

IBM RT PC FORTRAN 77

FORTRAN 77

Programming Family· I

--....- ------ - -------- -. ---- - - ------------,-
Personal
Computer
Software

First Edition (November 1985)

Changes are made periodically to the information herein; these changes will be incorporated in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985
©Copyright INTERACTIVE Systems Corporation 1984
©Copyright AT&T Technologies 1983

About This Book

This book, IBM RT PC FORTRAN 77, is a reference for this implementation of FORTRAN
77 on the IBM RT PC.

The IBM RT PC FORTRAN 77 Licensed Program Product implementation is based on the
specifications outlined in the American National Standard Programming Language
FORTRAN document (ANSI X3.9-1978) approved by the American National Standards
Institute (ANSI) in 1978. This level of FORTRAN is commonly known as FORTRAN 77.

The IBM RT PC FORTRAN 77 Licensed Program Product implementation is an adaptation
of the version of FORTRAN 77 implemented in UNIXI System V produced by AT&T Bell
Laboratories.

IBM RT PC FORTRAN 77 includes additional function defined in the FORTRAN Military
Standard (MIL-STD-1753) published by the United States Department of Defense.

Functional specifics unique to this implementation are also discussed in this book.

Who Should Read This Book

The IBM RT PC FORTRAN 77 book contains information for programmers to use in the
design, writing, compilation, and execution of FORTRAN programs on the IBM RT PC.

You should have a working knowledge of some dialect of FORTRAN before using this
book. Also, parts of this book assume some familiarity with the use of the AIX Operating
System on the IBM RT PC.

How to Use This Book

Chapters 1 through 5 discuss the IBM RT PC FORTRAN 77 implementation. It is intended
that you refer to these chapters for details on usage and functionality specific to this
FORTRAN 77 implementation on the IBM RT PC. Refer to books dealing with ANSI
Standard FORTRAN 77 for information on FORTRAN 77 specifics.

Chapters 6 through 8 discuss preprocessors for FORTRAN 77. If you are unfamiliar with
the function and use of preprocessors, you may want to read the brief general explanation
of preprocessors provided in Chapter 6, "Overview of Preprocessors." The chapter also
generally discusses the two preprocessors, Ratfor and EFL, that are implemented for IBM
RT PC FORTRAN 77.

Trademark of AT&T Bell Laboratories

About This Book iii

If you are familiar with preprocessors and want detailed information on their use, you can
read Chapter 7, "Ratfor - The Rational FORTRAN Preprocessor" for information on
Ratfor and Chapter 8, "EFL - Extended FORTRAN Language" for information on EFL.

Organization
The IBM RT PC FORTRAN 77 book is organized as follows:

• "Part 1. FORTRAN 77" consists of Chapters 1 through 5. This part of the book
discusses the specifics of this FORTRAN 77 implementation on the IBM RT PC system.

• Chapter 1, "Differences Between IBM RT PC FORTRAN 77 and ANSI Standard
FORTRAN 77," discusses differences between this FORTRAN 77 implementation and
ANSI Standard FORTRAN 77. Both violations of the Standard and functional
enhancements to the Standard are explained.

• Chapter 2, "Functions and Subroutines," explains the functions and subroutines that
are part of the FORTRAN 77 libraries in this implementation. A quick reference
alphabetical table of these functions and subroutines can be found at the end of the
chapter.

• Chapter 3, "Compiling, Linking, Debugging, and Running a Program," describes the
basics of compiling, linking, debugging, and running FORTRAN programs. It explains
in detail the available compiling and linking options.

• Chapter 4, "Linking C With FORTRAN" describes how C Language programs can be
linked to FORTRAN programs. It includes program examples and a discussion of
argument passing between C Language and FORTRAN.

• Chapter 5, "AIX Operating System Commands for FORTRAN," explains the format and
use of certain IBM RT PC AIX Operating System commands that you can use with
FORTRAN program files.

• "Part 2. Ratfor and EFL - Two Preprocessors for FORTRAN" consists of Chapters 6,
7, and 8. This part of the book discusses general characteristics of preprocessors and
the specific implementations of two FORTRAN preprocessors, Ratfor and EFL, that are
included with the IBM RT PC FORTRAN 77 Licensed Program Product.

• Chapter 6, "Overview of Preprocessors," briefly explains the concept and
implementation of preprocessors. It also provides overviews of Ratfor and EFL.

• Chapter 7, "Ratfor - The Rational FORTRAN Preprocessor," discusses the structure,
statements, and use of Ratfor.

• Chapter 8, "EFL - Extended FORTRAN Language," discusses the structure,
statements, and use of EFL.

• Appendix A, "Installing the IBM RT PC FOR'lRAN 77 Licensed Program Product,"
describes how to install the FORTRAN compiler on the IBM RT PC.

iv FORTRAN 77

• Appendix B, "ASCII Character Codes," lists the decimal, octal, hexadecimal, and
character representations for each ASCII standard character and for other characters
supported on the IBM RT PC.

A glossary of terms and an index are provided at the end of this book for your information.

A Reader's Comment Form and Book Evaluation Form are provided at the back of this
book. Use the Reader's Comment Form at any time to give IBM information that may
improve the book. After you become familiar with the book, use the Book Evaluation
Form to give IBM specific feedback about the book.

In addition to this book, the IBM RT PC FORTRAN 77 licensed program consists of the
FORTRAN compiler and a library of object modules that make up the FORTRAN runtime
library.

Highlighting Conventions
The highlighting conventions used in this book are as follows:

• Words printed in lowercase boldface letters in this book must be entered exactly as
shown when they are part of a program. Many names of built-in functions and
subroutines are used as part of their input formats. They appear in lowercase boldface
letters in the Format sections of each explanation in "Function and Subroutine
Directory" on page 2-5 and in other places in this book.

For example, the format for the getarg subroutine is:

call getarg (ii, chi)

The lowercase boldface letters indicate that both call and getarg must appear in
program code exactly as they appear in the example.

• Items printed in lowercase italic letters are general names for items that you define and
name in a program. Once such an item is defined, it retains its meaning for the entire
discussion.

For example, in the format for the getarg subroutine:

call getarg (ii, chi)

the lowercase italic letters indicate that you replace the general names i1 and chl with
variable names when entering the getarg subroutine in a FORTRAN program.

• Brackets indicate optional items.

For example, the format for the cmplx function:

cxi = cmplx (ii [, i2])

indicates that i2 is an optional argument for the cmplx function.

• Punctuation marks that appear in lines of example code, such as commas, colons, slash
marks, parentheses, and equal signs, must be entered exactly as shown.

About This Book V

• Blanks normally have no significance in the description of FORTRAN statements.

Terminology
The following terminology conventions are followed in this book:

• The word FORTRAN is used when discussing things specific to the IBM RT PC
FORTRAN 77 licensed program implementation of the FORTRAN language on the IBM
RTPC

• The phrase FORTRAN 77 is used when discussing things specific to the ANSI
standard known as FORTRAN 77

• The phrase FORTRAN 66 is used when discussing things specific to the ANSI
standard known as FORTRAN 66.

Related Information

While you are using this book, you may find references to one or more of the other books
in the IBM RT PC library. The following paragraphs discuss some of these books.

• IBM RT PC Bibliography and Master Index provides brief descriptive overviews of the
books and tutorial program that support the IBM RT PC hardware and the AIX
Operating System. In addition, this book contains an index to the RT PC and AIX
Operating System library.

• IBM RT PC Using and Managing the AIX Operating System describes using AIX
Operating System commands, working with the file system, and developing shell
procedures. This book also provides instructions for performing such system
management tasks as adding and deleting user IDs, creating and mounting file systems,
backing up the system, and repairing file system damage.

• IBM RT PC AIX Operating System Commands Reference lists and describes the AIX
Operating System commands.

• IBM RT PC Messages Reference lists messages displayed by the IBM RT PC and
explains how to respond to the messages.

• IBM RT PC AIX Operating System Technical Reference describes the system calls and
subroutines that a C programmer uses to write programs. This book also provides
information about the AIX file system, special files, miscellaneous files, and writing
device drivers. (Available optionally)

• IBM RT PC AIX Operating System Programming Tools and Interfaces describes the
programming environment of the AIX Operating System and includes information
about using the operating system tools to develop, compile, and debug programs. In
addition, this book describes the operating system services and how to take advantage
of them in a program. This book also includes a diskette that includes programming
examples, written in C language, to illustrate using system calls and subroutines in
short, working programs. (Available optionally)

vi FORTRAN 77

• IBM RT PC C Language Guide and Reference provides guide information for writing,
compiling, and running C language programs and includes reference information about
C language data structures, operators, expressions, and statements. (Available
optionally)

See IBM RT PC Bibliography and Master Index for order numbers of IBM RT PC
publications and diskettes.

Ordering Additional Copies of This Book

To order additional copies of this publication (without program diskettes), use either of the
following sources:

• To order from your IBM representative, use Order Number SV21-8027.

• To order from your IBM dealer, use Part Number 6280760.

A binder is included with the order.

About This Book vii

viii FORTRAN 77

Contents

Part 1. FORTRAN 77

Chapter 1. Differences Between IBM RT PC FORTRAN 77 and ANSI
Standard FORTRAN 77 1-1

About This Chapter ... 1-3
Overview of the IBM RT PC FORTRAN 77 Compiler 1-4
Differences and Enhancements ... 1-5
Linking C Language with FORTRAN 1-14
File Formats .. 1-15

Chapter 2. Functions and Subroutines 2-1
About This Chapter ... 2-3
Generic and Specific Names ... 2-4
Function and Subroutine Directory 2-5
abort ... 2-6
abs .. 2-7
acos .. 2-8
aimag .. 2-9
aint ... 2-10
asin ... 2-11
atan .. 2-12
atan2 .. 2-13
bool ... 2-14
conjg .. 2-15
cos ... 2-16
cosh .. 2-17
dim ... 2-18
dprod .. 2-19
exp ... 2-20
ftype .. 2-21
getarg ... 2-24
getenv ... 2-25
iargc .. 2-26
index .. 2-27
len .. 2-28
log .. 2-29
log10 .. 2-30
max ... 2-31
mclock .. 2-32

Contents ix

mIn ... 2-33
mod ... 2-34
rand .. 2-35
round ... 2-36
sign ... 2-37
signal ... 2-38
SIn .. 2-40
sinh ... 2-41
sqrt ... 2-42
system ... 2-43
tan ... 2-44
tanh .. 2-45
Character String Comparison Functions 2-46
Bit Field Manipulation Functions and Subroutine 2-47
Floating-Point Status Subroutines 2-48.1
Alphabetical List of Functions and Subroutines 2-49

Chapter 3. Compiling, Linking, Debugging, and Running a Program . 3-1
About This Chapter ... 3-3
What You Need .. 3-4
FORTRAN Program Names ... 3-5
Compiling and Linking a FORTRAN Program 3-6
FORTRAN Compiler Options .. 3-7
The Internal Compilation Process 3-13
Listing Compiler Messages in a File 3-15
Informational Listings .. 3-16
Debugging a FORTRAN Program .. 3-17

Chapter 4. Linking C With FORTRAN 4-1
About This Chapter ... 4-3
How to Link a C Language Program to a FORTRAN Program 4-4
Inter-Procedure Interface ... 4-5
Source Code Examples ... 4-9

Chapter 5. AIX Operating System Commands for FORTRAN 5-1
About This Chapter ... 5-3
asa .. 5-4
fsplit ... 5-6

Part 2. Ratfor and EFL - Two Preprocessors for FORTRAN

Chapter 6. Overview of Preprocessors 6-1
About This Chapter ... 6-3
General Definition of Preprocessors 6-4

x FORTRAN 77

Characteristics of Ratfor ... 6-6
Characteristics of EFL ... 6-7
The Differences Between Ratfor and EFL 6-8

Chapter 7. Ratfor - The Rational FORTRAN Preprocessor 7-1
About This Chapter ... 7-3
The Capabilities of the Ratfor Preprocessor 7-4
The Syntactic Structure of Ratfor .. 7-6
Ratfor Statements ... 7-9
General Ratfor Conventions .. 7-22
Implementation .. 7-23
Usage Considerations ... 7-25
Compiling Ratfor Source Files .. 7-26

Chapter 8. EFL - Extended FORTRAN Language 8-1
About This Chapter ... 8-3
Capabilities of EFL .. 8-4
Notation and Highlighting .. 8-6
Terms and Concepts ... 8-7
Data Types and Variables .. 8-17
Expressions ... 8-24
Declarations .. 8-26
Statement Directory .. 8-30
The Input/Output System .. 8-43
Subroutines ... 8-45
Functions .. 8-46
Compiling EFL Source Files .. 8-48
The Compiler ... 8-49
Compiler Restrictions ... 8-52
Examples .. 8-53
Portability ... 8-58

Appendix A. Installing the IBM RT PC FORTRAN 77 Licensed
Program Product A-I

Appendix B. ASCII Character Codes

Figures

Glossary

B-1

X-I

X-3

Index ... X-13

Contents xi

xii FORTRAN 77

Part 1. FORTRAN 77

Part 1. FORTRAN 77

Chapter 1. Differences Between IBM RT PC
FORTRAN 77 and ANSI Standard FORTRAN 77

Differences 1-1

CONTENTS
About This Chapter ... 1-3
Overview of the IBM RT PC FORTRAN 77 Compiler 1-4
Differences and Enhancements ... 1-5

Dummy Procedure Arguments ... 1-5
T and TL Formats ... 1-5
Logical*1 Data Type ... 1-6
Double Complex Data Type .. 1-7
Pre-Connected Units and File Positions .. 1-7
Implicit Undefined Statement .. 1-8
Recursion ... 1-8
Static/Automatic Storage ... 1-8
Source Input Format ... 1-9
The include Statement ... 1-9
Binary Initialization Constants ... 1-10
Dimensions ... 1-10
Floating-Point Format .. 1-10
Character Strings .. 1-11
Hollerith Data .. 1-12
Equivalence Statements ... 1-12
One-Trip Do Loops ... 1-12
Commas in Formatted Input .. 1-13
Short Integers ... 1-13
Additional Intrinsic Functions .. 1-13

Linking C Language with FORTRAN ... 1-14
File Formats .. 1-15

Structure of FORTRAN Files ... 1-15
Portability Considerations ... 1-16

1-2 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877

About This Chapter

This chapter discusses the differences between this FORTRAN 77 implementation and
ANSI Standard FORTRAN 77, and functional enhancements built into this version of
FORTRAN 77.

The differences explained in this chapter consist largely of:

• Functional enhancements beyond the FORTRAN 77 standard

• Additional function that allows IBM RT PC FORTRAN 77 to communicate with C
Language procedures

• Additional function that allows the compilation of FORTRAN programs written
according to the 1966 ANSI Standard FORTRAN (FORTRAN 66).

In addition, this chapter discusses the file formats recognized by the I/O system.

Differences 1-3

Overview of the IBM RT PC FORTRAN 77 Compiler

The IBM RT PC FORTRAN 77 compiler is an implementation of the ANSI standard
FORTRAN 77, with extensions. The standard defines two levels of FORTRAN 77:

• Full FORTRAN

• Subset FORTRAN.

IBM RT PC FORTRAN 77 can be viewed as a superset of Full FORTRAN.

Code generated by the IBM RT PC FORTRAN 77 compiler is compatible with calling
sequences produced by C Language compilers and can drive C Language procedures
produced by most C Language compilers.

1-4 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877

Differences and Enhancements

The following sections describe differences between IBM RT PC FORTRAN 77 and ANSI
Standard FORTRAN 77, and functional enhancements implemented in IBM RT PC
FORTRAN 77.

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an external statement. A warning is printed if a
dummy procedure is not declared external. Code is correct if there are no character
arguments.

T and TL Formats

The T (absolute tab) and TL (leftward tab) format codes do not function in IBM RT PC
FORTRAN 77 as defined in the ANSI Standard. These codes allow rereading or rewriting
of part of the record that has already been processed.

IBM RT PC FORTRAN 77 uses seeks. If the unit is not one that allows seeks, such as a
terminal, unpredictable results can occur.

A benefit of the implementation chosen is that there is no upper limit on the length of a
record. Also, record lengths must be predeclared only where specifically required by
FORTRAN or the operating system.

Differences 1-5

TNL SN20-9806 (26 Sept 1986) to 59X7877

Logical*l Data Type

A logical*l data type is implemented in this version of FORTRAN. The logical*l data
type is a 1-byte logical quantity. It can be assigned the values .true. and .false.

Through equivalencing, other values can be assigned to logical*l quantities. As a result
of equivalencing, a logical*l variable can hold any 8-bit quantity. All values other than 0
(zero) are .true.

When used in an expression, a logical*l variable behaves as a logical*4 variable.

A logical*l variable can be printed as an integer or character in a formatted I/O
statement. However, a logical*l variable is never implicitly converted to another data
type.

In common storage, logical*l variables must not force halfword or fullword quantities to
begin on a boundary other than a halfword or fullword boundary. In the following
example:

10gical*1 10g1
integer*4 int
o
o

o

common 10g1(3), int
the common statement attempts to force an integer quantity to begin after 3 bytes. The
integer requires 4 bytes of storage, a full word. Since full word quantities must begin on
fullword boundaries, the statement is invalid and is treated as an error by the compiler.

The following statement shows a valid use of a logical*l quantity in a common
statement:

10gical*1 10g1
integer*4 int
o
o
o

common 10g1(4), int

1-6 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877

Double Complex Data Type

The new type double complex is implemented in IBM RT PC FORTRAN 77. Each datum
is represented by a pair of double-precision real variables.

A double complex version of every complex built-in function is provided. The specific
function names begin with z instead of c.

Pre-Connected Units and File Positions

The IBM RT PC FORTRAN 77 supports unit numbers 0 (zero) through 99. The AIX
Operating System supports up to 20 open files per process.

Units 5, 6, and 0 are preconnected when a program starts. Unit 5 is connected to the
standard input. Unit 6 is connected to the standard output. Unit 0 is connected to
standard error. All units are connected for sequential formatted I/O.

All other units are also preconnected when execution begins. Unit n is connected to a file
named fort.n. These files need not exist and are not created unless their units are used
without first executing an open statement. The default connection is for sequential
forma tted I/O.

The Standard does not specify the initial position of a file that is explicitly opened for
sequential I/O. The IBM RT PC FORTRAN 77 I/O system attempts to position the file at
the end, so that a write operation appends to the file and a read operation results in an
end-of-file indication.

The rewind statement can be used to position a file at its beginning. The preconnected
units 5,6, and 0 are positioned as they come from the program's parent process.

Differences 1-7

Implicit Undefined Statement

In FORTRAN, the type of a variable that does not appear in a type statement is integer if
its first letter is i, j, k, 1, m or n, and real otherwise. The implicit statement can be used
to override this rule.

The IBM RT PC FORTRAN 77 implementation permits an additional type, undefined. For
example, the statement:

implicit undefined(a-z)
turns off the automatic data typing mechanism and instructs the compiler to issue a
diagnostic for each variable that is used but does not appear in a type statement.

Specifying the - u compiler option is equivalent to beginning each procedure with this
statement.

Recursion

Procedures can call themselves, directly or through a chain of other procedures.

When recursive subroutines or functions are used, the IBM RT PC FORTRAN compiler
cannot, in all cases, determine if static storage is required for a local variable. The
following methods will force a variable to be static:

• Use the save command in the subroutine or function.

o Specify the variable in a common block subprogram.

o Explicitly type the variable as static in the subroutine or function.

Static/Automatic Storage

Two new keywords are recognized, static and automatic. These keywords can appear as
types in type statements and in implicit statements.

Local variables are static by default; there is exactly one copy of the datum, and its value
is retained between calls. There is one copy of each variable declared automatic for each
invocation of the procedure. Automatic variables cannot appear in equivalence, data, or
save statements.

1-8 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877

Source Input Format

The Standard expects input to the compiler to be in 72-column format. Except in comment
lines, the first 5 characters are the statement number, the next is the continuation
character, and the next 66 characters are the body of the line.

If there are fewer than 72 characters on a line, the IBM RT PC FORTRAN 77 compiler
pads it with blanks; characters after the seventy-second are ignored.

In order to make it easier to type FORTRAN programs, the IBM RT PC FORTRAN 77
compiler accepts input in variable length lines. A statement can consist of an initial line
and up to 19 continuation lines.

In the Standard, there are only 26 letters - the 26 uppercase letters of the alphabet.
Consistent with AIX Operating System system usage, the IBM RT PC FORTRAN 77
compiler expects lowercase input. By default, the compiler converts uppercase characters
to lowercase, except inside character constants and Hollerith fields.

However, if the U compiler option is specified, uppercase letters are not transformed. In
this mode, it is possible to specify external names with uppercase letters in them, and to
have distinct variables differing only in case. Regardless of the setting of the option,
keywords are recognized in lowercase only.

Warning:
The compiler expects keywords such as if and else to be entered in lowercase letters. By
default, most uppercase letters are automatically converted to lowercase letters by the
compiler. Therefore the compiler can compile FORTRAN programs containing keywords
entered in uppercase letters. However, if you use the U option to compile a program
containing keywords entered in uppercase letters, the compiler will not be able to properly
interpret the keywords.

Names can have up to 127 characters, all of which are significant. The x compiler option
causes the compiler to treat names longer than 6 characters as errors.

The include Statement

The statement:

include 'stuff'

is replaced by the contents of the file stuff.

Differences 1-9

TNL SN20-9806 (26 Sept 1986) to 59X7877

Binary Initialization Constants

An integer variable can be initialized in a data statement by a non-decimal constant,
denoted by a letter followed by a string within quotation marks.

If the letter is b, the string is binary and only zeroes and ones are permitted in the string.
If the letter is 0, the string is octal, with digits 0 through 7. If the letter is z or x, the
string is hexadecimal, with digits 0 through 9 and a through f.

Thus, the statements:

integer a(3)
data a / b ' 1010 ' , 0 1121, zla l /

initialize all three elements of the array a to ten.

Dimensions

IBM RT PC FORTRAN 77 supports 20 array dimensions.

Floating-Point Format

IBM RT PC FORTRAN 77 supports the ANSI/IEEE floating-point format.

The following may be displayed in place of the expected floating-point number when
writing information to a display screen or printer:

Display Meaning

QNaN Quite NaN.

SNaN Signaling NaN.

+INF Positive infinity.

-INF Negative infinity.

Figure 1-1. Floating-Point Display

1-10 FORTRAN 77

Character Strings

For compatibility with C Language usage, the following backslash escapes are recognized:

Escape Meaning

\n New-line

\t Tab

\b Backspace

\f Form feed

\0 Null

\ ' Apostrophe (does not terminate a string)

\' , Quotation mark (does not terminate a
string)

\ \ Backslash

\x x, where x is any other character

Figure 1-2. Backslash Escapes

Standard FORTRAN 77 recognizes only one quotation character, ' (the single quotation
mark or apostrophe). The IBM RT PC FORTRAN 77 compiler and I/O system recognize
both the ' (single quotation mark) and the ' , (double quotation mark).

If a string begins with one variety of quotation mark, the other can be embedded within it
without using the repeated quotation mark or backslash escapes.

Every unequivalenced scalar local character variable and every character string constant
is aligned on an integer word boundary. Each character string constant appearing outside
a data statement is followed by a null character to facilitate communication with C
Language routines.

Differences 1-11

TNL SN20-9806 (26 Sept 1986) to 59X7877

Hollerith Data

Standard FORTRAN 77 does not have Hollerith (nh) notation, although the Standard
recommends implementing the Hollerith feature in order to improve compatibility with old
programs.

In IBM RT PC FORTRAN 77, Hollerith data can be used in place of character string
constants, and can also be used to initialize non-character variables in data statements.

Equivalence Statements

As a special case, FORTRAN 66 permits an element of a multiply-dimensioned array to be
represented by a singly-subscripted reference in equivalence statements. FORTRAN 77
does not permit this usage, since subscript lower bounds can now be different from 1.

The IBM RT PC FORTRAN 77 compiler permits single subscripts in equivalence
statements, under the interpretation that missing subscripts are equal to 1. A warning
message is printed for each such incomplete subscript.

One-Trip Do Loops

The FORTRAN 77 Standard requires that the range of a do loop not be performed if the
initial value is already past the limit value, as in:

do 10 i = 2,1

The 1966 Standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop be performed at least once.

In order to accommodate old programs, although they are in violation of the 1966
Standard, IBM RT PC FORTRAN 77 supports a - onetrip compiler option that causes
non-standard loops to be generated.

1-12 FORTRAN 77

Commas in Formatted Input

When doing a formatted read of non-character variables, commas can be used as value
separators in the input record, overriding the field lengths given in a format statement.

Thus, the format:

(i10, f20.10, i4)

reads the record:

-345,.05e-3,12

correctly.

Short Integers

The IBM RT PC FORTRAN 77 compiler accepts declarations of type integer*2. An
expression involving only objects of type integer*2 is of that type.

Additional Intrinsic Functions

IBM RT PC FORTRAN 77 supports the intrinsic functions specified in the FORTRAN 77
Standard and the bitwise Boolean operations defined in the FORTRAN Military Standard.

IBM RT PC FORTRAN 77 also implements additional built-in functions and subroutines
that access the AIX Operating System.

For more information on the functions in the IBM RT PC FORTRAN 77 intrinsic function
library, see the "Function and Subroutine Directory" on page 2-5.

Differences 1-13

Linking C Language with FORTRAN

You can write C Language procedures that call or are called by IBM RT PC FORTRAN 77
procedures. Chapter 4, "Linking C With FORTRAN" contains the following information
on the interface of FORTRAN and C Language programs:

• Linking FORTRAN and C Language programs

• Conventions for the passing of data between FORTRAN and C Language programs

• The source code and output of a FORTRAN program and the C Language procedure
called by the FORTRAN program.

1-14 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877

File Formats

The following sections discuss the implementation of files in IBM RT PC FORTRAN 77.

Structure of FORTRAN Files

FORTRAN requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. In IBM RT PC FORTRAN 77, these files are
implemented as ordinary files that are assumed to have the proper internal structure.

FORTRAN I/O is based on records. When a direct file is opened in a FORTRAN program,
the record length of the records must be given. The record length is used by the
FORTRAN I/O system to make the file look as if it is made up of records of the given
length.

In the special case that the record length is given as 1, the files are not considered to be
divided into records, but are treated as byte-addressable byte strings; that is, as ordinary
AIX Operating System file system files. A read or write request on such a file reads or
writes bytes until a specified condition is met, and is not restricted to a single record.

The requirements on sequential unformatted files make it unlikely that they will be read or
written by any means except FORTRAN I/O statements. Each record is preceded and
followed by an integer containing the record's length in bytes.

The FORTRAN I/O system breaks sequential formatted files into records while reading by
using each new-line character as a record separator. The result of reading off the end of a
record is undefined according to the Standard. The I/O system treats the record as being
extended by blanks. On output, the I/O system writes a new-line character at the end of
each record.

It is also possible for programs to write new-lines characters for themselves. This is an
error, but the only effect is that the single record that appears to be written is treated as
more than one record when being read or backspaced over.

