Personal Computer Hardware Reference Library

IBM RT PC Hardware Technical Reference

Volume II

Personal Computer Hardware Reference Library

IBM RT PC Hardware Technical Reference

Volume II

Second Edition (September 1986)

Changes are made periodically to the information herein; these changes will be incorporated in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or imply that only IBM's program product may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about the system should be made to your authorized IBM RT PC dealer.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758. IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986

About This Book

Purpose

The options and adapters manual is the second part of the IBM RT PC Hardware Technical Reference manual. It is to be used in conjunction with the IBM RT PC Hardware Technical Reference, Volume 1.

Audience

The information in this manual is for reference. It is intended for hardware and program designers, programmers, engineers, and anyone else who needs to understand the design and operation of the options and adapters in the IBM RT PC Product Family.

How to Use This Book

This manual is modular in format, with each module providing information about a specific option or adapter available for the IBM RT PC family of products. Modules having a large amount of text contain indexes.

The modules are grouped by type of device. To find a specific module:

- 1. Locate the full length hard tab with the type of device (Displays, Printers, Storage Devices, etc.) printed on it that decribes the option or adapter you need information about.
- 2. Open the manual to that section.
- 3. Leaf through that section to find the proper module.

COMMUNICATION ADAPTERS

_	_	_	_
-			
-		_	
_	_		
-		_	

Personal Computer Hardware Reference Library

4-Port Asynchronous Adapter RS232C

ii RS232C Adapter

Contents

Description
4 Port Asynchronous RS232C Adapter Switch Settings
Modes of Operation
Interrupts $$
Serial Data Format
External Interface Description
Asynchronous Communications Element Pin Description 10
Programming Considerations
Connector Specifications
Logic Diagrams

Description

The 4 Port Asynchronous RS232C Adapter provides four serial output ports on a 4.25- by 13.12-inch board that plugs into one I/O position. The adapter system control signals and voltage requirements are provided through a 2- by 31-position and a 2- by 18-position tab on the bottom of the adapter.

Up to four adapters may be used in one RT PC system. A DIP switch on the adapter is used to assign the adapter's I/O address range. The port I/O address assignments are contained in the adapter's I/O address range.

The adapter is fully programmable and supports asynchronous communications only. It will add and remove start bits, stop bits, and parity bits. A programmable baud-rate generator allows operation from 50 bps to 19200 bps. Five-, 6-, 7- or 8-bit characters with 1, 1-1/2, or 2 stop bits are supported. A priority interrupt system controls transmit, receive, error, line status, and data set interrupts.

Four 10-pin male connectors on the adapter provide external access to the four ports.

The heart of the adapter is an NS16450 LSI chip or a functional equivalent. Features in addition to those listed above include:

Note: The NS16450 is functionally equivalent to all INS8250.

- Full double buffering that eliminates the need for precise synchronization
- Independent receiver clock input
- Modem control functions: clear to send (CTS), request to send (RTS), data set ready (DSR), data terminal ready (DTR), ring indicator (RI), and received line signal detect (RLSD), which is also known as data carrier detect (DCD) or carrier detect (CD)
- False start bit detection
- Line-break generation and detection.

All communications protocol is a function of the system microcode that must be loaded before the adapter is operational. All pacing of the interface and control signal status must be handled by the system software. Figure 1 on page 2 is a block diagram of the 4 Port Asynchronous RS232C Adapter.

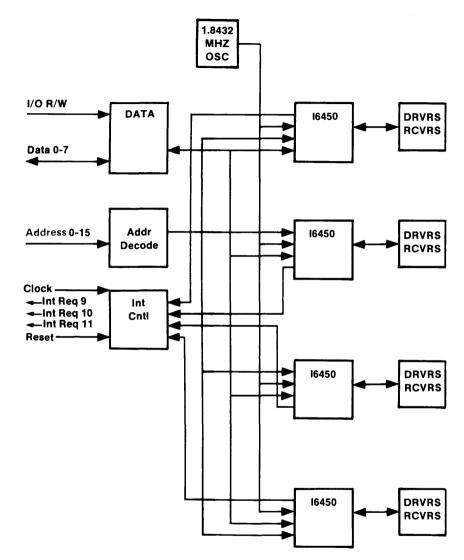


Figure 1. 4 Port Asynchronous RS232C Adapter Block Diagram

4 Port Asynchronous RS232C Adapter Switch Settings

The 4 Port Asynchronous RS232C Adapter switch settings select the interrupt level and the address range of adapters installed.

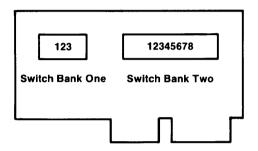


Figure 2. 4 Port Asynchronous RS232C Adapter Switches

Interrupt Level	Switch Bank One Setting						
Selected	Switch 1	Switch 2	Switch 3				
Level 9 Level 10	On Off	Off On	Off Off				
Level 11	Off	Off	On				

Figure 3. Switch Bank One Settings

,

Address Range of	Switch Bank Two Setting						
Adapters	Switch 1	Switch 2	Switch 3	Switch 4			
1230-124F 2230-224F 3230-324F 4230-424F	On Off Off Off	Off On Off Off	Off Off On Off	Off Off Off On			

Figure 4. Switch Bank Two Settings

Note: Switches 5 through 8 are not used.

Modes of Operation

The different modes of operation are selected by programming the NS16450 asynchronous communications element. This is done by selecting the I/O address and writing data out to the I/O address. Address bits A0, A1, and A2 select the different registers that define the modes of operation. Also, the divisor latch access bit (bit 7) of the line control register is used to select certain registers.

The address range for this adapter is Hex 1230 through Hex 424F. Figure 5 and Figure 6 on page 5 depict a value of n which represents a variable determined by the setting of switch bank two. Switches 1, 2, 3, and 4 of switch bank two allow the card to operate and select the appropriate address range.

I/O Decou Port B	le (In Hex) Port A	Register Selected	DLAB State
n238	n230	TX Buffer	DLAB=0 (Write)
n238	n230	RX Buffer	DLAB=0 (Read)
n238	n230	Divisor Latch LSB	DLAB=1
n239	n231	Divisor Latch MSB	DLAB=1
n239	n231	Interrupt Enable Register	DLAB=0
n23A	n232	Interrupt Identification	
		Register	
n23B	n233	Line Control Register	
n23C	n234	Modem Control Register	
n23D	n235	Line Status Register	
n23E	n236	Modem Status Register	

Figure 5. I/O Decodes, Port A and Port B

Notes:

- 1. n is equal to the first digit of the adapter address range
- 2. DLAB means Divisor Latch Access Bit.

I/O Deco	le (In Hex)		
Port D	Port C	Register Selected	DLAB State
n248	n240	TX Buffer	DLAB=0 (Write)
n248	n240	RX Buffer	DLAB=0 (Read)
n248	n240	Divisor Latch LSB	DLAB=1
n249	n241	Divisor Latch MSB	DLAB=1
n249	n241	Interrupt Enable Register	DLAB=0
n24A	n242	Interrupt Identification	
		Register	
n24B	n243	Line Control Register	
n24C	n244	Modem Control Register	
n24D	n245	Line Status Register	
n24E	n246	Modem Status Register	

Figure 6. I/O Decodes, Port C and Port D

Notes:

- 1. n is equal to the first digit of the adapter address range
- 2. DLAB means Divisor Latch Access Bit.

A9—>A3 Decode	A2	A1	A0	DLAB	Register
See	х	x	x		
Note 1	0	0	0	0	Receive Buffer Reg. (read) Transmit Holding Reg. (write)
	0	0	1	0	Interrupt Enable
	0	1	0	x	Interrupt Identification
	0	1	1	x	Line Control
	1	0	0	x	Modem Control
	1	0	1	x	Line Status
	1	1	0	x	Modem Status
	1	1	1	x	Scratch (See note 3)
	0	0	0	1	Divisor Latch (LSB)
	0	0	1	1	Divisor Latch (MSB)

Figure 7. Address Bits

Notes:

- 1. Bits A9 through A3 are used to select specific adapter and serial port.
- 2. A2, A1, and A0 bits are "don't cares" and are used to select the different registers of the NS16450 chip.
- 3. The Scratch Register of the NS16450 module should be initialized to all zeros and never be written to with any data afterwards. This would cause indeterminate data when Read address X237 (see "Interrupts") is executed.

Interrupts

Three interrupts lines are provided to the system. The interrupt level (9, 10, or 11) is selected by placing the appropriate switch on switch bank one to the on position. An interrupt register (read adr n237, where n is the first digit of address range) is provided to store pending port interrupts. Interrupt register bit assignment as shown in Figure 8.

	Hex Addres	ss n237					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1	1	1	Port 4	Port 3	Port 2	Port 1

Figure 8. Interrupt Register Read Format

The reset or enable for interrupt level 9 is hex address 02F2.

The reset or enable for interrupt level 10 is hex address 06F2.

The reset or enable for interrupt level 11 is hex address 06F3.

Serial Data Format

The data format is as follows:

Transmit Data Marking	Start Bit	D0	D1	D2	D3	D4	D5	D6	D7	Parity Bit	Stop Bit	
-----------------------------	--------------	----	----	----	----	----	----	----	----	---------------	-------------	--

Data bit 0 is the first bit to be transmitted or received. The adapter automatically inserts the start bit, the correct parity bit (if programmed to do so), and the stop bit (1, 1-1/2, or 2 depending on the command in the line control register).

External Interface Description

The adapter provides an EIA 4 Port Asynchronous RS232C Adapter-like interface.

The pin functions for the 10-pin connector are shown in Figure 9 on page 8.

		<u>A</u>	
Unassigned	5	10 5	Ground
Ring Indicate	4	9	Data Carrier
Request to Send	3	8	Clear to Send
Data Terminal Ready	2	7	Data Set Ready
Transmit Data	1	لے 6	Receive Data
	L		
		B	
Unassigned	5	10 5	Ground
Ring Indicate	4	9	Data Carrier
Request to Send	3	8	Clear to Send
Data Terminal Ready	2	7	Data Set Ready
Transmit Data	1	لے 6	Receive Data
	L		
		С	
Unassigned	5	10 7	Ground
Ring Indicate	4	9	Data Carrier
Request to Send	3	8	Clear to Send
Data Terminal Ready	2	7	Data Set Ready
Transmit Data	1	6	Receive Data
	L		
		D	
Unassigned	5	10 4	Ground
Ring Indicate	4	9	Data Carrier
Request to Send	3	8	Clear to Send
Data Terminal Ready	2	7	Data Set Ready
Transmit Data	1	لے 6	Receive Data

Figure 9. 10 Pin Interface Signals Connector (viewed from rear of adapter)

The adapter converts the interface signals from TTL levels to EIA 4 Port Asynchronous RS232C Adapter voltage levels, and vice versa. These signals are sampled or generated by the communications control chip. These signals can then be sensed by the system software to determine the state of the interface or peripheral device. The drivers and receivers used on the adapter are the inverting type; therefore, a 0 EIA level on the line is received or transmitted as a 0 TTL level, and a 1 EIA level is received or transmitted as a 1 TTL level.

Voltage Interchange Information

The signal will be considered in the marking condition when the voltage on the interchange circuit, measured at the interface point, is more negative than -3 Vdc with respect to signal ground. The signal will be considered in the spacing condition when the voltage is more positive than +3 Vdc with respect to signal ground. The region between +3 Vdc and -3 Vdc is defined as the transition region and is considered an invalid level. The voltage that is more negative than -15 Vdc or more positive than +15 Vdc is also considered an invalid level.

During the transmission of data, the marking condition denotes the binary state 1 and the spacing condition denotes the binary state 0.

For interface control circuits, the function is on when the voltage is more positive than +3 Vdc with respect to signal ground and is off when the voltage is more negative than -3 Vdc with respect to signal ground.

Interchange Voltage	Binary State	Signal Condition	Interface Control Function
Positive Voltage	Binary 0	Spacing	= On
Negative Voltage	Binary 1	Marking	= Off

Figure 10. 4 Port Asynchronous RS232C Adapter. Signal Levels

Asynchronous Communications Element Pin Description

The following describes the function of all NS16450 input/output pins. Some of these descriptions reference internal circuits. The use of each signal as implemented on the multiport adapter is described.

Note: In the following descriptions, a low represents a logic 0 (0 Vdc nominal) and a high represents a logic 1 (+2.4 Vdc nominal).

Input Signals

Chip Select (CS0, CS1, -CS2), Pins 12-14: When CS0 and CS1 are high and -CS2 is low, the chip is selected. Chip selection is complete when the decoded chip select signal is latched with an active (low) address strobe (-ADS) input. This enables communications between the NS16450 and the processor.

Data Input Strobe (DISTR, -DISTR), Pins 22 and 21: When DISTR is high or -DISTR is low while the chip is selected, the processor can read status information or data from a selected register of the NS16450.

Note: Only an active DISTR or -DISTR input is required to transfer data from the NS16450 during a read operation. Therefore, tie either the DISTR input permanently low or the -DISTR line permanently high, if not used.

Data Output Strobe (DOSTR, -DOSTR), Pins 19 and 18: When DOSTR is high or -DOSTR is low while the chip is selected, the processor can write data or control words into a selected register of the NS16450.

Note: Only an active DOSTR or -DOSTR input is required to transfer data to the NS16450 during a write operation. Therefore, tie either the DOSTR input permanently low or the -DOSTR input permanently high, if not used.

-Address Strobe (-ADS), Pin 25: When low, this signal provides latching for the register select (A0, A1, A2) and chip select (CS0, CS1, -CS2) signals.

Note: An active -ADS input is required when the register select (A0, A1, A2) signals are not stable for the duration of a read or write operation. If not required, tie the -ADS input permanently low.

Register Select (A0, A1, A2), Pins 26-28: These three inputs are used during a read or write operation to select an NS16450 register to read from or write into as indicated in Figure 11. Note that the state of the divisor latch access bit (DLAB), which is the most significant bit of the line control register, affects the selection of certain NS16450 registers. The DLAB must be set high by the system software to access the baud-generator divisor latches.

DLAB	A2	A1	AO	Register
0	0	0	0	Receiver Buffer (Read) Transmitter Holding Register (Write)
0	0	0	1	Interrupt Enable
x	0	1	0	Interrupt Identification (Read Only)
х	0	1	1	Line Control
x	1	0	0	Modem Control
x	1	0	1	Line Status
x	1	1	0	Modem Status
x	1	1	1	Scratch
1	0	0	0	Divisor Latch (Least Significant Byte)
1	0	0	1	Divisor Latch (Most Significant Byte)

Figure 11. NS16450 Register Selection

Master Reset (MR), Pin 35: When high, this signal clears all the registers (except the receive buffer, transmitter holding, and divisor latches), and the control logic of the NS16450. Also, the state of various output signals (SOUT, INTRPT, -OUT 1, -OUT 2, -RTS, -DTR) is affected by an active MR input. Refer to the table in Figure 12 on page 12 for reset functions.

Register/Signal	Reset Control	Reset State	
Interrupt Enable Register	Master Reset	All Bits Low 0-3 Forced and 4-7 Permanent	
Interrupt Identification Register	Master Reset	Bit 0 is High, Bits 1 and 2 are Low, and Bits 3-7 are Permanently Low	
Line Control Register	Master Reset	All Bits Low	
Modem Control Register	Master Reset	All Bits Low	
Line Status Register	Master Reset	All Bits Low, except Bits 5 and 6 are High	
Modem Status Register	Master Reset	Bits 0-3 are Low Bits 4-7 = Input Signal	
SOUT	Master Reset	High	
INTRPT (RCVR Errors)	Read LSR/MR	Low	
INTRPT (RCVR Data Ready)	Read RBR/MR	Low	
INTRP (THRE)	Read IIR/ Write THR/MR	Low	
INTRPT (Modem Status Changes)	Read MSR/MR	Low	
 OUT 2 RTS DTR OUT 1 	Master Reset Master Reset Master Reset Master Reset	High High High High	

Figure 12. NS16450 Reset Functions

Receiver Clock (RCLK), Pin 9: This input is the 16x baud-rate clock for the receiver section of the chip.

Serial Input (SIN), Pin 10: Serial data input from the communications link (peripheral device, modem, or data set).

-Clear to Send (-CTS), Pin 36: The -CTS signal is a modem control function input whose condition can be tested by the processor by reading bit 4 (CTS) of the modem status register. Bit 0 (DCTS) of the modem status register indicates whether the -CTS input has changed state since the previous reading of the modem status register.

Note: Whenever the CTS bit of the modem status register changes state, an interrupt is generated if the modem status interrupt is enabled.

-Data Set Ready (-DSR), Pin 37: The -DSR signal is a modem control function input whose condition can be tested by the processor by reading bit 5 (DSR) of the modem status register. When low, this signal indicates that the modem or data set is ready to establish the communications link and transfer data with the NS16450. Bit 1 (DDSR) of the modem status register indicates whether the -DSR input has changed since the previous reading of the modem status register.

Note: Whenever the DSR bit of the modem status register changes state, an interrupt is generated if the modem status interrupt is enabled.

-Received Line Signal Detect (-RLSD), Pin 38: The -RLSD signal is a modem control function input whose condition the processor can test by reading bit 7 (RLSD) of the modem status register. When low, this signal indicates that the data carrier had been detected by the modem or data set. Bit 3 (DRLSD) of the modem status register indicates whether the -RLSD not input has changed state since the previous reading of the modem status register.

Notes:

- 1. Whenever the RLSD bit of the modem status register changes state, an interrupt is generated if the modem status interrupt is enabled.
- 2. Received Line Signal Detect is also called Data Carrier Detect (DCD), or Carrier Detect (CD).

-Ring Indicator (-RI), Pin 39: The -RI signal is a modem control function input whose condition the processor can test by reading bit 6 (RI) of the modem status register. When low, this signal indicates that a telephone ringing signal has been received by the modem or data set. Bit 2 (TERI) of the modem status register indicates whether the -RI input has changed from a low to high state since the previous reading of the modem status register.

Note: Whenever the RI bit of the modem status register changes from a high to a low state, an interrupt is generated if the modem status interrupt is enabled.

VCC, Pin 40: +5 Vdc supply.

VSS, Pin 20: Ground (0 Vdc) reference.

Output Signals

-Data Terminal Ready (-DTR), Pin 33: When low, this signal informs the modem or data set that the NS16450 is ready to communicate. The -DTR output signal can be set to an active low by programming bit 0 (DTR) of the modem control register to a high level. The -DTR signal is set high by a master reset operation. The -DTR signal is set high during loop mode operation.

-Request to Send (-RTS), Pin 32: When low, this signal informs the modem or data set that the NS16450 is ready to transmit data. The -RTS output signal can be set to an active low by programming bit 1 (RTS) of the modem control register. The -RTS signal is set high by a master reset operation. The -RTS signal is set high during loop mode operation.

-Output 1 (-OUT 1), Pin 34: With this signal, user-designated output can be set to an active low by programming bit 2 (-OUT 1) of the modem control register to a high level. The -OUT 1 signal is set high by a master reset operation. The -OUT 1 signal is set high during the loop mode operation.

-Output 2 (-OUT 2), Pin 31: With this signal, user-designated output can be set to an active low by programming bit 3 (-OUT 2) of the modem control register to a high level. The -OUT 2 signal is set high by a master reset operation. The -OUT 2 signal is set high during the loop mode operation.

Chip Select Out (CSOUT), Pin 24: When high, this signal indicates that the chip has been selected by active CS0, CS1, and -CS2 inputs. No data transfer can be initiated until the CSOUT signal is a logic 1.

Driver Disable (DDIS), Pin 23: This signal goes low whenever the processor is reading data from the NS16450. A high-level DDIS output can be used to disable an external transceiver (if used between the processor and NS16450 on the D7-D0 data bus) at all times, except when the processor is reading data.

-Baudout (-BAUDOUT), Pin 15: This signal is a 16x clock signal for the transmitter section of the NS16450. The clock rate is equal to the main reference oscillator frequency divided by the specified divisor in the baud-generator division latches. The -Baudout may also be used for the receiver section by tying this output to the RCLK input of the chip.

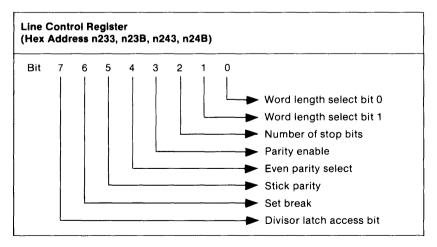
Interrupt (INTRPT), Pin 30: This signal goes high whenever any one of the following interrupt types has an active high condition and is enabled through the IER: receiver error flag, received data available, transmitter holding register empty, or modem status. The Intrpt signal is reset low upon the appropriate interrupt service or a master reset operation.

Serial Output (SOUT), Pin 11: Composite serial data output to the communications link (peripheral, modem or data set). The SOUT signal is set to the marking (logic 1) state upon a master reset operation.

Input/Output Signals

Data Bus (D7-D0), Pins 1-8: This bus comprises eight tri-state input/output lines. The bus provides bidirectional communications between the NS16450 and the processor. Data, control words, and status information are transferred through the D7-D0 data bus.

External Clock Input/Output (XTAL1, XTAL2), Pins 16 and 17: These two pins connect the main timing reference (crystal or signal clock) to the NS16450.

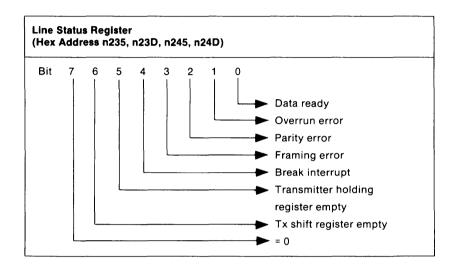

Programming Considerations

The NS16450 has a number of accessible registers. The system programmer may access or control any of the NS16450 registers through the processor. These registers are used to control NS16450 operations and to transmit and receive data.

Note: The n in address is the card number (1-4).

Line Control Register

The system programmer specifies the format of the asynchronous data communications exchange through the line control register. In addition to controlling the format, the programmer may retrieve the contents of the line control register for inspection. This feature simplifies system programming and eliminates the need for separate storage of the line characteristics in system memory. The contents of the line control register are described below:



Bits 0, 1 These two bits specify the number of bits in each transmitted or received serial character. The encoding of bits 0 and 1 is as follows:

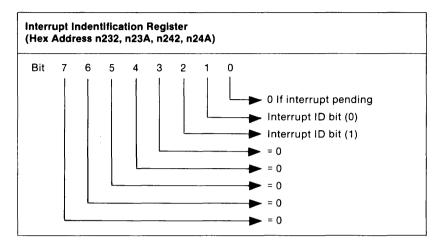
Bit 1	Bit 0	Word Length
0	0	5 bits
0	1	6 bits
1	0	7 bits
1	1	8 bits

- **Bit 2** This bit specifies the number of stop bits in each transmitted or received serial character. If bit 2 is a logical 0, one stop bit is generated or checked in the transmit or receive data, respectively. If bit 2 is a logical 1 when a 5-bit word length is selected through bits 0 and 1, 1-1/2 stop bits are generated or checked. If bit 2 is a logical 1 when either a 6-, 7-, or 8-bit word length is selected, two stop bits are generated or checked.
- **Bit 3** This bit is the parity enable bit. When bit 3 is a logical 1, a parity bit is generated (transmit data) or checked (receive data) between the last data word bit and stop bit of the serial data. (The parity bit is used to produce an even or odd number of 1's when the data word bits and the parity bit are summed.)
- **Bit 4** This bit is the even parity select bit. When bit 3 is a logical 1 and bit 4 is a logical 0, an odd number of logical 1's are transmitted or checked in the data word bits and parity bit. When bit 3 is a logical 1 and bit 4 is a logical 1, an even number of bits are transmitted or checked.
- **Bit 5** This bit is the stick parity bit. When bit 3 is a logical 1 and bit 5 is a logical 1, the parity bit is transmitted and then detected by the receiver as a logical 0 (space parity) if bit 4 is a logical 1, or as a logical 1 (mark parity) if bit 4 is a logical 0.
- **Bit 6** This bit is the set break control bit. When bit 6 is a logical 1, the serial output (SOUT) is forced to the spacing (logical 0) state and remains there regardless of other transmitter activity. The set break is disabled by setting bit 6 to a logical 0. This feature enables the processor to alert a terminal in a computer communications system.
- **Bit 7** This bit is the divisor latch access bit (DLAB). It must be set high (logical 1) to access the divisor latches of the baud-rate generator during a read or write operation. It must be set low (logical 0) to access the receiver buffer, the transmitter holding register, or the interrupt enable register.

Line Status Register

This 8-bit register provides status information to the processor concerning the data transfer. The contents of the line status register are described below:

- **Bit 0** This bit is the receiver data ready (DR) indicator. Bit 0 is set to a logical 1 whenever a complete incoming character has been received and transferred into the receiver buffer register. Bit 0 may be reset to a logical 0 either by the processor reading the data in the receiver buffer or by writing a logical 0 into it from the processor.
- **Bit 1** This bit is the overrun error (OE) indicator. Bit 1 indicates that data in the receiver buffer register was not read by the processor before the next character was transferred into the receiver buffer register, and thereby destroyed the previous character. The OE indicator is reset whenever the processor reads the contents of the line status register.
- **Bit 2** This bit is the parity error (PE) indicator. Bit 2 indicates that the received data character does not have the correct even or odd parity as selected by the even parity select bit. The PE bit is set to a logical 1 whenever a parity error is detected and is reset to a logical 0 whenever the processor reads the contents of the line status register.
- **Bit 3** This bit is the framing error (FE) indicator. Bit 3 indicates that the received character does not have a valid stop bit. Bit 3 is set to a logical 1 whenever the stop bit following the last data bit or parity is detected as a zero bit (spacing level).
- **Bit 4** This bit is the break interrupt (BI) indicator. Bit 4 is set to a logical 1 whenever the received data input is held in the spacing (logical 0) state for longer than a full word transmission time (that is, the total time of start bit + data bits + parity + stop bits).

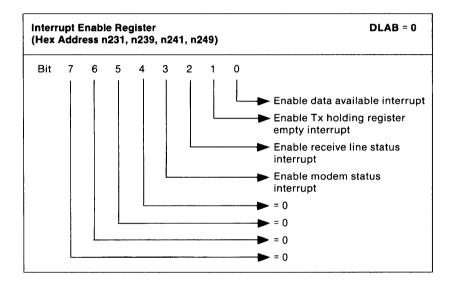

	Note: Bits 1 through 4 are the error conditions that produce a receiver line status interrupt whenever any of the corresponding conditions are detected.	
Bit 5	This bit is the transmitter holding register empty (THRE) indicator. Bit 5 indicates that the NS16450 is ready to accept a new character for transmission. In addition, this bit causes the NS16450 to issue an interrupt to the processor when the THRE interrup enable is set high. The THRE bit is set to a logical 1 when a character is transferred from the transmitter holding register into the transmitter shift register. The bit is reset to logical 0 concurrently with the loading of the transmitter holding register by the processor.	
Bit 6	This bit is the transmitter empty (TEMT) indicator. Bit 6 is set to a logical 1 whenever the transmitter holding register (THR) and the transmitter shift register (TSR) are both empty. It is reset to a logical 0 whenever either the THR or TSR contain a data character. Bit 6 is a read-only bit.	
Bit 7	This bit is permanently set to logical 0.	

Interrupt Identification Register

The NS16450 has an on-chip interrupt capability that allows for complete flexibility in interfacing to microprocessors. In order to provide minimum software overhead during data character transfers, the NS16450 prioritizes interrupts into four levels:

- Receiver line status (priority 1)
- Received data ready (priority 2)
- Transmitter holding register empty (priority 3)
- Modem status (priority 4).

Information indicating that a priority interrupt is pending and information on the type of interrupt is stored in the interrupt identification register. Refer to the "Interrupt Control Functions" table in Figure 13 on page 20. The interrupt identification register (IIR), when addressed during chip-select time, freezes the highest priority interrupt pending, and no other interrupts are acknowledged until that particular interrupt is serviced by the processor. The contents of the IIR are described below.


- **Bit 0** This bit can be used in hardwired, priority, or polled environment to indicate whether an interrupt is pending. When bit 0 is a logical 0, an interrupt is pending and the IIR contents may be used as a pointer to the appropriate interrupt service routine. When bit 0 is a logical 1, no interrupt is pending and polling (if used) is continued.
- **Bits 1, 2** These two bits of the IIR are used to identify the highest priority interrupt pending as indicated in Figure 13 on page 20.
- **Bits 3-7** These five bits of the IIR are always logical 0.

Interrupt ID Register		Interrupt Set and Reset Functions				
Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset Control
0	0	1		None	None	_
1	1	0	Highest	Receiver Line Status	Overrun Error or Parity Error or Framing Error or Break Intrpt.	Reading the Line Status Register
1	0	0	Second	Received Data Available	Receiver Data Available	Reading the Receiver Buffer Register
0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register or Writing into the Transmitter Holding Register
0	0	0	Fourth	Modem Status	Clear to Send or Data Set Ready or Ring Indicator or Received Line Signal Detect	Reading the Modem Status Register

Figure 13. Interrupt Control Functions

Interrupt Enable Register

This 8-bit register enables the four types of interrupts of the NS16450 to separately activate the chip interrupt (INTRPT) output signal. The interrupt system can be totally disabled by resetting bits 0 through 3 of the interrupt enable register. Similarly, by setting the appropriate bits of this register to a logical 1, selected interrupts can be enabled. Disabling the interrupt system inhibits the interrupt identification register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the line status and modem status registers. The contents of the interrupt enable register are described below:

- **Bit 0** This bit enables the received data available interrupt when set to logical 1.
- **Bit 1** This bit enables the transmitter holding register empty interrupt when set to logical 1.
- **Bit 2** This bit enables the receiver line status interrupt when set to logical 1.
- **Bit 3** This bit enables the modem status interrupt when set to logical 1.
- **Bits 4-7** These four bits are always logical 0.

Modem Control Register

This 8-bit register controls the interface with the modem or data set (or other peripheral device). The contents of the modem control register are described below:

Bit 0 This bit controls the data terminal ready (-DTR) output. When bit 0 is set to a logical 1, the -DTR output is forced to a logical 0. When bit 0 is reset to a logical 0, the -DTR output is forced to a logical 1.

Note: The -DTR output of the NS16450 may be applied to an EIA inverting line driver to obtain the proper polarity input at the modem or data set.

Bit 1 This bit controls the request to send (-RTS) output. Bit 1 affects the -RTS output in a manner identical to that described above for bit 0.

Note: The -RTS output of the NS16450 may be applied to an EIA-inverting line driver to obtain the proper polarity input at the modem or data set.

Bit 2 This bit controls the output 1 (-OUT 1) signal, which is an auxiliary user-designated output. Bit 2 affects the -OUT 1 output in a manner identical to that described above for bit 0.

Note: The -OUT 1 output of the NS16450 may be applied to an EIA inverting line driver to obtain the proper polarity input at the modem or data set.

Bit 3 This bit controls the output 2 (-OUT 2) signal, which is an auxiliary user-designated output. Bit 3 affects the -OUT 2 output in a manner identical to that described above for bit 0.

Note: The -OUT 2 output of the NS16450 may be applied to an EIA inverting line driver to obtain the proper polarity input at the modem or data set.

Bit 4 This bit provides a loopback feature for diagnostic testing of the NS16450. When bit 4 is set to logical 1, the following occurs:

The transmitter serial output (SOUT) is set to the marking (logical 1) state.

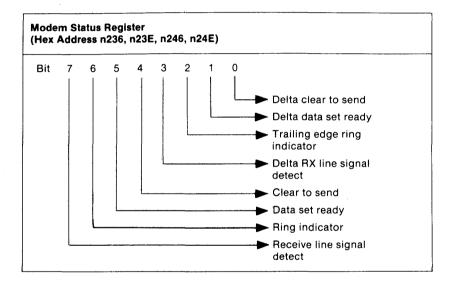
The receiver serial input (SIN) is disconnected.

The output of the transmitter shift register is "looped back" into the receiver shift register input.

The four modem control inputs (-CTS, -DSR, -RLSD, and -RI) are disconnected.

The four modem control outputs (-DTR, -RTS, -OUT 1, and -OUT 2) are internally connected to the four modem control inputs, and the modem control output pins are forced high.

In the the diagnostic mode the receiver and transmitter interrupts are fully operational. The modem control interrupts are also operational, but the sources of the interrupts are now the lower 4 bits of the modem control register instead of the 4 modem control inputs. The interrupts are still controlled by the interrupt enable register.

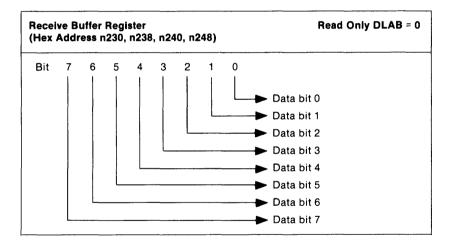

The NS16450 interrupt system can be tested by writing into the lower 6 bits of the line status register and into the lower 4 bits of the modem status register. Setting any of these bits to a logical 1 generates the appropriate interrupt (if enabled). The resetting of these interrupts is the same as in normal NS16450 operation. To return to normal operation, the registers must be reprogrammed for normal operation and then bit 4 of the modem control register must be reset to logical 0. The transmitter should be idle when this bit changes state.

Bits 5-7 These bits are permanently set to logical 0.

Modem Status Register

This 8-bit register provides the current state of the control lines from the modem (or peripheral device) to the processor. In addition to this current-state information, four bits of the modem status register provide change information. These bits are set to a logical 1 whenever a control input from the modem changes state. They are reset to logical 0 whenever the processor reads the modem status register.

The contents of the modem status register are described below:


- **Bit 0** This bit is the delta clear-to-send (DCTS) indicator. Bit 0 indicates that the -CTS input to the chip has changed state since the last time it was read by the processor.
- **Bit 1** This bit is the delta data set ready (DDSR) indicator. Bit 1 indicates that the -DSR input to the chip has changed state since the last time it was read by the processor.
- **Bit 2** This bit is the trailing edge of the ring indicator (TERI) detector. Bit 2 indicates that the -RI input to the chip has changed from an ON (logical 1) to an OFF (logical 0) condition.
- **Bit 3** This bit is the delta received line signal detector (DRLSD) indicator. Bit 3 indicates that the -RLSD input to the chip has changed state since the last time it was read by the processor.

Note: Whenever bit 0, 1, 2, or 3 is set to a logical 1, a modem status interrupt is generated, if the appropriate interrupt enable bit is set in the IER.

Bit 4	This bit is the complement of the clear to send (-CTS) input. Setting bit 4 (loop) of the MCR to a logical 1, is equivalent to RTS in the MCR.			
Bit 5	This bit is the complement of the data set ready (-DSR) input. If bit 4 (loop) of the MCR is set to a logical 1, this bit is equivalent to DTR in the MCR.			
Bit 6	This bit is the complement of the ring indicator (-RI) input. If bit 4 (loop) of the MCR is set to a logical 1, this bit is equivalent to -OUT 1 in the MCR.			
Bit 7	This bit is the complement of the received line signal detect (-RLSD) input. If bit 4 (loop) of the MCR is set to a logical 1, this bit is equivalent to -OUT 2 of the MCR.			

Receiver Buffer Register

The receiver buffer register contains the received character as defined below:

Bit 0 is the least significant bit and is the first bit serially received.

Transmitter Holding Register

Transmitter Holding Register Write Only DLAB = 0 (Hex Address n230, n238, n240, n248) Bit 7 6 5 4 3 2 ٥ 1 Data bit 0 Data bit 1 Data bit 2 Data bit 3 Data bit 4 Data bit 5 Data bit 6 Data bit 7

The transmitter holding register contains the character to be serially transmitted and is defined below:

Bit 0 is the least significant bit and is the first bit serially transmitted.

Programmable Baud-Rate Generator

The NS16450 contains a programmable baud-rate generator that can divide the clock input (1.8432 MHz) by any divisor from 1 to 655,535 or 2¹⁶-1. The output frequency of the baud-rate generator is the baud rate multiplied by 16. Two 8-bit latches store the divisor in a 16-bit binary format. These divisor latches must be loaded during initialization in order to insure desired operation of the baud-rate generator. Upon loading either of the divisor latches, a 16-bit baud counter is immediately loaded. This prevents long counts on initial load. The contents of the divisor latches are indicated below:

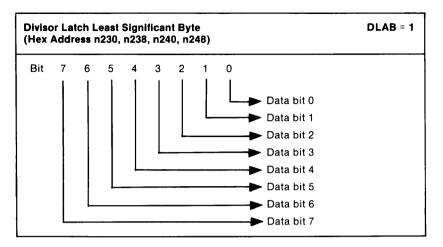


Figure 14. Divisor Latch Least Significant Byte

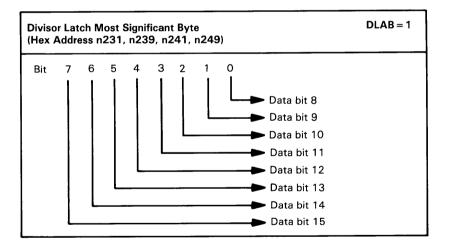


Figure 15. Divisor Latch Most Significant Byte

Figure 16 illustrates the use of the baud-rate generator with a frequency of 1.8432 MHz. For baud rates of 19,200 and below, the error obtained is minimal.

Note: The maximum operating frequency of the baud generator is 3.1 MHz. In no case should the data rate be greater than 19,200 baud.

Desired Baud	Divisor Used 16x Clo		Percent Error Difference Between
Rate	(Decimal)	(Hex)	Desired and Actual
50	2304	900	
75	1536	600	
110	1047	417	0.026
134.5	857	359	0.058
150	786	300	
300	384	180	
600	192	CO	
1200	96	60	
1800	64	40	
2000	58	3A	0.69
2400	48	30	_
3600	32	20	—
4800	24	18	—
7200	16	10	
9600	12	С	
19200	6	6	

Figure 16. Baud Rates at 1.8432 MHz

Connector Specifications

The adapter has a 10-pin connector at the rear of the adapter. The following figure shows the signals and their pin assignments.

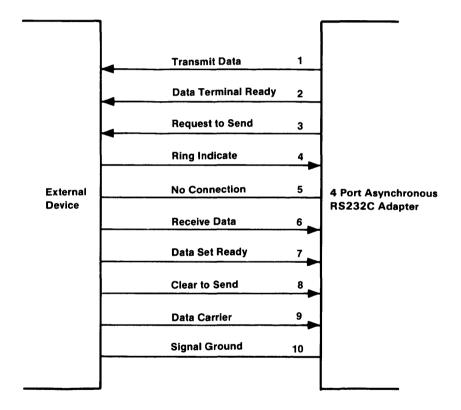
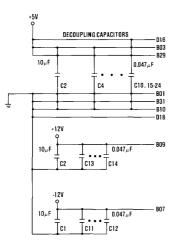
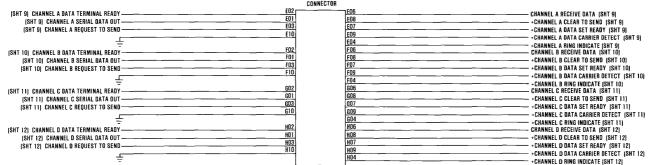
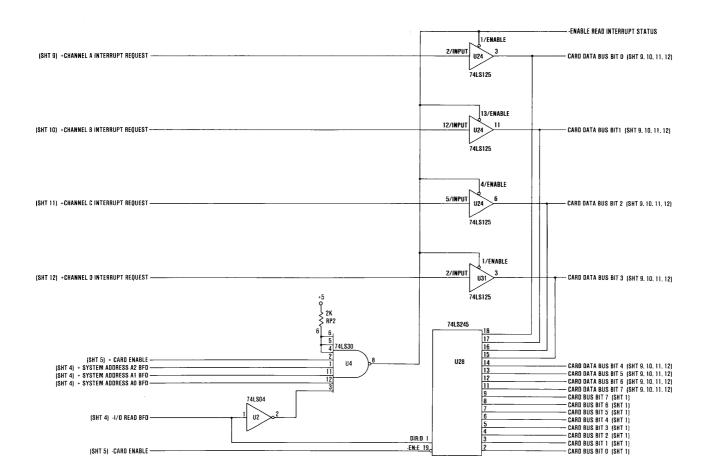
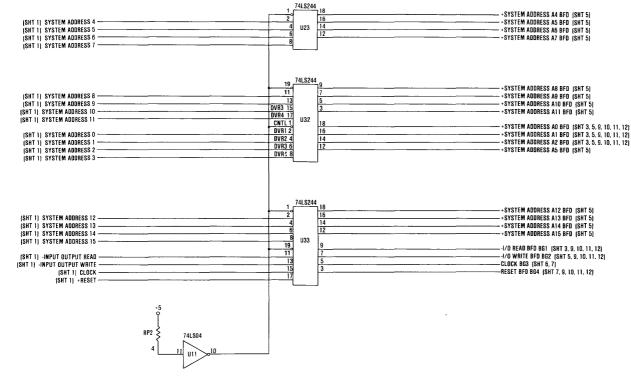
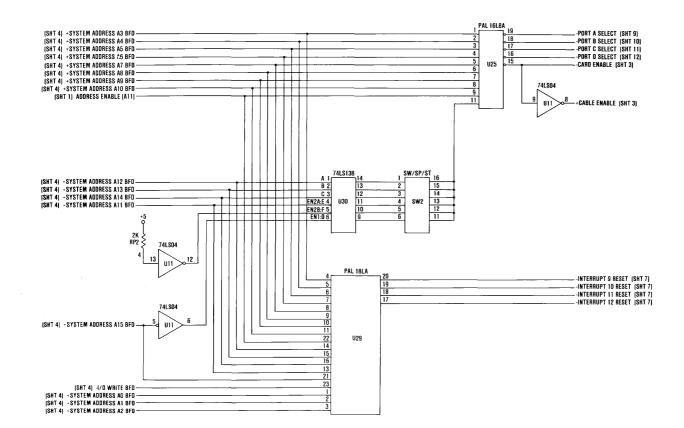



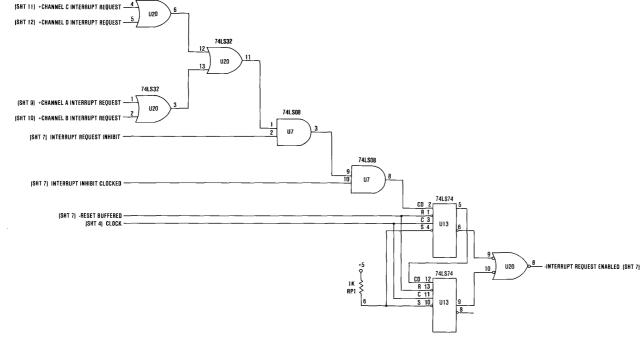
Figure 17. Connector Specifications

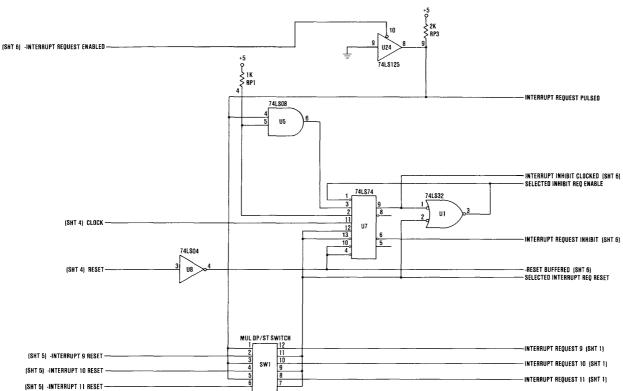

Logic Diagrams Sheet 1 of 12

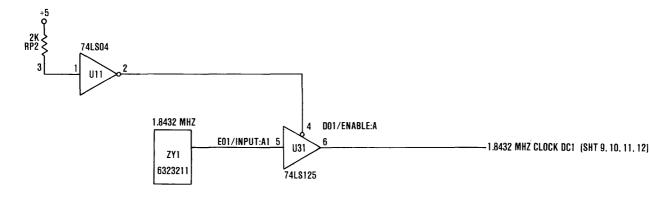

1/0.01/	7	
1/0 SL	A31	A0 (SHT 4)
3 3 7 5 5 4 4 3 2 4 4 4 4	A30	AU (SHT 4)
7	A29	A2 (SHT 4)
6	A28	A2 (SHT 4) A3 (SHT 4)
5	A27	A3 (SHT 4)
4	A26	
3	A25	
2	A24	A6 (SHT 4)
4	A23	A7 (SHT 4)
31	A22	A8 (SHT 4)
4	A21	A9 (SHT 4)
1	A20	A10 (SHT 4)
	A16	A11 (SHT 4)
	A15	A15 (SHT 4)
1	A14	A16 (SHT 4)
	A13	A17 (SHT 4)
	A12	A18 (SHT 4)
	A11	A19 (SHT 4)
	B03	AEN (SHT 5)
	D16	+5 DC
[B29	
	801	
	B10	GROUND
	B31	÷
	018	
1	809	
	B07	+12V DC
	813	
	B14	
	B02	
1	820	+RESET (SHT 4)
L		I/O CLOCK 4

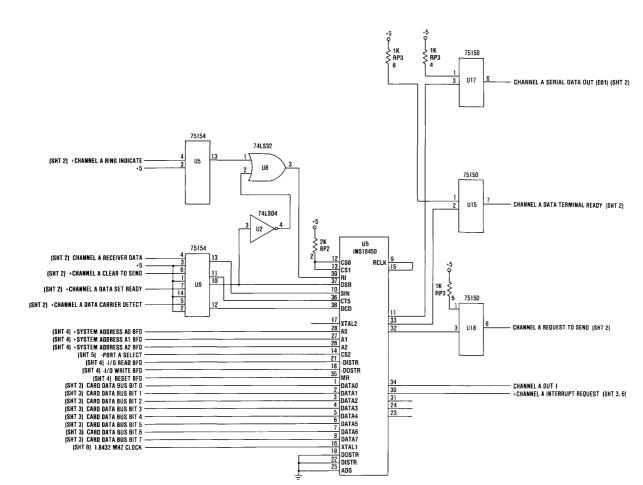


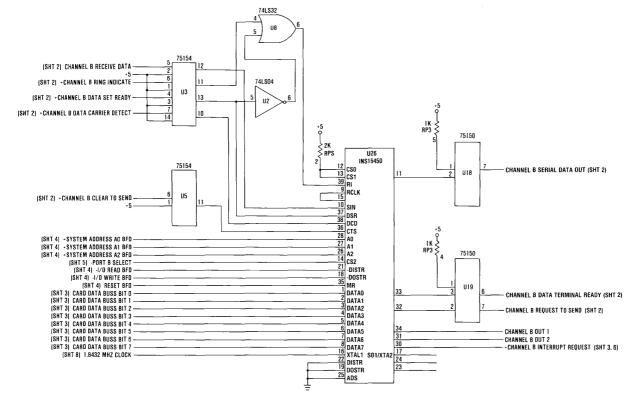


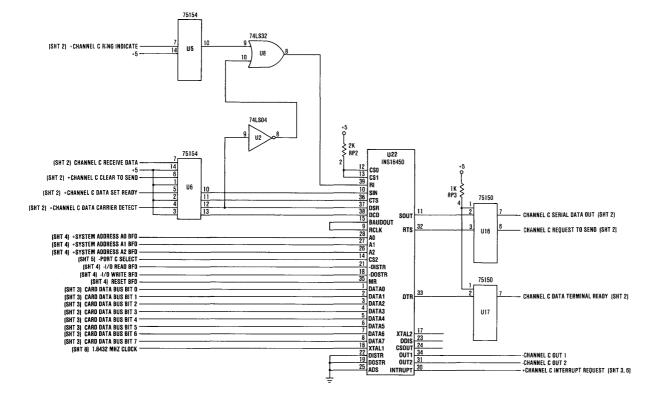


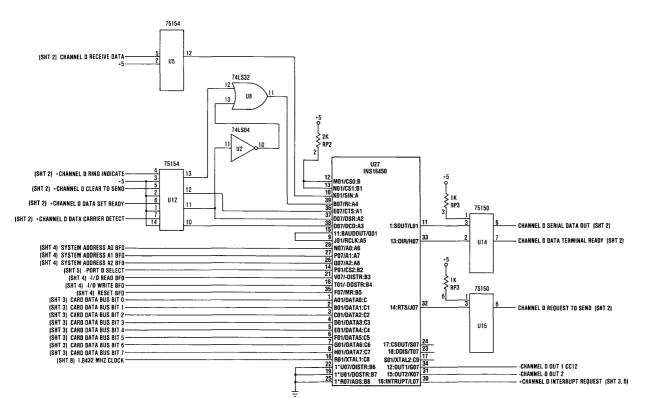









74L\$32



42 RS232C Adapter

Personal Computer Hardware Reference Library

4-Port Asynchronous Adapter RS232C

TNL SN20-9844 (March 1987) to 75X0235

Contents

Description
4-Port Asynchronous RS-232C Adapter Switch Settings
Modes of Operation
Interrupts
Serial Data Format
External Interface Description
Asynchronous Communications Element Pin Description 1
Programming Considerations 1
Connector Specifications

TNL SN20-9844 (March 1987) to 75X0235

Description

The 4-Port Asynchronous RS-232C Adapter provides four serial output ports on a 4.25- by 13.12-inch board that plugs into one I/O position. The adapter system control signals and voltage requirements are provided through a 2- by 31-position and a 2- by 18-position tab on the bottom of the adapter.

Up to four adapters may be used in one &sailboat. system. A DIP switch on the adapter is used to assign the adapter's I/O address range. The port I/O address assignments are contained in the adapter's I/O address range.

The adapter is fully programmable and supports asynchronous communications only. It will add and remove start bits, stop bits, and parity bits. A programmable baud-rate generator allows operation from 50 bps to 19200 bps. Five-, 6-, 7- or 8-bit characters with 1, 1-1/2, or 2 stop bits are supported. A priority interrupt system controls transmit, receive, error, line status, and data set interrupts.

Four 10-pin male AMPMODU connectors on the adapter provide external access to the four ports.

There are two versions of this adapter, one uses the NS16450 LSI chip and the other uses the NS16550. Features in addition to those listed above include:

- Independent receiver clock input.
- Modem control functions: clear to send (CTS), request to send (RTS), data set ready (DSR), data terminal ready (DTR), ring indicator (RI), and received line signal detect (RLSD), which is also known as data carrier detect (DCD) or carrier detect (CD).
- False start bit detection.
- Line-break generation and detection.
- The NS16450 version has full double buffering that reduces the need for precise synchronization.
- The NS16550 is capable of running all existing NS16450 software in its character mode, and in its FIFO mode has a built-in 16 byte buffer for both receive and transmit operations for improved performance.

Note: The NS16550 (Buffered) adapter can be identified by a plus (+) sign stamped at the bottom of the 10-pin interface signals connector. See Figure 9 on page 9.

All pacing of the interface and control signal status must be handled by the system software. Figure 1 on page 2 is a block diagram of the 4-Port Asynchronous RS-232C Adapter.

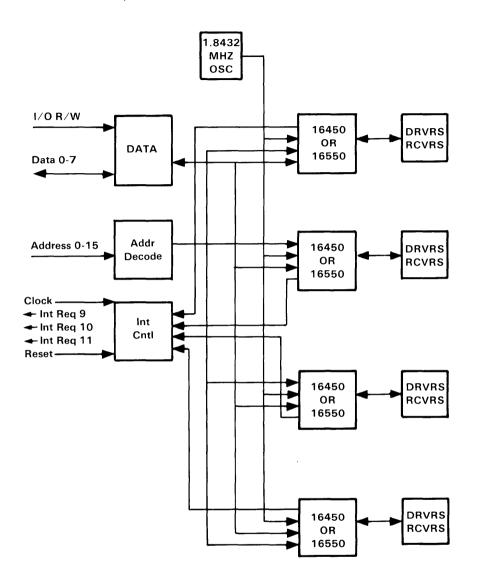


Figure 1. 4-Port Asynchronous RS-232C Adapter Block Diagram

4-Port Asynchronous RS-232C Adapter Switch Settings

The 4-Port Asynchronous RS-232C Adapter switch settings select the interrupt level and the address range of adapters installed.

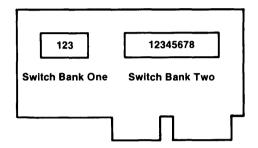


Figure 2. 4-Port Asynchronous RS-232C Adapter Switches

Interrupt Level	Switch Bank One Setting						
Selected	Switch 1	Switch 2	Switch 3				
Level 9 Level 10 Level 11	On Off Off	Off On Off	Off Off On				

Figure 3. Switch Bank One Settings

TNL SN20-9844 (March 1987) to 75X0235

Address Range of	Switch Bank Two Setting						
Adapters	Switch 1	Switch 2	Switch 3	Switch 4			
1230-124F 2230-224F 3230-324F 4230-424F	On Off Off Off	Off On Off Off	Off Off On Off	Off Off Off On			

(

Figure 4. Switch Bank Two Settings

Note: Switches 5 through 8 are not used.

Modes of Operation

The different modes of operation are selected by programming the NS16450/NS16550 asynchronous communications element. Address bits A0, A1, and A2 select the different registers that define the modes of operation. Also, the divisor latch access bit (bit 7) of the line control register is used to select certain registers.

The address range for this adapter is Hex 1230 through Hex 424F. Figure 5 and Figure 6 on page 6 depict a value of n which represents a variable determined by the setting of switch bank two. Switches 1, 2, 3, and 4 of switch bank two allow the adapter to operate and select the appropriate address range.

I/O Deco Port B	de (In Hex) Port A	Register Selected	DLAB State
n238	n230	TX Buffer	DLAB = 0 (Write)
n238	n230	RX Buffer	DLAB = 0 (Read)
n238	n230	Divisor Latch LSB	DLAB = 1
n239	n231	Divisor Latch MSB	DLAB = 1
n239	n231	Interrupt Enable Register	DLAB = 0
n23A	n232	Interrupt Identification	
n23A	n232	Register (Read) FIFO Control Register (Write - NS16550 Only)	
n23B	n233	Line Control Register	
n23C	n234	Modem Control Register	
n23D	n235	Line Status Register	
n23E	n236	Modem Status Register	

Figure 5. I/O Decodes, Port A and Port B

Notes:

1

- 1. n is equal to the first digit of the adapter address range
- 2. DLAB means Divisor Latch Access Bit.

I/O Deco Port D	de (In Hex) Port C	Register Selected	DLAB State
n248	n240	TX Buffer	DLAB = 0 (Write)
n248	n240	RX Buffer	DLAB = 0 (Read)
n248	n240	Divisor Latch LSB	DLAB = 1
n249	n241	Divisor Latch MSB	DLAB = 1
n249	n241	Interrupt Enable Register	DLAB = 0
n24A	n242	Interrupt Identification	
n24A	n242	Register (Read) FIFO Control Register (Write - NS16550 Only)	
n24B	n243	Line Control Register	
n24C	n244	Modem Control Register	
n24D	n245	Line Status Register	
n24E	n246	Modem Status Register	

Figure 6. I/O Decodes, Port C and Port D

Notes:

- 1. n is equal to the first digit of the adapter address range
- 2. DLAB means Divisor Latch Access Bit.

A9—>A3 Decode	A2	A1	AO	DLAB	Register
See	х	X	x		
Note 1	0	0	0	0	Receive Buffer Reg. (Read) Transmit Holding Reg. (Write)
	0	0	1	0	Interrupt Enable
	0	1	0	X	Interrupt Identification (Read Only)
	0	1	0	x	FIFO Control (Write - NS16550 Only)
	0	1	1	x	Line Control
	1	0	0	X	Modem Control
	1	0	1	x	Line Status
	1	1	0	x	Modem Status
	1	1	1	x	Scratch (See note 3)
	0	0	0	1	Divisor Latch (LSB)
	0	0	1	1	Divisor Latch (MSB)

Figure 7. Address Bits

Notes:

- 1. Bits A9 through A3 are used to select specific adapter and serial port.
- 2. A2, A1, and A0 bits are *don't cares* and are used to select the different registers of the NS16450/NS16550 chip.
- 3. The Scratch Register of the NS16450/NS16550 module should be initialized to all ones and never be written to with any data afterwards. This would cause indeterminate data when Read address n237 (see "Interrupts" on page 8) is executed.

Interrupts

Three interrupt lines are provided to the system. The interrupt level (9, 10, or 11) is selected by placing the appropriate switch on switch bank one to the on position. An interrupt register (read adr n237, where n is first digit of the address range) is provided for storage of pending port interrupts. Interrupt register bit assignments are shown in Figure 8.

	Hex Addres	ss n237					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1	1	1	Port 4	Port 3	Port 2	Port 1

Figure 8. Interrupt Register Read Format

Before the 4-Port Asynchronous RS-232C Adapter can generate an interrupt to the processor, it must be enabled by writing any data byte to the interrupt enable address. This address corresponds to the interrupt level that the adapter is jumpered for.

The enable for interrupt level 9 is hex address 02F2.

The enable for interrupt level 10 is hex address 06F2.

The enable for interrupt level 11 is hex address 06F3.

After the adapter generates an interrupt, it must be reset by writing any data byte to the interrupt enable address for that interrupt.

Serial Data Format

The data format is as follows:

Transmit Data Marking	Start Bit	D0	D1	D2	D3	D4	D5	D6	D7	Parity Bit	Stop Bit	
-----------------------------	--------------	----	----	----	----	----	----	----	----	---------------	-------------	--

Data bit 0 is the first bit to be transmitted or received. The adapter automatically inserts the start bit, the correct parity bit (if programmed to do so), and the stop bit (1, 1-1/2, or 2 depending on the command in the line control register).

External Interface Description

The adapter provides an EIA 4-Port Asynchronous RS-232C Adapter-like interface. The pin functions for the 10-pin male connector are shown in Figure 9.

Pin	Signal
1	Transmit Data
2	Data Terminal Ready
3	Request to Send
4	Ring Indicate
5	No Connection
6	Receive Data
7	Data Set Ready
8	Clear to Send
9	Data Carrier
10	Signal Ground

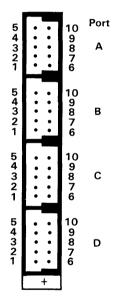


Figure 9. 10-Pin Interface Signals Connector (viewed from rear of adapter)

The adapter converts the interface signals from TTL levels to EIA 4-Port Asynchronous RS-232C Adapter voltage levels, and vice versa. These signals are sampled or generated by the communications control chip. These signals can then be sensed by the system software to determine the state of the interface or peripheral device. The drivers and receivers used on the adapter are the inverting type; therefore, a 0 EIA level on the line is received or transmitted as a 0 TTL level, and a 1 EIA level is received or transmitted as a 1 TTL level.

Voltage Interchange Information

The signal will be considered in the marking condition when the voltage on the interchange circuit, measured at the interface point, is more negative than -3 Vdc with respect to signal ground. The signal will be considered in the spacing condition when the voltage is more positive than +3 Vdc with respect to signal ground. The region between +3 Vdc and -3 Vdc is defined as the transition region and is considered an invalid level. The voltage that is more negative than -15 Vdc or more positive than +15 Vdc is also considered an invalid level.

During the transmission of data, the marking condition denotes the binary state 1 and the spacing condition denotes the binary state 0.

For interface control circuits, the function is on when the voltage is more positive than +3 Vdc with respect to signal ground and is off when the voltage is more negative than -3 Vdc with respect to signal ground.

Interchange Voltage	Binary State	Signal Condition	Interface Control Function
Positive Voltage	Binary 0	Spacing	= On
Negative Voltage	Binary 1	Marking	= Off

Figure 10. 4-Port Asynchronous RS-232C Adapter Signal Levels

Asynchronous Communications Element Pin Description

The following describes the function of all NS16450/NS16550 input/output pins. Some of these descriptions reference internal circuits. The use of each signal as implemented on the multiport adapter is described.

Note: In the following descriptions, a low represents a logic 0 (0 Vdc nominal) and a high represents a logic 1 (+2.4 Vdc nominal).

Input Signals

Chip Select (CS0, CS1, -CS2), Pins 12-14: When CS0 and CS1 are high and -CS2 is low, the chip is selected. Chip selection is complete when the decoded chip select signal is latched with an active (low) address strobe (-ADS) input. This enables communications between the NS16450/NS16550 and the processor.

Data Input Strobe (DISTR, -DISTR), Pins 22 and 21: When DISTR is high or -DISTR is low while the chip is selected, the processor can read status information or data from a selected register of the NS16450/NS16550.

Note: Only one active DISTR or -DISTR input is required to transfer data from the NS16450/ NS16550 during a read operation. Therefore, the DISTR input has been permanently tied low and the -DISTR line is used.

Data Output Strobe (DOSTR, -DOSTR), Pins 19 and 18: When DOSTR is high or -DOSTR is low while the chip is selected, the processor can write data or control words into a selected register of the NS16450/NS16550.

Note: Only one active DOSTR or -DOSTR input is required to transfer data to the NS16450/ NS16550 during a write operation. Therefore, the DOSTR input has been permanently tied low and the -DOSTR input is used.

-Address Strobe (-ADS), Pin 25: When low, this signal provides latching for the register select (A0, A1, A2) and chip select (CS0, CS1, -CS2) signals.

Note: The -ADS input has been tied low because the register select (A0, A1, A2) signals are stable for the duration of read and write operations.

Register Select (A0, A1, A2), Pins 26-28: These three inputs are used during a read or write operation to select an NS16450/NS16550 register to read from or write into as indicated in Figure 11. Note that the state of the divisor latch access bit (DLAB), which is the most significant bit of the line control register, affects the selection of certain NS16450/NS16550 registers. The DLAB must be set high by the system software to access the baud-generator divisor latches.

TNL SN20-9844 (March 1987) to 75X0235

DLAB	A2	A1	A0	Register
0	0	0	0	Receiver Buffer (Read)
0	0	0	0	Transmitter Holding Register (Write)
0	0	0	1	Interrupt Enable
x	0	1	0	Interrupt Identification (Read Only)
х	0	1	0	FIFO Control (Write - NS16550 Only)
х	0	1	1	Line Control
х	1	0	0	Modem Control
х	1	0	1	Line Status
х	1	1	0	Modem Status
x	1	1	1	Scratch
1	0	0	0	Divisor Latch (Least Significant Byte)
1	0	0	0	Divisor Latch (Most Significant Byte)

(

Figure 11. NS16450/NS16550 Register Selection

Register/Signal	Reset Control	Reset State
Interrupt Enable Register	Master Reset	All Bits Low, 0-3 Forced and 4-7 Permanent
Interrupt Identification Register	Master Reset	Bit 0 is High, Bits 1 and 2 are Low, and Bits 3-7 are Permanent
Line Control Register	Master Reset	All Bits Low
Modem Control Register	Master Reset	All Bits Low
Line Status Register	Master Reset	All Bits Low, except Bits 5 and 6 are High
Modem Status Register	Master Reset	Bits 0-3 are Low, Bits $4-7 =$ Input Signal
SOUT	Master Reset	High
INTRPT (RCVR Errors)	Read LSR/MR	Low
INTRPT (RCVR Data Ready)	Read RBR/MR	Low
INTRPT (THRE)	Read IRR/ Write THR/ MR	Low
RCVR FIFO	MR/ FCR1•FCR0/ ΔFCR0	Low

Figure 12 (Part 1 of 2). NS16450/NS16550 Reset Functions

Register/Signal	Reset Control	Reset State
XMIT FIFO	MR/ FCR2•FCR0/ ΔFCR0	Low
FIFO Control Register	Master Reset	Low
INTRPT (Modem Status Changes)	Read MSR/ MR	Low
-OUT 2 -RTS -DTR -OUT 1	Master Reset Master Reset Master Reset Master Reset	High High High High

Figure 12 (Part 2 of 2). NS16450/NS16550 Reset Functions

Master Reset (MR), Pin 35: When high, this signal clears all the registers (except the receive buffer, transmitter holding, and divisor latches), and the control logical of the NS16450/NS16550. Also, the state of various output signals (SOUT, INTRPT, -OUT 1, -OUT 2, -RTS, -DTR) is affected by an active MR input. Refer to Figure 12 on page 13.

Receiver Clock (RCLK), Pin 9: This input is the 16x baud-rate clock for the receiver section of the chip.

Serial Input (SIN), Pin 10: Serial data input from the communications link (peripheral device, modem, or data set).

-Clear to Send (-CTS), Pin 36: The -CTS signal is a modem control function input whose condition can be tested by the processor by reading bit 4 (CTS) of the modem status register. Bit 0 (DCTS) of the modem status register indicates whether the -CTS input has changed state since the previous reading of the modem status register.

Note: Whenever the CTS bit of the modem status register changes state, an interrupt is generated if the modem status interrupt is enabled.

-Data Set Ready (-DSR), Pin 37: The -DSR signal is a modem control function input whose condition can be tested by the processor by reading bit 5 (DSR) of the modem status register. When low, this signal indicates that the modem or data set is ready to establish the communications link and transfer data with the NS16450/NS16550. Bit 1 (DDSR) of the modem status register indicates whether the -DSR input has changed since the previous reading of the modem status register.

Note: Whenever the DSR bit of the modem status register changes state, an interrupt is generated if the modem status interrupt is enabled.

-Received Line Signal Detect (-RLSD), Pin 38: The -RLSD signal is a modem control function input whose condition the processor can test by reading bit 7 (RLSD) of the modem status register. When low, this signal indicates that the data carrier had been detected by the modem or data set. Bit 3 (DRLSD) of the modem status register indicates whether the -RLSD input has changed state since the previous reading of the modem status register.

Notes:

- 1. Whenever the RLSD bit of the modem status register changes state, an interrupt is generated if the modem status interrupt is enabled.
- 2. Received Line Signal Detect is also called Data Carrier Detect (DCD), or Carrier Detect (CD).

-Ring Indicator (-RI), Pin 39: The -RI signal is a modem control function input whose condition the processor can test by reading bit 6 (RI) of the modem status register. When low, this signal indicates that a telephone ringing signal has been received by the modem or data set. Bit 2 (TERI) of the modem status register indicates whether the -RI input has changed from a low to high state since the previous reading of the modem status register.

Note: Whenever the RI bit of the modem status register changes from a high to a low state, an interrupt is generated if the modem status interrupt is enabled.

VCC, Pin 40: +5 Vdc supply

VSS, Pin 20: Ground (0 Vdc) reference.

Output Signals

-Data Terminal Ready (-DTR), Pin 33: When low, this signal informs the modem or data set that the NS16450/NS16550 is ready to communicate. The -DTR output signal can be set to an active low by programming bit 0 (DTR) of the modem control register to a high level. The -DTR signal is set high by a master reset operation. The -DTR signal is set high during loop mode operation.

-Request to Send (-RTS), Pin 32: When low, this signal informs the modem or data set that the NS16450/NS16550 is ready to transmit data. The -RTS output signal can be set to an active low by programming bit 1 (RTS) of the modem control register. The -RTS signal is set high by a master reset operation. The -RTS signal is set high during loop mode operation.

-Output 1 (-OUT 1), Pin 34: With this signal, user-designated output can be set to an active low by programming bit 2 (-OUT 1) of the modem control register to a high level. The -OUT 1 signal is set high by a master reset operation. The -OUT 1 signal is set high during the loop mode operation. This adapter does not use this signal.

-Output 2 (-OUT 2), Pin 31: With this signal, user-designated output can be set to an active low by programming bit 3 (-OUT 2) of the modem control register to a high level. The -OUT 2 signal is set high by a master reset operation. The -OUT 2 signal is set high during the loop mode operation. This adapter does not use this signal.

Chip Select Out (CSOUT), Pin 24, NS16450 Only: When high, this signal indicates that the chip has been selected by active CS0, CS1, and -CS2 inputs. No data transfer can be initiated until the CSOUT signal is a logic 1. This signal is not used.

TXRDY, RXRDY, Pins 24, 29, NS16550 Only: Transmitter and Receiver pins for DMA signaling. The adapter does not use these pins.

Driver Disable (DDIS), Pin 23: This signal goes low whenever the processor is reading data from the NS16450/NS16550. The adapter does not use this signal.

-Baudout (-BAUDOUT), Pin 15: This signal is a 16x clock signal for the transmitter section of the NS16450/NS16550. The clock rate is equal to the main reference oscillator frequency divided by the specified divisor in the baud-generator division latches. The -Baudout is also used for the receiver section.

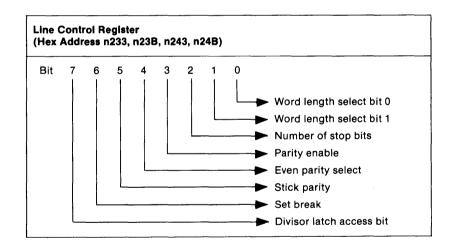
Interrupt (INTRPT), Pin 30: This signal goes high whenever any one of the following interrupt types has an active high condition and is enabled through the IER: receiver error flag, received data available, transmitter holding register empty, or modem status. For the NS16550, the signal also goes high for timeout (FIFO mode only). The Intrpt signal is reset low upon the appropriate interrupt service or a master reset operation.

Serial Output (SOUT), Pin 11: Composite serial data output to the communications link (peripheral, modem or data set). The SOUT signal is set to the marking (logic 1) state upon a master reset operation.

Input/Output Signals

Data Bus (D7-D0), Pins 1-8: This bus comprises eight tri-state input/output lines. The bus provides bidirectional communications between the NS16450/NS16550 and the processor. Data, control words, and status information are transferred through the D7-D0 data bus.

External Clock Input/Output (XTAL1, XTAL2), Pins 16 and 17: These two pins connect the main timing reference (crystal or signal clock) to the NS16450/NS16550.

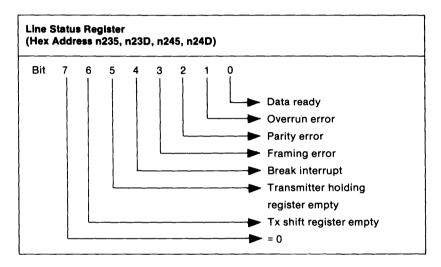

Programming Considerations

The NS16450/NS16550 has a number of accessible registers. The system programmer may access or control any of the NS16450/NS16550 registers through the processor. These registers are used to control NS16450/NS16550 operations and to transmit and receive data.

Note: The n in address is the card number (1-4).

Line Control Register

The system programmer specifies the format of the asynchronous data communications exchange through the line control register. In addition to controlling the format, the programmer may retrieve the contents of the line control register for inspection. This feature simplifies system programming and eliminates the need for separate storage of the line characteristics in system memory. The contents of the line control register are described below:


Bit 1	Bit 0	Word Length
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

Bits 0, 1 These two bits specify the number of bits in each transmitted or received serial character. The encoding of bits 0 and 1 is as follows:

- **Bit 2** This bit specifies the number of stop bits in each transmitted or received serial character. If bit 2 is a logical 0, one stop bit is generated or checked in the transmit or receive data, respectively. If bit 2 is a logical 1 when a 5-bit word length is selected through bits 0 and 1, 1-1/2 stop bits are generated or checked. If bit 2 is a logical 1 when either a 6-, 7-, or 8-bit word length is selected, two stop bits are generated or checked.
- **Bit 3** This bit is the parity enable bit. When bit 3 is a logical 1, a parity bit is generated (transmit data) or checked (receive data) between the last data word bit and stop bit of the serial data. (The parity bit is used to produce an even or odd number of 1's when the data word bits and the parity bit are summed.)
- **Bit 4** This bit is the even parity select bit. When bit 3 is a logical 1 and bit 4 is a logical 0, an odd number of logical 1's are transmitted or checked in the data word bits and parity bit. When bit 3 is a logical 1 and bit 4 is a logical 1, an even number of bits are transmitted or checked.
- **Bit 5** This bit is the stick parity bit. When bit 3 is a logical 1 and bit 5 is a logical 1, the parity bit is transmitted and then detected by the receiver as a logical 0 (space parity) if bit 4 is a logical 1, or as a logical 1 (mark parity) if bit 4 is a logical 0.
- **Bit 6** This bit is the set break control bit. When bit 6 is a logical 1, the serial output (SOUT) is forced to the spacing (logical 0) state and remains there regardless of other transmitter activity. The set break is disabled by setting bit 6 to a logical 0. This feature enables the processor to alert a terminal in a computer communications system.
- **Bit 7** This bit is the divisor latch access bit (DLAB). It must be set high (logical 1) to access the divisor latches of the baud-rate generator during a read or write operation. It must be set low (logical 0) to access the receiver buffer, the transmitter holding register, or the interrupt enable register.

Line Status Register

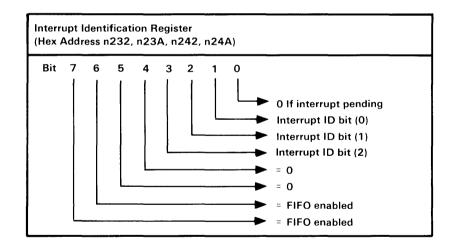
This 8-bit register provides status information to the processor concerning the data transfer. The contents of the line status register are described below:

- **Bit 0** This bit is the receiver data ready (DR) indicator. Bit 0 is set to a logical 1 whenever a complete incoming character has been received and transferred into the receiver buffer register or the FIFO. Bit 0 may be reset to a logical 0 either by the processor reading the data in the receiver buffer or by writing a logical 0 into it from the processor.
- **Bit 1** This bit is the overrun error (OE) indicator. Bit 1 indicates that data in the receiver buffer register was not read by the processor before the next character was transferred into the receiver buffer register, and that the previous character was thereby destroyed. The OE indicator is reset whenever the processor reads the contents of the line status register.
- **Bit 2** This bit is the parity error (PE) indicator. Bit 2 indicates that the received data character does not have the correct even or odd parity as selected by the even parity-select bit. The PE bit is set to a logical 1 upon detection of a parity error and is reset to a logical 0 whenever the processor reads the contents of the line status register. For the NS16550 in the FIFO mode, this error is associated with the particular character in the FIFO it applies to. This error is revealed to the system when its associated character is at the top of the FIFO.

- **Bit 3** This bit is the framing error (FE) indicator. Bit 3 indicates that the received character did not have a valid stop bit. Bit 3 is set to a logical 1 whenever the stop bit following the last data bit or parity is detected as a 0 bit (spacing level). The FE indicator is reset whenever the system reads the contents of the line status indicator. For the NS16550 in the FIFO mode, this error is associated with the particular character in the FIFO it applies to. This error is revealed to the system when its associated character is at the top of the FIFO.
- **Bit 4** This bit is the break interrupt (BI) indicator. Bit 4 is set to a logical 1 whenever the received data input is held in the spacing (logical 0) state for longer than a full word transmission time (that is, the total time of start bit + data bits + parity + stop bits). The BI indicator is reset whenever the system reads the contents of the line status indicator. For the NS16550 in the FIFO mode, this error is associated with the particular character in the FIFO it applies to. This error is revealed to the system when its associated character is at the top of the FIFO. When break occurs only one 0 character is loaded into the FIFO. The next character transfer is enabled after SIN goes to the marking state and receives the next valid start bit.

Note: Bits 1 through 4 are the error conditions that produce a receiver line status interrupt whenever any of the corresponding conditions are detected.

- **Bit 5** This bit is the transmitter holding register empty (THRE) indicator. Bit 5 indicates that the NS16450/NS16550 is ready to accept a new character for transmission. In addition, this bit causes the NS16450/NS16550 to issue an interrupt to the processor when the transmit holding register empty interrupt enable is set high. The THRE bit is set to a logical 1 when a character is transferred from the transmitter holding register into the transmitter shift register. The bit is reset to logical 0 concurrently with the loading of the transmitter holding register by the processor. For the NS16550 in the FIFO mode, this bit is set when the transmit FIFO is empty; it is cleared when at least one byte is written to the transmit FIFO.
- **Bit 6** This bit is the transmitter empty (TEMT) indicator. Bit 6 is set to a logical 1 whenever the transmitter holding register (THR) and the transmitter shift register (TSR) are both empty. It is reset to a logical 0 whenever either the THR or TSR contain a data character. Bit 6 is a read-only bit. For the NS16550 in the FIFO mode, this bit is set to 1 whenever the transmitter FIFO and shift register are both empty.
- **Bit 7** In the character mode this is a 0. For the NS16550 in the FIFO mode, this bit is set when there is at least one parity error, framing error or break indication in the FIFO. Bit 7 is cleared when the processor reads the line status register, if there are no subsequent errors in the FIFO.


Note: The line status register is for read operations only.

Interrupt Identification Register

The NS16450/NS16550 has an on-chip interrupt capability that allows for complete flexibility in interfacing to microprocessors. In order to provide minimum software overhead during data character transfers, the NS16450/NS16550 sets interrupts into four priority levels:

- Receiver line status (priority 1)
- Received data ready (priority 2), or for the NS16550 in the FIFO mode, timeout in the FIFO.
- Transmitter holding register empty (priority 3)
- Modem status (priority 4).

Information indicating that a priority interrupt is pending and information on the type of interrupt is stored in the interrupt identification register. Refer to the "Interrupt Control Functions" table in Figure 13 on page 22. The interrupt identification register (IIR), when addressed during chip-select time, freezes the highest priority interrupt pending, and no other interrupts are acknowledged until that particular interrupt is serviced by the processor. The contents of the IIR are described below.

- **Bit 0** This bit can be used in a hardwired, priority, or polled environment to indicate whether an interrupt is pending. When bit 0 is a logical 0, an interrupt is pending and the IIR contents are used as a pointer to the appropriate interrupt service routine. When bit 0 is a logical 1, no interrupt is pending, and polling (if used) is continued.
- Bits 1, 2 These 2 bits of the IIR are used to identify the highest priority interrupt pending as indicated in Figure 13 on page 22.

Bits 3-7 For the NS16450 these 5 bits of the IIR are always logical 0. For the NS16550:

- **Bit 3** In the character mode this bit is 0. In the FIFO mode this bit is set along with bit 2 when a timeout interrupt is pending.
- Bits 4 5 These 2 bits of the IRR are always logical 0.
- Interrupt **Interrupt Set and Reset Functions** ID Register Bit Bit Bit Bit **Priority** Interrupt Interrupt Interrupt 3* 2 1 0 Level Type Source **Reset Control** 0 0 0 1 ____ None None 0 Reading the Line 0 1 1 Highest **Receiver Line** Overrun Error or Status Parity Error or **Status Register** Framing Error or Break Interrupt. 0 Received Data 0 1 0 Second Receiver Data Reading the Receiver Buffer Available Available or for NS16550, Trigger Register Level Reached 1 1 0 0 Second Character No characters Reading the Receiver Buffer Timeout have been Register Indication removed from or input to the **RCVR FIFO** during the last 4 character times and there is at least 1 character in it during this time.
- **Bit 6 7** These 2 bits are set when FCR0 = 1.

Figure 13 (Part 1 of 2). Interrupt Control Functions

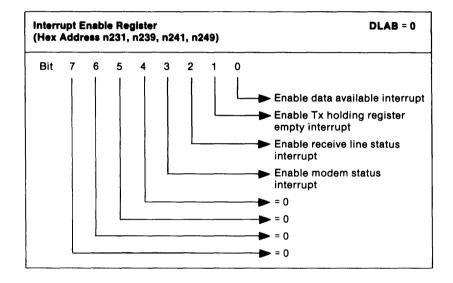
Inter Il Regi				Interrupt Set and Reset Functions						
Bit 3*	Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset Control			
0	0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register or Writing into the Transmitter Holding Register			
0	0	0	0	Fourth	Modem Status	Clear to Send or Data Set Ready or Ring Indicator or Received Line Signal Detect	Reading the Modem Status Register			

Figure 13 (Part 2 of 2). Interrupt Control Functions

Note: * = Applicable to NS16550 only.

FIFO Control Register

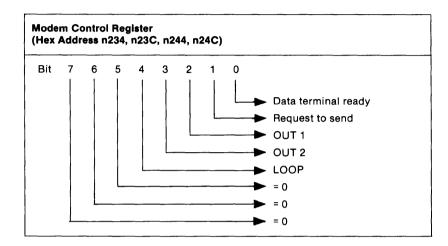
This is an 8-bit write only register (NS16550 only) at the same location as the interrupt identification register. This register enables the FIFOs, clears the FIFOs, sets the RCVR FIFO trigger level, and selects the type of DMA signaling.


- **Bit 0** Setting bit 0 to 1 enables both the XMIT and RCVR FIFOs. Resetting bit 0 clears all bytes in both FIFOs. When changing from FIFO mode to character mode and vice versa, data is not automatically cleared from the FIFOs. Therefore, the FIFOs should be cleared before changing modes. This bit must be a 1 when other FIFO control register bits are written to or they will not be programmed.
- **Bit 1** Setting bit 1 to 1 clears all bytes in the RCVR FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 written to this bit position is self clearing.
- **Bit 2** Setting bit 2 to 1 clears all bytes in the XMIT FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 written to this bit position is self clearing.
- Bit 3 Setting bit 3 to 1 changes the RXRDY and TXRDY pins from mode 0 to mode 1 if bit 0 = 1.
- Bit 4, 5 Reserved
- Bit 6,7 These two bits set the trigger level for the RCVR FIFO interrupt.

Bit 7	Bit 6	RCVR FIFO Trigger Level (Bytes)
0	0	01
0	1	04
1	0	08
1	1	14

Interrupt Enable Register

1


This 8-bit register enables the four types of interrupts of the NS16450/NS16550 to separately activate the chip interrupt (INTRPT) output signal. The interrupt system can be totally disabled by resetting bits 0 through 3 of the interrupt enable register. Similarly, setting the appropriate bits of this register to a logical 1, can enable selected interrupts. Disabling the interrupt system inhibits the interrupt identification register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the line status and modem status registers. The contents of the interrupt enable register are described below:

- **Bit 0** This bit enables the received data available interrupt and for the NS16550, timeout interrupts in the FIFO mode, when set to a logical 1.
- Bit 1 This bit enables the transmitter holding register empty interrupt when set to a logical 1.
- Bit 2 This bit enables the receiver line status interrupt when set to a logical 1.
- Bit 3 This bit enables the modem status interrupt when set to a logical 1.
- **Bits 4-7** These four bits are always logical 0.

Modem Control Register

This 8-bit register controls the interface with the modem or data set (or other peripheral device). The contents of the modem control register are described below:

Bit 0 This bit controls the data terminal ready (-DTR) output. When bit 0 is set to a logical 1, the -DTR output is forced to a logical 0. When bit 0 is reset to a logical 0, the -DTR output is forced to a logical 1.

Note: The -DTR output of the NS16450/NS16550 is applied to an EIA inverting line driver to obtain the proper polarity input at the modem or data set.

Bit 1 This bit controls the request to send (-RTS) output. Bit 1 affects the -RTS output in a manner identical to that described above for bit 0.

Note: The -RTS output of the NS16450/NS16550 is applied to an EIA-inverting line driver to obtain the proper polarity input at the modem or data set.

- **Bit 2** This bit controls the output 1 (-OUT 1) signal, which is an auxiliary user-designated output. Bit 2 affects the -OUT 1 output in a manner identical to the proper polarity input at the modem or data set. This bit is not used by the adapter.
- **Bit 3** This bit controls the output 2 (-OUT 2) signal, which is an auxiliary user-designated output. Bit 3 affects the -OUT 2 output in a manner identical to that described above for bit 0. This bit is not used by the adapter.

Bit 4 This bit provides a loopback feature for diagnostic testing of the NS16450/NS16550. When bit 4 is set to logical 1, the following occurs:

The transmitter serial output (SOUT) is set to the marking (logical 1) state.

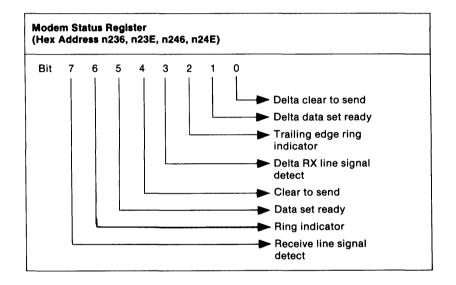
The receiver serial input (SIN) is disconnected.

The output of the transmitter shift register is *looped back* into the receiver shift register input.

The four modem control inputs (-CTS, -DSR, -RLSD, and -RI) are disconnected.

The four modem control outputs (-DTR, -RTS, -OUT 1, and -OUT 2) are internally connected to the four modem control inputs, and the modem control output pins are forced high.

In the the diagnostic mode the receiver and transmitter interrupts are fully operational. The modem control interrupts are also operational, but the sources of the interrupts are now the lower 4 bits of the modem control register instead of the 4 modem control inputs. The interrupts are still controlled by the interrupt enable register.

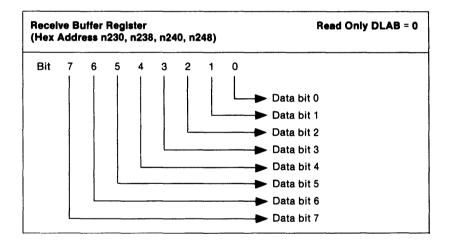

The NS16450/NS16550 interrupt system can be tested by writing into the lower 6 bits of the line status register and into the lower 4 bits of the modem status register. Setting any of these bits to a logical 1 generates the appropriate interrupt (if enabled). The resetting of these interrupts is the same as in normal NS16450/NS16550 operation. To return to normal operation, the registers must be reprogrammed for normal operation and then bit 4 of the modem control register must be reset to logical 0. The transmitter should be idle when this bit changes state.

Bits 5-7 These bits are permanently set to logical 0.

Modem Status Register

This 8-bit register provides the current state of the control lines from the modem (or peripheral device) to the processor. In addition to this current-state information, four bits of the modem status register provide change information. These bits are set to a logical 1 whenever a control input from the modem changes state. They are reset to logical 0 whenever the processor reads the modem status register.

