

IBM RT PC Advanced Interactive Executive Operating System Version 2.1

Assembler Language Reference

Programming Family

--....- ------- ----- - -- -. ---- -- ----------~-·-
Personal
Computer
Software

First Edition (January 1987)

This edition applies to Version 2.1 of IBM RT PC Assembler Language, and to all subsequent releases until otherwise indicated
in new editions or technical newsletters. Changes are made periodically to the information herein; these changes will be
reported in technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer or your IBM marketing representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1985, 1987
©Copyright INTERACTIVE Systems Corporation 1984

About This Book

This book discusses the RT PC implementation of the 032 Microprocessor assembler
language on the AIX Operating System. The book contains 032 Microprocessor assembler
language syntax and semantics, along with information on linking and running an 032
Microprocessor assembler language program. The book also shows how to link to
programs written in the high-level languages supported by RT PC.

Programmers may prefer to use a high-level language for general-purpose programming
instead of 032 Microprocessor assembler language because:

• The 032 Microprocessor has a reduced instruction set.

• The 032 Microprocessor was designed as an efficient target for compilers, but not for
assembler language programming. For example, the assembler does not give an error
message for undefined external symbols.

Note that this book does not teach assembler language programming. You should use this
book for reference only.

About This Book iii

Who Should Read This Book

This book is intended for applications and systems programmers who know another
assembler language. This book contains information about using 032 Microprocessor
assembler language to write portions of application programs. For example, it might be
appropriate to use the 032 Microprocessor assembler language to create small library
routines to take advantage of architectural functions not available in the C language.

The 032 Microprocessor assembler language also allows you to write code for the Virtual
Resource Manager (if it exists) and the AIX Operating System kernel. This book includes
the processor instructions to perform these tasks, but does not discuss them in detail. If
you want to write 032 Microprocessor assembler language programs to perform these tasks,
or if you want information about RT PC architecture, you need to read books in addition
to this one. (See "Related Publications" on page viii and "What Is Not in This Book" on
page vi.)

This book assumes that you know how to use your RT PC system. You should be able to
log in, create files, edit files, and use various other operating system commands. If you
need information about these topics, see "Prerequisite Publications" on page vii.

iv Assembler Language Reference

How This Book is Organized

"Chapter 1. Overview of Processing and Storage on the 032 Microprocessor" briefly
explains data representation and registers on the 032 Microprocessor.

"Chapter 2. Assembler Language Concepts" discusses the syntax of statements,
expressions, symbols, and constants. This chapter also explains the 032 Microprocessor
assembler language's character set, along with the notational conventions used in this
book.

"Chapter 3. Addressing and Program Sectioning" explains how to combine lines of
assembler code. This chapter includes information on addressing and on declaring base
registers. This chapter also explains the assembler's location counter and the relationship
between a.out segments and assembler language sections.

"Chapter 4. 032 Microprocessor Instructions" describes the 032 Microprocessor instructions
with both mnemonics and op codes. The instructions are listed by function, then described
alphabetically by mnemonic.

"Chapter 5. Pseudo-Ops" provides an alphabetical description of the directives
programmers can send to the assembler itself.

"Chapter 6. Assembling, Linking, and Running a Program" describes the AIX Operating
System commands used to assemble, link, and run assembler language files. This chapter
also describes the conventions you should use to link 032 Microprocessor assembler
language files to files written in other languages.

"Appendix A. Mnemonic and Op Code Tables" contains two tables. One table lists
instructions alphabetically by mnemonic; a second table lists instructions numerically by
op code.

"Appendix B. ASCII Character Codes" lists the numeric representations of valid characters
on the RT PC.

"Appendix C. Programming Tips and Techniques" lists a few hints that may be useful to
RT PC assembler language programmers.

"Appendix D. Sample Assembler Program" contains a sample assembler language program.

The "Glossary" defines terms that are specific to 032 Microprocessor assembler language
and to RT PC.

A Reader's Comment Form and Book Evaluation Form are provided at the back of this
book. Use the Reader's Comment Form at any time to give IBM information that may
improve the book. After you become familiar with the book, use the Book Evaluation
Form to give IBM specific feedback about the book.

About 'This Book v

What Is Not in This Book

As mentioned previously, this book does not teach readers how to program or to operate
their RT PC system. Furthermore, this book contains little or no information about:

• Any commands, system calls, subroutines, or programming aids that are part of the
AIX Operating System, except for the as (assembler) command; limited information is
given about the cc (C compiler) and Id (link editor) commands.

• Error messages generated by as. These messages are shown in Messages Reference.

• Specific aspects of creating or running any code that exists in the Virtual Resource
Manager (VRM).

• Any hardware features (except some registers).

• Details about 032 Microprocessor privileged instructions, including information about
I/O and supervisor calls.

• Running 032 Microprocessor assembler language programs directly on the VRM, or
creating programs that run directly on the VRM.

• Running 032 Microprocessor assembler language programs on any operating system
other than AIX Operating System, or creating programs that run on any such
operating system.

For information about these topics, see "Related Publications" on page viii.

vi Assembler Language Reference

Prerequisite Publications

You should be familiar with the following books before you try to use this book:

• IBM RT PC Using the AIX Operating System describes using the AIX Operating
System commands, working with file systems, and developing shell procedures.

• IBM RT PC Managing the AIX Operating System provides instructions for performing
such system management tasks as adding and deleting user IDs, creating and mounting
file systems, and repairing file system damage.

• IBM RT PC Guide to Operations describes the IBM 6151 and IBM 6150 system units,
the displays, keyboard, and other devices that can be attached. This guide also
includes procedures for operating the hardware and moving the IBM 6151 and IBM
6150 system units.

• IBM RT PC AIX Operating System Commands Ref ere nee lists and describes the AIX
Operating System commands.

About This Book vii

Related Publications

This book refers to the following books:

• IBM RT PC AIX Operating System Programming Tools and Interfaces describes- the
programming environment of the AIX Operating System and includes information
about using the operating system tools to develop, compile, and debug programs. In
addition, this book describes the operating system services and how to take advantage
of them in a program. This book also includes a diskette that includes programming
examples, written in C language, to illustrate using system calls and subroutines in
short, working programs. (Available optionally)

• IBM RT PC Virtual Resource Manager Technical Reference is a two-volume set. The
first volume, Virtual Resource Manager Programming Reference, describes the VRM
programming environment, including the internal VRM routines, VRM floating-point
support, use of the VRM debugger, and the supervisor call instructions that form the
Virtual Machine Interface. The second volume, Virtual Resource Manager Device
Support, describes device IPL and configuration, minidisk management, the virtual
terminal and block I/0 subsystems, as well as the interfaces to the predefined VRM
device drivers. This volume also describes the programming conventions for developing
your own VRM code and installing it on the system.

The VRM section defines VRM routines, explains how to use the VRM debugger,
explains how to develop and install code into the VRM, and defines the Virtual
Machine Interface (VMI) to the VRM-supplied device drivers. The VMI section
describes the interface between the RT PC and the VRM, and discusses process control,
memory management, the I/0 system, the minidisk manager, and device drivers.

• IBM RT PC Hardware Technical Reference is a three-volume set. Volume I describes
how the system unit operates, including I/0 interfaces, serial ports, memory interfaces,
and CPU interface instructions. Volumes II and III describe adapter interfaces for
optional devices and communications and include information about IBM Personal
Computer family options and the adapters supported by 6151 and 6150. (Available
optionally)

• IBM RT PC AIX Operating System Technical Reference describes the system calls and
subroutines that a C programmer uses to write programs for the AIX Operating System.
This book also includes information about the AIX file system, special files, file
formats, GSL subroutines, and writing device drivers. (Available optionally)

Both volumes may be relevant to programmers who are writing device drivers.

• IBM RT PC C Language Guide and Reference provides guide information for writing,
compiling, and running C language programs and includes reference information about
C language data structures, operators, expressions, and statements. (Available
optionally)

• IBM RT PC Problem Determination Guide provides instructions for running diagnostic
routines to locate and identify hardware problems. A problem determination guide for

viii . Assembler Language Reference

software and three high-capacity (1.2MB) diskettes containing the IBM RT PC
diagnostic routines are included.

• IBM RT PC Messages Ref ere nee lists messages displayed by the IBM RT PC and
explains how to respond to the messages.

• IBM RT PC Bibliography and Master Index provides brief descriptive overviews of the
books and tutorial program that support the IBM RT PC hardware and the AIX
Operating System. In addition, this book contains an index to the RT PC and AIX
Operating System library. This book also contains order numbers ofIBM RT PC
publications and diskettes.

Ordering Additional Copies of This Book

To order additional copies of this publication, use either of the following sources:

• To order from your IBM representative, use Order Number SBOF-0133.

• To order from your IBM dealer, use Part Number 79X3858.

A binder is included with the manual. For information on ordering the binder or manual
separately, please contact your IBM representative or your IBM dealer.

About This Book ix

x Assembler Language Reference

Contents

Chapter 1. Overview of Processing and Storage on the 032
Microprocessor . 1-1

About This Chapter . 1-3
The 032 Microprocessor and its Protection States . 1-4
Two Kinds of Processors . 1-5
Data Representation in Main Storage . 1-6
Data Representation in Registers . 1-7

Chapter 2. Assembler Language Concepts . 2-1
About This Chapter . 2-3
Notational Conventions . 2-4
Character Set . 2-5
Reserved Words . 2-7
Line Format . 2-8
Statements . 2-9
Symbols . 2-13
Constants . 2-16
Expressions . 2-19

Chapter 3. Addressing and Program Sectioning 3-1
About This Chapter . 3-3
Addressing . 3-4
Assembler Sections and Runtime Segments . 3-9

Chapter 4. 032 Microprocessor Instructions . 4-1
About This Chapter . 4-3
Introduction to Instructions . 4-4
Categories of Instructions . 4-5
Notational Conventions for Instructions . 4-22
Instruction Formats . 4-26
Directory of Instructions . 4-28

Chapter 5. Pseudo-Ops . 5-1
About This Chapter . 5-3
What Is a Pseudo-Op? . 5-4
Categories of Pseudo-Ops . 5-5
Notational Conventions . 5-9
Directory of Pseudo-Ops . 5-11

Contents xi

Chapter 6. Assembling, Linking and Running a Program 6-1
About This Chapter . 6-3
Assembling and Linking with cc . 6-4
Assembling and Linking with Two Separate Steps . 6-6
Interpreting an Assembler Listing . 6-12
Subroutine Linkage and System Calls . 6-15
Running the Program . 6-30

Appendix A. Mnemonic and Op Code Tables A-1
Instructions, Indexed by Mnemonic . A-2
Instructions, Indexed by Op Code . A-9

Appendix B. ASCII Character Codes . B-1

Appendix C. Programming Tips and Techniques C-1

Appendix D. Sample Assembler Language Program

Figures

Glossary

. ~ D-1

X-1

X-3

Index . X-11

xii Assembler Language Reference

Chapter 1. Overview of Processing and Storage on
the 032 Microprocessor

Processing and Storage 1-1

CONTENTS
About This Chapter . 1-3
The 032 Microprocessor and its Protection States . 1-4
Two Kinds of Processors . 1-5
Data Representation in Main Storage . 1-6
Data Representation in Registers . 1-7

General Purpose Registers . 1-7
System Control Registers . 1-8

1-2 Assembler Language Reference

About This Chapter

The RT PC 032 Microprocessor assembler language is influenced by the characteristics of
its machine's storage and processor. The capabilities of the processor and the nature of
the available storage determine what the assembler language can do.

This chapter gives an overview of the 032 Microprocessor and tells you how data is stored
on the RT PC in main storage and in registers. This information may help you understand
how to use 032 Microprocessor instructions and pseudo-ops.

Processing and Storage 1-3

The 032 Microprocessor and its Protection States

The 032 Microprocessor is a 32-bit pipelined processor. The 032 Microprocessor has a
reduced instruction set, with few memory access instructions. Except for the memory
access instructions, most instructions execute in a single processor cycle.

The 032 Microprocessor's assembler language is designed to support systems and
application programming in high-level languages. Therefore, the 032 Microprocessor
assembler language is intended primarily as an efficient target for compilers.

032 Microprocessor, the physical or "real" machine, has two protection states: privileged
and unprivileged.

In privileged state, 032 Microprocessor accepts all instructions, including privileged
instructions. Privileged instructions generally manipulate virtual machines (if they exist)
or the memory manager, and are not discussed at length in this book. 032 Microprocessor
assembler language programmers can access 032 Microprocessor privileged state with the
Supervisor Call (svc) instruction.

The 032 Microprocessor's privileged state supports virtual machines. On RT PC, the
Virtual Resource Manager (VRM) is the only entity that runs in privileged state. The
VRM is a collection of processes, interrupt handlers, and runtime routines that support the
Virtual Machine Interface by issuing privileged instructions to the hardware. The VRM
redefines the processor's physical protection states for virtual machines and creates
software emulations of the processor's physical registers. The Virtual Machine Interface
(VMI) is the link between the operating system and the VRM programs that regulate
system resources. See Virtual Resource Manager Technical Reference for information about
how virtual machines work on RT PC.

In unprivileged state, 032 Microprocessor accepts only unprivileged instructions such as
adds, shifts, and loads. Both the operating system and ordinary application programs run
in unprivileged state. Virtual machines also run in 032 Microprocessor unprivileged state.

This book includes both privileged and unprivileged instructions, but emphasizes the
unprivileged instructions. For more information on the context in which privileged
instructions occur, see Virtual Resource Manager Technical Reference.

Note: Floating point support is available with optional hardware, or with floating point
software emulation in the AIX Operating System. See Hardware Technical Reference for
information on the floating point registers.

1-4 Assembler Language Reference

Two Kinds of Processors

Your RT PC has either a 032 Microprocessor or an APC processor. The APC has a faster
clock speed, but both processors have the same unprivileged instruction set. Application
programs should run on either processor, as long as the programs do not use
timing-dependent code.

The differences between the 032 Microprocessor aJ.1d the APC are visible only in privileged
state, and involve the way page faults and protection violations are reported. Unlike the
032 Microprocessor, the APC defines SCR 9 and bit 18 of the ICS. Also, the APC defines a
previously undefined bit in the lps instruction.

For more information about the APC, see Hardware Technical Reference.

Processing and Storage 1-5

Data Representation in Main Storage

On the RT PC, main storage is organized as a series of eight-bit bytes with a maximum
address of 232 - 1. Bytes in main storage are consecutively numbered, left to right, starting
with zero. Four bytes make a word. The leftmost bit of a word is the high-order bit, or the
most significant bit. The highest-order bit of a word is stored at a lower address in main
storage than the lowest-order bit of the same word.

0
high-order

co
Upper Half

I
8

Register

C1
16

Lower Half

C2 I
24

C3
31

low-order

Figure 1-1. Data Units in Main Storage. The highest-order byte, CO, is the first character.

The address of a word or halfword in main storage is the address of its leftmost byte. A
word must lie on a 4-byte boundary; that is, the address of a word has zeroes in the two
low-order bits. A halfword must lie on a 2-byte boundary; that is, the address of a halfword
has a zero in the low-order bit.

All instructions must be located on halfword boundaries.

All storage accesses are for a byte or multiple bytes. Storage accesses for words ignore the
low-order pair of bits of the effective address. Storage accesses for halfwords ignore the
low-order bit of the effective address.

The assembler may give you an error message if you try to access data from or store data
to an invalid memory location. Invalid memory accesses will also trigger a program check
(see "Program Check Status (PCS)" on page 1-11). You especially need to watch for
invalid memory locations if you use the absolute branch instructions, an .org pseudo-op
with an absolute operand, or the .direct pseudo-op. For information on invalid memory
locations, see Chapter 3. ·

Wraparound is allowed and occurs on a 32-bit basis. That is, main storage addressing
wraps around from the architectural maximum byte address to address 0. For example, if
an instruction added 5 to the maximum byte address, the result would be address 4.

The RT PC 032 Microprocessor assembler language supports effective addresses, that is, a
base address plus a displacement. Depending on the instruction, the displacement is
specified as immediate data or as the contents of a register. All effective addresses are
computed as 32-bit quantities. See Chapter 3 for more information on addressing.

1-6 Assembler Language Reference

Data Representation in Registers

The 032 Microprocessor has sixteen 32-bit general purpose registers and sixteen system
control registers.

General Purpose Registers

Instructions are provided to load or store a single character, word, or halfword into a
general purpose register (GPR).

Each GPR consists of an upper and lower half of sixteen bits each. Each GPR may be
separated into four eight-bit characters: CO, Cl, C2, and C3. The organization of General
Purpose Registers is shown in Figure 1-1 on page 1-6.

For computational purposes, the content of a GPR is treated as a signed algebraic
quantity, an unsigned positive quantity, or an unstructured logical quantity, depending on
the instruction that does the computation. In a GPR, an algebraic quantity is represented
by 32 bits in two's complement form.

Since each register is 32 bits long, the largest positive signed number that can fit in a
register is decimal 231 - 1. The largest negative number that can fit in a register is -231•

Numbers larger than these are wrapped around. (See "Arithmetic Constants" on
page 2-16.)

GPRs are used by most of the instructions in the 032 Microprocessor instruction set. For
information about what these instructions are and how they affect GPRs, see Chapter 4.

To avoid the destruction of operands, the following instructions cause the result of the
operation to be placed in the pair of one of the GPR operands:

sip slpi
srp srpi

The pair of a given GPR has the name, in binary, of the given GPR with the low-order bit
inverted. In this way, a pair consists of an even-numbered and an odd-numbered register.
For example, GPR 5 (binary 0101) and GPR 4 (binary 0100) are pairs, and GPR 14 (binary
1110) and GPR 15 (binary 1111) are pairs. (See Figure 1-2 on page 1-8.)

Processing and Storage 1-7

GPR 0

GPR 1
pair

GPR 2
pair

GPR 3

GPR 4

GPR 5
prnr

GPR 6

GPR 7
pair

GPR 8
pair

GPR 9

GPR 10
pair

GPR 11

GPR 12

GPR 13
pair

GPR 14

GPR 15
pair

0 31 bits

Figure 1-2. General Purpose Register Pairs

System Control Registers

The 032 Microprocessor has sixteen 32-bit system control registers (SCRs). An entire SCR
or fields within an SCR are generally set aside to be used by programs that control the
system. Figure 1-3 on page 1-9 shows the different SCRs.

Some SCRs and bits inside SCRs are reserved and are not assigned to any system facility.
Any attempt to set the reserved bits of an SCR will be ignored. When the reserved bits of
an SCR are fetched, the resulting values are unpredictable.

1-8 Assembler Language Reference

Reserved SCR 0

Reserved SCR 1

Reserved SCR 2

Reserved SCR 3

Reserved SCR 4

Reserved SCR 5

Counter Source SCR 6

Counter SCR 7

Reserved l TS SCR 8

Reserved or Except. Ctrl .. Reg. SCR 9

Multiplier Quotient SCR 10

MCS l PCS SCR 11

Reserved IRB SCR 12

Instruction Address Register SCR 13

Reserved ICS SCR 14

Reserved cs SCR 15

0 8 1 6 24 31
TS = Timer Status IRB = Interrupt Request Buffer
MCS = Machine Check Status ICS = Interrupt Control Status
PCS = Program Check Status CS = Condition Status

Figure 1-3. System Control Registers

The SCRs can be manipulated with certain privileged instructions. (See "System Control
Register Manipulation Instructions" on page 4-20.) Two of the SCRs can also be
manipulated in unprivileged state: Multiplier Quotient (SCR 10) and Condition Status
(SCR 15). The Instruction Address Register (SCR 13) cannot be directly manipulated in
unprivileged state, but is affected by assembler instructions.

Processing and Storage 1-9

The following descriptions apply to SCRs in hardware. Virtual machines do not have
hardware SCRs, but they have analogous virtual machine control registers. See Virtual
Resource Manager Technical Reference for information about how virtual machines define
virtual machine control registers.

Note: The processor dynamically changes SCRs, often asynchronously to instruction
sequencing. Therefore, if you write to an SCR, then read from the same SCR, you may not
read back the same data that you wrote in.

Counter Source, Counter, and Timer Status Registers
SCRs 6 and 7 and the TS bits of SCR 8 help control the system timer. For more
information on SCRs 6 and 7, see Hardware Technical Reference. For more information on
SCR 8, see Virtual Resource Manager Technical Reference.

Exception Control Register (ECR)
SCR 9 is reserved if you have a 032 Microprocessor. However, if you have an APC
processor, SCR 9 is the Exception Control Register. This register contains the exception
count and address used to save and restart failing I/O or storage operations. For more
information, see Hardware Technical Ref ere nee.

Multiplier Quotient (MQ) Register
The MQ register holds the product of the Multiply Step (m) instruction or the dividend of
the Divide Step (d) instruction. You can also manipulate the contents of the MQ register
with the Move to SCR (mts) and Move From SCR (mfs) instructions. For more
information about these instructions, see Chapter 4.

Note: The MQ is not preserved across subroutine calls. See "Subroutine Linkage and
System Calls" on page 6-15 for more information.

Machine Check Status (MCS)
The Machine Check Status occupies bits 16 through 23 of SCR 11. When a machine check
error is detected by hardware, appropriate bits of the MCS are set to one. You cannot
clear a Machine Check Level by clearing the bits in the MCS, nor can you cause a
Machine Check by writing to the MCS. The MCS is only cleared when a Load Program
Status (lps) instruction is executed to return from a Machine Check Level. The MCS
includes the following bits:

• Processor channel check
• Parity check
• Instruction timeout
• Data timeout
• Processor channel timeout
• I/O trap.

For more information, see Hardware Technical Reference.

1-10 Assembler Language Reference

Program Check Status (PCS)
The Program Check Status occupies bits 24 through 31 of SCR 11. The PCS provides a
means for reporting the following programming errors:

• Program check with known origin
• Program check with unknown origin
• Program trap (bit 26)
• Privileged instruction exception
• Illegal op code
• Instruction address exception
• Data address exception.

Upon detection of a program check error, all bits of the PCS are cleared to zeroes. The
appropriate bits of the PCS are then set to ones. You cannot clear a Program Check Level
by clearing the bits in the PCS, nor can you cause a Program Check by writing to the PCS.

For more information, see Hardware Technical Reference.

Interrupt Request Buffer (IRB)
Bits 16 through 31 of SCR 12 are the Interrupt Request Buffer. The IRB allows different
levels of interrupt requests to be generated under program control. The interrupt request
remains active until the bit is cleared by software.

For more information, see Hardware Technical Reference.

Instruction Address Register (IAR)
The Instruction Address register, sometimes called the instruction pointer or program
counter, contains the address of the next instruction to be executed. During instruction
execution, the IAR is incremented, in bytes, by the length of the current instruction. If
this instruction is a successful branch, the IAR is set to the address of the branch target
instruction.

In privileged state, programs can use the Move to System Control Register (mts)
instruction to load the IAR with a specified value. Application programs, however, can
only change the contents of the Instruction Address register implicitly, by executing
instructions.

Do not confuse the IAR with the assembler's location counter. See "The Location
Counter" on page 3-11.

Processing and Storage 1-11

Interrupt Control Status (ICS)
Bits 16 through 31 of SCR 14 are the Interrupt Control Status. Bits 0 through 15 of SCR 14
are reserved. In hardware, the ICS contains the following defined bits:

• Parity error retry interrupt enable
• Storage protect
• Problem state
• Translate mode
• Interrupt mask
• Check stop mask
• Register set number
• Processor priority.

If you have the APC processor, the ICS bit 18 is defined as the Interrupt on Unaligned
Storage Address bit. If this bit can be set to both one and zero (try the setcb and clrcb
instructions and examine the results), then you have an APC processor. Otherwise, you
have an 032 Microprocessor.

For more information on the ICS, see Hardware Technical Reference.

Condition Status (CS) Register
Bits 16 through 31 of SCR 15 are the Condition Status register. However, only bits 24
through 31 are defined. Bits 0 through 23 in SCR 15 are reserved.

You can manipulate the entire contents of the CS register with the Move to System
Control Register (mts) and the Move from System Control Register (mfs) instructions.

You can manipulate any single bit in the CS register with the Set Bit in the System
Control Register (setcb) and Clear Bit in the System Control Register (clrcb) instructions.

The following instructions allow you to test any single CS bit, then branch or not branch,
depending on the value of that bit:

• Branch on Condition Bit (bb)
• Branch on Condition Bit Using Register (bbr)
• Branch on Condition Bit with Execute (bbx)
• Branch on Condition Bit Using Register with Execute (bbrx)
• Branch on Not Condition Bit (bnb)
• Branch on Not Condition Bit Using Register (bnbr)
• Branch on Not Condition Bit with Execute (bnbx)
• Branch on Not Condition Bit Using Register with Execute (bnbrx).

Other instructions can test or set only one pre-defined bit in the CS register.

1-12 Assembler Language Reference

Bits 24 through 31 of the Condition Status register are defined as follows:

Bit 24 Permanent Zero (PZ)
Bit 25 Less Than (LT)
Bit 26 Equal (EQ)
Bit 27 Greater Than (GT)
Bit 28 Carry Zero (CO)
Bit 29 -- Reserved --
Bit 30 Overflow (OV)
Bit 31 Test Bit (TB).

The Permanent Zero (PZ) bit is always set at zero; it cannot be set to one. The PZ bit is
tested by the Branch (b) instruction.

The Less Than (LT) bit is set during the Compare (c) instruction to indicate the relative
algebraic magnitudes of the numbers being compared. The LT bit is also set to one during
logical, shift, and certain arithmetic instructions if the result of the instruction is negative
or if the high-order bit of the result is one. Otherwise, LT is set to zero. The LT bit is
tested by the Branch on Less Than (bit) and Branch on Greater Than or Equal (bge)
instructions.

The Equal (EQ) bit is set during the Compare (e) instruction to indicate if comparands are
equal. The EQ bit is also set to one during logical, shift, and certain arithmetic
instructions if all bits of the result are zeros; otherwise it is set to zero. The EQ bit is
tested by the Branch on Equal (beq) and Branch on Not Equal (bne) instructions.

The Greater Than (GT) bit is set during the Compare (e) instruction to indicate the true
relative algebraic magnitudes of the comparands. The GT bit is also set to one during
logical, shift, and certain arithmetic instructions if the sign bit of the result is zero and the
result is non-zero. The GT bit is tested by the Branch on Greater Than (hgt) and Branch
on Less Than or Equal (ble) instructions.

The Carry Zero (CO) bit is set to one during certain arithmetic instructions if the operation
generates a carry out of a bit position zero; otherwise it is set to zero. The CO bit is tested
by the Branch and Carry Bit Set (bes) and Branch and Carry Bit Clear (bee) instructions.

The Overflow (OV) bit is set to one during certain arithmetic instructions if the signed
result of the operation cannot be represented in 32 bits; otherwise it is set to zero. The OV
bit is tested by the Branch on Overflow Set (bvs) and Branch on Overflow Clear (bve)
instructions.

The Test (TB) bit is set by the Move to Test Bit instructions (mttb and mttbi), where a
specified bit of a register is moved to the test bit. It is also affected by instructions which
load or directly alter data in the Condition Status register. The TB bit is tested by the
Branch on Test Bit Set (bts) and Branch on Test Bit Clear (bte) instructions.

Processing and Storage 1-13

1-14 Assembler Language Reference

Chapter 2. Assembler Language Concepts

Assembler Language Concepts 2-1

CONTENTS
About This Chapter . 2-3
Notational Conventions . 2-4
Character Set . 2-5
Reserved Words . 2-7
Line Format . 2-8
Statements . 2-9

Instruction Statements and Pseudo-Operation Statements . 2-9
Null Statements . 2-12

Symbols . 2-13
Defining a Symbol with a Label . 2-14
Defining a Symbol with a Pseudo-op . 2-14
Using A Symbol Before Defining It . 2-15

Constants . 2-16
Arithmetic Constants . 2-16
Character Constants . 2-17
Symbolic Constants . 2-18

Expressions . 2-19
Operators and Operator Precedence . 2-19
Types of Expressions . 2-21

2-2 Assembler Language Reference

About This Chapter

This chapter explains the syntax and semantics of 032 Microprocessor assembler language.
It tells you what you need to know to write a single line of 032 Microprocessor assembler
language code.

The following topics are discussed:

• Notational conventions used to describe syntax

• Character set

• Reserved words

• Line format

• Components of a statement

• Kinds of statements

• Symbols

• Constants

• Operators and expressions.

For information on combining lines of 032 Microprocessor assembler language code
(addressing, segmenting, the location counter), see Chapter 3.

Assembler Language Concepts 2-3

Notational Conventions

Throughout this chapter, certain notational conventions describe aspects of the 032
Microprocessor assembler language.

• All spaces are required unless otherwise noted.

• In commands, capitalization is significant. All uppercase and lowercase letters should
be entered exactly as shown.

• Optional parts of statements are shown in brackets. However, you do not type the
brackets themselves. For example,

mnemonic operandl[,operand2]
means that you can type

mnemonic operandl or

mnemonic operandl,operand2.

• Brackets can be nested. For example,

mnemonic [operandl[,operand2]]
means that you can type

mnemonic or

mnemonic operandl or

mnemonic operandl,operand2.

2-4 Assembler Language Reference

Character Set

All letters and numbers are allowed. However, the assembler discriminates between
upper-case and lower-case letters. For example, the assembler sees the symbol Name as
being different from the symbol name.
Some blank spaces are required; others are optional. (See "Statements" on page 2-9.) The
assembler allows you to substitute tabs for spaces.

The following characters have a special meaning in 032 Microprocessor assembler
language:

, (comma)
Operand separator. Commas are allowed only between operands. (See
"Statements" on page 2-9.)

Example:

lr 2,15
(pound sign)

Comments. Anything from # to the end of a line is a comment and is ignored by
the assembler. A# can be the first character in a line, or it may be preceded by
any number of characters, blank spaces, or both. (See "Comments" on page 2-11.)

Example:

lr 2,15

: (colon)

loads register 2 with contents
of register 15

Defines a label equal to the value contained in the current location: counter.
Always appears immediately after the last character of the label name. (See
"Labels" on page 2-10.) ,

Example:

here: lr 2,15 # makes here equal to the address
where the Ir instruction is assembled

Assembler Language Concepts 2-5

; (semicolon)
Instruction separator. A semicolon separates two instructions that appear on the
same line. Spaces around the semicolon are optional.

A single instruction on one line does not have to end with a semicolon.

Example:

lr 2,15
1 r 15, 3

lr 2,15

$(dollar sign)

lr 15,3

these two lines have
#the same effect as ...

... this line

Refers to the current value of the assembler's current location counter. (See "The
Location Counter" on page 3-11.)

Example:

di no:
size:

. long 1,2,3

.long$ - dino

2-6 Assembler Language Reference

Reserved Words

032 Microprocessor assembler language does not have any reserved words. The mnemonics
for instructions and pseudo-ops are not reserved; they may be used in the same way as any
other symbols.

There may be restrictions on the names of symbols that are passed to programs written in
other languages. For information on these restrictions, see "Subroutine Linkage and
System Calls" on page 6-15.

Assembler Language Concepts 2-7

Line Format

On the RT PC, 032 Microprocessor assembler language is written in free format. There are
no requirements for certain things to be in any particular column position.

The assembler language puts no limit on the number of characters that can appear on a
single input line. If you write a longer code line than can display as one line on your
terminal, line wrapping will depend on the editor you are using.

Blank lines are allowed; the assembler ignores them.

2-8 Assembler Language Reference

Statements

032 Microprocessor assembler language has three kinds of statements: instruction
statements, pseudo-operation statements, and null statements.

Instruction Statements and Pseudo-Operation Statements

An instruction or pseudo-op statement has the following syntax:

[label:]mnemonic[operandl[,operand2]] [#comment]

The assembler recognizes the end of a statement when one of the following occurs:

• An ASCII new line character
• A comment character (#)
• A semicolon (;) .

Separator Character
The separator characters are spaces, tabs, and commas. Commas separate operands.
Spaces or tabs separate the other parts of a statement. A tab can be used wherever a space
is shown in this book.

The spaces shown are required spaces. You can optionally put one or more spaces after a
comma, before a pound sign (#), and after a #.

Assembler Language Concepts 2-9

Labels
The label entry is optional. A line may have zero, one, or more labels. A line may have a
label but no other contents.

To define a label, follow a symbol with a colon. The assembler gives the label the value
contained in the assembler's current location counter. This value represents a relocatable
address.

See "Symbols" on page 2-13 for information on defining symbols.

Example 1

here: lr 2,15
the label here receives a value
of the address of the Ir instruction.
You can now use here in subsequent statements
to refer to this address.

If the label is in a statement with an instruction that causes data alignment, the label
receives its value before the alignment occurs.

Example 2

assume that the location counter now
contains the value of 98

p 1 ace: . 1 ong expr

#When the assembler sees this statement, it
sets place to address 98. But the
.long is a pseudo-op that
aligns expr on a fullword. Thus,
the assembler puts expr at the next
available fullword boundary, which is
address 100. In this case place is
not actually the address at which expr
is stored; referring to place will not
put you at the location of expr.

2-10 Assembler Language Reference

Mnemonics
The mnemonic field identifies whether a statement is an instruction statement or a
pseudo-op statement. Each mnemonic requires a certain number of operands in a certain
format.

For an instruction statement, the mnemonic field contains an abbreviation like ais or beq.
This mnemonic describes an operation where the 032 Microprocessor processes a single
machine instruction, which is associated with a numerical op code. Instructions vary in
length, so the op code tells the assembler how long the instruction and its operands are
going to be. When the assembler encounters an op code, the assembler increments the
location counter by the required number of bytes.

For a pseudo-op statement, the mnemonic represents an instruction to the assembler
program itself. There is no associated op code, and the mnemonic does not describe an
operation to the processor. Some pseudo-ops increment the location counter; others do not.

Operands
The existence and meaning of the operands depends on the mnemonic used. Some
mnemonics do not require any operands. Other mnemonics require one or more operands.

The assembler interprets each operand in context with the operand's mnemonic. Many
operands are expressions that refer to registers or symbols. For instruction statements,
operands can be immediate data that is to be directly assembled into the instruction.

Comments
Comments are optional and are ignored by the assembler. Every line of a comment must
be preceded by a pound sign(#); there is no other way to designate comments.

Assembler Language Concepts 2-11

Null Statements

A null statement does not have a mnemonic or any operands. It can contain a label, a
comment, or both. Processing a null statement does not change the value of the location
counter.

Null statements are useful mainly to make assembler source code easier for people to read.

A null statement has the following syntax:

[label:] [#comment]

The spaces between the label and the comment are optional.

If the null statement has a label, the label receives the value of the next statement, even
though that statement is on a different line. For example,

here:
cal16 3, ·x

has the same effect as

here: cal16 3,'X

Note: Certain pseudo-ops may prevent a null statement's label from receiving the value of
the next statement. See Example 2 on page 2-10.

2-12 Assembler Language Reference

Symbols

A symbol is a single character or combination of characters used as a label or operand.
Symbols may consist of numeric digits, underscores, periods, upper or lower case letters, or
any combination of these. The symbol cannot contain any blanks or special characters,
and cannot begin with a digit. Upper and lower case are distinct.

From the assembler and loader's perspective, the length of a symbol name is limited only
by the amount of storage you have. However, only the first 32 characters are significant.
Also note that other routines linked to assembler language files may have their own
constraints on symbol length.

You can use a symbol to represent storage locations or arbitrary values. The value of a
symbol is always a 32-bit quantity.

The following are examples of valid symbol names:

READER
A2345
result.a
resultA
balance_old
_label9
.mys pot
The following are examples of invalid symbol names:

7 _sum (begins with a digit)
#ofcredi ts (contains#, a special character)
aa*l (contains *, a special character)
IN AREA (contains a blank)

You can define a symbol by using it in one of two ways:

• As a label for an instruction or pseudo-op

• As the name operand of a .set, .comm, or .lcomm pseudo-op.

Assembler Language Concepts 2-13

Defining a Symbol with a Label

You can define a symbol by using it as a label.

Example:

bali
.using

dataval: .short

cont: lh
a

l,cont
$,1
10

2,dataval
4,2

The assembler gives the symbol the value of the location counter at the instruction or
pseudo-op's leftmost byte. In the example above, the object code for the lb instruction
contains the location counter value for dataval.

At runtime, this value represents an address, and the contents of that address are used as
an operand. In the example above, the lb instruction uses the 16 bits of data stored at
dataval's address.

Note that the value referred to by the symbol actually occupies a memory location. A
symbol defined by a label is a relocatable value.

The symbol itself does not exist at runtime. However, you can change the value at the
address represented by a symbol at runtime, if some code changes the contents represented
by dataval.

Defining a Symbol with a Pseudo-op

You can also define a symbol by using it as the name operand of a .set pseudo-op. This
pseudo-op has the format .set name, exp. For example:

.set number,10

ais 4,number
The assembler evaluates the exp operand, then assigns the value and type of exp to the
symbol name. When the assembler encounters that symbol in an instruction, the
assembler puts the symbol's value into the instruction's object code. In the example above,
the object code for the ais instruction contains the value assigned to number, that is, 10.

Note that the value of the symbol is assembled directly into the instruction, and does not
occupy any storage space. A symbol defined with a .set can have an absolute or

2-14 Assembler Language Reference

relocatable type, depending on the type of the exp operand. (See "Types of Expressions"
on page 2-21.) Also, you cannot change the value of the symbol at runtime; you must
reassemble the file in order to give the symbol a new value.

You can also define a symbol by using it as the name operand of a .lcomm or .comm
pseudo-op. In this case, the value assigned to the symbol does occupy storage space; see
Chapter 5.

Using A Symbol Before Defining It

It is possible to use a symbol before you define it. Using a symbol, and then defining it
later in the same file, is called forward referencing. In other words, the following is
acceptable:

1 5, ten

ten: . 1 ong 10

If the symbol is not defined in the file in which it occurs, it is called an external symbol.
When the assembler finds external symbols, it does not give you an error message; it
assumes that you will link in another file that defines the symbol.

For branch instructions only, the symbol and its definition must be, after linking, in the
same runtime segment as all references to that symbol. (See Chapter 3 for information
about runtime segments and their relation to assembler language sections.)

The only exception is for symbols that have been the subject of a .direct pseudo-op, which
allows you to make a direct reference to an external symbol. If you use .direct, the symbol
you refer to must occupy an address in the lowest 32K of memory at link time.

Assembler Language Concepts 2-15

Constants

The 032 Microprocessor assembler language has three kinds of constants:

• Arithmetic constants

• Character constants

• Symbolic constants (symbols being used as constants).

When the assembler encounters an arithmetic or character constant that is being used as
an instruction's operand, the value of that constant is assembled into the instruction.
(This is why arithmetic and character constants are sometimes called self-defining terms.)
When the assembler encounters a symbol being used as a constant, the value of the symbol
is assembled into the instruction. (Symbolic constants are sometimes called data constants
or ordinary symbols.)

The assembler eventually translates all constants, no matter how they are specified, into
32-bit integer constants.

Arithmetic Constants

There are three kinds of arithmetic constants: decimal, octal, and hexadecimal.

Because the 032 Microprocessor is a 32-bit processor, the largest signed positive number
that any single register can hold is the decimal value 231-1. The largest negative value
allowed in a register is -231• If you specify an expression that evaluates to a constant with
a value larger then these, the value wraps around at runtime. For example,

Ox7FFFFFF8 + Oxl4
yields a value of Ox8000000C (a large negative number).

The largest unsigned number that any single register can hold is 232-1. For unsigned
numbers, wraparound works like this:

OxFFFFFFF8 + Oxl4
yields a value of OxOOOOOOOC.

2-16 Assembler Language Reference

Decimal Constants
Base 10 is the default base for arithmetic constants. If you want to specify a decimal
number, just type the number in the appropriate place.

ai 5,10 # adds decimal value 10 to contents of GPR 5
Do not prefix decimal numbers with a zero. A leading zero denotes an octal number.

Octal Constants
To specify an octal number, prefix the number with the numeral 0.

ai 5,0377 # adds octal value 377 to contents of GPR 5

Hex Constants
To specify a hexadecimal number, prefix the number with OX or Ox. You can use either
uppercase or lowercase for the hex numerals A through F.

ais 5,0xF
ais 3,0X5

adds hex value F to GPR 5
adds hex value 5 to GPR 3

Character Constants

To specify an ASCII character constant, prefix the constant with a' (single quote mark).
Character constants can appear anywhere an arithmetic constant is allowed, but you can
only specify one character constant at a time. For example, 'A represents the ASCII code
for the character A.

Character constants are convenient when you want to use the code for some character as a
constant. For example,

cal16 3,'X #Loads GPR 3 with the ASCII code for
#the character X (that is, hex 58).
After the cal16 instruction
executes, the low-order 16 bits of
GPR 3 contain
binary 0000 0000 0101 1000.