The INed1 editor may insert tab characters in a file being edited. The insertion of tab
characters can be a problem in data files used as input to a FORTRAN program. You can
use the AIX untab command to remove tab characters from a file.

INed is a registered trademark of INTERACTIVE Systems Corporation.

Differences 1-15

Portability Considerations

The IBM RT PC FORTRAN 77 I/O system uses the facilities of the standard C Language
I/O library, with the following two nonstandard features: The I/O system needs to know
whether a file can be used for direct I/O, and whether or not it is possible to backspace.

Both of these facilities are implemented using the fseek routine, so there is a routine
canseek which determines if fseek will have the desired effect.

Also, the inquire statement provides the user with the ability to find out if two files are
the same, and to get the name of an already opened file in a form that enables the program
to reopen it. The AIX Operating System implementation attempts to determine the full
path name.

Therefore there are two routines that depend on facilities of the operating system to
provide these two services.

1-16 FORTRAN 77

Chapter 2. Functions and Subroutines

Functions and Subroutines 2-1

CONTENTS
About This Chapter ... 2-3
Generic and Specific Names ... 2-4
Function and Subroutine Directory ... 2-5
abort ... 2-6
abs .. 2-7
acos ... - -. 2-8
aimag .. 2-9
aint ... 2-10
asin ... 2-11
at an .. 2-12
atan2 .. 2-13
bool ... 2-14
conjg .. 2-15
cos ... 2-16
cosh .. 2-17
dim ... 2-18
dprod .. 2-19
exp ... 2-20
ftype .. 2-21
getarg ... 2-24
getenv ... 2-25
iargc .. 2-26
index .. 2-27
len .. 2-28
log .. 2-29
log10 .. 2-30
max ... 2-31
mclock .. 2-32
mIn ... 2-33
mod ... 2-34
rand .. 2-35
round ... 2-36
sign ... 2-37
signal ... 2-38
SIn .. 2-40
sinh ... 2-41
sqrt ... 2-42
system ... 2-43
tan ... 2-44
tanh .. 2-45
Character String Comparison Functions .. 2-46
Bit Field Manipulation Functions and Subroutine 2-47
Floating-Point Status Subroutines .. 2-48.1
Alphabetical List of Functions and Subroutines 2-49

2-2 FORTRAN 77

About This Chapter

This chapter contains a directory of the functions and subroutines that come as part of the
IBM RT PC FORTRAN 77 libraries. The purpose and format of each built-in function and
subroutine is given, and explanatory remarks are included.

An alphabetical listing of the functions and subroutines is included at the end of this
chapter for quick reference use.

Functions and Subroutines 2-3

Generic and Specific Names

Some functions can take several different types of arguments. For example, the abs
function takes a single argument that can be of type integer, real, double-precision,
complex, or double complex.

The name of this type of function is considered a generic name. A function with a generic
name returns a value having the same data type as its argument or arguments (except for
functions performing type conversion, nearest integer, and absolute value with a complex
argument).

Some functions can take only one type of argument. The name of this type of function is
considered a specific name. The iabs function, for example, performs the same operation
as the abs function. But the iabs function can take only an integer data type as its
argument and returns only an integer value.

An intrinsic function is any pre-defined function included in the FORTRAN libraries. The
functions discussed in this chapter are intrinsic to this implementation of FORTRAN 77.
A function name used in an intrinsic statement must be the specific or generic name of an
intrinsic function.

Only a specific intrinsic function name can be used as an actual argument when the
corresponding dummy argument is an intrinsic function.

2-4 FORTRAN 77

Function and Subroutine Directory

The following pages discuss the functions and subroutines included in the FORTRAN
libraries accompanying this implementation of FORTRAN 77.

Functions and Subroutines 2-5

abort

abort

Purpose

The abort function terminates the program that calls it.

Format

call abort ()

Remarks

The abort function truncates all open files to the current position of the file pointer,
closes all open files, then writes the following message to the standard error output:

II FORTRAN abort routi ne ca 11 ed II.

2-6 FORTRAN 77

abs

Purpose

The abs function and its related functions return an absolute value.

Format

integer iJ, i2
real r1, r2
double precision dp1, dp2
complex ex1, ex2
double complex dx1, dx2

i2 = iabs (iJ)
i2 = abs (i1)

r2 = abs (r1)

dp2 = dabs (dp1)
dp2 = abs (dp1)

ex2 = cabs (ex1)
ex2 = abs (ex1)

dx2 = zabs (dx1)
dx2 = abs (dx1)

Remarks

The abs function is a family of absolute value functions.

The generic form, abs, returns the type of its argument.

The iabs function returns the integer absolute value of its integer argument.

The dabs function returns the double-precision absolute value of its double-precision
argument.

The cabs function returns the complex absolute value of its complex argument.

The zabs function returns the double-complex absolute value of its double-complex
argument.

abs

Functions and Subroutines 2-7

acos

acos

Purpose

The acos intrinsic function and its related intrinsic function return an arccosine value.

Format

real r1, r2
double precision dp1, dp2

r2 = acos (r1)

dp2 = dacos (dp1)
dp2 = acos (dp1)

Remarks

The acos function returns the arccosine as determined by its argument (either real or
double-precision).

The dacos function returns the double-precision arccosine of its double-precision
argument.

2-8 FORTRAN 77

aimag

aimag

Purpose

The aimag function and its related function return the imaginary part of a complex
argument.

Format

real rl
complex exl
double precision dpl
double complex dxl

rl = aimag (exl)

dpl = dimag (dxl)

Remarks

The aimag function returns the imaginary part of its single-precision complex argument.

The dimag function returns the double-precision imaginary part of its double-complex
argument.

Functions and Subroutines 2-9

aint

aint

The aint intrinsic function and its related intrinsic function return an integer part.

Format

real rl, r2
double precision dpl, dp2

r2 = aint (rl)

dp2 = dint (dpl)
dp2 = aint (dpl)

Remarks

The generic form, aint, returns either a real value or a double-precision value depending
on the type of its argument.

The aint function returns the truncated value of its real argument as a real value.

The dint function returns the truncated value of its double-precision argument as a
double-precision value.

2-10 FORTRAN 77

asin

asin

Purpose

The asin intrinsic function and its related intrinsic function return an arcsine value.

Format

real rl, r2
double precision dpl, dp2

r2 = asin (rl)

dp2 = dasin (dpl)
dp2 = asin (dpl)

Remarks

The generic form, asin, returns either a real value or a double-precision value depending
on the type of its argument.

The asin function returns the real arcsine of its real argument.

The dasin function returns the double-precision arcsine of its double-precision argument.

Functions and Subroutines 2-11

atan

atan

Purpose

The atan intrinsic function and its related intrinsic function return an arctangent value.

Format

real rl, r2
double precision dpl, dp2

r2 = at an (rl)

dp2 = datan (dpl)
dp2 = atan (dpl)

Remarks

The generic form, atan, returns either a real value or a double-precision value depending
on the type of its argument.

The atan function returns the real arctangent of its real argument.

The datan function returns the double-precision arctangent of its double-precision
argument.

2-12 FORTRAN 77

atan2

atan2

Purpose

The atan2 intrinsic function and its related intrinsic function return an arctangent value
of a quotient.

Format

real rl, r2, r3
double precision dpl, dp2, dp3

r3 = atan2 (rl, r2)

dp3 = datan2 (dpl, dp2)
dp3 = atan2 (dpl, dp2)

Remarks

The generic form, atan, returns either a real value or a double-precision value depending
on the type of its argument.

The atan2 function returns the arctangent of dpl divided by dp2 as a real value.

The datan2 function returns the double-precision arctangent of its double-precision
arguments.

Functions and Subroutines 2-13

bool

bool

Purpose

The boolean intrinsic functions return the result of binary operations on their
arguments.

Format

integer il, i2, i3
real rl, r2, r3
double precision dpl, dp2, dp3

i3 = and (il, i2)

r3 = or (rl, r2)

i2 = xor (il, rl)

i2 = not (il)

i3 = lshift (il, i2)

i3 = rshift (il, i2)

Remarks

The generic functions and, or and xor return the value of the binary operations on their
arguments.

The not function is a unary function returning the one's complement of its argument.

The lshift and rshift functions return the value of the first argument shifted left or right,
respectively, the number of times specified by the second (integer) argument.

The boolean functions are generic; they are defined for all data types as arguments and
return values. Where required, the compiler generates appropriate type conversions.

Note: Although defined for all data types, use of boolean functions on any but integer
data produces unexpected results.

2-14 FORTRAN 77

conjg

conjg

Purpose

The conjg intrinsic function and its related intrinsic function return a complex conjugate.

Format

complex exl, ex2
double complex dxl, dx2

ex2 = conjg (exl)

dx2 = dconjg (dxl)

Remarks

The conjg function returns the complex conjugate of its complex argument.

The dconjg function returns the double-complex conjugate of its double-complex argument.

Functions and Subroutines 2-15

cos

cos

Purpose

The cos intrinsic function and its related intrinsic functions return a cosine.

Format

real rl, r2
double precision dpl, dp2
complex exl, ex2

r2 = cos (rl)

dp2 = dcos (dpl)
dp2 = cos (dpl)

ex2 = ccos (exl)
ex2 = cos (exl)

Remarks

The generic form, cos, returns the real, double-precision, or complex cosine depending on
its type of argument.

The cos function returns the real cosine of its real argument.

The dcos function returns the double-precision cosine of its double-precision argument.

The ccos function returns the complex cosine of its complex Hrgument.

2-16 FORTRAN 77

cosh

cosh

Purpose

The cosh intrinsio function and its related intrinsic function return a hyperbolic cosine.

Format

real r1, r2
double precision dp1, dp2

r2 = cosh (r 1)

dp2 = dcosh (dp1)
dp2 = cosh (dp1)

Remarks

The generic form, cosh, returns either the real or the double-precision hyperbolic cosine
depending on the type of its argument.

The cosh function returns the real hyperbolic cosine of its real argument.

The dcosh function returns the double-precision hyperbolic cosine of its double-precision
argument.

Functions and Subroutines 2-17

dim

dim

Purpose

The dim function and its related functions return the positive difference of two arguments.

Format

integer iI, i2, i3
real r 1, r 2, r 3
double precision dpl, dp2, dp3

i3 = idim (iJ, i2)
i3 = dim (iI, i2)

r3 = dim (rl, r2)

dp3 = ddim (dpl, dp2)
dp3 = dim (dpl, dp2)

Remarks

The dim, ddim, and idim functions return the positive difference between two arguments
if argl > arg2. If argi <= arg2, the function returns o.

2-18 FORTRAN 77

dprod

dprod

Purpose

The dprod function returns a double-precision product.

Format

double precision dpJ, dp2, dp3

dp3 = dprod (dpJ, dp2)

Remarks

The dprod function returns the double-precision product of its two double-precision
arguments.

Functions and Subroutines 2-19

exp

exp

Purpose

The exp intrinsic function and its related intrinsic functions return an exponential value.

Format

real rl, r2
double precision dpl, dp2
complex exl, ex2

r2 = exp (rl)

dp2 = dexp (dpl)
dp2 = exp (dpl)

ex2 = cexp (exl)
ex2 = exp (exl)

Remarks

The generic function, exp, returns the real exponential function ex of its real argument.
The exp function becomes a call to the dexp function or the cexp function, depending on
the type of its argument.

The dexp function returns the double-precision exponential function of its double-precision
argument.

The cexp function returns the complex exponential function of its complex argument.

2-20 FORTRAN 77

ftype

ftype

Purpose

The {type {unctions perform explicit type conversions.

Format

integer i1, i2
real r1, r2
double precision dp1, dp2
complex ex1
double complex doc1
character* 1 eh1

il = int (r1)
i1 = int (dp1)
i1 = int (ex1)
il = int (dxl)
i1 = ifix (r 1)
il = idint (dp1)

r 1 = real (i1)
r 1 = real (dp1)
r 1 = real (ex1)
r 1 = real (dxl)
r 1 = float (i1)
r1 = sngl (dp1)

dp1 = dble (i1)
dpl = dble (r 1)
dpl = dble (ex1)
dp1 = dble (dx1)

ex1 = cmplx (i1 [, i2])
exl = cmplx (r1 [, r2])
ex1 = cmplx (dp1 [, dp2])
ex1 = cmplx (dxl)

dx1 = dcmplx (i1 [, i2])
dx1 = dcmplx (r1[, r2])
dx1 = dcmplx (dpl[, dp2])
dxl = dcmplx (exl)

Functions and Subroutines 2-21

ftype

il = ichar (chl)
chl = char (il)

Remarks

The ftype functions convert data from one data type to another. The functions associated
wi th the ftype function are:

• int
• ifix
• idint
• real
• float
• sngl
• dble
• cmplx
• dcmplx
• ichar
• char

The int function converts its argument to integer form. The argument can be real,
double-precision, complex, or double complex. If the argument is real or double-precision,
int returns an integer with the largest value that does not exceed the value of the
argument and with the same sign as the argument. For complex types, this rule is applied
to the real part.

If converting an argument to integer exceeds the maximum integer*4 value, the leftmost
bit position (sign bit) is set to 1 and the remaining 31 bits are set to O.

All conversions to integer*2 variables are first converted internally to integer*4. The
rightmost (least significant) 16 bits of the integer*4 variable are then moved to the
integer*2 variable.

The ifix function converts only real arguments.

The idint function converts only double-precision arguments.

The real function converts its argument to real form. The argument can be integer,
double-precision, complex, or double complex. If the argument is double-precision or
double complex, as much precision as possible is kept. If the argument is one of the
complex types, the real part is returned.

The float function converts only integer arguments.

The sngl function converts only double-precision arguments.

The dble function converts its argument to double-precision form. The argument can be
integer, real, complex, or double complex. If the argument is a complex type, the real part
is returned.

2-22 FORTRAN 77

ftype

The cmplx function converts its argument or arguments to complex form. The arguments
can be integer, real, double-precision, or double complex.

The cmplx function can have either one or two arguments. If there is only one argument,
it is taken as the real part of the complex type, and an imaginary part of zero is supplied.
If two arguments are supplied, the first is taken as the real part and the second part as the
imaginary part.

The dcmplx function converts its argument or arguments to double complex form. The
arguments can be integer, real, double-precision, or complex.

The dcmplx function can have either one or two arguments. If there is only one
argument, it is taken as the real part of the complex type, and an imaginary part of zero is
supplied. If two arguments are supplied, the first is taken as the real part, and the second
part as the imaginary part.

The ichar function converts its argument from a character to an integer depending on the
character's position in the collating sequence.

The char function returns a character from the processor collating sequence. The
character returned is dependent on the argument supplied. For example, if the argument is
5, the character in the fifth position in the processor collating sequence is returned. The
char function uses the rightmost 8 bits of the integer argument. The remaining bits are
ignored.

Functions and Subroutines 2-23

getarg

getarg

Purpose

The getarg subroutine returns a command line argument of the current process.

Format

character* N chI
integer il

call getarg (iI, chI)

Remarks

The il parameter specifies the argument to return. If i1 is equal to 0, the program name is
returned from the command line.

For example, if a program is invoked by the following:

prog argl arg2 arg3
a getarg subroutine of the form:

getarg(2, c)
returns the string a r 9 2 in the character variable c
For information on finding out the number of arguments entered on the command line, see
"iargc" on page 2-26.

2-24 FORTRAN 77

getenv

getenv

Purpose

The getenv subroutine returns the character string value of the specified environment
variable contained in the .profile file of the current directory.

Format

character* N chI

call getenv (' environment_name' , chI)

Remarks

The getenv subroutine returns the character string value of the environment variable
specified by the first parameter in the character variable of the second parameter. If no
such environment variable exists, blanks are returned.

The following is an example of the getenv subroutine:

call getenv ('HOME', chI)

Functions and Subroutines 2-25

iargc

iargc

Purpose

The iargc function returns the number of arguments entered on the command line.

Format

integer il

i1 = iargc ()

Remarks

The iargc function returns an integer. The integer is the number of arguments following
the program name that have been entered on the command line.

For information on getting command line arguments, see "getarg" on page 2-24.

2-26 FORTRAN 77

index

TNL SN20-9806 (26 Sept 1986) to 59X7877
index

Purpose

The index function returns the location of a substring in a specified character string.

Format

character*N1 chl
character*N2 ch2
integer il

il = index (chl, ch2)

Remarks

The index function returns the location of the substring specified by the ch2 parameter in
the string specified by the chl parameter.

The returned location is the position at which substring ch2 starts. If substring ch2 is not
present in the string chl or if the length of ch2 is greater than the length of chl, a value of
o is returned.

The entire declared length of ch2 is used in the search. If the string assigned to ch2 is
shorter than the declared length of ch2, blanks fill the remaining character positions and
are used as part of the search substring.

For example, the index function in the following section of code finds no matching
substring and returns the value 0:

character*20 charI, char2
integer i
charI = "one two three four"
char2 = "three"
i = index(charl,char2)

The string charI does not contain a match for the substring char2, which contains the
character string three followed by the 15 blank characters required to fill the variable's
declared length of 20 characters.

If the defined character length for char2 in the example is changed to 5 characters
(character*5), a match is found in charI beginning at character position 9 and the
function in the example returns the value 9.

Functions and Subroutines 2-27

len

len

Purpose

The len function returns the length of a specified character string.

Format

character* N chi
integer i1

ii = len (chi)

Remarks

The len function returns the length of the string pointed to by the chi parameter.

2-28 FORTRAN 77

log

log

Purpose

The log intrinsic function and its related intrinsic functions return a natural logarithm.

Format

real r1, r2
double precision dp1, dp2
complex ex1, ex2

r2 = alog (r 1)
r2 = log (rl)

dp2 = dlog (dp1)
dp2 = log (dp1)

ex2 = clog (ex1)
ex2 = log (ex1)

Remarks

The generic form, log, returns the real, double-precision, or complex logarithm depending
on the type of its argument.

The alog function returns the real natural logarithm of its real argument.

The dlog function returns the double-precision natural logarithm of its double-precision
argument.

The clog function returns the complex logarithm of its complex argument.

Functions and Subroutines 2-29

loglO

loglO

Purpose

The loglO intrinsic function and its related intrinsic functions return a common logarithm.

Format

real r1, r2
double precision dp1, dp2

r2 = aloglO (r 1)
r2 = loglO (r 1)

dp2 = dloglO (dp1)
dp2 = loglO (dpJ)

Remarks

The generic form, loglO, returns the real or double-precision common logarithm depending
on its type of argument.

The aloglO function returns the real common logarithm of its real argument.

The dloglO function returns the double-precision common logarithm of its double-precision
argument.

2-30 FORTRAN 77

max

Purpose

The max function and its related functions return a maximum value.

Format

integer il, i2, i3, i4
real r 1, r2, r3, r4
double precision dp1, dp2, dp3

i4 = max (il, i2, i3)

r3 = max (r1, r2)
dp1 = max (r1, r2, r3)

i3 = maxO (i1, i2)
r1 = amaxO (i1, i2, i3)

i1 = maxI (r1, r2)
r4 = amaxi (r1, r2, r3)

dp3 = dmaxi (dp1, dp2)

Remarks

The max function is a family of maximum-value functions.

The generic form, max, returns the type of its argument.

The maxO function returns the integer form of the maximum value of its integer
arguments.

The amaxO function returns the real form of its integer arguments.

The maxI function returns the integer form of its real arguments.

The amaxi function returns the real form of its real arguments.

max

The dmaxi function returns the double-precision form of its double-precision arguments.

Functions and Subroutines 2-31

mclock

mclock

Purpose

The mclock function returns time accounting information about the current process and
its child processes.

Format

integer il

il = mclock ()

Remarks

The returned value is the sum of the current process's user time and the user and system
times of all child processes. The unit of measure is one-sixtieth (1/60) of a second.

2-32 FORTRAN 77

min

.
mIn

Purpose

The min function and its related functions return a minimum value.

Format

integer iI, i2, i3, i4
real rl, r2, r3, r4
double precision dpl, dp2, dp3

i4 = min (iI, i2, i3)
r3 = min (rl, r2)
dpl = min (rl, r2, r3)

i3 = minO (iI, i2)
rl = aminO (iI, i2, i3)

il = minI (rl, r2)
r4 = aminI (r 1, r2, r3)

dp3 = dminI (dpl, dp2)

Remarks

The min function is a family of minimum-value functions.

The generic form, min, returns the type of its argument.

The minO function returns the integer form of the minimum value of its integer arguments.

The aminO function returns the real form of its integer arguments.

The minI function returns the integer form of its real arguments.

The aminI function returns the real form of its real arguments.

The dminI function returns the double-precision form of its double-precision arguments.

Functions and Subroutines 2-33

mod

mod

Purpose

The mod intrinsic function and its related intrinsic functions return the remainder
resulting from the division of the first parameter by the second parameter.

Format

integer il, i2, i3
real rl, r2, r3
double precision dpl, dp2, dp3

i3 = mod (il, i2)

r3 = amod (rl, r2)
r3 = mod (rl, r2)

dp3 = dmod (dpl, dp2)
dp3 = mod (dpl, dp2)

Remarks

The generic form, mod, returns the remainder in integer, real, or double-precision form
depending on the type of its argument. The first parameter is divided by the second
parameter.

The amod function returns the real remainder of the integer division of the two
parameters.

The dmod function returns the double-precision whole number remainder of the integer
division of the two parameters.

2-34 FORTRAN 77

rand

rand

Purpose

The rand and irand functions generate uniform random numbers. The srand subroutine
provides the seed value for the random number generator.

Format

integer i1
real r1

call srand(i1)
i1 = irand()

call srand(r 1)
r1 = rand()

Remarks

The rand and irand functions generate uniform random numbers. The rand and irand
functions return the seed value each time it completes its operation.

The srand subroutine is used to provide the seed number specified by the argument for the
random number generator.

The irand function returns a positive integer number greater than 0 and less than or equal
to 32768.

The rand function returns a positive real number greater than 0 and less than 1.0.

Functions and Subroutines 2-35

round

round

Purpose

The nint function and its related functions return the nearest whole number value.

Format

integer i1
real r1, r2
double precision dp1, dp2

i1 = nint (r 1)
i1 = nint (dp1)

r2 = anint (r1)
dp2 = anint (dp1)

dp2 = dnint (dp1)
i1 = idnint (dp1)

Remarks

The anint function returns the nearest whole real number to its real parameter.

The dnint function returns the nearest whole double-precision number to its
double-precision parameter.

The nint function returns the nearest integer to its real or double-precision parameter.

The idnint function returns the nearest integer to its double-precision parameter.

2-36 FORTRAN 77

sign

sign

Purpose

The sign intrinsic function and its related intrinsic functions return the absolute value of
first parameter with the sign of the second parameter.

Format

integer il, i2, i3
real rl, r2, r3
double precision dpl, dp2, dp3

i3 = isign (il, i2)
i3 = sign (il, i2)

r3 = sign (rl, r2)

dp3 = dsign (dpl, dp2)
dp3 = sign (dpl, dp2)

Remarks

The generic form, sign, returns either an integer, real, or double-precision value depending
on the type of its parameters.

The isign function returns the integer absolute value of the first parameter with the sign
of the second parameter.

The dsign function returns the double-precision absolute value of the first parameter with
the sign of the second parameter.

Functions and Subroutines 2-37

signal

signal

Purpose

The signal subroutine allows a process to specify a function to be invoked upon receipt of
a specific signal.

Format

integer il
external intfnc

call signal (il, intfnc)

Remarks

The il parameter specifies the signal.

The intfnc parameter specifies the user-defined procedure to be invoked upon receipt of the
specified signal.

The following signal values can be assigned to i:

Integer Value Meaning

1 (sighup) System hangup

2 (sigint) System interrupt

3 (sigquit) Quit

4 (sigill) Illegal instruction (not reset when caught)

5 (sigtrap) Trace trap (not reset when caught)

6 (sigiot) lOT instruction

7 (sigemt) EMT instruction

8 (sigfpe) Floating-point exception

9 (sigfill) Kill (cannot be caught or ignored)

Figure 2-1 (Part 1 of 2). System Signals

2-38 FORTRAN 77

signal

Integer Value Meaning

10 (sigbus) Bus error

11 (sigsegv) Segmentation violation

12 (sigsys) Invalid argument to system call

13 (sigpipe) Write on a pipe with no one to read it

14 (sigalrm) Alarm clock

15 (sigterm) Software termination signal

16 (sigusr1) User-defined signal 1

17 (sigusr2) User-defined signal 2

18 (sigcld) Death of a child process

19 (sigpwr) Power failure

27 (sigioint) I/O intervention required

28 (siggrant) Monitor mode granted

29 (sigretract) Monitor mode retracted

30 (sigsound) Sound acknowledge

31 (sigmsg) Data pending

Figure 2-1 (Part 2 of 2). System Signals

For more information on signals, see the signal subroutine in the IBM RT PC AIX
Operating System Commands Reference.

Functions and Subroutines 2-39

sin

sin

Purpose

The sin intrinsic function and its related intrinsic functions return the sine of the
parameter .

. Format

real rl, r2
double precision dpl, dp2
complex exl, ex2

r2 = sin (rl)

dp2 = dsin (dpl)
dp2 = sin (dpl)

ex2 = csin (exl)
ex2 = sin (exl)

Remarks

The generic form, sin, returns the real, double-precision, or complex sine depending on the
type of its argument.

The dsin function returns the double-precision sine of its double-precision argument.

The csin function returns the complex sine of its complex argument.

2-40 FORTRAN 77

sinh

Purpose

The sinh and dsinh intrinsic functions return the hyperbolic sine of the specified
parameter.

Format

real r1, r2
double precision dp1, dp2

r2 = sinh (r 1)

dp2 = dsinh (dp1)
dp2 = sinh (dp1)

Remarks

The generic form, sinh, returns either the real or double-precision hyperbolic sine
depending on the type of its parameter.

sinh

The dsinh function returns the double-precision hyperbolic sine of its double-precision
parameter.

Functions and Subroutines 2-41

sqrt

sqrt

Purpose

The sqrt intrinsic function and its related intrinsic functions return the square root of the
specified argument.

Format

real r1, r2
double precision dp1, dp2
complex ex1, ex2

r2 = sqrt (r 1)

dp2 = dsqrt (dp1)
dp2 = sqrt (dp1)

ex2 = csqrt (ex1)
ex2 = sqrt (ex1)

Remarks

The generic form, sqrt, returns the real, double-precision, or complex square root
depending on the type of its argument.

The dsqrt function returns the double-precision square root of its double-precision
argument.

The csqrt function returns the complex square root of its complex argument.

2-42 FORTRAN 77

system

system

Purpose

The system subroutine allows you to issue an operating system command from FORTRAN.

Format

character* N chi

call system (chi)

Remarks

The system subroutine passes the chi parameter to the operating system as input. The
operating system accepts and executes the command specified by the chi parameter as if it
were typed from a terminal.

The current process pauses until the command is completed and control is returned from
the operating system.

Functions and Subroutines 2-43

tan

tan

Purpose

The tan and dtan intrinsic functions return the tangent of the specified argument.