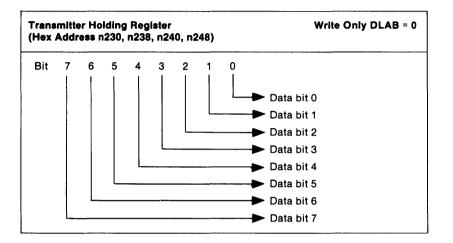
The contents of the modem status register are described below:


- **Bit 0** This bit is the delta clear-to-send (DCTS) indicator. Bit 0 indicates that the -CTS input to the chip has changed state since the last time it was read by the processor.
- Bit 1 This bit is the delta data set ready (DDSR) indicator. Bit 1 indicates that the -DSR input to the chip has changed state since the last time it was read by the processor.
- **Bit 2** This bit is the trailing edge of the ring indicator (TERI) detector. Bit 2 indicates that the -RI input to the chip has changed from an ON (logical 1) to an OFF (logical 0) condition.
- **Bit 3** This bit is the delta received line signal detector (DRLSD) indicator. Bit 3 indicates that the -RLSD input to the chip has changed state since the last time it was read by the processor.

Note: Whenever bit 0, 1, 2, or 3 is set to a logical 1, a modem status interrupt is generated, if the appropriate interrupt enable bit is set in the IER.

- **Bit 4** This bit is the complement of the clear to send (-CTS) input. Setting bit 4 (loop) of the MCR to a logical 1, is equivalent to RTS in the MCR.
- Bit 5 This bit is the complement of the data set ready (-DSR) input. If bit 4 (loop) of the MCR is set to a logical 1, this bit is equivalent to DTR in the MCR.
- **Bit 6** This bit is the complement of the ring indicator (-RI) input. If bit 4 (loop) of the MCR is set to a logical 1, this bit is equivalent to -OUT 1 in the MCR.
- Bit 7 This bit is the complement of the received line signal detect (-RLSD) input. If bit 4 (loop) of the MCR is set to a logical 1, this bit is equivalent to -OUT 2 of the MCR.

Receiver Buffer Register


The receiver buffer register contains the received character as defined below:

Bit 0 is the least significant bit and is the first bit serially received.

Transmitter Holding Register

The transmitter holding register contains the character to be serially transmitted and is defined below:

Bit 0 is the least significant bit and is the first bit serially transmitted.

Programmable Baud-Rate Generator

The NS16450/NS16550 contains a programmable baud-rate generator that can divide the clock input (1.8432 MHz) by any divisor from 1 to 655,535 or 2¹⁶-1. The output frequency of the baud-rate generator is the baud rate multiplied by 16. Two 8-bit latches store the divisor in a 16-bit binary format. These divisor latches must be loaded during initialization in order to insure desired operation of the baud-rate generator. Upon loading either of the divisor latches, a 16-bit baud counter is immediately loaded. This prevents long counts on initial load. The following figures show the contents of the divisor latches.

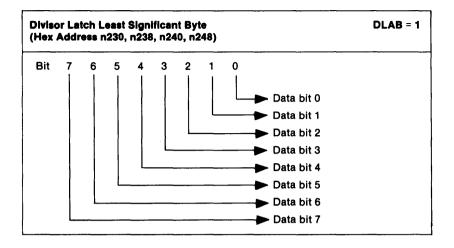


Figure 14. Divisor Latch Least Significant Byte

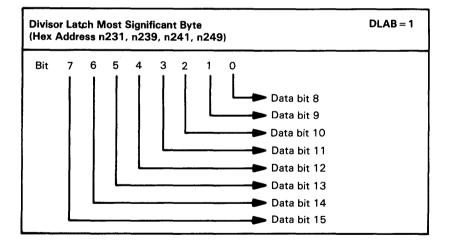


Figure 15. Divisor Latch Most Significant Byte

Figure 16 illustrates the use of the baud-rate generator with a frequency of 1.8432 MHz. For baud rates of 19,200 and below, the error obtained is minimal.

Note: The maximum operating frequency of the baud generator is 3.1 MHz. In no case should the data rate be greater than 19,200 baud.

Desired Baud	16x (l to Generate Clock	Percent Error Difference Between
Rate	(Decimal)	(Hex)	Desired and Actual
50	2304	900	
75	1536	600	
110	1047	417	0.026
134.5	857	359	0.058
150	786	300	
300	384	180	_
600	192	C0	—
1200	96	60	
1800	64	40	
2000	58	3A	0.69
2400	48	30	
3600	32	20	
4800	24	18	
7200	16	10	
9600	12	С	
19200	6	6	

Figure 16. Baud Rates at 1.8432 MHz

FIFO Interrupt Mode Operation

When the RCVR FIFO and receiver interrupts are enabled on the NS16550, (FCR bit 0 = 1, IER bit 0 = 1) RCVR interrupts will occur as follows:

- The receive data available interrupt is issued to the system when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below the trigger level.
- The interrupt identification register receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.
- The receiver line status interrupt (IIR = x6), as before, has higher priority than the received data available (IIR = x4) interrupt.
- The data ready bit (LSR bit 0) is set as soon as a character is transferred from the shift register to the RCVR FIFO. It is reset when the FIFO is empty.

When RCVR FIFO and receiver interrupts are enabled, RCVR FIFO timeout interrupts will occur as follows.

- A FIFO timeout will occur if the following conditions exist:
 - At least one character is in the FIFO
 - The most recent character received was longer than 4 continuous character times ago (if 2 stop bits are programmed the second one is included in this time delay).
 - The most recent system read of the FIFO was longer than 4 continuous character times ago.

This causes a maximum character received to interrupt issued delay of 160 milliseconds at 300 BAUD with a 12 bit character.

- Character times are calculated by using the RCLK input for a clock signal (this makes the delay proportional to the baud rate).
- When a timeout interrupt has occurred it is cleared and the timer reset when the system reads one character from the RCVR FIFO.
- When a timeout interrupt has not occurred the timeout timer is reset after a new character is received or after the system reads the RCVR FIFO.

When the XMIT FIFO and transmitter interrupts are enabled (FCR bit 0 = 1, IER bit 1 = 1), XMIT interrupts will occur as follows.

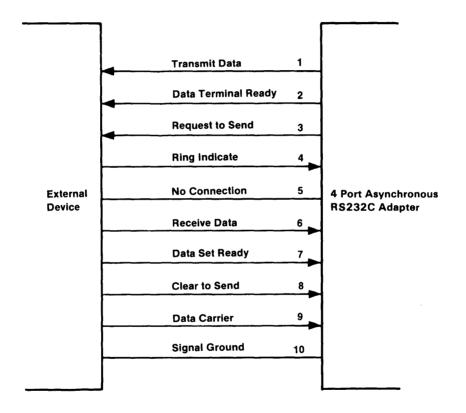
• The transmitter holding register interrupt (THRE) occurs when the XMIT FIFO is empty; it is cleared as soon as the transmitter holding register is written to (1 to 16 characters may be written to the XMIT FIFO while servicing this interrupt) or the IIR is read.

• The transmitter FIFO empty indications are delayed 1 character time minus the last stop bit time whenever the following occurs: THRE = 1 and there have not been at least two bytes at the same time in the transmit FIFO, since the last THRE = 1. The first transmitter interrupt after changing FCR bit 0 will be immediate, if it is enabled.

Character timeout and RCVR FIFO trigger level interrupts have the same priority as the current received data available interrupt; XMIT FIFO empty has the same priority as the current transmitter holding register empty interrupt.

FIFO Polled Mode Operation

With FCR bit 0 = 1 resetting IER bits 0 through 3 puts the NS16550 in the FIFO polled mode of operation. Since the RCVR and XMITTER are controlled separately either one or both can be in the polled mode of operation.


In this mode the user's program checks RCVR and XMITTER status via the line status register. As stated previously:

- Line status register bit 0 is set as long as there is one byte in the RCVR FIFO.
- Line status register bits 1 through 4 specify which errors have occurred. Character error status is handled the same way as when in the interrupt mode. The interrupt identification register is not affected since interrupt enable register bit 2 = 0.
- Line status register bit 5 indicates when the XMIT FIFO is empty.
- Line status register bit 6 indicates that both the XMIT FIFO and shift register are empty.
- Line status register bit 7 indicates whether there are any errors in the RCVR FIFO.

There is no trigger level reached or timeout condition indicated in the FIFO polled mode, however, the RCVR and XMIT FIFOs are still fully capable of holding characters.

Connector Specifications

The adapter has a 10-pin connector at the rear of the adapter. The following figure shows the signals and their pin assignments.

Note: See Figure 9 on page for connector pin functions.

TNL SN20-9844 (March 1987) to 75X0235

Personal Computer Hardware Reference Library

4-Port Asynchronous Adapter RS422A

Į

(

Contents

Description	l
4 Port Asynchronous RS422 Adapter Switch Settings	3
Modes of Operation	
Interrupts	6
Serial Data Format	
External Interface Description	
Asynchronous Communications Element Pin Description	
Programming Considerations 14	
Connector Specifications	
Logic Diagrams	9

iv RS422A Adapter

Description

The 4 Port Asynchronous RS422 Adapter provides four serial output ports on a 4.25- by 13.12-inch board that plugs into one I/O position. The adapter system control signals and voltage requirements are provided through a 2- by 31-position and a 2- by 18-position tab on the bottom of the adapter.

Up to four adapters may be used in one RT PC system. A DIP switch on the adapter is used to assign the adapter's I/O address range. The port I/O address assignments are contained in the adapter's I/O address range.

The adapter is fully programmable and supports asynchronous terminal attachment only. It adds and removes start bits, stop bits, and parity bits. A programmable baud-rate generator allows operation from 50 bps to 19200 bps. Five-, 6-, 7- or 8-bit characters with 1, 1-1/2, or 2 stop bits are supported. A priority interrupt system controls transmit, receive, error, line status, and data set interrupts.

Four 6-pin AMPMODU connectors on the adapter provide external access to the four ports.

The heart of the adapter is an NS16450 LSI chip or a functional equivalent. Features in addition to those listed above include:

- Full double buffering that eliminates the need for precise synchronization
- Independent receiver clock bit
- False start bit detection
- Line-break generation and detection.

All communications protocol is a function of the system microcode that must be loaded before the adapter is operational. All pacing of the interface and control signal status must be handled by the system software. Figure 1 on page 2 is a block diagram of the 4 Port Asynchronous RS422 Adapter.

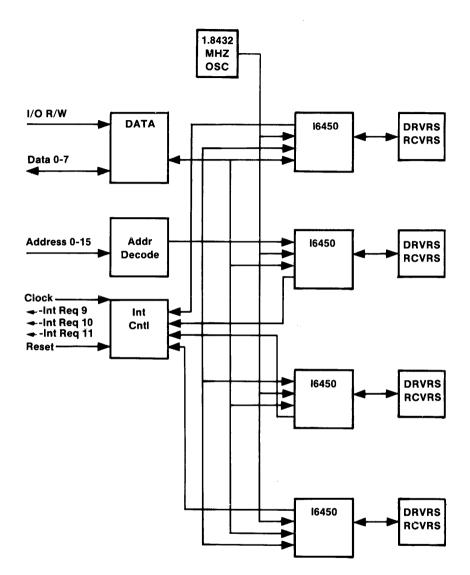


Figure 1. 4 Port Asynchronous RS422 Adapter Block Diagram

4 Port Asynchronous RS422 Adapter Switch Settings

The 4 Port Asynchronous RS422 Adapter switch settings select the interrupt level and the address range of adapters installed.

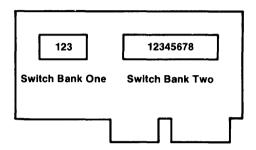


Figure 2. 4 Port Asynchronous RS422 Adapter Switches

Interrupt Level	Switch Bank One Setting							
Selected	Switch 1	Switch 2	Switch 3					
Level 9 Level 10 Level 11	On Off Off	Off On Off	Off Off On					

Figure 3. Switch Bank One Settings

Address	Switch Bank Two Setting							
Range of Adapters	Switch 1	Switch 2	Switch 3	Switch 4				
1230-124F	On	Off	Off	Off				
2230-224F	Off	On	Off	Off				
3230-324F	Off	Off	On	Off				
4230-424F	Off	Off	Off	On				

Figure 4. Switch Bank Two Settings

Note: Switches 5 through 8 are not used.

Modes of Operation

The different modes of operation are selected by programming the NS16450 asynchronous communications element. This is done by selecting the I/O address and writing data out to the I/O address. Address bits A0, A1, and A2 select the different registers that define the modes of operation. Also, the divisor latch access bit (bit 7) of the line control register is used to select certain registers.

The address range for this adapter is Hex 1230 through Hex 424F. Figure 5 and Figure 6 on page 5 depict a value of n which represents a variable determined by the setting of switch bank two. Switches 1, 2, 3, and 4 of switch bank two allow the adapter to operate and select the appropriate address range.

I/O Decode (In Hex) Port B Port A		Register Selected	DLAB State		
n238	n230	TX Buffer	DLAB=0 (Write)		
n238	n230	RX Buffer	DLAB=0 (Read)		
n238	n230	Divisor Latch LSB	DLAB=1		
n239	n231	Divisor Latch MSB	DLAB=1		
n239	n231	Interrupt Enable Register	DLAB=0		
n23A	n232	Interrupt Identification			
		Register			
n23B	n233	Line Control Register			
n23C	n234	Modem Control Register			
n23D	n235	Line Status Register			
n23E	n236	Modem Status Register			

Figure 5. I/O Decodes, Port A and Port B

Notes:

- 1. n is equal to the first digit of the adapter address range
- 2. DLAB means Divisor Latch Access Bit.

I/O Deco	de (In Hex)		
Port D	Port C	Register Selected	DLAB State
n248	n240	TX Buffer	DLAB=0 (Write)
n248	n240	RX Buffer	DLAB=0 (Read)
n248	n240	Divisor Latch LSB	DLAB=1
n249	n241	Divisor Latch MSB	DLAB=1
n249	n241	Interrupt Enable Register	DLAB=0
n24A	n242	Interrupt Identification	
		Register	
n24B	n243	Line Control Register	
n24C	n244	Modem Control Register	
n24D	n245	Line Status Register	
n24E	n246	Modem Status Register	

Figure 6. I/O Decodes, Port C and Port D

Notes:

- 1. n is equal to the first digit of the adapter address range
- 2. DLAB means Divisor Latch Access Bit.

A9—>A3 Decode	A2	A1	A0	DLAB	Register
See	x	x	x		
Note 1	0	0	0	0	Receive Buffer Reg. (read) Transmit Holding Reg. (write)
	0	0	1	0	Interrupt Enable
	0	1	0	x	Interrupt Identification
	0	1	1	x	Line Control
	1	0	0	x	Modem Control
	1	0	1	x	Line Status
	1	1	0	x	Modem Status
	1	1	1	x	Scratch (See note 3)
	0	0	0	1	Divisor Latch (LSB)
	0	0	1	1	Divisor Latch (MSB)

Figure 7. Address Bits

Notes:

- 1. Bits A9 through A3 are used to select specific adapter and serial port.
- 2. A2, A1, and A0 bits are "don't cares" and are used to select the different registers of the NS16450 chip.
- 3. The Scratch Register of the NS16450 module should be initialized to all ones and never be written to with any data afterwards. This would cause indeterminate data when Read address X237 (see "Interrupts") is executed.

Interrupts

Three interrupt lines are provided to the system. The interrupt level (9, 10, or 11) is selected by placing the appropriate switch on switch bank one to the on position. An interrupt register (read adr n237, where n is first digit of the address range) is provided for storage of pending port interrupts. Interrupt register bit assignments are shown in Figure 8.

	Hex Addre	ss n237					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1	1	0	Port 4	Port 3	Port 2	Port 1

Figure 8. Interrupt Register Read Format

The reset or enable for interrupt level 9 is hex address 02F2.

The reset or enable for interrupt level 10 is hex address 06F2.

The reset or enable for interrupt level 11 is hex address 06F3.

Serial Data Format

The data format is as follows:

Transmit Data Marking	Start Bit	D0	D1	D2	D3	D4	D5	D6	D7	Parity Bit	Stop Bit	
-----------------------------	--------------	----	----	----	----	----	----	----	----	---------------	-------------	--

Data bit 0 is the first bit to be transmitted or received. The adapter automatically inserts the start bit, the correct parity bit (if programmed to do so), and the stop bit (1, 1-1/2, or 2 depending on the command in the line control register).

External Interface Description

The adapter provides an EIA 4 Port Asynchronous RS422 Adapter interface. The pin functions for the 6-pin connector are shown in Figure 9 on page 8.

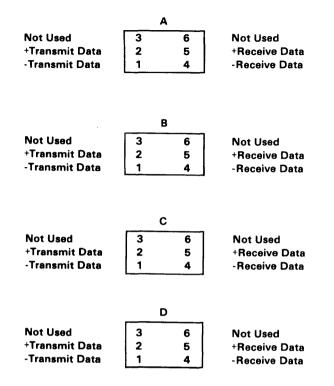


Figure 9. 6 Pin Interface Signals Connector (as viewed from rear of adapter)

The adapter converts the interface signals from TTL levels to EIA 4 Port Asynchronous RS422 Adapter voltage levels, and vice versa. These signals are sampled or generated by the communications control chip. These signals can then be sensed by the system software to determine the state of the interface or peripheral device. The drivers and receivers used on the adapter are the inverting type; therefore, a 0 EIA level on the line is received or transmitted as a 0 TTL level, and a 1 EIA level is received or transmitted as a 1 TTL level.

Voltage Interchange Information

The electrical characteristics for voltage interchange information are designed to meet the requirements of EIA RS422A standard.

For interface control circuits, the input to the receiver, measured differentially, shall be greater than +200 millivolts for a binary 0 and greater than -200 millivolts for a binary 1. (See Figure 10).

Interchange Differential Voltage (A-B)	Binary State	Signal Condition	Interface Control Function
Positive Voltage	Binary 0	Spacing	=On
Negative Voltage	Binary 1	Marking	=Off

Figure 10. 4 Port Asynchronous RS422 Adapter Signal Levels

Asynchronous Communications Element Pin Description

The following describes the function of all NS16450 input/output pins. Some of these descriptions reference internal circuits. The use of each signal as implemented on the multiport adapter is described.

Note: In the following descriptions, a low represents a logical 0 (0 Vdc nominal) and a high represents a logical 1 (+2.4 Vdc nominal).

Input Signals

Chip Select (CS0, CS1, -CS2), Pins 12-14: When CS0 and CS1 are high and -CS2 is low, the chip is selected. Chip selection is complete when the decoded chip select signal is latched with an active (low) address strobe (-ADS) input. This enables communications between the NS16450 and the processor.

Data Input Strobe (DISTR, -DISTR), Pins 22 and 21: When DISTR is high or -DISTR is low while the chip is selected, this signal allows the processor to read status information or data from a selected register of the NS16450.

Note: Only an active DISTR or -DISTR input is required to transfer data from the NS16450 during a read operation. Therefore, tie either the DISTR input permanently low or the -DISTR line input permanently high, if not used.

Data Output Strobe (DOSTR, -DOSTR), Pins 19 and 18: When DOSTR is high or -DOSTR is low while the chip is selected, this signal allows the processor to write data or control words into a selected register of the NS16450.

Note: Only an active DOSTR or -DOSTR input is required to transfer data to the NS16450 during a write operation. Therefore, tie either the DOSTR input permanently low or the -DOSTR input permanently high, if not used.

-Address Strobe (-ADS), Pin 25: When low, this signal provides latching for the register select (A0, A1, A2) and chip select (CS0, CS1, -CS2) signals.

Note: An active -ADS input is required when the register select (A0, A1, A2) signals are not stable for the duration of a read or write operation. If not required, the the -ADS input permanently low.

Register Select (A0, A1, A2), Pins 26-28: These three inputs are used during a read or write operation to select an NS16450 register to read from or write into as indicated in the table below. Note that the state of the divisor latch access bit (DLAB), which is the most significant bit of the line control register, affects the selection of certain NS16450 registers. The DLAB must be set high by the system software to access the baud-generator divisor latches.

DLAB	A2	A1	AO	Register
0	0	0	0	Receiver Buffer (Read)
				Transmitter Holding Register (Write)
0	0	0	1	Interrupt Enable
х	0	1	0	Interrupt Identification (Read Only)
x	0	1	1	Line Control
x	1	0	0	Modem Control
x	1	0	1	Line Status
х	1	1	0	Modem Status
х	1	1	1	Scratch
1	0	0	0	Divisor Latch (Least Significant Byte)
1	0	0	0	Divisor Latch (Most Significant Byte)

Figure 11. NS16450 Register Selection

Master Reset (MR), Pin 35: When high, this signal clears all the registers (except the receive buffer, transmitter holding, and divisor latches), and the control logical of the NS16450. Also, the state of various output signals (SOUT, INTRPT, -OUT 1, -OUT 2, -RTS, -DTR) is affected by an active MR input. Refer to:

Register/Signal	Reset Control	Reset State
Interrupt Enable Register	Master Reset	All Bits Low, 0-3 Forced and 4-7 Permanent
Interrupt Identification Register	Master Reset	Bit 0 is High, Bits 1 and 2 are Low, and Bits 3-7 are Permanent
Line Control Register	Master Reset	All Bits Low
Modem Control Register	Master Reset	All Bits Low
Line Status Register	Master Reset	All Bits Low, except Bits 5 and 6 are High
Modem Status Register	Master Reset	Bits 0-3 are Low, Bits 4-7 = Input Signal
SOUT	Master Reset	High
INTRPT (RCVR Errors)	Read LSR/MR	Low
INTRPT (RCVR Data Ready)	Read RBR/MR	Low
INTRPT (THRE)	Read IRR/Write /THR/MR	Low
INTRPT (Modem Status Changes)	Read MSR/MR	Low
• OUT 2	Master Reset	High
• RTS	Master Reset	High
DTR OUT 1	Master Reset Master Reset	High High

Figure 12. NS16450 Reset Functions

Receiver Clock (RCLK), Pin 9: This input is the 16x baud-rate clock for the receiver section of the chip.

Serial Input (SIN), Pin 10: Serial data input from the communications link (peripheral device, modem, or data set).

-Clear to Send (-CTS), Pin 36: The -CTS signal is a modem control function input whose condition the processor can test by reading bit 4 (CTS) of the modem status register. Bit 0 (DCTS) of the modem status register indicates whether the -CTS input has changed state since the previous reading of the modem status register.

Note: The CTS bit of the modem status register is tied to the active state.

-Data Set Ready (-DSR), Pin 37: The -DSR signal is a modem control function input whose condition the processor can test by reading bit 5 (DSR) of the modem status register. When low, this signal indicates that the modem or data set is ready to establish the communications link and transfer data with the NS16450. Bit 1 (DDSR) of the modem status register indicates whether the -DSR input has changed since the previous reading of the modem status register.

Note: The DSR bit of the modem status register is tied to the active state.

-Received Line Signal Detect (-RLSD), Pin 38: The -RLSD signal is a modem control function input whose condition the processor can test by reading bit 7 (RLSD) of the modem status register. When low, this signal indicates that the data carrier has been detected by the modem or data set. Bit 3 (DRLSD) of the modem status register indicates whether the -RLSD not input has changed state since the previous reading of the modem status register.

Notes:

1. The RLSD bit of the modem status register is tied to the active state.

2. Received Line Signal Detect is also called Data Carrier Detect (DCD), or Carrier Detect (CD).

-Ring Indicator (-RI), Pin 39: The -RI signal is a modem control function input whose condition the processor can test by reading bit 6 (RI) of the modem status register. When low, this signal indicates that a telephone ringing signal has been received by the modem or data set. Bit 2 (TERI) of the modem status register indicates whether the -RI input has changed from a low to high state since the previous reading of the modem status register.

Note: The RI bit of the modem status register is tied to the inactive state.

VCC, Pin 40: +5 Vdc supply.

VSS, Pin 20: Ground (0 Vdc) reference.

Output Signals

-Data Terminal Ready (-DTR), Pin 33: When low, this signal informs the modem or data set that the NS16450 is ready to communicate. The -DTR output signal can be set to an active low by programming bit 0 (DTR) of the modem control register to a high level. The -DTR signal is set high upon a master reset operation. The -DTR signal is forced to high during loop mode operation. See note below.

-Request To Send (-RTS), Pin 32: When low, this signal informs the modem or data set that the NS16450 is ready to transmit data. The -RTS output signal can be set to an active low by programming bit 1 (RTS) of the modem control register. The -RTS signal is set high by a master reset operation. The -RTS signal is forced to high during loop mode operation. See note below.

-Output 1 (-OUT 1), Pin 34: With this signal, user-designated output can be set to an active low by programming bit 2 (-OUT 1) of the modem control register to a high level. The -OUT 1 signal is set high by a master reset operation. The -OUT 1 signal is forced to high during loop mode operation. See note below.

-Output 2 (-OUT 2), Pin 31: With this signal, user-designated output can be set to an active low by programming bit 3 (-OUT 2) of the modem control register to a high level. The -OUT 2 signal is set high by a master reset operation. The -OUT 2 signal is forced to high during the loop mode operation. See note below.

Chip Select Out (CSOUT), Pin 24: When high, this signal indicates that the chip has been selected by active CS0, CS1, and -CS2 inputs. No data transfer can be initiated until the CSOUT signal is a logical 1. See note below.

Driver Disable (DDIS), Pin 23: This signal goes low whenever the processor is reading data from the NS16450. A high-level DDIS output can be used to disable an external transceiver (if used between the processor and NS16450 on the D7-D0 data bus) at all times, except when the processor is reading data. See note below.

-Baudout (-BAUDOUT), Pin 15: This is a 16x clock signal for the transmitter section of the NS16450. The clock rate is equal to the main reference oscillator frequency divided by the specified divisor in the baud-generator division latches. The -BAUDOUT is tied to the receiver section of the RCLK input of the chip.

Interrupt (INTRPT), Pin 30: This signal goes high whenever any one of the following interrupt types has an active high condition and is enabled through the IIR: receiver error flag, received data available, transmitter holding register empty, or modem status. The INTRPT signal is reset low by the appropriate interrupt service or a master reset operation.

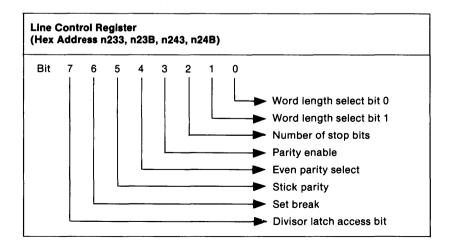
Serial Output (SOUT), Pin 11: This signal is a composite serial data output to the communications link (peripheral, modem or data set). The SOUT signal is set to the marking (logical 1) state upon a master reset operation.

Note: This pin is not used on the 4 Port Asynchronous RS422 Adapter board.

Input/Output Signals

Data Bus (D7-D0), Pins 1-8: This bus contains eight tri-state input/output lines. The bus provides bidirectional communications between the NS16450 and the processor. Data, control words, and status information are transferred through the D7-D0 data bus.

External Clock Input/Output (XTAL1, XTAL2), Pins 16 and 17: These two pins connect the main timing reference (crystal or signal clock) to the NS16450.

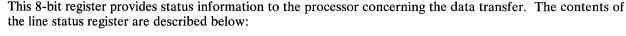

Programming Considerations

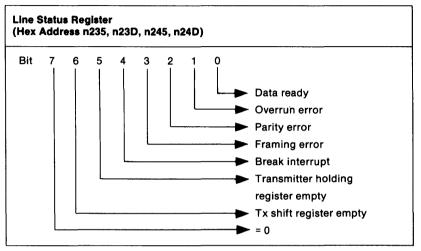
The NS16450 has a number of accessible registers. The system programmer may access or control any of the NS16450 registers through the processor. These registers are used to control NS16450 operations and to transmit and receive data.

Note: The n in address is the first digit of the adapter address range (1-4).

Line Control Register

The system programmer specifies the format of the asynchronous data communications exchange through the line control register. In addition to controlling the format, the programmer may retrieve the contents of the line control register for inspection. This feature simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics. The contents of the line control register are described below:




Bits 0, 1 These two bits specify the number of bits in each transmitted or received serial character. The encoding of bits 0 and 1 is as follows:

Bit 1	it 1 Bit 0 Word Length	
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

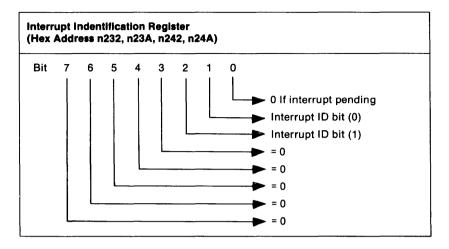
- **Bit 2** This bit specifies the number of stop bits in each transmitted or received serial character. If bit 2 is a logical 0, one stop bit is generated or checked in the transmit or receive data, respectively. If bit 2 is a logical 1 when a 5-bit word length is selected through bits 0 and 1, 1-1/2 stop bits are generated or checked. If bit 2 is a logical 1 when either a 6-, 7-, or 8-bit word length is selected, two stop bits are generated or checked.
- **Bit 3** This bit is the parity enable bit. When bit 3 is a logical 1, a parity bit is generated (transmit data) or checked (receive data) between the last data word bit and stop bit of the serial data. (The parity bit is used to produce an even or odd number of 1's when the data word bits and the parity bit are summed.)
- **Bit 4** This bit is the even parity select bit. When bit 3 is a logical 1 and bit 4 is a logical 0, an odd number of logical 1's is transmitted or checked in the data word bits and parity bit. When bit 3 is a logical 1 and bit 4 is a logical 1, an even number of bits are transmitted or checked.
- **Bit 5** This bit is the stick parity bit. When bit 3 is a logical 1 and bit 5 is a logical 1, the parity bit is transmitted and then detected by the receiver as a logical 0 (space parity) if bit 4 is a logical 1, or as a logical 1 (mark parity) if bit 4 is a logical 0.
- **Bit 6** This bit is the set break control bit. When bit 6 is a logical 1, the serial output (SOUT) forces a spacing (logical 0) state and remains there regardless of other transmitter activity. The set break is disabled by setting bit 6 to a logical 0. This feature enables the processor to alert a terminal in a computer communications system.
- **Bit 7** This bit is the divisor latch access bit (DLAB). It must be set high (logical 1) to access the divisor latches of the baud-rate generator during a read or write operation. It must be set low (logical 0) to access the receiver buffer, the transmitter holding register, or the interrupt enable register.

Line Status Register

- **Bit 0** This bit is the receiver data ready (DR) indicator. Bit 0 is set to a logical 1 whenever a complete incoming character has been received and transferred into the receiver buffer register. Bit 0 may be reset to a logical 0 either by the processor reading the data in the receiver buffer or by writing a logical 0 into it from the processor.
- **Bit 1** This bit is the overrun error (OE) indicator. Bit 1 indicates that data in the receiver buffer register was not read by the processor before the next character was transferred into the receiver buffer register, and that the previous character was thereby destroyed. The OE indicator is reset whenever the processor reads the contents of the line status register.
- **Bit 2** This bit is the parity error (PE) indicator. Bit 2 indicates that the received data character does not have the correct even or odd parity as selected by the even parity-select bit. The PE bit is set to a logical 1 upon detection of a parity error and is reset to a logical 0 whenever the processor reads the contents of the line status register.
- **Bit 3** This bit is the framing error (FE) indicator. Bit 3 indicates that the received character did not have a valid stop bit. Bit 3 is set to a logical 1 whenever the stop bit following the last data bit or parity is detected as a zero bit (spacing level).
- **Bit 4** This bit is the break interrupt (BI) indicator. Bit 4 is set to a logical 1 whenever the received data input is held in the spacing (logical 0) state for longer than a full word transmission time (that is, the total time of start bit + data bits + parity + stop bits).

Note: Bits 1 through 4 are the error conditions that produce a receiver line status interrupt whenever any of the corresponding conditions are detected.

16 RS422A Adapter

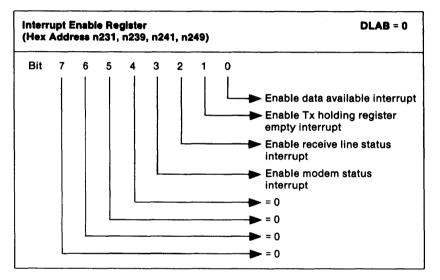

- **Bit 5** This bit is the transmitter holding register empty (THRE) indicator. Bit 5 indicates that the NS16450 is ready to accept a new character for transmission. In addition, this bit causes the NS16450 to issue an interrupt to the processor when the transmit holding register empty interrupt enable is set high. The THRE bit is set to a logical 1 when a character is transferred from the transmitter holding register into the transmitter shift register. The bit is reset to logical 0 concurrently with the loading of the transmitter holding register by the processor.
- **Bit 6** This bit is the transmitter empty (TEMT) indicator. Bit 6 is set to a logical 1 whenever the transmitter holding register (THR) and the transmitter shift register (TSR) are both empty. It is reset to a logical 0 whenever either the THR or TSR contain a data character. Bit 6 is a read-only bit.
- Bit 7 This bit is permanently set to logical 0.

Interrupt Identification Register

The NS16450 has an on-chip interrupt capability that allows for complete flexibility in interfacing to microprocessors. In order to provide minimum software overhead during data character transfers, the NS16450 sets interrupts into four priority levels:

- Receiver line status (priority 1)
- Received data ready (priority 2),
- Transmitter holding register empty (priority 3)
- Modem status (priority 4).

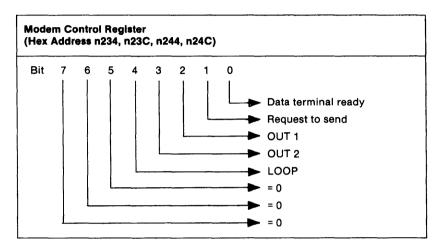
Information indicating that a priority interrupt is pending and information on the type of interrupt is stored in the interrupt identification register. Refer to the "Interrupt Control Functions" table in Figure 13 on page 19. The interrupt identification register (IIR), when addressed during chip-select time, freezes the highest priority interrupt pending, and no other interrupts are acknowledged until that particular interrupt is serviced by the processor. The contents of the IIR are described below.


- **Bit 0** This bit can be used in a hardwired, priority, or polled environment to indicate whether an interrupt is pending. When bit 0 is a logical 0, an interrupt is pending and the IIR contents are used as a pointer to the appropriate interrupt service routine. When bit 0 is a logical 1, no interrupt is pending, and polling (if used) is continued.
- **Bits 1, 2** These two bits of the IIR are used to identify the highest priority interrupt pending as indicated in Figure 13 on page 19.
- **Bits 3-7** These five bits of the IIR are always logical 0.

Interrupt ID Register		Interrupt Set and Reset Functions				
Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset Control
0	0	1		None	None	
1	1	0	Highest	Receiver Line Status	Overrun Error or Parity Error or Framing Error or Break Intrpt.	Reading the Line Status Register
1	0	0	Second	Received Data Available	Receiver Data Available	Reading the Receiver Buffer Register
0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register or Writing into the Transmitter Holding Register
0	0	0	Fourth	Modem Status	Clear to Send or Data Set Ready or Ring Indicator or Received Line Signal Detect	Reading the Modem Status Register

Figure 13. Interrupt Control Functions

Interrupt Enable Register


This 8-bit register enables the four types of interrupts of the NS16450 to separately activate the chip interrupt (INTRPT) output signal. The interrupt system can be totally disabled by resetting bits 0 through 3 of the interrupt enable register. Similarly, setting the appropriate bits of this register to a logical 1, can enable selected interrupts. Disabling the interrupt system inhibits the interrupt identification register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the line status and modem status registers. The contents of the interrupt enable register are described below:

- **Bit 0** This bit enables the received data available interrupt when set to a logical 1.
- **Bit 1** This bit enables the transmitter holding register empty interrupt when set to a logical 1.
- **Bit 2** This bit enables the receiver line status interrupt when set to a logical 1.
- **Bit 3** This bit enables the modem status interrupt when set to a logical 1.
- **Bits 4-7** These four bits are always logical 0.

Modem Control Register

Bit four of this 8-bit register is used for diagnostic testing of the NS16450. All other bits are not used on the 4 Port Asynchronous RS422 Adapter. The contents of the modem control register are described below:

- Bit 0 This bit controls the data terminal ready (-DTR) output. When bit 0 is set to a logical 1, the -DTR output is forced to a logical 0. When bit 0 is reset to a logical 0, the -DTR output is forced to a logical 1.
- **Bit 1** This bit controls the request to send (-RTS) output. Bit 1 affects the -RTS output in a manner identical to that described above for bit 0.
- **Bit 2** This bit controls the output 1 (-OUT 1) signal, which is an auxiliary user-designated output. Bit 2 affects the -OUT 1 output in a manner identical to that described above for bit 0.
- **Bit 3** This bit controls the output 2 (-OUT 2) signal, which is an auxiliary user-designated output. Bit 3 affects the -OUT 2 output in a manner identical to that described above for bit 0.

Note: The -OUT 2 output of the NS16450 may be applied to an EIA inverting line driver to obtain the proper polarity input at the modem or data set.

Bit 4 This bit provides a loopback feature for diagnostic testing of the NS16450. When bit 4 is set to logical 1, the following occurs:

The transmitter serial output (SOUT) is set to the marking (logical 1) state.

The receiver serial input (SIN) is disconnected.

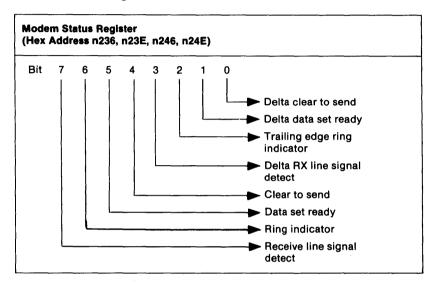
The output of the transmitter shift register is "looped back" into the receiver shift register input.

The four modem control inputs (-CTS, -DSR, -RLSD, and -RI) are disconnected.

The four modem control outputs (-DTR, -RTS, -OUT 1, and -OUT 2) are internally connected to the four modem control inputs.

The modem control output pins are forced high.

In the diagnostic mode the receiver and transmitter interrupts are fully operational. The modem control interrupts are also operational, but the sources of the interrupts are now the lower 4 bits of the modem control register instead of the 4 modem control inputs. The interrupts are still controlled by the interrupt enable register.


The NS16450 interrupt system can be tested by writing into the lower 6 bits of the line status register and into the lower 4 bits of the modem status register. Setting any of these bits to a logical 1 generates the appropriate interrupt (if enabled). The resetting of these interrupts is the same as in normal NS16450 operation. To return to normal operation, the registers must be reprogrammed for normal operation and then bit 4 of the modem control register must be reset to logical 0. The transmitter should be idle when this bit changes state.

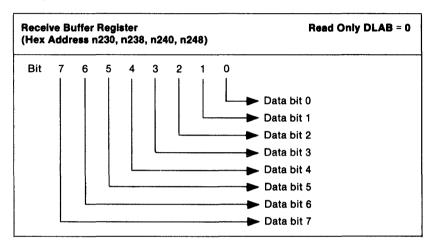
Bits 5-7 These bits are permanently set to logical 0.

Modem Status Register

This 8-bit register provides the current state of the control lines to the processor.

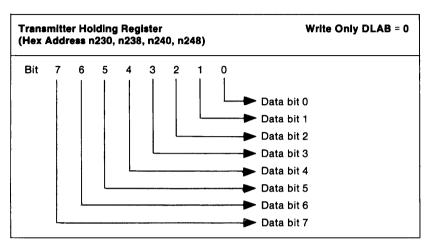
The contents of the modem status register are described below:

- **Bit 0** This bit is the delta clear-to-send (DCTS) indicator. Bit 0 indicates that the -CTS input to the chip changed state since the last time it was read by the processor.
- **Bit 1** This bit is the delta data-set-ready (DDSR) indicator. Bit 1 indicates that the -DSR input to the chip changed state since the last time it was read by the processor.
- **Bit 2** This bit is the trailing edge of the ring indicator (TERI) detector. Bit 2 indicates that the -RI input to the chip has changed from an on (logical 1) to an off (logical 0) condition.
- **Bit 3** This bit is the delta received line signal detector (DRLSD) indicator. Bit 3 indicates that the -RLSD input to the chip changed state since the last time it was read by the processor.


Note: Whenever bit 0, 1, 2, or 3 is set to a logical 1, a modem status interrupt is generated if the appropriate interrupt enable bit is set in the IER.

- **Bit 4** This bit is the complement of the clear to send (-CTS) input. Setting bit 4 (loop) of the MCR to a logical 1, makes this bit equivalent to RTS in the MCR.
- **Bit 5** This bit is the complement of the data set ready (-DSR) input. Setting bit 4 (loop) of the MCR to a logical 1, makes this bit equivalent to DTR in the MCR.
- **Bit 6** This bit is the complement of the ring indicator (-RI) input. Setting bit 4 (loop) of the MCR to a logical 1, makes this bit equivalent to -OUT 1 in the MCR.

Bit 7 This bit is the complement of the received line signal detect (-RLSD) input. Setting bit 4 (loop) of the MCR to a logical 1, makes this bit equivalent to -OUT 2 of the MCR.


Receiver Buffer Register

The receiver buffer register contains the received character as defined below:

Bit 0 is the least significant bit and is the first bit serially received.

Transmitter Holding Register

The transmitter holding register contains the character to be serially transmitted and is defined below:

Bit 0 is the least significant bit and is the first bit serially transmitted.

Programmable Baud-Rate Generator

The NS16450 contains a programmable baud-rate generator that can divide the clock input (1.8432 MHz) by any divisor from 1 to 655,535 or 2¹⁶-1. The output frequency of the baud generator is the baud rate multiplied by 16. Two 8-bit latches store the divisor in a 16-bit binary format. These divisor latches must be loaded during initialization in order to insure desired operation of the baud rate generator. Upon loading either of the divisor latches, a 16-bit baud counter is immediately loaded. This prevents long counts on initial load. The contents of the divisor latches are indicated below:

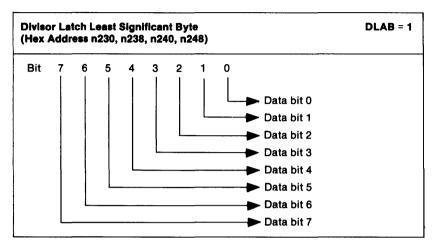


Figure 14. Divisor Latch Least Significant Byte

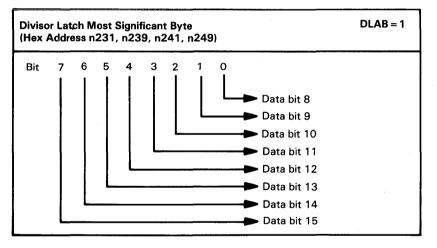


Figure 15. Divisor Latch Most Significant Byte

Figure 16 illustrates the use of the baud-rate generator with a frequency of 1.8432 MHz. For baud rates of 19,200 and below, the error obtained is minimal.

Desired Baud Rate	Divisor Used to Generate 16x Clock (Decimal) (Hex)		Percent Error Difference Between Desired and Actual	
50	2304	900		
75	1536	600	—	
110	1047	417	0.026	
134.5	857	359	0.058	
150	786	300	_	
300	384	180	_	
600	192	C0	_	
1200	96	60		
1800	64	40		
2000	58	3A	0.69	
2400	48	30		
3600	32	20	_	
4800	24	18		
7200	16	10		
9600	12	С		
19200	6	6		

Note: In no case should the data rate be greater than 19,200 baud.

Figure 16. Baud Rates at 1.8432 MHz

Connector Specifications

The adapter has a 6-pin connector at the rear of the adapter. The following figure shows the signals and their pin assignments.

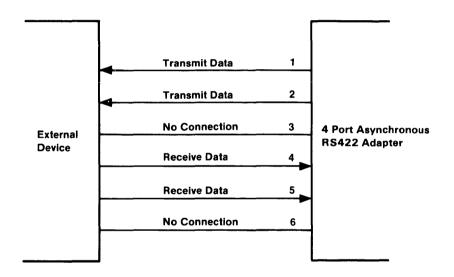
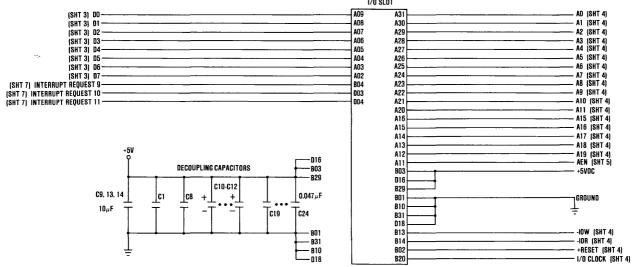
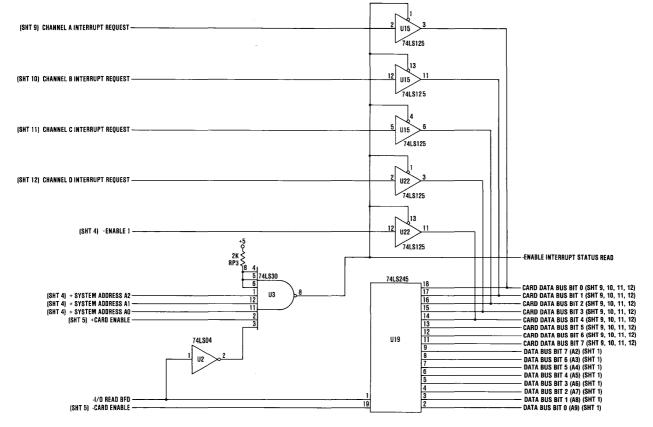
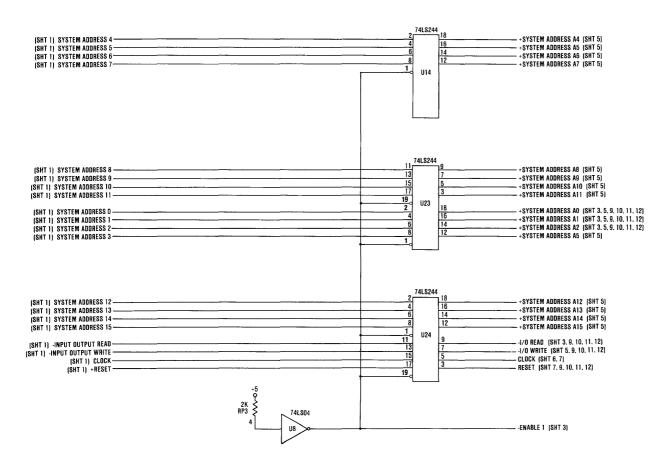
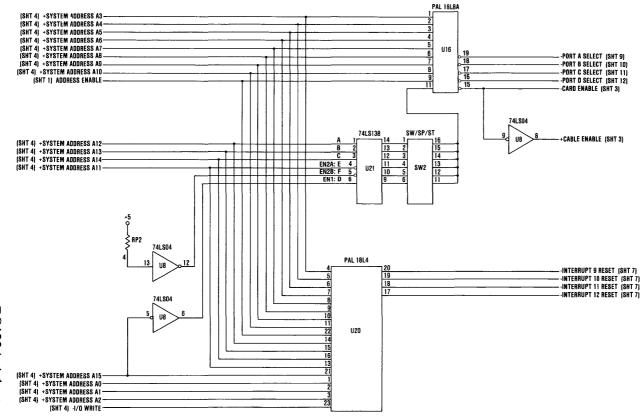
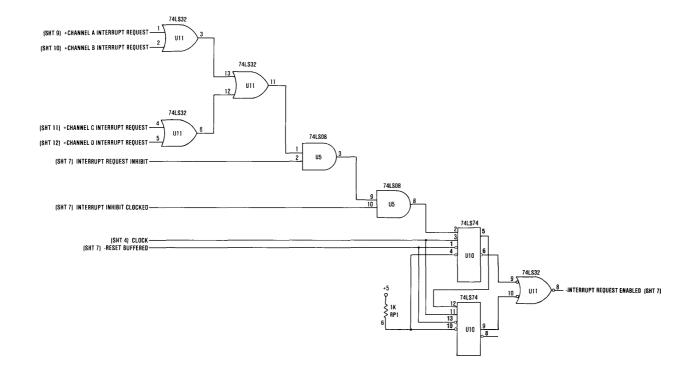



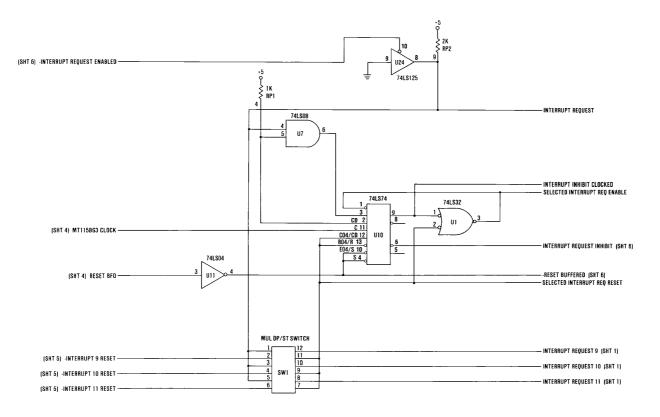
Figure 17. Connector Specifications

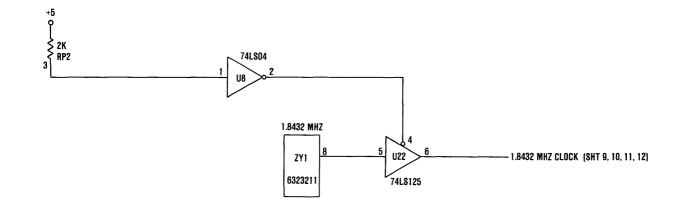

Sheet 1 of 13 Logic Diagrams

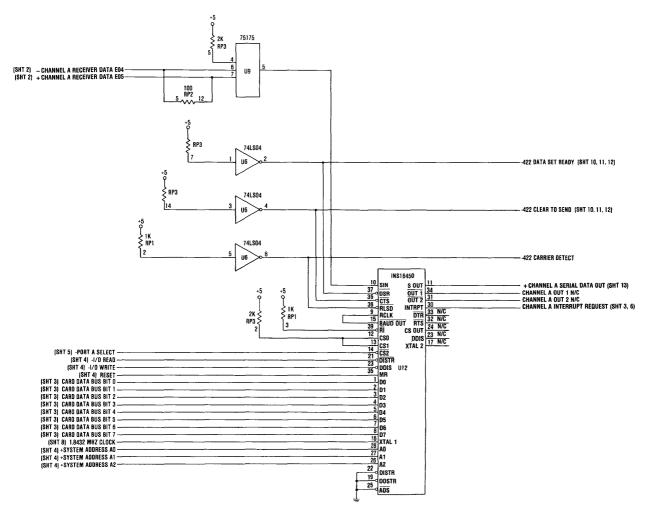

1/O SLOT

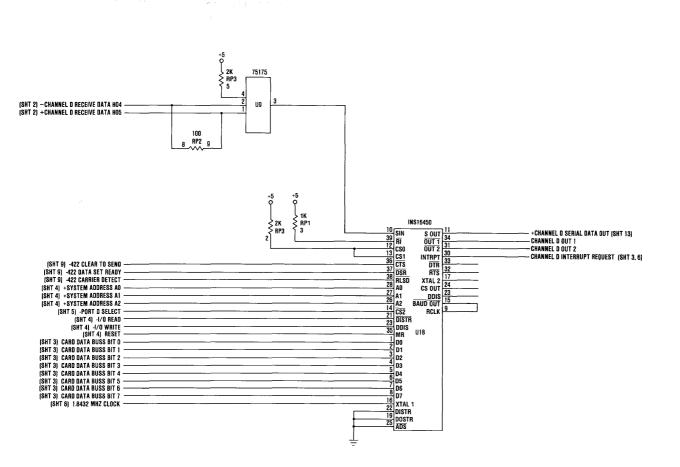


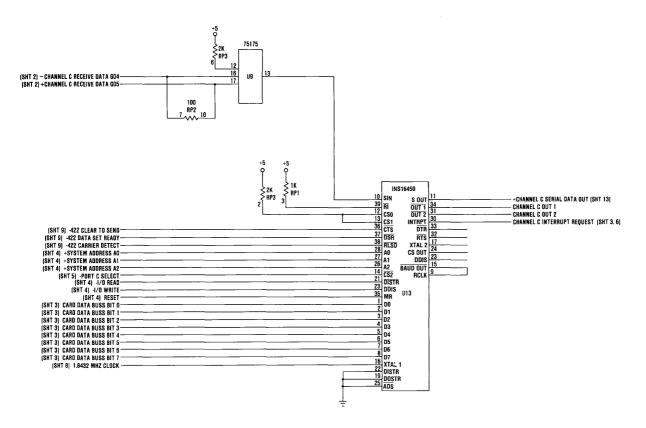


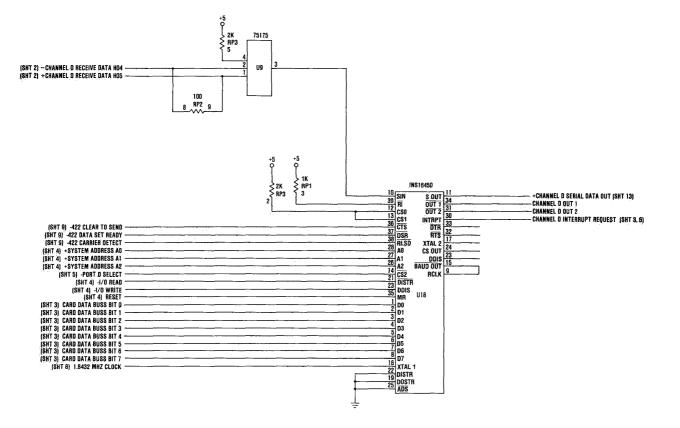

		CONNECTOR	
(SHT 13) (SHT 13)	- CHANNEL A DATA OUT + Channel a data out	 E01 E0 E02 E0	– CHANNEL A RECEIVE DATA (SHT 9) + Channel a receive data (SHT 9)
(SHT 13) (SHT 13)	– CHANNEL B DATA OUT + Channel B data out	 F01 F0 F02 F0	– CHANNEL B RECEIVE DATA (SHT 10) + Channel B receive data (Sht 10)
	– CHANNEL C DATA OUT + Channel C data out	 GO1 GO GO2 GO	– CHANNEL C RECEIVE DATA (SHT 11) + CHANNEL C RECEIVE DATA (SHT 11)
(SHT 13) (SHT 13)	- CHANNEL D DATA OUT + Channel D data out	 H01 H0 H02 H0	– CHANNEL D RECEIVER (SHT 12) + Channel d receiver (Sht 12)

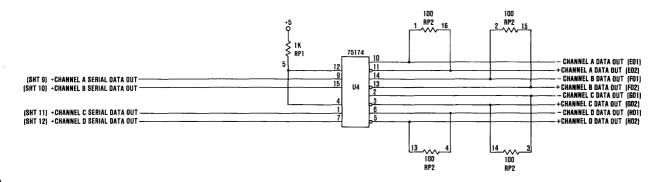












1

Sheet 12 of 13

Personal Computer Hardware Reference Library

4-Port Asynchronous Adapter RS422A

TNL SN20-9844 (March 1987) to 75X0235

Contents

Description
-Port Asynchronous RS-422A Adapter Switch Settings
Modes of Operation
nterrupts
Serial Data Format
External Interface Description
Asynchronous Communications Element Pin Description
Programming Considerations
Connector Specifications

)

TNL SN20-9844 (March 1987) to 75X0235

Description

The 4-Port Asynchronous RS-422A Adapter provides four serial output ports on a 4.25- by 13.12-inch board that plugs into one I/O position. The adapter system control signals and voltage requirements are provided through a 2- by 31-position and a 2- by 18-position tab on the bottom of the adapter.

Up to four adapters may be used in one RT PC system. A DIP switch on the adapter is used to assign the adapter's I/O address range. The port I/O address assignments are contained in the adapter's I/O address range.

The adapter is fully programmable and supports asynchronous terminal attachment only. It adds and removes start bits, stop bits, and parity bits. A programmable baud-rate generator allows operation from 50 bps to 19200 bps. Five-, 6-, 7- or 8-bit characters with 1, 1-1/2, or 2 stop bits are supported. A priority interrupt system controls transmit, receive, error, line status, and data set interrupts.

Four 6-pin male AMPMODU connectors on the adapter provide external access to the four ports.

There are two versions of this adapter, one uses NS16450 LSI chip and the other uses the NS16650. Features in addition to those listed above include:

- Independent receiver clock bit.
- False start bit detection.
- Line-break generation and detection.
- The NS16450 version has full double buffering that reduces the need for precise synchronization.
- The NS16550 is capable of running all existing NS16450 software in its character mode, and in its FIFO mode has a built-in 16-byte buffer for both receive and transmit operations for improved performance.

Note: The NS16550 (Buffered) adapter can be identified by a plus (+) sign stamped at the bottom of the 6-pin interface signals connector. See Figure 9 on page 9.

All pacing of the interface and control signal status must be handled by the system software. Figure 1 on page 2 is a block diagram of the 4-Port Asynchronous RS-422A Adapter.

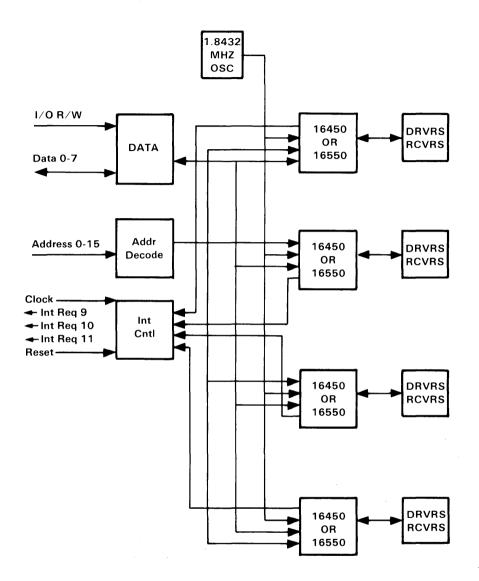


Figure 1. 4-Port Asynchronous RS-422A Adapter Block Diagram

4-Port Asynchronous RS-422A Adapter Switch Settings

The 4-Port Asynchronous RS-422A Adapter switch settings select the interrupt level and the address range of adapters installed.

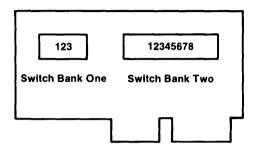


Figure 2. 4-Port Asynchronous RS-422A Adapter Switches

Interrupt Level	Switch Bank One Setting					
Selected	Switch 1	Switch 2	Switch 3			
Level 9 Level 10 Level 11	On Off Off	Off On Off	Off Off On			

Figure 3. Switch Bank One Settings

TNL SN20-9844 (March 1987) to 75X0235

Address Banga of	Switch Bank Two Setting							
Range of Adapters	Switch 1	Switch 2	Switch 3	Switch 4				
1230-124F	On	Off	Off	Off				
2230-224F	Off	On	Off	Off				
3230-324F	Off	Off	On	Off				
4230-424F	Off	Off	Off	On				

Figure 4. Switch Bank Two Settings

Note: Switches 5 through 8 are not used.

Modes of Operation

The different modes of operation are selected by programming the NS16450/NS16550 asynchronous communications element. Address bits A0, A1, and A2 select the different registers that define the modes of operation. Also, the divisor latch access bit (bit 7) of the line control register is used to select certain registers.

The address range for this adapter is Hex 1230 through Hex 424F. Figure 5 and Figure 6 depict a value of n which represents a variable determined by the setting of switch bank two. Switches 1, 2, 3, and 4 of switch bank two allow the adapter to operate and select the appropriate address range.

I/O Deco Port B	de (In Hex) Port A	Register Selected	DLAB State
n238 n238 n238	n230 n230 n230	TX Buffer RX Buffer Divisor Latch LSB	DLAB = 0 (Write) DLAB = 0 (Read) DLAB = 1
n239 n239 n23A	n231 n231 n232	Divisor Latch MSB Interrupt Enable Register Interrupt Identification Register (Read)	DLAB = 1 $DLAB = 0$
n23A	n232	FIFO Control Register (Write - NS16550 Only)	
n23B n23C n23D n23E	n233 n234 n235 n236	Line Control Register Modem Control Register Line Status Register Modem Status Register	

Figure 5. I/O Decodes, Port A and Port B

Notes:

- 1. n is equal to the first digit of the adapter address range
- 2. DLAB means Divisor Latch Access Bit.

I/O Decode (In Hex) Port D Port C		Register Selected	DLAB State
n248	n230	TX Buffer	DLAB = 0 (Write)
n248	n240	RX Buffer	DLAB = 0 (Read)
n248	n240	Divisor Latch LSB	DLAB = 1
n249	n241	Divisor Latch MSB	DLAB = 1
n249	n241	Interrupt Enable Register	DLAB = 0
n24A	n242	Interrupt Identification	×
n24A	n242	Register (Read) FIFO Control Register (Write - NS16550 Only)	
n24B	n243	Line Control Register	
n24C	n244	Modem Control Register	
n24D	n245	Line Status Register	
n24E	n246	Modem Status Register	

(

Figure 6. I/O Decodes, Port C and Port D

Notes:

- 1. n is equal to the first digit of the adapter address range
- 2. DLAB means Divisor Latch Access Bit.

A9—>A3 Decode	A2	A1	A0	DLAB	Register
See	x	х	x		
Note 1	0	0	0	0	Receive Buffer Reg. (Read) Transmit Holding Reg. (Write)
	0	0	1	0	Interrupt Enable
	0	1	0	х	Interrupt Identification (Read Only)
	0	1	0	x	FIFO Control (Write - NS16550 Only)
	0	1	1	х	Line Control
	1	0	0	x	Modem Control
	1	0	1	x	Line Status
	1	1	0	x	Modem Status
	1	1	1	x	Scratch (See note 3)
	0	0	0	1	Divisor Latch (LSB)
	0	0	1	1	Divisor Latch (MSB)

Figure 7. Address Bits

Notes:

- 1. Bits A9 through A3 are used to select specific adapter and serial port.
- 2. A2, A1, and A0 bits are *don't cares* and are used to select the different registers of the NS16450/NS16550 chip.
- 3. The Scratch Register of the NS16450/NS16550 module should be initialized to all ones and never be written to with any data afterwards. This would cause indeterminate data when Read address n237 (see "Interrupts" on page 8) is executed.

Interrupts

Three interrupt lines are provided to the system. The interrupt level (9, 10, or 11) is selected by placing the appropriate switch on switch bank one to the on position. An interrupt register (read adr n237, where n is first digit of the address range) is provided for storage of pending port interrupts. Interrupt register bit assignments are shown in Figure 8.

	Hex Addre	ss n237					
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1	1	1	0	Port 4	Port 3	Port 2	Port 1

Figure 8. Interrupt Register Read Format

Before the 4-Port Asynchronous RS-422A Adapter can generate an interrupt to the processor, it must be enabled by writing any data byte to the interrupt enable address. This address corresponds to the interrupt level that the adapter is jumpered for.

The enable for interrupt level 9 is hex address 02F2.

The enable for interrupt level 10 is hex address 06F2.

The enable for interrupt level 11 is hex address 06F3.

After the adapter generates an interrupt, it must be reset by writing any data byte to the interrupt enable address for that interrupt.

Serial Data Format

The data format is as follows:

Transmit Data Marking	Start Bit	D0	D1	D2	D3	D4	D5	D6	D7	Parity Bit	Stop Bit	
-----------------------------	--------------	----	----	----	----	----	----	----	----	---------------	-------------	--

PORT

в

С

D

Data bit 0 is the first bit to be transmitted or received. The adapter automatically inserts the start bit, the correct parity bit (if programmed to do so), and the stop bit (1, 1-1/2, or 2 depending on the command in the line control register).

External Interface Description

The adapter provides an EIA 4-Port Asynchronous RS-422A Adapter interface.

The pin functions for the 6-pin male connector are shown in Figure 9.

Pin	Signal
1	- Transmit Data
2	+ Transmit Data
3	No Connection
4	- Receive Data
5	+ Receive Data
6	No Connection

Figure 9. 6-Pin Interface Signals Connector (as viewed from rear of adapter)

The adapter converts the interface signals from TTL levels to EIA RS-422A voltage levels, and vice versa. These signals are sampled or generated by the communications control chip. These signals can then be sensed by the system software to determine the state of the interface or peripheral device. The drivers and receivers used on the adapter are the inverting type; therefore, a 0 EIA level on the line is received or transmitted as a 0 TTL level, and a 1 EIA level is received or transmitted as a 1 TTL level.

Voltage Interchange Information

The electrical characteristics for voltage interchange information are designed to meet the requirements of EIA RS-422A standard.

For interface control circuits, the input to the receiver, measured differentially, shall be greater than +200 millivolts for a binary 0 and greater than -200 millivolts for a binary 1. (See Figure 10).

Interchange Differential Voltage (A-B)	Binary State	Signal Condition	Interface Control Function
Positive Voltage	Binary 0	Spacing	= On
Negative Voltage	Binary 1	Marking	= Off

Figure 10. 4-Port Asynchronous RS-422A Adapter Signal Levels

Asynchronous Communications Element Pin Description

The following describes the function of all NS16450/NS16550 input/output pins. Some of these descriptions reference internal circuits. The use of each signal as implemented on the multiport adapter is described.

Note: In the following descriptions, a low represents a logical 0 (0 Vdc nominal) and a high represents a logical 1 (+2.4 Vdc nominal).

Input Signals

Chip Select (CS0, CS1, -CS2), Pins 12-14: When CS0 and CS1 are high and -CS2 is low, the chip is selected. Chip selection is complete when the decoded chip select signal is latched with an active (low) address strobe (-ADS) input. This enables communications between the NS16450/NS16550 and the processor.

Data Input Strobe (DISTR, -DISTR), Pins 22 and 21: When DISTR is high or -DISTR is low while the chip is selected, this signal allows the processor to read status information or data from a selected register of the NS16450/NS16550.

Note: Only one active DISTR or -DISTR input is required to transfer data from the NS16450/ NS16550 during a read operation. Therefore, the DISTR input has been permanently tied low and the -DISTR line is used. **Data Output Strobe (DOSTR, -DOSTR), Pins 19 and 18:** When DOSTR is high or -DOSTR is low while the chip is selected, this signal allows the processor to write data or control words into a selected register of the NS16450/NS16550.

Note: Only one active DOSTR or -DOSTR input is required to transfer data to the NS16450/ NS16550 during a write operation. Therefore, the DOSTR input has been permanently tied low and the -DOSTR input is used.

Register Select (A0, A1, A2), Pins 26-28: These three inputs are used during a read or write operation to select an NS16450/NS16550 register to read from or write into as indicated in the table below. Note that the state of the divisor latch access bit (DLAB), which is the most significant bit of the line control register, affects the selection of certain NS16450/NS16550 registers. The DLAB must be set high by the system software to access the baud-generator divisor latches.

DLAB	A2	A1	A0	Register	
0	0	0	0	Receiver Buffer (Read)	
0	0	0	0	Transmitter Holding Register (Write)	
0	0	0	1	Interrupt Enable	
x	0	1	0	Interrupt Identification (Read Only)	
х	0	1	0	FIFO Control (Write - NS16550 Only)	
x	0	1	1	Line Control	
х	1	0	0.	Modem Control	
x	1	0	1	Line Status	
x	1	1	0	Modem Status	
x	1	1	1	Scratch	
1	0	0	0	Divisor Latch (Least Significant Byte)	
1	0	0	0	Divisor Latch (Most Significant Byte)	

Figure 11. NS16450/NS16550 Register Selection

Register/Signal	Reset Control	Reset State
Interrupt Enable Register	Master Reset	All Bits Low, 0-3 Forced and 4-7 Permanent
Interrupt Identification Register	Master Reset	Bit 0 is High, Bits 1 and 2 are Low, and Bits 3-7 are Permanent
Line Control Register	Master Reset	All Bits Low
Modem Control Register	Master Reset	All Bits Low
Line Status Register	Master Reset	All Bits Low, except Bits 5 and 6 are High
Modem Status Register	Master Reset	Bits 0-3 are Low, Bits $4-7 =$ Input Signal
SOUT	Master Reset	High
INTRPT (RCVR Errors)	Read LSR/MR	Low
INTRPT (RCVR Data Ready)	Read RBR/MR	Low
INTRPT (THRE)	Read IRR/ Write THR/ MR	Low
RCVR FIFO	MR/ FCR1•FCR0/ ΔFCR0	Low

Figure 12 (Part 1 of 2). NS16450/NS16550 Reset Functions

Register/Signal	Reset Control	Reset State
XMIT FIFO	MR/ FCR2•FCR0/ ΔFCR0	Low
FIFO Control Register	Master Reset	Low
INTRPT (Modem Status Changes)	Read MSR/MR	Low
-OUT 2 -RTS -DTR -OUT 1	Master Reset Master Reset Master Reset Master Reset	High High High High

Figure 12 (Part 2 of 2). NS16450/NS16550 Reset Functions

-Address Strobe (-ADS), Pin 25: When low, this signal provides latching for the register select (A0, A1, A2) and chip select (CS0, CS1, -CS2) signals.

Note: The -ADS input has been tied low because the register select (A0, A1, A2) signals are stable for the duration of a read or write operation.

Master Reset (MR), Pin 35: When high, this signal clears all the registers (except the receive buffer, transmitter holding, and divisor latches), and the control logical of the NS16450/NS16550. Also, the state of various output signals (SOUT, INTRPT, -OUT 1, -OUT 2, -RTS, -DTR) is affected by an active MR input. Refer to:

Receiver Clock (RCLK), Pin 9: This input is the 16x baud-rate clock for the receiver section of the chip.

Serial Input (SIN), Pin 10: Serial data input from the communications link (peripheral device, modem, or data set).

-Clear to Send (-CTS), Pin 36: The -CTS signal is a modem control function input whose condition the processor can test by reading bit 4 (CTS) of the modem status register. Bit 0 (DCTS) of the modem status register indicates whether the -CTS input has changed state since the previous reading of the modem status register.

Note: The CTS bit of the modem status register is tied to the active state.

-Data Set Ready (-DSR), Pin 37: The -DSR signal is a modem control function input whose condition the processor can test by reading bit 5 (DSR) of the modem status register. When low, this signal indicates that the modem or data set is ready to establish the communications link and transfer data with the NS16450/NS16550. Bit 1 (DDSR) of the modem status register indicates whether the -DSR input has changed since the previous reading of the modem status register.

Note: The DSR bit of the modem status register is tied to the active state.

-Received Line Signal Detect (-RLSD), Pin 38: The -RLSD signal is a modem control function input whose condition the processor can test by reading bit 7 (RLSD) of the modem status register. When low, this signal indicates that the data carrier has been detected by the modem or data set. Bit 3 (DRLSD) of the modem status register indicates whether the -RLSD input has changed state since the previous reading of the modem status register.

Notes:

- 1. The RLSD bit of the modem status register is tied to the active state.
- 2. Received Line Signal Detect is also called Data Carrier Detect (DCD), or Carrier Detect (CD).

-Ring Indicator (-RI), Pin 39: The -RI signal is a modem control function input whose condition the processor can test by reading bit 6 (RI) of the modem status register. When low, this signal indicates that a telephone ringing signal has been received by the modem or data set. Bit 2 (TERI) of the modem status register indicates whether the -RI input has changed from a low to high state since the previous reading of the modem status register.

Note: The RI bit of the modem status register is tied to the inactive state.

VCC, Pin 40: +5 Vdc supply

VSS, Pin 20: Ground (0 Vdc) reference.

Output Signals

-Data Terminal Ready (-DTR), Pin 33: When low, this signal informs the modem or data set that the NS16450/NS16550 is ready to communicate. The -DTR output signal can be set to an active low by programming bit 0 (DTR) of the modem control register to a high level. The -DTR signal is set high upon a master reset operation. The -DTR signal is forced to high during loop mode operation. See note below.

-Request To Send (-RTS), Pin 32: When low, this signal informs the modem or data set that the NS16450/NS16550 is ready to transmit data. The -RTS output signal can be set to an active low by programming bit 1 (RTS) of the modem control register. The -RTS signal is set high by a master reset operation. The -RTS signal is forced to high during loop mode operation. See note below.

-Output 1 (-OUT 1), Pin 34: With this signal, user-designated output can be set to an active low by programming bit 2 (-OUT 1) of the modem control register to a high level. The -OUT 1 signal is set high by a master reset operation. The -OUT 1 signal is forced to high during loop mode operation. See note below.

-Output 2 (-OUT 2), Pin 31: With this signal, user-designated output can be set to an active low by programming bit 3 (-OUT 2) of the modem control register to a high level. The -OUT 2 signal is set high by a master reset operation. The -OUT 2 signal is forced to high during the loop mode operation. See note below.

Chip Select Out (CSOUT), Pin 24: NS16450 Only When high, this signal indicates that the chip has been selected by active CS0, CS1, and -CS2 inputs. No data transfer can be initiated until the CSOUT signal is a logical 1. This signal is not used.

TXRDY, RXRDY, Pins 24,29: NS16550 Only; Transmitter and receiver pins for DMA signaling. The adapter does not use these pins.

Driver Disable (DDIS), Pin 23: This signal goes low whenever the processor is reading data from the NS16450/NS16550.

-Baudout (-BAUDOUT), Pin 15: This is a 16x clock signal for the transmitter section of the NS16450/NS16550. The clock rate is equal to the main reference oscillator frequency divided by the specified divisor in the baud-generator division latches. The -BAUDOUT is tied to the receiver section of the RCLK input of the chip.

Interrupt (INTRPT), Pin 30: This signal goes high whenever any one of the following interrupt types has an active high condition and is enabled through the IIR: receiver error flag, received data available, transmitter holding register empty, or modem status. For the NS16550, this signal also goes high for timeout (FIFO mode only). The INTRPT signal is reset lowby the appropriate interrupt service or a master reset operation.

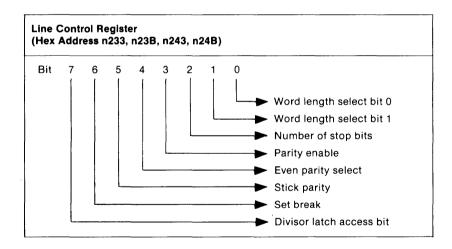
Serial Output (SOUT), Pin 11: This signal is a composite serial data output to the communications link ripheral, modem or data set). The SOUT signal is set to the marking (logical 1) state upon a master reset operation.

Note: This pin is not used on the 4-Port Asynchronous RS-422A Adapter board.

Input/Output Signals

Data Bus (D7-D0), Pins 1-8: This bus contains eight tri-state input/output lines. The bus provides bidirectional communications between the NS16450/NS16550 and the processor. Data, control words, and status information are transferred through the D7-D0 data bus.

External Clock Input/Output (XTAL1, XTAL2), Pins 16 and 17: These two pins connect the main timing reference (crystal or signal clock) to the NS16450/NS16550.

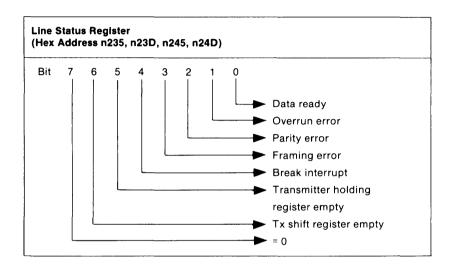

Programming Considerations

The NS16450/NS16550 has a number of accessible registers. The system programmer may access or control any of the NS16450/NS16550 registers through the processor. These registers are used to control NS16450/NS16550 operations and to transmit and receive data.

Note: The n in address is the first digit of the adapter address range (1-4).

Line Control Register

The system programmer specifies the format of the asynchronous data communications exchange through the line control register. In addition to controlling the format, the programmer may retrieve the contents of the line control register for inspection. This feature simplifies system programming and eliminates the need for separate storage in system memory of the line characteristics. The contents of the line control register are described below:


Bit 1	Bit 0	Word Length
0	0	5 Bits
0	1	6 Bits
1	0	7 Bits
1	1	8 Bits

Bits 0, 1 These two bits specify the number of bits in each transmitted or received serial character. The encoding of bits 0 and 1 is as follows:

- **Bit 2** This bit specifies the number of stop bits in each transmitted or received serial character. If bit 2 is a logical 0, one stop bit is generated or checked in the transmit or receive data, respectively. If bit 2 is a logical 1 when a 5-bit word length is selected through bits 0 and 1, 1-1/2 stop bits are generated or checked. If bit 2 is a logical 1 when either a 6-, 7-, or 8-bit word length is selected, two stop bits are generated or checked.
- **Bit 3** This bit is the parity enable bit. When bit 3 is a logical 1, a parity bit is generated (transmit data) or checked (receive data) between the last data word bit and stop bit of the serial data. (The parity bit is used to produce an even or odd number of 1's when the data word bits and the parity bit are summed.)
- **Bit 4** This bit is the even parity select bit. When bit 3 is a logical 1 and bit 4 is a logical 0, an odd number of logical 1's is transmitted or checked in the data word bits and parity bit. When bit 3 is a logical 1 and bit 4 is a logical 1, an even number of bits are transmitted or checked.
- **Bit 5** This bit is the stick parity bit. When bit 3 is a logical 1 and bit 5 is a logical 1, the parity bit is transmitted and then detected by the receiver as a logical 0 (space parity) if bit 4 is a logical 1, or as a logical 1 (mark parity) if bit 4 is a logical 0.
- **Bit 6** This bit is the set break control bit. When bit 6 is a logical 1, the serial output (SOUT) forces a spacing (logical 0) state and remains there regardless of other transmitter activity. The set break is disabled by setting bit 6 to a logical 0. This feature enables the processor to alert a terminal in a computer communications system.
- **Bit 7** This bit is the divisor latch access bit (DLAB). It must be set high (logical 1) to access the divisor latches of the baud-rate generator during a read or write operation. It must be set low (logical 0) to access the receiver buffer, the transmitter holding register, or the interrupt enable register.

Line Status Register

This 8-bit register provides status information to the processor concerning the data transfer. The contents of the line status register are described below:

- **Bit 0** This bit is the receiver data ready (DR) indicator. Bit 0 is set to a logical 1 whenever a complete incoming character has been received and transferred into the receiver buffer register or the FIFO. Bit 0 may be reset to a logical 0 either by the processor reading the data in the receiver buffer or by writing a logical 0 into it from the processor.
- **Bit 1** This bit is the overrun error (OE) indicator. Bit 1 indicates that data in the receiver buffer register was not read by the processor before the next character was transferred into the receiver buffer register, and that the previous character was thereby destroyed. The OE indicator is reset whenever the processor reads the contents of the line status register.
- **Bit 2** This bit is the parity error (PE) indicator. Bit 2 indicates that the received data character does not have the correct even or odd parity as selected by the even parity-select bit. The PE bit is set to a logical 1 upon detection of a parity error and is reset to a logical 0 whenever the processor reads the contents of the line status register. For the NS16550 in the FIFO mode, this error is associated with the particular character in the FIFO it applies to. This error is revealed to the system when its associated character is at the top of the FIFO.

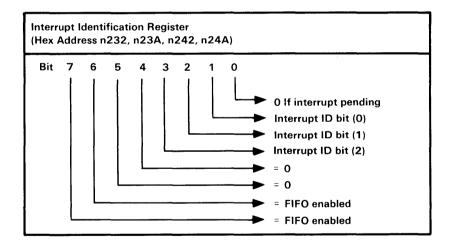
Bit 3 This bit is the framing error (FE) indicator. Bit 3 indicates that the received character did not have a valid stop bit. Bit 3 is set to a logical 1 whenever the stop bit following the last data bit or parity is detected as a 0 bit (spacing level). The FE indicator is reset whenever the system reads the contents of the line status indicator. For the NS16550 in the FIFO mode, this error is associated with the particular character in the FIFO it applies to. This error is revealed to the system when its associated character is at the top of the FIFO.

1

Bit 4 This bit is the break interrupt (BI) indicator. Bit 4 is set to a logical 1 whenever the received data input is held in the spacing (logical 0) state for longer than a full word transmission time (that is, the total time of start bit + data bits + parity + stop bits). The BI indicator is reset whenever the system reads the contents of the line status indicator. For the NS16550 in the FIFO mode, this error is associated with the particular character in the FIFO it applies to. This error is revealed to the system when its associated character is at the top of the FIFO. When break occurs only one 0 character is loaded into the FIFO. The next character transfer is enabled after SIN goes to the marking state and receives the next valid start bit.

Note: Bits 1 through 4 are the error conditions that produce a receiver line status interrupt whenever any of the corresponding conditions are detected.

- **Bit 5** This bit is the transmitter holding register empty (THRE) indicator. Bit 5 indicates that the NS16450/NS16550 is ready to accept a new character for transmission. In addition, this bit causes the NS16450/NS16550 to issue an interrupt to the processor when the transmit holding register empty interrupt enable is set high. The THRE bit is set to a logical 1 when a character is transferred from the transmitter holding register into the transmitter shift register. The bit is reset to logical 0 concurrently with the loading of the transmitter holding register by the processor. For the NS16550 in the FIFO mode, this bit is set when the transmit FIFO is empty; it is cleared when at least one byte is written to the transmit FIFO.
- **Bit 6** This bit is the transmitter empty (TEMT) indicator. Bit 6 is set to a logical 1 whenever the transmitter holding register (THR) and the transmitter shift register (TSR) are both empty. It is reset to a logical 0 whenever either the THR or TSR contain a data character. Bit 6 is a read-only bit. For the NS16550 in the FIFO mode, this bit is set to 1 whenever the transmitter FIFO and shift register are both empty.
- **Bit 7** In the character mode this is a 0. For the NS16550 in the FIFO mode, this bit is set when there is at least one parity error, framing error or break indication in the FIFO. Bit 7 is cleared when the processor reads the line status register, if there are no subsequent errors in the FIFO.


Note: The line status register is for read operations only.

Interrupt Identification Register

The NS16450/NS16550 has an on-chip interrupt capability that allows for complete flexibility in interfacing to microprocessors. In order to provide minimum software overhead during data character transfers, the NS16450/NS16550 sets interrupts into four priority levels:

- Receiver line status (priority 1)
- Received data ready (priority 2), or for the NS16550 in the FIFO mode, timeout in the FIFO.
- Transmitter holding register empty (priority 3)
- Modem status (priority 4).

Information indicating that a priority interrupt is pending and information on the type of interrupt is stored in the interrupt identification register. Refer to the "Interrupt Control Functions" table in Figure 13 on page 21. The interrupt identification register (IIR), when addressed during chip-select time, freezes the highest priority interrupt pending, and no other interrupts are acknowledged until that particular interrupt is serviced by the processor. The contents of the IIR are described below:

- **Bit 0** This bit can be used in a hardwired, priority, or polled environment to indicate whether an interrupt is pending. When bit 0 is a logical 0, an interrupt is pending and the IIR contents are used as a pointer to the appropriate interrupt service routine. When bit 0 is a logical 1, no interrupt is pending, and polling (if used) is continued.
- Bits 1, 2 These 2 bits of the IIR are used to identify the highest priority interrupt pending as indicated in Figure 13 on page 21.

- **Bits 3-7** For the NS16450 these 5 bits of the IIR are always logical 0. For the NS16550:
 - **Bit 3** In the character mode this bit is 0. In the FIFO mode this bit is set along with bit 2 when a timeout interrupt is pending.
 - Bits 4 5 These 2 bits of the IRR are always logical 0.
 - **Bit 6 7** These 2 bits are set when FCR0 = 1.

	rupt D ister			Interrupt Set and Reset Functions											
Bit 3*	Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Source	Interrupt Reset Control									
0	0	0	1		None	None									
0	1	1	0	Highest	Receiver Line Status	Overrun Error or Parity Error or Framing Error or Break Interrupt.	Reading the Line Status Register								
0	1	0	0	Second	Received Data Available	Receiver Data Available or for NS16550, Trigger Level Reached	Reading the Receiver Buffer Register								
1	1	0	0	Second	Character Timeout Indication	No characters have been removed from or input to the RCVR FIFO during the last 4 character times and there is at least 1 character in it during this time.	Reading the Receiver Buffer Register								

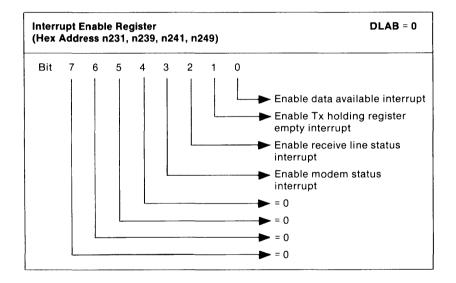
Figure 13 (Part 1 of 2). Interrupt Control Functions

	rrupt D ister				Interrupt Set a	and Reset Functions	
Bit 3*	Bit 2	Bit 1	Bit 0	Priority Level	Interrupt Type	Interrupt Source	Interrupt Reset Control
0	0	1	0	Third	Transmitter Holding Register Empty	Transmitter Holding Register Empty	Reading the IIR Register or Writing into the Transmitter Holding Register
0	0	0	0	Fourth	Modem Status	Clear to Send or Data Set Ready or Ring Indicator or Received Line Signal Detect	Reading the Modem Status Register

Figure 13 (Part 2 of 2). Interrupt Control Functions

Note: * = Applicable to NS16550 only.

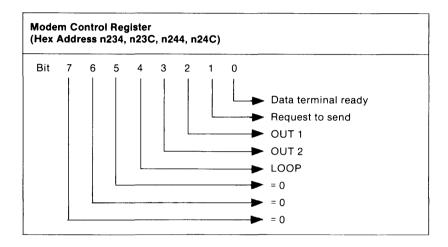
FIFO Control Register


This is an 8-bit write only register at the same location as the interrupt identification register. This register enables the FIFOs, clears the FIFOs, set the RCVR FIFO trigger level, and select the type of DMA signaling.

