
Order Numbers:
74Xl025
SN20-9798

~ : =~~~ TECHNICAL NEWSLETTER

for the

RT Personal Computer

Assembler Language Reference

© Copyright IBM Corp. 1985
© Copyright INTERACTIVE Systems Corp. 1984, 1985

-OVER-

26 September 1986
©Copyright IBM Corp. 1986
©Copyright INTERACTIVE Systems Corp.

TB74Xl025
Printed in U.S.A.

Summary of Changes

This Technical Newsletter contains new information about shared libraries.

Perform the following:

Remove Pages Insert Update Pages

ix, x ix, x

4-129, 4-130 4-129, 4-130

5-13 through 5-18 5-13 through 5-18

Note: Please file this cover letter at the back of the manual to provide a record of
changes.

26 September 1986

• IBM RT PC Messages Reference lists messages displayed by the IBM RT PC and
explains how to respond to the messages.

• IBM RT PC Bibliography and Master Index provides brief descriptive overviews of the
books and tutorial program that support the IBM RT PC hardware and the AIX
Operating System. In addition, this book contains an index to the RT PC and AIX
Operating System library. This book also contains order numbers of IBM RT PC
publications and diskettes.

Ordering Additional Copies of This Book

To order additional copies of this publication, use either of the following sources:

• To order from your IBM representative, use Order Number SV21-8011.

• To order from your IBM dealer, use Part Number 75Xl024.

A binder is included with the order.

About This Book ix

x Assembler Language Reference

TNL 74X1025 (26 Sept 1986) to 75x1024

Shift Algebraic Right Immediate sari

Purpose: The content of register Rl is shifted right the number of bit positions specified by I2. The
vacated high-order positions are sign extended, that is, filled with bits equal to the
original bit 0.

Format: sari Rl,I2

Remarks:

small form

AO Rl IN
0 8 12 15

large form

I Al Rl IN
0 8 12 15

• I2 must evaluate to an integer between decimal 0 and 31 inclusive.

• The assembler examines I2 and generates the correct form (small or large) of the
instruction. If I2 :::;; 15, then IN = I2, and op code AO is generated. If 12 > 15,
then IN = 12 - 16, and op code Al is generated.

• Condition Status bits LT, EQ, and GT are affected.

Examples:

assume GPR 4 holds Oxl234 5678
sari 4,8

op code AO is generated
now GPR 4 holds Ox0012 3456
GT bit set to one

assume GPR 5 holds Oxl234 5678
sari 5,20

op code Al is generated
now GPR 5 holds OxOOOO 0123
GT bit set to one

See Also: "Shift Instructions" on page 4-19

032 Microprocessor Instructions 4-129

se Subtract Extended

Purpose: The one's complement of the content of register R2 is added to the content of register Rl.
The value of Condition Status bit CO is added to the result. The final result is placed in
register Rl.

Format: se Rl,R2

Remarks:

Example:

F2 Rl R2
0 8 12 15

• This instruction allows multiple precision subtraction.

• Condition Status bits LT, EQ, GT, CO, and OV are affected.

assume GPR 4 holds Ox0044 6655
assume GPR 5 holds Ox0033 4422

setcb OxC # CO now set to one
se 4,5

now GPR 4 holds OxOOll 2233
GT and CO bits set to one

See Also: "Arithmetic Instructions" on page 4-16

4-130 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

Assemble the values represented by the exp expressions into consecutive bytes.

. byte exp, exp, ...

• The exps cannot contain externally defined symbols.

• If an exp is longer than one byte, it will be truncated.

.set olddata,OxCC

@2000 0000 mine: .byte Ox3F,Ox7+0xA,olddata,OxFF

load GPR 1 with Ox20000000

2,0(1)

GPR 2 now holds Ox3F11CCFF

.byte

Pseudo-Ops 5-13

TNL 74X1025 (26 Sept 1986) to 75xl024

call

Purpose:

Format:

Remarks:

Calls a subroutine. The label is the name of the subroutine being called. If the label
is a C language subroutine, the label includes the leading period(.).

The pep-address is the hex address of the pointer to the called routine's constant
pool. This operand can be expressed as a label, or as a base and displacement of the
form D2(R2). However, any labels specified must be covered by a .using.

The number-words is the number of words required to store all parameters passed
between the calling and the called routine. This value is used only by debuggers such
as sdb. The debugger uses this value to display procedure parameters when showing
~nformation about the call. If debugger information is not being collected, this value
is zero.

call label, pep-address, number-words

• The assembler expands the call pseudo-op into the following series of statements:

balix 15, .label #call the routine
1 0, pep-address #get the routine's constant pool pointer
.byte Ox08, number-words # number of words of parameters passed;

.byte acts as a no-op with operands
The .byte statement is generated only when the number-words operand was not
zero (that is, only when sdb information was being gathered). If number-words
was zero, then the .byte statement is not generated.

If the target of the balix is not within a megabyte of the call, then the branch
target cannot be resolved. This could happen if the load module's text segment is
larger than a megabyte, or if the target is in a shared library that is mapped into
some other segment. In either case, the linkage editor changes balix into baiax
to a special sequence of code at a fixed location in the RT PC kernel.

This special linkage code uses the first word of the called routine's constant pool
to derive the address of the distant entry point. If Id has set the low-order bit of
the first constant pool word to zero, then the linkage code assumes that the word
is the address of the entry point. So, the linkage code branches to that address.