Format

real rJ, r2
double precision dpJ, dp2

r2 = tan (rJ)

dp2 = dtan (dpJ)
dp2 = tan (dpJ)

Remarks

The generic form, tan, returns either the real or double-precision tangent of its argument.
If the argument is a real value, the returned value is a real value. If the argument is a
double-precision value, the returned value is a double-precision value.

The dtan function returns the double-precision tangent of its double-precision argument.

2-44 FORTRAN 77

tanh

tanh

Purpose

The tanh and dtanh intrinsic functions return the hyperbolic tangent of the specified
argument.

Format

real rl, r2
double precision dpl, dp2

r2 = tanh (rl)

dp2 = dtanh (dpl)
dp2 = tanh (dpl)

Remarks

The generic form, tanh, returns either the real or double-precision hyperbolic tangent of
its argument. If the argument is a real value, the returned value is a real value. If the
argument is a double-precision value, the returned value is a double-precision value.

The dtanh function returns the double-precision hyperbolic tangent of its double-precision
argument.

Functions and Subroutines 2-45

Character String Comparison

Character String Comparison Functions

Purpose

The functions in this section compare two character strings and return a logical value.
The character strings are compared according to their locations in the collating sequence
for the supported character set.

Format

character*N chi, ch2
logical 11, l2, l3, l4

11 = 1ge (chi, ch2)

l2 = 19t (chi, ch2)

l3 = lle (chi, ch2)

l4 = llt (chi, ch2)

Remarks

The 1ge function returns the value .true. if the two character strings are equal or if chi
follows ch2 in the collating sequence. Otherwise, the function returns the value .false ..

The 19t function returns the value .true. if chi follows ch2 in the collating sequence.
Otherwise, the function returns the value .false ..

The lle function returns the value. true. if the two character strings are equal or if chi
comes before ch2 in the collating sequence. Otherwise, the function returns the value
.false ..

The llt function returns the value .true. if chi comes before ch2 in the collating sequence.
Otherwise, the function returns the value .false ..

If the character strings are of unequal length, the shorter string is padded with blanks to
the length of the longer string for comparison purposes.

The character set and collating sequence supported on the IBM RT PC are shown in
Appendix B, "ASCII Character Codes."

2-46 FORTRAN 77

Bit Field Manipulation

Bit Field Manipulation Functions and Subroutine

Purpose

The functions and the subroutine in this section manipulate bit fields.

Format

integer iI, i2, i3, i4, is, len
logicalll

i3 = ior (il, i2)

i3 = iand (iI, i2)

i3 = ieor (iI, i2)

i3 = ishft (iI, i2)

i4 = ishftc (il, i2, i3)

i4 = ibits (il, i2, i3)

II = btest (iI, i2)

i3 = ibset (iI, i2)

i3 = ibclr (iI, i2)

call mvbits(il, i2, i3, i4, is)

Remarks

The functions ior, iand, and ieor return the same results as the functions and, or, and
xor defined in "bool" on page 2-14.

In the ishft and ishftc functions, il specifies the integer to be shifted and i2 specifies the
shift count. i2 > 0 indicates a left shift, i2 = 0 indicates no shift, and i2 < 0 indicates a
right shift.

In the ishft function, zeros are shifted in. In the ishftc function, the rightmost i3 bits are
shifted circularly i2 bits. If i2 is greater than the machine word size, ishftc does not shift.

Bit fields are numbered from right to left. The rightmost bit is zero. The length of the i3
field must be greater than zero.

Functions and Subroutines 2-47

Bit Field Manipulation

The ibits function extracts a subfield of i3 bits from ii, starting with bit position i2 and
extending left for i3 bits. The resulting field is right-justified in the target variable, and
the remaining bits in the target variable are set to zero.

The btest function tests the i2th bit of argument il. The value of the function is .true. if
the bit equals 1 and .false. if the bit equals O.

The ibset function produces the value of il with the i2th bit set to 1.

The ibclr function produces the value of il with the i2th bit set to O.

The mvbits subroutine moves i3 bits, beginning at position i2 of argument ii, to position i5
of argument i4.

2-48 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877
Floating-Point Status

Floating-Point Status Subroutines

Purpose

The following two subroutines set and retrieve the status of floating-point operations.

Format

include' /usr/include/fpdc.h'
include' /usr/include/fpdt.h'

call fpgets(fpstat)

call fpsets(fpstat)

Remarks

The included file fpdc.h contains the data declarations (specification statements) for the
two subroutines. The included file fpdt.h contains the data initializations (data
statements) for the two subroutines.

The fpgets subroutine retrieves the floating-point process status and stores the results in a
logical array called fpsta t.

The fpsets subroutine sets the floating-point process status equal to the logical array
fpstat.

The array fpstat, included by the file fpdc.h, contains logical values that can be set to
enable or disable system checking for various floating-point errors.

The floating-point error checks are enabled when specified array elements in fpstat are set
to . true., as shown in Figure 2-2 on page 2-48.2:

Functions and Subroutines 2-48.1

TNL SN20-9806 (26 Sept 1986) to 59X7877
Floating-Point Status

Array Element Error Check Enabled When. true.

fpstat(fpeall) Floating-point error interrupts

fpstat(fpeyes) Floating-point error detected

fpstat(fpinva) Invalid floating-point number detected

fpstat(fpainv) Invalid number error interrupt

fpstat(fpdivz) Divide-by-zero detected

fpstat(fpadiv) Divide-by-zero error interrupt

fpstat(fpover) Overflow detected

fpstat(fpaove) Overflow error interrupt

fpstat(fpundr) Underflow detected

fpstat(fpaund) Underflow error interrupt

fpsta t(fpinxe) Inexact result detected

fpstat(fpaine) Inexact result error interrupt

Figure 2-2. fpstat Array Elements and Enabled Error Checks When .true.

A value of .false. for an element of fpstat disables the associated error interrupt, if any.
All values are initialized to .false. at the beginning of a process.

The array element fpstat(fpeall) must be set to .true. to enable any floating-point error
interrupts. If fpstat(fpeall) is .false., no error interrupts are generated.

The floating-point process status is cumulative. It is changed only by setting specified
elements in the array fpstat and calling fpsets.

The signal function sigfpe must be enabled to process floating-point errors. If error
interrupts are enabled for a process and a signal catcher is not defined for that process, the
process terminates. For more information on sigfpe, see "signal" on page 2-38.

2-48.2 FORTRAN 77

Alphabetical List of Functions and Subroutines

Notation use:

• An * (asterisk) following a name indicates a subroutine. Subroutines must be invoked
by a call statement.

Name Use

abort* Terminates the program that calls it.

abs Returns an absolute value with the type of its argument.

acos Returns the arccosine with the type of its real or double-precision
argument.

aimag Returns the imaginary part of its single-precision complex argument.

aint Returns the truncated value of its real or double-precision value, with
the type of the argument.

alog Returns a real natural logarithm of its real argument.

aloglO Returns the real common logarithm of its real argument.

amaxO Returns the real form of the maximum value of its integer arguments.

amaxl Returns the real form of the maximum value of its real arguments.

aminO Returns the real form of the minimum value of its integer arguments.

aminl Returns the real form of the minimum value of its real arguments.

amod Returns the real remainder of integer division of two real arguments.

and Returns the value of the binary and operation on its two arguments.

anint Returns the nearest whole number to its real or double-precision
argument.

asin Returns the real or double-precision arcsine, with the type of its
argument.

atan Returns the real or double-precision arctangent, with the type of its
argument.

atan2 Returns the arctangent with the type of its real or double-precision
arguments.

Figure 2-2 (Part 1 of 7). Alphabetical List of Functions and Subroutines

Functions and Subroutines 2-49

Name Use

btest Tests a specified bit in an integer, returns the value .true. if the bit
equals 1 and .false. if the bit equals O.

cabs Returns the complex absolute value of its complex argument.

ccos Returns the complex cosine of its complex argument.

cexp Returns the complex exponential function of its complex argument.

char Converts an argument from an integer to a character, based on the
character's position in the collating sequence.

clog Returns the complex natural logarithm of its complex argument.

cmplx Converts one or two arguments of integer, real, double-precision, or
double-complex type to complex type.

conjg Returns the complex conjugate of its complex argument.

cos Returns the cosine with the type of its real, double-precision, or complex
argument.

cosh Returns the hyperbolic cosine, with the type of its real or
double-precision argument.

csin Returns the complex sine of its complex argument.

csqrt Returns the complex square root of its complex argument

dabs Returns the double-precision absolute value of its double-precision
argument.

dacos Returns the double-precision arccosine of its double-precision argument.

dasin Returns the double-precision arcsine of its double-precision argument.

datan Returns the double-precision arctangent of its double-precision
argument.

datan2 Returns the double-precision arctangent of its double-precision
arguments.

dble Converts an argument of integer, real, complex, or double-complex to
double-precision type.

dcmplx Converts one or two arguments of integer, real, double-precision, or
complex type to double-complex type.

dconjg Returns the double-complex conjugate of its double-complex argument.

Figure 2-2 (Part 2 of 7). Alphabetical List of Functions and Subroutines

2-50 FORTRAN 77

Name Use

dcos Returns the double-precision cosine of its double-precision argument.

dcosh Returns the double-precision hyperbolic cosine of its double-precision
argument.

ddim Returns the positive difference of its two double-precision arguments.

dexp Returns the double-precision exponential function of its double-precision
argument.

dim Returns the positive difference of its two integer, real or double-precision
arguments.

dimag Returns the double-precision imaginary part of its double-complex
argument.

dint Returns the truncated value of its double-precision argument as a
double-precision value.

dlog Returns the double-precision natural logarithm of its double-precision
argument.

dloglO Returns the double-precision common logarithm of its double-precision
argument.

dmaxl Returns the double-precision form of the maximum value of its
double-precision arguments.

dminl Returns the double-precision form of the minimum value of its
double-precision arguments.

dmod Returns the double-precision whole number remainder of integer division
of two double-precision arguments.

dnint Returns the nearest whole double-precision number to its
double-precision argument.

dprod Returns the double-precision product of its two double-precision
arguments.

dsign Returns the absolute value of its first double-precision argument with
the sign of its second double-precision argument.

dsin Returns the double-precision sine of its double-precision argument.

dsinh Returns the double-precision hyperbolic sine of its double-precision
argument.

Figure 2-3 (Part 3 of 7). Alphabetical List of Functions and Subroutines

Functions and Subroutines 2-51

TNL SN20-9806 (26 Sept 1986) to 59X7877

Name Use

dsqrt Returns the double-precision square root of its double-precision
argument.

dtan Returns the double-precision tangent of its double-precision argument.

dtanh Returns the double-precision hyperbolic tangent of its double-precision
argument.

exp Returns the exponential function with the type of its real,
double-precision, or complex argument.

float Converts an argument of integer type to real type.

fpgets* Retrieves the current floating-point process status and stores the results
in a logical array.

fpsets* Sets the floating-point process status equal to a logical array.

getarg* Returns a specified command line argument of the current process.

getenv* Returns the character string value of the specified environment variable.

iabs Returns the integer absolute value of its integer argument.

iand Returns the value of the binary and operation on its arguments.

iargc Returns the integer number of arguments entered on the command line.

ibclr Returns the value of the specified integer with a specified bit set to o.
ibits Returns a right-justified subfield of bits from an integer.

ibset Returns the value of the specified integer with a specified bit set to l.

ichar Converts an argument from a character to an integer, based on the
character's position in the collating sequence.

idim Returns the positive difference of its two integer arguments.

idint Converts an argument of double-precision type to integer type.

idnint Returns the nearest integer to its double-precision argument.

ieor Returns the value of the binary xor operation on its arguments.

ifix Converts an argument of real type to integer type.

index Returns an integer representing the location of a substring in a specified
string.

int Converts an argument of real, double-precision, complex, or
double-complex type to integer type.

Figure 2-3 (Part 4 of 7). Alphabetical List of Functions and Subroutines

2-52 FORTRAN 77

Name Use

ior Returns the value of the binary or operation on its arguments.

irand Generates uniform random numbers; returns a positive integer number
greater than 0 and less than or equal to 32768.

ishft Shifts bits in a specified integer left or right, with zeros shifted in.

ishftc Shifts the specified rightmost bits in an integer circularly left or right.

isign Returns the absolute integer value of the first argument with the sign of
the second argument.

len Returns an integer representing the length of a specified character
string.

1ge Returns the value .true. if its two character-string arguments are equal
or if the first string follows the second in the collating sequence for the
supported character set. Otherwise .false. is returned.

19t Returns the value .true. if its first character string argument follows its
second character string argument in the collating sequence for the
supported character set. Otherwise .false. is returned.

lle Returns the value .true. if its two character string arguments are equal
or if the first string comes before the second in the collating sequence
for the supported character set. Otherwise .false. is returned.

llt Returns the value .true. if its first character string argument comes
before its second character string argument in the collating sequence for
the supported character set. Otherwise .false. is returned.

log Returns a natural logarithm with the type of its real, double-precision, or
complex argument.

loglO Returns a common logarithm with the type of its real or double-precision
argument.

lshift Returns the value of the first argument shifted left the number of times
specified by the second integer argument.

max Returns the maximum value of its arguments, with the type of its
integer, real, or double-precision arguments.

maxO Returns the integer form of the maximum value of its integer arguments.

maxI Returns the integer form of the maximum value of its real arguments.

Figure 2-3 (Part 5 of 7). Alphabetical List of Functions and Subroutines

Functions and Subroutines 2-53

Name Use

mclock Returns the sum of the current process's user time and the user and
system times of all child processes in sixtieths (1/60) of a second.

min Returns the minimum value of its arguments, with the type of its integer,
real, or double-precision arguments.

minO Returns the integer form of the minimum value of its integer arguments.

minI Returns the integer form of the minimum value of its real arguments.

mod Returns the remainder of division of two integer, real, or
double-precision arguments, with the type of the arguments.

mvbits* Moves specified bits in one integer argument to specified bit locations in
a second integer argument.

nint Returns the nearest integer to its real or double-precision argument.

not Returns the one's complement of its argument (the value of the binary
not operation).

or Returns the value of the binary or operation on its two arguments.

rand Generates uniform random numbers; returns a positive real number
greater than 0 and less than 1.0.

real Converts an argument of integer, double-precision, complex, or
double-complex type to real type.

rshift Returns the value of the first argument shifted right the number of times
specified by the second integer argument.

sign Returns the absolute value of its first integer, real, or double-precision
argument with the sign of its second integer, real or double-precision
argument.

signal* Specifies a function to be invoked upon receipt of a specific system
signal.

sin Returns the sine of its real, double-precision, or complex arguments.

sinh Returns the real or double-precision hyperbolic sine of its real or
dou ble-precision argument.

sngl Converts an argument of double-precision type to real type.

sqrt Returns the real, double-precision, or complex square root of its real,
double-precision, or complex argument.

Figure 2-3 (Part 6 of 7). Alphabetical List of Functions and Subroutines

2-54 FORTRAN 77

Name Use

srand* Provides an integer or real seed number for the random number
generator.

system* Issues an AIX Operating System command from FORTRAN.

tan Returns the real or double-precision tangent of its real or
double-precision argument.

tanh Returns the real or double-precision hyperbolic tangent of its real or
double-precision argument.

xor Returns the value of the binary xor operation on its two arguments.

zabs Returns the double-complex absolute value of its double-complex
argument.

Figure 2-3 (Part 7 of 7). Alphabetical List of Functions and Subroutines

Functions and Subroutines 2-55

2-56 FORTRAN 77

Chapter 3. Compiling, Linking, Debugging, and
Running a Program

Compiling, Linking, Debugging, and Running 3-1

CONTENTS
About This Chapter ... 3-3
What You Need .. 3-4
FORTRAN Program Names ... 3-5
Compiling and Linking a FORTRAN Program 3-6
FORTRAN Compiler Options .. 3-7
The Internal Compilation Process ... 3-13
Listing Compiler Messages in a File .. 3-15
Informational Listings .. 3-16
Debugging a FORTRAN Program .. 3-17

3-2 FORTRAN 77

About This Chapter

This chapter describes:

• What you need to compile IBM RT PC FORTRAN 77 programs

• IBM RT PC FORTRAN 77 program names

• How to compile and link FORTRAN programs

• IBM RT PC FORTRAN 77 compiler options and their purposes

• The internal compilation process

• How to list compiler messages in a file

• How to produce listings with additional information, such as symbol table entries,
external references, and full memory listings

• The AIX Operating System tool you can use to debug IBM RT PC FORTRAN 77
programs.

Compiling, Linking, Debugging, and Running 3-3

TNL SN20-9806 (26 Sept 1986) to 59X7877

What You Need

Two things must happen before you can compile a FORTRAN program on your system:

1. The files that make up the FORTRAN compiler must be installed on your system.
These files contain the procedures that compile and generate object code from your
FORTRAN programs. The files are:

• /usr/bi n/f77 - The FORTRAN compilation driver

• /usr/bi n/ratfor - The Rational FORTRAN (Ratfor) preprocessor

• /usr/bi n/ef1 - The Extended FORTRAN Language (EFL) preprocessor

• /usr/1 i b/f77passl- The FORTRAN compiler, pass 1

• /usr/1 i b/f77pass2 - The FORTRAN compiler, pass 2

• /usr/1 i b/f77passq - The FORTRAN intermediate code optimizer

• /usr/1 i b/l i bF77. a - The FORTRAN intrinsic function library

• /usr /1 i b/l i bI 77. a - The FORTRAN runtime I/O library.

Instructions for installing the files that make up the FORTRAN compiler can be found
in Appendix A, "Installing the IBM RT PC FORTRAN 77 Licensed Program." If a
person or department maintains the computer system, contact them to verify that the
FORTRAN compiler is installed.

2. Your user ID must have execute permission for all of these files. If a person or
department maintains the system, contact them to verify that your user ID has the
necessary permissions.

3-4 FORTRAN 77

FORTRAN Program Names

A file containing FORTRAN code can have any file name valid to the AIX Operating
System. The file name must end with an extension that the FORTRAN compiler can
recognize.

If the FORTRAN compiler is sent a file with a name ending with the extension:

.f
the compiler recognizes the file as a FORTRAN source program and compiles the file. The
resulting object program is stored in the current directory in a file with the same file name
as the source file and an extension of .0. For instance, if you send a source file named:

test.f
to the FORTRAN compiler, the resulting object file is named:

test.o
If you send the FORTRAN compiler a file with the extension:

. r

the compiler recognizes the file as a Ratfor source program. A Ratfor source file is
translated by the Ratfor preprocessor into a pure FORTRAN program. The resulting
FORTRAN program is then automatically compiled by the FORTRAN compiler to produce
an object file.

If you send the FORTRAN compiler a file with the extension:

.e
the file is recognized as an EFL source program. An EFL source file is translated by the
EFL preprocessor into a pure FORTRAN program. The resulting FORTRAN program is
then automatically compiled by the FORTRAN compiler to produce an object file.

The FORTRAN compiler also recognizes source files with .c and .s extensions. Source
files with .c extensions are assumed to be C Language source programs and are sent to the
C Language compiler for compilation. Source files with .s extensions are assumed to be
Assembler Language source programs and are sent to the assembler for object code
generation.

Also, a file name with the extension .0 is recognized by the compiler as a pre-compiled
object file. Object files are linked to the compiler output.

Compiling, Linking, Debugging, and Running 3-5

TNL SN20-9806 (26 Sept 1986) to 59X7877

Compiling and Linking a FORTRAN Program

You use the f77 and ff77 commands to compile FORTRAN programs. Each command
recognizes FORTRAN, Ratfor, EFL, C Language, and Assembler Language source files by
their file extensions and sends each source file to the appropriate processor or compiler for
compilation. The compiler also recognizes object files for linking by their .0 extensions.

To compile a program, you type:

f77 options filenames
and press Enter.

The options can be any of the FORTRAN compiler command line options discussed in
"FORTRAN Compiler Options" on page 3-7.

The filenames can be the names of one or more FORTRAN, Ratfor, EFL, C Language, or
Assembler Language source files, or pre-compiled object files for linking to the compiler
output.

The ff77 compile command automatically generates the f compiler option and performs
the library linking needed for maximum optimization of object code.

The general form of the f f7 7 command is:

ff77 options filenames
For example, the command:

ff77 myfile.f
is equivalent to:

f77 -f myfile.f
For more information on linking, see the Id command in the A/X Operating System
Commands Reference. For more information on the f compiler option, see "The f Option"
on page 3-8.

3-6 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877

FORTRAN Compiler Options

The following sections describe options recognized by the FORTRAN compiler.

Note: Any option that you type as part of an f77 command must begin with a - (dash).

The c Option

The c option:

• Suppresses link editing

• Produces an object file for each source file specified by filenames.

The C Option

The C option directs the compiler to generate code for the checking of subscript ranges at
runtime.

The E Option

The E option directs the compiler to use the remaining characters in the argument list as
EFL flag arguments when processing a file with the .e extension. For more information on
EFL flag arguments, see the discussion of options for EFL flag arguments in
Chapter 8, "EFL - Extended FORTRAN Language."

Compiling, Linking, Debugging, and Running 3-7

TNL SN20-9806 (26 Sept 1986) to 59X7877

The fOption

The f option optimizes the resulting object code for processing directly to the floating-point
accelerator (direct FP A). The resulting object file may run faster than an object file
compiled without this option.

Note: The f option optimizes code that is run with the floating-point accelerator (FPA)
card only. The FPA card must be installed on a machine on which you execute the
resulting program.

The f option automatically links the optimized built-in math libraries to the object file that
results from the compilation of a FORTRAN source program.

A special FORTRAN compile command, ff77, automatically generates the f option and
performs the library linking needed for maximum optimization of object code. For
information on the ff77 command, see "Compiling and Linking a FORTRAN Program" on
page 3-6.

For more information on linking, see the ld command in the AIX Operating System
Commands Reference.

The F Option

The F option directs the compiler to:

• Apply the Ratfor and EFL preprocessors to relevant files

• Put the output of the preprocessors in files with the extension .f. (No object files are
created.)

The g Option

The g option generates additional information that is needed in order to use the symbolic
debugger, sdb, on the executable code.

3-8 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877

The m Option

The m option instructs the compiler to send specified Ratfor and EFL source files to the
M4 preprocessor before sending them to the Ratfor or EFL preprocessors.

The N Option

This option allows you to change the maximum size of one of the internal tables used by
the compiler. It requires a tableid to identify a table plus a value to be used as the
maximum size for that table. The compiler issues a diagnostic if one of the internal tables
overflows during compilation.

The following list shows each tableid and its default value:

c The maximum depth of loops or if statements. The default is 20.

1 The maximum number of computed goto statement numbers. The default is 125.

n The maximum number of variable or common block names. The default is 40l.

p The maximum number of constants and internally generated code labels. The default
is 600.

q The maximum number of equivalences. The default is 150.

s The maximum number of statement numbers. The default is 20l.

x The maximum number of common block, function, and subroutine names. The default
is 40l.

You can set more than one table per compilation by specifying the N option for each table
that you wish to set. For example, to set the maximum depth of loops to 40 and the
maximum number of variable names to 800, you specify the N option as follows:

-Nc40 -NnSOO

Compiling, Linking, Debugging, and Running 3-9

TNL SN20-9806 (26 Sept 1986) to 59X7877

The 0 output Option

The 0 output option names the final output file output instead of the default name a.out.

The 0 Option

The 0 option optimizes the object code produced by the FORTRAN compiler.

The onetrip Option

The onetrip option ensures that do loops in the compiled program are executed at least
once, if reached. In standard FORTRAN 77, do loops are not performed if the upper limit
is smaller than the lower limit.

The 1 option performs the same function as this option.

The p Option

The p option prepares object files for profiling. For more information on profiling, see the
A/X Operating System Commands Reference book.

The R Option

The R option directs the compiler to use the remaining characters in the argument list as
Ratfor flag arguments when processing a file with the .r extension. For more information
on Ratfor flag arguments, see the discussion of options for Ratfor flag arguments in
Chapter 7, "Ratfor - The Rational FORTRAN Preprocessor."

The S Option

The S option directs the Assembler Language output of the compiler into files with file
name extensions of .s. No.o files are created.

3-10 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877

The u Option

The u option defines the default type of a variable as undefined. The option turns off the
implicit typing of variables based upon the first letter of the variable name. When this
option is used, all variables must be explicitly declared.

The U Option

The compiler normally interprets uppercase and lowercase letters, such as a and A, as
identical letters. The U option causes the compiler to treat uppercase and lowercase
letters as different letters, therefore making the compiler case-sensitive.

Warning:
The compiler expects keywords such as if and else to be entered in lowercase letters. The
compiler normally interprets all letters in FORTRAN programs, both lowercase and
uppercase, as lowercase letters. Therefore the compiler can compile FORTRAN programs
containing keywords entered in uppercase letters. However, if you use the U option to
compile a program containing keywords entered in uppercase letters, the compiler will not
be able to properly interpret the keywords.

The v Option

The v option enables the verbose option of the compilation process. The verbose option
displays the name and parameters of each program called during compilation.

The w Option

The w option suppresses warning messages produced by the compiler.

The w66 Option

The w66 option suppresses warning messages related to FORTRAN 66 compatibility.

Compiling, Linking, Debugging, and Running 3-11

TNL SN20-9806 (26 Sept 1986) to 59X7877

The x Option

The compiler allows names to have up to 127 characters, all of which are significant. The
x option limits names to 6 characters. If the x option is used and the compiler encounters
a name with more than 6 characters, an error message is issued.

The y Option

The y option specifies the rounding mode for floating-point constants. The general form of
the y option is:

ymode

The parameter mode can have the following values:

Setting Meaning

d No floating-point constant rounding.

m Round toward negative infinity.

n Round to nearest. This is the default.

p Round toward positive infinity.

z Round toward 0 (zero).

Figure 3-1. Floating-Point Rounding Modes

The 1 Option

The 1 option performs the same function as the onetrip option. For more information, see
"The onetrip Option" on page 3-10.

The 66 Option

The 66 option suppresses extensions that enhance FORTRAN 66 compatibility.

3-12 FORTRAN 77

The Internal Compilation Process

Compilation begins after you type the f77 command line and press Enter.

The following list discusses the flow of a file through the FORTRAN compiler:

1. The extension at the end of the file name is checked. If the extension is:

• .f, the file is passed to the next step in the cycle

• .r, the file is sent through the Ratfor preprocessor for translation into FORTRAN

• .e, the file is sent through the EFL preprocessor for translation into FORTRAN

• .c, the file is sent to the C Language compiler for object code generation

o .s, the file is sent to the Assembler Language assembler for object code generation.

2. The file is sent through the FORTRAN parser for syntax and structure checking.

3. If errors in syntax or structure are found, the compilation stops. Error messages
indicate lines of code that must be corrected before the program will compile properly.

4. If no errors in syntax or structure are found, the file is passed to the object code
generator.

5. The object code generator outputs an object file with an .0 extension.

6. The object file is passed to the linkage editor. The linkage editor adds to the object file
the object code for:

• FORTRAN library utilities used by the program

• FORTRAN intrinsic functions used by the program, such as sqrt.