- **Bit 0** Setting bit 0 to 1 enables both the XMIT and RCVR FIFOs. Resetting bit 0 clears all bytes in both FIFOs. When changing from FIFO mode to character mode and vice versa, data is not automatically cleared from the FIFOs. Therefore, the FIFOs should be cleared before changing modes. This bit must be a 1 when other FIFO control register bits are written to or they will not be programmed.
- **Bit 1** Setting bit 1 to 1 clears all bytes in the RCVR FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 written to this bit position is self clearing.
- **Bit 2** Setting bit 2 to 1 clears all bytes in the XMIT FIFO and resets its counter logic to 0. The shift register is not cleared. The 1 written to this bit position is self clearing.
- Bit 3 Setting bit 3 to 1 changes the RXRDY and TXRDY pins from mode 0 to mode 1 if bit 0 = 1.
- Bit 4, 5 Reserved
- Bit 6,7 These 2 bits set the trigger level for the RCVR FIFO interrupt.

Bit 7	Bit 6	RCVR FIFO Trigger Level (Bytes)
0	0	01
0	1	04
1	0	08
1	1	14

Interrupt Enable Register


This 8-bit register enables the four types of interrupts of the NS16450/NS16550 to separately activate the chip interrupt (INTRPT) output signal. The interrupt system can be totally disabled by resetting bits 0 through 3 of the interrupt enable register. Similarly, setting the appropriate bits of this register to a logical 1, can enable selected interrupts. Disabling the interrupt system inhibits the interrupt identification register and the active (high) INTRPT output from the chip. All other system functions operate in their normal manner, including the setting of the line status and modem status registers. The contents of the interrupt enable register are described below:

- **Bit 0** This bit enables the received data available interrupt and for the NS16550, timeout interrupts in the FIFO mode, when set to a logical 1.
- Bit 1 This bit enables the transmitter holding register empty interrupt when set to a logical 1.
- Bit 2 This bit enables the receiver line status interrupt when set to a logical 1.
- Bit 3 This bit enables the modem status interrupt when set to a logical 1.
- **Bits 4-7** These 4 bits are always logical 0.

Modem Control Register

Bit four of this 8-bit register is used for diagnostic testing of the NS16450/NS16550. All other bits are not used on the 4-Port Asynchronous RS-422A Adapter. The contents of the modem control register are described below:

- **Bit 0** This bit controls the data terminal ready (-DTR) output. When bit 0 is set to a logical 1, the -DTR output is forced to a logical 0. When bit 0 is reset to a logical 0, the -DTR output is forced to a logical 1.
- **Bit 1** This bit controls the request to send (-RTS) output. Bit 1 affects the -RTS output in a manner identical to that described above for bit 0.
- **Bit 2** This bit controls the output 1 (-OUT 1) signal, which is an auxiliary user-designated output. Bit 2 affects the -OUT 1 output in a manner identical to that described above for bit 0.
- **Bit 3** This bit controls the output 2 (-OUT 2) signal, which is an auxiliary user-designated output. Bit 3 affects the -OUT 2 output in a manner identical to that described above for bit 0.

Note: The -OUT 2 output of the NS16450/NS16550 may be applied to an EIA inverting line driver to obtain the proper polarity input at the modem or data set.

Bit 4 This bit provides a loopback feature for diagnostic testing of the NS16450/NS16550. When bit 4 is set to logical 1, the following occurs:

The transmitter serial output (SOUT) is set to the marking (logical 1) state.

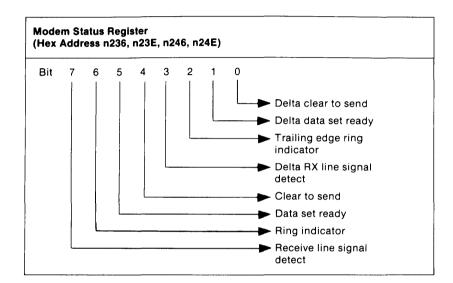
The receiver serial input (SIN) is disconnected.

The output of the transmitter shift register is *looped back* into the receiver shift register input.

The four modem control inputs (-CTS, -DSR, -RLSD, and -RI) are disconnected.

The four modem control outputs (-DTR, -RTS, -OUT 1, and -OUT 2) are internally connected to the four modem control inputs.

The modem control output pins are forced high.


In the the diagnostic mode the receiver and transmitter interrupts are fully operational. The modem control interrupts are also operational, but the sources of the interrupts are now the lower 4 bits of the modem control register instead of the 4 modem control inputs. The interrupts are still controlled by the interrupt enable register.

The NS16450/NS16550 interrupt system can be tested by writing into the lower 6 bits of the line status register and into the lower 4 bits of the modem status register. Setting any of these bits to a logical 1 generates the appropriate interrupt (if enabled). The resetting of these interrupts is the same as in normal NS16450/NS16550 operation. To return to normal operation, the registers must be reprogrammed for normal operation and then bit 4 of the modem control register must be reset to logical 0. The transmitter should be idle when this bit changes state.

Bits 5-7 These bits are permanently set to logical 0.

Modem Status Register

This 8-bit register provides the current state of the control lines to the processor. Since the adapter does not use the modem control lines, this register will not present useful status.

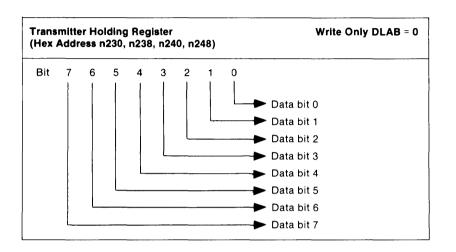
The contents of the modem status register are described below:

- **Bit 0** This bit is the delta clear-to-send (DCTS) indicator. Bit 0 indicates that the -CTS input to the chip changed state since the last time it was read by the processor.
- **Bit 1** This bit is the delta data-set-ready (DDSR) indicator. Bit 1 indicates that the -DSR input to the chip changed state since the last time it was read by the processor.
- **Bit 2** This bit is the trailing edge of the ring indicator (TERI) detector. Bit 2 indicates that the -RI input to the chip has changed from an on (logical 1) to an off (logical 0) condition.
- **Bit 3** This bit is the delta received line signal detector (DRLSD) indicator. Bit 3 indicates that the -RLSD input to the chip changed state since the last time it was read by the processor.

Note: Whenever bit 0, 1, 2, or 3 is set to a logical 1, a modem status interrupt is generated if the appropriate interrupt enable bit is set in the IER.

Bit 4 This bit is the complement of the clear to send (-CTS) input. Setting bit 4 (loop) of the MCR to a logical 1, makes this bit equivalent to RTS in the MCR.

- **Bit 5** This bit is the complement of the data set ready (-DSR) input. Setting bit 4 (loop) of the MCR to a logical 1, makes this bit equivalent to DTR in the MCR.
- **Bit 6** This bit is the complement of the ring indicator (-RI) input. Setting bit 4 (loop) of the MCR to a logical 1, makes this bit equivalent to -OUT 1 in the MCR.
- Bit 7 This bit is the complement of the received line signal detect (-RLSD) input. Setting bit 4 (loop) of the MCR to a logical 1, makes this bit equivalent to -OUT 2 of the MCR.


Receiver Buffer Register

The receiver buffer register contains the received character as defined below:

Bit 0 is the least significant bit and is the first bit serially received.

Transmitter Holding Register

The transmitter holding register contains the character to be serially transmitted and is defined below:

Bit 0 is the least significant bit and is the first bit serially transmitted.

Programmable Baud-Rate Generator

The NS16450/NS16550 contains a programmable baud-rate generator that can divide the clock input (1.8432 MHz) by any divisor from 1 to 655,535 or 2¹⁶-1. The output frequency of the baud generator is the baud rate multiplied by 16. Two 8-bit latches store the divisor in a 16-bit binary format. These divisor latches must be loaded during initialization in order to ensure desired operation of the baud-rate generator. Upon loading either of the divisor latches, a 16-bit baud counter is immediately loaded. This prevents long counts on initial load. The following figures show the contents of the divisor latches.

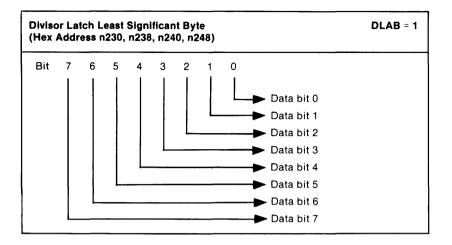


Figure 14. Divisor Latch Least Significant Byte

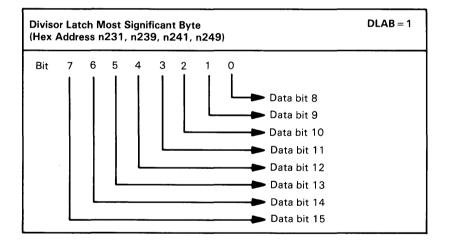


Figure 15. Divisor Latch Most Significant Byte

Figure 16 illustrates the use of the baud-rate generator with a frequency of 1.8432 MHz. For baud rates of 19,200 and below, the error obtained is minimal.

Desired Baud Rate		l to Generate Clock (Hex)	Percent Error Difference Between Desired and Actual
50	2304	900	
75	1536	600	_
110	1047	417	0.026
134.5	857	359	0.058
150	786	300	
300	384	180	
600	192	C0	_
1200	96	60	_
1800	64	40	—
2000	58	3A	0.69
2400	48	30	
3600	32	20	
4800	24	18	_
7200	16	10	
9600	12	С	—
19200	6	6	

Note: In no case should the data rate be greater than 19,200 baud.

Figure 16. Baud Rates at 1.8432 MHz

FIFO Interrupt Mode Operation

When the RCVR FIFO and receiver interrupts are enabled on the NS16550, (FCR bit 0 = 1, IER bit 0 = 1) RCVR interrupts will occur as follows:

- The receive data available interrupt is issued to the system when the FIFO has reached its programmed trigger level; it will be cleared as soon as the FIFO drops below the trigger level.
- The interrupt identification register receive data available indication also occurs when the FIFO trigger level is reached, and like the interrupt it is cleared when the FIFO drops below the trigger level.
- The receiver line status interrupt (IIR = x6), as before, has higher priority than the received data available (IIR = x4) interrupt.
- The data ready bit (LSR bit 0) is set as soon as a character is transferred from the shift register to the RCVR FIFO. It is reset when the FIFO is empty.

When RCVR FIFO and receiver interrupts are enabled, RCVR FIFO timeout interrupts will occur as follows.

- A FIFO timeout will occur if the following conditions exist:
 - At least one character is in the FIFO
 - The most recent character received was longer than 4 continuous character times ago (if 2 stop bits are programmed the second one is included in this time delay).
 - The most recent system read of the FIFO was longer than 4 continuous character times ago.
 - This causes a maximum character received to interrupt issued delay of 160 milliseconds at 300 BAUD with a 12 bit character.
- Character times are calculated by using the RCLK input for a clock signal (this makes the delay proportional to the baud rate).
- When a timeout interrupt has occurred, it is cleared and the timer reset when the system reads one character from the RCVR FIFO.
- When a timeout interrupt has not occurred, the timeout timer is reset after a new character is received or after the system reads the RCVR FIFO.

When the XMIT FIFO and transmitter interrupts are enabled (FCR bit 0 = 1, IER bit 1 = 1), XMIT interrupts will occur as follows.

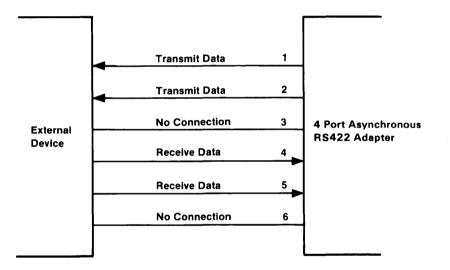
• The transmitter holding register interrupt (THRE) occurs when the XMIT FIFO is empty; it is cleared as soon as the transmitter holding register is written to (1 to 16 characters may be written to the XMIT FIFO while servicing this interrupt) or the IIR is read.

• The transmitter FIFO empty indications are delayed 1 character time minus the last stop bit time whenever the following occurs: THRE = 1 and there have not been at least two bytes at the same time in the transmit FIFO, since the last THRE = 1. The first transmitter interrupt after changing FCR bit 0 will be immediate, if it is enabled.

Character timeout and RCVR FIFO trigger level interrupts have the same priority as the current received data available interrupt; XMIT FIFO empty has the same priority as the current transmitter holding register empty interrupt.

FIFO Polled Mode Operation

With FCR bit 0 = 1 resetting IER bits 0 through 3 puts the NS16550 in the FIFO polled mode of operation. Since the RCVR and XMITTER are controlled separately either one or both can be in the polled mode of operation.


In this mode the user's program checks RCVR and XMITTER status via the line status register. As stated previously:


- Line status register bit 0 is set as long as there is one byte in the RCVR FIFO.
- Line status register bits 1 through 4 specify which errors have occurred. Character error status is handled the same way as when in the interrupt mode. The interrupt identification register is not affected since interrupt enable register bit 2 = 0.
- Line status register bit 5 indicates when the XMIT FIFO is empty.
- Line status register bit 6 indicates that both the XMIT FIFO and shift register are empty.
- Line status register bit 7 indicates whether there are any errors in the RCVR FIFO.

There is no trigger level reached or timeout condition indicated in the FIFO polled mode, however, the RCVR and XMIT FIFOs are still fully capable of holding characters.

Connector Specifications

The adapter has a 6-pin connector at the rear of the adapter. The following figure shows the signals and their pin assignments.

Note: See Figure 9 on page 9 for connector pin functions.

Personal Computer Hardware Reference Library

Baseband Adapter

ii Baseband Adapter

Contents

Local Area Networks	••	• •	 		•		• •		• •	•	 •	•	• •		•	•	 	•	 •	• •	•		 • •	•			 •	•	 •	1
Network Components		•	 	•		•		•						•			 					•	 		•	 				4
Baseband Adapter		•	 	•				• •					•				 • •						 •			 				6
Hardware Description		•	 														 •						 			 				7
Programming Interface																														
Specifications																														
Jumper Settings		•	 	•				• •									 						 • •			 				30
Connector Pin Assignm																														

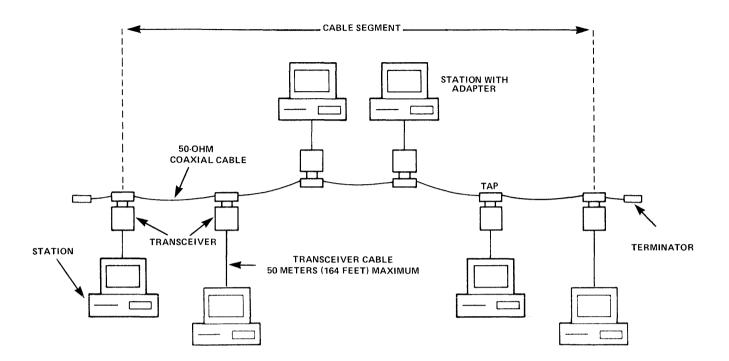
iv Baseband Adapter

Local Area Networks

A local area network (LAN) interconnects computers and terminals to permit high-speed data exchange and the shared use of supporting devices such as printers and disk drives.

A network's cabling system may link computers within the same office, on different floors, or in different buildings. Distances are typically under one mile, but may extend to several miles with the use of signal-boosting repeaters. LANs are usually private, but may connect to other local area networks or have gateways to public networks.

Local area networks may differ by the type of transmission cables and cable attachments used to connect stations in the network. They can also differ by the way they control a station's access to the network and manage network dataflow.


Baseband LAN (Description)

The baseband local area network is a standard network using a baseband coaxial cable to connect stations and supporting devices. The baseband cabling system may consist of either standard Ethernet coaxial cable, thin coaxial cable, or a mixture of both.

The term baseband describes the frequency bandwidth that carries network signals in the coaxial cable. It tells us that the entire bandwidth of 10 Megabits per second represents a single channel for carrying network signals. The 10Mb per second bandwidth is not subdivided into multiple channels as in broadband usage.

To describe the components and functions of a baseband cable system, this discussion is supported by figure 1. A standard coaxial cable system is discussed first and then a thin coaxial cable system. For discussion purposes, the illustrations reflect hardware commonly used in the industry. Your particular system may vary slightly.

Specification sheets for both cable types are found in "Specifications" on page 27. Consult your supplier for the specific components in your system.

Figure 1. Baseband Cable System

General Features

- A baseband transmission cabling system connects computer stations and supporting devices and provides a standard access and control system for data exchange.
- The cabling system is equipped with access taps and transceivers to serve each station.
- The cabling system is equipped with fixtures for terminating cable segments or extending their effective range.
- The cabling system can be equipped to link the network to other independent networks, public or private.
- For each station, access to the network is controlled by an adapter controller which operates with the CPU of a host computer.

Single Channel, Half-duplex

This type of communications channel uses only one carrier bandwidth (Baseband), which is shared by all the stations on the network. The channel is a half-duplex channel which means it will not allow simultaneous transmission and reception.

Transmission Speed (10 Megabits per second)

The Baseband Adapter transmits data at the rate of 10 Megabits per second.

Multi-access Bus Topology

The cabling system connecting stations and their supporting devices is a multi-access bus. The bus serves as a single line transmission medium with an access tap for each station.

Station access to the network is regulated by the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) method. With this method each station monitors the network to detect transmissions from other stations. A listening station then transmits its data only when the network is free.

If two stations transmit at the same instant, a collision occurs. Upon colliding, each transmitting station halts and resumes at some random interval. The time intervals are measured in fractional seconds so that it appears like large numbers of stations are using the network simultaneously.

Network Components

The following sections take a closer look at the individual components comprising the network. The components fall into three general categories:

- 1. Major components which attach to the cable or form an interface between the cable and user stations
- 2. Coaxial cable and connectors which serve to extend, terminate, or condition the cable in some way
- 3. The user stations themselves.

Note: IBM supplies the Baseband Adapter but does not supply cables or cabling components. Consult your Ethernet cable supplier for more information.

Adapter Controller

Each station is equipped with an adapter controller. The adapter occupies one internal I/O slot and acts as an interface controller to the network.

Coaxial Cable Transmission Medium

The coaxial cable connects all the stations in the network. You can choose either standard Ethernet 50-ohm coaxial cable or 50-ohm RG-58A/U thin coaxial cable. The transmission rate for both types is 10 Megabits per second, but they have different configuration restrictions.

Primary Cable Attachments:

• Signal Repeater Units

Repeater Units are provided on the network to compensate for weak signals that occur after specified distances are exceeded. The network can thus be extended by placing repeaters along the cable bus at specified distances.

• Transceivers (Medium Attachment Units--MAU)

A transceiver attaches to the network at the location of an access tap. As the name implies, the transceiver transmits and receives network signals.

It provides required electrical isolation between the controller and the baseband cable and makes it easier to install and relocate stations and signal repeater units.

4 Baseband Adapter

The transceiver receives power from its associated network station and performs a portion of the collision detection functions for its associated network station. It does this by listening to and timing the duration of transmitted signals and initiating the sending of the collision-presence signal when a collision is detected.

• Transceiver Cable (Attachment Unit Interface).

A transceiver cable connects the adapter controller to a transceiver. The transceiver cable allows a station to be located some convenient distance from the network baseband cable.

The transceiver cable contains four twisted pairs (shielded and insulated).

Baseband Adapter

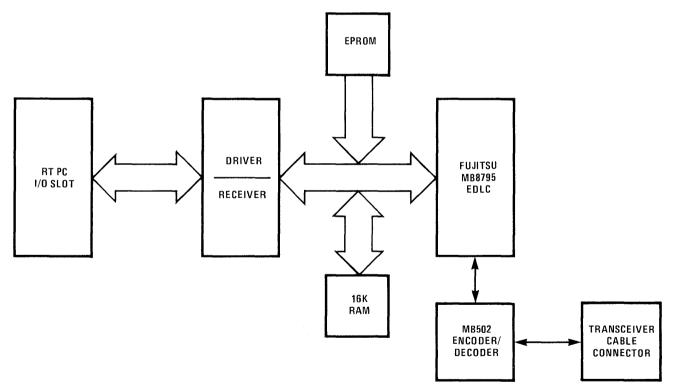
This section provides a description of the hardware components that make up the Baseband Adapter. At the end of the manual, "Jumper Settings" on page 30 provides jumper settings, while "Connector Pin Assignments" on page 32 provides information on the connector pin-outs.

The adapter is a full-duplex controller which implements the data link and physical link functions of a packet-switched (Ethernet) local area network (LAN). Although the LAN media is only half-duplex, the adapter appears to the host as full-duplex; the adapter can receive during a collision back-off, can transmit immediately after receipt, and can receive its own transmissions.

The hardware functions support software control through a 32K-byte block of shared RAM on the adapter. This block is located on any 32K-byte boundary at or above 512K-bytes and is structured to establish buffers, control registers, and index functions.

A PROM is provided on the adapter that contains the 6 byte network address. The upper three bytes of this address are H'00DD00' or H'00DD01' and labels on the PROM and the back of the adapter bracket display the lower three bytes in hexadecimal.

The adapter plugs into the host RT PC I/O channel. System control signals and power requirements are provided through a connector on the bottom edge of the adapter. A 15-pin D-connector on the back of the adapter provides external access to the network transceiver.


The adapter may be plugged into an IBM 6150 system unit in any of slots 2 through 7 and into an IBM 6151 system unit in any of slots 1 through 4.

Hardware Description

The major functional blocks in the adapter are:

- Host Interface
- Transmit
- Receive
- Ethernet Data Link Control
- Buffer RAM.

The adapter services requests from the host interface and the network interface in a priority sequenced cycle.

Figure 2. Adapter Data Flow Diagram

Host Interface

Data flow between the host and the network is through the adapter shared RAM. For packet transmission, data is written to the shared RAM and for packet reception, data is read from the shared RAM.

Features

- 32K-byte shared RAM interface
- Jumpers for shared RAM base address selection
- Jumpers for interrupt level selection
- Eight bit data path.

Packet Transmission

The transmit process begins with the host loading the adapter's transmit buffer with the packet to be transmitted. The transmission is initiated by reading the initiate transmit register. The adapter then clears the transmit done flag, which remains clear until the last byte in the transmit buffer has been sent. During the transmit sequence, data is transferred from the transmit buffer to a FIFO queue in the EDLC (Ethernet Data Link Controller) via on-board DMA operations, then serially to the encoder, and finally onto the network.

A retransmission occurs if the transmission fails because of a collision on the network with another transmitting station. The adapter attempts to transmit the packet a maximum of sixteen times. If the final attempt fails, the transmission is terminated and an error condition is posted.

After the last byte has been successfully transmitted (or the transmission has been terminated), the transmit done flag is set. The CRC bytes are then transmitted (unless the transmission has been terminated) and the packet transmission OK flag is set. Then if the transmission complete interrupt is enabled, the adapter interrupts the host.

The adapter supports double buffering. The addressing mechanism allows moving data into one of the transmit buffers while the other is being transmitted from. When the first transmission is complete, the second is ready to start without having to wait to fill the buffer.

Packet Reception

The receive process begins with the adapter receiving data from the LAN transceiver. As each byte of data is received, the adapter verifies that there is space for it in the receive page buffer. If the buffer is full, further incoming data is ignored until the end of the packet is encountered.

As the first six bytes are being processed, the EDLC attempts to match them to the network address range it has been programmed with. If this address recognition fails, further incoming data is ignored until the end of the packet is encountered.

The EDLC computes a Cyclic Redundancy Check (CRC) as the packet is being received. If the CRC at the end of the received packet matches the calculated CRC, the empty page pointer and packet available are updated. If the packet available interrupt is enabled, the adapter interrupts the host.

Ethernet Data Link Controller (EDLC)

The EDLC component set consists of the Fujitsu MB8795 Ethernet Data Link Controller and the Fujitsu MB502 Manchester Encoder/Decoder.

The MB8795 EDLC consists of a discrete transmitter and receiver. Each provides a small amount of asynchronous buffering and provisions for CRC, preamble, and byte parity generation or checking. The transmitter also provides contention resolution by means of binary exponential backoff.

The EDLC provides the adapter with an implementation of the data link layer of the Ethernet specification. The host communicates with the EDLC using the command and status registers allocated in the adapter shared RAM.

MB8795 EDLC Features

- Carrier Sense Multiple Access with Collision Detect (CSMA/CD)
- Forty eight bit (6-byte) address recognition
- Selectable address modes
- Binary exponential back-off
- Thirty two bit Cyclic Redundancy Check (CRC)
- Error status and signaling.

MB502 Encoder/Decoder Features

- Manchester encoding/decoding
- Carrier detect indicator
- On-board loopback
- Data rate of 10 Megabits per second.

Buffer RAM

Buffer RAM on the adapter consists of 16K-bytes of dynamic storage. 12K-bytes are allocated for receiving data and 4K-bytes are allocated for transmitting data.

The buffers are specifically allocated as follows:

Receive buffer

Comprises ninety six pages of 128 bytes each. This is a ring buffer, the last page in the buffer is logically followed by the first. Received packets are aligned at the beginning of a page and pages are concatenated as needed for packets exceeding 128 bytes.

Transmit buffers

Comprises two buffers of 2048 bytes each. All transmitted packets must be aligned in the selected buffer such that the last packet byte is in the last byte of the buffer.

Programming Interface

This section provides information necessary to write software which directly interfaces with the adapter. The following paragraphs describe the memory map, registers, control and data functions of the adapter. This section is for programmers and developers who need to understand the function of the adapter and write software for it.

Shared Memory

To communicate with the host, the adapter uses a 32K-byte block of memory. This block is structured to establish buffers, registers, and index functions. The operations that occur within these allocated structures result in orderly scheduling of events which implement the transmission and reception of data packets between stations on the Local Area Network (LAN).

Each of these memory mapped areas will be discussed in turn and are allocated as follows:

Offset	Definition
0000-1FFF	EPROM
2000-21FF	Ctrl Registers (2080-2083) Rcv Page Index (2100-215F) EDLC Registers (2180-218F)
4000-6FFF	Receive Buffer
7000-7FFF	Transmit Buffer

EPROM

The EPROM contains the adapter Ethernet address, at offset H'0010'.

Control Registers

Offset	R/W	Register
2080	Read Write	Initiate Transmit Transmit Start Address MS Byte
2081	Read Write	Clear Packet Available Transmit Start Address LS Byte
2082	Read Write	Interrupt and Transmit Status Interrupt Control
2083	Read Write	Empty Page Pointer and Packet Available Full Page Pointer and Interrupt Enable

Eight registers are mapped into the following four bytes:

Offset H'2080'

Read: Initiate Transmit (TXINIT)

Reading this register transmits the packet pointed to by the transmit start address registers. The data returned by the read is not defined. Do not read this register while a transmission is in progress.

Write: Transmit Start Address MS Byte (TSAMSB)

This register is the most significant byte of the offset. It points to the starting address of the next transmitted packet. Do not write to this register while a transmission is in progress.

Offset H'2081'

Read: Clear Packet Available (CLRPAV)

Reading this register clears the packet available bit if the EPP has not been updated by the adapter since it was last read by the host. This implies that all available packets in the receive buffer have been processed. When the receive buffer is empty, CLRPAV should be read before the full page pointer is set equal to the empty page pointer. Otherwise, the adapter assumes that the page buffer is full and will stop receiving incoming packets.

Write: Transmit Start Address LS Byte (TSALSB)

This register is the least significant byte of the offset. It points to the starting address of the next transmitted packet. Do not write to this register while a transmission is in progress.

Offset H'2082'

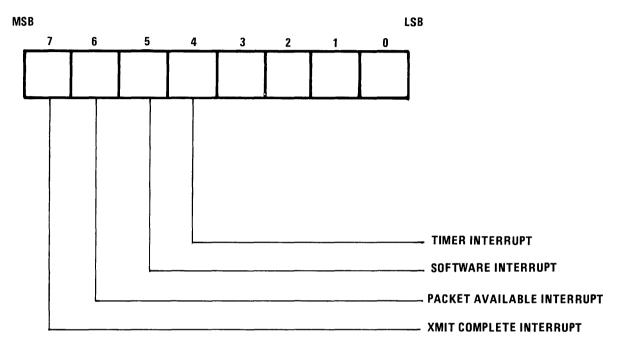
Read: Interrupt and Transmit Status (INTSTAT)

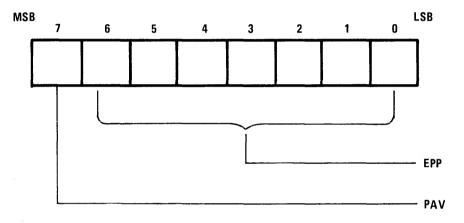
This register contains the status of the transmission lines and the NOT, or inverse, of the six interrupt status sources.

Figure 3. Offset 2082 Read

Write: Interrupt Control (INTCTL)

This register is used to enable or disable specific adapter interrupts. Each of the upper four bits enable an interrupt when set and disables the same interrupt when clear.




Figure 4. Offset 2082 Write

Offset H'2083'

Read: Empty Page Pointer (EPP) and Packet Available (PAV)

PAV is the high-order bit of this register and indicates that a received packet is ready to be removed from the receive buffer. This indicator is cleared by reading CLRPAV. EPP is the low-order seven bits and is an index into the receive buffer and the receive page index. The EPP points to the next free page.

(

Write: Full Page Pointer (FPP) and Master Interrupt Enable (INTEN)

INTEN is the high order bit of this register. When set, it enables the jumper selected interrupt line; when cleared, it disables the line. The other seven bits are the FPP, an index into the receive buffer and the receive page index. FPP points to the next page of received data.

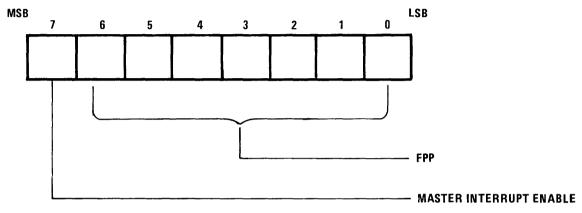


Figure 6. Offset 2083 Write

Receive Page Index Table (RPIDX)

This table is an array of 96 index bytes, one for each page in the receive buffer. The seven low-order bits of each index are the offset into the page of the last used byte of the page. This is one smaller than the number of bytes of the packet in the corresponding page. The high-order bit, when set, indicates that the corresponding page contains the end of a received packet. When this bit is clear, the corresponding page may be assumed to be full.

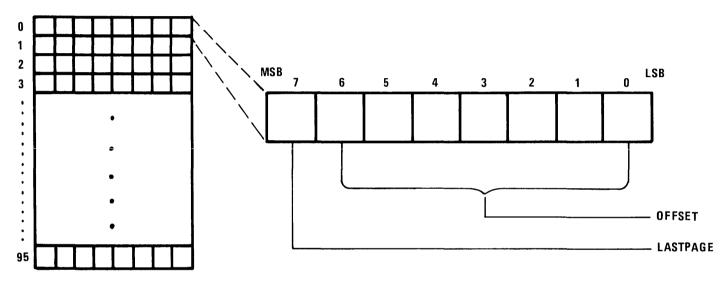


Figure 7. Receive Page Index Table

EDLC Registers

There are sixteen bytes mapped to the Ethernet Data Link Controller:

Offset	Register	
2180	Transmit Status	
2181	Transmit Mask	
2182	Receive Status	
2183	Receive Mask	
2184	Transmit Mode	
2185	Receive Mode	
2186	EDLC Reset	
2187	Transmit Data Count Low	
2188	Ethernet Node ID Byte 1	
2189	Ethernet Node ID Byte 2	
218A	Ethernet Node ID Byte 3	
218B	Ethernet Node ID Byte 4	
218C	Ethernet Node ID Byte 5	
218D	Ethernet Node ID Byte 6	
218E	(Reserved)	
218F	Transmit Data Count High	

For further discussion of EDLC Registers, refer to the Initialization section.

Receive Buffer (RBUF)

This buffer consists of ninety-six pages of 128 bytes each. The RBUF is not overwritten until after its data has been removed. There is enough space for ninety-six minimum sized-packets or eight maximum sized-packets. The values in the receive page index, FPP, EPP, and PAV are all directly related to this buffer.

Transmit Buffer (TXBUF)

There are two 2K-byte buffers. Packets must be aligned at the end of the buffer where they are placed. The last byte of the packet must be in the last byte of the buffer. Only one buffer may be transmitted from at a time, but while the transmitter is sending from one, the other may be written to. TSAMSB, TSALSB, and TXINIT are directly related to these buffers.

Interrupts

There are six interrupt sources available on the adapter. Whenever any are active and INTEN is enabled, the adapter interrupts the host processor on the jumper selected interrupt line. The sources and their abbreviations are:

Interrupt Source	Abbrev
Transmission Complete	TRCINT
Packet Available	PAVINT
Software	SFTINT
Timer	TIMINT
EDLC Transmit Status	DLTINT
EDLC Receive Status	DLRINT

Enabling and Disabling

INTEN must be set to enable the adapter interrupt line. The two EDLC interrupt sources are enabled/disabled by programming the EDLC. The other interrupt sources are enabled by setting the appropriate mask bit in INTCTL and disabled by clearing the same bit.

Whenever the adapter interrupts the host processor, the status bits of the inactive interrupt source are set and the status bits of the active interrupt source are cleared in INTSTAT.

Acknowledging and Clearing

The interrupt handling routine must acknowledge the interrupt and clear it. This is done by:

- 1. Disabling INTEN
- 2. Acknowledging the interrupt
- 3. Enabling INTEN.

Interrupt Sources

There are six interrupt sources by which the adapter can generate a host interrupt.

TRCINT - Transmission Complete Interrupt

Indicates that the adapter is ready to transmit a packet and is cleared by disabling it in INTCTL. Notice that the adapter is ready to transmit immediately following power-on reset.

PAVINT - Packet Available Interrupt

Indicates the successful reception of a packet from the network and may be cleared by either:

- Processing the packet and clearing PAV
- Disabling PAVINT in INTCTL (which does not clear PAV).

SFTINT - Software Interrupt

Enabling SFTINT causes the adapter to interrupt the host and must be cleared by disabling it. This interrupt is user definable and might be used to indicate limited resources becoming available.

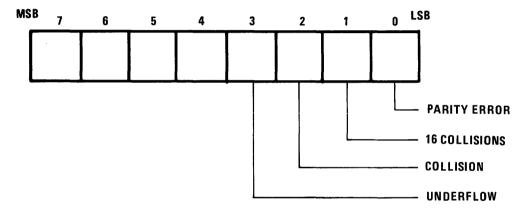
TIMINT – Timer Interrupt

Indicates that the on-board timer has expired and is cleared by disabling it. The expiration time is jumper selectable. See "Jumper Settings" on page 30. This interrupt is also user definable and might be used in certain polling schemes.

DLTINT - EDLC Transmit Interrupt

Indicates that the programmed EDLC transmission event has occurred and is acknowledged by clearing the EDLC Transmit Status Register.

DLRINT - EDLC Receive Interrupt


Indicates that the programmed EDLC reception event has occurred and is acknowledged by clearing the EDLC Receive Status Register.

Initialization

The adapter is initialized by programming the EDLC. The EDLC is programmed by moving control information into its registers. Descriptions of each of these registers are discussed below. For further information, see the Fujitsu MB8795A Technical Data Sheet.

Transmit Status Register (offset H'2180')

The lower four bits in this register indicate certain transmission events when the register is read, and clear the indicator when the same bits are written.

Figure 8. Transmit Status Register

Transmit Mask Register (offset H'2181')

The same values used in the transmit status register are used in this register to enable the DLTINT for that particular event.

Receive Status Register (offset H'2182')

The lower four bits in this register indicate certain reception events when the register is read, and clear the indicator when the same bits are written.

Figure 9. Receive Status Register

Receive Mask Register (offset H'2183')

The same values used in the receive status register are used in this register to enable the DLRINT for that particular event.

Transmit Mode Register (offset H'2184')

The upper half of this register contains the number of collisions that occurred during the transmission of the last packet and is cleared when the next packet transmission is started. The encoder/decoder loopback mode is enabled when an H'00' is moved to this register and an H'02' disables it.

Receive Mode Register (offset H'2185')

Bit 1	Bit 0	Definition		
0	0	No addresses (no packets accepted)		
0	1	Ethernet addr, Broadcasts, and limited Multicasts		
1	0	Ethernet addr, Broadcasts, and all Multicasts		
1	1	All addresses (promiscuous)		

The range of packet addresses the EDLC will accept is defined as follows:

Limited multicasts must match the first three bytes of the packet destination address. Multicast addresses have the first bit set to 1. Broadcast addresses have all bits set to 1.

EDLC Reset (offset H'2186')

When the high-order bit is set, the EDLC is held in a reset state and is returned to an operational state when the bit is cleared. When the EDLC is taken out of reset mode, it immediately begins transmission of the packet pointed to by the transmit start address registers (TSAMSB,TSALSB).

During an initialization phase, this will probably be some random sized packet of random information. To prevent this undesirable packet from reaching the network, the encoder/decoder may be placed in loop-back mode preceding EDLC reset. This diverts the packet to the receive buffer where it may be discarded. The encoder/decoder may then be taken out of loop-back.

Transmitted Data Count Low (offset H'2187')

This is the eight least significant bits of the count of successfully transmitted bits. The six most significant bits of the count are in the transmitted data count high.

Ethernet Node ID bytes 1 to 6 (offsets H'2188' - H'218D')

These six bytes are the EDLC receiving Ethernet node ID. They are set while the EDLC is in reset mode and should be set to the six bytes of the Ethernet address in the EPROM to avoid duplicate network addresses. These registers are not readable by the host.

Transmitted Data Count High (offset H'218F')

This is the six most significant bits of the count of successfully transmitted bits. The eight least significant bits of the count are in the transmitted data count low.

Packet Reception

Incoming packets that pass EDLC address recognition and filtering are placed into the receive buffer at the start of the page indicated by EPP. EPP and PAV are only updated after the packet has been fully received. They are not updated if the packet is discarded (due to a collision or other receive errors).

Since the values of FPP and INTEN cannot be retrieved from the FPP/EPP register, they must both be maintained locally. Whenever the FPP is to be written, it must first be 'OR'ed with INTEN. INTEN and FPP must be written simultaneously.

The receive buffer is a ring buffer. Whenever EPP is incremented to point beyond the last page, it is reset to point back to the first. Incoming packets can therefore wrap around the end of the buffer. FPP must also be wrapped back to the first page of the buffer after processing of the last page is completed.

The following is a sample polling algorithm for retrieving incoming packets:

- 1. Wait until PAV is set.
- 2. Copy the receive page index byte pointed to by FPP.
- 3. Mask off the end of packet bit (and save it).
- 4. Move index+1 bytes from the page pointed to by FPP.
- 5. Increment the local FPP (if greater than H'5F', set to H'00').
- 6. If the local FPP equals EPP, read CLRPAV.
- 7. Write FPP (OR with INTEN first).
- 8. If the end of packet bit (step 3) was not set, go to step 2.
- 9. Repeat from step 1 when ready.

The preceding algorithm is useful when dealing with a large volume of small packets, but is not efficient when the packet size frequently exceeds the page size. A better algorithm for retrieving large packets might be as follows:

- 1. Wait until PAV is set.
- 2. Set size to zero.
- 3. Copy the receive page index byte pointed to by FPP.
- 4. Mask off the end of packet bit (and save it).
- 5. Add the incremented byte count to the size.
- 6. Increment the local FPP (if greater than H'5F', set to H'00').
- 7. If the local FPP equals EPP, read CLRPAV.

- 8. If not End Of Packet and FPP did not wrap to zero, go to 3.
- 9. Move size bytes from the page pointed to by FPP.

10. Write FPP (OR with INTEN first).

11. If the end of packet bit (step 3) was not set, go to step 2. Repeat from step 1 when ready.

Either algorithm is improved by making it interrupt driven.

Packet Transmission

Transmission is begun by moving an outbound packet into one of the transmit buffers and the packet start offset in the adapter shared RAM into TSAMSB and TSALSM. Following a read of TXINIT, the adapter begins transmitting the packet. If there are collisions during transmission, the EDLC automatically backs off for a random period and then attempts to retransmit. Following completion of the transmit, the adapter sets TPKTOK and TXDONE in INTSTAT.

The following is a sample transmit algorithm:

- 1. Wait until both TPKTOK and TXDONE are set.
- 2. Move the packet into the transmit buffer.
- 3. Move the packet offset to the transmit start address registers.
- 4. Read TXINIT.
- 5. Repeat from step 1 when ready.

This algorithm is improved by reversing the order of the first and second steps and then ensuring that the transmit buffer being written into is not the same one as the pass through the algorithm. Making the algorithm interrupt driven also improves performance.

Specifications

These cable specifications are intended as guidelines only. It is a customer responsibility to ensure that cabling components appropriate for operating an Ethernet network are used.

Ethernet Cable System Specifications

Item	Specification	
Main Bus Cable Type	Ethernet 50-ohm PVC or teflon FEP coaxial cable	
Connectors	N-series	
Transceiver Cable	Four-stranded, twisted-pair conductors with an overall shield and insulating jacket	
Data Rate	10 Megabits/sec	
Maximum length of any Baseband cable segment	500 meters (0.31 miles)	
Minimum distances between transceivers	2.5 meters (8.2 feet)	
Maximum number of transceivers per cable segment	100 transceivers	
Maximum number of stations in a network using repeaters	1024 adapters	
Maximum length of transceiver cable	50 meters (164 feet)	

Ethernet Cable Mechanical Requirements

The mechanical requirements for the Ethernet cable are as follows:

Item	Specification
Center Conductor	Solid copper, 2.17 mm dia $+ 0.0127$ (0.0855 inches dia $+ 0.0005$)
Core Dielectric	Foam
Inside diameter of innermost shield	6.15 mm (0.242 inches) min.
External shield	90% + tinned copper braid, with an outside diameter of 8.28 mm + 0.178 mm (0.326 inches + 0.007 in.)
Jacket's outside	9.27 mm (0.365 inches) min, 10.54 mm (0.415 inches) max.
Concentricity	0.51 (0.020 inches) O.C.

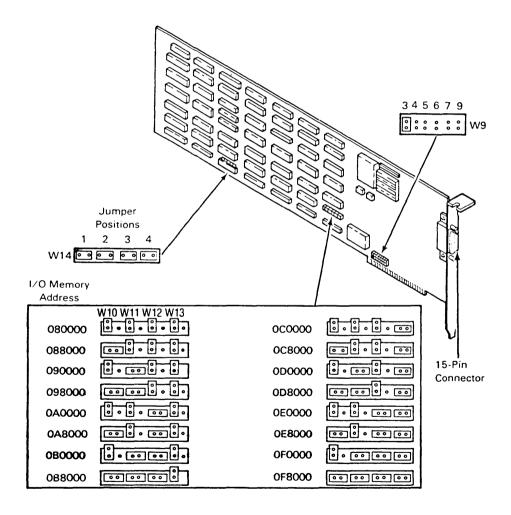
Cable concentricity must be such that the center of the core conductor is within 0.51 mm (0.020 inches) of its ideal concentric position with respect to the jacket.

Thin Coaxial Cable System Specifications

Item	Specification		
Main bus cable type	RG-58A/U, 50-ohm coaxial cable		
Connectors	BNC type		
Transceiver cable type	Four-stranded, shielded twist-pair conductors with an overall shield and insulating jacket		
Data rate	10 Megabits/sec		
Maximum length of any thin coaxial cable segment	200 meters (656 feet)		
Minimum distance between transceivers	1 meter (3.3 feet)		
Maximum number of transceivers per cable segment	30 transceivers		
Maximum transceiver cable length from adapter to transceiver	50 meters (164 feet)		

Jumper Settings

Interrupt Level Select


Level	W9 Jumper
IRQ3	IR3
IRQ4	IR4
IRQ5	IR5
IRQ6	IR6
IRQ7	IR7
IRQ9	IR9 (IR2)

Interrupt Request Rate

Rate	W14 Jumper
9.1 ms	Position 1
18.3 ms	Position 2
36.6 ms	Position 3
73.2 ms	Position 4

Set the jumpers as follows:

- **W9** Set to the interrupt level desired.
- W10 W13 Set for the 32K-byte block of memory desired.
- W14 Sets the interrupt request rate.

Connector Pin Assignments

Pin	Signal	Description
Shield		Logic and frame ground
2	Col+	Collision Detect high
3	Tx Data+	Transmit Data high
4	Reserved	
5	Rcv Data+	Receive Data high
6	Power Rtn	Transceiver Power return
7	Reserved	
8	Reserved	
9	Col-	Collision Detect low
10	Tx Data-	Transmit Data low
11	Reserved	
12	Rcv Data-	Receive Data low
13	Power	+12 volts to transceiver
14	Reserved	1
15	Reserved	

Figure 10. D - Connector Pin Assignments

I/O Pin	Signal Name		
A01	n/c	B01	Gnd
A02	Data 7	B02	+Reset
A03	Data 6	B03	+5
A04	Data 5	B04	IRQ 9
A05	Data 4	B05	-5
A06	Data 3	B06	n/c
A07	Data 2	B07	-12
A08	Data 1	B08	n/c
A09	Data 0	B09	+12
A10	+I/O CH RDY	B10	Gnd
A11	n/c	B11	-SMEMW
A12	SA19	B12	-SMEMR
A13	SA18	B13	n/c
A14	SA17	B14	n/c
A15	SA16	B15	n/c
A16	SA25	B16	n/c
A17	SA14	B17	n/c
A18	SA13	B18	n/c
A19	SA12	B19	-Refresh
A20	SA11	B20	n/c
A21	SA10	B21	IRQ7
A22	SA09	B22	IRQ6
A23	SA08	B23	IRQ5
A24	SA07	B24	IRQ4
A25	SA06	B25	IRQ3
A26	SA05	B26	n/c
A27	SA04	B27	n/c
A28	SA03	B28	n/c
A29	SA02	B29	+5
A30	SA01	B30	Osc
A31	SA00	B31	Gnd

Figure 11. 62 Pin Connector Pin Assignments

34 Baseband Adapter

(

Personal Computer Hardware Reference Library

Multiprotocol Adapter

ii Multiprotocol Adapter

Contents

Description	1
Internal Programming Considerations	22
Adapter Commands	
External Programming Considerations	50
Sample Program	59

iv Multiprotocol Adapter

Description

The IBM Multiprotocol Adapter is a communications adapter that is programmable from the system to support asynchronous, character synchronous, and bit synchronous protocols using the RS232C interface. The second RS232C port may be reconfigured as an RS366 interface to support autocalling. An X.21 interface is supported using any synchronous protocol.

This adapter is an 8-bit device in PIO (Program Input/Output) mode and a 16-bit alternate controller in DMA (Direct Memory Access) mode. This means the adapter is capable of transferring data directly to and from system memory via DMA by driving the I/O channel with the appropriate address, data, and control signals. It receives system commands and returns adapter status by responding to I/O read and I/O write operations generated by the system.

The functions performed by the adapter depends on both the user provided adapter microcode and the adapter device driver.

The adapter provides all its own clocking thus not requiring any system clocking support.

This adapter plugs into the I/O channel within the RT PC work station from which it derives all system signals and power. Connectors on the board edge supply all the signals necessary to operate various combinations of one or two RS232C ports and/or a single X.21 network interface. Additionally, support of an autocall device using the RS366 interface can be selected.

Functional Block Diagram

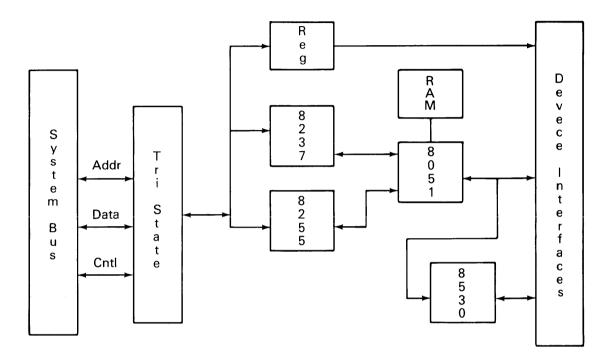
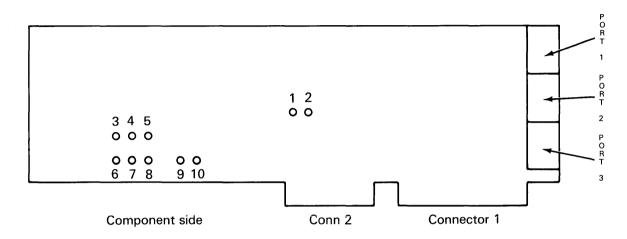


Figure 1. Multiprotocol Adapter Block Diagram


Adapter Configurations Supported

Configuration	Port 1	Port 2	X.21 Port
1	RS232C	Idle	Idle
2	Idle	RS232C	Idle
3	RS232C	Idle	Active
4	Idle	RS232C	Active
5	RS232C	RS232C	Idle
6	RS232C	RS366	Idle
7	Idle	Idle	Active

The table below describes the valid adapter operating configurations.

Figure 2. Adapter Configurations

Configuration Jumpers

Figure 3. Configuration Jumper Pins

The adapter can be jumpered for system DMA channel 1 or 5, interrupt level 10 or 11, and one of two I/O address blocks. The following table shows which pairs of pins should be jumpered to provide the various configurations.

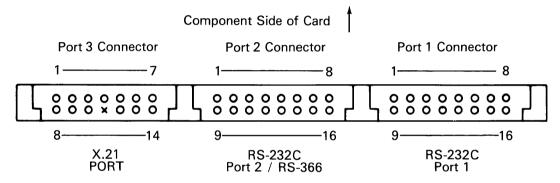

Pin Pair	Jumper On	Jumper Off
1 - 2	System DMA Channel 1	System DMA Channel 5
3 - 4	Interrupt Level 11	4 - 5 Must be off
4 - 5	Interrupt Level 10	3 - 4 Must be off
6 - 7	Interrupt Level 11	7 - 8 Must be off
7 - 8	Interrupt Level 10	6 - 7 Must be off
9 - 10	Address Block 05XX	Address Block 09XX

Figure 4. Jumper Configuration Table

Interrupts

The adapter supports interrupt sharing on interrupt level 10 or 11, and uses system DMA channel 1 or 5 (both jumperable). An address jumper allows either of two I/O address blocks to be decoded. This provision allows two adapters to be used concurrently in an RT PC system.

External Connector Description

Connection to the adapter board is through a three section AMP-MODU connector. The Port 1 position (RS232C Port 1) is 2x8, the Port 2 position (RS232C Port 2 or RS366) is 2x8, and the port 3 position (X.21) is 2x7. The X.21 cable is keyed to prohibit plugging into either of the first two positions. The two RS232C cables are identical but different from the RS366 cable. These cables can be swapped, which results in an interface error but no electrical damage. The connector is shown from the device side of the board. Notice that all three cables can be plugged simultaneously but there are restrictions on which combinations can be active concurrently.

Addressing Map

The following table shows the adapter I/O addresses which are accessible to the system. There is no on-board memory accessible from the system interface.

Register	Primary Addr (Hex)	Alternate Addr (Hex)
8237 DMA Controller	0510-051F	0910-091F
8255 PPI Module	0520-0523	0920-0923
DMA Addr Extension	0524-0527	0924-0927
Adapter HW Reset (See note)	0528	0928
Adapter Echo/Status Register	052B	092B
Port 1 Control Register 1	052C	092C
Port 1 Control Register 2	052D	092D
Port 2 Control Register 1	052E	092E
Port 2 Control Register 2	052F	092F
Reset Interrupt (Level 10)	X6F2	X6F2
Reset Interrupt (Level 11)	X6F3	X6F3

Figure 6. System Address Assignments

Notes:

- 1. Adapter reset is accomplished by software executing an I/O write to address H'0528' or H'0928' with data bit 0 a 1 followed by another write to the same address with data bit 0 a 0. A 2 micro-second wait is necessary between the two write operations to generate a sufficiently long reset pulse.
- 2. Programs that perform consecutive I/O operations to address ranges H'0X10'to H'0X1F' or H'0X20' to H'0X23' must wait at least one microsecond between two operations.

Board Enable/Disable Controls

System Bus Driver Enable

The board provides a single control bit to allow the system to globally enable and disable system interface drivers. This bit is writeable from the system and is reset to the disabled state by a system POR or software reset.

Interrupt Enable

The board provides a single control bit to allow the system to enable and disable system interrupts. This bit is writeable and readable from the system. It is reset to the disabled state by a system POR or software reset.

Note: The system drivers must be enabled before interrupts can be generated to the system.

RS232C Port 1 Driver Enable

The board provides a single control bit to allow the system to enable and disable the RS232C Port 1 drivers. This bit is writeable but not readable from the system. It is reset to the disabled state by a system POR or software reset.

RS232C Port 2/RS366 Driver Enable

The board provides a single control bit to allow the system to enable and disable the RS232C Port 2/RS366 drivers. This bit is writeable but not readable from the system. It is reset to the disabled state by a system POR or software reset.

X.21 Driver/Receiver Enable

The board provides a single control bit to allow the system to enable and disable the X.21 drivers and receivers. This bit is writeable but not readable from the system interface. It is reset to the disabled state by a system POR or software reset.

Internal Programming Interface Description

8051 Memory Addressing Maps

The Multiprotocol Adapter contains a single 8K region of static RAM memory. This RAM memory can be used by the user's microcode as either program or data memory. The method of access by the 8051 varies slightly depending on the application of this memory. The following figures show the memory address spaces presented to the adapter's 8051 processor.

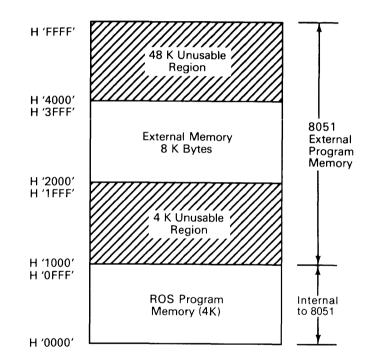
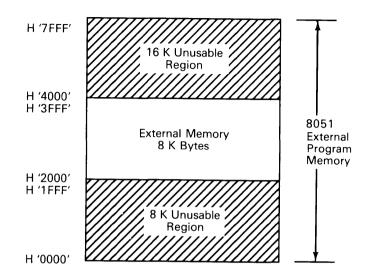
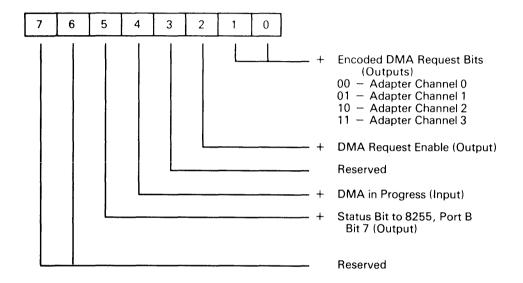



Figure 7. 8051 Program Memory Map

The external program memory map can be seen as a single 8K memory region that appears at absolute address H'2000'. The lowest order 4K region of memory contains the processor's internal 4K-ROS program memory.

External memory is automatically accessed by the 8051 for program addresses above 4K (hex address 0FFF). Microcode resident in external RAM memory is executed by simply branching to the appropriate external memory address following the completion of the RAM IPL process.


Figure 8. 8051 Data Memory Map

The external data memory map can be seen as a single 8K memory region that appears at absolute address H'2000'. This data is accessed by initializing the 8051's DPTR register to the appropriate address and executing the processor's MOVX instruction. Notice that there is a single 8K-RAM region on the adapter that is intended for both program and external data memory (if any). It is the responsibility of the user's microcode to ensure that external data regions do not unintentionally overlay external program memory.

Notice that for memory addresses in the H'2000' to H'3FFF' range that data access addressing is the same as for program execution addressing.

8051 Resident I/O

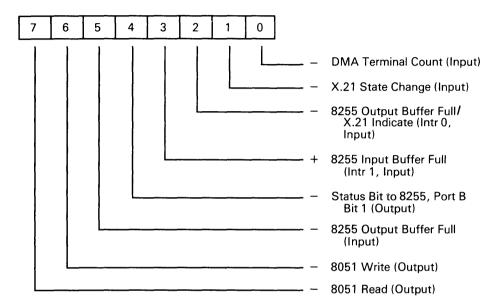

8051 I/O Port 1

Figure 9. 8051 Port 1 Bits

The figure above defines the I/O status bits found in the 8051 processor module port 1.

8051 I/O Port 3

Figure 10. 8051 Port 1 Bits

The figure above defines the I/O status bits found in the 8051 processor module port 3.

8051 External I/O Address Map

The following figure shows the I/O address map as seen by the adapter's 8051 processor.

Device	I/O Address	Access Modes
Low order DMA data register	H'80XX'	Read/Write
High order DMA data register	H'88XX'	Read/Write
System Interface Port	H'90XX'	Read/Write
Communications Cntlr	H'98X0' - H'98X3'	Read/Write
Port 1 Intfc. Inputs	H'A0XX' or H'B0XX'	Read Only
Port 2 Intfc. Inputs	H'COXX' or H'DOXX'	Read Only

Figure 11. 8051 I/O Address Assignments

8051 I/O operations are accomplished by initializing the 8051's DPTR register to the appropriate I/O address and executing the processor's MOVX instruction.

Communication Controller (8530)

The 8530 controller is used in a poll mode allowing the 8051 to read status and determine if service is required. The 8530 has two independent channels with associated read and write registers that allow the 8051 to control all necessary functions. There are shared registers to reduce the amount of interrogation required by the 8051. The following is a list of all 8530 internal registers. For a detailed description of each register please reference the ZILOG Z8030/Z8530 Serial Communications Controller Technical Manual.

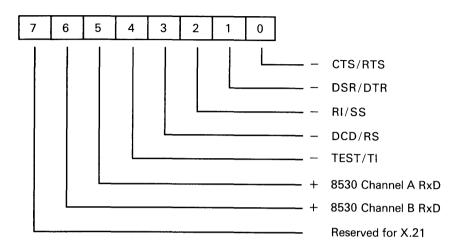
Note: These registers are directly accessible only by the adapter's 8051 processor.

Register	Description	Channel	Ptr Address
Write R0	Command/Pointer Register	A and B	X0
Read R0	Xmit/Rcv Buf Stat, Ext Stat	A and B	X0
Write R1	Xmit/Rcv Intr, Xfer Mode	A and B	X1

Figure	12	(Part	1	of	2).	8530 Internal Registers
--------	----	-------	---	----	-----	-------------------------

Register	Description	Channel	Ptr Address
Read R1	Special Rcv Condition Stat	A and B	X1
Write R2	Interrupt Vector	Common	X2
Read R2	Interrupt Vector	A and B	X2
Write R3	Rcv Parameters and Control	Common	X3
Read R3	Interrupt Pending Register	A and B	X3
Write R4	Xmit/Rcv Parameters, Modes	A and B	X4
Write R5	Xmit Parameters and Control	A and B	X5
Write R6	Sync Char or S/HDLC Addr	A and B	X6
Write R7	Sync Char or S/HDLC Addr	A and B	X7
Write R8	Transmit Buffer	A and B	X8
Read R8	Receive Data Register	A and B	X8
Write R9	Master Interrupt Control	Common	X9
Write R10	Xmit/Rcv Control Bits	A and B	XA
Read R10	Miscellaneous Status Bits	A and B	XA
Write R11	Clock Mode Control	A and B	XB
Write R12	Low Byte BRG Time Constant	A and B	XC
Read R12	Low Byte BRG Time Constant	A and B	XC
Write R13	High Byte BRG Time Constant	A and B	XD
Read R13	High Byte BRG Time Constant	A and B	XD
Write R14	Misc. Control Register	A and B	XE
Write R15	Ext Stat/Interrupt Control	A and B	XF
Read R15	Ext Stat/Interrupt Control	A and B	XF

Figure 12 (Part 2 of 2). 8530 Internal Registers


The 8530 uses the command register as an address pointer to allow the 8051 to access the other internal 8530 registers. To access any of these internal registers, the pointer register must first be written with the appropriate address. There are only three address bits used directly for the

addressing. The registers with addresses of 8 through F must be accessed using the 8530 point high command.

The following functional capabilities of the Zilog 8530 are not supported in this adapter.

- 1. DMA support: DMA is controlled by the adapter 8051 processor rather than by 8530 DMA controls.
- 2. Interrupts: 8530 interrupts are not supported. The adapter processor polls the 8530 to determine service needs.
- 3. Modem controls: RS232C modem outputs are not driven from the 8530 modem output bits, with the following exception. The adapter processor can drive the RS232C 'Request to Send' (RTS) output via bit 1 in the 8530 'Write Register 5'. This output is logically ORed with the RTS signal that can alternately be driven from bit 0 of either interface control register 1 or interface control register 3 (depending on port). This provides the adapter processor with the capability to initiate transmissions without device driver intervention, if desired.

Port 1 Input Modem Register



The Port 1 modem input register can only be read by the 8051. It contains the status of the control lines from the DCE to the DTE. These registers are updated on the leading edge of the 8051 read pulse and should be debounced by the user supplied microcode program.

The register inputs are multiplexed for diagnostic reasons. If the adapter is in driver or receiver wrap mode, the inputs to the register are the control lines from the adapter to the DCE (such as RTS, DTR). This allows the hardware control register bits to be tested on board.

The status bits received from the modem are negative true (0 = on) when viewed in either port input register.

Port 2 Input Modem Register

The Port 2 modem input register is identical to the port 1 register except it includes the RS366 and X.21 control signals.

Note that the control signals for RS232C Port 2, RS366, and X.21 appear multiplexed but a single control bit drives each wrapped bit. The interface driver that gets driven is controlled by adapter mode select bits in system control registers.

The register inputs are multiplexed for diagnostic reasons. If the adapter is in driver/receiver wrap mode, the inputs to the register are the control lines from the adapter to the DCE (RTS, DTR). This tests the hardware control register bits on-board.

X.21 RxD latches 1 and 2 contain the last 2 receive data bits. The bits are valid only if the X.21 PAL clock is enabled. If these bits are sampled during an X.21 PAL interrupt, they can be interpreted according to the following table.

Latch 2	Latch 1	
0	0	Last 16 receive data bits were all zeros.
0	1	Last 16 receive data bits were alternating ones and zeros.
1	0	Last 16 receive data bits were alternating ones and zeros.
1	1	Last 16 receive data bits were all ones.

Figure 13. X.21 RxD Latch Bits

8051 DMA Request Interface

The 8051 controls all DMA requests to the 8237. The system processor tells the 8051 (via 'Operating' mode commands) which DMA channel to use for a given transfer. The 8051 writes the encoded channel value to the DMA request encode bits and then sets the DMA request enable bit which generates a DMA request to the 8237. The DMA request line is disabled by the DMA acknowledge (DACK) that is returned. The DACK sets a latch that can be read by the 8051 to determine when the transfer has been completed. The 8051 can also read a latch that is set by a Terminal Count (TC) pulse (from the 8237) which allows the 8051 to detect when a given DMA channel has expired. After this, the 8051 resets the DMA request enable bit which will reset the TC latch and the DACK back latch and leave DMA request hardware ready for the next transfer request.

Adapter Clocking Options

RS232C External (DCE) Clocking

External clocking implies the DCE is providing the DTE with the necessary clocking signals for both transmit and receive. The adapter supports this type of clocking when the hardware is initialized as follows:

- The 'use RS232C port 1 modem receive clock' and 'use RS232C port 1 modem transmit clock' bits in interface control register 2 must be set to 1. These control bits gate the two clock signals to the 8530 module.
- The 8530 must be initialized to get its transmit clock from the TRxCA pin and its receive clock from the RTxCA pin. Please refer to the 8530 Technical Manual for other register initialization required to support this type of clocking.

Note: RS232C port 2 has similar initialization for this mode of operation.

RS232C Internal (DTE or BMC) Clocking

Internal clocking implies that the DTE is providing its own clocking for both transmitting and receiving. The adapter supports this type of clocking when the hardware is initialized as follows:

- The 'Use 1X Clock for BMC Clocking for RS232C Port 1' bit in interface control register 2 must be set to 1. This control bit enables on board circuitry to divide the the 32x clock signal driven by the 8530 on the TRxCA pin to produce a 1x clock signal. This 1x clock signal is used by the transmit clock. The receive clock is generated from the receive data stream using logic internal to the 8530.
- The 8530 must be initialized to have the baud rate generator (BRG) produce a clock 32 times the line baud rate.
- The digital phase locked loop (DPLL) should be set up to get its input clock from the BRG.
- The receive clock should be set up to come from the DPLL receive clock output.

- The TRxCA pin should be configured as an output and be tied to the BRG output.
- The transmit clock should be set up to come from the RTxCA pin.

Notes:

- 1. In this mode, three 8530 commands must be issued to 8530 WR14 to guarantee proper operation of the DPLL. They are:
 - a. Set NRZI mode
 - b. Set source = BR generator
 - c. Enter search mode.
- 2. RS232C port 2 has similar initialization for this mode of operation.

X.21 Clocking

X.21 implies that the DCE is providing clocking for both transmitting and receiving. The adapter supports this type of clocking when the hardware is initialized as follows:

- The 'Enable X.21 Drivers and Receivers' bit in interface control register 2 must be set to 1.
- The 'Select Channel A (or B, but not both) for X.21' bit in interface control register 1 must be set to 1.
- The 'Enable X.21 PAL Clock' bit in interface control register 3 must be set to 1.
- The 8530 must be initialized to obtain both the transmit and receive clocks from the RTxCA pin (or RTxCB).

Providing a Clock to the DCE

The adapter has the capability for providing a 1x clock to the DCE. The adapter supports this type of clocking when the hardware is initialized as follows:

- The 'Enable Port 1 RS232C Drivers' bit and the 'Provide Transmit Clock to RS232C Port 1' bits in interface control register 2 must be set to 1.
- The 8530 must be initialized to have the BRG provide a 32x clock to the TRxCA pin and TRxCA must be configured as an output.

Note: RS232C port 2 has similar initialization for this mode of operation.

8530 Channel A Clock to 8530 Channel B

The adapter has the capability of using the BRG of 8530 channel A to provide a clock to channel B. The adapter supports this type of clocking when the hardware is initialized as follows:

- The 'Wrap 8530 Channel A Clock to Channel B' and the 'Provide Transmit Clock to RS232C Port 1' bit in interface control register 2 must be set to one.
- The 8530 channel A must be initialized to have the BRG provide a 1x clock to the TRxCA pin and TRxCA must be configured as an output.
- 18 Multiprotocol Adapter

• The 8530 channel B must be initialized to have the channel A clock as an input on the RTxCB pin.

8530 Channel B to 8530 Channel A

The adapter has the capability of using the BRG of 8530 channel B to provide a clock to channel A. The adapter supports this type of clocking when the hardware is initialized as follows:

- The 'Wrap 8530 Channel B Clock to Channel A' and the 'Provide Transmit Clock to RS232C Port 1' bit in interface control register 4 must be set to one.
- The 8530 channel B must be initialized to have the BRG provide a 1x clock to the TRxCB pin and TRxCB must be configured as an output.
- The 8530 channel A must be initialized to have the channel B clock as an input on the RTxCA pin.

RS232C Signals

Request to Send (RTS, Output)

This signal conditions the local DCE for data transmission and, on a half-duplex circuit, to control the direction of the data transmission for the local DCE. This signal is active high.

Data Terminal Ready (DTR, Output)

This signal controls switching of the DCE to the communication channel. The assertion of this signal prepares the DCE for connecting to the communications channel and maintains the connection established by external means. This signal is active high.

Rate Select (RS, Output)

This signal selects between two data signaling rates in dual data rate synchronous DCEs or between two ranges of data signaling rates in dual range nonsynchronous DCEs. This signal is active high.

Note: The EIA RS-232C Standard (August 1969) allows either of two functions (interchange circuits CH or CI) to use pin 23 of the 25-pin DTE/DCE interface connector. The RT PC Multiprotocol Adapter assigns the *Data Signal Rate Selector (DTE Source)* function (circuit CH) to pin 23. If your modem assigns the *Data Signal Rate Selector (DCE Source)* function (circuit CI) to pin 23, a functional incompatibility will exist between the Multiprotocol Adapter and your modem for this pin. However, hazards to personnel or equipment do not exist. See your modem vendor for additional information or assistance.

Select Standby (SS, Output)

This signal controls the activation of a backup switched network path available on some private (leased) line DCE facilities. The backup provides continued communications during a line failure. This signal is active high.

Test (Output)

This signal places the DCE in diagnostic test mode. This signal is active high.

Transmit Clock (TxCO, Output)

This signal supplies a transmit clock to a modem requiring external clocking.

Transmit Data (TxD, Output)

This signal carries the serial data stream from the communications adapter data outputs to the DCE. This signal is active high.

Clear to Send (CTS, Input)

This signal indicates that the DCE is ready for DTE data transmission. This signal is active high.

Data Set Ready (DSR, Input)

This signal indicates that the DCE is connected to a communications channel and that the DCE is not in test, talk, or dial mode. This signal is active high.

Ring Indicate (RI, Input)

This signal indicates the detection of a ring signal by the DCE and is used for automatic answering situations. This signal is active high.

Data Carrier Detected (DCD, Input)

This signal indicates that the DCE has detected a valid carrier. This signal is active high.

Test Indicate (TI, Input)

This signal indicates to the DTE that the DCE has entered diagnostic test mode. This signal is active high.

Receive Clock (RxCI, Input)

This signal clocks the receive data into the communications adapter for de-serialization.

Transmit Clock, DCE SOURCE (TRXI, Input)

This signal provides the DTE a clock for shifting the transmit data out of the serialization buffer.

Receive Data (RxD, Input)

This signal carries the serial data stream from the DCE to the DTE receive buffer. This signal is active high.

RS366 Signals

Call Request (CRQ, Output)

This signal requests the ACU (Automatic Calling Unit) to originate a call. This signal is active high.

Digit Present (DPR, Output)

This signal indicates to the ACU that it may read the code combination on the digit signal circuits (NB 1-4). This signal is active high.

RS366 DIAG (Output)

This signal is used in diagnostic mode only during an external wrap test to check out the RS366 drivers and receivers.

NB1 (NB1, Output)

This signal is the low order bit in the code combination. This signal is active high.

NB2 (NB2, Output)

This signal is the second order bit in the code combination. This signal is active high.

NB4 (NB4, Output)

This signal is the third order bit in the code combination. This signal is active high.

NB8 (NB8, Output)

This signal is the high order bit in the code combination. This signal is active high.

Power Indicate (PWI, Input)

This signal is an indication to the DTE that the ACU is powered on. This signal is active high.

Data Line Occupied (DLO, Input)

This signal indicates to the DTE that the communications channel is in use. This signal is active high.

Call Origination Status (COS, Input)

This signal indicates to the DTE the status of the call procedure. The ACU activates this line when the call has been successfully completed. This signal is active high.

Abandon Call and Retry (ACR, Input)

This signal indicates to the DTE that the present calling procedures is likely to fail and that the call procedure should be re-initiated. This signal is active high.

Present Next Digit (PND, Input)

This signal indicates to the DTE that the ACU is ready to accept another digit. This signal is active high.

X.21 Signals

Transmit Data (T, Output)

This signal carries the serial data from the DTE to the DCE during the data transfer phase. During call establishment and call clearing phases, control information is passed to the DCE on this line. This signal is a differential signal.

Control (C, Output)

This signal is used during the call establishment phase to indicate the status of the DTE to the DCE. This signal is a differential signal.

Indicate (I, Input)

This signal indicates to the DTE that the DCE has made a remote connection and that the DTE should enter the data transfer phase. This signal is a differential signal.

Signal Element Timing (S, Input)

This signal provides both the receive and the transmit clocking to the DTE. This signal is a differential signal.

Receive Data (R, Input)

This signal carries the serial data from the DCE to the DTE during the data transfer phase. During call establishment and call clearing phases, control information is passed to the DTE on this line. This signal is a differential signal.

Internal Programming Considerations

Control Interface

The RT PC Multiprotocol Adapter resides in the I/O address space of the system processor. Activity carried out by this adapter is initiated and controlled via I/O reads/writes over this interface. The adapter permits the system processor to directly control the Multiprotocol Adapter DMA controller, the associated address extension registers, the 8255 peripheral interface module, and a set of external device interface and adapter control registers. The 8530 communications controller module, the program storage RAM, and the modem input registers are configured as slave devices to the 8051 microcontroller.

The adapter may use alternate controller DMA for all data transfers between the adapter and the system. Alternate controller DMA is under control of the adapter board. To transfer data, the adapter gains control of the I/O channel and transfers the data directly between the adapter and the system. The adapter contains its own 8237 DMA controller that provides four independent DMA channels. Two bytes of data are transferred for each DMA operation.

Microcontroller Operating Modes

The adapter permits the 8051 microcode to execute out of adapter resident RAM memory. During a hardware adapter reset or the execution of a software adapter reset, the 8051 microcontroller begins its execution out of Read-Only Storage (ROS). This ROS is microcoded to support two commands necessary to IPL RAM and begin RAM program execution. These commands are called the POR mode 8051 commands.

After the completion of the RAM IPL operation the user provided device driver is presented with a second set of 8051 commands. These commands are the operating mode 8051 commands. The function and definition of these operating mode commands is determined by the user provided operating mode microcode. This microcode is loaded in the adapter via the RAM IPL command and receives control via the Start Execution command.

Control of the 8051 and its slave devices are accomplished via I/O reads and writes through an 8255 peripheral interface module.

Adapter DMA Control

The 8237 DMA controller generates only 16 bits of address information. These address bits drive system address bits 1 through 16. DMA address extension capability is provided by four address extension registers that are set up via system I/O control. These registers drive system address bits 17 through 23 and enable the adapter to provide a full 24 bits of DMA addressability. (Address bit 0 is forced to '0' for all adapter DMA transfers.) It is not possible to modify the contents of the DMA address extension registers during an active transfer.

The DMA addressing results in the following restrictions on Multiprotocol Adapter DMA activity:

- 1. DMA transfers are limited to a maximum of 128K bytes (64K half-words) in length.
- 2. DMA transfers are further limited because DMA addressing cannot be incremented across a 128K address boundary.
- 3. DMA transfers must be at least one half-word (2 bytes) in length.

The above restrictions on DMA activity stem from the facts that the adapter hardware:

- 1. Always forces bit 0 of the DMA address to zero (half-word transfers)
- 2. Cannot increment its physical address across a 128K address boundary in the real address space. An attempt to cross such a boundary results in an error as the address counter internal to the adapters 8237 DMA controller (address bits 1-16) wraps to zero and continues incrementing. Address bit 17 will not be incremented.

While these restrictions are real, the AIX Virtual Resource Manager (VRM) handling of shared system DMA channels prevents this from becoming a problem in an RT PC system. The RT PC hardware provides address translation on 2K-byte page granularity for all DMA transfers. Each

successive 2K data page can be independent in system memory and the translation function makes these pages appear adjacent to the adapter.

In this environment the 128K boundary restriction manifests itself only for the shared system DMA window size that is permitted by the VRM. By subdividing a single system DMA channel into four windows a theoretical maximum transfer of 32K-bytes can be determined. This maximum value must then be reduced by the offset into the starting page for the desired transfer. This page offset is equal to the low order 11 bits of the first data buffer address.

Consequently, for four DMA windows, VRM permits any DMA transfer that does not touch more than 16 memory pages. With the greatest possible transfer starting offset (H'07FF') a DMA transfer of 30,720 bytes is permitted, independent of the data buffer alignment with respect to any 128K address boundary. Any transfer with fewer bytes is permitted, while any longer transfer results in a failed return code from the VRM routine. The VRM routine (\$STDMA) provides the address translation initialization for all RT PC DMA operations. In addition, for shared system DMA devices, this routine also returns the I/O channel address used in the initialization of the adapter 8237 DMA controller.

Adapter Command Summary

The following is a list of the adapter interface commands to support Multiprotocol Adapter operations. Listed for each command is the I/O Data (for 'Write' commands), a Read/Write indication, and the primary and secondary adapter addresses. The Multiprotocol Adapter allows two adapters to be concurrently operating in a system at any time. To aid this feature, two adapter address ranges are provided. The user must select the appropriate address range and install a jumper prior to adapter installation. Each adapter command is discussed in detail in the later sections.

Adapter I/O Commands

		Primary	Secondary
Command	R/W	I/O Addr	I/O Addr
Adapter Sts Reg. 1	R	H'0521'	H'0921'
Adapter Cntl Reg. 1	R/W	H'0522'	H'0922'
Initialize 8255 Mode	W	H'0523'	H'0923'
Adapter Sts Reg. 2	R/W	H'052B'	H'092B'
Intf. Cntl Reg. 1	W	H'052C'	H'092C'
Intf. Cntl Reg. 2	W.	H'052D	H'092D'
Intf. Cntl Reg. 3	W	H'052E'	H'092E'
Intf. Cntl Reg. 4	W	H'052F'	H'092F'
Start Adapter Reset	W	H'0528'	H'0928'
End Adapter Reset	W	H'0528'	H'0928'
Interrupt Reset (10)	W	H'X6F2'	H'X6F2'
Interrupt Reset (11)	Ŵ	H'X6F3'	H'X6F3'

DMA Control Commands

		Primary	Secondary
Command	R/W	I/O Addr	I/O Addr
DMA Current Addr. Reg. (Chan. 0)	R/W	H'0510'	H'0910'
DMA Current Word Reg. (Chan. 0)	R/W	H'0511'	H'0911'
DMA Current Addr. Reg. (Chan. 1)	R/W	H'0512'	H'0912'
DMA Current Word Reg. (Chan. 1)	R/W	H'0513'	H'0913'
DMA Current Addr. Reg. (Chan. 2)	R/W	H'0514'	H'0914'
DMA Current Word Reg. (Chan. 2)	R/W	H'0515'	H'0915'
DMA Current Addr. Reg. (Chan. 3)	R/W	H'0516'	H'0916'
DMA Current Word Reg. (Chan. 3)	R/W	H'0517'	H'0917'
DMA Status Reg.	R	H'0518'	H'0918'
DMA Cmd. Reg.	W	H'0518'	H'0918'
DMA Mask Reg. (Single Chan.)	W	H'051A'	H'091A'
DMA Mode Reg.	W	H'051B'	H'091B'
Clear F/L Latch	W	H'051C'	H'091C'
DMA Temporary Reg.	R	H'051D'	H'091D'
DMA Master Clear	W	H'051D'	H'091D'
DMA Mask Reg. (Multi-Chan.)	W	H'051F'	H'091F'
Ch. 0 DMA Addr Ext.	W	H'0524'	H'0924'
Ch. 1 DMA Addr Ext.	W	H'0525'	H'0925'
Ch. 2 DMA Addr Ext.	W	H'0526'	H'0926'
Ch. 3 DMA Addr Ext.	W	H'0527'	H'0927'

POR Mode Single-Byte Microcontroller Commands

			Primary	Secondary
Code	Command	R/W	I/O Addr	I/O Addr
H'3X'	IPL Ram	W	H'0520'	H'0920'
H'4X'	Start Ram Execution	W	H'0520'	H'0920'

Adapter Commands

The following is a description of the adapter I/O commands that are available to control the operation of the Multiprotocol Adapter.

Adapter commands fall into two types:

- 1. Address decoded commands
- 2. Address and single-byte data commands.

Both of these categories are described below.

Address Decoded Commands

Address Decoded commands are a class of adapter I/O commands that do not require or provide specific associated data. These commands enable or disable various hardware functions or capabilities of the adapter. Each of these commands is described in the following sections.

Interrupt Reset Command (H'X6F2' or H'X6F3')

This command is issued as an I/O write to address H'X6F2' for interrupt level 10 and H'X6F3' for interrupt level 11. Execution of this command reenables adapter interrupts after the processing of a prior interrupt has completed. This command should be issued once immediately after enabling the system interface drivers, and at the termination of the interrupt handling for each adapter interrupt. In an AIX/VRM environment, this later reset operation is automatically performed by VRM in its First Level Interrupt Handler (FLIH) processing.

Single Byte Data Commands

Single byte data commands are adapter I/O commands that require or provide a single byte of associated data. These commands initialize and monitor the hardware status of the Multiprotocol Adapter. In addition, a set of single-byte commands to the adapter 8051 microcontroller provide several complex adapter functions that can be invoked using a single-byte I/O command (the 'POR Mode' 8051 command set).

Note: The X in the address denotes a 5 or 9 for primary or alternate address.

Adapter Status Register 2 (H'0X2B')

x x x	X	Х	х	х	X
-------	---	---	---	---	---

This register provides a nondisruptive adapter presence and data bus integrity test for adapter device drivers. This is achieved by echoing specific data patterns through this register.

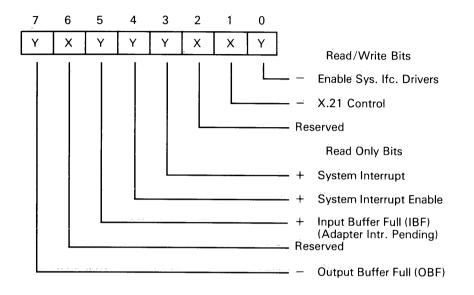
Start Adapter Reset Command (H'0X28')

X	X	X	х	х	х	х	1

This command is issued as an I/O Write to address H'0528' or H'0928' (depending on adapter address jumpers). This command causes a hardware reset of all LSI modules and VTL latches on the adapter. This reset can be executed independently of the master system reset function. This command leaves the adapter in a bus-isolated state and requires the subsequent execution of a End Adapter Reset command followed by an 8255 Module Mode Set command to reestablish contact with the adapter. Additionally, this command could drive the adapter to a known state if it is determined that an unrecoverable adapter error has occurred. This command terminates any adapter activity.

This command starts the 8051 microcontroller doing the following:

- Resets all its registers
- Clear its internal memory
- Execute its POR diagnostics routine
- Begin waiting for the execution of any POR Mode 8051 Single-Byte command.


The contents of the RAM program memory should be considered invalid and the adapter RAM should be loaded before RAM execution can begin (or resume).

End Adapter Reset Command (H'0X28')

				-			
X	X	X	X	X	x	х	0

This command is issued as an I/O Write to address H'0528' or H'0928' (depending on adapter address jumpers). This command releases the adapter from the reset state entered by the Start Adapter Reset Command documented above.

Adapter Control Register 1 (H'0X22')

Execution of I/O to address H'0522' (or H'0922', as appropriate) allows the system device driver code to manipulate various adapter interface enables. Proper operation of this adapter control register is dependent on prior initialization of the 8255 mode register as described subsequently.

During a system hardware reset or an adapter reset operation all programmable bits of adapter control register 1 resets to 1 (all enables deactivated). The enable function of bit 0 of this register is negative true, consequently writing a 0 to this bit position enables the adapter-to-system drivers.

The register programmable bits can be individually controlled. The adapter commands required to do this are described below. After system interface initialization, the status of each bit can be obtained by reading the adapter status register 1, also described below.

The status information contained in bit 5 is also available in bit 0 of adapter status register 1. Either of these registers can be read to determine the state of the 8255 IBF output.

Enable System Interface Drivers (H'0X23')

0	X	х	х	0	0	0	0

Execution of I/O to address H'0523' (or H'0923', as appropriate) enables the adapter-to-system drivers. Prior to executing this command data cannot be transferred from the adapter. Data can be transferred to the adapter regardless of enable bit status.

Disable System Interface Drivers (H'0X23')

0 X X X 0 0 0 1

Execution of I/O to address H'0523' (or H'0923', as appropriate) disables the adapter-to-system drivers.

Drive X.21 Control On (H'0X23')

0 X	Х	X	0	0	1	0	
-----	---	---	---	---	---	---	--

Execution of I/O to address H'0523' (or H'0923', as appropriate) asserts the X.21 Control signal to the attached X.21 DCE.

Drive X.21 Control Off (H'0X23')

							
0	X	X	X	0	0	1	1

Execution of I/O to address H'0523' (or H'0923', as appropriate) deactivates the X.21 Control signal to the attached X.21 DCE.

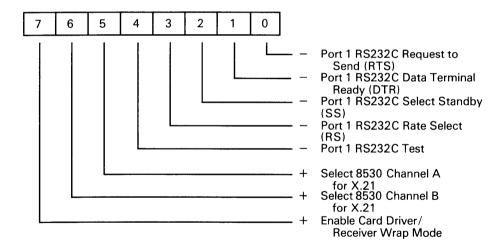
Enable Adapter Interrupt Generation (H'0X23')

-		T		-			
0	X	X	х	1	0	0	1

Execution of I/O to address H'0523' (or H'0923', as appropriate) enables the generation of adapter-to-system interrupts. When enabled, the 8255 module generates an interrupt when it has received a byte of status information from the 8051.

Disable Adapter Interrupts (H'0X23')

0	X	х	х	1	0	0	0


Execution of I/O to address H'0523' (or H'0923', as appropriate) disables its capability to generate interrupts.

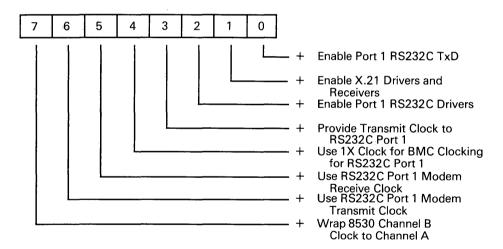
Interface Control Register 1 (H'0X2C')

Execution of I/O to address H'052C' (or H'092C', as appropriate) allows the system device driver code to manipulate various enables and data path controls associated with the adapter Port 1.

Notice that modem control outputs are negative true and a data bit 0 activates the associated signal, while a data bit 1 is required to deactivate it. This port is output only and can only be written 8 bits at a time. The system device driver code is responsible for maintaining the current state of these outputs and changing any bits if necessary.

At adapter reset, all bits of interface control register 1 are reset to 0. The system device driver code is responsible for initializing the Port 1 interface as required prior to the enabling this external interface (see interface control register 2 below). To deactivate the RS232C outputs driven from this register prior to enabling the Port 1 outputs, a value of H'1F' should be written to this register. Notice that the control options for bits 5 through7 of this register are mutually exclusive and the device driver code is responsible for avoiding invalid configurations.

