

IBM RT PC Advanced Interactive Executive Operating System Version 2.1

Interface Program for use
with TCP/IP

Programming Family

--..--
-=--=--=~ =-- - -- ~---- -- ----------~-·-
Personal
Computer
Software

First Edition (January 1987)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

This edition applies to Version 2.1 of IBM RT PC Interface Program for use with TCP/IP, and to all subsequent releases until
otherwise indicated in new editions or technical newsletters. Changes are made periodically to the information herein; these
changes will be reported in technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer or your IBM marketing representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

Permission to use, copy, modify, and distribute this software only for the purposes and only in the manner set forth in the
appertaining agreement is hereby granted, provided that this copyright and permission notice appear on all copies and
supporting documentation. Further, the name of M.I.T. is not to be used in any advertising or publicity pertaining to
distribution of the software without specific prior permission.

© Copyright International Business Machines Corporation 1985, 1987
© Copyright Massachusetts Institute of Technology 1984
©Copyright Paul G. Milazzo 1985, all rights reserved

About This Book

This book provides information about the IBM RT PC Interface Program for use with
TCP/IP (Transmission Control Protocol/Internet Protocol). With the Interface Program for
use with TCP/IP, you can communicate with:

• Other IBM RT Personal Computer1 systems that also have the Interface Program
installed

• Other host systems that support TCP/IP.

Note: In this book, the term Interface Program refers to the IBM RT PC Interface
Program for use with TCP/IP.

Who Should Use This Book

This book is intended for Interface Program users, system managers, and communications
programmers. The major tasks covered in this book are:

• Transferring data between an IBM RT PC and another host computer

• Using another IBM RT PC or host, or its facilities, remotely

• Managing networks.

For programmers, this book also describes the Application Programming Interfaces (APis)
for the Interface Program, including the library routines and the /dev/netO device driver.

Readers require a thorough understanding of the IBM RT PC functions. In addition,
programmers will find knowledge of the AIX1 Operating System and the Virtual Resource
Manager (VRM) helpful.

RT, RT PC, RT Personal Computer, and AIX are trademarks of International Business
Machines Corporation.

About This Book iii

Before You Begin

Before you can use the Interface Program, you must have installed the following software
and hardware on each IBM RT PC that is to be on the network:

Software

Hardware

• IBM RT PC Virtual Resource Manager Licensed Program, Version 2.1

• IBM RT PC AIX Operating System Licensed Program, Version 2.1

• VRM Baseband Adapter Device Driver, VRM Token-Ring Device Driver, or
both

• IBM RT PC Interface Program for use with TCP /IP.

• IBM RT PC Baseband Adapter for use with Ethernet, IBM Token-Ring
Network RT PC Adapter, or both

• Cables and connectors.

Refer to the following publications for information about installing the software and
hardware:

• IBM RT PC Installing the Virtual Resource Manager

• IBM RT PC Installing and Customizing the AIX Operating System

• IBM RT PC Options Installation

• IBM RT PC User Setup Guide.

After you install the necessary software and hardware, see Appendix A, "Customizing the
Program" for information about creating an Interface Program network to meet your
requirements.

How to Use This Book

Once you have installed and customized the Interface Program, you should become familiar
with the information in Chapter 1, "General Information" and Chapter 2, "User
Commands." With the information in these two chapters, you should be able to use the
Interface Program commands to transfer data, log in remotely, and manage the network. If
you want to use the Application Programming Interfaces (APis) of the Interface Program,
you also should become familiar with the information in Chapter 4, "Protocol Library
Routines," Chapter 5, "/dev/netO Device Driver," and Appendix B, "Samples."

iv Interface Program for use with TCP /IP

Organization
This book is divided into the following chapters:

• Chapter 1, "General Information" provides an overview of the Interface Program.

• Chapter 2, "User Commands" describes Interface Program user commands .

• Chapter 3, "Server Commands" describes the Interface Program server commands, or
daemons.

• Chapter 4, "Protocol Library Routines" describes the main Interface Program
libraries.

• Chapter 5, "/dev/netO Device Driver" describes the interface to the net driver .