Note: The linkage editor automatically appends built-in FORTRAN utilities
and intrinsic functions to the object file. You can specifically link
previously-compiled subroutines and functions to a file you want to compile by
typing the names of the object code for those subroutines and functions after the
name of the file being compiled by the f77 command.

For instance, to link the compiled object code sub. 0 to a program named
rna in. f that you want to compile, you can enter the following command:

f77 rnain.f sub.o

For more information on the linkage editor, see the ld command (linkage editor
command) in the AIX Operating System Commands Reference book.

Compiling, Linking, Debugging, and Running 3-13

7. The linkage editor outputs the object file with its appended pre-compiled object code
into an executable file named a.out. The executable file can be renamed to create a
command file with a unique name.

3-14 FORTRAN 77

TNL SN20-9806 (26 Sept 1986) to 59X7877

Listing Compiler Messages in a File

Messages produced by the FORTRAN compiler are sent to the device defined as the
standard output device in your user profile. The usual setting for the standard output
device is the screen. So messages produced by the FORTRAN compiler are normally sent
to your screen.

You can re-direct messages generated by the FORTRAN compiler to a file. The following
section discusses the method.

Note: Messages generated by the FORTRAN compiler are intended to be self-explanatory
and therefore are not documented. You may also encounter messages generated by the
linkage editor or the assembler.

Re-Directing Messages to a File

The FORTRAN compiler, by default, sends compile-time messages to standard output,
which is usually the screen. You can use a AIX Operating System technique of
re-directing standard output to channel compile-time message output to a file instead of to
the standard output device.

For example, to re-direct messages generated by the compilation of the file tes t . f into a
file named testmsgs, you can use the following command:

f77 text.f 2> testmsgs

The first part of the command, f77 text. f, invokes the FORTRAN compiler with the
source file text. f as input. It is a regular syntactic form of the f77 command.

The second part of the command, 2> testmsgs, directs the output to the file testmsgs.
The AIX Operating System recognizes 2 as a name for the standard output device.
Therefore output sent to the standard output device is re-directed into testmsgs.

For more information on standard output devices, see Installing and Customizing the AIX
Operating System. For more information on re-directing output, see the AIX Operating
System Commands Reference book.

Compiling, Linking, Debugging, and Running 3-15

TNL SN20-9806 (26 Sept 1986) to 59X7877

Informational Listings

You can use the AIX Operating System dump and od commands to create special listings
of your FORTRAN object files.

For example, you can create a list of the symbol table entries by using the t option of the
dump command. The dump command also has options that allow you to produce a listing
in other data formats such as octal.

You can run an object file through the od filter command to produce an output file in
octal, ASCII, hexadecimal, or decimal format.

For more information on the use of these commands, see AIX Operating System Commands
Reference.

3-16 FORTRAN 77

Debugging a FORTRAN Program

The AIX Operating System contains a debugging utility called sdb, the symbolic
debugger. sdb works with FORTRAN and C Language programs.

Using sdb, you can:

• Trap and examine the core image of a program that terminates abnormally

• Place breakpoints at selected statements to enable examination of program progress at
certain intervals

• Step through program progress line-by-line.

sdb allows interaction with a program at the source language level. It can print lines of
source code on the screen, allowing you to examine source code interactively.

For detailed information on how to use sdb, see AIX Operating System Programming Tools
and Interfaces.

Compiling, Linking, Debugging, and Running 3-17

3-18 FORTRAN 77

Chapter 4. Linking C With FORTRAN

Linking C With FORTRAN 4-1

CONTENTS
About This Chapter ... 4-3
How to Link a C Language Program to a FORTRAN Program 4-4
Inter-Procedure Interface ... 4-5
Source Code Examples ... 4-9

4-2 FORTRAN 77

About This Chapter

IBM RT PC C Language programs can be linked with IBM RT PC FORTRAN 77 programs.
This chapter describes:

• How to link a C Language program with a FORTRAN program

• Conventions for the passing of data between FORTRAN and C Language programs

• Source code examples and output of a FORTRAN program that calls a C Language
routine.

Linking C With FORTRAN 4-3

IBM CONFIDENTIAL ** 09/20/85

How to Link a C Language Program to a FORTRAN
Program

You can call a C Language routine from a FORTRAN program. C Language routines
return a value. The C Language routine must be declared external in the FORTRAN
program.

You link a C Language program to a FORTRAN program by including the name of the C
Language source file or object module as part of the FORTRAN compile command (f77)
you use to compile the FORTRAN source file.

If a file sent to the FORTRAN compiler ends with a .c extension, the file is automatically
sent to the C Language compiler for compilation into an object module before linking.

For example, to link the C Language program funct. c to a FORTRAN program named
rna in. f, you can enter the following compile command:

f77 rnain.f funct.c

The funct. c file is assumed to be a C Language source file. It is sent to the C Language
compiler before the two programs are linked.

As a second example, assume that the C Language program funct. c was compiled into an
object module named funct. o. To link the C Language object module to the FORTRAN
program named rna in. f, you can enter the following compile command:

f77 rnain.f funct.o

The funct. 0 file is assumed to be an object module because of its .0 extension. It is not
sent for compilation, but is linked with the FORTRAN program.

The f77 compile command uses the EIX Operating System linkage editor to output the
FORTRAN object file with its appended C Language object code into a single executable
file named a.out. For more information on the linkage editor, see the ld command
(linkage editor command) in the EIX Operating System Commands Reference book.

4-4 FORTRAN 77

Inter-Procedure Interface

The following sections discuss the conventions for procedure names, data representation,
return values, and argument lists that must be considered when writing C Language
procedures that call or are called by FORTRAN programs

Procedure Names

The name of a common block or a FORTRAN procedure has an underscore appended to it
by the compiler to distinguish it from a C Language procedure or external variable with
the same user-assigned name. FORTRAN library procedure names have embedded
underscores to avoid clashes with user-assigned subroutine names.

Therefore the FORTRAN compiler will append an _ (underscore) to the name of the C
Language routine declared external. In order for the linkage editor to recognize the C
Language routine as the one referenced, an underscore must be appended to the name of
the C routine.

Data Representations

The following is a table of corresponding FORTRAN and C declarations:

FORTRAN C

integer*2 x short int x;

integer x long int x;

logical*4 x long int x;

real x float x;

double precision x double x;

complex x struct {float r, i;} x;

double complex x struct {double dr, di;} x;

character*6 x char x[6];

Figure 4-1. Corresponding FORTRAN and C Declarations

By the rules of FORTRAN, integer, logical, and real data occupy the same amount of
memory.

Linking C With FORTRAN 4-5

Return Values

A function of type integer, logical, real, or double precision correctly returns the
corresponding type, whether the called function is written in FORTRAN or in C. A
complex or double complex function is passed an additional initial argument that points
to the place where the return value is to be stored. Thus the declaration and invocation in
FORTRAN:

complex f, 9
external f
o

o

o

9 = f(A, B, C)

with A, B, and C as real*4 values, would be received in a C Language routine as:

f_(rtnptr, Aptr, Bptr, Cptr)
float *Aptr, *Bptr, *Cptr;
struct complex{

};

float realdata;
float imajdata;

struct complex *rtnptr;

The FORTRAN program expects the return value to be in the area pointed to by rtnptr.

A character-valued function is passed two extra initial arguments: a data return address
and a return length. Thus the function declaration and invocation in FORTRAN:

4-6 FORTRAN 77

character*15 g, h
external 9
o

o

o

h = g(A, B, C)

where A, B, and Care real*4 values, would be received in a C Language function as:

g_(rtnptr, length, aptr, bptr, cptr)
float *aptr, *bptr, *cptr;
char *rtnptr;
int length; /* the expected length of the return value */

The FORTRAN program expects the return value to be in the area pointed to by rtnptr

Subroutines are invoked as if they were integer-valued functions whose value specifies
which alternate return to use. Alternate return arguments (statement labels) are not
passed to the function, but are used to do an indexed branch in the calling procedure. (If
the subroutine has no entry points with alternate return arguments, the returned value is
undefined.)

The statement:

call nret(*l, *2, *3)

is treated exactly as if it were the computed goto:

goto (1, 2, 3), nret()

Argument Lists

FORTRAN arguments are passed by address. In addition, for every argument that is of
type character, an argument giving the length of the value is passed. The string lengths
are long int quantities passed by value.

The order of arguments is:

1. Extra arguments for complex and character functions (not generated for subroutine
calls)

2. Address for each argument
3. A long int for each character argument.

Thus the call in the following procedure:

Linking C With FORTRAN 4-7

external f
character*7 s
integer b(3)

call sam (f, s, b (2))

actually passes four arguments. The fourth argument, the length of s, is passed last and
can be ignored.

The first element of a C Language array has a subscript of 0, but FORTRAN arrays begin
at 1 by default. Also, FORTRAN arrays are stored in column-major order while C
Language arrays are stored in row-major order.

4-8 FORTRAN 77

Source Code Examples

The following examples show a FORTRAN program that calls a C Language routine. The
source code for the FORTRAN program call c f is immediately followed by the source code
for the C Language routine t rb 1 e The output produced by a run of ca 11 cf appears at
the end of this section.

c the FORTRAN program calle!
program callcf
integer i
character*5 char
logical grins
real r
double precision d
complex c
double complex dc, dc2
external trble
i = 1
char = IJoe BI
grins = .true.
r 5.0
d = .9999d+2
c = (5.0,5.0)
dc = (.10d+2,.10d+2)
dc2 = (.10d+2,.10d+2)
write(*,1009)i,char,grins,r,d,c,dc

1009 format(i5,2x,a,15,f10.2,f10.2,2f10.2,2g10.2)
call trble(i,char,grins,r,d,c,dc2,dc)
stop
end

Linking C With FORTRAN 4-9

trble_(inti,chat,grin,rr,dr,comp,dcomp,try)
int *inti;
char *chat[5J;
long *grin;
float *rr;
double *dr;
struct { float compr, compi } *comp;
struct { double dcompr, dcompi } *dcomp;
struct { double tryr, tryi } *try;
{
printf("\n\n\n");
printf(" %d = logical\n", *grin);
printf("%d = int\n", *inti);
printf("%s = char\n", chat);
printf("%f = r-real\n", *rr);
printf("%f = dr-dblprec\n", *dr);
printf(%f comp\n ", (*comp).compr);
printf(%f compi\n ", (*comp).compi);
printf(%f dcomp\n ", (*dcomp).dcompr);
printf(%f dcompi\n ", (*dcomp).dcompi);
printf(%f tryr\n ", (*try). tryr);
printf(%lO.2f tryi \n", (*try).tryi);
}

4-10 FORTRAN 77

Output:

1 Joe B T

1 = logical
1 = i nt
Joe B = char
5.000000 = r-real
99.990000 = dr-dblprec

5.000000 comp
5.000000 compi
10.000000 dcomp
10.000000 dcompi
10.000000 tryr

10.00 tryi

5.00 99.99 5.00 5.00 10. 10.

Linking C With FORTRAN 4-11

4-12 FORTRAN 77

Chapter 5. AIX Operating System Commands for
FORTRAN

---~-

AIX Operating System Commands 5-1

CONTENTS
About This Chapter ... 5-3
asa .. 5-4
fsplit ... 5-6

5-2 FORTRAN 77

About This Chapter

The IBM RT PC AIX Operating System contains special commands that perform certain
functions on program and data files you use with FORTRAN. This chapter discusses the
following IBM RT PC AIX Operating System commands that affect FORTRAN files:

• asa

• fsplit

This chapter assumes that you are familiar with the use and basic syntactic structure of
commands on the IBM RT PC AIX Operating System.

AIX Operating System Commands 5-3

asa

asa

Purpose

The asa command interprets the output of FORTRAN programs that use ASA carriage
control characters.

Format

asa [files]

Remarks

The asa command processes either the files whose names are given as arguments, or the
standard input stream, if no file names are supplied.

The first character of each line is assumed to be a control character. The control
characters and their meanings are:

Character Meaning

<blank Single new line before
character> printing (blank character).

0 Double new line before
printing.

1 New page before printing.

+ Overprint previous line.

Figure 5-1. Control Characters

Lines beginning with other than the defined control characters are treated as if they begin
with a blank character.

The first character of a line is not printed. If any such lines appear, an appropriate
diagnostic appears on the defined output for error messages.

Execution of the asa command causes the first line of each input file to start on a new
page.

5-4 FORTRAN 77

Example

To correctly view the output of FORTRAN programs which use ASA carriage control
characters, you can use the asa command as a filter. For example, the following pipe:

a.out I asa > lpr

asa

directs the output produced by the program a. out, properly formatted and paginated, to
the line printer 1 p r. (For more information on filters, see the AIX Operating System
Reference.)

FORTRAN output sent to the file myfi 1 e can be viewed using the following form of the
asa command:

asa myfi 1 e

AIX Operating System Commands 5-5

fsplit

fsplit

Purpose

The fsplit command splits specified FORTRAN, Ratfor, or EFL source program files into
several files.

Format

fsplit options files

Remarks

The fsplit command splits the specified files into separate files, with one procedure per file.

A procedure in this context includes the following program segments:

• Block data
• Function
• Main
• Program
• Subroutine.

You can specify one of the following options in the command line:

Option Meaning

f Input files are FORTRAN language files. This option is the default.

r Input files are Ratfor files.

e Input files are EFL files.

s Strip FORTRAN input lines to 72 or fewer characters, and remove
trailing blanks.

Figure 5-2. fsplit Options

5-6 FORTRAN 77

fsplit

A procedure recognized as main by fsplit is put in one of the following files, depending on
the specified language option:

• main.f
• main.r
• main.e

Unnamed block data segments are put in one of the following files, depending on the
specified language option:

• blockdataN.f
• blockdataN.r
• blockdataN.e

The N in each preceding file name example represents a unique integer value.

Other procedures X are put in one of the following files, depending on the specified
language option for the procedure segment:

• X.f
• X.r
• X.e

AIX Operating System Commands 5-7

5-8 FORTRAN 77

Part 2. Ratfor and EFL - Two Preprocessors for
FORTRAN

Part 2. Ratfor and EFL - Two Preprocessors for FORTRAN

Chapter 6. Overview of Preprocessors

Overview of Preprocessors 6-1

CONTENTS
About This Chapter ... 6-3
General Definition of Preprocessors ... 6-4
Characteristics of Ratfor ... 6-6
Characteristics of EFL ... 6-7
The Differences Between Ratfor and EFL ... 6-8

6-2 FORTRAN 77

About This Chapter

Ratfor, or Rational FORTRAN, and EFL, or Extended FORTRAN Language, are
preprocessors for the FORTRAN language.

This chapter discusses:

• General definition of preprocessors

• Characteristics of the Ratfor preprocessor

• Characteristics of the EFL preprocessor

• Differences between Ratfor and EFL.

Overview of Preprocessors 6-3

General Definition of Preprocessors

A preprocessor is basically a defined computer language. A preprocessor, like most other
high-level computer languages, can be thought of as two separate parts:

• The language itself, the certain statements and structures that you use to write your
source programs

• The language compiler, the interpreter that translates your source programs into
machine-readable and machine-executable language.

However, a difference exists between preprocessors and high-level computer languages.
Programs written in the language of a preprocessor are compiled into high-level computer
language programs before being compiled into machine-readable code.

So a preprocessor is an implementation of a computer language that compiles into a
high-level computer language.

IBM RT PC FORTRAN 77 comes with two different preprocessors:

• Ratfor

• EFL.
For instance, the relationship between Ratfor, FORTRAN, and machine language is
illustrated in Figure 6-1 on page 6-5:

To get from a Ratfor program to machine language that your computer can understand and
run, you:

1. Write the Ratfor program code.

2. Compile (preprocess) the Ratfor code with the Ratfor compiler to get corresponding
FORTRAN code.

3. Compile the resulting FORTRAN code with the FORTRAN compiler to get the
corresponding machine language (object code).

6-4 FORTRAN 77

RATFOR LANGUAGE

1
RATFOR COMPILER

1
FORTRAN LANGUAGE

1
FORTRAN COMPILER

1
MACHINE LANGUAGE

Figure 6-1. Relationship Between Ratfor, FORTRAN, and Machine Language

Overview of Preprocessors 6-5

Characteristics of Ratfor

Ratfor's design gives you access to the full capabilities of FORTRAN in a logically
structured environment. It contains statements controlling the flow of logic and structure
controls - conditional branching and loops, for instance - that are not explicitly
implemented in standard FORTRAN. Ratfor statements form a logical structure around
specified FORTRAN statements and constructs to produce structured source code.

Ratfor statements and their functions are similar to flow-of-control statements in Algol,
PL/I, Pascal, and other languages containing explicit statements that reflect the logical
flow of control in a program.

6-6 FORTRAN 77

Characteristics of EFL

EFL is a general purpose computer language intended to encourage portable programming.
It has a uniform syntax, and data and control flow structuring.

The EFL compiler is more than a simple preprocessor. It attempts to diagnose syntax
errors and to provide readable FORTRAN output. To achieve this goal, a sizable two-pass
translator is implemented.

Thus the EFL language attempts to permit the programmer to express complicated ideas in
a comprehensible way, while permitting access to the power of the FORTRAN
environment.

Overview of Preprocessors 6-7

The Differences Between Ratfor and EFL

There are a number of differences between Ratfor and EFL. EFL is a defined language,
while Ratfor is the union of the special control structures and the language accepted by
the underlying FORTRAN compiler. Ratfor running over standard FORTRAN is almost a
subset of EFL.

There a few incompatibilities between Ratfor and EFL. The syntax of the for statement is
slightly different in the two languages. The three clauses are separated by semicolons in
Ratfor, but by commas in EFL. (The initial and iteration statements can be compound
statements in EFL because of this change).

The input/output syntax is quite different in the two languages, and there is no format
statement in EFL. There are no assign or assigned goto statements in EFL.

EFL permits more general forms for expressions, and provides a more uniform syntax. The
FORTRAN/Ratfor restrictions on subscript and do expression forms are not implemented
in EFL.

For more information on Ratfor, see Chapter 7, "Ratfor - The Rational FORTRAN
Preprocessor." For more information on EFL, see Chapter 8, "EFL - Extended FORTRAN
Language."

6-8 FORTRAN 77

Chapter 7. Ratfor - The Rational FORTRAN
Preprocessor

Ratfor 7-1

CONTENTS
About This Chapter ... 7-3
The Capabilities of the Ratfor Preprocessor ... 7-4
The Syntactic Structure of Ratfor .. 7-6
Ratfor Statements ... 7-9
General Ratfor Conventions .. 7-22
Implementation .. 7-23
Usage Considerations ... 7 -25
Compiling Ratfor Source Files .. 7 -26

7-2 FORTRAN 77

About This Chapter

Ratfor, or Rational Fortran, is a preprocessor for the FORTRAN language. Ratfor source
files are preprocessed into FORTRAN source code and then compiled into object code.

This chapter describes:

• The capabilities of Ratfor

• The syntactic structure of the language

• Ratfor statements

• General Ratfor conventions

• Usage considerations

• How to compile Ratfor source files.

Ratfor 7-3

The Capabilities of the Ratfor Preprocessor

Ratfor gives you access to the full capabilities of FORTRAN in a defined and structured
form. It implements flow-of-control statements - conditional branches and loops - that
are not explicitly implemented in standard FORTRAN. These statements and their
functions are similiar to flow-of-control statements in Algol, PL/I, Pascal, and other
languages containing statements that reflect the flow of logic in a program.

The statements and structural implementation of Ratfor include:

• A defined method of grouping statements

• if-else and switch statements for decision-making

• while, for, do, and repeat-until statements for looping

• break and next statements for controlling loop exits

• Free-form input (multiple statements/line, automatic continuation)

• Translation of conventional mathematical operators in their FORTRAN equivalents

• A return(expression) statement for functions

• A define statement for defining symbolic parameters

• An include statement for including external source files.

The relationship between Ratfor, FORTRAN, and machine language is illustrated in
Figure 7-1 on page 7-5.

A Ratfor program is translated into machine language that your computer can run in the
following way:

1. The Ratfor code is processed with the Ratfor preprocessor to get corresponding
FORTRAN code.

2. The resulting FORTRAN code is compiled by the FORTRAN compiler to produce the
corresponding machine language (object) code.

7-4 FORTRAN 77

RATFOR LANGUAGE

j
RATFOR COMPILER

j
FORTRAN LANGUAGE

j
FORTRAN COMPILER

j
MACHINE LANGUAGE

Figure 7-1. Relationship Between Ratfor, FORTRAN, and Machine Language

Ratfor 7-5

The Syntactic Structure of Ratfor

The following sections discuss the syntactic structure and elements of Ratfor.

Mathematical Operators

Standard mathematical operators, like>, are not understood by FORTRAN. The
following figure shows Ratfor mathematical operators and their FORTRAN equivalents:

RATFOR FORTRAN
> .gt.

< .It.
>= .ge .

<= .Ie.

.eq.

!= .ne .

. not.

& .and .

. or.

Figure 7-2. Ratfor and FORTRAN Mathematical Operators

Character Strings

Characters typed between a set of double quotation marks are treated as a single character
string. Ratfor converts the string into the right number of H's.

7-6 FORTRAN 77

Free-form Input

Statements can be placed anywhere on a line. Long statements are continued
automatically, as are long conditions in if, while, for, and until statements.

Several statements can appear on one line if they are separated by semicolons.

Lines ending with any of the following characters:

= + * &

are assumed to be continued on the next line. Underscores are discarded wherever they
occur. All other characters remain as part of a statement.

An all-numeric field preceding a statement is interpreted as a FORTRAN label and is
placed in columns 1 through 5 upon output. Thus the following Ratfor example:

write(6, 100); 100 format('hello ')

is converted into:

write(6, 100)
100 format(5hhello)

Comment Lines

A # (number sign) in a line marks the beginning of a comment. Comments and code can
appear on the same line. Characters following the number sign are interpreted as a
comment.

Blank Lines

Blank lines are permitted anywhere in a Ratfor program. Blank lines are ignored by the
compiler.

Character String Handling

Characters enclosed in matching single or double quotation marks are converted to nH but
are otherwise unaltered by the compiler. The reformatting process, however, may split
characters across card boundaries.

Ratfor 7-7

U sing Special Characters Literally

Within character strings enclosed by quotation marks, the \ (backslash) serves as an
escape character. Any special character immediately following the \ appears in its ASCII
character representation.

For example, the backslashes preceding the special characters \ and ' in the following
character string:

"\\\" ,
produce the following output:

\ '

Inhibiting the Processing of a Line

A line that begins with the % (percent character) is stripped of the % and moved one
position to the left. This technique can be used for inhibiting the compiler interpretation
of lines that must not be interpreted (such as device control instructions or an existing
FORTRAN program).

Restricted Character Set Translations

The following character equivalencies are provided for input devices with restricted
character sets:

[{

$({

] }

$) }

7-8 FORTRAN 77

Ratfor Statements

The following sections discuss:

• Statement grouping in Ratfor

• General format of statements in Ratfor

• The individual statements implemented in Ratfor.

Statement Grouping

Standard FORTRAN permits the grouping of statements into subroutines. In Ratfor, a
group of statements are treated as a unit by enclosing the statements in a { (left brace) and
} (right brace).

Several Ratfor statements can be enclosed in braces to be performed as a group or block
wherever a single Ratfor statement can be used.

Statement Format

Statements can appear anywhere on a line. Several statements separated by semicolons
can appear on a single line.

The following two examples of program code are treated identically by Ratfor:

Example 1:

if (x > 100)
{ call error(lI x>100"); err

Example 2:

if (x > 100) {

}

call error(" x>100 ")
err = 1
return

1; return}

In the second example, no semicolon is needed at the end of each line. Ratfor assumes that
there is one statement per line unless you specify otherwise.

If the statement that follows an if statement is a single statement, no braces are needed, as
shown in the following example:

Ratfor 7-9

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, Z

Notice that no continuation is indicated on the second line because the statement is
implicitly not finished on the first line. In general, Ratfor continues lines when the
preceding statement is implicitly not finished.

The break and next Statements

Ratfor provides a statement for leaving a loop early, and one for beginning the next
iteration in a procedure.

The break statement causes an immediate exit from the do statement. It functions as a
branch to the statement following the statements associated with the do statement.

The next statement is a branch to the bottom of the loop and causes the next iteration of
the do loop to be performed.

The following example skips over negative values in an array X:

do i = 1, n {

}

if (x(i) < 0.0)
next

process positive element

The break and next statements can be followed by an integer to indicate breaking or
iterating a specified level of enclosing loop. The following example exits from two levels of
enclosing loops:

break 2

The following two examples are equivalent:

break

break 1

The following example iterates the second enclosing loop:

next 2

The break statement exits immediately from the following statements:

• do
• while
• for
• repeat - until.

7-10 FORTRAN 77

The next statement goes to the increment step of a for statement and to the test part of
the following statements:

• do
• while
• repeat - until.

The define Statement

The define statement assigns constant values to symbol names.

The syntax of the define statement can take one of two forms. The following form is the
simple form used to define a variable in the declarations at the beginning of a program:

defi ne name value

The following form, also entered in the declarations, can be used to define a constant with
a value that fills more than one line:

defi ne (name valuevaluevaluevaluevaluevaluevalue
valuevalue)

In both forms, the name is the name of the new constant and the value is the initial value
of the variable.

Any string of alphanumeric characters can be defined as a name. Whenever the name
occurs in the input delimited by non-alphanumeric characters, it is replaced by its value.

A defined name must begin with a letter and can be any length. Comments and trailing
white spaces following the value are ignored.

The following example defines two variables, ROWS and COLS:

define ROWS 100
define COLS 50
dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS I j > COLS) .

The definition for the variable ROWS can also be written as follows:

define(ROWS, 100)
The assigned value is everything after the comma up to the right parenthesis.

The following example, a routine named eq u a 1, defines four symbolic constants:

Ratfor 7-11

equal - compares str1 to str2;
return YES if equal, NO if not

define
define
define
define

YES
NO
EOS
ARB

1
a

-1
100

integer function equal (str1, str2)
integer str1(ARB), str2(ARB)
integer

for (i = 1; str1(i)
if (str1(i)
return(YES)

return(NO)
end

== str2(i);
EOS)

= + 1)

The do Statement

7-12

The do statement in Ratfor is similar to the do statement in FORTRAN, except that the
Ratfor do statement uses no statement number.

The syntax for the Ratfor do statement is:

do legal-FORTRAN-do-text
Ratfor statement

The legal-FORTRAN-do-text that follows the keyword do must be something that is legal
in a FORTRAN do statement.

The Ratfor statement can be enclosed in braces. A single statement need not be enclosed in
braces.

The following two sections of code show the same do statement written in Ratfor and then
FORTRAN:

Ratfor code:

do i = 1, n {
X (i) = 0.0
y (i) = 0.0
z (i) 0.0

}

FORTRAN 77

FORTRAN code:

do 10 1, n
x(i) 0.0
y(i) = 0.0
z(i) = 0.0

10 continue

In the Ratfor version, the statements associated with the do statement are enclosed in
braces. The FORTRAN version uses the number 10 to mark the beginning and end of
statements associated with the do statement.