Bit 0 (Leas	t Significant Bit)
	Port 1 RS232C Request to Send. This bit controls the RTS output for adapter RS232C Port 1.
Bit 1	
	Port 1 RS232C Data Terminal Ready. This bit controls the DTR output for adapter RS232C Port 1.
Bit 2	
	Port 1 RS232C Select Standby. This bit controls the SS output for adapter RS232C Port 1.
Bit 3	
	Port 1 RS232C Rate Select. This bit controls the RS output for adapter RS232C Port 1.
Bit 4	
	Port 1 RS232C Test. This bit controls the Test output for adapter RS232C Port 1.
Bit 5	
	Select 8530 Channel A for X.21. This control bit enables the routing of the transmit and receive data paths for Channel A of the communication controller module to the adapter X.21 interface.
Bit 6	
	Select 8530 Channel B for X.21. This control bit enables the routing of the transmit and receive data paths for Channel B of the communication controller module to the adapter X.21 interface.
Bit 7 (Most	t Significant Bit)
•	Enable Adapter Driver/Receiver Wrap Mode. This control bit enables the routing of


Enable Adapter Driver/Receiver Wrap Mode. This control bit enables the routing of the 8530 channel A and B data paths to each other. Secondly, adapter interface RS232C, RS366 and X.21 outputs are wrapped back to appropriate interface inputs.

Interface Control Register 2 (H'0X2D')

Execution of I/O to address H'052D' (or H'092D', as appropriate) allows the system device driver code to manipulate various enables and clock sourcing controls associated with the adapter Port 1.

Notice that each control is positive true and thus a 1 data bit activates the associated signal, while a 0 data bit is required to deactivate it. This port is output only and can only be written 8 bits at a time. The system device driver code is responsible for maintaining the current outputs and carrying out the necessary steps to change any bits.

At adapter reset, all bits of interface control register 2 are reset to 0 (all enables deactivated). The system device driver code is responsible for initializing the Port 1 interface prior to enabling the external interface. These options can be mutually exclusive and the device driver code is responsible for avoiding invalid configurations.

Bit 0 (Least Significant Bit)

Enable Port 1 RS232C TxD. This bit enables the transmit data to the RS232C driver. It can also be used in diagnostic mode to control the TXD line on the interface. In normal operation it should be set to a 1.

Bit 1

Enable X.21 Drivers and Receivers. This bit enables (disables) the adapter X.21 interface drivers and receivers.

Bit 2

Enable Port 1 RS232C Drivers. This bit enables (disables) the adapter Port 1 RS232C interface drivers.

Bit 3

Provide Transmit Clock to RS232C Port 1. This bit enables the sourcing of Port 1 transmit data clocking by the adapter. If this bit is enabled, the adapter provides a transmit data clock signal to the modem attached to Port 1 for synchronous communications. The clock provided will be the 8530 Channel A baud rate generator clock divided by 32.

Bit 4

Use 1X Clock for BMC clocking. This enable bit causes the 8530 Channel A (Port 1) baud rate generator clock to be externally divided by 32 to facilitate its use as a data clock to clock the modem in Base Machine Clocking mode. The baud rate generator is internally required to operate at 32X the line data rate to drive the 8530 DPLL (Digital Phase-Locked Loop) circuitry. This enables the proper corresponding line data rate to be derived.

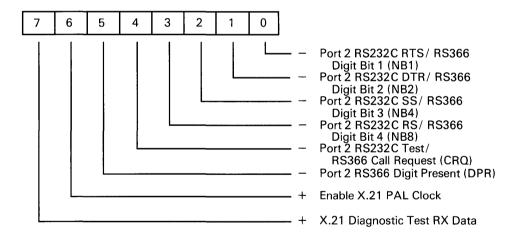
Bit 5

Use RS232C Port 1 Modem Receive Clock. This bit enables the sourcing of the Port 1 data clocking from the receive data clock of the modem attached to this port.

Bit 6

Use RS232C Port 1 Modem Transmit Clock. This bit enables the sourcing of Port 1's data clocking from the transmit data clock of the modem attached to this port.

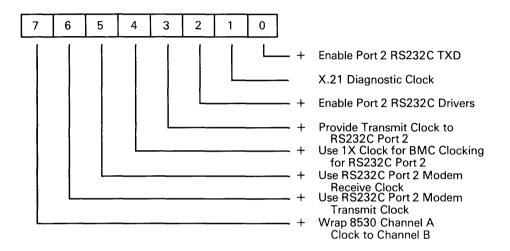
Bit 7 (Most Significant Bit)


Wrap 8530 Channel B Clock to Channel A. This control bit enables the routing of the 8530 channel B Transmit Clock to the 8530 channel A Receive Clock input. The 8530 provides internal clocking options to permit the RxC input to provide both a receive and transmit clock for the appropriate channel. Zilog 8530 documentation should be consulted for additional details regarding these capabilities.

Interface Control Register 3 (H'0X2E')

Execution of I/O to address H'052E' (or H'092E', as appropriate) allows the system device driver code to manipulate various enables and controls associated with the adapter Port 2.

Notice that some controls are negative true and thus a 0 data bit activates the associated signal, while a 1 data bit is required to deactivate it. This port is output only and can only be written 8 bits at a time. The system device driver code is responsible for maintaining the current outputs and carrying out the necessary steps to change any bits.


At adapter reset, all interface control register 3 bits are reset to 0 (bits 0-5 activated). The system device driver code is responsible for initializing the Port 2 interface prior to enabling this external interface (see "Interface Control Register 4 (H'0X2F)" on page 39). To deactivate the interface outputs prior to enabling the Port 2 outputs, a value of H'3F' should be written to this register. For X.21 operation, the 6 low bits should be written off (1) and the two top bits controlled appropriately. These options are mutually exclusive and the device driver code is responsible for avoiding invalid configurations.

Output control signals for the adapter Port 2 can drive either an RS232C modem or an RS366 autocall device. Consequently, each Port 2 output has two possible definitions, only one of which is valid at any time.

Bit 0 (Least	Significant Bit)
·	Port 2 RS232C Request to Send / RS366 Digit Bit 1. This bit controls either the RTS output (RS232C) or the NB1 output (RS366) for adapter Port 2.
Bit 1	
	Port 2 RS232C Data Terminal Ready / RS366 Digit Bit 2. This bit controls either the DTR output (RS232C) or the NB2 output (RS366) for adapter Port 2.
Bit 2	
	Port 2 RS232C Select Standby / RS366 Digit Bit 3. This bit controls either the SS output (RS232C) or the NB4 output (RS366) for adapter Port 2.
Bit 3	
	Port 2 RS232C Rate Select / RS366 Digit Bit 4. This bit controls either the RS output (RS232C) or the NB8 output (RS366) for adapter Port 2.
Bit 4	
	Port 2 RS232C Test / RS366 Call Request (CRQ). This bit controls either the Test output (RS232C) or the CRQ output (RS366) for adapter Port 2.
Bit 5	
210.0	Port 2 RS366 Digit Present. This bit controls the DPR output for adapter RS366 Port 2.
Bit 6	
	Enable X.21 PAL Clock. This bit enables the X.21 clock to the PAL. It also can be used in diagnostic mode to test the PAL. In normal mode, it should be set to 1 whenever X.21 interrupts are enabled.
Bit 7 (Most	Significant Bit)
	X.21 Diagnostic Test RX Data. This bit is used in diagnostic mode only to test the PAL. When Adapter Driver/Receiver Wrap is on, this bit controls the receive data to the PAL for testing.

Interface Control Register 4 (H'0X2F)

Execution of an I/O write to address H'052F' (or H'092F', as appropriate) allows the system device driver code to manipulate various enables and clock sourcing controls associated with the adapter Port 2.

Notice that most controls are positive true and thus a 1 data bit activates the associated signal, while a 0 data bit deactivates the signal. This port is output only and can only be written 8 bits at a time. The system device driver code is responsible for maintaining the current outputs and carrying out the necessary steps to change any bits.

At adapter reset, all interface control register 4 bits are reset to 0 (all enables deactivated). The system device driver code is responsible for initializing the Port 2 interface prior to enabling the external interface. These options can be mutually exclusive and the device driver code is responsible for avoiding invalid configurations.

Bit 0 (Least Significant Bit)

Enable Port 2 RS232C TXD. This bit enables the transmit data to the RS232 driver. It can also be used in diagnostic mode to control the TXD line on the interface. In normal operation it should be set to a 1.

Bit 1

Use this bit in diagnostic mode only. It provides a clock for wrapping the X.21 interface.

Bit 2

Enable Port 2 RS232C (RS366) Drivers. This bit enables (disables) the adapter Port 2 RS232C (RS366) interface drivers.

Bit 3

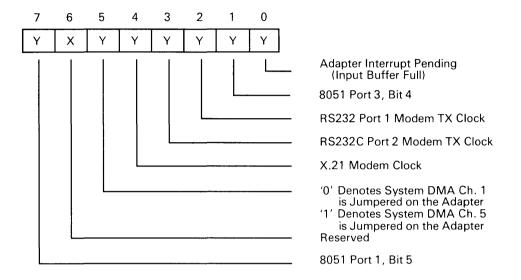
Provide Transmit Clock to RS232C Port 2. This bit enables the sourcing of Port 1 transmit data clocking by the adapter. If this bit is enabled, the adapter provides a transmit data clock signal to the modem attached to Port 2 for synchronous communications. The clock provided will be the 8530 Channel B baud rate generator clock divided by 32. Interface control register 3, bit 5 must also be set to 0 to enable this clock.

Bit 4

Use 1X Clock for BMC clocking. This enable bit causes the 8530 Channel B (Port 2) baud rate generator clock to be externally divided by 32 to facilitate its use as a data clock to clock the modem in Base Machine Clocking mode. The baud rate generator is internally operated at 32X the line data rate to drive the 8530 DPLL (Digital Phase-Locked Loop) circuitry. This enables the proper corresponding line data rate to be derived.

Bit 5

Use RS232C Port 2 Modem Receive Clock. This bit enables the sourcing of Port 2 data clocking from the receive data clock of the modem attached to this port.


Bit 6

Use RS232C Port 2 Modem Transmit Clock. This bit enables the sourcing of Port 2 data clocking from the transmit data clock of the modem attached to this port.

Bit 7 (Most Significant Bit)

Wrap 8530 Channel A Clock to Channel B. This control bit enables the routing of the 8530 channel A Transmit clock to the 8530 channel B Receive clock input. The 8530 provides internal clocking options to permit the RxC input to provide both a receive and transmit clock for the appropriate channel. Zilog 8530 documentation should be consulted for additional details regarding these capabilities.

Adapter Status Register 1 (H'0X21')

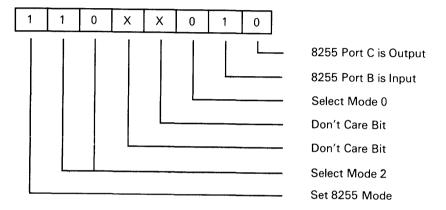
Execution of an I/O Read from address H'0521' or H'0921' (depending on adapter address jumpers) provides the adapter status register 1 to the system processor.

In operating mode, ASR 1 Bit 0 = 1 denotes that the adapter has a pending interrupt that has not been serviced. Bit 0 = 0 denotes that there are no interrupts pending.

ASR status bit 0 indicates the presence of a status byte from the adapter processor. The adapter generates a system interrupt whenever this status byte is loaded with interrupts enabled. If interrupts are not enabled the interrupt is not propagated off the adapter, however this status bit is still available to indicate adapter-to-system status is available.

In POR mode the adapter-to-system interface is simplified. Status information is limited to the success or fail status of a limited set of ROS microcoded (mostly diagnostic) commands. This status information is passed to the system via the same register as used for interrupt status.

The input buffer full status bit (bit 0) is equivalent to the status in bit 5 of adapter control register 1 at address H'0X22'.

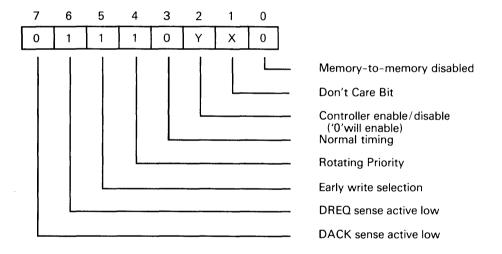

The two transmit clocks from the modem are readable for diagnostic reasons allowing the board to determine the baud rate of the clock from a synchronous modem.

Bits 2, 3, and 4 are free running clocks from the modem and should be ignored in all modes except diagnostic testing of these lines.

Bits 1 and 7 of this byte are driven directly by two 8051 I/O port bits. These bits provide a means for the 8051 to communicate status to the system processor besides normal status byte passing.

In either POR or Operating modes, these status bits are valid only after the initialization of the 8255 peripheral interface module on the adapter and the enabling of the adapter system interface drivers.

Initialize 8255 Mode Command (H'0X23')


Execution of an I/O write with data H'C2' to address H'0523' or H'0923' (depending on adapter address jumpers) is necessary to initialize the I/O interface to the 8051 adapter controller. This is accomplished by setting up the operating modes for the 8255 peripheral interface module.

This command should be executed only once (when the adapter is first initialized) and must be executed before interrupts are enabled or any command is directed to the 8051 controller.

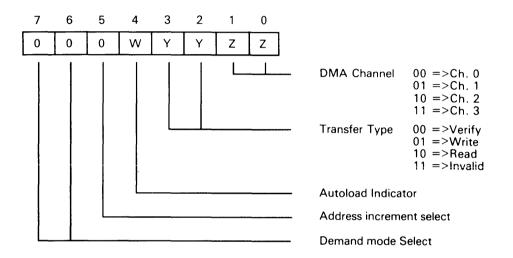
DMA Controller Commands

The following is a listing of the registers that must be initialized to control the operation of the 8237 DMA controller that is included on the Multiprotocol Adapter board. Additional information is included regarding two software commands needed to control the operation of the 8237 DMA controller. For additional detail regarding the functions and descriptions of these commands and registers, refer to the Intel published documentation for the 8237 DMA controller.

Notice that any of the four DMA channels can be used for any DMA transfer type. The system device driver code is responsible for the initialization of the DMA controller, and is responsible for the allocation of DMA channels for the various uses by the adapter.

DMA Command Register (H'0X18')

Execution of an I/O write to address H'0518' (or H'0918' as appropriate) is necessary to control the operation of the DMA controller. This register is cleared by a hardware system reset, an adapter reset command, or a software DMA controller reset command (see below). Initialization must be done prior to using the DMA resources of this adapter.


The significance of the 'Y' bit in the I/O data field is as follows:

- If this bit position is a 1 the DMA controller can be initialized but remains in a disabled state and will not respond to DMA service requests.
- If this bit position is a 0 the DMA controller is enabled and functions normally.

During first initialization of this register this bit should be set to a 1 (data byte H'74') disabling the controller. After all other DMA registers have been initialized, a second initialization should change

this bit to a 0 (data byte H'70') just before the time DMA use is anticipated. When the adapter is closed at the end of all communications activity, an adapter reset command can be issued, effectively disabling DMA at that time.

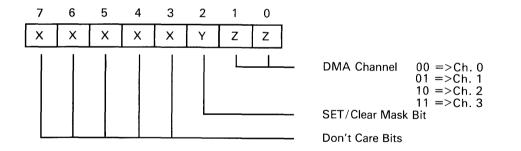
DMA Mode Registers (H'0X1B)'

Each of the four available DMA channels has a 6-bit mode register associated with it. Initialization of these registers is required to define the characteristics of the DMA transfer that is to take place on that channel. The significance of the variable data bits in these initializations is as follows:

The W bit determines whether the specific channel is used in the autoload mode. If autoload is selected, the DMA controller retains the channel base address and base transfer count parameters in its internal memory. At transfer completion, these stored parameters are automatically transferred into the channel's active base address and active count registers, thereby preparing the controller for a subsequent transfer of the same type. If this operation is desired, the W bit should be initialized to a 1.

The YY bits determine the type of DMA transfer that occurs on the specific channel. This information is encoded per the following:

YY Bits Significance

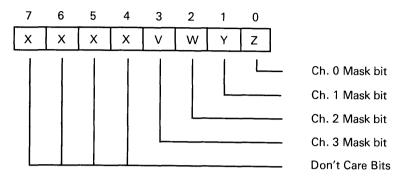

- B'00' Denotes a verify transfer.
- B'01' Denotes a write transfer. Data is transferred from the adapter to system memory. This operation transfers receive data or adapter status to the system.
- B'10' Denotes a read transfer. Data is transferred from system memory to the adapter. This operation transfers transmit data or multibyte adapter commands to the adapter.
- B'11' This data bit pattern is not valid.

The ZZ bits determine which of the four DMA channels is initialized by this command. This information is encoded per the following:

ZZ Bits	Significance
B'00'	Denotes initialize mode for channel 0.
B'01'	Denotes initialize mode for channel 1.
B'10'	Denotes initialize mode for channel 2.

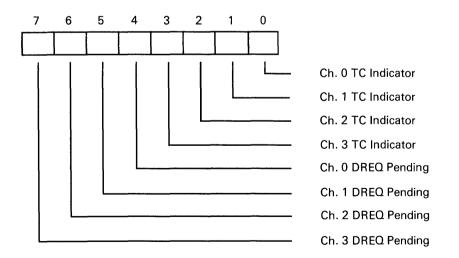
B'11' Denotes initialize mode for channel 3.

Single Channel DMA Mask Register (H'0X1A')



Each DMA channel has a mask bit which disables the incoming DMA request signal on that channel. Each channel's mask bit is automatically set when that channel's terminal count is reached if that channel is not in autoload mode. After reinitialization of the appropriate channel address and count registers to prepare for the next DMA transfer, the mask register is cleared to reenable that channel's DMA request.

Each mask bit can also be set or cleared independently at any time by software command. An I/O write to address H'051A' or H'091A' (as appropriate) achieves this capability on the adapter. The encoding of the Y data bit for this command is as follows:


- Bit Y' = 1 Sets the desired mask bit.
- Bit 'Y' = 0 Clears the desired mask bit.

Multiple Channel DMA Mask Register (H'0X1F')

Besides the single channel mask command described above, the 8237 DMA controller provides the capability to change multiple channel mask bits with a single command. Execution of an I/O write to either address H'051F' (as appropriate) with the desired mask pattern in the data byte will simultaneously change all 4 mask bits to the values specified in this data field. A data bit value of 1 sets the designated mask bit (and thus enable DMA activity), while a value of 0 clears this mask bit (and thus disable DMA activity).

DMA Status Register (H'0X18')

The status register is read by the system processor. It contains the status of the four DMA channels. The TC indicator bit indicates that the specified channel has progressed to terminal count

and has thus completed a maximum length transfer. The DREQ pending bit indicates that the specified channel currently has a DMA service request pending. The TC Indicator bits contained in this register are reset by a status read operation.

DMA Current Address Register, Channel 0 Through Channel 3 (H'0X10', '0X12', '0X14', '0X16')

Each DMA channel has a current address register. A DMA channel can increment over a range of 16 bit addresses. The current address register holds the address value used during DMA transfers. This address is automatically incremented or decremented after each transfer and the address intermediate values are stored in the current address register during the transfer. This register can be written or read by the system processor in successive 8-bit bytes. It may also be reinitialized by an autoinitialize back to its original value. Autoinitialize takes place only after terminal count is reached.

The adapter DMA supports only word data transfers. Consequently, the addresses generated by the 8237 DMA controller include address bits 1 through 16 as incremental bits. Address bit 0 will always be 0 for 16-bit (half-word) data transfers; system DMA buffers must begin on an even address boundary. Prior to DMA initialization, the DMA initialization address must be computed according to the following chart:

Unadjusted Parameters

DMA Start	DMA Byte	DMA Init.	
Address	Length	Address	
Even	Even	(A/2)	
Even	Odd	(A/2)	
Odd	Even	(A-1)/2	
Odd	Odd	(A-1)/2	

DMA Current Transfer Count Register, Channel 0 Through 3 (H'0X11', '0X13', '0X15', '0X17')

Each DMA channel has a 16-bit current transfer count register. This register stores the current transfer count (in half-words). The transfer count is decremented after each transfer. The intermediate transfer count value is stored in the register during the transfer. When the value in this register is decremented from zero, a terminal count (TC) is generated. This register is loaded or read by the system processor in successive 8-bit bytes in the program condition. Following DMA service it may also be reinitialized by an autoinitialization back to its original value. Autoinitialize occurs only when terminal count is reached.

DMA on the Multiprotocol Adapter supports only half-word (16-bit) data transfers. Before DMA initialization, the data transfer count must be computed according to the following chart:

Unadjusted Parameters

DMA Start	DMA Byte	DMA Init.
Address	Length	Count
Even	Even	(BL/2)-1
Even	Odd	((BL+1)/2)-1
Odd	Even	((BL+2)/2)-1
Odd	Odd	((BL+1)/2)-1

DMA Base Address Registers, DMA Base Transfer Count Registers

Each DMA channel has a pair of base address and base transfer count registers. These 16-bit registers store the original value of their associated current registers. During autoinitialization these values restore the current registers to their original values. The base registers are written simultaneously with their corresponding current register by the system processor. These registers cannot be read by the system processor.

Additional DMA Software Commands

Clear First/Last Latch (H'0X1C')

				· · · · · · · · · · · · · · · · · · ·	··		<u> </u>
X	Х	X	Х	Х	Х	X	X

An I/O Write to this address clears the first/last byte latch. This command should be executed prior to writing or reading new address or word count information to or from the 8237. This initializes the latch to a known state so that subsequent accesses to register contents by the system processor addresses upper and lower bytes in the correct sequence.

Master Clear (H'0X1D')

X X X X	× ×	X X	
---------	-----	-----	--

An I/O Write to this address has the same effect as a hardware reset of the 8237 DMA controller. The command, status, request, temporary, and internal first/last latch registers are cleared and the mask register is set. The 8237 enters the idle cycle.

Write DMA Address Extension Register, Channel 0 through 3 (H'0X24', '0X25', '0X26, '0X27')

7	6	5	4	3	2	1	0
Х	Υ	Y	Y	Y	Y	Y	Υ

Each channel has an 8-bit write DMA address extension register. This command transfers the associated data into the DMA address extension register for the appropriate channel. The contents of I/O data bits 0 through 6 drive address bits 17 through 23 on the I/O channel when a DMA transfer takes place. Data bit 7 is not used and cannot be written by the system.

External Programming Considerations

POR Mode Microcontroller Single-Byte Commands

The following command codes are passed to the Multiprotocol Adapter via an I/O write to the 8255 peripheral interface module. Each of these adapter commands require processing by the 8051 microcontroller on the adapter. Commands included in this list are valid after an adapter or system reset, prior to issuing a Start Execution command after a RAM IPL is completed.

For the RAM IPL command, a command completion status is passed to the system as follows: After all command processing is complete the 8051 formats a command completion status byte and then outputs this byte to the system 8255 port. The system should periodically poll the 8255 during the time when one of these commands is executing. When the 8255 IBF status bit indicates that a byte has been written to the system, this byte should be read and examined to determine the success or failure of the IPL.

A status byte containing H'00' indicates the IPL has completed without error. A status byte containing one or more '1' bits indicates that an error was detected by the 8051.

Notice that if adapter interrupts are enabled, an interrupt is generated at the time completion status is written to the status port. Any code designed to run above the adapter in POR mode should be prepared to field these interrupts if interrupts are to be enabled.

Notice also that the adapter POR Mode command processor does not support multiple outstanding commands. The device driver must wait for a response to the RAM IPL command before a Start Execution command will be honored.

If an invalid (or undefined) POR command is issued, the adapter ignores the command and does not send a return code.

For the IPL RAM command, the value of the command source identifier bit (bit 3 of the command code byte) is available in bit 1 of adapter status register 1 at the time the status byte is presented by the POR mode adapter microcode.

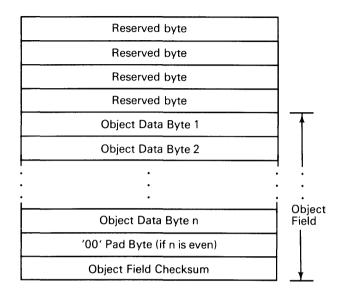
IPL RAM (H'0X20')

ſ	0	0	1	1	Y	Х	Z	z

Execution of this command causes the 8051 to execute a DMA transfer from system memory to consecutive locations in its adapter RAM. This process starts at the 8051 program memory address H'2000' and continues until a DMA terminal count (TC) is detected. A maximum IPL of 8K-bytes of microcode is supported. The entire adapter memory space is initialized to zeros prior to the IPL process.

After detection of a DMA TC, the 8051 microcontroller calculates a checksum value for the RAM image. The 8051 successively adds each 8-bit program memory byte to the accumulator until the complete memory space (regardless of actual program length) has been checked. The 8051 accumulator should now contain a value of H'00'. Successful IPL is indicated to the system by the passing of a H'00' status byte only if the transfer and checksum calculation complete successfully. Should this verification fail, the computed nonzero checksum value will be passed. The system can attempt to repeat the IPL process if an IPL failure is indicated.

The IPL data buffer must be aligned on an even system address boundary and must be an even number of bytes in length. To ensure that the complete buffer length will be even, the optional inclusion of a H'00' pad byte is provided before the checksum byte. This structure is represented graphically in Figure 14 on page 52.


The interpretation of the Y bit in the command code is shown below.

Y Bit	Definition .
B'0'	This command was issued by a Port 1
	VRM device driver.
B'1'	This command was issued by a Port 2
	VRM device driver.

The interpretation of the ZZ bits in the command code is shown below.

ZZ Bits	Definition .
B'00'	Adapter DMA channel 0 is used.
B'01'	Adapter DMA channel 1 is used.
B'10'	Adapter DMA channel 2 is used.
B'11'	Adapter DMA channel 3 is used.

The specific format of the data buffer for this command is as indicated below:

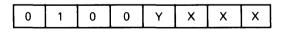


Figure 14. IPL Data Buffer

Notes:

- 1. Notice that the first 4 bytes of this structure are reserved. These bytes can contain arbitrary data, however they cannot be omitted from the data sent to the adapter.
- 2. The object data field contains the 8051 object to be downloaded.
- 3. The object field checksum contains the value necessary to force the complete object field, the pad byte (if present), and the checksum to sum to a value with H'00' in its least significant eight bits.

Start Execution (H'0X20')

Execution of this command causes the 8051 to branch to RAM program memory address H'2001' and begin instruction execution.

Command success or fail status is not passed by an interrupt from the ROS adapter microcode. Indication of command completion is left to the user provided microcode program that receives control via this command.

The interpretation of the Y bit in the command code is shown below.

Y Bit	Definition
B'0'	This command was issued by a Port 1
	VRM driver.
B'1'	This command was issued by a Port 2
	VRM driver.

Operating Mode Microcontroller Commands

Besides the set of POR Mode (ROS resident) adapter commands, it is anticipated that the user will provide a set of operating mode adapter commands that are interpreted by a downloaded microcode program. The commands included in this list is recognized by the adapter after the completion of the RAM IPL process. This process consists of:

- Execution of a POR Mode IPL command to load the adapter's operating microcode. This microcode makes up the operating system used by the adapter processor when in operating mode.
- Execution of a POR Mode Start Execution command to transfer control to the downloaded microcode.

After the completion of this process the commands supported by the downloaded microcode are available for use by a device driver. These commands are given to the adapter processor via the same mechanism as for the prior POR mode commands, such as an I/O write through the 8255 peripheral interface module. After all command processing completes, the 8051 formats the command completion status according to conventions defined by the user and then interrupts the system processor by writing a status byte into the 8255 port to the system processor. Additional status bytes (if any) can be passed to the system after this first status byte has been read by the system processor.

The functions provided by this command set and the status returned are the responsibility of the user provided microcode program.

Operating Microcode Entry Points (from ROS)

The ROS program transfers control to the RAM executable program at the occurrence of each of the following five events. It is the responsibility of the user provided downloaded microcode to provide appropriate service routines (or immediate returns).

1. Execution of the POR mode Start Execution Command

Execution of this POR mode command causes program control to be transferred to absolute address H'2001' in external program memory.

2. Detection of 8051 interrupt level 0

When the 8051 processor detects this interrupt, control is automatically transferred to an address in its ROS program space. This interrupt is then revectored from ROS to RAM to absolute address H'2003'. The 8051 level 0 interrupts occur either due to a transition of the OBF signal from the 8255 module (a command was received from the system processor) or due to an X.21 interface state transition. The ROS program saves the contents of the 8051 accumulator to the stack prior to revectoring this interrupt and restores it prior to its return from interrupt. The user should execute an 8051 RET instruction from his RAM microcode and allow the return to process normally through the ROS.

3. Detection of 8051 interrupt level 1

When the 8051 processor detects this interrupt, control is automatically transferred to an address in its ROS program space. This interrupt is then revectored from ROS to RAM to absolute address H'2006'. The 8051 level 1 interrupts occur due to a transition of the IBF signal from the 8255 module (a status byte was read by the system processor). The ROS program saves the contents of the 8051 accumulator to the stack prior to revectoring this interrupt and restores it prior to its return from interrupt. The user should execute an 8051 RET instruction from his RAM microcode and allow the return to process normally through the ROS.

4. Expiration of 8051 internal timer 0

When the 8051 processor detects the expiration of its internal timer 0, control is automatically transferred to an address in its ROS program space. This interrupt is then revectored from ROS to RAM to absolute address H'2009'. The ROS program saves the contents of the 8051 accumulator to the stack prior to revectoring this interrupt and restores it prior to its return from interrupt. The user should execute an 8051 RET instruction from his RAM microcode and allow the return to process normally through the ROS.

5. Expiration of 8051 internal timer 1

When the 8051 processor detects the expiration of its internal timer 1, control is automatically transferred to an address in its ROS program space. This interrupt is then revectored from ROS to RAM to absolute address H'200C'. The ROS program saves the contents of the 8051 accumulator to the stack prior to revectoring this interrupt and restores it prior to its return

from interrupt. The user should execute an 8051 RET instruction from his RAM microcode and allow the return to process normally through the ROS.

Entry Points into ROS (from RAM)

There are no supported entry points into the ROS 8051 microcode from RAM executing programs.

8051 Capabilities Precluded

The 8051 processor's integrated serial port is not supported by either this adapter or the ROS microcode.

Connector Specifications

This section describes the I/O lines that connect the adapter to the three different connectors: RS232C, RS366, and X.21.

The following tables show the device interface lines of the three adapter connectors:

Signal	Pin	Direction
TI	01	I
RxC	02	I
RxD	03	I
TxC (DCE SRC)	04	I
Ground	05	-
TEST	06	0
TxC (DTE SRC)	07	0
TxD	08	0
RTS	09	0
DTR	10	0
SS	11	0
RS	12	0
CTS	13	I
DSR	14	I
DCD	15	I
RI	16	Ι

Figure 15. Port 1 Connector

.

Signal	Pin	Direction
TI / PND	01	I
RxC	02	I
RxD / RS366 Diag.	03	I
ТхС	04	I
Ground	05	-
TEST/ CRQ	06	0
TxC (DTE SRC) / DPR	07	0
TxD	08	0
RTS / NB1	09	0
DTR / NB2	10	0
SS / NB4	11	0
RS / NB8	12	0
CTS / PWI	13	I
DSR / DLO	14	I
DCD / ACR	15	Ι
RI / COS	16	Ι

Figure 16. Port 2 Connector

Signal	Pin	Direction
X.21 TxD (B)	01	0
X.21 Control (A)	02	0
X.21 RxD (A)	03	I
Ground	04	-
X.21 Indicate (B)	05	Ι
X.21 Sig. Ele. Timing (B)	06	I
Reserved	07	-
X.21 TxD (A)	08	0
X.21 Control (B)	09	0
X.21 RxD (B)	10	I
Reserved for Keying	11	-
X.21 Indicate (A)	12	I
X.21 Sig. Ele. Timing (A)	13	Ι
Reserved	14	-

Figure 17. Port 3 Connector

Sample Program

SASC Sample MP ASC Microcode

PAGE 2

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

ASM51 V1.9 07.09 05/09/86

3 ***** ×× ж× 4567 ** ROUTINE NAME: MULTIPROTOCOL ADAPTER SAMPLE ASYNC MICROCODE ж× ×× ** DESCRIPTIVE NAME: SAMPLE ASYNC ×× 89 ×× ** CHANGE LEVEL: A01 ****** 10 11 12 13 DATE LAST CHANGED: 05/09/86 ж× ж× Original Programmer: D W Solie, F63/045 Austin 13 ** 14 ** 15 ** 16 ** 17 ** Revised & Maintained by: W Freeman, F63/045 Austin **** COPYRIGHT: Copyright International Business Machines Corporation 1986. All rights reserved. ¥* ** FUNCTION: This microcode program provides an example of a functional adapter level program. With appropriate device driver and application programming, this microcode program can be used to support one or two ports of async data communications. ¥* ** ** NOTES: REGISTER BANK O USAGE ** ** ** ** DEPENDENCIES: NONE **RESTRICTIONS: NONE** ж× SUBROUTINES CALLED: ¥¥ 34 ** ¥¥ ××× 37 *** 38 *** 40 *** 41 *** 42 *** 43 *** 44 *** 45 *** 45 *** *** *** ж× HISTORY OF CHANGES TO ROUTINE ¥¥ ** ×× DATE RELEASE ORIGINATOR EXPLANATION OR ¥¥ CHANGED REASON FOR CHANGE OF CHANGE ¥¥ NUMBER ¥¥ 05/09/86 Sample Async Microcode Imple-A01 FREEMAN ж¥ mentation completed. ж¥ ж¥ 48 ***********

B0 B1 B2 B3 B4 B5 B5 B7

SASC Sample MP ASC Microcode

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

50	****	*****
51	***************************************	*****
52	***************************************	*****
53	***************************************	*****
54	***	****
55	****	****
56	**** Equates and Internal RAM Label definitions for	****
57	**** ASC communications using the Sailboat	****
58	**** Multi-Protocol Communications Adapter	****
59	****	****
60	**** DATE LAST CHANGED: 11/25/85	****
61	****	****
62	**** 11/25/85: Sample Async Microcode Implementation Completed	****
63	****	****
64	***************************************	*****
65	***************************************	*****
66	***************************************	*****
67	***************************************	*****

SASC	Sample	MP	ASC	Microcode

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE	STATEMENT
	000201			DIKE	••••	000100	o nin Enem

0C	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE	STATEME

	71 × 72 × 73 ×		8051 I/O PORT	**************************************
90.0 90.2 90.3 90.4 90.5 90.6 90.7	76 * 77 DREQ0 78 DREQ1 79 DMAREQEN 80 P15PARE3 81 DACKBACK 82 IPLCOMP 83 P15PARE6 84 P15PARE7	EQUB P1.0 EQUB P1.1 EQUB P1.2 EQUB P1.3 EQUB P1.4 EQUB P1.5 EQUB P1.6 EQUB P1.7		I/O PORT 1 BIT DEFINITIONS DMA REQUEST ENCODE 0 DMA REQUEST ENCODE 1 DMA REQUEST ENABLE SPARE BIT ANY DACK RETURNED ADAPTER IPL COMPLETE TO 8255 SPARE BIT SPARE BIT
B0.0 B0.2 B0.3 B0.4 B0.4 B0.6 B0.6 B0.7	86 * 87 TC 88 P3SPARE1 89 INTR0 90 IBF 91 P1P2INTR 92 OBF 93 WRITE 94 READ	EQUB P3.0 EQUB P3.2 EQUB P3.2 EQUB P3.2 EQUB P3.4 EQUB P3.5 EQUB P3.5 EQUB P3.7		I/O PORT 3 BIT DEFINITIONS 8237 TERMINAL COUNT SPARE BIT OBF INTERRUPT LEVEL 0 8255 INPUT BUFFER FULL INTR 1 -P1/+P2 INTERRUPT SOURCE 8255 OUTPUT BUFFER FULL INPUT 8051 WRITE SIGNAL OUTPUT 8051 READ SIGNAL OUTPUT

PAGE 4

ASM51 V1.9 07.09 05/09/86

PAGE 3

ASM51 V1.9 07.09 05/09/86

LOC OBJECT CODE ADDR1 ADDR2	STMT SOURCE STATEMENT	ASM51 V1.9 07.09 05/09/86
	97 ************************************	* * *
0000055	103 * REGISTER INITIALIZATION EQUATES105 STACKEQUSTACKBEG-1BEGINNING OF ST	ACK POINTER
	108 * OPERATING MODE COMMAND EQUATES	
0000020 0000030 0000050 0000022 0000023 0000023 0000024 0000028	110 XSPCMD EQU X'20' XMIT SPECIAL CH 111 RMCCMD EQU X'30' MODE CONTROL CO 112 SDMACMD EQU X'50' START COMMAND D 113 XON1CMD EQU X'22' SEND XON CHAR C 114 XOFFICMD EQU X'23' SEND XON CHAR C 115 XON2CMD EQU X'23' SEND XON CHAR C 115 XON2CMD EQU X'23' SEND XON CHAR C 116 XOFF2CMD EQU X'28' SEND XOF CHAR	MMANDS MA CMD MD P1 CMD P1 MD P2
	118 * MB COMMAND CODE EQUATES	
0000000 0000001	120 INL8530A EQU X'00' INIT 8530 CHAN 121 INL8530B EQU X'01' INIT 8530 CHAN	A CMD B CMD
	123 × 8051 ADDRESSING EQUATES FOR MOVX INSTRUCTIONS	
0000098 0000001 0000003 00000098 00000000 0000000 0000000 0000090 000000	125 H8530A EQU X'98' HIBYTE ADDR FO 126 L8530A EQU X'01' LOBYTE ADDR FO 127 L8530A EQU X'01' LOBYTE ADDR FO 127 L8530A EQU X'03' LODATA ADDR FO 128 H8530B EQU X'08' HIBYTE ADDR FO 129 L8530B EQU X'00' LOBYTE ADDR FO 130 L8530B EQU X'02' LODATA ADDR FO 131 ADR8255 EQU X'90' HIBYTE ADDR FO 132 ADRMDM1 EQU X'02' LODATA ADDR FO 133 ADRMDM2 EQU X'00' PORT 1 MODEM IN 134 ADRIDOMA EQU X'80' ADDRESS OF HIB B135 ADRHIDMA EQU X'88' ADDRESS OF HIB	R 8530 CHAN A R 8530 CHAN A R 8530 CHAN B R 8530 CHAN B R 8530 CHAN B R 8255 PUT REGISTER PUT REGISTER PUT REGISTER PUT REGISTER PUT REGISTER
_	137 ¥ STATUS PASS EQUATES	
0000001 0000002 0000004	139 OVRSTATEQUX'01"OVR BIT ON IN S140 PARESTATEQUX'02"PARITY ERROR ST141 FRMESTATEQUX'04"FRM BIT ON IN S	ATUS VALUE
00000001 0000020 00000010 _00000008 -00000008	143 DMATCST EQU X'01' DMA TERM COUNT 144 XONSTAT EQU X'20' XON BIT ON IN S 145 XOFFSTAT EQU X'10' XOFF BIT ON IN S 146 XBRKSTAT EQU X'08' XON BIT ON IN S 146 XBRKSTAT EQU X'08' XON BIT ON IN S 147 BRKDATA EQU X'00' DATA BYTE RETUR	TATUS BYTE Status byte

SASC Sample MP ASC Microcode

.

SASC Sample MP ASC Microcode

LOC OBJECT CODE ADDR1 ADDR2	STMT SOURCE STATEMENT	ASM51 V1.9 07.09 05/09/86
	149 × STATUS PASS JUMP TABLE EQUATES	
0000000 0000001 0000002	151 ZEROBYTE EQU X'00' 152 Onebyte equ X'01' 153 Twobyte equ X'02'	STATUS BYTE CNT VALUE Status byte cnt value Status byte cnt value
	155 * MISC OPERAING MODE EQUATES	
0000008 0000001 00000010	157 EN8530TX EQU X'08' 158 EN8530RX EQU X'01' 159 ENDSTACK EQU CMDST7+1	8530 ENABLE XMITTER MASK 8530 Enable RCVER Mask 1 Beyond end of CMD Stack
	161 × 8530 REGISTER EQUATES CHAN A	
00000001 00000003 0000005 00000005	163 R1A8530 EQU X'01' 164 R3A8530 EQU X'03' 165 R5A8530 EQU X'05' 166 RAA8530 EQU X'0A'	8530 REG 1 ADDR (READ OR WRITE) 8530 REG 3 ADDR (READ OR WRITE) 8530 REG 5 ADDR (READ OR WRITE) 8530 REG A ADDR (READ OR WRITE)
	168 ¥ 8530 REGISTER EQUATES CHAN B	
00000001 00000003 0000005 0000000A	170 R188530 EQU X'0A' 171 R388530 EQU X'03' 172 R588530 EQU X'05' 173 RA88530 EQU X'0A'	8530 REG 1 ADDR (READ OR WRITE) 8530 REG 3 ADDR (READ OR WRITE) 8530 REG 5 ADDR (READ OR WRITE) 8530 REG A ADDR (READ OR WRITE)

SASC Sample MP	' ASC Microcode
----------------	-----------------

LOC OBJECT CODE ADDR1 ADDR2	STMT SOURCE STATEMENT	ASM51 V1.9 07.09 05/09/86
	176 ************************************	**************************************
000000 000001 000002 000003 000005 000005 000005 000006 000007 00000000 00000001 00000001 00000002 00000004	183 DSECT 184 * REGISTER BANK 185 RBOR1 DS 1X REGISTER BANK 185 RBOR1 DS 1X REGISTER BANK 186 RBOR1 DS 1X REGISTER BANK 187 RBOR2 DS 1X REGISTER BANK 188 RBOR3 DS 1X REGISTER BANK 189 RBOR4 DS 1X REGISTER 4 190 RBOR5 DS 1X REGISTER 5 191 RBOR6 DS 1X REGISTER 5 192 RBOR7 DS 1X REGISTER 5 193 CMDEXPTR EQU R0 REG0 COMMAN 194 CMDSTPTR EQU R1 REG2 COMMAN 195 CMDEXT EQU R1 REG2 COMMAN 196 WORK4 EQU R4 TEMP WORK R	D STACK PTR D COUNTER
000008 000009 000008 00000C 00000C 00000D 00000E 00000E 00000F	198 * REGISTER BANK 199 CMDST0 DS 1X COMMAND STA 200 CMDST1 DS 1X COMMAND STA 201 CMDST2 DS 1X COMMAND STA 202 CMDST3 DS 1X COMMAND STA 203 CMDST4 DS 1X COMMAND STA 204 CMDST5 DS 1X COMMAND STA 205 CMDST6 DS 1X COMMAND STA 205 CMDST6 DS 1X COMMAND STA 206 CMDST7 DS 1X COMMAND STA	CK BUFFER CK BUFFER CK BUFFER CK BUFFER CK BUFFER CK BUFFER
000010 000012 000012 000013 000014 000015 000016 000016	208 *REGISTER BANK209 SPARE10DS1XSpare byte210 SPARE11DS1XSpare byte211 SPARE12DS1XSpare byte212 SPARE13DS1XSpare byte213 SPARE14DS1XSpare byte214 SPARE15DS1XSpare byte215 SPARE16DS1XSpare byte216 SPARE17DS1XSpare byte	position position position position position position
000018 000019 00001A 00001B 00001C 00001D 00001E 00001F	218 *REGISTER BANK219 SPARE18DS1XSpare byte220 SPARE19DS1XSpare byte221 SPARE1ADS1XSpare byte222 SPARE1BDS1XSpare byte223 SPARE1CDS1XSpare byte224 SPARE1DDS1XSpare byte225 SPARE1EDS1XSpare byte226 SPARE1FDS1XSpare byte	Postion postion postion postion postion postion

LOC OBJECT CODE ADDR1 ADDR2	STMT SOURCE ST	ATEMENT	ASM51 V1.9 07.09 05/09/86
	230 ********* 231 * 232 * THE FOL 233 * 234 ********	**************************************	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	237 ***		MASTER STATUS BYTE
00000020 07 20.7 05 20.5 05 20.5 03 20.3 02 20.2 02 20.2 01 20.1 00 20.0	239 MSB 240 ASCFLAG 241 CMDCMPFL 242 ADDSTAT 243 MBYTEFL 244 MDMCHGFL 245 XMITCOMP 246 RECERFFL 247 RCVCOMP	EQU X'20' EQUB X'20'7 EQUB X'20'5 EQUB X'20'5 EQUB X'20'5 EQUB X'20'2 EQUB X'20'2 EQUB X'20'2 EQUB X'20'1 EQUB X'20'1	MASTER STATUS BYTE ASYNC INTERRUPT FLAG IN MSB NON ASYNC: COMMAND COMPLETE FLAG ASYNC: ADDITIONAL STATUS FLAG MB INDICATE FLAG NON ASYNC:MODEM INPUT TRANSITION ASYNC: TRANSMIT COMPLETE FLAG RECEIVE ERROR FLAG RECEIVE COMPLETE FLAG
	249 ***		Spare data byte (position X'21')
0000021	251 SPARE21	EQU X'21'	Spare byte position
	253 ***		BYTE X'22' OPERATING MODE FLAG BYTE 0
17 22.7 14 22.4 11 22.1	255 CMDOVFLO 256 STINPROG 257 P2CMD	EQUB X'22'.7 EQUB X'22'.4 EQUB X'22'.1	STATUS PASS IN PROGRESS FLAG
	259 ***		BYTE X'23' PORT 1 FLAGS
0000023	261 P2FLAGS2	EQU X'23'	PORT 2 FLAGS BYTE 2
1F 23.7 1D 23.5	263 HIVALIDB 264 XMITBTC	EQUB X'23'.7 EQUB X'23'.5	
	266 ***		BYTE X'24' PORT 1 FLAG BYTE 1
00000024 23 24.3 22 24.2 21 24.1 20 24.0	268 ASCFL1P1 269 MSPAREN1 270 MARKPAR1 271 XONEN1 272 ENXONOF1	EQU X'24' EQUB X'24'.3 EQUB X'24'.2 EQUB X'24'.1 EQUB X'24'.0	+MARK/-SPACE PARITY P1 Enable xon checking p1
	274 ***		BYTE X'25' PORT 2 FLAG BYTE 1
00000025 28 25.3 2A 25.2 29 25.1 28 25.0	276 ASCFL1P2 277 MSPAREN2 278 MARKPAR2 279 XONEN2 280 ENXONOF2	EQU X*25* EQUB X*25*.3 EQUB X*25*.2 EQUB X*25*.1 EQUB X*25*.1 FQUB X*25*.0	+MARK/-SPACE PARITY P2 Enable XON CHECKING P2

SASC Sample MP ASC Microcode

LOC OBJECT CODE ADDR	1 ADDR2 STMT SOURCE ST	ATEMENT	ASM51 V1.9 07.09 05/09/86
	282 ×××		BYTE X'26' OPERATING MODE ERROR BYTE 0
37 26.7 31 26.1 30 26.0	284 TERMCNT 285 XSPECFL1 286 XSPECFL2	EQUB X'26'.7 EQUB X'26'.1 EQUB X'26'.0	TEMP XMIT SPECIAL FLAG
	288 ***		BYTE X'27' P2 ASYNC UNIQUE FLAGS
0000027	290 P2FLAGS1	EQU X'27'	ASC UNIQUE FLAGS
3B 27.3 39 27.1 38 27.0	292 STOPXMT2 293 SNDXON2 294 SNDXOFF2	EQUB X'27'.3 EQUB X'27'.1 EQUB X'27'.0	
	296 ***		BYTE X'28' OPERATING MODE POLL ENABLES
0000028 47 28.7 46 28.6 45 28.5 43 28.3 42 28.2 41 28.1	298 POLLEN 299 PIENXII 301 PIENRCVR 301 PIENRODM 302 PZENXMIT 303 PZENRCVR 304 PZENMODM	EQU X*28 EQUB X:28'.7 EQUB X:28'.7 EQUB X*28'.6 EQUB X*28'.3 EQUB X*28'.2 EQUB X*28'.2 EQUB X*28'.1	POLL ENABLE BYTE ENABLE PORT 1 XMIT POLL ENABLE PORT 1 RECEIVE POLL ENABLE PORT 1 RECEIVE POLL ENABLE PORT 2 XMIT POLL ENABLE PORT 2 RECEIVE POLL ENABLE PORT 2 MODEM INTERRUPTS
	307 ***		BYTE X'29' P1 ASYNC UNIQUE FLAGS
0000029	309 P1FLAGS1	EQU X"29"	PORT 1 FLAG BYTE 1
4B 29.3 49 29.1 48 29.0	311 STOPXMT1 312 SNDXON1 313 SNDXOFF1	EQUB X'29'.3 EQUB X'29'.1 EQUB X'29'.0	ASC SEND XON FLAG
	315 ***		BYTE X'2A' BIT ADDRESSABLE BYTE
000002A	317 P1FLAGS2	EQU X'2A'	PORT 1 FLAG BYTE 2
57 2A.7 55 2A.5	319 HIVALÍDA 320 xmitatc	EQUB X'2A'.7 EQUB X'2A'.5	HI DATA BYTE VALID FLAG CHAN A Xmit chan a tc flag
	322 ***		BYTE X"2B" 8530 REG O SAVE BUFFER
0000002B 58 2B.0 5A 2B.2 5F 2B.7	324 REG08530 325 RXCHARIN 326 TXBUFEMP 327 BRKDET	EQU X'2B' EQUB X'2B'.0 EQUB X'2B'.2 EQUB X'2B'.7	8530 REG 0 SAVE BUFFER RXCHAR IN FLAG TX BUFFER Empty Flag Async Break detected flag
	329 ***		BYTE X"2C" 8530 REG 1 SAVE BUFFER
0000002C 64 2C.4 65 2C.5	331 REG18530 332 RPARERR 333 ROVRUN	EQU X'2C' EQUB X'2C'.4 EQUB X'2C'.5	8530 REG 1 SAVE BUFFER Parity error detected flag Recv overrun flag

SASC Sample MP ASC Microcode

LOC OBJECT CODE	ADDR1 ADDR2	STMT SOURCE STA	TEMENT		ASM51 V1.9 07.09 05/09/86
66 20.6		334 RFRMERR	EQUB X'2C'.6		RECV FRAMING ERROR FLAG
		336 ***		BYTE X'2D'	BIT ADDRESSABLE BYTE
6E 2D.6 6D 2D.5		338 BRKFLG1 339 BRKFLG2	EQUB X'2D'.6 Equb X'2D'.5		RECV BREAK DETECTED FLAG RECV BREAK DETECTED FLAG
		341 * **		BYTE X'2E'	XMIT CHAN A COMMAND BUFFER
0000002E 75 2E.5 74 2E.4		343 XMITACMD 344 TRASHFA 345 TRASHLA	EQU X'2E' EQUB X'2E'.5 EQUB X'2E'.4	i	XMIT CHAN A CMD BUFFER DISCARD FIRST BYTE DISCARD LAST BYTE
		347 ***		BYTE X'2F'	XMIT CHAN B COMMAND BUFFER
0000002F 7D 2F.5 7C 2F.4		349 XMITBCMD 350 TRASHFB 351 TRASHLB	EQU X'2F' EQUB X'2F'.5 EQUB X'2F'.4		XMIT CHAN B CMD BUFFER DISCARD FIRST BYTE DISCARD LAST BYTE
000020		354 BITADDR	DS 16X		16 BYTES OF BIT ADDR'B RAM

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

ASM51 V1.9 07.09 05/09/86

3: 3: 3: 3: 3: 3: 3:	57 ************* 58 ** 59 ** 50 ** 51 *** **********	**************************************	**************************************	* * *
000030 3 000031 3 000032 3 000033 3 000034 3 000035 3 000036 3 000037 3 000038 3 000039 3 000038 3 000030 3 000038 3 000038 3 000038 3 000030 3 000032 3 000038 3 000038 3 000030 3 000030 3	54 ¥ 55 LODMA DS 56 HIDMA DS 57 HIXBYTEA DS 58 HIXBYTEB DS 59 XMTMSK1 DS 50 XMTMSK2 DS 71 RSTPMSK1 DS 72 RSTPMSK2 DS 73 ASCFL2P1 DS 73 ASCFL2P2 DS 75 STATO DS 75 STATO DS 76 STAT1 DS 77 STATCNT DS 78 MBYTBUF DS 79 SPARE3E DS 30 RAMEND DS	1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1X 1	S 48-63 (X'30' - X'3F') DMA DATA PASSING BUFFER DMA DATA PASSING BUFFER CHAN A HI DMA DATA BUFFER CHAN B HI DMA DATA BUFFER ASYNC XMIT BIT SET MASK (P1) ASYNC XMIT BIT SET MASK (P2) ASYNC RECV NON DATA BIT MSK 1 ASYNC RECV NON DATA BIT MSK 1 ASYNC RECV NON DATA BIT MSK 2 ASC PARMS SAVE BUFFER STATUS PASSING BYTE 0 STATUS PASSING BYTE 1 STATUS PASSING BYTE 1 STATUS PASSING BYTE 1 STATUS PASS BUFFER Spare byte position Hi byte of addr of end of RAM	
33 000040 32 000041 32 000042 33 000043 33 000044 33 000045 33 000046 35	32 × 33 × 34 MDMREGIA DS 35 MDMREGIB DS 36 MDMREGIC DS 37 MDMREG2A DS 38 MDMREG2B DS 39 MDMREG2C DS 30 MOMMSK1 DS 31 MODMMSK2 DS	MODEM 1X 1X 1X 1X 1X 1X 1X 1X	S 64-71 (X'40' - X'47') INTERFACE VALUES AND MASKS PORT 1 NEWEST MODEM VALUE P1 MODEM REG NEXT OLDEST VALUE PORT 2 NEWEST MODEM VALUE P2 MODEM REG NEXT OLDEST VALUE P2 MODEM REG OLDEST VALUE P2 MODEM REG OLDEST VALUE P0RT 1 MODEM INPUT MASK BUFFER PORT 2 MODEM INPUT MASK BUFFER	
000048 3 000048 3 000049 3 000048 3 000048 3 000040 3 000040 4 000040 4 00004E 4	93 * 94 * 95 X0FFRCV1 DS 96 X0NRCV1 DS 97 X0FFXMT1 DS 98 X0NXMT1 DS 99 X0FFRCV2 DS 91 X0FFXMT2 DS 91 X0FFXMT2 DS 92 X0NXMT2 DS	XON / 1X 1X 1X 1X 1X 1X 1X 1X	S 72-79 (X'48' - X'4F') XOFF CODES XOFF COMPARE VALUE XON COMPARE VALUE XOFF XMIT VALUE XON XMIT VALUE XOFF COMPARE VALUE XOFF COMPARE VALUE XOFF XMIT VALUE XON XMIT VALUE	

Sample MP ASC Microcode

LOC OBJECT CODE

SASC

000050 000051 000052 000053 000054 000055	405 * 406 R3A85305 DS 407 R5A85305 DS 408 RAA85305 DS 409 R3B85305 DS 410 R5B85305 DS 411 RAB85305 DS 411 R4B85305 DS	RAM BYTES 1X 1X 1X 1X 1X 1X 1X 1X RAM BYTES	80-85 (X*50' - X'55') REGISTER SAVE BUFFER REGISTER SAVE BUFFER REGISTER SAVE BUFFER REGISTER SAVE BUFFER REGISTER SAVE BUFFER REGISTER SAVE BUFFER 56-7F
000056	415 STACKBEG DS	42X	STACK AREA

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM51 V1.9 07.09 05/09/86 419 × ENTRY POINTS INTO RAM MICROCODE FROM ROM POLL LOOP STARTING ADDRESS INTO SERV RTN START ADDRESS INT1 SERV RTN START ADDRESS TIMO SERV RTN START ADDRESS 00002001 421 POLLOOP EQU X'2001' 00002003 422 HNDLINTO 423 HNDLINT1 424 HNDLINT1 X'2003' X'2006' X'2009' ĒQU EQU 00002009 EQU 0000200C 425 HNDLTIM1 ĒQŬ X'200C' TIM1 SERV RTN START ADDRESS

SASC	Sample MP	ASC Microcode		PAGE 14
100	OBJECT CODE	ADDR1 ADDR2 STMT	SOURCE STATEMENT ASM51	V1.9 07.09 05/09/86
		128	*******	
		429	**	**
		430	** ROUTINE NAME: POLL	**
		431	**	**
			** DESCRIPTIVE NAME: POLL LOOP	××
		433		**
		434	~~~ **********************************	

ADDR1 ADDR2 STMT SOURCE STATEMENT

ASM51 V1.9 07.09 05/09/86

PAGE 13

SASC Sample MP ASC Microcode

L0 C	OBJECT	CODE	A DDR 1	ADDR2	STMT	SOURCE	STATEMENT			ASM51	V1.9 0	7.09	05/09/86
					437 438 439 440	** ** ** ***	Definiti *****	(*************************************	from ROM			**** ** ** **	
000000					441	SASC	CSECT						
					444 445			Pad byte to align f X'2001' after IPL		nt at RA	M addr.		
000000	00				447		NOP		PAD BYTE FOR	ALIGNMEN	т		
					449 450 451 452	× ×		St_ex Entry Point. receive control who Command is execute '20A1'H after prog	en the ROM 'St d. (Must be at	art Exec	ution"	1	
000001	800C		000F		454		S JMP	POLLINIT	JUMP TO POLL	LOOP INI	TIALIZA	TION	
					456 457 458	×		INT 0 Entry Point. receive control wh 8051's interrupt 1	en an interrup	t occurs	on the		
000003	0206B6		06B6		460		LJMP	SERVINT0	JUMP TO HW IN	TR 0 SER	. ROUTI	NE	
					462 463 464	×		INT 1 Entry Point. receive control wh 8051's interrupt 1	en an interrup	t occur's	on the		
000006	0206D5		06D5		466		LJMP	SERVINT1	JUMP TO HW IN	ITR 1 SER	. ROUTI	NE	
					468 469 470	×		TMR 0 Entry Point. receive control wh expires (Absolute	en the 8051's	internal			
000009 00000A 00000B	00				472 473 474		RET NOP NOP		RETURN, HW TM PAD FOR ALIGN PAD FOR ALIGN	IMENT	USED		
					476 477 478	×		TMR 1 Entry Point. receive control wh expires (Absolute	en the 8051's	internal			
00000C 00000D 00000E	00				480 481 482		RET NOP NOP		RETURN, HW TM PAD FOR ALIGN PAD FOR ALIGN	IMENT	USED		

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE S	TATEMENT		ASM51 V1.9 07.09 05/09/86
					485 486 487	** ** **	OPERATI	NG MODE INITI	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
000018 00001B 000012 000024 000027 000027 000029 0000220 00002F 000025	7908 7600 752800 752900 752900 752700 752300 758155 758155 758155 758155 758340 F540 F540 F542 7583C0 E0 F543 F543 F5445 F5445 D248		28 29 27 23 81 22.4 83 40 42 83 40 42 83 40 42 83 40 42 83 43 45 83 83 83 83 83 83 83 83 83 83 83 83 83	08 00 00 00 00 00 55 A0	4999567899012334499555555555555555555555555555555555	* *	MOV MOV MOV MOV MOV MOV CLR MOV CLR MOV MOV MOV MOV MOV MOV MOV MOV SETBIT SETBIT		EXECUTE THE I/O READ INITIALIZE P2 MDMREGA INITIALIZE P2 MDMREGB INITIALIZE P2 MDMREGC ENABLE INTO INTERRUPTS ENABLE INTO INTERRUPTS ENABLE INTERRUPTS (GLOBAL) he following bit set asserts a status bit that is visable to the system pro- cessor (via I/O read). This bit is used
					516 517 518 519 520	* * *			to indicate that the adapter processor has completed its initialization and is ready to accept additional commands that will be executed by the RAM pro- gram.
000041	D295		90.5		522		SETBIT	IPLCOMP	SET 'POLL ACTIVE' FLAG TO SYSTEM

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE	STATEMENT		ASM51 V1.9 07.09	05/09/86
					525 526 527	** ** **	POLL 8	530 CHAN A TO SEE I	**************************************	
000046 000049 000044 00004C 000055 000055 000057 000057 000058	F52B 30461B 205F0E 306E08 C26E 758203 E0		83 82 28.6 28.7 2D.6 2D.6 82 006A 2B.0	98 01 006A 0060 005D 03 006A	531 532 533 534 535 536 537 538 538 539 540	POLLTOP	MOV MOVX JNB JB JNB CLR MOVX SJMP	DPH,#H8530A DPL,#L8530A A,aDPTR REG08550,A PIENRCVR,RCOMPA BRKDET,RDREG1 BRKFLG1,CHKCHAR1 BRKFLG1,CHKCHAR1 DPL,#L8530AD A,aDPTR RCOMPA RXCHARIN,RCOMPA	SET UP MOVX HI ADDR 8530 SET UP MOVX LO ADDR 8530 READ 8530 REG AO INTO ACC STORE 8530 REG 0 JMP IF POLL IS DISABLED JMP 8530 RCV BRK BII IS ON JMP IF BRK FLAG NOT ON CLEAR BREAK ACTIVE FLAG SET UP MOVX LO DATA ADDR 8530 RD/DISCARD 8530 DATA BYTE JMP IG CHK XMIT BUF EMPTY JMP IF NO RX CHAR IS AVAILABLE	
000060 000062 000063 000064 000065	F0 00 E0		20	01		* CHAN Rdreg1	A HAS A RE Mov Movx Nop Movx Mov	CV CHAR AVAILABLE, A,#R1A8530 adptr,A A,adptr Reg18530,A	READ 8530 REG 1 FOR STATUS SET UP MOVX READ PTR ADDR SET UP 8530 PTR REGISTER DUMMY WAIT FOR 8530 READ 8530 REG A1 INTO ACC STORE 8530 REG 0	
00006A	120138 304706 305A03		0138 28.7 28.2	0073 0073	553 554 555	RCOMPA	LCALL JNB JNB Channel A	RECEIVE HANDLER RECVA PIENXMIT,POLLCHB TXBUFEMP,POLLCHB TRANSMIT HANDLER	CALL RTN TO HANDLE RCV'D BYTE JMP IF TX POLL IS DISABLED JMP IF TX BUFFER IS NOT EMPTY	
000070	1201BA		01BA		559		LCALL	XMITA	CALL RTN TO HNDL XMIT SERVICE	

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE	STATEMENT		ASM51 V1.9 07.09 05/09/86
					562 563 564	** ** **	POLL 8	530 CHAN B TO SEE IF	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
000076 000079 00007A 00007C	F52B 30421B		83 82 2B 28.2	98 00 009A	568 569 570 571	POLLCHB	MOV MOVX MOV JNB	DPH,#H8530B DPL,#L8530B A,@DPTR REG08530,A P2ENRCVR,RCOMPB P2ENRCVR,RCOMPB	SET UP MOVX LO ADDR 8530 READ 8530 REG B0 INTO ACC STORE 8530 REG 0 JMP IF RX POLL IS DISABLED
000082 000085 000087 000087	758202 E0		2B.7 2D.5 2D.5 82	0090 008D 02	572 573 574 575 5?6		JB JNB CLR MOV MOVX	BRKDEI,RDREG2 BRKFLG2,CHKCHAR2 BRKFLG2 DPL,#L8530BD A, aDPTR	JMP IF BAK FLAG NOT ON CLEAR BREAK ACTIVE FLAG SET UP MOVX LO DATA ADDR 8530 RD/DISCARD 8530 DATA BYTE
00008B 00008D	30580A		009A 2B.0	009A		CHKCHAR		RCOMPB RXCHARIN, RCOMPB	JMP TO CHK XMIT BUF EMPTY JMP IF NO RX CHAR IS AVAILABLE HECK FOR ANY RECV ERRORS
000090 000092 000093 000094 000095	F0 00 E0		20	01		RDREG2	MOV MOVX NOP MOVX MOV	A,#R188530 aDPTR,A A,aDPTR REG18530,A	SET UP MOVX READ PTR ADDR SET UP 8530 PTR REGISTER DUMMY WAIT FOR 8530 READ 8530 REG B1 INTO ACC STORE 8530 REG 0
						* CALL		RECEIVE HANDLER	
000097	120276		0276		590 592	* CHECK	LCALL FOR CHAN	RECVB A TX BUFFER EMPTY	CALL RTN TO HANDLE RCV'D BYTE
	304306 305A03		28.3 28.2		595		JNB JNB	P2ENXMIT, POLLCMDS TXBUFEMP, POLLCMDS	JMP IF TX POLL IS DISABLED JMP IF TX BUFFER IS NOT EMPTY
0000A0	1202FA		02FA		597 599		CHANNEL B	TRANSMIT HANDLER Xmitb	CALL RTN TO HNDL XMIT SERVICE

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE STAT	EMENT		ASM51 V1.9 07.09 05/09/86
					602 603 604	** ** **	CHECK T	D SEE IF A SYSTEM CO	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	BA0003 0200CB		00 00CB	0 0 A 9	607 602	POLLCMDS	CJNE LJMP	CMDCNT,#0,HNDLCMD CHKMDM1	JMP IF THER IS A COMMAND NO CMD, JMP TO CHK MODEM P1
					610	* AT LEAST	ONE COM	MAND IS ON THE STACK	
0000A9 0000AB	C211 C2AF		22.1 A8.7		612 613	HNDL CMD	CLR CLR	P2CMD EA	CLEAR P2 INDICATOR FLAG DISABLE ALL INTERRUPTS
					615	* CHECK IF	A COMMA	ND OVERFLOW CONDITION	IS ACTIVE
	301716 BA0802			00C6 00B5	617 618		JNB Cjne		JUMP IF CMD OVERFLO NOT ON L JMP IF CMD STACK NOT FULL
								DW IS ACTIVE AND THE HE SYSTEM BUFFER	CMD STACK IS STILL FULL
0000B3	8011		00C6		623		SJMP	EXECCMD	JUMP TO HANDLE TOP COMMAND
								DW IS ACTIVE AND THE And onto the CMD stat	CMD STACK IS NOT FULL CK
000085 000088 000089 000084 000088 000088	F7 09 740F		83	90 0F 01	628 629 630 631 632 633	NOTFULL	MOV MOVX MOV INC MOV	DPH, #ADR8255 A, aDPTR aR1, A CMDSTPTR A, #CMDST7 A, #X*01	ELSE RD CMD, SET UP MOVX ADDR Move command into ACC Move command onto CMD Stack Incr CMD Stack PTR Move ADDR of TOP of Stk to ACC
0000BF	99			01	634		SUBB	A, CMDSTPTR	ADD 1 TO THE ADDR SUB ST TPR FROM TOP OF STK +1
0000C0 0000C2			00C4	08	635 636		JNZ Mov	END1 CMDSTPTR,#CMDST0	JMP IF ROLL OVER NOT TO BE DONE Roll CMD PTR BACK TO BOT OF STK
0000C4 0000C6			22.7 A8.7			END1 Execomd	CLR Setbit	CMDOVFLO EA	CLEAR CMD OVERFLOW FLAG ENABLE INTERRUPTS
	1203BA		03BA		639		LCALL	OP CMDDCD	CALL OPERATING MODE CMD DECODER

648 * Poll the modem interface register for adapter port 1 to see if 649 * a modem input as changed state. Interrupt if a stable state 650 * change is indicated and P1 modem interrupts are enabled.

0000CB 0000CE		83	A 0	652 653	CHKMDM1	MOV MOVX	DPH,#ADRMDM1 A,@DPTR	SET UP TO READ MODEM P1 PERFORM THE I/O READ
0000CF	F540	40		654		MOV	MDMREG1A, A	SAVE THE DATA IN MDM REG A
0000D1	B54105	41	00D9	655		CJNE	A, MDMREG1B, CHKMDM1A	SEE IF REG $A = REG B$
0000D4		42	00DE	656		CJNE	A, MDMREG1C, CHKMDM1B	
0000D7		00FF		657		S JMP	CHKMDM2	EVERYBODY EQUAL (NO MDM CHANGES)
0000D9		41	40		CHKMDM1A	MOV	MDMREG18, MDMREG1A	A NOT = B, SAVE A TO B
0000DC		00FF		659		SJMP	CHKMDM2	CHECK FOR P2 MODEM CHANGES
0000DE		28.5	00FC		CHKMDM1B	JNB	P1ENMODM, CHKMDM1D	JMP IF P1 MDM INTRS NOT ENABLED
0000E1			40	661		MOV	A, MDMREG1A	RETRIEVE I/O READ DATA
0000E3			42	662		XRL	A, MDMREG1C	EX, OR TO ISOLATE CHANGED BITS
0000E5			46	663		ANL	A, MODMMSK1	AND OFF UNINTERESTING BITS
0000E7		0.0	OGEC	664		CJNE	A,#X"00",CHKMDM1C	ANYTHING LEFT ?
0000EA		OOFC		665		SJMP	CHKMDM1D	NO, PREPARE TO GO ON TO CHK P2
0000EC		22.4	00EC		CHKMDM1C	JB	STINPROG, CHKMDM1C	WAIT FOR OK TO PASS STATUS
0000EF		20.2		667		SETBIT	MDMCHGFL	SET UP MASTER STATUS BYTE
0000F1		3A	40	668		MOV	STATO, MDMREG1A	SECOND BYTE GETS CURRENT MDM STS
0000F4		3B	••	669		MOV	STAT1,A	THIRD BYTE GETS DELTA BIT MASK
0000F6		30	02	670		MOV	STATCHT, #TWOBYTE	MSB PLUS TWO ADD'L STS BYTES
0000F9		06A6		671		LCALL	INTRSYS	INTERRUPT THE SYSTEM
0000FC	034042	42	40	672	CHKMDM1D	MOV	MDMREG1C,MDMREG1A	COPY NEW STABLE VALUE TO REG C

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE STAT	EMENT		ASM51 V1.9 07.09	05/09/86
					675 676 677	** ** CHECK 1	O SEE IF	AN INTERFACE TRANS	**************************************	
					681 682 683	* a moder	n input a	as changed state. In	r adapter port 2 to see if hterrupt if a stable state hterrupts are enabled.	
0000FF 000102	7583C0		83	C 0	685 686	CHKMDM2	MOV MOVX	DPH,#ADRMDM2 A, QDPTR	SET UP TO READ MODEM P2 PERFORM THE I/O READ	
000103			43		627		MOV	MDMREG2A, A	SAVE THE DATA IN MDM REG A	
	854405		44	010D	688		CJNE		SEE IF REG A = REG B	
	B54507		45	0112	689		ĊĴNĔ		SEE IF REG A = REG C	
00010B			0135	VIIL	690		SJMP	POLLDONE	EVERYBODY EQUAL (NO MDM CHANGES)	
	854344		44	43		CHKMDM2A	MOV	MDMREG28, MDMREG2A	A NOT = B_{1} SAVE A TO B	
000110			0135		692		SJMP	POLLDONE	GO BACK TO TOP OF POLL LOOP	
	30411D		28.1	0132		CHKMDM2B	JNB	P2ENMODM, CHKMDM2D	JMP IF P2 MDM INTRS NOT ENABLED	
000115			2012	43	694		MOV	A, MDMREG2A	RETRIEVE I/O READ DATA	
000117				45	695		XRL	A, MDMREG2C	EX. OR TO ISOLATE CHANGED BITS	
000119				47	696		ANL	A, MODMMSK2	AND OFF UNINTERESTING BITS	
	B40002		00	0120	697		CJNE	A, #X'00', CHKMDM2C	ANYTHING LEFT ?	
00011E			0132		698		SJMP	CHKMDM2D	NO, PREPARE TO GO ON TO CHK P2	
	2014FD		22.4	0120		CHKMDM2 C	JB	STINPROG, CHKMDM2C	WAIT FOR OK TO PASS STATUS	
000123	D202		20.2		700		SETBIT	MDMCHGFL	SET UP MASTER STATUS BYTE	
000125	D2B4		B0.4		701		SETBIT	P1P2INTR	SET UP MASTER STATUS BYTE	
	85433A		3A	43	702		MOV	STAT0, MDMREG2A	SECOND BYTE GETS CURRENT MDM STS	
00012A	F53B		3B		703		MOV	STAT1,A	THIRD BYTE GETS DELTA BIT MASK	
	753C02		3 C	02	704		MOV	STATCHT, #TWOBYTE	MSB PLUS TWO ADD'L STS BYTES	
	1206A6		06A6		705		LCALL	INTRSYS	INTERRUPT THE SYSTEM	
000132	854345		45	43	706	CHKMDM2D	MOV	MDMREG2C, MDMREG2A	COPY NEW STABLE VALUE TO REG C	
000135	020043		0043		709	POLLDONE	LJMP	POLLTOP	RETURN TO TOP OF POLL LOOP	

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE STAT	EMENT		ASM51 V1.9 07.09	05/09/86
					713 714 715	* * CHANNE *	L A ASY	NC RECV SERVICE	::::::::::::::::::::::::::::::::::::::	
					718	* CHECK	FOR ANY	RECEIVE ERRORS		
00013B 00013D 00013F 000142	6003 020181 305F03		82 0142 0181 2B.7	03 70 0148	721 722 723 724 725	RECVA * 8530 REAI Chkbrk	ANL JZ LJMP JNB	A,#X"70" CHKBRK RERROR1 BRKDET,NOERROR1	SET LO 8530 DATA ADDRESS CC, CHECK FOR ERROR BITS ON ZERO NON-ASC ERROR BITS JUMP IF NO ERROR BITS ARE ON JMP TO ERROR HANDLER JUMP BREAK DETECT FLAG IS NOT ON	
000145	020181		0181		726 728 729			RERROR1 FED ERRORS SO READ DA FER VALUE IS ALREADY	JMP TO ERROR HANDLER ATA BYTE FROM THE 8530 SET UP	
000148	E0				731	NOERROR1	MOVX	A, adptr	READ THE DATA BYTE TO ACC	
000149	5536			36	733 734 735 736 737	* * *	ANL		STRIP OFF ALL NON DATA BITS	
8881/B	740407		04 B		738			KON/XOFF HANDLING IS	JUMP IF XON/OFF HNDL DISABLED	
000148	302023		24.0	0171	740	* CHECK	JNB IF THE	ENXONOF1,WAITLP2 CHARACTER IS XOFF OR		
00014E	B54A0D		4A	015E	744		CJNE	A,XOFFXMT1,TESTXON1	JUMP IF CHAR IS NOT XOFF	
000154 000156	2014FD 753B10		28.7 29.3 22.4 3B 016A	0156 0156 10	746 747 748 749 750 751	* RECEIV	JNB	CTER WAS AN XOFF CHAF Pienxmit,Waitlp0 STOPXMT1 Stinprog,Waitlp0 Stat1,#XOFFSTAT PASSX1	R JUMP IF TRANSMITTER NOT ENABLED SET FLAG TO STOP TRANSMITTING LOOP UNTIL STAT PASS IS CLEAR SET XOFF RECV'D FLAG IN STATI JMP TO PASS STATUS	
	302110 85480D		24.1 68	0171 0171	753 754	TESTXON1	JNB Cjne	XONEN1,WAITLP2 A,XONXMT1,WAITLP2	JUMP IF XON CHECKING NOT ENABLED JUMP IF CHAR IS NOT XON	
300101			90	~1/1	756	* RECEIN		CTER WAS AN XON CHAR		
000167 00016A	753C62		22.4 3B 20.5 3C 0177	016¢ 20 02	753 759 760 761 762	WAITLP1 PASSX1	JB MOV SETBIT MOV SJMP	STINPROG,WAITLP1 STAT1,#XONSTAT ADDSTAT STATCNT,#TWOBYTE PASSRCV1	LOOP UNTIL STAT PASS IS CLEAR SET XON RECV'D FLAG IN STAT1 SET MSB ADDITIONAL STAT FLAG LOAD STATUS CNT FOR TWO BYTES JMP TO COMPLETE STAT PASS	
					764	*********	(*******	******************	«xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	

76 Multiprotocol Adapter

SASC	Sample MP	ASC Microcode		PAGE 23
LOC	OBJECT CODE	ADDR1 ADDR2	STMT SOURCE STATEMENT ASM51 V1.9 0	07.09 05/09/86
			765 жж 766 жж RETURN DATA BYTE TO SYSTEM 767 жж 768 жжжжжжжжжжжжжжжжжжжжжжжжжжжжжжжжжжжж	** ** **
			770 * CHARACTER WAS NOT XOFF OR XON SO JUST PASS IT TO THE SYSTEM	
	D207	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	772 WAITLP2 JB STINPROG,WAITLP2 LOOP UNTIL STAT PASS IS CLEA 773 MOV STATCNT, #ONEBYTE LOAD STATUS CNT FOR ONE BYTE 774 PASSRCV1 SETBIT RCVCOMP SET RECV COMP FLG IN MSB 775 SETBIT ASCFLAG SET MSB ASCFLAG SET MSB ASCF FLG IN MSB 776 MOV STAT0.A MOVE MOVE ATA CHAR TO STAT0 BYTE 777 HHANHANNANNANNANNANNANNANNANNANNANNANNAN	E {***** **
00017D 000180	1206A6 22	06A6	783 LCALL INTRSYS GENERATE CHAR. RX INTERRUPT 784 ENDRECV1 RET RETURN TO CALLING ROUTINE	

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE STAT	EMENT		ASM5	1 V1.9 07.0	9 05/09/86
					787 788 789	** ** A RECI	EIVE ERRO	OR WAS DETECTED BY TH	(*************************************	*	€¥ €¥ €¥
000187 00018A 00018D 00018F 000192 000195 000195 000199 000198 000198 000198 000143	5536 2014FD 306505 753B01 8010 305F0E 306E02 80E9 D26E 7400 753B08 800B 306405 753B02		22.4 2C.5 3B 01AB 2B.7 2D.6 0180 2D.6 3B 01AB 2C.4 3B 01AB 3B	36 0184 018F 01 01A0 0197 00 08 01A8 02 04	793 7994 7995 7997 7999 8001 8002 8003 8004 8004 8056 8067	RERROR1 WAITLP3 CHEKBRK1 RPTBRK1 CHKPAR1 FRMERR1	MOVX AHL JB MOV SJMP SJMP SSMP SETBIT MOV SJMP JNB MOV SJMP MOV SJMP MOV	A, DPTR A, RSTPMSK1 STINPROG, WAITLP3 ROVRUN, CHEKBRK1 STAT1, #OVRSTAT RASSERR1 BRKDET, CHKPAR1 BRKDET, CHKPAR1 BRKFLG1, RPTBRK1 ENDRECV1 BRKFLG1 A, #BRKDATA STAT1, #XBRKSTAT PASSERR1 RPARERR, FRMERR1 STAT1, #PARESTAT PASSERR1 STAT1, #FRMESTAT	READ THE DATA BYTE T STRIP OFF ALL NON DA LOOP TILL STAT PASS JUMP IF NOT AN OVERR RET OVERRUN ERROR ST JUMP IF PASS STATUS JUMP IF NOT A BREAK JMP IF BREAK HAS NOT BRK PREVIOUSLY RPTD, SET BREAK DETECTED F FORCE DATA BYTE TO ' RET BREAK DETECTED S JMP TO PASS STATUS JUMP IF NOT A PARITY RET PARITY ERROR STA JMP TO PASS STATUS STATUS	TA BITS IS CLEAR UN ERROR ATUS RECEIVED BEEN RPTD BAILOUT LAG 00°H TATUS ERROR TUS	
					810	* ANY R	ECEIVE E	RROR SHOULD JMP TO H	ERÉ		
0001AB	COEO		EO		812	PASSERR1	PUSH	ACC	SAVE ACC		
0001AD	758201		82	01	814		MOV	DPL,#18530A	SET LO 8530 DATA ADI	RESS	
					816	* SEND	RESET CO	MMAND TO 8530			
0001B0 0001B2 0001B3 0001B5 0001B5	FO DOE0		E0 20.1 016A	30	818 819 820 821 822		MOV MOVX POP SETBIT LJMP	A,#X'30' Ədptr,A Acc Recerrfl Passx1	MOVE ERROR RESET CM WRITE ERROR RESET TO RESTORE ACC SET MSB RECEIVE ERRO JMP TO PASS STATUS	8530	

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE STA	TEMENT		ASM51 V1.9 07.09	05/09/86
					826 827 828	** ** Chann **	EL A ASY	NC XMIT SERVICE	**************************************	
					831	* IF HIVAL	ID IS ON	, THIS IS NOT THE FI	RST TRANSFER	
0001BD	758398 758201 305709		83 82 2A.7	98 01 01CC	833 834 835	XMITA	MOV MOV JNB	DPH,#H8530A DPL,#L8530A HIVALIDA,INVALID1	SET UP DATA POINTER SET UP DATA POINTER JMP IF HI DMA BYTE IS NOT VALID	
					837	* THE H	I DMA DA	TA BYTE IS VALID SO	PASS IT TO THE 8530 >	ŧ
0001C3 0001C5 0001C7 0001C7	C275		2A.7 2E.5 024C	32	839 840 841 842 843 843	* THE H * THERE	CLR CLR MOV LJMP I DMA DA IS NO DA	HIVALIDA TRASHFA A,HIXBYTEA SENDBYT1 TA BYTE IS NOT VALID ATA FOR THE 8530 ON	CLEAR VALID DATA FLAG CLEAR TRASH FIRST BYTE FLAG MOV HI DMA DATA BYTE TO XMIT BUI JMP TO XMIT BYTE OF DATA SO CHECK FOR SPECIAL SITUATIONS THE CARD AT THIS TIME	-
0001CC 0001CF 0001D1 0001D3	C247		29.3 29.3 28.7	01D4	846 847 848 849	INVALID1	JNB Clr Clr Ret	STOPXMT1,CHKXON1 STOPXMT1 P1ENXMIT	JMP IF STOP XMIT FLAG IS OFF CLEAR STOP XMIT FLAG CLEAR P1 POLL ENABLE FLAG RETURN TO POLL LOOP	
0001D4	30490D		29.1	01E4	851	CHKX0N1	JNB	SNDXON1, CHKXOFF1	JMP IF SEND XON FLAG IS OFF	
					853	* SEND	AN XON T	0 THE 8530		
0001DC	854930 2014FD 753A22		29,1 30 22,4 3A 01F2	49 01DC 22	855 856 857 858 859	WAITLP5	CLR MOV JB MOV SJMP	SNDXON1 LODMA,XONRCV1 STINPROG,WAITLP5 STAT0,#XON1CMD PASSANY1	CLEAR SEND XON FLAG MOVE XON CHAR TO LODMA BUFFER LOOP UNTIL STAT PASS IS CLEAR MOV XON CMD TO STATO JMP TO PASS STATUS	
0001E4	30481C		29.0	0203	861	CHKX0FF1	JNB	SNDXOFF1, CHKTXTC1	JMP IF SEND XOFF FLAG IS OFF	
					863	* SEND	AN XOFF	TO THE 8530		
0001EC 0001EF 0001F2 0001F5 0001F8 0001F8 0001FA 0001FD	2014FD 753A23 854830 753B00 753002		29.0 22.4 30 38 30.5 06A6 83 0235	01E9 23 48 00 02 98	867 868	WAITLP6 Passany1	CLR JB MOV MOV MOV SETBIT LCALL MOV LJMP	SNDXOFF1 STINPROG,WAITLP6 STAT0,#XOFF1CMD LODMA.XOFFRCV1 STAT1,#t0 STAT0NT,#TWOBYTE CMDOMPFL INTRSYS DPH,#H8530A SEND1	CLEAR SEND XOFF FLAG LOOP UNTIL STAT PASS IS CLEAR MOVE XOFF CMD TO STATO MOVE XOFF CHAR TO LODMA BUFFER NO BITS ON IN STAT 1 LOAD STATUS CNT FOR 2 BYTES SET CMD COMPLETE FLAG IN MSB CALL INTERRUPT SERV RTN SET UP 8530 MOVX ADDRESS JMP TO SEND BYTE TO 8530	
000203	30551D		2A.5	0223	876	CHKTXTC1	JNB	XMITATC, NOTXTC1	JMP IF TC FLAG IS OFF	

