
register is serviced by a Rotation on Nonspecific End of Interrupt
command.

In-Service Status Priority Status Priority
Register Bits before before Rotate after Service after
Service Rotate

7 0 7 (Lowest) 0 2

6 1 (Pending) 6 1 (Pending) 1

5 0 5 0 0
(Highest)

4 1 (Pending) 4 0 (Serviced) 7
(Lowest)

3 0 3 0 6

2 0 2 0 5

1 0 1 0 4

0 0 0 (Highest) 0 3

Figure 2. Automatic Rotation Mode

The automatic rotation mode is selected by issuing a Rotation on
Nonspecific End of Interrupt command through Operation Command
Byte 2. See “Operation Command Byte 2” on page 11 for more
information.

Specific Rotation Mode

The specific rotation mode allows the application programs to change
the priority levels by assigning the lowest priority to a specific
interrupt level. Once the lowest-level priority is selected, all other
priority levels change. The following example compares the
normal-nested mode to the specific rotation mode with bit 5 of the
Interrupt Request register set to the lowest priority.

6 Interrupt Controller (Type 1) — October 1990

Interrupt Nested Mode Specific Rotation Mode
Request Priority Level Priority Level
Register Bits

7 7 (Lowest) 1

6 6 0 (Highest)

5 5 7 (Lowest)

4 4 6

3 3 5

2 2 4

1 1 3

0 0 (Highest) 2

Figure 3. Specific Rotation Mode when IRQ5 Has the Lowest Priority

The specific rotation mode is selected by issuing a Rotate on Specific
End of Interrupt command or a Set Priority command through
Operation Command Byte 2. See “Operation Command Byte 2” on
page 11 for more information.

Special Mask Mode

The special mask mode allows application programs to selectively
enable and disable any interrupt or combination of interrupts at any
time during its execution. The special mask mode is selected through
Operation Command Byte 3. Once the controller is in the special
mask mode, setting a bit in Operation Command Byte 1 sets a
corresponding bit in the Interrupt Mask register. Each bit set in the
Interrupt Mask register masks the corresponding interrupt channel.
Interrupt channels above and below a masked channel are not
affected. See “Operation Command Byte 1” on page 11 and
“Operation Command Byte 3” on page 12 for more information.

Interrupt Controlier (Type 1) — October 1990 7

Poll Mode

Before the poll mode can be used, a CLI instruction must be issued to
disable the system-microprocessor interrupt input. Devices are
serviced by software issuing a Poll command through Operation
Command Byte 3. The first ‘read’ pulse following a Poll command is
interpreted by the controller as an ‘interrupt acknowledge’ pulse; the
controller sets the appropriate in-service bit and reads the priority
level. The byte placed on the data bus during a ‘read’ pulse is shown
in the following figure.

Bit Function

7 Interrupt Present

6-3 Undefined

2-0 Highest Priority Level

Figure 4. Poll Mode Status Byte

Bit7 This bit is set to 1 if an interrupt is present.
Bits 6 -3 These bits are not used and may be set to either 0 or 1.

Bits 2 -0 These bits contain the binary code of the highest priority
level requesting service.

Level-Sensitive Mode

The interrupt controller cannot be placed in the edge-triggered mode.
In the level-sensitive mode, interrupt requests are recognized by a
high level on the interrupt-request input. Interrupt requests must be
removed before the End of Interrupt command is issued to prevent a
second interrupt from occurring.

Programming the Interrupt Controller

Before the system can be used, the interrupt controller must be
programmed with four sequential initialization commands. When a
command is issued to a master at port hex 0020 (or a slave at port
hex 00A0) with bit 4 set to 1, the command is recognized as
Initialization Command Byte 1. Initialization Command Byte 1 is the
first of four initialization commands required to program the interrupt
controller. The following events occur during the initialization
sequence:

8 Interrupt Controller (Type 1) — October 1990

1. The level sense circuit is set to the level-sensitive mode.
(Following the initialization procedure, interrupts are generated
by a high level on the interrupt-request input.)

The Interrupt Mask register is cleared.
IRQ7 is assigned priority 7.

The slave mode address is set to 7.

B o o

The special mask mode is cleared and the controller is set to
read the Interrupt Request register.

Once the interrupt controller is programmed by the initialization
command bytes, the controller can be programmed by the operation
command bytes to operate in other modes.

Note: The master interrupt controller must be initialized before the
slave interrupt controller. Failure to do so will cause
unexpected resulits.

Initialization Command Byte 1

This is the first byte of the 4-byte initialization command sequence.
This byte is issued to either the master (port hex 0020) or the slave
(port hex 00A0).

Bit Function

7-5 Reserved — Must be set to 0.

4 Initialization Command Byte 1 Identifier — Must be set to 1.

3 Level-Sensitive Mode — Must be set to 1.

2 Call Address Interval of 8 — Must be set to 0.

1 Cascade Mode — Must be set to 0.

0 4-byte Initialization Command Sequence — Must be set to
1.

Figure 5. Initialization Command Byte 1

Initialization Command Byte 2

This byte defines the address of the interrupt vector. Bits 7 through 3
define the five high-order bits of the interrupt vector address. Bits 2
through 0 are initialized to 0 and replaced by the hardware interrupt
level when an interrupt occurs. This byte is issued to either the
master (port hex 0021) or the slave (port hex 00A1).

Interrupt Controller (Type 1) — October 1990 9

Bit Function

Bits 7 - 3 of the Interrupt Vector Address

7-3
2-0 Initialized to 0

Figure 6. Initialization Command Byte 2

Initialization Command Byte 3

This byte loads a value into an 8-bit slave register.

* In the master device mode, this byte has a value of hex 04 to
identify interrupt 02 as a slave providing the input request.

* In the slave device mode, this byte has a value of hex 02 to tell
the slave that it is using hardware interrupt 02 to communicate
with the master. The slave compares this value to the cascade
input; if they are equal, the slave releases the interrupt vector
address on the data bus.

This byte is issued to either the master (port hex 0021) or the slave
(port hex 00A1).

Bit Master Slave
Function Function

7-3 0 0

2 1 0

1 0 1

0 0 0

| Figure 7. Initialization Command Byte 3

Initialization Command Byte 4

This byte is issued to either the master (port hex 0021) or the slave
(port hex 00A1).

Bit Function

7-5 Reserved — Must be setto 0.

4 Special Fully-Nested Mode

3,2 Reserved — Must be set to 0.

1 Normal End of Interrupt — Must be set to 0.

0 80286/80386 Microprocessor Mode — Must be set to 1.

Figure 8. Initialization Command Byte 4

10 Interrupt Controller (Type 1) — October 1990

Operation Command Byte 1
This byte controls the individual bits in the Interrupt Mask register.

This byte is issued to either the master (port hex 0021) or the slave
(port hex 00A1).

Bit Function
7-0 Interrupt Mask Bits 7 - 0

Figure 9. Operation Command Byte 1

Bits 7-0 When set to 1, these bits inhibit their respective interrupt
request input signals.

Operation Command Byte 2

This byte controls the interrupt priority and End of Interrupt
command.

This byte is issued to either a master (port hex 0020) or a slave (port
hex 00A0).

Bit Function

Rotate Mode

Set Interrupt Level

End of Interrupt Mode
3 Reserved — Must be set to 0
-0 Interrupt Level (When bit 6 = 1)

NP N

Figure 10. Operation Command Byte 2
Bits 7 -5 These bits define the rotate mode, end of interrupt mode,

or a combination of the two, as shown in Figure 11 on
page 12.

Interrupt Controller (Type 1) — October 1990 . 11

Bit7 Bit 6 Bit§ Function

Reserved

Nonspecific End of Interrupt Command

No Operation

Specific End of interrupt Command*

Reserved

Rotate on Nonspecific End of Interrupt Command
Set Priority Command**

Rotate on Specific End of Interrupt Command**

—-_—a-O0O000
- -wd OO -=-= 00
L, O N O -0 =O

Note: * Bits 0, 1, and 2 are the binary level of the in-service bit to be reset. ** Bits
0, 1, and 2 are the binary level of the lowest-priority device.

Figure 11. Operation Command Byte 2 (Bits 7 - 5)

Bits 4,3 These bits are reserved and must be set to 0.

Bits 2-0 These bits define the hardware interrupt level to be acted
upon when bit 6 is set to 1.

Bit 2 Bit 1 Bit 0 Function

0 0 Interrupt Level 0
0 0 1 Interrupt Level 1
0 1 0 Interrupt Level 2
0 1 1 Interrupt Level 3
1 0 0 Interrupt Level 4
1 0 1 Interrupt Level 5
1 1 0 Interrupt Level 6
1 1 1 Interrupt Level 7

Figure 12. Operation Command Byte 2 (Bits 2 - 0)

Operation Command Byte 3

This byte is issued to either a master (port hex 0020) or a slave (port
hex 00A0).

Bit Function

7 Reserved — Must be set to 0.
6,5 Special Mask Mode Bits

4 Reserved — Must be set to 0.
3 Reserved — Must be set to 1.
2 Poll Command

1,0 Read Register Command

Figure 13. Operation Command Byte 3

Bit 7 This bit is reserved and must be set to 0.

Bits 6,5 These bits enable the special mask mode, as shown in the
following figure.

12 Interrupt Controller (Type 1) — October 1990

Bit 6 Bit 5 Function

0 0 No Action
0 1 No Action
1 0 Normal Mask Mode
1 1 Special Mask Mode

Figure 14. Operation Command Byte 3 (Bits 6 and 5)

Bit 4 This bit is reserved and must be set to 0.
Bit 3 This bit is reserved and must be set to 1.
Bit 2 When set to 1, this bit sets the Poll command.

Bits 1,0 These bits determine the register to be read on the next
‘read’ pulse, as shown in the following figure.

Bit1 Bit0 Function

0 0 No Action

0 1 No Action

1 0 Read Interrupt Request Register
1 1 Read In-Service Register

Figure 15. Operation Command Byte 3 (Bits 1 and 0)

Interrupt Controller (Type 1) — October 1990 13

Notes:

14 Interrupt Controller (Type 1)— October 1990

System Timers (Type 1)

Description 1
Channel 0 - System Timer 2
Channel 2 - Tone Generation for Speaker 2
Channel 3 - Watchdog Timer 4
Counters 0,2,and3 5
Programming the System Timers 5
Counter Write Operations 5
Counter Read Operations 5

Registers 6
Count Register - Channel 0 (Hex0040) 6
Count Register - Channel 2 (Hex0042) 6
Control Byte Register - Channel 0 or 2 (Hex 0043) 7
Count Register - Channel 3 (Hex 0044) 9
Control Byte Register - Channel 3 (Hex0047) 9

Counter LatchCommand 10

System TimerModes 11
Mode 0 - Interrupt on Terminal Count 11
Mode 1 - Hardware Retriggerable One-Shot 12
Mode 2 - Rate Generator 13
Mode 3-SquareWave 13
Mode 4 - Software Retriggerable Strobe 15
Mode 5 - Hardware Retriggerable Strobe 16

Operations Commonto AllModes 17

© Copyright IBM Corp. 1990 i

ii System Timers (Type 1) — October 1990

Figures

Counters e
Audio Subsystem Block Diagram
System Timer/Counter Registers
Select Counter Bits, Port Hex 0043
Read/Write Counter Bits, Port Hex0043
Counter Mode Bits, Port Hex 0043
Select Counter, PortHex 0047
Read/Write Counter, PortHex 0047
Counter LatchCommand
Minimum and Maximum Initial Counts, Counters 0, 2

COXNOIOPA LN~

—

© Copyright IBM Corp. 1990

iv System Timers (Type 1) — October 1990

Description

The system has three programmable timers/counters: Channel 0 is
the System Timer, Channel 2 is the Tone Generator for the speaker,
and Channel 3 is the Watchdog Timer. Channel 0 and Channel 2 are
similar to Channel 0 and Channel 2 of the IBM Personal Computer,
IBM Personal Computer XT™, and the IBM Personal Computer AT®.
Channel 3 does not have a counterpart in earlier IBM personal
computer systems. The following is a block diagram of the counters.

CLK > OUT
GATE >
Control
Logic
Control
:> Byte
Register
A
IA Count — Output
__:> Register ::> > Latch
7 (CR) (oL)
MSB MSB
Counting
Element
(CE)
Count Output |
Register Latch
(CR) (oL)
LSB LSB

Figure 1. Counters

Personal Computer XT is a trademark of the International Business Machines
Corporation.

Personal Computer AT is a registered trademark of the International Business
Machines Corporation.

System Timers (Type 1) — October 1990 1

Channel 0 - System Timer

GATE 0 is always enabled.
CLK IN 0 is driven by a 1.193 MHz signal.

CLK OUT 0 indirectly drives the ‘interrupt request 0’ signal (IRQ
0).

IRQ 0 is driven by a latch that is set by the rising edge of the
‘clock out 0’ signal (CLK OUT 0). The latch can be cleared by a
system reset, an interrupt acknowledgment cycle with a vector of
hex 08, or an I/0 write to System Control Port B (hex 0061) setting
bit 7 to 1.

Signals derived from CLK OUT 0 are used to gate and clock
Channel 3.

Channel 2 - Tone Generation for Speaker

GATE 2 is controlled by bit 0 of port hex 0061.
CLK IN 2 is driven by a 1.193 MHz signal.

CLK OUT 2 has two connections. One is to input port hex 0061,
bit 5. CLK OUT 2 is also logically ANDed with port hex 0061, bit 1
(speaker data enable). The output of the AND gate drives the
‘audio sum node’ signal.

2 System Timers (Type 1) — October 1990

The audio subsystem is a speaker driven by a linear amplifier. The
linear amplifier input node can be driven from the following sources:

¢ System-timer Channel 2 when enabled using bit 1 of 1/0 port hex
0061 set to 1. (For information about system timer Channel 2 see
“Description” on page 1.)

¢ The system channel using the ‘audio sum node’ signal.

The following block diagram shows the audio subsystem.

AUDIO
AUDIO GND ——
Typical Driver
1200
ﬂ- Typical Receiver
> 75K Q
Speaker
)
% 600 Q T
Timer 2
1/0 Port
0061H Bit 1

Figure 2. Audio Subsystem Block Diagram

Each audio driver must have a 1200 ohm source impedance, and a
7.5 kilohm or greater impedance is required for each audio receiver.
Volume control is provided by the driver. Output level is a function of
the number of drivers and receivers that share the AUDIO line.

The logic ground is connected to AUDIO GND at the amplifier.

System Timers (Type 1) — October 1990 3

Channel 3 - Watchdog Timer

This channel operates only in Mode 0 and counts in 8-bit binary.
* GATE 3istied to IRQO.
* CLKIN 3is tied to CLK OUT 0 inverted.
¢ CLK OUT 3, when high, drives the NMI active.

The Watchdog Timer detects when IRQ 0 is active for more than one
period of CLK OUT 0. If IRQ 0 is active when a rising edge of CLK
OUT 0 occurs, the count is decremented. When the count is
decremented to 0, an NMI is generated. Thus, the Watchdog Timer
can be used to detect when IRQ 0 is not being serviced. This is useful
for detecting error conditions.

BIOS interfaces are provided to enable and disable the Watchdog
Timer. When the Watchdog Timer times out, it causes an NM| and
sets System Control Port A (hex 0092), bit 4 to 1. This bit may be set
to 0 by using the BIOS interface to disable the Watchdog Timer.

Note: The NMI stops all arbitration on the bus until bit 6 of the
Arbitration register (I/0 address hex 0090) is set to 0. This can
result in lost data or an overrun error on some I/0 devices.

If the Watchdog Timer is used to detect “tight looping”
software tasks that inhibit interrupts, some I/0 devices may be
overrun (not serviced in time). The operating system may be
required to restart these devices.

When the Watchdog Timer is enabled, the ‘inhibit’ signal (INHIBIT) is
active only when IRQ 0 is pending for longer than one period of CLK
OUT 0. When INHIBIT is active, any data written to Channel 0 or
Channel 3 is ignored. INHIBIT is never active if the Watchdog Timer is
disabled.

The Watchdog Timer operation is defined only when Channel 0 is
programmed in Mode 2 or Mode 3. The operation of the Watchdog
Timer is undefined when Channel 0 is programmed in any other
mode.

4 System Timers (Type 1) — October 1990

Counters 0, 2, and 3

Each counter is independent. Counters 0 and 2 are 16-bit down
counters that can be preset. They can count in binary or binary
coded decimal (BCD). Counter 3 is an 8-bit down counter that can be
preset. It counts in binary only.

Programming the System Timers

The system treats the programmable interval timer as an
arrangement of five external 1/0 ports. Three ports are treated as
count registers and two are control registers for mode programming.
Counters are programmed by writing a control word and then an
initial count. All control words are written into the Control Word
registers, which are located at address hex 0043 for counters 0 and 2,
and address hex 0047 for counter 3. Initial counts are written into the
Count registers, not the Control Byte registers. The format of the
initial count is determined by the control word used.

After the initial count is written to the Count register, it is transferred
to the counting element, according to the mode definition. When the
count is read, the data is presented by the output latch.

Counter Write Operations

The control word must be written before the initial count, and the
count must follow the count format specified in the control word.

A new initial count may be written to the counters at any time without
affecting the counter’s programmed mode. Counting is affected as
described in the mode definitions. The new count must follow the
programmed count format.

Counter Read Operations

The counters can be read using the Counter Latch command (see
“Counter Latch Command” on page 10).

If the counter is programmed for two-byte counts, two bytes must be
read. The two bytes need not be read consecutively; read, write, or
programming operations of other counters can be inserted between
them.

Note: If the counters are programmed to read or write two-byte
counts, the program must not transfer control between writing

System Timers (Type 1) — October 1990 5

the first and second byte to another routine that also reads or
writes into the same counter. This will cause an incorrect

count.

Registers
1/0 Address Register
(Hex)
0040 Count Register - Channel 0 (Read/Write)
0042 Count Register - Channel 2 (Read/Write)
0043 Control Byte Register - Channel 0 or 3 (Write)
0044 Count Register - Channel 3 (Read/Write)
0047 Control Byte Register - Channel 3 (Write)

Figure 3. System Timer/Counter Registers

Count Register - Channel 0 (Hex 0040)

The control byte is written to port hex 0043, to indicate the format of
the count (least-significant byte only, most-significant byte only, or
least-significant byte followed by most-significant byte). This must be
done before writing the count to port hex 0040.

Count Register - Channel 2 (Hex 0042)

The control byte is written to port hex 0043, to indicate the format of
the count (least-significant byte only, most-significant byte only, or
least-significant byte followed by most-significant byte). This must be
done before writing the count to port hex 0042.

Control Byte Register - Channel 0 or 2 (Hex 0043)

This is a write-only register. The following gives the format for the
control byte (port hex 0043) for counters 0 and 2.

Bits 7,6 These bits select counter 0 or 2.

Bits Function

76

00 Select Counter 0
01 Reserved

10 Select Counter 2
11 Reserved

Figure 4. Select Counter Bits, Port Hex 0043

6 System Timers (Type 1) — October 1990

Bits 5,4 These bits distinguish a counter latch command from a
control byte. If a control byte is selected, these bits also
determine the method in which each byte is read or

written.
Bits
54 Function
00 Counter Latch Command
01 Read/Write Counter bits 0 - 7 only
10 Read/Write Counter bits 8 - 15 only
11 Read/Write Counter bits 0 - 7 first, then bits 8 - 15

Figure 5. Read/Write Counter Bits, Port Hex 0043

Bits 3-1 These bits select the mode.

Bits Function

321

000 Mode 0 - Interrupt on Terminal Count

001 Mode 1 - Hardware Retriggerable One Shot
X10 Mode 2 - Rate Generator

X11 Mode 3 - Square Wave

100 Mode 4 - Software Retriggerable Strobe
101 Mode 5 - Hardware Retriggerable Strobe

Note: Don’t care bits (X) should be set to 0.

Figure 6. Counter Mode Bits, Port Hex 0043
Bit0 When set to 1, this bit selects the binary coded decimal

method of counting. When set to 0, it selects the 16-bit
binary method.