Assembler Language Concepts 2-17

Symbolic Constants

All symbols do not have to be used as constants. However, 032 Microprocessor assembler
language allows you to use a symbol as a constant. Once you define a value, you can refer
to that value by name, instead of using the value itself.

Using a symbol as a constant is convenient if you have a value that occurs frequently in
your program. You define the symbolic constant once, by giving the value a name. If you
decide to change the value, you only have to change its definition, not every reference to it
in the program.

A symbolic constant can be defined by using it as a label or by using it in a .set statement.
"Symbols" on page 2-13 discusses how to define symbols.

2-18 Assembler Language Reference

Expressions

An expression is a constant, a symbol, or a combination of constants, symbols, and
operators. The assembler evaluates each expression into a single value, then uses that
value as an operand. Expressions have a type as well as a value.

Operators and Operator Precedence

032 Microprocessor assembler language allows the following operators:

()
+

*
I
&

/\

<
>

control order of evaluation
addition or unary +
subtraction or unary two's complement
multiplication
division
logical and
inclusive or
exclusive or
logical left shift
logical right shift
unary bitwise complement

All these operators evaluate left to right, except for the unary operators, which evaluate
right to left.

Assembler Language Concepts 2-19

Operator precedence is as follows:

highest
priority

()

unary - unary+

* I<>

: /\ &

+ -
lowest
priority

All the operators perform 32-bit signed integer operations.

The division operator, /,produces an integer result; the remainder has the same sign as the
dividend. For example,

Operation

8/3
8/-3
(-8)/3
(-8)/(-3)

Result

2
-2
-2
2

The left shift (<) and right shift (>) operators take an integer bit value for the
right-hand operand. For example,

.set mydata,1

.set newdata,mydata<2 # shifts 1 left 2 bits,
assigns result to newdata

2-20 Assembler Language Reference

Types of Expressions

There are three types of expressions: absolute, relocatable, or external. The type of an
expression depends on the type of its operands.

Expression types are important for two reasons. First, some pseudo-ops and instructions
require expressions of a particular type. Second, only certain operators are allowed in
certain types of expressions, as described below.

In the explanations below, "absolute" recursively refers to an absolute expression, and
"relocatable" recursively refers to a relocatable expression. "A symbol set to ... " means a
symbol that has appeared in a .set statement (.set name, ...).

Absolute Expressions
The value of an absolute expression is independent of any possible code relocation. The
value of an absolute expression stays the same, no matter where the runtime segment
containing the expression is loaded.

Absolute expressions must be one of the following:

• An integer or character constant
• A symbol set to an absolute
• absolute< operator> absolute , where <operator> is any arithmetic binary operator
• - absolute
• ~absolute
• relocatable - relocatable, where the two "relocatables" refer to the same assembler

section.

The definitions of "absolute" and "relocatable" above are recursive. For example,
absolute< operator> absolute< operator> relocatable - relocatable is a valid absolute
expression.

Any expression not covered by the above rules is invalid. An example 6f an invalid
absolute expression is relocatable+ relocatable.

Relocatable Expressions
The value of a relocatable expression depends on the location of the runtime segment
containing the relocatable expression. If the runtime segment moves to a different storage
location, the value of the relocatable expression changes accordingly.

Since the runtime segments can be relocated independently, the type of a relocatable
expression includes the runtime segment. (See "Assembler Sections and Runtime
Segments" on page 3-9.)

Assembler Language Concepts 2-21

Relocatable expressions must be one of the following:

• A label
• A symbol set to a relocatable expression
• relocatable+ absolute
• relocatable - absolute
• absolute+ relocatable.

The definitions of "absolute" and "relocatable" above are recursive. For example,
absolute+ (relocatable+ absolute) is a valid relocatable expression.

Any expression not covered by the above rules is invalid. Examples of invalid relocatable
expressions are relocatable*absolute, absolute - relocatable.

All .expressions that are based on the location counter are relocatable (for example, those
used as operands for the bnb instruction and related instructions).

The final resolution of the value represented by a relocatable expression is performed at
load time by Id.

External Expressions
External expressions refer to external symbols (symbols not defined in the current file).

If the external expression is used as a label, the expression is relocatable. An external
expression cannot be used as the subject of a .set.

External expressions must be one of the following, where "external" refers to an external
expression:

• A symbol declared .comm
• Any symbol not otherwise defined
• external+ absolute
• external - absolute
• absolute+ external .

The definitions of "absolute" and "external" above are recursive. For example,
ab so lute + (external+ ab so lute) is a valid external expression.

Any expression not covered by the above rules is invalid. Examples of invalid external
expressions are external+ relocatable, absolute - external.

2-22 Assembler Language Reference

Chapter 3. Addressing and Program Sectioning

Addressing and Program Sectioning 3-1

CONTENTS
About This Chapter . 3-3
Addressing . 3-4

Absolute Immediate Addresses . 3-4
Absolute Addresses . 3-4
Relative Immediate Addresses . 3-5
Based Addresses . 3-5
Special Addresses . 3-7

Assembler Sections and Runtime Segments . 3-9
The Text Section and Text Segment . 3-9
The Data Section and Data Segment . 3-10
The Bss Section in the Data Segment . 3-10
The Location Counter . 3-11

3-2 Assembler Language Reference

About This Chapter

This chapter explains some things you need to know to combine lines of 032
Microprocessor assembler language code.

The first part of the chapter discusses addressing, base registers, the . using and .drop
pseudo-ops, and addresses with a special meaning. The second part of the chapter
discusses assembler language sections, the assembler's location counter, and how
assembler language sections map to runtime segments in the executable object file.

Addressing and Program Sectioning 3-3

Addressing

Some addresses are already occupied by code that controls the RT PC system. These
special addresses are discussed on page 3-7.

The 032 Microprocessor supports four basic kinds of addressing modes:

• Absolute immediate
• Absolute
• Relative immediate
• Based (short and long).

Since the first three addressing modes are used only by branch instructions, these modes
are also discussed in "Branch Instructions" on page 4-9.

Absolute Immediate Addresses

An absolute immediate address is designated by immediate data. This addressing mode is
absolute in the sense that it is not specified relative to the IAR.

On the 032 Microprocessor, only the bala and balax instructions have an absolute
immediate addressing mode. These instructions assemble a 24-bit immediate operand which
is extended on the left with eight binary zeroes to become the branch target address. The
immediate operand can be an absolute, relocatable, or external expression.

Absolute Addresses

An absolute address is represented by the contents of a register. This addressing mode is
absolute in the sense that it is not specified relative to the IAR.

On the 032 Microprocessor, the absolute addressing mode is used by the instructions
bbr[x], bnbr[x], extended branch instructions with the same op codes as these, and
balr[x]. These instructions have a register as an operand; the contents of this register
become the branch target address. The contents of the register can be determined by a
relocatable, absolute, or external expression.

3-4 Assembler Language Reference

Relative Immediate Addresses

Relative immediate addresses are specified as immediate data within the object code, and
are calculated relative to the IAR. On the 032 Microprocessor, all the instructions that
use relative immediate addressing are branch instructions: bb[x], bnb[x], extended branch
instructions with the same op codes as these, and bali[x]. These instructions have
immediate data which is the displacement in halfwords from the current IAR. At
execution, the immediate data is sign extended, logically shifted left one bit, and added to
the address of the branch instruction to calculate the branch target address.

Relative immediate addresses are specified with either a 20-bit immediate field or an 8-bit
immediate field, depending on the instruction. (See Chapter 4 for details.)

Based Addresses

In this book, the instructions that allow based addresses have a D2(R2) operand. (The 2's
indicate the second operand in an instruction.) Some instructions require D2 to have a
value that can be contained in 4 bits. Other instructions require D2 to have a value that
can be contained in 16 bits.

If an instruction does not have an operand of the form D2(R2), then you cannot specify a
based address for that instruction.

There are two ways to specify based addresses: explicitly, or implicitly.

Explicit Based Addresses
You write an explicit based address by specifying a base register number, (R2), and a
displacement, D2 (also called an offset). The base register holds a base address. At
runtime, the processor adds the displacement to the contents of the base register to obtain
the effective address.

You must use an absolute expression to specify the base register itself. However, the
contents of the base register can be specified by an absolute, relocatable, or external
expression. If the base register holds a relocatable value, the effective address is
relocatable. If the base register holds an absolute value, the effective address is absolute.
If the base register holds a value specified by an external expression, the type of the
effective address is absolute if the expression is eventually defined as absolute, and
relocatable if the expression is eventually defined as relocatable.

Addressing and Program Sectioning 3-5

The storage instructions have short and long forms, where D2 can be either 4 or 16 bits.
The assembler attempts to use a short form of a data reference wherever it can to save
space. It only does so if it can determine the displacement in pass 1, that is, when the
operand is an explicit based expression with a constant positive displacement.

Notes:

1. GPR 0 cannot be used as a base register. Specifying 0 tells the assembler not to use a
base register at all.

2. Since D2 occupies 16 bits at most, the maximum positive displacement is 215 - 1, and the
maximum negative displacement is 215• Therefore, the difference between the base
address and the address of the item to which reference is made must be less than 215

bytes.

Implicit Based Addresses (.using and .drop)
To specify an implicit based address as an operand for an instruction, omit the (R2)
operand and write the .using pseudo-op at some point before the instruction. After
assembling the appropriate .using and .drop pseudo-ops, the assembler knows the register
to use as the base register. At runtime, the processor computes the effective address, just
as if you had explicitly specified the base in the instruction.

Implicit based addresses can be relocatable or absolute, depending on the type of
expression used to specify the contents of R2 at runtime. Usually you specify the contents
of R2 with a relocatable expression, thus making a relocatable implicit based address. In
this case, when the object module produced by the assembler is relocated, only the
contents of the base register will change. The displacement remains the same, so D2(R2)
still points to the correct address after relocation.

However, you can make an absolute implicit based address by specifying the contents of R2
with an absolute expression. In this case, R2 will not change when the object module is
relocated.

3-6 Assembler Language Reference

In order to specify an implicit address, you must:

1. Write a .using statement to tell the assembler that one or more GPRs will now be used
as base registers.

2. In this .using statement, tell the assembler the value each base register will contain at
execution. Until it encounters a .drop, the assembler will use this base register value
to process all instructions that require a based address.

3. Load each base register with the value you said it would have.

When you omit the (R2) operand, the D2 operand remains. D2 is a label or an expression
containing a label.

Note: The .using and .drop pseudo-ops affect only based addresses.

Example of Implicit Based Addressing

.data
foo: . long 2,3,4,5,6
bar: .long777

.text

yee:

.align 2
bal i 10,yee
. 1 ong foo
1 10,0(10)
. using foo, 10 #

0, foo
1, foo+4
2,bar

Special Addresses

now you only need to
specify displacement
the assemb 1 er generates I 0,0(10)
the assemb 1 er generates I 1,4(10)
the assemb 1 er generates I 2,20(10)

In virtual memory, user-made programs are always stored at hex addresses 1000 0000 or
higher. However, this fact is not apparent to 032 Microprocessor assembler programs,
because these programs are normally relocatable. You don't have to worry about
referencing special memory locations (for example, the addresses occupied by the operating
system).

Addressing and Program Sectioning 3-7

The exceptions are for:

• Targets of an absolute branch-and-link instruction (bala or balax)
• Instructions covered by a .direct pseudo-op
• The .org pseudo-op when it has an absolute expression for an operand
• The load and store instructions (especially the store instructions st, stc, sth, and stm).

In these cases, you can specify addresses representing special memory locations that
normally hold important pieces of code (i.e. the kernel). These addresses are not strictly
reserved-you can reference them by using the appropriate instructions-but they are
special in the sense that ordinary applications programs avoid them.

If you use .direct, an absolute .org, or an absolute immediate branch instruction (probably
for AIX Operating System kernel programming), you need to know about special addresses.
Figure 3-1 shows how virtual memory is laid out, and implies the addresses user programs
must avoid.

Segment
Register Hex Addresses Purpose

0 0000 0000 through holds AIX Operating System kernel
OFFF FFFF

1 1000 0000 through holds program text
lFFF FFFF

2 2000 0000 through holds program data
2FFF FFFF

3 3000 0000 through holds the stack
3FFF FFFF

4 through 13 . 4000 0000 through holds shared data segments
DFFF FFFF

14 EOOO 0000 through reserved by Virtual Resource Manager for
EFFF FFFF direct memory access I/0

15 FOOO 0000 through used to map I/O bus
FFFF FFFF

Figure 3-1. Segment Registers and Their Contents

Note: Programs must not access locations in the stack segment that are below the stack
floor. See "The Stack Floor" on page 6-19.

3-8 Assembler Language Reference

Assembler Sections and Runtime Segments

An 032 Microprocessor assembler language file may have up to three sections, which are
specified with pseudo-ops:

• Text (for instructions)
• Data (for initialized data)
• Bss (for uninitialized data).

When you assemble a program with as or link edit a program with Id, the output goes into
an object file called, by default, a.out. This executable object module has a fixed format,
with segments that correspond to the text and data sections declared within an assembly
language file. Assembler language sections are thus represented at runtime by a.out
segments.

When the linker links two or more assembly language files, the linker puts the assembler
sections together in the order required by the a.out format, even if parts of a section came
from different files.

Sectioning may also be convenient for assembly language programmers. Without
sectioning, you must write all the instructions in one chunk, and then write all the data.
With sectioning, you can write instructions, data, then more instructions.

The text and data assembler language sections each have four location counters. These
allow you to divide any section into up to four parts. You can specify the location counter
with pseudo-ops. (See "The Location Counter" on page 3-11.)

Notes:

1. The branch instructions only allow branching within a segment, not branching
between segments. (See "Branch Instructions" on page 4-9.)

2. For more information on a.out, including the use of segment registers to locate
information in memory, see AIX Operating System Technical Reference.

The Text Section and Text Segment

The assembler text section holds the instruction and pseudo-op statements that control the
program's execution. By default, the assembler assumes .text 0, but you can explicitly
declare the text section in the assembler source code by using the . text pseudo-op.

The linked text sections of the assembly language file become the text segment of the
executable a.out file.

Addressing and Program Sectioning 3-9

Notes:

1. If the .direct pseudo-op occurs in the source program, the assembler assumes that the
program's text segment will be linked in the lowest 32K of address space. This feature
may help kernel programmers by allowing 16-bit direct addresses to be used for text
section references not covered by . using statements. (See "Special Addresses" on
page 3-7.)

2. If you want your program to include traceback information for debuggers such as sdb,
the text section must end with certain lines of assembler language code. See
"Traceback" on page 6-27 for details.

The Data Section and Data Segment

The data section of an assembler language program holds the data that will become the
object module's initialized data. You declare the data section with the .data pseudo-op.
The .data is typically followed by data alignment pseudo-ops such as .byte and .long.

The linked data sections of the assembly language file become the data segment of the
a.out file.

The Bss Section in the Data Segment

At runtime, the bss (block startup by symbol) section is space reserved for uninitialized
external values. The bss section lies at the end of the data segment. At assembly, the bss
section has space reserved for it, but it contains no values. Therefore, a bss section per se
does not exist in the assembler language source file.

However, you should use the .lcomm pseudo-op to reserve space in the bss section.
Unlike .text and .data, .lcomm is not followed by any instructions or data. The .lcomm
pseudo-op simply tells the assembler to reserve an area.

Information that will be in the bss section is not part of the a.out file. However, .lcomm
does pass information about the bss size via the a.out file's header.

The .comm pseudo-op also affects the bss section. With .comm, you define a common
block with a symbol name. The linker then defines common blocks in the bss section of a
linked program, unless you link in a module that defines the symbol. If you declare a
common storage area with .comm without declaring it as a global label in the same or
another file, the loader allocates memory from the bss section, and uses the largest size
declared.

3-10 Assembler Language Reference

The Location Counter

Each section of an assembler language program has four location counters that assign
storage addresses to your program's statements. As the instructions of a source module
are being assembled, the location counter keeps track of locations in storage. You can use
a dollar sign($) as an operand to refer to the current value of the location counter.

As each statement is read, the assembler increments the location counter in the following
fashion:

1. After an instruction has been assembled, the location counter indicates the next
available instruction. The next available instruction becomes the current instruction.

2. If the statement containing the current instruction has a label, the assembler gives this
label the current value of the location counter.

3. Before assembling the current instruction, the assembler checks the boundary
alignment for that instruction. If the instruction needs to be aligned, the assembler
increments the location counter to indicate the proper boundary.

4. While the instruction is being assembled, the value contained in the location counter
does not change. This value now indicates the location of the current data after
boundary alignment.

5. After assembling the instruction, the assembler increments the location counter by the
length of the assembled data. The location counter now holds the address of the next
available location.

By default, the assembler assumes location counter 0 for each section. However, you can
indicate the location counter you wish to use with the . text, .data, or .lcomm pseudo-ops
for the text, data, and bss sections, respectively.

Addressing and Program Sectioning 3-11

3-12 Assembler Language Reference

Chapter 4. 032 Microprocessor Instructions

032 Microprocessor Instructions 4-1

CONTENTS
About This Chapter . 4-3
Introduction to Instructions . 4-4
Categories of Instructions . 4-5

Storage Access Instructions . 4-6
Address Computation Instructions . 4-8
Branch Instructions . 4-9
Trap Instructions . 4-15
Move and Insert Instructions . 4-15
Arithmetic Instructions . 4-16
Logical Operation Instructions . 4-18
Shift Instructions . 4-19
System Control Register Manipulation Instructions . 4-20
Processor I/O Instructions . 4-20
System Control Instructions . 4-21

Notational Conventions for Instructions . 4-22
Instruction Formats . 4-26
Directory of Instructions . 4-28

4-2 Assembler Language Reference

About This Chapter

The first part of this chapter defines the 032 Microprocessor instructions, shows the
categories and formats of instructions, and explains the notational conventions used to
describe instructions.

The second part of this chapter lists the instructions in alphabetical order by mnemonic.
For each instruction, both the mnemonic and op code or op codes are shown.

If you already know the mnemonic of the instruction, just find the appropriate page in the
instruction directory. If you don't know the name of the instruction you want, but you
know what the instruction should do, then look up the instruction name by its category.
(See "Categories of Instructions" on page 4-5.)

Notes:

1. The extended branch instructions are not listed in alphabetical order. Instead, they
are listed under the branch instruction that has the same op code. For example, beq is
listed under bb.

2. Appendix A lists all the instructions by op code and by mnemonic.

032 Microprocessor Instructions 4-3

Introduction to Instructions

Instructions are statements that the assembler translates into a machine-readable form.
The assembler converts mnemonics to op codes, and operands to sequences of binary
numbers, so that the processor can perform some operation. Do not confuse assembler
instructions with pseudo-ops. (See Chapter 5.)

In RT PC 032 Microprocessor assembler language, some mnemonics have a single
associated op code. Other mnemonics have two op codes. In this case, the assembler
examines the instruction's immediate data and chooses the appropriate op code.

Notes:

1. Do not use an unassigned op code. If the processor encounters one of these reserved op
codes, a program check error occurs. For more information on program checks, see
Virtual Resource Manager Technical Reference.

2. The processor does not support dynamic instruction modification. Any attempt by
software to modify an instruction may result in unpredictable operation.

4-4 Assembler Language Reference

Categories of Instructions

Instructions are grouped into 11 classes:

• Storage access
• Address computation
• Branching
• Traps
• Moves and inserts
• Arithmetic
• Logical operations
• Shifts
• System Control Register manipulation
• Processor I/ 0
• System control.

These categories of instructions are discussed on the next few pages.

The system control instructions and some of the system control register instructions are
privileged. Except as noted, you can use all the other instructions in unprivileged state.

032 Microprocessor Instructions 4-5

Storage Access Instructions

The storage access instructions do not affect the Condition Status register. You can use
all these instructions in unprivileged state.

I Load
le Load Character
lh Load Half
Iha Load Half Algebraic
Im Load Multiple
st Store
stc Store Character
sth Store Half
stm Store Multiple
tsh Test and Set Half

Storage accesses for halfwords ignore the low-order bit of the effective address. Storage
accesses for words ignore the low-order two bits of the effective address. For example,
suppose memory holds the following contents.

Hex Address Hex Contents

@4000 0000 77

@4000 0001 88

@4000 0002 99

@4000 0003 AA

@4000 0004 BB

@4000 0005 cc
@4000 0006 DD
Note that addresses 4000 0000 and 4000 0004 are word boundaries. If you issue the
instructions

cau 14, Ox4000(0) # Rl4 = Ox4000 0000
1 15, 2(14) # load a word from Ox4000 0002

effective address is Ox4000 0002
then the address used is Ox4000 0000. The displacement of 2 is ignored, and GPR 15 is
loaded with the hex value 778899AA.

With some instructions (including the long forms of instructions with short and long
forms), you specify a 16-bit displacement. This displacement is sign-extended at runtime,
then added to the contents of a base register to form an effective address.

4-6 Assembler Language Reference

Note: Specifying 0 as a base register tells the assembler to use the value 0 as a base; the
assembler does not use the contents of register 0.

For the loads and stores, you can implicitly or explicitly specify a base register. (See
Chapter 3.) The displacement D2 can be absolute, relocatable, or external. If the label
used in the D2 field is relocatable but is not covered by a .using, the address of the label
must be below 32K. If you want to implicitly specify a base register with .using, the
displacement must be a label or an expression containing a label. (See the discussion of
D2 on page 4-24.)

It is possible to generate addresses that are reserved for system functions and are protected
from access in the processor's unprivileged state. Attempting to access such an address
causes a program check. See "Special Addresses" on page 3-7; also see Virtual Resource
Manager Technical Reference for an explanation of the Program Check Status Word.

The only instructions that reference memory are the load and store instructions. Because
the 032 Microprocessor is a pipelined processor, other instructions that manipulate data in
registers may run at the same time as the load or store.

The 032 Microprocessor waits after each load or store to be sure it is successful before
proceeding to the next instruction. If a load or store fails (for example, because of a page
fault or data address exception), the IAR for the failing operation is saved. The saved IAR
thus contains the address of the failing instruction. After software handles the exception,
032 Microprocessor re-executes the load or store instruction.

If a data address exception occurs for the Load Multiple (Im) or Store Multiple (stm)
instructions, however, several loads or stores can occur before the exception is detected.
The processor does not restore GPRs or storage to the state that existed before the
exception occurred. However, if Im causes an exception, the Im base address register is
restored to its original value so that the lm instruction can be restarted.

APC does not wait after any load or store to determine whether it has,been successful. If a
load or store operation fails on APC, several subsequent instructions may execute before
APC detects the failure. Therefore, APC must provide hardware facilities-specifically,
SCR 9 and an extra bit in the lps instruction-to restart failing operations. See Hardware
Technical Reference for details.

Note that the processor is designed to optimize for full word operations. For example, the
le, lh, and 1 instructions all take up the same amount of machine time.

For the following storage access instructions, the assembler chooses a short or a long form:

1
le

Iha
st

stc
sth

The long forms have immediate data (the D2 operand) 16 bits long. This immediate data
represents a positive or negative displacement. Short forms have immediate data 4 bits
long, representing a positive displacement.

032 Microprocessor Instructions 4-7

When you specify the immediate data, the assembler automatically chooses the short form
if the value of the displacement can be resolved during the assembler's first pass, and

• For I and st, D2 < 64 and D2 is evenly divisible by 4
• For Iha and sth, D2 < 32 and D2 is evenly divisible by 2
• For le and stc, D2 < 16.

Otherwise, the assembler chooses the long form of the instruction.

The lh instruction also has a long and a short form. In this case, the assembler chooses
the short form if the D2 operand is specified as zero. Otherwise, the assembler chooses the
long form.

For more information about storage on RT PC, see Chapter 1. Also see the instructions in
"Address Com pu ta ti on Instructions."

Address Computation Instructions

You can use all address computation instructions in unprivileged state.

ca16 Compute Address 16-Bit
cal Compute Address Lower Half
cal16 Compute Address Lower Half 16-Bit
cas Compute Address Short
cau Compute Address Upper Half
inc Increment
dee Decrement
lis Load Immediate Short
Ir Load Register

The address computation instructions operate only on the contents of the general purpose
registers. No storage references for operands occur. The resultant values are not
inspected for address exceptions.

The contents of the Condition Status register are not changed by any of these instructions.

You can use some of these instructions for arithmetic, as well as for address computation.
If you want to do arithmetic and set Condition Status bits, though, you should use the
arithmetic instructions shown in "Arithmetic Instructions" on page 4-16.

4-8 Assembler Language Reference

Branch Instructions

You can use all branch instructions in unprivileged state.

b[x]
br[x]
bala[x]
bali[x]
balr[x]
bb[x]
bbr[x]
bcc[x]
bccr[x]
bcs[x]
bcsr[x]
beq[x]
beqr[x]
bge[x]
bger[x]
bgt[x]
bgtr[x]
ble[x]
bler[x]
blt[x]
bltr[x]
bnb[x]
bnbr[x]
bne[x]
bner[x]
btc[x]
btcr[x]
bts[x]
btsr[x]
bvc[x]
bvcr[x]
bvs[x]
bvsr[x]

Branch [with Execute]
Branch Using Register [with Execute]
Branch and Link Absolute [with Execute]
Branch and Link Immediate [with Execute]
Branch and Link Using Register [with Execute]
Branch on Condition Bit Immediate [with Execute]
Branch on Condition Bit Using Register [with Execute]
Branch on Carry Bit Clear [with Execute]
Branch on Carry Bit Clear Using Register [with Execute]
Branch on Carry Bit Set [with Execute]
Branch on Carry Bit Set Using Register [with Execute]
Branch on Equal [with Execute]
Branch on Equal Using Register [with Execute]
Branch on Greater Than or Equal [with Execute]
Branch on Greater Than or Equal Using Register [with Execute]
Branch on Greater Than [with Execute]
Branch on Greater Than Using Register [with Execute]
Branch on Less Than or Equal [with Execute]
Branch on Less Than or Equal Using Register [with Execute]
Branch on Less Than [with Execute]
Branch on Less Than Using Register [with Execute]
Branch on Not Condition Bit Immediate [with Execute]
Branch on Not Condition Bit Immediate Using Register [with Execute]
Branch on Not Equal [with Execute]
Branch on Not Equal Using Register [with Execute]
Branch on Test Bit Clear [with Execute]
Branch on Test Bit Clear Using Register [with Execute]
Branch on Test Bit Set [with Execute]
Branch on Test Bit Set Using Register [with Execute]
Branch on Overflow Clear [with Execute]
Branch on Overflow Clear Using Register [with Execute]
Branch on Overflow Set [with Execute]
Branch on Overflow Set Using Register [with Execute]

The branch instructions change the normal sequential execution of instructions. These
instructions use different target addressing forms to provide subroutine linkage, decision
making, and loop control.

The assembler allows branching within an assembler language section, but not between
assembler language sections. In other words, the address of a branch target instruction
may be external (outside the current file) or internal (within the current file) at assembly
time. After linking, though, the branch reference must resolve to a symbol in the same
segment as the branching instruction.

032 Microprocessor Instructions 4-9

The . using and .drop pseudo-ops do not affect the branch instructions. Some branch
instructions test bits in the Condition Status register, but branch instructions never set or
clear any of these CS bits.

Kinds of Addresses in Branches
The branch instructions have three different kinds of branch target addresses: absolute
immediate, absolute, and relative immediate.

• The absolute immediate branch instructions are bala and balax. These instructions
have a 24-bit immediate operand. This operand, extended on the left with eight binary
zeroes and with its low-order bit forced to zero, becomes the branch target address.
These instructions are considered to be absolute because they get the branch value
from immediate data, not from the Instruction Address Register.

• The absolute branch instructions are bbr[x], bnbr[x], extended branch instructions
with these op codes, and balr[x]. They have a register as an operand. The contents of
this register become the branch target address. These instructions are considered to be
absolute because their target address is determined by a specified register, not by the
Instruction Address Register. These instructions are relocatable.

• Relative immediate instructions are bb[x], bnb[x], the extended branch instructions
with these op codes, and bali[x]. These instructions cause branching to occur relative
to the Instruction Address Register, that is, relative to the address of the branch
instruction itself. Relative immediate instructions allow an 8-bit or a 20-bit halfword
offset between the branch instruction and the branch destination.

The relative immediate branch instructions have an Al operand which must be a
symbol. Al denotes a label which is at the address of the branch target instruction.
When the instruction is assembled, the address of the branch instruction is subtracted
from the address of Al and then algebraically shifted right one bit. The result is a
number which represents the difference in halfwords between the addresses of the
branch instruction and the target instruction. The assembler treats this number as if it
were immediate data (an I field). A positive I denotes a forward branch; a negative I
denotes a backwards branch.

Note that the target of a relative immediate branch can be externally defined. In fact,
the assembler does not check to see whether the target is defined at all. If you forget
to define the target, the assembler will not give you any error messages.

See also "Addressing" on page 3-4.

4-10 Assembler Language Reference

Branch with Execute Instructions
Every branch instruction has a corresponding branch with execute instruction. The
instruction immediately following a branch with execute is called the subject instruction.
It is executed regardless of the branch decision, as if it preceded the branch. Using branch
with execute instructions may enhance performance, since the subject instruction will be
executed while the branch instruction is being processed.

The assembler assumes that the subject instruction is 32 bits long. If the subject
instruction is 16 bits long, the assembler automatically inserts a two-byte nop (No
Operation instruction), so that the subject is padded to 32 bits.

There are certain restrictions on the branch with execute instructions:

• The subject instruction cannot affect the branch decision. Any Condition Status
changes caused by the subject instruction occur after the branch decision has been
made.

• A branch with execute instruction and its subject instruction are considered to be a
single instruction. Thus, interrupts are not honored between the execution of a branch
with execute instruction and the execution of its subject instruction.

• Certain instructions are not allowed to be the subject of a branch with execute
instruction. Since the branch with execute instructions change the normal sequential
execution of instructions, the subject instruction cannot also change the instruction
sequencing. (If it does, the processor may be put in an unpredictable state.) Therefore,
lps, svc, and all branch and trap instructions cannot be subject instructions.

In addition, for branch and link with execute instructions, the register containing the
return address is available to the subject instruction. Therefore, the subject
instruction must be constructed so that the return address is not unintentionally
modified.

Subroutine Linkage (Branch and Link)
Subroutine linkage is provided by the branch and link instructions bali[x], bala[x], and
balr[x]. These instructions cause a branch to a new instruction sequence but preserve a
return address in an implicitly or explicitly designated general purpose register.

For the nonexecute forms of the instructions, the return address is the updated instruction
address, which is the address of the halfword immediately following the branch and link
instruction in storage.

For the execute forms of the instructions, the return address is the address of the halfword
that is four bytes beyond the end of the branch and link with execute instruction (that is,
the updated instruction address plus four). This allows four bytes following the branch
and link with execute for the subject instruction. If the subject instruction requires only
two bytes, the assembler automatically inserts a two-byte nop (No Operation instruction).

032 Microprocessor Instructions 4-11

Conditional Branches
Decision making and loop control are provided by the conditional branch instructions
bb[x], bbr[x], bnb[x], bnbr[x], and other branch instructions with these op codes.

For conditional branch instructions bb[x], bbr[x], bnb[x], and bnbr[x] only, the branch
decision is based on any specified state of the rightmost eight bits (bits 24 through 31) of
the Condition Status (CS). In this case, the value of the 11 immediate data operand
specifies the CS bit that is used for the branch decision. CS bit 24 is specified by an 11
value of O; CS bit 25 is specified by an 11 value of 1; and so forth. For the long forms of
these instructions, however, the object code representation of the CS bit is different from
the value specified with the 11 operand. Figure 4-1 shows the correspondence of CS bits to
the assembler language source code and object code representations.

CS Bit# Name Bit# Used in Bit # in Object Bit # in Object
In SCR 15 of Bit Branches Code (Long Form) Code (Short Form,

(11 Operand) bb and bnb Only)

24 PZ 0 8 0

25 LT 1 9 1

26 EQ 2 10 2

27 GT 3 11 3

28 co 4 12 4

29 -- -- -- --
30 ov 6 14 6

31 TB 7 15 7

Figure 4-1. Correspondence of CS bits to Branch Instructions

Extended Branch Instructions
Extended branch instructions are conditional branch instructions with the same op codes
as bb[x], bbr[x], bnb[x], and bnbr[x]. They implicitly designate the bit in the Condition
Status register that should be tested. For example, beq A branches to A if the EQ bit in
the CS register is one; this is equivalent to bb 2,A.

The directory later in this chapter does not list the extended branches in alphabetic order.
Instead, each extended branch instruction is discussed along with its equivalent explicit
branch instruction. For example, the extended branch instruction beq has the same op
code as bb; the directory discusses beq at the bb instruction.

Figure 4-2 shows the relationships between the bb and bnb instructions and the extended
branch instructions.

4-12 Assembler Language Reference

Name Equivalent Name Equivalent

b bnb 0,
bx bnbx 0,
hr bnbr 0,
brx bnbrx 0,

blt bb 1, bge bnb 1,
bltx bbx 1, bgex bnbx 1,
bltr bbr 1, bger bnbr 1,
bltrx bbrx 1, bgerx bnbrx 1,

beq bb 2, bne bnb 2,
beqx bbx 2, bne bnbx 2,
be qr bbr 2, bner bnbr 2,
beqrx bbrx 2, bnerx bnbrx 2,

hgt bb 3, ble bnb 3,
bgtx bbx 3, bl ex bnbx 3,
bgtr bbr 3, bl er bnbr 3,
bgtrx bbrx 3, blerx bnbrx 3,

bes bb 4, bee bnb 4,
besx bbx 4, be ex bnbx 4,
besr bbr 4, beer bnbr 4,
besrx bbrx 4, bcerx bnbrx 4,

bvs bb 6, bve bnb 6,
bvsx bbx 6, bvex bnbx 6,
bvsr bbr 6, bver bnbr 6,
bvsrx bbrx 6, bverx bnbrx 6,

bts bb 7, bte bnb 7,
btsx bbx 7, btex bnbx 7,
btsr bbr 7, bter bnbr 7,
btsrx bbrx 7, bterx bnbrx 7,

Figure 4-2. Extended Branch Instructions

032 Microprocessor Instructions 4-13

Variable-Length Branch Instructions
For the following branch instructions in the assembler text section, the assembler
automatically chooses a short (2-byte) or long (4-byte) form of the instruction:

b bge bne
bb hgt bte
bee ble bts
bes bit bve
beq bnb bvs

The operand representing the target must be a label, not an expression. The assembler
generates a displacement in halfwords between the address of the branch instruction and
the target address.

The assembler examines the displacement and automatically chooses either the short form
or the long form of the instruction. (The exception is when the assembler has been
instructed to choose long forms only; see the -j flag on page 6-6.)

• The assembler chooses the short form of the instruction if:

- The value of the displacement can be resolved during the assembler's first pass, and
- The binary value of the displacement can be represented in eight bits or fewer.

In this case, the machine instruction will contain a JI field. The short form of a
branch instruction is known internally to the assembler as a jump. You cannot specify
a jump instruction, but the assembler generates jump instructions when your operand
fits into an eight-bit immediate field. This allows a jump range of -127 to + 128
halfwords from the jump instruction.

For most instructions, the processor goes to memory to fetch the op codes and
operands. For some short backward jumps, however, the processor can get instructions
from an instruction prefetch buffer. This fast jump is a performance enhancement for
the APC, since access to the buffer is quicker than access to memory.

The assembler causes a fast jump if one of the following conditions is true:

If the short form of the branch instruction occupies the last half of a word, then the
assembler will fast-jump s 16 bytes backward from the end of the branch
instruction.
If the short form of the branch instruction occupies the first half of a word, then
the assembler will fast-jump s 14 bytes backward from the end of the branch
instruction.

• The assembler chooses the long form of the instruction if the displacement is between 9
and 20 bits long, or if the value of the displacement cannot be determined at the
assembler's first pass. The machine instruction will contain a BI field.

At execution, BI or JI is shifted left one bit, so that the displacement in halfwords becomes
a displacement in bytes.

Note: Branches in the assembler data section are always assembled in the long form.

4-14 Assembler Language Reference

Trap Instructions

You can use all trap instructions in unprivileged state.

tgte Trap if Register Greater Than or Equal
ti Trap on Condition Immediate
tit Trap if Register Less Than

The trap instructions are provided to test for a specified set of conditions. Programmers
may define traps for events that should not occur (for example, an index out of range, or
use of an invalid character).

If the conditions tested by a trap instruction are met, the program trap bit of the Program
Check Status is set to one and a program check occurs. If the tested conditions are not
met, instruction execution continues with the next sequential instruction.

The comparisons are performed on operands that are treated as 32-bit unsigned integers
(logical quantities). The Condition Status is not changed by any of these instructions.

Move and Insert Instructions

You can use all move and insert instructions in unprivileged state.

mc03 Move Character Zero from Three
mc13 Move Character One from Three
mc23 Move Character Two from Three
mc33 Move Character Three from Three
mc30 Move Character Three from Zero
mc31 Move Character Three from One
mc32 Move Character Three from Two
mftb[i] Move From Test Bit [Immediate]
mttb[i] Move To Test Bit [Immediate]

This group of instructions is concerned with the movement of data between general
purpose registers and between a general purpose register and the Test Bit of the Condition
Status. None of these instructions alter the Condition Status unless data is moved into the
test bit.

For mftbi and mttbi, the assembler examines immediate data supplied by the 12 operand.
If the immediate data is less than or equal to decimal 15, the assembler chooses the "upper
half'' form of the instruction. If the immediate data is greater than 15, the assembler
chooses the "lower half'' form of the instruction.

032 Microprocessor Instructions 4-15

Arithmetic Instructions

You can use all arithmetic instructions in unprivileged state.

a[i]
abs
ae[i]
ais
c[i]
cl[i]
d
dee
inc
m
onec
s
se
sf[i]
sis
ex ts
twoc

Add [Immediate]
Absolute
Add Extended [Immediate]
Add Immediate Short
Compare [Immediate]
Compare Logical [Immediate]
Divide Step
Decrement
Increment
Multiply Step
One's Complement
Subtract
Subtract Extended
Subtract From [Immediate]
Subtract Immediate Short
Extend Sign
Two's Complement

The arithmetic operations treat the general purpose registers as 32-bit quantities in two's
complement representation. Except for inc and dee, each of these instructions affects
certain bits in the Condition Status register. However, the bits that are set, and the
manner in which they are set, vary according to the instruction that is executed.

The arithmetic instructions affect the following bits in the Condition Status register:

• The LT Condition Status bit indicates the sign of a result. All the arithmetic
instructions except Multiply Step, Divide Step, and the Compares set the LT bit to one
if the sign bit of the result is one. The arithmetic compare instructions set the LT bit
to one if the algebraic magnitude of a given operand is less than the algebraic
magnitude of the other. The logical compare instructions set the LT bit to one if the
unsigned magnitude of a given operand is less than the unsigned magnitude of the
other. The Multiply Step and Divide Step instructions do not affect this bit.

• The EQ bit is set by all instructions except Multiply Step and Divide Step if the result
is a field of 32 zeroes, or, in the case of the compare instructions, if the two
comparands are equal. The Multiply Step and Divide Step instructions do not affect
this bit.

4-16 Assembler Language Reference

• The GT bit indicates the sign of a non-zero result. All instructions except Multiply
Step, Divide Step, and Compares set the GT bit to one if the sign bit of a non-zero
result is zero. The arithmetic compare instructions set the GT bit if the algebraic
magnitude of a given operand is greater than the algebraic magnitude of the other.
The logical compare instructions set the GT bit to one if the unsigned magnitude of a
given operand is greater than the unsigned magnitude of the other. The Multiply Step
and Divide Step instructions do not affect this bit.

• The CO bit indicates whether a carryout has occurred from bit 0. All instructions
except Compares, Extend Sign, Divide Step, and Multiply Step set CO to one if a
carryout has occurred. The Extend Sign instruction does not affect CO. The Multiply
Step and Divide Step instructions set CO according to certain multiply and divide
conditions. Add operations set CO to one if a carry occurs and to zero if no carry
occurs. Subtract operations set CO to zero if a borrow occurs and to one if no borrow
occurs.

The extended instructions incorporate the state of the CO bit into the result. The
extended add instructions (ae and aei) cause the value of the CO bit to be added to the
sum of the two operands. In the Subtract Extended (se) instruction, the value of the
first operand is added to the ones complement of the second operand, and the value of
the CO bit is added to the result.

• The OV bit indicates arithmetic overflow. All instructions except Extend Sign,
Multiply Step, Divide Step, and Compares set the OV bit to one when the signed result
of an operation cannot be represented by 32 bits. The Extend Sign and Multiply Step
instructions do not affect this bit. The Divide Step instruction sets it according to a
divide condition.

Note: The instructions at "Address Computation Instructions" on page 4-8 may also be
used to do arithmetic. However, these instructions will not set or clear any Condition
Status bits.