SASC Samp	le	MP	ASC	Microcode
-----------	----	----	-----	-----------

LOC	OBJECT CODE	ADDR1	ADDR2	STMT	SOURCE ST	ATEMENT		ASM51 V1.9 07.09 05/09/86
				878 879 880 881	* ALL *	DATA HAS	BEEN GIVEN TO THE 85 Indicated by the 853	30, LOOK FOR 'ALL SENT' 0
	F0 00	E0.0 025E	01 0211	883 884 885 886 887 888		MOV MOVX NOP MOVX JB LUMP	A,#R1A8530 Ədptr,A A,Ədptr ACC.0,Allsnton1 Endxmit1	SET UP 8530 REGISTER WRITE OUT REGISTER POINTER WAIT FOR 8530 READ IN RIA DATA JUMP IF ALL SENT INDICATED JMP TILL ALL SENT COMES ON
				890 891 892	* 'ALL	SENT' IS	INDICATED TRANSMI	T IS COMPLETE, PASS STATUS
000216 000218 00021A 00021C	2014FD C255 D202 D207 753C00 1206A6	28.7 22.4 24.5 20.2 20.7 3C 06A6	0213 00		ALLSNTON1 XDONE1	CLR JB CLR SETBIT SETBIT MOV LCALL RET	P1ENXMIT STINPROG,XDONE1 Xmitatc Xmitcomp Ascflag Statcnt,#Zerobyte Intrsys	CLR POLL ENABLE FLAG JMP IF STAT PASS NOT IN PROG CLEAR DMA TC FLAG FOR CHAN B SET XMIT COMP FLG IN MSB SET ASC FLG IN MSB LOAD STATUS CNT FOR MSB ONLY CALL INTERRUPT SERV RTN RETURN TO POLL LOOP

l

LOC	OBJECT C	ODE ADDR1	ADDR2	STMT	SOURCE STA	ТЕМЕНТ		ASM51 V1.9 07.09 05/09/86
				904 905 906	** ** **	DMA FROI	M THE SYSTEM TO THE	۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲۲
				909	* THIS	IS NOT T	HE END OF THE TRANSM	IT, FETCH TWO MORE BYTES
000223	E52E		2E	911	NOTXTC1	MOV	A, XMITACMD	MOV CMD/DMA CHAN TO ACC
000225	120678	0678		913		LCALL	DMATDADP	CALL ROUTINE TO DMA TO ADPT.
000228	758398	83	98	915		MOV	DPH,#H8530A	SET UP MOVX ADDR=8530
				917	* THE D	MA RET C	ODE IS IN THE ACC	
00022B	7014	0241		919		JNZ	TCISON1	JUMP IF TC RET CODE FOUND
				921	* TC DI	D NOT OC	CUR ON THE TRANSFER	50 BOTH BYTES ARE GOOD
000230	207504 E530	32 2A.7 2E.5 024C	31 0239 30	924 925	BOTHOK1 Send1	MOV SETBIT JB MOV SJMP	HIXBYTEA,HIDMA HIVALIDA TRASHFA,FIRSTBAD1 A,LODMA SENDBYT1	MOVE BYTE INTO SAVE BUFFER SET HI BYTE VALID FLAG JUMP IF TRASH 1ST BYTE FLG ON MOV LO DMA DATA BYTE TO ACC JMP TO XMIT BYTE OF DATA
000238 000238 00023D 00023F	C257 E532	2E.5 2A.7 0240	32	929 930 931 932	FIRSTBAD1	CLR CLR MOV SJMP	TRASHFA HIVALIDA A,HIXBYTEA SENDBYT1	CLEAR TRASH BYTE FLAG CLEAR VALID DATA FLAG MOV HI DMA DATA BYTE TO XMIT BUF JMP TO XMIT BYTE OF DATA
				934	* TC DI	D OCCUR	ON THE TRANSFER SO C	HECK IF LAST BYTE IS GARBAGE
000241 000243 000246	3074E7	2A.5 2E.4 2E.4	022D	936 937 938	TCISON1	SETBIT JNB Clr	XMITATC Trashla,Bothok1 Trashla	TURN ON XMIT B TC FLAG Jump IF Last byte IS not garbage Clear trash byte flag
				940	* THE L	AST BYTE	IS NOT VALID SO TUR	N OFF THE VALID BYTE FLAG
000248 00024A		2A.7	30	942 943		CLR Mov	HIVALIDA A,LODMA	CLR HI BYTE VALID FLAG Move lo dma data byte

PAGE 28

LOC	OBJECT	CODE	A DDR 1	ADDR2	STMT S	DURCE	STATEM	ENT					A 5 M 5 1	V1.9	07.09	05/09/86
					946 ×1 947 ×1 948 ×1	×	WR		×××××× DATA B ××××××			***************	*******	*****	***** ** ** ** **	
					951 * 952 * 953 * 954 * 955 * 956 * 957 * 958 *	ZE	NOTE A EFFECT THE CA	LSO OF SE. TE P	THAT T GENERA THE 8 ARITY.	HE FOL TING S 530 WI THE	LOWING PACE PACE PACE	ATA BYTE BITS. INSTRUCTION HAS TI ARITY IF THAT IS T RRIDE THIS IF IT I EMAINING CASE IS M	0 BE 5 TO			
000240	5536			36		ENDBY1 CC	1 AN	L GENE		TPMSKI ARK P#		CLEARS UNUSED	HIGH OR	DER B	ITS	
00024E 000251	302202 4534		24.2	0253 34	963 964 965 × 966 ×		JN OR ID OF M	L	A,XM	TMSK1	IS_DONE:	1 JUMP IF NOT MA OR ON MARK PAR CODE			DE	
000253 000256 000257 00025A 00025C 00025E	F0 303104 C231 C247		82 26.1 26.1 28.7	03 025E	969 970 971 972	S_DONI	MO' JN CL CL	VX B R R	adpt XSPE XSPE	CFL1,I	DAD ENDXMIT:	SET LO 8530 DA MOVE DATA BYTE 1 JMP IF XMIT SP CLEAR XSPECIAL CLEAR PORT 2 E RETURN TO CALL	TO 853 EC FLAG FLAG NABLE X	0 5 15 0 (MIT	FF	

SASC	Sample MP AS	C Micro	code							PAGE	29
LOC	OBJECT CODE	A DDR 1	ADDR2	STMT	SOURCE STA	TEMENT		ASM51 V1.	9 07.09	05/09	9/86
				975 976 977 978 978 979	××	(******** Start A (********	**************************************	NXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	******** ** ** ** **		
	F0 E551 4408 F0 D247 C231 C255 C257	83 82 28.7 26.1 2A.5 2A.7	98 01 05 51 08	981 982 983 984 985 986 987 988 988 989 989 990 991 992	STXMITP1	MOV MOV MOVX MOV ORL MOVX SETBIT CLR CLR CLR RET	DPH,#H8530A DPL,#L8530A A,#R5A8530 aDPTR,A A,R5A8530S A,#EN8530TX aDPTR,A P1ENXMIT XSPECFL1 XMITATC HIVALIDA	SET UP 8530 ADDRESS SET UP 8530 ADDRESS SET UP PTR VALUE WRITE PTR VALUE TO REG 0 SET UP PTR VALUE TURN ON THE TX ENABLE BIT WRITE PTR VALUE TO REG 0 TURN ON POLL ENABLE BIT CLEAR DISABLE XMIT FLAG CLEAR MI BYTE VALUD FLAG RETURN TO CALLING RTN	-		

29

L0 C	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE STAT	EMENT		ASM51 V1.9 07.	09 05/
					995 996 997	** ** CHANNE ** *********	EL B ASY1 (*******	NC RECV SERVICE	3	** ** **
000276	758232		82	02	1002	RECVP	MOV	DPL,#L8530BD	SET LO 8530 DATA ADDRESS	
000279 00027B 00027D 00027D 000280	5479 6003 0202C1 305F03		0280 02C1 2B.7	70 70	1003 1004 1005 1006 1007		DREG1 ANL JZ LJMP JNB	TS CURRENTLY IN THE A A,#X'70' CHKBRK2 RERROR2 BRKDET,NOERROR2	ACC, CHECK FOR ERROR BITS ON ZERO NON-ASC ERROR BITS JUMP IF NO ERROR BITS ARE ON JMP TO ERROR HANDLER JUMP BREAK DETECT FLAG IS NOT (DN
000283	0202C1		0201		1008		L JMP	RERROR2	JMP TO ERROR HANDLER	
					$\begin{array}{c} 1010\\ 1011 \end{array}$			TED ERRORS SO READ DA TER VALUE IS ALREADY	ATA BYTE FROM THE 8530 SET UP	
000286	E0				1013	NOERROR2	MOVX	A, adptr	READ THE DATA BYTE TO ACC	
000287	5537			37	1015 1016 1017 1018 1019 1020	* * *	ANL	A,RSTPMSK2 X0N/X0FF HANDLING IS	STRIP OFF ALL NON DATA BITS	
						* UNLUK				
000289	302823		25.0	02AF	1022		JNB	ENXONOF2,WAITLP22	JUMP IF XON/OFF HNDL DISABLED	
					1024	* CHECK	IF THE	CHARACTER IS XOFF OR	XON	
00028C	B54E0D		4E	029C	1026		CJNE	A,XOFFXMT2,TESTXON2	JUMP IF CHAR IS NOT XOFF	
000292 000294	2014FD 753B10		28.3 27.3 22.4 3B 02A8	0294 0294 10	1028 1029 1030 1031 1032 1033	* RECEIV WAITLP02	VE CHARA JNB SETBIT JB MOV SJMP	CTER WAS AN XOFF CHAF P2ENXMIT,WAITLP02 STOPXMT2 STINPROG,WAITLP02 STAT1,#XOFFSTAT PASSX2	R JUMP IF TRANSMITTER NOT ENABLE SET FLAG TO STOP TRANSMITTING LOOP UNTIL STAT PASS IS CLEAR SET XOFF RECV'D FLAG IN STAT1 JMP TO PASS STATUS	D
	302910 B54F0D		25.1 4F	02AF 02AF	1035 1036	TESTX0N2	JNB Cjne	XONEN2,WAITLP22 A,XONXMT2,WAITLP22	JUMP IF XON CHECKING NOT ENABL JUMP IF CHAR IS NOT XON	ED
					1038	* RECEI	VE CHARA	CTER WAS AN XON CHAR		
0002A5 0002A8	753C02		22.4 3B 20.5 3C 02B5	02A2 20 02	1041	PASSX2	JB MOV SETBIT MOV SJMP	STINPROG,WAITLPX2 STAT1,#XONSTAT ADDSTAT STATCNT,#TWOBYTE PASSRCV2	LOOP UNTIL STAT PASS IS CLEAR SET XON RECV'D FLAG IN STATI SET MSB ADDITIONAL STAT FLAG LOAD STATUS CNT FOR TWO BYTES JMP TO COMPLETE STAT PASS	
					1046	******	******	*****	******	××

LOC	OBJECT C	ODE A	DDR1	ADDR2	STMT	SOURCE STA	TEMENT				ASM51	V1.9 07	.09	05/09/86
					1047 1042 1049 1050	*** RETUR	N DATA BI	YTE TO SYSTEM	******	*****	*****	******	** ** **	
					1052	* CHARA	CTER WAS	NOT XOFF OR X	ON SO JUS	ST PASS IT TO	THE SY	STEM		
0002AF 0002B2 0002B5 0002B7 0002B7 0002B9 0002BB	D200 D207 D2B4	2	2.4 3C 0.0 0.7 0.4 3A	02AF 01	1055 1056 1057 1058 1059 1060 1061 1062 1063	××	JB MOV SETBIT SETBIT SETBIT MOV XXXXXXXXXX WRITE TH	STINPROG,WAIT STATCNT,#ONEB RCVCOMP ASCFLAG P1P2INTR STAT0,A KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	YTE LO SI SI II MO *******	OOP UNTIL STAT OAD STATUS CHI ET RECV COMP F ET MSB ASC FLA NDICATE A P2 J IOVE DATA CHAR ************************************	FOR OF IG IN IG INTERRU TO STA	NE BYTE MSB PT To Byte ******	: : : : : : : : : : : : : : : : : : :	
0002BD 0002C0	1206A6 22	0	6A6		1066 1067	ENDRECV2	LCALL IN RET	NTRSYS		ENERATE CHAR. ETURN TO CALLI				

SASC Sample MP ASC Microco	2			PAGE 32
LOC OBJECT CODE ADDR1 AD	2 STMT SOURCE STAT	EMENT	ASM51 V1.9 07.0	9 05/09/86
	1070 ** 1071 ** A Rece 1072 **	IVE ERROR WAS DETECTED BY TH	xxxxxxxxxxxxxxxxxxxxxxxxxxxxx x IE 8530 x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	* * *
0002C4 2014FD 22.4 02 0002C7 306505 2C.5 02 0002CA 753801 3B 0002CB 801C 02EB 0002CF 305F0E 2B.7 02 0002D2 306D02 2D.5 02 0002D5 80E9 02C0 0002D7 0002D7 D26D 2D.5 02 0002D7 D26D 2D.5 02 0002D8 753B08 3B 00 0002D8 753B08 3B 02EB 0002D8 800B 02EB 02EB 0002D8 306405 2C.4 02	7 1076 4 1077 WAITLP32 5 1078 1078 1080 5 1081 CHEKBRK2 1083 1084 RPTBRK2 5 1085 5 1086 1087 1088 CHKPAR2 2 1089 1090	ANL A, RŠTPMSK2 JB STINPROG, WAITLP32 JNP ROVRUN, CHEKBRK2 MOV STATI, #OVRSTAT SJMP PASSERR2 JNB BRKDET, CHKPAR2 JNB BRKDET, CHKPAR2 JNB BRKFLG2, RPTBRK2 SJMP ENDRECV2 SETBIT BRKFLG2 MOV A, #BRKDATA MOV STATI, #XBRKSTAT SJMP PASSER2 JNB RPARERR, FRMERR2	READ THE DATA BYTE TO ACC STRIP OFF ALL NON DATA BITS LOOP TILL STAT PASS IS CLEAR JUMP IF NOT AN OVERRUN ERROR RET OVERRUN ERROR STATUS JUMP TO PASS STATUS JUMP IF NOT A BREAK RECEIVED JMP IF BREAK HAS NOT BEEN RPTD BRK PREVIOUSLY RPTD, BAILOUT SET BREAK DETECTED FLAG FORCE DATA BYTE TO "00"H RET BREAK DETECTED STATUS JUMP IF NOT A PARITY ERROR RET PARITY ERROR STATUS JMP TO PASS STATUS RET FRAMING ERROR STATUS	
	1093 * ANY RE	ECEIVE ERROR SHOULD JMP TO HE	RE	
0002EB C0E0 E0	1095 PASSERR2	PUSH ACC	SAVE ACC	
0002ED 758200 82	0 1097	MOV DPL,#L8530B	SET LO 8530 DATA ADDRESS	
	1099 * SEND R	RESET COMMAND TO 8530		
0002F0 7430 0002F2 F0 0002F3 D0E0 E0 0002F5 D201 20.1 0002F7 0202A8 02A8	0 1101 1102 1103 1104 1105	MOV A,#X'30' MOVX ƏDPTR,A POP ACC Setbit Recerrfl LJMP PASSX2	MOVE ERROR RESET CMD TO ACC WRITE ERROR RESET TO 8530 RESTORE ACC SET M5B RECEIVE ERROR FLAG JMP TO PASS STATUS	

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM51 V1.9 07.09 05/09/86 1109 ** 1110 ** ж× CHANNEL B ASYNC XMIT SERVICE ×× 1111 ** ***************** 1114 * IF HIVALID IS ON, THIS IS NOT THE FIRST TRANSFER 0002FA 758398 83 98 1116 XMITB MOV DPH, \$H8530B SET UP DATA POINTER 0002FD 758200 82 00 1117 SET UP DATA POINTER MOV DPL,#18530B 000300 301F0y 23.7 030C JNB HIVALIDB, INVALID2 JMP IF HI DMA BYTE IS NOT VALID 1120 ¥ THE HI DMA DATA BYTE IS VALID SO PASS IT TO THE 8530 000303 C21F 23.7 1122 CLR HIVALIDB CLEAR VALID DATA FLAG 000305 C27D 000307 E533 1123 1124 1125 2F.5 CLR TRASHFB CLEAR TRASH FIRST BYTE FLAG 33 MOV MOV HI DMA DATA BYTE TO XMIT BUF A.HIXBYTEB 000309 020390 0390 LJMP SENDBYT2 JMP TO XMIT BYTE OF DATA THE HI DMA DATA BYTE IS NOT VALID SO CHECK FOR SPECIAL SITUATIONS 1126 ¥ 1127 ¥ THERE IS NO DATA FOR THE 8530 ON THE CARD AT THIS TIME 30030C 303805 1129 INVALID2 27.3 0314 JNR. STOPXMT2, CHKXON2 JMP IF STOP XMIT FLAG IS OFF 00030F C23B 000311 C243 27.3 1130 CLEAR STOP XMIT FLAG CLEAR P2 POLL ENABLE FLAG CLR STOPXMT2 28.3 1131 P2ENXMIT CIR 000313 22 1132 RET RETURN TO POLL LOOP 000314 30390D 27.1 0324 1134 CHKX0N2 JNB SNDXON2, CHKXOFF2 JMP IF SEND XON FLAG IS OFF 1136 × SEND AN XON TO THE 8530 000317 C239 27.1 1138 CLR SNDXON2 CLEAR SEND XON FLAG 000319 854D30 00031C 2014FD 00031F 753A22 4 D 1139 MOV LODMA, XONRCV2 MOVE XON CHAR TO LODMA BUFFER 22.4 3A 031C 1140 WAITLP52 LOOP UNTIL STAT PASS IS CLEAR MOV XON CMD TO STATO STINPROG, WAITLP52 JB 22 MÖV 1141 STATO, #XON1CMD 000322 800E 0332 1142 SJMP PASSANY2 JMP TO PASS STATUS 000324 30381E 27.0 0345 1144 CHKXOFF2 JNB SNDXOFF2, CHKTXTC2 JMP IF SEND XOFF FLAG IS OFF SEND AN XOFF TO THE 8530 1146 ¥ 000327 C238 27.0 1148 CLR SNDYDEE2 CLEAR SEND XOFF FLAG 000329 2014FD 22.4 3A 0329 NOVE XOFF CHD TO STATO MOVE XOFF CHD TO STATO MOVE XOFF CHAR TO LODMA BUFFER NO BITS ON IN STAT 1 1149 WAITLP62 .IR STINPROG, WAITLP62 00032C 753A23 23 1150 MOV STAT0, #XOFF1CMD 00032F 854C30 30 4C 1151 LODMA, XOFFRCV2 MOV 000332 753B00 3 B 0.0 1152 PASSANY2 MOV STAT1,#0 LOAD STATUS CNT FOR 2 BYTES SET CMD COMPLETE FLAG IN MSB 000335 753002 STATCHT, #TWOBYTE 3C 02 1153 MOV 000338 D205 20.5 1154 SETRIT CMDCMPEL 00033A D2B4 B0.4 1155 SETBIT INDICATE PORT 2 INTERRUPT CALL INTERRUPT SERV RTN SET UP 8530 MOVX ADDRESS JMP TO SEND BYTE TO 8530 P1P2TNTR 00033C 1206A6 06A6 1156 LCALL INTRSYS 00033F 758398 83 98 1157 MOV DPH,#H8530B 000342 020379 0379 1158 LJMP SEND2 000345 301D1F 23.5 0367 1160 CHKTXTC2 JNB XMITBTC, NOTXTC2 JMP IF TC FLAG IS OFF

PAGE 34

ASM51 V1.9 07.09 05/09/86

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

		1162 * 1163 * All D 1164 * 1165 *	DATA HAS	BEEN GIVEN TO THE 85 Indicated by the 853	530, LOOK FOR 'ALL SENT' 50
000348 7401 00034A F0 00034B 00 00034C E0 00034D 20E0033 000350 0203A2	01 E0.0 0353 03A2	1167 1168 1169 1170 1171 1172	MOV MOVX NOP MOVX JB LJMP	A,#R188530 Ədptr,A A,Ədptr Acc.0,Allsnton2 EndxMIT2	SET UP 8530 REGISTER WRITE OUT REGISTER POINTER WAIT FOR 8530 READ IN RIA DATA JUMP IF ALL SENT INDICATED JMP TILL ALL SENT COMES ON
		1174 ¥ 1175 ¥ "All S 1176 ¥	BENT' IS	INDICATED TRANSM	IT IS COMPLETE, PASS STATUS
000353 C243 000355 2014FD 000358 C21D 00035A D202 00035A D202 00035C D207 00035C D284 000360 753C00 000363 1206A6 000366 22	28.3 22.4 0355 23.5 20.2 20.7 80.4 3C 00 06A6	1178 ALLSNTON2 1179 XDONE2 1180 1181 1182 1183 1184 1185 1186	CLR JB CLR SETBIT SETBIT SETBIT MOV LCALL RET	P2ENXMIT STINPROG,XDONE2 XMITBTC XMITCOMP ASCFLAG P1P2INTR STATCNT,#ZEROBYTE INTRSYS	CLR POLL ENABLE FLAG JMP IF STAT PASS NOT IN PROG CLEAR DMA TC FLAG FOR CHAN B SET XMIT COMP FLG IN MSB SET ASC FLG IN MSB INDICATE PORT 2 INTERRUPT LOAD STATUS CNT FOR MSB ONLY CALL INTERRUPT SERV RTN RETURN TO POLL LOOP

LOC	OBJECT (CODE	ADDR1	ADDR2	STMT	SOURCE STAT	FEMENT		ASM51 V1.9 07.09 0	5/09/86
					1189 1190 1191	** ** **	DMA FROM	1 THE SYSTEM TO THE A	**************************************	
					1194	* THIS	IS NOT TH	IE END OF THE TRANSM	T, FETCH TWO MORE BYTES	
000367	E52F			2F	1196	NOTXTC2	MOV	A,XMITBCMD	MOV CMD/DMA CHAN TO ACC	
000369	120678		0678		1198		LCALL	DMATOADP	CALL ROUTINE TO DMA TO ADPT.	
00036C	758398		83	98	1200		MOV	DPH,#H8530B	SET UP MOVX ADDR=8530	
					1202	* THE D	MA RET CO	DDE IS IN THE ACC		
00036F	7014		0385		1204		JNZ	TCISON2	JUMP IF TC RET CODE FOUND	
					1206	* TC DI	D NOT OC	CUR ON THE TRANSFER	O BOTH BYTES ARE GOOD	
000374	207D04 E530		33 23.7 2F.5 0390	31 037D 30	1209 1210	BOTHOK2 Send2	MOV SETBIT JB MOV SJMP	HIXBYTEB,HIDMA HIVALIDB TRASHFB,FIRSTBAD2 A,LODMA SENDBYT2	MOVE BYTE INTO SAVE BUFFER SET HI BYTE VALID FLAG JUMP IF TRASH 1ST BYTE FLG ON MOV LO DMA DATA BYTE TO ACC JMP TO XMIT BYTE OF DATA	
00037D 00037F 000381 000383	C21F E533		2F.5 23.7 0390	33	1214 1215 1216 1217	FIRSTBAD2	CLR CLR MOV SJMP	TRASHFB HIVALIDB A,HIXBYTEB SENDBYT2	CLEAR TRASH BYTE FLAG CLEAR VALID DATA FLAG MOV HI DMA DATA BYTE TO XMIT BUF JMP TO XMIT BYTE OF DATA	
					1219	* TC DI	D OCCUR (ON THE TRANSFER SO C	ECK IF LAST BYTE IS GARBAGE	
000385 000387 00038A	307CE7		23.5 2F.4 2F.4	0371	1221 1222 1223	TCISON?	SETBIT JNB CLR	XMITBTC TRASHLB,BOTHOK2 TRASHLB	TURN ON XMIT B TC FLAG JUMP IF LAST BYTE IS NOT GARBAGE CLEAR TRASH BYTE FLAG	
					1225	* THE L	AST BYTE	IS NOT VALID SO TUR	OFF THE VALID BYTE FLAG	
00038C 00038E			23.7	30	1227 1228		CLR Mov	HIVALIDB A,LODMA	CLR HI BYTE VALID FLAG MOVE LO DMA DATA BYTE	

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE S	TATEMEN	т				ASM51	V1.9	07.	09	05/09/86
					1231 1232 1233	** ** **	WRIT	E DATA	BYTE TO	8530	***************************************				** ** **	
					1236 1237 1238 1239 1240 1241 1242 1243	* ZER * N * E * T * C * P	IDTE ALS	O THAT DF GENE . THE PARIT	THE FOL RATING S 8530 WI Y. THE	LOWING IN PACE PARI	BYTE BITS. STRUCTION HAS TH TY IF THAT IS TO DE THIS IF IT IS INING CASE IS MA	BE To				
000390	5537			37		SENDBYT2 * * COL			RSTPMSK2 MARK PA		CLEARS UNUSED H	IGH OR	DERB	115		
900392 000395	302A02 4535		25.2	0397 35	1248 1249 1250 1251	×	JNB ORL	Α,	XMTMSK2	IS_DONE2	JUMP IF NOT MAR OR ON MARK PARI	K PARI TY BIT	TY MO	DE		
00039A	303004 C230 C243		82 26.0 26.0 28.3	02 03A2	1252 1253 1254 1255 1256 1257		2 MOV MOV JNB CLR CLR	C aD XS XS	L,#L8530 PTR,A		SET LO 8530 DAT MOVE DATA BYTE JMP IF XMIT SPE CLEAR XSPECIAL CLEAR PORT 2 EN RETURN TO CALLI	TO 853 C FLAG FLAG ABLE X	0 15 0 MIT	FF		

LOC	OBJECT CODE	ADDR1	ADDR2	STMT	SOURCE STA	TEMENT			ASM51 V1.9 0	7.09 05/09/86
				1261 1262 1263	** ** **	START A	SYNC TRANSMIT O	N ADAPTER PORT 2	***************************************	** ** **
	F0 E554 4408 F0 D243 C230 C21D C21F	83 82 28.3 26.0 23.5 23.7	98 00 05 54 08	1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277	STXMITP2	MOV MOV MOVX MOVX ORL MOVX SETBIT CLR CLR CLR RET	DPH, #H8530B DPL, #L8530B A, #R5B8530 a)PTR,A A, R5B8530S A, #EN8530TX a)PTR,A P2ENXMIT XSPECFL2 XMITBTC HIVALIDB	SET UP PTR WRITE PTR SET UP PTR TURN ON TH WRITE PTR TURN ON PO CLEAR DISA CLEAR XMIT CLEAR HI B	0 ADDRESS VALUE TO REG 0 VALUE E TX ENABLE BIT VALUE TO REG 0 LL ENABLE BIT BLE XMIT FLAG	

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOUR	RCE ST	ATEMEN	T							ASM51	V1.9	07.09	05/09/86
					1279	***	*****			*******			******			~~~~		******	
					1280								~~~~~		******	*****	****	*****	
					1281			OPER	ATT	NG MODE	COM	MAND DE	CODE					**	
					1282			01 21			0011		UUUL					**	
					1283	***	*****	*****	***	*******	(***)	******	*****	****	*******	*****	*****		
					1284	××													
					1285		Sampl	e Asyn	ic M	licrocode	e Co	mmand S	et Def	init	ion				
					1286														
					1287			ommand				unction							
					1288 1289		-	======			=								
					1290			·22·	ы		c	end XON			- P1				
					1291			1231				end XOF							
					1292			'2A'				end XON							
					1293			'2B'				end XOF							
					1294									aupti					
					1295	××		*30*	н		D	isable	Transm	nit fo	or P1				
					1296			• 31•			E	nable T	ransmi	t fo	r Pl				
					1297			'32'				isable			1				
					1298			33				nable R							
					1299			34							rrupts_fo				
					1300			35							rupts for	• P1			
					1301			* 38* * 39*				isable							
					1303			- 3,9 ·				nable T isable							
					1304			• 3B •				nable R							
					1305			• 3 Č •							rrupts fo	r P2			
					1306			• 3 D •							rupts for				
					1307	××							-						
					1308			"5X"	н		D	MA Mult	i-Byte	e Cmd	to Adapt	er			
					1309			I											
					1310			-			->	3 2	1 0) 1	ow order	bits			
					1311						-								
					1312 1313										A		L		
					1313							'			Adapter undefine				
					1315							'			11 = P2				
					1316										* ''	. c.ad			
					1317	××					T	ransmit	Data	comm	and				
					1318														
					1319			17	16	5 5 4	4 I	3 2	1 0)					
					1320														
					1321								1 1		.				
					1322 1323										Adapter		n.		
					1323							'			undefine "1" = P2				
					1325						'				Discard		byte		
					1326					i '					Discard				
					1327			i		·					undefine			-	
					1328	ж×		· · -							'1' = Tr	ansmi	t Cmc	ł	
					1329														
					1330	×х												. *)	•

0003BA E6		1333 OPCMDDCD	MOV	A, aro	MOVE THE NEXT CMD TO ACC
0003BB 30E302	E0.3 03C0	1335	JNB	ACC.3,P1CMD	JUMP IF THIS IS A P1 CMD
0003BE D211	22.1	1336	SETBIT	D2CMD	SET PORT 2 CMD FLAG
0003C0 54F0	FÖ	1337 P1CMD	ANL	A,#X-F0"	ZERO LO NIBBLE OF CMD CODE
0003C2 30E712	E0.7 03D7	1338	JNB	ACC.7,DJMP2	JUMP IF NOT START XMIT CMD
000305 301100	22.1 03D0	1339	JNB	P2CMD, P1SXMT	JUMP IF NOT PORT 2 COMMAND
CC03C8 862F	2F	1340	MOV	XMITBCMD, aR0	MOVE CMD CODE TO XMIT CMD BUFFER
0003CA 1203A3	03A3	1341	LCALL	STXMITP2	CALL START XMIT P2 RTN
0u03CD 020401	0401	1342	LJMP	UPSTACK	JUMP TO CMD COMPLETE HANDLER
0003D0 862E	2E	1343 P15XMT	MOV	XMITACMD, aR0	MOVE CMD CODE TO XMIT CMD BUFFER
0003D2 12025F	025F	1344	LCALL	STXMITP1	CALL START XMIT P1 RTN
0003D5 802A	0401	1345	SJMP	UPSTACK	JUMP TO CMD COMPLETE HANDLER
0003D7 B42005	20 03DF	1346 DJMP2	CJNE	A, #XSPCMD, DJMP3	JUMP IF NOT XMIT SPEC CMD
0003DA 120405	0405	1347	LCALL	XMITSPEC	CALL XMIT SPECIAL CHAR RTN
0003DD 8025	0404	1348	SJMP	CMDCOMP	JUMP TO CMD COMPLETE HANDLER
0003DF B43005	30 03E7	1349 DJMP3	CJNE	A, #RMCCMD, DJMP7	JUMP IF NOT MODE CNTL CMD
1003E2 120435	0435	1350	LCALL	SETMODE	CALL RECEIVE MODE CTL RTN
0003E5 8008	03EF	1351	SJMP	WAIT_LP1	JUMP TO COMPLETE STATUS PASS
0003E7 B45005	50 03EF	1352 DJMP7	S JMP C J N E	A,#SDMACMD,WAIT_LP1	
0003EA 1204E0	04E0	1353	LCALL	MBYTCMDS	CALL START DMA RTN
0003ED 8015	0404	1354	SJMP	CMDCOMP	JUMP TO CMD COMPLETE HANDLER
0003EF 2014FD	22.4 03EF	1355 WAIT_LP1	JB	STINPROG, WAIT_LP1	
0003F2 863A	3A	1356	MOV	STATO, aRO	MOVE CMD CODE INTO STATO
0003F4 753C02	3A 3C 02	1357	MOV	STATCHT, #TWOBYTE	SET UP STAT BYTE PASS CNT
0003F7 D205	20.5	1358	SETBIT		SET CMD COMPLETE FLAG IN MSB
0003F9 301102	22.1 03FE	1359	JNB	P2CMD, CALLSYS	JUMP IF CMD WAS FOR PORT 1
0003FC D2B4	B0.4	1360	SETBIT	P1P2INTR	SET INTR SRCE TO PORT 2
0003FE 1206A6	06A6	1361 CALLSYS	LCALL	INTRSYS	CALL SYSTEM INTR SERVICE
000401 120698	0698	1362 UPSTACK	LCALL	CMDSTUPD	CALL SYSTEM INTR SERVICE
000404 22		1363 CMDCOMP	RET		RETURN TO MAIN POLL LOOP
			-		

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

. .

ASM51 V1.9 07.09 05/09/86

LOC	OBJECT	CODE	ADDR1	ADDR2	1365 1366 1367 1368	******* ** ** **	TRANSMIT	SPECIAL CHARACTER	(i.e. XON or XOFF)	** ** **
000405 000406	E6 201117		22.1	0420	1372	XMI TSPE C * Port :	C MOV JB L COMMANDS	A, aRO P2CMD, P2X5PEC	MOVE CMD CODE TO ACC JUMP IF PORT 2 CMD	
00040C 00040E 000410 000413 000413 000415 000418 00041A	8005 B42309 D248 204704 D247 D231 120698		22 29.1 0415 23 29.0 28.7 26.1 0698	0410 041C 041C	1380 1381 1382 1383 1384 1385		SETBIT	A,#XON1CMD,NOTXON1 SNDXON1 CMDDONE0 A,#XOFF1CMD,OK1 SNDXOFF1 P1ENXMIT,OK1 P1ENXMIT XSPECFL1 CMDSTUPD	JUMP IF NOT XON FOR PORT 1 SET SEND XON FLAG FOR PORT 1 JUMP TO DO RETURN JUMP IF NOT XOFF FOR PORT 1 SET SEND XOFF FLAG FOR PORT 1 JMP IF XMIT IS ENABLED ENABLE TRANSMITTER SET XMIT SPECIAL FLAG CALL CMD STACK UPDATE ROUTINE RETURN TO CALLING ROUTINE	
000423 000425 000427 000427	8005 842809 D238 204304 D243 D230		2A 27.1 042C 2B 27.0 28.3 28.3 26.0 041C	0427 0433 0433	1392 1393 1394 1395	P2XSPEC NOTXON2 CMDDONE OK2		A, #XOH2CMD, NOTXOH2 SNDXOH2 CMDDOHE2 A, #XOFF2CMD, OK2 SNDXOFF2 P2ENXMIT, OK2 P2ENXMIT, OK2 P2ENXMIT XSPECFL2 OK1	JUMP IF NOT XON FOR PORT 2 SET SEND XON FLAG FOR PORT 2 JUMP IO DO RETURN JUMP IF NOT XOFF FOR PORT 2 SET SEND XOFF FLAG FOR PORT 2 JMP IF XMIT IS ENABLED ENABLE TRANSMITTER SET XMIT SPECIAL FLAG JMP TO UPDATE STK/DO RETURN	

L0 C	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE ST	ATEMENT		ASM51 V1.9 07.	09 05/09/86
							*****	*****	******************************	××
					1402 1403		CET ADA	DTED MODE COMMAND		**
					1404		JEI ADA	PTER MODE COMMAND		** **
							******	******	************************	
000435	E6				1407	SETMODE	MOV	A.aR0	MOVE CMD CODE TO ACC	
000436	201154		22.1	048D	1408		JB	P2CMD, ADPMODE2	MOVE CMD CODE TO ACC JUMP IF THIS IS A PORT 2 CMD	
					1410	×	SET ADA	PTER MODE COMMAND PO	DRT 1	×
000439	758398		83	98	1412		MOV	DPH,#H8530A	SET UP 8530 ADDRESS SET UP 8530 ADDRESS JUMP IF NOT DISABLE TX P1 JUMP IF NOT DISABLE TX P1 SET STOP XMIT FLAG JUMP TO DO RETURN JUMP IF NOT ENABLE TX P1 READ 8530 REG 0 VALUE	
	758201		82	01	1413		MOV	DPL,#L8530A	SET UP 8530 ADDRESS	
00043F	B43008		30	044A	1414		CJNE	A,#X"30",NOT1	JUMP IF NOT DISABLE TX P1	
	304702		30 28.7 29.3 04CF 31	0447	1415		JNB	P1ENXMIT,DONE1	JUMP IF XMIT NOT ACTIVE	
000445			29.3		1416		SETBIT	STOPXMT1	SET STOP XMIT FLAG	
	0204CF		0401			DONE1	LJMP	CMDDONE1	JUMP TO DO RETURN	
00044A	B43106		21	0453		NOT1	CJNE	A,#X'31',NUT2	JUMP IF NOT ENABLE TX P1	
00044D	EU D247		28.7 04CF 32 28.6 04CF		1419 1420		MOVX	A, aDPTR	READ 8530 REG O VALUE	
	0204CF		20.7		1420			PIENXMIT	ENABLE PORT 1 XMIT	
	B4320D		32	8443		NOT2	L JMP C JNE	CMDDONE1 A,#X"32",NOT3	JUMP TO DO RETURN JUMP IF NOT DISABLE RX P1	
000456	7403		52	0703	1423	1012	MOV	A,#R3A8530	SET UP PTR VALUE	
000458	F0			05	1424		MOVX	aDPTR,A	WRITE PTR VALUE TO REG 0	
000459	F550			50	1425		MOV	A,R3A85305	SET UP PTR VALUE	
00045B	54FF			FF	1426		ANL	A, #X'FE'	TURN OFF THE RX ENABLE BIT	
00045D	FÓ				1427		MOVX	aDPTR,A	WRITE PTR VALUE TO REG 0	
00045E	C246		28.6		1428		CLR		DISABLE POR1 RCVR	
	0204CF		04CF		1429		L JMP	CMDDONE1	JUMP TO DO RETURN	
000463	B43313		28.6 04CF 33 82	0479		NOT3	CJNE	A,#X'33',NOT4	JUMP IF NOT ENABLE RX P1	
000466			82	03	1431	-	MOV	DPL,#18530AD	SET UP 8530 ADDRESS	
000469					1432		MOVX	A, adptr	DO DUMMY READ OF RCV FIFO	
00046A	758201		82	01	1433		MOV	DPL,#L8530A	SET UP 8530 ADDRESS	
00046D				03	1434		MOV	DPL,#L8530A A,#R3A8530	SET UP PTR VALUE	
00046F					1435		MOVX	aDPTR,A	WRITE PTR VALUE TO REG 0 SET UP PTR VALUE	
000470				50	1436		MOV	A,R3A85305	SET UP PTR VALUE	
000472				01	1437		ORL	A,#EN8530RX	TURN ON THE RX ENABLE BIT	
000474	FU D264		28 /		1438		MOVX	adptr,A	WRITE PTR VALUE TO REG 0	
000475			28.6 04CF		1439 1440		SEIBII	PIENRCVR	ENABLE POR1 RCVR	
	B43404		34	0480		NOT4	CJNE	CMDDONE1 A,#X"34",NOT5	JUMP TO DO RETURN	
00047C			28.5	V 40 V	1441	1014	CLR	P1ENMODM	JUMP IF NOT DISABLE P1 MODM DISABLE POR1 MODEM INTR	
00047E			04CF		1442				JUMP TO DO RETURN	
	B4354C		35	04CF		NOT5	CINE	A, #X 35 , CMDDONE1	JUMP IF NOT ENABLE P1 MODM	
000483			28.5		1445		SETBIT	PIENMODM	ENABLE PORT MODEM INTR	
000485	2014FD		22.4	0485	1446	SPIN_1	JB	STINPROG, SPIN_1 STAT1, MDMREGIC	ENABLE POR1 MODEM INTR WAIT FOR OK TO PASS STS	
	85423B		38	42	1447		MÖV	STAT1, MDMREG1C	RETN MDM STATUS AS BYTE 2	
00048B			04D2	. –	1448		SJMP	STPASS2	JMP TO ROUTINE EXIT	
							SJMP CJNE SETBIT JB MOV SJMP			

1451 ×

SET ADAPTER MODE COMMAND PORT 2

×

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

ASM51 V1.9 07.09 05/09/86

000499 00049B 00049D 0004A0 0004A1 0004A3	$\begin{array}{r} 758200\\ 843807\\ 304302\\ D238\\ 8032\\ E0\\ D243\\ 8032\\ E0\\ D243\\ 802A\\ 801B\\ 843813\\ 758202\\ E0\\ 758202\\ E0\\ 758202\\ E0\\ 758202\\ E553\\ 4401\\ F0\\ D242\\ 8005\\ B43206\\ 6\end{array}$	83 82 38 27.3 04 39 28.3 04 3A 28.2 04 38 82 82 28.2 04 28.2 04 28.1	98 049D 045B 0445 0484 53 FE 04CA 02 00 3 53 01 04D3	1445556789012364566789012374567789012	ADPMODE2 DONE2 NOT11 NOT21 NOT31	MOV MOV CJNE SJMB SIMP CJNE MOV SETBIT SJMP CJNE MOV ANL MOV ANL MOV MOV CLR SJMP CJNE MOV MOV SETBIT SJMP CJNE MOV CJNE CLR	DPH #H8530B DPL #18530B A,#X'38',NOT11 P2ENXMIT,DONE2 STOPXMT2 CMDDONE1 A,#X'39',NOT21 A,#X'3A',NOT31 A,#X'3A',NOT31 A,#X'3A',NOT31 A,#X'3A',NOT31 A,#X'3A',NOT31 A,#X'3A',NOT31 A,#X'3A',NOT31 A,#X'3B',NOT41 DPL,#L8530B A,BDPTR,A P2ENRCVR CMDDONE1 A,#X'3B',NOT41 DPL,#L8530B A,AC',AC',NOT41 DPL,#L8530B A,R388530S A,#R38530S A,#R38530S A,#R38530S A,#R38530S A,#R3530R ADPTR,A P2ENRCVR CMDDONE1 A,R38530S A,#R38530S A,	SET UP 8530 ADDRESS SET UP 8530 ADDRESS JUMP IF NOT DISABLE TX P2 JUMP IF NOT DISABLE TX P2 JUMP IF NOT DISABLE TX P2 SET STOP XMIT FLAG UMP TO DO RETURN JUMP IF NOT ENABLE TX P2 READ 8530 REG 0 VALUE ENABLE POR1 XMIT JUMP IF NOT DISABLE RX P2 SET UP PTR VALUE TO REG 0 SET UP PTR VALUE TO REG 0 SET UP PTR VALUE TO REG 0 DISABLE P2 RCVR JUMP TO DO RETURN JUMP IF NOT ENABLE RX P2 SET UP 8530 ADDRESS DO DUMMY READ OF RCV FIFO SET UP STR VALUE TO REG 0 SET UP PTR VALUE WRITE PTR VALUE TO REG 0 SET UP PTR VALUE UR 8530 ADDRESS DO DUMMY READ OF RCV FIFO SET UP PTR VALUE TURN ON THE RX ENABLE BIT WRITE PTR VALUE TO REG 0 SET UP TR VALUE TURN ON THE RX ENABLE BIT WRITE PTR VALUE TO REG 0 ENABLE P2 RCVR JUMP TO DO RETURN JUMP TO DO RETURN JUMP TF NOT DISABLE P2 MODM DISABLE P2 MODEM INTR
				1486	×	COMMAND	COMPLETE	
0004CF 0004D2 0004D3 0004D6 0004D8 0004D8 0004D8 0004D8	B43DF9 D241 2014FD 85453B	22.4 3D 28.1 22.4 3B 04D2	04CF 04CF 04D8 45	1489 1490 1491	CMDDONE1 STPASS2 NOT51 SPIN_2	JB RET CJNE SETBIT JB MOV SJMP	STINPROG, CMDDONE1 A, #X'3D', CMDDONE1 P2ENMODM STINPROG, SPIN_2 STATI.MDMREG2C STPASS2	WAIT TILL STATUS PASS IS CLEAR RETURN TO PASS STATUS JUMP IF NOT ENABLE P2 MODM ENABLE P2 MODEM INTR WAIT FOR OK TO PASS STS RETN MOM STATUS AS BYTE 2 JMP TO ROUTINE EXIT

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

ASM51 V1.9 07.09 05/09/86

497 ×	***************************************	*********
498 ×		×
499 ×		×
500 ¥	: ************************************	
502 ×		*******
503 ×		
504 /¥		ion
505 ×		
506 ¥		
507 ×		
508 ¥		
509 ×		
510 × 511 ×		
512×12		
513 ×		
514 ×		
515 ×	MB Command Code ("00" or "01")	
516 ×		
517 ×		
518 ×		
519 × 520 ×		
521 ×		
522 ×		
523 ¥	, .	
524 ×		
525 ×		
526 ¥ 527 ¥		
528 ×		
529 ×		
530 ×		
531 ×	f Pad byte	
532 ×		
533 ×		
.534 × .535 ×		
536 ×		
537 *		
538 ×		
539 ×		
540 ×		
541 ×		
542 × 543 ×		
.543 * .544 *		
545 *		
546 *		
547 ¥		
548 ×	*	×

LOC	OBJECT CODE	ADDR1	ADDR2	STMT	SOURCE STA	TEMENT		ASM51 V1.9 07.09 05/09/86
0004E0 0004E2 0004E3 0004E6 0004E8	E6 120678 E530	26.7 0678 3D	30	1551 1552 1553 1554 1555	MBYTCMDS	CLR MOV LCALL MOV MOV	TERMCNT A, GRO DMATOADP A, LODMA MBYTBUF, A	CLEAR TEMP. TERMCNT FLAG Move CMD Code/DMA Chan to ACC Call DMA to Adapter RTN Move Lo DMA Value to ACC Save The Mbyte CMD Code
	B40005 120516 8008	00 0516 04FA	04F2	1557 1558 1559		CJNE LCALL SJMP	A,#INL8530A,DJMP1 IN8530A STATPASS	JUMP IF NOT INIT 8530 CH. A Call 8530 INIT Chan A RTN JUMP TO SET UP STATUS PASS
	B40105 1205C7 8000	01 05C7 04FA	04FA	1561 1562 1563	DJMP 1	CJNE LCALL SJMP	A,#INL8530B,STATPAS IN8530B STATPASS	S JUMP IF NOT INIT 8530 CH. B Call 8530 INIT Chan B RTN JUMP TO SET UP STATUS PASS
0004FD 0004FF 000501 000504 000507 00050A 00050D 00050F	D203 853D3A 753B01 753C02 301102 D2B4 1206A6 120698	22.4 20.5 20.3 3B 3C 22.1 20.4 0698	04FA 3D 01 02 050F	1566 1567 1568 1569 1570 1571 1572	STATPASS CALLINT	JB SETBIT SETBIT MOV MOV JNB SETBIT LCALL LCALL RET	STINPROG, STATPASS CMDCMPFL MBYTEFL STAT0, MBYTBUF STAT1, #DMATCST STATCHT, #TWOBYTE P2CMD, CALLINT P1P2INTR INTRSYS CMDSTUPD	WAIT TILL STAT PASS IS CLEAR SET COMMAND COMPLETE FLAG SET MULT-BYTE FLAG IN MSB MOVE MBYT CMD TO STATO INDICATE DMA TC OCCURRED SET UP STAT BYTE CNT JMP IF NOT A P2 CMD SET INTR SOURCE TO P2 CALL SYSTEM INTERRUPT ROUTINE CALL SYSTEM INTERRUPT ROUTINE RETURN TO CALLER

PAGE 44

٢

SASC Sample MP A	SC Microcode		PAGE 45
LOC OBJECT CODE	ADDR1 ADDR2	STMT SOURCE STATEMENT ASM51 V1.9	07.09 05/09/86
		1577 ***********************************	** ** **
000516 E6		1583 IN8530A MOV A, ARO MOVE CMD CODE/DMA CHAN TO A 1585 * FETCH ADDRESS/DATA PAIR FROM SYSTEM MEMORY	cc
000517 120678		1587 LCALL DMATOADP CALL DMA TO ADP RTN 1589 * THE ACC HAS THE DMA RETURN CODE	
10051A 6002		1591JZNOTC1JUMP IF TC IS NOT RETURNED1593 *CHECK IF A TERM COUNT OCCURRED ON THE DMA TRANSFER	
00051C D237	26.7	1595 SETBIT TERMENT SET GENERAL TERM CNT FLAG	
00051E E531 000520 B4FF02 000523 8024	FF 0525	1597 NOTC1MOVA,HIDMALOOK AT THE 8530 REG. POINT1598CJNEA,#X*FF*,I_0_8530AIF NO 'ESCAPE', CONTINUE IN1599SJMPS_PARMS_1JUMP IF 'ESCAPE' INDICATED	ER IIT.
000525 758398 000528 758201 000528 E531 00052D F0 00052E FC 00052E FC30 000531 F0	82 01 31 30	1601 I_0_8530A MOV DPH, #H8530A SET UP HI 8530 ADDRESS 1602 MOV DPL, #L8530A SET UP LO 8530 ADDRESS 1603 MOV A, HIDMA GET 8530 ADDR PTR VALUE 1604 MOV A, PITR, A SET UP 8530 ADDR POINTER 1605 MOV WOKK4, A SAVE 8530 ADDR POINTER 1606 MOV A, LOMMA FETCH DATA BYTE 1607 MOVX ADPTR, A WRITE DATA VALUE TO 8530	
		1609 * CHECK IF THE REG TO BE WRITTEN IS A SAVE REGISTER	
000532 BC0304 000535 F550 000537 800C 000539 BC0504 00053C F551 000548 B005 000540 BC0A02 000543 F552 000545 3037CE 000548 22	50 0545 05 0540 51 0545 0A 0545 52 26.7 0516	1611 CJNE WORK4, #R3A8530, J11 JMP IF SAVE NOT REQUIRED 1612 MOV R3A8530S, A SAVE REG VALUE 1613 SJMP CHKTC1 JMP TO CHK FOR TERMINAL CMT 1614 J11 CJNE WORK4, #R5A8530, J12 JMP IF SAVE NOT REQUIRED 1615 MOV R5A8530S, A SAVE REG VALUE 1616 SJMP CHKTC1 JMP IF SAVE NOT REQUIRED 1616 SJMP CHKTC1 JMP TO CHK FOR TERMINAL CMT 1617 J12 CJNE WORK4, #RAA8530, CHKTC1 JMP IF SAVE NOT REQ'D 1618 MOV RA48530S, A SAVE REG VALUE SAVE REG VALUE 1619 CHKTC1 JNB TERMCNT, IN8530A JUMP IF TC MAS MAS NOT SET 1620 RET RETURN TO CALLING RTN	

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE ST	ATEMENT		ASM51 V1.9 07.09 05/09	9/86
					1623 1624 1625	** ** **	SET UP	ASYNC UNIQUE PARAMET	(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
					1628	* FETCH	DATA PAIR	FROM SYSTEM MEMORY		
000549 00054A	E6 120678		0678		1630 1631	S_PARMS_1	MOV LCALL	A, art Dmatoadp	MOV CMD CODE/DMA CHAN TO ACC Call DMA TO ADP RTN	
						* 1ST BYT * 2ND BYT		M INTERRUPT MASK		
00054D	853146		46	31	1636		MOV	MODMMSK1,HIDMA	SAVE VALUE IN INTERNAL RAM	
					1638	* FETCH	DATA PAIR	FROM SYSTEM MEMORY		
000550 000551	E6 120678		0678		1640 1641		MOV LCALL	A, ar 0 DMATOADP	MOV CMD CODE/DMA CHAN TO ACC Call DMA TO ADP RTN	
						* 1ST BYT * 2ND BYT				
	853024 853138		24 38	30 31	1646 1647		MOV MOV	ASCFL1P1,LODMA ASCFL2P1,HIDMA	SAVE VALUE IN BUFFER AREA SAVE VALUE IN BUFFER AREA	
					1649	* FETCH	DATA PAIR	FROM SYSTEM MEMORY		
00055A 00055B	E6 120678		0678		1651 1652		MOV LCALL	A, ar o Dmatcadp	MOVE CMD CODE/DMA CHAN TO ACC Call DMA TO ADP RTN	
					1654	* STORE	RÉCEIVE X	OFF IND XON COMPARE	VALUES IN THEIR SAVE BUFFERS	
	853049 853148		49 48	30 31	1656 1657		MOV MOV	XONRCV1,LODMA XoffRCV1,HIDMA	SAVE XON COMP CHAR SAVE XOFF COMP CHAR	
					1659	* FETCH	DATA PAIR	FROM SYSTEM MEMORY		
000564 000565	E6 120678		0678		1661 1662		MOV LCALL	A, ar O DMATOADP	MOVE CMD CODE/DMA CHAN TO ACC Call DMA TO ADP RTN	
					1664	* STORE	XMIT XOFF	AND XON VALUES IN T	HEIR SAVE BUFFERS	
	85304B 85314A		4 B 4 A	30 31	$ \begin{array}{r} 1666 \\ 1667 \end{array} $		MOV MOV	XONXMT1,LODMA XOFFXMT1,HIDMA	SAVE XON COMP CHAR SAVE XOFF COMP CHAR	
					1669 1670 1671 1672 1673	* * *	BEGINNING	OF CODE TO SETUP MA	RK/SPACE PARITY PARMS.	
00056E	E538			38	1674		MOV	A,ASCFL2P1	RETRIEVE FLAG 2	

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE STATEMENT	•		ASM51 V1.9 07.09 05/09/86
			24.3 24.2 01		1675 1676 1677 1678 1679	JNB JNB CJNE		MSPAREN1, NOMSPTY1	MASK ALL BUT CHAR. LENGTH FIELD JUMP IF NOT MARK OR SPACE PTY. JUMP IF NOT MARK PARITY JUMP IF NOT 7 BITS (TOTAL)
					1679	* CHARACTER	IS	6 DATA BITS PLUS MAR	RK PARITY BIT
			34 36 05C6 02	40 3F C58E	1682 1683 1684	MOV MOV SJMP CK6MARK1 CJNE		RSTPMSK1, #X"3F" PASSTAT	OR MASK TO SET MARK PARITY BIT AND MASK TO STRIP NON DATA BITS JUMP TO CONSOLIDATE PROCESSING JUMP IF NOT 6 BITS (TOTAL)
					1687	* CHARACTER	15	5 DATA BITS PLUS MAR	RK PARITY BIT
000586 000589 000580	753420 75361F 8038		34 36 05C6	20 1F	1689 1690 1691 1692	MOV MOV SJMP		RSTPMSK1,#X"1F"	OR MASK TO SET MARK PARITY BIT AND MASK TO STRIP NON DATA BITS JUMP TO CONSOLIDATE PROCESSING
					1693	* CHARACTER	IS	7 DATA BITS PLUS MAR	RK PARITY BIT
00058E 000591 000594	753480 75367F 8030		34 36 05C6	80 7 F		CK8MARK1 MOV MOV SJMP			OR MASK TO SET MARK PARITY BIT AND MASK TO STRIP NON DATA BITS RESUME PRIOR PROCESSING
					1699	* SPACE PAR	ITY	PARAMETERS	
000596	B40105		01	059E		P1SPACE CJNE		A,#X"01",CK6SPC1	JUMP IF NOT 7 BITS (TOTAL)
					1703	* CHARACTER	IS	6 DATA BITS PLUS SPA	ACE PARITY BIT
000590	75363F 8028 840205		36 05C6 02	3F 05A6	1705 1706 1707	MOV SJMP CK6SPC1 CJNE		RSTPMSK1,#X"3F" PASSTAT A,#X"02",CK8SPC1	AND MASK TO CLR SPACE PARITY BIT JUMP TO CONSOLIDATE PROCESSING JUMP IF NOT 6 BITS (TOTAL)
					1708	* CHARACTER	15	5 DATA BITS PLUS SPA	ACE PARITY BIT
0005A1 0005A4	75361F 8020		36 05C6	1F	1711 1712 1713	MOV S JMP		RSTPMSK1,#X"1F" PASSTAT	AND MASK TO CLR SPACE PARITY BIT JUMP TO CONSOLIDATE PROCESSING
					1714	* CHARACTER	15	7 DATA BITS PLUS SPA	ACE PARITY BIT
0005A6 0005A9	75367F 801B		36 05C6	7F		CK85PC1 MOV SJMP		RSTPMSK1,#X"7F" PASSTAT	AND MASK TO CLR SPACE PARITY BIT Resume prior processing
					1719	* NEITHER M	ARK	OR SPACE IS ACTIVE,	SETUP STRIP MASK ONLY
0005AB	B40005		00	05B3	1721	NOMSPTY1 CJNE		A,#X"00",CK6NMS1	JUMP IF NOT 5 DATA BITS
					1723	*	15	5 DATA BITS	
0005AE -0005B1 0005B3			36 05C6 02	1F 05BB	1725 1726 1727			RSTPMSK1,#X"1F" PASSTAT A,#X"02",CK7NMS1	SET STRIP MASK FOR 7 DATA BITS Resume prior processing Jump IF Not 6 data BITS

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE STATEMENT	ASM51 V1.9 07.09 05/09/86
					17 23 1729 1730	* CHARACTER IS 6 DATA BITS	
0005B6 0005B9	75363F		36 05C6	3F	1731	MOV RSTPMSK1,#X"3F"	SET STRIP MASK FOR 6 DATA BITS RESUME PRIOR PROCESSING
	B40105		01	05C3		CK7NMS1 CJNE A,#X"01",CK8NMS1	JUMP IF NOT 7 DATA BITS
					1735	★ CHARACTER IS 7 DATA BITS	
0005BE 0005C1	75367F 8003		36 05C6	7 F	1737 1738 1739	SJMP PASSTAT	SET STRIP MASK FOR 7 DATA BITS Resume prior processing
					1740		
0005C3	7536FF		36	FF		PCK8NMS1 MOV RSTPMSK1,#X"FF" } ∺ *	SET STRIP MASK FOR 7 DATA BITS RESUME PRIOR PROCESSING (FALL THRU TO PASSTAT)
					1747 1748 1749	* END OF CODE TO SET UP MARK/SP/	ACE PARITY PARMS.
					1751	* COMMAND IS COMPLETE SO PASS STATUS	
0005C6	22				1753	PASSTAT RET	RETURN TO CALLING ROUTINE

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE STA	FEMENT		ASM51 V1.9 07.09 05/09/86
					1756 1757 1758	** ** **	INITIAL	IZE 8530 CHANNEL B RE	:xxxxxxxxxxxxxxxxxxxxxxxxxx ** :GISTERS ** :xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
0005C7	E6					IN8530B	MOV		MOVE CMD CODE/DMA CHAN TO ACC
					1763	* FETCH A	DDRESS/DA	TA PAIR FROM SYSTEM	MEMORY
000568	120678		0678		1765		LCALL	DMATOADP	CALL DMA TO ADP RTN
					1767	* THE ACC	HAS THE	DMA RETURN CODE	
0005CB	6002		05CF		1769		JZ	NOTC2	JUMP IF TC IS NOT RETURNED
					1771	* CHECK I	FA TERM	COUNT OCCURRED ON TH	IE DMA TRANSFER
0005CD	D237		26.7		1773		SETBIT	TERMONT	SET GENERAL TERM CNT FLAG
0005CF 0005D1 0005D4	B4FF02		FF 05FA	31 05D6	1775 1776 1777	NOT C2	MOV Cjne Sjmp	A,#X"FF",I 0 8530B	LOOK AT THE 8530 REG. POINTER IF NO 'ESCAPE', CONTINUE INIT. Jump IF 'ESCAPE' INDICATED
0005D6 0005D9 0005DC 0005DE 0005DF 0005E0 0005E2	758398 758200 E531 F0 FC E 33 0 F0		83 82	98 00 31 30	1779 1780 1781 1782 1783 1784 1785	I_0_8530B	MOV MOV MOV MOV MOV MOV	DPH,#H8530B DPL,#L8530B A,HIDMA JDTR,A WORK4,A A,LODMA JDPTR,A	SET UP HI 8530 ADDRESS SET UP LO 8530 ADDRESS GET 8530 ADDR PTR VALUE SET UP 8530 ADDR POINTER SAVE 8530 AATA VALUE GET 8530 DATA VALUE WRITE DATA VALUE TO 8530
					1787	* CHECK I	F THE REG	G TO BE WRITTEN IS A	SAVE REGISTER
0005E6 0005E8 0005EA 0005ED 0005EF 0005F1 0005F4	800C BC0504 F554 8005 BC0A02 F555 3037CE		03 53 05F6 05 54 05F6 0A 55 26.7	05EA 05F1 05F6 05C7	1789 1790 1791 1792 1793 1794 1795 1796 1797 1798		CONE MOV SJMP CJNE MOV SJMP CJNE MOV JNB RET	R3B8530S,A CHKTC2 WORK4,#R5B8530,J22 R5B8530S,A CHKTC2 WORK4,#RAB8530,CHKTC	JMP IF SAVE NOT REQUIRED SAVE REG VALUE JMP TO CHK FOR TERMINAL CNT JMP IF SAVE NOT REQUIRED SAVE REG VALUE JMP TO CHK FOR TERMINAL CNT 22 JMP IF SAVE NOT REQUIRED SAVE REG VALUE JUMP IF TC WAS NOT SET ON RETURN TO CMD DECODER

PAGE	50

LOC	OBJECT CODE	ADDR1	ADDR2	STMT	SOURCE STA	TEMENT		ASM51 V1.9 07.09 05/09/86
				1801 1802 1803	** ** **	SET UP #	SYNC UNIQUE PARAMETE	(*************************************
				1806	* FETCH I	DATA PAIR	FROM SYSTEM MEMORY	
0005FA 0005FB	E6 120678	0678		1808 1809	S_PARMS_2	MOV LCALL	A, ƏR O DMATOADP	MOV CMD CODE/DMA CHAN TO ACC CALL DMA TO ADP RTN
					* 1ST BYTE * 2ND BYTE		1 INTERRUPT MASK	
0005FE	853147	47	31	1814		MOV	MODMMSK2, HIDMA	SAVE VALUE IN INTERNAL RAM
				1816	* FETCH I	DATA PAIR	FROM SYSTEM MEMORY	
000601 000602	E6 120678	0678		1818 1819		MOV LCALL	A, ƏR O DMATOADP	MOV CMD CODE/DMA CHAN TO ACC Call DMA TO ADP RTN
					* 1ST BYTE * 2ND BYTE			
	853025 853139	25 39	30 31	1824 1825		MOV MOV	ASCFL1P2,LODMA ASCFL2P2,HIDMA	SAVE VALUE IN BUFFER AREA SAVE VALUE IN BUFFER AREA
				1827	* FETCH I	DATA PAIR	FROM SYSTEM MEMORY	
00060B 00060C	E6 120678	0678		1829 1830		MOV LCALL	A,ƏRO DMATOADP	MOVE CMD CODE/DMA CHAN TO ACC Call DMA TO ADP RTN
				1832	* STORE F	RECEIVE X	OFF AND XON COMPARE	VALUES IN THEIR SAVE BUFFERS
	85304D 85314C	4 D 4 C	30 31	1834 1835		MOV MOV	XONRCV2,LODMA XOFFRCV2,HIDMA	SAVE XON COMP CHAR SAVE XOFF COMP CHAR
				1837	* FETCH	DATA PAIR	FROM SYSTEM MEMORY	
000615 000616	E6 120678	0678		1839 1840	,	MOV LCALL	A, ƏRO DMATCADP	MOVE CMD CODE/DMA CHAN TO ACC Call DMA TO ADP RTN
				1842	* STORE	XMIT XOFF	AND XON VALUES IN T	HEIR SAVE BUFFERS
	85304F 85314E	4 F 4 E	30 31	1844 1845		MOV MOV	XONXMT2,LODMA XOFFXMT2,HIDMA	SAVE XON COMP CHAR SAVE XOFF COMP CHAR
				1847 1848 1849 1850	* * :	BEGINNING	OF CODE TO SETUP MA	RK/SPACE PARITY PARMS.
00061F	E539		39	1851 1852		MOV	A,ASCFL2P2	RETRIEVE FLAG 2

LOC	OBJECT	COPE	ADDR1	ADDR2	STMT SC	DURCE ST	ATEMENT			ASM51 V1.9 07.09 05/09/86
000626	5403 302B36 302A1E B40108		25.3 25.2 01	03 065C 0647 0634	1853 1854 1855 1856 1857 ¥		ANL JNB JNB CJNE		MSPAREN2,NOMSPTY2 Markpar2,P2SPACE A,#X'01',CK6Mark2	MASK ALL BUT CHAR. LENGTH FIELD JUMP IF NOT MARK OR SPACE PTY. JUMP IF NOT MARK PARITY JUMP IF NOT 7 BITS (TOTAL)
					1858 × 1859 ×				6 DATA BITS PLUS MAR	
00062F 000632	753540 75373F 8043 840208		35 37 0677 02	40 3F 063F	1860 1861 1862 1863 CI 1864 *	K6MARK2	MOV MOV SJMP CJNE		RSTPMSK2,#X"3F" PASSTAT_2	OR MASK TO SET MARK PARITY BIT AND MASK TO STRIP NON DATA BITS JUMP TO CONSOLIDATE PROCESSING JUMP IF NOT 6 BITS (TOTAL)
					1865 × 1866 ×	CHA	RACTER		5 DATA BITS PLUS MAR	
	753520 75371F 8038		35 37 0677	20 1F	1867 1868 1868 1869 1870 ¥		MOV MOV Sjmp		RSTPMSK2,#X*1F*	OR MASK TO SET MARK PARITY BIT AND MASK TO STRIP NON DATA BITS JUMP TO CONSOLIDATE PROCESSING
					1871 × 1872 ×	CHA	RACTER		7 DATA BITS PLUS MAR	
	753580 75377F 8030		35 37 0677	80 7F		K8MARK2	MOV MOV S JMP		RSTPMSK2, #X 7F	OR MASK TO SET MARK PARITY BIT AND MASK TO STRIP NON DATA BITS RESUME PRIOR PROCESSING
					1877 × 1878 ×	SPA	CE PARI	TΥ	PARAMETERS	
000647	B40105		01	064F	1879 Pa	2SPACE	CJNE		A,#X"01",CK65PC2	JUMP IF NOT 7 BITS (TOTAL)
					1881 × 1882 ×		RACTER	IS	6 DATA BITS PLUS SPA	CE PARITY BIT
00064D			37 0677	3F	1883 1884		MOV S JMP		PASSTAT 2	AND MASK TO CLR SPACE PARITY BIT Jump to consolidate processing
00064F	B40205		02	0657	1885 CI 1886 ×		CJNE		A, #X 02 , CK8SPC2	JUMP IF NOT 6 BITS (TOTAL)
					1887 ¥ 1888 ¥				5 DATA BITS PLUS SPA	
000652	75371F 8020		37 0677	1F	1889 1890 1891 ×		MOV Sjmp		RSTPMSK2,#X"1F" PASSTAT_2	AND MASK TO CLR SPACE PARITY BIT JUMP TO CONSOLIDATE PROCESSING
					1892 × 1893 ×	CHA	RACTER	IS	7 DATA BITS PLUS SPA	ACE PARITY BIT
000657 00065A	75377F 801B		37 0677	7 F	1894 Cl 1895 1896 *	K8SPC2	MOV Sjmp		RSTPMSK2,#X"7F" PASSTAT_2	AND MASK TO CLR SPACE PARITY BIT Resume prior processing
					1897 × 1898 ×	NEI	THER MA	RK	OR SPACE IS ACTIVE,	SETUP STRIP MASK ONLY
000650	B40005		00	0664	1899 NO 1900 ×	DMSPTY2			A,#X'00',CK6NMS2	JUMP IF NOT 5 DATA BITS
					1901 × 1902 ×		RACTER	15	5 DATA BITS	
00065F 000662	75371F 8013		37 0677	1F	1903		MOV SJMP		RSTPMSK2,#X"1F" PASSTAT_2	SET STRIP MASK FOR 7 DATA BITS Resume prior processing
	B40205		02	066C	1905 C	K6NMS2	CJNE		A, #X 02 , CK7NM52	JUMP IF NOT 6 DATA BITS

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT SOURCE	STATEMENT		ASM51 V1.9	07.09 05/09/86
					1906 × 1907 × 1908 ×	CHARACTER	IS 6 DATA BITS		
00066A	75373F 800B B40105		37 0677 01	3F 0674	1909 1910 1911 CK7NMS 1912 ¥	MOV Sjmp 2 Cjne	RSTPMSK2,#X"3F" PASSTAT_2 A,#X"01",CK8NMS2	SET STRIP MASK FOR 6 DATA B Resume Prior Processing Jump IF Not 7 Data Bits	115
						CHARACTER	IS 7 DATA BITS		
00066F 000672	75377F 8003		37 0677	7F	1915 1916 1917 *	MOV Sjmp	RSTPMSK2,#X"7F" PASSTAT_2	SET STRIP MASK FOR 7 DATA B Resume prior processing	ITS
					1918 × 1919 ×	CHARACTER	IS 8 DATA BITS		
000674	7537FF		37	FF	1920 CK8NMS 1921 * 1922 * 1923 * 1923 * 1924 *	2 MOV	RSTPMSK2,#X"FF"	SET STRIP MASK FOR 7 DATA B Resume prior processing (Fall thru to passtat)	ITS
					1925 × 1926 × 1927 ×	END OF	CODE TO SET UP MARK	VSPACE PARITY PARMS.	
					1929 * COM	MAND IS CO	MPLETE SO PASS STAT	US	
000677	22				1931 PASSTA	T_2 RET		RETURN TO CALLING ROUTINE	

SASC

LOC	OBJECT C	ODE ADDRI	ADDR2	STMT	SOURCE STAT	EMENT		ASM51 V1.9 07	.09 05/09/86
				1934 1935 1936	** ** **	DMA FROM	M THE SYSTEM TO THE A	«*************************************	*** ** ** **
				1939	* THE DMA	CHANNEL	IS IN LOW 2 BITS OF	ACCUMULATOR	
000682 000685 000686 000688 000688 000688 000685 000685 000685 000685	4290 D292 00 758388 E0 753388 E0 753380 E0 F530 E4 208002 74FF 5390F8	90 90.2 90.4 83 31 83 30 80.0 90	03 067F 88 80 0694 FF F8	1942 1943 1944 1945 1946 1947 1948 1949 1950 1955 1955 1955 1954	DMATOADP WAITDACK NO_TC	ANL ORL SETBIT NOP JB MOV MOV MOV MOV MOV MOV CLR JB MOV ANL RET	A, #X'03' P1,A DMAREQEN DACKBACK,WAITDACK DPH, #ADRHIDMA A, aDPTR HIDMA,A DPH, #ADRLODMA A, aDPTR LODMA,A A TC,NO_TC A, #X'FF' P1, #X'F8'	AND OFF NON-DMA ENCODE BITS OR DMA ENCODE BITS TO P1 ENABLE DMA REQUEST WAIT FOR DREQ TO OCCUR WAIT TILL DMA IS COMPLETE SET UP MOVX ADDR=HI DMA DATA READ HI DMA DATA BYTE MOVE HI DMA BYTE TO PASS BUFF SET UP MOVX ADDR=LO DMA DATA READ LO DMA DATA BYTE MOVE LO DMA BYTE TO PASS BUFF MOVE NO TC RET CODE TO ACC JMP IF TC FROM 8237 IS NOT ON MOVE TC RETURN CODE TO ACC AND OFF DMA ENABLE/ENCODE BIT RETURN TO CALLING ROUTINE	REG

SASC Sample MP ASC Microcode

PAGE 52

Sample MP ASC Microcode SASC

.

	1.9 07.09 05/09/86
MT SOURCE STATEMENT ASM51 V 58 ************************************	******** ** ** ** ** ** ** ** *
85 * RET RET RETURN TO CALLING ROUTI	

SASC	Sample MP A	GC Microcode	PA	GE 55
LOC	OBJECT CODE	ADDR1 ADDR2	TMT SOURCE STATEMENT ASM51 V1.9 07.09 0	5/09/86
			987 ************************************	
000698 00069A 00069B 00069C 00069C 00069E 0006A1 0006A3 0006A5	1A 08 7410 B50002 7808 D2AF	A8.7 00 06A3 08 A8.7	993 CMDSTUPD CLR EA DISABLE ALL INTERRUPTS 994 DEC CMDCNT DECREMENT THE CMD COUNT 995 INC CMDEXPTR INC 996 MOV A,#ENDSTACK MOVE END OF STK + 1 TO ACC 997 CJNE A,RBORD,ENDUPDT JMP IF PTR IS NOT TO BE ROLLED 998 MOV CMDEXPTR,#CMDSTO MOVE PTR TO BOTTOM OF STACK 999 ENDUPDT SETBIT EA 800 RET RETURN TO CALLING RTN	

÷

,

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE	STATEMENT			ASM51	V1.9	07.09	05/09
					2002 2003 2004 2005 2006 2007	** ** ** **	WRITE T A Syste	HE MASTER STATUS M INTERRUPT.	**************************************	3255 TO	CAUSI	** ** ** **	
0006A6 0006A9	20B3FD D214		B0.3 22.4	06A6	2009 2010	INTRSY	S JB Setbit	IBF, INTRSYS Stinprog	WAIT IF SYST HA SET STATUS PASS			ED RD FLAG	
0006AB 0006AD 00%6AF 0006B2 0006B4 0006B5	D2AA 758390 E520 F0		88.3 A8.2 83	90 20	2012 2013 2014 2015 2016 2017		CLR SETBIT MOV MOV MOVX RET	IE1 EX1 DPH,#ADR8255 A,MSB ƏDPTR,A	CLEAR PREVIOUS ENABLE INT1'S (SET UP 8255 ADI MOVE MSB TO AC MOVE MSB TO SY RETURN TO CALL	DN MSB I DRESS	READ	IPTS	

SASC	Sample MF AS	C Microcod			PAGE	57
LOC	OBJECT CODE	ADDR1 ADD	2 STMT SOURCE ST	ATEMENT	ASM51 V1.9 07.09 05/0	9/86
			2020 ** 2021 ** INT 0 2022 **	INTERRUPT HANDLER, CHECK FO	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
0006B6 0006B8 0006B8 0006BD	308503 D083	83 B0.5 06B 83	2025 SERVINTO 2026 2027 Intodone 2028	PUSH DPH JNB OBF,HNDLOBF POP DPH RET	SAVE DATA PTR VALUE Jump IF OBF INTERRUPT Restore data ptr value Return Immediately IF not obf	
			2034 ** 2035 ** OBF I 2036 ** IF CM 2037 **	NTERRUPT HANDLER ROUTINE ID STACK FULL, LEAVE CMD IN O	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
0006C2 0006C4 0006C6 0006C9 0006CA 0006CB 0006CB	BÄ0804 D217 80F5 758390 E0 F7 09 7410	08 06C 22.7 06BB 83 9	2042 2043 2044 CMDOK 2045 2046 2047 2048	SETBIT CMDOVFLO SJMP INTODONE MOV DPH,#ADR8255 MOVX A, ADPTR MOV ARI,A INC CMDSTPTR MOV A, #ENDSTACK	INCR THE CMD COUNT K JUMP IF CMD OVEFLO FLAG JUMP TO RESTORE DPH & RETURN ELSE RD CMD, SET UP MOVX ADDR MOVE COMMAND INTO ACC MOVE COMMAND ONTO CMD STACK INCR CMD STACK PTR MOVE ADDR OF IOPOFSTK TO ACC	
0006CE 0006D1 0006D3		01 06B 0 06BB		CJNE A,RBOR1,INTODONE Mov CMDSTPTR,#CMDSTO SJMP INTODONE	JMP IF PTR NOT TO BE ROLLED OVER Roll CMD PTR BACK TO BOT OF STK JMP TO RESTORE DPH & RETURN	

09/86

SASC Sample MP ASC Microcode

LOC OBJECT

CODE	ADDR1 ADDR2	STMT SOU	RCE STATEMENT	AS	M51 V1.9 07.09 05/09/86
		2054 ** 2055 ** 2056 ** 2057 ** 2057 ** 2058 ** 2058 **	IBF INTERRUPT HANDLER MASIER STATUS BYTE H PASS 0, 1, OR 2 ADDI TYPE OF STATUS PASS.	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	** ** IR, ** E ** ** **
		2064 ** 2065 ** 2066 ** 2067 ** 2067 ** 2068 **	Event ===== 1) General Command	Status Returned	
		2070 ** 2071 ** 2072 ** 2073 ** 2074 ** 2075 **	Completion	Master Status Byte (20 or 3) Command Code Byte	
		2076 ** 2077 ** 2078 ** 2079 ** 2079 ** 2080 **	2) Enable Modem	Addl Cmd Status Byte 3 Bytes Returned:	1
		2081 ** 2082 ** 2083 ** 2084 ** 2085 ** 2086 **	Intrs. C md	Master Status Byte ('20'H) Command Code Byte (35 or 3D)
		2087 ** 2088 ** 2089 ** 2090 ** 2091 ** 2092 **	3) Transmit Complete Intrs. Cmd	Current Ifc Inputs 	
		2093 ** 2094 ** 2095 ** 2096 ** 2096 ** 2097 **		Master Status Byte ('84'H)	1
		2098 ** 2099 ** 2100 ** 2101 ** 2102 **	4) Rx without Error	Master Status Byte ('81'H)	1
		2103 ** 2104 ** 2105 **		Receive Data byte	'

PAGE 58

LOC	OBJECT	CODE	ADDR1	ADDR2	STMT	SOURCE	STAT	TEMENT			ASM51	V1.9 07.09 05/09/86
					2106 2107 2108	** 5) **	Rxı	with 'Er	ror"	3 Bytes Re	turned:	
					2109 2110	**				Master St	atus Byte ("83"H)	
					2111 2112	ж×				Receive D	ata byte	
					2113	××				Error Cod	e byte	
					2115 2116 2117 2118 2119	** ** ** 6) **	Mode	Modem Interrupt		3 Bytes Re	turned:	
					2120 2121 2122	××					atus Byte ('08'H)	
					2123	××				Modem Inp		
					2125	××				Delta Bit	s Mask	
					2127 2128	೫¥ ¥¥	(×××	******	******	*****	*****	** ******
0006DA 0006DC 0006DF	758390 E53C B4020B E53A		83 83 02	90 3C 06EA 3A	2132 2133 2134 2135	SERVIN	1	PUSH MOV MOV CJNE MOV MOVX	A,#TWOBY A,STATO	Т	SAVE DATA PTR VALUE IBF INTR,SET UP ADDRE MOV JMP TABLE OFFSET CHECK FOR TWO ADD'L B	+1 TO ACC Sytes
0006E1 0006E2 0006E5	20B3FD		B0.3	06E2 3B	2136 2137 2138	WAIT_0		JB MOV	aDPTR,A IBF,WAIT A,STAT1	_0	WRITE STATUS BYTE TO WAIT FOR SYSTEM TO RE	
0006E7 0006E8	F0 8006 B40103 E53A F0 E4 F520 F53B F53C C214 C2B4 C2B4 C2AA D083		06F0 01 20 3A 3C 22.4 80.4 A8.2 83	06 F0 3A	2139 2140 2141 2142 2143	CHK_ONI		NOV SJNP CJVP CDVV MOVR CLR CLR CLR CLR POT CLR CLR POT END	aDPTR, A ENDSTAT	A	WRITE STATUS BYTE TO JUMP TO END STAT PASS NOT ONE, MUST BE ZERC MOVE STATUS BYTE O TO WRITE STATUS BYTE TO ZERO ACCUMULATOR CLEAR MASTER STATUS CLEAR STATUS BYTE 1 CLEAR STATUS BYTE 1 CLEAR STATUS BYTE 1 CLEAR STATUS BYTE 1 CLEAR STATUS BYTE 1 DISABLE IBF INTERRUPT RESTORE DATA PTR VALL RETURN TO CALLING ROL), EXIT), ACC SYSTEM BUF NT Sogress Flag to Port 1 Se

POS.ID	REL.ID	FLAGS	A	DDRESS
0001	0001	04	0 0	00004
0001	0001	04	0 0	00007
0001	0001	04	0 0	00068
0001	0001	04	00	00071
0001	0001	04	00	00098
0001	0001	04	00	000A1
0001	0001	04 04	00	000A7 000C9
0001	0001	04	00	000FA
0001	0001	04	00	00130
0001	0001	04	00	00136
0001	0001	04 04	00	00140 00146
0001	0001	04	00	0017E
0001	0001	04	00	001B8
0001	0001	04	00	001CA
0001	0001	04 04	00	001FB 00201
0001	0001	04	00	0020F
0001	0001	04	00	00220
0001	0001	04	00	00226
0001	0001	04	00	0027E
0001	0001	04	00	00284
0001	0001	04	00	002BE
0001 0001	0001	04 04 04	00	002F8 0030A
0001	0001	04	00	0033D
0001	0001	04	00	00343
0001	0001	04	00	00351
0001	0001 0001	04 04	00	00364 0036A
0001	0001	04	00	003CB
0001	0001	04	00	003CE
0001	0001	04	00	003D3
0001	0001 0001	04 04	00	003DB 003E3
0001	0001	04	00	003EB
0001	0001	04	00	003FF
0001	0001	04	00	00402
0001 0001 0001	0001 0001 0001	04 04	00	0041D 00448
0001 0001	0001	04 04 04	00 00 00	00451 00461 004E4
0001	0001	04	00	004EE
0001	0001	04	00	004F6
0001	0001	04	00	00510
0001	0001	04	0 0	00513
0001		64	0 0	00518
0001	0001	04	00	0054B
0001	0001	04	00	00552
0001	0001	04	00	0055C
0001	0001	04	ŏŏ	00566

	c	^
×۳	J	v

SASC

RELOCATION DICTIONARY

PAGE 61

ASM51 V1.9 07.09 05/09/86

POS.ID	REL.ID	FLAGS	A	DDRESS
0001	0001 0001	04 04	00	005C9 005FC
0001	0001	04	0 0 0 0	00603
0001 0001	0001 0001	04 04	0 0 0 0	0060D 00617

ASM51	V1.9	07.09	05/09/86	
-------	------	-------	----------	--

SASC

SYMBOL	LEN	VALUE	DEFN	REFER	ENCES								ASM51	V1.9 03	7.09 05/09/86
A	1	0000008	0	501 546 682 744 911 1267 1432 1467 1432 1483 1605 1783 1856 12134	502 548 6337 754 9263 1271 1434 1490 1608 1684 1685 1784 18652 2135	503 549 634 776 9317 1170 1274 14435 1467 1702 1607 1785 1879 1879 1236	504 569 6539 9426 11963 14368 14366 14554 1612 1790 18856 1790 18856 2138	506 570 654 793 959 1211 1337 1467 1555 1615 1721 1555 1615 1723 18997 2139	507 6555 802 9649 1216 1346 1438 14728 14557 1618 1727 1618 1726 1905 20141	508 656 696 969 1228 13421 1421 1441 1561 1561 1561 1561 1561 1501 1911 20142	509 583 6617 983 1244 14244 1424 1424 1424 1424 1424 1583 1640 1761 1941 2043	532 662 703 984 1249 1371 1456 1477 1651 1775 1942 2044	533 6632 985 11254 1254 1460 1478 1598 1661 1776 1598 1661 1776 2047 2045	539 6641 9864 1268 1379 1461 14793 1674 1781 1674 1781 2048 2146	545 630 735 886 987 1124 1269 1430 1464 1480 1604 1675 1782 1853 1950 2133 2147
AB AC ADDSTAT ADPMODE2 ADRHIDMA ADRLODMA ADRMDM1 ADRMDM1 ADRMDM2 ADR8255 ALLSNTON1	2 1 1 3 1 1 1 1 1	00000000 00000000 00000005 00048D 0000088 00000080 00000080 00000080	0 242 1454 135 134 132 133 131	2148 812 760 1408 1946 1949 500 505 628	820 1042 652 685 2014	887 2044	1095 2132	1103	1171	1335	1338				
ALLSNTON2	2	000211	894	887											
ASCFLAG ASCFL1P1 ASCFL1P2 ASCFL2P1 ASCFL2P2 B Bgen	2 1 1 1 1 1 1	00000024 00000025 000038 000039 000000F0 000000F0	1178 240 268 276 373 374 0 0	1171 775 1646 1824 1647 1825	898 1674 1852	1057	1182								
BITADDR BOTHOK1 BOTHOK2 BRKDATA BRKFLG1 BRKFLG2 C CALLINT CALLSYS	1 3 1 1 1 1 3 3	0000005F 0000006E 0000006D 0000000B 00050F 0003FE	354 923 1208 147 327 338 339 0 1573 1361	937 1222 802 535 536 573 1571 1359	1085 572 537 574	725 799 1082	798 801 1084	1007	1081						
CHEKBRK1 Chekbrk2	3 3	00018F 0002CF	798 1081	795 1078											

SASC

CROSS REFERENCE

PAGE 63

SYMBOL	LEN	VALUE	DEFN	REFERE	NCES								A 5 M 5 1	V1.9 07	.09 05/09	9/86
CHK_ONE CHK_BRK CHKBRK2 CHKCHAR1 CHKABRK2 CHKCHAR1 CHKMDM1 CHKMDM1 CHKMDM1 CHKMDM1 CHKMDM2 CHKMDZ	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0006EA 000142 000280 00005D 00008D 0000D9 0000D9 0000FC 0000FC 0000FC 000112 000112 000132 000132 000132 0001545 0002203 000345 000120 000314 000588 000664 00058B 000664 00058B 000664 00058B 000664 00058B 0006657 000563 000657 000563 000658 000658 000658 000658 000658 000658 000658 000658 000658 000658 000658 000658 000658 000658 000658 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000657 000558 000658 000658 000658 000658 000658 000658 000658 000558 000658 000658 000558 000658 000658 000658 000658 000558 000658 0005555 000558 000558 0005555 000558 000555 0005555 000558 00055555 00055555 00055555 00055555 00055555 00055555 000555555	2141 725 1007 578 652 6658 660 672 685 8058 1693 706 8058 16197 876 11661 1134 16853 1727 18853 1791 18853 17911 18732 17426 18732 17426 18732 1716 18732 17426 1716 18732 17426 1716 18732 17426 1716 18732 17426 1716 18732 17426 1746 18732 17426 1746 18732 17426 1746 18732 1746 18732 1746 18732 1746 18732 1746 18732 1746 18732 1746 18732 1746 18732 1746 18732 1746 18732 1746 18732 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 18742 1746 1874 1747 1875 1747 1875 1747 1875 1747 1876 1876 1877 1876 1877 1876 1877 1876 1877 1877	2134 723 1005 573 6056 656 6656 6657 693 10613 1798 1144 11451 11451 11451 11451 11451 1129 16786 1721 18797 1905 16833 1731 17075 18633 1731 17075 18633 1731 17075 18633 1731 17075 18633 1731 17075 18633 1731 18633 1731 18633 1731 18633 1731 18745 1731 187555 187555 187555 187555 187555 187555 1875555 1875555 1875555 18755555 18755555 1875555555555	666 665 659 699 698 1616 1794	1617 1795 1358 618	1566 1994	2040	2041				ASM51	V1.9 07	.09 05/09	9/86
						010	1994	2040	2041							
CMDDONE1 CMDDONE2 CMDEXPTR CMDOK CMDOVFLO	3 3 1 3 1	0004CF 00042C 0000000 000606 0000017	1488 1396 193 2044 255	1417 1393 1995 2041 617	1421 1998 637	1429 2042	1440	1443	1444	1459	1463	1471	1482	1488	1490	
CMDSTPTR CMDSTUPD	2	00000001	194 1993	631 1362	634 1384	636 1574	2047	2050								
CMDST0 CMDST1 CMDST2	1	000008 000009 00000A	199 200 201	490	491	636	1998	2050								

CROSS REFERENCE

PAGE 64

SYMBOL	LEN VAL	E DEFN	REFER	ENCES								ASM51	V1.9 07	7.09 05/09/86
CMDST3 CMDST4 CMDST5 CMDST6 CMDST7 CY DACKBACK DJMP1 DJMP2 DJMP3 DJMP7 DMAREGEN DMAREGEN DMATCST DMATOADP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0C 203 0D 204 0E 205 0F 206 D7 0 194 81 F2 1561 D7 1346 DF 1349 E7 1352 192 79 101 143	159 1945 1557 1338 1346 1349 1943 1569 913 1840	632 1198	1553	1587	1631	1641	1652	1662	1765	1809	1819	1830
DONE1 DONE2	3 000		1415											
DPH	1 00000		500 1157	505 1200	530 1266	567 1412	628 1454	652 1601	685 1779	833 1946	873 1949	915 2014	981 2025	1116 2027
DP L	1 00000	82 0	2044 531 1253	2131 538 1267	2132 568 1413	2152 575	720	814 1455	834 1473	968 1475	982	1002 1780	1097	1117
DPTR	2 00000	09 0	1253 501 686 1168 1466 2045	506 731 1170 1469 2136	1413 532 792 1254 1474 2139	1431 539 819 1269 1477 2143	1433 546 884 1272 1480	548 548 886 1419 1604	1473 569 969 1424 1607	576 984 1427 1782	1602 583 987 1432 1785	585 1013 1435 1947	629 1075 1438 1950	653 1102 1461 2016
DREGO DREGI	1 00000		2015	2150	2107	L140								
EA ENDRECV1	1 00000	80 784	511 800	613	638	1993	1999							
ENDRECV2 Endstack Endstat	1 000; 1 00000 1 000	10 159	1083 1996 2140	2048 2141										
ENDUP DT ENDXMIT1	2 000 1 000	5E 973	1997 888	970										
ENDXMIT2 END1 SNXONOF1	1 000 2 000 1 00000	C4 637	1172 635 740	1255										
ENXONOF2 EN8530RX EN8530TX ES ET0	1 00000 1 00000 1 00000 1 00000 1 00000 1 00000	28 280 01 158 08 157 AC 0	1022 1437 986	147 9 1271										
ET1 Execomd Extio Extio	1 00000 2 000 3 00000 3 00000	AB 0 1C6 638 103 0	617	623										
EX0 EX1	1 00000 1 00000		510 2013	2151										
FIRSTBAD1 FIRSTBAD2	2 000	39 929	9 25											

SASC

	SA	SC	
--	----	----	--

SYMBOL	LEN VALU	E DEFN	REFER	ENCES								ASM51	V1.9 07	7.09 05/09/86
FRMERR1 FRMERR2 FRMESTAT F0	2 0003 3 0002 3 0002 1 000000 1 000000	A8 808 E8 1091 04 141	1210 805 1088 808	1091										
HIDMA	1 0000		923 1835	1208 1845	1597 1948	1603	1636	1647	1657	1667	1775	1781	1814	1825
HIVALIDA HIVALIDB HIXBYTEA HIXBYTEB HNDLCMD HNDLINTO HNDLINTI	1 00000 1 00000 1 0000 2 000 1 00020 1 000020 1 000020	1F 263 32 367 33 368 A9 612 03 422	835 1118 841 1124 607	839 1122 923 1208	924 1209 931 1216	930 1215	942 1227	991 1276						
HNDLOBF HNDLTIMO HNDLTIM1	1 00002 1 000020 1 000020	BE 2040 09 424	2026											
H8530A H8530B I_0_8530A	1 000000	98 125 98 128	530 567	833 1116	873 1157	915 1200	981 1266	1412 1454	1601 1779					
I_0_8530B			1598											
IBF IE IE0	3 000 1 000000 1 000000 1 000000	B3 90 A8 0	1776 2009	2137										
IE1 INL8530A INL8530B	1 000000 1 000000 1 300000	8B 0 00 120 01 121	2012 1557 1561											
INTRSYS INTRO INTO	3 0000 1 000000 1 000000	B2 89	671	705	783	872	900	1066	1156	1185	1361	1573	2009	
INTÓDONE INT1	2 0000	BB 2027	2043	2049	2051									
INVALID1 INVALID2 IN8530A IN8530B IP	3 0001 3 0003 1 0009 1 0009 1 00000	0C 1129 16 1583 C7 1761	835 1118 1558 1562	1619 1797										
IPLCOMP Ito	1 000000	95 82 88 0	522											
IT1 J11 J12 J21 J22 LODMA	1 00000 3 000 3 000 3 000 3 000 1 000	39 1614 40 1617 EA 1792 F1 1795	1611 1614 1789 1792 856 1666	868 1784	926 1824	943 1834	1139	1151	1211	1228	1554	1606	1646	1656
L8530A L8530AD	1 000000		531 538	814 720	1824 834 968	982 1431	1844 1413	$1951 \\ 1433$	1602					
L8530B L8530BD MARKPAR1	1 000000 1 000000 1 000000	00 129 02 130	568 575 963	1097 1002 1677	1117 1253	1267 1473	1455	1475	1780					

672 706

(

ASM51 V1.9 07.09 05/09/86

SYMBOL	LEN	VALUE	DEFN	REFER	INCES			
MARKPAR2 MBYTBUF MBYTCMDS MBYTEFL	1 1 2 1	0000002A 00003D 0004E0 0000003	278 378 1551 243	1248 1555 1353 1567	1855 1568			
MDMCHGFL MDMREG1A MDMREG1B MDMREG1C	1 1 1 1	00000002 000040 000041 000042	244 384 385 386	667 502 503 504	700 654 655 656	658 658 662	661 672	668 1447
MDMREG2A MDMREG2B MDMREG2C	1 1 1	000043 000044 000045	387 388 389	507 508 509	687 688 689	691 691 695	694 706	702 1493
MODMMSK1 MODMMSK2 MS_DONE1 MS_DONE2	1 1 3 3	000046 000047 000253 000397	390 391 968 1253	663 696 963	$\begin{array}{r} 1636 \\ 1814 \end{array}$			
MSB MSPAREN1 MSPAREN2	1 1 1	00000020 00000023 00000028	239 269 277	1248 2015 1676 1854	2145			
NO_TC NOERROR1 NOERROR2 NOMSPTY1	3 1 1	000694 000148 000286 0005AB	1955 731 1013 1721	1953 725 1007 1676				
NOMSPTY2 Notc1 Notc2	3 2 2 3 1	00065C 00051E 0005CF	1899 1597 1775	1854 1591 1769				
NOTFULL NOTT NOTXON1 NOTXON2	3 1 3	0000B5 000000C9 000410	628 0 1379	618 1376				
NOTXTC1 NOTXTC2 NOT1	332233333333333	000427 000223 000367 00044A	1394 911 1196 1418	1391 876 1160 1414				
NOT11 NOT2 NOT21	333	00049D 000453 0004A5	1460 1422 1464	1456 1418 1460				
NOT3 NOT31 NOT4 NOT41	5 3 3 3	000463 000484 000479 0004CA	1430 1472 1441 1483	1422 1464 1430 1472				
NOT5 NOT51 OBF	3 3 1	000480 0004D3 00000B5	1444 1490 92	1441 1483 2026				
OK1 OK2 ONEBYTE	321	00041C 000433 00000001	1384 1399 152	1379 1394 773	1381 1396 1055	1399 2141		
OPCMDDCD OV OVRSTAT P	1 1 1	0003BA 000000D2 00000001 000000000	1333 0 139 0	639 796	1079			
PARESTAT PASSANY1 PASSANY2	1 3 5	00000002 0001F2 000332	140 869 1152	806 859 1142	1089			
PASSERR1	2	0001AB	812	797	804	807		

Personal Computer Hardware Reference Library

Diskette and Hard Disk Adapter

ii

Contents

Description
Fixed Disk Function 1
Task File 1
Task File Registers2
Miscellaneous Information 10
Diskette Function 10
Diskette Controller 12
Diskette Controller Commands 14
Controller Commands 17
Command Status Registers 24
Interfaces
Interface Lines
Logic Diagrams 35

Notes:

Description

The IBM Personal Computer AT Fixed Disk and Diskette Drive Adapter connects to the system board using one of the system expansion slots. The adapter controls the 5-1/4 inch diskette drives and fixed disk drives. Connectors on the adapter supply all the signals necessary to operate up to two fixed drives and one diskette drive or one fixed drive and two diskette drives. The adapter will allow concurrent data operations on one diskette and one fixed disk drive.