The following Ratfor example sets all elements in an array X to 0.0:

do i = 1, n
x(i) = 0.0

The following example sets the elements in a two-dimensional array m to 0:

do i = 1, n
do j = 1, n

m(i, j) = 0

The following example sets the upper triangle of m to -1, the diagonal to 0, and the lower
triangle to + 1:

do i = 1, n
do j = 1, n

if (i < j)
m(i, j) =-1
else if (i == j)

m(i, j) = a
else

m(i, j) +1

In each case, the statement that follows the do statement is logically a single statement
and thus needs no enclosing braces.

Ratfor 7-13

The for Statement

The for statement allows explicit initialization and increment steps.

The syntax of the for statement is:

for (in it ; condition ; increment
Ratior statement

The init part is any single FORTRAN statement. This statement is always run once before
the loop begins.

The increment part is any single FORTRAN statement. The increment is performed at
the end of each pass through the loop, before condition is tested.

The condition part is any legal condition in a FORTRAN logical if.

The init, condition, or increment parts can be omitted. However, the semicolons that
separate the three parts must always be present.

A non-existent condition is treated as always true. Therefore, the following for statement
is an infinite loop:

for (;;)

The following for statement sets the variable i equal to 1 and runs as long as ; is less
than or equal to n:

for (i = 1; ; <= n; ; = ; + 1) ...
The following example contains two terminal conditions:

for (;=3; abs(term) > e & ; < 100; i=;+2) {
term = -term * x**2 / float(i*(i-l))
sin = sin + term

}

The following example contains decrements the counting variable i:

for (i = 80; i > 0; i = i-I)
if (lastname(i) != blank)
break

The increment in a for statement need not be an arithmetic progression. The following
program searches through an integer array ptr until a zero pointer is found, adding up
elements from the array val ues:

7-14 FORTRAN 77

sum = 0.0
for (i = first; i > 0; i = ptr(i))

sum = sum + value(i)

The if Statement

Ratfor provides an if statement with an else clause to handle the logical construction
if - then - else common to most high -level languages.

The syntax of the Ratfor if statement is:

if (legal FORTRAN condition)
Ratfor statement

else
Ratfor statement

The legal FORTRAN condition is anything that can legally go into a FORTRAN logical if.
The legality of the FORTRAN condition is not verified by Ratfor.

The Ratfor statement is any Ratfor or FORTRAN statement, or any collection of Ratfor or
FORTRAN statements in braces.

The else part is optional.

The following is an example of the Ratfor if-then - else construct:

if (a < = b)
{ sw = 0; write(6, 1) a, b }

else
{ sw = 1; write(6, 1) b, a }

The preceding code writes out the variables a and b in ascending numerical order (lowest
to highest), and then sets the variable sw.
The FORTRAN equivalent of this code is:

if (a .gt. b) goto 10
sw = 0
write(6, 1) a, b
goto 20

10 sw = 1
write(6, 1) b, a

20
As previously stated, if the statement following an if or an else is a single statement, no
braces are needed. The following example shows this implicit continuation:

Ratfor 7-15

if (a <= b)
sw = 0

else
sw = 1

Nested if Statements

The general structure of nested if-else statements in Ratfor is:

if (. . .)

else i f (.)

else if (. . .)

else

You can follow an if or else statement in Ratfor with any other Ratfor statement,
including another if statement.

The following Ratfor example shows one if statement nested inside of the else clause of a
preceding if statement:

if (x < 0)
f = -1

else if (x > 100)
f = +1
e'l se f = 0

In the preceding example, the variable f is set to:

• -1, if x is less than zero

• + 1, if x is greater than 100

• 0, if neither of the two conditions is met.

Logically, the second if- else statement is a single statement. Therefore, nesting if- else
statements is one way to write a multi - way branch in Ratfor. The test conditions are laid
out in sequence, as conditions in the if clauses. Each if clause is followed by the code
associated with it. The list of test conditions in if clauses is read until one test condition
is satisfied. The code associated with the satisfied test condition is executed, and then the
entire structure is exited. The final else clause handles the default case, where none of
the conditions in the if clauses are met.

7-16 FORTRAN 77

If there is no default action, the final else can be omitted, as in the following example:

if (x < 0)
X = 0

else if (x > 100)
x = 100

The following example contains two if clauses and only one else clause:

if (x > 0)
i f (y > 0)

write(6, 1) x, y
else

write(6, 2) y

The nesting of these statements is resolved in Ratfor by associating the single else clause
with the closest previous if clause. Thus in this case, the else clause goes with the inner if
clause, as indicated by the indentation.

It is recommended that you explicitly resolve such nested cases by enclosing the associated
if and then clauses in braces.

The following example uses braces to specify the desired association of nested clauses:

if (x > 0 {

}

i f (y > 0)
wri te (6, 1) x, y

else
write(6, 2) y

The include Statement

The include statement inserts an external file into a program.

The syntax of the include statement is:

inc 1 ude file

The file is any type of file that can be validly included in a FORTRAN program. The
specified file is read into the Ratfor input in place of the include statement.

One standard usage is to place common blocks on a file and include that file whenever a
copy of it is needed:

Ratfor 7-17

subroutine x
include commonblocks

end

subroutine y
include commonblocks

end
This practice ensures that all copies of the common blocks are identical.

The Null Statement

A ; (semicolon) by itself on a line is a null statement.

Assume that nextch is a function that returns the next input character both as a function
value and in its argument. A loop to find the first non-blank character can be written as
follows:

while (nextch(ich) == iblank)

The null statement marks the end of the while statement. The looping continues until the
first non-blank character is found.

The repeat - until Statement

The repeat - until statement always runs at least one time.
tested after its associated statements are performed.

The syntax of the repeat - until statement is:

repeat
Ratfor statement

unti 1 (legal FORTRAN condition)

The specified condition is

The Ratfor statement part is done once, then the condition is evaluated. If the condition is
true, the loop is exited. If it is false, another pass is made.

The until part is optional.

7-18 FORTRAN 77

The return Statement

Ratfor provides a return statement that returns a value from a function to a calling
program.

The syntax of the return statement is:

return (expression)

The returned expression can be any valid FORTRAN expression.

For a function F, the statement return(expression) evaluates as follows:

{ F = expression; return}

The following example uses two return statements to signal the end of the function eq u a 1:

equal - compare str1 to str2;
return 1 if equal, 0 if not
integer function equal (strl, str2)
integer str1(100), str2(100)
integer

for (i = 1; str1(i)
if (str1(i)
return(l)

return(O)
end

== str2(i);
-1)

= + 1

If no parenthesized expression following the return statement, a normal return is made.

The switch Statement

The switch statement implements multi-way branches that are selected on the basis of the
value of an integer - valued expression.

The syntax for the switch statement is:

Ratfor 7-19

switch (expression) {
case expr1:

statements

}

case expr2, expr3:
statements

default:
statements

Each case is followed by a list of integer expressions separated by commas. The expression
inside switch is compared against the case expression expr 1, expr2, and so on, until one
case matches. When a match is found, the statements following the case are executed.

If no cases match expression and there is a default section, the statements in the default
section are run. If no match is found and there is no default section, nothing is done.

As soon as a match is found and its associated block of statements is run, the entire
switch statement is exited.

The while Statement

The Ratfor while statement causes one or more associated statements to be run while one
or more conditions are true.

The syntax of the while statement is:

wh i 1 e (legal FORTRAN condition)
Ratfor statement

The legal FORTRAN condition must be a condition that is legal in a FORTRAN logical if
statement. The Ratfor statement can be a single Ratfor statement, or multiple statements
enclosed in braces.

The condition in a while statement is tested before loop entry. If the condition is false, the
while loop is not run and program control goes to the statement immediately following the
loop.

The following example, which computes sin(x) to accuracy e using the Maclaurin series,
combines two termination conditions:

7-20 FORTRAN 77

real function sin(x, e)
Returns sin(x) to accuracy e, by computing
sin(x) = x - x**3/3! + x**5/5! -
sin = x
term = x
i = 3
while (abs(term»e & i<lOO) {

}

term = -term * x**2 / float(i*(i-l))
sin sin + term
i = i + 2

return
end

Notice that if the routine is entered with term already smaller than e, the loop is not run.
No attempt will be made to compute x**3 and thus a potential underflow is avoided.

Ratfor 7-21

General Ratfor Conventions

The following sections discuss general Ratfor conventions related to:

• Error checking

• Keyword restrictions

• Character string specification.

Error Checking

The Ratfor compiler checks for certain syntax errors, including:

• Missing braces
• An else clause without a matching if clause
• Missing parentheses in statements.

Beyond the Ratfor compiler checks, errors are also reported by the FORTRAN compiler.
Sometimes you may have to relate a FORTRAN diagnostic back to the Ratfor source.

Keyword Restrictions

Keywords, such as if and while, have specially defined meaning in Ratfor. It is
recommended that you not use a keyword for anything but its defined purpose.

Hollerith Convention for Specifying Character Strings

The FORTRAN nH convention is not recognized by Ratfor. In Ratfor, character strings
are specified by enclosing the characters in double or single quotation marks.

7-22 FORTRAN 77

Implementation

The following is an outline of the Ratfor grammar:

program : statement
I program statement

statement if (..) s ta tement
I if (. statement else statement
I while ..) statement
I for (.,...,...) statement
I do statement
I repeat statement
I repeat statement until (..)
I switch (. . .) { case program

return
break
next

default: program }

digits statements
{ program }
anything unrecognizable

The observation that Ratfor knows no FORTRAN follows directly from the rule that says a
statement is "anything unrecognizable." Most of FORTRAN falls into this category, since
any statement that does not begin with one of the keywords is by definition
"unrecognizable."

Code Generation

If the first thing on a source line is not a keyword (like if or else), the entire statement is
copied to the output with appropriate character translation and formatting.

Leading digits are treated as a label.

Keywords cause slightly more complicated actions. For example, when if is recognized,
two consecutive labels, Land L + 1, are generated and the value of L is stacked. The
condition is then isolated and the following code is generated:

if (.not. (condition)) goto L
The statement part of the if is then translated. When the end of the statement is
encountered, the code:

Ratfor 7-23

L continue
is generated unless there is an else clause, in which case the generated code is:

goto L+l
L continue
In this latter case, the code:

L+l continue
is produced after the statement part of the else clause.

7-24 FORTRAN 77

Usage Considerations

FORTRAN syntax errors in Ratfor programs are detected by the FORTRAN compiler. The
FORTRAN compiler then prints a message in terms of the generated FORTRAN code.

The Ratfor preprocessor checks for syntactic errors such as unbalanced parentheses and
quotation marks.

Ratfor keywords are reserved and cannot be used for any other purpose in Ratfor
programs.

A few standard FORTRAN constructions are not accepted by Ratfor. These constructions
can be sent through the Ratfor preprocessor by protecting the line with a % in the first
column. The preprocessor does not process the protected line.

Ratfor 7-25

IBM CONFIDENTIAL ** 09/20/85

Compiling Ratfor Source Files

The f77 command that compiles FORTRAN source files is also used to compile Ratfor
files. The FORTRAN compiler recognizes a file with a or extension as a Ratfor file. The
file is translated by the Ratfor preprocessor into a FORTRAN program, then compiled by
the FORTRAN compiler to produce an object file.

For example, to compile a Ratfor file named fi rs t. r, you type the following command:

f77 firstor

The general form of the command for compiling Ratfor files is:

f77 options files

The implemented options relevant to Ratfor are:

- c Preprocess only; do not load
- F Save intermediate FORTRAN files with of extensions

Other flags are passed to the linker.

The files are Ratfor files that you want preprocessed, or any other type of file that the f77
command can recognize.

Files with names ending in or are interpreted as Ratfor source files.

7-26 FORTRAN 77

Chapter 8. EFL - Extended FORTRAN Language

EFL 8-1

CONTENT
About This Chapter ... 8-3
Capabilities of EFL .. 8-4
Notation and Highlighting .. 8-6
Terms and Concepts ... 8-7
Data Types and Variables , '....................... 8-17
Expressions ... 8-24
Declarations .. 8-26
Statement Directory .. 8-30
The Input/Output System .. 8-43
Subroutines ... 8-45
Functions .. 8-46
Compiling EFL Source Files .. 8-48
The Compiler ... 8-49
Compiler Restrictions ... 8-52
Examples ,. .. 8-53
Portability ... 8-58

8-2 FORTRAN 77

About This Chapter

EFL, Extended FORTRAN Language, is a preprocessor for the FORTRAN language. The
statements of EFL compile into FORTRAN code.

This chapter discusses:

• The terms and concepts of EFL

• Data types and variables

• Expressions

• Declarations

• EFL statements I,
• The EFL I/O system

• Subroutines and functions

• How to compile EFL source files

• General information on the EFL compiler

• Examples of EFL source code.

The discussions in this chapter assume a fair degree of familiarity with some high-level
language implementation.

EFL 8-3

Capabilities of EFL

EFL is a general purpose computer language. It has a uniform syntax, and data and
control flow structuring.

The EFL compiler attempts to diagnose syntax errors and to produce readable FORTRAN
output.

The relationship between EFL, FORTRAN, and machine language is illustrated in
Figure 8-1 on page 8-5.

An EFL source program in translated into machine language in the following way:

1. The EFL code is compiled with the EFL compiler to produce corresponding FORTRAN
code.

2. The resulting FORTRAN is compiled by the FORTRAN compiler to produce the
corresponding machine language (object) code.

8-4 FORTRAN 77

EFL LANGUAGE

j
EFL COMPILER

j
FORTRAN LANGUAGE

j
FORTRAN COMPILER

j
MACHINE LANGUAGE

Figure 8-1. Relationship Between EFL, FORTRAN, and Machine Language

EFL 8-5

Notation and Highlighting

In examples and syntax specifications:

• A word in boldface type must be typed as is in an EFL program.

• A word in italic type must be replaced with an item of the specified type, such as an
expression.

• Punctuation must be typed exactly as it appears in the syntax examples.

• A construct surrounded by brackets represents a list of one or more of the specified
items, separated by commas.

Thus, the notation:

[item]

can refer to any of the following:

item
item, item
item, item, item

• The examples of EFL code appear in lowercase letters. The compiler, however,
interprets lowercase and uppercase letters the same, except within strings.

8-6 FORTRAN 77

Terms and Concepts

This section discusses the general structure and content of EFL.

Character Set

The following characters are legal in an EFL program:

Letters:

Digits:

White space:

Quotation marks:

Number sign:

Continuation character:

Braces:

Parentheses:

Other:

abcdefghijklm

nopqrstuvwxyz

0123456789

blank tab

{ }
()

, , ..

I I

+ - * /
= < > & 1$

Letter case (upper or lower) is ignored except within strings. Therefore the letters a and A
are interpreted the same, except within strings.

An ! (exclamation mark) can be used in place of a '" (tilde).

[(left bracket) and] (right bracket) can be used in place of { (left brace) and} (right
brace).

White Space

Outside of a character string or comment, a sequence of one or more spaces or tab
characters acts as a single space.

EFL 8-7

Lines

In general, the end of a line marks the end of a statement. Exceptions to this general rule
are discussed in "Continuation Lines."

The trailing portion of a line can be used for a comment.

Diagnostic messages are labeled with the line number where they are detected.

A line that begins with a % (percent sign) is not interpreted by the EFL preprocessor. It is
copied through to the output, with the % removed but no other change.

If a sequence of lines constitutes a continued FORTRAN statement, the lines should be
enclosed in braces.

Continuation Lines

Lines are continued explicitly with the _ (underscore character). If the last character of a
line is an underscore, the end-of-line character and the initial blanks on the next line are
ignored.

The _ (underscore) character should come before any comment on the same line.

Underscore characters inside of character strings are treated as literal characters.

Underscore characters are ignored elsewhere in EFL code.

Some lines are continued implicitly. A statement is continued if the last item on the line is
an arithmetic or logical operator, a comma, a left brace, or a left parenthesis.

Some compound statements, such as if-else, are continued automatically. For more
information, see individual statement explanations in "Statement Directory" on page 8-30.

Line Labels

A label is a name for a line. Labels are made up of characters, digits, or a combination of
both, followed by a : (colon).

A line containing an executable statement can be preceded by a label, as in the following
example:

read(; x)
if(x < 3) goto error

error: fatal ('bad input')
Standard statement labels are identifiers. A numeric (positive integer constant) label is
also permitted; the colon is optional following a numeric label.

8-8 FORTRAN 77

Comments

A comment can appear at the end of any line. Comments remain in the source code as
they are typed and are not translated by the compiler.

A comment is preceded by a # (number sign). Everything following the # to the end of the
line is interpreted as the comment.

A # inside of a character string is interpreted literally and does not mark a comment.

A blank line is interpreted as a comment.

Reserved Words

Certain words are assigned a specific meaning by the EFL compiler. These reserved
words must not be used for anything other than their defined purposes in EFL programs.

The following figure shows the reserved words that have special meaning in EFL:

array
automatic
break
call
case
character
common
complex
continue
debug
default
define
dimension
do
double
dou bleprecision
else
end
equivalence

exit
external
false
field
for
function
go
goto
if
implicit
include
initial
integer
internal
lengthof
logical
long
next
option

Figure 8-2. Reserved Words in EFL

precision
procedure
read
readbin
real
repeat
return
select
short
sizeof
static
struct
subroutine
true
until
value
while
write
write bin

EFL 8-9

Character Strings

A character string is a sequence of characters surrounded by quotation marks.

A character string enclosed in single quotation marks can contain unprotected double
quotation marks. A character string enclosed in double quotation marks can contain
unprotected single quotation marks.

A character string can be more than a single line long.

The following examples are valid character strings:

'hello there '
"ain't misbehavin 'll

Integer Constants

An integer constant is a sequence of one or more digits.

The following examples are valid integer constants:

a
57
123456

Floating-Point Constants

A floating-point constant contains a dot and can optionally contain an exponent field.
An exponent field is a letter d or e followed by an optionally signed integer constant.

If I and J are integer constants and E is an exponent field, then a floating-point constant
has one of the following forms:

I.
I.J
IE
I.E
I. JE

8-10 FORTRAN 77

Arithmetic Operators

The binary arithmetic operators are:

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

Figure 8-3. Arithmetic Operators in EFL

Exponentiation is right associative, thus:

a**b**c = a**{b**c)
The following shows examples of operations and their results:

8+2 = 10
8-2 = 6
8*2 16
8/2 = 4
8**2 = 8*8 = 64
Quotients are truncated toward zero, so:

8/3 = 2

Logical Operators

There are two logical operators in EFL:

• & (and)

• I (or)

Each of the operators can be used in two forms. The and operation can be written in one
of two ways:

a & b

a && b

Likewise, the or operation can be written in one of two ways:

EFL 8-11

a I b

a II b

The use of a single operator (& or I) allows the compiler to evaluate the operands in any
order. The lack of restriction on evaluation order at times speeds up program run time.

The use of double operators (&& or II) forces a left-to-right evaluation of the operands. In
an and operation, such as:

a && b

a is evaluated first. If a is false, the expression is false and b is not evaluated. If a is true,
the expression is assigned the value of b.

In or operations, such as:

a II b

a is evaluated first. If a is true, the expression is true and b is not evaluated. If a is false,
the expression is assigned the value of b.

Results of the two binary logical operations, and and or, are defined by the following truth
tables:

A B AandB AorB

false false false false

false true false true

true false false true

true true true true

Relational Operators
The following table shows the six relational operators in EFL:

EFL Operator Meaning
< Less than
<= Less than or equal to

Figure 8-4 (Part 1 of 2). Relational Operators in EFL

8-12 FORTRAN 77

EFL Operator Meaning

Equal to

Not equal to

> Greater than

>= Greater than or equal

Figure 8-4 (Part 2 of 2). Relational Operators in EFL

These operators are not associative.

Since the complex numbers are not ordered, the only relational operators that can take
complex operands are = = and =. The character collating sequence is not defined.

Assignment Operators
The assignment operators are right-associative. The simple form of assignment is:

var = expression

The var is a scalar variable name, array element, or structure member of basic type. The
expression on the right side is computed. The result of the computation is stored in the
location named by var.

If the type of the result does not match the type of var, the type of the result is converted
to the declared type of var.

There is also an assignment operator corresponding to each binary arithmetic and logical
operator. The expression a op = b is equivalent to a = a op b. The operator and equal sign
must not be separated by blanks. Thus, the expression:

n+=2

adds 2 to n. In this form, the location of the left side is evaluated only once.

Repetition Operator
Inside of a list, an element of the form:

integer-constant-expression $ constant-expression

is equivalent to the appearance of the constant-expression a number of times equal to the
integer-constant-expression. Therefore, the example:

(3, 3$4, 5)

is equivalent to:

(3, 4, 4, 4, 5)

EFL 8-13

Operator Precedence

In the following grouping of operators, all operators on a line have:

• Equal precedence

• Higher precedence than operators on later lines.

The grouping of operators in order of precedence is:

-)

**
* / unary + - ++ --
+ -
< <=))= -- --
& &&
I II
$

= += -- *= /= **= &=
1= &&= II =

Figure 8-5. EFL Operator Precedence

A . (dot) is considered an operator when it is part of a structure element name, but not
when it is a decimal point in a numeric constant.

Statements

Statements cause specific actions to be taken. Individual statements implemented in EFL
are discussed in "Statement Directory" on page 8-30.

A statement is terminated by an end-of-line character or by a semicolon. Several
statements can be written on a single line, if they are separated by semi-colons.

A line consisting only of a ; (semicolon) or ;; (semicolon following a semicolon) forms a
null statement.

Statements are frequently made up of other statements. A block, for example, is basically
a statement composed of several statements.

8-14 FORTRAN 77

Blocks

A block is an explicit group of statements that is essentially a compound statement. A
block is an example of an executable statement; it is made up of declarative and executable
statements. The statements making up a block are enclosed between a { (left brace) and a
} (right brace).

A block is treated as an executable statement by the EFL compiler. Therefore a block can
be used anywhere a statement is permitted.

Declaration statements and executable statements can be part of a block.

A block is not an expression and does not have a value.

A name defined in a block is defined throughout that block and in all deeper nested levels
in which the name is not redefined or redeclared.

An example of a block is:

{
integer # This variable is unknown outside the braces

big = 0
do i = 1, n

if(big < a(i))
big = a(i)

}

Procedures

Procedures are the largest grouping of statements in EFL. Each procedure is given a
name by which it is invoked.

Procedures are the basic program unit of an EFL program, and provide a means of
segmenting a program into separately compilable and named parts.

The first procedure invoked during a program run is considered the main procedure and is
assigned the null name.

Each procedure begins with a procedure statement and finishes with an end statement.
For more information on the procedure and end statements, see the statement discussions
in "Statement Directory" on page 8-30.

EFL 8-15

Files

A file is a sequence of lines. A file is compiled as a single unit and can contain one or
more procedures.

8-16 FORTRAN 77

Data Types and Variables

EFL supports a small number of scalar or basic data types. You can define objects made
up of variables of basic type. Other aggregates can then be defined in terms of previously
defined aggregates.

Basic Types

The basic types implemented in EFL are:

logical
integer
field(m:n)
real
complex
long real
long complex
character(n)

A logical type can have the value true or false.

An integer can be assigned any whole number value supported by the computer.

A field type is an integer restricted to a particular closed interval ([m:n]).

A real type is a floating-point approximation to a real or rational number. A long real
type is a more precise approximation to a rational. Real types are represented as
single-precision floating-point numbers. Long real types are represented as
double-precision floating-point numbers.

A complex type is an approximation to a complex number and is represented as a pair of
real quantities.

A character type is a fixed-length string of n characters.

The following FORTRAN and EFL types are equivalent:

FORTRAN EFL

double precision long real

function procedure

Figure 8-6 (Part 1 of 2). Equivalent FORTRAN and EFL Types

EFL 8-17

FORTRAN EFL
subroutine procedure (untyped)

Figure 8-6 (Part 2 of 2). Equivalent FORTRAN and EFL Types

Constants

There is a notation for a constant of each basic type.

A logical type can be assigned one of two values:

true
false

An integer or field constant is a fixed point constant, optionally preceded by a plus or
minus sign, as in the following examples:

17
-94
+6
o
A long real (or double-precision) constant is a floating-point constant containing an
exponent field that begins with the letter d. A real (or single-precision) constant is any
other floating-point constant. A real or long real constant can be preceded by a plus or
minus sign. The following are valid real constants:

17.3
-.4
7.9c-6
14e9

(= 7.9X10)
(= 1.4x10)

The following are valid long real constants:

7.9d-6
5d3

(= 7.9x10)

A character constant is a character string with single or double quotation marks.

8-18 FORTRAN 77

Variables

A variable is a quantity with a name and a location. At any time, the variable can also
have a value. A variable is said to be undefined before it is initialized or assigned its first
value, and after certain indefinite operations are performed.

A scalar variable name can be used in expressions. It can appear on the left or the right
side of an assignment statement.

Each variable has the attributes of storage class, scope, and precision.

Storage Class
The association of a name and a location is either transitory or permanent.

Transitory association is achieved when arguments are passed to procedures. Other
associations are static or permanent.

Scope of Names
The names of common areas are global, as are procedure names, These names can be used
anywhere in a program.

Other names are local to the block in which they are declared.

To describe the scope of names, it is convenient to introduce the ideas of block and
nesting level.

The beginning of a program file is at nesting level zero. Options, definitions, and variable
declarations at the beginning of a program file are also at level zero.

The text immediately following a procedure statement is at levell.

After the declarations, a { (left brace) marks the beginning of a new block and increases
the nesting level by 1. A} (right brace) drops the level by 1. Braces inside declarations do
not mark blocks.

An end statement marks the end of the procedure, levell, and the return to level o.
A name (variable) that is defined at level k is defined throughout that block and in all
deeper nested levels in which the name is not redefined or redeclared.

Thus, a procedure might look like the following:

EFL 8-19

Block 0; beginning of level 0
procedure newprogram
real x
x = 2

if(x> 2)
New block; beginning of level 1

{
A different variable

integer x
do x = 1,7

wri te (,x)

End of new block; end of level 1
and return to block 0

}
End of procedure; end of block 0
end

Precision
Floating-point variables are either of normal or long precision.

This attribute can be stated independently of the basic type.

Arrays

An array is basically a group of values of the same type. EFL permits the declaration of
rectangular arrays of several dimensions.

An element of an array is denoted by the array name followed by integer values separated
by commas and within parentheses. Each of the integer values, also called subscripts,
specifies an interval within one of the array's declared dimensions. Each of the integer
values must lie within the corresponding interval. The intervals can include negative
numbers.

The dimensionality of an array is specified by an array attribute in the array declaration.
The general form of an array declaration is:

array(b ... b)

The b dimensions can be a single integer expression or a pair of integer expressions
separated by a colon. The following are legal array attributes:

8-20 FORTRAN 77

array (5)
arraY(5, 1:5, -3:0)
array (5, *)
array(0:m-1, m)

The pair of expressions form a lower and an upper bound; the single expression is an upper
bound with an implied lower bound of 1. The number of dimensions is equal to n, the
number of bounds.