032 Microprocessor Instructions 4-17

Logical Operation Instructions

You can use all logical instructions in unprivileged state.

clrb Clear Bit
clz Count Leading Zeroes
n AND
nilo AND Immediate Lower Half Extended Ones
nilz AND Immediate Lower Half Extended Zeroes
niuo AND Immediate Upper Half Extended Ones
niuz AND Immediate Upper Half Extended Zeroes
o OR
oil OR Immediate Lower
oiu OR Immediate Upper
setb Set Bit
x Exclusive OR
xii Exclusive OR Immediate Lower Half
xiu Exclusive OR Immediate Upper Half

The logical operations treat the contents of the general purpose registers as 32-bit
unsigned integers. The exception is the Count Leading Zeroes (clz) instruction, which
examines only the lower half of a register. All logical operations except clz set Condition
Status bits LT, EQ, and GT according to the algebraic value expressed in two's complement
representation. If the result is a negative value, LT is set to one; if it is zero, EQ is set to
one; if it is positive and not zero, GT is set to one. The Condition Status is unaffected by
clz.

For clrb and setb, the assembler examines immediate data supplied by the 12 operand. If
the immediate data is less than or equal to decimal 15, the assembler chooses the "upper
half'' form of the instruction. If the immediate data is greater than 15, the assembler
chooses the "lower half'' form of the instruction.

4-18 Assembler Language Reference

Shift Instructions

You can use all shift instructions in unprivileged state.

sar[i]
sl[i]
slp[i]
sr[i]
srp[i]

Shift Algebraic Right [Immediate]
Shift Left [Immediate]
Shift Left Paired [Immediate]
Shift Right [Immediate]
Shift Right Paired [Immediate]

Shift instructions operate on the content of a register or a register half. Immediate shifts
specify a shift amount of 0 to 31 bits to the left or right based on the value of the
immediate field. For these instructions, a shift amount greater than 31 bits results in a
32-bit shift. The non-immediate, indirect shifts specify a shift amount of 0 to 32 bits to the
left or right based on the low-order six bits of a register.

All shifts set the Condition Status bits LT, EQ, and GT according to the algebraic value in
the register after the shift is completed. All instructions except the Shift Algebraic Right
instructions supply zeroes to the vacated bit positions.

The slp[i] and srp[i] instructions cause results to be placed in the pair of a designated
register.

The immediate shift instructions have small and large forms:

sari
sli

slpi
sri

srpi

For these instructions, the assembler examines immediate data supplied by the 12 operand.
If the immediate data is less than or equal to decimal 15, the assembler chooses the "small"
form of the instruction. If the immediate data is greater than 15, the assembler chooses the
"large" form of the instruction.

032 Microprocessor Instructions 4-19

System Control Register Manipulation Instructions

The System Control Register instructions are privileged instructions. In privileged state,
they can be used to change the value of any valid SCR. In unprivileged state, you can use
the System Control Register instructions to change the Multiplier Quotient and Condition
Status registers only.

mfs Move from System Control Register
mts Move to System Control Register
clrcb Clear Bit in the Condition Status Register
setcb Set Bit in the Condition Status Register

The System Control Register instructions provide a way to change data in the SCRs. All
SCRs except the ICS (SCR 14) are dynamically changed by the processor. Therefore, if you
put data into an SCR and then read the SCR, you will not necessarily get the same data
that you put in. Also, if you use these instructions to modify reserved bits, you will get
unpredictable results.

Processor I/0 Instructions

Warning: Do not use these instructions in unprivileged state. Use of
these instructions in unprivileged state will cause the machine to receive a
hardware interrupt without precise indication of the address of the
off ending instruction.
ior Input/Output Read
iow Input/Output Write

Processor I/O (PIO) instructions are used to transfer data between the general purpose
registers and system components.

The PIO instructions are themselves non-privileged. However, all devices accessible
through these instructions are privileged, and therefore are only accessible from within the
Virtual Resource Manager, if it exists. If you have the AIX Operating System, you should
use AIX Operating System kernel calls to perform I/O functions in unprivileged state.

For more information, see Hardware Technical Reference.

4-20 Assembler Language Reference

System Control Instructions

Warning: Do not use these instructions in unprivileged state.
lps Load Program Status
svc Supervisor Call
wait Wait

These instructions control the execution state of the virtual machine (if it exists) by
causing a trap to the Virtual Resource Manager (if it exists) or to the operating system.

For information about virtual machines, see Virtual Resource Manager Technical
Reference.

032 Microprocessor Instructions 4-21

Notational Conventions for Instructions

The chart below shows the notational conventions used to describe the instructions.
"Source notation" shows the kinds of operands you write into source code. "Object
notation" shows what the assembler puts into object code. If the source notation is the
same as the object notation, then the value that you write into the assembler source code
equals the value assembled into the object code.

All operations occur at runtime, unless otherwise noted.

Source Notation Object Notation Meaning

Rl Rl This is a general purpose register used as the first
operand. Rl must be an integer, where OsRls15. Rl
can be an expression; for simplicity's sake, the example
instructions show Rl as a constant.

R2 R2 This is a general purpose register used as the second
operand. R2 must be an integer, where OsR2s 15. R2
can be an expression; for simplicity's sake, the example
instructions show R2 as a constant.

R3 R3 This is a general purpose register used as the third
operand. R3 must be an integer, where 0sR3s15. R3
can be an expression; for simplicity's sake, the example
instructions show R3 as a constant.

SCRl SCRl This is a System Control Register, always used as the
first operand in certain instructions. SCRl is an integer.
In general, 0sSCRls15 , but some instructions further
restrict the value of SCRl.

4-22 Assembler Language Reference

Source Notation Object Notation Meaning

I1 UI for bala[x) This is twenty-four bits of immediate data, used as the
first operand in a bala or balax instruction. In this
case, I1 represents an absolute, non-relocatable address,
so that UI =IL

I2

13

UI can also be generated by an Al operand.

IE for branches This is four bits of immediate data used as the first
operand in some conditional branch instructions. I1 is
the CS bit that should be tested. IE is the assembler's
notation for this bit, where IE = I1+8. (See "Extended
Branch Instructions" on page 4-12.)

I1 for svc and lps For svc, I1 is 16 bits of immediate data used as the first
operand. For lps, I1 is one bit of immediate data used as
the first operand.

I2

IN

I3

This is immediate data used as the second operand. I2
can be an arithmetic constant or a symbol. The length of
I2 depends on the instruction.

For clrb, mftbi, mttbr, setb only, OsI2s31, and

• if I2 s 15, then IN = I2 (instruction affects upper
half of register)

• if I2 > 15, then IN = I2-16 (instruction affects
lower half of register).

For sari, sri, srpi, sli, slpi only, 0 s I2 s 31, and

• if I2 s 15, then IN = I2 (small shift)
• if I2 > 15, then IN = I2-16 (large shift).

This is immediate data used as the third operand. I3 can
be an arithmetic constant or a symbol. The length of I3
depends on the instruction.

032 Microprocessor Instructions 4-23

Source Notation Object Notation Meaning

Al This is a label used as the first operand in some branch
instructions. Al is the address of the target instruction
(that is, the branch destination). The assembler
subtracts the address of Al from the address of the
branch instruction and divides by two to get a
displacement in halfwords.

JI The assembler chooses the short form of the branch
instruction if the number of halfwords displacement fits
in eight or fewer bits, and if it can be determined in the
assembler's first pass. The assembler places the number
of halfwords displacement into the JI field of the object
code. The relative displacement is thus embedded in the
object code just as if it were immediate data.

BI The assembler chooses the long form of the branch
instruction if the number of halfwords displacement fits
in nine to twenty bits, or if it cannot be determined at
the assembler's first pass. The assembler places the
number of halfwords displacement into the BI field of the
object code. The relative displacement is thus embedded
in the object code just as if it were immediate data.

UI for bala[x] This is a label representing an absolute branch
destination, used as the only operand in a bala or balax
instruction. The assembler puts the lowest 24 bits of this
address into the UI field of the object code.

UI can also be generated by an I1 operand.

(Rl) or (R2) or varies This is the content of the designated register. When you
(R3) type this operand, you type the parentheses as well. You

may omit this operand if the register is currently
specified by a . using pseudo-op. (If the register is
covered by a .using, you can override the .using by
explicitly specifying another register.)

O/(R2) varies This means you should either type a register number in
parentheses, or omit the operand altogether. If R2 is not
0, this indicates the content of register R2. If R2 is 0, or
if R2 is not specified at all, this indicates that the
operand is omitted. The assembler uses the value 0 for a
base.

4-24 Assembler Language Reference

Source Notation Object Notation Meaning
D2(R2) varies

11 varies

@ none

This is an explicit based address. R2 is a base register
containing a base address, and D2 is the displacement
from the base address. At runtime, D2 is added to the
contents of R2 to form an effective address.

D2 has a value that fits into 4 bits or 16 bits, depending
on the instruction. D2 can be immediate data or a label.
In general, D2 can be an external, relocatable, or
absolute expression, but some instructions require D2 to
be a certain type of expression.

D2 can be an arithmetic constant only if you are not
covering D2 with a .using. If you want to use .using,
D2 must be a label or an expression involving a label.

If the label representing a D2 operand is covered by a
.using R2, you do not have to specify the (R2) part of the
operand. The assembler will fill in the R2 value for you.

D2 is assembled into the object code as a displacement.
If D2 is a relocatable expression, the value of D2 could
change at load time.

For certain instructions, you can use the .xaddr
pseudo-op to get displacements larger than 15 bits. See
.xaddr in Chapter 5.

This is a concatenation of the fields specified on either
side of the bars. For example, 4 zeroes// 12 means a value
of 000012. 12//4 zeroes means a value of 120000.

This is the hex address of an instruction. In the
examples, an instruction's address is shown to the left of
the instruction. You will not see this address in your
program, and the address is not part of the instruction.
These sample addresses are shown only to help you
understand where branches go.

032 Microprocessor Instructions 4-25

Instruction Formats

The seven instruction formats are shown in Figure 4-3.

JI Format

OP I IE I JI
0 5 8 15

X Format

I OP I Rl R2 R3
0 4 8 12 15

D-Short Format

I OP I D2 Rl R2
0 4 8 12 15

R Format

OP Rl R2
0 8 12 15

BI Format

I OP IE BI I
0 8 12 31

BA Format

OP UI
0 8 31

D Format

OP Rl R2 D2 or I2 or I3
0 8 12 16 31

Figure 4-3. Instruction Formats

4-26 Assembler Language Reference

As Figure 4-4 shows, instructions are either two or four bytes in length. The first four,
five, or eight bits of an instruction are referred to as the op code.

Length of Length of
Format Op Code Instruction

JI 5 bits 2 bytes

x 4 bits 2 bytes

D-short 4 bits 2 bytes

R 8 bits 2 bytes

BI 8 bits 4 bytes

BA 8 bits 4 bytes

D 8 bits 4 bytes

Figure 4-4. Summary of Instruction Formats

For X, D-Short, and D format instructions that refer to main storage or system components,
the address is calculated according to the following formulas:

X Format (R2) + O/(R3)

D-Short Format O/(R2) + 28 zeroes/ /D2
O/(R2) + 27 zeroes//D2//1 zero
O/(R2) + 26 zeroes//D2//2 zeroes

D Format O/(R2) + 16 zeroes//13
O/(R2) + 16 zeroes//D2
O/(R2) + Sign-Extended I3
O/(R2) + Sign-Extended D2

032 Microprocessor Instructions 4-27

Directory of Instructions

This directory lists the instructions in alphabetic order by mnemonic. You should use this
directory if you know the mnemonic of the instruction you need. If you do not know the
name of the instruction you need, refer to "Categories of Instructions" on page 4-5.

The directory entry for each instruction includes a purpose, format, and example. Some
directory entries also have remarks about the instruction.

Notes:

1. The Format section of each directory entry does not show labels being used with
instructions. However, programmers may place a label or labels in front of any
instruction.

2. Many example instructions assume that a register has a certain value. Also assume
that this value does not change for the rest of the example, unless otherwise noted.

3. All 32-bit hex values are shown with a space between halfwords. This space does not
represent the way data is stored in registers or in memory. For example, in
Ox0123 4567, the space between hex digits 3 and 4 is shown only to make the number
easier to read.

4. All the mnemonics are listed in alphabetic order except for the extended branches.
Extended branch instructions are discussed at their parent instruction. For example,
the bvs extended branch is discussed at the bb mnemonic.

4-28 Assembler Language Reference

Add a

Purpose: The contents of registers Rl and R2 are added. The result is placed into register Rl.

Format: a Rl,R2

El Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, GT, CO and OV are affected.

Example:

assume GPR 4 holds Ox9000 3000
assume GPR 10 holds Ox8000 7000

a 4, 10
now GPR 4 holds OxlOOO AOOO
OV, CO, and GT bits are set to 1

See Also: "Arithmetic Instructions" on page 4-16

032 Microprocessor Instructions 4-29

abs Absolute

Purpose: The content of register Rl is replaced by the absolute value of the content of register
R2.

Format: abs Rl,R2

0

Remarks:

Examples:

EO Rl R2
8 12 15

• Condition Status bits LT, EQ, GT, CO and OV are affected. Normally, only
Condition Status bits EQ or GT are set to one according to the result; the remaining
affected bi ts are set to zero.

• If register R2 contains the maximum negative number for which there is no
equivalent positive number (-231), then the content of register Rl is set equal to the
content of register R2, and the Condition Status bits LT and OV are set to one.

assume GPR 10 holds Ox7000 3000
abs 4,10

now GPR 4 holds Ox7000 3000
GT bit is set to 1

assume GPR 6 holds OxFFFF FFFF
abs 5,6

now GPR 5 holds OxOOOO 0001
GT bit is set to 1

See Also: "Arithmetic Instructions" on page 4-16

4-30 Assembler Language Reference

Add Extended ae

Purpose: The content of register Rl, the content of register R2, and the value of Condition Status
bit CO are summed. The result is placed into register Rl.

Format: ae Rl,R2

Fl IU R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, GT, OV, and CO are affected. If 32 bits are not sufficient
to hold the signed sum of the two GPRs and CS bit CO, then CS bit OV is set. This
simulates a carry-over out of the high-order bit and allows software to support multiple
precision addition by testing bit OV.

Examples:

assume bit CO is on

assume GPR 4 holds OxlOOO 0400
assume GPR 10 holds OxlOOO 6008

ae 4, 10
now GPR 4 holds Ox2000 6409
GT bit is set to one

assume GPR 6 holds OxlOOO 0400
assume GPR 10 holds OxEFFF FFFF

ae 6,10
now GPR 6 holds OxOOOO 0400
GT and CO bits are set to one

See Also: "Arithmetic Instructions" on page 4-16

032 Microprocessor Instructions 4-31

aei Add Extended Immediate

Purpose: The field l3 is sign extended. The sign-extended 13, the content of register R2, and the
value of Condition Status bit CO are then summed. The result is placed in register Rl.

Format: aei Rl,R2,l3

Dl Rl R2 l3
0 8 12 16 31

Remarks:

• Condition Status bits LT, EQ, GT, CO, and OV are affected.

Examples:

• This allows multiple precision addition.

assume GPR 4 holds OxOOOO 0332
assume CS bit CO is on

aei 3,4,0x4E

GPR 3 now holds OxOOOO 0381
GT bit is set to one

aei 3,4,0xCEOO

sign-extended OxCEOO is OxFFFF CEOO
GPR 3 now holds OxFFFF 0133
LT bit is set to one

See Also: "Arithmetic Instructions" on page 4-16

4-32 Assembler Language Reference-

Add Immediate

Purpose: The field I3 is sign extended, then added to the content of register R2. The result is
placed in register Rl.

Format: ai Rl,R2,I3

Cl Rl R2 13
0 8 12 16 31

Remarks: Condition Status bits LT, EQ, GT, OV and CO are affected. Bit CO turns on if the
sign-extended I3 plus the content of register R2 results in a carry out of bit zero.

Example:

assume GPR 10 holds OxOOOO 2346
ai 9,10,0xFFFF

sign-extended 13 becomes OxFFFF FFFF
GPR 9 now holds OxOOOO 2345
GT and CO bits are set to one

See Also: "Arithmetic Instructions" on page 4-16

ai

032 Microprocessor Instructions 4-33

ais Add Immediate Short

Purpose: 12 is extended on the left with 28 zeroes, then added to the content of register Rl. The
result is placed in register Rl.

Format: ais Rl,12

Remarks:

Examples:

90 Rl 12
0 8 12 15

• 12 must have a value between decimal 0 and 15 inclusive.

• Condition Status bits LT, EQ, GT, OV and CO are affected.

assume GPR 4 holds OxllOO 44CC
ais 4,0xE

GPR 4 now holds Oxl10044DA
GT bit is set to one

assume GPR 5 holds OxFFFF FFFC
ais 5,6

GPR 5 now holds OxOOOO 0002
GT and CO bits are set to one

See Also: "Arithmetic Instructions" on page 4-16

4-34 Assembler Language Reference

Branch and Link Absolute bala

Purpose: The content of GPR 15 is replaced by the updated instruction address. The updated
instruction address is replaced by eight zeroes//UI, with its rightmost bit forced to zero.

If the operand is 24-bit immediate data (Il), UI equals Il. If the operand is a label (Al),
UI is the low-order 24 bits of the address of Al.

Format: bala Al or bala I1

Remarks:

BA UI
0 8 31

• If immediate data is used as an operand, the instruction will not be relocatable.

• This instruction may be useful to kernel programmers who want to access the lowest
32K of memory. Chapter 3 lists invalid storage locations (invalid targets of a bala).
Chapter 5 discusses the .direct pseudo-op, which allows direct addressing.

032 Microprocessor Instructions 4-35

Examples:

Example 1

Example 2

@1000 5000 bala Ox004501
GPR 15 now holds OxlOOO 5004
updated IAR now holds OxOOOO 4500

@1000 5004 back:

@0000 4500 here:

@2000 5000 bala here
GPR 15 now holds OxlOOO 5004
updated IAR now holds OxOOOO 4500

@2000 5004 return:

See Also: "Branch Instructions" on page 4-9

4-36 Assembler Language Reference

Branch and Link Absolute with Execute balax

Purpose: The content of GPR 15 is replaced by the updated instruction address incremented by
four. The updated instruction address is replaced by eight zeroes/ /UI with its rightmost
bit forced to zero. The instruction immediately following the branch instruction is
executed before the target instruction is executed.

Format:

Remarks:

Example:

If the operand is 24-bit immediate data (Il), UI equals 11. If the operand is a label (Al),
UI is the low-order 24 bits of the address of Al.

balax Al or balax I1

SB UI
0 8 31

• If immediate data is used as an operand, the instruction will not be relocatable.

• This instruction may be useful to kernel programmers who want to access the lowest
32K of memory. Chapter 3 lists invalid storage locations (invalid targets of a balax).
Chapter 5 discusses the .direct pseudo-op, which allows direct addressing.

@1000 5000
@1000 5004

@1000 5008

balax Ox004501
first: ais 6,7

this instruction executes first,
then IAR is updated to OxOOOO 4500
GPR 15 now contains OxlOOO 5008
instruction at @0000 4500 executes next

back:

See Also: "Branch Instructions" on page 4-9

032 Microprocessor Instructions 4-37

bali Branch and Link Immediate

Purpose: The content of register Rl is replaced by the updated instruction address. The
assembler subtracts the address of the branch instruction from the address of A2. The
assembler then divides the result by two to form BI, the displacement in halfwords. At
execution, BI is sign extended and shifted left one bit to form the displacement in bytes.
This byte displacement is added to the address of the branch instruction. The result
then replaces the updated instruction address.

Format: bali Rl,A2

SC
0 8

Example:

@1000 5000

@1000 5004

@1000 5060

Rl BI
12

here: bali 15,there
GPR 15 holds OxlOOO 5004
BI is Ox30
updated IAR now OxlOOO 5060
branch occurs to there
back:

there:

See Also: "Branch Instructions" on page 4-9

4-38 Assembler Language Reference

31

Branch and Link Immediate with Execute balix

Purpose: The instruction immediately following the branch instruction is executed.

Format:

Example:

The content of register Rl is replaced by the updated instruction address incremented by
four. The assembler subtracts the address of the branch instruction from the address of
A2. The assembler then divides the result by two to obtain BI, the displacement in
halfwords. At execution, BI is sign extended and shifted left one bit to form the
displacement in bytes. This byte displacement is added to the branch instruction
address. The result then replaces the updated instruction address.

balix Rl,A2

SD
0

@1000 5000

@1000 5004

@1000 5008

@1000 5060

Rl BI
8 12

here: balix 15,there
BI is Ox30
updated IAR now holds OxlOOO 5060

lis 5,0xF
this executes
GPR 15 holds OxlOOO 5008
now branch occurs to there
back:

there:

31

See Also: "Branch Instructions" on page 4-9

032 Microprocessor Instructions 4-39

hair Branch and Link Using Register

Purpose: The content of register Rl is replaced by the updated instruction address. The updated
instruction address is replaced by the content of register R2 with the rightmost bit
forced to zero.

Format: balr Rl,R2

EC
0 8

Example:

@1080 0000

@1080 0004

@1080 0100

Rl R2
12 15

assume GPR 12 holds Oxl080 0100
here: balr 5,12
GPR 5 now holds Oxl080 0004
IAR now holds Oxl080 0100
branch occurs to there
back:

there:

See Also: "Branch Instructions" on page 4-9

4-40 Assembler Language Reference

Branch and Link Using Register with Execute balrx

Purpose: The instruction immediately following the branch instruction is executed.

The content of register Rl is replaced by the updated instruction address incremented by
four. The updated instruction address is replaced by the content of register R2 with the
rightmost bit forced to zero.

Format: balrx Rl,R2

ED Rl R2
0 8 12 15

Example:

assume GPR 12 holds Ox1080 0100
@1080 0000 here: balrx 5,12
@1080 0004 lis 6,0xF

the lis executes
GPR 5 now holds @1080 0008
IAR now holds Oxl080 0100
branch occurs to there

@1080 0008 back:

@1080 0100 there:

See Also: "Branch Instructions" on page 4-9

032 Microprocessor Instructions 4-41

bb Branch on Condition Bit Immediate

bes, beq, hgt, bit, bts, bvs Extended Branches also

Purpose: For the bb instruction, you explicitly specify a Condition Status bit to be tested. The
assembler subtracts the address of the branch instruction from the address of A2. The
assembler then divides by two to obtain BI or JI, the displacement in halfwords. If the
Condition Status bit specified by I1 is one at execution, BI or JI is sign extended and
shifted left one bit to form the displacement in bytes. This byte displacement is added to
the branch instruction address. The result then replaces the updated instruction
address.

The extended branch instructions based on bb are:

bit Branch on Less Than
beq Branch on Equal
hgt Branch on Greater Than
bes Branch on Carry Bit Set
bvs Branch on Overflow Set
bts Branch on Test Bit Set.

Each of these instructions implicitly tests a CS bit, so that you do not have to specify
the bit to test. For example, blt is equivalent to bb 1. Figure 4-2 on page 4-13 shows
the correspondence of the extended branches to the bb instruction.

For the extended branches, the assembler subtracts the address of the branch
instruction from the address of Al. The assembler then divides the result by two to
obtain BI or JI, the displacement in halfwords. If the implicitly specified Condition
Status bit is one at execution, BI or JI is sign extended and shifted left one bit to form
the displacement in bytes. This byte displacement is added to the branch instruction
address. The result then replaces the updated instruction address.

4-42 Assembler Language Reference

Format:

Remarks:

bb Il,A2
bes Al

long form

I 8E
0

blt Al
bvs Al

8

short form

0 4 5 8

beq Al bgt Al
bts Al

IE
12

15

BI
31

• If the implicitly or explicitly specified Condition Status bit is zero, the updated
instruction address is unaltered.

• For bb, I1 must have an integer value of 0, 1, 2, 3, 4, 6, or 7.

• For the long form of bb, IE = I1+8. For the short form of bb, IE = IL (See
Figure 4-1 on page 4-12.) For the extended branches, there is no I1 operand; the
assembler inserts the proper IE value into the object code.

• A bb 0 would be a no-operation instruction, since the PZ bit is always zero.
However, you should not use a no-operation to make software timing loops. Instead,
you should rely on the I/O Delay Register (IDR). See Chapter 5, "System Boards" in
hdwrs for more information. (Since the 032 Microprocessor and the APC have
different clock speeds, timing-dependent code that runs on one processor may not
run on the other.)

032 Microprocessor Instructions 4-43

Examples:

Example 1

setcb 15,11
@1030 0100 pan: bb 3,fire

#displacement between pan and fire is Ox200 halfwords
op code 8E is generated
BI is Ox00200
branch occurs to fire

@1030 0500 fire:

Example 2

setcb 15, 10
@2000 0100 here: beq there

displacement between here and there is Ox200 halfwords
op code 8E is generated
BI is Ox00200
branch occurs to there

@2000 0500 there:

4-44 Assembler Language Reference

Example 3

setcb 15,10
@3000 0100 order: bb 2,chaos

displacement between order and chaos is 6 halfwords
op code 0 is generated
JI is Ox06
branch occurs to chaos

@3000 OlOC chaos:

Example 4

setcb 15, 10
@2000 0100 dark: beq light

di sp 1 acement between dark and light is 6 halfwords
op code 0 is generated
JI is Ox06
branch occurs to light

@2000 OlOC light:

See Also: "Branch Instructions" on page 4-9

setcb on page 4-132

032 Microprocessor Instructions 4-45

bbr Branch on Condition Bit Using Register

bcsr, beqr, bgtr, bltr, btsr, bvsr Extended Branches also

Purpose: For the bbr instruction, you explicitly specify a Condition Status bit to be tested. If the
Condition Status bit specified by 11 is one, the updated instruction address is replaced
by the content of register R2 with the rightmost bit forced to zero.

Format:

The extended branch instructions based on bbr are:

bltr Branch on Less Than Using Register
beqr Branch on Equal Using Register
bgtr Branch on Greater Than Using Register
bcsr Branch on Carry Bit Set Using Register
bvsr Branch on Overflow Set Using Register
btsr Branch on Test Bit Set Using Register.

Each of these instructions implicitly tests a CS bit, so that you do not have to specify
the bit to test. For example, bltr is equivalent to bbr 1. Figure 4-2 on page 4-13
explains the correspondence of the extended branches to the bbr instruction.

For the extended branches, if the implicitly specified Condition Status bit is one, the
updated instruction address is replaced by the content of register Rl with the rightmost
bit forced to zero.

bbr Il,R2 bltr Rl beqr Rl bgtr Rl
bcsr Rl bvsr Rl btsr Rl

for bbr

EE IE R2
0 8 12 15

for extended branches

EE IE Rl
0 8 12 15

4-46 Assembler Language Reference

Remarks:

Examples:

See Also:

• If the implicitly or explicitly specified Condition Status bit is zero, the updated
instruction address is unaltered.

• For bbr, I1 must have an integer value of 0, 1, 2, 3, 4, 6, or 7.

• For bbr, IE = I1 +8. For the extended branches, there is no I1 operand; the
assembler inserts the proper IE value into the object code.

Example 1

assume GPR 12 holds Ox2080 0100

setcb 15,10
here: bbr 2,12

updated IAR now Ox2080 0100
branch occurs to there

@2080 0100 there:

Example 2

#assume GPR 12 holds Ox3080 0100

setcb 15, 10
pan: beqr 12

updated IAR now Ox3080 0100
branch occurs to fire

@3080 0100 fire:

"Branch Instructions" on page 4-9

setcb on page 4-132

032 Microprocessor Instructions 4-4 7

bbrx Branch on Condition Bit Using Register with Execute

bcsrx, beqrx, bgtrx, bltrx, btsrx, bvsrx Extended Branches also

Purpose: For the bbrx instruction, you explicitly specify a Condition Status bit to be tested. If
the Condition Status bit specified by 11 is one, the updated instruction address is
replaced by the content of register R2 with the rightmost bit forced to zero. The
instruction immediately following the branch instruction is executed before the target
instruction is executed.

Format:

The extended branch instructions based on bbrx are:

bltrx Branch on Less Than Using Register with Execute
beqrx Branch on Equal Using Register with Execute
bgtrx Branch on Greater Than Using Register with Execute
bcsrx Branch on Carry Bit Set Using Register with Execute
bvsrx Branch on Overflow Set Using Register with Execute
btsrx Branch on Test Bit Set Using Register with Execute.

Each of these instructions implicitly tests a CS bit, so that you do not have to specify
the bit to test. For example, bltrx is equivalent to bbrx 1. Figure 4-2 on page 4-13
explains the correspondence between bbrx and the extended branches.

For the extended branches, if the implicitly specified Condition Status bit is one, the
updated instruction address is replaced by the content of register Rl with the rightmost
bit forced to zero. The instruction immediately following the branch instruction is
executed before the target instruction is executed.

bbrx Il,R2 bltrx Rl beqrx Rl bgtrx Rl
bcsrx Rl bvsrx Rl btsrx Rl

for bbrx

EF IE R2
0 8 12 15

for extended branches

EF IE Rl
0 8 12 15

4-48 Assembler Language Reference

Remarks:

Examples:

Example 1

• If the implicitly or explicitly specified Condition Status bit is zero, the updated
instruction address is unaltered.

• For bbrx, I1 must have an integer value of 0, 1, 2, 3, 4, 6, or 7.

• For bbrx, IE = I1+8. For the extended branches, there is no I1 operand; the
assembler inserts the proper IE value into the object code.

@1800 0000
@1800 0004

@2080 0100

assume GPR 12 holds Ox2080 0100

here:
setcb 15, 10
bbrx 2,12
clrb 6,13

first clrb executes
updated IAR now Ox2080 0100
branch occurs to there

there:

032 Microprocessor Instructions 4-49

Example 2

assume GPR 12 holds Ox4080 0100

@3800 0000 pan:
@3800 0004

setcb 15, 10
beqrx 12
clrb 6,13

first clrb executes
updated IAR now Ox4080 0100
branch occurs to fire

@4080 0100 fire:

See Also: "Branch Instructions" on page 4-9

4-50 Assembler Language Reference

Branch on Condition Bit Immediate with Execute bbx

bcsx, beqx, bgtx, bltx, btsx, bvsx Extended Branches also

Purpose: For the bbx instruction, you explicitly specify a Condition Status bit to be tested. The
assembler subtracts the address of the branch instruction from the address of A2. The
assembler then divides the result by two to obtain BI, the displacement in halfwords. If
the Condition Status bit specified by 11 is one at execution, BI is sign extended and
shifted left one bit to form the displacement in bytes. This byte displacement is added to
the branch instruction address. The result then replaces the updated instruction
address. The instruction immediately following the branch instruction is executed
before the target instruction is executed.

Format:

The extended branch instructions based on bbx are:

bltx Branch on Less Than with Execute
beqx Branch on Equal with Execute
bgtx Branch on Greater Than with Execute
bcsx Branch on Carry Bit Set with Execute
bvsx Branch on Overflow Set with Execute
btsx Branch on Test Bit Set with Execute.

Each of these instructions implicitly tests a CS bit, so that you do not have to specify
the bit to test. For example, bltx is equivalent to bbx 1. Figure 4-2 on page 4-13
explains the correspondence of the bbx instruction with the extended branches.

For the extended branches, the assembler subtracts the address of the branch
instruction from the address of Al. The assembler then divides the result by two to
obtain BI, the displacement in halfwords. If the implicitly specified Condition Status bit
is one at execution, BI is sign extended and shifted left one bit to form the displacement
in bytes. This byte displacement is added to the branch instruction address. The result
then replaces the updated instruction address. The instruction immediately following
the branch instruction is executed before the target instruction is executed.

bbx Il,A2 bltx Al beqx Al bgtx Al
bcsx Al bvsx Al btsx Al

8F IE BI
0 8 12 31

032 Microprocessor Instructions 4-51

Remarks:

Examples:

• If the implicitly or explicitly specified Condition Status bit is zero, the updated
instruction address is unaltered.

• For bbx, I1 must have an integer value of 0, 1, 2, 3, 4, 6, or 7.

• For bbx, IE = 11 + 8. (See Figure 4-1 on page 4-12.) For the extended branches,
there is no I1 operand; the assembler inserts the proper IE value into the object
code.

Example 1

setcb 15,10
@1000 0100 here: bbx 2,there

@1000 0104

@1000 0500 there:

displacement between here and there is Ox200 halfwords
BI is Ox00200

clrb 6,13

at execution, this instruction executes
updated IAR replaced by OxlOOO 0500
branch occurs to there

4-52 Assembler Language Reference

Example 2

setcb 15,10
@3000 0100 pan: beqx fire

@3000 0104

@3000 0500 fire:

displacement between pan and fire is Ox200 halfwords
BI is Ox00200

clrb 6,13

at execution, this instruction executes
updated IAR replaced by Ox3000 0500
branch occurs to fire

See Also: "Branch Instructions" on page 4-9

032 Microprocessor Instructions 4-53

bnb Branch on Not Condition Bit Immediate

b, bee, bge, ble, bne, btc, bvc Extended Branches also

Purpose: For the bnb instruction, you explicitly specify a Condition Status bit to be tested. The
assembler subtracts the address of the branch instruction from the address of A2. The
assembler then divides the result by two to obtain BI or JI, the displacement in
halfwords. If the Condition Status bit specified by I1 is zero at execution, BI or JI is
sign extended and shifted left one bit to form the displacement in bytes. This byte
displacement is added to the branch instruction address. The result then replaces the
updated instruction address.

The extended branch instructions based on bnb are:

b Branch
bge Branch on Greater Than or Equal
bne Branch on Not Equal
ble Branch on Less Than or Equal
bee Branch on Carry Bit Clear
bvc Branch on Overflow Clear
btc Branch on Test Bit Clear.

Each of these instructions implicitly tests a CS bit, so that you do not have to specify
the bit to test. For example, bis equivalent to bnb 0. Figure 4-2 on page 4-13 explains
the correspondence of bnb with the extended branches.

For the extended branches, the assembler subtracts the address of the branch
instruction from the address of Al. The assembler then divides the result by two to
obtain BI or JI, the displacement in halfwords. If the implicitly specified Condition
Status bit is zero at execution, BI or JI is sign extended and shifted left one bit to form
the displacement in bytes. This byte displacement is added to the branch instruction
address. The result then replaces the updated instruction address.

4-54 Assembler Language Reference

Format:

Remarks:

bnb Il,A2 b Al bge Al bne Al
ble Al bee Al bvc Al btc Al

long form

I 88 IE BI
0 8 12 31

short form

0 I IE I JI
0 5 8 15

• If the implicitly or explicitly specified Condition Status bit is one, the updated
instruction address is unaltered.

• For bnb, I1 must have an integer value of 0, 1, 2, 3, 4, 6, or 7.

• For the long form of bnb, IE = II + 8. For the short form of bnb, IE = IL (See
Figure 4-1 on page 4-12.) For the extended branches, there is no II operand; the
assembler inserts the proper IE value into the object code.

• Note that b always branches, since the PZ bit is always zero.

032 Microprocessor Instructions 4-55

Examples: Example 1

@1030 0100 pan:
clrcb 15,11
bnb 3,fire

displacement between pan and fire is Ox200 halfwords
op code 88 is generated
BI is Ox00200
branch occurs to fire

@1030 0500 fire:

Example 2

clrcb 15,10
@2000 0100 here: bne there

displacement between here and there is Ox200 halfwords
#op code 88 is generated
BI is Ox00200
branch occurs to there

@2000 0500 there:

4-56 Assembler Language Reference

Example 3

@3000 0100

clrcb 15,10
order: bnb 2,chaos

displacement between order
op code 0 is generated
J T is Ox06
branch occurs to chaos

@3000 OlOC chaos:

Example 4

clrcb 15,10
@4000 0100 dark: bne light

and chaos is 6 halfwords

di sp 1 a cement between dark and light is 6 ha 1 fwords
op code 0 is generated
JI is Ox06
branch occurs to light

@4000 OlOC light:

See Also: "Branch Instructions" on page 4-9

clrcb on page 4-79

032 Microprocessor Instructions 4-57

bnbr Branch on Not Condition Bit Using Register

hr, beer, bger, bier, bner, btcr, bvcr Extended Branches also

Purpose: For the bnbr instruction, you explicitly specify a Condition Status bit to be tested. If
the Condition Status bit specified by I1 is zero at execution, the updated instruction
address is replaced by the content of register R2 with the rightmost bit forced to zero.

The extended branch instructions based on bnbr are:

hr
bger
bner
bier
beer
bvcr
btcr

Branch Using Register
Branch on Greater Than or Equal Using Register
Branch on Not Equal Using Register
Branch on Less Than or Equal Using Register
Branch on Carry Bit Clear Using Register
Branch on Overflow Clear Using Register
Branch on Test Bit Clear Using Register.

Each of these instructions implicitly tests a CS bit, so that you do not have to specify
the bit to test. For example, hr is equivalent to bnbr 0. Figure 4-2 on page 4-13
explains the correspondence between bbr and the extended branches.

For the extended branches, if the implicitly specified Condition Status bit is zero at
execution, the updated instruction address is replaced by the content of register Rl with
the rightmost bit forced to zero.

4-58 Assembler Language Reference

Format:

Remarks:

bnbr Il,R2 hr Rl bger Rl bner Rl
bler Rl beer Rl bvcr Rl btcr Rl

for bnbr

ES IE R2
0 8 12 15

for extended branches

ES IE Rl
0 8 12 15

• If the implicitly or explicitly specified Condition Status bit is one, the updated
instruction address is unaltered.

• For bnbr, 11 must have an integer value of 0, 1, 2, 3, 4, 6, or 7.

• For bnbr, IE = I1 +8. For the extended branches, there is no I1 operand; the
assembler inserts the proper IE value into the object code.

• Note that hr always branches, since the PZ bit is always zero.

032 Microprocessor Instructions 4-59

Examples:

Example 1

assume GPR 12 holds Ox2080 0100

clrcb 15,10
here: bnbr 2,12

updated IAR now Ox2080 0100
branch occurs to there

@2080 0100 there:

Example 2

assume GPR 12 holds Ox3080 0100

clrcb 15,10
pan: bner 12

updated IAR now Ox3080 0100
branch occurs to fire

@3080 0100 fire:

See Also: "Branch Instructions" on page 4-9

clrcb on page 4-79

4-60 Assembler Language Reference

Branch on Not Condition Bit Using Register with Execute bnbrx

brx, bccrx, bgerx, blerx, bnerx, btcrx, bvcrx Extended Branches also

Purpose: For the bnbrx instruction, you explicitly specify a Condition Status bit to be tested. If
the Condition Status bit specified by 11 is zero at execution, the updated instruction
address is replaced by the content of register R2 with the rightmost bit forced to zero.
The instruction immediately following the branch instruction is executed before the
target instruction is executed.

The extended branch instructions based on bnbrx are:

brx Branch Using Register with Execute
bgerx Branch on Greater Than or Equal Using Register with Execute
bnerx Branch on Not Equal Using Register with Execute
blerx Branch on Less Than or Equal Using Register with Execute
bccrx Branch on Carry Bit Clear Using Register with Execute
bvcrx Branch on Overflow Clear Using Register with Execute
btcrx Branch on Test Bit Clear Using Register with Execute.

Each of these instructions implicitly tests a CS bit, so that you do not have to specify
the bit to test. For example, brx is equivalent to bnbrx 0. Figure 4-2 on page 4-13
explains the correspondence between bbrx and the extended branches.

For the extended branches, if the implicitly specified Condition Status bit is zero at
execution, the updated instruction address is replaced by the content of register Rl with
the rightmost bit forced to zero. The instruction immediately following the branch
instruction is executed before the target instruction is executed.

032 Microprocessor Instructions 4-61

Format:

Remarks:

bnbrx Il,R2 brx Rl bgerx Rl bnerx Rl
blerx Rl bccrx Rl bvcrx Rl btcrx Rl

for bnbrx

E9 IE R2
0 8 12 15

for extended branches

E9 IE Rl
0 8 12 15

• If the implicitly or explicitly specified Condition Status bit is one, the updated
instruction address is unaltered.

• For bnbrx, I1 must have an integer value of 0, 1, 2, 3, 4, 6, or 7.

• For bnbrx, IE = I1 + 8. For the extended branches, there is no I1 operand; the
assembler inserts the proper IE value into the object code.

• Note that brx always branches, since the PZ bit is always zero.