If Id has set the low-order bit of the first constant pool word to one, then the
linkage code assumes that the word is the address of an entry in the "gate vector"
at the beginning of a shared library text image. Each entry in this gate vector
represents the offset from the beginning of the text image of a function contained
in the library. The linkage code adds this entry (the function offset) to the shared
library's starting location, then branches to the resulting address.

5-14 Assembler Language Reference

TNL 7 4Xl025 (26 Sept 1986) to 75x1024

The special linkage routine in the kernel looks like this:

KLRTN: # KLRTN's absolute address is OxOcOO
mts 10,14 # save register 14 into MQ register
lr 14,0 #make register 0, the pep, addressable
1 14,0(14) # get entry address
mttbi 14,31 # check low-order bit
bts fixup # if low-order bit is one, go to fixup pointer
brx 14 # if low-order bit zero, go to real entry point
mfs 10,14 # restore register 14 to its previous value

fixup:

nilo
st

niuz

0

lr
st

11 fixup 11 the address you were branching to -
assume register 14 holds a pointer to a long
word containing the offset within a shared library
text image of the real target entry point;
register 14 also contains the segment number
where the shared image resides
in the high 4 bits

14,14,0xfffe # set lowest bit of register 14 to zero
save register 15 -- eventually, called
routine will return to register 15

15,-4(1)

15,14,0xfOOO

14,0(14)

14,15

15,0
14,0(15)

get segment number (high-order 4 bits of
the address Id used)
de-reference register 14 (holds pointer
into gate vector)
11 or 11 the segment number (high-order 4 bits)
into the address held by register 14
get pep again
register 14 now has real address of program,
so save that address -- next time this
program is called, low-order bit of first
constant pool word will be zero
restore register 15 1 15,-4(1)

brx 14 # continue the call
mfs 10, 14 # restore register 14

• The linkage sequence assumes that register 0 points to the constant pool of the
called routine, and that the first word of the constant pool is the-address of the
routine's entry point.

Pseudo-Ops 5-15

TNL 7 4X1025 (26 Sept 1986) to 75x1024

Example:

See Also:

The assembler expands this:

call .foo, 12(14),3
into this:

balix
l
.byte

15,. foo
0,12(14)
Ox08,3

"Subroutine Linkage and System Calls" on page 6-10

AIX Operating System Programming Tools and Interfaces and shlib in AIX Operating
System Commands Reference for information about gate vectors

5-16 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

See Also:

TNL 74X1025 (26 Sept 1986) to 75x1024

Calls a subroutine using a register that holds a pointer to the called routine's
constant pool.

callr

R is the register containing the address of the called routine's constant pool. R must
not be 0. Number-words is the number of words required to store all parameters
passed between the caller and the called routine. This value is used only by
debuggers such as sdb. The debugger uses this value to display procedure parameters
when showing information about the call. If debugger information is not being
collected, this value is zero.

callr R, number-words

• It is impossible to predict what function address will be loaded into register Rat
execution time. Therefore, the assembler must generate code to suit the worst
case: a call to a function within a shared library. Accordingly, the assembler
expands callr into a series of statements including a branch to KLRTN, the
special kernel linkage routine mentioned on page 5-15:

balax KLRTN # branch to kernel linkage routine
KLRTN is its absolute address in memory

lr O,R #put address of called routine's
constant pool into register 0

.byte Ox08, number-words # number of words of parameters passed;
.byte acts as a no-op with operands

The .byte statement is generated only when the number-words operand was not
zero (that is, only when sdb information was being gathered). If number-words
was zero, then the . byte statement is not generated.

• The linkage sequence assumes that register 0 points to the constant pool of the
called routine, and that the first word of the constant pool is the address of the
routine's entry point.

The assembler expands this:

callr 8,3
into this:

balax KLRTN # KLRTN is the special kernel linkage routine
described on page 5-15

lr 0,8 # get the pointer to called routine's constant pool
.byte Ox08,3 # three words of parameters are passed

"Subroutine Linkage and System Calls" on page 6-10

Pseudo-Ops 5-17

.comm

Purpose:

Format:

Remarks:

Example:

See Also:

Define a block of storage that will be common to more than one module. The block is
named name and has a length of exp bytes.

.comm name,exp

• The exp operand must be an absolute expression; name is relocatable.

• Use .comm when you know the size of a block of data that will be shared by two
or more files, but you don't know whether that data will become initialized.

• The linker defines a common block of storage at link time. That is, the space
declared with a .comm disappears at link time. If the data in the .comm space
becomes initialized, it goes to the data runtime segment. If the .comm data is not
initialized, it goes to the bss section. At load time, the bss section is created at
the end of the data segment.

• If the original module or any linked modules contain more than one .comm
definition of the same name, the assembler reserves space specified by the largest
exp. The assembler does not generate an error message.

• By default, the linker defines common blocks in the bss section of the linked
program. If you link in a module that defines name in the text or data assembler
section, that module's definition of name will take precedence. The common
block will then be defined in the text or data assembler section.

.comm proc,5120
if proc is not defined elsewhere, proc
refers to 5120 bytes of storage in
the bss segment of the linked program

.data, .globl, .lcomm, .text

Chapter 3

5-18 Assembler Language Reference

Notes

Notes

Notes

Notes