The following appendixes contain supplemental information:

• Appendix A, "Customizing the Program" explains how to adapt the Interface Program
to your requirements after you install it.

• Appendix B, "Samples" provides programming examples for the library routines and
tasking system.

• Appendix C, "tcp Library Routines" describes a supplemental Interface Program
library.

A Reader's Comment Form and Book Evaluation Form are provided at the back of this
book. Use the Reader's Comment Form at any time to give IBM information that may
improve the book. After you become familiar with the book, use the Book Evaluation
Form to give IBM specific feedback about the book.

Typography
This book uses type style to distinguish among kinds of information. General information
is printed in the standard type style (the style used for this sentence). The following type
styles indicate other types of information:

New terms
The first occurrence of each new term is printed in this style.

System parts
Names of commands, files, and other parts of the system are printed in this
style.

Variable information
Names for information you must provide are printed in this style.

Information you are to type
To run the examples in this book, enter the information printed in this style.

About This Book v

Related Publications

The following documents in the IBM RT PC series contain additional information that may
prove helpful in understanding and using the Interface Program:

• IBM RT PC AIX Operating System Technical Reference.

• IBM RT PC Virtual Resource Manager Technical Reference.

See IBM RT PC Bibliography and Master Index for order numbers of IBM RT PC
publications and diskettes.

For general information about TCP/IP, the following publications are recommended.
These publications are distributed by the Network Information Center on behalf of the
Defense Communications Agency and Defense Advanced Research Projects Agency
(DARPA). The mailing address is:

Network Information Center
SRI International
Menlo Park, CA 92025

• An Ethernet2 Address Resolution Protocol, RFC 826, D. Plummer

• Assigned Numbers, RFC990, J. Reynolds, J. Postel

• Broadcasting Internet Datagrams, RFC 919, J. Mogul

• File Transfer Protocol, RFC959, J. Postel

• Internet Control Message Protocol, RFC792, J. Postel

• Internet Name Server Protocol, IEN116, J. Postel

• Internet Protocol, RFC791, J. Postel

• Internet Standard Subnetting Procedure, RFC 950, J. Mogul

• Name/Finger, RFC742, K. Harrenstien

• Official ARPA-Internet Protocols, RFC 944, J. Reynolds, J. Postel

• Simple Mail Transfer Protocol, RFC821, J. Postel

• Telnet Protocol Specification, RFC854, J. Postel, J. Reynolds

• The TFTP Protocol, RFC783, K. R. Sollins

• Time Protocol, RFC 868, J. Postel., K. Harrenstien

• Trailer Encapsulations, RFC 893, S. Leffler, M. Karels

Ethernet is a registered trademark of Xerox Corporation.

vi Interface Program for use with TCP/IP

• Transmission Control Protocol, RFC793, J. Postel

• Trivial File Trans{ er Protocol, RFC783, K. R. Sollins

• User Datagram Protocol, RFC768, J. Postel

For additional information about the IBM Token-Ring Network, you may want to order the
IBM Token-Ring Architecture Reference (Order Number 6165877) from your IBM
representative.

Ordering Additional Copies of This Book

To order additional copies of this publication (without diskettes), use either of the
following sources:

• To order from your IBM representative, use Order Number SBOF-0148.

• To order from your IBM dealer, use Part Number 79X3893.

A binder and the IBM RT PC Interface Program for use with TCP/IP manual are included
with the order. For information on ordering the binder and/or manuals separately, contact
your IBM representative or your IBM dealer.

About This Book vii

viii Interface Program for use with TCP /IP

Contents

Chapter 1. General Information . 1-1
About This Chapter . 1-2
Overview . 1-3
Protocols . 1-6
Internet Router . 1-10
Commands . 1-13
Addresses and Names . 1-15
File Formats . 1-22
Assigned Numbers . 1-38
Security . 1-39
Program Customization . 1-41