System Timers (Type 1) — October 1990 7

Count Register - Channel 3 (Hex 0044)

The control byte is written to port hex 0047, to indicate the format of
the count (least-significant byte only). This must be done before
writing the count to port hex 0044, '

Control Byte Register - Channel 3 (Hex 0047)

This is a write-only register. The following gives the format for the
control byte (port hex 0047) for counter 3.

Bits 7,6 These bits select counter 3.

Bits Function

76

00 Select Counter 3
01 Reserved

10 Reserved

11 Reserved

Figure 7. Select Counter, Port Hex 0047

Bits 5,4 These bits distinguish a counter latch command from a
control byte.

Bits Function

54 '

00 Counter Latch Command Select Counter 0
01 R/W Counter Bits 0 - 7 Only

10 Reserved

11 Reserved

Figure 8. Read/Write Counter, Port Hex 0047

Bits 3-0 These bits are reserved and must be written as 0.

8 System Timers (Type 1) — October 1990

Counter Latch Command

The Counter Latch command is written to the Control Byte register.
Bits 7 and 6 select the counter, and bits 5 and 4 distinguish this
command from a control byte. The following figure shows the format
of the Counter Latch command.

Bit Function

7,6 Specifies the counter to be latched

5,4 00 Specifies the Counter Latch command
3-0 Reserved = 0

Figure 9. Counter Latch Command

The count is latched into the selected counter’s output latch when the
Counter Latch command is received. This count is held in the latch
until it is read by the system microprocessor (or until the counter is
reprogrammed). After the count is read by the system
microprocessor, it is automatically unlatched, and the output latch
returns to following the counting element. Counter Latch commands
do not affect the programmed mode of the counter in any way. All
subsequent latch commands issued to a given counter before the
count is read, are ignored. A read cycle to the counter latch returns
the value latched by the first Counter Latch command.

System Timers (Type 1) — October 1990 9

System Timer Modes

The following definitions are used when describing the timer modes.

CLK pulse A rising edge, then a falling edge on the counter
CLK input.
Trigger A rising edge on a counter’s input GATE.

Counter Load The transfer of a count from the Counter register to
the counting element.

Mode 0 - Interrupt on Terminal Count

Event counting can be done using Mode 0. Counting is enabled when
GATE is equal to 1, and disabled when GATE is equal to 0. If GATE is
equal to 1 when the control byte and initial count are written to the
counter, the sequence is as follows:

1. The control byte is written to the counter, and OUT goes low.
2. The initial count is written.

3. The initial count is loaded on the next CLK pulse. The count is
not decremented for this CLK pulse.

The count is decremented until the counter reaches 0. For an
initial count of N, the counter reaches 0 after N+ 1 CLK pulses.

4. OUT goes high.

OUT remains high until a new count or new Mode 0 control byte is
written into the counter.

If GATE equals 0 when an initial count is written to the counter, it is

loaded on the next CLK pulse even though counting is not enabled.
After GATE enables counting, OUT goes high N CLK pulses later.

10 System Timers (Type 1) — October 1990

If a new count is written to a counter while counting, it is loaded on
the next CLK pulse. Counting then continues from the new count. Ifa
2-byte count is written to the counter, the following occurs:

1. The first byte written to the counter disables the counting. OUT
goes low immediately, and there is no delay for the CLK pulse.

2. When the second byte is written to the counter, the new count is
loaded on the next CLK pulse. OUT goes high when the counter
reaches 0.

Mode 1 - Hardware Retriggerable One-Shot

The sequence for Mode 1 is as follows:
1. OUT is high.

2. On the CLK pulse following a trigger, OUT goes low and begins
the one-shot pulse.

3. When the counter reaches 0, OUT goes high.
OUT remains high until the CLK pulse following the next trigger.

The counter is armed by writing the control byte and initial count to
the counter. When a trigger occurs, the counter is loaded. OUT goes
low on the next CLK pulse, starting the one-shot pulse. For an initial
count of N, a one-shot pulse is N CLK pulses long. The one-shot
pulse repeats the count of N for the next triggers. OUT remains low
for N CLK pulses following any trigger. GATE does not affect OUT.
The current one-shot pulse is not affected by a new count written to
the counter, unless the counter is retriggered. If the counter is
retriggered, the new count is loaded and the one-shot pulse
continues.

Note: Mode 1 is valid only for Counter 2.

System Timers (Type 1) — October 1990 11

Mode 2 - Rate Generator

This mode causes the counter to perform a divide-by-N function.
Counting is enabled when GATE equals 1, and disabled when GATE
equals 0.
The sequence for Mode 2 is as follows:
1. OUT is high.
The initial count decrements to 1.
OUT goes low for one CLK puise.
OUT goes high.

The counter reloads the initial count.

R T

The process is repeated.

If GATE goes low during the OUT pulse, OUT goes high. On the next
CLK pulse a trigger reloads the counter with the initial count. OUT
goes low N CLK pulses after the trigger. This allows the GATE input
to be used to synchronize the counter.

The counter is loaded on the CLK pulse after a control byte and initial
count are written to the counter. OUT goes low N CLK pulses after
the initial count is written. This allows software to synchronize the
counter.

The current counting sequence is not affected by a new count being
written to the counter. If the counter receives a trigger after a new
count is written and before the end of the current count, the new
count is loaded on the next CLK pulse, and counting continues from
the new count. If the trigger is not received by the counter, the new
count is loaded following the current counting cycle.

Mode 3 - Square Wave

Mode 3 is similar to Mode 2 except for the duty cycle of OUT.
Counting is enabled when GATE is equal to 1, and disabled when
GATE is equal to 0. An initial count of N results in a square wave on
OUT. The period of the square wave is N CLK pulses. If OUT is low
and GATE goes low, OUT goes high. On the next CLK pulse, a trigger
reloads the counter with the initial count.

The counter is loaded on the CLK pulse following the writing of a
control byte and the initial count.

12 System Timers (Type 1) — October 1990

The current counting sequence is not affected by a new count being
written to the counter. If the counter receives a trigger after a new
count is written, and before the end of the current count’s half-cycle of
the square wave, the new count is loaded on the next CLK puise, and
counting continues from the new count. If the trigger is not received
by the counter, the new count is loaded following the current
half-cycle.

The way Mode 3 is implemented depends on whether the count
written is odd or even. If the count is even, OUT begins high and the
following applies:

1. The initial count is loaded on the first CLK pulse.

The count is decremented by 2 on succeeding CLK pulses.
The count decrements to 0.

OUT changes state.

The counter is reloaded with the initial count.

o g > N

The process repeats indefinitely.

If the count is odd, the following applies:

. OUT is high.

. The initial count minus 1 is loaded on the first CLK pulse.
. The count is decremented by 2 on succeeding CLK pulses.
. The count decrements to 0.

. One CLK pulse after the count reaches 0, OUT goes low.

. The counter is reloaded with the initial count minus 1.

. Succeeding CLK pulses decrement the count by 2.

. The count decrements to 0.

OUT goes high.

The counter is reloaded with the initial count minus 1.

© ® N O O oA W N =

e
o

11. The process repeats indefinitely.

Mode 3, using an odd count, causes OUT to go high for a count of
(N+1)/2 and low for a count of (N-1)/2.

System Timers (Type 1) — October 1990 13

Mode 3 can operate such that QUT is initially set low when the control
byte is written. For this condition, Mode 3 operates as follows:

1.

R

OUT is low.

The count decrements to half of the initial count.
OUT goes high.

The count decrements to 0.

OUT goes low.

The process repeats indefinitely.

This process results in a square wave with a period of N CLK pulses.

Note: If OUT needs to be high after the control byte is written, the

control byte must be written twice. This applies only to Mode
3.

Mode 4 - Software Retriggerable Strobe

Counting is enabled when GATE equals 1, and disabled when GATE
equals 0. Counting begins when an initial count is written.

The sequence for Mode 4 is as follows:

1.
2.
3.

OUT is high.
The control byte and initial count are written to the counter.

The initial count is loaded on the next CLK pulse. The count is
not decremented for this clock pulse.

The count is decremented to 0. For an initial count of N, the
counter reaches 0 after N+ 1 CLK pulses.

5. OUT goes low for one CLK pulse.
6. OUT goes high.

GATE should not go low one-half CLK pulse before or after OUT goes
low. If this occurs, OUT remains low until GATE goes high.

14

System Timers (Type 1) — October 1990

If a new count is written to a counter while counting, it is loaded on
the next CLK pulse. Counting then continues from the new count. If a
2-byte count is written, the following occurs:

1. Writing the first byte does not affect counting.
2. The new count is loaded on the CLK pulse following the writing of
the second byte.

The Mode 4 sequence can be retriggered by software. The period
from when the new count of N is written to when OUT strobes low is
(N+1) pulses.

Mode 5 - Hardware Retriggerable Strobe

The sequence for Mode 5 is as follows:

1. OUT is high.

2. The control byte and initial count are written to the counter.
3. Counting is triggered by a rising edge of GATE.
4

. The counter is loaded on the CLK pulse following the trigger.
This CLK pulse does not decrement the count.

5. The count decrements to 0.

6. OUT goes low for one CLK pulse. This occurs (N+ 1) CLK pulses
after the trigger.

7. OUT goes high.

The counting sequence can be retriggered. OUT strobes low (N+1)
pulses after the trigger. GATE does not affect OUT.

The current counting sequence is not affected by a new count being
written to the counter. If the counter receives a trigger after a new
count is written and before the end of the current count, the new
count is loaded on the next CLK pulse, and counting continues from
the new count.

Note: Mode 5 is valid only on counter 2.

System Timers (Type 1) — October 1990 15

Operations Common to All Modes

Control bytes written to a counter cause all control logic to reset.
OUT goes to a known state. This does not take a CLK pulse.

The falling edge of the CLK pulse occurs when new counts are loaded
and counters are decremented.

Counters do not stop when they reach 0. In Modes 0, 1, 4, and 5, the
counter wraps to the highest count, and continues counting. Modes 2
and 3 are periodic; the counter reloads itself with the initial count and
continues from there.

The GATE is sampled on the rising edge of the CLK puilse.

The following shows the minimum and maximum initial counts for the
counters.

Mode Minimum Maximum
Count Count

0 1 0 = 2'% (Binary Counting) or 10 (BCD Counting)
1 1 0 = 2'¢ (Binary Counting) or 10* (BCD Counting)
2 2 0 = 2'® (Binary Counting) or 10* (BCD Counting)
3 2 0 = 2'6 (Binary Counting) or 10* (BCD Counting)
4 1 0 = 2'% (Binary Counting) or 10* (BCD Counting)
5 1 0 = 2'¢ (Binary Counting) or 10* (BCD Counting)

Figure 10. Minimum and Maximum Initial Counts, Counters 0, 2

Counter 3 can use only Mode 0, Interrupt on Terminal Count. The
minimum initial count is 1 and the maximum is hex FF.

16 System Timers (Type 1) — October 1990

Diskette Drive Controller

Description 1
FIFOMode e 3
Diskette Drive Controller Registers 3
Status Register A (Hex03F0) 4
Status Register B (Hex03F1) 4
Drive Control Register (Hex03F2) 5
Drive Status Register (Hex 03F3Read) 5
Diskette Drive Controller Status Register (Hex 03F4 Read) 7
Precompensation Select Register (Hex 03F4 Write) 8
Diskette Drive Controller Command/Data Register (Hex 03F5) . 9
Reserved Register (Hex03F6) 9
Data Rate Status Register (Hex 03F7-Read) 9
Data Rate Control Register (Hex 03F7 - Write) 10
Diskette Drive Controller Programming Considerations 10
ControllerCommands 1
ConfigureCommand 15
DumpregCommand 16
Format TrackCommand 16
LockCommand 17
Perpendicular Mode Command 17
Read DataCommand 18
Read Deleted DataCommand 18
ReadIDCommand 19
Read TrackCommand 20
Recalibrate Command 20
Relative Seek Command 21
Scan Equal Command 21
Scan Highor EqualCommand 22
ScanLoworEqualCommand 22
SeekCommand 23
Sense Drive Status Command 23
Sense Interrupt Status Command 24
SpecifyCommand 24
VerifyCommand 25
VersionCommand 25
Write DataCommand 26
Write Deleted Data Command 26
Invalid CommandStatus 27
Command Status Registers 28
Status Register0 28
Status Register1 29
Status Register2 30

© Copyright IBM Corp. 1991 i

Status Register 3

............................. 31
Interface Signal Descriptions 32
OutputSignals 32
InputSignals 34
Connector 35
Index 37

Diskette Drive Controller — September 1991

Figures

N AWN =

MediaFormatTable 2
Status Register A(HexO03F0) 4
Status Register B (Hex03F1) 4
Drive Control Register (Hex03F2) 5
Drive Status Register (Hex03F3Read) 5
MediaType e 6
Drive Type 6
Start-Up Drive 6
Diskette Drive Controller Status Register (Hex 03F4) 7
Precompensation Select Register (Hex 03F4 Write) 8
PrecompensationValues 8
Default Precompensation Values 9
Data Rate Status Register (Hex 03F7 -Read) 9
Data Rate Control Register (Hex 03F7 - Write) 10
Data Rate Selection 10
CommandSymbols 1
HLT Parameter Definitions 14
HUT Parameter Definitions 14
SRT Parameter Definitions 15
Configure Command 15
DumpregCommand 16
DumpregResult 16
Format Track Command 16
FormatTrack Result 17
LockCommand 17
LockResult 17
Perpendicular Mode Command 17
Read DataCommand 18
ReadDataResult 18
Read Deleted Data Command 18
Read Deleted DataResult 19
ReadIDCommand 19
ReadIDResult 19
Read TrackCommand 20
Read TrackResult 20
Recalibrate Command 20
Relative Seek Command 21
ScanEqualCommand 21
ScanEqualResult 21
Scan High or Equal Command 22
ScanHighorEqualResult 22
Scan Low or Equal Command 22

© Copyright IBM Corp. 1991 iii

43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.

66.

| 67.

iv

ScanLoworEqualResult 23
SeekCommand, 23
Sense Drive Status Command 23
Sense Drive StatusResult 23
Sense Interrupt Status Command 24
Sense Interrupt Status Result 24
Specify Command 24
VerifyCommand 25
VerifyResult, 25
VersionCommand 25
VersionResult 25
Write DataCommand 26
WriteDataResult 26
Write Deleted Data Command 26
Write Deleted DataResult 27
Invalid Command Result 27
Status Register0 28
Status Register 0 (Bits 7,6) 28
Status Register 0 (Bits 1,0) 28
Status Register1 29
Status Register2 30
Status Register3 31
Diskette Drive Connector Signal Assignments For the 40-pin
CardEdgelnterface 35
Diskette Drive Connector Signal Assignments For the 34-pin
Headerinterface 35
Diskette Drive Connector Signal Assignments For the

Enhanced 34-Pin Header Interface 36

Diskette Drive Controller — September 1991

| Description

| The diskette drive controller and interface connector reside on the
| system board. The controlier can be a Type 1 or a Type 2. The
| controller type is dependent on the system model and can be
I determined by issuing the Unlock command. The Type 1 returns a
| hex 80 in the Result byte; the Type 2 returns a hex 00.
The Type 1 controller supports:
* Two data transfer rates:

— 250,000 bits per second (bps)
— 500,000 bits per second.

¢ 125 nanoseconds of precompensation on all tracks
¢ The following IBM diskette drives:
— 3.5-inch 1.44MB
— 5.25-inch 360KB.
The Type 2 controller supports:
¢ Four data transfer rates:

— 250,000 bits per second
— 300,000 bits per second
— 500,000 bits per second
— 1,000,000 bits per second.

* Programmable precompensation
s 16 bytes of data buffering
¢ The following IBM diskette drives:

— 3.5-inch 1.44MB
— 3.5-inch 2.88MB
— 5.25-inch 360KB
— 5.25-inch 1.2MB.

Diskette Drive Controller — September 1991

1

The media formats supported by IBM drives are shown below.

Media Capacity Sectors/ No. of Data Rate
Size Unformatted Formatted Track Tracks (kbps)
3.5in. 1.0MB 720KB 9 80 250
3.5in. 2.0MB 1.44MB 18 80 500

|l 3.5in. 4.0MB 2.88MB 36 80 1000*
5.25in. 0.5MB 360KB 9 40 300* /250
5.25in. 1.6MB 1.20MB* 15 80 500
* Type 2 controller only

Figure 1. Media Format Table

Warning: The controller does not check to see that the media
supports the selected capacity. Attempting to format media to an
unsupported capacity may cause loss of data.

e 0.5MB (double sided, double density 5.25-inch) media can be
reliably formatted only to the 360KB capacity.
¢ 1.0MB media can be reliably formatted only to the 720KB
capacity.
* 1.6MB (high capacity 5.25-inch) media can be reliably formatted
only to the 1.2MB capacity.
e 2.0MB media can be reliably formatted only to the 1.44MB
capacity.
| * 4.0MB media can be reliably formatted only to the 2.88MB
| capacity.

When the Type 1 diskette drive controller is switched from one data
rate to another, the controller clock rate automatically changes to:

¢ 8 MHz for 2.0MB mode
¢ 4 MHz for 1.0MB mode.

The step rate time (SRT), head load time (HLT), and the head unload
| time (HUT) parameters must then be changed to maintain the desired
timings at the diskette interface.

For Type 2 controllers, the controller clock rate remains at 24 MHz,
but the SRT, HLT, and HUT parameters must still be updated using
the same values as the Type 1 controller.

Note: With Type 1 controllers, 32-bit operations to the video
subsystem can cause a Direct Memory Access (DMA) overrun.
If the BIOS returns an error code indicating that an overrun
has occurred, the operation should be repeated.

2 Diskette Drive Controller — September 1991

FIFO Mode

A 16-byte FIFO is provided on the Type 2 controller, which allows
direct-memory-access (DMA) data transfers to be delayed for longer
periods of time without causing DMA overrun errors. To maintain
compatibility, the FIFO defaults to a Type 1 compatibility mode after
system reset. All functions are then similar to the Type 1 controller.

The Configure command is used to enable FIFO operations. After the
FIFO operations are enabled, the controller temporarily enters a byte
mode during the command and result phases of the diskette
controller operation. While in this mode, operations to, or from, the
disk controller are FIFO compatible.

The FIFO is enabled only during the data transfer phase of operation.
All command and status information is transferred in Type 1
compatibility mode. When the Type 2 controller first enters the data
transfer phase, the FIFO is cleared of any residual data from previous
operations.

Compatibility problems may occur when the FIFO mode is used with
software that monitors the progress of a data transfer during the
execution phase. It is recommended that the FIFO mode be disabled
when software of this type is used.

| Diskette Drive Controller Registers
| The diskette drive controllier can be a Type 1 and a Type 2 controller.
| Certain functions are provided by the Type 2 controller only.

| Note: Some registers contain bits that are labeled as reserved.
| These bits must be set to the value specified when writing to
| these registers.

Diskette Drive Controller — September 1991 3

Status Register A (Hex 03F0)

This read-only register shows the status of signals on the diskette
drive interface.

Function

Interrupt Pending
-2nd Drive Installed
Step

-Track 0

Head 1 Select
-Index

-Write Protect
Direction In

C=MNDWHrOOON

| Figure 2. Status Register A (Hex 03F0)

| Status Register B (Hex 03F1)

| This read-only register shows the status of signals on the diskette
| drive interface.

| The write-data and read-data bits change state for each positive
| transition of the ‘-write data’ or ‘-read data’ signals.

| Bit Function

7,6 Reserved

5 Drive Select 0
4 Write Data

3 Read Data

2 Write Enable

1 Motor Enable 1
0 Motor Enable 0

Figure 3. Status Register B (Hex 03F1)

4 Diskette Drive Controller — September 1991

Drive Control Register (Hex 03F2)

This read and write register controls drive motors, drive selection,
and feature enable. All bits are set to 0 by a reset.

Function

O =NWHUOTO N

Motor Enable 3*
Motor Enable 2*
Motor Enable 1
Motor Enable 0
Reserved = 1
-Controller Reset
Drive Select 1*
Drive Select 0

* Type 2 Controller Only.