The integer expressions must be constants. An exception is permitted only if all of the
variables associated with an array declarator are dummy arguments of the procedure; in
this case, each bound must have the property that upper-lower+ 1 is equal to a dummy
argument of the procedure. The compiler has limited ability to simplify expressions, but it
recognizes cases such as (0 : n -1).

The upper bound for the last dimension (b) can be marked by an * (asterisk) if the size of
the array is not known.

The following example denotes the fifth element of array a:

a(5)

The following example denotes the element in the three-dimensional array b with 6 as its
first dimension, -3 as its second dimension, and 4 as its third dimension:

b(6,-3,4)

Entire arrays can be passed as procedure arguments or in input/output lists.
array references must be to individual elements.

Arrays can be initialized.

Other

Unqualified names of arrays can appear only as procedure arguments and in input/output
lists.

The index set is always a cross-product of intervals of integers. The lower and upper
bounds of the intervals can be constants for arrays that are local or common. A dummy
argument array can have intervals that are of length equal to one of the other dummy
arguments.

EFL 8-21

Structures

A structure is an aggregrate type made up of other types. The individual parts of a
structure are called members.

A structure declaration is of the form:

struct structname { declaration statements}

The structname is optional. If structname is present, it acts as a type name in the
remaining stat~ments within the scope of its declaration.

Each name that appears inside the declaration statements is a member of the structure and
has a special meaning when used to qualify a variable declared with the structure type.

A name can appear as a member of several structures and can also be the name of an
ordinary variable, since a structure member name is used only in contexts where the
paren t type is known.

The members of a structure can be of any type, including previously defined structures, or
they can be arrays of previously defined structures.

Entire structures can be passed as arguments to procedures or used in input/output lists.
Unqualified names of structures can appear only as procedure arguments and in
input/output lists. Individual elements of structures can be referenced.

The following are valid structure declarations:

struct xx
{
integer a, b
real x (5)
}

struct { xx z(3); character(5) y }
The last line defines a structure containing an array of three xx's and a character string.

The following example is also a structure declaration:

struct tableentry
{
character(8) name
integer hashvalue
integer numberofelements
field(O:l) initialized, used, set
field(O:lO) type
}

8-22 FORTRAN 77

A structure name followed by a dot and the name of a member of that structure is a
reference to that specific member. If that member is itself a structure, the reference can be
further qualified.

The following example references the member b in the structure a:

a.b

The following example references the fifth element of the array y, which is a member of
the structure x:

x.y(5)

EFL defines a notation for dynamic structures that is similar to address types (with pointer
and reference) in other high-level languages. The general form of the dynamic structure
notation is:

lefts ide - > structurename

The leftside is a variable, array, array element, or structure member. The structurename is
a defined structure. The type of the leftside must be one of the types in the structure
declaration.

The expression is a structure with the shape implied by structurename but starting at the
location of leftside. In effect, this overlays the structure template at the specified location.

An element of such a structure is denoted using the dot operator. Thus the following
example:

place(i) -> st.elt
refers to the e 1 t member of the structure 5 t starting at the i element of the array place

EFL 8-23

Expressions

Expressions are syntactic forms that yield a value. An expression can have one of the
following forms, recursively applied:

primary

(expression)

unary-operator expression

expression binary-operator expression

Examples of expressions are:

a<b && b<c
-(a + sin(x)) / (5+cos(x))**2

Constant Expressions

If an expression is built up out of operators (other than functions) and constants, the value
of the expression is a constant and can be used anywhere a constant is required.

Expression Type Conversion

An expression of one precision or type can be converted to another by an expression of the
form:

attributes (expression)

The attributes options are precision and basic types. Attributes are separated by white
space.

An arithmetic value of one type can be converted to another arithmetic type. A character
expression of one length can be converted into a character expression of another length. A
logical expression cannot be converted into a nonlogical type.

As a special case, a quantity of complex or long complex type can be constructed from two
integer or real quantities by passing two expressions (separated by a comma) in the
conversion.

The type of the result of a binary operation A op B, where op is an arithmetic operator, is
determined by the types of its operands. The following figure shows the resultant types of
arithmetic operations involving two operands, A and B:

8-24 FORTRAN 77

Type of A integer real long real complex long complex

Type ofB

integer integer real long real complex long complex

real real real long real complex long complex

long real long real long real long real long long complex
complex

complex complex complex long complex long complex
complex

long long long long long long complex
complex complex complex complex complex

Figure 8-7. Data Type of Result of Arithmetic Operations

If the type of an operand differs from the type of the result, the calculation is done as if the
operand were first converted to the type of the result.

EFL 8-25

Declarations

Declaration statements describe types and values of variables and procedures.

Syntax

Scope

A declaration statement is made up of attributes and variables. The two general forms of
declaration statements are:

attributes variable-list

attributes { declarations }

In the first form, each name in the variable-list has the specified attributes. In the second
form, each name in the declarations has the specified attributes. The declarations inside
the braces are one or more declaration statements.

Examples of declarations are:

long real b(7,3)

common (cname)

{
integer i
long real array(5,O:3) x, y
character(7) ch
}

Declarations and options that appear outside of a procedure affect the succeeding
procedures on that file.

A variable name can appear in more than one variable list as long as the attributes are not
con tradictory.

8-26 FORTRAN 77

Initialization

You can assign an initial value to a name of a nonargument variable in a declaration
statement.

For example, the following declaration statement defines an integer k and assigns k an
initial value of 2:

integer k = 2

Attributes

The following sections discuss various attributes that can be declared for EFL data items.

Basic Types
The following are basic types in declarations:

logical
integer
field(m:n)
character(k)
real
complex

The quantities k, m, and n denote integer constant expressions with the properties k> 0
and n>m.

The array attribute defines the dimensionality of an array. The basic form of the array
attribute in an array declaration is:

array(b ... b)

An array declaration can have several b dimensions. For more information on arrays, see
"Arrays" on page 8-20.

The structure attribute declares a user-defined data aggregate. The basic form of the
structure attribute in a structure declaration is:

struct structname { declaration statements}

The structname is the name of the defined structure. The. declaration statements define the
members of the structure. For more information on structures, see "Structures" on
page 8-22.

EFL 8-27

Precision
Variables of floating-point type (real or complex) can be declared long to ensure they
have higher precision than ordinary floating-point variables. The default precision is
short.

Common
Certain objects called common areas have external scope and can be referenced by any
procedure that has a declaration for the name using a common attribute. The general
form of the common attribute in a declaration statement is:

common (commonareaname)

All variables declared with a particular common attribute are in the same block, and the
order in which they are declared is significant. Declarations for the same block in
differing procedures must have the variables in the same order and with the same types,
precision, and shapes, though not necessarily with the same names.

External Procedure Names
If a name is used as the procedure name in a procedure invocation, it is implicitly declared
to have the external attribute. If a procedure name is to be passed as an argument, it
must be declared with the external attribute. The general form of the external attribute
in a declaration statement is:

external name

The name is the name of the externally declared procedure.

If a name is declared with the external attribute and is a dummy argument of a procedure,
the name is associated with a procedure identifier passed as an actual argument at each
call. If the name is not a dummy argument, then the name is the actual name of a
procedure as it appears in the corresponding procedure statement.

Variable List

The elements of a variable list in a declaration consist of:

• A name

• An optional dimension specification

• An optional initial value specification

The name follows the usual rules for a variable name.

The dimension specification has the same form and meaning as the parenthesized list in an
array attribute.

8-28 FORTRAN 77

The initial value specification is an = (equal sign) followed by a constant expression. If
the name is an array, the right side of the equal sign can be a parenthesized list of
constant expressions, or repeated elements or lists. The total number of elements in the
list must not exceed the number of elements of the array, which are filled in column-major
order.

Implicit Declarations

If a name is used but does not appear in a declaration, the EFL compiler gives a warning
and assumes a declaration for it. If a name is used in the context of a procedure
invocation, it is assumed to be a procedure name. Otherwise a name is assumed to be a
local variable defined at nesting level 1 in the current procedure. The assumed type is
determined by the first letter of the name.

The association of letters and types can be given in an implicit statement. For more
information on the implicit statement, see the statement entry in "Statement Directory"
on page 8-30.

EFL 8-29

Statement Directory

To increase the legibility of EFL programs, some statement forms can be broken without
an explicit continuation. A • (square) in the syntax of the statement represents a point
where the end of a line is ignored.

Assignment Statements

An expression that is a simple assignment or a compound statement is a statement:

a = b
a = sin(x)/6
x *= y

The backspace Statement

The backspace statement causes the pointer to the current record in the specified unit to
back up one record, so that the next read operation re-reads the previous record and the
next write operation over-writes it.

The general form of the backspace statement is:

backspace (unit)

The unit is an integer expression defining the device containing the data. See "The
Input/Output System" on page 8-43 for more information on units.

The backspace statement can also be used as an integer expression that yields non-zero if
an error is detected.

The break Statement

A break statement transfers control to the statement following the current select or loop
form. A statement of this sort is almost always needed in a repeat loop:

repeat
{
do a computation
if(finished)

break

}

8-30 FORTRAN 77

More general forms permit controlling a branch out of more than one construct:

break 3

transfers control to the statement following the third loop and/or select surrounding the
statement.

It is possible to specify which type of construct (for, while, repeat, do, or select) is to be
counted. The statement:

break while

breaks out of the first surrounding while statement.

Either of the statements:

break 3 for

break for 3

transfers to the statement after the third enclosing for loop.

The call Statement

The call statement invokes a subroutine.

The general form of the call statement is:

call subroutine

The subroutine is the name of a subroutine defined within the scope of the current process.

The define Statement

EFL has a simple macro substitution facility. A name can be defined to be equal to a
string; whenever that name appears in the program, the string replaces it.

A name is given a value in a define statement like:

define count n += 1

Wherever the name count appears in the program, it is replaced by the statement:

n += 1

A define statement must appear alone on a line.

The general form of the define statement is:

define name rest-ai-line

Trailing comments are part of the string.

EFL 8-31

The do Statement

EFL has a loop form for ranging over an ascending arithmetic sequence:

do variable = expression-I, expression-2, expression-3
statement

The variable is first given the value expression-I. The statement is executed, then
expression-3 is added to the variable. The loop is repeated until the variable exceeds
expression-2. If expression-3 and the preceding comma are omitted, the increment is taken
to be 1. The loop above is equivalent to:

t2 = expression-2
t = expression-3
for(variable = expression-I, variable <= t2, variable += t3)

statement
The do variable cannot be changed inside of the loop, and expression-I must not exceed
expression-2.

The sum of the first hundred positive integers could be computed by:

n = a
do i = 1, 100

n += i

The end Statement

The end statement terminates an EFL procedure.

The general form of the end statement is:

end

The endfile Statement

The endfile statement causes a file to be marked so that the record most recently written
is the last record on the file. Attempts to read past the last record result in errors.

The general form of the endfile statement is:

endfile (unit)

The unit is an integer expression defining the device containing the data. For more
information on units, see "The Input/Output System" on page 8-43.

8-32 FORTRAN 77

The endfile statement can be used as an integer expression that yields non-zero if an error
is detected.

The for Statement

The general form of the for statement is:

for (initial-statement, 0 logical-expression, 0 iteration-statement) 0 body-statement

If the initial-statement is true, the logical-expression is evaluated. The body-statement and
then the iteration-statement are run, and the logical-expression is re-evaluated. The
body-statement and the iteration-statement are re-run as long as the logical-expresion is true.

This form is useful for general arithmetic iterations, and for various pointer-type
operations. For example, the sum of integers from 1 to 100 is computed by the following
for statement:

n = 0
for(i = 1, i <= 100, i += 1)

n += i

The same computation can also be done by the single statement:

for({ n = 0 ; i = 1 } , i<=100 , { n += i ; ++i })

Note that the body of the for loop is a null statement in this case.

The goto Statement

The general form of the goto statement is:

goto label

After executing this statement, the next statement performed is the one following the given
label.

The Computed goto Statement

A goto statement of the following form:

goto(label), expression

passes control to the statement marked by the label whose position in the list is equal to
the expression. The expression must be of type integer, a positive value, and no larger than
the number of labels in the list.

EFL 8-33

In unconditional and computed goto statements, it is permissible to separate the go and to
words, as in the following form:

go to xyz

Inside of a select, the case labels of that block can be used as labels, as in the following
example:

select(k)
{
case 1:

error(7)
case 2:

k - 2
go to case 4

case 3:
k = 5
goto case 4

case 4:
fixup(k)
goto default

default:
prmsg("ouch")

}

(If two select statements are nested, the case labels of the outer select are not accessible
from the inner one.)

The if Statement

The simplest of the test statements is the if statement, of the form:

if (logical-expression) Dstatement

The logical-expression is evaluated. If it is true, then the statement is executed.

8-34 FORTRAN 77

The if-else Statement

The general form of the if-else statement is:

if (logical-expression) ~ statement-l ~else::Jstatement

If the expression is true then statement-l is executed, otherwise statement-2 is executed.
Either of the consequent statements can be an if-else statement, so a completely nested
test sequence is possible:

if (x<y)
if(a<b)

k 1
else

k = 2
else

i f(a<b)
m 1

else
m 2

An else clause applies to the nearest preceding un-elsed if statement.

The following example shows the use of the if-else statement as a series of sequential tests:

if(x==l)
k = 1

else if (x==3 I x==5)
k = 2

else
k 3

The implicit Statement

The implicit statement defines the default association of letters and types.

The general form of the implicit statement is:

implicit (letter-list) type

The letter-list is a list of individual letters or ranges (pair of letters separated by a minus
sign).

The following are the default type and letter associations:

EFL 8-35

implicit (a-h, o-z) real
implicit (i-n) integer

The include Statement

It is possible to insert the contents of a file at a point in the source text, by referencing the
file in an include statement. For example, the following include statement inserts the
contents of the file joe into a program:

include joe
No statement or comment can follow an include on a line. In effect, the include line is
replaced by the lines in the named file, but diagnostics refer to the line number in the
included file.

The initial Statement

An initial value can be specified for a simple variable, array, array element, or member of a
structure using an initial statement of the form:

initial var = val

The uar can be a variable name, array element specification, or member of structure. The
val follows the same rules as for an initial value specification in other declaration
statements.

The next Statement

The next statement causes the first surrounding loop statement to go on to the next
iteration; the next operation performed is the test of a while, the iteration-statement of a
for, the body of a repeat, the test of a repeat ... until, or the increment of a do.
Elaborations similar to those for break are available.

The following are examples of next statements:

next
next 3
next 3 for
next for 3
A next statement ignores select statements.

8-36 FORTRAN 77

The procedure Statement

Each procedure begins with a statement of one of the forms:

procedure

attributes procedure procedurename

attributes procedure procedurename ()

attributes procedure procedurename (name

The first example specifies the main procedure. In the other examples, the attributes
option specifies precision and type. This option can be omitted. The precision and type of
a procedure can also be declared in a declaration statement.

If no type is declared, the procedure is considered a subroutine and no value can be
returned for it. Otherwise, the procedure is a function and a value of the declared type is
returned for each call.

Each name inside the parentheses in the last example is a dummy argument of the
procedure.

A procedure is invoked by an expression of one of the forms:

procedurename ()

procedurename (expression

procedurename (expression-l, ..., expression-n

The procedurename is either the name of a variable declared external, the name of a
function known to the EFL compiler, or the name of a procedure as it appears in a
procedure statement.

If a procedurename is declared external and is an argument of the current procedure, it is
associated with the procedure name passed as actual argument; otherwise it is the actual
name of a procedure.

Each expression in the examples is an actual argument.

The following example invokes the procedure f with X as an argument:

f(x)
The following example invokes the procedure wo r k with an empty argument list:

work()

EFL 8-37

The following example invokes the procedure 9 with multiple arguments:

9 (x, y+ 3, I xx I)

When a procedure is invoked, each of the actual argument expressions is first evaluated.
The types, precisions, and bounds of actual and dummy arguments are checked for
agreement.

If an actual argument is a variable name, array element, or structure member, the called
procedure can use the corresponding dummy argument as the left side of an assignment or
in an input list; otherwise it can only use the value.

After the dummy and actual arguments are associated, control is passed to the first
executable statement of the procedure. When a return statement is executed in that
procedure, or when control reaches the end statement of that procedure, the function
value is returned as the value of the procedure invocation. The type of the value is
determined by the attributes of the procedurename that are declared or implied in the
calling procedure. The attributes in the calling procedure must agree with the attributes
declared for the function in its procedure.

In the special case of a generic function, the type of the result is also affected by the type
of the argument.

The read Statement

The read statement transmits data in the form of lines of characters. The general form of
the read statement is:

read (unit, formatted-input-list)

The unit is an integer expression defining the device containing the data. If the unit is
omitted, the standard input unit is used.

The formatted-input-list is an iolist with or without format specifiers in which each of the
expressions is a variable name, array element, or structure member.

Each statement moves one or more records. The exact form of the lines is determined by
format specifications, whether provided explicitly in the statement or implicitly. Numbers
are translated into decimal notation.

For more information on units, iolists, and format specifiers, see "The Input/Output
System" on page 8-43.

8-38 FORTRAN 77

The readbin Statement

The readbin statement transmits data quickly in a machine-dependent binary format. The
general form of the readbin statement is:

readbin (unit, binary-input list)

The statement moves one unformatted record between storage and the device.

The unit is an integer expression defining the device containing the data. The
binary-input-list is an iolist without format specifiers in which each of the expressions is a
variable name, array element, or structure member.

For more information on units, iolists, and format specifiers, see "The Input/Output
System" on page 8-43.

The repeat Statement

The general form of the repeat statement is:

repeat ~_; statement

The statement is run repeatedly.
looping.

A test must be included in the statement to stop the

The repeat ... until Statement

The general form of the repeat ... until statement is:

repeat :...:] statement ~_~ until (logical-expression)

The statement is first run. Then the logical-expression is evaluated. The statement is re-run
as long as the logical-expression is false. When the logical-expression is true, control goes
to the first statement following the repeat ... until statement.

The statement always runs at least once.

An until clause refers to the nearest preceding repeat statement.

EFL 8-39

The return Statement

The last statement of a procedure is followed by a return of control to the caller. If such a
return is desired from another point in the procedure, a return statement of the following
form:

return
can be executed.

Inside a function procedure, the function value is specified as an argument of the
statement:

return (expression)

The rewind Statement

The rewind statement moves a device to its beginning, so that the next input statement
reads the first record.

The general form of the rewind statement is:

rewind (unit)

The unit is an integer expression defining the device containing the data. For more
information on units, see "The Input/Output System" on page 8-43.

The rewind statement can be used as an integer expression that yields non-zero if an error
is detected.

The select Statement

The general form of the select statement is: as a select statement, which has the general
form:

select (expression) 0 bloch

The expression is evaluated. Based on the evaluation, one of the statements in the bloch is
run.

The bloch is a group of statements enclosed in braces. Within the block, two forms of
labelled statements are recognized:

case constant statement

default : statement

There can be several statements with case labels in the block, but only one statement with
a default label.

8-40 FORTRAN 77

A statement with the case label is run if the expression in the select statement is equal to
the constant. If the expression does not equal a case-labelled constant, control goes to the
statement with the default label. If there is no default-labelled statement, control goes
to the first statement following the block.

Execution of a statement with a case or a default label continues until another case or
default label is detected. Then control goes to the first statement following the block.

The following example shows a select statement containing two cases and one default:

select(x)
{
case 1:

k = 1
case 3,5:

k = 2
default:

k - 3
}

The while Statement

The general form of the while statement is:

while (logical-expression) 0 statement

If the expression is true, the statement is run and the test is performed again. If the
expression is false, control goes to the next statement.

The write Statement

The write statement transmits data in the form of lines of characters. The general form of
the write statement is:

write (unit, formatted-output-list)

The unit is an integer expression. If the unit is omitted, the standard output unit is used.

The formatted-output-list is an iolist with or without format specifiers.

Each statement moves one or more records (lines). The exact form of the lines is
determined by format specifications, whether provided explicitly in the statement or
implicitly. Numbers are translated into decimal notation.

For more information on units, iolists, and format specifiers, see "The Input/Output
System" on page 8-43.

EFL 8-41

The writebin Statement

The writebin statement transmits data quickly in a machine-dependent binary format.
The general form of the write bin statement is:

y.;ritebin (unit, binary-output list)

The unit is an integer expression defining the output device to which the data is sent. The
binary-output-list is an iolist without format specifiers.

The statement writes one unformatted record from storage to the output device.

For more information on units, iolists, and format specifiers, see "The Input/Output
System" on page 8-43.

8-42 FORTRAN 77

The Input/Output System

EFL has two input statements (read and readbin), two output statements (write and
writebin), and three control statements (endfile, rewind, and backspace).

These forms can be used either as a primary with an integer value or as a statement.

If an error occurs when one of these forms is used as a statement, the result is undefined
and is usually treated as a fatal error. If the statements are used in a context where they
return a value, they return zero if no error occurs.

For the input forms, a negative value indicates end-of-file and a positive value indicates an
error.

Input/output sta~ements resemble procedure invocations but do not yield a value. If an
error occurs, the program stops.

Input/Output Units

Iolists

Each I/O statement refers to a unit, identified by a small positive integer.

A unit in EFL is essentially the same as a unit in FORTRAN. Two special units are
defined by EFL, the standard input unit and the standard output unit. These
particular units are assumed if no unit is specified in an I/O transmission statement.

The data on the unit are organized into records that are roughly equivalent to a line.
Records can be read or written in a fixed sequence. Each transmission moves an integral
number of records. Transmission proceeds from the first record until the end-of-file
indicator is reached.

An iolist specifies a set of values to be written or a set of variables into which values are
to be read. An iolist is a list of one or more ioexpressions of the form:

expression
{ iolist }
do-specification { iolist

For formatted I/O, an ioexpression can also have the forms:

ioexpression : format-specifier
: format-specifier

A do-specification looks just like a do statement, and has a similar effect: the values in
the braces are transmitted repeatedly until the do execution is complete.

EFL 8-43

Format Specifiers

The following are valid format-specifiers. The quantities w, d, and k must be integer
constant expressions.

Specifier Usage

i(w) Integer with w digits

f(w,d) Floating-point number of w characters, d of them to the right of the
decimal point

e(w,d) Floating-point number of w characters, d of them to the right of the
decimal point with the exponent field marked with the letter e

l(w) Logical field of width w characters, the first of which is t or f (the rest
are blank on output, ignored on input) standing for true and false
respectively

c Character string of width equal to the length of the datum

c(w) Character string of width w

s(k) Skip k lines

x(k) Skip k spaces

If no format is specified for an item in a formatted input/output statement, a default form is
used.

If an item in a list is an array name, then the entire array is transmitted as a sequence of
elements, each with its own format. The elements are transmitted in column-major order,
the same order used for array initializations.

Input/Output Expressions

The EFL input/output statements can be used as integer primaries that have a non-zero
value if an error occurs during the input or output.

8-44 FORTRAN 77

Subroutines

The following sections discuss various aspects of subroutines in EFL.

Subroutine Call

A procedure invocation that returns no value is known as a subroutine call. Such an
invocation is a statement.

Examples of subroutine calls are:

work(in, out)
run ()

Argument Association

When a procedure is invoked, the actual arguments are evaluated. If an actual argument
is the name of a variable, an array element, or a structure member, that entity becomes
associated with the dummy argument. The procedure can reference the values in the
object, and assign to it.

Otherwise, the value of the actual argument is associated with the dummy argument. In
this case, the procedure cannot attempt to change the value of that dummy argument.

If the value of one of the arguments is changed in the procedure, the corresponding actual
argument cannot be associated with another dummy argument or with a common element
that is referenced in the procedure.

Execution and Return Values

After actual and dummy arguments are associated, control passes to the first executable
statement of the procedure. Control returns to the invoker either when the end statement
of the procedure is reached or when a return statement is executed.

If the procedure is a function (has a declared type) and a return(value) is executed, the
value is first converted to the correct type and precision and then returned to the invoking
procedure.

EFL 8-45

Functions

A number of functions are known to EFL and need not be declared. The compiler knows
the types of these functions. Some of them are generic; they name a family of functions
that differ in the types of their arguments and return values. The compiler chooses which
element of the set to invoke based upon the attributes of the actual arguments.

Minimum and Maximum Functions
The generic functions are min and max. The min calls return the value of their smallest
argument; the max calls return the value of their largest argument. These are the only
functions that can take different numbers of arguments in different calls.

If any of the arguments are long real, the result is long real. If any of the arguments are
real, the result is real. Otherwise, the arguments and the result must be integer.

Examples of the minimum and maximum functions are:

min(5, x, -3.20)
max(i, z)

Absolute Value
The abs function is a generic function that returns the magnitude of its argument.

For integer and real arguments, the type of the result is identical to the type of the
argument. For complex arguments, the type of the result is the real value of the same
precision.

Generic Functions
The following generic functions take arguments of real, long real, or complex type and
return a result of the same type:

Function Purpose

SIn Sine function

cos Cosine function

exp Exponential function (e).

Figure 8-8 (Part 1 of 2). EFL Generic Functions

8-46 FORTRAN 77

Function Purpose

log Natural (base e) logarithm

log10 Common (base 10) logarithm

sqrt Square root function

Figure 8-8 (Part 2 of 2). EFL Generic Functions

In addition, the at an and atan2 functions accept only real or long real arguments.

The sign functions take two arguments of identical type: sign(x,y) = sgn(y)lxl.

The mod function yields the remainder of its first argument when divided by its second.

These functions accept integer and real arguments.

EFL 8-47

Compiling EFL Source Files

The f77 command that compiles FORTRAN source files is also used to compile EFL files.
The FORTRAN compiler recognizes a file with an .e extension as an EFL file. The file is
translated by the EFL compiler into a FORTRAN program, then compiled by the
FORTRAN compiler to produce an object file.

For example, to compile an EFL file named fi rs t. e, you type the following command:

f77 first.e
The general form of the command for compiling EFL files is:

f77 options files

The options are those options recognized by the FORTRAN compiler.

The files are EFL files that you want compiled, or any other type of file that the f77
command can recognize.

Files with names ending in .e are interpreted as EFL source files.

8-48 FORTRAN 77

The Compiler

The EFL compiler is a two-pass translator written in portable C. It implements all of the
features of the language described previously except for long complex numbers.

The following sections discuss different aspects of the EFL compiler.

Diagnostics

The EFL compiler diagnoses syntax errors. It gives the line and file name (if known) in
which an error is detected. Warnings are given for variables that are used but not
explicitly declared.

Quality of FORTRAN Produced

To the extent possible, the variable names that appear in the EFL program are used in the
FORTRAN code. The bodies of loops and test constructs are indented. Statement numbers
are consecutive. Few unneeded goto and continue statements are used.