Chapter 2. User Commands . 2-1

Chapter 3. Server Commands 3-1

Chapter 4. Protocol Library Routines 4-1

Chapter 5. /dev/netO Device Driver 5-1

Appendix A. Customizing the Program . A-1

Appendix B. Samples B-1

Appendix C. tcp Library Routines . C-1

Figures

Glossary

X-1

X-3

Index . X-7

Contents ix

x Interface Program for use with TCP /IP

Chapter 1. General Information

CONTENTS
About This Chapter . 1-2
Overview . 1-3

The Internet Environment . 1-4
Structure of the Interface Program . 1-4

Protocols . 1-6
Internet Protocol (IP) . 1-6
Address Resolution Protocol (ARP) . 1-7
Transmission Control Protocol (TCP) . 1-7
User Datagram Protocol (UDP) . 1-7
Other Network Protocols . 1-8

Internet Router . 1-10
Commands . 1-13

File Transfer . 1-13
Mail . 1-14
Remote Login, Command Execution, and Printing . 1-14
Network Management . 1-15

Addresses and Names . 1-15
IP Addressing . 1-15
TQP Addressing . 1-20
Sub-Networks . 1-21
Broadcast Messages . 1-22

File Formats . 1-22
gateways . 1-23
hosts . 1-25
hosts.equiv ; . 1-28
net . 1-29
networks . 1-31
re. tcpip ~. 1-33
.netrc . 1-34
.3270keys . 1-36

Assigned Numbers . 1-38
Port Numbers . 1-38
Version Numbers . 1-39
Protocol Numbers . 1-39

Security . 1-39
Security Features . 1-40
Data Security and Information Protection . 1-41

Program Customization . 1-41

General Information 1-1

About This Chapter

The IBM RT PC Interface Program for use with TCP/IP consists primarily of protocols and
commands (application programs) that enable the RT PC system to communicate with:

• Other RT PC systems with the Interface Program installed

• Host systems that support TCP/IP.

This chapter provides an overview of the Interface Program protocols and commands, and
also explains the other features and conventions of the program.

1-2 Interface Program for use with TCP/IP

Overview

A Brief Look at the Interface Program for use with TCP/IP

The Interface Program for use with TCP/IP includes commands and facilities that
allow users to:

• Transfer files across the network

• Send and receive mail across the network

• Log in to remote systems

• Run commands on remote systems

• Print files on remote systems

• Manage an Interface Program network.

This book contains information about creating an Interface Program network and using
the Interface Program commands. Also, for those who wish to develop programs using
components of the Interface Program, this book describes the following Application
Programming Interfaces:

• Protocol library routines for Transmission Control Protocol (TCP), User Datagram
Protocol (UDP), and Internet Protocol (IP)

• The /dev/netO device driver.

Before continuing, you may find it useful to become familiar with the following terms as
they are used in this book.

client A computer that is accessing the data or resources of another computer attached
to the network.

host A computer that is attached to the network. The local host for a particular
user is the computer at which that user is working. A foreign host is any other
host on the network. From the point of view of the communication network,
hosts are the sources and destinations of packets. Any host can be a client, a
server, or both. On an Interface Program network, a host is identified by its
Internet address.

packet The data of one transaction between a host and its network. Packets are the
exchange medium used by processes to send and receive data through the
network.

process A program that is running. A process is the active element in a host computer.
Terminals, files, and other I/O devices communicate with each other through
processes. Thus, network communication is interprocess communication.

General Information 1-3

server A computer that contains the data or resources that can be accessed by other
computers attached to the network.

The Internet Environment

The Interface Program network protocols include the Internet Protocol (IP) transport layer
and higher level protocols that use the Internet address format. These protocols use the
AIX operating system on the RT PC system. The Interface Program provides facilities that
make the RT PC system a host that attaches directly to a network.

The Internet environment consists of hosts connected to networks that use packet
switching technology (for example, networks that use the IBM RT PC Baseband Adapter
for use with Ethernet). Networks, in turn, can be interconnected via gateways. Host
processes originate and receive network packets. Protocols at different levels in the
networks, gateways, and hosts support interprocess communication, providing two-way
data flow on logical connections.

Data is transmitted between process ports. Each process may have a number of ports
through which it communicates with other processes. Each port provides queues for
sending and receiving data. A process may have logical connections to several other
processes and, if necessary, can treat each of the connected processes independently.