Figure 4. Drive Control Register (Hex 03F2)

Note: The controller reset bit must be set to 0 for a minimum of 3.5
microseconds to ensure the controller is properly reset.

Drive Status Register (Hex 03F3 Read)

This register contains information about the diskette drive type, and

start-up drive location. This register is for the Type 2 controller only.

Bit Function

7,6 Media Type 1,0
54 Drive Type 1,0
3,2 Start-Up Drive 1,0
1,0 Reserved

Figure 5. Drive Status Register (Hex 03F3 Read)

Diskette Drive Controller — September 1991

5

The following tables show the media type, drive type and start-up

drive indicated.

Bits

76 Media Type
00 Reserved
01 4MB

10 2MB

11 1MB

inputs from the drive.

Note: These bits indicate the state of the ‘media type’ signals. These signals are

Figure 6. Media Type

Bits

54 Drive Type

00 3.5-inch, 1.44MB
01 3.5-inch, 2.88MB
10 5.25 inch, 1.2MB
11 Reserved

Figure 7. Drive Type

Bits

32 Start-Up Drive
00 First Drive
01 Second Drive
10 Third Drive
11 Reserved

Figure 8. Start-Up Drive

Note: The media-type and drive-type bits are valid only when the
drive is selected. The media-type bits are valid only for

3.5-inch media.

6 Diskette Drive Controller — September 1991

Diskette Drive Controller Status Register (Hex 03F4
Read)

This read-only register facilitates the transfer of data between the
system microprocessor and the controller.

]
=
-

Function

Request for Master
Data Input/Output
Non-DMA Mode
Diskette Controller Busy
Drive 3 Busy

Drive 2 Busy

Drive 1 Busy

Drive 0 Busy

O=NWHLNNOON

Figure 9. Diskette Drive Controller Status Register (Hex 03F4)

Bit7 When this bit is 1, the Data register is ready to transfer
data with the system microprocessor.

Bit6 This bit indicates the direction of data transfer between
the diskette drive controller and the system
microprocessor. When this bit is 1, the transfer is to the
system microprocessor; when the bit is 0, the transfer is to
the controller.

Bit5 When this bit is 1, the controller is in the non-DMA mode.
Bit4 When this bit is 1, command is being processed.

Bit3 When this bit is 1, diskette drive 3 is in the seek mode.
Bit 2 When this bit is 1, diskette drive 2 is in the seek mode.
Bit1 When this bit is 1, diskette drive 1 is in the seek mode.
Bit0 When this bit is 1, diskette drive 0 is in the seek mode.

Diskette Drive Controller —September 1991 7

Precompensation Select Register (Hex 03F4 Write)

This write-only register is used to select the data rate and
precompensation value for each data rate. This register is supported
by the Type 2 controllers only.

Bit Function

7-5 Reserved = 0

4 Precomp 2

3 Precomp 1

2 Precomp 0

1 Data Rate Select 1
0 Data Rate Select 0

Figure 10. Precompensation Select Register (Hex 03F4 Write)

The following table shows the precompensation values selected.

Bits

432 Precompensation Delay
000 Default

001 41.7 ns

010 83.3 ns

011 125 ns

100 167 ns

101 208 ns

110 250 ns

111 0.0 ns

Figure 11. Precompensation Values

8 Diskette Drive Controller —September 1991

| The following table shows the transfer rate selected and the resulting
| default precompensation values.

Bits
10 Transfer Rate Default Precomp
00 500 kbps 125ns
01 300 kbps™ 125 ns
10 250 kbps 125 ns
11 1000 kbps* 417 ns
* Type 2 Controller Only

Figure 12. Default Precompensation Values

Diskette Drive Controller Command/Data Register (Hex
03F5)

This read and write register passes data, commands and parameters

to the diskette drive controller and provides diskette-drive status
information.

Reserved Register (Hex 03F6)

This register is reserved.

Data Rate Status Register (Hex 03F7 - Read)

This read-only register identifies the data rate selected on the
interface, and senses the state of the ‘diskette change’ and ‘-high
density select’ signals.

Bit Function

7 Diskette Change
6-3 Reserved

2 Data Rate Select 1
1 Data Rate Select 0
0 -High Density Select

Figure 13. Data Rate Status Register (Hex 03F7 - Read)

Diskette Drive Controller — September 1991

Data Rate Control Register (Hex 03F7 - Write)

This write-only register sets the transfer rate.

Bit Function

7-2 Reserved

1 Data Rate Select 1
0 Data Rate Select 0

Figure 14. Data Rate Control Register (Hex 03F7 - Write)

Bits7-2 Reserved as 0.
Bits 1,0 These bits select the data rate, as shown in the following

figure.

Bits

10 Data Rate

00 500,000 bits per second

01 300,000 bits per second*

10 250,000 bits per second

11 1,000,000 bits per second*
* Type 2 Controller Only

Figure 15. Data Rate Selection

Diskette Drive Controller Programming
Considerations

Each command is initiated by a multibyte transfer from the system
microprocessor; the result can be a multibyte transfer back to the
system microprocessor. Most transfers consist of three phases:

e Command Phase: The system microprocessor writes a series of
command bytes to the controller directing it to perform a specific
operation.

* Execution Phase: The controller performs the specified
operation.

* Result Phase: After the operation is complete, status information
is available to the system microprocessor through a sequence of
read commands.

Note: The Seek, Relative Seek, and Recalibrate commands have no
result phase. After issuing these commands, the Sense
Interrupt Status command must be issued for proper

10 Diskette Drive Controller — September 1991

termination and verification of the head position (Present
Cylinder Number parameter or PCN).

Controller Commands

The following are supported commands for diskette drive controller:

Configure#
Dumpreg#

Format Track

Read Data

Read Deleted Data
Read ID

Read Track
Recalibrate
Relative Seek#
Scan Equal

Scan High or Equal
Scan Low or Equal
Seek

Sense Drive Status
Sense Interrupt Status
Specify

Verify#

Version#

Write Data

Write Deleted Data.

® © & O o & o o ¢ ¢ o 0o © 0o 0o ¢ 0o o o oo

Notes:

1. Commands marked with a pound sign are not supported by the
Type 1 controller.

2. Diskette BIOS does not support all commands listed. To ensure
software compatibility across system models, the diskette
hardware should be accessed only through the diskette BIOS.

Diskette Drive Controller — September 1991 11

Symbol| Name Description

DO - Drive These bits represent the state of drive 0 through

D3 Perpendicular drive 3. When the bit is 1, the associated drive is a
perpendicular drive. GAP and WGATE must not be
set to 1 for these bits to be valid.

DIR Direction When set to 0, this bit causes the head to move

Control away from the spindle during an implied seek.
When set to 1, the head moves toward the spindle.

EC Enable Count When this bit is set to 1, the data-length byte
indicates the number of sectors/track.

EFF Enable FIFO When set to 1, this bit enables the FIFO data buffer
in the Type 2 controller.

EIS Enable Implied When set to 1, this bit causes an implied seek to

Seek be performed before executing a command that
requires the cylinder parameter in the command
phase in the Type 2 controller.

GAP GAP 2 Size This parameter is used with WGATE to set the
length of the GAP 2 written during write or format
operations. GAP should be set to 0 for normal
operation.

GPL GAP 3 Length This parameter determines the length of GAP 3 (in
bytes) during a Format operation and determines
the VCO synchronization timing during Read
operations.

HD Head Select This bit selects the head used. When set to 0,
head 0 is selected; when setto 1, head 1 is
selected.

HLT Head Load Time This parameter specifies the head-load time (see
Figure 17 on page 14).

HUT Head Unload This parameter specifies the head-unload time -

Time (see Figure 18 on page 14).

MFM FM or MFM When set to 0, this bit selects FM mode; when set
to 1, it selects MFM mode.

MT Multitrack When set to 1, this bit selects multitrack

operations. (Side 0 and Side 1 are automatically
read from, written to, or verified).

12 Diskette Drive Controller — September 1991

Symbol

Name

Description

ND

Non-DMA Mode

When set to 1, this bit causes diskette operations
to be performed in the non-DMA mode.

ow

Overwrite

When set to 1, this bit allows the bits specified by
DO0-D3 to be overwritten.

Warning: To avoid the loss of data, this bit
should not be set to 1.

PD

Polling Disable

0, it enables polling.

When set to 1, this bit disables polling; when set to

PTN

Precomp Track
Number

This parameter selects the track number where
write precompensation begins. It is
programmable from 0 to hex FF.

RCN

Relative
Cylinder Number

This parameter specifies the relative cylinder to
go to from the present cylinder, as used by the
Relative Seek command.

SK

Skip Flag

When this bit is set to 1, the sectors containing a
deleted-data address mark are automatically
skipped during a Read Data command. For a
Read Deleted Data command, only sectors with a
deleted-data address mark are accessed. When
this bit is set to 0, the sector is read or written the
same as the Read Data command.

SRT

Step Rate Time

This parameter specifies the stepping-rate time
(see Figure 19 on page 15).

THR

Threshold

This parameter is the FIFO threshold for Type 2
controllers, where 0 = 1 byte, F = 16 bytes.

us

Unit Select

This parameter indicates the drive number
selected. 00 selects drive 0, 01 selects drive 1, 10
selects drive 2 and 11 selects Drive 3.

WGATE

Write Gate

This parameter alters the timing of the ‘write
enable’ signal for the perpendicular-recording
mode. WGATE should be set 0 for normal

operation.

Figure 16 (Part 2 of 2). Command Symbols

Diskette Drive Controller — September 1991

13

| The following figure shows the head-load time selected as
| determined by the HLT parameter and the transfer rate. The transfer
| rates are shown in 1000 of bytes per second.

| Head Load Time/Transfer Rate

|| HLT Parameter 1000 kbps 500 kbps 300 kbps 250 kbps
00 128 256 426 512
01 1 2 33 4
02 2 4 6.7 8
7E 126 252 420 504
7F 127 254 423 508

Note: Delay time in milliseconds

| Figure 17. HLT Parameter Definitions

The following figure shows the head-unload-time selected as
determined by the HUT parameter and the transfer rate.

Head Unload Time/Transfer Rate

HUT Parameter 1000 kbps 500 kbps 300 kbps 250 kbps
0 128 256 426 512
1 8 16 26.7 32
2 16 32 53.4 64
3 24 48 80.1 96
4 32 64 107 128
5 40 80 134 160
6 48 96 160 192
7 56 112 187 224
8 64 128 214 256
9 72 144 240 288
A 80 160 267 320
B 88 176 294 352
C 96 192 320 384
D 104 208 347 416
E 112 224 373 448
F 120 240 400 480

Note: Delay time in milliseconds

Figure 18. HUT Parameter Definitions

14 Diskette Drive Controller — September 1991

The following figure shows the stepping rate selected as determined
by the SRT parameter and the transfer rate.

Steeping Rate/Transfer Rate

SRT Parameter 1000 kbps 500 kbps 300 kbps 250 kbps

0 8.0 16.0 26.7 32.0
1 75 15.0 25.0 30.0
2 7.0 14.0 23.3 28.0
3 6.5 13.0 21.7 26.0
4 6.0 12.0 20.0 24.0
5 5.5 1.0 18.3 22.0
6 5.0 10.0 16.7 20.0
7 45 9.0 15.0 18.0
8 4.0 8.0 13.3 16.0
9 3.5 7.0 1.7 14.0
A 3.0 6.0 10.0 12.0
B 25 5.0 8.33 10.0
(o] 2.0 4.0 6.67 8.0
D 1.5 3.0 5.00 6.0
E 1.0 2.0 3.33 4.0
F 0.5 1.0 1.67 2.0

Note: Delay time in milliseconds

Figure 19. SRT Parameter Definitions

The following commands are issued to the controlier by the system.

Configure Command

Command Phase

7
Byte 0 0
Byte 1 0
Byte 2 0

6 5 4 3 2 1

0 0 1 0 0 1
0 0 0 0 0 0
EIS EFF PD Threshold (THR)

Byte 3 Precompensation Track Number (PTN)

0

1
0

Figure 20. Configure Command

Result Phase: This command has no result phase.

Diskette Drive Controlier — September 1991 15

Dumpreg Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 1 1 0

Figure 21. Dumpreg Command

Result Phase

7 6 5 4 3 2 1 0

Byte 0 Present Track Number —Drive 0
Byte 1 Present Track Number —Drive 1
Byte 2 Present Track Number —Drive 2
Byte 3 Present Track Number — Drive 3
Byte 4 Stepping Rate Time Head Unload Time

Byte 5 Head Load Time ND
Byte 6 Number of Sectors per Track/End of Track
Byte 7 X 0 Reserved X GAP WGATE

Byte 8 0 EIS EFF PD Threshold
Byte 9 Precompensation Track Number

Figure 22. Dumpreg Result
Format Track Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 0 MFM 0 0 1 1 0 1
Byte 1 0 0 0 0 0 HD US US
Byte 2 Number of Data Bytes in Sector

Byte 3 Sectors per Track

Byte 4 Gap Length

Byte 5 Fill Byte

Figure 23. Format Track Command

Result Phase

16 Diskette Drive Controller — September 1991

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6

Status Register 0
Status Register 1
Status Register 2
Reserved
Reserved
Reserved
Reserved

Figure 24. Format Track Result

| Lock Command

| Command Phase

| 7 6 5 4 3 2 1 0
|| Byte0O Lock 0 0 1 o 1 0 0
| Figure 25. Lock Command

| Result Phase

|| Byte0 0O 0 0 Lock 0 0 (] 0
| Figure 26. Lock Result

| Perpendicular Mode Command

| Command Phase

| 7 6 5 4 3 2 1 o0
|] Bteo o o 1t o0 0 0 A1 0
|| Bte1 OW 0 D3 D2 D1 DO GAP WGATE

| Figure 27. Perpendicular Mode Command

Diskette Drive Controller — September 1991

17

Read Data Command

Command Phase
7 6 5 4 3 2 1 0
Byte 0 MT MFM SK 0 0 1 1 0
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Data Length
Figure 28. Read Data Command
Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector
Figure 29. Read Data Result
Read Deleted Data Command
Command Phase
7 6 5 4 3 2 1 0
Byte 0 MT MFM SK O 1 1 0 0
Byte 1 0 0 0 0 0 HD US Us
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Data Length

Figure 30. Read Deleted Data Command

18 Diskette Drive Controller — September 1991

Result Phase

Byte 0 Status Register 0

Byte 1 Status Register 1

Byte 2 Status Register 2

Byte 3 Track Number

Byte 4 Head Address

Byte 5 Sector Number

Byte 6 Number of Data Bytes in Sector

Figure 31. Read Deleted Data Result
Read ID Command

Command Phase

7 6 5 4 3 2 1

Byte 0 0 MFM 0 0 1 0 1
Byte 1 0 0 0 0 0 HD US

Figure 32. Read ID Command

Result Phase

Byte 0 Status Register 0

Byte 1 Status Register 1

Byte 2 Status Register 2

Byte 3 Track Number

Byte 4 Head Address

Byte 5 Sector Number

Byte 6 Number of Data Bytes in Sector

Figure 33. Read ID Result

Diskette Drive Controller —September 1991

19

Read Track Command

Command Phase
7 6 5 4 3 2 1 0
Byte 0 0 MFM 0 0 0 0 1 0
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Data Length
Figure 34. Read Track Command
Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector
Figure 35. Read Track Result
Recalibrate Command
Command Phase
7 6 5 4 3 2 1 0
Byte 0 0 0 0 0 0 1 1 1
Byte 1 0 0 0 0 0 0 us us

Figure 36. Recalibrate Command

Result Phase: This command has no result phase.

20 Diskette Drive Controller — September 1991

Relative Seek Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 1 (
Byte 1 0 0 0 0 0
Byte 2 Relative Cylinder Number

DIR 0 0 1 1 1 1
HD US US

Figure 37. Relative Seek Command
Result Phase: This command has no result phase.
Scan Equal Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0
Byte 1 0 0 0 0 0

MT MFM SK 1 0 0 0 1
HD US US

Byte2 Track Number

Byte 3 Head Address

Byte 4 Sector Number

Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track

Byte 7 Gap Length

Byte 8 Scan Test

Figure 38. Scan Equal Command

Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 39. Scan Equal Result

Diskette Drive Controller — September 1991

21

Scan High or Equal Command

Command Phase
7 6 5 4 3 2 1 0
Byte 0 MT MFM SK 1 1 1 0 1
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Scan Test
Figure 40. Scan High or Equal Command
Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector
Figure 41. Scan High or Equal Result
Scan Low or Equal Command
Command Phase
7 6 5 4 3 2 1 0
Byte 0 MT MFM SK 1 1 0 0 1
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Scan Test

Figure 42. Scan Low or Equal Command

22 Diskette Drive Controller — September 1991

Result Phase

Byte 0 Status Register 0

Byte 1 Status Register 1

Byte 2 Status Register 2

Byte 3 Track Number

Byte 4 Head Address

Byte 5 Sector Number

Byte 6 Number of Data Bytes in Sector

Figure 43. Scan Low or Equal Result
Seek Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 1 1 1
Byte 1 0 0 0 0 0 HD US USs
Byte 2 New Track Number after Seek

Figure 44. Seek Command
Result Phase: This command has no result phase.
Sense Drive Status Command

Command Phase

7 6 5 4 3 2 1 0

Byte0O 0 0 0
Byte1 0 0 0

0 1 0 0
HD US US

oo
o

Figure 45. Sense Drive Status Command

Result Phase

Byte 0 Status Register 3

Figure 46. Sense Drive Status Result

Diskette Drive Controlier — September 1991

23

Sense Interrupt Status Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 1 0 0 0

Figure 47. Sense Interrupt Status Command

Result Phase

Byte 0
Byte 1

Status Register 0
Present Track Number

Figure 48. Sense Interrupt Status Result

Specify Command
Command Phase
7 6 5 4 3 2 1 0
Byte 0 0 0 0 0 0 0 1 1
Byte 1 Stepping Rate Time Head Unload Time
Byte 2 Head Load Time ND

Figure 49. Specify Command

Result Phase: This command has no result phase.

24 Diskette Drive Controller — September 1991

Verify Command

Command Phase

7 6 5 4 3 2 1 0
Byte 0 MT MFM SK 1 0 1 1 0
Byte 1 EC © 0 0 0 HD US US
Byte 2 Cylinder Address
Byte 3 Head Address
Byte 4 Sector Address
Byte 5 Sector size
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Byte Transfer Control
Figure 50. Verify Command
Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Cylinder Address
Byte 4 Head Address
Byte 5 Sector Address
Byte 6 Sector size
Figure 51. Verify Result
Version Command
Command Phase
7 6 5 4 3 2 1 0
Byte 0 0 0 0 1 0 0 0 0
Figure 52. Version Command
Result Phase
Byte 0 1 0 0 X 0 0 0 0

Note— xcanbea1orag.

Figure 53. Version Result

Diskette Drive Controller — September 1991

25

Write Data Command

Command Phase

7 6 5 4 3 2 1 0
Byte 0 MT MFM 0 0 0 1 0 1
Byte 1 0 0 0 0 0 HD US Us
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Data Length
Figure 54. Write Data Command
Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector
Figure 55. Write Data Result
Write Deleted Data Command
Command Phase
7 6 5 4 3 2 1 0
Byte 0 MT MFM 0 0 1 0 0 1
Byte 1 0 0 0 0 0 HD US USs
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Data Length

Figure 56. Write Deleted Data Command

26 Diskette Drive Controller —September 1991

Result Phase
Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector
Figure 57. Write Deleted Data Result
Invalid Command Status
Result Phase: The following status byte is returned to the system
microprocessor when an invalid command has been received.

Byte 0

Status Register 0 = hex 80

Figure 58. Invalid Command Result

Note:

Bits 6 and 7 in Status Register 0 are used to indicate command
status. When an invalid command is processed, this
information is returned to the system microprocessor in the
Invalid Command Status byte.

Diskette Drive Controller —September 1991 27

Command Status Registers

This section provides definitions for status registers 0 through 3.

Status Register 0

Function

= NWwHpON

o

,0

Interrupt Code
Seek End
Equipment Check
Reserved

Head Address
Drive Select

Figure 59. Status Register 0

Bits 7,6

These bits indicate the command interrupt status.