The adapter operates when connected to a system board expansion slot. This channel is described in the "System Board" section of the IBM Personal Computer AT Technical Reference Manual.

Fixed Disk Function

The fixed disk function features 512-byte sectors; high-speed, PIO data transfers; ECC correction of up to five bits on data fields; multiple sector operations across track and cylinder boundaries; and on-board diagnostic tests. The adapter will support two fixed disks with up to 16 read/write heads and 1024 cylinders.

Task File

A task file, which contains eight registers, controls fixed-disk operations. The following figure shows the addresses and functions of these registers.

1/0	Address		
Primary	Secondary	Read	Write
1F0	170	Data register	Data register
1F1	171	Error register	Write precomp
1F2	172	Sector count	Sector count
1F3	173	Sector number	Sector number
1F4	174	Cylinder low	Cylinder low
1F5	175	Cylinder high	Cylinder high
1F6	176	Drive/head	Drive/head
1F7	177	Status register	Command register

Task File

Task File Registers

Data Register

The data register provides access to the sector buffer for read and write operations in the PIO mode. This register must not be accessed unless a Read or Write command is being executed. The register provides a 16-bit path into the sector buffer for normal Read and Write commands. When a R/W Long is issued, the 4 ECC bytes are transferred by byte with at least 2 microseconds between transfers. 'Data Request' (DRQ) must be active before the transferring of the ECC bytes.

Error Register

The error register is a read-only register that contains specific information related to the previous command. The data is valid only when the error bit in the status register is set, unless the adapter is in diagnostic mode. Diagnostic mode is the state immediately after power is switched on or after a Diagnose command. In these cases, the register must be checked regardless of the status register indicator. The following are bit values for the diagnostic mode.

Diagnostic Mode

01 No errors

- **02** Controller error
- 03 Sector buffer error
- 04 ECC device error
- 05 Control processor error

The following are bit definitions for the operational mode.

Operational Mode

- **Bit 0** Data Address Mark (DAM) Not Found—This bit indicates that DAM could not be found within 16 bytes of the ID field.
- **Bit 1** TR 000 Error—This bit will be set if, during a Restore command, the track 000 line from the fixed disk is not true within 1023 step pulses to the drive.
- **Bit 2** Aborted Command—A command is aborted based on the drive status (Write Fault, Not Seek Complete, Drive Not Ready, or an invalid command). The status and error registers may be decoded to determine the cause.
- Bit 3 Not used.
- **Bit 4** ID Not Found—The ID field with the specified cylinder, head, and sector number could not be found. If retries are enabled, the controller attempts to read the ID 16 times before indicating the error. If retries are disabled, the track is scanned a maximum of two times before setting this error bit.
- Bit 5 Not used
- **Bit 6** Data ECC Error—This bit indicates that an uncorrectable ECC error occurred in the target's data field during a read command.

Bit 7 Bad Block Detect—This bit indicates that the bad block mark was detected in the target's ID field. No Read or Write commands will be executed in any data fields marked bad.

Write Precompensation Register

The value in this register is the starting cylinder divided by 4. The 'reduced write current' signal to the drive is activated and the adapter's Write Precompensation logic is turned on.

Sector Count Register

The sector count register defines the number of sectors to be transferred during a Verify, Read, Write, or Format command. During a multi-sector operation, the sector count is decremented and the sector number is incremented. When the disk is being formatted, the number of sectors per track must be loaded into the register prior to each Format command. The adapter supports multi-sector transfers across track and cylinder boundaries. The drive characteristics must be set up by the Set Parameters command before initiating a multi-sector transfer. The sector count register must be loaded with the number of sectors to be transferred for any data-related command.

Note: A 0 in the sector count register specifies a 256-sector transfer.

Sector Number Register

The target's logical sector number for Read, Write, and Verify commands is loaded into this register. The starting sector number is loaded into this register for multi-sector operations.

Cylinder Number Registers

The target number for Read, Write, Seek, and Verify commands is loaded into these registers as shown in the following figure. The cylinder-number registers address up to 1024 cylinders.

4 Fixed Disk and Diskette Drive Adapter

	Cylinder High	Cylinder Low
Register bits	76543210	76543210
Cylinder bits	98	76543210

Cylinder Number Registers

Drive/Head Register

Bit 7	Set to 1
Bit 6	Set to 0
Bit 5	Set to 1
Bit 4	Drive Select—This bit selects the drive. A 0 indicates the first fixed disk drive, and a 1 indicates the second.
Bit 3–Bit 0	Head Select Bits—Bits 3 through 0 specify the desired read/write head. Bit 0 is the least-significant (0101 selects head 5). The adapter supports up to 16 read/write heads. For access to heads 8 through 15, bit 3 of the fixed disk register (address hex 3F6) must be set to 1.

Note: This register must be loaded with the maximum number of heads for each drive before a Set Parameters command is issued.

Status Register

The controller sets up the status register with the command status after execution. The program must look at this register to determine the result of any operation. If the busy bit is set, no other bits are valid. A read of the status register clears interrupt request 14. If 'write fault' or 'error' is active, or if 'seek complete' or 'ready' is inactive, a multi-sector operation is aborted.

The following defines the bits of the status register.

Bit 7	Busy—This bit indicates the controller's status. A 1 indicates the controller is executing a command. If this bit is set, no other status register bit is valid, and the other registers reflect the status register's contents; therefore, the busy bit must examined before any fixed disk register is read.
Bit 6	Drive Ready—A 1 on this bit together with a 1 on seek complete bit (bit 4) indicates that the fixed disk drive is ready to read, write, or seek. A 0 indicates that read, write, and seek are inhibited.
Bit 5	Write Fault—A 1 on this bit indicates improper operation of the drive; read, write, or seek is inhibited.
Bit 4	Seek Complete—A 1 on this bit indicates that the read/write heads have completed a seek operation.
Bit 3	Data Request—This bit indicates that the sector buffer requires servicing during a Read or Write command. If either bit 7 (busy) or this bit is active, a command is being executed. Upon receipt of any command, this bit is reset.
Bit 2	Corrected Data—A 1 on this bit indicates that the data read from the disk was successfully corrected by the ECC algorithm. Soft errors will not end multi-sector operations.
Bit 1	Index—This bit is set to 1 each revolution of the disk.
Bit 0	Error—A 1 on this bit indicates that the previous command ended in an error, and that one or more bits are set in the error register. The next command from the controller resets the error bit. This bit, when set, halts multi-sector operations.

Command Register

The command register accepts eight commands to perform fixed disk operations. Commands are executed by loading the task file and writing in the command register while the controller status is not busy. If '-write fault' is active or if '-drive ready' or '-seek complete' are inactive, the controller will not execute any command. Any code not defined in the following causes an Aborted Command error. Interrupt request 14 is reset when any command is written. The following are acceptable commands to the command register.

Command		ts						
	7	6	5	4	3	2	1	0
Restore	0	0	0	1	R3	R2	R1	RO
Seek	0	1	1	1	R3	R2	R1	RO
Read Sector	0	0	1	0	0	0	L	Т
Write Sector	0	0	1	1	0	0	L	Т
Format Track	0	1	0	1	0	0	0	0
Read Verify	0	1	0	0	0	0	0	Т
Diagnose	1	0	0	1	0	0	0	0
Set Parameters	1	0	0	1	0	0	0	1

Valid Command-Register Commands

The following figure shows the stepping rate as defined by R3 through R0.

	R3	R2	R1	R0	Stepping Rate
6	C	0	0	0	35 us
	C	0	0	1	0.5 ms
	C	0	1	0	1.0 ms
	C	0	1	1	1.5 ms
(C	1	0	0	2.0 ms
	C	1	0	1	2.5 ms
	כ ו	1	1	0	3.0 ms
	C	1	1	1	3.5 ms
1	1	0	0	0	4.0 ms
	1	0	0	1	4.5 ms
1	1	0	1	0	5.0 ms
1	1	0	1	1	5.5 ms
1	1	1	0	0	6.0 ms
1	1	1	0	1	6.5 ms
1	1	1	1	0	7.0 ms
	1	1	1	1	7.5 ms

Stepping Rate

Note: After a Diagnose or Reset Command, the stepping rate is set to 7.5 milliseconds.

The following figure shows the bit definitions for bits L and T.

Bit	Definition	0	1
L	Data Mode	Data Only	Data plus 4 byte ECC
T	Retry Mode	Retries Enabled	Retries Disabled

L and T Bit Definitions

Note: The system verifies the operation of ECC by reading and writing with the ECC bytes. When retries are disabled, ECC and ID field retries are limited to less than two complete revolutions.

Following are descriptions of the valid command-register commands.

Restore: The controller issues step pulses to the drive at 3 milliseconds per step until the track 000 indicator from the drive is active. If track 000 is not active within 1023 steps, the error bit in the status register is set, and a track 000 error is placed in the error register. The implied seek step rate is set by this command.

Seek: The Seek command moves the R/W heads to the cylinder specified in the task files. The adapter supports overlapped seeking on two drives or setup of the buffered seek stepping rate for the implied seek during a Read/Write command. An interrupt is generated at the completion of the command.

Read Sector: A number of sectors (1-256) may be read from the fixed disk with or without the ECC field appended in the Programmed I/O (PIO) mode. If the heads are not over the target track, the controller issues step pulses to the drive and checks for the proper ID field before reading any data. The stepping rate used during the implied seek is the value specified during the previous Seek or Restore command. Data errors, up to 5 bits in length, are automatically corrected on Read Short commands. If an uncorrectable error occurs, the data transfer still takes place; however, a multi-sector read ends after the system reads the sector in error. Interrupts occur as each sector is ready to be read by the system. No interrupt is generated at the end of the command, after the lost sector is read by the system.

Write Sector: A number of sectors (1-256) may be written to the fixed disk with or without the ECC field appended in the PIO mode. The Write Sector command also supports implied seeks. Interrupts for the Write command occur before each sector is transferred to the buffer (except the first) and at the end of the command. The first sector may be written to the buffer immediately after the command has been sent, and 'data request' is active.

Format Track: The track specified by the task file is formatted with ID and data fields according to the interleave table transferred to the buffer. The interleave table is composed of two bytes per sector as follows: 00, Physical Sector 1, 00, Physical Sector 2, ... 00, Physical Sector 17. The table for 2-to-1 interleave is: 00, 01, 00, 0A, 00, 02, 00, 0B, 00, 03, 00, 0C, 00, 04, 00, 0D, 00, 05, 00, 0E, 00, 06, 00, 0F, 00, 07, 00, 10, 00, 08, 00, 11, 00, 09. The data transfer must be 512 bytes even though the table may be only 34 bytes. The sector count register must be loaded with the number of sectors per track before each Format Track command. An interrupt is generated at the completion of the command; the Format Track command supports no error reporting. A bad block may be specified by replacing a 00 table entry with an 80. When switching between drives, a restore command must be executed prior to attempting a format.

Read Verify: This command is similar to to a Read command except that no data is sent to the host. This allows the system to verify the integrity of the fixed disk drive. A single interrupt is generated upon completion of the command or in the event of an error.

Diagnose: This command causes the adapter to execute its self-test code and return the results to the error register. An interrupt is generated at the completion of this command.

Set Parameters: This command sets up the drive parameters (maximum number of heads and sectors per track). The drive/head register specifies the drive affected. The sector count

and drive/head registers must be set up before this command is issued. The adapter uses the values specified for track and cylinder crossing during multi-sector operations. An interrupt is generated at the completion of this command. This command must be issued before any multi-sector operations are attempted. The adapter supports two fixed disk drives with different characteristics, as defined by this command.

Miscellaneous Information

The following is miscellaneous information about the fixed disk drive function.

- The adapter performs normal read/write operations on a data field only after a successful match of that sector's ID with the targeted ID.
- ID fields are checked for errors when read from the disk.
- The adapter supports only ECC on data fields and only CRC on ID fields. The CRC polynomial is X16 + X12 + X5 + 1; the ECC polynomial is X32 + X28 + X26 + X19 + X17 + X10 + X6 + X2 + 1. All shift registers are preset to hex F before calculating the checksums, which begin with the respective address marks.

Diskette Function

The 5-1/4 inch diskette drive function is an integral part of the IBM Personal Computer AT Fixed Disk and Diskette Drive Adapter. One or two diskette drives are attached to the adapter through an internal, daisy-chained, flat cable. The attachment will support 160K.-, 320K.-, and 1.2M.-byte diskette drives.

The adapter is designed for a double-density, MFM-coded, diskette drive and uses write precompensation with an analog circuit for clock and data recovery. The diskette-drive parameters are programmable, and the diskette drive's write-protect feature is supported. The adapter is buffered on the I/O bus and uses the

system board's direct memory access (DMA) for record data transfers. An interrupt level also is used to indicate when an operation is complete and that a status condition requires microprocessor attention.

Digital Output Register (Hex 3F2)

The digital output register (DOR) is an output-only register used to control drive motors, drive selection, and feature enable. All bits are cleared by the I/O interface reset line. The bit definitions follow.

Bit 7	Reserved
Bit 6	Reserved
Bit 5	Drive B Motor Enable
Bit 4	Drive A Motor Enable
Bit 3	Enable Diskette Interrupts and DMA
Bit 2	Diskette Function Reset
Bit 1	Reserved
Bit 0	Drive Select—A 0 on this bit indicates that drive A is selected.

Note: A channel reset clears all bits.

Digital Input Register

The digital input register is an 8-bit, read- only register used for diagnostic purposes. The following are bit definitions for this register.

- Bit 7 Diskette Change
- Bit 6 Write Gate

Bit 5	Head Select 3/Reduced Write Current
Bit 4	Head Select 2
Bit 3	Head Select 1
Bit 2	Head Select 0
Bit 1	Drive Select 1
Bit 0	Drive Select 0
	Note: Bits 0 through 6 apply to the currently selected fixed disk drive.

Data Rates

The diskette function will support three data rates: 250,000, 300,000 and 500,000 bits per second. The 300,000-and 500,000-bps incoming data pulse widths will be those associated with a 500,000-bps data signal.

Diskette Controller

The diskette controller has two registers to which the main system processor has access: a status register and a data register. The 8-bit status register has the status information about the diskette and may be accessed at any time. The 8-bit data register (hex 3F5), which actually consists of several registers in a stack with only one register presented to the data bus at a time, stores data, commands, and parameters, and provides diskette-drive status information. Data bytes are read from or written to the data register in order to program or obtain results after a particular command. The main status register may only be read and is used to facilitate the transfer of data between the processor and diskette controller.

The bits in the main status register (hex 34F) are defined as follows:

Bit 7	Request for Master (RQM)— The data register is ready to send or receive data to or from the processor.
Bit 6	Data Input/Output (DIO)—The direction of data transfer between the diskette controller and the processor. If this bit is a 1, transfer is from the diskette controller's data register to the processor; if it is a 0, the opposite is true.
Bit 5	Non-DMA Mode (NDM)—The diskette controller is in the non-DMA mode.
Bit 4	Diskette Controller Busy (CB)— A Read or Write command is being executed.
Bit 3	Reserved
Bit 2	Reserved
Bit 1	Diskette Drive B Busy (DBB)— Diskette drive B is in the seek mode.
Bit 0	Diskette Drive A Busy (DAB)— Diskette drive A is in the seek mode.

The diskette controller can perform 11 different commands. Each command is initiated by a multibyte transfer from the processor, and the result after execution of the command may also be a multibyte transfer back to the processor. Because of this multibyte interchange of information between the diskette controller and the processor, each command can be considered to consist of three phases:

Command Phase: The processor issues a sequence of Write commands to the diskette controller that direct the controller to perform a specific operation.

Execution Phase: The diskette controller performs the specified operation

Result Phase: After completion of the operation, status and other housekeeping information is made available to the processor through a sequence of Read commands to the processor.

Diskette Controller Commands

The following is a list of commands that may be issued to the diskette controller.

- Read Data
- Format a Track
- Scan Equal
- Scan Low or Equal
- Scan High or Equal
- Recalibrate
- Sense Interrupt Status
- Specify
- Sense Drive Status
- Seek
- Invalid

Symbol Descriptions

The following are descriptions of the symbols used in the "Command Definitions" later in this section.

- A0 Address Line 0—A 0 selects the main status register, and a 1 selects the data register.
- C Cylinder Number—Contains the current or selected cylinder number in binary notation.

14 Fixed Disk and Diskette Drive Adapter

- **D** Data—Contains the data pattern to be written to a sector.
- **D7-D0** Data Bus—An 8-bit data bus in which D7 is the most-significant bit and D0 is the least- significant.
- **DTL** Data Length—When N is 00, DTL is the data length to be read from or written to a sector.
- **EOT** End of Track—The final sector number on a cylinder.
- **GPL** Gap Length—The length of gap 3 (spacing between sectors excluding the VCO synchronous field).
- H Head Address—The head number, either 0 or 1, as specified in the ID field.
- HD Head—The selected head number, 0 or 1. (H = HD in all command words.)
- HLT Head Load Time—The head load time in the selected drive (2 to 256 milliseconds in 2- millisecond increments for the 1.2M-byte drive and 4 to 512 milliseconds in 4 millisecond increments for the 320K-byte drive).
- HUT Head Unload Time—The head unload time after a read or write operation (0 to 240 milliseconds in 16-millisecond increments for the 1.2M-byte drive and 0 to 480 milliseconds in 32- millisecond increments for the 320K-byte drive.
- MF FM or MFM Mode—A 0 selects FM mode and a 1 selects MFM (MFM is selected only if it is implemented.)
- MT Multitrack—A 1 selects multitrack operation. (Both HD0 and HD1 will be read or written.)
- N Number—The number of data bytes written in a sector.
- NCN New Cylinder—The new cylinder number for a seek operation

ND	Non-Data Mode—	This indicates an	operation	in the
	non-data mode.			

- **PCN** Present Cylinder Number—The cylinder number at the completion of a Sense interrupt status command (present position of the head).
- **R** Record—The sector number to be read or written.
- **R/W** Read/Write—This stands for either a 'read' or 'write' signal.
- **SC** Sector—The number of sectors per cylinder.
- SK Skip—This stands for skip deleted-data address mark.
- **SRT** This 4 bit byte indicates the stepping rate for the diskette drive as follows:

1.2M-Byte Diskette Drive

- 1111 1 millisecond
- 1110 2 milliseconds
- 1101 3 milliseconds

320K-Byte Diskette Drive

- 1111 2 milliseconds
- 1110 4 milliseconds
- 1101 6 milliseconds
- **ST 0—ST 1** Status 0—Status 3—One of the four registers that stores status information after a command is executed.
- **STP** Scan Test—If STP is 1, the data in contiguous sectors is compared with the data sent by the processor during a scan operation. If STP is 2, then alternate sections are read and compared.
- US0-US1 Unit Select—The selected driver number encoded the same as bits 0 and 1 of the digital output register (DOR).

Controller Commands

The following are commands that may be issued to the controller.

Note: An X is used to indicate a don't-care condition.

Read Data

Command Phase: The following bytes are issued by the processor in the command phase:

Μ	IT	MF	SK	0	0	1	1	0
Х		Х	Х	Х	Х	HD	US1	USO
С	,							
Η	I							
R	2							
N	l							
Ε	:0T							
G	iPL							
D	TL							

ST0	
ST1	
ST2	
C	
H	
R	
N	

Format a Track

Command Phase: The following bytes are issued by the processor in the command phase:

0 MF 0 0 1 1 0 0 X X X X X HD US1 US0 N SC GPL D

ST0	
ST1	
ST2	
С	
Н	
R	
N	

Scan Equal

Command Phase: The following bytes are issued by the processor in the command phase:

MT	MF	SK	1	0	0	0	1
Х	Х	Х	Х	Х	HD	US1	US0
С							
Η							
R							
N							
EOT							
GPL							
STP							

ST0	
ST1	
ST2	
С	
Н	
R	
N	

Scan Low or Equal

Command Phase: The following bytes are issued by the processor in the command phase:

MT	MF	SK	1	1	0	0	1	
Х	Х	Х	Х	Х	HD	US1	US0	
С								
Н								
R								
N								
EOT								
GPL								
STP)							

ST0
ST1
ST2
С
Н
R
N

Scan High or Equal

Command Phase: The following bytes are issued by the processor in the command phase:

MT	MF	SK	1	1	1	0	1
х	Х	Х	Х	Х	HD	US1	US0
С							
Н							
R							
N							
EOT							
GPL							
STP							

ST0
ST1
ST2
С
н
R
N

Recalibrate

Command Phase: The following bytes are issued by the processor in the command phase:

0 0 0 0 0 0 1 1 1 x x x x x x 0 US1 US0

Result Phase: This command has no result phase.

Sense Interrupt Status

Command Phase: The following bytes are issued by the processor in the command phase:

0 0 0 0 1 0 0 0

STO PCN

Specify

Command Phase: The following bytes are issued by the processor in the command phase:

0	0	0	0	0	0	1	1
(SRT)	(HU	Т)
(HL	Т)	ND

Result Phase: This command has no result phase.

Sense Driver Status

Command Phase: The following bytes are issued by the processor in the command phase:

0 0 0 0 0 0 0 1 0 X X X X X HD US1 US0

Result Phase: The following bytes are issued by the controller in the result phase:

ST3

Seek

Command Phase: The following bytes are issued by the processor in the command phase:

0 0 0 0 1 1 1 1 X X X X X HD US1 US0 NCN

Result Phase: This command has no result phase.

Invalid

Command Phase: The following bytes are issued by the processor in the command phase:

Invalid Codes

X X X X X HD US1 US0

Result Phase: The following bytes are issued by the controller in the result phase:

ST0

Command Status Registers

The following is information about the command status registers ST0 through ST3.

Command Status Register 0 (ST0)

The following are bit definitions for command status register 0.

Bit 7–Bit 6 Interrupt Code (IC)

00 Normal Termination of Command (NT)—The command was completed and properly executed.

24 Fixed Disk and Diskette Drive Adapter

	01	Abrupt Termination of Command (AT)—The execution of the command was started but not successfully completed.					
	10	Invalid Command Issue (IC)—The issued command was never started.					
	11	Abnormal termination because, during the execution of a command, the 'ready' signal from the diskette drive changed state.					
Bit 5		End (SE)—Set to 1 when the controller bletes the Seek command.					
Bit 4	Equipment Check (EC)—Set if a 'fault' signal is received from the diskette drive, or if the 'track-0' signal fails to occur after 77 step pulses (Recalibrate Command).						
Bit 3	Not Ready (NR)—This flag is set when the diskette drive is in the not-ready state and a Read or Write command is issued. It is also set if a Read or Write command is issued to side 1 of a single-sided diskette drive.						
Bit 2	Head Address (HD)—Indicates the state of the head at interrupt.						
Bit 1–Bit 0		select 1 and 2 (US 1 and 2)—Indicate a 's unit number at interrupt.					
Command Stat	tus Re	egister 1 (ST1)					
The following a	re bit	definitions for command status register 1.					
Bit 7	tries	of Cylinder (EC)—Set when the controller to gain access to a sector beyond the final r of a cylinder.					

Bit 6 Not Used—Always 0.

Bit 5	Data Error (DE)—Set when the controller detects a CRC error in either the ID field or the data field.
Bit 4	Overrun (OR)—Set if the controller is not serviced by the main system within a certain time limit during data transfers.
Bit 3	Not Used—This bit is always set to 0.
Bit 2	No Data (ND)—Set if the controller cannot find the sector specified in the ID register during the execution of a Read Data, Write Deleted Data, or Scan Command. This flag is also set if the controller cannot read the ID field without an error during the execution of a Read ID command or if the starting sector cannot be found during the execution of a Read Cylinder commnd.
Bit 1	Not Writable (NW)—Set if the controller detects a 'write-protect' signal from the diskette drive during execution of a Write Data, Write Deleted Data, or Format Cylinder command.
Bit 0	Missing Address Mark (MA)—Set if the controller cannot detect the ID address mark. At the same time, the MD of status register 2 is set.
Command S	status Register 2 (ST2)
Bit 7	Not Used—Always 0.
Bit 6	Control Mark (CM)—This flag is set if the controller encounters a sector that has a deleted data-address mark during execution of a Read Data or Scan command.

Bit 5 Data Error in Data Field (DD)—Set if the controller detects an error in the data.

Bit 4	Wrong Cylinder (WC)—This flag is related to ND (no data) and when the contents of C on the medium are different from that stored in the ID register, this flag is set.
Bit 3	Scan Equal Hit (SH)—Set if the contiguous sector data equals the processor data during the execution of a Scan command.
Bit 2	Scan Not Satisfied (SN)—Set if the controller cannot find a sector on the cylinder that meets the condition during a Scan command.
Bit 1	Bad Cylinder (BC)—Related to ND; when the contents of C on the medium are different from that stored in the ID register, and the contents of C is FF, this flag is set.
Bit 0	Missing Address Mark in Data Field (MD)— Set if the controller cannot find a data address mark or a deleted data address mark when data is read from the medium.

Command Status Register 3 (ST3)

The following are bit definitions for command status register 3.

Bit 7	Fault (FT)—Status of the 'fault' signal from the diskette drive.
Bit 6	Write Protect (WP)—Status of the 'write-protect' signal from the diskette drive.
Bit 5	Ready (RY)—Status of the 'ready' signal from the diskette drive.
Bit 4	Track 0 (T0)—Status of the 'track 0' signal from the diskette drive.
Bit 3	Two Side (TS)—Status of the 'two side' signal from the diskette drive.

Bit 2	Head Address (HD)—Status of the 'side-select' signal from the diskette drive.
Bit 1	Unit Select 1 (US 1)—Status of the 'unit-select-1' signal from the diskette drive.
Bit 0	Unit Select 0 (US 0)—Status of the 'unit select 0' signal from the diskette drive.

Interfaces

The system interface is through the I/O channel. The address, DMA, and interrupt assignments are shown in the following figures.

I/O A Primary	Address Secondary	Read	Write							
3F2 3F4 3F5 3F6 3F7	372 374 375 376 377	Main status register Diskette data register Digital input register	Digital output register Main status register Diskette data register Fixed disk register Diskette control register							

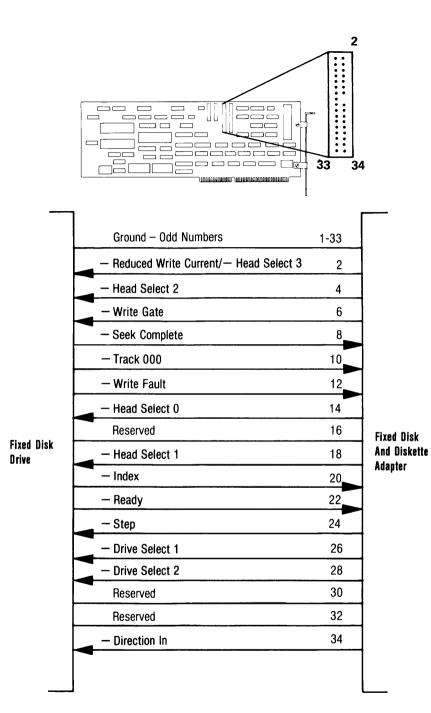
Diskette Function

Note: DMA request is level 2 and interrupt request is level 6.

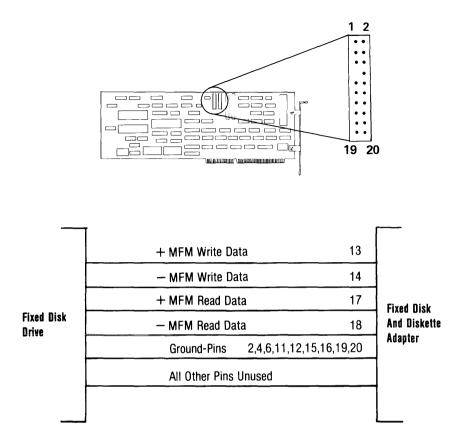
1/0	Address		
Primary	Secondary	Read	Write
1F0	170	Data register	Data register
1F1	171	Error register	Write precomp
1F2	172	Sector count	Sector count
1F3	173	Sector number	Sector number
1F4	174	Cylinder low	Cylinder low
1F5	175	Cylinder high	Cylinder high
1F6	176	Drive/head register	Drive/head register
1F7	177	Status register	Command register

Fixed Disk Function

Note: Interrupt request is level 14.

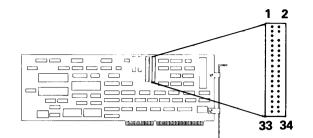

28 Fixed Disk and Diskette Drive Adapter

The following operations are supported by this adapter:


- 16 bit programmed I/O (PIO), data transfers to the fixed disk. All other transfers must be 8 bits wide.
- The I/O addresses, recognized by the adapter for either the fixed disk or the diskette function, are independently selected by jumpers.

Interface Lines

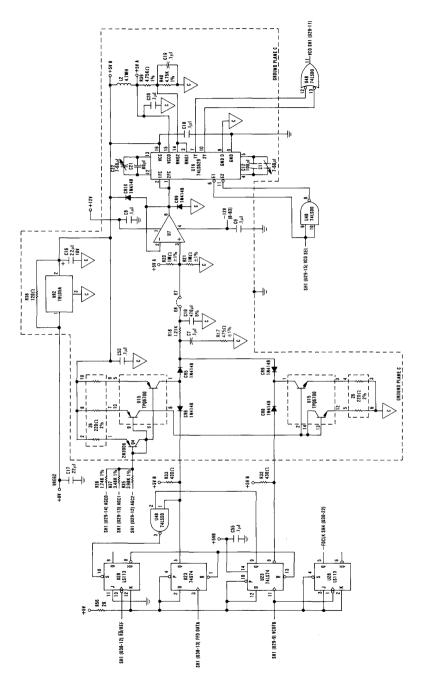
The interface to the fixed disk drive consists of two cables: 'control' and 'data'. The following figures show signals and pin assignments for these cables.



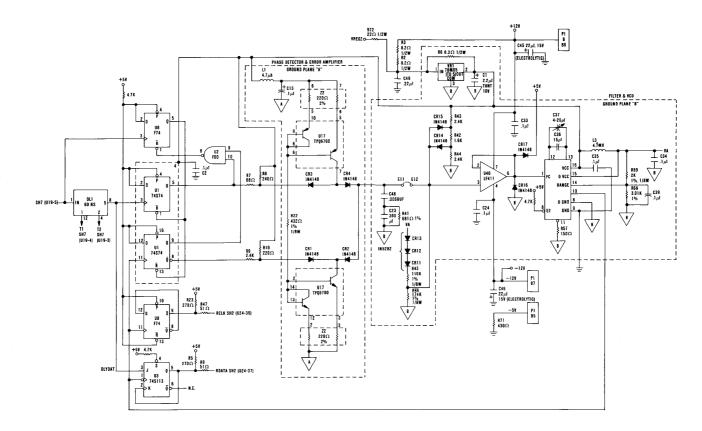
Note: Connection is through a 2-by-17 Berg connector. Pin 15 is reserved to polarize the connector.

Note: Connection is through a 2-by-10 Berg connector. Pin 8 is reserved to polarize the connector.

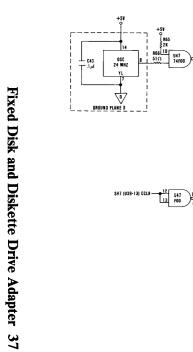
The interface to the diskette drives is a single cable that carries both data and control signals. The signals and pin assignments as follows.

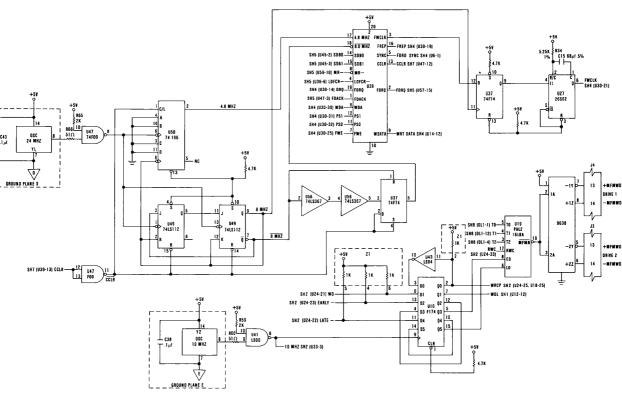


		
Ground - Odd Numbers	1-33	
Reduced Write	2	
Reserved	4	
Drive Select 3	6	
Index	8	
Drive Select 0	10	
Drive Select 1	12	
Drive Select 2	14	
Motor On	16	Fixed Disk
Direction Select	18	And Diskette
Step	20	Adapter
Write Data	22	
Write Gate	24	
Track 00	26	
Write Protect	28	
Read Data	30	
Side 1 Select	32	
Diskette Change	34	
······································		
	Reduced WriteReservedDrive Select 3IndexDrive Select 0Drive Select 1Drive Select 2Motor OnDirection SelectStepWrite DataWrite GateTrack 00Write ProtectRead DataSide 1 Select	Reduced Write2Reserved4Drive Select 36Index8Drive Select 010Drive Select 112Drive Select 214Motor On16Direction Select18Step20Write Data22Write Gate24Track 0026Write Protect28Read Data30Side 1 Select32

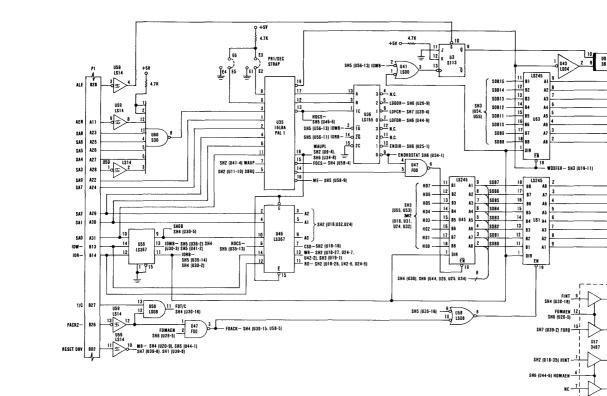

Note: Connection is through a 2-by-17 Berg connector. Pin 5 is reserved to polarize the connector.

Notes:


Logic Diagrams



Fixed Disk and Diskette Adapter (Sheet 1 of 8)



Fixed Disk and Diskette Adapter (Sheet 3 of 8)

Fixed Disk and Diskette Adapter (Sheet 4 of 8)

PÍ

102

C18 \$915

C17 \$014

C18 \$813

C15 SD12

C14 SD11

C13 SDID

L,

P1

A03 A04 \$005

A05 \$904

A06 S003

A07 S002

A08 SDD1

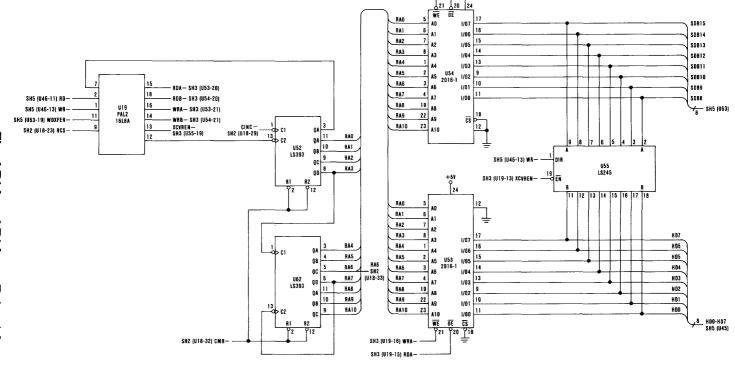
A09 \$860

822 IRQ6

DRQ2

21 007 18014

1...

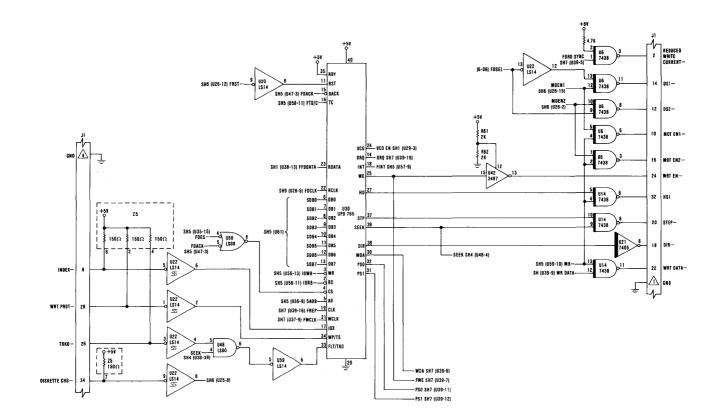

\$807

\$005

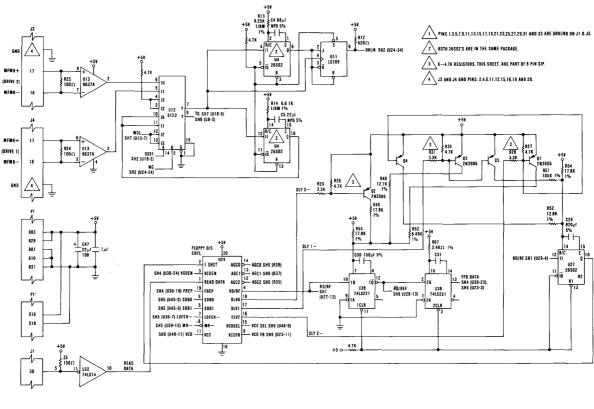
C12 \$809

CT1 SD08

1/0 CS 16-

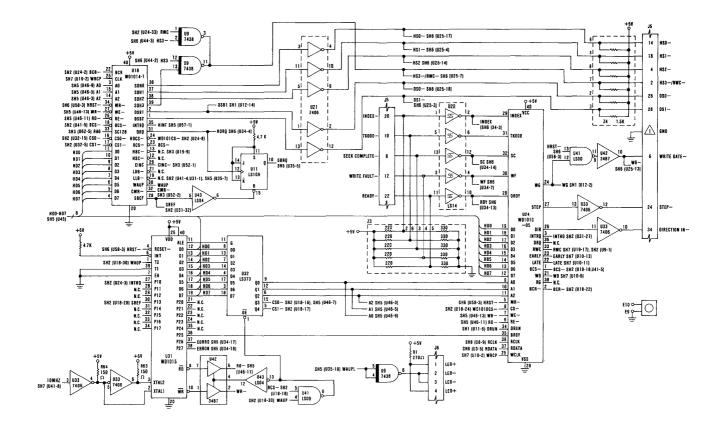


SH3 (U19-18) ADB—


SH3 (U19-14) WRB

+5¥ ♀

Fixed Disk and Diskette Adapter (Sheet 5 of 8)



Fixed Disk and Diskette Adapter (Sheet 6 of 8)

Fixed Disk and Diskette Adapter (Sheet 7 of 8)

Fixed Disk and Diskette Drive Adapter 41

Fixed Disk and Diskette Adapter (Sheet 8 of 8)

IBM

Personal Computer Hardware Reference Library

ESDI Magnetic Media Adapter

ii ESDI Magnetic Media Adapter

Contents

Description	1		• • •		•	••	• •	•	••	•	• •	•	••	• •		• •	•	••	• •	• •	•••	•	••	•	••	•		•		•	••	•	••	•	••	••	•	1
Diskette Fu	nction			••	•••	•••	••	•		•••	•			•	••	• •	• •	•	••			•	•••		•				••	• •			•			••	1	0
Interfaces		•••	••	••		••	•••	• •		• •	• •	•	••	•		••	• •	•	••	•••	••	•	••	•••	• •	• •	•••	•	••	• •	••	••	•	•••	••	•••	2	:6

iv ESDI Magnetic Media Adapter

Description

The ESDI Magnetic Media Adapter connects to the system board using one of the I/O slots. The adapter controls the 5-1/4 inch diskette drives and fixed- disk drives. Connectors on the adapter supply all the signals necessary to operate up to two fixed drives and two diskette drives. The adapter allows concurrent data operations on one diskette and one fixed-disk drive.

The adapter operates when connected to a channel I/O slot. This channel is described in the "I/O Channel" section of the RT PC Technical Reference Manual.

Fixed Disk Function

The fixed disk function features 512-byte sectors; high-speed, PIO data transfers; ECC correction of up to 12 bits on data fields; multiple sector operations across track and cylinder boundaries; and on-board diagnostic tests. The adapter supports two fixed disks with up to 16 read/write heads and 2048 cylinders.

Task File

I/O A	ddress		
Primary	Secondary	Read	Write
1F0	170	Data register	Data register
1F1	171	Error register	Not used
1F2	172	Sector count	Sector count
1F3	173	Sector number	Sector number
1F4	174	Cylinder low	Cylinder low
1F5	175	Cylinder high	Cylinder high
1F6	176	Drive/head register	Drive/head register
1F7	177	Status register	Command register

A task file, which contains eight registers, controls fixed-disk operations. The following figure shows the addresses and functions of these registers:

Figure 1. Task File

Task File Registers

Data Register

The data register provides access to the sector buffer for read/write operations in the PIO mode. This register must not be accessed unless a Read/Write command is being executed. The register provides a 16-bit path into the sector buffer for normal Read/Write commands. When a R/W Long is issued, the 7 ECC bytes are transferred by byte with at least 2 microseconds between transfers. Data Request (DRQ) must be active before the transferring of the ECC bytes.

Error Register

The error register is a read-only register that contains specific information related to the previous command. The data is valid only when the error bit in the status register is set, unless the adapter is in diagnostic mode. Diagnostic mode is the state immediately after power is switched on or after a **Diagnose** command. In these cases, the register must be checked regardless of the status register indicator. The following are bit values for the diagnostic mode:

Diagnostic Mode

- 01 No errors
- 02 Adapter device error
- 03 Disk error
- 04 Sector buffer error
- 05 ECC device error
- 06 Logic support device error
- 07 Control processor error.

The following are bit definitions for the operational mode:

Operational Mode

- **Bit 0** Data Address Mark (DAM) Not Found—This bit indicates that DAM could not be found within 16 bytes of the ID field.
- **Bit 1** TR 000 Error—This bit will be set if, during a Restore command, the track 000 line from the fixed disk is not true within 1023 step pulses to the drive.
- **Bit 2** Aborted Command—A command is aborted based on the drive status (Write Fault, Not Seek Complete, Drive Not Ready, or an invalid command). The status and error registers may be decoded to determine the cause.
- Bit 3 Not used.
- **Bit 4** ID Not Found—The ID field with the specified cylinder, head, and sector number could not be found. If retries are enabled, the controller attempts to read the ID 16 times before indicating the error. If retries are disabled, the track is scanned a maximum of two times before setting this error bit.
- Bit 5 Not used.
- **Bit 6** Data ECC Error—This bit indicates that an uncorrectable ECC error occurred in the target's data field during a read command.
- **Bit 7** Bad Block Detect—This bit indicates that the bad block mark was detected in the target's ID field. No Read or Write commands will be executed in any data fields marked bad.

Sector Count Register

The sector count register defines the number of sectors transferred during a Verify, Read, Write, or Format command. During a multisector operation, the sector count is decremented and the sector number is incremented. When the disk is being formatted, the number of sectors per track must be loaded into the register prior to each Format command. The adapter supports multisector transfers across track and cylinder boundaries. The drive characteristics must be set up by the Set Parameters command before initiating a multisector transfer. The sector count register must be loaded with the number of sectors to be transferred for any data-related command.

Note: A 0 in the sector count register specifies a 256-sector transfer.

Sector Number Register

The target's logical sector number for Read, Write, and Verify commands is loaded into this register. The starting sector number is loaded into this register for multisector operations.

Cylinder Number Registers

The target number for Read, Write, Seek, and Verify commands is loaded into these registers as shown in the following figure. The cylinder-number registers address up to 2048 cylinders.

	Cylinder High	Cylinder Low
Register bits	76543210	76543210
Cylinder bits	A98	76543210

Figure 2. Cylinder Number Registers

Drive/Head Register

Bit 7	Set to 1
Bit 6	Set to 0
Bit 5	Set to 1
Bit 4	Drive Select—This bit selects the drive. An 0 indicates the first fixed disk drive, and a 1 indicates the second.
Bit 3-Bit 0	Head Select Bits—Bits 3 through 0 specify the desired read/write head. Bit 0 is the least significant (0101 selects head 5). The adapter supports up to 16 read/write heads.

Note: This register must be loaded with the maximum number of heads for each drive before a Set Parameters command is issued.

Status Register

The controller sets up the status register with the command status after execution. The program must look at this register to determine the result of any operation. If the busy bit is set, no other bits are valid. A read of the status register clears interrupt request 14. If 'write fault' or 'error' is active, or if 'seek complete' or 'ready' is inactive, a multisector operation is aborted.

The following defines the bits of the status register:

Bit 7	Busy—This bit indicates the controller status. A 1 indicates the controller is executing a command. If this bit is set, no other status register bit is valid, and the other registers reflect the status register's contents; therefore, the busy bit must be examined before any fixed disk register is read.
Bit 6	Drive Ready—A 1 on this bit together with a 1 on seek complete bit (bit 4) indicates that the fixed disk drive is ready to read, write, or seek. A 0 indicates that read, write, and seek are inhibited.
Bit 5	Write Fault—A 1 on this bit indicates improper operation of the drive; read, write, or seek is inhibited.
Bit 4	Seek Complete—A 1 on this bit indicates that the read/write heads have completed a seek operation.
Bit 3	Data Request—This bit indicates that the sector buffer requires servicing during a Read or Write command. If either bit 7 (busy) or this bit is active, a command is being executed. Upon receipt of any command, this bit is reset.
Bit 2	Corrected Data—A 1 on this bit indicates that the data read from the disk was successfully corrected by the ECC algorithm. Soft errors will not end multisector operations.

- **Bit 1** Index—This bit is set to 1 each revolution of the disk.
- **Bit 0** Error—A 1 on this bit indicates that the previous command ended in an error, and that one or more bits are set in the error register. The next command from the controller resets the error bit. This bit, when set, halts multisector operations.

Command Register

The command register accepts twelve commands to perform fixed disk operations. Commands are executed by loading the task file and writing in the command register while the controller status is not busy. If '-write fault' is active or if '-drive ready' or '-seek complete' are inactive, the controller will not execute any command. Any code not defined in the following table causes an Aborted Command error. Interrupt request 14 is reset when any command is written. Interrupt level 14 is not shared. The following are acceptable commands to the command register:

Command	Bits
	7 6 5 4 3 2 1 0
Restore	0 0 0 1 x x x x
Seek	0 1 1 1 x x x x
Read Sector	001000LT
Write Sector	001100LT
Format Track	01010000
Read Verify	010000T
Diagnose	10010000
Set Parameters	10010001
Reserved	00111100
Init ESDI	1 1 1 0 0 0 0 0
Write Stack	1 1 1 0 1 0 0 0
Read Stack	11100100

Figure 3. Valid Command-Register Commands

The following figure shows the bit definitions for bits L and T:

Bit	Definition	0	1
	Data Mode	Data Only	Data 7 byte ECC
	Retry Mode	Retries Enabled	Retries Disabled

Figure 4. L and T Bit Definitions

Note: The system verifies the operation of ECC by reading and writing with the ECC bytes. When retries are disabled, ECC and ID field retries are limited to less than two complete revolutions.

The following are descriptions of the valid command-register commands:

Restore

A seek to cylinder 0 command is sent to the selected drive. The drive heads seek to cylinder 0 and any track offsets are cleared. The command terminates if the drive cannot accept the command, a transfer protocol or a transfer parity error is detected. When the command is terminated, error bits are set in the status register and the error register. An interrupt is generated at the end of the command.

Seek

The Seek command moves the read/write heads to the cylinder specified in the task files. The adapter supports overlapped seeking on two drives. An interrupt is generated at the completion of the command.

Read Sector

A number of sectors (1-256) may be read from the fixed disk with or without the ECC field appended in the Programmed I/O (PIO) mode. If the heads are not over the target track, an implied seek occurs. Data errors, up to 12 bits in length, are automatically corrected on Read Short commands. If an uncorrectable error occurs, the data transfer still takes place; however, a multisector read ends after the system reads the sector in error. Interrupts occur as each sector is read by the system. No interrupt is generated at the end of the command, after the last sector is read by the system.

Write Sector

A number of sectors (1-256) may be written to the fixed disk with or without the ECC field appended in the PIO mode. The Write Sector command also supports implied seeks. Interrupts for the Write command occur before each sector is transferred to the buffer (except the first) and at the end of the command. The first sector may be written to the buffer immediately after the command has been sent, and 'data request' is active.

Format Track

The track specified by the task file is formatted with ID and data fields according to the interleave table transferred to the buffer. The interleave table is composed of two bytes per sector as follows: 00, Physical Sector 1, 00, Physical Sector 2, ... 00, Physical Sector 17. The table for 4-to-1 interleave is: 00, 01, 00, 0A, 00, 13, 00, 1C, 00, 02, 00, 0B, 00, 14, 00, 1D, 00, 08, 00, 11, 00, 1A, 00, 23, 00, 09, 00, 12, 00, 1B, 00, 24. The data transfer must be 512 bytes even though the table may be only 72 bytes. The sector count register must be loaded with the number of sectors per track before each Format Track command. An interrupt is generated at the completion of the command; the Format Track command supports no error reporting. A bad block may be specified by replacing a 00 table entry with an 80. When switching between drives, a restore command must be executed prior to attempting a format.

Read Verify

This command is similar to a Read command except that no data is sent to the host. This allows the system to verify the integrity of the fixed disk drive. A single interrupt is generated upon completion of the command or in the event of an error.

Initialize ESDI

This command allows the system to instruct a selected drive by direct command communication. The system must load the transfer data registers (high and low data bytes) prior to issuing the command. The controller serializes the data, adds parity and sends the command to the drive. The drive executes the command and returns status to the transfer data registers for system interpretation.

Diagnose

This command causes the adapter to execute its self-test code and return the results to the error register. An interrupt is generated at the completion of this command.

Write Data Stack

This system diagnostic command verifies the I/O channel to controller data path and control logic. The data sector buffer must be filled with 512 data bytes. The data is not examined by the control processor for correct information. The controller requests data using the normal data request status bit. Command completion will not generate a completion interrupt. A fixed-disk drive does not need to be present for command execution.

Read Data Stack

This system diagnostic command transfers the sector data buffer to system memory. The sector buffer data is not altered (from any previous read or write operation). A command completion interrupt is not generated nor is any drive activity required.

Set Parameters

This command sets up the drive parameters (maximum number of heads and sectors per track). The drive/head register specifies the drive affected. The sector count and drive/head registers must be set up before this command is issued. The adapter uses the values specified for track and cylinder crossing during multisector operations. An interrupt is generated at the completion of this command. This command must be issued before any multisector operations are attempted.

Miscellaneous Information

The following is miscellaneous information about the fixed disk drive function:

- The adapter performs normal read/write operations on a data field only after a successful match of that sector's ID with the targeted ID.
- ID fields are checked for errors when read from the disk.
- The adapter supports only ECC on data fields and only CRC on ID fields. The CRC polynomial is X16 + X12 + X5 + 1; the ECC polynomial is X56 + X52 + X50 + X43 + X41 + X34 + X30 + X26 + X24 + X8 + 1. All shift registers are preset to hex F before calculating the checksums, which begin with the respective address marks.

Diskette Function

One or two diskette drives are attached to the adapter through an internal, daisy-chained, flat cable. The attachment supports 160K.-, 320K.-, 360K.-, and 1.2M.-byte diskette drives.

The adapter is designed for a double-density, MFM-coded, diskette drive and uses write precompensation with an analog circuit for clock and data recovery. The diskette-drive parameters are programmable, and the diskette drive's write-protect feature is supported. The adapter is buffered on the I/O bus and uses the system board direct memory access (DMA) for record data transfers. An interrupt level 6 indicates when an operation is complete or when a status condition requires microprocessor attention.

Digital Output Register (Hex 3F2)

The digital output register (DOR) is an output-only register used to control drive motors, drive selection, and feature enable. All bits are cleared by the I/O interface reset line. The bit definitions follow:

Bit 7	Reserved
Bit 6	Reserved
Bit 5	Drive B Motor Enable
Bit 4	Drive A Motor Enable
Bit 3	Enable Diskette Interrupts and DMA
Bit 2	Diskette Function Reset
Bit 1	Reserved
Bit 0	Drive Select—A 0 on this bit indicates that drive A is selected.
Note:	A channel reset clears all bits.

Digital Input Register

The digital input register is an 8-bit, read-only register used for diagnostic purposes. The following are bit definitions for this register:

Bit 7Diskette ChangeBit 6Write GateBit 5Head Select 3/Reduced Write CurrentBit 4Head Select 2

Bit 3	Head Select 1
Bit 2	Head Select 0
Bit 1	Drive Select 1
Bit 0	Drive Select 0.

Note: Bits 0 through 6 apply to the currently selected fixed disk drive.

Data Rates

The diskette function will support three data rates: 250,000, 300,000 and 500,000 bits per second. The 300,000-and 500,000-bps incoming data pulse widths will be those associated with a 500,000-bps data signal.

Diskette Controller

The diskette controller has two registers to which the main system processor has access: a status register and a data register. The 8-bit status register has the status information about the diskette and may be accessed at any time. The 8-bit data register (hex 3F5), which actually consists of several registers in a stack with only one register presented to the data bus at a time, stores data, commands, and parameters, and provides diskette-drive status information. Data bytes are read from or written to the data register in order to program or obtain results after a particular command. The main status register may only be read and is used to facilitate the transfer of data between the processor and diskette controller.

The bits in the main status register (hex 34F) are defined as follows:

Bit 7	Request for Master (RQM)— The data register is ready to send or receive data to or from the processor.
Bit 6	Data Input/Output (DIO)—The direction of data transfer between the diskette controller and the processor. If this bit is a 1, transfer is from the diskette controller data register to the processor; if it is a 0, the opposite is true.
Bit 5	Non-DMA Mode (NDM)—The diskette controller is in the non-DMA mode.
Bit 4	Diskette Controller Busy (CB)— A Read or Write command is being executed.
Bit 3	Reserved.
Bit 2	Reserved.
Bit 1	Diskette Drive B Busy (DBB)— Diskette drive B is in the seek mode.
Bit 0	Diskette Drive A Busy (DAB)— Diskette drive A is in the seek mode.
The diskette co	atroller can perform 11 different commands. Each command is initiated by a

The diskette controller can perform 11 different commands. Each command is initiated by a multibyte transfer from the processor, and the result after execution of the command may also be a

multibyte transfer back to the processor. Because of this multibyte interchange of information between the diskette controller and the processor, each command can be considered to consist of three phases:

Command Phase

The processor issues a sequence of Write commands to the diskette controller that direct the controller to perform a specific operation.

Execution Phase

The diskette controller performs the specified operation.

Result Phase

After completion of the operation, status and other housekeeping information is made available to the processor through a sequence of Read commands to the processor.

Diskette Controller Commands

The following is a list of commands that may be issued to the diskette controller:

- Read Data
- Format a Track
- Scan Equal
- Scan Low or Equal
- Scan High or Equal
- Recalibrate
- Sense Interrupt Status
- Specify
- Sense Drive Status
- Seek
- Invalid.

Symbol Descriptions

The following are descriptions of the symbols used in the Command Definitions later in this section:

- A0 Address Line 0—A 0 selects the main status register, and a 1 selects the data register.
- C Cylinder Number—Contains the current or selected cylinder number in binary notation.
- **D** Data—Contains the data pattern to be written to a sector.
- **D7-D0** Data Bus—An 8-bit data bus in which D7 is the most-significant bit and D0 is the least-significant.
- **DTL** Data Length—When N is 00, DTL is the data length read from or written to a sector.
- EOT End of Track—The final sector number on a cylinder.
- **GPL** Gap Length—The length of gap 3 (spacing between sectors excluding the VCO synchronous field).
- **H** Head Address—The head number, either 0 or 1, as specified in the ID field.
- **HD** Head—The selected head number, 0 or 1. (H = HD in all command words.)
- HLT Head Load Time—The head load time in the selected drive (2 to 256 milliseconds in 2millisecond increments for the 1.2M-byte drive and 4 to 512 milliseconds in 4 millisecond increments for the 320K-byte drive).
- **HUT** Head Unload Time—The head unload time after a read or write operation (0 to 240 milliseconds in 16-millisecond increments for the 1.2M-byte drive and 0 to 480 milliseconds in 32- millisecond increments for the 320K-byte drive.
- MF FM or MFM Mode—A 0 selects FM mode and a 1 selects MFM (MFM is selected only if it is implemented.)
- MT Multitrack—A 1 selects multitrack operation. (Both HD0 and HD1 will be read or written.)
- N Number—The number of data bytes written in a sector.
- NCN New Cylinder—The new cylinder number for a seek operation
- ND Non-Data Mode— This indicates an operation in the nondata mode.
- **PCN** Present Cylinder Number—The cylinder number at the completion of a Sense interrupt status command (present position of the head).
- **R** Record—The sector number to be read or written.
- **R/W** Read/Write—This stands for either a 'read' or 'write' signal.
- **SC** Sector—The number of sectors per cylinder.
- SK Skip—This stands for skip deleted-data address mark.

SRT This 4 bit byte indicates the stepping rate for the diskette drive as follows:

1.2M-Byte Diskette Drive

- 1111 1 millisecond
- 1110 2 milliseconds
- 1101 3 milliseconds

320K-Byte Diskette Drive

- 1111 2 milliseconds
- 1110 4 milliseconds
- 1101 6 milliseconds
- ST 0-ST 1 Status 0-Status 3-One of the four registers that stores status information after a command is executed.
- **STP** Scan Test—If STP is 1, the data in contiguous sectors is compared with the data sent by the processor during a scan operation. If STP is 2, then alternate sections are read and compared.
- **US0-US1** Unit Select—The selected driver number encoded the same as bits 0 and 1 of the digital output register (DOR).

Controller Commands

The following are commands that may be issued to the controller: Note: An X is used to indicate a don't-care condition.

Read Data

Command Phase

The following bytes are issued by the processor in the command phase:

MT	MF	SK	0	0	1	1	0
X	X	X	X	X	HD	US1	US0
С							
Η							
R							
N							
EOT							
GPL							
DTL	•						

Result Phase

The following bytes are issued by the controller in the result phase:

ST0	
ST1	
ST2	
C	
H	
R	
N.	

Format a Track

Command Phase

The following bytes are issued by the processor in the command phase:

0 MF 0 0 1 1 0 0 X X X X X HD US1 US0 N SC GPL D.

Result Phase

The following bytes are issued by the controller in the result phase:

ST0 ST1 ST2 C H R N.

Scan Equal

Command Phase

The following bytes are issued by the processor in the command phase:

MT	MF	SK	1	0	0	0	1
X	X	X	X	X	HD	US1	US0
C							
Н							
R							
N							
EOT							
GPL							
STP	•						

Result Phase

The following bytes are issued by the controller in the result phase:

- STO ST1 ST2 C H R
- N.

Scan Low or Equal

Command Phase

The following bytes are issued by the processor in the command phase:

٠

MT	MF	SK	1	1	0	0	1
X	X	X	Х	Х	HD	US1	US0
C							
H							
R							
N							
EOT							
GPL							
STP	•						

Result Phase

The following bytes are issued by the controller in the result phase:

- STO ST1 ST2 C H R
- N.

Scan High or Equal

Command Phase

The following bytes are issued by the processor in the command phase:

MT	MF	SK	1	1	1	0	1
X	X	X	X	Х	HD	US1	USO
С							
H							
R							
N							
EOT							
GPL							
STP							

Result Phase

The following bytes are issued by the controller in the result phase:

STO ST1 ST2 C H R

N.

Recalibrate

Command Phase

The following bytes are issued by the processor in the command phase:

0 0 0 0 0 0 1 1 1 X X X X X 0 US1 US0

Result Phase

This command has no result phase.

Sense Interrupt Status

Command Phase

The following bytes are issued by the processor in the command phase:

0 0 0 0 1 0 0 0

Result Phase

The following bytes are issued by the controller in the result phase:

STO PCN.

Specify

Command Phase

The following bytes are issued by the processor in the command phase:

0 0 0 0 0 0 1 1 (SRT)(HUT) (HLT) ND.

Result Phase

This command has no result phase.

Sense Driver Status

Command Phase

The following bytes are issued by the processor in the command phase:

0	0	0	0	0	0	1	0
X	Х	Х	Х	Х	HD	US1	USO

Result Phase

The following bytes are issued by the controller in the result phase:

ST3

Seek

Command Phase

The following bytes are issued by the processor in the command phase:

0 0 0 0 1 1 1 1 X X X X X HD US1 US0 NCN.

Result Phase

This command has no result phase.

Invalid

Command Phase

The following bytes are issued by the processor in the command phase:

Invalid Codes X X X X X HD US1 US0

Result Phase

The following bytes are issued by the controller in the result phase:

ST0

Command Status Registers

The following is information about the command status registers ST0 through ST3.

Command Status Register 0 (ST0)

The following are bit definitions for command status register 0:

- Bit 7–Bit 6 Interrupt Code (IC)
 - **00** Normal Termination of Command (NT)—The command was completed and properly executed.
 - 01 Abrupt Termination of Command (AT)—The execution of the command was started but not successfully completed.
 - 10 Invalid Command Issue (IC)—The issued command was never started.
 - 11 Abnormal termination because, during the execution of a command, the 'ready' signal from the diskette drive changed state.
- **Bit 5** Seek End (SE)—Set to 1 when the controller completes the Seek command.
- **Bit 4** Equipment Check (EC)—Set if a 'fault' signal is received from the diskette drive, or if the 'track-0' signal fails to occur after 77 step pulses (Recalibrate Command).
- **Bit 3** Not Ready (NR)—This flag is set when the diskette drive is in the not-ready state and a Read or Write command is issued. It is also set if a Read or Write command is issued to side 1 of a single-sided diskette drive.
- Bit 2 Head Address (HD)—Indicates the state of the head at interrupt.
- **Bit 1–Bit 0** Unit select 1 and 2 (US 1 and 2)—Indicate a drive unit number at interrupt.

Command Status Register 1 (ST1)

The following are bit definitions for command status register 1:

Bit 7	End of Cylinder (EC)—Set when the controller tries to gain access to a sector beyond the final sector of a cylinder.
Bit 6	Not Used—Always 0.
Bit 5	Data Error (DE)—Set when the controller detects a CRC error in either the ID field or the data field.
Bit 4	Overrun (OR)—Set if the controller is not serviced by the main system within a certain time limit during data transfers.
Bit 3	Not Used—This bit is always set to 0.
Bit 2	No Data (ND)—Set if the controller cannot find the sector specified in the ID register during the execution of a Read Data, Write Deleted Data, or Scan Command. This flag is also set if the controller cannot read the ID field without an error during the execution of a Read ID command or, if the starting sector cannot be found during the execution of a Read Cylinder command.
Bit 1	Not Writable (NW)—Set if the controller detects a 'write-protect' signal from the diskette drive during execution of a Write Data, Write Deleted Data, or Format Cylinder command.
Bit 0	Missing Address Mark (MA)—Set if the controller cannot detect the ID address mark. At the same time, the MD of status register 2 is set.

Command Status Register 2 (ST2)

The following are bit definitions for command status register 2:

Bit 7	Not Used—Always 0.
Bit 6	Control Mark (CM)—This flag is set if the controller encounters a sector that has a deleted data-address mark during execution of a Read Data or Scan command.
Bit 5	Data Error in Data Field (DD)—Set if the controller detects an error in the data.
Bit 4	Wrong Cylinder (WC)—This flag is related to ND (no data) and when the contents of C on the medium are different from that stored in the ID register, this flag is set.
Bit 3	Scan Equal Hit (SH)—Set if the contiguous sector data equals the processor data during the execution of a Scan command.
Bit 2	Scan Not Satisfied (SN)—Set if the controller cannot find a sector on the cylinder that meets the condition during a Scan command.
Bit 1	Bad Cylinder (BC)—Related to ND; when the contents of C on the medium are different from that stored in the ID register, and the contents of C is FF, this flag is set.
Bit 0	Missing Address Mark in Data Field (MD)— Set if the controller cannot find a data address mark or a deleted data address mark when data is read from the medium.

Command Status Register 3 (ST3)

The following are bit definitions for command status register 3:

Bit 7	Fault (FT)—Status of the 'fault' signal from the diskette drive.
Bit 6	Write Protect (WP)—Status of the 'write-protect' signal from the diskette drive.
Bit 5	Ready (RY)—Status of the 'ready' signal from the diskette drive.
Bit 4	Track 0 (T0)—Status of the 'track 0' signal from the diskette drive.
Bit 3	Two Side (TS)—Status of the 'two side' signal from the diskette drive.
Bit 2	Head Address (HD)—Status of the 'side-select' signal from the diskette drive.
Bit 1	Unit Select 1 (US 1)—Status of the 'unit-select-1' signal from the diskette drive.
Bit 0	Unit Select 0 (US 0)—Status of the 'unit select 0' signal from the diskette drive.

Interfaces

The system interface is through the I/O channel. The address, DMA, and interrupt assignments are shown in the following figures:

I/O A	ddress		
Primary	Secondary	Read	Write
3F2	372		Digital output register
3F4	374	Main status register	Main status register
3F5	375	Diskette data register	Diskette data register
3F6	376	_	Fixed disk register
3F7	377	Digital input register	Diskette control register

Figure 5. Diskette Function

Note: DMA request is level 2 and interrupt request is level 6. Interrupt level 6 is a nonshared interrupt.

I/O A	ddress		
Primary	Secondary	Read	Write
1F0	170	Data register	Data register
1F1	171	Error register	Not used
1F2	172	Sector count	Sector count
1F3	173	Sector number	Sector number
1F4	174	Cylinder low	Cylinder low
1F5	175	Cylinder high	Cylinder high
1F6	176	Drive/head register	Drive/head register
1F7	177	Status register	Command register

Figure 6. Fixed Disk Function

Note: Interrupt request is level 14. Interrupt level 14 is a nonshared interrupt.

The following operations are supported by this adapter:

- Sixteen bit programmed I/O (PIO) data transfers to the fixed disk. All other transfers must be 8 bits wide.
- The I/O addresses, recognized by the adapter for either the fixed disk or the diskette function, are independently selected by jumpers.

Interface Lines

The interface to the fixed disk drive consists of two cables: 'control' and 'data'. The following figures show signals and pin assignments for these cables:

Signal Name	Signal Pin	Gnd Pin
- Head Select 2 ³	2	1
- Head Select 2 ²	4	3
- Write Gate	6	5
- Configuration/Status Data	8	7
- Transfer Acknowledge	10	9
- Attention	12	11
- Head Select 20	14	13
- Sector	16	15
- Head Select 2 ¹	18	17
- Index	20	19
- Ready	22	21
- Transfer Request	24	23
- Drive Select 1	26	25
- Drive Select 2	28	27
- Drive Select 3	30	29
- Read Gate	32	31
- Command Data	34	33

Figure 7. Control Signal Lines (J1/P1)

Note: Connection is through a 2-by-17 Berg connector. Pin 15 is reserved to polarize the connector.

Signal Name	Signal Pin	Gnd Pin
- Drive Selected	1	
- Sector	2	
- Command Complete	3	
Reserved	4	
Reserved	5	6
+ Write Clock	7	
- Write Clock	8	
Reserved	9	
+ Read/Reference Clock	10	
- Read/Reference Clock	11	12
+ NRZ Write Data	13	15
- NRZ Write Data	14	16.
+ NRZ Read Data	17	
- NRZ Read Data	18	19
- Index	20	

Figure 8. Data Transfer Signal Lines (J2/P2)

Note: Connection is through a 2-by-10 Berg connector. Pin 8 is reserved to polarize the connector.

Signal Name	Signal Pin	Gnd Pin
- Reduced Write	2	1
- Reserved	4	3
- Reserved	6	5
- Index	8	7
- Motor Enable Drive 1	10	9
- Drive Select 2	12	11
- Drive Select 1	14	13
- Motor Enable Drive 2	16	15
- Direction Select	18	17
- Step	20	19
- Write Data	22	21
- Write Gate	24	23
- Track 00	26	25
- Write Protect	28	27
- Read Data	30	29
- Side 1 Select	32	31
- Diskette Change	34	33

The interface to the diskette drives is a single cable that carries both data and control signals. The signals and pin assignments are as follows:

Figure 9. Control Signal Lines (J1/P1)

Note: Connection is through a 2-by-17 Berg connector. Pin 15 is reserved to polarize the connector.

Personal Computer Hardware Reference Library

Enhanced Small Device Interface (ESDI) Adapter

TNL SN20-9844 (March 1987) to 75X0235

Contents

Description	 1
Diskette Function	 10
Interfaces	 24

TNL SN20-9844 (March 1987) to 75X0235

Description

The Enhanced Small Device Interface (ESDI) Adapter connects to the system board using one of the I/O slots. The adapter controls the 5-1/4 inch diskette drives and fixed-disk drives. Connectors on the adapter supply all the signals necessary to operate up to two fixed-disk drives and two diskette drives. The adapter allows concurrent data operations on one diskette and one fixed-disk drive.

The adapter operates when connected to a channel I/O slot. This channel is described in the "I/O Channel" section of the RT PC Technical Reference Manual.

Fixed Disk Function

The fixed disk function features 512-byte sectors; high-speed, Programmed I/O (PIO) data transfers; Error Correcting Code (ECC) correction of up to 12 bits on data fields; multiple sector operations across track and cylinder boundaries; and on-board diagnostic tests. The adapter supports two fixed disks with up to 16 read/write heads and 2048 cylinders.

Task File

I/O Address			
Primary	Secondary	Read	Write
1F0	170	Data register	Data register
1F1	171	Error register	Not used
1F2	172	Sector count	Sector count
1F3	173	Sector number	Sector number
1F4	174	Cylinder low	Cylinder low
1F5	175	Cylinder high	Cylinder high
1F6	176	Drive/head register	Drive/head register
1F7	177	Status register	Command register

A task file, which contains eight registers, controls fixed-disk operations. The following figure shows the addresses and functions of these registers:

Figure 1. Task File

Task File Registers

Data Register

The data register provides access to the sector buffer for read/write operations in the PIO mode. This register must not be accessed unless a Read/Write command is being executed. The register provides a 16-bit path into the sector buffer for normal Read/Write commands. When a R/W Long is issued, the 7 ECC bytes are transferred by byte with at least 2 microseconds between transfers. Data Request (DRQ) must be active before the transferring of the ECC bytes.

Error Register

The error register is a read-only register that contains specific information related to the previous command. The data is valid only when the error bit in the status register is set, unless the adapter is in diagnostic mode. Diagnostic mode is the state immediately after power is switched on or after a **Diagnose** command. In these cases, the register must be checked regardless of the status register indicator. The following are bit values for the diagnostic mode:

Diagnostic Mode

- 01 No errors
- **02** ESDI adapter device error
- 03 Disk controller error
- 04 Sector buffer error
- 05 ECC device error
- 06 Logic support device error
- 07 Control processor error.

The following are bit definitions for the operational mode:

Operational Mode

- **Bit 0** Data Address Mark (DAM) Not Found—This bit indicates that DAM could not be found within 16 bytes of the ID field.
- **Bit 1** TR 000 Error—This bit will be set if, during a Restore command, the track 000 line from the fixed disk is not true within 2047 step pulses to the drive.
- **Bit 2** Aborted Command—A command is aborted based on the drive status (Write Fault, Not Seek Complete, Drive Not Ready, or an invalid command). The status and error registers may be decoded to determine the cause.
- Bit 3 Not used.
- **Bit 4** ID Not Found—The ID field with the specified cylinder, head, and sector number could not be found. If retries are enabled, the controller attempts to read the ID 160 times before indicating the error. If retries are disabled, the track is scanned a maximum of 20 times before setting this error bit.
- Bit 5 Not used.
- **Bit 6** Data ECC Error—This bit indicates that an uncorrectable ECC error occurred in the target's data field during a read command.
- Bit 7 Bad Block Detect—This bit indicates that the bad block mark was detected in the target's ID field. No Read or Write commands will be executed in any data fields marked bad.

Sector Count Register

The sector count register defines the number of sectors transferred during a Verify, Read, Write, or Format command. During a multisector operation, the sector count is decremented and the sector number is incremented. When the disk is being formatted, the number of sectors per track must be loaded into the register prior to each Format command. The adapter supports multisector transfers across track and cylinder boundaries. The drive characteristics must be set up by the Set Parameters command before initiating a multisector transfer. The sector count register must be loaded with the number of sectors to be transferred for any data-related command.

Note: A 0 in the sector count register specifies a 256-sector transfer.

Sector Number Register

The target's logical sector number for Read, Write, and Verify commands is loaded into this register. The starting sector number is loaded into this register for multisector operations.

Cylinder Number Registers

The target number for Read, Write, Seek, and Verify commands is loaded into these registers as shown in the following figure. The cylinder-number registers address up to 2048 cylinders.

	Cylinder High	Cylinder Low
Register bits	76543210	76543210
Cylinder bits	A98	76543210

Figure 2. Cylinder Number Registers

Drive/Head Register

DIL / SELLO I	Bit	7	Set to	1
---------------	-----	---	--------	---

- Bit 6 Set to 0
- Bit 5 Set to 1
- **Bit 4** Drive Select—This bit selects the drive. A 0 indicates the first fixed-disk drive, and a 1 indicates the second.
- **Bit 3-Bit 0** Head Select Bits—Bits 3 through 0 specify the desired read/write head. Bit 0 is the least significant (0101 selects head 5). The adapter supports up to 16 read/write heads. Note: This register must be loaded with the maximum number of heads for each drive before a Set Parameters command is issued.

Status Register

The controller sets up the status register with the command status after execution. The program must look at this register to determine the result of any operation. If the busy bit is set, no other bits are valid. A read of the status register clears interrupt request 14. If 'write fault' or 'error' is active, or if 'seek complete' or 'ready' is inactive, a multisector operation is aborted.

The following defines the bits of the status register:

Bit 7	Busy—This bit indicates the controller status. A 1 indicates the controller is executing a command. If this bit is set, no other status register bit is valid, and the other registers reflect the status register's contents; therefore, the busy bit must be examined before any fixed disk register is read.
Bit 6	Drive Ready—A 1 on this bit together with a 1 on seek complete bit (bit 4) indicates that the fixed-disk drive is ready to read, write, or seek. A 0 indicates that read, write, and seek are inhibited.
Bit 5	Write Fault—A 1 on this bit indicates improper operation of the drive; read, write, or seek is inhibited.
Bit 4	Seek Complete—A 1 on this bit indicates that the read/write heads have completed a seek operation.
Bit 3	Data Request—This bit indicates that the sector buffer requires servicing during a Read or Write command. If either bit 7 (busy) or this bit is active, a command is being executed. Upon receipt of any command, this bit is reset.
Bit 2	Corrected Data—A 1 on this bit indicates that the data read from the disk was successfully corrected by the ECC algorithm. Soft errors will not end multisector operations.

- Bit 1 Command in progress.
- **Bit 0** Error—A 1 on this bit indicates that the previous command ended in an error, and that one or more bits are set in the error register. The next command from the controller resets the error bit. This bit, when set, halts multisector operations.

Command Register

The command register accepts twelve commands to perform fixed disk operations. Commands are executed by loading the task file and writing in the command register while the controller status is not busy. If '-write fault' is active or if '-drive ready' or '-seek complete' are inactive, the controller will not execute any command. Any code not defined in the following table causes an Aborted Command error. Interrupt request 14 is reset when any command is written. Interrupt level 14 is not shared. The following are acceptable commands to the command register:

Command	Bi	ts						
	7	6	5	4	3	2	1	0
Restore	0	0	0	1	x	х	х	X
Seek	0	1	1	1	х	х	х	х
Read Sector	0	0	1	0	0	0	L	Т
Write Sector	0	0	1	1	0	0	L	Т
Format Track	0	1	0	1	0	0	0	0
Read Verify	0	1	0	0	0	0	0	Т
Diagnose	1	0	0	1	0	0	0	0
Set Parameters	1	0	0	1	0	0	0	1
Reserved	0	0	1	1	1	1	0	0
Init ESDI	1	1	1	0	0	0	0	0
Write Stack	1	1	1	0	1	0	0	0
Read Stack	1	1	1	0	0	1	0	0

Figure 3. Valid Command-Register Commands

BitDefinition01LData ModeData OnlyData + 7 byte ECCTRetry ModeRetries EnabledRetries Disabled

The following figure shows the bit definitions for bits L and T:

Figure 4. L and T Bit Definitions

Note: The system verifies the operation of ECC by reading and writing with the ECC bytes. When retries are disabled, ECC and ID field retries are limited to less than two complete revolutions.

The following are descriptions of the valid command-register commands:

Restore

A seek to cylinder 0 command is sent to the selected drive. The drive heads seek to cylinder 0 and any track offsets are cleared. The command terminates if the drive cannot accept the command, a transfer protocol or a transfer parity error is detected. When the command is terminated, error bits are set in the status register and the error register. An interrupt is generated at the end of the command.

Seek

The Seek command moves the read/write heads to the cylinder specified in the task files. The adapter supports overlapped seeking on two drives. An interrupt is generated at the completion of the command.

Read Sector

A number of sectors (1–256) may be read from the fixed disk with or without the ECC field appended in the (PIO) mode. If the heads are not over the target track, an implied seek occurs. Data errors, up to 12 bits in length, are automatically corrected on Read Short commands. If an uncorrectable error occurs, the data transfer still takes place; however, a multisector read ends after the system reads the sector in error. Interrupts occur as each sector is read by the system. No interrupt is generated at the end of the command, after the last sector is read by the system.

Write Sector

A number of sectors (1-256) may be written to the fixed disk with or without the ECC field appended in the PIO mode. The Write Sector command also supports implied seeks. Interrupts for the Write command occur before each sector is transferred to the buffer (except the first) and at the end of the command. The first sector may be written to the buffer immediately after the command has been sent, and 'data request' is active.