4-62 Assembler Language Ref ere nee

Examples: Example 1

@1800 0000
@1800 0004

@2080 0100

Example 2

@3800 0000
@3800 0004

@3080 0100

assume GPR 12 holds Ox2080 0100

clrcb 15,10

here: bnbrx 2,12
setb 6,13

first setb executes
updated IAR now Ox2080 0100
branch occurs to there

there:

assume GPR 12 holds Ox3080 0100

clrcb 15,10

pan: bnerx 12
setb 6,13

first setb executes
updated IAR now Ox3080 0100
branch occurs to fire

fire:

See Also: "Branch Instructions" on page 4-9

032 Microprocessor Instructions 4-63

bnbx Branch on Not Condition Bit Immediate with Execute

bx, bccx, bgex, blex, bnex, btcx, bvcx Extended Branches also

Purpose: For the bnbx instruction, you explicitly specify a Condition Status bit to be tested.
The assembler subtracts the address of the branch instruction from the address of A2.
The assembler then divides the result by two to obtain BI, the displacement in
halfwords. If the Condition Status bit specified by I1 is zero at execution, BI is sign
extended and shifted left one bit to form the displacement in bytes. This byte
displacement is added to the branch instruction address. The result then replaces the
updated instruction address. The instruction immediately following the branch
instruction is executed before the target instruction is executed.

The extended branch instructions based on bnbx are:

bx
bgex
bnex
bl ex
bccx
bvcx
btcx

Branch With Execute
Branch on Greater Than or Equal With Execute
Branch on Not Equal With Execute
Branch on Less Than or Equal With Execute
Branch on Carry Bit Clear With Execute
Branch on Overflow Clear With Execute
Branch on Test Bit Clear With Execute.

Each of these instructions implicitly tests a CS bit, so that you do not have to specify
the bit to test. For example, bx is equivalent to bnbx 0. Figure 4-2 on page 4-13
explains the correspondence between bbx and the extended branches.

For the extended branches, the assembler subtracts the address of the branch
instruction from the address of Al. The assembler then divides the result by two to
obtain BI, the displacement in halfwords. If the implicitly specified Condition Status
bit is zero at execution, BI is sign extended and shifted left one bit to form the
displacement in bytes. This byte displacement is added to the branch instruction
address. The result then replaces the updated instruction address. The instruction
immediately following the branch instruction is executed before the target instruction
is executed.

4-64 Assembler Language Reference

Format:

Remarks:

bnbx Il,A2
blex Al

89
0

bx Al
bccx Al

IE
8 12

bgex Al
bvcx Al

bnex Al
btcx Al

BI
31

• If the implicitly or explicitly specified Condition Status bit is one, the updated
instruction address is unaltered.

• For bnbx, I1 must have an integer value of 0, 1, 2, 3, 4, 6, or 7.

• For bnbx, IE = I1+8. (See Figure 4-1 on page 4-12.) For the extended branches,
there is no I1 operand; the assembler inserts the proper IE value into the object
code.

• Note that bx always branches, since the PZ bit is always zero.

032 Microprocessor Instructions 4-65

Examples: Example 1

clrcb 15,10
@1000 0100 here: bnbx 2,there

@1000 0104

displacement between here and there is Ox200 halfwords
BI is Ox00200

setb 6,13

at execution, this instruction executes
updated IAR replaced by OxlOOO 0500
branch occurs to there

@1000 0500 there:

Example 2

clrcb 15,10
@3000 0100 pan: bnex fire

@3000 0104

displacement between pan and fire is Ox200 halfwords
BI is Ox00200

setb 6,13

at execution, this instruction executes
updated IAR replaced by Ox3000 0500
branch occurs to fire

@3000 0500 fire:

See Also: "Branch Instructions" on page 4-9

clrcb on page 4-79

4-66 Assembler Language Reference

Compare c

Purpose: The contents of registers Rl and R2 are compared. Condition Status bit LT is set if the
content of register Rl is algebraically less than the content of register R2. Condition
Status bit GT is set if the content of register Rl is algebraically greater than the content
of register R2. Condition Status bit EQ is set if the content of register Rl equals the
content of register R2.

Format: c Rl,R2

Remarks:

Example:

B4 Rl R2
0 8 12 15

• Registers Rl and R2 are both treated as 32-bit signed algebraic quantities.

• Condition Status bits LT, EQ, and GT are affected.

c 4,5

assume GPR 4 has value OxFFFF FFE7
(representing decimal -25)
and GPR 5 has value OxOOOO 0011
(representing decimal 17)

this sets CS bit LT to one
and sets bits EQ and GT to zero

See Also: "Arithmetic Instructions" on page 4-16

032 Microprocessor Instructions 4-67

cal Compute Address Lower Half

Purpose: D2 is sign extended and added to the word specified by O/(R2). The result replaces the
content of register Rl.

Format: cal Rl,D2(R2)

cs Rl R2 D2
0 8 12 16 31

Remarks:

• The word specified by O/(R2) can be an address.

• This instruction can be used to load a register with an immediate value from -32, 768
to 32,767.

Examples:

assume GPR 5 contains OxOOOO 0900
cal 4,0x8FF0(5)

GPR 4 now contains OxFFFF 98FO

cal 3,150(0)
GPR 3 now contains OxOOOO 0096

See Also: "Address Computation Instructions" on page 4-8

4-68 Assembler Language Reference

Compute Address Lower Half 16-Bit cal16

Purpose: This instruction adds D2 to the lower half of O/(R2) and puts the result into the lower
half of register Rl. The instruction then replaces the upper half of register Rl with the
upper half of O/(R2).

Format: cal16 Rl,D2(R2)

Remarks:

Examples:

C2 Rl R2 D2
0 8 12 16 31

• This instruction is provided to assist in simulation of 16-bit architectures.

• D2 must be an absolute expression.

• This instruction can be used to load a constant into a register. The constant must
have a value from 0 to 65,535.

assume GPR 4 contains Ox0101 AOOO
cal16 5,x1234(4)

GPR 5 now contains Ox0101 B234

call6 3,0x8000(0)
GPR 3 now contains OxOOOO 8000

See Also: "Address Computation Instructions" on page 4-8

cau on page 4-71

032 Microprocessor Instructions 4-69

cas Compute Address Short

Purpose: The word specified by (R2) + O/(R3) replaces the content of register Rl.

Format: cas Rl,R2,R3

Remarks:

Examples:

6 Rl R2 R3
0 4 8 12 15

• The word specified by (R2) + O/(R3) can represent an address.

• If R3 is specified as zero, cas Rl,R2,0 has the same effect as Ir Rl,R2.

• Specifying the nop instruction causes the assembler to generate the no-operation
instruction cas 0,0,0.

assume GPR 5 contains Ox0007 0800
and GPR 6 contains Ox002F 03FO

cas 4,5,6
GPR 4 now contains Ox0036 OBFO

cas 4,5,0
R3 is zero, so the value
of the operand defaults to zero.
GPR 4 now contains Ox0007 0800

See Also: "Address Computation Instructions" on page 4-8

4-70 Assembler Language Reference

Compute Address Upper Half

Purpose: D2 is extended on the right with 16 zeroes, then added to the content of O/(R2). The
resulting word replaces the content of register Rl.

Format: cau Rl,D2(R2)

D8 Rl R2 D2
0 8 12 16 31

Remarks:

• The word resulting from cau can specify an address.

• D2 must be an absolute expression.

• A cal16 followed by a cau can be used to load any 32-bit constant into a register.

cau

032 Microprocessor Instructions 4-71

Examples:

assume GPR 6 contains OxOOOO 4000
cau 7,0x0011(6)

now GPR 7 contains OxOOll 4000
(this value represents an address)

cau 7, OxOOll
R2 is not specified, so the value
of R2 defaults to zero.
GPR 7 now contains OxOOll 0000, which
represents an address

the next example shows how to load
OxF183 81FE into a register

call6 7,0x81FE(O)
cau 7,0xF183(7)

GPR 7 now contains OxOOOO 81FE
GPR 7 now contains OxF183 81FE

See Also: "Address Computation Instructions" on page 4-8

cal16 on page 4-69

4-72 Assembler Language Reference

Compute Address 16-Bit ca16

Purpose: The lower half of register Rl is added to the lower half of register R2. The result
replaces the lower half of register Rl. The upper half of register R2 replaces the upper
half of register Rl.

Format: ca16 Rl,R2

Remarks:

Example:

F3 Rl R2
0 8 12 15

• The new content of register Rl can represent an address.

• This instruction is provided to assist in simulation of 16-bit architectures.

• If overflow occurs out of the lower half of register Rl, no bits are set in the CS
register.

assume GPR 12 contains Ox0066 4400
assume GPR 13 contains OxOAOO 0030

cal6 12,13
now GPR 12 contains OxOAOO 4430

See Also: "Address Computation Instructions" on page 4-8

032 Microprocessor Instructions 4-73

ci Compare Immediate

Purpose: For the long form, the content of register Rl is compared to the sign-extended 12 field.

Format:

Examples:

The Condition Status LT bit is set if the content ofregister Rl is algebraically less than
the sign-extended 12 field. The GT bit is set if the content of register Rl is greater than
the sign-extended 12 field. The EQ bit is set if the content of register Rl equals the
sign-extended 12 field.

For the short form, the content of register Rl is compared to the 12 field extended on the
left with 28 zeroes. The LT bit is set if the content of register Rl is algebraically less
than the field 12 extended on the left with 28 zeroes. The GT bit is set if the content of
register Rl is greater than the field 12 extended on the left with 28 zeroes. The EQ bit is
set if the content of register Rl equals the field 12 extended on the left with 28 zeroes.

ci Rl,12

long form

I D4 0 Rl 12
0 8 12 16 31

short form

94 Rl 12
0 8 12 15

assume GPR 6 contains OxOOOO OOOF

ci 6,0xE
GT bit is set, since OxOOOO OOOF > OxOOOO OOOE.
op code 94 is generated

ci 6,0x88FF
sign-extended 12 field contains OxFFFF 88FF
(this represents -OxOOOO 7701)
bl bit is set, since OxOOOO OOOF > -OxOOOO 7701
op code 04 is generated

See Also: "Arithmetic Instructions" on page 4-16

4-74 Assembler Language Reference

Compare Logical cl

Purpose: The contents of registers Rl and R2 are compared. Condition Status bit LT is set if the
content of register Rl is logically less than the content of register R2. Condition Status
bit GT is set if the content of register Rl is logically greater than the content of register
R2. Condition Status bit EQ is set if the content of register Rl equals the content of
register R2.

Format: cl Rl,R2

B3 Rl R2
0 8 12 15

Remarks: The contents of registers Rl and R2 are both treated as 32-bit unsigned quantities.

Example:

assume GPR 4 contains OxFFFF 0000
and GPR 5 contains Ox7FFF 0000

cl 4, 5
the GT bit is set

See Also: "Logical Operation Instructions" on page 4-18

032 Microprocessor Instructions 4-75

cli Compare Logical Immediate

Purpose: The content of register Rl is compared to the sign-extended 12 field. The Condition
Status LT bit is set if the content of register Rl is logically less than the sign-extended
12 field. The GT bit is set if the register Rl is logically greater than the sign-extended 12
field. The EQ bit is set if the content of register Rl equals the sign-extended 12 field.

Format: cli Rl,12

D3 0 Rl 12
0 8 12 16 31

Remarks: Condition Status bits LT, EQ, and GT are set according to the relative unsigned
magnitudes of register Rl and the sign-extended 12 field. Thus 12 can never represent a
negative number.

Example:

assume GPR 4 contains OxOOOO COOO
cli 4,0x7000 # the GT bit is set
cli 4,0x8000 # the LT bit is set

See Also: "Logical Operation Instructions" on page 4-18

4-76 Assembler Language Reference

Clear Bit

Purpose:

Format:

Remarks:

Bit I2 in register Rl is set to zero.

clrb Rl,I2

lower half

99 Rl IN
0 8 12 15

upper half

I 98 Rl IN
0 8 12 15

• I2 must evaluate to an integer between 0 and 31 inclusive.

• The assembler examines I2 and automatically chooses the correct form (upper or
lower half) of the instruction. If I2 ~ 15, op code 98 is generated. If I2 > 15, op
code 99 is generated.

clrb

• Condition Status bits LT, EQ, and GT are affected. If the result is a negative value,
LT is set to one; if it is zero, EQ is set to one; and if it is positive and not zero, GT is
set to one.

032 Microprocessor Instructions 4-77

Examples:

assume GPR 2 contains Ox0008 8000
clrb 2,12

op code 98 is generated
(object code for this instruction is Ox982C)
bit 12 in GPR 2 is set to zero
GT bit is set to one
GPR 2 is now OxOOOO 8000

assume GPR 3 contains OxOOOO 8000
clrb 3,16

op code 99 is generated
(object code for this instruction is Ox9930)
bit 16 in GPR 3 is set to zero
EQ bit is set to one
GPR 3 now contains OxOOOO 0000

See Also: "Logical Operation Instructions" on page 4-18

4-78 Assembler Language Reference

Clear Bit in the System Control Register clrcb

Purpose: Bit 12 in the lower half of System Control Register SCRl is set to zero.

Format:

Remarks:

Example:

In unprivileged state, SCRl can have one of two values: OxA for the Multiplier Quotient
register (SCR 10), or OxF for the Condition Status register (SCR 15). Other SCRl values
may only be used in privileged state.

If SCRl indicates the Condition Status register, then 12 signifies the following:

12 = 0-7
12= 8
12= 9
12= A
12= B
12= c
12= D
12= E
12= F

Reserved
No operation (PZ bit is always zero)
Clear the Less Than condition bit
Clear the Equal condition bit
Clear the Greater Than condition bit
Clear the Carry Zero condition bit
Reserved
Clear the Overflow condition bit
Clear the Test bit

If SCRl indicates the Multiplier Quotient register, then 12 may have any value from
decimal 0 through 15 inclusive.

clrcb SCRl,12

95 SCRl I 12
0 8 12 15

• If the selected bit of the SCR is a reserved bit, it is not set to a predictable value.

• If the specified SCR is the IAR (SCR 13), the results of clrcb are unpredictable.

clrcb OxF,OxE
clears the Overflow bit in the CS register

See Also: "System Control Register Manipulation Instructions" on page 4-20

Hardware Technical Reference to learn how this instruction affects other SCRs

032 Microprocessor Instructions 4-79

clz Count Leading Zeroes

Purpose: The content of register Rl is replaced by the binary representation of the number of
leading zeroes in the lower half of register R2 (that is, the number of binary zeroes to
the left of the leftmost one bit in the lower half of register R2).

Format: clz Rl,R2

F5 Rl R2
0 8 12 15

Remarks: If the lower half of register R2 is equal to zero, the content of register Rl is replaced by
the binary representation of 16.

Example:

assume GPR 4 contains value OxOOOl 0699
(there are five leading binary zeroes in
the lower half of this value)

clz 12,4
now GPR 12 contains OxOOOO 0005

See Also: "Logical Operation Instructions" on page 4-18

4-80 Assembler Language Reference

Divide Step d

Purpose: The content of register R2 is added to or subtracted from (Rl)//(bit 0 of MQ) depending
on whether the signs of registers Rl and R2 disagree or agree.

The 32 rightmost bits of the result replace the content of register Rl. The MQ is shifted
left one position and bit 31 of the MQ is set to one if and only if the sign of the 33-bit
result equals the sign of register R2. Condition Status bit CO is set to one if the sign of
the 33-bit result equals the sign of the content of register R2. Bit OV is set to one if the
sign of the 33-bit result equals the sign of the content of register Rl.

Format: d Rl,R2

B6 Rl R2
0 8 12 15

Example: The Divide Step instruction may be used to construct algorithms for dividing one
number by another. The following example describes an algorithm for dividing a 32-bit
dividend by a 32-bit divisor. The operands are in two's complement representation.

PROBLEM

Divide X by Y giving quotient Q and remainder R where X, Y, Q and Rare 32-bit
numbers and Y is not equal to zero, + 1, or -1.

INITIAL CONDITIONS

Set general-purpose register RB to the propagated sign of X (zero if Xis non-negative, -1
if Xis negative). This can be accomplished by loading RB with X and executing a
sari16 Rl,15 instruction. Load Y into R2. Load X into MQ.

ALGORITHM

Issue the Divide Step instruction with operands Rl and R2 thirty-two times. If at this
point the signs of Rl and R2 differ, do an a Rl,R2 (the sum will be put into Rl). After
this test and possible modification of Rl, Rl contains the preliminary remainder. The
MQ contains the 32 rightmost bits of the preliminary quotient. The final quotient and
remainder are either equal to the preliminary quotient and remainder or are found by
adding one to the preliminary quotient and subtracting the divisor, R2, from the
preliminary remainder.

See Also: "Arithmetic Instructions" on page 4-16

032 Microprocessor Instructions 4-81

dee Decrement

Purpose: 12, extended on the left with 28 zeroes, is subtracted from the content of register Rl.
The result is placed into register Rl.

Format: dee Rl,12

Examples:

93 Rl 12
0 8 12 15

assume GPR 4 contains OxOOOO lOOF
dee 4,0xF

now GPR 4 contains OxOOOO 1000

assume GPR 5 contains OxOOOO OOOC
dee 5,0xF

now GPR 5 contains OxFFFF FFFD, a
negative number
representing OxC - OxF

See Also: inc on page 4-84

"Address Computation Instructions" on page 4-8, "Arithmetic Instructions" on page 4-16

4-82 Assembler Language Reference

Extend Sign exts

Purpose: The content of the lower half of register R2 is sign extended. The result replaces the
content of register Rl.

Format: exts Rl,R2

Bl Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ and GT are affected.

Examples:

assume GPR 5 holds OxOOOO 88AO
exts 4,5

now GPR 4 holds OxFFFF 88AO
LT bit is set to one

assume GPR 7 holds OxBBBB 7888
exts 6,7

now GPR 6 holds OxOOOO 7888
GT bit is set to one

See Also: "Arithmetic Instructions" on page 4-16

032 Microprocessor Instructions 4-83

inc Increment

Purpose: I2, extended on the left with 28 zeroes, is added to the content of register Rl. The result
is placed into register Rl.

Format: inc Rl,I2

Examples:

91 Rl I2
0 8 12 15

assume GPR 4 contains OxOOOO F006
inc 4,0x8

now GPR 4 contains OxOOOO FOOE

assume GPR 5 contains OxFFFF FFF4
inc 5,0xE

now GPR 5 contains OxOOOO 0002
sum was >32 bits;
high-order overflow is lost

See Also: dee on page 4-82

"Address Computation Instructions" on page 4-8, "Arithmetic Instructions" on page 4-16

4-84 Assembler Language Reference

Input/Output Read ior

Warning: Using this instruction on the RT PC may cause conflicts with
the AIX Operating System. If you use this instruction in unprivileged
state, the machine will receive a hardware interrupt without precise
indication of the address of the off ending instruction.

Purpose: The content of register Rl is replaced by data transferred from the I/O device selected by
the effective address O/(R2) + 16 zeroes//D2. Bits 8 through 31 of the 32-bit effective
address are interpreted as the I/0 device address. Bits 0 through 7 of the effective
address must be zero.

Format: ior Rl,D2(R2)

CB Rl R2 D2
0 8 12 16 31

Remarks: This is not a privileged instruction. However, ordinary application programs should
never use ior in unprivileged state.

Example:

read a status register of a
device at address Ox88

ior 5,0x88(0)
GPR 5 now contains the value
read in from the status register

See Also: "Processor I/O Instructions" on page 4-20

Hardware Technical Reference

032 Microprocessor Instructions 4-85

iow Input/Output Write

Warning: Using this instruction on the RT PC may cause conflicts with
the AIX Operating System. If you use this instruction in unprivileged
state, the machine will receive a hardware interrupt without precise
indication of the address of the off ending instruction.

Purpose: The content of register Rl is transferred to the I/O device selected by the effective
address O/(R2) + 16 zeroes//D2. Bits 8 through 31 of the 32-bit effective address are
interpreted as the I/O device address. Bits 0 through 7 of the effective address must be
zero.

Format: iow Rl,D2(R2)

DB Rl R2 D2
0 8 12 16 31

Remarks: This is not a privileged instruction. However, ordinary application programs should
never use iow in unprivileged state.

Example:

write zeroes to a device
at address Ox0020 0008

cau 2, Ox0020(0)
lis 1,0
iow 1,8(2)

See Also: "Processor I/O Instructions" on page 4-20

Hardware Technical Reference

4-86 Assembler Language Reference

Load I

Purpose: For the long form, the content of register Rl is replaced by the word in storage
addressed by O/(R2) plus the sign-extended D2 field. D2 is the number of bytes
displacement.

For the short form, you specify D2 as the number of bytes displacement, but the
assembler converts D2 to a word displacement and puts the word displacement into the
object code. At runtime, the content of register Rl is replaced by the word in storage
addressed by O/(R2) + 26 zeroes//D2//2 zeroes.

Format: 1 Rl,D2(R2)

Remarks:

long form

I CD Rl R2 D2
0 8 12 16 31

short form

7 D2 Rl R2
0 4 8 12 15

• The assembler examines D2 and chooses the correct form (short or, long) of the
instruction. The short form (op code 7) is generated if D2 ::; 6 bits and D2's last two
bits are zero. The long form (op code CD) is generated if D2's last two bits are not
zero or 6 < D2 ::; 16 bits.

• The effective address formed from D2 + O/(R2) will have its low order two bits forced
to zero.

• For the short form, D2 is always a positive displacement from the word addressed by
(R2).

032 Microprocessor Instructions 4-87

Examples:

Example 1

@0000 5044 . long OxCCCCDDDD

Example 2

assume this is the word you want

assume GPR7 holds OxOOOO 5000
5, Ox0044 (7)
Puts OxCCCCDDDD into GPR 5.
This generates op code CD.

@0000 5004 .long OxEEEEFFFF
assume this is the word you want

assume GPR 7 contains OxOOOO 5000
5,4(7)
Puts OxEEEEFFFF into GPR 5.
#This generates op code 7.

4-88 Assembler Language Reference

Example 3

.main:

_main:
one:
big:
test:

.text
this is generated
by the C compiler

.using _main,11
assume GPR 11 has been loaded
with the address of _main

5,one
this generates the short form
object code in hex is 7158

6,test
this generates the long form
object code in hex is CD6B 006C

.data 3 # this is the constant pool

. 1 ong .main

. 1 ong 1

.space 100

. 1 ong 0

See Also: "Storage Access Instructions" on page 4-6

032 Microprocessor Instructions 4-89

le Load Character

Purpose: For the long form, character C3 of register Rl is replaced by the character of storage
addressed by O/(R2) plus the sign-extended D2 field.

Format:

For the short form, character C3 of register Rl is replaced by the character of storage
addressed by O/(R2) + 28 zeroes/ /D2.

In either case, characters CO through C2 (that is, the three upper bytes) of register Rl
are set to zeroes.

le Rl,D2(R2)

long form

I CE Rl R2 D2
0 8 12 16 31

short form

4 D2 Rl R2
0 4 8 12 15

Remarks: For long and short forms, you specify D2 as the number of bytes displacement. The
assembler examines D2 and chooses the correct form (short or long) of the instruction.
If 4 < D2 ::::;; 16 bits, op code CE is generated. If D2 ::::;; 4 bits, op code 4 is generated. In
either case, the assembler inserts a byte displacement into the D2 field of the object
code.

4-90 Assembler Language Reference

Examples:

Example 1

@0000 5044 .byte Ox55

Example 2

assume GPR 7 holds OxOOOO 5000

le 5,0x0044(7)

character at @0000 5044 is Ox55
GPR 5 now holds OxOOOO 0055
op code CE is generated

@0000 5002 .short Oxll22

assume GPR 7 holds OxOOOO 5000

le 5,2(7)

character at @0000 5002 is Oxll
GPR 5 now holds OxOOOO 0011
#op code 4 is generated

032 Microprocessor Instructions 4-91

Example 3

.main

_main:
one:

big:
test:

.text
this is generated
by C compiler

.using _main,11

le

le

.data

. long

.byte

.space

.space

.byte

assume GPR 11 has been loaded
with the address of _main

5,one
this generates the short form
object code in hex is 445B

6,test
this generates the long form
object code in hex is CE6B 006C

3 # constant pool
.main
1
3
100
0

See Also: "Storage Access Instructions" on page 4-6

4-92 Assembler Language Reference

Load Half lh

Purpose: If D2 is not 0, the lower half of register Rl is replaced by the halfword of storage
addressed by O/(R2) plus the sign-extended D2 field. The assembler chooses the long
form.

Format:

If D2 is 0, the lower half of register Rl is replaced by the halfword of storage addressed
by the content of register R2. The assembler chooses the short form.

In either case, the upper half of register Rl is set to zeroes.

lh Rl,D2(R2)

long form

I DA Rl R2 D2
0 8 12 16 31

short form

EB Rl R2
0 8 12 15

Remarks: The effective address formed by D2 + O/(R2) will have its low-order bit forced to zero.

Example:

@0000 1A22 .short OxFFEE
assume this is the halfword you want

assume GPR 7 contains OxOOOO 1200

l h 5, Ox0822 (7)

See Also: Iha on page 4-94

This puts OxFFEE into the lower half of
GPR 5. The upper half of GPR 5 is
filled with zeroes, and
op code DA is generated.

"Storage Access Instructions" on page 4-6

032 Microprocessor Instructions 4-93

Iha Load Half Algebraic

Purpose: For the long form, the lower half of register Rl is replaced by the halfword of storage
addressed by O/(R2) plus the sign-extended D2 field. D2 is the number of bytes
displacement.

Format:

Remarks:

For the short form, you specify D2 as the number of bytes displacement. The assembler
converts D2 to a number of halfwords displacement and puts the halfword displacement
into the D2 field of the object code. At runtime, the lower half of register Rl is replaced
by the halfword of storage addressed by O/(R2) + 27 zeroes//D2//0.

In either case, the high-order bit of the addressed halfword is extended through the
upper half of register Rl.

Iha Rl,D2(R2)

long form

I CA Rl R2 D2
0 8 12 16 31

short form

5 D2 Rl R2
0 4 8 12 15

• The assembler examines D2 and chooses the correct form (short or long) of the
instruction. The short form (op code 5) is generated if D2 ~ 5 bits and if D2's
low-order bit is zero. The long form (op code CA) is generated if 5 < D2 ~ 16 bits or
if D2' s low-order bit is not zero.

• The effective address formed from D2 + O/(R2) will have its low-order bit forced to
zero at runtime.

4-94 Assembler Language Reference

Examples:

Example 1

@0000 1A22 .short OxFFEE

Example 2

assume this is the halfword you want

assume GPR 7 contains OxOOOO 1200

lha 5,0x0822(7)

#The lower half of GPR 5 is replaced by
OxFFEE. The high-order bit of this
halfword (in this case, 1) is extended
through the upper half of GPR 5.
So now GPR 5 contains OxFFFF FFEE.
Op code CA is generated.

@0000 1202 .short Ox3344
assume this is the halfword you want

assume GPR 7 contains OxOOOO 1200

lha 6,2(7)

GPR 6 now holds OxOOOO 3344
op code is generated

032 Microprocessor Instructions 4-95

Example 3

.text
.main # this is generated

by C compiler

.using _main,11
assume GPR 11 has been loaded
with the address of _main

lha 5,one
this generates the short form
object code in hex is 525B

lha 6,test
this generates the 1 ong form
object code in hex is CA6B 006C

.data 3 # constant pool
_main: . 1 ong .main
one: .short 1

.space 2
big: .space 100
test: .short 0

See Also: lh on page 4-93

"Storage Access Instructions" on page 4-6

4-96 Assembler Language Reference

Load Immediate Short lis

Purpose: The content of register Rl is replaced by the 12 field, extended on the left with 28 zeroes.

Format: lis Rl,12

A4 Rl 12
0 8 12 15

Example:

lis 5,11
#now GPR 5 holds OxOOOO OOOB

See Also: "Address Computation Instructions" on page 4-8

032 Microprocessor Instructions 4-97

Im Load Multiple

Purpose: The content of registers Rl through 15 are replaced, respectively, by the consecutive
words in storage beginning at the address given by O/(R2) plus the sign-extended D2
field.

Format: lm Rl,D2(R2)

C9 Rl R2 D2
0 8 12 16 31

Remarks: The effective address formed by D2 + O/(R2) will have its low-order two bits forced to
zero at runtime.

Example:

@0000 7700 .long Ox10002200,0x10003300,0x10004400

assume GPR 10 contains OxOOOO 6000

lm 13,0x1700(10)

GPR 13 now contains OxlOOO 2200
GPR 14 now contains OxlOOO 3300
GPR 15 now contains OxlOOO 4400

See Also: "Storage Access Instructions" on page 4-6

4-98 Assembler Language Reference

Load Program Status lps

Warning: User programs should not use this instruction in
unprivileged state. Using lps outside of a virtual machine will generate
a virtual interrupt program check with a privileged instruction
exception.

Purpose: The content of the IAR is replaced by the word in main storage addressed by O/(R2) plus
the sign-extended D2 field. The Interrupt Control Status (ICS) is replaced by the
content of the halfword in main storage at address O/(R2) + the sign-extended D2 field

Format:

+ 4. The content of the Condition Status (CS) Register is replaced by the content of the
halfword in main storage at address O/(R2) + the sign-extended D2 field + 6.

I1 can have the value 0, 1, 2, or 3. If I1=0 or 2, interrupts may occur after the lps
instruction executes. If I1=1 or 3, interrupts remain pending until the target of the lps
instruction executes.

With the APC, if I1=2 or 3, pending storage operations are restarted before instruction
execution resumes. The Exception Control Register (SCR 9) contains the count and
main storage address of the exception information for operations to be restarted. If
I1 =O or 1, previously saved operations will not be restarted. See Hardware Technical
Ref ere nee for more information.

lps Il,D2(R2)

DO o I nl R2 D2
0 8 10 12 16 31

032 Microprocessor Instructions 4-99

Remarks:

• This is a privileged instruction; it must be executed in the processor's privileged
state. In the hardware sense, this instruction can only be executed by the Virtual
Resource Manager. However, the kernel can execute a virtual lps. See Virtual
Resource Manager Technical Reference for information about the virtual lps.

• If the processor is on the Machine Check level when lps executes, the content of the
MCS is set to zero. If the processor is on the Program Check level when lps
executes, the content of the PCS is set to zero. See Hardware Technical Reference
for details.

• In privileged state, you may use lps to return from an interrupt. You may also use
lps to trace instruction execution by setting a bit in the IRB to generate an
interrupt request before executing lps. The bit that is set should have an interrupt
request priority greater than the processor priority that is loaded by lps. If the
Interrupt Mask loaded by lps is zero, and if bit 11 of the lps instruction is one, an
interrupt will occur after the lps target instruction executes.

• This instruction cannot be used as the subject of a branch with execute instruction.
Doing so may put the processor in an unpredictable state.

See Also: Virtual Resource Manager Technical Reference for information on Interrupt Control
Status (ICS) and virtual machines

Hardware Technical Reference for information about the PCS and MCS registers

4-100 Assembler Language Reference

Load Register

Purpose: The content of register R2 replaces the content of register Rl.

Format: lr Rl,R2

6 Rl R2 0
0 4 8 12 15

Remarks: An Ir is the same as cas Rl,R2,0.

Example:

assume GPR 5 holds OxllOO 5000
lr 4,5

now GPR 4 holds OxllOO 5000

See Also: "Address Computation Instructions" on page 4-8

Ir

032 Microprocessor Instructions 4-101

m Multiply Step

Purpose: The incomplete product of the content of register R2 and bits 30 and 31 of the MQ
register are formed in (Rl)//MQ. A 34-bit sum is formed in accordance with the table
below. The MQ is algebraically shifted right two positions with the two rightmost bits
of the sum replacing bits 0 and 1 of the MQ. The content of register Rl is replaced by
the 32 leftmost bits of the sum. Condition Status bit CO is set to the complement of bit
30 of the M Q before the shift.

cs MQ MQ
Bit co Bit 30 Bit 31 Algebraic Sum

0 0 0 (Rl) + (R2)

0 0 1 (Rl) + 2*(R2)

0 1 0 (Rl) - (R2)

0 1 1 (Rl) + 0

1 0 0 (Rl) + 0

1 0 1 (Rl) + (R2)

1 1 0 (Rl) - 2*(R2)

1 1 1 (Rl) - (R2)

Format: m Rl,R2

E6 Rl R2
0 8 12 15

4-102 Assembler Language Reference

Example: The Multiply Step instruction can be used to construct algorithms for multiplying two
numbers. The following example describes an algorithm for multiplying a 32-bit
multiplicand by a I6-bit multiplier. The operands are in two's complement
representation.

EXAMPLE

Multiply X by Y giving Z, where X is a 32-bit number and Y is a 16-bit number.

INITIAL CONDITIONS

Load X into general purpose register R2. Load Y into the MQ. Set the content of
general purpose register Rl to zero. Set Condition Status bit CO to one. RI and CO can
be initialized simultaneously by executing ans Rl,Rl instruction.

ALGORITHM

Issue the Multiply Step instruction with operands RI and R2 eight times.

RESULT

The I6 rightmost bits of the product Z are in the MQ; the 32 leftmost bits are in register
Rl.

See Also: "Arithmetic Instructions" on page 4-16

032 Microprocessor Instructions 4-103

mc03 Move Character Zero From Three

Purpose: Character CO of register Rl is replaced by character C3 of register R2.

Format: mc03 Rl,R2

Example:

F9 Rl R2
0 8 12 15

assume GPR 4 holds Ox1122 3344
assume GPR 5 holds Ox5566 7788

mc03 4,5
GPR 4 now holds Ox8822 3344

See Also: "Move and Insert Instructions" on page 4-15

4-104 Assembler Language Reference

Move Character One From Three mc13

Purpose: Character Cl of register Rl is replaced by character C3 of register R2.

Format: mc13 Rl,R2

FA Rl R2
0 8 12 15

Example:

assume GPR 4 holds Ox1122 3344
assume GPR 5 holds Ox5566 7788

mc13 4,5
GPR 4 now holds Oxl188 3344

See Also: "Move and Insert Instructions" on page 4-15

032 Microprocessor Instructions 4-105

inc23

Purpose:

Format:

Example:

See Also:

Move Character Two From Three

Character C2 of register· Rl is replaced by character C3 of register R2.

mc23 Rl,R2

FB Rl R2
0 8 12 15

assume GPR 4 holds Ox1122 3344
assume GPR 5 holds Ox5566 7788

mc23 4,5
GPR 4 now holds Ox1122 8844

"Move and Insert Instructions" on page 4-15

4:--106 Assembler Language Reference

Move Character Three From Zero mc30

Purpose: Character C3 of register Rl is replaced by character CO of register R2.

Format: mc30 Rl,R2

FD RI R2
0 8 12 15

Example:

assume GPR 4 holds Oxll22 3344
assume GPR 5 holds Ox5566 7788

mc30 4,5
GPR 4 now holds Ox1122 3355

See Also: "Move and Insert Instructions" on page 4-15

032 Microprocessor Instructions 4-107

mc31

Purpose:

Format:

Example:

See Also:

Move Character Three From One

Character C3 of register Rl is replaced by character C 1 of register R2.

mc31 Rl,R2

FE Rl R2
0 8 12 15

assume GPR 4 holds Ox1122 3344
assume GPR 5 holds Ox5566 7788

mc31 4,5
GPR 4 now holds Oxll22 3366

"Move and Insert Instructions" on page 4-15

4-108 Assembler Language Reference

Move Character Three From Two mc32

Purpose: Character C3 of register Rl is replaced by character C2 of register R2.

Format:

Example:

FF Rl I R2 I
0 8 12 15

mc32 Rl,R2

assume GPR 4 holds Oxl122 3344
assume GPR 5 holds Ox5566 7788

mc32 4,5
GPR 4 now holds Ox1122 3377

See Also: "Move and Insert Instructions" on page 4-15

032 Microprocessor Instructions 4-109

mc33

Purpose:

Format:

Example:

Move Character Three From Three

Character C3 of register Rl is replaced by character C3 of register R2.

mc33 Rl,R2

FC Rl R2
0 8 12 15

assume GPR 4 holds Ox1122 3344
assume GPR 5 holds Ox5566 7788

mc33 4,5
GPR 4 now holds Ox1122 3388

See Also: "Move and Insert Instructions" on page 4-15

4-110 Assembler Language Reference

Move from System Control Register mf s

Purpose: The content of system control register SCRl is placed in register R2.

Format:

Remarks:

Example:

In privileged state, SCRl can have a value from 6 to 15 inclusive. In unprivileged state,
SCRl can have one of two values:

10-for Multiplier Quotient
15-for Condition Status Register.

mfs SCR1,R2

96 SCRl I R2
0 8 12 15

• If the specified SCR has reserved bits, the corresponding bits of register R2 are set to
unpredictable values.

• If the specified SCR is the JAR (SCR 13), the value loaded into register R2 is the
address of the instruction immediately following the mfs instruction in main
storage.

• See Chapter 1 for an explanation of other system control registers.

assume MQ register holds Ox0043 6211
mfs OxA,9

now GPR 9 holds Ox0043 6211

See Also: "System Control Register Manipulation Instructions" on page 4-20

032 Microprocessor Instructions 4-111

mftb Move From Test Bit

Purpose: The bit of register Rl specified by the value of bits 27 through 31 of register R2 is set to
the value of the Condition Status Test Bit.

Format: mftb Rl,R2

Example:

BC Rl R2
0 8 12 15

setcb OxF,OxF # sets test bit in CS to 1
assume GPR 4 holds OxClOO 666A
assume GPR 5 holds OxlOOO 0050

mftb 4,5
bits 27 through 31 of GPR 5 have binary value 11101
so bit 29 of GPR 4 is set to 1
GPR 4 now holds OxClOO 666E

See Also: "Move and Insert Instructions" on page 4-15

4-112 Assembler Language Reference

Move From Test Bit Immediate mftbi

Purpose: Bit I2 of register Rl is set to the value of the Condition Status test bit.

Format: mftbi Rl,I2

Remarks:

Examples:

upper half

I 9C Rl IN
0 8 12 15

lower half

9D Rl IN
0 8 12 15

• The assembler examines 12 and automatically chooses the correct form (upper or
lower half) of the instruction. If I2 ::; 15, op code 9C is generated. If I2 > 15, op
code 9D is generated.

• I2 must evaluate to an integer between decimal 0 and 31 inclusive.

setcb OxF,OxF
sets test bit in CS to 1
assume GPR 4 has OxClOO 666A

mftbi 4,29
op code 90 is generated
bit 29 of GPR 4 now set to 1
GPR 4 now holds OxClOO 666E

assume GPR 5 holds Ox0009 2222
mftbi 5,14

op code 9C is generated
bit 14 of GPR 5 now set to 1
GPR 5 now holds OxOOOB 2222

See Also: "Move and Insert Instructions" on page 4-15

032 Microprocessor Instructions 4-113

mts Move To System Control Register

Purpose: The content of system control register SCRl is replaced by the content of register R2.

Format:

Remarks:

Example:

In privileged state, SCRl can have a value between 6 and 15 inclusive. In unprivileged
state, SCRl can have one of two values:

10-for Multiplier Quotient
15-for Condition Status Register.

mts SCR1,R2

B5 SCRl I R2
0 8 12 15

• Any reserved bits in the specified SCR are not set to predictable values.

• If the specified SCR is the IAR (SCR 13), the results of the mts instruction are
unpredictable.

assume GPR 11 holds Ox0700 3321
mts 15,0xB

If CS occupied entire register, the
register would hold Ox0700 3321.
But only last 8 bits of the CS
#are defined (Ox21), so bits
EQ and TB are set to one.

See Also: Chapter 1 for an explanation of other system control registers

"System Control Register Manipulation Instructions" on page 4-20

4-114 Assembler Language Reference

Move To Test Bit mttb

Purpose: The Condition Status Test Bit is set to the value of the bit of register Rl specified by the
value of bits 27 through 31 of register R2.

Format: mttb Rl,R2

BF Rl R2
0 8 12 15

Example:

assume GPR 4 holds OxClOO 666A
assume GPR 5 holds OxlOOO 0050

mttb 4,5
bits 27-31 of GPR 5 have binary 11101
bit 29 of GPR 4 is 0
so CS test bit is set to 0

See Also: "Move and Insert Instructions" on page 4-15

032 Microprocessor Instructions 4-115

mttbi

Purpose:

Format:

Remarks:

Examples:

Move To Test Bit Immediate

The Condition Status Test Bit is set to the value of the bit in register Rl specified by I2.

mttbi Rl,I2

upper half

I 9E Rl IN
0 8 12 15

lower half

9F Rl IN
0 8 12 15

• The assembler examines I2 and automatically chooses the correct form (upper or
lower half) of the instruction. If I2 ~ 15, op code 9E is generated. If I2 > 15, op
code 9F is generated.

• 12 must evaluate to an integer between 0 and 31 inclusive.

assume GPR 4 holds OxClOO 666A
mttbi 4,29

op code 9F is generated
bit 29 of GPR 4 now set to 0
so CS test bit is set to 0

assume GPR 5 holds Ox0009 2222
mttbi 5,14

op code 9E is generated
bit 14 of GPR 5 now set to 0
so CS test bit is set to 0

See Also: "Move and Insert Instructions" on page 4-15

4-116 Assembler Language Reference

AND n

Purpose: The contents of registers Rl and R2 are ANDed. The result replaces the content of
register Rl.