Bits7 6 Function

Normal Termination of Command
Abnormal Termination of Command
Invalid Command Issued

Reserved

Figure 60. Status Register 0 (Bits 7, 6)

Bit5

Bit4

Bit3
Bit 2

Bit1,0

This bit is set to 1 when the diskette drive completes the
Seek or Recalibrate command, or a read or write
operation with an implied Seek command.

This bit is set to 1 if the ‘-track 0’ signal fails to occur after
the Recalibrate command is issued or Relative Seek
command to step outward beyond track 0.

Reserved. This bit is always set to 0.

This bit indicates the state of the ‘-head select’ signal after
the command was performed. When set to 1, head 1 was
selected; when set to 0, head 0 was selected.

These bits indicate the drive that was selected upon
command completion.

28 Diskette Drive Controller — September 1991

Bits1 0 Function

00
01
10
11

Drive 0
Drive 1
Drive 2
Drive 3

Figure 61. Status Register 0 (Bits 1, 0)

Status Register 1

-
-

Function

O=NWhbonoN

End-of-Track

Reserved

Cyclic Redundancy Check (CRC) Error
Overrun/Underrun Error

Reserved

No Data

Not Writable

Missing Address Mark

Figure 62. Status Register 1

Bit7

Bit6
Bit 5

Bit4

Bit3
Bit 2

Bit 1

This bit is set to 1 when the controller tries to gain access
to a sector beyond the final sector of a track.

Reserved. This bit is always set to 0.

This bit is set to 1 when a CRC error is detected in the ID
or data field.

This bit is set to 1 if the system does not service the
diskette drive controller within an adequate period of time
during data transfers.

Reserved. This bit is always set to 0.
This bit is set to 1 when:

* The controller cannot find the sector specified in the
ID register during the execution of a Read Data, Read
Deleted Data, or Read ID or Read Track command.

¢ The controller cannot read the ID field without an error
during the execution of a Read ID command

* The starting sector cannot be found during the
execution of a Read Track command.

This bit is set to 1 when the ‘-write-protect’ signal is active
during a Write Data, Write Deleted Data, or Format Track
command.

Diskette Drive Controller —September 1991 29

Bit0

This bit is set to 1 if the controller cannot detect an
address mark. When this occurs, bit 0 of Status Register 2
indicates whether the missing address mark is an
ID-address mark or a data-address mark.

Status Register 2

]
-

Function

O=2NWHAROON

Reserved

Control Mark

CRC Error in Data Field

Wrong Track

Scan Equal

Scan Not Satisfied

Bad Track

Missing Address Mark in Data Field

Figure 63. Status Register 2

Bit 7
Bit6

Bit5

Bit 4

Bit3

Bit 2

Bit 1

Bit0

Reserved. This bit is always set to 0.

This bit is set to 1 when the controller encounters a sector
that has a deleted data-address mark during a Read Data
or a Read Deleted Data encounters a data address mark.

This bit is set to 1 if the controller detects an error in the
data.

This bit is set to 1 when the track number on the media is
different from the track number issued by the command.
When this occurs, bit 2 of Status Register 1 is also set to 1.

This bit is set to 1 during the Scan command when the
conditions for “Equal” are satisfied.

This bit is set to 1 during the Scan Command when the
scan conditions are not satisfied.

This bit is set to 1 when the track number on the media is
hex FF and the track number value stored in the ID
register is not hex FF. When this occurs, bit 2 of Status
Register 1 is also set to 1.

This bit is set to 1 when the controller cannot find a
data-address mark. This bit is set to 0 when an
ID-address mark cannot be found. Bit 0 in Status Register
0 is also set if either address mark cannot be found.

30 Diskette Drive Controller — September 1991

Status Register 3

Bit

Function

= NWHrOON

0

Reserved
Write Protect
Reserved
Track 0
Reserved
Head Address
Drive Select

Figure 64. Status Register 3

Bit7
Bit6

Bit5
Bit4

Bit3
Bit 2

Bits 1,0

Reserved. This bit is always set to 0.

This bit indicates the status of the ‘-write-protect’ signal
from the diskette drive. When this bit is set to 1, the
‘-write-protect’ signal is active.

Reserved. This bit is always set to 1.

This bit indicates the status of the ‘-track 0’ signal from the
diskette drive. When this bit is set to 1, the ‘-track 0’
signal is active.

Reserved. This bit is always set to 1.

This bit indicates the status of the ‘-head 1 select’ signal
from the diskette drive. When this bit is set to 1, the
‘-head 1 select’ signal is active.

These bits indicate the current selected drive.

Diskette Drive Controller — September 1991 31

Interface Signal Descriptions

The following section describes the interface signals to the diskette
drive.

Output Signals

All output signals to the diskette drive operate between 5 V dc and
ground, with the following definitions:

¢ The inactive level is 2.0 V dc minimum.
¢ The active level is 0.8 V dc maximum.

-HIGH DENSITY SELECT: When this signal is active, the 2MB mode
is selected. Diskettes are formatted with 18 sectors per track and a
capacity of 1.44MB. When this signal is inactive, the TMB mode is
selected. Diskettes are formatted with 9 sectors per track and a
capacity of 720KB.

DATA RATE SELECT 0 - 1: These signals are driven by the system to
| select the data rate of devices on the diskette drive interface. These
| signals are controlled by the data-rate-select bits (see Figure 12 on
| page 9).

-DRIVE SELECT: The drive-select signal enables or disables all
drive interface signals except -MOTOR ENABLE. When the drive select
signal is active, the drive is enabled. When it is inactive, all
controlled inputs are ignored and all drive outputs are disabled.

-MOTOR ENABLE: When this signal is made active, the spindle
starts to turn. There must be a 500-millisecond minimum delay after
-MOTOR ENABLE becomes active before a read, write, or seek
operation is initiated (750 milliseconds for 5.25-inch drive types).
When inactive, this signal causes the spindle motor to decelerate and
stop.

-DIRECTION IN: When this signal is active, -STEP moves the heads
toward the drive spindle. When this signal is inactive, -STEP moves
the heads away from the drive spindle. This signal is stable for at
least 1 microsecond before and after the trailing edge of the -STEP
pulse.

Note: After a direction change, a 15-millisecond minimum delay is
required before the next ‘-step’ pulse is issued.

32 Diskette Drive Controller — September 1991

-STEP: A 1-microsecond active pulse of this signal causes the
read/write heads to move one track. The state of -DIRECTION at the
trailing edge of -STEP determines the direction of motion.

Note: A 15-millisecond seek settle time must be provided after the
last step pulse occurs before a read, write, or seek operation
initiated.

-WRITE DATA: A 125-nanosecond minimum pulse of this signal
causes a flux reversal to occur on the media if -WRITE ENABLE is
active.

-WRITE ENABLE: When active, this signal enables the write current
circuits and -WRITE DATA controls the writing of information.
Motor-start and head-settle times must be observed before this signal
becomes active.

-HEAD 1 SELECT: When active, this signal selects the upper head;
when inactive, the lower head is selected.

Diskette Drive Controller — September 1991 33

Input Signals

All input signals from the drive can sink 4.0 milliamperes at the active
level.

¢ The inactive level is 3.7 V dc minimum.
¢ The active level is 0.4 V dc maximum.

DRIVE TYPE ID 0 - 1: These signals provide encoded drive-type
information to the system when the drive is selected.

MEDIA TYPE ID 0 - 1: These signals provide encoded media-type
information to the system when the drive is selected.

-INDEX: When the drive senses the index, it generates an active
pulse of at least 1 millisecond on this line.

-TRACK 0: This signal is active when the read/write head is on track
0. Track 0 is determined by a sensor, not a track counter.

The drive can seek to track 0, under control of the system even if no
diskette is installed. This allows system software to determine how
many drives there are attached to the system. Software selects each
drive and attempts to recalibrate that drive to track 0. The track 0
indication determines whether or not each drive is installed in the
system.

-WRITE PROTECT: When this signal is active the dri.ve cannot write
data to the diskette.

-READ DATA: Each flux reversal detected on the media provides a
125-nanosecond minimum active pulse on this line.

-DISKETTE CHANGE: This signal is active at power-on and latched
inactive when a diskette is present, the drive is selected and a step
pulse occurs. This signal goes active when the diskette is removed
from the drive. The presence of a diskette is determined by a sensor.

34 Diskette Drive Controlier — September 1991

Connector

Signals and voltages are transferred between the system board and
the diskette drives by a cable or printed-circuit board. The

printed-circuit board provides a 2- by 20-pin card edge connector for

each diskette drive, with a locator key between pins 34 and 36. The
cable interface provides a 2 x 17 pin header connector to each
diskette drive, with a locator key below pin 17.

The following figures show the signals and DC voltages for each
diskette drive connector type:

Pin Signal Pin Signal
1 Ground 2 -High Density Select
3 Reserved 4 Reserved
5 Ground 6 Reserved
7 Ground 8 -Index
9 Ground 10 Reserved
11 Ground 12 -Drive Select
13 Ground 14 Reserved
15 Ground 16 -Motor Enable
17 Ground 18 -Direction In
19 Ground 20 -Step
21 Ground 22 -Write Data
23 Ground 24 -Write Enable
25 Ground 26 -Track 0
27 Ground 28 -Write Protect
29 Ground 30 -Read Data
31 Ground 32 -Head 1 Select
33 Ground 34 -Diskette Change
35 Ground 36 Ground
37 Ground 38 +5Vdc
39 Ground 40 +12Vdc

Figure 65. Diskette Drive Connector Signal Assignments For the 40-pin
Card Edge Interface

Diskette Drive Controlier —September 1991

35

Pin Signal Pin Signal
1 Signal Return 2 -High Density Select
3 +5Vdc 4 Drive Type ID 1
5 Signal Return 6 +12Vdc
7 Signal Return 8 -Index
9 Signal Return 10 Reserved
1 Signal Return 12 -Drive Select
13 Signal Return 14 Reserved
15 Signal Return 16 -Motor Enable
17 Signal Return 18 -Direction In
19 Signal Return 20 -Step
21 Signal Return 22 -Write Data
23 Signal Return 24 -Write Enable
25 Signal Return 26 -Track 0
27 Signal Return 28 -Write Protect
29 Signal Return 30 -Read Data
31 Signal Return 32 -Head 1 Select
33 Signal Return 34 -Diskette Change
Figure 66. Diskette Drive Connector Signal Assignments For the 34-pin
Header Interface
Pin Signal Pin Signal
1 Signal Return 2 Data Rate Select 1
3 +5Vdc 4 Drive Type ID 1
5 Signal Return 6 +12Vdc
7 Signal Return 8 -Index
9 Drive Type ID 0 10 Reserved
1" Signal Return 12 -Drive Select
13 Signal Return 14 Reserved
15 Signal Return 16 -Motor Enable
17 Media Type ID 1 18 -Direction In
19 Signal Return 20 -Step
21 Signal Return 22 -Write Data
23 Signal Return 24 -Write Enable
25 Signal Return 26 -Track 0
27 Media Type ID 0 28 -Write Protect
29 Signal Return 30 -Read Data
31 Signal Return 32 -Head 1 Select
33 Data Rate Select 0 34 -Diskette Change

| Figure 67. Diskette Drive Connector Signal Assignments For the Enhanced

34-Pin Header Interface

36 Diskette Drive Controller — September 1991

Index

C

clock rate 2
command phase 10
command status registers 28
command summary 10, 11
command symbols 11
commands 10
format track 16
invalid command status 27
lock 17
perpendicular mode 17
read data 18
read deleted data 18
readid 19
read track 20
recalibrate 20
scan equal 21
scan high or equal 22
scan low or equal 22
sense drive status 23
sense interrupt status 24
specify 24
write data 26
write deleted data 26
configure command 15
connector 35
connector voltages, diskette
drive 35
controller registers 3

D

data rate control register 10
data register 9

data width conversions 2
digital input register 9

digital output 5

digital output register 5
diskette command symbols 11
diskette drive connector 35
diskette drive controller 10

© Copyright IBM Corp. 1991

diskette drive controller status
register 7

drive status register 5

dumpreg command 16

E

execution phase 10

F

FIFO compatibility 3
format track command 16

input signals 34
interface signal descriptions 32
invalid command status 27

L

lock command 17

multibyte transfer 10

(o)

output signals 32
output, digital 5

P

perpendicular mode command
precompensation select register

17
8

programming considerations 10

R

read data command 18
read deleted data command 18

37

read id command 19 w
read track command 20
recalibrate command 20
registers
data 9
data rate control 10
digital input 9
digital output 5
diskette drive controlier
status 7 ’
status register A 4
status register B 4
status register 0 28
status register 1 29
status register2 30
status register 3 31
registers, command status 28
registers, controller 3
relative seek command 21
reserved register 9
result phase 10

S

scan equal command 21
scan high or equal command 22
scan low or equal command 22
seek 23
seek command 23
sense drive status command 23
sense interrupt status
command 24
specify command 24
status register 7
status register A 4
status register B 4
status register 0 28
status register 1 29
status register2 30
status register 3 31
switching density 2

v

verify command 25

write data command 25, 26
write deleted data command 26

38

Keyboard and Auxiliary Device Controller

Description e 1
Keyboard Password 2
| Scan Code Translation 4
Controller Status Register 6
Input and Output Buffers 7
Inputand QutputPorts 8
ControllerCommands 9
Keyboard and Auxiliary Device Programming Considerations .. 14
Auxiliary Device and System Timings 15
System ReceivingData 15
System SendingData 16
Signals 18
Connector 18

© Copyright IBM Corp. 1991 i

Notes:

Figures

1. Keyboard Controller Translation 4
2. Controller Status Register, Read Port Hex 0064 6
3. Input Port Definitions 8
4. Output Port Definitions 9
5. Controller CommandByte 10
6. Auxiliary Device Interface Test 12
7. Bit Definitions of Auxiliary-Device Data Stream 15
8. ReceivingDataTimings 16
9. SendingDataTimings 17
10. Keyboard and Auxiliary Device Signals 18
11. Keyboard and Auxiliary Device Connector Information ... 18

© Copyright IBM Corp. 1991 ifi

Notes:

iv Keyboard/Auxiliary Device Controller — September 1991

Description

Input to the keyboard and auxiliary device controllers is through two
connectors at the rear of the system unit. One connector is dedicated
to the keyboard, the other is available for an auxiliary device. An
auxiliary device can be any type of serial input device compatible
with the controller interface. The device types include:

* Mouse
¢ Touchpad
* Trackball.

Both Type 1 and Type 2 controllers receive the serial data, check the
parity, and present the data to the system as a byte of data at data
port hex 0060. The Type 2 controller provides only 7 of the 32 internal
addresses available on the Type 1, and two commands are not
available on the Type 2. Also, the Type 1 controller can translate
keyboard scan codes, and the Type 2 cannot. (To determine which
controller is present, see the description for bit 6 of the Controller
Command byte on page 10.)

| Note: Because the Type 1 controller supports translation and the
| Type 2 does not, the keyboard must provide both scan-set 1
| and scan-set 2.

The controller interrupts the system when data is available or waits
for polling from the system microprocessor.

Address hex 0064 is the command/status port. When the system
reads port hex 0064, it receives status information from the controller.
When the system writes to the port, the controller interprets the byte
as a command.

Secondary circuit protection is provided on the system board for the
+5 V dc line to the keyboard and auxiliary device.

Keyboard/Auxiliary Device Controller — September 1991 1

Keyboard Password

Legal password characters are restricted to the 128 ASCII character
set. The password can be up to seven bytes long but must be
installed using the keyboard scan codes less than hex 80 (the
controller does not compare keyboard scan codes greater than hex
7F). Scan code set 1 is recommended for all password operations.

While the password is enabled, the controller compares the incoming
keyboard scan code against the installed password, and it discards
all data from the keyboard and auxiliary device that does not match
the password. After a match occurs, the controller is restored to
normal operation and data is again passed to the system
microprocessor.

The controller provides three commands for keyboard password
operation; it does not provide a command to verify the installed
password.

A4 Test Password Installed
A5 L.oad Password
A6 Enable Password.

The Test Password Installed command determines if a keyboard
password is currently installed. The controlling program can use this
command to determine if a keyboard password is loaded before
enabling the password.

The Load Password command allows the system microprocessor to
set a keyboard password in the controller at any time. The existing
password is lost, and the new password becomes active. The
keyboard password can be changed at any time and must be installed
in scan-code format.

2 Keyboard/Auxiliary Device Controller — September 1991

The Enable Password command places the controller in the secure
mode. While in the secure mode, the controller intercepts the
keyboard data stream and continuously compares it to the installed
password pattern. The controller does not pass any information to
the system microprocessor or accept any commands while the
keyboard password is enabled. (To enable the ‘address 20’ signal
while the password is enabled, use System Gontrol Port A at address
hex 0092.)

The controller provides four internal RAM locations to support the
keyboard password: addresses hex 13, 14, 16, and 17. See
“Controller Commands” on page 9 for the commands on reading and
writing to these locations.

Hex Address Description

13 Security on: If this byte is nonzero when the password is
enabled, the controller loads this byte into the output
buffer and generates a system interrupt.

14 Security off: If this byte is nonzero when the password is
matched, the controller loads this byte into the output
buffer and generates a system interrupt.

16 and 17 Make 1 and 2: While the password is enabled, the
controller first compares the incoming scan code against
these two bytes. If the incoming scan code matches one
of these two bytes, the scan code is discarded before it is
compared to the password. This allows the controller to
ignore certain keystrokes such as that for the right and left
shift keys.

Keyboard/Auxiliary Device Controller —September 1991 3

| Scan Code Translation

| When the Type 1 controller is in the translate mode, it converts

| incoming codes and presents the new code at its output port. When
| the controller receives a hex FO0, it translates the next code received
| and ANDs the translated value with hex 80. For example,

| Hex 47 is translated to hex 60
| Hex FO 47 is translated hex EO (60 AND 80)

| Hex 77 is translated to hex 45
| Hex FO 77 is translated to hex C5 (45 AND 80).

| The following figure shows how the input codes are translated.

4 Keyboard/Auxiliary Device Controller — September 1991

| Input Output Input Output Input Output

00 FF 30 69* 60 55"
01 43 31 31 61 56"
02 41 32 30 62 7
03 3F 33 23 63 78"
04 3D 34 22 64 79*
05 3B 35 15 65 TA*
06 3C 36 07 66 OE
07 58* 37 5E* 67 B*
08 64* 38 B6A* 68 7C*
09 44 39 72" 69 4F
0A 42 3A 32 6A 7D*
0B 40 3B 24 6B 4B
0oC 3E 3C 16 6C 47
oD OF 3D 08 6D 7E*
OE 29 3E 09 6E 7F*
OF 59* 3F 5F* 6F 6F*
10 65* 40 6B* 70 52
1 38 41 33 71 53
12 2A 42 25 72 50
13 70* 43 17 73 4C
14 1D 44 18 74 4D
15 10 45 0B 75 48
16 02 46 0A 76 01
17 5A* 47 60* 77 45
18 66* 48 6C* 78 -
19 71* 49 34 79 4E
1A 2C 4A 35 7A 51
iB 1F 48 26 B 4A
1C 1E 4C 27 7C 37
iD 1 4D 19 7D 49
1E 03 4E (4[] 7E 46
1F 5B* 4aF 61* 7F 54
20 67* 50 6D* 80 -
21 2E 51 73* 81 -
22 2D 52 28 82 -
23 20 53 74* 83 41
24 12 54 1A 84 54
25 05 55 oD
26 04 56 62* FO **
27 5C* 57 6E*
28 68* 58 3A
29 39 59 36
2A 2F 5A iC
2B 21 5B iB
2C 14 5C 75*
2D 13 5D 2B
2E 06 5E 63"
2F 5D* 5F 76*

* These scan codes are reserved.

** FO is reserved for two-byte translations.

| Figure 1. Keyboard Controller Translation

Keyboard/Auxiliary Device Controller —September 1991 §

Controller Status Register

The following table shows the Controller Status register.