Format Track

The track specified by the task file is formatted with ID and data fields according to the interleave table transferred to the buffer. The interleave table is composed of two bytes per sector as follows: 00, Physical Sector 01, 00, Physical Sector 02, ... 00, Physical Sector 24. The hexadecimal table for 4-to-1 interleave is: 00, 01, 00, 0A, 00, 13, 00, 1C, 00, 02, 00, 0B, 00, 14, 00, 1D, 00, 03, 00, 0C, 00, 15, 00, 1E, 00, 04, 00, 0D, 00, 16, 00, 1F, 00, 05, 00, 0E, 00, 17, 00, 20, 00, 06, 00, 0F, 00, 18, 00, 21, 00, 07, 00, 10, 00, 19, 00, 22, 00, 08, 00, 11, 00, 1A, 00, 23, 00, 09, 00, 12, 00, 1B, 00, 24. The data transfer must be 512 bytes even though the table may be only 72 bytes. The sector count register must be loaded with the number of sectors per track before each Format Track command. An interrupt is generated at the completion of the command; the Format Track command supports no error reporting. A bad block may be specified by replacing a 00 table entry with an 80. When switching between drives, a restore command must be executed prior to attempting a format.

Read Verify

This command is similar to a Read command except that no data is sent to the host. This allows the system to verify the integrity of the fixed-disk drive. A single interrupt is generated upon completion of the command or in the event of an error.

Diagnose

This command causes the adapter to execute its self-test code and return the results to the error register. An interrupt is generated at the completion of this command.

Write Data Stack

This system diagnostic command verifies the I/O channel to controller data path and control logic. The data sector buffer must be filled with 512 data bytes. The data is not examined by the control processor for correct information. The controller requests data using the normal data request status bit. Command completion will not generate a completion interrupt. A fixed-disk drive does not need to be present for command execution.

Read Data Stack

This system diagnostic command transfers the sector data buffer to system memory. The sector buffer data is not altered (from any previous read or write operation). A command completion interrupt is not generated nor is any drive activity required.

Set Parameters

This command sets up the drive parameters (maximum number of heads and sectors per track). The drive/head register specifies the drive affected. The sector count and drive/head registers must be set up before this command is issued. The adapter uses the values specified for track and cylinder crossing during multisector operations. An interrupt is generated at the completion of this command. This command must be issued before any multisector operations are attempted.

Miscellaneous Information

The following is miscellaneous information about the fixed-disk drive function:

- The adapter performs normal read/write operations on a data field only after a successful match of that sector's ID with the targeted ID.
- ID fields are checked for errors when read from the disk.
- The adapter supports only ECC on data fields and only Cycle Redundancy Check (CRC) on ID fields. The CRC polynomial is X16 + X12 + X5 + 1; the ECC polynomial is X56 + X52 + X50 + X43 + X41 + X34 + X30 + X26 + X24 + X8 + 1. All shift registers are preset to hex F before calculating the checksums, which begin with the respective address marks.

Diskette Function

One or two diskette drives are attached to the adapter through an internal, daisy-chained, flat cable. The attachment supports 360K- and 1.2M-byte diskette drives.

The adapter is designed for a double-density, MFM-coded, diskette drive and uses write precompensation with an analog circuit for clock and data recovery. The diskette-drive parameters are programmable, and the diskette drive's write-protect feature is supported. The adapter is buffered on the I/O bus and uses the system board direct memory access (DMA) for record data transfers. An interrupt level 6 indicates when an operation is complete or when a status condition requires microprocessor attention. Interrupt level 6 does not support interrupt sharing.

Digital Output Register (Hex 3F2)

The digital output register (DOR) is a write-only register used to control drive motors, drive selection, and feature enable. All bits are cleared by the I/O interface reset line. The bit definitions follow:

Bit 7	Reserved
Bit 6	Reserved
Bit 5	Drive B Motor Enable (Active high)
Bit 4	Drive A Motor Enable (Active high)
Bit 3	Enable Diskette Interrupts and DMA (Active high)
Bit 2	Diskette Function Reset (Active low)
Bit 1	Reserved
Bit 0	Drive Select—A 0 on this bit indicates that drive A is selected.
	Drive Select—A 1 on this bit indicates that drive B is selected.

Note: A channel reset clears all bits.

Digital Input Register

The digital input register is an 8-bit, read-only register used for diagnostic purposes. All bits are active high. The following are bit definitions for this register:

- Bit 7 Diskette Change
- Bit 6 Write Gate
- Bit 5 Head Select 3/Reduced Write Current

Bit 4	Head	Select	2

Bit 3 Head Select 1

- Bit 2 Head Select 0
- Bit 1 Drive Select 1
- Bit 0 Drive Select 0.

Note: Bits 0 through 6 apply to the currently selected fixed-disk drive.

Diskette Control Register (Hex 3F7)

- Bits 1 0 Selects read/write data rate.
 - **00** 500K-bps
 - **01** 300K-bps
 - 10 250K-bps
 - 11 Reserved

Data Rates

The diskette function will support three data rates: 250,000, 300,000 and 500,000 bits per second. The 300,000- and 500,000-bps incoming data pulse widths will be those associated with a 500,000-bps data signal.

Diskette Controller

The diskette controller has two registers to which the main system processor has access: a status register and a data register. The 8-bit status register has the status information about the diskette and may be accessed at any time. The 8-bit data register (hex 3F5), which actually consists of several registers in a stack with only one register presented to the data bus at a time, stores data, commands, and parameters, and provides diskette-drive status information. Data bytes are read from or written to the data register in order to program or obtain results after a particular command. The main status register may only be read and is used to facilitate the transfer of data between the processor and diskette controller.

The bits in the main status register (hex 3F4) are active high and are defined as follows:

Bit 7	Request for Master (RQM)—The data register is ready to send or receive data to or from the processor.
Bit 6	Data Input/Output (DIO)—The direction of data transfer between the diskette controller and the processor. If this bit is a 1, transfer is from the diskette controller data register to the processor; if it is a 0, the opposite is true.
Bit 5	Non-DMA Mode (NDM)—The diskette controller is in the non-DMA mode.
Bit 4	Diskette Controller Busy (CB)—A Read or Write command is being executed.
Bit 3	Reserved.
Bit 2	Reserved.
Bit 1	Diskette Drive B Busy (DBB)-Diskette drive B is in the seek mode.
Bit 0	Diskette Drive A Busy (DAB)—Diskette drive A is in the seek mode.

The diskette controller can perform 7 different commands. Each command is initiated by a multibyte transfer from the processor, and the result after execution of the command may also be a multibyte transfer back to the processor. Because of this multibyte interchange of information between the diskette controller and the processor, each command can be considered

Command Phase

to consist of three phases:

The processor issues a sequence of Write commands to the diskette controller that direct the controller to perform a specific operation.

Execution Phase

The diskette controller performs the specified operation.

Result Phase

After completion of the operation, status and other housekeeping information is made available to the processor through a sequence of Read commands to the processor. An interrupt (level 6) occurs at the beginning of the result phase.

During command or result phases the main status register must be read by the processor before each byte of information is written or read from the data register. Bits six and seven in the main status register must be in a 0 and 1 state, respectively, before each byte of the command word can be written into the data register.

Diskette Controller Commands

The following is a list of commands that may be issued to the diskette controller:

- Read Data
- Format a Track
- Recalibrate
- Sense Interrupt Status
- Specify
- Seek
- Invalid.

Symbol Descriptions

The following are descriptions of the symbols used in the Command Definitions later in this section:

- A0 Address Line 0—A 0 selects the main status register, and a 1 selects the data register.
- C Cylinder Number—Contains the current or selected cylinder number in binary notation.
- **D** Data—Contains the data pattern to be written to a sector.
- **D7-D0** Data Bus—An 8-bit data bus in which D7 is the most-significant bit and D0 is the least-significant.
- DTL Data Length—When N is 00, DTL is the data length read from or written to a sector.
- **EOT** End of Track—The final sector number on a cylinder.
- **GPL** Gap Length—The length of gap 3 (spacing between sectors excluding the VCO synchronous field).
- H Head Address—The head number, either 0 or 1, as specified in the ID field.
- **HD** Head—The selected head number, 0 or 1. (H = HD in all command words.)
- **HLT** Head Load Time—The head load time in the selected drive (2 to 256 milliseconds in 2-millisecond increments for the 1.2M-byte drive and 4 to 512 milliseconds in 4 millisecond increments for the 320K-byte drive).
- **HUT** Head Unload Time—The head unload time after a read or write operation (0 to 240 milliseconds in 16-millisecond increments for the 1.2M-byte drive and 0 to 480 milliseconds in 32-millisecond increments for the 320K-byte drive.
- MF MFM Mode—A 0 is reserved and a 1 selects MFM.

MT N	Multitrack—A 1 selects multitrack operation. (Both HD0 and HD1 will be read o written.) Number—The number of data bytes written in a sector. Number of	
	bytes = $128 \times 2^*$ N.	
NCN	New Cylinder—The new cylinder number for a seek operation	
ND	No-Data—This indicates no data in status register 0.	
PCN	Present Cylinder Number—The cylinder number at the completion of a Sense interrupt status command (present position of the head).	
R	Record—The sector number to be read or written.	
R/W	Read/Write—This stands for either a 'read' or 'write' signal.	
SC	Sector—The number of sectors per cylinder.	
SK	Skip—This stands for skip deleted-data address mark.	
SRT	This 4 bit byte indicates the stepping rate for the diskette drive as follows:	
	1.2M-Byte Diskette Drive11111 millisecond11102 milliseconds11013 milliseconds	
	320K-Byte Diskette Drive11112 milliseconds11104 milliseconds11016 milliseconds	
ST 0—ST 1	Status 0—Status 3—One of the four registers that stores status information after a command is executed.	
US0	Drive A selected.	
US1	Drive B selected.	

Controller Commands

The following are commands that may be issued to the controller: Note: An X is used to indicate a don't care condition.

Read Data

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 – 0
Byte 0	MT MF SK 0 0 1 1 0
Byte 1	X X X X X HD US1 US0
Byte 2	Cylinder Number
Byte 3	Head Address
Byte 4	Record
Byte 5	Number
Byte 6	End of Track
Byte 7	Gap Length
Byte 8	Data Length

TNL SN20-9844 (March 1987) to 75X0235

Result Phase

The following bytes are issued by the controller in the result phase:

Byte	Bits 7 – 0
Byte 0	Status 0
Byte 1	Status 1
Byte 2	Status 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Record
Byte 6	Number

Format a Track

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 – 0		
Byte 0	0 MF 0 0 1 1 0 1		
Byte 1	X X X X X HD US1 US0		
Byte 2	Number		
Byte 3	Sector		
Byte 4	Gap Length		
Byte 5	Data		

Result Phase

The following bytes are issued by the controller in the result phase:

Byte	Bits 7 – 0
Byte 0	Status 0
Byte 1	Status 1
Byte 2	Status 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Record
Byte 6	Number

Recalibrate

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 – 0
Byte 0	0 0 0 0 0 1 1 1
Byte 1	X X X X X 0 US1 US0

Result Phase

This command has no result phase.

Sense Interrupt Status

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 – 0
Byte 0	0 0 0 0 1 0 0 0

Result Phase

The following bytes are issued by the controller in the result phase:

Byte	Bits 7 – 0	
Byte 0	Status 0	
Byte 1	Present Cylinder Number	

Specify

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 – 0
Byte 0	0 0 0 0 0 0 1 1
Byte 1	(SRT)(HUT)
Byte 2	(HLT)ND

Result Phase

This command has no result phase.

Seek

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 – 0	
Byte 0	0 0 0 0 1 1 1 1	
Byte 1	X X X X X HD US1 US0	
Byte 2	New Cylinder	

Result Phase

This command has no result phase.

TNL SN20-9844 (March 1987) to 75X0235

Invalid

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 – 0
Byte 0	Invalid Codes

Result Phase

The following bytes are issued by the controller in the result phase:

Byte	Bits 7 – 0
Byte 0	Status 0

Command Status Registers

The following is information about the command status registers ST0 through ST3. All bits are active high.

Command Status Register 0 (ST0)

The following are bit definitions for command status register 0:

Bit 7–Bit 6 Interrupt Code (IC)

- **00** Normal Termination of Command (NT)—The command was completed and properly executed.
- 01 Abrupt Termination of Command (AT)—The execution of the command was started but not successfully completed.
- 10 Invalid Command Issue (IC)—The issued command was never started.
- 11 Abnormal termination because, during the execution of a command, the 'ready' signal from the diskette drive changed state.
- Bit 5 Seek End (SE)—Set to 1 when the controller completes the Seek command.
- **Bit 4** Equipment Check (EC)—Set if a 'fault' signal is received from the diskette drive, or if the 'track-0' signal fails to occur after 77 step pulses (Recalibrate Command).
- **Bit 3** Not Ready (NR)—This flag is set when the diskette drive is in the not-ready state and a Read or Write command is issued. It is also set if a Read or Write command is issued to side 1 of a single-sided diskette drive.
- Bit 2 Head Address (HD)—Indicates the state of the head at interrupt.
- Bit 1 Unit select 2 (US 2)—Indicates drive B at interrupt.
- **Bit 0** Unit select 1 (US 1)—Indicates drive A at interrupt.

Command Status Register 1 (ST1)

The following are bit definitions for command status register 1:

- Bit 7 End of Cylinder (EC)—Set when the controller tries to gain access to a sector beyond the final sector of a cylinder.
- Bit 6 Not Used—Always 0.
- Bit 5 Data Error (DE)—Set when the controller detects a CRC error in either the ID field or the data field.
- **Bit 4** Overrun (OR)—Set if the controller is not serviced by the main system within a certain time limit during data transfers. The time limits are 11 microseconds for the 500K-bps data rate, 17.5 microseconds for the 300K-bps, and 24 microseconds for the 250K-bps data rate.
- Bit 3 Not Used—This bit is always set to 0.
- Bit 2 No Data (ND)—Set if the controller cannot find the sector specified in the ID register during the execution of a Read Data, Write Deleted Data, or Scan Command. This flag is also set if the controller cannot read the ID field without an error during the execution of a Read ID command or, if the starting sector cannot be found during the execution of a Read Cylinder command.
- **Bit 1** Not Writable (NW)—Set if the controller detects a 'write-protect' signal from the diskette drive during execution of a Write Data, Write Deleted Data, or Format Cylinder command.
- Bit 0 Missing Address Mark (MA)—Set if the controller cannot detect the ID address mark. At the same time, the MD of status register 2 is set.

Command Status Register 2 (ST2)

The following are bit definitions for command status register 2:

- Bit 7 Not Used—Always 0.
- **Bit 6** Control Mark (CM)—This flag is set if the controller encounters a sector that has a deleted data-address mark during execution of a Read Data or Scan command.
- Bit 5 Data Error in Data Field (DD)—Set if the controller detects an error in the data.
- **Bit 4** Wrong Cylinder (WC)—This flag is related to ND (no data) and when the contents of C on the medium are different from that stored in the ID register, this flag is set.
- Bit 3 Reserved
- Bit 2 Reserved
- Bit 1 Bad Cylinder (BC)—Related to ND; when the contents of C on the medium are different from that stored in the ID register, and the contents of C is FF, this flag is set.
- Bit 0 Missing Address Mark in Data Field (MD)—Set if the controller cannot find a data address mark or a deleted data address mark when data is read from the medium.

Command Status Register 3 (ST3)

The following are bit definitions for command status register 3:

Bit 7	Fault (FT)—Status of the 'fault' signal from the diskette drive.		
Bit 6	Write Protect (WP)—Status of the 'write-protect' signal from the diskette drive.		
Bit 5	Ready (RY)—Status of the 'ready' signal from the diskette drive.		
Bit 4	Track 0 (T0)—Status of the 'track 0' signal from the diskette drive.		
Bit 3	Two Side (TS)—Status of the 'two side' signal from the diskette drive.		
Bit 2	Head Address (HD)-Status of the 'side-select' signal from the diskette drive.		
Bit 1	Unit Select 1 (US 1)—Status of the 'unit-select-1' signal from the diskette drive.		
Bit 0	Unit Select 0 (US 0)—Status of the 'unit select 0' signal from the diskette drive.		

Interfaces

The system interface is through the I/O channel. The address, DMA, and interrupt assignments are shown in the following figures:

I/O Address			
Primary	Secondary	Read	Write
3F2	372	Main status register	Digital output register
3F4 3F5	374 375	Main status register Diskette data register	Diskette data register
3F6 3F7	376 377	Disk alternate status reg. Digital input register	Disk control register Diskette control register

Figure 5. Diskette Function

Note: DMA request is level 2 and interrupt request is level 6. Interrupt level 6 is a nonshared interrupt.

I/O Address			
Primary	Secondary	Read	Write
1F0	170	Data register	Data register
1F1	171	Error register	Not used
1F2	172	Sector count	Sector count
1F3	173	Sector number	Sector number
1F4	174	Cylinder low	Cylinder low
1F5	175	Cylinder high	Cylinder high
1F6	176	Drive/head register	Drive head register
1F7	177	Status register	Command register

Figure 6. Fixed Disk Function

Note: Interrupt request is level 14. Interrupt level 14 is a nonshared interrupt.

The following operations are supported by this adapter:

- Sixteen bit programmed I/O (PIO) data transfers to the fixed disk. All other transfers must be 8 bits wide.
- The I/O addresses, recognized by the adapter for the fixed disk and the diskette function, are selected by a jumper. Jumper insertion on pins 1 and 2 defines the secondary addresses.

Interface Lines

The interface to the fixed-disk drive consists of two cables: 'control' and 'data'. The following figures show signals and pin assignments for these cables:

Signal Name	Signal Pin	Gnd Pin
- Head Select 2 ³	2	1
- Head Select 2 ²	4	3
- Write Gate	6	5
- Configuration/Status Data	8	7
- Transfer Acknowledge	10	9
- Attention	12	11
- Head Select 2 ⁰	14	13
- Sector	16	15
- Head Select 2 ¹	18	17
- Index	20	19
- Ready	22	21
- Transfer Request	24	23
- Drive Select 1	26	25
- Drive Select 2	28	27
- Drive Select 3	30	29
- Read Gate	32	31
- Command Data	34	33

Figure 7. Control Signal Lines (J1/P1)

Note: Connection is through a 2-by-17 Berg connector. Pin 15 is reserved to polarize the connector.

Signal Name	Signal Pin	Gnd Pin
- Drive Selected	1	
- Sector	2	
- Command Complete	3	
Reserved	4	
Reserved	5	6
+ Write Clock	7	
- Write Clock	8	
Reserved	9	
+ Read/Reference Clock	10	
- Read/Reference Clock	11	12
+ NRZ Write Data	13	15
- NRZ Write Data	14	16
+ NRZ Read Data	17	
- NRZ Read Data	18	19
- Index	20	

Figure 8. Data Transfer Signal Lines (J2/P2)

Note: Connection is through a 2-by-10 Berg connector. Pin 5 is reserved to polarize the connector.

The interface to the diskette drives is a single cable that carries both data and control signals. The signals and pin assignments are as follows:

Signal Name	Signal Pin	Gnd Pin
- Reduced Write	2	1
- Reserved	4	3
- Reserved	6	5
- Index	8	7
- Motor Enable Drive 1	10	9
- Drive Select 2	12	11
- Drive Select 1	14	13
- Motor Enable Drive 2	16	15
- Direction Select	18	17
- Step	20	19
- Write Data	22	21
- Write Gate	24	23
- Track 00	26	25
- Write Protect	28	27
- Read Data	30	29
- Side 1 Select	32	31
- Diskette Change	34	33

Figure 9. Control Signal Lines (J1/P1)

Note: Connection is through a 2-by-17 Berg connector. Pin 5 is reserved to polarize the connector.

Personal Computer Hardware Reference Library

Extended Enhanced Small Device Interface (ESDI) Adapter

TNL SN20-9844 (March 1987) to 75X0235

Contents

Description	
Fixed-Disk PIO Mode.	2
Fixed-Disk DMA Mode	13
Diskette Function	30
Interfaces	44

TNL SN20-9844 (March 1987) to 75X0235

Description

The Extended Enhanced Small Device Interface (ESDI) Adapter connects to the system board using one of the 16-bit I/O slots. The adapter controls the 5-1/4 inch diskette drives and fixed-disk drives. Connectors on the adapter supply all the signals necessary to operate up to three fixed-disk drives and two diskette drives. The adapter allows concurrent data operations on one diskette and one fixed-disk drive as well as overlapped seeks on the fixed-disk drives.

The adapter supports 16 bit data transfers to the fixed disk in both Programmed Input/Output (PIO) and system Direct Memory Access (DMA) modes. Status and command PIO transfers to the fixed disk must be 8 bit or 16 bit in PIO mode, but command transfers must be 16 bit in DMA mode. All diskette transfers are 8 bit.

The adapter operates when connected to a channel I/O slot. This channel is described in the "I/O Channel" section of the RT PC Technical Reference Manual.

Fixed-Disk PIO Mode

In PIO mode the adapter accepts commands, returns status, and transfers data with PIO operations. The commands are written to a task file, the status is read from status registers, and the data is transferred to or from a data stack.

The task file registers are loaded with the appropriate information. The last register loaded is the command register. When the command register is loaded, the adapter executes the defined command using the other registers where appropriate.

When a Seek command is issued to the adapter, it selects the appropriate drive and sends the correct command data to the selected drive. Then the adapter resets the busy bit in the status register. When the previous Seek command is completed, the system sends either a Read or Write command to the drive. During a Write operation, the adapter sets Data Request when it is ready to accept write data into the data stack. After the data is transferred into the stack, the adapter remains busy until the data transfer to the selected drive is complete.

During a Read operation, the adapter sets the busy bit in the status register. After the first sector of data is read from the disk into the data stack, the adapter resets the busy bit and sets the Data Request bit to signal the system that a sector of data is ready for transferring to the system. The system will PIO the data (2 bytes at a time) and the adapter resets Data Request after the last data transfer occurs.

Task File Registers

PIO fixed-disk operations are controlled by a task file which is a set of 8-bit registers. PIO data transfers are done by a 16-bit data stack. The I/O addresses and register definitions are shown in the table below.

PIO Mod	e Address		
Primary	Secondary	Read	Write
01F0	0170	Data stack	Data stack
01F1	0171	Error register	Not used
01F2	0172	Sector count	Sector count
01F3	0173	Sector number	Sector number
01F4	0174	Cylinder low	Cylinder low
01F5	0175	Cylinder high	Cylinder high
01F6	0176	Drive/head register	Drive/head register
01F7	0177	Status register	Command register
03F6	0376	Interrupt status	Fixed disk register
05F3	0573	Mode control register	Mode control register

Figure 1. Task File

Note: The I/O addresses are selectable by a jumper on J6. P is for primary and S is for secondary.

PIO Data Stack

The data stack is a 16-bit wide stack providing access to an adapter buffer for read, write, format, and other operations which require data transfer. This stack should only be accessed during data transfer operations when Data Request is on and busy is off. The host may read or write from this stack for diagnostic purposes by means of the Read/Write Buffer command.

Error Register

The error register contains specific information related to the previous command. The data is valid only when the error bit in the status register is set, unless the adapter is in diagnostic mode. Diagnostic mode is defined as the time immediately after a adapter reset or after a Diagnose Command has been issued. In these cases the register must be checked regardless of the status register indication.

Diagnostic Mode

X'E1'	No errors
X'E2'	Control buffer error
Х'ЕЗ'	Data buffer error
Х'Еб'	Gate array error
X'E8'	AIC 010 error
X'EA'	8031 error
X'EC'	Read Only Memory (ROM) error
X'EE'	Stuck attention error
X'F0'	Device error bit stuck on

Operational Mode

The following are bit definitions for the PIO operational mode:

X'C0'	Bad block detected alternate
X'80'	Bad block detected—The bad block mark is detected in the target ID field. No Read or Write commands are executed on any data fields marked bad.
X'40'	Data Error Correcting Code (ECC) error—This indicates that an uncorrectable ECC error has occurred in the data field during a Read command. If retries are enabled, the controller attempts to read the sector 48 times before posting this error, otherwise no retries are attempted.
X'20'	Reserved
X'10'	ID Not Found—The ID field with the specified cylinder, head, and sector number could not be found. If retries are enabled, the controller attempts to read the ID up to 40 times prior to indicating the error.
X'08'	Adapter failure—This bit indicates an adapter malfunction.
X'04'	Terminated command—A command is aborted based on drive status such as Attention, Not Seek Complete, Drive Not Ready, or an Invalid command. The status and error registers may be decoded to determine the cause.
X'02'	Track 0 error—This bit is set if, during a Restore command, the adapter was not able to complete a recalibrate.

X'01' Data Address Mark (DAM) not found—This indicates that the Data Address Mark (DAM) could not be found within 16 bytes of the ID field. With retries enabled, the adapter attempts to locate the DAM up to 48 times. If retries are disabled, only one attempt is made.

Sector Count Register

The sector count register defines the number of sectors transferred during a Verify, Read, Write, or Format command. During a multisector operation, the sector count is decremented and the sector number is incremented. When the disk is being formatted, the number of sectors per track must be loaded into the register prior to each Format command. The adapter supports multisector transfers across track and cylinder boundaries. The drive characteristics must be set up by the Set Parameters command before initiating a multisector transfer. The sector count register must be loaded with the number of sectors to be transferred for any data-related command.

Notes:

- 1. A 0 in the sector count register specifies a 256-sector transfer.
- 2. For multisector operations involving hard errors, sector count is not decremented after the hard error.
- 3. During single sector operations, the sector number is always decremented after the operation, regardless of errors.

Sector Number Register

The starting sector number for Read, Write, and Verify operations is loaded into this register. During multisector operations, the sector number increments after each sector is read unless a hard error occurs. In this case, the sector is not incremented after the error. For single sector operations the sector number is always incremented regardless of errors.

Cylinder Number Registers

The starting cylinder number for Read, Write, Seek, and Verify is loaded into these registers as shown below. Up to 2048 cylinders are addressed by the cylinder number registers.

	Cylinder High	Cylinder Low
Register bits	76543210	76543210
Cylinder bits	A98	76543210

Figure 2. Cylinder Number Registers

Drive/Head Register

- Bit 7 Drive enable
- **Bit 6** Drive select bit 1—Select drive 2.
- Bit 5 Reserved
- **Bit 4** Drive select bit 0—Selects drive 0 or 1.
- **Bit 3 Bit 0** Head select bits—Bits 3 through 0 specify the desired read/write head. Bit 0 is the least significant (0101 selects head 5). The adapter supports up to 16 read/write heads.

Note: This register must be loaded with the maximum number of heads for each drive before a Set Parameters command is issued.

The desired drive is specified by bits 7, 6 and 4 in the following way:

Bit 7	Bit 6	Bit 4	Drive
1	0	0	0
1	0	1	1
1	1	0	2
1	1	1	Reserved
0	X	X	No file selected

PIO Status Register

The controller sets up the status register with the command status after execution. The program must look at this register to determine the result of any PIO operation. If the busy bit is set, no other bits are valid. A read of the status register clears the active interrupt request. If 'write fault' or 'error' is active, or if 'command complete' or 'drive ready' is inactive, a multisector operation is aborted.

The following defines the bits of the status register:

Bit 7	Busy—This bit indicates the controller status. A 1 indicates the controller is executing a command. If this bit is set, no other status register bit is valid, therefore, the busy bit must be examined before any fixed disk register is read.
Bit 6	Drive Ready—A 1 on this bit together with a 1 on command complete bit (bit 4) indicates that the fixed-disk drive is ready to read, write, or seek. A 0 indicates that read, write, and seek are inhibited.
Bit 5	Write Fault—A 1 on this bit indicates improper operation of the drive; read, write, or seek is inhibited.
Bit 4	Command Complete—indicates that all commands to the file that is selected are complete.
Bit 3	Data Request—This bit indicates that the sector buffer requires servicing during a Read or Write command. If either bit 7 (busy) or this bit is active, a command is being executed. Upon receipt of any command, this bit is reset.
Bit 2	Corrected Data—A 1 on this bit indicates that the data read from the disk was successfully corrected by the ECC algorithm. Soft errors will not end multisector operations.
Bit 1	Reserved
Bit 0	Error—A 1 on this bit indicates that the previous command ended in an error, and that one or more bits are set in the error register. The next command from the controller resets the error bit. This bit, when set, halts multisector operations.

Notes:

- 1. Programmers must allow for the possibility that an interrupt could be present and automatically reset when reading the status register.
- 2. After any reset pulse or Diagnose command, busy must be activated within one millisecond and kept active until the self-diagnostics are complete. This time must be at least 10 milliseconds and not more than 1.4 seconds.

PIO Command Register

The command register accepts commands to perform fixed disk operations. Commands are executed by loading the task file and writing in the command register while the controller status is not busy. Any code not defined in the following table may cause an Aborted Command error.

Command	Bi	its						
	7	6	5	4	3	2	1	0
Restore	0	0	0	1	0	0	0	0
Seek	0	1	1	1	0	0	0	0
Read Sector	0	0	1	0	0	0	L	R
Write Sector	0	0	1	1	0	0	L	R
Format Track	0	1	0	1	0	0	0	0
Read Verify	0	1	0	0	0	0	0	R
Diagnose	1	0	0	1	0	0	0	0
Set Parameters	1	0	0	1	0	0	0	1
Init ESDI	1	1	1	0	0	0	0	0
Read Data Buffer	1	1	1	0	0	0	0	1
Write Data Buffer	1	1	1	0	0	0	1	0

Figure 3. Valid Command-Register Commands

The following figure shows the bit definitions for bits L and R:

finition	U	1
		Data + 4 byte ECC Retries Disabled
		ta Mode Data Only try Mode Retries Enabled

Figure 4. L and R Bit Definitions

Notes:

- 1. The system verifies the operation of ECC by reading and writing with the ECC bytes directly to the drive. This is done by setting bit L to 1. If the L bit is a 1, then the sector count must be a 1.
- 2. After a adapter reset, the data transfer mode is set to PIO.

The following are descriptions of the valid command-register commands:

Restore

A seek to cylinder 0 command is sent to the selected drive. The drive heads seek to cylinder 0 and any track offsets are cleared. The seek is retried up to six times before a Recalibrate command is sent. If the Recalibrate command fails, a track 0 error is returned. An interrupt is generated at the completion of the command.

Seek

The Seek command moves the read/write heads to the cylinder specified in the task files. The adapter supports overlapped seeking on all drives. An interrupt is generated when the command has been sent to the file. The system must monitor command complete before sending another command to that drive.

Read Sector

A number of sectors (1–256) may be read from the fixed disk with or without the ECC field appended in the Programmed I/O (PIO) mode. If the heads are not positioned over the target track, an implied seek occurs. Data errors, up to nine bits in length, are corrected if retries are enabled. If an uncorrectable error occurs, the adapter will not transfer the data, returns an uncorrectable error and an interrupt occurs. Interrupts occur as each sector is read by the system. No interrupt is generated at the end of the command, after the last sector is read by the system.

Note: If the L bit is a one, the sector count must be a one.

Write Sector

A number of sectors (1–256) may be written to the fixed disk with or without the ECC field appended in the PIO mode. The Write Sector command also supports implied seeks. Interrupts for the Write command occur before each sector is transferred to the buffer (except the first) and at the end of the command. The first sector may be written to the buffer immediately after the command has been sent, and 'data request' is active. If retries are enabled the adapter makes eight attempts at writing the data before reporting an error.

Note: If the L bit is a one, the sector count must be a one.

Format Track

The track specified by the task file is formatted with ID and data fields according to the interleave table transferred to the buffer. The 1-to-1 interleave table is composed of two hexadecimal bytes per sector as follows: 00, 01, 00, 02, 00, 03, 00, 04, 00, 05, 00, 06, 00, 07, 00, 08, 00, 09, 00, 0A, 00, 0B, 00, 0C, 00, 0D, 00, 0E, 00, 0F, 00, 10, 00, 11, 00, 12, 00, 13, 00, 14, 00, 15, 00, 16, 00, 17, 00, 18, 00, 19, 00, 1A, 00, 1B, 00, 1C, 00, 1D, 00, 1E, 00, 1F, 00, 20, 00, 21, 00, 22, 00, 23, 00, 24. The data transfer must be 512 bytes even though the table may be only 72 bytes. The sector count register must be loaded with the number of sectors per track before each Format Track command. An interrupt is generated at the completion of the command; the Format Track command supports no error reporting. A bad block may be specified by replacing a X'00' table entry with an X'80' or X'C0'. When switching between drives, a restore command must be executed prior to attempting a format.

Read Verify

This command is similar to a Read command except that no data is sent to the host. This allows the system to verify the integrity of the fixed-disk drive. A single interrupt is generated upon completion of the command or in the event of an error. If retries are enabled, 40 retries are attempted before posting an error in the error register.

Initialize ESDI

This command allows the system to instruct a selected drive by direct command communication. The system must load the command into the cylinder high and cylinder low registers (high and low data bytes) prior to issuing the command. The controller serializes the data, adds parity and sends the command to the drive. The drive executes the command and returns any status to the cylinder high and cylinder low registers for system interpretation. The following ESDI file commands are examples of some commands that may be passed to the drives using this host command.

- Initiate File Diagnostics
- Request Configuration
- Stop/Start Spindle Motor
- Offset Data Strobe
- Offset Track.

For further information refer to *Enhanced Small Device Interface Specification* revision F or later.

Diagnose

This command causes the adapter to execute its self test code and return the results to the error register. An interrupt is generated at the completion of this command.

Write Data Buffer

Upon receiving this command, the adapter sets up a 16K-byte buffer. When busy is off and data request is on, the system writes to this buffer. Command completion will not generate a completion interrupt. All 16K-bytes must be written before issuing another command. This is primarily a diagnostic command.

Read Data Buffer

Upon receiving this command, the adapter sets up a 16K-byte buffer. When busy is off and data request is on, the system reads this buffer. Command completion will not generate a completion interrupt. All 16K-bytes must be read before issuing another command. This is primarily a diagnostic command.

Set Parameters

This command sets up the drive parameters (maximum number of heads and sectors per track). The drive/head register specifies the drive affected. The sector count and drive/head registers must be set up before this command is issued. The adapter uses the values specified for track and cylinder crossing during multisector operations. An interrupt is not generated at the completion of this command. This command must be issued before any multisector operations are attempted.

Mode Control Register

This register switches the adapter between the PIO and DMA mode. In DMA mode, this register also selects the DMA burst length.

Bit 3	Bit 2	Bit 1	Bit 0	Definition
X	0	0	0	PIO Mode Normal
X	X	1	0	PIO Mode Reserved
X	1	X	0	PIO Mode Reserved
0	0	0	1	DMA Mode

See "Fixed-Disk DMA Mode" on page 13 for definition of DMA mode bits.

Fixed Disk Register

The fixed disk register is an eight-bit write only register whose bits are defined below.

- Bit 7 Reserved
- Bit 6 Reserved
- Bit 5 Reserved
- Bit 4 Reserved
- **Bit 3** Alternate DMA channel—When bit 3 is set to 0, the fixed disk primary adapter uses DMA channel 0 and the secondary adapter uses DMA channel 3. When this bit is set to 1, the adapter uses DMA channel 1.
- **Bit 2** Reset adapter—When bit 2 is set to 0, the adapter is reset and the adapter is set to PIO mode.
- Bit 1 Enable hard file interrupts—When bit is 1 set to 0, hard file interrupts are enabled.
- Bit 0 Alternate interrupt level
 - 0 = Fixed disk uses interrupt sharing on level 14
 - 1 = Fixed disk uses interrupt sharing on level 12.

Interrupt Status Register

This eight-bit register is used to interrupt status of the fixed disk and the diskette.

- **Bit 7** Fixed disk interrupt
- Bit 6 Diskette interrupt

Bits 5 - 0 Reserved

Reset and Initial Power On

Applying a pulse to the + Reset line, or toggling the Reset bit in the fixed disk register resets the adapter and enables interrupts on level 14. All registers are set to zero except for the following:

- Error register
- Drive/Head Register (X'A0')

The adapter is put into diagnostic mode and the self diagnostics are run.

If a Write operation is in progress when the Reset occurs, bad data may be written onto the file.

Fixed-Disk DMA Mode

In DMA Mode commands and status are transferred by PIO operations, but data is transferred by alternate controller DMA. The commands are written into a command stack and a command register. Adapter status is read from the status register. Setting bit 0 of the mode control register to 1 places the adapter in DMA mode. The burst length must also be set.

In DMA mode the adapter has a two element command queue for each of three files plus a buffer queue. A command can be sent to the adapter whenever the busy bit is off. The adapter interrupts the host when a command completes.

Status and Command Registers

DMA Mode Address			
Primary	Secondary	Read	Write
03F6 05F0 05F3 05F4 05F6	0376 0570 0573 0574 0576	Interrupt status Error A register Mode control register Error B register Status register	Fixed disk register Command stack Mode control register Reserved Command register

The addresses of the DMA status and command registers are shown in the following table. The mode control register and the fixed disk register are the same in DMA and PIO modes.

DMA Status Register

The DMA status register is a 16 bit register that the system uses to sense the adapter status.

- **Bit 15** Busy bit—The busy bit is set by a write to the command register and is reset when the adapter can accept another command. All writes to the command register, command stack, and the mode control register are ignored when this bit is set.
- **Bit 14** Status Valid—This bit indicates valid status in the status and error registers. This bit is reset when the system does an 8 bit read on the low byte of the status register (5F6 or 576). If disk interrupts are enabled then this bit also controls interrupts.
- **Bit 13** Corrected Data—This bit is set whenever the adapter has corrected a hard error in a read or read verify with retries on.
- Bit 12 Reserved
- Bit 11 Reserved

Bits 10 - 8 File Queue Position—These 3 bits define which file queue position the status is for:

- **000** File 0 queue A
- 001 File 0 queue B
- 010 File 1 queue A 011 File 1 queue B
- **100** File 2 queue A
- 101 File 2 queue B
- 110 Buffer transfer queue A
- 111 Buffer transfer queue B
- Bits 7 0 Error code—The error type reported is encoded in an 8 bit error code. The following is a summary of the error codes returned.

Error Code (hex) Definition

- 00 No error detected (command completed)
- 01 No data address mark
- 02 Track 0 error
- 04 Aborted command
- 08 Adapter error
- 10 ID not found
- 20 Write fault error
- 40 Uncorrectable data ECC error
- 80 Bad block detected
- C0 Bad block detected alternate
- 21 Write parity error
- 24 Invalid command

Command Register

The command register is a 16-bit register containing the command and file queue. Writing to the command register sets the busy bit and resets the adapter command stack pointer for the next command.

Bits 15 - 8 Bits 7 - 0 Command Read File T 0 0 0 0 0 0 F F F 0 0 1 0 0 R Write File 0 1 0 0 0 R 0 0 0 0 0 F FF 0 1 Read Verify 0 R 0 0 0 0 0 F F F 0 0 0 0 1 0 Read Buffer 0 0 0 0 0 0 1 O 0 1 1 1 0 0 1 1 Write Buffer 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 O Restore 0 0 0 1 0 0 0 0 0 0 0 0 0 F F F 0 0 0 0 0 0 0 0 Shutdown 1 1 1 1 0 0 0 0

DMA mode supports the following commands.

Figure 5. Valid Command-Register Commands

The following figure shows the bit definitions for bits T, R and Q.

	Bit = 1
to system enabled	Transfer to buffer Retries disabled Buffer transfer queue B
	to system

Figure 6. T, R and Q Bit Definitions

FFF	File and Queue Position
000	File queue 0 position A
001	File queue 0 position B
010	File queue 1 position A
011	File queue 1 position B
100	File queue 2 position A
101	File queue 2 position B
110	Reserved
111	Reserved

The following table shows the bit definitions for bits FFF.

Command Stack

The command stack is a 10 byte stack organized 16 bits wide by 5 deep. All writes to the stack must be 16 bits wide. Command parameters must be written to the command stack before the command is written to the command register. Writing to the command register resets the adapter stack pointer for the next command.

Error A Register

This 16-bit register is used for error reporting. If the error was a bad command error this register contains the rejected command. If the error was a file error this register contains the head and sector that had an error.

Error B Register

This 16 bit register is used for reporting file errors. If there was a file error this register contains the cylinder that had an error.

Interrupt Status register

This 8 bit register is used to interrupt status of the fixed disk and the diskette.

- Bit 7 Fixed disk interrupt
- Bit 6 Diskette interrupt
- Bits 5 0 Reserved

Mode Control Register

This register switches the adapter between PIO and DMA mode. In DMA mode this register also selects the DMA burst length. This register is set to 0 at power on time. For normal AIX/RT PC system operation it is recommended that the DMA burst length not be set to more than 16 bytes.

Bit 3	Bit 2	Bit 1	Bit 0	Definition
X	0	0	0	PIO Mode Normal
Χ	X	1	0	PIO Mode Reserved
X	1	X	0	PIO Mode Reserved
0	0	0	1	DMA Mode - 4 Byte Burst
0	0	1	1	DMA Mode - 8 Byte Burst
0	1	0	1	DMA Mode - 16 Byte Burst
0	1	1	1	DMA Mode - 32 Byte Burst
1	0	0	1	DMA Mode - 64 Byte Burst
1	0	1	1	DMA Mode - 128 Byte Burst
1	1	0	1	DMA Mode - 256 Byte Burst
1	1	1	1	DMA Mode - 512 Byte Burst

Fixed Disk Register

The fixed disk register is an 8-bit write-only register whose bits are defined as follows:

- Bit 7 Reserved
- Bit 6 Reserved
- Bit 5 Reserved
- Bit 4 Reserved
- **Bit 3** Alternate DMA channel—When bit 3 is set to 0, the fixed disk primary adapter uses DMA channel 0 and the secondary adapter uses DMA channel 3. When this bit is set to 1, the adapter uses DMA channel 1.
- **Bit 2** Reset adapter—When bit 2 is set to 0, the adapter is reset and set to PIO mode.
- **Bit 1** Enable hard file interrupts—When bit 1 set to 0, interrupt level 14 is enabled.

Bit 0 Alternate interrupt level

0 = Fixed disk uses interrupt sharing on level 14

1 = Fixed disk uses interrupt sharing on level 12.

Command Protocol

Initial Adapter Setup

After the initial power on sequence, the adapter is in PIO mode. To switch to DMA mode the host sets the mode control register to DMA mode with the desired burst length. The host must then wait 100ms before sending any commands. After this operation, all data transfers from the files are done in DMA mode. Resetting the DMA mode register to zero, or a Shutdown command will put the adapter in PIO mode.

Normal Command Execution

Whenever the busy bit is off, the host may issue a new command. To do this, the host sends DMA command parameters to the DMA command stack and then loads the DMA command op-code and file queue position into the DMA command register. The adapter empties the command block area and clears the busy bit that was set by the write to the command register. The adapter interrupts the host when a command has completed. This provides a method of issuing new commands to the adapter during time periods when the adapter is transferring data to or from the host using DMA, as well as at all other times.

As explained in the command queuing section below, two commands, A and B can be entered into each queue. The host must never send a new command to position A (or B) of any queue until the previous

A (or B) command has completed for that queue. Up to two commands can be queued for each drive by sending commands A and B to each of the four queues, with each queue being used for a single file.

Command Queuing

After issuing a command to a file by filling the DMA command block stock and issuing a command to queue position 1 A (or B), another command can be issued to the same file before the first command is completed. This is done by waiting for the busy bit to be turned off and issuing a new command block for the same file to queue position 1 B (or A).

The adapter continues with the first command and interrupts the host when it is complete. The adapter will then automatically continue with the next command. After the host has responded to the first interrupt for that queue, it can then issue another command to the file by sending a new command with a target of the same file or path combination as the command just completed.

Up to two commands can be queued for each fixed disk by issuing four pairs of A and B commands, with each queue used for a single file.

Command Queue Execution Order

If commands have been sent by the host to more than one queue before the first command completes, the order of execution of queued commands is as follows:

- When the queues are empty, the adapter begins by accessing the queue which is addressed by the first command received.
- When this command completes, the other command (such as, the A or B command) for the same queue is executed if it has been sent by the host.
- After this command completes, the adapter continues to execute all commands in the same queue until it completes all commands which the host has sent for that queue (that is, as long as the host continues alternately sending Commands A and B to a queue the adapter continues executing these commands alternately until the host stops sending them).
- After completing all commands for a particular queue and finding no more available, the adapter executes commands for the next queue.
- It will then continue executing commands for that queue until no more are available.
- Finally, it will execute all commands for the third queue before checking the first queue again.
- To summarize, the order of execution of commands can be seen as a ring from queue 0 to queue 1 to queue 2 with an indefinite number of operations performed on queue before moving to queue n + 1.

For commands which require seek operations at the start, the seek command is issued to the addressed file, and the A or B command for the next queue is examined. If there is a command that does not require a seek or has completed a seek, then it is executed while the seek operation for the previous queue is occurring. If all files have seek operations in progress, the adapter executes the command for the queue whose seek operation completes first, and continues executing the commands for that queue until the queue is empty.

When the adapter is waiting seeks to complete before starting commands it will start DMA transfers for Write commands, Read Buffer commands, and Write Buffer commands.

When the adapter is executing commands in a file queue, Read buffer and Write buffer commands are started under the following condition:

- The adapter is doing a seek in a read command.
- The command is a Read File to Buffer command.
- The command is a Read Verify command.
- The adapter has finished the DMA data transfer for a write command and there is no other Write DMA data to be transferred.

DMA Command Register

The DMA command register is a 16-bit register that is written to by the host to notify the adapter that a command has been sent. Writing to this register sets the busy bit in the status register and resets the command stack pointer for the the next command. This register should be written after any command stack parameters are written. This register can only be written when the busy bit is off.

DMA Command Stack

The DMA command stack is a 10-byte stack that is used on any command that is more than two bytes long. The host can write to the stack using 16-bit writes or 32-bit writes. The command stack pointer (a counter on the adapter) is reset to the stack beginning by a write to the DMA command register. The command stack can only be written when the busy bit is off.

DMA Commands

In DMA mode the adapter executes the following commands: Read File Read Buffer Read Verify Write File Restore Shutdown.

The host issues a command to the adapter by loading all of the command parameters into the command stack and then writing into the command register. The adapter interrupts the host when each command has completed.

Read File

This command reads 1 to 4 sectors from the file to the command buffer location. The read starts at the cylinder, head, and sector in the command. If the transfer bit is on, the adapter will DMA the data to the host starting at the address specified in the command. If the retries are enabled, the adapter attempts to recover from error conditions before reporting an error. (Refer to "Error Recovery" on page 24 for error recovery procedures.) The adapter interrupts and returns status to the host when this command is complete.

Stack	Bits 15 - 8	Bits 7 - 0
Stack 0	Cylinder Low	Cylinder High
Stack 1	Sector Address	Head Address
Stack 2	Buffer Address	Sector Count
Stack 3	DMA Address 17-23	XXXXXXXX

Stack	Bits 15 - 8	Bits 7 - 0
Stack 4	DMA Address 1-8	DMA Address 9-16

Write File

This command writes 1 to 4 sectors from the host to the file. The buffer location contained in the command will be used. The write starts at the cylinder, head, and sector in the command. The adapter will DMA the data from the host starting at the address specified in the command. If the retries are enabled the adapter attempts to recover from error conditions before reporting an error. (See "Error Recovery" on page 24 for error recovery procedures.) The adapter interrupts and returns status to the host when this command is complete.

Stack	Bits 15 - 8	Bits 7 - 0
Stack 0	Cylinder Low	Cylinder High
Stack 1	Sector Address	Head Address
Stack 2	Buffer Address	Sector Count
Stack 3	DMA Address 17-23	XXXXXXXX
Stack 4	DMA Address 1-8	DMA Address 9-16

Read Verify

This command reads 1 to 4 sectors from the file and verifies that the data is valid. No data is transferred to the buffer or to the system. The read starts at the cylinder, head, and sector in the command. If retries are enabled, the adapter attempts to recover from error conditions before reporting an error. (See "Error Recovery" on page 24 for error recovery procedures.) The adapter interrupts and returns status to the host when this command is complete.

Stack	Bits 15 - 8	Bits 7 - 0
Stack 0	Cylinder Low	Cylinder High
Stack 1	Sector Address	Head Address
Stack 2	Buffer Address	Sector Count

Read Buffer

This command transfers 1 to 32 sectors from the buffer location contained in the command to host. The adapter will DMA the data to the host starting at the address specified in the command. The adapter interrupts and returns status to the host when this command is complete.

Stack	Bits 15 - 8	Bits 7 - 0
Stack 0	XXXXXXXX	XXXXXXXX
Stack 1	XXXXXXXX	XXXXXXXXX
Stack 2	Buffer Address	Sector Count
Stack 3	DMA Address 17-23	XXXXXXXX
Stack 4	DMA Address 1-8	DMA Address 9-16

Write Buffer

This command transfers 1 to 32 sectors to the buffer location contained in the command to host. The adapter will DMA the data from the host starting at the address specified in the command. The adapter interrupts and returns status to the host when this command is complete.

Stack	Bits 15 - 8	Bits 7 - 0
Stack 0	XXXXXXXX	XXXXXXXX
Stack 1	XXXXXXXX	XXXXXXXX
Stack 2	Buffer Address	Sector Count
Stack 3	DMA Address 17-23	XXXXXXXX
Stack 4	DMA Address 1-8	DMA Address 9-16

Restore

The Restore command issues a seek to track zero on the specified file. If there is a seek error the adapter issues the seek up to five more times. If an error still remains, a recalibrate command will be sent. An interrupt and status is returned to the system when the command is completed.

Shutdown

The Shutdown command halts all commands at a sector boundary and then:

- Flushes all queues
- Returns the adapter to PIO mode
- Starts a diagnose command.

This command is used at early power off warning and at soft Initial Program Load (IPL) times. An interrupt is returned when the diagnose command completes.

Note: The data buffers are managed by the system. The adapter starts the data buffer where it is told and wraps from the last buffer to the first if that is required.

Error Recovery

Bad Block ID

All IDs that have good ECC are checked for a bad block flag (bit 7 in the head ID field). If there is a bad block flag, then the cylinder, head, and sector of the ID is compared to the cylinder, head, and sector of the ID being searched for. If the IDs are the same, then the read or write operation is stopped and a bad block error is returned.

ID Not Found

The adapter searches for the ID for two times the number of sectors per track (this value is set by a set parameter command). If the ID is not found and retries are disabled, then the read or write is stopped and an ID not found error is returned.

If retries are enabled for a write, the adapter searches for the ID for eight times the number of sectors per track. For a read, the adapter searches 40 times the number of sectors per track using offsets. During this search the IDs are checked for the correct cylinder value. If the cylinder value is not correct, the adapter tries to seek to the correct cylinder up to three times. If the correct ID is not found in the retries, an ID not found is returned.

Read Data Errors

If the adapter finds a data field with bad ECC or a data address mark error and retries are disabled the read is stopped and an uncorrectable ECC error or a data address mark error is returned.

If retries are enabled then the following retries will be attempted to read correct data.

8 retries with Track offset = 0 and Data Strobe offset = 0 8 retries with Track offset = +1 and Data Strobe offset = 0 8 retries with Track offset = -1 and Data Strobe offset = 08 retries with Track offset = 0 and Data Strobe offset = +18 retries with Track offset = 0 and Data Strobe offset = -1

If these retries fail, an additional eight retries are attempted with track and data offsets set to 0. The adapter attempts to find two consecutive syndromes that match. If the syndromes match and the data is correctable, the adapter corrects the data and returns a corrected data flag with the data. If the data is uncorrectable or no two consecutive syndromes match, the adapter stops the read and returns an uncorrectable error.

Write Fault Errors

If a write fault is detected, the adapter attempts to clear the fault condition. With retries enabled, the adapter attempts to write the sector seven more times before stopping the write and returning a write fault error. If retries are disabled, the adapter stops the write on the first error and return a write fault error.

ESDI Command Errors

If a PIO ESDI command, PIO Seek command, implied Seek (PIO or DMA mode), or a device Recalibrate command (issued during execution of the adapter Restore command) is sent to the file, the adapter will check for a device error only once, immediately after sending the command. If a parity error or interface error is detected at this time, the adapter will try to resend the command up to two more times. If the two retries fail, the adapter will clear busy and return an terminated command interrupt.

If, however, the device returns an error at a later time, the adapter will not report an error and the next command must handle the device attention.

If attention is detected at the start of a command, the adapter issues ESDI commands to read the file status and to reset attention. If the error returned is a write gate with offset, then a track offset = 0 command and a data strobe offset = 0 command will be sent. If the error returned is motor off, then a start motor command will be issued. If these commands are not able to clear attention, an aborted command is returned.

If an invalid head or cylinder is selected, the adapter will set attention and cause all commands to be aborted until a valid head and cylinder are selected.

DMA Parity Error

If the I/O CH CK line goes low while the adapter has control of the bus during a DMA transfer, the adapter will terminate the command and return a DMA parity error (X'21') in the low byte of the status register. If the command that was terminated was a read or write to the file, the adapter will also abort any other command on that file queue.

File Data Format

The Extended ESDI Adapter works with hard sectored ESDI drives that have unformatted sectors of 575 bytes or more. The adapter formats and uses the sectors as follows.

Format

The adapter writes hex '00' data for one revolution of the file. The file then writes each sector as follows:

Index or Sector pulse	
Write gate on	
12 bytes	'00' PLL sync
1 byte	'FE' ID sync
4 bytes	ID
4 bytes	ID CRC
3 bytes	'00' write pad
Write gate off	
1 byte	Write splice
Write gate on	
12 bytes	'00' PLL sync
1 byte	'FE' data sync
512 bytes	'00' data
4 bytes	Data ECC
3 bytes	'00' write pad
Write gate off	

Read

Index or Sector pulse

Read gate on

6 bytes	'XX' PLL sync minimum
1 byte	'FE' ID sync
4 bytes	ID
4 bytes	ID CRC
Read gate off	
4 bytes	Write splice
Read gate on	
6 bytes	'XX' PLL sync minimum
1 byte	'FE' data sync
512 bytes	Data
4 bytes	Data ECC
Read gate off	

Write

Index or Sector pulse	
Read gate on	
6 bytes	'XX' PLL sync minimum
1 byte	'FE' ID sync
4 bytes	ID
4 bytes	ID CRC
Read gate off	
1 byte	Write splice
Write gate on	
12 bytes	'00' PLL sync
1 byte	'FE' data sync
512 bytes	Data
4 bytes	Data ECC
3 bytes	'00' write pad
Write gate off	

ID Format

The ID field has the following format:

Byte 1	00000	C11 C10 C9 C8
Byte 2	C7 C6 C5	C4 C3 C2 C1 C0
Byte 3	BB BH 0 0 H3 H2 H1 H0	
Byte 4	S7 S6 S5	S4 S3 S2 S1 S0
	C0-C11	12-bit cylinder address
	Н0-Н3	4-bit head address
	S0-S7	8-bit sector address
	BB	Bad block flag $1 = bad block 0 = good block$
	BH	Hidden bad block flag $1 =$ hidden $0 =$ relocated

CRC/ECC Polynomial

The polynomial used for both ID CRC and DATA ECC is X30 + X24 + X18 + X14 + X8 + X7 + X2 + 1. The polynomial is preloaded with '0's and the sync byte is included.

Diskette Function

One or two diskette drives are attached to the adapter through an internal, daisy-chained, flat cable. The attachment supports 360K- and 1.2M-byte diskette drives.

The adapter is designed for a double-density, MFM-coded, diskette drive and uses write precompensation with an analog circuit for clock and data recovery. The diskette-drive parameters are programmable, and the diskette drive write-protect feature is supported. The adapter is buffered on the I/O channel and uses the system board direct memory access (DMA) for record data transfers. An interrupt level 6 indicates when an operation is complete or when a status condition requires microprocessor attention. Interrupt level 6 does not support interrupt sharing.

I/O	Address		
Primary	Secondary	Read	Write
03F2	0372	Reserved	Digital output register
03F4	0374	Main status register	
03F5	0375	Diskette data register	Diskette data register
03F7	0377	Digital input register	Diskette control register

The diskette address registers are shown below.

Digital Output Register

The digital output register (DOR) is a write-only register used to control drive motors, drive selection, and feature enable. All bits are cleared by the I/O interface reset line. The bit definitions follow:

Bit 7	Reserved
Bit 6	Reserved
Bit 5	Drive B Motor Enable (Active high)
Bit 4	Drive A Motor Enable (Active high)
Bit 3	Enable Diskette Interrupts and DMA (Active high)
Bit 2	Diskette Function Reset (Active low)
Bit 1	Reserved
Bit 0	Drive Select—A 0 on this bit indicates that drive A is selected.
	Drive Select—A 1 on this bit indicates that drive B is selected.

Note: A channel reset clears all bits.

Digital Input Register

The digital input register is an 8-bit, read-only register used for diagnostic purposes. All bits are active high. The following are bit definitions for this register:

Bit 7	Diskette Change

Bit 6 Head Select 3

- Bit 5 Head Select 2
- Bit 4 Head Select 1
- Bit 3 Head Select 0
- Bit 2 Drive Select 1
- Bit 1 Drive Select 2
- Bit 0 Drive Select 3.

Note: Bits 0 through 6 apply to the currently selected fixed-disk drive.

Diskette Control Register

Bits 1 - 0 Selects read/write data rate.

00	500K-bps
01	300K-bps
10	250K-bps
11	Reserved

The 300K- and 500K-bps incoming data pulse widths will be those associated with a 500K-bps data signal.

Diskette Controller

The diskette controller has two registers

to which the main system processor has access: a status register and a data register. The 8-bit status register has the status information about the diskette and may be accessed at any time. The 8-bit data register (hex 3F5), which actually consists of several registers in a stack with only one register presented to the data bus at a time, stores data, commands, and parameters, and provides diskette-drive status information. Data bytes are read from or written to the data register in order to program or obtain results after a particular command.

Main Status Register

The main status register may only be read and is used to facilitate the transfer of data between the processor and diskette controller.

The bits in the main status register (hex 3F4) are active high and are defined as follows:

Bit 7	Request for Master (RQM)— The data register is ready to send or receive data to or from the processor.
Bit 6	Data Input/Output (DIO)—The direction of data transfer between the diskette controller and the processor. If this bit is a 1, transfer is from the diskette controller data register to the processor; if it is a 0, the opposite is true.
Bit 5	Non-DMA Mode (NDM)—The diskette controller is in the non-DMA mode.
Bit 4	Diskette Controller Busy (CB)— A Read or Write command is being executed.
Bit 3	Reserved.
Bit 2	Reserved.
Bit 1	Diskette Drive B Busy (DBB)— Diskette drive B is in the seek mode.
Bit 0	Diskette Drive A Busy (DAB)— Diskette drive A is in the seek mode.

Diskette Command Phases

The diskette controller can perform 7 different commands. Each command is initiated by a multibyte transfer from the processor, and the result after execution of the command may also be a multibyte transfer back to the processor. Because of this multibyte interchange of information between the diskette controller and the processor, each command can be considered to consist of three phases:

Command Phase

The processor issues a sequence of Write commands to the diskette controller that direct the controller to perform a specific operation.

Execution Phase

The diskette controller performs the specified operation.

Result Phase

After completion of the operation, status and other housekeeping information is made available to the processor through a sequence of Read commands to the processor. An interrupt (level 6) occurs at the beginning of the result phase.

During command or result phases the main status register must be read by the processor before each byte of information is written or read from the data register. Bits 6 and 7 in the main status register must be in a 0 and 1 state, respectively, before each byte of the command word can be written into the data register.

Diskette Controller Commands

The following is a list of commands that may be issued to the diskette controller:

- Read Data
- Format a Track
- Recalibrate
- Sense Interrupt Status
- Specify
- Seek

Symbol Descriptions

The following are descriptions of the symbols used in the Command Definitions later in this section:

A0	Address Line 0—A 0 selects the main status register, and a 1 selects the data register.
C	Cylinder Number—Contains the current or selected cylinder number in binary notation.
D	Data—Contains the data pattern to be written to a sector.
D7-D0	Data Bus—An 8-bit data bus in which D7 is the most-significant bit and D0 is the least- significant.
DTL	Data Length—When N is 00, DTL is the data length read from or written to a sector.
EOT	End of Track—The final sector number on a cylinder.
GPL	Gap Length—The length of gap 3 (spacing between sectors excluding the VCO synchronous field).

Н	Head Address—The head number, either 0 or 1, as specified in the ID field.
HD	Head—The selected head number, 0 or 1. ($H = HD$ in all command words.)
HLT	Head Load Time—The head load time in the selected drive (2 to 256 milliseconds in 2-millisecond increments for the 1.2M-byte drive and 4 to 512 milliseconds in 4-millisecond increments for the 320K-byte drive).
HUT	Head Unload Time—The head unload time after a read or write operation (0 to 240 milliseconds in 16-millisecond increments for the 1.2M-byte drive and 0 to 480 milliseconds in 32-millisecond increments for the 320K-byte drive).
MF	MFM Mode—A 0 is reserved and a 1 selects MFM.
MT	Multitrack—A 1 selects multitrack operation. (Both HD0 and HD1 will be read or written.)
Ν	Number—The number of data bytes written in a sector. Number of bytes = $128 \times 2 \times N$.
NCN	New Cylinder—The new cylinder number for a seek operation
ND	No-Data—This indicates no data in status register 0.
PCN	Present Cylinder Number—The cylinder number at the completion of a Sense interrupt status command (present position of the head).
R	Record—The sector number to be read or written.
R/W	Read/Write—This stands for either a 'read' or 'write' signal.
SC	Sector—The number of sectors per cylinder.
SK	Skip—This stands for skip deleted-data address mark.
SRT	This 4 bit byte indicates the stepping rate for the diskette drive as follows:
	1.2M-Byte Diskette Drive11111 millisecond11102 milliseconds11013 milliseconds
	320K-Byte Diskette Drive 1111 2 milliseconds

- 1110 4 milliseconds
- 1101 6 milliseconds

- ST 0—ST 1 Status 0—Status 3—One of the four registers that stores status information after a command is executed.
- US0 Drive A selected.
- US1 Drive B selected.

Controller Commands

The following are commands that may be issued to the controller:

Note: An X is used to indicate a do not care condition.

Read Data

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 - 0
Byte 0	MT MF SK 0 0 1 1 0
Byte 1	X X X X X HD US1 US0
Byte 2	Cylinder Number
Byte 3	Head Address
Byte 4	Record
Byte 5	Number
Byte 6	End of Track
Byte 7	Gap Length
Byte 8	Data Length

TNL SN20-9844 (March 1987) to 75X0235

Result Phase

The following bytes are issued by the controller in the result phase:

Byte	Bits 7 - 0
Byte 0	Status 0
Byte 1	Status 1
Byte 2	Status 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Record
Byte 6	Number

Format a Track

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 - 0
Byte 0	0 MF 0 0 1 1 0 1
Byte 1	X X X X X HD US1 US0
Byte 2	Number
Byte 3	Sector
Byte 4	Gap Length
Byte 5	Data

Result Phase

The following bytes are issued by the controller in the result phase:

Byte	Bits 7 - 0	
Byte 0	Status 0	
Byte 1	Status 1	
Byte 2	Status 2	
Byte 3	Cylinder Number	
Byte 4	Head Address	
Byte 5	Record	
Byte 6	Number	

TNL SN20-9844 (March 1987) to 75X0235

Recalibrate

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 - 0
Byte 0	00000111
Byte 1	X X X X X 0 US1 US0

Result Phase

This command has no result phase.

Sense Interrupt Status

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 - 0
Byte 0	00001000

Result Phase

The following bytes are issued by the controller in the result phase:

Byte	Bits 7 - 0
Byte 0	Status 0
Byte 1	Present Cylinder Number

Specify

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 - 0
Byte 0	0000011
Byte 1	(SRT)(HUT)
Byte 2	(HLT) ND.

Result Phase

This command has no result phase.

Seek

Command Phase

The following bytes are issued by the processor in the command phase:

Byte	Bits 7 - 0
Byte 0	00001111
Byte 1	X X X X X HD US1 US0
Byte 2	New Cylinder

Result Phase

This command has no result phase.

Command Status Registers

The following is information about the command status registers ST0 through ST3. All bits are active high.

Command Status Register 0 (ST0)

The following are bit definitions for command status register 0:

Bit 7–Bit 6 Interrupt Code (IC)

- **00** Normal Termination of Command (NT)—The command was completed and properly executed.
- 01 Abrupt Termination of Command (AT)—The execution of the command was started but not successfully completed.
- 10 Invalid Command Issue (IC)—The issued command was never started.
- 11 Abnormal termination because, during the execution of a command, the 'ready' signal from the diskette drive changed state.
- Bit 5 Seek End (SE)—Set to 1 when the controller completes the Seek command.
- **Bit 4** Equipment Check (EC)—Set if a 'fault' signal is received from the diskette drive, or if the 'track-0' signal fails to occur after 77 step pulses (Recalibrate Command).
- **Bit 3** Not Ready (NR)—This flag is set when the diskette drive is in the not-ready state and a Read or Write command is issued. It is also set if a Read or Write command is issued to side 1 of a single-sided diskette drive.
- Bit 2 Head Address (HD)—Indicates the state of the head at interrupt.
- Bit 1 Unit select 2 (US 2)—Indicates drive B at interrupt.
- Bit 0 Unit select 1 (US 1) —Indicates drive A at interrupt.

Command Status Register 1 (ST1)

The following are bit definitions for command status register 1:

- Bit 7 End of Cylinder (EC)—Set when the controller tries to gain access to a sector beyond the final sector of a cylinder.
- Bit 6 Not Used—Always 0.
- Bit 5 Data Error (DE)—Set when the controller detects a CRC error in either the ID field or the data field.
- **Bit 4** Overrun (OR)—Set if the controller is not serviced by the main system within a certain time limit during data transfers. The time limits are 11 microseconds for the 500K-bps data rate, 17.5 microseconds for the 300K-bps, and 24 microseconds for the 250K-bps data rate.
- Bit 3 Not Used—This bit is always set to 0.
- **Bit 2** No Data (ND)—Set if the controller cannot find the sector specified in the ID register during the execution of a Read Data, Write Deleted Data, or Scan Command. This flag is also set if the controller cannot read the ID field without an error during the execution of a Read ID command or, if the starting sector cannot be found during the execution of a Read Cylinder command.
- Bit 1 Not Writable (NW)—Set if the controller detects a 'write-protect' signal from the diskette drive during execution of a Write Data, Write Deleted Data, or Format Cylinder command.
- Bit 0 Missing Address Mark (MA)—Set if the controller cannot detect the ID address mark. At the same time, the MD of status register 2 is set.

Command Status Register 2 (ST2)

The following are bit definitions for command status register 2:

- Bit 7 Not Used—Always 0.
- Bit 6 Control Mark (CM)—This flag is set if the controller encounters a sector that has a deleted data-address mark during execution of a Read Data or Scan command.
- Bit 5 Data Error in Data Field (DD)—Set if the controller detects an error in the data.
- **Bit 4** Wrong Cylinder (WC)—This flag is related to ND (no data) and when the contents of C on the medium are different from that stored in the ID register, this flag is set.
- Bit 3 Reserved
- Bit 2 Reserved
- **Bit 1** Bad Cylinder (BC)—Related to ND; when the contents of C on the medium are different from that stored in the ID register, and the contents of C is FF, this flag is set.
- **Bit 0** Missing Address Mark in Data Field (MD)— Set if the controller cannot find a data address mark or a deleted data address mark when data is read from the medium.

Command Status Register 3 (ST3)

The following are bit definitions for command status register 3:

- Bit 7Fault (FT)—Status of the 'fault' signal from the diskette drive.Bit 6Write Protect (WP)—Status of the 'write-protect' signal from the diskette drive.Bit 5Ready (RY)—Status of the 'ready' signal from the diskette drive.
- Bit 4 Track 0 (T0)—Status of the 'track 0' signal from the diskette drive.
- Bit 3 Two Side (TS)—Status of the 'two side' signal from the diskette drive.
- Bit 2 Head Address (HD)—Status of the 'side-select' signal from the diskette drive.
- Bit 1 Unit Select 1 (US 1)—Status of the 'unit-select-1' signal from the diskette drive.
- Bit 0 Unit Select 0 (US 0)—Status of the 'unit select 0' signal from the diskette drive.

Interfaces

The system interface is through the I/O channel. The address, DMA, and interrupt assignments are shown in the following figures:

I/O Address Primary Secondary			
		Read	Write
03F2	0372	Reserved	Digital output register
03F4	0374	Main status register	
03F5	0375	Diskette data register	Diskette data register
03F7	0377	Digital input register	Diskette control register

Figure 7. Diskette Function

Note: DMA request is on level 2. The diskette uses interrupt level 6 and does not support interrupt sharing.

PIO Mode Address			
Primary	Secondary	Read	Write
01F0 01F1 01F2 01F3 01F4 01F5	0170 0171 0172 0173 0174 0175	Data register Error register Sector count Sector number Cylinder low Cylinder high	Data register Not used Sector count Sector number Cylinder low Cylinder high
01F3 01F6 01F7 03F6 05F3	0175 0176 0177 0376 0573	Drive/head register Status register Interrupt status Mode control register	Drive/head register Command register Fixed-disk register Mode control register

Figure 8. Fixed Disk Function

DMA N	Iode Address			
Primary Secondary		Read	Write	
03F6 05F0 05F3 05F4 05F6	0376 0570 0573 0574 0576	Interrupt status Error A register Mode control register Error B register Status register	Fixed disk register Command stack Mode control register Reserved Command register	

Figure 9. Fixed Disk Function

Note: Interrupt request is level 12 or level 14. Both levels are shared interrupts. DMA channels 0, 1, or 3 are supported.

The following operations are supported by this adapter:

- Sixteen bit programmed I/O (PIO) data transfers to the fixed disk. All other transfers must be 8 bits wide.
- The I/O addresses are selected by a jumper on J6. P is for primary and S is for secondary.

Miscellaneous Information

- The diskette interface signal WC Control is the logical inverse of Bit 0, that is, when 300K-bps is selected the WC CONTROL is active.
- The attachment must support up to 80 tracks and up to fifteen 512-byte sectors per track.
- The table below details the relationship between the data rate and the diskette adapter clocks.

Data Rate	Clock Frequency	Data Encoding	Write Precompensation
250K bps	4.0 MHz	MFM	250 ns.
300K bps	4.8 MHz	MFM	208.3 ns.
500K bps	8.0 MHz	MFM	125 ns.

• When changing data rates the minimum high and low clock times (40 ns) for the NEC 765 (or equivalent) must not be violated.

Interface Lines

The interface to the fixed disk drive consists of two cables: 'control' and 'data'. One common control cable is used for all drives. A separate data cable is used for each drive. The following figures show signals and pin assignments for these cables:

Signal Name	Signal Pin	Gnd Pin
- Head Select 3	2	1
- Head Select 2	4	3
- Write Gate	6	5
- Configuration/Status Data	8	7
- Transfer Acknowledge	10	9
- Attention	12	11
- Head Select 0	14	13
- Sector	16	-
- Head Select 1	18	17
- Index	20	19
- Ready	22	21
- Transfer Request	24	23
- Drive Select 0	26	25
- Drive Select 1	28	27
- Drive Select 2	30	29
- Read Gate	32	31
- Command Data	34	33

Figure 10. Control Signal Lines (J1/P1)

Note: Connection is through a 2-by-17 Berg connector. Pin 15 is reserved to polarize the connector.

Signal Name	Signal Pin	Gnd Pin
- Drive Selected	1	
- Sector	2	
- Command Complete	3	
Reserved	4	
Polarizer	5	6
+ Write Clock	7	
- Write Clock	8	
Reserved	9	
+ Read/Reference Clock	10	
- Read/Reference Clock	11	12
+ NRZ Write Data	13	15
- NRZ Write Data	14	16.
+ NRZ Read Data	17	
- NRZ Read Data	18	19
- Index	20	

Figure 11. Data Transfer Signal Lines (J2/P2)

Note: Connection is through a 2-by-10 Berg connector. Pin 5 is reserved to polarize the connector.

The interface to the diskette drives is a single cable that carries both data and control signals. The signals and pin assignments are as follows:

.

Signal Name	Signal Pin	Gnd Pin
- Reduced Write	2	1
- Reserved	4	3
- Reserved	6	5
- Index	8	7
- Motor Enable Drive 1	10	9
- Drive Select 2	12	11
- Drive Select 1	14	13
- Motor Enable Drive 2	16	15
- Direction Select	18	17
- Step	20	19
- Write Data	22	21
- Write Gate	24	23
- Track 00	26	25
- Write Protect	28	27
- Read Data	30	29
- Side 1 Select	32	31
- Diskette Change	34	33

Figure 12. Control Signal Lines (J1/P1)

Note: Connection is through a 2-by-17 Berg connector. Pin 5 is reserved to polarize the connector.

Personal Computer Hardware Reference Library

Small Computer System Interface (SCSI) Adapter

TNL SN20-9844 (March 1987) to 75X0235

Contents

Description
Software Interface
Command Interface
Command Staging and Buffer Data Pointer Storage
Completion Status Codes
SCSI Implementation
Message Phase Implementation
Connector

TNL SN20-9844 (March 1987) to 75X0235

(

Description

The Small Computer System Interface (SCSI) Adapter connects to the system board using one of the I/O slots. This adapter board provides a host computer with the capability of controlling selected SCSI¹ devices by means of a 62-pin connector on the rear of the adapter. Connector pin definitions and details of the signal protocol used by this adapter are described in this manual.

The adapter uses 16 bit data transfers and acts as an alternate controller during Direct Memory Access (DMA) operations. All other transfers are 8- or 16-bit programmed input/output (PIO) transfers unless otherwise noted. The DMA channel used is selected by software.

The adapter interrupts on interrupt level 11 or 12. The interrupt level used is selected by software. Both interrupt levels are sharable.

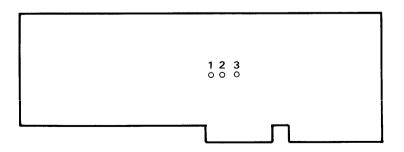
The adapter operates when connected to a channel I/O slot. This channel is described in the "I/O Channel" section of the RT PC Technical Reference Manual. Diagnostic functions including an adapter self-test and wrap are also provided.

¹ SCSI is used in this manual to represent Small Computer System Interface

Software Interface

Host Reset and Initial Power On

After a pulse to the RESET host bus pin, the host must write the value X'44' into the auxiliary register at 0D5C (095C) before the adapter can continue with its normal internal initialization process. At the completion of this process:


- The adapter Basic Assurance Tests (BATs) have been run
- The adapter hardware has been initialized
- The configuration register has been cleared
- The adapter is ready to report the result of the BATs.

All commands issued to the command register before the auxiliary register is written as described above will be ignored.

At the completion of the initialization process, the user must read the status registers for the BATs status. This causes the busy bit in the low byte of the status register to be turned off to allow adapter commands to be issued and normal operation to continue. See "Perform Basic Assurance Tests - BATs (Op code 4)" on page 13 for more information on clearing BATs status.

I/O Addresses

The SCSI adapter can be configured to respond to two sets of register addresses, primary and alternate, depending on the position of the jumper. Jumper insertion on pins 2 and 3 defines the alternate addresses.

I/O Address					
Primary	Alternate	Read	Write	Length	
0D5E 0D5C 0D5B 0D58 0D52	095E 095C 095B 0958 0952	Status Auxiliary Reserved Status Extension Configuration (12 Bits)	Command Auxiliary DMA Mode Parameter Stack Configuration (8 Bits)	16 Bits 16 Bits 8 Bits 16 Bits 8/12 Bits	

These I/O addresses are defined in the table below:

Figure 1. SCSI Adapter I/O Addresses

Register Definitions

The register definitions are defined with respect to I/O instructions on the IBM RT PC. Notice that during 16 bit I/O operations, a low for high byte swap occurs between the processor channel and the I/O channel. See the "I/O Channel" section in RT PC Technical Reference Manual for details.

Status Register

The status register returns command completion status. It is read after an interrupt occurs and before sending a new command (see bit 7). An 8-bit read operation to 0D5E/095E clears interrupts and allows subsequent interrupts to occur. Sixteen bit reads of 0D5E/095E or 8 bit reads of 0D5F/095F will not result in interrupts being cleared.

- **Bits 15-8** These bits contain the completion status codes for adapter operation as described in "Status Code Table" on page 31. For SCSI commands, these bits contain the SCSI status byte returned by the SCSI device.
- **Bit 7** This bit indicates that the adapter is busy processing commands and has not emptied the parameter stack. The host must not attempt any write operations to the command register or the parameter stack until this bit is a zero. This bit is set immediately after a write operation to the command register, and is cleared by the adapter as soon as it has emptied the stack. (Usually within 100 microseconds unless its unsent SCSI command staging area is full.)
- **Bit 6** When set to a one by the adapter, this bit indicates other bits in the register are valid. It is automatically reset by reading the 8 low order bits of this register, and all other bits are no longer valid until it is set once again by the adapter. An 8-bit read operation of the low order byte (address 0D5F/095F) or any 16 bit read operation will not clear this bit, and will not clear the interrupts.

Bit 5

- 1 = Status register bits 15-8 contain the SCSI command status
- 0 =Other completion status codes. See "Status Code Table" on page 31.
- **Bits 4-0** Command tag number originally passed by host with the command block. (Tag hex '1F' = unexpected condition, nonhost initiated operation.) See "Status Code Table" on page 31.

Command Register

The command register alerts the adapter that the parameter stack has been filled. It contains the operation code and other parameters defined below. A 16 bit write operation to this register sets the busy bit in the status register, and the host should not send another command block until the adapter empties the stack.

Note: Eight bit write operations to 0D5E/095E should not be done by the host, unpredictable results may occur if this is attempted.

- **Bits 15-12** These bits contain the adapter operation code for the command to be performed. See "Commands" on page 8 for a description of the operation codes.
- Bits 11-8 Number of bytes of parameters in the SCSI command Block. (Used for the 'Send SCSI Command' operation only.)
- Bits 7-5 Reserved
- **Bits 4-0** These bits assign an SCSI command tag number to the SCSI command block currently in the parameter stack. For op codes 0 and 1, only tags X'00' through X'0F' are allowed. Other op codes can also use tag X'10'. These bits are returned by the adapter in the status register upon SCSI command completion. (See the status register error code definitions in "Completion Status Codes" on page 27.)

Auxiliary Register

The auxiliary register contains additional status information which is sent to the host after certain adapter operations. The contents are defined in the command definitions.

DMA Mode Register

The DMA mode register defines the burst length used by the adapter hardware during DMA data transfers. It should be set up at initialization time.

Bit 7 Should be set to 0.

Bits 6-4 Reserved

Bits 3-1	The DMA	burst	size is	encoded	as follows:

Configuration Bits 3-1	DMA Burst Length
000	4 bytes
001	8 bytes
010	16 bytes
011	32 bytes
100	64 bytes
101	128 bytes
110	256 bytes
111	512 bytes

Bit 0 Must be set to 1.

For normal AIX/RT PC system operation it is recommended that the DMA burst length not be set to more than 8 bytes.

Status Extension Register

This status extension register contains additional status which the adapter can communicate to the host. Details can be found in "Completion Status Codes" on page 27.

Parameter Stack

This parameter stack is a 16-byte stack used by the host to pass SCSI commands and other information to the adapter. It must never be written into by the host without first checking the busy bit of the status register. It must only be written by a 16-bit output operations.

The parameter stack must be loaded by 16-bit write operations as follows:

16-Bit I/O Operation	I/O Instruction Bits 15-8	I/O Instruction Bits 7-0
1	Stack byte 0	Stack byte 1
2	Stack byte 2	Stack byte 3

Notice that when performing 16-bit I/O operations on the RT PC, a byte swap occurs between the processor channel and the I/O instruction.

Configuration Register

The configuration register sets up adapter parameters to be used during its operation. This register can only be addressed by 16 bit I/O operations. Bits 7-0 are read only.

Bits 15-13 DMA channel select bits are encoded as follows:

Bit 15	Bit 14	Bit 13	Channel
0	0	0	0
0	0	1	1
0	1	0	
0	1	1	3
1	0	0	—
1	0	1	5
1	1	0	6
1	1	1	7

Note: Notice that DMA channels 2 and 4 will not be enabled even if selected.

Bit 12 DMA Enable. No DMA requests are issued to the system until this bit is set.

- Bit 11 Reserved
- Bit 10 Reserved
- Bit 9 Interrupt Enable
- Bit 8 Interrupt Level
 - 0 = Interrupt level 11
 - 1 =Interrupt level 12
- Bits 7-4 Reserved
- **Bits 3-0** Read Only bits used for E.C. level of the adapter board. The initial level is E. C. level 15. Note that this is not the same as the firmware ROM (read only memory) E.C. level. Subsequent levels are sequentially numbered from zero.

Command Interface

Command Protocol

Whenever the adapter is not busy, the host may issue a new op code. To do so, the host fills the parameter stack. The host then loads the operation code and other information into the command register and is free to continue other processes. Another command may be sent as soon as the host detects that bit 7 in the status register has been cleared. All command transfers are accomplished with programmed I/O operations.

After the host has loaded the command register, the adapter empties the stack and command register, and clears the status register busy bit. The adapter can then accept another command from the host. The maximum number of unfinished commands which the adapter can store is 16. If the host attempts to send another command when the adapter already has 16 unfinished commands stored, it will not clear busy until it finishes one of its stored commands. This method of command transfer allows the host to issue new commands to the adapter while the adapter is transferring data or processing other host commands. It also allows the adapter to prevent the host from overloading it with too many commands when the SCSI bus and bus devices are busy processing multiple commands. If all 16 commands have been sent and the SCSI bus is hung with an error condition, diagnostic commands and the Clear Tag command can be sent by using tag X'10'. This clears the SCSI bus and allows recovery operations to proceed.

If the adapter command requires use of the SCSI bus, the adapter arbitrates for bus use and sends the SCSI command block which it received from the host via the command stack. It will process all routine SCSI messages which may be required for command completion without host involvement. (This includes responding to SCSI device requests, disconnections due to data accesses, storing buffer pointers, and obtaining the SCSI completion status byte.) When the SCSI device has completed the command and sent its status byte to the adapter, the adapter will:

- Fill bits 8-15 of the status register with the SCSI device status
- Fill the low order status byte with the command tag
- Set the SCSI completion bit and system interrupt bit, and interrupt the host.

If the command requires a DMA operation to host memory, the adapter sets up the DMA hardware and transfers the requested data from its buffer to host memory or vice versa. It then fills the status register and interrupts the host.

After the command completion interrupt to the host, the host performs a 16-bit read operation from the status register. A subsequent 8-bit read operation to the status register (address 0D5E/095E) high order byte is then required. This operation resets the interrupt bus signal and allows subsequent interrupts to occur.

Commands

The parameter stack contents and register contents for each adapter operation code are defined below. The valid operation codes are as follows:

(

Op Code 0	Send SCSI Command
Op Code 1	Read/Write Buffer RAM Commands
Op Code 2	Reserved
Op Code 3	Reserved
Op Code 4	Diagnose - run Basic Assurance Tests (BATs)
Op Code 5	Diagnose - run Wraps
Op Code 6	Clear tag
Op Code 7	Continue SCSI data transfer
Op Code 8	Miscellaneous adapter information
Op code 9	Reset SCSI bus
Op Codes 10-15	Reserved

Send SCSI Command (Op code 0)

This command alerts the adapter that an SCSI command block and associated parameters are in the parameter stack, and that the command should be sent as soon as the bus is free.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved StopXfr DataXfr Dir'n SCSI ID							
1				Buffer 1	Number			
2				Reserve	ed			
3				Interru	pt Granular	ity		
4								
5		LUN						
6 7 8								
<u> </u>						- · · · · · · · ·		
10 11 12								
13								
14								
15								

Figure 2. Stack Usage for Send SCSI Command

Stack Contents

Byte 0

- Bits 0-2 Encoded SCSI ID of the target SCSI device.
- Bit 3 The data transfer direction during the SCSI data phase. This bit must match the data transfer direction of the SCSI command.
 - 0 Data output to SCSI bus
 - 1 Data input from SCSI bus
- **Bit 4** SCSI data transfer control bit. A 1 indicates that there is a data transfer for this command and bytes 1 and 3 of the stack are valid.
- **Bit 5** Stop data transfer. This bit forces the adapter to use the asynchronous data mode during SCSI data transfers, and to inhibit SCSI data transfers within 512 bytes after each intermediate interrupt (See byte 3) until a 'Continue SCSI Data Transfer' command is issued.

Bits 6, 7 Reserved.

- **Byte 1** The starting buffer block number to read from or write to. The 64 K-byte data buffer on the adapter is divided into one hundred twenty eight 512-byte sections. The host must indicate which of these 128 buffers to use during the data phase of the SCSI command by inserting a starting buffer number from 0 to 127 in byte 1 of the stack. The number of bytes in the length parameter of the SCSI command block divided by 512 bytes is the number of buffer start location (byte 1) is greater than 127, then after buffer number 127 is used, buffer zero is accessed and a wrap around of the buffer occurs.
- Byte 2 Reserved
- **Byte 3** This byte is the interrupt granularity. A zero in this byte position causes the adapter to issue a single command completion interrupt upon SCSI command completion (that is, after all the data from the SCSI device is in the buffer upon completion of a SCSI read command or after all the data has been sent to the device during a SCSI write command.) Notice, however, that if the SCSI command returned an error status, the read data may not be valid or the data to be written may not have been correctly received by the SCSI device.