Format: n Rl,R2

E5 Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 4 has OxFFF2 5730
assume GPR 5 has Ox7B41 92CO

n 4,5
now GPR 4 has Ox7B40 1200
GT bit set to one

See Also: "Logical Operation Instructions" on page 4-18

032 Microprocessor Instructions 4-117

nilo AND Immediate Lower Half Extended Ones

Purpose: I3 is extended on the left with 16 ones, then ANDed with the content of register R2. The
result replaces the content of register Rl.

Format: nilo Rl,R2,I3

C6 Rl R2 I3
0 8 12 16

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 5 holds Ox7B41 92CO
nilo 4,5,0x5730

now GPR 4 holds Ox7B41 1200
GT bit set to one

See Also: "Logical Operation .Instructions" on page 4-18

4-118 Assembler Language Reference

31

AND Immediate Lower Half Extended Zeroes

Purpose: 13 is extended on the left with 16 zeroes, then ANDed with the content of register R2.
The result replaces the content of register Rl.

Format: nilz Rl,R2,I3

C5 Rl R2 I3
0 8 12 16

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 5 holds Ox7B41 92CO
iilz 4,5,0x5730

now GPR 4 holds OxOOOO 1200
GT bit set to one

See Also: "Logical Operation Instructions" on page 4-18

31

nilz

032 Microprocessor Instructions 4-119

niuo AND Immediate Upper Half Extended Ones

Purpose: I3 is extended on the right with 16 ones, then ANDed with the content of register R2.
The result replaces the content of register Rl.

Format: niuo Rl,R2,I3

D6 Rl R2 13
0 8 12 16

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 5 holds Ox7B41 92CO
niuo 4,5,0x5730

now GPR 4 holds Ox5300 92CO
GT bit set to one

See Also: "Logical Operation Instructions" on page 4-18

4-120 Assembler Language Reference

31

AND Immediate Upper Half Extended Zeroes niuz

Purpose: I3 is extended on the right with 16 zeroes, then ANDed with the content of register R2.
The result replaces the content of register Rl.

Format: niuz Rl,R2,I3

D5 Rl R2 I3
'--~~~~--'-~~~'--~~-'-~~~~~---"~~~~~~

0 8 12 16

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 5 holds Ox7B41 92CO
niuz 4,5,0x5730

now GPR 4 holds Ox5300 0000
GT bit set to one

See Also: "Logical Operation Instructions" on page 4-18

31

032 Microprocessor Instructions 4-121

nop No Operation

Purpose: The IAR is incremented by two bytes, and the processor does nothing except proceed to
the next instruction to be executed.

Format: nop

Remarks:

6 0 0 0
0 4 8 12 15

• Do not use nop to make software timing loops. Instead, you should rely on the I/O
Delay Register (IDR). See Chapter 5, "System Boards" in hdwrs for more
information. (Since the 032 Microprocessor and the APC have different clock
speeds, timing-dependent code that was written for one processor may not run on the
other processor.)

• The nop instruction is the same as cas 0,0,0.

• The nop instruction does not affect the Condition Status bits.

• If the subject of a branch-with-execute instruction is only two bytes long, the
assembler automatically inserts a nop after the subject instruction.

4-122 Assembler Language Reference

OR o

Purpose: The contents of registers Rl and R2 are ORed. The result replaces the content of
register Rl.

Format: o Rl,R2

E3 Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 4 holds OxFFF2 5730
assume GPR 5 holds Ox7B41 92CO

0 4,5
now GPR 4 holds OxFFF3 D7FO
LT bit set to one

See Also: "Logical Operation Instructions" on page 4-18

032 Microprocessor Instructions 4-123

oil OR Immediate Lower Half

Purpose: I3 is extended on the left with 16 zeroes, then ORed with the content of register R2. The
result replaces the content of register Rl.

Format: oil Rl,R2,I3

C4 Rl R2 13
0 8 12 16

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 5 holds Ox7B41 92CO
oil 4,5,0x5730

now GPR 4 holds Ox7B41 D7FO
GT bit set to one

See Also: "Logical Operation Instructions" on page 4-18

4-124 Assembler Language Reference

31

OR Immediate Upper Half

Purpose: I3 is extended on the right with 16 zeroes, then ORed with the content of register R2.
The result replaces the content of register Rl.

Format: oiu Rl,R2,I3

C3 Rl R2 I3
0 8 12 16

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 5 holds Ox7B41 92CO
oiu 4,5,0x5730

now GPR 4 holds Ox7F71 92CO
GT bit set to one

See Also: "Logical Operation Instructions" on page 4-18

31

oiu

032 Microprocessor Instructions 4-125

onec One's Complement

Purpose: The content of register Rl is replaced by the one's complement of the content of register
R2.

Format: onec Rl,R2

F4 Rl R2
0 8 12 15

Remarks: The LT, EQ, and GT Condition Status bits are affected.

Example:

assume GPR 5 holds Ox0036 8ACC
onec 4,5

now GPR 4 has oxFFC9 7533
LT bit set to one

See Also: "Arithmetic Instructions" on page 4-16

4-126 Assembler Language Reference

Subtract s

Purpose: The content of register R2 is subtracted from the content of register Rl. The result is
placed into register Rl.

Format: s Rl,R2

E2 Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, GT, CO, and OV are affected.

Example:

assume GPR 4 holds Ox006C 4930
assume GPR 5 holds Ox005A 3650

s 4,5
now GPR 4 holds Ox0012 12EO
GT and CO bits set to one

assume GPR 4 holds Ox006C 4930
assume GPR 5 holds Ox005A 3650

s 5,4
now GPR 5 holds OxFFED ED20
LT bit set to one

See Also: "Arithmetic Instructions" on page 4-16

032 Microprocessor Instructions 4-127

sar Shift Algebraic Right

Purpose: The content of register Rl is shifted right the number of bit positions specified by bits
26-31 of register R2. The vacated high-order positions are sign extended, that is, filled
with bits equal to the original bit 0.

Format: sar Rl,R2

BO Rl R2
0 12 15

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 4 holds Ox1234 5678
assume GPR 5 holds OxOOEE DBD4

sar 4,5
bits 26-31 of GPR 5 are binary 010100
which is decimal 20
GPR 4 now holds OxOOOO 0123
GT bit set to one

See Also: "Shift Instructions" on page 4-19

4-128 Assembler Language Reference

Shift Algebraic Right Immediate sari

Purpose: The content of register Rl is shifted right the number of bit positions specified by I2.
The vacated high-order positions are sign extended, that is, filled with bits equal to the
original bit 0.

Format: sari Rl,I2

Remarks:

Examples:

small form

AO Rl IN
0 8 12 15

large form

I Al Rl IN
0 8 12 15

• I2 must evaluate to an integer between decimal 0 and 31 inclusive.

• The assembler examines 12 and generates the correct form (small or large) of the
instruction. If 12 ::; 15, then IN = I2, and op code AO is generated. If 12 > 15,
then IN = 12 - 16, and op code Al is generated.

• Condition Status bits LT, EQ, and GT are affected.

assume GPR 4 holds Oxl234 5678
sari 4,8

op code AO is generated
now GPR 4 holds Ox0012 3456

assume GPR 5 holds Oxl234 5678
sari 5,20

op code Al is generated
now GPR 5 holds OxOOOO 0123

GT bit set to one

GT bit set to one

See Also: "Shift Instructions" on page 4-19

032 Microprocessor Instructions 4-129

se Subtract Extended

Purpose: The one's complement of the content of register R2 is added to the content of register
Rl. The value of Condition Status bit CO is added to the result. The final result is
placed in register Rl.

Format: se Rl,R2

Remarks:

Example:

F2 Rl R2
0 8 12 15

• This instruction allows multiple precision subtraction.

• Condition Status bits LT, EQ, GT, CO, and OV are affected.

assume GPR 4 holds Ox0044 6655
assume GPR 5 holds Ox0033 4422

setcb OxC # CO now set to one
se 4,5

now GPR 4 holds OxOOll 2233
GT and CO bits set to one

See Also: "Arithmetic Instructions" on page 4-16

4-130 Assembler Language Reference

Set Bit

Purpose:

Format:

Remarks:

Examples:

seth

Bit I2 of register Rl is set to one.

setb Rl,I2

upper half

I 9A Rl IN
0 8 12 15

lower half

9B Rl IN
0 8 12 15

• The assembler examines I2 and generates the correct form (upper or lower half) of
the instruction. If I2 ~ 15, op code 9A is generated. If I2 > 15, op code 9B is
generated.

• I2 must evaluate to an integer between decimal 0 and 31 inclusive.

• Condition Status bits LT, EQ, and GT are affected.

assume GPR 4 holds Ox0037 0037
setb 4,12

op code 9A is generated
now GPR 4 holds Ox003F 0037
GT bit set to one

assume GPR 5 holds Ox0037 0037
setb 5,19

op code 9B is generated
now GPR 5 holds Ox0037 1037
GT bit set to one

See Also: "Logical Operation Instructions" on page 4-18

032 Microprocessor Instructions 4-131

setcb Set Bit in the System Control Register

Purpose: Bit I2 in the lower half of System Control Register SCRl is set to one.

Format:

Remarks:

Example:

In privileged state, SCRl can have a value from 6 to 15 inclusive. In unprivileged state,
SCRl can have one of two values: 10 for the Multiplier Quotient register, or 15 for the
Condition Status.

If SCRl is the Condition Status register, I2 has the following significance:

I2= 0-7
I2= 8
I2= 9
I2= A
I2= B
I2= c
I2= D
I2= E
I2= F

Reserved
No operation (PZ bit is always zero)
Set the Less Than condition bit
Set the Equal condition bit
Set the Greater Than condition bit
Set the Carry Zero condition bit
Reserved
Set the Overflow condition bit
Set the Test bit.

If SCRl is the Multiplier Quotient register, I2 is any number from decimal 0 through 15
inclusive.

setcb SCR1,I2

97 SCRl I I2
0 8 12 15

• If the selected bit of the SCR is a reserved bit, that bit is not set to a predictable
value.

• If the specified SCR is the IAR (SCR 13), the results of setcb are unpredictable.

setcb F,F # sets the Test bit in the CS register

See Also: "System Control Register Manipulation Instructions" on page 4-20

Hardware Technical Reference to learn how this instruction affects other SCRs

4-132 Assembler Language Reference

Subtract From

Purpose: The content of register Rl is subtracted from the content of register R2. The result is
placed in register Rl.

Format: sf Rl,R2

B2 Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, GT, CO, and OV are affected.

Examples:

assume GPR 4 holds Ox006C 4930
assume GPR 5 holds Ox005A 3650

sf 5,4
now GPR 5 holds Ox0012 12EO
GT and CO bits set to one

assume GPR 4 holds Ox006C 4930
assume GPR 5 holds Ox005A 3650

sf 4,5
now GPR 4 holds OxFFED ED20
LT bit set to one

See Also: "Arithmetic Instructions" on page 4-16

sf

032 Microprocessor Instructions 4-133

sfi Subtract From Immediate

Purpose: The content of register R2 is subtracted from the sign-extended 13. The result replaces
the content of register Rl.

Format: sfi Rl,R2,I3

D2 Rl R2 I3
0 8 12 16

Remarks: Condition Status bits LT, EQ, GT, CO, and OV are affected.

Examples:

assume GPR 4 holds Ox006C 4930

sfi 5,4,0x8833
now GPR 5 holds OxFF93 3F03
LT and CO bits set to one

sfi 5,4,0x4930
now GPR 5 holds OxFF94 0000
LT bit set to one

See Also: "Arithmetic Instructions" on page 4-16

4-134 Assembler Language Reference

31

Subtract Immediate Short sis

Purpose: 12 is extended on the left with 28 zeroes, then subtracted from the content of register Rl.
The result replaces the content of register Rl.

Format: sis Rl,I2

92 Rl 12
0 8 12 15

Remarks: Condition Status bits LT, EQ, GT, CO, and OV are affected.

Example:

assume GPR 4 holds Ox006C 4930
sis 4,8

now GPR 4 holds 006C 4928
GT and CO bits set to one

See Also: "Arithmetic Instructions" on page 4-16

032 Microprocessor Instructions 4-135

sl Shift Left

Purpose: The content of register Rl is shifted left the number of bit positions specified by bits 26
through 31 of register R2. Zeroes are supplied to the vacated low-order positions.

Format: sl Rl,R2

BA Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 4 holds Oxl234 5678
assume GPR 5 holds OxOOEE DBD4

s 1 4, 5
bits 26-31 of GPR 5 are binary 010100
which is decimal 20
now GPR 4 holds Ox6780 0000
GT bit set to one

See Also: "Shift Instructions" on page 4-19

4-136 Assembler Language Reference

Shift Left Immediate sli

Purpose: The content of register Rl is shifted left the number of bit positions specified by I2.
Zeroes are supplied to the vacated low-order positions.

Format: sli Rl,I2

Remarks:

small form

AA Rl IN
0 8 12 15

large form

I AB Rl IN
0 8 12 15

• I2 is normally an integer between decimal 0 and 31 inclusive.

• The assembler examines I2 and chooses the correct form (small or large) of the
instruction. If 12 ::::; 15, then IN = I2, and op code AA is generated. If I2 > 15, then
IN = I2 - 16, and op code AB is generated.

• Condition Status bits LT, EQ, and GT are affected.

032 Microprocessor Instructions 4-137

Examples:

assume GPR 4 holds Oxl234 5678
sl i 4,20

op code AB is generated
GPR 4 now holds Ox6780 0000
GT bit set to one

assume GPR 5 holds Oxl234 5678
sli 5,12

op code AA is generated
GPR 5 now holds Ox4567 8000
GT bit set to one

See Also: "Shift Instructions" on page 4-19

4-138 Assembler Language Reference

Shift Left Paired sip

Purpose: The content of register Rl is shifted left the number of bit positions specified by bits 26
through 31 of register R2. Zeroes are supplied to the vacated low order positions. The
shifted content of register Rl is then placed in the pair of register Rl.

Format: slp Rl,R2

BB Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 4 holds Oxl234 5678
assume GPR 6 holds OxOOEE DBD4

slp 4,6
bits 26-32 of GPR 6 are binary 010100
which is decimal 20
now GPR 5 holds Ox6780 0000
GT bit set to one

See Also: "Shift Instructions" on page 4-19

032 Microprocessor Instructions 4-139

slpi Shift Left Paired Immediate

Purpose: The content of register Rl is shifted left I2 bit positions; zeroes are supplied to the
vacated low order positions. The content of register Rl is then placed in the pair of
register Rl.

Format: slpi Rl,I2

Remarks:

Examples:

small form

AE Rl IN
0 8 12 15

large form

I AF Rl IN
0 8 12 15

• I2 is normally an integer between decimal 0 and 31 inclusive.

• The assembler examines I2 and chooses the correct form (small or large) of the
instruction. If I2 ~ 15, then IN = I2, and op code AE is generated. If I2 > 15, then
IN = I2 - 16, and op code AF is generated.

• Condition Status bits LT, EQ, and GT are affected.

assume GPR 4 holds Ox1234 5678

slpi 4,20
op code AF is generated
now GPR 5 holds Ox6780 0000
GT bit set to one

slpi 4,12
op code AE is generated
now GPR 5 holds Ox4567 8000
GT bit set to one

See Also: "Shift Instructions" on page 4-19

4-140 Assembler Language Reference

Shift Right sr

Purpose: The content of register Rl is shifted right the number of bit positions specified by bits
26-31 of register R2. Zeroes are supplied to the vacated high-order positions.

Format: sr Rl,R2

BS Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 4 holds Oxl234 5678
assume GPR 5 holds OxOOEE DBD4

sr 4,5
bits 26-31 of GPR 5 are binary 010100
which is decimal 20
now GPR 4 holds OxOOOO 0123
GT bit set to one

See Also: "Shift Instructions" on page 4-19

032 Microprocessor Instructions 4-141

sri Shift Right Immediate

Purpose: The content of register Rl is shifted right the number of bit positions specified by I2.
Zeroes are supplied to the vacated high-order positions.

Format: sri Rl,I2

Remarks:

small form

AB Rl IN
0 8 12 15

large form

I A9 Rl IN
0 8 12 15

• 12 is normally an integer between decimal 0 and 31 inclusive.

• The assembler examines I2 and chooses the correct form (small or large) of the
instruction. If I2 :::; 15, then IN = I2, and op code A8 is generated. If I2 > 15, then
IN = I2 - 16, and op code A9 is generated.

• Condition Status bits LT, EQ, and GT are affected.

4-142 Assembler Language Reference

Examples:

assume GPR 4 holds Oxl234 5678
sri 4,20

#op code A9 is generated
GPR 4 now holds OxOOO 0123
GT bit set to one

assume GPR 5 holds Oxl234 5678
sri 5, 12

op code A8 is generated
GPR 5 now holds OxOOOl 2345
GT bit set to one

See Also: "Shift Instructions" on page 4-19

032 Microprocessor Instructions 4-143

srp Shift Right Paired

Purpose: The content of the register Rl is shifted right the number of bit positions specified by
bits 26-31 of register R2. Zeroes are supplied to the vacated high-order positions. The
contents of register Rl are then placed in the pair of register Rl.

Format: srp Rl,R2

B9 Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 4 holds Oxl234 5678
assume GPR 6 holds OxOOEE DBD4

srp 4,6
bits 26-31 of GPR 6 are binary 010100
which is decimal 20
now GPR 5 holds OxOOOO 0123
GT bit set to one

See Also: "Shift Instructions" on page 4-19

4-144 Assembler Language Reference

Shift Right Paired Immediate srpi

Purpose: The content of register Rl is shifted right the number of bit positions specified by I2,
with zeroes supplied to the vacated high-order positions. The content of register Rl is
then placed in the pair of register Rl.

Format: srpi Rl,I2

Remarks:

small form

AC Rl IN
0 8 12 15

large form

I AD Rl IN
0 8 12 15

• I2 is normally an integer between decimal 0 and 31 inclusive.

• The assembler examines I2 and chooses the correct form (small or large) of the
instruction. If I2 :::; 15, then IN = I2, and op code AC is generated. If I2 > 15, then
IN = I2 - 16, and op code AD is generated.

• Condition Status bits LT, EQ, and GT are affected.

032 Microprocessor Instructions 4-145

Examples:

assume GPR 4 holds Ox1234 5678

srpi 4,20
op code AD is generated
GPR 5 now holds OxOOOO 0123
GT bit set to one

srpi 4,12
op code AC is generated
GPR 5 now holds OxOOOl 2345
GT bit set to one

See Also: "Shift Instructions" on page 4-19

4-146 Assembler Language Reference

Store st

Purpose: For the long form, O/(R2) is added to the sign-extended D2 field. D2 is the number of
bytes displacement, and the sum represents an address. The word in storage at this
address is replaced by the content of register Rl.

For the short form, you specify D2 as the number of bytes displacement, but the
assembler converts D2 to a word displacement, and puts the word displacement into the
object code. At runtime, O/(R2) is added to 26 zeroes/ /D2//2 zeroes. The sum represents
an address. The word in storage at this address is replaced by the content of register
Rl.

Format: st Rl,D2(R2)

Remarks:

long form

I DD Rl R2 D2
0 8 12 16 31

short form

3 D2 Rl R2
0 4 8 12 15

• The assembler examines D2 and chooses the correct form (short or long) of the
instruction. The short form (op code 3) is generated if D2 :::;; 6 bits and D2's last two
bits are zero. The long form (op code DD) is generated if D2's last two bits are not
zero or 6 < D2 :::;; 16 bits.

• The effective address formed from D2 + O/(R2) will have its low-order two bits forced
to zero.

032 Microprocessor Instructions 4-147

Examples:

Example 1

assume GPR 5 contains OxAAAA BBBB, GPR 7 contains OxOOOO 5000
st 5, Ox0044 (7)

The word at address OxOOOO 5044 is replaced
#This D2 value generates op code DD.

st 5,4(7)
The word at address OxOOOO 5004 is replaced
This D2 value generates op code 3.

Example 2

.text
.main: # generated by C compiler

.using _main,11
assume GPR 11 has been loaded
with the address of _main

st 5,one
this generates the short form
object code in hex is 315B

st 6,test
this generates the long form

by OxAAAA BBBB.

by OxAAAA BBBB.

object code in hex is DD6B 006C

.data 3 # constant pool
_main: . long .main
one: . long 1
big: .space 100
test: . long 0

See Also: "Storage Access Instructions" on page 4-6

4-148 Assembler Language Reference

Store Character stc

Purpose: For the long form, O/(R2) is added to the sign-extended D2 field. The sum represents an
address. The character in storage at this address is replaced by character C3 of register
Rl.

Format:

For the short form, O/(R2) is added to 28 zeroes//D2. The sum represents an address.
The character in storage at this address is replaced by character C3 of register Rl.

stc Rl,D2(R2)

long form

I DE Rl R2 D2
0 8 12 16 31

short form

1 D2 Rl R2
0 4 8 12 15

Remarks: D2 is the number of bytes displacement. The assembler examines D2 and chooses the
correct form (short or long) of the instruction; If D2 s 4 bits, then op code 1 is
generated. If 4 bits < D2 s 16 bits, then op code DE is generated.

Examples:

Example 1

assume GPR 5 holds Oxl234 5678
assume GPR 7 holds OxOOOO 5000

stc 5,0x0044(7)
op code DE is generated
character of storage at address
OxOOOO 5044 is replaced by Ox78

stc 5,2(7)
op code 1 is generated
character of storage at address
OxOOOO 5002 is replaced by Ox78

032 Microprocessor Instructions 4-149

Example 2

.text
.main # generated by C compiler

.using _main, 11
assume GPR 11 has been loaded
with the address of _main

stc 5,one
this generates the short form
object code in hex is 145B

stc 6,test
this generates the 1 ong form
object code in hex is DE6B 006C

.data 3 # constant pool
_main: . 1 ong .main
one: .byte 1

.space 3
big: .space 100
test: .byte 0

See Also: "Storage Access Instructions" on page 4-6

4-150 Assembler Language Reference

Store Half sth

Purpose: For the long form, D2 is the number of bytes displacement. The halfword of storage
addressed by O/(R2) plus the sign-extended D2 field is replaced by the lower half of
register Rl.

For the short form, you specify D2 as the number of bytes displacement. The assembler
converts D2 to a number of halfwords displacement and puts the halfword displacement
into the D2 field of the object code. At runtime, the lower half of register Rl is replaced
by the halfword of storage addressed by O/(R2) + 27 zeroes//D2//0.

Format: sth Rl,D2(R2)

Remarks:

long form

I DC Rl R2 D2
0 8 12 16 31

short form

2 D2 Rl R2
0 4 8 12 15

• The assembler examines D2 and chooses the correct form (short or long) of the
instruction. The short form (op code 2) is generated if D2 s 5 bits and if D2's
low-order bit is zero. The long form (op code DC) is generated if 5 < D2 s 16 bits or
if D2's low-order bit is not zero.

• The effective address formed from D2 + O/(R2) will have its low-order bit forced to
zero at runtime.

• For the short form, D2 is the number of halfwords displacement at runtime. The
assembler does not convert the halfword displacement back to a byte displacement.

032 Microprocessor Instructions 4-151

Examples:

Example 1

assume GPR 5 contains OxAAAA BBBB
and GPR 7 contains OxOOOO 5000

sth 5,0x0044(7)
Halfword of storage addressed by OxOOOO 5044
is replaced by xBBBB. Op code DC is generated.

sth 5,2(7)
Halfword of storage addressed by OxOOOO 5002
is replaced by xBBBB. Op code 2 is generated.

4-152 Assembler Language Reference

Example 2

.text
.main #generated by C compiler

.using _main, 11
assume GPR 11 has been loaded
with the address of _main

sth 5,one
this generates the short form
object code in hex is 2258

sth 6,test
this generates the 1 ong form
object code in hex is DC6B 006C

.data 3 # constant pool
_main: . 1 ong .main
one: .short 1

.space 2
big: .space 100
test: .short 0

See Also: "Storage Access Instructions" on page 4-6

032 Microprocessor Instructions 4-153

stm Store Multiple

Purpose: The consecutive words in storage beginning at the address given by O/(R2) plus the
sign-extended D2 field are replaced, respectively, by the content of registers RI through
15.

Format: stm Rl,D2(R2)

D9 Rl R2 D2
0 8 12 16 31

Remarks: The effective address formed from D2 + O/(R2) will have its low-order two bits forced to
zero at runtime.

Example:

assume GPR 10 holds OxOOOO 6000
assume GPR 13 holds OxlOOO 2200
assume GPR 14 holds OxlOOO 3300
assume GPR 15 holds OxlOOO 4400

stm 13,0xl700(10)

three consecutive words in storage,
beginning at address OxOOOO 7700,
are now 100022001000330010004400
(hex representation)

See Also: "Storage Access Instructions" on page 4-6

4-154 Assembler Language Reference

Supervisor Call SVC

Warning: This instruction causes a trap to the operating system.
Purpose: The contents of the IAR replace the word that begins at hex address 190 in main storage

(that is, real memory). The contents of the ICS replace the halfword that begins at hex
address 194 in main storage. The contents of the CS replace the halfword that begins at
hex address 196 in main storage. The low-order 16 bits of the 32-bit sum O/(Rl) + 16
zeroes/ /11 are stored into the halfword that begins at hex address 19E in main storage.

Format:

Remarks:

The word beginning at hex address 198 in main storage replaces the contents of the IAR.
The halfword beginning at hex address 19C in main storage replaces the contents of the
ICS. Any reserved bits in the IAR and ICS are set to unpredictable values.

SVC Il(Rl)

co 0 Rl 11
0 8 12 16 31

• This instruction cannot be used as the subject of a branch with execute instruction.
Doing so may put the processor in an unpredictable state.

• This instruction can be issued in unprivileged state; however, it is privileged in the
sense that applications running in problem state do not ordinarily use it. An svc
causes a trap to a real memory location where the Virtual Resource Manager
resides, then causes the processor to go from unprivileged state to privileged state.
The AIX Operating System kernel, if it exists, can request the Virtual Resource
Manager to perform an svc. The 11 values necessary to do this are called "svc
codes." However, applications programs should not use the svc to make a request to
the kernel. Instead, applications programs should use AIX Operating System kernel
system calls or subroutines.

See Also: "System Control Instructions" on page 4-21

Virtual Resource Manager Technical Reference for information on the svc codes

AIX Operating System Technical Reference for the system calls that application
programs can use to issue requests to the kernel

032 Microprocessor Instructions 4-155

tgte Trap if Register Greater Than or Equal

Purpose: If the content of register Rl is logically greater than or equal to the content of register
R2, the Trap bit of the Program Check Status register is set, and a program check
occurs.

Format: tgte Rl,R2

BD Rl R2
0 8 12 15

Remarks: The AIX Operating System sdb command sets breakpoints by using tgte.

Example:

assume GPR 4 holds OxF888 8888
assume GPR 5 holds Ox7999 9999

tgte 4,5
a trap occurs

See Also: "Trap Instructions" on page 4-15

4-156 Assembler Language Reference

Trap on Condition Immediate ti

Purpose: The content of register R2 and the value of the sign-extended I3 field are logically
compared. If any of the trap conditions specified by bits 9 through 11 are met, the trap
bit of the Program Check Status register is set, and a program check occurs.

Format:

Remarks:

Trap conditions are specified by Il, which occupies bits 8-11 as defined below. A trap is
enabled if the bit is one, and disabled if the bit is zero.

Bit 8

Bit 9

Bit 10

Bit 11

Must always be zero.

Trap if register R2 is less than the value of the sign-extended I3 field.

Trap if register R2 is equal to the value of the sign-extended I3 field.

Trap if register R2 is greater than the value of the sign-extended I3 field.

ti Il,R2,I3

cc I1 R2 I3
0 8 12 16 31

• This is not a typical D format instruction, because it has an I1 field instead of an Rl
field.

• When the comparisons are performed, the operands are treated as 32-bit unsigned
integers.

032 Microprocessor Instructions 4-157

Examples:

assume GPR 4 holds OxEFFF 8555

ti 2,4,0x8555
decimal 2 means bit 10 in Il is one
no trap occurs

ti 4,4,0x8555
decimal 4 means bit 9 in I1 is one
a trap occurs

See Also: "Trap Instructions" on page 4-15

4-158 Assembler Language Reference

Trap if Register Less Than

Purpose: If the content of register Rl is less than the content of register R2, the Trap bit of the
Program Check Status is set, and a program check occurs.

Format: tlt Rl,R2

BE Rl R2
0 8 12 15

Example:

assume GPR 4 holds OxEFFF 8555
assume GPR 5 holds OxFFFF 8555

tlt 4,5
a trap occurs

See Also: "Trap Instructions" on page 4-15

tlt

032 Microprocessor Instructions 4-159

tsh Test and Set Half

Purpose: The lower half of register Rl is replaced by the halfword of storage addressed by O/(R2)
plus the sign-extended D2 field. The upper half of register Rl is set to zeroes.
Immediately following the operation that reads the halfword of storage, the high-order
byte of the selected halfword in storage is filled with binary ones. The low-order byte of
the selected halfword is not changed.

Format: tsh Rl,D2(R2)

CF Rl R2 D2
0 8 12 16 31

Remarks: The effective address formed by D2 + O/(R2) will have its low-order bit forced to zero
before accessing memory.

Example:

assume halfword OxABCD begins
at address OxOOOO 8800
assume GPR 4 holds Oxll22 3344
assume GPR 5 holds OxOOOO 1100

tsh 4,0x7700(5)

now GPR 4 holds OxOOOO ABCD
now halfword OxFFCD begins
at address OxOOOO 8800

See Also: "Storage Access Instructions" on page 4-6

4-160 Assembler Language Reference

Two's Complement twoc

Purpose: The two's complement of the content of register R2 replaces the content of register Rl.

Format: twoc Rl,R2

E4 Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, GT, CO, and OV are affected.

Example:

assume GPR 5 holds Ox8765 4321
twoc 4,5

now GPR 4 holds Ox789A BCDF
GT bit is set to one

See Also: "Arithmetic Instructions" on page 4-16

032 Microprocessor Instructions 4-161

wait Wait

Warning: Do not use this instruction in unprivileged state. If you use
wait in unprivileged state, the machine generates a program check
interrupt with a privileged instruction exception.

Purpose: This instruction places the processor in a wait state.

Format: wait 0,0

Remarks:

FO 0 0
0 8 12 15

• If you use this instruction in unprivileged state, an exception will be presented to
the operating system.

• When the processor is in the wait state, it does not execute any instructions or make
any storage accesses.

• The processor is removed from the wait state through the occurence of an interrupt,
error, or power-on reset.

See Also: "System Control Instructions" on page 4-21

4-162 Assembler Language Reference

Exclusive OR

Purpose: Registers Rl and R2 are exclusive ORed. The result replaces the content of register Rl.

Format: x Rl,R2

E7 Rl R2
0 8 12 15

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 4 holds OxFFF2 5730
assume GPR 5 holds Ox7B41 92CO

x 4,5
now GPR 4 holds Ox84B3 c5FO
LT bit is set to one

See Also: "Logical Operation Instructions" on page 4-18

x

032 Microprocessor Instructions 4-163

xii Exclusive OR Immediate Lower Half

Purpose: I3 is extended on the left with 16 zeroes, then exclusive ORed with the content of
register R2. The result replaces the content of register Rl.

Format: xil Rl,R2,I3

C7 Rl R2 I3
0 8 12 16

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 5 holds Ox7B41 92CO
xil 4,5,0x5730

now GPR 4 holds Ox7B41 C5FO
GT bit is set to one

See Also: "Logical Operation Instructions" on page 4-18

4-164 Assembler Language Reference

31

Exclusive OR Immediate Upper Half

Purpose: I3 is extended on the right with 16 zeroes, then exclusive ORed with the content of
register R2. The result replaces the content of register Rl.

Format: xiu Rl,R2,I3

D7 Rl R2 I3
0 8 12 16

Remarks: Condition Status bits LT, EQ, and GT are affected.

Example:

assume GPR 5 holds Ox7B41 92CO
xiu 4,5,0x5730

now GPR 4 holds Ox2C71 92CO
GT bit is set to one

See Also: "Logical Operation Instructions" on page 4-18

31

xiu

032 Microprocessor Instructions 4-165

4-166 Assembler Language Reference

Chapter 5. Pseudo-Ops

Pseudo-Ops 5-1

CONTENTS
About This Chapter . 5-3
What Is a Pseudo-Op? . 5-4
Categories of Pseudo-Ops . 5-5

Data Alignment . 5-5
Data Definition . 5-5
Storage Definition . 5-6
Addressing within a Source Module (Base Registers) . 5-6
Direct Addressing . 5-6
Assembler Section Definition . 5-6
External Symbol Definition . 5-6
Symbol Table Entries for sdb . 5-7
Optimization Information . 5-7
Support for Calling Conventions . 5-8

Notational Conventions . 5-9
Directory of Pseudo-Ops . 5-11

5-2 Assembler Language Reference

About This Chapter

This chapter defines pseudo-operations and lists them by category. "Notational
Conventions" on page 5-9 shows the notation used to describe pseudo-ops. A directory
then lists pseudo-ops by mnemonic.

If you know the mnemonic of the pseudo-op, just look it up in the directory. If you don't
know the name or mnemonic of the pseudo-op, but you know what the pseudo-op should do,
look at "Categories of Pseudo-Ops" on page 5-5.

Pseudo-Ops 5-3

What Is a Pseudo-Op?

A pseudo-operation, commonly called a pseudo-op, is an instruction to the assembler that
does not generate any machine code. (The only exceptions are the call and callr
pseudo-ops.) The assembler resolves pseudo-ops during assembly-unlike machine
instructions, which are resolved only at runtime. Pseudo-ops are sometimes called
assembler instructions, assembler operators, or assembler directives.

In general, pseudo-ops give the assembler information about data alignment, block and
segment definition, and base register assignment. The RT PC also supports pseudo-ops
that give the assembler information about floating point constants, calling conventions,
and the symbolic debugger (sdb).

The following pseudo-ops can change the contents of the assembler's location counter:

.align .float

. byte .lcomm
call .long
callr .org
.comm .short
.double .space

All the other pseudo-ops do not affect the value of the location counter.

5-4 Assembler Language Reference

Categories of Pseudo-Ops

Pseudo-ops can be grouped into the following functional categories.

Data Alignment

.align

.byte

.long

.short

.double

.float

These pseudo-ops are typically used in the data section of a program. They may be used to
create data areas to be used by a program, as shown by the example below.

greeting: .long 1 H, 1 0, 1 W, 1 D, 'Y

1 m 11, greeting
The .double and .float pseudo-ops represent floating point constants. Both of these
pseudo-ops have a fcon operand, which is described at "Notational Conventions" on
page 5-9. Note that the C compiler builds floating point constants with .byte; the C
compiler does not generate .double or .float.

Data Definition

.set

.double

.float

.byte

.long

.short

See page 5-29 and "Defining a Symbol with a Pseudo-op" on page 2-14 for a discussion of
.set.

Pseudo-Ops 5-5

Storage Definition

.space

Addressing within a Source Module (Base Registers)

.drop

.using

Direct Addressing

.direct

Assembler Section Definition

.comm

.data

.lcomm

.text

These pseudo-ops define assembler language sections, which ultimately define runtime
segments.

External Symbol Definition

.globl

5-6 Assembler Language Reference

Symbol Table Entries for sdb

. bb .function

.bf .line

.eh .stab

.ef .staba

.eos .stabs

.file .stabt

The C compiler generates these pseudo-ops when you request the cc command with a -g
flag and a C language input file. These pseudo-ops give symbol table information to the
symbolic debugger, and have no other effect on assembly. IBM documentation does not
discuss the sdb pseudo-ops, since they should only be inserted by a compiler, not by
programmers.

Note: If you want to insert these sdb pseudo-ops into assembler language source code
that does not already contain them, you should use your assembler source code as a C
language function. Then, write a separate C file with a main calling the function that is
written in assembler source.

For information on using sdb, see AIX Operating System Programming Tools and
Interfaces.

Optimization Information

.co pt

The C compiler generates this pseudo-op when you request the cc command with the -0
flag and a C language input file. This pseudo-op passes information to the C optimizer, and
has no effect on assembly. IBM documentation does not discuss the .copt pseudo-op, since
it should only be inserted by a compiler, not by programmers.

Pseudo-Ops 5-7

Support for Calling Conventions

call
callr

The assembler expands these pseudo-ops into a series of instructions and pseudo-ops that
call subroutines. Unlike other pseudo-ops, call and callr do not begin with a period,: and
they do generate machine code.

See "Subroutine Linkage and System Calls" on page 6-15 for the context in which these
pseudo-ops are used.

5-8 Assembler Language Reference

Notational Conventions

All spaces are required unless otherwise specified. A space may optionally occur after a
comma. Spaces are not allowed before a comma.

Some examples of pseudo-ops may not show labels. However, you can put a label in front
of a pseudo-op statement just as you would for a machine instruction statement.

The following notational conventions are used to describe pseudo-ops:

[] (brackets)
Enclose optional operands.

name Any valid label.

R A general purpose register. R is an expression that evaluates to an integer
between 0 and 15 inclusive.

N An expression that evaluates to an integer.

exp Unless otherwise noted, exp signifies a relocatable, constant, or absolute
expression.

fcon A floating point constant. In 032 Microprocessor assembler language, an fcon
consists of four parts in order:

integer part Must be one or more digits.
decimal point Is optional.
fraction part Must be one or more digits.
exponent part Is optional. Consists of an e or E, followed by a + or -, followed

by one or more digits.

You may omit either the integer part or the fraction part, but not both. For
example, the following are valid fcon operands:

.45
le+5
4E-11
.99E6
357.22e12

Pseudo-Ops 5-9

There is no bounds checking for the operand; the range of the operand is the
range of the floating point hardware. Also note that a fcon for a .double can be
bigger than an fcon for a .float. For example, 5e300 would be valid for .double
but not for .float.

. . . (ellipsis)
When shown as the last operand, a series of the operands preceding the ellipsis.
For example, exp,exp, ... denotes two or more expressions separated by commas.

When shown between two operands, an ellipsis signifies operands to be added by
the programmer. For example, expl,exp2, ... exp5 means that the programmer
supplies expl, exp2, exp3, exp4, and exp5.

5-10 Assembler Language Reference

Directory of Pseudo-Ops

The pseudo-ops are listed in alphabetic order. If you do not know the name of the
pseudo-op you need, refer to "Categories of Pseudo-Ops" on page 5-5.

The directory entry for each pseudo-op includes a purpose, remarks, and example. Some
directory entries also have remarks about the pseudo-op.

Pseudo-Ops 5-11

.align

Purpose:

Format:

Remarks:

Example:

If necessary, advance the current location counter until the low-order N bits are filled
with the value 0. N is an expression that evaluates to the integer value of 0, 1, or 2 .

. align N

• If N evaluates to 0, alignment occurs on a byte boundary. If N evaluates to 1,
alignment occurs ·on a halfword boundary. If N evaluates to 2, alignment occurs on
a fullword boundary.

• The linker will not allow alignment on anything bigger than a fullword boundary
(such as a page boundary) for modules that are linked together.

• This pseudo-op is normally used in the data section of an assembler language
program.

• If .align is used in the text section, alignment occurs by padding with nop
instructions.

.data

.byte 1
location counter now at odd number

.align 1
location counter now at
next halfword boundary

.byte 3,2

.text

. align 2 # insure the bali and
.long are a 1 i gned
#on a fullword boundary

bali l,cont
.long 5004381

cont: 2,0(1) # load the big constant

5-12 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

Assemble the values represented by the exp expressions into consecutive bytes.

. byte exp,exp, ...

• The exps cannot contain externally defined symbols.

• If an exp is longer than one byte, it will be truncated.

.set olddata,OxCC

@2000 0000 mine: .byte Ox3F,Ox7+0xA,olddata,OxFF

load GPR 1 with Ox20000000

2,0(1)

GPR 2 now holds Ox3FllCCFF

.byte

Pseudo-Ops 5-13

call

Purpose:

Format:

Remarks:

Calls a subroutine. The label is the name of the subroutine being called. If the label is
a C language subroutine, the label includes the leading period(.).

The pcp_address is the hex address of the pointer to the called routine's constant pool.
This operand can be expressed as a label, or as a base and displacement of the form
D2(R2). However, any labels specified must be covered by a .using.

The number_ words is the number of words required to store all parameters passed
between the calling and the called routine. This value is used only by debuggers such
as sdb. The debugger uses this value to display procedure parameters when showing
information about the call. If debugger information is not being collected, this value is
zero.

call label, pcp_address, number_words

• The assembler expands the call pseudo-op into the following series of statements:

balix
1
.byte

15, . 1abe1
0, pcp_address
Ox08, number_words

call the routine
#get the routine 1 s constant pool pointer
number of words of parameters passed;
.byte acts as a no-op with operands

The .byte statement is generated only when the number_words operand was not
zero (that is, only when sdb information was being gathered). If number_words
was zero, then the .byte statement is not generated.