@
=

Function

O=NWbHhOoON

Parity Error

General Time-Out

Auxiliary Device Output Buffer Full
Inhibit Switch

Command/Data

System Flag

Input Buffer Full

Output Buffer Full

Figure 2. Controller Status Register, Read Port Hex 0064

Bit7

Note: On the Type 1 controller, commands C1 and C2
place data in bits 7 through 4 of the Controller
Status register. See commands C1 and C2 on page
12 for more information.

When set to 0, this bit indicates that the Iast byte of data
received from the keyboard had odd parity. When a parity
error occurs, this bit is set to 1 and hex FF is placed in the
output buffer (the keyboard and auxiliary device use odd
parity).

When set to 1, this bit indicates that a transmission was
started by the keyboard but did not finish within the
receive time-out delay, or that a transmission was started
by the controller but the byte transmitted was not clocked
out within the specified time limit.

When a receive time-out occurs, the controller places a
hex FF in the output buffer. When a transmit time-out
occurs, the controller places a hex FE in the output buffer.

The Type 1 controller also indicates a transmit time-out if
a transmission was started and:

¢ The byte was clocked out, but a response was not
received within the time limit (only this bit is set to 1).

¢ The byte was clocked out, but a response indicates a
parity error (this bit and bit 7 are both set to 1).

6 Keyboard/Auxiliary Device Controlier — September 1991

Bit5 This bit works in conjunction with bit 0. When this bit and
bit 0 are set to 1, auxiliary device data is in the output
buffer. When this bit is set to 0 and bit 0 is set to 1,
keyboard or command controller response data is in the
output buffer.

Bit4 When set to 0, this bit indicates the password state is
active and the keyboard is inhibited. When set to 1, this
bit indicates the password state is inactive and the
keyboard is not inhibited. See “Keyboard Password” on
page 2 for more information.

Bit3 The keyboard controller input buffer can be addressed as
either address hex 0060 or 0064. Address hex 0060 is
defined as the data port, and address hex 0064 is defined
as the command/status port. Writing to address hex 0064
sets this bit to 1. The controller uses this bit to determine
if the byte in its input buffer should be interpreted as a
command byte or a data byte.

Bit 2 This bit is set to 0 or 1 by writing to the system flag bit (bit
2) in the Controller Command byte. This bit is setto 0
after a power-on reset.

Bit 1 When set to 1, this bit indicates that data has been written
into the buffer, but the controller has not read the data.
When the controller reads the input buffer, this bit returns
to 0, indicating that the input buffer is empty.

On the Type 2 controller, this bit is also set to 1 while
transmitting to the keyboard or auxiliary device. After the
last bit is sent, this bit is reset to 0.

Bit 0 When set to 1, this bit indicates the controller has placed
data into its output buffer but the system microprocessor
has not yet read the data. When the system
microprocessor reads the output buffer (address hex
0060), this bit returns to 0.

Input and Output Buffers

The output buffer is an 8-bit, read-only register at address hex 0060.
When the output buffer is read, the controller sends information to the
system microprocessor. The information can be keyboard scan
codes, auxiliary device data, or data bytes from a controller
command.

Note: Do not read the output port (address hex 0060) unless the
output-buffer-full bit in the Controller Status register is 1.

Keyboard/Auxiliary Device Controller — September 1991 7

The input buffer is an 8-bit, write-only register at address hex 0060 or
address hex 0064. When the input buffer is written to, the
input-buffer-full bit (bit 1) in the Controller Status Byte is set to 1.
Data written to the input buffer through address hex 0064 is
interpreted as a controller command. Data written to address hex
0060 is sent to the keyboard, unless the controller expects a data byte
following a controller command. Bit 3 of the Controller Status
register indicates whether the contents of the input buffer is a
command or a data byte.

Note: Do not write to the input port (address hex 0060) unless the
input-buffer-full bit in the Controller Status register is 0.

Input and Output Ports

The input port consists of two signals driven to the controller by the
keyboard and auxiliary device. The output port consists of eight
signals driven by the controller to the keyboard, auxiliary device, or
system interface. The following tables show the input port and the
output port bytes.

Bit Function

7-2 Reserved

1 Auxiliary Data In
0 Keyboard Data In

Figure 3. Input Port Definitions

Bit7 -2 Reserved.

Bit1 This bit reflects the state of the ‘data’ line driven by the
auxiliary device. For more information on the auxiliary
device ‘data’ line, see “Auxiliary Device and System
Timings” on page 15.

Bit 0 This bit reflects the state of the ‘data’ line driven by the
keyboard.

8 Keyboard/Auxiliary Device Controller — September 1991

Function

O=NWHRAO®N

Keyboard Data Out
Keyboard Clock Out
IRQ12

IRQO1

Aucxiliary Clock Out
Auxiliary Data Out
Gate Address Line 20
Reset Microprocessor

Figure 4. Output Port Definitions

Bit7

Bit 6

Bit 5

Bit 4

Bit3

Bit2

Bit1

Bito

This bit reflects the state of the ‘data’ line driven by the
controller to the keyboard.

This bit reflects the state of the ‘clock’ line driven by the
controller to the keyboard.

When set to 1, this bit indicates an interrupt has been
generated by data from the auxiliary device in the output
buffer. When the system reads the data from address hex
0060, this bit will be setto 0.

When set to 1, this bit indicates an interrupt has been
generated by data from the keyboard or a command in the
output buffer. When the system reads the data from
address hex 0060, this bit will be set to 0.

This bit reflects the state of the ‘clock’ line driven by the
controller to the auxiliary device.

This bit reflects the state of the ‘data’ line driven by the
controller to the auxiliary device.

When this bit and bit 1 in port hex 0092 are set to 0, the
system address line A20 is disabled and set to 0. This bit
is set to 1 at power-on. (See “System Control Port A” in
the system-specific technical reference.)

When set to 0, this bit resets the system microprocessor
and holds it reset until the bit is set to 1.

Controller Commands

A command is a data byte written to the controller through address
hex 0064. The commands are listed in order of their hex values;
commands not listed are reserved.

Keyboard/Auxiliary Device Controller —September 1991 9

20-3F

Read Controller RAM: This command causes the
controller to return the data contained in the internal
address specified by bits 5 through 0 of this command.
Internal address hex 00 is assigned as the Controller
Command byte. The Type 2 controller supports only the
internal addresses hex 00, 13, 14, 16, 17, 1D, and 1F.

Command hex 20 requests a read operation of the
Controller Command byte. The controller returns the data
to port hex 0060.

@
-

Function

C=NWAONNON

Reserved

Keyboard Translate
Disable Auxiliary Device
Disable Keyboard
Reserved

System Flag

Enable Auxiliary Interrupt
Enable Keyboard Interrupt

Figure 5. Controller Command Byte

Bit7
Bit 6

This bit is reserved.

When this bit is set to 1, the Type 1 controller translates
the incoming keyboard scan codes to scan set 1. When
this bit is set to 0, the controller passes the incoming scan
codes without translation. Following power-on or a
keyboard reset, the keyboard transmits using scan code
set 2.

On the Type 2 controller, this bit cannot be set to 1;
therefore, it can be used to determine the type of
controller. Writing this bit as a 1 and readingitas a0
indicates a Type 2 controller.

For keyboard operations that are compatible with IBM
Personal Computers, the Type 1 controller is placed in the
translate mode. To perform the same operations with the
Type 2 controller, the keyboard is set up to transmit in
scan code set 1 by using the Select Alternate Scan Codes
command (see the Keyboard section for more
information).

Note: For Type 1 controllers, this bit must be set to 0
while requesting the keyboard for its scan set. This
prevents the controller from translating the
keyboard response.

10 Keyboard/Auxiliary Device Controller —September 1991

Bit5

Bit 4

Bit3
Bit 2

Bit 1

Bit 0

60 - 7F

A4

- A5

A6

Setting this bit to 1 disables the auxiliary device interface
by driving the ‘clock’ line low. Data is not received while
the interface is disabled.

Setting this bit to 1 disables the keyboard interface by
driving the ‘clock’ line low. Data is not received while the
interface is disabled.

This bit is reserved.

The value written to this bit is placed in the system flag bit
of the Controller Status register.

Setting this bit to 1 causes the controller to generate an
interrupt (IRQ 12) when it places auxiliary device data into
its output buffer.

Setting this bit to 1 causes the controller to generate an
interrupt (IRQ 1) when it places keyboard or command
controller response data into its output buffer.

Write to Controller RAM: Bits 5 through 0 of the command
specify the address. Internal address hex 00 is assigned
as the Controller Command byte. The Type 2 controller
supports only the internal addresses hex 00, 13, 14, 16, 17,
1D, and 1F.

Warning: On the Type 2 controller, writing to unsupported
internal addresses can cause the data to be transmitted to
the keyboard.

Command hex 0060 writes the Controller Command byte.
The next byte of data written to address hex 0060 is placed
in the Controller Command byte.

Test Password Installed: This command checks for a
password currently installed in the controller. The test
result is placed in the output buffer (address hex 0060 and
IRQ 01). Hex FA means the password is installed; hex F1
means it is not installed.

Load Password: This command initiates the Password
Load procedure. Following this command, the controller
takes input from the data port until a null (0) is detected.
The null terminates password entry. (See “Keyboard
Password” on page 2.)

Enable Password: This command enables the controller
password feature. This command is valid only when a
password pattern is currently loaded in the controller.
(See “Keyboard Password” on page 2.)

Keyboard/Auxiliary Device Controller — September 1991 11

A7

Disable Auxiliary Device Interface: This command sets bit
5 of the Controller Command byte to 1. This disables the
auxiliary device interface by driving the ‘clock’ line low.
Data is not received while the interface is disabled.

Enable Auxiliary Device Interface: This command sets bit
5 of the Controller Command byte to 0, releasing the
auxiliary device interface.

Auxiliary Device Interface Test: This command causes the
Type 1 controller to test the auxiliary device ‘clock’ and
‘data’ lines. The following are the test results returned in
the output buffer. (This command is not supported in the
Type 2 controller.)

Test

Result Description

00 No error detected

01 The ‘clock’ line is stuck low.
02 The ‘clock’ line is stuck high.
03 The ‘data’ line is stuck low.
04 The ‘data’ line is stuck high.

AD

AE

Co

| C1

C2

Figure 6. Auxiliary Device Interface Test

Disable Keyboard Interface: This command sets bit 4 of
the Controller Command byte to 1. This disables the
keyboard interface by driving the ‘clock’ line low. Data is
not received while the interface is disabled.

Enable Keyboard Interface: This command clears bit 4 of
the Controller Command byte to 0, releasing the keyboard
interface.

Read Input Port: This command causes the controller to
read its input port and place the data in its output buffer.

Poll Input Port Low: This command is not supported by
either the Type 1 or Type 2 controllers. See command C3.

Poll Input Port High: This command causes the Type 1

controller to read its input port bits 7 through 4 and place
them in bits 7 through 4 of the Controller Status register.
This command is not supported by the Type 2 controller.

Poll Input Port Low: This command causes the Type 1

controller to read its input port bits 3 through 0 and place
them in bits 7 through 4 of the Controller Status register.
This command is not supported by the Type 2 controller.

12 Keyboard/Auxiliary Device Controller — September 1991

Do

D1

D2

D3

D4

FO - FF

Read Output Port: This command causes the controller to
read its output port and place the data in its output buffer.
This command should be used only if the output buffer is
empty.

Write Output Port: The next byte of data written to address
hex 0060 is placed in the controlier output port. For this
command, the Type 2 controller supports writing to only
bit 1 (gate A20).

Note: For Type 1 controllers, bit 0 of the output port is
connected to the ‘reset’ signal of the system
microprocessor. Pulsing this bit resets the system.

Write Keyboard Output Buffer: The next byte written to
address hex 0060 input buffer is written to address hex
0060 output buffer as if initiated by the keyboard. An
interrupt occurs if the interrupt is enabled.

Write Auxiliary Device Output Buffer: The next byte
written to address hex 0060 input buffer is written to
address hex 0060 output buffer as if initiated by an
auxiliary device. An interrupt occurs if the interrupt is
enabled.

Write to Auxiliary Device: The next byte written to
address hex 0060 input buffer is transmitted to the
auxiliary device.

Read Test Inputs: This command causes the Type 2
controller to read its test inputs and place the resuits in
the output buffer. Test 0 (TO) is connected to the keyboard
‘clock’ line, and test 1 (T1) is connected to the auxiliary
device ‘clock’ line. Data bit 0 represents T0, and data bit 1
represents T1.

Note: For the Type 1 controller, these two bits are always
returned as 0.

Pulse Output Port: This command pulses selected bits in
the controller output port for approximately 6
microseconds. Bits 3 through 0 select the respective bits
in the controller output port. For example, when bit 0 of
this command is set to 0, bit 0 of the output port is pulsed
and the system microprocessor is reset.

Note: The only command supported for the Type 2
controller is hex FE, pulse bit 0.

Keyboard/Auxiliary Device Controller — September 1991 13

Keyboard and Auxiliary Device Programming
Considerations

The following are some programming considerations for the keyboard
and auxiliary device controller:

¢ The Controller Status register (hex 0064) can be read at any time.

¢ The output port (address hex 0060) should not be read unless the
output-buffer-full bit in the Controller Status register is 1.

¢ The auxiliary-device-output-buffer-full bit in the Controlier Status
register indicates that the data in address hex 0060 came from
the auxiliary device.

* Address hex 0060 and hex 0064 should be written to only when
the input-buffer-full bit and output-buffer-full bit in the Controller
Status register are 0.

¢ To ensure that the buffer data is valid, disable the keyboard and
auxiliary devices before initiating a command that causes the
controller to generate output at port 60 (such as commands D1
and D3).

* When polling the Type 1 controller for the output-buffer-full
condition, wait 7 microseconds from the buffer-full indication in
the Controller Status register before reading the output buffer.

14 Keyboard/Auxiliary Device Controller — September 1991

Auxiliary Device and System Timings

Data transmissions to and from the auxiliary device connector consist
of an 11-bit data stream sent serially over the ‘data’ line. The
following table shows the function of each bit.

Bit Function

=y
-

Stop bit (always 1)

Parity Bit (odd parity)

Data Bit 7 (most-significant)
Data Bit 6

Data Bit 5

Data Bit 4

Data Bit 3

Data Bit 2

Data Bit 1

Data Bit 0 (least-significant)
Start Bit (always 0)

-
= NWHLONNON®O®OO

Figure 7. Bit Definitions of Auxiliary-Device Data Stream

The parity bit is either 1 or 0, and the 8 data bits, plus the parity bit,
always have an odd number of 1’s.

System Receiving Data

The following describes the typical sequence of events when the
system is receiving data from the auxiliary device.

1.

The auxiliary device checks the ‘clock’ line. If the line is inactive,
output from the device is not allowed.

. The auxiliary device checks the ‘data’ line. If the line is inactive,

the controller receives data from the system.

The auxiliary device checks the ‘clock’ line during the
transmission at intervals not exceeding 100 microseconds. If the
device finds the system holding the ‘clock’ line inactive, the
transmission is terminated. The system can terminate
transmission anytime during the first 10 clock cycles.

A final check for terminated transmission is performed at least 5
microseconds after the 10th clock.

The system can hold the ‘clock’ signal inactive to inhibit the next
transmission.

The system can set the ‘data’ line inactive if it has a byte to
transmit to the device. The ‘data’ line is set inactive when the
start bit (always 0) is placed on the ‘data’ line.

Keyboard/Auxiliary Device Controller — September 1991 15

7. The system raises the ‘clock’ line to allow the next transmission.

| The following are the timings for data received from the auxiliary
| device.

(1 @ (3) (3) (3) (4)
1st 2nd 10th 11th -
CLK CLK | CLK CLK oK/
< - T5

7
™ | T4 | I+(5) ™
T T2le—

2 (
DATA\ StartBit ~ BitO0 X J’Z XParity Bit,” Stop Bit

(6)
Timing Parameter Min/Max
T Time from DATA transition to falling edge of CLK 5/25 us
T2 Time from rising edge of CLK to DATA transition 5/T4-5us
T3 Duration of CLK inactive 30/50 us
T4 Duration of CLK active 30/50 us
T5 Time to auxiliary device inhibit after clock 11 to >0/50 us
ensure the auxiliary device does not start another
transmission

Figure 8. Receiving Data Timings

System Sending Data

The following describes the typical sequence of events when the
system is sending data to the auxiliary device.

1. The system checks for an auxiliary device transmission in
process. If a transmission is in process and beyond the 10th
clock, the system must receive the data.

2. The auxiliary device checks the ‘clock’ line. If the line is inactive,
an I/O operation is not allowed.

3. The auxiliary device checks the ‘data’ line. If the line is inactive,
the system has data to transmit. The ‘data’ line is set inactive
when the start bit (always 0) is placed on the ‘data’ line.

4. The auxiliary device sets the ‘clock’ line inactive. The system
then places the first bit on the ‘data’ line. Each time the auxiliary
device sets the ‘clock’ line inactive, the system places the next bit
on the ‘data’ line until all bits are transmitted.

5. The auxiliary device samples the ‘data’ line for each bit while the
‘clock’ line is active. Data must be stable within 1 microsecond
after the rising edge of the ‘clock’ line.

16 Keyboard/Auxiliary Device Controller — September 1991

6. The auxiliary device checks for a positive-level stop bit after the
10th clock. If the ‘data’ line is inactive, the auxiliary device
continues to clock until the ‘data’ line becomes active. Then it
clocks the line-control bit and, at the next opportunity, sends a
Resend command to the system.

7. The auxiliary device pulls the ‘data’ line inactive, producing the
line-control bit.

8. The system can pull the ‘clock’ line inactive, inhibiting the
auxiliary device.

| The following are the timings for data sent to the auxiliary device.
(1) (2) 4

Vo 1st 2nd oth 10th 11th
CLK Inhibit CLK L CLK cL cL \

8.
T7 T8 ®)
le— 9
y ~7 5 —EL —
DATA \ Start Bit ~* Bit0)‘* ()<\Parity Bit//Stop Bit™ /
(3) (5) (5 ™
Timing Parameter Min/Max
T7 Duration of CLK inactive 30/50 us
T8 Duration of CLK active 30/50 us
T9 Time from inactive to active CLK transition, used to 5/25 us
time when the auxiliary device samples DATA

Figure 9. Sending Data Timings

Keyboard/Auxiliary Device Controller —September 1991 17

Signals

The keyboard and auxiliary device signals are driven by
open-collector drivers pulled to 5 V dc through a pull-up resistor. The
following lists the characteristics of the signals.

Sink Current 20 mA Maximum
High-Level Output Voltage 5.0 V dc minus pullup Minimum
Low-Level Output Voltage 0.5V dc Maximum
High-Level Input Volitage 2.0V dc Minimum
Low-Level Input Voltage 0.8Vvdc Maximum

Figure 10. Keyboard and Auxiliary Device Signals

Connector

The keyboard and auxiliary device connectors use 6-pin miniature
DIN connectors. The signals and voltages are the same for both
connectors and are assigned as shown in the following table.