The following is the FORTRAN procedure produced by the EFL compiler for the matrix
multiplication example presented in "Matrix Multiplication" on page 8-53:

subroutine matmul (a, b, c, m, n, p)
integer m, n, p
double precision a(m, n), b(n, p), c(m, p)
integer i, j, k
do 3 i = 1, m

do 2 j = 1, P
c(i, j) = 0
do 1 k = 1, n

c(i, j) = c(i, j)+a(i, k)*b(k, j)
1 continue
2 continue
3 continue

end

EFL 8-49

The following is the FORTRAN procedure for the tree walk example presented in "Walking
a Tree" on page 8-55:

subroutine walk(first)
integer first
common /nodes/ tree
integer tree(4, 100)
real treel(4, 100)
integer staame(2, 100), stapth, curode
integer constl(l)
equivalence (tree(l,l), treel(l,l))
data constl(1)/4h /

c print out an expression tree
c index of root node
c array of structures
c nextstate values
c initialize stack with root node

stapth = 1
staame(l, stapth) = 1
staame(2, stapth = first

1 if (stapth .le. 0) goto 9
curode = staame(2, stapth)
goto 7

2 if(tree(l, curode) .ne. constl(l)) goto 3
call outval (tree1 (4, curode))

cal eaf
stapth = stapth-1
goto 4

3 call outch(lh()
c a binary operator node

staame(l, stapth) 2
stapth = stapth+1
staame(l, stapth) 1
staame(2, stapth) tree(2, curode)

4 gata 8

8-50 FORTRAN 77

5 call outch(tree(l, curode))
staame(l, stapth) 3
stapth = stapth+l
staallle(l, stapth) 1
staallle(2, stapth) tree(3, curode)
goto 8

6 call outch(lh)
stapth = stapth-l
goto 8

7 i f (s t a allle (1 , stapth) .eq. 3) goto 6
°i f (s t a allle (1 , stapth) .eq. 2) goto 5
i f (s t a ame (1 , stapth) .eq. 1) goto 2

8 continue
go to 1

9 continue
end

EFL 8-51

Compiler Restrictions

The following paragraphs describe the major restrictions imposed on the implementation of
EFL by adherence to FORTRAN design concepts.

External Names

External names (procedure and common block names) must be no longer than 6 characters
in FORTRAN. Further, an external name is global to the entire program. Therefore EFL
can support block structure within a procedure but can have only one level of external
name if the EFL procedures are to be compilable separately, as are FORTRAN procedures.

Procedure Interface

The FORTRAN standards, in effect, permit arguments to be passed between FORTRAN
procedures either by reference or by copy-in/copy-out. This indeterminacy of specification
shows through into EFL. A program that depends on the method of argument transmission
is illegal in either language.

There are no procedure-valued variables in FORTRAN. A procedure name can only be
passed as an argument or be invoked; it cannot be stored.

Recursion

Standard FORTRAN and EFL procedures are not recursive. However, the IBM RT PC
implementation of FORTRAN 77 does allow recursive invocation of procedures.

Storage Allocation

The definition of the FORTRAN standard does not specify the lifetime of variables. It is
possible, however, to simulate stack or heap storage by using common blocks.

8-52 FORTRAN 77

Examples

This section shows and discusses several EFL programs and program segments.

File Copying

The following short program copies the standard input to the standard output, provided
that the input is a formatted file containing lines no longer than a hundred characters.

procedure # main program
character(IOO) line

while(read(line) 0)
write(, line)

end

Since read returns zero until the end-of-file character or a read error is reached, this
program keeps reading and writing until the input is exhausted.

Matrix Multiplication

The following procedure multiplies the mxn matrix
matrix c. The calculation obeys the formula c

procedure matmul (a,b,c, m,n,p)
integer i, j, k, m, n, p
long real a(m,n), b(n,p), c(m,p)

do I,m
do j 1 ,p

{

end

c(i,j) = 0
do k - I, n

c(i ,j) += a(i, k) * b(k,j)
}

a by the nxp matrix b to give the mxp
a*b.

EFL 8-53

Searching a Linked List

Assume we have a list of pairs of numbers (x, y). The list is stored as a linked list sorted
in ascending order of X values. The following procedure searches this list for a specified
value of X and returns the corresponding y value.

defi ne LAST 0
define NOTFOUND -1

integer procedure val (1 i st, fi rst, x)

list is an array of structures
Each structure contains a thread index value, an x, and a y value.

struct xxxy
{
integer nextindex
integer x, y
} list('k)

integer first, p, arg

for(p = first, p =LAST && list(p) .<=x , P
if(list(p).x == x)

return(list(p).y

return(NOTFOUND)
end

1 i st(p). nexti ndex)

The search is a single for loop that begins with the head of the list and examines items
until either the list is exhausted (p==LAST) or until it is known that the specified value is
not on the list (1 i s t (p) . X > x). The two tests in the conjunction must be performed in
the specified order to avoid using an invalid subscript in the 1 i s t (p) reference.
Therefore, the && operator is used. The next element in the chain is found by the
iteration statement p=list(p) .nextindex.

8-54 FORTRAN 77

Walking a Tree

As an example of a more complicated problem, assume that we have an expression tree
stored in a common area and that we want to print out an infix form of the tree.

Each node is either a leaf (containing a numeric value) or a binary operator, pointing to a
left and a right descendant. In a recursive language, such a tree walk can be implemented
by the following simple pseudocode:

if this node is a leaf
print its value

otherwise
print a left parenthesis
print the left node
print the operator
print the right node
print a right parenthesis

In a nonrecursive language like EFL, it is necessary to maintain an explicit stack to keep
track of the current state of the computation.

The following procedure calls a procedure outch to print a single character and a
procedure outval to print a value:

EFL 8-55

procedure walk(first) # print out an expression tree

integer first # index of root node
integer currentnode
integer stackdepth
common(nodes) struct

{
character(l) op
integer leftp, rightp
re a 1 val
} tree(lOO) # array of structures

struct xxxy
{
integer nextstate
integer nodep
} stackframe(lOO)

define NODE tree(currentnode)
define STACK stackframe(stackdepth)

nextstate values
defi ne DOWN 1
define LEFT 2
define RIGHT 3

initialize stack with root node
stackdepth = 1
STACK.nextstate = DOWN
STACK.nodep = first

8-56 FORTRAN 77

while(stackdepth > 0)
currentnode = STACK.nodep
select(STACK.nextstate)

end

{
case DOWN:

if(NODE.op == 1111) # a leaf
{
outval (NODE.val
stackdepth -= 1
}

else{ # a binary operator node
outch CI CI)
STACK.nextstate LEFT
stackdepth += 1
STACK.nextstate DOWN
STACK.nodep = NODE.leftp
}

case LEFT:
outch(NODE.op)
STACK.nextstate = RIGHT
stackdepth += 1
STACK.nextstate = DOWN
STACK.nodep = NODE.rightp

case RIGHT:
outchCI)II)
stackdepth -- 1

}

EFL 8-57

Portability

The output of the EFL compiler is intended to be acceptable to any standard FORTRAN
compiler.

Primitives

Certain EFL operations cannot be implemented in portable FORTRAN, so a few
machine-dependent procedures must be provided in each environment.

Character String Copying
The subroutine eflase is called to copy one character string to another. If the target
string is shorter than the source, the final characters are not copies. If the target string is
longer, its end is padded with blanks. The calling sequence is:

subroutine eflasc(a, la, b, lb)
integer a(*), la, b(*), lb

and it must copy the first 1 b characters from b to the first 1 a characters of a.

Character String Comparisons
The function eflcmc is invoked to determine the order of two character strings. The
declaration is:

integer function eflcmc(a, la, b, lb)
integer a(*), la, b(*), lb

The function returns a negative value if the string a of length 1 a precedes the string b of
length lb. It returns zero if the strings are equal, and a positive value otherwise. If the
strings are of differing length, the comparison is carried out as if the end of the shorter
string were padded with blanks.

8-58 FORTRAN 77

Appendix A. Installing the IBM RT PC FORTRAN 77
Licensed Program Product

This appendix explains how to install the IBM RT PC FORTRAN 77 Licensed Program
Product. If a person or a department maintains the computer system, contact them to find
out if the FORTRAN 77 Licensed Program Product is already installed.

Installing the IBM RT PC FORTRAN 77 Licensed Program Product A-I

Prerequisites to Installation

You must have the IBM RT PC FORTRAN 77 Licensed Program Product diskettes that
comes with this book to install FORTRAN on the computer system. The diskette is
packaged in the plastic envelope in the back of the binder.

The Virtual Resource Manager and the AIX Operating System must be installed on the
system before FORTRAN can be installed. If a person or a department maintains the
computer system, contact them to verify that these necessary system components are
installed.

To install FORTRAN; you must have superuser authority or be a member of the system
group. For more information on superuser authority, see IBM RT PC Using and
Managing the AIX Operating System.

Before beginning the installation, make certain that other users are logged off of the
system. If other users are working on the system during the installation process, problems
can result.

A-2 FORTRAN 77

Installing FORTRAN from Usability Services

To install FORTRAN from Usability Services, follow the steps listed below:

1. Make sure that no one else is using the system and no user programs are running.

2. From the WINDOWS window, select TOOLS from the Window Types pane.

3. Select OPEN from the command bar. A TOOLS window appears on the screen.

4. From the TOOLS window:

• Select CUSTOMIZATION. The command bar changes.

• Select OPEN from the command bar. The Customizations Tools Group appears on
the screen.

5. From the Customization Tools Group:

• Select INSTALL. The command bar changes.

• Select RUN from the command bar. A pop-up containing the choices for INSTALL
appears.

6. Make the choices and press Do in each pop-up. Pressing Do in the last remaining
pop-up on the screen runs the command with your choices.

7. Follow the prompts on the display screen.

Installing the IBM RT PC FORTRAN 77 Licensed Program A-3

TNL SN20-9806 (26 Sept 1986) to 59X7877

Installing FORTRAN from the standalone shell

To install FORTRAN from the standalone shell, follow the steps listed below. If a message
occurs during the procedure, see the IBM RT PC Messages Reference (Part No. SV21-8002)
for details.

1. Make sure that no one else is using the system and that no user programs are running.
If the system is not in a quiet state, problems can occur as you install the files that
make up the FORTRAN 77 licensed program.

2. Log in as superuser or as a member of the system group. You will then see the #
prompt.

3. Type the installp command after the # prompt, as follows:

installp
4. The following message appears to remind you to make sure that the system is quiet:

000-123 Before you continue, you must make sure there is no other
activity on the system. You should have just restarted the system,
and no other users should be logged on. Refer to your messages
reference book for more information.

Do you want to continue with this command? (y or n)
5. Type y and press Enter to continue with the installp command. The following prompt

appears:

Insert the program diskette into diskette drive
"dev/rfdO" and then press Enter.

6. Insert the IBM RT PC FORTRAN 77 licensed program diskette into the diskette drive
and press Enter. The following prompt appears:

The program' 'FORTRAN 77 Compiler"
\vill be installed.

Do you want to do this? (y or n)
7. Type y to indicate that you wish to continue with the installation. Then press Enter.

8. If a version of this program is already installed on the system, the following message
appears:

A-4 FORTRAN 77

You are about to install version "01.00.000" of this program.
This version is the same as or older than the version currently
on your system. Do you want to do this? (Yin)
If you type y and press Enter, the
installation process begins.
Please mount volume 1 on IdevlrfdO
Your program diskette should already be in the diskette drive (fdevjrfdO). Type y and
press Enter to continue the installation (Type return is the same as Press Enter).
As installation continues, files are listed on the screen as they are copied to the fixed
disk.

When installation is complete, the following messages appear:

The installation process has completed.

Your operating system will now restart.
9. Log off as superuser or as a member of the system group.

If you want to return to Usability Services, press Ctrl-D.

The installation is now completed. You can now begin using the IBM RT PC FORTRAN
77 Licensed Program Product.

Installing the IBM RT PC FORTRAN 77 Licensed Program Product A-5

TNL SN20-9806 (26 Sept 1986) to 59X7877

Appendix B. ASCII Character Codes

This appendix lists the decimal, octal, hexadecimal, and character representations for each
ASCII standard character and for other characters supported on the IBM RT PC.

ASCII Character Codes B-1

Decimal Octal Hex Character Decimal Octal Hex Character
Value Value Value Value Value Value Value Value

000 000 00 NUL 043 053 28 +
001 001 01 SOH 044 054 2C
002 002 02 STX 045 055 2D
003 003 03 ETX 046 056 2E
004 004 04 EaT 047 057 2F /
005 005 05 ENQ 048 060 30 0
006 006 06 ACK 049 061 31 1
007 007 07 BEL 050 062 32 2
008 010 08 BS 051 063 33 3
009 011 09 HT 052 064 34 4
010 012 OA LF 053 065 35 5
011 013 08 VT 054 066 36 6
012 014 OC FF 055 067 37 7
013 015 OD CR 056 070 38 8
014 016 OE SO 057 071 39 9
015 017 OF SI 058 072 3A
016 020 10 DLE 059 073 38
017 021 11 DC1 060 074 3C <
018 022 12 DC2 061 075 3D
019 023 13 DC3 062 076 3E >
020 024 14 DC4 063 077 3F ?
021 025 15 NAK 064 100 40 @

022 026 16 SYN 065 101 41 A
023 027 17 ETB 066 102 42 B
024 030 18 CAN 067 103 43 C
025 031 19 EM 068 104 44 D
026 032 1A SUB 069 105 45 E
027 033 18 ESC 070 106 46 F
028 034 1C FS 071 107 47 G
029 035 1D GS 072 110 48 H
030 036 1E RS 073 111 49 I
031 037 1F US 074 112 4A J
032 040 20 075 113 48 K
033 041 21 076 114 4C L
034 042 22 II 077 115 4D M
035 043 23 # 078 116 4E N
036 044 24 $ 079 117 4F a
037 045 25 % 080 118 50 P
038 046 26 & 081 121 51 Q
039 047 27 082 122 52 R
040 048 28 (083 123 53 S
041 051 29) 084 124 54 T
042 052 2A * 085 125 55 U

B-2 FORTRAN 77

Decimal Octal Hex Character Decimal Octal Hex Character
Value Value Value Value Value Value Value Value

086 126 56 V 129 201 81 U
087 127 57 W 130 202 82 e
088 130 58 X 131 203 83

,.....
a

089 131 59 Y 132 204 84 a
090 132 5A Z 133 205 85 a.
091 133 58 [134 206 86 a.
092 134 5C \ 135 207 87 2
093 135 50] 136 210 88 e
094 136 5E /\ 137 211 89 e
095 137 5F 138 212 8A e
096 140 60 139 213 88 i:
097 141 61 a 140 214 8C
098 142 62 b 141 215 80 1

099 143 63 c 142 216 8E ~

100 144 64 d 143 217 8F A
101 145 65 e 144 220 90 E
102 146 66 f 145 221 91 a3

103 147 67 9 146 222 92 .IE
104 150 68 h 147 223 93 1\

i
0

105 151 69 148 224 94 (:)

106 152 6A j 149 225 95 0
107 153 68 k 150 226 96 1\

I
u

108 154 6C 151 227 97 U.
109 155 60 m 152 230 98 Y
110 156 6E n 153 231 99 0
111 157 6F 0 154 232 9A ti
112 160 70 P 155 233 98 <;:
113 161 71 q 156 234 9C £
114 162 72 r 157 235 90 ¥
115 163 73 s 158 236 9E R
116 164 74 t 159 237 9F f
117 165 75 u 160 240 AO a
118 166 76 v 161 241 A1 i
119 167 77 w 162 242 A2 6
120 170 78 x 163 243 A3 U
121 171 79 Y 164 244 A4 n
122 172 7A z 165 245 A5 N
123 173 78 166 246 A6 £
124 174 7C 167 247 A7 Q

125 175 70 168 250 A8 L
126 176 7E rv 169 251 A9 r-

127 177 7F Cl 170 252 AA -,

128 178 80 C; 171 253 A8 Y2

ASCII Character Codes B-3

Decimal Octal Hex Character Decimal Octal Hex Character
Value Value Value Value Value Value Value Value

172 254 AC Y4 214 326 D6 rr
173 255 AD i 215 327 D7 -H-
174 256 AE « 216 330 D8 =t=
175 257 AF » 217 331 D9 .J

176 260 BO III 218 332 DA r
177 261 B1 II 219 333 DB • 178 262 B2 I 220 334 DC -179 263 B3 I 221 335 DD I
180 264 B4 -1 222 336 DE I
181 265 B5 =j 223 337 DF ED

182 266 B6 11 224 340 EO ex
183 267 B7 11 225 341 E1 f3
184 270 B8 =j 226 342 E2 r
185 271 B9 ~I 227 343 E3 1T
186 272 BA

"
228 344 E4 ~

187 273 BB =jl 229 345 E5 (J

188 274 BC dJ 230 346 E6 -\J
189 275 BD -1.1 231 347 E7 T
190 276 BE d 232 350 E8 cI>
191 277 BF I 233 351 E9 e
192 300 CO L 234 352 EA 0
193 301 C1 -L 235 353 EB c5
194 302 C2 T 236 354 EC 00

195 303 C3 ~ 237 355 ED q;
196 304 C4 + 238 356 EE E
197 305 C5 239 357 EF n
198 306 C6 F= 240 360 FO -
199 307 C7 I~ 241 361 F1 ±
200 310 C8 ~ 242 362 F2 ::::
201 311 C9 II 243 363 F3 :::
202 312 CA ..JL 244 364 F4 r
203 313 CB -,r 245 365 F5 J
204 314 CC I~ 246 366 F6
205 315 CD 247 367 F7 ~

206 316 CE -lL 248 370 F8 0 -,r
207 317 CF -L 249 371 F9 0
208 320 DO JL 250 372 FA 0

209 321 D1 I 251 373 FB v
210 322 D2 If 252 374 FC n
211 323 D3 lL 253 375 FD 2
212 324 D4 b 254 376 FE l\1
213 325 D5 F 255 377 FF

B-4 FORTRAN 77

Figures

1-1. Floating-Point Display .. 1-10
1-2. Backslash Escapes ... 1-11
2-1. System Signals .. 2-38
2-2. fpstat Array Elements and Enabled Error Checks When. true. 2-48.2
2-3. Alphabetical List of Functions and Subroutines 2-49
3-1. Floating-Point Rounding Modes ... 3-12
4-1. Corresponding FORTRAN and C Declarations 4-5
5-1. Control Characters ... 5-4
5-2. fsplit Options .. 5-6
6-1. Relationship Between Ratfor, FORTRAN, and Machine Language 6-5
7-1. Relationship Between Ratfor, FORTRAN, and Machine Language 7-5
7-2. Ratfor and FORTRAN Mathematical Operators 7-6
8-1. Relationship Between EFL, FORTRAN, and Machine Language 8-5
8-2. Reserved Words in EFL .. 8-9
8-3. Arithmetic Operators in EFL ... 8-11
8-4. Relational Operators in EFL ... 8-12
8-5. EFL Operator Precedence ... 8-14
8-6. Equivalent FORTRAN and EFL Types 8-17
8-7. Data Type of Result of Arithmetic Operations 8-25
8-8. EFL Generic Functions ... 8-46

Figures X-I

X-2 FORTRAN 77

absolute value. The numeric value of a real
number regardless of its sign (positive or
negative).

access method. The way records in files are
referred to by the system. The reference can be
sequential (records are referred to one after
another in the order in which they appear in
the file), or it can be random (the individual
records can be referred to in any order).

address. A number that identifies the location
of data in storage.

addressing. A means of identifying storage
locations.

allocate. To assign a resource, such as a disk
file or a diskette file, to perform a specific task.

All Points Addressable (AP A) display. A
display that allows each pel to be individually
addressed. An AP A display allows for images
other than ASCII characters to be displayed.
Contrast with character display.

alphabetic. Pertaining to a set of letters a
through z.

alphanumeric. Pertaining to the set of letters
a through z and the digits 0 through 9.

American National Standard Code for
Information Interchange (ASCII). The code
developed by ANSI for information interchange
among data processing systems, data
communications systems, and associated
equipment.

American National Standards Institute. An
organization sponsored by the Computer and
Business Equipment Manufacturers Association
for establishing voluntary industry standards.

Glossary

ANSI. See American National Standards
Institute.

a.out. An output file produced by default for
certain instructions. By default, this file is
executable and contains information for the
symbolic debugger.

argument. A parameter passed between a
calling program and a procedure.

arithmetic data. Data of the following types:
integer, real, double-precision, complex, or
double-complex.

arithmetic operator. One of the symbols: +
(addition), - (subtraction), * (multiplication), /
(division), ** (exponentiation).

array. A sequence of data items collectively
identified with one unique symbolic name and
data type.

array declarator. A symbolic name and
number of dimensions in an array. The number
of dimensions determines the number and
configuration of array elements.

array element. A data item in an array,
identified by the array name followed by a
subscript indicating its position in the array.

ASCII. See American National Standard Code
for Information Interchange.

Assembler Language. A symbolic
programming language in which the set of
instructions includes the instructions of the
machine and whose data structures correspond
directly to the storage and registers of the
machine.

assignment statement. A FORTRAN
statement that assigns a value to a variable.

Glossary X-3

binary. (1) Pertaining to a system of numbers
to the base two; the binary digits are 0 and 1.
(2) Involving a choice of two conditions, such
as on-off or yes-no.

binary operator. A symbol representing an
operation to be performed on two data items,
arrays, or expressions. The four types of binary
operators are numeric, character, logical and
relational.

bit. Either of the binary digits 0 or 1.

blank common. A single group of storage
locations that is accessible to subprograms
without being specified as subprogram
arguments.

block. A group of records that is recorded or
processed as a unit. Same as physical record.

block data subprogram. A nonexecutable
program unit used to provide initial values for
variables and array elements in named common
blocks. A block data subprogram has a block
data statement as its first statement.

boundary alignment. The position in main
storage of a fixed-length field (such as halfword
or doubleword) on an integral boundary for that
unit of information. For example, a word
boundary is a storage address evenly divisible
by four.

breakpoint. A place in a computer program,
usually specified by an instruction, where
execution can be interrupted by external
intervention or by a monitor program.

byte. The amount of storage required to
represent one character; a byte is 8 bits.

call. (1) To activate a program or procedure at
its entry point. Compare with load.

cancel. To end a task before it is completed.

carriage return. A keystroke generally
indicating the end of a command line.

character. A letter, digit, or other symbol.

X-4 FORTRAN 77

character operator. The concatenation
operator, II
character position. On a display, each
location that a character or symbol can occupy.

character set. A group of characters used for
a specific reason; for example, the set of
characters a printer can print or a keyboard
can support.

character storage unit. The amount of
storage required to hold 1 character of data.
This implementation uses 1 byte of storage for 1
character of data.

character string. A string or group of
characters that contains numerical digits,
alphabetical letters, or special characters.

character substring. A contiguous portion of
a character string.

character variable. The name of a character
data item whose value is assigned and/or
changed while the program is running.

close. To end a task.

code. (1) Instructions for the computer.
(2) To write instructions for the computer; to
program. (3) A representation of a condition,
such as an error code.

collating sequence. The sequence in which
characters are ordered within the computer for
sorting, combining, or comparing.

command. A request to perform an operation
or execute a program. When parameters,
arguments, flags, or other operands are
associated with a command, the resulting
character string is a single command.

command name. (1) The first or principal
term in a command. A command name does not
include parameters, arguments, flags, or other
operands. (2) The full name of a command
when an abbreviated form is recognized by the
computer (for example, print working directory
for pwd).

command synonym. A user-assigned alias for
a command name.

comment line. A character sequence within
the program code that is used to provide
program documentation. A comment line does
not affect an executable program in any way.

common block. A storage area that can be
referenced by more than one program unit.

compilation time. The time during which a
source program is translated from a high-level
language to a machine language program.

compile. (1) To translate a program written in
a high-level programming language into a
machine language program. (2) The computer
actions required to transform a source file into
an executable object file.

compiler. A program that translates
instructions written in a high-level
programming language into machine language.

compiler directing statement. A statement
controlling what the compiler does rather than
what the user program does.

complex data. A processor approximation to
the value of a complex number. A complex
number is represented as an ordered pair of real
numbers occupying a total of 8 consecutive
bytes of storage.

concatenate. (1) To link together. (2) To
join two character strings.

condition. An expression in a program or
procedure that can be evaluated to a value of
either true or false when the program or
procedure is running.

consecutive processing. The processing of
records in the order in which they exist in a
file. Same as sequential processing.

constant. A data item with a value that does
not change. It is either an arithmetic constant,
a logical constant, or a character constant.

continuation line. A line used to contain
portions of a FORTRAN 77 statement that
exceed the columns available in the initial line
for statement syntactic items. A statement can
have up to 19 continuation lines.

current record. The record currently
available to the program.

data item. A constant, variable, array
element, or character substring.

data type. The properties and internal
representations that characterize data and
function. The basic data types are integer, real,
complex, logical, double-precision, and
character.

debug. (1) To detect, locate, and correct
mistakes in a program. (2) To find the cause of
problems detected in software.

debugger. A device used to detect, trace, and
eliminate mistakes in computer programs or
software.

defined. Pertaining to the definition status of
a program entity. A defined entity has a
value that does not change until the entity
becomes undefined or redefined with a different
value. An entity must be defined before it can
be referenced.

digit. Any of the numerals from 0 through 9.

direct access file. A file containing
information that can be accessed in
nonsequential order.

double-precision. A processor approximation
to the value of a real number that occupies 8
consecutive bytes of storage and can assume a
positive, negative, or zero value. The precision
is greater than that of type real.

dummy argument. A variable, array, dummy
procedure, or * (asterisk) that appears in the
argument list of a subprogram or statement
function and is associated with an actual
argument from the calling program or function

Glossary X-5

reference. A statement function dummy
argument can only be a variable.

dummy variable. A variable whose value is
not used in a program but whose name is
necessary to use in order to read desired data
values.

EFL. FORTRAN preprocessor; a computer
language that is translated into FORTRAN
before translation into machine language.

element. See array element.

embedded blanks. Blanks that are
surrounded by other characters.

endfile record. A record written by an endfile
statement that can occur only as the last record
of a file.

entry point. An address or label of the first
instruction performed upon entering a computer
program, a routine, or a subroutine. A program
can have several different entry points, each
corresponding to a different function or
purpose.

executable program. A collection of program
units that consists of exactly one main program
and any number (including none) of
subprograms.

executable statement. A statement that
causes some action to be taken by the program;
for example, a calculation, test, or transfer of
control.

exponent. A number, indicating the power to
which another number (the base) is to be raised.

exponential notation. A notation for real
values that uses an E to separate the mantissa
and the exponent.

exponentiation. The operation in which a
value is raised to a power.

expression. A notation that represents a
value. An expression is formed from operands,

X-6 FORTRAN 77

operators, and parentheses. Expressions can be
arithmetic, logical, character, or relational.

external file. A file that is available to a
program through an external device such as a
disk drive, card reader, or tape drive.

external function. See function subprogram.

external procedure. An executable program
unit that is not a main program. An external
procedure can be written in FORTRAN or in
another language. When written in FORTRAN,
an external procedure is either a function
subprogram or a subroutine subprogram.

field. A portion of a record that is read on
input or written on output under control of a
single edit descriptor.

field width. The number of characters in a
field.

file. A sequence of records. An internal file is
located in internal storage. An external file is
located on an external I/O device.

file name. The name used by a program to
identify a file.

floating-point value. A numerical value that
can contain decimal positions.

format. (1) A defined arrangement of such
things as characters, fields, and lines, usually
used for displays, printouts, or files. (2) To
arrange such things as characters, fields, and
lines.

formatted I/O. The input or output
statements that use format statements to
describe the spacing.

formatted record. A sequence of any
characters that can be represented in the
processor. The length of a formatted record is
measured in characters.