If the target of the balix is not within a megabyte of the call, then the branch
target cannot be resolved. This could happen if the load module's text segment is
larger than a megabyte, or if the target is in a shared library that is mapped into
some other segment. In either case, the linkage editor changes balix into baiax to
a special sequence of code at a fixed location in the RT PC kernel.

This special linkage code uses the first word of the called routine's constant pool to
derive the address of the distant entry point. If Id has set the low-order bit of the
first constant pool word to zero, then the linkage code assumes that the word is the
address of the entry point. So, the linkage code branches to that address.

If Id has set the low-order bit of the first constant pool word to one, then the
linkage code assumes that the word is the address of an entry in the "gate vector"
at the beginning of a shared library text image. Each entry in this gate vector
represents the offset from the beginning of the text image of a function contained
in the library. The linkage code adds this entry (the function offset) to the shared
library's starting location, then branches to the resulting address.

5-14 Assembler Language Reference

The special linkage routine in the kernel looks like this:

KLRTN:
mts
lr
1
mttbi
bts
brx
mfs

fixup:

nilo
st

niuz

0

lr
st

brx
mf s

KLRTN's absolute address is OxOcOO
10, 14 # save register 14 into MQ register
14,0 # make register 0, the pep, addressable
14,0(14) # get entry address
14,31 # check low-order bit
fixup # if low-order bit is one, go to fixup pointer
14 # if low-order bit zero, go to real entry point
10, 14 # restore register 14 to its previous value

11 fi xup 11 the address you were branching to --
assume register 14 holds a pointer to a long
#word containing the offset within a shared library
text image of the real target entry point;
register 14 also contains the segment number
where the shared image resides
in the high 4 bits

14,14,0xfffe # set lowest bit of register 14 to zero
15,-4(1) # save register 15 -- eventually, called

routine will return to register 15
15,14,0xfOOO # get segment number (high-order 4 bits of

the address Id used)
14,0(14) # de-reference register 14 (holds pointer

into gate vector)
14,15 # 11 or 11 the segment number (high-order 4 bits)

into the address held by register 14
15,0 # get pep again
14,0(15) # register 14 now has real address of program,

so save that address -- next time this
program is called, low-order bit of first
constant pool word will be zero

15,-4(1) # restore register 15
14 # continue the call
10' 14 # restore register 14

Pseudo-Ops 5-15

Example:

See Also:

• The linkage sequence assumes that register 0 points to the constant pool of the
called routine, and that the first word of the constant pool is the address of the
routine's entry point.

The assembler expands this:

call .foo, 12(14),3
into this:

balix
l
.byte

15,.foo
0,12(14)
Ox08,3

"Subroutine Linkage and System Calls" on page 6-15

AIX Operating System Programming Tools and Interfaces and shlib in AIX Operating
System Commands Reference for information about gate vectors

5-16 Assembler Language Reference

Purpose:

Format:

Remarks:

callr

Calls a subroutine using a register that holds a pointer to the called routine's constant
pool.

R is the register containing the address of the called routine's constant pool. R must
not be 0. Number_words is the number of words required to store all parameters
passed between the caller and the called routine. This value is used only by debuggers
such as sdb. The debugger uses this value to display procedure parameters when
showing information about the call. If debugger information is not being collected, this
value is zero.

callr R, number_words

• It is impossible to predict what function address will be loaded into register Rat
execution time. Therefore, the assembler must generate code to suit the worst case:
a call to a function within a shared library. Accordingly, the assembler expands
callr into a series of statements including a branch to KLRTN, the special kernel
linkage routine mentioned on page 5-15:

balax KLRTN # branch to kernel linkage routine
KLRTN is its absolute address in memory

lr O,R # put address of called routine 1 s
constant pool into register 0

.byte Ox08, number_words # number of words of parameters passed;
.byte acts as a no-op with operands

The .byte statement is generated only when the number_words operand was not
zero (that is, only when sdb information was being gathered). If number_words
was zero, then the .byte statement is not generated.

• The linkage sequence assumes that register 0 points to the constant pool of the
called routine, and that the first word of the constant pool is the address of the
routine's entry point.

Pseudo-Ops 5-17

Example: The assembler expands this:

See Also:

callr 8,3
into this:

balax KLRTN # KLRTN is the special kernel linkage routine
described on page 5-15

lr 0,8 # get the pointer to called routine's constant pool
.byte Ox08,3 # three words of parameters are passed

"Subroutine Link~ge and System Calls" on page 6-15

5-18 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

See Also:

.comm

Define a block of storage that will be common to more than one module. The block is
named name and has a length of exp bytes.

.comm name,exp

• The exp operand must be an absolute expression; name is relocatable.

• Use .comm when you know the size of a block of data that will be shared by two
or more files, but you don't know whether that data will become initialized.

• The linker defines a common block of storage at link time. That is, the space
declared with a .comm disappears at link time. If the data in the .comm space
becomes initialized, it goes to the data runtime segment. If the .comm data is not
initialized, it goes to the bss section. At load time, the bss section is created at the
end of the data segment.

• If the original module or any linked modules contain more than one .comm
definition of the same name, the assembler reserves space specified by the largest
exp. The assembler does not generate an error message.

• By default, the linker defines common blocks in the bss section of the linked
program. If you link in a module that defines name in the text or data assembler
section, that module's definition of name will take precedence. The common block
will then be defined in the text or data assembler section.

.comm proc,5120
if proc is not defined elsewhere, proc
refers to 5120 bytes of storage in
the bss segment of the linked program

.data, .globl, .lcomm, . text

Chapter 3

Pseudo-Ops 5-19

.data

Purpose:

Format:

Remarks:

Examples:

See Also:

Switch to location counter N of the assembler language data section.

N is an expression that evaluates to an integer from 0 to 3 inclusive.

.data [N]

• The default N value is 0.

• The data section holds initialized variables (data that gets changed when the
program runs).

• When the assembler first encounters .data N, data location counter N initially
receives a value of 0. The assembler increments this value in bytes as instructions
are read. If .data N occurs again with the same N value, that data location
counter N keeps the same value it had the last time it was used.

.data # switches to location counter 0
of the data section

.data (sym+l)
valid values of sym are integers
between -1 and +2 inclusive

. comm, .lcomm, . text

Chapter 3

5-20 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

See Also:

.direct

The instructions in the same file as the .direct refer to an absolute address in memory.
This pseudo-op allows direct addressing in instructions, as opposed to effective
addressing .

. direct

• The .direct can be anywhere in the file, and applies to all the instructions in the
file.

• The assembler assumes that the program's text section will be linked in the lowest
32K of address space, so that 16-bit direct addresses can be used for text segment
references not covered by . using statements.

• If any labels are subject to a .direct but not covered by a .using, the assembler
assumes that the labels are based off location 0.

• The .direct pseudo-op is intended for use by kernel programmers, or for code that
ultimately resides in virtual addresses 0 through 32767. User-made programs are
always linked at hex locations 1000 0000 or higher.

.direct # undefined symbols reside below OxOOOO 7fff
bala kern_call

.using

Chapter 3

Pseudo-Ops 5-21

.double

Purpose: Representation of floating point constants.

Format: .double fcon

Remarks: Fullword alignment occurs as necessary.

Examples:

See Also:

.double

.double

.double

.double

.float

3.4
-77
134E-12
5e300

"Data Definition" on page 5-5

5-22 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

See Also:

Stop using register N as a base register.

N is an expression that evaluates to an integer from 0 to 15 inclusive .

. drop N

.drop

• You do not have to use the .drop pseudo-op before changing the base address with
the . using pseudo-op.

• You do not have to use a .drop pseudo-op at the end of a program.

.using _subrA,l
rl can now be used for addressing
#with displacements calculated
relative to _subrA

.drop 1
stop using rl

.using _subrB,l
now assembler calculates displacements
relative to _subrB

.usmg

Chapter 3

Pseudo-Ops 5-23

.float

Purpose: Representation of a floating point constant.

Format: .float fcon

Remarks: Fullword alignment occurs as necessary.

Examples:

See Also:

. fl oat

. fl oat

. fl oat

.double

3.4
-77
134E-12

"Data Definition" on page 5-5

5-24 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

See Also:

.globl

Make name globally visible to the linker. Name is any label or symbol; it must be
defined somewhere in the source file. Name will become available to any file that is
linked to the file in which .globl occurs .

. globl name

• If you don't use .globl for a symbol, then that symbol is, by default, only visible
within the current assembly, and not to other modules that may later be linked.
Also, for common blocks without a .globl declaration, the loader allocates memory
in the bss section.

• If name is defined in the current assembly, its type and value arise from that
definition, not the .globl definition.

• The Id command maps all common segments with the same name into the same
memory. If in one of the segments the name is declared .globl and defined, this has
the same effect as declaring the common symbols to be .globl in all segments. In
this way, common memory can be initialized.

.globl main
main:

.comm

Pseudo-Ops 5-25

.I comm

Purpose:

Format:

Remarks:

Example:

See Also:

Name is a label at the address specified by the current location counter for the bss
assembler section. The contents of the bss location counter are incremented by exp.

This defines a local common block of storage named name with length exp bytes. At
runtime, this storage block will be reserved when the bss section is allocated at the end
of the data segment. This storage block is for uninitialized external data .

.lcomm name,exp

• The exp operand must be an absolute expression that is defined in the first pass of
the assembler; name is relocatable.

• To make name appear in the symbol table, you should declare name as a global
symbol.

• The .lcomm and .comm pseudo-ops work together to define storage in a bss
section.

.lcomm buffer,5120
can refer to this 5K of storage as 11 buffer 11

.comm

5-26 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

Assemble expressions exp into consecutive fullwords.

.long exp,exp, ...

• Fullword alignment occurs as necessary.

.long

• The number of expressions is limited only by the amount of storage you have.

.long 24,3,fooble-333,0

Pseudo-Ops 5-27

.org

Purpose:

Format:

Remarks:

Example:

See Also:

Set the value of the current location counter to exp. The exp is normally a relocatable
expression.

.org exp

• You cannot use .org to decrement a location counter.

• The assembler allows exp to be absolute, thereby producing non-relocatable code.

Warning: If you use an absolute expression as an .org operand,
make sure that you do not need the data you will overwrite. It is
recommended that you use absolute .orgs with extreme caution.
If you use an absolute .org, do not run cc on the file containing the absolute .org.
Instead, you should run as and Id separately on the file. Furthermore, when you
run Id on the assembler output, you must do the following:

Specify the assembler output file as the first object file. That is, the assembler
output file must be specified before the crtO.o file.
Specify the -T flag with an address equal to the address used in the absolute
.org.

Instead of using an absolute .org, you may be able to achieve the desired effect by
specifying an absolute origin on the Id command line. See "Linking with Id" on
page 6-9. If you must use an absolute .org, do not place it immediately after a
branch instruction that has both a short and a long form.

@1000 0114

@1000 0178

.space

Chapter 2

A:

.org $+100
skip 100 decimal bytes (64 hex bytes)

5-28 Assembler Language Reference

Purpose:

Format:

Remarks:

Sets the label name equal to the expression exp, both in value and in type.

.set name,exp

.set

• Forward references are allowed within a module. That is, you can use name before
you define it in a .set.

• Exp cannot be an undefined external expression.

• Exp can refer to a register number, but cannot refer to the contents of a register at
runtime.

• Using .set may help to avoid errors if you have a frequently used expression.
Equate the expression to a symbol, then refer to the symbol rather than the
expression. If you need to change the value of the expression, you will only do so
within the .set statement. However, you will then need to reassemble, since .set
assignments occur at assembly time.

Pseudo-Ops 5-29

Examples: Example 1

See Also:

instr: balr 12,4

.set begin,instr
begin and instr are both relocatable

Example 2

.set ap,14

lis ap,2

Example 3

assembler assigns value 14 to
the symbol ap -- ap is absolute

assembler substitutes value 14 for the symbol ap
note that ap is a register
number in context as lis operand

.set expr,A-{B+C)/(33*0)

"Symbols" on page 2-13

5-30 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

Assemble expressions exp into consecutive halfwords.

.short exp,exp, ...

• Halfword alignment occurs as necessary.

.short

• The number of expressions is limited by the amount of available memory.

• Exp cannot refer to the contents of any register.

• If exp is longer than a halfword, it is truncated.

.short 1,0x4444,fooble-333,0

Pseudo-Ops 5-31

~space

Purpose:

Format:

Example:

Skip N bytes in the output file and fill them with binary zeroes. N is an absolute
expression.

The .space pseudo-op may be useful to reserve a chunk of storage in the.data or text
section of an assembler language program .

. space N

@ 2000 0000 .space 444

@ 2000 OlBC foo:

5-32 Assembler Language Reference

Purpose:

Format:

Remarks:

Example:

See Also:

Switch to location counter N of the assembler language text section. N is an
expression that evaluates to an integer from 0 to 3 inclusive .

. text [N]

• The default N value is 0.

• The text section holds program instructions and read-only data.

.text

• The assembler always begins in the text section, so you do not have to put . text at
the beginning of a program.

• When the assembler first encounters .text N, text location counter N initially
receives a value of 0. The assembler increments this value in bytes as instructions
are read. If .text N occurs again with the same N value, that text location counter
N keeps the same value it had the last time it was used.

.text 3

.comm, .data, .lcomm

Chapter 3

Pseudo-Ops 5-33

.using

Purpose:

Format:

Remarks:

Assigns Ras the base register number. Bases relocatable expressions from register R,
assuming that register R contains the relocatable program address of exp at runtime.
Exp is a label or an expression involving a label. It represents the displacement or
relative offset into the program, and must be relocatable .

. using exp,R

• The R operand must be absolute and must evaluate to an integer from 0 to 15
inclusive.

• The exp operand cannot be or have an external or absolute symbol.

• With the information given in the .using pseudo-op, the assembler converts each
relocatable expression (or implicit address) to a base register number plus a
displacement. The linker later assigns the final addresses.

• The • using pseudo-op does not load the specified register; the programmer must
guarantee that this value is actually in base register R at runtime.

• Symbol names do not have to be previously defined.

• The .using pseudo-op only affects instructions with based addresses (that is, the
loads and stores).

5-34 Assembler Language Reference

Example:

.using _subrA,1
rl can now be used for addressing with
displacements calculated relative to _subrA.

.drop 1
stop using rl

.using _subrB,1
now assembler calculates displacements
relative to _subrB

See Also: .drop

Chapter 3

Pseudo-Ops 5-35

.xaddr

Purpose:

Format:

Reserves Ras the register to use for extended addressing. R must be an integer from 0
to 15 inclusive. If R is zero, extended addressing is disabled.

Extended addressing allows a displacement of more than 15 bits (a decimal value of
+ 32,767 to -32,768 bytes) for the following instructions:

cal le lps stm
ior lh st tsh
iow Iha stc
I Im sth

These instructions have displacement and base register operands of the form D2(R2).
For extended addressing, any labels used as part of the displacement must be
previously defined. Also, the displacement cannot be calculated with the .using
pseudo-op.

When the assembler encounters one of the instructions listed above, the assembler pads
the instruction's displacement D2 with leading zeroes until the displacement is a 32-bit
value. From this 32-bit displacement, the assembler calculates two values:

L = The low-order 15 bits of the 32-bit displacement
H = The high-order 16 bits of the 32-bit displacement, plus the highest-order bit of the

low-order halfword of the 32-bit displacement.

The assembler then examines the H value:

• If H = 0, the assembler does not change the originally specified instruction. This
implies a no-op instruction.

• If H =I= 0 and the .xaddr' s register R is 0, the assembler generates a
Di sp 1 acement too large error message.

• If H =I= 0 and the .xaddr's register R is valid, then the assembler generates the
following code. Assume that the instruction covered by .xaddr is op Rl,D2(R2),
where op is one of the instructions listed above:

op Rl, L (R)

.xaddr R

R is the .xaddr operand
R2 is the base register for instruction op
Rl is the source or target register
specified for instruction op
R is the .xaddr operand

5-36 Assembler Language Reference

Remarks:

Examples:

• Instructions with extended addresses may follow branch-with-execute instructions
(for example, bnbx), as long as the branch-with-execute instruction does not refer
to .xaddr's register R. The assembler inserts a cau instruction, then the
branch-with-execute instruction, then the altered instruction. (See Example 2.)

• The -a flag causes the C compiler to generate .xaddr pseudo-ops.

• The .xaddr pseudo-op does not save the contents of register R. The program must
explicitly save and restore the contents of that register.

• The .xaddr pseudo-op does not affect the following instructions:

Example 1

.xaddr 7

aei
cal16
cau
ci

st 8,0x854003(1)

cli
nilo
nilz
niuo

niuz
oil
oiu
sfi

This causes the assembler to generate the following:

SVC
ti
xil
xiu

cau 7,0x85+0(1) #displacement for cau is high half of displacement
from original store instruction, plus high-oraer
bit of lower half of displacement from original
store instruction

st 8,0x4003(7)

Pseudo-Ops 5-37

Example 2

.xaddr 7
brx 5
1 4,0x7FFFE(l)
This causes the assembler to generate the following:

cau 7,7+1(1)

brx 5
1 4,0x7FFE(7)

displacement for cau is high half of displacement
from original load instruction, plus high-order
bit of lower half of displacement from original
load instruction

5-38 Assembler Language Reference

Chapter 6. Assembling, Linking and Running a
Program

Assemble, Link, and Run 6-1

CONTENTS
About This Chapter . 6-3
Assembling and Linking with cc . 6-4
Assembling and Linking with Two Separate Steps . 6-6

Assembling with as . 6-6
The Assembler's First and Second Passes . 6-8
Linking with Id . 6-9

Interpreting an Assembler Listing . 6-12
Subroutine Linkage and System Calls . 6-15

Register Usage .·. 6-15
The Stack Frame . 6-18
The Stack Floor . 6-19
The Constant Pool . 6-21
The Calling Routine's Responsibilities . 6-22
The Called Routine's Responsibilities . 6-26

Running the Program . 6-30

6-2 Assembler Language Reference

About This Chapter

At this point, you have created an assembler language program with the editor of your
choice. The program may consist of several modules or files. You may have included
macros with m4, or subroutines such as clock or the floating point subroutines.

After writing your assembler language program, you need to assemble each file and link
the files together. There. are two ways to do this:

1. Use the as command to assemble each file and the ld command to link the files, or

2. Use the cc command to assemble and link the files in a single step. You may prefer to
use this method, because cc automatically calls ld with the flags necessary to link
assembler language source files.

After the files have been linked by either method, you can run the program.

This chapter explains the AIX Operating System commands needed to assemble, link, and
run your AIX Operating System assembler language program. This chapter also includes
information you need to link your file with AIX Operating System system calls or with files
written in other languages.

Note: If you want your program to include information for debuggers such as sdb, you
should follow the conventions in "Subroutine Linkage and System Calls" on page 6-15,
even if your program does not call any routines. Also be sure to include the information
shown in "Traceback" on page 6-27.

Assemble, Link, and Run 6-3

Assembling and Linking with cc

By default, the cc command starts the AIX Operating System C preprocessor, the C compiler, the 032
Microprocessor assembler, and the link editor. If you specify the -0 flag, cc also starts the
optimizer. The cc command is normally used with C language source code. However, cc can also be
used with AIX Operating System assembler language files as input files. If you run cc on an
assembler language file or files, cc automatically runs as and Id on the files (unless you specify the
-c flag). Furthermore, cc automatically does the following:

• Calls Id with the -TOxlOOOOOOO, -n, -le, -lrts, and -K flags
• Links the /lib/crtO.o file
• Specifies Id -estart to name the executable output file's entry point (where the label "start"

resides in /lib/crtO.o).
• Searches library files Ube.a and librts.a.

All of these actions are required for assembler source files. The cc command can thus be used to
assemble and link assembler language source code in a single step.

A few of the flags available for cc are shown below. See AIX Operating System Commands Reference
for a complete explanation of the cc command.

cc [-c] [-o file] [-0] [-a] [-X] sourcefile

Flag

sourcefile

-c

-o file

-0

-a

Purpose

If the input sourcefile is an assembler language source program, the file name must end
in .s. The cc command calls as for all the .s files, then cc calls Id. After Id is finished,
cc deletes the .o file if you specified a single file. If you specified multiple files, the .o
files will not be deleted. The output file will be named a.out by default.

Do not run Id on the completed object files. Leave the output as object code in the files
with .o suffixes. Using this flag on assembler language source code is equivalent to
running as.

This allows you to specify the output file name instead of the default a.out. This flag is
ignored if you specify the -c flag.

Invokes the optimizer.

Enables extended addressing. You should use this flag if a compiled procedure creates a
stack greater than 32, 767 bytes. This flag causes the compiler to reserve a register for
use by the assembler. Therefore, this flag reduces the number of available register
variables by one. (If you use this flag when your procedure does not require extended
addressing, the number of the procedure's register variables will be needlessly reduced.)
For more information, see the .xaddr pseudo-op in Chapter 5.

6-4 Assembler Language Reference

-X Generates an assembler listing that contains the assembler code generated by the C
program, along with location counter values and other information. The file containing
the listing is named sourcefile.Ist. The header shown inside the listing is sourcefile.c if
you compiled a C language program, or sourcefile.s if you compiled an assembler
program. See page 6-12 for details about the listing.

Note: Besides the Id flags that cc automatically calls, you may also insert other Id flags on the
command line with cc. The cc command will pass the flags to Id.

Assemble, Link, and Run 6-5

Assembling and Linking with Two Separate Steps

You may choose to assemble your modules with the as command, then link them with the Id
command.

Assembling with as

The as command causes the assembler to process a single file of assembler language source code.
See "The Assembler's First and Second Passes" on page 6-8 for more information. If you use as, you
must later use Id as well.

As assembles a file to produce assembler object code:

as [-o objfile] [-l[listfile]] [-nheader] [-j] [infile]

These flags are explained below.

Flag

in file

-o objfile

-l[listfile]

-n header

-j

Purpose

The input file containing assembler language source code. By default, the assembler
assumes that the input comes from standard input. If the input file came from a
compiler or if the input file was written in assembler language, the filename ends
with .s. If the input file cannot be read, the assembly will terminate with the
message "Cannot open infile."

Puts the assembler output into objfile. By default, the output file is named a.out.

Generates an assembly listing, found in a file named listfile. Do not put a space
between the -1 and the listfile.

If you do not specify listfile, then the listing will be named infile.lst by default.

Places header as a header inside the listing file. The header is a title shown inside
the listing itself. If you use the -n flag, you must specify a header name.

If you do not use the -n flag, the header will be infile.s by default.

Forces the assembler to generate only the long forms of branches. No short forms of
branches will be generated.

Page 4-14 explains short and long branches.

6-6 Assembler Language Reference

If you want to use macros in your assembler language source file, you must invoke m4 explicitly.
See AIX Operating System Programming Tools and Inter! aces for information on m4.

The output file is ready to link if no errors occurred and if there are no unintended external
references. If the assembler detects errors, it writes the following information to standard error:

• Input file name
• Line number where the error occurred in the assembly source code
• A descriptive message of the problem.

If the as command produces any error messages, you should correct the errors before moving on. See
Messages Reference for assembly error messages.

Assemble, Link, and Run 6-7

The Assembler's First and Second Passes

When you enter the as command, the assembler makes two passes over the source program.

The First Pass
On the first pass, the assembler:

1. Allocates space for instructions and storage areas you requested

2. Where possible, fills in values of constants

3. Builds a symbol table, also called a cross-reference table, and makes an entry in this table for
every symbol it encounters in the label field of a statement.

The assembler reads one source statement at a time. If the source statement has a valid symbol in
the label field, the assembler checks that the symbol has not already been used as a label. If this is
the first time the symbol has been used as a label, the assembler adds the label to the symbol table
and assigns the value of the current location counter to the symbol. If the symbol has already been
used as a label, the assembler gives the error message "Redefinition of nymbol" and re-assigns the
symbol value.

Next, the assembler examines the instruction's mnemonic. If the mnemonic is for a machine
instruction, the assembler determines the format of the instruction (for example, BI format). Then
the assembler allocates the number of bytes necessary to hold the machine code for the instruction.
The contents of the location counter are incremented by this number of bytes.

When the assembler encounters a comment(#) or an end-of-line character, the assembler starts
scanning the next instruction statement. The assembler keeps scanning statements and building its
symbol table until there are no more statements to read.

At the end of the first pass, all the necessary space has been allocated, and each symbol defined in
the program is associated with a location counter value in the symbol table. When there are no more
source statements to read, the assembler chooses short or long forms of the branch instructions, then
the second pass starts at the beginning of the program again.

6-8 Assembler Language Reference

The Second Pass
On the second pass, the assembler:

1. Examines operands for symbolic references to storage locations, and resolves these symbolic
references by referring to the information in the symbol table

2. Translates source statements into machine code and constants, thus filling the allocated space
with object code

3. Produces a file containing error messages, if any.

At the beginning of the second pass, the assembler scans each source statement a second time. As
the assembler translates each instruction, it increments the value contained in the location counter.

If a particular symbol appears in the source code but is not found in the symbol table, then the
symbol was never defined. That is, the assembler did not encounter the symbol in the label field of
any of the statements scanned during the first pass, or was never the subject of a .set, .lcomm or
.comm.

This could be either a deliberate external reference or an accidental programmer's error (such as
misspelling the symbol name). The assembler cannot determine whether this is a true error, so it
does not send any error message. Also, if the symbol is preceded by a .giobI, as assumes the symbol
is defined externally and will not give you a message.

The assembler logs errors such as incorrect data alignment. Assembler error messages are shown in
the alphabetic section of Messages Reference.

After the programmer corrects assembly errors, the program is ready to be linked.

Linking with Id

You should use the Id command if you have previously used as or cc -c to assemble a file.

The Id command performs the functions of a link editor. It combines several object files, relocates
them, resolves external symbols, searches libraries, and gives symbol table information to sdb. The
object files can be from a high-level language, or assembler language, or both. The final result is an
executable object module which is named a.out by default. This object module has a fixed format
which is not affected by Id flags.

Whenever Id links assembler language files, it puts assembler sections together in the proper order,
even if parts of any section came from different files.

Assemble, Link, and Run 6-9

There are several things you must always do when linking assembler language files with Id:

• Specify the -TOxlOOOOOOO flag so that your non-kernel assembler language programs will be
linked at hex location 10000000 or higher.

• Specify the -estart flag to make start the executable output file's entry point. The label start
is the point in /lib/crtO.o that will first get control from the kernel. ·

• Specify the -n flag to make read-only program text that is shared among all users running the
file.

• Specify the -K flag to enable mapped files.

• Specify the /lib/crtO.o file along with the assembler language file or files on the command line.
The kernel interfaces with the /lib/crtO.o routine to set up the required registers and to
otherwise define the calling sequence before executing code. The beginning of this routine is a
label named start.

• Specify the -I flag to search the appropriate library file. For example, specifying -le will search
libc.a, the standard system library for C and assembler language programs.

If you use cc to assemble and link your assembler language files, cc will do these things
automatically. (The /etc/cc.cfg file contains information on the Id flags that cc uses.)

The Id command maps all common segments with the same name into the same memory. (See the
.globl pseudo-op in Chapter 5.)

A few of the flags available on Id are shown below. See AIX Operating System Commands Reference
for a complete list of Id flags. Also see page 5-28 to learn about special Id considerations for
assembler files that use absolute .orgs.

Id [-n] [-K] [-s] [-x] [-X] [-oname] [-elabel] [-Tnum] [-Ikey] file

Flag Purpose

file... Link the specified file or files. One of these should be /lib/crtO.o.

-n Make the text segment read-only and shared among all users running the file.

-K Load the a.out header into the first bytes of the text segment, followed by the text
segments from the object modules. This causes pages of executable files to be aligned on
pages in the file system.

6-10 Assembler Language Reference

-s Remove symbol table and relocation bits. You can use sdb but you cannot use symbol
names in sdb in the executable module. This flag is automatically turned off if there are
any undefined symbols.

-x Do not preserve local (non-.globl) symbols in the output symbol table; only enter external
symbols. This flag saves some space in the output file but allows sdb to reference external
symbols by name.

-X Save local symbols except for those whose names begin with "L." This flag is used to
discard labels generated internally by the compiler while retaining symbols local to
routines. This flag saves some space in the output file but does not impair the usefulness of
sdb.

-oname Use name as the name of the Id output file instead of a.out.

-elabel Use the location in the output file named by label as the entry point when the program is
executed. Whenever you link the /lib/crtO.o file (that is, when you link assembler
language files), you must always specify the label as start.
Note: The cc command calls Id with -estart by default.

-Tnum Make num the starting address for the output file's text segment. This specifies an
absolute origin. By default, Id assumes that object modules are position-independent. Also,
by default, the text segment begins at location zero.

Note: The cc command calls Id with -TOxlOOOOOOO by default.

-1 Searches the specified library file, where key selects the file libkey.a. If you specify -le or -1
with no key, Id chooses libc.a, the standard system library for C and assembler language
programs.

Note: The cc command calls Id with -le by default.

After files have been linked, any symbol definition should be found in the same a.out segment as all
references to that symbol. Also, at linkage, all references to external symbols should have been
resolved. If they are not resolved, Id will give you an error message. The only exception is for
symbols that are part of an absolute expression used in an .org pseudo-op.

By default, errors produced during the Id command go to standard error. After the programmer
corrects Id errors, the program is ready to run.

Assemble, Link, and Run 6-11

Interpreting an Assembler Listing

You can get a listing of the assembly output by using a flag on the as or cc commands, as described
on pages 6-4 and 6-6. The following example shows the fields in such a listing.

Suppose you have run cc -X on the following C language source file, named hello.c:

main ()
{

printf("hello, world\11 11
);

}

Figure 6-1. Assembly Output Listing

In this case, the assembly listing will be found in a file named hello.1st. The contents of hello.1st
are shown in Figure 6-2 on page 6-13.

Note the headings along the top of the listing. These headings have the following meanings:

• Line# refers to the line number of the assembler program being listed. This assembler program
could have been written by hand, or generated by a compiler.

• Loe Ctr refers to the value contained in the assembler's location counter. The listing only shows
a location counter value for the assembler language statements that generated object code.

Location counter values beginning with T came from the assembler's text section; values
beginning with D came from the assembler's data section. The values themselves represent the
offset from the beginning of each section. The data section lies immediately after the end of the
text section.

Note that the bss section never shows up as a location counter value, because code is never
generated in the bss section. See "Assembler Sections and Runtime Segments" on page 3-9 for
more information.

• Object Code shows the hexadecimal object code generated by each line of the assembler
program. The listing shows a maximum of six bytes per line; any remaining bytes are shown on
the next line, until all the bytes have been shown.

Notice the object code shown for the .space pseudo-op, near the end of the first part of the
figure. For .space and other pseudo-ops that are used to reserve space, the listing shows two
periods to indicate a lot of zeroes - 500 zeroes, in this case.

• hello.c is the header for this assembly listing. By default, this header is the name of the source
file when invoked with the cc command. However, you can specify a different header by using as
-nheader.

6-12 Assembler Language Reference

Line# Loe Ctr Object Code hello.s

1 .file "hello.c"
2 .data
3 .text
4 .globl .main
5 .align 1
6 .mam:
7 .function .main,L.lB,18,044
8 .set L.lL,OxOOOOOOOO
9 .set L.lR,14

10 .set L.1A,Ox00000000-(4*L.1R-100)-16
11 .text
12 TOOOOOOOO 88800106 b L. lB
13 L.lC:
14 .bf 2
15 .line 1
16 .data 1
17 L.14:
18 D00000220 68656C6C6F2C .byte Ox68,0x65,0x6c,Ox6c,Ox6f,Ox2c,Ox20,0x77

D00000226 2077
19 D00000228 6F726C642E20 .byte Ox6f,Ox72,0x6c,Ox64,0x2e,Ox20,0xa,Ox0

D0000022E OAOO
20 .text
21 .line 2
22 # line 3, file " .. / .. /hello.c"
23 T00000004 712E 1 2,4(14) # 32
24 T00000006 000000000000 .space 500

TOOOOOOOC 000000 .. 0000
T000001F4 000000000000

25 TOOOOOlFA 8DFFFF03720E call .printf,8(14),1
T00000200 0801

Figure 6-2 (Part 1 of 2). Assembly Listing File

Assemble, Link, and Run 6-13

26 L.12:
27 .ef 3
28 .line 3
29 T00000202 C9E10000 Im L.lR,(16 + L.lA) + (4*L.1R-100)(1)
30 T00000206 E98F brx 15
31 T00000208 C811002C cal 1,16 + L.lA(l)
32 L.lB:
33 T0000020C D9E1FFD4 stm L.1R,4*L.1R-100(1)
34 T00000210 C811FFD4 cal 1,-(16 + L.lA)(l)
35 T00000214 6EOO Ir 14,0
36 T00000216 888FFEF7 b L.lC
37 T0000021A DF01DFE0002C .short Oxdf01,L.1R*16+OxdfOO,L.lA+16
38 .data 3
39 .globlmain
40main:
41 D00000230 00000000
42 D00000234 00000220
43 D00000238 00000000
44 .text
45 .data

.long .main

.long L.14

.long _printf

Figure 6-2 (Part 2 of 2). Assembly Listing File

6-14 Assembler Language Reference

Subroutine Linkage and System Calls

The object format calling conventions shown below are used by the C language. You must follow
these conventions if you want to link from an assembler language file to a C language routine or if
you want to make AIX Operating System kernel calls from within an assembler language program. If
you want to link to a routine in another language, you must use the conventions for that language.

The symbolic debugger, sdb, will give you information about the following items whether you use the
C language calling conventions or not:

• Registers
• Absolute addresses
• Global symbol names defined in your program.

If you use the C language calling conventions described in this section, however, sdb will also let
you look at stack frames. If you do not use the C language linkage conventions, you cannot look at
stack frames.

The runtime segment layout is fixed, with separate segments allocated for sharable text, private data,
and the stack. By convention, segment register 1 is for program text, segment register 2 is for static
data, and segment register 3 is the process stack.

Register Usage

To be compatible with C language, called and calling routines must observe certai;n conventions on
register usage. In the discussion that follows, a volatile register refers to a register whose value on
entry need not be preserved when the called routine returns. For a non-volatile register, however,
the register's value on entry must be preserved on exit from the called routine. If the value of a
non-volatile register changes across the call, then the called routine must do the following:

• Save the value of the register before the register is changed
• Restore the original value of the register before returning.

C-compatible routines must use registers as follows:

• Register 1 (the stack frame pointer) is non-volatile.
• Registers 6 through 14 inclusive are non-volatile.
• Floating point registers 2 through 5 inclusive are non-volatile.
• All other registers are volatile.

Assemble, Link, and Run 6-15

Notes:

1. C routine prologs save the constant pool pointer in register 14. However, the calling sequence
does not require this.

2. The Multiplier Quotient (MQ) register is not preserved across calls.

3. You can use the .set pseudo-op to define the names of registers. For example,

.set fp,l
allows you to use the symbol "fp" to refer to GPR 1.

4. You may find the Im and stm instructions useful to load or store several registers at once. See
Chapter 4 for more information about these instructions.

6-16 Assembler Language Reference

On entry, the registers have the values shown in Figure 6-3.

Register Name Use

0 called Constant pool pointer for called
pep routine

1 f p Caller's stack frame pointer

2 Pl First word of parameters (if
parameters are passed)

3 P2 Second word of parameters (if
needed)

4 P3 Third word of parameters (if needed)

5 P4 Fourth word of parameters (if
needed)

6 -- Data local to caller

7 -- Data local to caller

8 -- Data local to caller

9 -- Data local to caller

10 -- Data local to caller

11 -- Data local to caller

12 -- Data local to caller

13 -- Data local to caller

14 -- Data local to caller

15 link Return address

Figure 6-3. Register Values on Subroutine Entry

Assemble, Link, and Run 6-17

On exit, the registers have the values shown in Figure 6-4.

Register Name Use

0 -- Undefined

1 f p Caller's stack frame pointer

2 -- Routine's returned value, if returned
value is 32 bits or less; or, high-order 32
bits of floating point value; otherwise
undefined

3 -- Low-order 32 bits of floating point value;
otherwise undefined

4 -- Undefined

5 -- Undefined

6 -- Value of caller's register 6 on entry

7 -- Value of caller's register 7 on entry

8 -- Value of caller's register 8 on entry

9 -- Value of caller's register 9 on entry

10 -- Value of caller's register 10 on entry

11 -- Value of caller's register 11 on entry

12 -- Value of caller's register 12 on entry

13 -- Value of caller's register 13 on entry

14 -- Value of caller's register 14 on entry

15 -- Undefined

Figure 6-4. Register Values on Subroutine Exit

The Stack Frame

When an assembler language program calls another routine or the kernel, arguments are passed on
the stack. The stack grows from higher addresses to lower addresses. Note that temporary variables
are allocated in the frame, not at the top of the stack. A single frame pointer register is used to
address local storage for a routine, incoming and outgoing arguments, and the save area.

Everything in the stack is aligned on word boundaries. The length of each area defined in the stack
is an integer number of words.

6-18 Assembler Language Reference

Figure 6-5 on page 6-20 represents the contents of a stack frame. In this figure, the current routine
has acquired a stack frame which allows it to call other functions. If no functions are called and
there are no local variables, then the function need not allocate a stack frame or adjust the frame
pointer. It can still use the register save area at the bottom of the caller's stack frame, if needed. It
can also use up to 256 bytes below the frame pointer for any use (for example, saving floating point
registers 2 through 5 if they are changed).

The first four words of arguments are passed in registers 2 through 5. Any other arguments are
passed on the stack; the frame pointer points directly to these arguments. The called routine can
save its first four parameters in the four words of memory immediately below the stack frame pointer.
This allows the entire parameter area to be accessed as a storage array.

Note that since the frame size is known, input parameters can be addressed using the current stack
pointer as a base register.

Each stack frame has one five-word area that is reserved for future system use. Your programs
should never modify these reserved areas.

The Stack Floor

The stack floor is defined as -256(1), where the contents of register 1 point into the segment
addressed by segment register 3. That is, segment register 3 contains the stack segment identifier.
Some other segment register may be used for the stack, but the kernel will not cause such a stack to
grow. In this case, the application is responsible for maintaining the stack size; failure to do so
results in an· addressing exception.

All programs in the system must avoid accessing locations in the stack segment that are below the
stack floor. The AIX Operating System kernel will extend the stack segment on a page fault if the
following conditions are met:

• The faulting address is not below the stack floor (that is, on top of the stack).

• The stack limit has not been exceeded.

• Segment register 3 points to the stack.

Assemble, Link, and Run 6-19

cal le r's stack
area

input Pn
•

ca ller's •
stack •
frame •

po inter .. input PS

input P4

input P3

input P2

input P1

reserved

current save area

floating point
register save area

local stack area

output Pmax

•
•

cu rrent •
stack •
frame

p ointer output PS

• output P4

output P3

output P2

output P1

reserved

next save area

stack floating point
floor register save area

{

{

{
{
{
{
{
{
{
{

{

{

J
l
{
{
{
{
{
{
{

{

____________ HIGH ADDRESSES

The nth or last word of input paramete"rs being passed to this
routine .

From the current routine's point of view, the input parameter area
holds parameters passed from the caller.

PS through Pn are passed in storage.

The fifth word of input parameters being passed to this routine.

If desired, current routine may store contents of register (fourth
word of parameters) here.
If desired, current routine ~ay store contents
word of parameters)
If desired, current
word of parameters)
If desired, current
word of parameters)

5 words.

here.
routine may store contents
here.
routine may store contents
here.

of register 4 (third

of register 3 (second

of register 2 (first

Caller's registers are saved here. Register 15 is highest word of
save area.

If required, allocated by called routine as needed.

Most automatic variables and temporaries can be addressed using
short loads and stores.
If there are >4 words of parameters passed, Pmax is the number of
words required to call the routine that has the most words of
parameters. ihat is, Pmax is the greatest number of parameter words
the current routine will ever use to call a subroutine. The current
routine will reserve this space when updating its frame pointer.
From the current routine's point of view, the output parameter area
is us~d for passing parameters to functions that the current
routine, in turn, calls.
If there are >4 words of parameters passed, this is the fifth word
of input parameters passed to the next called routine.
Routines you call may save their fourth word of parameters here. This
word is always reserved, whether this routine calls others or not.
Routines you call may save their third word of parameters here. This
word is always reserved, whether this routine calls others or not.
Routines you call may save their second word of parameters here. This
word is always reserved, whether this routine calls others or not.
Routines you call may save their first word of parameters here. This
word is always reserved, whether this routine calls others or not.
5 words.
Functions you call will save your registers here. They will
determine the size (up to a maximum of 64 bytes).

Floating point registers 5 through 2 saved in that order (up to a
maximum of 64 bytes).