Pin /o Signal Name
1 110 Data

2 NA Reserved

3 NA Ground

4 NA +5Vdc

5 110 Clock

6 NA Reserved

Figure 11. Keyboard and Auxiliary Device Connector Information

18 Keyboard/Auxiliary Device Controller — September 1991

Serial Port Controller

Description 1
Communications Application 3
Programmable Baud-Rate Generator 4
Modem Status Interrupts 4
FIFO Modes of Operation 5
InterruptMode 5
PolledMode 7
DMA Modes of Operation 7
ReceiveMode 8
TransmitMode 8
Received Data Status Register 8
TransmitCommands 9
Modem Pacing 10
Character Orientated Pacing 10
Receive Character Count Register 10
BytePacing 11
Enhanced Interrupts oo 11
Serial Port Controlier Programming Considerations 1
Registers 12
Compatible Registers 12
Arbitration Register (Hex462x) 14
Transmitter Holding Register (Basec+0) 14
Receiver Buffer Register (Basec+0) 15
Divisor Latch Register (Basec+1) 15
Divisor Latch Register (Basec+0) 16
Interrupt Enable Register (Basec+1) 19
FIFO Control Register (Basec+2) 20
Interrupt Identification Register (Basec+2) 21
Line Control Register (Basec+3) 25
Modem Control Register (Basec+4) 26
Line Status Register (Basec+5) 28
Modem Status Register (Basec+6) 30
Scratch Register (Basec+7) 31
Enhanced Registers 31
Enhanced Command Register (Basee+0) 32
Reserved Register (Basee+1) 33
Enhanced Interrupt ID Register (Basee+2) 33
Enhanced Function Register 1 (Basee+3) 35
Enhanced Function Register 2 (Basee+4) 36
Enhanced Function Register 3 (Basee+5) 38
Character Compare Data Register (Basee+6) 39
Receive Character Count Register (Basee+7) 40

© Copyright IBM Corp. 1991 i

Signal Descriptions 41

Modem-Control InputSignals 41
-CleartoSend (-CTS) 41
-Data SetReady (-DSR) 41
-Ring Indicator (-RI) 23|
-Data Carrier Detect (-DCD) 41

Modem-Control Output Signals 41
-Data Terminal Ready (-DTR) 41
-RequesttoSend (-RTS) 42

Voltage Interchange Information 42
Extended Performance Requirements 42
Connectors 44
Index 47

ii Serial Port Controller — September 1991

Figures

©CONOOR~WON=

Serial Port Controller Block Diagram 2
Serial Port Register - Base Addresses 3
Serial PortDataFormat 4
Received Data Status Register 8
Serial Port Register - Base Addresses 12
Serial Port Compatible Register Address Offsets 13
Serial Port Enhanced Register Address Offsets 13
Arbitration Register (Hex462x) 14
Transmitter Holding Register (Basec+0) 14
Receiver Buffer Register (Basec+0) 15
Divisor Latch Register, Low Byte (Basec+1) 15
Divisor Laich Register, Low Byte (Basec+0) 16
Divisor Latch Register, High Byte (Basec+1) 16
Baud Rates at 1.8432 MHz (Low Frequency Mode) 17
Baud Rates at 11.0592 MHz (High Frequency Mode) 17
interrupt Enable Register (Basec+1) 19
FIFO Control Register (Basec+2) 20
TriggerLevel 20
Interrupt Identification Register (Basec+2) 21
Type controllers for Bits7and6 22
Interrupt Control Functions 23
Line Control Register (Basec+3) 25
Stop Bitsand WordLength 26
Modem Control Register (Basec+4) 26
Line Status Register (Basec+5) 28
Modem Status Register (Basec+6) 30
Enhanced Command Register 32
CommandDecode 32
Enhanced Interrupt ID Register 33
Enhanced Interrupt Control Functions 34
Enhanced Function Register 1 (Basee+3) 35
Enhanced Function Register 2 (Basee+4) 36
Enhanced Function Register 3 (Basee+3) 38
AccesstoCCRsandCCFRs 39
Character Compare Register (Basee+6) 40
RS-232 Voltage Levels 42

Serial Port Connector Signal and Pin Assignments (25-Pin) 44
Serial Port Connector Signal and Pin Assignments (8-Pin) . 44

© Copyright IBM Corp. 1991 il

Notes:

iv Serial Port Controller — September 1991

Description

The serial port controller is programmable and supports
asynchronous communications. The controller automatically adds
and removes start, stop, and parity bits. A programmable baud-rate
generator allows operation from 50 baud to 345.6KB. The controller
supports 5-, 6-, 7-, and 8-bit characters with 1, 1.5, or 2 stop bits. A
prioritized interrupt system controls transmit, receive, error, line
status, and data-set interrupts.

The serial port controller provides the following functions:

¢ Full double buffering in the character mode, eliminating the need
for precise synchronization
False-start bit detection
Line-break generation and detection
Modem control functions:
— Clear to send (CTS)
— Request to send (RTS)
— Data set ready (DSR)
— Data terminal ready (DTR)
— Ring indicator (RI)
— Data carrier detect (DCD).

| Four types of serial port controllers have been used on the system
boards.

¢ To programs, the Type 1 controller appears to be identical to the
serial port on the IBM Personal Computer AT IBM Personal
Computer Serial/Parallel Adapter.
* The Type 2 controller incorporates all functions of the Type 1 and
also provides support of the first-in-first-out (FIFO) mode.
* The Type 3 controller incorporates all functions of the Type 2
controller and provides the Direct Memory Access (DMA) mode.
| ® The Type 4 controller incorporates all the functions of the Type 3
| controller and provides additional 1/0 addresses.

Note: Some systems using the Type 2 controller do not support the
FIFO mode. For information about individual systems refer to
the system-specific technical reference manuals.

Support for the Type 1 controller is restricted to the functions that are
identical to the NS16450. Using the Type 1 controller in the FIFO
mode can result in nondetectable data errors. See “Registers” on
page 12 for detailed FIFO information.

Serial Port Controlier — September 1991 1

The following figure is a block diagram of the serial port controller.

Address Bus
B Data Bus
Interrupt
- Asynchronous
Communications
Controller
Oscillator
EIA >
Receivers
[
EIA
Connector | Drivers

Figure 1. Serial Port Controller Block Diagram

2 Serial Port Controller — September 1991

Communications Application

| For Type 1 and Type 2 controllers, the serial port can be addressed

| as either of two serial ports (Serial 1 or Serial 2). The Type 3

| controller can be addressed as any one of eight serial ports (Serial 1
| through Serial 8). The Type 4 can be addressed as any one of 16

| serial ports (Serial 1 through Serial 16). The following table

| illustrates the base addresses and their corresponding serial ports:

|| Serial Port Compatible (Hex) Enhanced (Hex) Types Supported

Serial 1 03F8 83F8 1,2,34
Serial 2 02F8 82F8 12,34
Serial 3 3220 B220 3.4
Serial 4 3228 B228 34
Serial 5 4220 C220 3,4
Serial 6 4228 C228 3,4
Serial 7 5220 D220 3,4
Serial 8 5228 D228 3.4
Serial 9 3A20 BA20 4
Serial 10 3A28 BA28 4
Serial 11 3A30 BA30 4
Serial 12 3A38 BA38 4
Serial 13 3A80 BA80 4
Serial 14 3A88 BA88 4
Serial 15 3A90 BA90 4
Serial 16 3A98 BA98 4

| Figure 2. Serial Port Register - Base Addresses

The Type 1 and Type 2 controllers support only the compatible
registers. Type 3 and Type 4 controllers support both the compatible
and the enhanced registers. In this section, serial port register
addresses contain a base ¢ or a base e to signify the compatible- or
enhanced-register base address, followed by an offset to be added to
the base address to get the effective address of the register. The
register assignments are controlled by Programmable Option Select
(POS) and are made during system board setup.

Two interrupt lines are provided to the system. For Type 1 and Type
2 controllers, interrupt level 4 (IRQ4) is for Serial 1 and interrupt level
3 (IRQJ) is for Serial 2. For Type 3 and Type 4, the interrupt level
assigned to the serial port is independent of the addresses. Either of
the interrupt levels (IRQ3 and IRQ4) can be assigned to any of the
eight serial ports. For the serial port controller to send interrupts to
the interrupt controller, bit 3 of the Modem Control register must be
setto 1.

Serial Port Controller — September 1991 3

The data format is shown in the following figure.

lMark- Start Parity| Stop
ing | Bit | DO | D1 D2 D3 | D4 D5 D6 D7 | Bit Bit

Figure 3. Serial Port Data Format

Data bit 0 (D0)is the first bit to be sent or received. The controller
automatically inserts the start bit, the correct parity bit (if
programmed to do so), and the stop bits (1, 1.5, or 2 depending on the
command in the Line Control register).

Programmable Baud-Rate Generator

The controller has a programmable baud-rate generator that can
divide the clock input (11.0592 MHz) by any divisor from 1 to 65,535.

In compatibility mode, a 1.8432 MHz clock is used. The output
frequency of the baud-rate generator is the baud rate multiplied by
16. Two 8-bit latches store the divisor in a 16-bit binary format. The
divisor latches are loaded during setup to ensure desired operation of
the baud-rate generator. When either of the divisor latches is loaded,
a 16-bit baud counter is immediately loaded. This prevents long
counts on the first load.

Modem Status Interrupts

The modem status interrupts occur as soon as the corresponding
input signals change state, whether the Received Data Status register
is enabled or not. The current modem status is immediately
available in the Modem Status register. However, the change in the
modem status is reflected in the received-data-status character that
follows the actual change.

Whenever the overrun error occurs, the interrupt is generated and the
corresponding bit in the Line Status register is set. In character
mode, when an overrun error occurs, the character in the Receiver
Buffer register is overwritten. In the FIFO or DMA mode, when an
overrun error occurs, the data in the FIFO mode is preserved, and the
character in the Receive Shift register is overwritten. When the
Received Data Status register is enabled, the overrun error is
indicated in the received-status-byte of the first character received
after the last error. The indicator stays on for only one character

4 Serial Port Controller — September 1991

regardless of the number of characters lost, unless another error
occurs.

The interrupts for parity error and frame error occur when the error
character is the next one to be read from the FIFO mode in DMA,
whether the Received Data Status register is enabled or not.
Although these interrupts are reset by reading the Line Status
register, the bits can cause an interrupt, but they do not identify which
character had the error in DMA mode. The Received Data Status
register must be enabled to determine which character had the error.

FIFO Modes of Operation

The serial port contains two register stacks of 16 bytes each. These
register stacks are called FIFOs. One is the Receive FIFO and the
other is the Transmit FIFO.

In the FIFO mode, the controller can operate in the interrupt mode or
the polled mode. To enable the FIFO mode, set bit 0 in the FIFO
Control register to 1.

Interrupt Mode
When the receiver interrupts are enabled in the Interrupt Enable
register, they occur as follows:

* A received-data-available interrupt is issued to the system when
the FIFO register has reached the programmed trigger level.

¢ The Interrupt Identification register’s received-data-available
condition is set when the trigger level is reached and, like the
interrupt, is cleared when the register drops below the trigger
level.

* The receiver-line-status interrupt has a higher priority than the
received-data-available interrupt.

e Bit 0in the Line Status register is set to 1 to indicate that a
character is transferred from the Shift register to the FIFO
register. It is set to 0 when the Receiver FIFO register is empty.

When the Receiver FIFO register and receiver interrupts are enabled,
the following occurs:
* A FIFO time-out interrupt occurs if the following conditions exist:

— Atleast 1 character is in the Receiver FIFO register.

Serial Port Controller — September 1991 5

— The last character was received more than four
continuous-character times ago (if 2 stop bits are
programmed, the second one is included in this time delay).

— The most recent system microprocessor read off the Receiver
FIFO register was longer than four continuous-character
times ago.

This causes a maximum character-received to interrupt-issued
delay of 160 milliseconds at 300 baud, with a 12-bit character.

* Character times are calculated by using the ‘receiver clock’ input
for a clock signal (this makes the delay proportional to the baud
rate).

* When a time-out interrupt has occurred, it is cleared, and the
timer is reset when the system microprocessor reads one
character from the Receiver FIFO register.

* When a time-out interrupt has not occurred, the time-out timer is
reset after a new character is received, or after the system
microprocessor reads the Receiver FIFO register.

When the Transmitter FIFO register and transmitter interrupts are
enabled (FIFO Control register bit 0 and Interrupt Enable register bit 1
are set to 1), the following occurs:

* The transmitter-holding-register-empty interrupt (02) occurs when
the Transmitter FIFO register is empty. It is cleared when the
Transmitter Holding register is written to (1 to 16 characters can
be written to the Transmitter FIFO register while this interrupt is
being serviced), or the Interrupt Identification register is read.

¢ The transmitter-FIFO-register-empty indications are delayed one
character time minus the last stop-bit time whenever both of the
following occur:

— Bit 5 (transmitter-holding-register-empty) of the Line Status
register is set to 1.

— There have not been at least two bytes in the Transmitter
FIFO register at the same time since the last time bit 5 of the
Line Status register was set to 1.

The first transmitter interrupt after changing bit 0 in the FIFO
Control register is immediate, if enabled.

Character time-out and Receiver FIFO register trigger-level interrupts
have the same priority as the current received-data-available
interrupt. The transmitter-FIFO-register-empty interrupt has the same
priority as the current transmitter-holding-register-empty interrupt.

6 Serial Port Controller — September 1991

Polled Mode

To put the controller in the FIFO polled mode, disable the interrupts
through the Interrupt Enable register and enable the FIFO mode. The
Receiver and Transmitter FIFO registers are controlled separately.
Either or both registers can be in the polled mode of operation.

In the FIFO-polled mode of operation, the system reads the status of
the Receiver and Transmitter FIFO register through the Line Status
register.

¢ The data-ready bit indicates whether or not the Receiver FIFO
register contains data.

¢ The error bits indicate the type of error. Character error status is
handled the same way as when in the interrupt mode. The
Interrupt Identification register is not affected because bit 2 of the
interrupt Enable register is set to 0.

¢ Line Status register bit 5 indicates when the Transmitter FIFO
register is empty.

¢ Line Status register bit 6 indicates that both the Transmitter FIFO
register and Transmitter Shift register are empty.

¢ Line Status register bit 7 indicates any errors in the Receiver
FIFO register.

There is no trigger level reached or time-out condition indicated in
the FIFO polled mode; however, the Receiver and Transmitter FIFO
registers are still fully capable of holding characters.

DMA Modes of Operation

In addition to the character mode and the FIFO mode of the Type 2
controller, the Type 3 and Type 4 controllers support the use of DMA
for receiving and transmitting. These controllers also provide new
functions and new interrupts, many of which are available in the FIFO
mode.

| The presence of the Type 3 or Type 4 controller can be detected by

| enabling the DMA transmit mode (bit 6 in Enhanced Function register
1), reading bits 6 and 7 of the Interrupt ID register, and then disabling
the DMA transmit mode. Ilf bit6isa1andbit7isa0, a Type 3 or
Type 4 controller is installed. If the FIFO mode is enabled, but not the
DMA transmit mode, then bits 6 and 7 in the Interrupt ID register read
as 1. If the character mode is enabled, then bits 6 and 7 are 0.

Serial Port Controller — September 1991 7

The DMA mode uses separate DMA channels for transmitting and
receiving. In addition, the transmit and receive modes may be set
independently. (Operating the receiver in DMA mode and the
transmitter in FIFO mode will conserve DMA channels). This allows a
high performance receiving function and requires only one interrupt
per 16 characters transmitted.

Receive Mode

| While in receive mode, the controller signals a request to transfer
data when the Receive FIFO register has reached the receiver trigger
level or when a timeout occurs. The data is then transferred from the
controller until the FIFO register is empty or the DMA Terminal Count
(TC) is reached. A timeout occurs if there is at least one character in
the FIFO register and a character has not been read in the last four
character times. An interrupt on the transmit terminal count and the
receive terminal count occur independently.

Transmit Mode

While in the transmit mode, data is transferred until the FIFO register
is full or the end of the data is reached.

Two separate terminal count interrupts are available: one for transmit
and the other for receive.

Received Data Status Register

When received, a status byte can be placed in the FIFO register with
each data byte. This option is available in the DMA receive mode
and in the FIFO mode. The status byte is defined as the Received
Data Status register and is stored after the corresponding data byte.
The bit definitions of Received Data Status register are as follows:

Bit Description

Data Carrier Detect
Clear to Send

Data Set Ready
Break

Framing

Parity Error
Overrun Error
Error/Break

=N

Figure 4. Received Data Status Register

8 Serial Port Controller — September 1991

Bit7 This bit indicates the state of the ‘-data carrier detect’ signal

(-DCD).

Bit 6 This bit indicates the state of the ‘-clear to send’ signal
(-CTS).

Bit5 This bit indicates the state of the ‘~-data send ready’ signal
(-DSR).

Bit4 This bit determines Break (Bl)

Bit3 This bit determines Framing (FE)

Bit 2 This bit determines Parity Error (PE)

Bit 1 This bit determines Overrun Error (OE)

Bit0 This bit determines the Error/Break. Bit 0 is set and reset.

Bit 0 is set to 1 when an error or break occurs and remains set for
subsequent characters until it is reset to 0 by a software command
(write hex 03 to the Enhanced Command register). This allows
scanning of the received data (in memory or as it exits from the FIFO
mode) to find the character that was received with an error. While
the error/break bit indicates that an error has occurred, it is not
possible to distinguish multiple errors from single errors without
checking the status of each character that has this bit set.

Bit 0 is set to 1 and reset to 0 before the Received Data status
register is placed in the FIFO mode. This means that up to eight
characters have bit 0 set after the Reset Error/Break Indicator
command is given and there are no additional errors.

When the Received Data Status register is enabled the Receive FIFO
register can hold eight data bytes and eight status bytes.

Transmit Commands

New transmit commands provide better software control of the
transmitter and allow the insertion of special control characters such
as XON and XOFF into the the transmitted data stream. The new
transmit commands are available in both the DMA transmit mode and
in the FIFO mode. The new transmit commands are:

¢ Start Sending - starts or continues transmit

e Stop Sending - stops transmit.

To insert a character in the transmitted data stream, stop the
transmitter by issuing the Stop Sending command, write a character

Serial Port Controller — September 1991 9

to the Transmitter Holding register, and then start the transmitter by
issuing the Start Sending command.

Modem Pacing

Modem pacing is handled by several new functions without software
involvement, which are available in the DMA mode and the FIFO
mode. These new functions also prevent the async port from
receiving invalid data.

The transmitter and receiver are controlled by the following signals:

* The ‘-clear-to-send’ signal

— When this signal is equal to 0, the transmitter is turned off.
¢ The ‘-data-carrier-detect’ signal

— When this signal is equal to 0, the transmitter is turned off.
* The ‘-data-set-ready’ signal

— When this signal is equal to 0, the transmitter and the

receiver are turned off.

Character Orientated Pacing

Three software-programmable registers are provided to handle
character oriented pacing. The contents of these registers are
compared to each received character. If there is a match, a
preprogrammed action takes place. The possible actions on a match
are interrupt, delete character, stop transmitter, and start transmitter.
If an error or break occurs in a received character, it is not compared.

Receive Character Count Register

This register enables the user to keep track of the number of
characters sent to the central processing unit or the DMA. The
Receive Character Count Interrupt is asserted when the counter is
decremented to 0, provided that bit 0 of the Enhanced Function
register 1 is set.

10 Serial Port Controller —September 1991

Byte Pacing

While in the DMA mode, the Byte Pacing function is useful when the
controller is communicating with a slow processor. This function
allows the controller to transmit every byte at 16 times the Receive
Character Count value or 256 times the RCCR value. The result of

| this product is called RCLK time. (See “Receive Character Count

| Register (Base e +7)” on page 40 for more information.)

Enhanced Interrupts

Several new interrupts are available to support the DMA mode, the
Receive Character Count register, and the Character Compare
registers. The new interrupts are:

¢ Interrupt on Transmitter FIFO and transmitter-shift-register-empty
¢ Interrupt on Terminal Count in the DMA transmit mode

¢ Interrupt on Terminal Count in the DMA receive mode

¢ Interrupt on Receiver Character Count equals 0

* Interrupt on Character Compare Register Match.

Serial Port Controller Programming
Considerations

| The serial port uses either of the four serial communications
controllers. The following should be considered when programming
the serial controller:

e The Type 1 serial controller does not support the FIFO mode.

¢ Some systems using the Type 2 controller do not support the
FIFO mode. For more information, refer to the system-specific
technical reference manuals.

¢ The system configuration utility is used to configure serial port on
the system board. The Type 1 and Type 2 controller can be
configured as either Serial 1 or Serial 2, the Type 3 can be
configured as Serial 1 through 8, and the Type 4 can be
| configured as Serial 1 through Serial 16.

¢ Before changing the Line Control register, make sure the
Transmitter Holding register is empty.

Serial Port Controller — September 1991 11

Registers

The controller has several accessible registers. These control the
operations of the controller and transmit and receive data. The
system programmer can gain access to or control any of the
controller registers through the system microprocessor.