FORTRAN (formula translation). A
high-level programming language used
primarily for scientific, engineering, and
mathematical applications.

full path name. The name of a directory,
sub-directory, or file expressed in tree-structure
notation. The full path name begins with the
root directory.

function. A subprogram that returns a single
value to the main program.

function subprogram. A subprogram whose
first statement is a function statement.

generic function. A function that returns a
value of the same type as its input argument.

global. Pertains to information available to
more than one program or subroutine.

global entity. An entity in one of the
following classes: common block, external
function, subroutine, main program, or block
data subprogram.

hex. See hexadecimal.

hexadecimal. Pertaining to a system of
numbers to the base sixteen; hexadecimal digits
range from 0 (zero) through 9 (nine) and A (ten)
through F (fifteen).

high-level language. An English-like
computer language that has to be converted
into machine language before it can be
executed.

high-order. Most significant; leftmost.

home directory. (1) A directory associated
with an individual user. (2) The user's current
directory on login or after issuing the cd
command with no argument.

I/O. See input/output.

I/O list. A list of variables in an input or
output statement specifying which data is to be
read or written.

ID. Identification.

IF expressions. Expressions within a
procedure, used to test for a condition.

implied-DO list. An indexing specification,
appearing in an input/output statement or a
data statement, that has a list of data elements
as its range.

initial line. The first line of a FORTRAN 77
statement. If the statement exceeds the initial
line, you can use up to 19 continuation lines.

initialize. To give an initial value to a
variable.

initially defined. Pertaining to the definition
status of an entity. An entity is initially
defined if it is assigned a value in a data
statement.

input. Data to be processed.

input device. Physical devices used to provide
data to a computer.

input file. A file that is opened for reading.

input list. A list of variables to which values
are assigned from input data.

input/output (I/O). The information that a
program reads or writes.

instruction. A statement that specifies an
operation to be performed by the computer,
along with the values or locations of operands,
if any exist. This statement represents the
programmer's request to the processor to
perform a specific operation.

integer. A positive or negative whole number;
that is, an optional sign followed by a number
that does not contain a decimal point.

integer data. An exact representation of an
integer value that occupies 2 or 4 consecutive
bytes of storage and can assume a positive,
negative, or zero integral value.

integer value. A value that contains no
fractional portion.

internal file. A file defined on information
stored in the internal memory of the computer.

Glossary X-7

intrinsic function. A function used so
frequently that its code is included in a library
available to the compiler.

K-byte. 1024 bytes.

keyword. A specified sequence of characters
that are significant to the FORTRAN compiler
in a particular context.

left-justified. No blanks on the left side.

library. A collection of functions, calls,
subroutines, or other data.

library function. A function whose code is
included in a library that is available to the
compiler.

library subroutine. A subroutine whose code
is included in a library available to the
compiler.

licensed application program. A licensed
program used to perform a particular data
processing task, such as a distribution
management application or a construction
management application.

licensed programs. Software programs that
remain the property of the manufacturer, for
which customers pay a license fee.

linkage editor. A program that resolves
cross-references between separately assembled
object modules, then assigns final addresses to
create a single relocatable load module. If a
single object module is linked, the linkage
editor simply makes it relocatable. (Also called
"link editor.")

list-directed I/O. The input or output
statements that do not use format statements
to describe desired spacing.

literal. A symbol or a quantity in a source
program that is itself data, rather than a
reference to data.

load. To move data or programs into storage.

X-8 FORTRAN 77

load module. A file that is suitable for
loading into main storage for execution; it is
usually the output of a linkage editor.

loader. A program that reads run files into
main storage, thus preparing them for
execution.

local entity. An entity in one of the following
classes: variable, statement function, intrinsic
function, or dummy procedure.

local variable. A variable used in a
subprogram that is not an argument or a
variable in common.

logical data. A representation of one of the
two values true or false; occupies 1 or 4
consecutive bytes of storage.

logical expression. An expression consisting
of logical operators and/or relational operators
that can be evaluated to a value of either true
or false.

logical operator. One of the following
symbols: .not. (logical negation), .and. (logical
conjunction), .or. (logical inclusive
disjunction), .eqv. (logical equivalence), or
.neqv. (logical nonequivalence).

logical value. A value that is either true or
false.

loop. A sequence of instructions performed
repeatedly until an ending condition is reached.

low-order. Least significant; rightmost.

machine language. The binary language
understood by computers.

main program. A program unit that is not a
subprogram. It can have a program statement
as its first statement. The main program is the
program unit that receives control from the
operating system to begin execution of a
FORTRAN 77 program.

megabyte. One million bytes.

memory. The storage available for the
variables and constants needed in a program.

named common. A group of storage locations
that is accessible to subprograms by name
without being specified as subprogram
arguments.

nest. To incorporate a structure or structures
of some kind into a structure of the same kind.
For example, to nest one loop (the nested loop)
within another loop (the nesting loop); to nest
one subroutine (the nested subroutine) within
another subroutine (the nesting subroutine).

nested DO loop. A do loop that is completely
contained within another do loop.

new-line character. A control character that
causes the print or display position to move to
the first position on the next line.

nonexecutable program unit. A block data
subprogram.

nonexecutable statement. A statement that
is not part of the execution sequence.
Nonexecutable statements can specify
characteristics, arrangement, and initial values
of data; contain editing information; specify
statement functions; classify program units; and
specify entry points within subprograms.

null. Having no value, containing nothing.

null character. The character hex 00, used to
represent the absence of a printed or displayed
character.

null character string. Two consecutive
single quotation marks that specify a character
constant of no characters.

numeric. Pertaining to any of the digits 0
through 9.

numeric operator. A symbol representing an
operation to be performed on numeric data.

numeric storage unit. The amount of storage
required to hold an integer, real, or logical
numeric value. A double-precision or complex

numeric value uses 2 numeric storage units in a
storage sequence.

object code. Output from the assembler. For a
single program, object code consists of directly
executable machine code. For programs that
must be linked, object code consists of
relocatable machine code.

object module. A set of instructions in
machine language. The object module is
produced by an assembler from a subroutine or
source module and can be input to the linker.
The object module consists of object code. See
module.

object program. A program in machine
language form.

operand. An instruction field that represents
data (or the location of data) to be manipulated
or operated upon. Not all instructions require
an operand field.

operation. A specific action (such as move,
add, multiply, load) that the computer performs
when requested.

operator. A symbol representing an operation
to be done.

output. The result of processing data.

output devices. Physical devices used by a
computer to present data to a user.

output file. A file that is opened for writing.

output list. A list of variables from which
values are written to a file or device.

overwrite. To write output into a storage or
file space that is already occupied by data.

pad. To fill unused positions in a field with
dummy data, usually zeros or blanks.

parameter. A named entity, fixed for a
particular use, that is used to determine the
values of other entities.

path name. A complete file name specifying
all directories leading to that file.

Glossary X-9

pipe. To direct the data from one process to
another process.

port. To transfer programs from one computer
to another.

position. The location of a character in a
series, as in a record, a displayed message, or a
computer printout.

precision. The degree of accuracy of a
number.

preprocessor. A computer language that is
translated into a high-level computer language
before translation into machine language.

procedure. A subroutine, external function,
statement function, or intrinsic function.

process. (1) A sequence of discrete actions
required to produce a desired result. (2) An
entity receiving a portion of the processor's
time for executing a program. (3) An activity
within the system begun by entering a
command, running a shell program, or being
started by another process.

program. A document containing a set of
instructions, conforming to a particular
programming language syntax. Programs
perform processes and are represented by
process objects when active (i.e., when they are
executed).

program diskette. The diskette on which a
software program product is recorded.

program product. A licensed program for
which a fee is charged.

program unit. A sequence of statements and
optional comment lines that constitutes a main
program or a subprogram.

prompt (n.). A displayed request for
information or operator action.

quotient. The quantity that is the result of a
division operation.

X-IO FORTRAN 77

random access. An access mode in which
records can be read from, written to, or
removed from a file in any order.

Ratfor. FORTRAN preprocessor; a computer
language that is translated into FORTRAN
before translation into machine language.

real data. A processor approximation to the
value of a real number that occupies 4
consecutive bytes of storage and can assume a
positive, negative, or zero value.

real number. A number containing a decimal
point.

record. A sequence of related values or
characters treated as a unit. A record can be a
formatted record, an unformatted record, or an
endfile record.

relational expression. A expression that
compares the values of two arithmetic
expressions or two character expressions,
r,esulting in a value of true or false.

relational operator. One of the following
symbols used to compare two arithmetic
expressions: .It. (less than), .Ie. (less than or
equal to), .eq. (equal to), .ne. (not equal to),
.gt. (greater than), .ge. (greater than or equal
to).

required parameter. A parameter having no
value automatically supplied. The user must
provide a value.

restore. Return to an original value or image.
For example, to restore a library from diskette.

right-justified. No blanks on the right side.

root. The user who can operate without the
restrictions designed to prevent data loss or
damage to the system.

rounding. A technique that approximates a
value.

run. To cause a program, utility, or other
machine function to be performed.

scale factor. A number indicating the
position of the decimal point in a real number.

scientific notation. A notation for real values
that expresses the value as a number between 1
and 10 multiplied by a power of 10.

scope. The extent to which a given symbolic
name or statement label can affect a program.

scratch file. A file, usually used as a work
file, that exists until the program that uses it
ends.

sequential access. An access method in
which records are read from, written to, or
removed from a file based on the logical order
of the records in the file.

sequential access file. A file containing
information that can be accessed only in a
sequential order.

sequential processing. The processing of
records in the order in which they exist in a
file.

shell. See shell program.

shell program. The command interpreter
providing the user with an interface to the
system kernel.

shell procedure. A series of commands
combined in a file that carry out a particular
function when the file is run or when the file is
specified as an argument to the sh command.
Shell procedures are frequently called shell
scripts.

source module. The statements or codes that
form input to the assembler.

source program. A program in a high-level
language form.

source statement. A statement written in a
programming language.

special character. A character other than an
alphabetic or numeric character. For
example, *, , and % are special characters.

specification statement. A statement that
specifies the nature of the values to be stored in
a variable.

standard input. The source of data going into
a process. Standard input generally comes from
the display station unless redirection or piping
is used, in which case standard input can be a
file or the data from a process.

standard output. The destination of data
coming from a process. Standard output
generally comes from the display station unless
redirection or piping is used, in which case
standard output can be a file or another
process.

statement. A sequence of syntactic items that
is the basic unit of a FORTRAN program. Each
statement begins with a keyword except for
assignment statements and statement function
statements.

statement function. A procedure specified by
a single statement that is similar in form to an
arithmetic assignment statement. It is
classified as a nonexecutable statement.

statement label. A number having from 1 to 5
decimal digits that can be used to identify a
statement.

status. (1) The current condition or state of a
program or device. For example, the status of a
printer. (2) The condition of the hardware or
software, usually represented in a status code.

storage. (1) The location of saved
information. (2) In contrast to memory, the
saving of information on physical devices such
as disk or tape. See memory.

store. To place information onto a diskette
where it is available for retrieval and updating.

subexpression. An expression surrounded by
parentheses.

Glossary X-II

subprogram. A program unit that is either a
block data subprogram or an external
procedure.

subroutine. (1) A sequenced set of statements
that can be used in one or more computer
programs and at one or more points in a
computer program. (2) A routine that can be
part of another routine.

subroutine subprogram. A subprogram
whose first statement is a subroutine
statement. A subroutine is referenced with the
call statement.

subscript. One or more integer or real
expressions, enclosed in parentheses and used
with an array name to identify a particular
array element.

substring. A contiguous part of a character
string.

symbolic debugger (sdb). An operating
system command that debugs programs written
in Assembler Language, as well as programs
written in certain other high-level languages.

symbolic name. A sequence of alphanumeric
characters, the first of which must be
alphabetic, used to identify a global or local
entity.

syntax. The rules for the construction of a
command or program.

system. The computer and its associated
devices and programs.

X-12 FORTRAN 77

truncate. To shorten a field or statement to a
specified length.

two's complement. Representation of
negative binary numbers. Formed by
subtracting each digit of the number from zero,
then adding one to the result.

type declaration. The specification of the
type and, optionally, the length of a variable or
function in a specification sta:tement.

unformatted record. A sequence of values in
a processor-dependent form. The length of an
unformatted record is measured in
processor-dependent units and depends on the
output list used when it is written, the
processor, and the external storage medium.

utility. A service; in programming, a program
that performs a common service function.

valid. (1) Allowed. (2) True, in conforming to
an appropriate standard or authority.

value. (1) A string or quantity associated with
a name. (2) In programming, the contents of a
storage location.

variable. A data item whose value can
change. Contrast with constant.

word. A contiguous series of 32 bits (four
bytes) in storage, addressable as a unit. The
address of the first byte of a word is evenly
divisible by four.

zero suppression. The substitution of blanks
for leading zeros in a number. For example,
00057 becomes 57 when using zero suppression.

abort function 2-6
abort subroutine 2-6
abs function 2-7
absolute value 2-7
accounting information 2-32
acos function 2-8
action on receipt of system signal 2-38
aimag function 2-9
aint function 2-10
alog function 2-29
alogl0 function 2-30
amaxO function 2-31
amaxl function 2-31
aminO function 2-33
aminl function 2-33
amod function 2-34
and function 2-14
anint function 2-36
ANSI Standard violations 1-5
arccosine intrinsic function 2-8
asa command 5-4
ASCII character codes B-1
asin function 2-11
at an function 2-12
atan2 function 2-13

bit manipulation functions 2-47
bit manipulation subroutine 2-47
bool functions 2-14
boolean functions 2-14

and 2-14

lshift 2-14
not 2-14
or 2-14
rshift 2-14
xor 2-14

btest function 2-47

C Language, linking with FORTRAN
backslash escapes 1-10
how to 4-4
parameter passing 4-5, 4-6, 4-7
procedure interface 4-5
source code example 4-9

cabs function 2-7
ccos function 2-16
cexp function 2-20
char function 2-21
character comparison functions 2-46
character set, ASCII B-1

Index

character string comparison functions 2-46
character string length 2-28
clog function 2-29
cmplx function 2-21
command line argument return 2-24
common logarithm intrinsic function 2-30
complex conjugate intrinsic function 2-15
conj g function 2-15
conjugate intrinsic function 2-15
cos function 2-16
cosh function 2-17
cosine intrinsic function 2-16, 2-17
csin function 2-40
csqrt function 2-42
current process information 2-32

Index X-13

dabs function 2-7
dacos function 2-8
dasin function 2-11
data equivalents, FORTRAN and C
Language 4-5

datan function 2-12
datan2 function 2-13
dble function 2-21
dcmplx function 2-21
dconj g function 2-15
dcos function 2-16
dcosh function 2-17
ddim function 2-18
dexp function 2-20
dim function 2-18
dimag function 2-9
dint function 2-10
dlog function 2-29
dlogl0 function 2-30
dmaxl function 2-31
dminl function 2-33
dmod function 2-34
dnint function 2-36
dprod function 2-19
dsign function 2-37
dsin function 2-40
dsinh function 2-41
dsqrt function 2-42
dtan function 2-44
dtanh function 2-45
dummy procedure arguments 1-5

EFL
argument association 8-45
arithmetic operators 8-11
array element 8-20
array subscripts 8-20
arrays 8-20, 8-27
assignment 8-13

X-14 FORTRAN 77

blocks 8-15
braces, use of 8-8
character set 8-7
character strings 8-10
code generation 8-49
comments 8-8, 8-9
common areas 8-28
compiler

code generation 8-49
diagnostics 8-8, 8-49
general information 8-49
restrictions 8-52

compiling source files 8-48
constants 8-18
continuation lines 8-8
data types

arrays 8-20, 8-27
attributes 8-27
character 8-17, 8-18
com plex 8-17
constants 8-18
double-precision 8-18
equivalents, FORTRAN and EFL 8-17
field 8-17, 8-18
floating-point constants 8-10
integer 8-17, 8-18
integer constants 8-10
logical 8-17, 8-18
long real 8-17, 8-18
numeric precision 8-20
real 8-17, 8-18
single-precision 8-18
structures 8-22, 8-27

declarations
general information 8-26
implicit 8-29
initialization in a 8-27
precision 8-28
scope 8-26
syntax 8-26

error checking 8-49
expressions 8-24
external procedures 8-28
files 8-16
format specifiers 8-44
functions

abs 8-46
atan 8-47
atan2 8-47
cos 8-47
execution 8-45
exp 8-47
generic 8-46
log 8-47
log10 8-47
max 8-46
min 8-46
mod 8-47
return values 8-45
sign 8-47
sin 8-47
sqrt 8-47

generic functions 8-46
I/O system

expressions 8-44
format specifiers 8-44
general information 8-43
iolists 8-43
units 8-43

implicit declarations 8-29
inhibiting processing of a line 8-8
initialization of variables 8-27
labels 8-8
lines

continuation 8-8
enclosed in braces 8-8
general information 8-8
inhi bi ting processing of a 8-8
labels 8-8

logical operators 8-11
names, external 8-52
names, scope of 8-19
operator precedence 8-14
operators

arithmetic 8-11
assignment 8-13
logical 8-11
precedence 8-14
relational 8-12
repetition 8-13

pointers 8-23
procedures 8-15, 8-28

recursion 8-52
relational operators 8-12
repetition operator 8-13
reserved words 8-9
statements

assignment 8-30
backspace 8-30
break 8-30
call 8-31
continued 8-8
define 8-31
do 8-32
end 8-32
endfile 8-32
for 8-33
general information 8-14
goto 8-33
goto (computed) 8-33
if 8-34
if-else 8-35
implicit 8-35
include 8-36
initial 8-36
labels 8-8
next 8-36
procedure 8-37
read 8-38
readbin 8-39
repeat 8-39
repeat...until 8-39
return 8-40
rewind 8-40
select 8-40
while 8-41
write 8-41
wri te bin 8-42

structure members 8-22
structures 8-22, 8-27
subroutines

argument association 8-45
calls 8-45
execution 8-45
return values 8-45

subscripts 8-20
type conversion 8-24
units 8-43

Index X-15

variables 8-19
environment variable 2-25
environment variable return 2-25
equivalents, FORTRAN and C Language data

types 4-5
exp function 2-20
explicit type conversion functions 2-21
exponential intrinsic functions 2-20
extensions, ANSI FORTRAN 77

automatic storage 1-7
backslash escapes 1-10
binary initilization constants 1-9
character strings 1-10
comma use in formatted input 1-12
do loops 1-11
double complex data type 1-6
equivalence statements 1-11
file positions 1-6
Hollerith notation 1-11
implicit undefined statement 1-7
include statement 1-8
pre-connected files 1-6
recursion 1-7
source input format 1-8

float function 2-21
FORTRAN, linking with C Language

backslash escapes 1-10
how to 4-4
parameter passing 4-5, 4-6, 4-7
procedure interface 4-5
source code example 4-9

fsplit command 5-6
ftype functions 2-21
functions

abort 2-6
abs 2-7
acos 2-8
aimag 2-9
aint 2-10
alog 2-29
alogl0 2-30

X-I6 FORTRAN 77

amaxO 2-31
amaxl 2-31
aminO 2-33
aminl 2-33
amod 2-34
anint 2-36
as in 2-11
atan 2-12
atan2 2-13
bit field manipulation 2-47
bool 2-14
btest 2-47
cabs 2-7
ccos 2-16
cexp 2-20
char 2-21
character comparison 2-46
clog 2-29
cmplx 2-21
conjg 2-15
cos 2-16
cosh 2-17
CSln 2-40
csqrt 2-42
dabs 2-7
dacos 2-8
dasin 2-11
datan 2-12
datan2 2-13
dble 2-21
dcmplx 2-21
dconjg 2-15
dcos 2-16
dcosh 2-17
ddim 2-18
dexp 2-20
dim 2-18
dimag 2-9
dint 2-10
dlog 2-29
dlogl0 2-30
dmaxl 2-31
dminl 2-33
dmod 2-34
dnint 2-36
dprod 2-19

dsign 2-37
dsin 2-40
dsinh 2-41
dsqrt 2-42
dtan 2-44
dtanh 2-45
exp 2-20
float 2-21
ftype 2-21
generic names 2-4
getarg 2-24
getenv 2-25
iabs 2-7
iand 2-47
iargc 2-26
ibclr 2-47
ibits 2-47
ibset 2-47
ichar 2-21
idim 2-18
idint 2-21
idnint 2-36
ieor 2-47
ifix 2-21
index 2-27
int 2-21
ior 2-47
irand 2-35
ishft 2-47
ishftc 2-47
isign 2-37
len 2-28
1ge 2-46
19t 2-46
lle 2-46
llt 2-46
log 2-29
log10 2-30
max 2-31
maxO 2-31
maxI 2-31
mclock 2-32
min 2-33
minO 2-33
minI 2-33
mod 2-34

nint 2-36
rand 2-35
real 2-21
round 2-36
sign 2-37
signal 2-38
sin 2-40
sinh 2-41
sngl 2-21
sqrt 2-42
srand 2-35
system 2-43
tan 2-44
tanh 2-45
zabs 2-7

generic function names 2-4
getarg subroutine 2-24
getenv subroutine 2-25

hyperbolic cosine intrinsic function 2-17
hyperbolic sine intrinsic function 2-41
hyperbolic tangent intrinsic functions 2-45

iabs function 2-7
iand function 2-47
iargc function 2-26
ibclr function 2-47
ibits function 2-47
i bset function 2-47
ichar function 2-21
idim function 2-18
idint function 2-21
idnint function 2-36

Index X-17

ieor function 2-47
ifix function 2-21
imaginary part of complex argument 2-9
index function 2-27
information on current process 2-32
installation

from Usability Services A-3
prerequisites A-2·
steps A-4

int function 2-21
integer part intrinsic function 2-10
interface, FORTRAN and C Language 4-5
ior function 2-47
irand function 2-35
irand subroutine 2-35
ishft function 2-47
ishftc function 2-47
isign function 2-37
issue an operating system command from

FORTRAN 2-43

len function 2-28
1ge function 2-46
19t function 2-46
linking

with C Language 4-4
lIe function 2-46
lIt function 2-46
log function 2-29
logarithm intrinsic function 2-29, 2-30
log10 function 2-30
lshift function 2-14

max function 2-31
maximum value functions 2-31
maxO function 2-31
maxI function 2-31
mclock function 2-32

X-IS FORTRAN 77

min function 2-33
minimum-value functions 2-33
minO function 2-33
minI function 2-33
mod function 2-34
mvbits subroutine 2-47

natural logarithm intrinsic function 2-29
nearest integer functions 2-36
nint function 2-36
not function 2-14
number

random generator 2-35

operating system command issued from
FORTRAN 2-43

or function 2-14

parameter passing, FORTRAN and C
Language 4-5, 4-6, 4-7

portability considerations 1-14
preprocessor, definition of 6-4
procedure interface, FORTRAN and C
Language 4-5

process information 2-32
program termination 2-6

rand function 2-35
random number generator 2-35
Ratfor

blank lines 7-7
capabilities, general 7-4
character strings 7 -6, 7-7, 7-22
character translation 7-8

ratst.for 7-14
code generation 7-23
commen t lines 7 -7
compiler options

c 7-26
F 7-26

compiling source files 7-26
continuation characters 7-7
error checking 7-22, 7-25
Hollerith 7-22
implementation outline 7-23
inhibiting line preprocessing 7-8, 7-25
keyword restrictions 7-22, 7-25
labels 7-7
lines

blank 7-7
comment 7-7
continuation characters 7-7
inhibiting preprocessing of 7-8, 7-25
labels 7-7
multiple statements on a 7-7
placement of statements on a 7-7

mathematical operators 7-6
special characters 7-8
statements

break 7-10
define 7-11
do 7-12
format, general 7-9
grouping 7-9
if 7-15
if (nested) 7-16
include 7-17
labels 7-7
nested ifs 7-16
next 7-10

null 7-18
placement on a line 7-7
repeat - until 7-18
return 7-19
several on a line 7-7
switch 7-19
while 7-20

usage considerations 7-25
real function 2-21
remaindering intrinsic function 2-34
return absolute value 2-7
return character string length 2-28
return command line argument 2-24
return environment variable 2-25
return substring location 2-27
return time accounting 2-32
round functions 2-36
rounding an integer 2-36
rounding functions 2-36
rshift function 2-14

sign function 2-37
sign transfer intrinsic functions 2-37
signal receipt action 2-38
signal subroutine 2-38
sin function 2-40
sine intrinsic function, hyperbolic 2-41
sine intrinsic functions 2-40
sinh function 2-41
sngl function 2-21
specify action on receipt of system signal 2-38
sqrt function 2-42
square root intrinsic functions 2-42
srand function 2-35
srand subroutine 2-35
string comparison functions 2-46
subroutines

abort 2-6
bit field manipulation 2-47
getarg 2-24
getenv 2-25
mvbits 2-47

Index X-I9

signal 2-38
srand 2-35
system 2-43

substring location 2-27
system function 2-43

tan function 2-44
tangent intrinsic functions 2-44

hyperbolic tangent 2-45
tanh function 2-45
terminate program 2-6
time accounting information 2-32
transfer-of-sign intrinsic functions 2-37
type conversion 2-21

X-20 FORTRAN 77

type conversion functions 2-21

violations of FORTRAN 77 ANSI Standard 1-5

xor function 2-14

zabs function 2-7

Notes:

Notes:

Notes:

Notes:

SV21·8027·0
Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its organ·
ization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as you become
familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may improve this book.

Y N

Y N

Y N

Y N

Y N

Y N

Y N

Y N

Y N

Y N

Y N

Is the purpose of this book clear?

Is the table of contents helpful?

Is the index complete?

Are the chapter titles and other headings meaningful?

Is the information organized appropriately?

Is the information accurate?

Is the information complete?

Is only necessary information included?

Does the book refer you to the appropriate places for

more information?

Are terms defined clearly?

Are terms used consistently?

Y N Are the abbreviations and acronyms understandable?

Y N Are the examples clear?

Y N Are examples provided where they are needed?

Y N Are the illustrations clear?

Y N Is the format of the book (shape, size, color) effective?

Other Comments

What could we do to make this book or the entire set of books for

this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

I
L __ _

OJ
c

:.:::i
C)

c
o

;;{
"'C1
"0
u..

o
....
::J
U

adBl pUB PIO.::!

adel.

IIIII1

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

aldelC:: ION on asealrl

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl pUB PIO.::!

adel

--------- -------- - ---- - - ----------_.-
Reader's Comment Form

FORTRAN 77

The IBM RT PC
Family

SC23-0818-0

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

L __ _
I adBl pUB PIO:J

Q)

c
:.J
Cl
c
a «

"'0

"0
u.
o
.....
:J

U

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl pUB PIO:J

©IBM Corp. 1985
All rights reserved.

International Business
Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

Printed in the
United States of America

59X7877

----- ------- _ ... _-- -- ---- -- ---- - - -----------_.