A nonzero number in this byte position causes the adapter to issue intermediate interrupts during the data transfers to or from the SCSI bus. The period at which these intermediate interrupts are issued is every (512*interrupt granularity) bytes since the last reconnection. (See note below.) If (512*interrupt granularity) is greater than the length parameter of the SCSI command block, no intermediate interrupts are issued. See "Status Code Table" on page 31 for the contents of the status and other registers after an intermediate interrupt.

Note: Since intermediate interrupts are issued after each (512*interrupt granularity) bytes have been transferred **since the last reconnection**, SCSI devices which disconnect on other than 512 byte boundaries may not always receive granularity interrupts on exact buffer boundaries.

Bytes 4-15 For six, ten and twelve byte SCSI commands, the SCSI command descriptor block is placed in bytes 4-9, 4-13, and 4-15 respectively. The unused bytes for the shorter commands need not be written to.

The only field in the SCSI command block that the adapter uses is the logical unit (LUN) field. The remaining fields contain information for the target device only. Linked commands must not be used with this adapter. This requires bits 0 and 1 of the last SCSI command parameter byte to be zero. Once a command to a given LUN of a SCSI device has been issued, the next command to that LUN should not be issued until the previous command completes.

Command Register

See "Command Register" on page 4 for definition.

Status Register

If bit 5 is set to a 1, the SCSI command completed and the high byte of the status register contains the SCSI status byte returned by the SCSI device. If bit 5 is a 0, the SCSI command was not executed successfully and the high byte contains an error code instead of the SCSI status. The error codes are defined in "Completion Status Codes" on page 27.

Status Extension Register

If the status register contains error completion codes 41, 42, or 44, then this register contains the SCSI status byte. See "Status Code Table" on page 31. Otherwise, this register contains the ending buffer pointer value. This value is the next buffer address to be accessed and can be adjusted to determine the Last Address (LA) of data transferred as follows:

LA = S - 1 (read operation)

LA = S - 3 (write operation)

Notes:

- 1. S = Status extension register contents
- 2. Each buffer address contains 2 bytes.

Read/Write Adapter Data Buffer (Op code 1)

This command transfers a specified number of 512-byte data buffers to or from host memory. Data transfers are done by DMA operations. A single interrupt is issued by the adapter after all DMA data transfers have been completed.

Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	Reserved				Dir'n	ByteXfr	Reserved	
1		Reserved (Residual DMA Address)						
2		DMA Address - High Byte						
3	DMA Address - Middle Byte							
4	DMA Address - Low Byte							
5	Buffer Number							
6	Block Count/Byte Count							

Figure 3. Stack Usage for Read/Write Adapter Data Buffer Command

Stack Contents

Byte 0	Bits 0-1 Reserved
	Bit $2 =$ Indicates if this transfer is in blocks or bytes.
	 Block transfer, stack byte six contains block count Byte transfer, stack byte six contains byte count
	Bit $3 =$ The data transfer direction during the DMA for this command.
	0 Write adapter buffer1 Read adapter buffer
	Bits 4-7 Reserved
Byte 1	Residual DMA address. This byte is reserved to allow the system to load the full 32-bit address it has for the DMA address so there is no need to parse it out. This byte is always ignored by the adapter.

- Byte 2 Host DMA data address, high byte divided by 2.
- Byte 3 Host DMA data address, middle byte divided by 2.
- Byte 4 Host DMA data address, low byte divided by 2.
- Byte 5 Starting Buffer Number.
- **Byte 6** If bit 2 of byte zero is a 1, this field contains the number of transfer bytes divided by 2. If bit 2 of byte zero is a 0, this field contains the number of 512-byte blocks to transfer minus one.

Command Register

See "Command Register" on page 4 for definition.

Status Register

See "Status Register" on page 3 for definition.

Perform Basic Assurance Tests - BATs (Op code 4)

This command causes the adapter to reset the SCSI bus and run tests on adapter registers and memory, including RAM. This command is an immediate command so it is executed as soon as the adapter receives it. During execution, the buffer and registers are cleared, therefore the host should make sure that no other commands are in progress before this operation code is used.

During command execution, more than one test is performed. If any test fails, a status other than X'0F' is reported. If status is read again, a X'0F' is reported to indicate BATs have completed. If no errors are detected only the X'0F' status is reported and normal operation can begin.

Stack Contents

Reserved

Command Register

See "Command Register" on page 4 for definition. Tag bits are ignored for BATs; the tag field is loaded with a X'1F' value.

Auxiliary Register

If BATs completed successfully, then this register and the status extension register contain zeros, otherwise each register is reserved.

Status Register

- **Bits 15-8** If these bits contain the code X'0F', then all tests have been executed. Otherwise error status needs to be read. (See "Status Code Table" on page 31).
- **Bits 7-0** See status register definition. (Bit 7 is set to a one until command completion.)

Status Extension Register

See auxiliary register above.

Perform Wrap Tests - Wraps (Op code 5)

This command starts a wrap test which tests the SCSI bus line drivers, receivers, and enable logic. The external SCSI cable should be removed or all SCSI devices which are attached to the SCSI bus must be turned off before attempting a wrap test. This command is an immediate command so it is executed as soon as the adapter receives it. During execution, the buffer and registers are cleared, therefore the host should make sure that no other commands are in progress before this operation code is used.

Stack Contents

Reserved

Command Register

See command register definition.

Auxiliary Register

If the WRAPS completed successfully, then this register and the status extension register contain a zero, otherwise each register may be nonzero.

Status Register

If the high byte of the status register (address 0D5E or 095E) contains a zero completion code then the WRAPS completed successfully. Otherwise, if the failing wrap number in bits 8 through 12 in the high byte is a nine, then check the fuse on the board. If the failing wrap number is other than zero, check the cables. See "Completion Status Codes" on page 27.

Status Extension Register

See auxiliary register above.

Clear Tag (Op code 6)

This command clears a tag for an adapter command. If the tag was for a SCSI command and the adapter is connected to the LUN referenced by the SCSI command, the SCSI Reset line is pulsed. (See "Reset Condition" on page 34.)

Stack Contents

Byte 0

Bits 7-5	Reserved
Bits 4-0	Tag number to be cleared.

Command Register

See "Command Register" on page 4 for definition.

Status Register

See "Status Register" on page 3 for definition.

Continue SCSI Data Transfer (Op code 7)

This command is used in conjunction with the 'Send SCSI Command' operation to allow SCSI data transfer operations to continue after they have been inhibited after an intermediate interrupt. See the Send SCSI Command description for the method of specifying intermediate interrupts and inhibiting SCSI transfers after them. The tag used for this operation must be the same as the tag for the 'Send SCSI Command' operation which is being resumed. No interrupts or completion status is returned to the host.

Stack Contents

Reserved

Command Register

See "Command Register" on page 4 for definition.

Status Register

Reserved

Miscellaneous Adapter Information (Op code 8)

This command is used to get certain available information about the adapter that may be needed for diagnostics or configuration purposes. Currently the only byte defined is a ROM E.C. level and version numbers. See the register definitions below. This command is an immediate command and is executed as soon as the adapter receives it.

Stack Contents

Reserved

Command Register

See "Command Register" on page 4 for definition.

Status Register

If the high byte of the status register contains a zero completion code, then the status extension registers and auxiliary registers contain valid information.

Status Extension Register

This high byte of the status extension register (address 0D58 or 0958) contains the ROM E.C. version number. The low byte contains the ROM E.C. level number. The ROM level is a subdivision of the ROM version. Each time the version number is changed, the level numbers restart at zero.

Auxiliary Register

Reserved

Reset SCSI Bus (Op code 9)

This command causes the adapter to pulse the SCSI reset line. All outstanding commands are cleared.

Stack Contents

Reserved

Command Register

See "Command Register" on page 4 for definition. The tag bits are ignored.

Status Register

Bits 15-8 = X'83' (See "Status Code Table" on page 31).

Bits 7-0 = X'1F'

Status Extension Register

Reserved

Auxiliary Register

Reserved

Command Staging and Buffer Data Pointer Storage

Two command storage capabilities are provided by the adapter:

- Unsent SCSI command storage
- Data pointer storage for commands in process.

Unsent SCSI Command Staging

After receiving any SCSI command from the host, the adapter immediately attempts to arbitrate for the SCSI bus and send the command to the addressed device. If the bus is not free it stores the command, clears the status register busy bit and continues trying to obtain the SCSI bus and send the command. If the host sends another SCSI command to a different device before the adapter has sent the first command to the first SCSI device, the adapter will accept the command and again clear the status register busy bit. If the SCSI bus is very busy and the adapter has accepted 16 command. This storage capability allows the adapter to hold off the host during periods of intense SCSI bus activity and to issue new commands once it becomes free. Unsent SCSI commands are sent according to an algorithm which gives priority to commands with low tag numbers.

Because the time required for the adapter to establish an SCSI connection and send a command is unknown, the busy bit is set for an indeterminate length of time in the case where 16 unsent commands have been stored.

Tag Management and Execution Order

This section describes the algorithm used for the execution order of SCSI and buffer commands (op codes 0 and 1). These commands are not executed in FIFO order. SCSI command tags and buffer command tags are handled separately but use the same algorithm. All other op codes are immediate op codes and are executed as they are received by the adapter. For this description, op code 1 (buffer commands) will be used in the examples.

The host supplies a unique tag for each command issued to the adapter. Several buffer commands (and SCSI commands) can be issued before status is received by the host. All of the outstanding commands can be in various stages of execution and the firmware must maintain the progress of each one. This is done in an array indexed by the tag number. Each element of the tagged array has a state field which describes the execution state for the command with that tag number.

When a read/write buffer op code is received into the tagged array, the array is searched and if no other buffer op codes are present, this state field is set to *executing* and the command execution is begun. If a buffer command is already being processed, then this one is labelled as the *next to execute*. If there already is a *next* then it is labelled as *ready*. As soon as the executing command is complete, the command whose tag state is *next* is executed and the whole array is searched from low to high tag. The first tag found whose state is *ready* becomes the *next* command to execute.

This algorithm allows a high priority command to be executed before a command that was sent previously if that is desired. This is accomplished by placing a command at a lower tag number than all of the other outstanding commands.

Example of Execution Order Algorithm

The host sends four buffer commands to the adapter as fast as it can. Each command goes to successive tag numbers. Assuming no other buffer commands are outstanding, when the adapter receives the first one it will set its state to *executing* and begin running it. When the adapter receives the second one, the state is set to *next* since only one other buffer command is present. The next two commands will receive states of *ready*. Tag example 1 illustrates the result of receiving these four commands.

Tag	Command	State
0		
1		
2		
3	Buffer A	Executing
4	Buffer B	Next
5	Buffer C	Ready
6	Buffer D	Ready
7		
8		
9		
10		
11		
12		
13		
14		
15		

Figure 4. Tag Example 1

When the first command is completed, status is returned to the host and this tag is now free to use again. The tag found whose state is *next* will be changed to *executing*. The array will be searched from tag 0 to the end until a tag is found whose state is *ready*. This tag state will be changed to *next*. Tag example 2 shows this result.

Tag	Command	State
0		
1		
2		
3		
4	Buffer B	Executing
5	Buffer C	Next
6	Buffer D	Ready
7		
8		
9		
10		
11		
12		
13		
14		
15		

Figure 5. Tag Example 2

If two more buffer commands are added, one to tag 1 and one to tag 9, their states will be *ready* as before because tags already exist with states of *executing* and *next*. The implied priority of the algorithm now shows its effect when tag 4, the executing tag, is completed. As before, the tag whose state is *next* begins executing. When the array is searched for the first *ready* tag, it is tag 1 that is labelled as *next* and not tag 6. These results are shown in tag example 3.

Tag	Command	State
0		
1	Buffer E	Next
2		
3		
4		
5	Buffer C	Executing
6	Buffer D	Ready
7		
8		
9	Buffer F	Ready
10		
11		
12		
13		
14		
15		

Figure 6. Tag Example 3

Notice that the command at the highest used tag will not be executed until the one previous to it changes state from *next* to *executing* and no other tags containing buffer commands are in *ready* state. This means that in order to execute the highest tag used, no more than three buffer commands can be outstanding. The host should not send another command until status is received from one of the three outstanding commands.

During normal operation, both SCSI commands and buffer commands may be intermixed in the array as in tag example 4, or the host may decide to use the first half of the tags for buffer commands and the second half for SCSI commands. In either case, the algorithm is applied separately to each of the two command types. Again, other op codes cause a tag to be busy while the command is being executed but the execution algorithm is not used on them.

Tag	Command	State
0		
1		
2	SCSI	Ready
3	Buffer A	Executing
4	SCSI D	Ready
5		
6		
7	Buffer E	Ready
8	Buffer B	Next
9	Buffer C	Ready
10		
11	SCSI A	Executing
12	SCSI B	Next
13	Buffer D	Ready
14	Buffer F	Ready
15		

Figure 7. Tag Example 4

SCSI Command Linking

SCSI command linking is not supported. This requires bits 0 and 1 of the last byte of all SCSI command blocks to be zero.

SCSI Commands in Process

The adapter can store up to 16 sets of DMA pointers and associated intermediate status for SCSI LUN's which have disconnected for command processing. (Each pointer is associated with a unique command tag X'0' - X'F'.) A command reject is returned if the tag is outside the range X'0' - X'F'.

Data Buffer Management

The adapter data buffer consists of 64K-bytes of RAM divided into one hundred twenty eight 512-byte buffers. As described in the 'Send SCSI Command' definition, the host specifies which buffers to use during the data phase of each SCSI command. When the host wishes to transfer the SCSI data to or from its memory, it then can issue a Read/Write Buffer command to initiate the desired data transfer. In order to utilize the data buffer's dual port capability during data read operations, the host can issue a SCSI command which will result in a data phase, and immediately issue a Read/Write Buffer command to transfer the data to or from its memory. The following typical sequences of operations that the host would follow are:

Read

The host first issues a Send SCSI command operation which calls for a read operation of 8K-bytes to adapter memory from the SCSI device. An interrupt granularity of 2K-bytes is specified. The adapter then sends the SCSI command to the SCSI device and begins transferring data into the adapter buffer as soon as the SCSI device begins its data transfer. As soon as 2K-bytes are transferred, the adapter issues an intermediate interrupt to the host. The host then issues a Read Adapter Buffer operation to read the first 2K-bytes of data into host memory. As the first 2K-bytes of data to the adapter buffer, and the adapter may issue another intermediate interrupt to the host. As long as the host has received more intermediate interrupts than it has given 2K-bytes of SCSI data has been transferred. Notice that unless the SCSI device terminates the Read command immediately upon the occurrence of a hard error, the integrity of the data received cannot be guaranteed until the total 8K-byte command completes. Also notice that the actual number of data bytes transferred for any command is under control of the target.

Write

The host adapter first issues enough Write Adapter Buffer commands to fill the adapter buffer with 4K-bytes of data. The adapter then issues a Send SCSI Command operation to transfer the 4K-bytes of data from the adapter memory that it just wrote. As the SCSI device transfers these 4K-bytes, the adapter can begin transferring another block to be written to that SCSI device so that when the device finishes writing the 4K-bytes, another Send SCSI Command operation can be issued to the SCSI device. Notice that unless the SCSI device terminates the Write command immediately upon the occurrence of a hard error, the successful storage by the SCSI device of the adapter buffer data cannot be guaranteed until the SCSI command completes. Also notice that the actual number of data bytes transferred for any command is under control of the target.

The data buffer may contain both read and write data simultaneously and it can simultaneously read from the SCSI bus into the buffer and read from host memory into the buffer. Likewise, it can simultaneously write to the SCSI bus and write to host memory. Therefore, if a write data buffer command is received during the time the adapter is connected to an SCSI device in a *data-in* phase, the Write Data Buffer command will not be delayed until the *data-in* phase is completed. Likewise, if a read data buffer command is received during the time when the adapter is connected to an SCSI device is in a *data-out* phase, the Read Data Buffer command will not be delayed until the *data-out* phase is completed.

SCSI commands involving data phase block lengths of larger than 64K-bytes should not be sent unless the complete 64K-byte buffer is used. In this case, the adapter will use the complete buffer as a wraparound buffer. There are two options for handling this type of data transfer. The first is where the host is responsible for ensuring that buffer overruns do not occur. The host does this by choosing an interrupt granularity of sufficient size and responding to intermediate data interrupts with Read/Write Buffer commands such that buffer overruns do not occur. When this option is chosen, the timing for interrupts and commands may result in data loss.

The second option requires that the host set bit 5 in the first byte of the stack during the Send SCSI command operation and to load the interrupt granularity field with an appropriate value. (Larger values of interrupt granularity will result in better performance.) The adapter forces the data transfer to be asynchronous and will stop the data transfer after the requested interrupt granularity. This option ensures against underruns and overruns, but the SCSI bus will be hung after intermediate interrupts until a Continue SCSI Data Transfer command is received. For details about this option, see "Send SCSI Command (Op code 0)" on page 9.

Odd Byte Data Transfers

All DMA transfers begin and end on even byte boundaries, and the SCSI transfer lengths will always be an even number of bytes. SCSI devices which return an odd number of bytes at command completion cause the adapter to insert a dummy byte into host memory to provide the even number of bytes for the DMA transfer. Any time a disconnect message is received by the adapter and an odd number of data bytes have been transferred for that command, error code X'45' is flagged. Therefore, SCSI devices which disconnect before giving the command complete message and which later reconnect to complete the command *must* disconnect on *even* byte boundaries.

Completion Status Codes

This section describes the completion codes returned to the host when errors occur and for normal completion. The completion code itself is returned in the high byte of the status register at address 0D5E or 095E. Based on the value of the code, other status registers may contain valid information. Details of these codes are defined below and summarized in "Status Code Table" on page 31.

Adapter Ready Status

Code (Hex) Description

0F

This code indicates that the adapter is ready to initialize and begin running after a hardware reset or after BATs (op code 4) is run. In both cases basic assurance tests (BATs) have been run and other errorstatus may have been already returned to the host. See "Perform Basic Assurance Tests - BATs (Op Code 4)" on page 13 and "Reset Condition" on page 34 for more information.

Adapter Detected Fault Condition

Code (Hex) Description

- 81 The firmware has detected a differential sense fault. This could be due to a single-ended device or wrong cable inadvertently attached to the SCSI connector on the adapter. After this status is read by the host, firmware will abort all current operations, reset the SCSI bus, and reset the adapter by branching to BATs.
- 82 The firmware has detected bad terminator power. This could be due to a blown fuse or cable termination. After this status is read by the host, firmware will abort all current operations, reset the SCSI bus, and reset the board by branching to BATs.
- 83 The firmware has detected that the SCSI bus has been reset. The firmware has aborted all SCSI commands in progress and cleared the tagged array of any outstanding commands. Read/write buffer commands as well as all other op codes will not be affected.
- 84 This code is returned when a firmware timer has expired indicating a code hang or timeout situation. This may be due to a SCSI bus error or timing problem.

88 This status will be returned as a result of a firmware wild branch condition. In other words, if the firmware can detect that an area of the ROM is being executed that has no defined code in it, this status code will be returned. The status extension register will contain the address at which the wild branch was discovered. This error should not occur unless something has gone wrong, and BATs should be run to determine the error.

Normal Completion Response

Code (Hex) Description

- 00 A zero code is the status received when op codes 5, 6, 7, and 8 have completed without errors. (Notice that at this time for op code 8 only, the status extension register contains additional information.)
- XX (SCSI) If bit 5 in the low byte of the status register is a one, then the completion code is the actual status byte received from the target device on the SCSI bus. See "Status Code Table" on page 31 for details of this byte.

Abnormal Completion Response

• Command Rejected

Code (Hex) Description

- 21 The command tag requested in the command register is already being used by a previous command. Either change the tag and issue the command again or clear the tag using op code 6 and then reissue the command.
- 22 The tag requested in the command register is not in the '0' to 'F' valid range for op codes 0 or 1 and not in the '0' to '10' valid range for other op codes.
- 23 The op code requested in the command register is a reserved number and not executable.
- 24 The parameter count requested in the command register is not valid. This should be the byte count of the SCSI command block and can only be 6, 10 or 12. This field is only used for op code 0.
- 25 The SCSI id in the stack parameters is invalid. The id cannot be the same as this adapter, which is 7. All other values for this field (0 to 6) are accepted.
- 27 The buffer number or block count information in the stack parameters is too large for the buffer RAM size on the adapter.

• Command Execution Fault

Code (Hex) Description

- 41 The SCSI device tried to restore the data pointers to an area of the buffer that may already be used for another command. The firmware will have rejected the restore data pointers message and the target will come back with non zero status. The host should reissue the command. This code is returned at the command completion interrupt. The SCSI command completion status byte is placed in the status extension register high byte. The status extension register low byte contains pthe hex value 20.
- 42 The SCSI device tried to modify the data pointer to an area of the buffer that may already be used for another command. The firmware will have rejected the modify data pointers message and the target will come back with non-zero status. The host should reissue the command. This code is returned at the command completion interrupt. The SCSI command completion status byte is placed in the status extension register high byte. The status extension register low byte contains the hex value 20.
- 43 There was a parity error on a DMA transfer. The host should reissue the buffer command (op code 1).
- 44 A parity error was detected on data being read from the SCSI bus. The host should reissue the SCSI command (op code 0). This code is returned at the command completion interrupt. No grandularity interrupts are sent after the parity error was detected. The SCSI command completion status byte is placed in the status extension register high byte and the status extension register low byte contains the hex value 20 if good SCSI status is received. If good status is not received, the status extension register high byte contains hex 48.
- 45 The SCSI device disconnected during a data transfer on an odd byte boundary. The firmware will abort the SCSI command and the host should try and reissue the command.
- 46 A clear tag command was received for a tag that was already cleared.
- 47 The microcode has tried unsuccessfully three times to select a target and has been unable to do so.
- 48 The adapter never received a parity free status byte for the command.

• Informational

Code (Hex) Description

A1 The required interrupt granularity time requested has passed. This indicates to the host that the next block of data has been written to or read from the buffer and the host can reuse that block as necessary.

The interrupt granularity requested can be small enough and the adapter busy enough that more than one status interrupt of this type can be pending for a command. To avoid having to read status twice or more for the information, the high byte of the status extension register will be incremented by the firmware to indicate the number of blocks available.

– Diagnostic op - BATs

See "Perform Basic Assurance Tests - BATs (Op Code 4)" on page 13 for details.

– Diagnostic op - WRAPS

See "Perform Wrap Tests - Wraps (Op code 5)" on page 14 for details.

Status Code Table

Status High Completion Code	Status Low * Tag	Status Ext Register Usage	Meaning
0000 1111 (0F)	xx 0 1 1111	N/A	Adapter ready after hardware reset or BATs op code completed
100x xxxx 1000 0001 (81) 1000 0010 (82) 1000 0011 (83) 1000 0100 (84) 1000 1000 (85)	xx 0 1 1111 xx 0 1 1111	N/A N/A 8031 Addr 8031 Addr	Adapter detected fault condition during normal operation: SCSI differential sense error SCSI terminator power error SCSI bus reset occurred Watch dog timeout Firmware 'wild branch'
SCSI Stat 0000 0000 (00)	xx 1 t tttt xx 0 t tttt	Note 5 Note 4	Normal completion response to adapter op codes for OP 0 for OPs 1,5,6,7,8

Figure 8 (Part 1 of 2). Status Code Table

Status High Completion Code	Status Low * Tag	Status Ext Register Usage	Meaning
			Abnormal completion response
001x xxxx			Command Rejected - Reason
0010 0001 (21)	xx 0 t tttt	Command Reg	Command tag in use
0010 0010 (21)	xx 0 t tttt	Command Reg	Command tag out of range
0010 0011 (23)	xx 0 t tttt	Command Reg	Invalid operation code
0010 0100 (24)	xx 0 t tttt	Command Reg	Invalid stack parameter count
0010 0101 (25)	xx 0 t tttt	Command Reg	Invalid SCSI ID
0010 0111 (27)	xx 0 t tttt	Command Reg	Bad buffer block info.
010x xxxx			Command Exec Fault - Reason
0100 0001 (41)	xx 0 t tttt	SCSI status	SCSI Restore Pntrs
0100 0010 (42)	xx 0 t tttt	SCSI status	SCSI Modify Data Pointer
0100 0011 (43)	xx 0 t tttt	N/A	DMA transfer parity error
0100 0100 (44)	xx 0 t tttt	SCSI status	SCSI transfer parity error
0100 0101 (45)	xx 0 t tttt	N/A	SCSI odd byte xfer
0100 0110 (46)	xx 0 t tttt	N/A	Tag already cleared
0100 0111 (47)	xx 0 t tttt xx 0 t tttt	N/A Note 5	Unable to select target Bad Status
0100 1000 (48)		Note 5	Bad Status
001x xxxx			Informational - Reason
1010 0001 (A1)	xx 0 t tttt	# of ints	Intermediate xfer interrupt
			internetiate sier interrupt
110n nnnn	xx 0 1 1111	Note 3	Diagnostic Op - BATs failed
111n nnnn	xx 0 t tttt	Note 3	Diagnostic Op - Wraps failed

Figure 8 (Part 2 of 2). Status Code Table

Notes:

- 1. t = tag number used; n = failing BAT or WRAP number
- 2. * 1 = SCSI status from target
- 3. See BATs/WRAPs sections for details.
- 4. See "Miscellaneous Adapter Information (Op code 8)" on page 16 for details; N/A for all other op codes.
- 5. Buffer address (See "Send SCSI Command (Op code 0)" on page 9 for details).

SCSI Implementation

The following table summarizes the SCSI design point chosen.

Data Rate	3.6 M Bytes/sec (maximum-synchronous)	
Data Protocol	Synchronous or Asynchronous	
SCSI Bus Phases	Arbitration, Selection, Command, Message, Data, Status, Reselection	
SCSI Bus Priority	Seven (fixed at highest level)	
SCSI Device Type	Initiator Only	
Electrical Interface	Differential Mode signals	
	Internal Terminator Network	
	Terminator Power Supplied and Fused (1 Amp.)	
	Shielded connector	
	Parity required of all devices on bus	
Cable Length	25 meters (maximum)	
SCSI Command Sets	Groups 0 through 7	

Note: Only one host adapter of the type described in this specification may be present on the SCSI bus at a time. Other initiators with lower priorities may be connected but may not directly communicate with this adapter; this adapter does not function as a target.

The following sections outline more specifically how this adapter has implemented the requirements of the American National Standards Institute (ANSI) standard.

Reset Condition

Incoming Reset Pulses

Whenever the RST line is pulsed, all adapter commands are cleared. Any device (such as a device which has implemented the soft reset option) which reselects the adapter to continue a command after the RST pulse will be issued a Bus Device (BDR) Message. See "Bus Device Reset (BDR) Message (Reset Procedure)" on page 38.

Note: The first device attempting a reselection after a reset may be unable to reconnect on its first reselection attempt.

Outgoing Reset Pulses

The host can direct the adapter to issue a pulse on the RST line by issuing a Perform BATs operation (Op code 4). The RST line may also be pulsed during a 'Clear Tag' command. The adapter will also issue a pulse on the RST line after an unsuccessful attempt to send a Message Parity Error (MPE) or BDR message. A reset pulse is also generated if any device takes longer than 65 milliseconds to complete any non-data phase.

SCSI ATN Line

The adapter raises the ATN line whenever it has a message for the target. The target may or may not respond with the message out (MO) phase. If a parity error occurs during any message in (MI) phase, the ATN line is asserted and a MO phase must occur in response to the ATN signal or a reset pulse will occur. (In this case, the ATN line is asserted prior to the release of ACK during the REQ/ACK handshake of the message byte in error.) For erroneous multibyte messages ATN is asserted prior to the release of ACK for the last REQ/ACK handshake of the message.

Once an MO phase is begun, the target must stay in the MO phase until the ATN line has been released by the adapter unless an error occurs. The ATN line will be released while REQ is active and ACK is inactive during the last REQ/ACK handshake of the MO phase.

Message Phase Implementation

The table below summarizes the messages implemented by this adapter.

Message	Direction
Command Complete (CC)	In
Save Data Pointer (SDP)	In
Restore Pointers (RP)	In
Disconnect (DSC)	In
Initiator Detected Error (IDE)	Out
Message Reject (MR)	In Out
No Operation (NOP)	Out
Message Parity Error (MPE)	Out
Bus Device Reset (BDR)	Out
Identify (IDF)	. In Out
Extended Messages:	
Synchronous Data Transfer	In Out

All other messages will be rejected. SCSI devices that take more than 65 milliseconds to complete any non-data phase are not supported.

Command Complete Message

This message must be received by the adapter to successfully complete a command.

Save Data Pointer

This message is always accepted and the saved buffer location is stored.

Restore Pointer

If a nonzero granularity interrupt value was specified when the Send SCSI command was issued by the host, then the restore pointers message is accepted only if the current pointers equal the saved pointers, such as after a reconnection to continue a command. Otherwise it is rejected. If zero was specified for the granularity interrupt value, then the restore pointers message is accepted and it causes the adapter to restore the current data pointers to the location previously saved by the SCSI device.

Disconnect

This message or the command complete message should be received by the adapter between any phase and the bus free phase. If one of these messages is not received just before the bus free phase, the adapter clears all records of the command in process. Subsequent attempts to reconnect by the logical unit (LUN) will result in an BDR message being sent to the reconnecting device.

SCSI data transfers cannot be interrupted by a disconnection after transferring an odd number of bytes. If an SCSI device disconnects after transferring an odd number of bytes without sending the command complete message, then the adapter will clear all record of the current command and interrupt the host to inform it of this occurrence.

Note: Data transfers of an odd number of bytes are possible and can be interrupted by disconnections, but only the last block of data transferred just before command completion may contain an odd number of bytes.

Initiator Detected Error (IDE)

The adapter attempts to send this message if a parity error is detected during a status phase. It does this by asserting the SCSI ATN line prior to its release of ACK for the status phase. If the IDE message is either rejected or is not accepted and the device sends the command complete message before the adapter receives an error free status byte, then the host is interrupted with a completion code indicating bad status. Parity errors which occur during data input phases are reported to the host. The adapter does not send the initiator detected error message for these errors.

Message Reject

This message is sent in response to an incoming message which is not implemented by the adapter. For single byte messages, the adapter raises the ATN line prior to its release of ACK for the message to be rejected. For extended messages, ATN is asserted prior to releasing ACK for the last byte of the extended message. Subsequent extended message bytes are read and ignored and the next bus phase must be the message out phase. This message is also sent when a restore pointers message is received, when the current pointers do not equal the saved pointers, and the interrupt granularity for the command is nonzero. In the case of incoming MR messages, no action is taken except in the following circumstances:

- During the synchronous data transfer negotiations
- After IDE, BDR, or MPE messages.

No Operation

This message is sent by the adapter when the target enters a MO phase and the adapter has no messages to send.

Identify

The adapter attempts to send identify messages after any selection phase. If they are accepted by the SCSI device, then disconnection will be enabled by setting bit 6 of the message byte to a 1. An incoming identify message must be received by the adapter in the first bus phase following a reselection by any multiple LUN target.

Message Parity Error

The adapter attempts to send this message when a parity error is detected during a MI phase. It does this by asserting the SCSI ATN line prior to its release of the ACK signal for the last byte of the MI phase with the error. If the next phase is not the MO phase, then the adapter will pulse the RST line.

The message parity error message must be accepted (if it is rejected, the bus is reset). After it is received by the target, the next bus phase must be either a retry of the preceding MI phase, a retry of the MO phase, or the bus free phase.

Synchronous Data Transfer

This message is used in negotiations for data transfer mode. Synchronous data transfers will be used whenever possible.

Bus Device Reset (BDR) Message (Reset Procedure)

The BDR message will be issued if the adapter is reselected by a LUN for which the adapter has no outstanding command. See incoming reset pulses under "Reset Condition" on page 34.

If the target does not enter the MO phase when ATN is raised after the above condition or if the BDR message is accepted, the adapter will clear its memory of the command records to all LUNS of the SCSI device. The next bus phase must be the bus free phase.

If the BDR message is rejected, a hard reset pulse is issued to the SCSI bus and the host is interrupted to inform it of this action.

Bus Free Phase

The target should not go to the bus free phase except after either sending one of the command complete messages or a disconnect message.

If the target disconnects without sending one of these messages, the adapter clears all records of the current command. Subsequent attempts to reconnect by the LUN results in a BDR message being sent to that LUN. As required by the ANSI specification, the target must go to the bus free phase under any of the following conditions:

- After a Bus Device Reset message was received and not rejected
- After a pulse to the RST line.

Connector

The connector signals and pin assignments are as follows:

Signal Name	+ Signal Pin	- Signal Pin
SHIELD GND	1	2
DB0	3	4
DB1	5	6
DB2	7	8
DB3	9	10
DB4	11	12
DB5	13	14
DB6	15	16
DB7	17	18
DBP	19	20
DIFFSENS	21, 62	22
GND	23	24
TERMPWR	25	26
GND	27	28
ATN	29	30
GND	31	32
BUSY	33	34
ACK	35	36
RST	37	38
MSG	39	40

Figure 9 (Part 1 of 2). SCSI Connector Pins

TNL SN20-9844 (March 1987) to 75X0235

Signal Name	+ Signal Pin	- Signal Pin
SEL	41	42
C/D	43	44
REQ	45	46
I/O	47	48
GND	49	50

Figure 9 (Part 2 of 2). SCSI Connector Pins

Note: Pins 51 through 61 are not used.

Personal Computer Hardware Reference Library

Streaming Tape Drive Adapter

ii Streaming Tape Drive Adapter

ł

(

Contents

Description
System I/O Channel
IBM RT PC Streaming Tape Drive Adapter Signal Line Descriptions
IBM RT PC Streaming Tape Drive Adapter Signal Levels
IBM RT PC Streaming Tape Drive Adapter Signal Termination
Programming Considerations
IBM RT PC Streaming Tape Drive Adapter Interface Specifications
Logic Diagrams

iv Streaming Tape Drive Adapter

Description

The IBM RT PC Streaming Tape Drive Adapter provides a QIC-02 (Quarter Inch Cartridge) tape interface to the IBM RT PC System. The adapter uses programmed I/O for the 16 bit data transfers to and from its 512 byte sector buffer. It uses interrupt sharing on level 12 and decodes 16 bits for the I/O address. The adapter provides all of its own clocking and does not require any system clocking support.

The card design is centered around a 8042 microcontroller which contains 2K of ROM, 128 bytes of RAM, an 8-bit timer or counter and 18 programmable I/O pins. Commands from the system are interpreted by the controller and output to the tape drive in accordance with the streaming tape interface. Prior to issuing a command, the controller will verify that the drive is ready and has no pending errors. The 8042 will also present status to the system as the result of a status read from the drive. The status bits may then be decoded to indicate various drive conditions, such as beginning of media, over and underruns, and file mark found. A pair of registers are available to the system for commands and data.

During command execution or data transfers the system does not have access to the control processor registers. Two registers are available during these times to provide status information and allow system control functions. The read only status register provides various attachment indications (such as busy) and several signals directly from the tape drive interface. The control register allows the system to disable interrupts or parity checking and also provides reset capability to the attachment.

To initiate a command the system must output to the 8042 command port, this sets input buffer full (IBF) in the status port. IBF resets when the 8042 reads the command. The microcode will then decode and execute the command. If a read command is issued, the controller sends the QIC-02 tape read command to the drive and enables the sector buffer through the programmable logic sequencer (PLS). Once the drive has come up to speed and starts to read, the PLS transfers data into the buffer according to the handshake sequence detailed in the QIC-02 specifications. When the buffer is full, the PLS signals the 8042, which raises the hardware interrupt signal to the system. The 8042 then resets the PLS in preparation for the system data read. The system executes a programmed I/O move and transfers the data from the adapter to the system. A similar chain of events occurs during a write command, except the data moves in the opposite direction.

A read status command starts in the same way as a read but the PLS is not required since the data (6 bytes) is transferred directly into the 8042 data port from the drive. In this case, when the status data is presented to the attachment, the 8042 forces a write to its own data port and then completes the handshake operation. The command then reads the data register and stores it in internal RAM. This is repeated until the six status bytes are read and the 8042 interrupts the system and transfers the stored data to the system via its data port.

The remaining commands fit into the basic architecture described above.

Figure 1 on page 2 is a block diagram of the IBM RT PC Streaming Tape Drive Adapter.

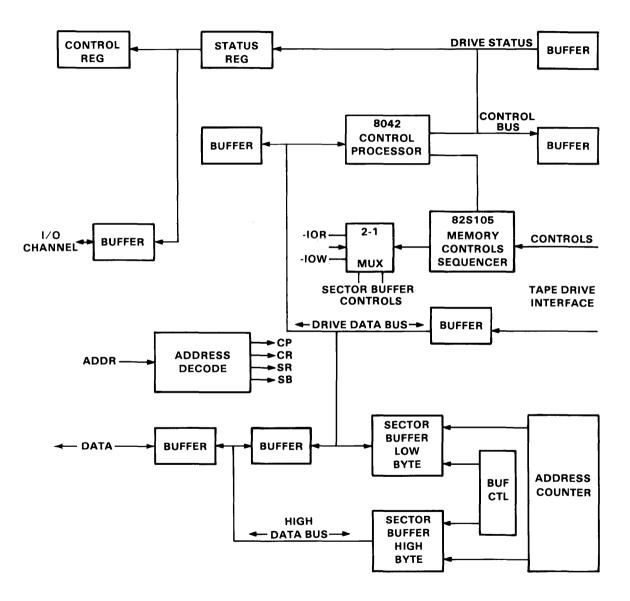


Figure 1. Streaming Tape Adapter Block Diagram

System I/O Channel

The following lines connect the IBM RT PC Streaming Tape Drive Adapter card to the I/O channel.

+ SA00-SA15 (Input)

System address bits 0 to 15: These lines address memory and I/O devices within the system. SA00 is the least significant bit (LSB) while SA15 is the most significant bit (MSB).

+ Reset DRV (Input)

Reset Driver: This line resets or initializes system logic upon power-up or during a low line voltage outage. This signal is active high.

+ SD00-SD15 (Input/Output)

Data bits 0 to 15: These lines provide data bus bits 0 to 15 for the processor, memory, and I/O devices. SD00 is the least significant bit.

+ IRQ3-IRQ7, IRQ9-IRQ12, IRQ14-15 (Output)

The IBM RT PC Streaming Tape Drive Adapter uses interrupt level 12 which is a shared interrupt level. All other levels are not used by the adapter.

- IOR (Input)

I/O Read Command: If the IBM RT PC Streaming Tape Drive Adapter card is being addressed, the adapter drives its data on to the data bus and holds the data on the data bus as long as IOR is active. This signal is active low.

- IOW (Input)

I/O Write Command: If the IBM RT PC Streaming Tape Drive Adapter card is being addressed, the adapter reads the data on the data bus. The data is latched at the trailing edge of IOW. This signal is active low.

+ AEN (Input)

Address Enable: This line degates the processor and other devices from the I/O channel to allow DMA. This line must be low to decode a valid address for an I/O channel transfer.

- IOS16 (Output)

I/O Chip Select 16: This line is active when a 16-bit I/O transfer takes place between the adapter and the system.

IBM RT PC Streaming Tape Drive Adapter Signal Line Descriptions

Online

'Online' is an adapter generated control that activates prior to transferring a Read or Write command. Deactivation terminates the Read or Write command.

Request

'Request' is an adapter generated control that indicates command data has been placed on the data bus while in command mode, or status has been taken from the data bus while in status input mode. The system asserts request only when the drive asserts ready or execute.

Parity

'Parity' is a bidirectional line which is odd parity of the 8-bit data bus.

Data Bus

'Data Bus' is the 8-bit bidirectional data bus. Bit 7 is the most significant bit.

Reset

'Reset' causes the drive initialization to perform and sets default selection to drive 0. Exception asserts.

Transfer

'Transfer' is an adapter generated control that indicates command data has been placed on the data bus when in write mode, or data has been taken from the data bus in read mode.

Acknowledge

'Acknowledge' is a drive generated control that indicates command data has been taken from the data bus when in write mode, or data has been placed on the data bus in read mode.

Ready

'Ready' is drive generated and indicates one of the following:

- Data has been taken from the data bus in command transfer mode
- Data has been placed on the data bus in the status input mode
- A Beginning of Tape (BOT), Retension, or Erase command is complete
- The drive is ready to receive the next block, a Write command, or a Write File Mark (WFM) command from the system when in write mode.
- The drive is ready to transmit the next block to the system or ready to receive a Read or Read File Mark (RFM) command when in read mode

• The drive is ready to receive a new command.

Exception

'Exception' is drive generated and indicates an exception condition has occurred. The system must issue a Read Status command and perform a status input to determine the cause.

Direction

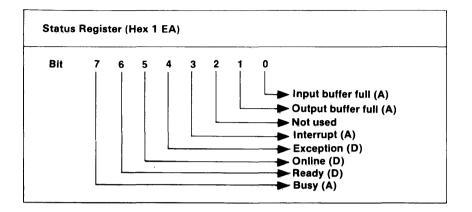
'Direction' is drive generated. When false, the adapter data bus drivers assert their data bus levels and the drive data bus drivers assume a high impedance state. If true, the adapter assumes the high impedance state and the drive asserts its bus level.

IBM RT PC Streaming Tape Drive Adapter Signal Levels

All signals between the adapter and the tape drive are standard TTL levels and are active low.

IBM RT PC Streaming Tape Drive Adapter Signal Termination

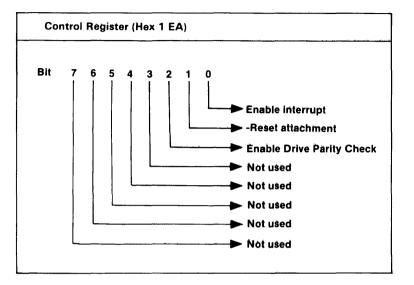
The standard signal termination is 220 ohms to 5 Vdc and 330 ohms to ground. The bidirectional data bus and the four control signals from the adapter terminate at the drive. The bidirectional data bus and the drive control signals terminate at the adapter.


Programming Considerations

The following information describes the I/O addresses and commands used by the IBM RT PC Streaming Tape Drive Adapter.

I/O Address Assignments

Address	Read Mode	Write Mode
1E8	Sector Buffer	Sector Buffer
1EA	Status Register	Control Register
1EC	8042 Data Port	8042 Data Port
1EE	Reserved	8042 Command Port
6F4	Reserved	Interrupt Reset


Status Register

Note: D = Drive Indicator; A = Attachment Generated

Input buffer full (IBF)	When data is sent to the 8042 the IBF signal is asserted indicating that the command or data register was loaded. When the register is read by the 8042, IBF goes false.
Output buffer full (OBF)	This signals the system that the 8042 loaded its register and is ready to transfer the data. Once the system reads the data OBF goes false.
Interrupt	The hardware interrupt signal is replicated here. After each command completes and when the sector buffer service is required, the 8042 interrupts the system.
Exception, Online, Ready	These signals are tape drive interface signals as seen by the attachment card.
Busy	Busy is asserted any time the 8042 has control of the internal data bus on the attachment card.

Control Register

Enable Interrupt	This interrupt enables the tri-state driver for the hardware interrupt to the system.			
- Reset Attachment	This reset forces a hardware reset on the 8042. This causes the 8042 to execute its power-on diagnostics (PODs) and initiate handshake sequence with the system. Busy is on until the PODs are completed.			
Enable Drive Parity Check				
	If the attached tape drive supports odd parity generation and checking on			

If the attached tape drive supports odd parity generation and checking on the data bus, the attachment also operates with parity when this bit is set.

Commands

The following is a list of commands supported by the streaming tape adapter board. The command port value (CPV) is written to the command port when giving the command.

Reset (hex 00)

This command resets the 8042 and starts the power-on diagnostics.

Drive Select (hex 01)

This command selects the drive to be used.

Rewind (hex 02)

This command positions the tape at the beginning of tape.

Erase (hex 03)

This command erases the entire tape.

Retension (hex 04)

This command cycles the tape from beginning of tape to the end and back again. This command should be performed when a new tape cartridge is inserted in the drive.

Read Status (hex 05)

This command reads status from the tape drive and presents it to the system.

Write Data (hex 06)

This command writes data on the tape.

Write File Mark (hex 07)

This command writes file marks on the tape.

Read Data (hex 08)

This command reads data from the tape.

Read File Mark (hex 09)

This command reads file marks from the tape.

Skip (hex 0C)

This command is used to skip blocks of data on the tape.

Terminate (hex 0D)

This command terminates a series of read or write commands.

Drive Self Test 1 (hex 0E)

This command causes the drive to perform a checksum calculation on its internal memory.

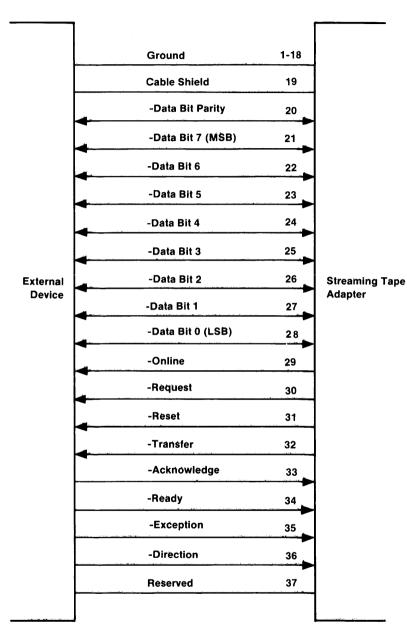
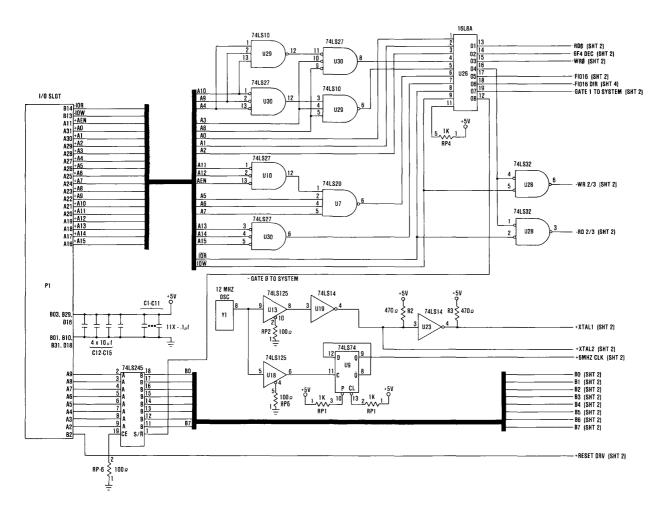
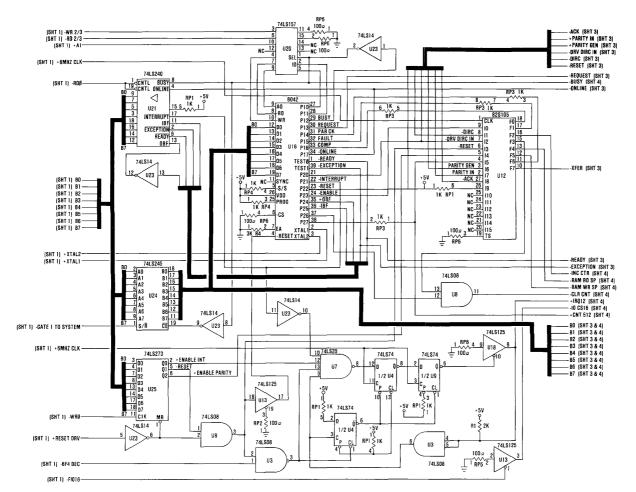
Drive Self Test 2 (hex 0F)

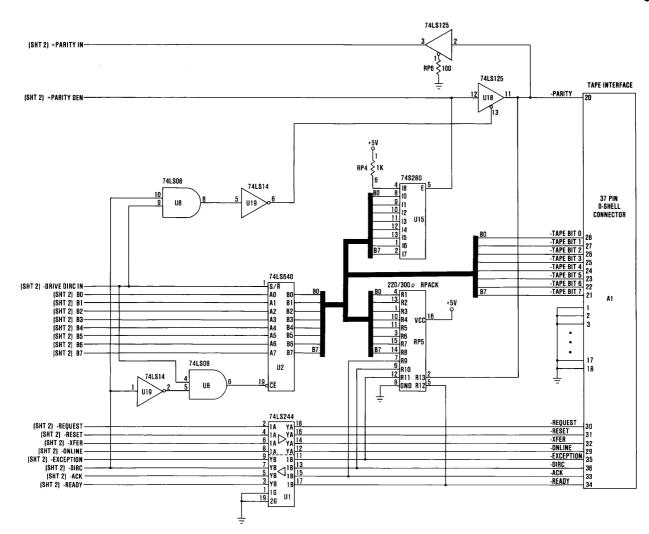
This command causes the drive to perform three checks:

- 1. Verifies capstan speed
- 2. Verifies beginning of tape, end of tape, and safe sensors
- 3. Writes worst case pattern on the tape and verifies it.

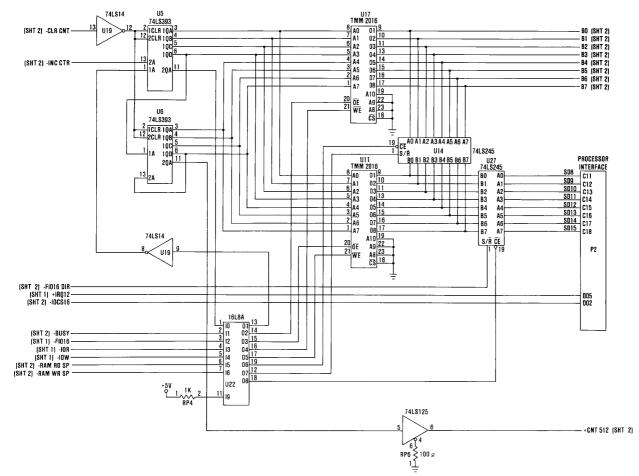
IBM RT PC Streaming Tape Drive Adapter Interface Specifications

The IBM RT PC Streaming Tape Drive Adapter has a 37-pin, D-shell connector at the rear of the adapter. The following figure shows the signals and their pin assignments.


Figure 2. IBM RT PC Streaming Tape Drive Adapter Interface Specifications

Logic Diagrams Sheet 1 of 4



15

Personal Computer Hardware Reference Library

40 MB Fixed Disk Drive

ii 40MB Fixed-Disk Drive

Contents

Description	 	 	•••••
Interfaces	 	 	
Input Control Signals	 	 	
Output Control Signals	 	 	
Data-Transfer Signals			
Fixed Disk Requirements for Diagnostics	 	 	
Specifications	 	 	

iv 40MB Fixed-Disk Drive

Description

The 40MB Fixed-Disk Drive is a direct access storage device using nonremovable 5.25-inch rigid disks. The drive uses a rotary voice-coil positioner that has a 40-millisecond average access time. The read/write heads automatically retract to a dedicated landing zone when power is turned off.

Interfaces

The interfaces of this drive are divided into three categories:

- Data transfer
- Control
- DC power.

The data transfer interface is a 20-pin printed circuit board (PCB) edge connector. The signals and pin assignments are as follows:

Signal Name	Pin
-Drive selected	1
+Write data	13
-Write data	14
+Read data	17
-Read data	18
Ground	2, 4, 6, 11, 12, 15, 16, 19, 20

Figure 1.	Data	Transfer	Interface
-----------	------	----------	-----------

Signal Name	Signal Pin	Gnd Pin
Head select 3	2	1
Head select 2	4	3
Write gate	6	5
Seek complete	8	7
Track 000	10	9
Write fault	12	11
Head Select 0	14	13
- Reserved -	16	15
Head select 1	18	17
Index	20	19
Ready	22	21
Step	24	23
Drive select 1	26	25
Drive select 2	28	27
Drive select 3	30	29
Drive select 4	32	31
Direction in	34	33

The control interface is a 34-pin PCB connector. Figure 2 shows the signals and pin assignments.

Figure 2. Control Interface

The dc power interface is a 4-pin female connector. The signals and pin assignments follow.

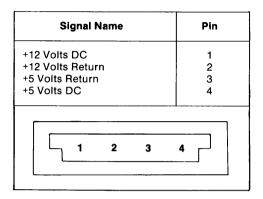


Figure 3. DC Power Interface

Input Control Signals

The control input signals have a removable terminator that can be unplugged when multiple drives operate multiplexed on the same control cable. These input signals have the following specifications.

- Active: 0.0 to 0.4 Vdc at 40 mA.
- Inactive: 2.5 to 5.25 Vdc at 0 mA.

The following are descriptions of the control input signals.

-Write Gate

When active, this signal allows writing of data on the disk. The inactive level allows reading of data from the disk, and allows the step pulse to move the heads.

-Head Select 0, 1, 2, and 3

These four signals enable the selection of each read/write head in a binary-coded sequence. 'Head Select 0' is the least significant. Heads are numbered 0 through F. When all head select signals are inactive, head 0 is selected.

-Direction In

This signal defines the direction the read/write heads move when 'Step' is pulsed. An inactive level defines the direction as out, and if a pulse is applied to '-Step', the read/write heads move away from the center of the disk. An active level defines the direction as in, and the read/write heads move toward the center of the disk.

-Step

This signal causes the read/write heads to move in the direction defined by the '-Direction In' signal. Any change in 'Direction In' is made at least 100 nanoseconds before the leading edge of the step pulse.

The adapter's controller may burst step pulses to the drive until the time after the last pulse exceeds 200 microseconds or the maximum number of step pulses is received (1 for each track). The drive starts motion of the heads after receiving the first step pulse. Step pulses are sent to the drive every 20 microseconds.

Two drives multiplexed on the same control cable may overlap seeking. An overlapped seek occurs when the first drive is deselected after the final step pulse is sent. The other drive is then selected and the '-Step' and '-Direction In' signals are set for the operation desired.

-Drive Select 2

When this signal is active, it multiplexes all data transfer and control signals of the interface cables. Only '-Drive Select 2' should be jumpered on a drive with multiple drive select capability.

Output Control Signals

An open-collector output stage, which is capable of sinking a maximum of 48 mA. at logical 0 to an active state with a maximum voltage of 0.4 Vdc at the driver, drives the output control signals. When the driver is at the inactive level, the driver's transistor is off and the collector's cutoff current is a maximum of 250 microamperes.

-Seek Complete

The '-seek complete' signal becomes active when the read/write heads settle on the final track at the end of a seek. Reading or writing is not attempted when '-Seek Complete' is inactive. '-Seek Complete' is inactive during:

- Seeking
- The power-on recalibration
- The time a drive problem makes the drive unready.

-Track 000

The '-track 000' signal is active when the drive's read/write heads are at the outermost track.

-Write Fault

The '-write fault' signal indicates that a condition at the drive is causing improper operation of the disk. An active level of this signal prevents further writing and seeking until the condition is reset.

-Index

The drive provides this output signal once each revolution to indicate the beginning of a track. This signal normally is inactive and goes active to indicate '-Index'. Only the change from inactive to active is valid (leading edge of the pulse).

-Ready

When the 'Ready' and '-Seek Complete' signals are active, the drive is ready to read, write, or seek, and the I/O signals are valid. An inactive level of this signal prevents all writing and seeking.

Data-Transfer Signals

All signals associated with the transfer of data between the drive and the system are differential (pairs of balanced signals) and are not multiplexed. Data is transferred at a rate of 5 million bits per second using MFM recording.

Two pairs of signals are used for the transfer of data: write data and read data. The following describes the data-transfer signals.

Write Data

'Write Data' is a differential pair that defines signal transitions written on the track. When '+ Write Data' goes more positive than '- Write Data', flux reverses on the track, provided that 'Write Gate' is active. The system drives '- Write Data' to an active level ('+ Write Data' more negative than '- Write Data') when in the read mode.

Read Data

'Read Data' is sent to the system through the differential pair of Read Data lines. The transition of '+ Read Data' going more positive than '- Read Data' represents a flux reversal on the track of the selected head.

Fixed Disk Requirements for Diagnostics

Diagnostics reserve the right to use portions of each installed fixed disk independent of the user installed operating system or hardware device drivers. The cylinder 0 format as described in the IBM RT PC Virtual Resource Manager Technical Reference must be honored. Also, the CE cylinder should never be used for customer data. It will be overwritten during diagnostic testing. The CE cylinder is the innermost cylinder of each fixed disk. Honoring these reservations avoids the destruction of data and allows the hardware to be serviced.

Specifications

The following figures list the internal and performance specifications of this drive.

Rotational speed	3600 rpm
Index	1
Start time	25 seconds (max.)

Figure 4. Internal Specifications

Formatted capacity	40M-bytes
Bytes per sector	512
Sectors per track	17
Transfer rate	5M bits per second
Latency (average)	8.3 ms
Access time: Track to track Average Maximum	8 ms 40 ms 80 ms

Figure 5. Performance Specifications

Power Dissipation	30 Watts Average
Operating limits	Ambient temperature 10 to 50°C (50 to 122°F) Relative humidity 8 to 80 % Maximum wet bulb 26.7°C (80°F)
Non-operating limits	Ambient temperature -40 to 60°C (-40 to 140°F) Humidity no condensation
Mechanical dimensions	Width 146.0 mm (5.8 in) Height 82.5 mm (3.25 in) Depth 203.2 mm (8 in)
Weight	3.4 kg (7.5 lbs.)

Figure 6. Physical Specifications

Personal Computer Hardware Reference Library

70MB Fixed Disk Drive

(

Contents

Description	1
Interfaces	1
Input Control Signals	4
Output Control Signals	8
Fixed Disk Requirements for Diagnostics	12
Specifications	13

iv 70MB Fixed-Disk Drive

Description

The 70MB Fixed-Disk Drive is a direct access storage device using nonremovable 5.25-inch rigid disks. The drive uses a rotary voice-coil positioner that has a 40-millisecond average access time. The read/write heads automatically retract to a dedicated landing zone when power is turned off.

Interfaces

The interfaces of this drive are divided into three categories:

- DC power
- Data transfer
- Control.

The dc power interface is a 4-pin female connector. The signals and pin assignments follow:

Signal Name	Pin
+12 Volts DC +12 Volts Return +5 Volts Return +5 Volts DC	1 2 3 4
	4

Figure 1. DC Power Interface

Signal Name	Signal Pin	Gnd Pin
- Drive Selected	1	
- Sector	2	
- Command Complete	3	
Reserved	4	
Reserved	5	6
+ Write Clock	7	
- Write Clock	8	
Reserved	9	
+ Read/Reference Clock	10	
- Read/Reference Clock	11	12
+ NRZ Write Data	13	15
- NRZ Write Data	14	16
+ NRZ Read Data	17	
- NRZ Read Data	18	19
- Index	20	

The data transfer interface is a 20-pin printed circuit board (PCB) edge connector. The signals and pin assignments are as follows:

Figure 2. Data Transfer Signal Lines (J2/P2)

Signal Name	Signal Pin	Gnd Pin
- Head Select 2 ³	2	1
- Head Select 2 ²	4	3
- Write Gate	6	5
- Configuration/Status Data	8	7
- Transfer Acknowledge	10	9
- Attention	12	11
- Head Select 2 ⁰	14	13
- Sector	16	15
- Head Select 2 ¹	18	17
- Index	20	19
- Ready	22	21
- Transfer Request	24	23
- Drive Select 1	26	25
- Drive Select 2	28	27
- Drive Select 3	30	29
- Read Gate	32	31
- Command Data	34	33

The control interface is a 34-pin PCB connector. The table below shows the signals and pin assignments:

Figure 3. Control Signal Lines (J1/P1)

Input Control Signals

The input control signals have a removable terminator that can be unplugged when multiple drives operate multiplexed on the same control cable. The input signals are received by 74LS14 circuits. The following are descriptions of the input control signals.

Drive Select

'Drive Select' consists of three output lines from the controller which are decoded to select a single drive. When the drive select lines are all zero (inactive), no drive is selected. The decoding of these lines is shown below:

Drive S 3	Select 2 1		Drive Selected
0	0	0	None
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5 6
1	1	0	6
1	1	1	7

The drive address is set using option switches on the drive. Switches should be set to select drive 2.

Head Select

There are four head select lines (Head select 2^0 , 2^1 , 2^2 , 2^3) which are decoded to select one of up to 16 heads. Head 2^0 is the least significant line. When all head select lines are inactive, head 0 is selected.

Since the file has a maximum of seven heads, the head select 2^3 line is not used internally, but it is properly terminated.

Transfer Request

Transfer Request is used as a handshake signal during command and configuration or status transfers.

Read Gate

The active level of this signal allows data to be read from the disk.

Write Clock

Write Clock is provided by the controller and must be at the bit data rate. This clock frequency is dictated by the Read/Reference Clock during the write operation.

NRZ Write Data

NRZ Write Data is a differential pair that writes data on the disk. The data is clocked by the Write Clock signal.

Command Data

When presenting a command, 16 information bits of serial data, plus parity is presented on this line. This data is controlled by the handshake protocol with the 'Transfer Request' and 'Transfer Acknowledge' signals. Data is transferred most significant bit first and utilizes odd parity.

The following table lists the drive commands:

Command	15 - 12	11 - 8	7 0
Request Status	0010	0000	XXXXXXX
Request Unique Status	0010	XXXX	XXXXXXXX
Request Configuration	0011	0000	XXXXXXX
Request Number of Fixed Cylinders	0011	0001	XXXXXXXXX
Request Number of Heads	0011	0011	XXXXXXXX
Request Number of Bytes per Track	0011	0100	XXXXXXXX
Request Number of Bytes per Sector	0011	0101	XXXXXXX
Request Number of Sectors per Track	0011	0110	XXXXXXX
Request Number of ISG Bytes	0011	0111	XXXXXXXX
Request Number of PLO Sync Bytes	0011	1000	XXXXXXXX
Request Number of Unique Status Words	0011	1001	XXXXXXX
Reset Attention and Status	0101	0000	XXXXXXX
Stop Spindle Motor	0101	0010	XXXXXXX
Start Spindle Motor	0101	0011	xxxxxxx
Data Strobe Offset 0	0110	000x	XXXXXXXX
Data Strobe Offset 1 Early	0110	0010	xxxxxxx
Data Strobe Offset 1 Late	0110	0011	xxxxxxx
Data Strobe Offset 2 Early	0110	0100	XXXXXXXX

Figure 4 (Part 1 of 2). Commands

Command	15 - 12	11 - 8	7 0	
Data Strobe Offset 2 Late	0110	0101	****	
Data Strobe Offset 3 Early	0110	0110	****	
Data Strobe Offset 3 Late	0110	0111	xxxxxxx	
Track Offset 0	0111	000x	xxxxxxx	
Track Offset +1	0111	0010	xxxxxxx	
Track Offset -1	0111	0011	XXXXXXXX	
Track Offset +2	0111	0100	xxxxxxx	
Track Offset -2	0111	0101	xxxxxxx	
Track Offset +3	0111	0110	XXXXXXXX	
Track Offset -3	0111	0111	xxxxxxx	
Seek	0000	Cylinder		
Recalibrate	0001	xxxx	XXXX XXXXXXX	
Initiate Diagnostics	1000	xxxx	XXXXXXXX	

Figure 4 (Part 2 of 2). Commands

Output Control Signals

The output signals have the following specifications:

- Active: 0.0 to 0.4 Vdc at 48mA.
- Inactive: 2.5 to 5.25 Vdc at 250 uA.

The following are descriptions of the output control signals:

Drive Selected

Drive Selected indicates the selection status of the drive. This line goes active only when the Drive Select lines match the drive address.

Transfer Acknowledge

Transfer Acknowledge is a response to the 'Transfer Request' signal during command and configuration or status transfers.

Configuration/Status Data

Configuration or status data is presented to the interface and transferred using the handshake protocol with the 'Transfer Request' and 'Transfer Acknowledge' signals. The 16 bits of configuration data is shown in Figure 5 on page 9.

Bit	Value	Description
15	0	Tape Drive
14	1	Format Speed Tolerance Gap Required
13	1	Track Offset Option Available
12	1	Data Strobe Offset Option Available
11	0	Rotational Speed Tolerance is >0.5%
10	0	Transfer Rate >10 Mhz
9	1	Transfer Rate >5 Mhz <10 Mhz
8	0	Transfer Rate <5 Mhz
7	0	Removable Cartridge Drive
6	1	Fixed Drive
5	0	Spindle Motor Control Option Implemented
4	0	Head Switch Time >15usec.
3	1	RLL Encoded (Not MFM)
2	0	Controller Soft Sectored (Address Mark)
1	1	Drive Hard Sectored (Sector Pulses)
0	0	Controller Hard Sectored (Byte Clock)

Figure 5. Configuration Data Bits

Bit	Value	Description
15	0	Reserved
14	0	Removable Media Not Present
13	0	Write Protected, Removable Media
12	0	Write Protected, Fixed Media
11	0	Reserved
10	0	Reserved
9	X	Spindle Motor Stopped
8	X	Power On Reset Conditions Exist
7	X	Command Data Parity Fault
6	X	Interface Fault
5	X	Invalid or Unimplemented Command Fault
4	X	Seek Fault
3	X	Write Gate with Track Offset Fault
2	X	Unique Status Available
1	X	Write Fault
0	0	Removable Media Changed

The 16 bits of status data is shown in Figure 6.

Figure 6. Status Data Bits

Command Complete

Command Complete allows the controller to monitor the drive's command complete status, during overlapped commands, without selecting the drive. This signal is inactive during the following cases:

- At power on
- Upon receipt of the first command data bit. Command Complete stays inactive during the entire command sequence.

Ready

Ready indicates that the spindle is up to speed. When this signal and Command Complete are active, and Attention is inactive the file is ready to read, write, or seek. When Ready is inactive, all writing and seeking is inhibited.

Attention

Attention signals the controller when the drive has a fault condition or a change in status. Writing is inhibited when Attention is active. Attention is deactivated by the Reset Interface Attention command.

Index

The drive provides this output signal once each revolution to indicate the beginning of a track. This signal normally is inactive and goes active to indicate -Index. Only the change from inactive to active is valid (leading edge of the pulse). The nominal period of this signal is 16.7 milliseconds.

Sector

The drive provides this output signal to indicate the start of a sector. This signal normally is inactive and goes active to indicate -Sector. Only the change from inactive to active is valid (leading edge of the pulse).

Read/Reference Clock

Read/Reference Clock provides the read clock when Read Gate is active and a reference clock when Read Gate is inactive. After Read Gate is activated, Read Clock may not be within tolerance until PLO synchronization is established. The transitions between Read Clock and Reference Clock are performed without glitches, but up to two missing clock cycles may occur.

NRZ Read Data

NRZ Read Data is a differential pair that reads previously written data from the disk. This data is clocked by the Read Clock signal. These lines are held inactive until PLO synchronization is established and data is valid.

Fixed Disk Requirements for Diagnostics

Diagnostics reserve the right to use portions of each installed fixed disk independent of the user installed operating system or hardware device drivers. The cylinder 0 format as described in the IBM RT PC Virtual Resource Manager Technical Reference must be honored. Also, the CE cylinder should never be used for customer data. It will be overwritten during diagnostic testing. The CE cylinder is the innermost cylinder of each fixed disk. Honoring these reservations avoids the destruction of data and allows the hardware to be serviced.

Specifications

The following figures list the internal and performance specifications of this drive:

Rotational speed	3600 rpm
Index	1
Start time	50 seconds (max)

Figure 7. Internal Specifications

Formatted capacity	70M-bytes
Bytes per sector	512
Cylinders	566
Heads	7
Sectors per track	36
Transfer rate	10M bits per second
Latency (average)	8.3 ms
Access time: Track to track Average Maximum	8 ms 40 ms 70 ms

Figure 8. Performance Specifications

Power dissipation	30 watts average
Operating limits	Ambient temperature 10 to 50°C (50 to 122°F) Relative humidity 8 to 80% Maximum wet bulb 26.7°C (80°F)
Non-operating limits	Ambient temperature -40 to 60°C (-40 to 140°F) Humidity no condensation
Mechanical dimensions	Width 146.0 mm (5.8 in) Height 82.5 mm (3.25 in) Depth 203.2 mm (8 in)
Weight	3.4 kg (7.5 lbs.)

Figure 9. Physical Specifications

Personal Computer Hardware Reference Library

Double Sided Diskette Drive

· · ·

ii

Contents

Description	1
nterfaces	1
Input Signals	
Output Signals	4
Specifications	
Logic Diagrams	7

Notes:

Description

The Double Sided Diskette Drive is a direct-access device that can store 320/360Kb of data on a dual-sided 5-1/4 inch diskette. All data format and access control is in the system. The following figure describes the type of diskette required by this drive.

Characteristic	Requirement
Certification	Double sided 48 TPI 40 tracks per surface Soft Sector
Recording density Media coercivity Jacket	5,876 bits per inch 300 to 350 Oersteds Standard 5-1/4 inch

Diskette Requirements

The signals for operating the diskette drive are generated through the IBM Personal Computer AT Fixed Disk and Diskette Drive Adapter.

Interfaces

The diskette drive has two types of interface: control and dc power. The following figure shows the signals and pin assignments for the control interface.

Signal Name	1/0	Signal Pin	Ground Pin
Reserved Reserved -Drive Select 3 -Index -Drive select 0 -Drive select 1 -Drive select 2 -Motor On -Direction Select -Step -Write Data -Write Gate -Track 00 -Write Protect -Read Data -Side 1 Select Reserved	- 0 1 1 1 1 1 0 0 0	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Control Interface (P1/J1)

Following are the signals and pin assignments for the dc power interface.

Signal Name	Pin
+ 12 Vdc	1
+ 12 Vdc Return	2
+ 5 Vdc Return	3
+ 5 Vdc	4

Power Interface (P2/J2)

All signals operate between +5 Vdc and ground with the following definitions:

Inactive Level: +2.5 to +5.25 Vdc

Active Level: 0.0 to +0.4 Vdc

All outputs from the drive can sink 40 mA at the active level. The system provides pull-up registers.

Input Signals

All input signals are active when low.

Drive Select 0 through 3

These 'drive select' signals enable or disable all other drive interface signals, except 'motor on'. When 'drive select' is at the active level, the drive is enabled. When it is at the inactive level, all controlled inputs are ignored, and all drive outputs are disabled. The enabled or disabled condition of the drive is established within 500 nanoseconds after a change to the select input, excluding head-load time and settling times.

-Motor On

An active level of this signal starts the drive motor. There must be a 750 millisecond delay after '-motor on' becomes active before any read or write operation starts.

-Direction Select

This signal determines the direction the read/write head moves when the step signal is pulsed. An active level indicates away from the center of the diskette (out); an inactive level indicates toward the center of the diskette (in). Any change in the 'direction select' signal must be made at least 1 microsecond before the leading edge of the step pulse, and at least 1 microsecond after the trailing edge of the step pulse.

-Step

This signal causes the read/write heads to move in the direction determined by the 'direction select' signal. Motion is started each time the signal changes from an active to inactive level (at the trailing edge of the pulse).

-Write Data

Each time this signal changes from the inactive to inactive level, the current through the read/write heads reverses, thereby writing

a data bit. This signal is enabled when 'write gate' is at the active level.

-Write Gate

A 250-nanosecond active pulse of this signal causes a bit to be written on the diskette. These pulses may occur with either a 4, 6, or 8-microsecond spacing ($\pm 0.5\%$). After deactivating 'write gate', deactivation of 'drive select' and 'motor on', and changing 'side select' must be delayed 1 millisecond, because the erase head is active for this period.

-Side 1 Select

This signal determines which side of the two-sided diskette will be used for reading or writing. An inactive level of this signal selects the read/write head on the 0 side of the diskette; an active level selects the 1 side. A 100-microsecond delay must be allowed after switching from one head to the other before starting to read or write.

Output Signals

-Index

When the drive senses the index hole in the diskette, it generates a 1- to 8-microsecond active pulse on this line.

-Track 00

An active level of this signal means that the read/write heads are at Track 0 (the outermost track).

-Write Protect

An active level of this signal means that a diskette without a write-protect notch is in the drive. The drive will not write when a protected diskette is loaded.

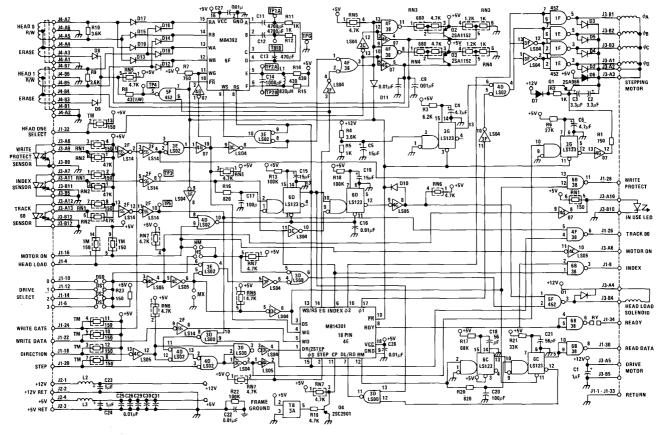
4 Double Sided Diskette Drive

-Read Data

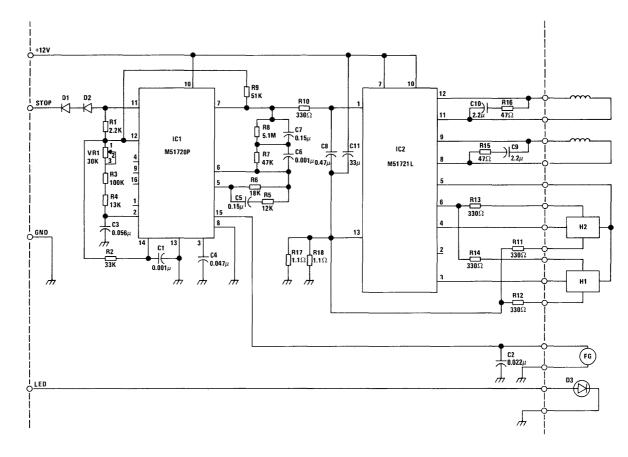
A 250-nanosecond active pulse is provided on this line for each bit detected on the diskette. These pulses may occur with either 4, 6, or 8-microsecond spacing.

Specifications

The following figures show the physical, and performance specifications for this drive.


Power Dissipation Operating Limits	11 W (Typical)
Ambient Temperature Relative Humidity	10 to 50 Degrees C (41 to 114.8 Degress F) 8 to 80%
Maximum Wet Bulb	26.7 Degrees C (84 Degrees F)
Non-Operating Limits Ambient Temperature Humidity	-40 to 60 Degrees C (-40 to 140 Degrees F) No Condensation
Mechanical Dimensions Width Height	146.0 mm (5.8 in.) 41.0 mm (1.6 in.)
Depth Weight	203.2 mm (8.0 in.) 1.6 kg (3.52 pounds)

Physical Specifications


Capacity Unformatted	500 КЬ
Capacity Formatted 9 Sectors Per Track	
8 Sectors Per Track Recording density	5,876 bits per inch
Track Density Cylinders	48 TPI(tracks per inch) 40
Tracks Encoding Method	80 MFM
Rotational Speed Transfer Rate	300 RPM ± 1.5% 250K bits per second
Latency (Average) Access Time:	100 ms
Average	81 ms
Track to Track Settling Time	6 ms 15 ms
Head Load Time Motor Start Time	0 ms 500 ms
	-

Performance Specifications

Logic Diagrams

Double Sided Diskette Drive (Sheet 2 of 2)

Notes:

Notes:

Personal Computer Hardware Reference Library

High Capacity Diskette Drive

Contents

Description 1
Interfaces 1
Input Signals 2
Output Signals 4
Power Sequencing 5
Drive-in-Use Indicator 5
Specifications
Logic Diagrams 7

Notes:

Description

The IBM Personal Computer AT High Capacity Diskette Drive is a direct-access device that can store 1.2Mb of data on a dual-sided 5-1/4 inch diskette. All data format and access control is in the system. The following figure describes the type of high-density diskette required by this drive. Diskettes, which meet these specifications may not be used in either a 160/180Kb or a 320/360Kb diskette drive.

Characteristic	Requirement
Certification	Double sided
	96 TPI
	80 tracks/surface
	Soft sector
Recording density	9,646 bits per inch
Media coercivity	600 to 650 Oersteds
Jacket	Standard 5-1/4 inch

Diskette Requirements

The signals for operating the diskette drive are generated through the IBM Personal Computer AT Fixed Disk and Diskette Drive Adapter.

Note: This drive also can read diskettes formatted for a 320/360Kb dual-sided drive or a 160/180Kb single-sided drive.

Interfaces

The diskette drive has two types of interface: control and dc power. The following show the signals and pin assignments for the control interface.

Signal Name	1/0	Signal Pin	Ground Pin
-Reduced write	1	2	1
Reserved	-	4	3
-Drive select 3	1	6	5
-Index	0	8	7
-Drive select 0	1	10	9
-Drive select 1	[]	12	11
-Drive select 2	T	14	13
-Motor on	I	16	15
-Direction select	1	18	17
-Step	1	20	19
-Write data	1	22	21
-Write gate	1	24	23
-Track 00	0	26	25
-Write protect	0	28	27
-Read data	0	30	29
-Side 1 select	[]	32	31
-Diskette change	0	34	33

Control Interface (P1/J1)

The signals and pin assignments for the dc power interface are as follows:

Signal Name	Pin
+12 Vdc	1
+12 Vdc return	2
+5 Vdc return	3
+5 Vdc	4

DC Power Interface (P2/J2)

All signals operate between +5 Vdc and ground with the following definitions:

Inactive Level: +2.5 to +5.25 Vdc

Active Level: 0.0 to +0.4 Vdc

All outputs from the drive can sink 40 mA at the active level. The system provides pull-up registers.

Input Signals

Following are descriptions of the input signals.

-Reduced Write

The inactive state of this signal indicates that high-density media is present requiring normal write currents, and the active state indicates low-density media is present, requiring a reduced write current.

-Drive Select 0, 1, 2, and 3

The Drive Select signals enable or disable all other drive interface signals, except 'motor on'. When 'drive select' is at the active level, the drive is enabled. When it is at the inactive level, all controlled inputs are ignored, and all drive outputs are disabled. The enabled or disabled condition of the drive is established within 500 nanoseconds after a change to the select input, excluding head-load time and settling time.

-Motor On

The spindle motor runs when this input is active. The drive requires a 1 second delay after '-motor on' becomes active before a read or write operation.

-Direction Select

If this input is at a inactive level the 'step' input signal moves the heads away from the drive spindle. An active level causes the opposite. This input is stable for a minimum of 1 microsecond before and after the trailing edge of the step pulse.

-Step

A 1-microsecond active pulse on this input causes the read/write heads to move one track. The state of '-Direction Select' at the trailing edge of the Step pulse determines the direction of motion.

-Write Data

A 150-nanosecond pulse on this input causes a bit to be written on the disk if Write Gate is active. These pulses may occur with either a 2, 3, 3.3, 4, 5, or 6.67-microsecond spacing ± 0.5 %. When Write Gate is inactive, pulses do not appear on this input.

-Write Gate

An active level of this input enables the write current circuits, and the Write Data input controls the writing of information. Transitions of this line occur 4 to 8 microseconds before the first significant data bit, and 4 to 8 microseconds after the last significant data bit. Making this input inactive removes all current from the read/write heads and allows the read circuits to operate within 590 microseconds All motor-start, head-settle, and head-load times are complied with before the line becomes active.

-Side 1 Select

Making this input active selects the upper head; otherwise the lower head is selected.

Output Signals

Following are descriptions of the output signals.

-Index

When a diskette's index hole aligns with the hole in the diskette jacket, a 1- to 8-microsecond active pulse is generated on this line.

-Track 00

This signal is active when the upper head is on Track 00.

4 High Capacity Diskette Drive

-Write Protect

This output is active when a diskette without a write-protect notch is inserted. It prevents the erasing or writing of data.

-Read Data

Each bit detected provides a 150-nanosecond active pulse on this line. These pulses may occur with either a 2, 3, 3.33, 4, 5, or 6.67-microsecond spacing $\pm 0.5\%$.

-Diskette Change

This output is active unless a diskette is present and a step pulse is received when the drive is selected.

Power Sequencing

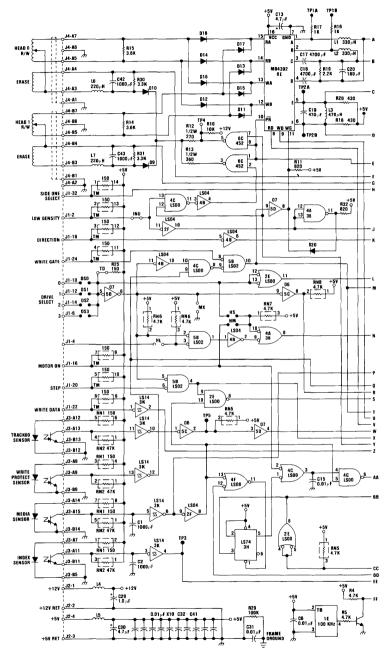
The 'write gate' signal is turned off and is kept off before power is switched on or off. The read/write heads return to Track 00 when the system power is switched on.

Drive-in-Use Indicator

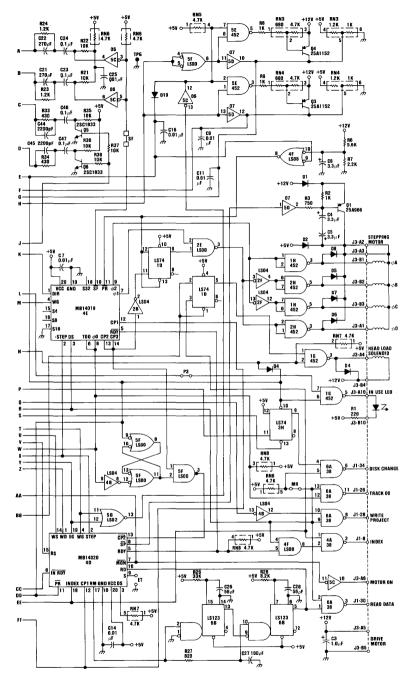
The Drive-in-Use indicator lights when the drive is selected.

Specifications

The following figures show the performance, physical, and performance specifications for this drive.


Power dissipation	11 W (TYP)
Operating limits	Ambient temperature 5 to 46 degrees
	Celsius (41 to 114.8 degrees Farenheit)
	Relative humidity 20 to 80 %
	Maximum wet bulb 29 degrees Celsius (84
	degrees Farenheit)
Non-operating limits	Ambient temperature -40 to 60 degrees
	Celcius (-40 to 140 degrees Farenheit)
	Humidity no condensation
Mechanical dimensions	Width 146.0 mm (5.8 in)
	Height 41.0 mm (1.6 in)
	Depth 203.2 mm (8 in)
Weight	1.6 kg

Physical Specifications


Capacity unformatted	1604Kb
Capacity formatted	
15 sectors per track	1.2Mb
Recording density	9646 bits per inch
Track density	96 TPI
Cylinders	80
Tracks	160
Encoding method	MFM
Rotational speed	360 RPM
Transfer rate	500K bits/second
Latency (average)	83 ms
Access time	
Average	91 ms
Track to track	3 ms
Settling time	18 ms
Head load time	50 ms
Motor start time	750 milliseconds

Performance Specifications

Logic Diagrams

High Capacity Diskette Drive (Sheet 1 of 2)

High Capacity Diskette Drive (Sheet 2 of 2)

Notes:

Notes:

Personal Computer Hardware Reference Library

Streaming Tape Drive

 γ_{j}

Contents

Description	1
Control Interface	1
Power	
Specifications	3

iv Streaming Tape Drive

Description

The tape subsystem contains a 1/4-inch streaming cartridge tape drive, a power supply, and associated components. The streaming tape drive consists of read/write, control and motor drive electronics, a tape transport mechanism, and head stepping assembly. These components perform the following functions:

- Interpret and generate interface control signals
- Automatically position the read/write head to the proper track
- Format, read, and write data
- Monitor and control tape speed
- Provide data error detection and correction.

The IBM RT PC Streaming Tape Drive Adapter board controls the subsystem. All commands from the system pass through the adapter board.

Control Interface

The control interface lines for the tape subsystem are carried by a 6 foot black signal cable which enters the rear of the subsystem. The cable attaches to the IBM RT PC Streaming Tape Drive Adapter card with the 37-pin D-shell connector on the end of the cable. The cable pin assignments are shown in Figure 1 on page 2.

Signal Name	Signal Pin	Gnd Pin
Cable shield	19	1
Parity Bit (Odd)	20	2
Bit 7	21	3
Bit 6	22	4
Bit 5	23	5
Bit 4	24	6
Bit 3	25	7
Bit 2	26	8
Bit 1	27	9
Bit 0	28	10
On line	29	11
Request	30	12
Reset	31	13
Transfer	32	14
Acknowledge	33	15
Ready	34	16
Exception	35	17
Direction	36	18
Reserved	37	

Figure 1. Control Interface Lines

Power

The subsystem has its own AC line cord that must be plugged into an electrical wall outlet.

Specifications

The following figures show the physical and performance specifications for the subsystem.

Signal interface	QIC-02 industry standard
Data format	QIC-24 industry standard
Capacity	55M-bytes
Recording density	10000 flux changes per inch
Transfer rate	86.7K bits per second
Tape speed	90 inches per second
Internal data buffer	2K-bytes

Figure 2. Performance Specifications

AC power	50-60 Hz, 90-137 Volts RMS 100 watts
Operating limits	Ambient temperature 5 to 40°C (41 to 104°F) Relative humidity 20 to 80 %
Nonoperating limits	Ambient temperature -10 to 60°C (-40 to 140°F) Relative humidity 8 to 80%
Mechanical dimensions	Width 144.0 mm (5.75 in) Height 221.2 mm (8.75 in) Depth 387.3 mm (15.25 in)

Figure 3. Physical Specifications

4 Streaming Tape Drive

©IBM Corp. 1986 All rights reserved.

International Business Machines Corporation Department 997, Building 998 11400 Burnet Rd. Austin, Texas 78758

Printed in the United States of America

75X0235