Compatible Registers

| The each of four types of serial port controller has certain registers
| that are common to them all. These registers will be referred to as
| Compatible registers. The Type 3 and Type 4 controllers have

| additional registers that Type 1 and Type 2 controllers do not have.
| These registers are referred to as the Enhanced registers.

| In addition to these serial port registers, the Type 4 controller has an
| additional register that is used to select the arbitration level. The
| address of this register depends on the address range selected.

Serial Port Compatible (Hex) Enhanced (Hex) Arbitration
Serial 1 03F8-03FF 83F8-83FF 4620
Serial 2 02F8-02FF 82F8-82FF 4621
Serial 3 3220-3227 B220-B227 4622
Serial 4 3228-322F B228-B22F 4623
Serial 5 4220-4227 C220-C227 4624
Serial 6 4228-422F C228-C22F 4625
Serial 7 5220-5227 D220-D227 4626
Serial 8 5228-522F D228-D22F 4627
| Serial 9 3A20-3A27 BA20-BA27 4628
| | Serial 10 3A28-3A2F BA28-BA2F 4629
I Serial 11 3A30-3A37 BA30-BA37 462A
Serial 12 3A38-3A3F BA38-BA3F 462B
Serial 13 3A80-3A87 BA80-BA87 462C
Serial 14 3A88-3A8F BA88-BASF 462D
|| serial 15 3A90-3A97 BAS0-BA97 462E
| Serial 16 3A98-3A9F BA98-BASF 462F

Figure 5. Serial Port Register - Base Addresses

The bit definitions of the Interrupt Enable register, Interrupt
Identification register, and Line Status register have been modified
from the Type 1 controller registers. A FIFO Control register has
been added to support the FIFO mode.

Note: Using the Type 1 controller in the FIFO mode can result in
nondetectable data errors.

12 Serial Port Controller — September 1991

Specific registers are selected according to the figure below and the
figure on the following page.

Register

Address

Offsets R/W
+0* w
+0* R
+0* R/W
+ 1" R/W
+1* R/W
+ 2 R

+ 2 w
+3 R/W
+ 4 R/W
+5 R

+ 6 R/W
+7 R/W

Transmitter Holding Register
Receiver Buffer Register
Divisor Latch, Low Byte
Divisor Latch, High Byte
Interrupt Enable Register
Interrupt Identification Register
FIFO Control Register

Line Control Register
Modem Control Register
Line Status Register

Modem Status Register
Scratch Register

Note: *The DLAB state is controlled by bit 7 of the Line Control register.

Figure 6. Serial Port Compatible Register Address Offsets

Port EFR3

Address Bits

Offset 210 R/W Register

0 X X X w Enhanced Command

1 X X X R Reserved

2 X X X R Enhanced Interrupt Identification
3 X X X R/W Enhanced Function 1

4 X X X R/W Enhanced Function 2

5 X X X R/W Enhanced Function 3

5" 000 R/W Char Compare Function 0
5* 001 R/W Char Compare 0

5* 010 R/W Char Compare Function 1
5" 011 R/W Char Compare 1

5* 100 R/W Char Compare Function 2
5* 101 R/W Char Compare 2

6™ X X X R/W Char Compare Data

7 X X X R/W Receive Character Count

*The Char Compare Function Register (CCFR) and the Char

Compare Register (CCR) are selected by writing the address to the Enhanced
Function Register 3 and the data is read or written by reading or writing

to the Char Compare Data Register (CCDR).

Figure 7. Serial Port Enhanced Register Address Offsets

Serial Port Controller — September 1991

13

| Arbitration Register (Hex 462x)

| This 8-bit read/write register selects the arbitration level used for the
| transmit and receive operations for the Type 4 controller. This

| register is available on the Type 4 controller only; its address

| corresponds to the address range assigned for the enhanced

| registers. The address is hex 4620 for Serial 1 and hex 462F for

| Serial 16.

[Bits Description

| 7—4 Transmit Arbitration Level
| 3-0 Receive Arbitration Level
|

l

Figure 8. Arbitration Register (Hex 462x)

Transmitter Holding Register (Base ¢ +0)

The Transmitter Holding register contains the character to be sent
when the divisor latch access bit 1 (DLAB) is 0. Bit 0 is the
least-significant bit and the first bit sent serially, as shown below.

@
-

Description

Data Bit 7
Data Bit 6
Data Bit 5
Data Bit 4
Data Bit 3
Data Bit 2
Data Bit 1
Data Bit 0

O=NWrPOTON

Figure 9. Transmitter Holding Register (Base ¢+ 0)

14 Serial Port Controller — September 1991

Receiver Buffer Register (Base ¢ +0)

The Receiver Buffer register contains the received character and can
be accesses when the divisor-latch-access bit (DLAB) equals 0. Bit0
is the least-significant bit and the first bit received serially, as shown
in the following figure.

Description

Data Bit 7
Data Bit 6
Data Bit 5
Data Bit 4
Data Bit 3
Data Bit 2
Data Bit 1
Data Bit 0

O=NWHrOODON

Figure 10. Receiver Buffer Register (Base c+0)

Divisor Latch Register (Base c + 1)

The Divisor Latch register is used to program the baud-rate
generator. The value in this register forms the divisor of the clock
input (1.8432 MHz or 11,0592MHz), which establishes the desired
baud-rate (DLAB=1).

@
=

Description

Bit7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0

O =NWHOON

Figure 11. Divisor Latch Register, Low Byte (Base c+1)
Note: If bit 6 of the Enhanced Function register 2 is set to 0, then the

input clock of the baud-rate generator is 1.8432 MHz. Otherwise, the
input clock is 11.0592 MHz.

Serial Port Controller —September 1991 15

Divisor Latch Register (Base ¢ +0)

The Divisor Latch register is used to program the baud-rate
generator. The value in this register forms the divisor of the clock
input (1.8432 MHz or 11,0592MHz), which establishes the desired
baud-rate (DLAB=0).

Description

Bit 7
Bit 6
Bit 5
Bit 4
Bit3
Bit 2
Bit 1
Bit 0

O=NWhHuoN

Figure 12. Divisor Latch Register, Low Byte (Base ¢+ 0)

Description

Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit9

Bit 8

O=NWHA,ONON

Figure 13. Divisor Latch Register, High Byte (Base c+1)

16 Serial Port Controller — September 1991

The following shows how the baud rate is determined with an input
frequency of 1.8432 MHz.

Note: Data speed should not exceed 19,200 baud (For Type 1 and

Type 2).
Desired Divisor Used to Generate 16x Clock Percentage of Error
Baud Rate Ditference between
Rate Decimal Hex Desired and Actual
50 2304 900 -
75 1536 600 -
110 1047 417 0.026
134.5 857 359 0.058
150 768 300 -
300 384 180 -
600 192 Cco -
1200 96 60 -
1800 64 40 -
2000 58 3A 0.69
2400 48 30 -
3600 32 20 -
4800 24 18 -
7200 16 10 -
9600 12 C -
19200 6 6 -

Figure 14. Baud Rates at 1.8432 MHz (Low Frequency Mode)

The following shows how the baud rate is determined with an input
frequency of 11.0592 MHz.

Serial Port Controlier — September 1991

17

Desired Divisor Used to Generate 16x Clock Percentage of Error
Baud Rate Difference between
Rate Decimal Hex Desired and Actual
50 13824 3600 -
75 9216 2400 -
110 6284 188C 0.006
134.5 5139 1413 0.001
150 4608 1200 --
300 2304 900 -
600 1152 480 -
1200 576 240 -
1800 384 180 -
2000 346 15A 0.116
2400 288 120 -
3600 192 GO -
4800 144 90 -
7200 96 60 -
9600 72 48 -

19200 36 24 -

31250 22 16 0.538

38400 18 12 -

57600 12 C -
115200 6 6 -
172800 4 4 -

345600 2 2 -
Note: Divisor of 1 not supported. Data speed must not exceed 345.6 kbaud.

Figure 15. Baud Rates at 11.0592 MHz (High Frequency Mode)

18 Serial Port Controller — September 1991

Interrupt Enable Register (Base c+1)

This 8-bit register allows the four types of controller interrupts to
separately activate the ‘chip interrupt output’ signal. The interrupt
system can be completely disabled by setting bits 0 through 3 of the
Interrupt Enable register to 0. Similarly, by setting the appropriate
bits of this register to 1, selected interrupts can be enabled.
Disabling prevents the controller from generating the external
interrupt to the system. All other system functions operate normally,
including the setting of the Line Status and Modem Status registers
(DLAB=0).

Bit Description

—4 Reserved = 0
Modem-Status Interrupt
Receiver-Line-Status Interrupt
Transmitter-Holding-Register-Empty Interrupt
Received-Data-Available Interrupt (Character and FIFO Mode)
and Time-Out Interrupts (FIFO Mode Only)

O =N w

Figure 16. Interrupt Enable Register (Base ¢+ 1)

Bits 7—4 These bits are reserved and always set to 0.

Bit 3 When set to 1, this bit enables the modem-status interrupt.

Bit 2 When set to 1, this bit enables the receiver-line-status
interrupt.

Bit 1 When set to 1, this bit enables the transmitter-holding-

register-empty interrupt.

Bit0 When set to 1, this bit enables the received-data-available
interrupt. In the FIFO mode, this bit also enables the
time-out interrupts.

Serial Port Controller — September 1991 19

FIFO Control Register (Base ¢ + 2)

The FIFO Control register is a write-only register at the same location
as the read-only Interrupt Identification register. The FIFO Control
register enables the FIFO registers, clears the FIFO registers, and
sets the Receiver FIFO register trigger level.

Note: The Transmitter and Receiver FIFO registers are not
accessible serial controller registers.

The contents of the FIFO Control register are shown in the following
figure.

Bit Description

7, Receiver FIFO Register Trigger
5-3 Reserved = 0

2 Transmitter FIFO Register Reset
1 Receiver FIFO Register Reset

0 FIFO Mode Enable

Figure 17. FIFO Control Register (Base ¢+ 2)

Bits 7,6 These bits select the trigger level for the receiver-register
interrupt, as shown in the following figure.

Bits

76 Receiver Trigger Level
00 1 Byte

01 4 Bytes

10 8 Bytes

11 14 Bytes

Figure 18. Trigger Level

Bits 5—3 These bits are reserved and always set to 0.

Bit 2 When this bit is set to 1, all bytes in the Transmitter FIFO
register are cleared and its counter logic is reset to 0.
The Transmitter Shift register is not cleared. This bit is
self-clearing.

Bit 1 When this bit is set to 1, all bytes in the Receiver FIFO
register are cleared and its counter logic is reset to 0.
The Transmitter Shift register is not cleared. This bit is
self-clearing.

20 Serial Port Controller — September 1991

Bit0 When this bit is set to 1, the FIFO mode is enabled. When
this bit is changed, the transmit and receive (XMIT and
RCV) FIFOs are cleared. When writing to any other FIFO
Control register bits, this bit must be a 1.

Interrupt Identification Register (Base ¢ + 2)

To minimize programming overhead during character mode
transfers, the controller prioritizes interrupts into four levels:

Priority 1 - Receiver-line-status

Priority 2 - Received-data-available

Priority 2 - Time-out (FIFO mode)

Priority 3 - Transmitter-holding-register-empty
Priority 4 - Modem status.

Information about a pending interrupt is stored in the Interrupt
Identification register. When this register is addressed, the pending
interrupt with the highest priority is held, and no other interrupts are
acknowledged until the system microprocessor services that
interrupt.

Bit Description

6 FIFO Registers Enabled

4 Interrupt ID, Bit 4
Interrupt ID, Bit 2
Interrupt ID, Bit 1
Interrupt ID, Bit 0
Interrupt Not Pending

cCanpwo N

Figure 19. Interrupt Identification Register (Base ¢+ 2)

Serial Port Controller — September 1991 21

| Bits 7,6 Programs can determine which type of controller is

| present by reading these two bits when bit 0 of the FIFO
Control register is set to 1. If bits 7 and 6 are set to 1, the
Type 2 controller is present and FIFO support is provided.
If bit 6 is set to 0, the controller is a Type 1 and the FIFO
mode should not be used.

Bits Version
76
00 Type 1 Controller
10 N/A
| 01 Type 3 or Type 4 Controller
11 Type 2 Controller

Figure 20. Type controllers for Bits 7 and 6

22 Serial Port Controller — September 1991

Note: Some systems using the Type 2 controller do not
support the FIFO mode. For information about
individual systems refer to the system-specific
technical reference manuals.

Bits 5,4 These bits are always set to 0.

Bit3 In the FIFO mode, this bit is set to 1, along with bit 2, to
indicate that a time-out interrupt is pending. In the
character mode, this bit is always set to 0.

Bits 2,1 These two bits identify the pending interrupt with the
highest priority.

Bit0 When this bit is set to 1, no interrupt is pending and
polling (if used) continues. When this bit is set to 0, an
interrupt is pending, and the contents of this register can
be used as a pointer to the appropriate interrupt service
routine. This bit can be used in hard-wired, prioritized, or
polled conditions to indicate if an interrupt is pending.

The following figure illustrates the Interrupt Control functions,

beginning with the highest priority and ending with the lowest
priority.

Serial Port Controller — September 1991 23

Bits Interrupt Reset
543210 Type Cause Control
000110 Receiver Overrun, Parity, or Read the Line Status
Line Status Framing Error or Register
Break Interrupt
000100 Received Data in the Receiver Read the Receiver
Data Buffer or the Trigger Buffer Register or
Available Level Has Been FIFO Register Drops
Reached. Below the Trigger
Level.
001100 Character No Characters Have Read the Receiver
Time-Out Been Removed From Buffer Register
Indication or Put Into the
Receiver FIFO
Register During the
Last Four Character
Times, and at Least 1
Character is in it at
This Time.
000010 Transmitter Transmitter Holding Read the Interrupt
' Holding Register is Empty Identification
Register Register or Write to
Empty Transmitter Holding
Register
000000 Modem Change in Signal Read the Modem
Status Status From Modem Status Register
* FIFO Mode Only

Figure 21. Interrupt Control Functions

24 Serial Port Controller — September 1991

Line Control Register (Base c +3)

The format of asynchronous communications is programmed through
the Line Control register.

]
=
=

Description

OC=NWHPOOON

Divisor Latch Access Bit
Set Break

Stick Parity

Even Parity Select

Parity Enable

Number of Stop Bits
Word Length Select, Bit 1
Word Length Select, Bit 0

Figure 22. Line Control Register (Base ¢+ 3)

Bit7

Bit6

Bit5

Bit4

Bit 3

This bit is set to 1 to gain access to the divisor latches of
the baud-rate generator. It is set to 0 to gain access to the
Receiver Buffer, Transmitter Holding, or Interrupt Enable
registers.

When this bit is set to 1, set break is enabled. The serial
output is forced to the spacing state and remains there
regardless of other transmitter activity. When this bit is
set to 0, set break is disabled.

When bits 5, 4, and 3 are set to 1, the parity bit is sent and
checked as a logical 0. When bits 5 and 3 are set to 1, and
bit 4 is set to 0, the parity bit is sent and checked as a
logical 1. If bit 5 is set to 0, stick parity is disabled.

When this bit and bit 3 are set to 1, an even number of
logical 1s are transmitted and checked in the data word
bits and parity bit. When this bit is set to 0, and bit 3 is set
to 1, an odd number of logical 1s are transmitted and
checked in the data word bits and parity bit.

When set to 1, a parity bit is generated (transmit data) or
checked (receive data) between the last data-word bit and
stop bit of the serial data. (The parity bit produces an
even or odd number of 1s when the data-word bits and the
parity bit are summed).

Serial Port Controller — September 1991 25

Bit 2 This bit, with bits 1 and 0, specifies the number of stop bits
in each serial character sent or received, as shown in the
following figure.

Bits Number of Word Length
210 Stop Bits

000 1 5 Bits

001 1 6 Bits

010 1 7 Bits

011 1 8 Bits

100 1.5 5 Bits

101 2 6 Bits

110 2 7 Bits

111 2 8 Bits

The word length is specified by bits 1 and 0 in this register.

Figure 23. Stop Bits and Word Length

Bits 1,0 These bits specify the number of bits in each serial
character that is sent or received.

Modem Control Register (Base c +4)

This 8-bit register controls the data exchange with the modem, data
set, or peripheral device emulating a modem.

Bit Description

-5 Reserved = 0
Loop Mode
Out 2 (IRQ Output Control)
Out 1
Request-to-Send
Data-Terminal-Ready

O=NWHN

Figure 24. Modem Control Register (Base ¢+ 4)

Bits 7—5 These bits are reserved and always set to 0.

26 Serial Port Controller — September 1991

Bit4

Bit 3

Bit 2

Bit 1

Bit0

This bit provides a loopback feature for diagnostic testing
of the serial port. When bit 4 is set to 1:

* Transmitter-serial-output is set to the marking state.
* Receiver-serial-input is disconnected.

e OQOutput of the Transmitter Shift register is “looped
back” to the Receiver Shift register input.

Note: The Transmitter and Receiver Shift registers
are not accessible NS16550 registers.

e The modem control inputs (CTS, DSR, DCD, AND RI) are
disconnected.

* The modem control outputs (DTR, RTS, OUT 1, AND OUT
2) are internally connected to the four modem control
inputs.

¢ The modem control output pins are forced inactive.

When the serial port is in the diagnostic mode, transmitted
data is immediately received. This feature allows the
system microprocessor to verify the transmit-data and
receive-data paths of the serial port.

When the serial port is in the diagnostic mode, the
receiver and transmitter interrupts are fully operational.
The modem control interrupts are also operational, but
their sources are the lower four bits of the Modem Control
register instead of the four modem control input signals.
The interrupts are still controlled by the Interrupt Enable
register.

When this bit is set to 0, the IRQ signal is disabled, the IRQ
signal is always disabled.

This bit is not used in a normal mode. In loop mode, its
status is reported to bit 6 (Rl) of the Modem Status
register.

This bit controls the ‘-request to send’ signal (-RTS)
modem control output. When this bit is setto 1, -RTS is
active. When this bit is set to 0, -RTS is inactive.

This bit controls the ‘-data terminal ready’ signal (-DTR)
modem control output. When this bit is setto 1, -DTR is
active. When this bit is set to 0, -DTR is inactive.

Serial Port Controller —September 1991 27

Line Status Register (Base c +5)

This 8-bit read-only register provides the system microprocessor with
status information about the data transfer.

Note: Writing to this register can produce unpredictable results.

@
=

Description

O=NWHhOON

Error in Receiver FIFO Register
Transmitter Shift Register Empty
Transmitter Holding Register Empty
Break Interrupt

Framing Error

Parity Error

Overrun Error

Data Ready

Figure 25. Line Status Register (Base c+5)

Bit7

Bit 5

In FIFO mode, this bit indicates that a parity error, framing
error, or break occurred. This bit is cleared when the Line
Status register is read in the FIFO mode. Itissetto0in
the Character mode.

This bit is set to 1 to indicate the Transmitter Holding
register and the Transmitter Shift register are both empty.
This bit is set to 0 when either register contains a data
character.

In the FIFO or DMA mode, this bit is set to 1 when the
Transmitter FIFO register and the Transmitter Shift
register are both empty.

This bit indicates that the controller is ready to accept the
next character for transmission. This bit is setto 1 to
indicate that a character was transferred from the
Transmitter Holding register to the Transmitter Shift
register. This bit is set to 0 when a character is written to
the Transmitter Holding register.

This bit also causes the controller to issue an interrupt if
the interrupt is enabled.

In the FIFO or DMA register, this bit is set to 1 when the
Transmitter FIFO register is empty. It is set to 0 when at
least one byte is written to the Transmitter FIFO register.

28 Serial Port Controller — September 1991

Bit4

Bit3

Bit 2

Bit 1

This bit is set to 1 to indicate the received data input is
held in the spacing state for longer than a full-word
transmission time (the total time of start bit+ data
bits + parity + stop bits). This bit is reset to 0 when the
Line Status register is read.

When a break interrupt occurs, only one zero character is
loaded into the Receiver FIFO register. The next
character is loaded after the receiver serial input changes
to the marking state and receives the next valid start bit.

Note: Bits 1 through 4 are the error conditions that
produce a receiver-line-status interrupt whenever
any of the corresponding conditions are detected
and the interrupt is enabled.