----------- LOW ADDRESSES

Figure 6-5. Contents of a Stack Frame

6-20 Assembler Language Reference

When a signal is received, the signal handler is pushed onto the existing stack, so any data below the
stack floor is subject to destruction without notice.

All compilers and user-written assembler routines must maintain the following system invariants:

• The stack pointer is always valid (unless interrupts are disabled).

• Data is never saved or accessed below -256(1). Register 1 is the stack frame pointer, and the
negative displacement must be large enough to allow access to save areas for both general
purpose registers and floating point registers.

• When the stack frame size is more than 32767 bytes, it cannot be incremented or decremented in
a single instruction. In this ca.se, the stack frame size must decrease and increase monotonically.
That is, the value must increase continuously without any intermediate decreasing values, or
decrease continuously without any intermediate increasing values. This ensures that there is no
timing window in which a signal handler would either overlay valid stack data, or erroneously
appear to overflow the stack segment.

The Constant Pool

Each routine uses its own pool of constants and pointers. At call time, the routine's caller must pass
the address of the constant pool-that is, the pep-in register 0. Ordinarily, the called routine will
save the caller's registers, then copy this address to another register (C language uses register 14).

The first word in a routine's constant pool must contain the address of the beginning of the code for
the routine (that is, the routine's entry point). When used as a C language function pointer, the
"address" of the routine is in fact the address of its constant pool.

All addresses of external routines end up in the constant pool of each routine that calls them. These
addresses are 32-bit values.

Assemble, Link, and Run 6-21

The Calling Routine's Responsibilities

When an assembler language program calls another program, the caller should not use the names of
the called program's commands, functions, or procedures as global assembler language symbols. To
avoid confusion, you may want to remember the following C language conventions when you create
symbol names.

By convention, for a C language routine named foo, the C compiler assigns _foo as the external
name of the constant pool, and .foo as the external name of its entry point. For example, suppose
the C compiler processes the following C language program:

main()
{

int a;
a= somfunc(l, 2, 3);

}

The assembler language code produced by the compiler includes the following lines:

.text

.align 1

.globl .main
.main: # This is the external name of the first

executable piece of code. Also,
this is the beginning of the code.

lis 2,1 # parameter 1 for somfunc
lis 3,2 # parameter 2 for somfunc
lis 4,3 # parameter 3 for somfunc
call .somfunc, 4(14),3

this calls somfunc
st 2,0(1) # save the return value in II a"

.data 3 # constant pool

.globl _main # external function name
_main: . long .main # address of first instruction

. long _somfunc # address of somfunc constant pool

6-22 Assembler Language Reference

To avoid confusion, you might decide that your own local symbols should not begin with an
underscore or period. However, when you are linking an assembler routine with a C language
program, the C compiler references the starting address of the assembler routine's constant pool, and
the starting address of the assembler routine's code. In this case, the assembler symbol name for that
constant pool should start with an underscore, and the name of the assembler code's starting address
should start with a period, so that the C compiler will recognize them.

The calling routine must reserve space in its local frame for the largest argument list it will require.
If it never calls a routine with more than four words of parameters, no space need be reserved.

The calling routine provides space for the called routine's register save. At call time, the calling
routine is responsible for putting the pep (the address of the constant pool) into the called routine's
register 0. (The call and callr pseudo-ops do these things automatically.) If necessary, the calling
routine should save and restore its own registers 0, 2, 3, 4, 5, and 15. The C compiler generates code
to move the contents of register 0 to register 14 on entry.

If it knows the called routine's name, the caller uses the code shown in Figure 6-6 on page 6-24 at a
function call.

Assemble, Link, and Run 6-23

2,Pl
3,P2
4,P3
5,P4

Load the first word of parameters into register 2
Load the second word of parameters into register 3
Load the third word of parameters into register 4
Load the fourth word of parameters into register 5

st PS,4*(5-5)(1) #Store the fifth word of parameters
(if it exists) on the stack

st Pn,4*(n-5)(1) #Store the nth word of parameters
(if it exists) on the stack

call .name,pointer,number_words
#Call the routine.
.nanie is entry point of called routine.
#pointer is the address of the called
#routine's pep -- that is, 12(14).
nuniber _words is the number of words
of parameters that are being passed.

Figure 6-6. What a Calling Routine Does. Pl is the first word of parameters, P2 is the second word of
parameters, and so on. The assembler expands call as shown on page 5-14. For clarity, this
sample code shows the operands being evaluated in order. However, this is not required. It is
usually more convenient to evaluate the first four parameter words last, since they tie up
several registers.

6-24 Assembler Language Reference

If a function pointer is used, the caller will not know the name of the called routine. In this case,
the calling routine uses the code shown in Figure 6-7.

2,Pl # Load the first word of parameters into register 2
3,P2 # Load the second word of parameters into register 3
4,P3 # Load the third word -0f parameters into register 4
5,P4 # Load the fourth word of parameters into register 5

st P5,4*(5-5)(1) # Store the fifth word of parameters
(if it exists) on the stack

st Pn,4*(n-5)(1) # Store the nth word of parameters
(if it exists) on the stack

15,_routine # get the routine's pep

call r 15,number_words # call the routine

Figure 6-7. What a Calling Routine Does When Using Function Pointer. Pl is the first word of
parameters, P2 is the second word of parameters, and so on. The assembler expands callr as
shown on page 5-17.

Note: To make system calls inside an AIX Operating System assembler language program, use the
interface routines in the libc.a library file. You can access this file automatically with the cc
command, or explicitly with the Id command.

Assemble, Link, and Run 6-25

The Called Routine's Responsibilities

A called routine typically responds as shown in Figure 6-8.

routine: # Function entry

stm n,-regoff(l) #Save registers n through 15.
n is the first register modified above register 5.
regoff = 4 * (16-n) + (4 * 9)
-- 4 words to save first 4 words of
parameters, and 5 reserved words.

cal· 1,-fsize(l) #1 Increases the stack segment by fsize bytes
-- only if stack space needed.

1 r 14, 0
1 r 13, 2
st 3,fsize-8(1)

fsize = regoff + 4*(max(O,Pmax-4)) + localsize
#Where Pmax is maximum number of words of parameters
#passed to other routines, localsize is size of your
local sta~k area. This line is required if the called
routine needs space on the stack for local automatic
variables, or if it calls another routine
#(since that would require a new save area).

Save pep in preserved register
#Save first parameter in a register
Save second parameter on the stack

Return sequence, assume register 2 is set

lm n,fsize-regoff(l) # Restore registers that were saved
(registers n through 15)

brx 15 #Return to the point called
cal 1,fsize(l) #Restore the caller's stack pointer

Figure 6-8. What a Called Routine Does

6-26 Assembler Language Reference

The called routine may assume that registers 0, 1, and 15 are set as specified in "The Calling
Routine's Responsibilities" on page 6-22. Other register use is conventional but not mandatory. If
the called routine changes any of the general purpose registers 6 through 14 or the floating point
registers 2 through 5, it must store those changed non-volatile registers at standard locations below
the caller's stack frame pointer, as the following table shows.

Register Stored at

15 -40(1)
14 -44(1), if saved
13 -48(1), if saved
12 -52(1), if saved
11 -56(1), if saved
10 -60(1), if saved
9 -64(1), if saved
8 -68(1), if saved
7 -72(1), if saved
6 -76(1), if saved

Floating point registers 5 through 2 are saved, in that order, immediately below the lowest GPR
saved. The called routine only needs to leave space for registers that are actually being saved. If a
register is not being saved, the called routine should not leave space for it.

Traceback

The called routine does not have to save its caller's stack pointer, because the called routine knows
how much the stack pointer has been decremented. However, debugging aids such as sdb need to be
able to unravel the call/return stack.

Each module has a traceback table in the text segment at the end of its code. This table can be
found by scanning forward from the IAR at the point of interruption. The beginning of this table is
marked by two consecutive halfwords, each aligned on a halfword boundary. The first byte of each
halfword has the value OxDF. These decode as invalid instructions, so they will not be present in
normal code.

The traceback table is described in the file /usr/include/sys/debug.h. The traceback table has the
following information, in order:

• 1 byte with the value OxDF.

• 1 byte of a code field. The values in this field are:

0 -- Unknown type of stack frame.
1 -- Normal C-like debug data.
2 -- Assembler routine with no stack frame.
3 -- Debug tag for /lib/crtO.o. This is the bottom of the stack.
4 -- Stack frame was generated by a signal.
5 -- Assembler routine with no parameters or frame.

Assemble, Link, and Run 6-27

6 -- C-like debug data, if floating point registers were saved or if the frame size was greater than
Ox7FFF.

All other values are reserved.

• 1 byte with the value OxDF.

• 1 byte of flags. If the code field had a value -:f. 1 or -:f. 6, the flag value is undefined. If the code
field had a value of 1 or 6, the high-order four bits of this byte show the lowest register number
that was saved on procedure entry. The low-order four bits indicate which of the first four
parameter words are register variables. (This information is used only by debuggers such as
sdb.) These low-order four bits have the following meaning:

highest-order bit -- Has value of 1 if the parameter passed in register 5 is a register variable.
next bit -- Has value of 1 if the parameter passed in register 4 is a register variable.
next bit -- Has value of 1 if the parameter passed in register 3 is a register variable.
lowest-order bit -- Has value of 1 if the parameter passed in register 2 is a register variable.

• If the code field had a value of 1, a halfword containing the size of this procedure's stack frame.
If the code field had a value of 6, a full word containing the size of this procedure's stack frame,
where the high-order four bits of the word represent the lowest floating point register pair that
was saved. If the code field had a value other than 1 or 6, this halfword or word is undefined.

032 Microprocessor assembler language programs should include traceback information to help
debuggers such as sdb. The following examples show how to code traceback information in 032
Microprocessor assembler language.

Example 1

Example 2

An assembler language program may be entirely self-contained, and may not call any
other routines. Such programs do not allocate their own stack frame. The text section of
such a program should have the following lines of code at the end of the executable
instructions:

.short OxDF02

.short OxDFOO
code field 02 means no stack frame
flag value 00 undefined

An assembler language program may call other routines and allocate its own stack frame.
For example, suppose we have such a program that allocates a 128-byte stack frame, saves
registers 10 through 15 on entry, and keeps all its parameters in non-volatile registers 13
through 10. This program would have the following lines of code at the end of its text
section:

6-28 Assembler Language Reference

.short OxDFOl # code field 01 means normal debug data

.short OxDFAF # flag value AF means register 10 was lowest
register saved on procedure entry; parameters passed
in registers 2 through 5 were register variables
and are in registers 13, 12, 11, and 10 respectively

.set fsize,128 # frame size

.short fsize # amount register 1 decremented

Assemble, Link, and Run 6-29

Running the Program

Your program is ready to run when it has been assembled and linked without producing any error
messages. To run a program, first be sure you have AIX Operating System permission to execute the
file. Then, simply type the program's name at the AIX Operating System prompt:

$ filename
By default, the output of the program goes to the standard output. To direct output to a place other
than the standard output, use the AIX Operating System shell > operator. See Using and Managing
the AIX Operating System for more information on AIX Operating System shell commands.

You can diagnose runtime errors by invoking the symbolic debugger with the AIX Operating System
sdb command. The symbolic debugger works on any code that follows C language calling
conventions. All compiler-generated code, but not necessarily all human-generated code, can be used
with sdb. For more information about the symbolic debugger, see AIX Operating System
Programming Tools and Interfaces.

6-30 Assembler Language Reference

Appendix A. Mnemonic and Op Code Tables

This appendix consists of two tables. The first table lists the instructions alphabetically by
mnemonic. The second table lists the instructions numerically by op code.

Mnemonic and Op Code Tables A-1

Instructions, Indexed by Mnemonic

Mnemonic

a
abs
ae
ae1
a1
a1s
b 1

bala
balax

bali
balix

balr
balrx

bb 1

bbr

bbrx

bbx

bee 1

beer

Op codes are represented with hexadecimal values. Where more than one op code is shown
for a mnemonic, the assembler automatically chooses the correct op code.

Operands Op Code Instruction Name CS Bits Changed

Rl,R2 El Add LT, EQ, GT, CO, OV
Rl,R2 EO Absolute LT, EQ, GT, CO, OV
Rl,R2 Fl Add Extended LT, EQ, GT, CO, OV
Rl,R2,I3 Dl Add Extended Immediate LT, EQ, GT, CO, OV
Rl,R2,I3 Cl Add Immediate LT, EQ, GT, CO, OV
Rl,I2 90 Add Immediate Short LT, EQ, GT, CO, OV
Al 88 Branch (long) -- none --

0 Branch (short) -- none --
Al or I1 8A Branch and Link Absolute -- none --
Al or I1 8B Branch and Link Absolute with -- none --

Execute
Rl,A2 8C Branch and Link Immediate -- none --
Rl,A2 8D Branch and Link Immediate with -- none --

Execute
Rl,R2 EC Branch and Link Using Register -- none --
Rl,R2 ED Branch and Link Using Register with -- none --

Execute
Il,A2 8E Branch on Condition Bit Immediate -- none --

(long)
0 Branch on Condition Bit Immediate -- none --

(short)
Il,R2 EE Branch on Condition Bit Immediate -- none --

Using Register
Il,R2 EF Branch on Condition Bit Immediate -- none --

Using Register with Execute
Il,A2 8F Branch on Condition Bit Immediate -- none --

with Execute
Al 88 Branch on Carry Bit Clear (long) -- none --

0 Branch on Carry Bit Clear (short) -- none --
Rl E8 Branch on Carry Bit Clear Using -- none --

Register

A-2 Assembler Language Reference

Mnemonic Operands Op Code Instruction Name CS Bits Changed

bccrx Rl E9 Branch on Carry Bit Clear Using -- none --
Register with Execute

bccx Al 89 Branch on Carry Bit Clear with -- none --
Execute

bes 1 Al 8E Branch on Carry Bit Set (long) -- none --
0 Branch on Carry Bit Set (short) -- none --

bcsr Rl EE Branch on Carry Bit Set Using -- none --
Register

bcsrx Rl EF Branch on Carry Bit Set Using -- none --
Register with Execute

bcsx Al 8F Branch on Carry Bit Set with -- none --
Execute

beq 1 Al 8E Branch on Equal (long) -- none --
0 Branch on Equal (short) -- none --

be qr Rl EE Branch on Equal Using Register -- none --
beqrx Rl EF Branch on Equal Using Register with -- none --

Execute
beqx Al 8F Branch on Equal with Execute -- none --
bge 1 Al 88 Branch on Greater Than or Equal -- none --

(long)
0 Branch on Greater Than or Equal -- none --

(short)
bger Rl E8 Branch on Greater Than or Equal -- none --

Using Register
bgerx Rl E9 Branch on Greater Than or Equal -- none --

Using Register with Execute
bgex Al 89 Branch on Greater Than or Equal -- none --

with Execute
bgt 1 Al 8E Branch on Greater Than (long) -- none --

0 Branch on Greater Than (short) -- none --
bgtr Rl EE Branch on Greater Than Using -- none --

Register
bgtrx Rl EF Branch on Greater Than Using -- none --

Register with Execute
bgtx Al 8F Branch on Greater Than with -- none --

Execute
ble 1 Al 88 Branch on Less Than or Equal (long) -- none --

0 Branch on Less Than or Equal (short) -- none --
bl er Rl E8 Branch on Less Than or Equal Using -- none --

Register

Mnemonic and Op Code Tables A-3

Mnemonic Operands Op Code Instruction Name CS Bits Changed

blerx Rl E9 Branch on Less Than or Equal Using -- none --
Register with Execute

bl ex Al B9 Branch on Less Than or Equal with -- none --
Execute

blt 1 Al BE Branch on Less Than (long) -:-- none --
0 Branch on Less Than (short) -- none --

bltr Rl EE Branch on Less Than Using Register -- none --
bltrx Rl EF Branch on Less Than Using Register -- none --

with Execute
bltx Al BF Branch on Less Than with Execute -- none --
bnb 1 Il,A2 BB Branch on Not Condition Bit -- none --

Immediate (long)
0 Branch on Not Condition Bit -- none --

Immediate (short)
bnbr Il,R2 ES Branch on Not Condition Bit -- none --

Immediate Using Register
bnbrx Il,R2 E9 Branch on Not Condition Bit -- none --

Immediate Using Register with
Execute

bnbx Il,A2 B9 Branch on Not Condition Bit -- none --
Immediate with Execute

bne 1 Al BB Branch on Not Equal (long) -- none --
0 Branch on Not Equal (short) -- none --

bner Rl EB Branch on Not Equal Using Register -- none --
bnerx Rl E9 Branch on Not Equal Using Register -- none --

with Execute
bnex Al 89 Branch on Not Equal with Execute -- none --
br Rl ES Branch Using Register -- none --
brx Rl E9 Branch Using Register with Execute -- none --
btc 1 Al 88 Branch on Test Bit Clear (long) -- none --

0 Branch on Test Bit Clear (short) -- none --
btcr Rl ES Branch on Test Bit Clear Using -- none --

Register
btcrx Rl E9 Branch on Test Bit Clear Using -- none --

Register with Execute
btcx Al 89 Branch on Test Bit Clear with -- none --

Execute
bts 1 Al BE Branch on Test Bit Set (long) -- none --

0 Branch on Test Bit Set (short) -- none --
btsr Rl EE Branch on Test Bit Set Using -- none --

Register

A-4 Assembler Language Reference

Mnemonic Operands Op Code Instruction Name CS Bits Changed

btsrx Rl EF Branch on Test Bit Set Using -- none --
Register with Execute

btsx Al SF Branch on Test Bit Set with Execute -- none --
bvc 1 Al SS Branch on Overflow Clear (long) -- none --

0 Branch on Overflow Clear (short) -- none --
bvcr Rl ES Branch on Overflow Clear Using -- none --

Register
bvcrx Rl E9 Branch on Overflow Clear Using -- none --

Register with Execute
bvcx Al S9 Branch on Overflow Clear with -- none --

Execute
bvs 1 Al SE Branch on Overflow Set (long) -- none --

0 Branch on Overflow Set (short) -- none --
bvsr Rl EE Branch on Overflow Set Using -- none --

Register
bvsrx Rl EF Branch on Overflow Set Using -- none --

Register with Execute
bvsx Al SF Branch on Overflow Set with Execute -- none --
bx Al S9 Branch with Execute -- none --
c Rl,R2 B4 Compare LT,EQ,GT
cal Rl,D2(R2) cs Compute Address Lower Half -- none --
cal16 Rl,D2(R2) C2 Compute Address Lower Half 16-Bit -- none --
cas Rl,R2,R3 6 Compute Address Short -- none --
cau Rl,D2(R2) DS Compute Address Upper Half -- none --
ca16 Rl,R2 F3 Compute Address 16-Bit -- none --
ci 2 Rl,I2 D4 Compare Immediate (long) LT,'EQ, GT

94 Compare Immediate (short) LT,EQ,GT
cl Rl,R2 B3 Compare Logical LT,EQ,GT
cli Rl,I2 D3 Compare Logical Immediate LT,EQ,GT
clrb Rl,I2 99 Clear Bit (lower half) LT,EQ,GT

9S Clear Bit (upper half) LT,EQ,GT
clrcb 5 SCR1,I2 95 Clear Bit in the System Control -- any --

Register
clz Rl,R2 F5 Count Leading Zeroes -- none --
d Rl,R2 B6 Divide Step co, ov
dee Rl,I2 93 Decrement LT, EQ, GT, CO, OV
ex ts Rl,R2 Bl Extend Sign LT,EQ,GT
inc Rl,I2 91 Increment LT, EQ, GT, CO, OV
ior 6 Rl,D2(R2) CB Input/Output Read -- none --
iow 6 Rl,D2(R2) DB Input/Output Write -- none --

Mnemonic and Op Code Tables A-5

Mnemonic Operands Op Code Instruction Name CS Bits Changed

I 2 Rl,D2(R2) CD Load (long) -- none --
7 Load (short) -- none --

le 2 Rl,D2(R2) CE Load Character (long) -- none --
4 Load Character (short) -- none --

lh Rl,D2(R2) DA Load Half (for immediate data) -- none --
EB Load Half (for data from register) -- none --

Iha 2 Rl,D2(R2) CA Load Half Algebraic (long) -- none --
5 Load Half Algebraic (short) -- none --

lis Rl,I2 A4 Load Immediate Short -- none --
Im Rl,D2(R2) C9 Load Multiple -- none --
lps 4 Il,D2(R2) DO Load Program Status -- none --
Ir Rl,R2 6 Load Register -- none --
m Rl,R2 E6 Multiply Step co
mc03 8 Rl,R2 F9 Move Character Zero From Three -- none --
mc13 8 Rl,R2 FA Move Character One From Three -- none --
mc23 8 Rl,R2 FB Move Character Two From Three -- none --
mc30 8 Rl,R2 FD Move Character Three From Zero -- none --
mc31 8 Rl,R2 FE Move Character Three From One -- none --
mc32 8 Rl,R2 FF Move Character Three From Two -- none --
mc33 8 Rl,R2 FC Move Character Three From Three -- none --
mfs 5 SCR1,R2 96 Move From System Control Register -- none --
mftb Rl,R2 BC Move From Test Bit -- none --
mftbi Rl,I2 9D Move From Test Bit Immediate (lower -- none --

half)
9C Move From Test Bit Immediate -- none --

(upper half)
mts 5 SCR1,I2 B5 Move To System Control Register -- any --
mttb 8 Rl,R2 BF Move To Test Bit -- none --
mttbi 8 Rl,R2 9F Move To Test Bit Immediate (lower -- none --

half)
9E Move To Test Bit Immediate (upper -- none --

half)
n Rl,R2 E5 AND LT,EQ,GT
nilo Rl,R2,I3 C6 AND Immediate Lower Half Extended LT,EQ,GT

Ones
nilz Rl,R2,I3 C5 AND Immediate Lower Half Extended LT,EQ,GT

Zeroes

A-6 Assembler Language Reference

Mnemonic Operands Op Code

n1uo Rl,R2,I3 D6

n1uz Rl,R2,I3 D5

nop 6
0 Rl,R2 E3
oil Rl,R2,I3 C4
OlU Rl,R2,I3 C3
onec Rl,R2 F4
s Rl,R2 E2
sar Rl,R2 BO
sari 3 Rl,R2 AO

Al

se Rl,R2 F2
setb Rl,12 9B

9A
setcb 5 SCR1,I2 97

sf Rl,R2 B2
sfi Rl,R2,I3 D2
SIS Rl,I2 92
sl Rl,R2 BA
sli 3 Rl,I2 AA

AB
slp Rl,R2 BB
slpi 3 Rl,I2 AE

AF
sr Rl,R2 B8
sri 3 Rl,I2 AB

A9
srp Rl,R2 B9
srpi 3 Rl,I2 AC

AD
st 2 Rl,D2(R2) DD

3

Instruction Name CS Bits Changed

AND Immediate Upper Half Extended LT, EQ, GT
Ones

AND Immediate Upper Half Extended LT,EQ,GT
Zeroes
No Operation -- none --
OR LT,EQ,GT
OR Immediate Lower LT,EQ,GT
OR Immediate Upper LT,EQ,GT
One's Complement LT, EQ, GT, CO, OV
Subtract LT, EQ, GT, CO, OV
Shift Algebraic Right LT,EQ,GT
Shift Algebraic Right Immediate LT,EQ,GT
(small)
Shift Algebraic Right Immediate LT,EQ,GT
(large)
Subtract Extended LT, EQ, GT, CO, OV
Set Bit (lower half) LT,EQ,GT
Set Bit (upper half) LT,EQ,GT
Set Bit in the System Control -- any --
Register
Subtract From LT, EQ, GT, CO, OV
Subtract From Immediate LT, EQ, GT, CO, OV
Subtract Immediate Short LT, EQ, GT, CO, OV
Shift Left LT,EQ,GT
Shift Left Immediate (small) LT,EQ,GT
Shift Left Immediate (large) LT,EQ,GT
Shift Left Paired LT,EQ,GT
Shift Left Paired Immediate (small) LT,EQ,GT
Shift Left Paired Immediate (large) LT,EQ,GT
Shift Right LT,EQ,GT
Shift Right Immediate (small) LT,EQ,GT
Shift Right Immediate (large) LT,EQ,GT
Shift Right Paired LT,EQ,GT
Shift Right Paired Immediate (small) LT,EQ,GT
Shift Right Paired Immediate (large) LT,EQ,GT
Store (long) -- none --
Store (short) -- none --

Mnemonic and Op Code Tables A-7

Mnemonic

stc 2

sth 2

stm
SVC 7

tgte

ti
tlt
tsh
twoc
wait 4

x
xil
XlU

Operands Op Code Instruction Name CS Bits Changed

Rl,D2(R2) DE Store Character (long) -- none --
1 Store Character (short) -- none --

Rl,D2(R2) DC Store Half (long) -- none --
2 Store Half (short) -- none --

Rl,D2(R2) D9 Store Multiple -- none --
Il(Rl) co Supervisor Call -- none --
Rl,R2 BD Trap If Register Greater Than or -- none --

Equal
Il,R2,I3 cc Trap On Condition Immediate -- none --
Rl,R2 BE Trap If Register Less Than -- none --
Rl,D2(R2) CF Test And Set Half -- none --
Rl,R2 E4 Two's Complement LT, EQ, GT, CO, OV
0,0 FO Wait -- none --
Rl,R2 E7 Exclusive OR LT,EQ,GT
Rl,R2,I3 C7 Exclusive OR Immediate Lower Half LT,EQ,GT
Rl,R2,13 D7 Exclusive OR Immediate Upper Half LT,EQ,GT

1 For branch instructions, "long" means that the instruction contains immediate data
between 9 and 20 bits long. "Short" means that the instruction contains immediate data s
8 bits long.
2 For these storage instructions and the ci instruction, "long'' means that the instruction
contains a displacement between 1 and 16 bits long. "Short" means that the instruction
contains a displacement s 4 bits long.
3 For these shift instructions, "large" means that the instruction contains immediate data
with a value between decimal 16 and 31. "Small" means that the instruction contains
immediate data with a value between decimal 0 and 15.
4 You must not use these privileged instructions in non-privileged state.
5 With certain operands, these are privileged instructions. With other operands, these are
non-privileged instructions.
6 These are non-privileged instructions, but using them can cause conflicts with your
operating system. See Hardware Technical Reference to learn how to use these
instructions.
7 This instruction is non-privileged, but it acts like a privileged instruction, because it
causes a trap to the operating system. See Virtual Resource Manager Technical Reference
to learn how to use this instruction.
8 These instructions do not change the Condition Status unless data is moved into the test
bit.

A-8 Assembler Language Reference

Instructions, Indexed by Op Code

Op codes are represented with hexadecimal values. Where parts of instruction names are
in parentheses, it means that the assembler language mnemonic has two corresponding op
codes. In this case, the assembler examines the instruction's immediate data, then
automatically chooses the correct op code.

Assembler
Machine Language
Op Code Mnemonic Format Instruction Name

0 b JI Branch (short)
bb JI Branch on Condition Bit Immediate (short)
bee JI Branch on Carry Bit Clear (short)
bes JI Branch on Carry Bit Set (short)
beq JI Branch on Equal (short)
bge JI Branch on Greater Than or Equal (short)
hgt JI Branch on Greater Than (short)
ble JI Branch on Less Than or Equal (short)
blt JI Branch on Less Than (short)
bnb JI Branch on Not Condition Bit Immediate (short)
bne JI Branch on Not Equal (short)
btc JI Branch on Test Bit Clear (short)
bts JI Branch on Test Bit Set (short)
bvc JI Branch on Overflow Clear (short)
bvs JI Branch on Overflow Set (short)

1 stc D-short Store Character (short)
2 sth D-short Store Half (short)
3 st D-short Store (short)
4 le D-short Load Character (short)
5 Iha D-short Load Half Algebraic (short)
6 cas x Compute Address Short

lr x Load Register
nop x No Operation

7 1 D-short Load (short)
8 thru 87 --none-- -- reserved --

Mnemonic and Op Code Tables A-9

Assembler
Machine Language
Op Code Mnemonic Format Instruction Name

88 b BI Branch (long)
bee BI Branch on Carry Bit Clear (long)
bge BI Branch on Greater Than or Equal (long)
ble BI Branch on Less Than or Equal (long)
bnb BI Branch on Not Condition Bit Immediate (long)
bne BI Branch on Not Equal (long)
btc BI Branch on Test Bit Clear (long)
bvc BI Branch on Overflow Clear (long)

89 bx BI Branch with Execute
bccx BI Branch on Carry Bit Clear with Execute
bgex BI Branch on Greater than or Equal with Execute
bl ex BI Branch on Less Than or Equal with Execute
bnbx BI Branch on Not Condition Bit Immediate with Execute
bnex BI Branch on Not Equal with Execute
btcx BI Branch on Test Bit Clear with Execute
bvcx BI Branch on Overflow Clear with Execute

8A bala BA Branch and Link Absolute
8B balax BA Branch and Link Absolute with Execute
BC bali BI Branch and Link Immediate
SD balix BI Branch and Link Immediate with Execute
BE bb BI Branch on Condition Bit Immediate (long)

bes BI Branch on Carry Bit Set (long)
beq BI Branch on Equal (long)
hgt BI Branch on Greater Than (long)
blt BI Branch on Less Than (long)
bts BI Branch on Test Bit Set (long)
bvs BI Branch on Overflow Set (long)
nop BI No Operation (long)

8F bbx BI Branch on Condition Bit Immediate with Execute
bcsx BI Branch on Carry Bit Set with Execute
beqx BI Branch on Equal with Execute
bgtx BI Branch on Greater Than with Execute
bltx BI Branch on Less Than with Execute
btsx BI Branch on Test Bit Set with Execute
bvsx BI Branch on Overflow Set with Execute
nopx BI No Operation with Execute

90 a1s R Add Immediate Short
91 Inc R Increment

A-10 Assembler Language Reference

Assembler
Machine Language
Op Code Mnemonic Format Instruction Name

92 SIS R Subtract Immediate Short
93 dee R Decrement
94 ci R Compare Immediate (short)
95 clrcb R Clear Bit in the System Control Register
96 mf s R Move from System Control Register
97 setcb R Set Bit in the System Control Register
98 clrb R Clear Bit (upper half)
99 clrb R Clear Bit (lower half)
9A setb R Set Bit (upper half)
9B setb R Set Bit (lower half)
9C mftbi R Move From Test Bit Immediate (upper half)
9D mftbi R Move From Test Bit Immediate (lower half)
9E mttbi R Move To Test Bit Immediate (upper half)
9F mttbi R Move To Test Bit Immediate (lower half)
AO sari R Shift Algebraic Right Immediate (small)
Al sari R Shift Algebraic Right Immediate (large)
A2 --none-- -- reserved --
A3 --none-- -- reserved --
A4 lis R Load Immediate Short
A5 --none-- -- reserved --
A6 --none-- -- reserved --
A7 --none-- -- reserved --
AS SrI R Shift Right Immediate (small)
A9 SrI R Shift Right Immediate (large)
AA sli R Shift Left Immediate (small)
AB sli R Shift Left Immediate (large)
AC srpi R Shift Right Paired Immediate (small)
AD srpi R Shift Right Paired Immediate (large)
AE slpi R Shift Left Paired Immediate (small)
AF slpi R Shift Left Paired Immediate (large)
BO sar R Shift Algebraic Right
Bl ex ts R Extend Sign
B2 sf R Subtract From
B3 cl R Compare Logical
B4 c R Compare
B5 mts R Move to System Control Register
B6 d R Divide Step
B7 --none-- -- reserved --

Mnemonic and Op Code Tables A-11

Assembler
Machine Language
Op Code Mnemonic Format Instruction Name

BB sr R Shift Right
B9 srp R Shift Right Paired
BA sl R Shift Left
BB slp R Shift Left Paired
BC mftb R Move From Test Bit
BD tgte R Trap If Register Greater Than or Equal
BE tlt R Trap If Register Less Than
BF mttb R Move To Test Bit
co SVC D Supervisor Call
Cl a1 D Add Immediate
C2 call6 D Compute Address Lower Half 16-Bit
C3 QIU D OR Immediate Upper
C4 oil D OR Immediate Lower
C5 nilz D AND Immediate Lower Half Extended Zeroes
C6 nilo D AND Immediate Lower Half Extended Ones
C7 xil D Exclusive OR Immediate Lower Half
cs cal D Compute Address Lower Half
C9 Im D Load Multiple
CA Iha D Load Half Algebraic (long)
CB 10r D Input/Output Read
cc ti D Trap On Condition Immediate
CD 1 D Load (long)
CE le D Load Character (long)
CF tsh D Test And Set Half
DO lps D Load Program Status
Dl aei D Add Extended Immediate
D2 sfi D Subtract From Immediate
D3 cli D Compare Logical Immediate
D4 ci D Compare Immediate (long)
D5 nIUZ D AND Immediate Upper Half Extended Zeroes
D6 nIUO D AND Immediate Upper Half Extended Ones
D7 XIU D Exclusive OR Immediate Upper Half
DB cau D Compute Address Upper Half
D9 stm D Store Multiple
DA lh D Load Half (for immediate data)
DB IOW D Input/Output Write
DC sth D Store Half (long)
DD st D Store (long)

A-12 Assembler Language Reference

Assembler
Machine Language
Op Code Mnemonic Format Instruction Name

DE stc D Store Character (long)
DF --none-- -- reserved --
EO abs R Absolute
El a R Add
E2 s R Subtract
E3 0 R OR
E4 twoc R Two's Complement
E5 n R AND
E6 m R Multiply Step
E7 x R Exclusive OR
E8 beer R Branch on Carry Bit Clear Using Register

bger R Branch on Greater Than or Equal Using Register
bl er R Branch on Less Than or Equal Using Register
bnbr R Branch on Not Condition Bit
bner R Branch on Not Equal Using Register
hr R Branch Using Register
btcr R Branch on Test Bit Clear Using Register
bvcr R Branch on Overflow Clear Using Register

E9 bccrx R Branch on Carry Bit Clear Using Register with
Execute

bgerx R Branch on Greater than or Equal Using Register with
Execute

blerx R Branch on Less Than or Equal Using Register with
Execute

bnbrx R Branch on Not Condition Bit with Execute
bnerx R Branch on Not Equal Using Register with Execute
brx R Branch Using Register with Execute
btcrx R Branch on Test Bit Clear Using Register with Execute
bvcrx R Branch on Overflow Clear Using Register with

Execute
EA --none-- -- reserved --
EB lh R Load Half (for data from register)
EC balr R Branch and Link Using Register
ED balrx R Branch and Link Using Register with Execute

Mnemonic and Op Code Tables A-13

Assembler
Machine Language
Op Code Mnemonic Format Instruction Name

EE bbr R Branch on Condition Bit
bcsr R Branch on Carry Bit Set Using Register
be qr R Branch on Equal Using Register
bgtr R Branch on Greater Than Using Register
bl tr R Branch on Less Than Using Register
btsr R Branch on Test Bit Set Using Register
bvsr R Branch on Overflow Set Using Register
no pr R No Operation Using Register

EF bbrx R Branch on Condition Bit with Execute
bcsrx R Branch on Carry Bit Set Using Register with Execute
beqrx R Branch on Equal Using Register with Execute
bgtrx R Branch on Greater Than Using Register with Execute
bltrx R Branch on Less Than Using Register with Execute
btsrx R Branch on Test Bit Set Using Register with Execute
bvsrx R Branch on Overflow Set Using Register with Execute
noprx R No Operation Using Register with Execute

FO wait R Wait
Fl ae R Add Extended
F2 se R Subtract Extended
F3 cal6 R Compute Address 16-Bit
F4 onec R One's Complement
F5 clz R Count Leading Zeroes
F6 --none-- -- reserved --
F7 --none-- -- reserved --
F8 --none-- -- reserved --
F9 mc03 R Move Character Zero From Three
FA mc13 R Move Character One From Three
FB mc23 R Move Character Two From Three
FC mc33 R Move Character Three From Three
FD mc30 R Move Character Three From Zero
FE mc31 R Move Character Three From One
FF mc32 R Move Character Three From Two

A-14 Assembler Language Reference

Appendix B. ASCII Character Codes

The following three charts show the three ASCII code pages for the RT PC. Please see
Keyboard Description and Character Reference, for more information about supported
characters.

Notes:

1. The ASCII characters in the charts represent a default for the AIX Operating System
using a monochrome display. If you are using a color display, you may see different
ASCII characters. Applications running in the AIX Operating System may also cause
different ASCII characters to display.

2. ASCII characters 00 through IF are control characters that do not display on the
screen. These control characters have the following meaning:

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
so
SI

null
start of heading
start of text
end of text
end of transmission
enquiry
acknowledge
bell
backspace
horizontal tab
line feed
vertical tab
form feed
carriage return
shift out
shift in

DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
SS4
SS3
SS2
SSl

data link escape
device control character
device control character
device control character
device control character
negative acknowledge
synchronous idle
end of transmission block
cancel
end of medium
substitute
escape
single shift 4
single shift 3
single shift 2
single shift 1

3. The default code page is PO. Code page PO for this version is different than code page
PO for version 1.1 of AIX. See Figure B-1 on page B-2 for the current code page PO.

ASCII Codes B-1

First Hexadecimal Digit

0 l 2 3 4 5 6 7 8 9 A B c D E F

0 NUL OLE • ;
... a y 0 E s f € E I 0 ~ "

I SOH DCI Q ~ 0 }J 6 c t f 'n
;

0 l) " g lJ
2 STX DC2 @) ! .A 0 c N ,,

~ IJ oe = _, 0 g w

• "
...

3 fl
,,

G
A

CE w 3 ETX DC3 A ~ u - J ..
4 • IT A D u E s T . ,.. + EOT DC4 t g J _J y

l ~

• § A y iJ
0 R ! G k ll 5 ENQ INAK u y :0 5ii

u b
0 ,, ..

6 ACK SYN • -0 p z 0 a G ~ s y 1t
0

!
,;

A fi I< s 7 BEL ETB • E ® ~ L .) u © 6

a i :E
~ z 1 1 -+

8 BS CAN ~ e l a c H l
-J

9 HT EM 0 l E - c fi i g c -h i r TM I

A LF SUB • --+ I .. c d i I \ tf I· u Ys t
B VT ESC (f +-- I ,,.

~ t z A
.
c 1 ~ 0 Vs <

c FF SS4 Q L I
0 ,,.

= u s i G c I n u
~

Ys >

D CR SS3 j +---+ l 0 a 0 L e -
~ u Vs ~ 1

~
;

N t E so SS2 ... 0 1 1 l ,, E rJ u x E

F SI SSI -a- b 6 4 ,; s r) 0 ' 'Y n ~ e ! ..

Figure B-1. Code Page PO

B-2 Assembler Language Reference

First Hexadecimal Digit

0 I 2 3 4 5 6 7 8 9 A B c D E F

0 NUL OLE BLANK 0 @ p ' p <; E , D ~ 6 -(SPACE I a ...
I 1 A Q q .. , ::::: [I f) fJ + I SOH DCl a u ae 1 :::::

2 STX DC2 II 2 B R b r
,

fE
,

w E 6 = e 0 1---r--J
3 # 3 c s " " , :E

~ ETX DC3 c s a 0 u 1-- 0

$ 4 D T d t
.. .. ,....,, ...

9T 4 EOT DC4 a 0 n 1-- ~ E 0

cyo 5 E u ' '
........,

A. EE § 5 ENQ INAK e u a 0 N 1 0

& 6 F v f 0 /\ A
~ y 6 ACK SYN v a u a a I -

7 BEL ETB ' 7 G w g w <; ' 0 A A i p u _,

(8 H x h A .. ~ I p 0 8 BS CAN x e y (, ©

9 HT EM) 9 I y y .. 0 ® R rr= D u ..
1 e

A LF SUB *
. J z J ' 0 I IS? • . z e

+ .
K [k { ..

cl> Yi B VT ESC ' 1 ni h u I

c FF SS4 < L " I I " £ ~ gJ l y 3

' 1

M] } ' 0
.

¢
I ,

2 D CR SS3 - - m 1 '
I y

-•. RM 1 E so SS2 > N /\ n ~ A x « ¥ - I .
? 0

0

~ ~; F Sl SSl / 0 6. A f' » h
BLANK . - FF

Figure. B-2. Code Page Pl

ASCII Codes B-3

---- First Hexidecimal Digit (x) ----------.

A B c D E F 8 9 A B c D E F

0 / ~ w 1 a 6 [I[T -..../

I

""
E9 v ~

7

I I Q 11 2

2 * L 0
3 D 8 1C e n

3 # ® p II 9 b n 4

4 v ,, 'Y (ZJ <P F 8 <t 5

5 /\ - (} \ Pts _L 00 LJ 6

6 11 'It 1 l r I~ B cp v 7

L)
,,,,,..,.