This bit is set to 1 when the stop bit, following the last data
bit or parity bit, is at a spacing level. This indicates that
the received character did not have a valid stop bit
(framing error). This bit is reset to 0 when the Line Status
register is read.

Note: In the FIFO or DMA mode, the framing error (or
parity error for bit 2) is associated with the
particular character in the Receiver FIFO register
that it applies to. The error is indicated to the
system microprocessor when its associated
character is at the top of the Receiver FIFO
register.

This bit is set to 1 to indicate a parity error (the received
character does not have the correct even or odd parity, as
selected by the even-parity-select bit). This bit is reset to
0 when the Line Status register is read.

When set to 1, this bit indicates that data in the Receiver
Buffer register was not read before the next character was
transferred into the Receiver Buffer register, destroying
the previous character. This bit is reset to 0 when the
Line Status register is read.

If the FIFO or DMA mode data continues to fill the
Receiver FIFO register beyond the trigger level, an
overrun error occurs. The overrun occurs only after the
Receiver FIFO register is full and the next character is
completely received in the Receiver Shift register. An
overrun error is indicated to the system microprocessor
when it happens. The character in the Receiver Shift
register is overwritten, but it is not transferred to the
Receiver FIFO register.

Serial Port Controller —September 1991 29

Bito

This bit is the receiver data-ready indicator. It is setto 1
when a complete incoming character has been received
and transferred into the Receiver Buffer register or the
Receiver FIFO register. This bit is reset to 0 by reading
the Receiver Buffer register or by reading all of the data in
the Receiver FIFO register.

Modem Status Register (Base c + 6)

This 8-bit register is used to monitor the current state of the control
lines from the modem (or external device). Also, bits 3 through 0
indicate change information.

2
-

Description

O=NOAHODN

Data-Carrier-Detect

Ring Indicator
Data-Set-Ready
Clear-to-Send
Delta-Data-Carrier-Detect
Trailing Edge Ring Indicator
Delta-Data-Set-Ready
Delta-Clear-to-Send

Figure 26. Modem Status Register (Base c+6)

Bit7

Bit5

Bit4

This bit is the inverted ‘-data carrier detect’ signal (-DCD)
modem control input. If bit 4 of the Modem Control
register is set to 1, this bit is equivalent to bit 3 in the
Modem Control register.

This bit is the inverted ‘-ring indicator’ signal (-RI) modem
control input. If bit 4 of the Modem Control register is set
to 1, this bit is equivalent to bit 2 in the Modem Control
register.

This bit is the inverted ‘-data set ready’ signal (-DSR)
modem control input. If bit 4 of the Modem Control
register is set to 1, this bit is equivalent to bit 0 in the
Modem Control register.

This bit is the inverted ‘-clear to send’ signal (-CTS)
modem control input. If bit 4 of the Modem Control
register is set to 1, this bit is equivalent to bit 1 in the
Modem Control register.

30 Serial Port Controller — September 1991

Bit3

Bit 2

Bit 1

Bit0

When set to 1, this bit indicates that the ‘-data carrier
detect’ signal (-DCD) modem control input has changed
state since the last time it was read by the system
microprocessor.

Note: Whenever bit 0, 1, 2, or 3 is set to 1, a modem
status interrupt is generated.

When set to 1, this bit indicates that the ‘-ring indicator’
signal (-Rl) modem control input has changed from an
active condition to an inactive condition.

When set to 1, this bit indicates that the ‘-data set ready’
signal (-DSR) modem control input has changed state
since the last time it was read by the system
microprocessor.

When set to 1, this bit indicates that the ‘-clear to send’

signal (-CTS) modem control input has changed state since

the last time it was read by the system microprocessor.

Scratch Register (Base ¢ +7)

This register can be used by the system microprocessor as a
temporary buffer or work area.

Enhanced Registers

The registers in this section are only available with the Type 3 and
Type 4 controllers. These registers are:

* Enhanced Command Register

¢ Enhanced Interrupt ID Register

¢ Enhanced Function Register 1

¢ Enhanced Function Register 2

¢ Enhanced Function Register 3

¢ Character Compare Data Register

¢ Receive Character Count Register.

Serial Port Controller — September 1991

31

Enhanced Command Register (Base e +0)

This write-only register is used to issue the new commands: Stop
Sending, Start Sending, and Reset Error/Break Indicator. A write to
the register causes the command to be executed.

Bits Description
7—-2 Reserved
1, Command Bits

Figure 27. Enhanced Command Register
Bits 7 —2 These bits are reserved and always written as 0 to allow
future expansion of the command bits.

Bits 1,0 These command bits (CB1-CB0) enable Stop Sending and
Start Sending.

CB1 CBO Command

0 0 Reserved

0 1 Start Sending

1 0 Stop Sending

1 1 Reset Error/Break Indicator

Figure 28. Command Decode

Start Sending—This command starts or continues transmitting in the
DMA or the FIFO mode. Characters in the FIFO mode are transmitted
first. This command is used in the FIFO mode to restart the
transmitter if it has been stopped by a Stop Sending command or by a
Stop on Match function. In DMA mode, the transmit DMA request (TX
DMA REQ) will not be active until the Start Sending Command is
issued.

Stop Sending—This command empties the Transmitter Shift register
and stops transmitting, regardless of the FIFO mode. After the
transmitter is stopped, a character is written to the Transmitter
Holding register. The character is then loaded into the Shift register
and transmitted. After the character is written to the
transmitter-holding-register-empty, the interrupt can be enabled.
When the interrupt occurs, it signals that the send-single-character
operation is complete. If multiple characters are written to the
Transmitter Holding register, with the transmitter-holding
register-empty interrupt enabled, multiple interrupts occur. To
ensure that all characters have been transmitted, wait for the

32 Serial Port Controller — September 1991

appropriate number of transmitter-holding register-empty interrupts
before issuing the next Start Sending command to resume
transmitting the FIFO register. There is no interrupt associated with
this command. The shift register operation is not affected by this
command.

Reset Error/Break—This command resets the Error/Break bit in the
received-data-status byte, which is optionally stored with received
data. The Reset command affects the next status byte, which is
stored in the FIFO register.

The logic for controlling the Error/Break bit is at the input of the
Receive FIFO. If there is an error for the current character being
received, the corresponding status byte will have the Error/Break bit
set. When the command to reset the Error/Break indicator is issued,
the indicator is 0 in the next received-data-status byte placed in the
FIFO register, unless that byte also has an error.

Check each byte that has the Error/Break bit set and issue a Reset

command every time an error is found. This procedure should
minimize the overhead associated with error detection.

Reserved Register (Base e +1)

This is a reserved register.

Enhanced Interrupt ID Register (Base e +2)

The pending interrupt is determined by decoding bits 1 through 5.
For interrupt reset purposes, reading this register is equivalent to
reading the Interrupt ID register.

Bits Description

7—6 Reserved

5—1 Interrupt ID

0 Interrupt Pending

Figure 29. Enhanced Interrupt ID Register

Bits 7 —6 These bits are reserved and are always set to 0.
Bits 5 —1 These bits are the encoded IDs of the pending interrupt.

Bit 0 This bit indicates if an interrupt is pending. Whenitisa0,
an interrupt is pending, and bits 5 through 1 identify the
interrupt. When itis a 1, no interrupt is pending.

Serial Port Controller — September 1991 33

The new interrupts have higher priority than the existing Type 2
controller interrupts. After a new interrupt has been enabled,

interrupt priority exists. The following figure illustrates the Enhanced
Interrupt Control functions, beginning with the highest priority and
ending with the lowest priority.

Bits Interrupt Reset
543210 Type Source Control
100000 Receive TC TC on DMA Receive Read the Enhanced
Interrupt Register
100010 Transmit TC TC on DMA Transmit Read the Enhanced
Interrupt Register
110000 CC0 Match Match on CCO Read the Enhanced
Interrupt ID Register
110010 CC1 Match Match on CC1 Read the Enhanced
Interrupt ID Register
110100 CC2 Match Match on CC2 Read the Enhanced
Interrupt ID Register
100100 RCCR =0 Receive Character Read the Enhanced
Count Interrupt ID Register
100110 Transmitter THR and TSR Empty Read the Enhanced
Empty Interrupt ID Register
000110 Receiver Overrun, Parity, or Read the Line Status
Line Status Framing Error or Register
Break Interrupt
000100 Received Data in the Receiver Read the Receiver
Data Buffer or the Trigger Buffer Register or
Available Level Has Been FIFO Register Drops
Reached. Below the Trigger
Level.
oot1100*™ Character No Characters Have Read the Receiver
Time-Out Been Removed From Buffer Register in
Indication or Put Into the FIFO Mode. In DMA
Receiver FIFO Mode Read ElIR to
Register During the Reset.
Last Four Character
Times
000010 Transmitter Transmitter Holding Read the Interrupt
Holding Register is Empty Identification
Register Register or Write to
Empty Transmitter Holding
Register
000000 Modem Change in Signal Read the Modem
Status Status from Modem Status Register
Note: *No trigger level interrupt in DMA Mode. ** FIFO and DMA Mode

Figure 30. Enhanced Interrupt Control Functions

34 Serial Port Controller — September 1991

Enhanced Function Register 1 (Base e +3)

This register is a read and write register that enables new interrupts
and DMA modes. A logical 1 enables the function and a logical 0
disables the function.

Bits Description

O =NWELOOON

DMA Receive

DMA Transmit

Enable Receive Data Status
Terminal Count Receive

Terminal Count Transmit

Stop Transmitter Line Error
Transmitter Empty

Receive Character Count Register

Figure 31. Enhanced Function Register 1 (Base e+ 3)

Bit7

Bit6

Bit5

This bit enables the DMA receive mode. The FIFO mode
must be enabled (bit 0 in the FIFO Control register) before
the DMA receive mode is enabled. The FIFO trigger level
can be programmed, as appropriate, by writing to bits 6 and
7 in the FIFO Control register.

This bit enables the DMA transmit mode. The FIFO mode
must be enabled (bit 0 in the FIFO Control Register) before
the DMA transmit mode is enabled. Initially, a Start Sending
command must be issued to start actual transmission. TX
REQ cannot be generated until a Start Sending Command is
issued.

This bit enables alternate bytes of data followed by Received
Data status, to be stored in the Receive FIFO register. When
this bit is set to 1, the Receive FIFO register has a capacity
of eight data bytes plus eight status bytes. If a status byte is
at the bottom of the FIFO register, the Line Status register
indicates a good byte regardiess of the status of the
associated data byte. The enhanced-received-data-status bit
should be set as part of the async port initialization.
Toggling this bit while receiving serial data produces
undefined results.

Note: No data is received during the time the FIFO register
is cleared and the received-data status bit is toggled.
Resetting this bit disables the storing of received data
status.

Serial Port Controller —September 1991 35

Bit 4

Bit3

Bit 2

Bit 1

Bit0

This bit enables an interrupt when the terminal count is
reached on a DMA receive operation. This signals that the
last character of the last DMA buffer has been filled and that
the FIFO register can fill and overrun if new DMA buffers are
not allocated.

This bit enables an interrupt when the terminal count is
reached on a DMA transmit operation. This signals that the
last character in the last DMA buffer has been read into the
FIFO register.

When set, this bit stops the transmitter after the Shift
register empties on any received line error (OE, PE, FE, Bl).
The received line error is detected before the character is
placed in the FIFO or DMA mode. The receiver continues to
function normally. The transmitter can be restarted with the
Start Sending command. If an interrupt is desired, the
enable-line-status interrupt bit must be set in the Interrupt
Enable register.

This bit enables an interrupt when the Transmit Hold
register and Transmit Send register are empty in Character
mode, or when the FIFO register and Transmit Send register
are empty in the FIFO or DMA mode. The transmitter empty
bit in the Line Status register is changed from 0 to 1.

This bit enables an interrupt when the Receive Character
Count register is decremented to zero.

Enhanced Function Register 2 (Base e +4)

This read and write register enables the transmitter controls, the
modem pacing, and the baud-rate functions. A logical 1 enables the
function and a logical 0 disables the function.

u...
-d
]

Description

O=NOWALONON

Byte Pacing

Set High Frequency Rate

Set Slow Transmit Rate

Set Slow Receiver Rate
Receive the Receiver via DSR
Control the Transmitter via DCD
Control the Transmitter via DSR
Control the Transmitter via CTS

Figure 32. Enhanced Function Register 2 (Base e+4)

36 Serial Port Controller— September 1991

Bit5

Bit 4

Bit3

Bit 2

This bit affects byte pacing. The byte pacing function allows
the controller to support operations with a slow
microprocessor. When this bit is set to 1, every byte of data
is transmitted at a pacing rate of 256 times the receiver
clocks value in the Receive Character Count register. An
interrupt is generated when the Receive Character Count
register reaches 0 and the Enhanced Function Register 1
equals 1. When this bit is set to 0, the Receive Character
Count register is used for counting receiving characters if
the Receive Character Count register is loaded with a value
greater than 0.

This bit sets the high-frequency rate. When set to 1, this bit
selects a a 11.0592 frequency.

Note: Applications that select the 11.0592 MHz rate should
reset this bit to 0 when exiting.

This allows higher bit rates to be selected, up to a maximum
rate of 345,600 bits per second on transmit and receive.
When this bit is 1, the divisor latches must be set to 2 or
greater.

This bit sets the slow transmit rate to 1/16 of the rate
programmed in the baud-rate generator.

This bit sets the slow receiver rate. If this bit is set, the
receiver rate is set to 1/16 of the rate programmed in the
baud-rate generator.

Note: Bits 4, 5, and 6 should be set as part of the async port
initialization. Toggling these bits during transmit and
receive can produce undefined results.

This bit resets the receiver by issuing the ‘-data set ready’
signal (-DSR, bit 5 of the Modem Status register). If this
function is enabled, the receiver is turned off when -DSR
equals 0 (bit 5 of the Modem Status register equals 0) and is
turned on when -DSR equals 1 (bit 5 of the Modem Status
register equals 1). If -DSR becomes inactive, the character
currently being received is discarded.

This bit controls the transmitter by issuing the ‘-data carrier
detect’ signal (-DCD, bit 3 of the Modem Status register). If
this function is enabled, the transmitter is turned off when
the -DCD equals 0 (bit 3 of the Modem Status register), and is
turned on if -DCD equals 1. However, the transmitter must
be initially turned on by a Start Sending command (After a
Start Sending command has been issued, the transmitter is

Serial Port Controller — September 1991 37

turned on and off based on the state of the ‘-data carrier
detect’ signal).

Note: If the transmitter is stopped, the Transmitter Shift
register is emptied but no additional characters are
loaded from the Transmitter FIFO or Transmitter Hold
register.

Bit1 This bit controls the transmitter via the ‘-data set ready’
signal (-DSR). If this function is enabled, the transmitter is
turned off when -DSR equals 0, and is turned on when -DSR
equals 1. However, the transmitter must be initially turned
on by a Start Sending command (After a Start Sending
command has been issued the transmitter is turned on and
off based on the state of the ‘-data set ready’ signal).

Bit0 This bit controls the transmitter via the ‘-clear-to-send’
signal. (-CTS, bit 4 of the Modem Status register). If this
function is enabled, the transmitter is turned off when -CTS
equals 0, and is turned on when -CTS equals 1. However,
the transmitter must be initially turned on by a Start Sending
command (After a Start Sending command has been issued
the transmitter is turned on and off based on the state of the
‘clear-to-send’ signal).

Enhanced Function Register 3 (Base e +5)

This read and write register is used to control the Character Compare
registers. There are three 8-bit Character Compare registers and
three 4-bit Character Compare Function registers. The Character
Compare registers contain match characters and the Character
Compare Function registers contain match functions. A Character
Compare register and its Character Compare Function register can
be programmed independently of the other Character Compare
registers and character compare function registers.

To read from or write to the Character Compare registers, the
address for the register must be written to Enhanced Function
Register 3. Then the registers can be read from or written to, using
the Character Compare register.

Bits Description

7—-3 Reserved

2-1 Character Compare Address Lines
0 Select Character Compare Register

Figure 33. Enhanced Function Register 3 (Base e+ 3)

38 Serial Port Controller — September 1991

Bits 7 —3 These bits are reserved and are always set to 0.

Bits 2 —1 These bits select the character compare address lines, the
address of the character compare register, or the address of
the Character Compare Function register.

Bit0 This bit enables the Select Character Compare register. A
logical 1 specifies the address in bits 1 and 2 for a Character
Compare register. A logical 0 specifies the address for a
Character Compare Function register.

The following table shows access to the Character Compare registers
and the Character Compare Function registers for bits 2, 1 and 0.

Function of
Bits Character Compare
210 Data Register Register Accessed
000 Match Functions Character Compare Function Register 0
010 Match Functions Character Compare Function Register 1
100 Match Functions Character Compare Function Register 2
001 Match Character Character Compare Register 0
011 Match Character Character Compare Register 1
101 Match Character Character Compare Register 2

Figure 34. Access to CCRs and CCFRs

Character Compare Data Register (Base e + 6)

This register is used to read and write the match character for a
Character Compare register, or the match function for a Character
Compare Function register. The register is specified by first writing
to Enhanced Function Register 3.

| The controller can be programmed to perform a specific operation

| when a character match occurs. It can start the transmitter, stop the
transmitter, delete the matched character from the incoming data
stream, or generate an interrupt. Multiple match functions per
Character Compare Function register are supported. If START and
STOP are both set, then STOP takes precedence because they are
mutually exclusive. Each character compare register is compared to
the received data character, and if there is a match, then the
programmed action takes place.

| If the controller is programmed to interrupt on a character match,
then the interrupt occurs as soon as the match is detected. To
disable a character compare register, clear the corresponding
Character Compare Function register. The format of the Character

Serial Port Controller — September 1991 39

Compare Data register for the Character Compare Function register
is shown on the following page.

Bits Description

3 Start Transmitter on Character Match
2 Stop Transmitter on Character Match
1 Delete Character on Character Match
0 Interrupt on Character Match

Figure 35. Character Compare Register (Base e+ 6)

Bit 3 A1 starts the transmitter when a match occurs. The
transmitter does not start unless a Start Transmitter
command has been issued previously.

Bit 2 A1 stops the transmitter when a match occurs.
Bit1 A1 causes the character to be deleted when a match occurs.

Bit0 A1 enables an interrupt when a match occurs. This interrupt
occurs as soon as there is a match with a received data
character.

The format of the Character Compare Data register for a character
compare register is an 8-bit match character. If the word length is
less than eight bits, the match character should be right justified and
any unused bits should be set to 0 when written to the Character
Compare Data Register.

Receive Character Count Register (Base e +7)

This 8-bit register is used in byte pacing and receive character count
functions. The Receive Character Compare register is decremented
when a character is read from the Receive FIFO register during a
receive character count operation, or at every 256 receiver clocks
during Byte Pacing operation.

If the interrupt on Receiver Character Count is set (Enhanced
Function Register 1, Bit 0), then an interrupt is generated when the
Receive Character Count register is decremented to 0, regardless of
any operation.

Because this register is a countdown counter and does not wrap
around when reaching zero, the user must load a value to the
Receive Character Count register before using it. When read, this
register contains the current count (the count cannot be exact since

40 Serial Port Controller — September 1991

the receiver or ‘receiver clocks’ cannot be stopped to read this
register).

Signal Descriptions

Modem-Control Input Signals

The following are input signals from the modem or external device to
the controller. Bits 7 through 4 in the Modem Status register indicate
the condition of these signals. Bits 3 through 0 monitor these signals
to indicate when the modem changes state.

-Clear to Send (-CTS)

When active, this signal indicates that the modem is ready for the
serial port to transmit data.

-Data Set Ready (-DSR)

When active, this signal indicates that the modem or data set is ready
to establish the communications link and transfer data with the
controller.

-Ring Indicator (-Rl)

When active, this signal indicates that the modem or data set
detected a telephone ringing signal.

-Data Carrier Detect (-DCD)

When active, this signal indicates that the modem or data set
detected a data carrier.

Modem-Control Output Signals

The following are controller output signals. All are set inactive by a
master reset operation. These signals are controlled by bits 3
through 0 in the Modem Control register.

-Data