E ~ 7 £ ""' I= H I= 8
8 < A. r::::::l. ex: n ¢ - 9

9 > Tl ~ _L 6. lJ1

- x 0 y > A + t B oc -

B 0 (v \JI -- 1-" /3 < -
c I l r TI I".,,,; bd r [_
D f roo f A 0 I= 1T J
E u e \ • 4

1--1 L ,......_, ,......_,

F c K 1) 5 ~ (]' • 0

I 1Dxy 1Cxy
Figure B-3. Code Page P2

B-4 Assembler Language Reference

Appendix C. Programming Tips and Techniques

You may find the following things useful as you create assembler language code
on the RT PC.

Note that these tips and techniques are intended for your information only. IBM does not
guarantee their usefulness or accuracy in any particular situation.

• Some programmers find it helpful to write the assembler code first, then debug the
code. After the code is debugged, the instructions can be rearranged as suggested in
these tips.

• The fewer times memory is referenced, the better the performance (all other things
being equal). Keep as much information in registers as possible.

The following tips or techniques apply to the APC only:

• When you are loading data from memory, move the load instruction at least four
instructions away from the first use of the fetched register. In this way, the processor
can overlap the fetching of data from memory with the execution of the following
instructions. The limit is two outstanding references to memory; the third load will
cause a wait until the first load completes.

• Use the execute form of branch instructions whenever possible, with a memory load
(I) instruction as the subject (if possible). An exception is when the branch
instruction branches backwards into one of the three previous words, as explained in
the following tip.

• When you are using branch instructions, you can eliminate some memory references by
using the short form of the branch, and by placing the branch target 14 or 16 bytes
before the branch instruction. Such an arrangement causes the processor to make a
fast jump that fetches the target from a buffer, not from memory. See "Variable-Length
Branch Instructions" on page 4-14 for more information.

Programming Tips and Techniques C-1

C-2 Assembler Language Reference

Appendix D. Sample Assembler Language Program

The following program takes one integer as its only parameter, calls printf to print the
integer, and returns the return code from printf.

This program has not been optimized for performance. Its purpose is to show the form of
an assembler routine that has parameters and calls other routines.

Sample Assembler Program D-1

#Sample program:

#The program takes one integer as its only parameter, call printf to print
#it, and returns the return code from printf. It is not a optimim routine
#for performance, its purpose is to show the form of an assembler routine
#that has parameters, and calls other routines.

This program is called by the following c program called samplem.c:
main()
{ inti;
i = sample(50);
printf("Done with return code of %d\n",i);
return(i);
}
#These programs are compiled, assembled, and made into a executable program
#called sample by the following AIX command:
cc -o sample samplem.c sample.s
#This is then executed by:
./sample
Giving the results:
The param was 50
Done with return code of 17

.file "sample.s"

.globl .sample

. text

.align 1

#Put out a name for trace back in sdb
#Let everyone know the entry name .

Start the first instruction on at least
a half word boundy. Note that the align
is BEFORE the label.

.sample:
.set lowreg,14 # The lowest register number (above 5) that

is used. It needs to be saved. #

.set

.set
mystacksize,8 # I need 8 bytes of local data
rsvd,4*(4 + 5) #Stack space for 4 parameters and 5 reserved

words.

Figure D-1 (Part 1 of 3). Sample Assembler Language Program

D-2 Assembler Language Reference

.set regs,4*lowreg #Words I use for saving input registers .

. set fpregs,4 *O # Words used to save floating point regs .

. set parms,4*0 #Parameter words over 4 I use in calling others

.set mystck,mystacksize + rsvd +regs+ fpregs + parms # The size of my stack
See Figure 6-3 for contents of a stack frame

stm lowreg,-(4*lowreg + rsvd)(l) # save the registers I will use.
cal 1,-mystck(l) #get my new stack frame.
Ir 14,0 # get the address of my constant pool into

a register I can use to reference memory
#Now anticapate a good return, so store a zero in a temporary space on
#the stack. Then on return, I can load whatever is in that word into the
#return value register before exiting.

lis 0,0 #get a zero into register 0
st 0,0(1) #store it on my stack.

#Now call another routine, printf, to print what was passed. I will assume
#the first parameter is an integer.

st 2,-16 + mystck(l) # Save my parameter, use the space for it on
the stack, I could just as well allocated
more space in mystck and saved it there.

lr 3,2 # printf wants a pointer to the format as
the first argument, and the values to be
printed as the next arguments.

cal 2,8(14) #The string: "The param was %d\n"
call .printf,4(14),2 # Call printf with 2 parameters
st 2,0(1) # Save the value returned by printf

Now, get the current return value and exit.
1 2,0(1)
Im lowreg,mystck-4*lowreg-rsvd(l)
cal l,mystck(l)
hr 15
.data

Figure D-1 (Part 2 of 3). Sample Assembler Language Program

Sample Assembler Program D-3

Now set up the constant pool
.globl _sample
.align 2 # Start the data area on a full word boundry

_sample:

.long .sample #the first word of the constant pool is

the address to start execution.
.long _printf # the address of printf
.byte 'T,'h,'e,' ,'p,'a,'r,'a,'m,' ,'w,'a,'s,' ,'%,'d,Oxa,OxOO

Figure D-1 (Part 3 of 3). Sample Assembler Language Program

D-4 Assembler Language Reference

1-1.
1-2.
1-3.
3-1.
4-1.
4-2.
4-3.
4-4.
6-1.
6-2.
6-3.
6-4.
6-5.
6-6.
6-7.
6-8.
B-1.
B-2.
B-3.
D-1.

Figures

Data Units in Main Storage .. .
General Purpose Register Pairs
System Control Registers .. .
Segment Registers and Their Contents
Correspondence of CS bits to Branch Instructions
Extended Branch Instructions
Instruction Formats
Summary of Instruction Formats
Assembly Output Listing ;
Assembly Listing File .. .
Register Values on Subroutine Entry
Register Values on Subroutine Exit
Contents of a Stack Frame .. .
What a Calling Routine Does .. .
What a Calling Routine Does When Using Function Pointer
What a Called Routine Does .. .
Code Page PO
Code Page Pl .. .
Code Page P2
Sample Assembler Language Program ,.

1-6
1-8
1-9
3-8

4-12
4-13
4-26
4-27
6-12
6-13
6-17
6-18
6-20
6-24
6-25
6-26
B-2
B-3
B-4
D-2

Figures X-1

X-2 Assembler Language Reference

032 Microprocessor. The 32-bit processor for
the RT PC system.

032 Microprocessor instructions. Specify an
operation to be performed by the processor,
along with the values or locations of operands,
if any exist. Each 032 Microprocessor
instruction has a mnemonic corresponding to
the numerical op code(s) of machine language
instruction(s).

absolute value. The numeric value of a real
number regardless of its sign (positive or
negative).

address. A number that identifies a location
in memory.

addressing. A means of identifying storage
locations.

algebraic comparison. When two numbers
are compared, their high-order bits are treated
as signed bits. Algebraically, hex FFFFOOOO is
less than hex 00000001, because hex FFFFOOOO
algebraically represents a negative number.
Contrast with logical comparison.

allocate. To assign a resource to perform a
specific task.

alphabetic. Pertaining to a set of letters a
through z.

American National Standard Code for
Information Interchange (ASCII). The code
developed by ANSI for information interchange
among data processing systems, data
communications systems, and associated
equipment. The ASCII character set consists of
control characters and symbolic characters.

Glossary

a.out. The name of the default output file
produced by as. AIX Operating System
Technical Reference shows the format of this
file.

application. A particular task, such as
inventory control or accounts receivable.
Programs written to perform an application
usually run above the operating system level,
and are written in a high-level programming
language.

ASCII. See American National Standard Code
for Information Interchange.

assembler. A program that translates an
assembler language source module to a machine
language object module. The assembler
converts mnemonic op codes to numeric,
machine-readable op codes and converts
implicit addresses to displacements and base
register numbers.

assembler directives. See pseudo-operations.

assembler instructions. See instruction and
pseudo-operations.

assembler sections. See section.

base address. The beginning address for
resolving symbolic references to locations in
storage. An address that is defined, in part, by
the contents of a base register at runtime. See
effective address.

base register. A register whose contents are
added to a displacement to form an effective
address.

basic addressable unit (BAU). The smallest
piece of storage that can be addressed. On the
RT PC, a byte is the BAU.

G Iossary X-3

BAU. See basic addressable unit.

block. See program block.

boundary alignment. The position in main
storage of a fixed-length field (such as halfword
or doubleword) on an integral boundary for that
unit of information. For example, a word
boundary is a storage address evenly divisible
by four.

branch. An instruction that changes the
sequence of instruction execution by putting
the address of another instruction into the
Instruction Address Register. A branch can
occur conditionally or non-conditionally. A
conditional branch occurs only when a specified
condition is met.

byte. The amount of storage required to
represent one character. A byte is 8 bits.

call. To activate a program or procedure at its
entry point. Compare with load.

character set. A group of characters used for
a specific reason; for example, the set of
characters the assembler recognizes.

check. (1) An error condition. (2) To look for
a condition.

comments field. The last field of an
assembler instruction. All comments must be
preceded by a pound sign (#).

compiler. A program that translates
instructions written in a specific high-level
programming language into machine language.

constant. A data item with a value that does
not change.

counter. A register or storage location used to
accumulate the number of occurrences of an
event.

delimiter. A character or sequence of
characters that marks the beginning or end of a
unit of data.

X-4 Assembler Language Reference

displacement. A number that can be added to
the contents of the base register to calculate an
effective address.

editor. A utility that programmers use to
enter and modify source code.

effective address. A real storage address that
is computed at runtime. The effective address
consists of contents of a base register plus a
displacement.

exception handler. A set of routines used to
detect deadlock conditions or to process
abnormal condition processing. This allows the
normal execution of processes to be interrupted
and resumed.

expression. A representation of a value. For
example, variables and constants appearing
alone or in combination with operators.

extension. See sign extension.

external reference. A reference to a symbol
that is defined as a global name in another
module. Also, a symbol that is not defined in
the module that references it.

external symbol. An external reference that
is defined or referred to in a particular module.
An ordinary symbol that represents an external
reference.

file. Synonymous with module.

file name. The name used by a program to
identify a file.

file section. In assembler language source
code, the smallest group of statements that can
be assembled. Pseudo-ops define assembler
language file sections for instructions, data,
and uninitialized data. The link editor
translates assembler file sections to runtime
(a.out) segments.

forward reference. In a statement, referring
to a symbol that has not yet been defined.

function. A block of assembler language
statements that do a limited task. A function or
functions can optionally be a subset of the
instructions contained in a single assembler file
section.

general purpose register (GPR). An
explicitly addressable register that can be used
for a variety of purposes (for example, as an
accumulator or a base register). RT PC has 16
32-bit GPRs. See register.

global symbol. A symbol defined in one
program module, but used without redefinition
in other independently assembled program
modules.

GPR. See general purpose register.

high-order. Most significant; leftmost. For
example, bit 0 in a register.

IAR. See instruction address register.

immediate data. Data appearing in an
instruction itself (as opposed to the symbolic
name of the data). The data is immediately
available from the instruction and therefore is
assembled directly into the instruction without
being read from memory.

instruction. Assembler language programs
are made up of 032 Microprocessor instructions
and pseudo-op instructions. See
pseudo-operations and 032 Microprocessor
instructions.

instruction address register (IAR). A
system control register that contains the
address of the next instruction to be executed
(that is, the updated instruction address). The
IAR (sometimes called a "program counter") is
incremented in bytes. Compare with location
counter.

instruction format. The allocation of bits or
characters of a machine instruction to specific
classes of instructions.

interrupt. A signal sent by an I/O device to
the processor when an error has occurred or

when assistance is needed to complete I/O. An
interrupt usually suspends execution of the
currently executing program.

jump. A short branch. The programmer
cannot explicitly issue a jump instruction.

label. The field of an instruction that assigns
a symbolic name to the location at which the
instruction begins.

link editor. A utility that resolves
cross-references between separately assembled
object modules, then assigns final addresses to
create a single relocatable load module. If a
single object module is linked, the linker simply
makes it relocatable. (Also called "linker" or
"linkage editor.")

linker. See link editor.

load. To move data or programs into storage.

loader. A program that moves data or other
programs into storage. In AIX Operating
System, the loader runs when you type a
program name to run the program. See link
editor.

load module. The output of the linker. A
program in a format suitable for loading into
main storage and executing.

location counter. A counter in the assembler
that denotes the next byte available for code
allocation. The location counter assigns
storage addresses to program statements. On
RT PC, the text and data assembler file sections
each have four location counters. Compare
with Instruction Address Register.

logical comparison. When comparing two
numbers, their high-order bit is treated as an
unsigned bit. Logically, hex FFFFOOOO is
greater than hex 00000001. Contrast with
algebraic comparison.

low-order. Least significant; rightmost. For
example, bit 31 in a 32-bit register.

Glossary X-5

machine instruction. A series of binary
numbers directing the operation of a processor.
The assembler converts 032 Microprocessor
instruction mnemonics and operands to
machine instructions.

machine language. A language consisting of
machine instructions that can be used directly
by a computer without intermediate processing.

macro. A single instruction representing a
series of instructions. RT PC 032
Microprocessor assembler language does not
have macros.

main storage. The part of the processing unit
where programs are run.

mask. A pattern of characters that controls
the keeping, deleting, or testing of portions of
another pattern of characters.

mnemonic. The field of an instruction that
contains the acronym or abbreviation for a
machine instruction or pseudo-op. For machine
instructions, using mnemonics frees the
programmer from having to remember the
machine's numeric op codes.

module. For assembler language source code,
one or more assembler file sections. Modules
are subroutines, calling programs, and data
areas that are assembled separately, then linked
to make a complete program. See load module
and object module.

non-volatile. A register whose value on
subroutine entry must be preserved on
subroutine exit. Constrast with volatile.

object code. See object module.

object module. A set of instructions in
machine language. The object module is
produced by an assembler from a subroutine or
source module and can be input to the link
editor. See module.

op code. See operation code.

X-6 Assembler Language Reference

operand. An instruction field that represents
data (or the location of data) to be manipulated
or operated upon. Not all instructions require
an operand field.

operating system state. The state in which
the AIX Operating System kernel runs. A
virtual machine protection state which occurs
in 032 Microprocessor unprivileged state. (See
Virtual Resource Manager Technical Reference.)

operation. A specific action (such as move,
add, multiply, load) that the computer performs
when requested.

operation code. A numeric code indicating to
the processor which operation should be
performed.

overflow condition. A condition that occurs
when a portion of the result of an operation
exceeds the capacity of the intended unit of
storage.

pipelined. A processor that can process two or
more instructions at the same time. A pipelined
processor simultaneously fetches one
instruction, fetches a second instruction's
operands, and performs an operation for a third
instruction. This allows instructions to run
faster; for example, the subject of a
branch-with-execute instruction runs at the
same time that the pipeline is loaded with the
address of the target.

privileged instruction. Can be executed only
when 032 Microprocessor is in the privileged
state. Application programs do not usually
contain privileged instructions.

problem state. A virtual machine protection
state which occurs in 032 Microprocessor
unprivileged state. See Virtual Resource
Manager Technical Reference.

program block. Used to construct symbol
table information for block-structured
languages, such as C, which pass source symbol

information through a compiler and into an
assembler.

program counter. See instruction address
register.

pseudo-operations. Functions that the
assembler performs at assembly time, not at
runtime. Instructions to the assembler itself,
such as assembler file section assignment and
byte alignment. (Also called "pseudo-ops,"
"assembler directives," and "assembler
operators.")

register. In a computer, a storage area
capable of storing a specified amount of data
such as a bit or an address. On RT PC, each
register is at most 32 bits long. See general
purpose register and system control register.

register pair. The pair of a general purpose
register is the binary value of the register with
the low-order bit inverted. For example,
register 5 (binary 0101) and register 4 (binary
0100) are pairs.

relative address. An address specified in
relation to the contents of the Instruction
Address Register or to a symbol. When a
program is relocated, the addresses themselves
will change, but the specification of relative
addresses remains the same.

relative addressing. A means of addressing
instructions and data areas by designating their
locations to the Instruction Address Register or
to some symbol.

relocatable. A value, expression, or address is
relocatable if it does not have to be changed
when the program is relocated.

relocation. Changing address constants so
that a program can be executed from an area of
memory different from the area assigned during
assembly.

run-time environment. A collection of
subroutines that provide commonly used
functions for system components.

section. In assembler language source code, a
group of statements demarcated by .text, .data,
or .lcomm pseudo-ops. An assembler language
section maps to a segment in the a.out file at
runtime.

segment. A contiguous area of virtual storage
allocated to a job or system task. On RT PC,
the executable a.out file contains segments
which correspond to assembler language
sections.

sign extension. At runtime, duplicating the
high-order bit of a number throughout any
vacant high-order positions that exist when the
number is expanded to 32 bits. For example,
hex 8000 sign-extended is hex FFFF8000. Sign
extending immediate data and shifting it left
one bit has the same effect as multiplying the
immediate data by 2. Sign extension thereby
lets immediate data be evaluated in terms of
halfwords, not bytes (since the instructions
must be on halfword boundaries).

source module. The statements that form
input to the assembler.

special character. A character other than an
alphabetic or numeric character. For example,
*, + , and % are special characters.

stack. An area in storage that stores
temporary register information and return
addresses of subroutines. 032 Microprocessor
does not have hardware support for a stack.

stack pointer. A register providing the
current location of the stack.

standard error. For certain commands, a
default location to which error messages are
sent, usually the terminal.

statement. An instruction in a program or
procedure.

store. To place information into memory
where it is available for retrieval and updating.

Glossary X-7

supervisor. The part of RT PC that
coordinates the use of resources and maintains
the flow of processing unit operations.

supervisor call (svc). An instruction that
interrupts the program being executed and
passes control to the supervisor so it can
perform a specific service indicated by the
instruction.

supervisor state. A virtual machine
protection state corresponding to 032
Microprocessor privileged state. See Virtual
Resource Manager Technical Reference.
(Contrast with problem state.)

svc. See supervisor call.

symbol table. Control information, associated
with an object or load module, that is produced
by the assembler and identifies the external
symbols in the module.

symbolic debugger (sdb). An AIX Operating
System command that debugs programs that
conform to the format of the a.out object file.

system control register (SC&). One of 16
hardware registers used to control the state of
the processor. The IAR, MQ, and CS are all
SC Rs.

term. The smallest part of an expression that
can be assigned a value.

trap. An unprogrammed, hardware-initiated
jump to a specific address. Occurs as a result of
an error or certain other conditions.

two's complement. Representation of
negative binary numbers. Formed by
subtracting each digit of the number from zero,
then adding one to the result.

unprivileged instruction. Can be executed
when the 032 Microprocessor is in privileged or
unprivileged state. The unprivileged
instructions consist of ordinary loads, stores,
adds, and so forth.

X-8 Assembler Language Reference

updated instruction address. The value in
the IAR that refers to the address of the next
instruction to be executed, not to the address of
the currently executing instruction.

virtual machine. A functional simulation of a
computer and its associated devices. AIX
Operating System controls the concurrent
execution of many virtual machines, including
execution of software.

virtual machine interface (VMI). A software
interface between hardware and an operating
system. The VMI shields operating system
software from hardware changes and low-level
interfaces, and provides for concurrent
execution of multiple virtual machines.

virtual resource manager (VRM). A set of
programs that manage the hardware resources
(main storage, . disk storage, display stations,
and printers) of the system so that these
resources can be used independently of each
other.

virtual storage. Addressable space. that
appears to be real storage. From virtual
storage, instructions and data are mapped into
real storage locations.

VMI. See virtual machine inter{ ace.

volatile. A register whose value on subroutine
entry does not need to be preserved on
subroutine exit. Contrast with non-volatile.

VRM. See virtual resource manager.

word. A contiguous series of 32 bits (four
bytes) in storage, addressable as a unit. The
address of the first byte of a word is evenly
divisible by four.

wraparound. (1) The continuation of
addresses from the highest allowable address to
the lowest; the maximum address is followed by
address 0. (2) In an arithmetic operation, the
continuation of values from the highest
allowable value to the lowest; the maximum
value is followed by a value of 0.

I Special Characters I
' 2-6
$ 2-6
' 2-5, 2-9
> 6-30
: 2-5, 2-10
2-5, 2-9, 2-11

6-22
[5-9

a 4-16, 4-29
a.out

as default assembly output 6-6
as default linker output 6-9
format with assembler language
sections 3-9

abs 4-16, 4-30
absolute expressions 2-21
addresses

branch 4-9
calculation 4-27
computation instructions 4-8
effective 1-6
explicit 3-5
implicit 3-6
in kernel 5-21
in source module 5-6
in storage 1-6
notational conventions 4-25
outside source module 5-6
wraparound 1-6

ae 4-16, 4-31
aei 4-16, 4-32
ai 2-17, 4-16, 4-33
ais 4-16, 4-34
AIX Operating System

See also kernel
shell operators 6-30
system calls 6-3, 6-15, 6-25

.align
directory description 5-12

Index

to change contents of location counter 5-4
alignment

with labels 2-10
with pseudo-ops 5-5, 5-12

APC
characteristics 1-5
determining its presence 1-12
with loads and stores 4-7
with SCR 9 1-10
with the lps instruction 4-99

application programming
assembler language for iv

arguments passed from and to routine 6-15
arithmetic constants 2-16
arithmetic instructions 4-16
as 3-9, 6-6
ASCII

character constants 2-17
list of character codes B-1

assemble a file
actions following 6-3
with as 6-6
with cc 6-4

assembler directives
See pseudo-ops

assembler operators
See pseudo-ops

automatic variables 6-27

Index X-9

b 1-13, 4-9, 4-54
BA format 4-27
bala

addressing modes with 3-4
as absolute immediate branch 4-10
directory description 4-35
targets of 3-8

balax
addressing modes with 3-4
as absolute immediate branch 4-10
directory description 4-37
linkage conventions with 5-14
targets of 3-8

bali 4-.9, 4-38
balix 4-9, 4-39, 5-14
balr 4-9, 4-40
balrx 4-9, 4-41
base registers 3-5, 4-25, 5-6
based expression 3-5, 4-25
bb 1-12, 4-9, 4-42
.bb 5-7
bbr 1-12, 4-9, 4-46
bbrx 1-12, 4-9, 4-48
bbx 1-12, 4-9, 4-51
bee 1-13, 4-9, 4-54
beer 4-9, 4-58
bccrx 4-9, 4-61
bccx 4-9, 4-64
bes 1-13, 4-9, 4-42
bcsr 4-9, 4-46
bcsrx 4-9, 4-48
bcsx 4-9, 4-51
beq 1-13, 4-9, 4-42
beqr 4-9, 4-46
beqrx 4-9, 4-48
beqx 4-9, 4-51
.bf 5-7
bge 1-13, 4-9, 4-54
bger 4-9, 4-58
bgerx 4-9, 4-61
bgex 4-9, 4-64
hgt 1-13, 4-9, 4-42
bgtr 4-9, 4-46

X-10 Assembler Language Reference

bgtrx 4-9, 4-48
bgtx 4-9, 4-51
BI format 4-27
bit numbering conventions 1-6
blanks 2-4, 2-8, 5-9
ble 1-13, 4-9
bler 4-9, 4-58
blerx 4-9, 4-61
blex 4-9, 4-64
blocks 3-10
blt 1-13, 4-9, 4-42
bltr 4-9, 4-46
bltrx 4-9, 4-48
bltx 4-9, 4-51
bnb 1-12, 4-9, 4-54
bnbr 1-12, 4-9, 4-58
bnbrx 1-12, 4-9, 4-61
bnbx 1-12, 4-9, 4-64
bne 1-13, 4-9, 4-54
bner 4-9, 4-58
bnerx 4-9, 4-61
bnex 4-9, 4-64
boundary

for instructions 1-6
hr 4-9, 4-58
brackets 2-4
branching

general information about 4-9
long 4-14
short 4-14
to branch instructions 4-11
types of instructions 4-9
with execute 4-12

brx 4-9, 4-61
bss section 3-11, 6-12
bss segment 3-10
btc 1-13, 4-9, 4-54
btcr 4-9, 4-58
btcrx 4-9, 4-61
btcx 4-9, 4-64
bts 1-13, 4-9, 4-42
btsr 4-9, 4-46
btsrx 4-9, 4-48
btsx 4-9, 4-51
buffer, interrupt request 1-11
bvc 1-13, 4-9, 4-54

bvcr 4-9, 4-58
bvcrx 4-9, 4-61
bvcx 4-9, 4-64
bvs 1-13, 4-9, 4-42
bvsr 4-9, 4-46
bvsrx 4-9, 4-48
bvsx 4-9, 4-51
bx 4-9, 4-64
.byte

as data alignment pseudo-op 5-5
changing contents of location counter 5-4
directory description 5-13

c 1-13, 4-16, 4-67
C language

calling conventions 6-15
cc command 6-4

C language compiler
See compiler, C language

cal 4-8, 4-68
call 5-8, 5-14, 6-23
calling conventions 6-15
callr 5-8, 5-17, 6-23
cal16 2-17, 4-8, 4-69
capitalization 2-4, 2-5
Carry Zero (CO) bit 1-13, 4-17, 4-103
cas 4-8, 4-70
cau 4-8, 4-71
ca16 4-8, 4-73
cc 6-4
character

allowed 2-5
constants 2-17
definition of 1-6
move instructions 4-15
separator 2-5
special 2-5

check error 1-10
ci 4-16, 4-74
cl 4-16, 4-75
cli 4-16, 4-76
clrb 4-18, 4-77

clrcb 1-12, 4-20, 4-79
clz 4-80
.comm

directory description 5-19
to change contents of location counter 5-4
to define assembler sections 5-6
to define symbols 2-15
with undefined symbol 6-9

comments 2-5, 2-11
common memory 5-25
common segments 5-25
compiler, C language

floating point constants 5-5
floating point registers 6-27
input to assembler from 6-6
labels generated by 6-11
notation for undefined symbols 6-22
optimization 5-7
output 6-22
pseudo-ops produced by 5-7
relationship to assembly language 1-4
sdb flags 5-7
segments produced by 3-9
subroutine linkage 6-23

Condition Status register
See also names of individual bits
bits in 1-13
definition of 1-9, 1-12
instructions manipulating 4-20
with arithmetic instructions 4-16
with branches 4-11
with lps 4-99
with move instructions 4-15

constant pool 6-17, 6-18, 6-21
constants

arithmetic 2-16
character 2-17
decimal 2-16
floating point 5-9
forward reference of 2-15
hexadecimal 2-16
octal 2-16
symbolic 2-18
types of 2-16

conventions
calling 6-15

Index X-11

notational, for instructions 4-22
notational, general 2-4

.copt 5-7
cross-reference table

d

See symbol table

algorithm for division 4-81
as arithmetic instruction 4-16
directory description 4-81
with MQ 1-10

D format 4-27
D-Short format 4-27
.data

and assembler section definition 5-6
directory description 5-20
when to use 3-11

data address exception 1-11
data alignment

with labels 2-10
with pseudo-ops 5-5

data constants 2-16
data definition 5-5
data in storage 1-6
data section of assembler program 3-10, 3-11,
6-12

data segment at runtime 3-10
debugger

See sdb
dee 4-8, 4-16, 4-82
decimal constants 2-17
default output

See a.out
dinosaur 2-6
.direct

directory description 5-21
purpose 2-15
reserved addresses with 3-8
with text section 3-9

direct addressing 5-21

X-12 Assembler Language Reference

displacement 3-5, 4-25
divide two numbers 4-81
.double 5-5, 5-22
.drop

directory description 5-23
purpose 3-6

.eh 5-7

.ef 5-7

.eos 5-7
Equal (EQ) bit

definition of 1-13
with arithmetic instructions 4-16
with logical instructions 4-18
with shift instructions 4-19

errfile 6-7, 6-11
error, program check 4-4
error, standard

See errfile
errors, hardware 1-10
exception 4-7
executable file segments 3-9
execute a program

See running a program
explicit based expression 3-5, 4-25
expression

absolute 2-21
definition of 2-19
explicit based 3-5, 4-25
external 2-22
implicit 3-6
operators 2-19
relocatable 2-21
types of 2-21

extended instructions 4-17
external expressions 2-22
external reference 2-15
external symbols 2-15, 4-9, 6-9
exts 4-16, 4-83

fast jumps 4-14
.file 5-7
first pass of assembler 6-8
.float 5-5, 5-24
floating point 6-3, 6-19, 6-27
floating point constant 5-5, 5-9
format

of instructions 4-26, 6-8
of lines 2-8

forward reference 2-15
fp register 6-17
frame pointer 6-17, 6-18
function call 6-23
.function 5-7

General Purpose Registers (GPRs)
data in 1-7
instructions used in 1-7
pairs 1-7

.globl
at second pass of assembler 6-9
directory description 5-25
with ld command 6-10, 6-11

Greater Than (GT) bit
definition of 1-13
with arithmetic instructions 4-17
with logical instructions 4-18
with shift instructions 4-19

halfword
definition of 1-6

hardware errors 1-10
hexadecimal constants 2-17

[]
I/O instructions 4-20
immediate data

notational conventions for 4-22
with branches 3-5, 4-10, 4-14
with logical instructions 4-18
with move and insert instructions 4-15
with shift instructions 4-19
with storage access instructions 4-8

implicit address 3-6
inc 4-8, 4-16, 4-84
initialize common memory 5-25
insert instructions 4-15
Instruction Address Register 1-9, 1-11
instruction prefetch buffer 4-14
instruction statement

syntax of 2-9
instructions

address computation 4-8
arithmetic 4-16
assembler 4-4
boundaries 1-6
branching 4-9
formats 4-26
I/O 4-20
insert 4-15
logical 4-18
long branches 4-14
move 4-15
notational conventions 4-22
privileged 4-20
register pairing 4-19
shifts 4-19
short branches 4-14
storage 4-6

Index X-13

system control 4-21
system control register manipulation 4-20
traps 4-15

interrupt control status 1-12, 4-99
interrupt processing 4-100
interrupt request buffer 1-11
interrupts 4-20, 6-21
invalid memory locations 1-11
invalid storage locations 1-6, 1-11
invalid symbol names 2-13
ior 4-20, 4-85
iow 4-20, 4-86

JI format 4-26
jump instruction 4-14

kernel
See also AIX Operating System
calls 4-20, 6-15, 6-25
direct addressing to 3-8, 5-21
in privileged state 1-4
programming in assembler language iv
referencing symbols in 2-15
SVC to 4-155
text section with 3-9

1 4-6, 4-87
label

at first pass of assembler 6-8
data alignment 2-10
definition of 2-5
generated by C language compiler 6-11
specifying 2-10

le 4-6, 4-90

X-14 Assembler Language Reference

.lcomm
and assembler section definition 5-6
directory description 5-26
relation to assembler file sections 3-10
to change contents of location counter 5-4
to define symbols 2-15
when to use 3-11
with undefined symbol 6-9

Id 2-22, 3-9, 5-14, 6-10, 6-22
Less Than (LT) bit

definition of 1-13
with arithmetic instructions 4-16
with logical instructions 4-18
with shift instructions 4-19

lh 4-6, 4-93
Iha 4-6, 4-94
.line 5-7
line format 2-8
link editor

See also ld
defining blocks 3-10
Id command 6-10
with underscore 6-22

link register 6-17
linking files

actions following 6-3
what called routine does 6-26
what calling routine does 6-22
with branch instructions 4-11
with Id 6-10

lis 4-8, 4-97
listing of assembly output 6-12
Im 4-6, 4-98
load instructions 4-6
local automatic variables 6-27
location counter

as value of label 2-5, 2-10
at assembly time 6-8
how it works 3-11
in assembly listing 6-12
pseudo-ops that change 5-4
symbol for 2-6
with assembler sections 3-9

logical operations 4-18
.long

as data alignment pseudo-op 5-5

data alignment with 2-10
directory description 5-27
produced by C compiler 6-23
to change contents of location counter 5-4

loop control 4-10, 4-43
lps

as branch subject 4-11
as system control instruction 4-21
directory description 4-99
to clear MCS 1-10
with APC 4-7

Ir 4-8

m
algorithm for multiplication 4-103
as arithmetic instruction 4-16
directory description 4-102
with MQ 1-10

Machine Check Status (MCS) 1-10, 4-100
mc03 4-15, 4-104
mc13 4-15, 4-105
mc23 4-15, 4-106
mc30 4-15, 4-107
mc31 4-15, 4-108
mc32 4-15, 4-109
mc33 4-15, 4-110
memory 1-6
mfs

as SCR manipulator 4-20
directory description 4-111
with CS 1-12
with MQ 1-10

mftb 4-15, 4-112
mftbi 4-15, 4-113
mnemonics 2-11
move instructions 4-15
mts

as SCR manipulator 4-20
directory description 4-114
with CS 1-12
with MQ 1-10

mttb 1-13, 4-15, 4-115
mttbi 1-13, 4-116
Multiplier Quotient register

definition of 1-9
instructions manipulating 1-10, 4-20
to divide two numbers 4-81
with subroutine linkage 6-16

multiply two numbers 4-103
m4 6-7

n 4-18, 4-117
nilo 4-18, 4-118
nilz 4-18, 4-119
muo 4-18, 4-120
muz 4-18, 4-121
nop 1-13, 4-11, 4-70, 4-122
notational conventions

for assembler instructions 4-22
for assembler language concepts 2-4
for pseudo-ops 5-9

null statements 2-12
numbering conventions 1-6

0 4-18, 4-123
octal constants 2-17
oil 4-18, 4-124
oiu 4-18, 4-125
onec 4-16, 4-126
op codes

reserved 1-11, 4-4, A-9
operands 2-11
operators

AIX Operating System shell 6-30
precedence 2-19
types of 2-19

.org 5-4, 5-28, 6-11
Overflow (OV) bit 1-13, 4-17, 4-81

Index X-15

page fault 4-7, 6-19
pairs of registers 1-7
parameter passing 6-15
passes of the assembler

first 6-8
second 6-9

PCS
See Program Check Status (PCS)

performance enhancements 4-14
Permanent Zero (PZ) bit 1-13
pointer registers for C-compatible
routines 6-17, 6-18

pool 6-21
prefetch buffer 4-14
privileged instructions

clrcb 4-79
list of A-8
lps 4-100
mfs 4-111
mts 4-114
PIO instructions 4-20
SCR instructions 4-20
setcb 4-132
with PCS 1-11

privileged state
and SCR instructions 4-20
definition of 1-4
to access IAR 1-11
with clrcb 4-79
with lps 4-100
with mfs 4-111
with mts 4-114
with setcb 4-132

problem state
See unprivileged state

processor I/O instructions 4-20
program check 4-7
program check error 4-4
Program Check Status (PCS) 1-11, 4-15, 4-100,
4-159

protection states 1-4, 4-100
pseudo-ops

X-16 Assembler Language Reference

assembler section definition 5-6
base register declaration 5-6
categories of 5-5
change contents of location counter 5-4
data alignment 5-5
data definition 5-5
definition of 5-4
direct addressing 5-6
notational conventions 5-9
sdb 5-7
statement syntax 2-9

R format 4-27
read, I/O 4-20
registers

base 5-6
conventionally used for calling 6-17, 6-18
pairs 1-7, 4-19
types of 1-7

relocatable expressions 2-21
reserved op codes 4-4, A-2
reserved words 2-7
running a program 6-3, 6-30

s 4-16, 4-103, 4-127
sar 4-19, 4-128
sari 4-19, 4-81, 4-129
scratch register 6-17, 6-18
sdb

breakpoint setting 4-156
C compiler flag for 5-7
information from linker 6-10
specifying symbol table information 5-7
strip sdb information 6-11
traceback information for 6-28
with subroutine linking 6-15

se 4-16, 4-130
second pass of assembler 6-9

sections of assembler language program
common 5-25
definition 5-6
override 5-6
types of 3-9
with branches 4-9

segments at runtime 3-9
self-defining term 2-16
separator character 2-5, 2-6, 2-9
.set

directory description 5-29
to define a symbol 2-13, 5-5
use in subroutine linkage 6-16
with undefined symbol 6-9

setb 4-18, 4-131
setcb 1-12, 4-20, 4-132
sf 4-16, 4-133
sfi 4-16, 4-134
shell operators 6-30
shift instructions 4-19
.short 5-4, 5-5, 5-31
signal handler 6-21
sis 4-16, 4-135
sl 4-19, 4-136
sli 4-19, 4-137
slp 4-19, 4-139
slpi 4-19, 4-140
space 5-4, 5-32
spaces 2-4, 2-9
sr 4-19, 4-141
sri 4-19, 4-142
srp 4-19, 4-144
srpi 4-19, 4-145
st 4-6, 4-147
.stab 5-7
.staba 5-7
.stabs 5-7
.stabt 5-7
stack floor 6-19
stack frame 6-17, 6-18, 6-19
stack pointer 6-17, 6-18
standard error

See errfile
standard output 6-30
statements 2-9, 2-12
stc 4-6, 4-149

sth 4-6, 4-151
stm 4-6, 4-154
storage

access to 1-6
addresses in 1-6
common 5-19
data representation in 1-6
instructions 4-6
invalid locations in 1-6, 1-11
wraparound 1-6

strip sdb information 6-11
subroutine linkage 4-11, 6-15
supervisor call

See svc
supervisor state

See privileged state
SVC

as branch subject 4-11
as system control instruction 4-21
directory description 4-155
to access privileged state 1-4

symbol table
for assembler 6-8
for sdb 5-7

symbolic constants 2-15, 2-18
symbolic debugger

See sdb
symbols

definition of 2-13
external 2-15
used as constant 2-16, 2-18

syntax of instructions and statements 2-9
system calls vi, 6-15
system control instructions 4-21
System Control Registers (SCRs) 1-8, 4-20

tabs 2-9
term, self-defining 2-16
Test (TB) bit 1-13, 4-15
.text

and assembler section definition 5-6
directory description 5-33

Index X-17

relation to program sections 3-9
when to use 3-11

text section of assembler program 3-9, 3-11,
6-12

text segment at runtime 3-9
tgte 4-15, 4-156
ti 4-15, 4-157
timing loops 4-43
t1t 4-15, 4-159
traceback 6-27
trap 1-10, 4-21
trap instructions 4-11, 4-15
tsh 4-6, 4-160
twoc 4-16, 4-161
type

of expression 2-19
typographical conventions

See notational conventions

unprivileged state
and VRM calls 4-21
for virtual machine 1-4
for 032 Microprocessor 1-4
privileged instructions in 1-11

.using
constraints on displacement 4-25
directory description 5-34
for kernel programming 3-10
notational convention for 4-24
purpose 3-6

X-18 Assembler Language Reference

valid symbol names 2-13
Virtual Machine Interface (VMI). 1-4
virtual machines

in privileged state 1-4
invalid memory access for 1-6
program checks 1-11
with lps 4-100

Virtual Resource Manager (VRM)
topics covered vi
traps to 4-21
with lps 4-100
with SVC 4-155

wait 4-21, 4-162
wraparound 1-6, 2-16
write, I/O 4-20

x 4-18, 4-163
X format 4-26
xil 4-18, 4-164
xiu 4-18, 4-165

I Numerics I
032 Microprocessor 1-4

I
L __ _

Q)

c:
::i
Cl
c:
0
;;(
"O
0
u.

0
~
:i
u

adei pue PIO.:f

ade..L

111111

BUSINESS REP-LY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

a1de1s lON on asea1r1

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adei pue PIO:

ade1

--------- ----- - -- - ---- -------------·-
Reader's Comment Form

IBM RT PC Assembler
Language Reference, Version
2.1

IBM RT PC

SC23-0802-0

Your comments assist us in improving our products. IBM may use and
distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation, program
support, and new program literature, contact the authorized IBM RT PC
dealer in your area.

Comments:

L __ _

Q)
c
::i
Cl
c
0

<!
-0
0
LL

0
+"
::J

0

adeJ pue PIO::!

adeJ_

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

adel pue PIO:

ade1

IBM RT PC Assembler Language Reference SC23-0802
Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its
organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as
you become familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may
improve this book.

y N Is the purpose of this book clear?

y N Is the table of contents helpful?

y N Is the index complete?

y N Are the chapter titles and other headings
meaningful?

y N Is the information organized appropriately?

y N Is the information accurate?

y N Is the information complete?

y N Is only necessary information included?

y N Does the book refer you to the appropriate
places for more information?

y N Are terms defined clearly?

y N Are terms used consistently?

y N Are the abbreviations and acronyms
understandable?

y N Are the examples clear?

y N Are examples provided where they are needed?

y N Are the illustrations clear?

y N Is the format of the book (shape, size, color)
effective?

Other Comments

What could we do to make this book or the entire set of
books for this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

© IBM Corp. 1987
All rights reserved .

International Business
Machines Corporation
Department 997 , Building 998
11400 Burnet Rd .
Austin , Texas 78758

Printed in the
United States of America

SC23-0802-0

-~------- ----- - -- - ---- - - ---------~---

SC23-0802-00

92X1279