Structure of the Interface Program

Figure 1-1 on page 1-5 shows the principal Interface Program commands, protocols, and
Application Programming Interfaces (APis).

1-4 Interface Program for use with TCP/IP

FILE TRANSFER MAIL REMOTE NET MANAGEMENT
1------1- ~-------1--1-----------l -~-------+---------------------

xftp
xftpd

maild
netmail
smtp
smtpd

lpd
lprbe
rexec
rexecd
telnetd
tn

finger
fingerd TCP

Library I-

--
team
tftp
tftpd
utftp

pty
Device
Driver

host
icmpd
named
ping
routed
setclock
timed

hostname
netconfig
netstat
route

l
net Device

Driver
GP/ARP)

J

UDP I----,
Library

IP 1---
Library t---~

-Virtual Machine---------------11---------------
Interface CVMD

-- = Application Programming
Interface

Block l/O
Device
Manager

l
Block 1/0
Adapter
Device
Driver

OLR20025

Figure 1-1. Interface Program for use with TCP/IP Commands, Protocols, and APis

Note: This publication documents the API for TCP, UDP, IP, and the /dev/netO device
driver. The API for the PTY device di-iver is described in IBM RT PC AIX Operating
System Technical Ref ere nee. The API for the Block I/O Device Manager and for the VRM
Baseband Adapter Device Driver are described in IBM RT PC Virtual Resource Manager
Technical Reference.

General Information 1-5

Protocols

The Interface Program provides the following protocols:

• Internet Protocol (IP)

• Address Resolution Protocol (ARP)

• Transmission Control Protocol (TCP)

• User Datagram Protocol (UDP)

• Other network protocols:

Gateway-to-Gateway Protocol (GGP)

Internet Control Message Protocol (ICMP).

V AX1 trailer encapsulation protocol

Routing Information Protocol (RIP)

Remote printing protocol

Remote command execution protocol

Following are brief explanations of these protocols.

Internet Protocol (IP)

Internet Protocol (IP) provides the interface from the higher level host-to-host protocols to
the local network protocols. Addressing at this level is usually from host to host.

IP is used by host-to-host protocols in an Interface Program environment as a basic
transport mechanism. IP uses local area network protocols to carry packets (or datagrams)
to the next gateway or destination host.

The IP is designed for use in interconnected systems of packet-switched computer
communication networks. The network connecting hosts are called gateways. IP provides
the means to transmit blocks of data (or a package of bits) from sources to destinations.
Sources and destinations are hosts identified by fixed length addresses. Outgoing packets
automatically have an IP header prefixed to them and incoming packets have their IP
header removed before being sent to the user. This protocol provides the universal
addressing of hosts in the network.

IP, however, does not provide a reliable communication facility because it does not provide
acknowledgements either from the sending host, the receiving host, or intermediate hosts.
IP also does not provide error control for data. It provides only a header checksum. IP

VAX is a trademark of Digital Equipment Corporation.

1-6 Interface Program for use with TCP/IP

treats each datagram as an independent entity unrelated to any other datagram. It does
not perform retransmissions or flow control. A higher level protocol that uses IP must
implement its own reliability procedures if it requires reliable communications. See
"internet" on page 4-19 for the programming interface.

Address Resolution Protocol (ARP)

Address Resolution Protocol (ARP) is a protocol that dynamically maps between Internet
addresses and Baseband Adapter and Token-Ring Adapter addresses on a local area
network. It is used by the Baseband Adapter and Token-Ring Adapter interface drivers
and is not directly available to users. Address Resolution Protocol (ARP) allows dynamic
distribution of the information needed to build mapping tables. These mapping tables map
Internet addr~sses into Baseband Adapter or Token-Ring Adapter addresses. This protocol
provides an interface for IP to the hardware by defining the standard format of the packet
interface to the Baseband Adapter or Token-Ring Adapter.

ARP caches Internet to Baseband Adapter and Token-Ring Adapter address mappings.
When an interface requests a mapping for an address not in the cache, ARP sends the ARP
request packet (broadcast) on the network requesting the address mapping. If a response is
provided, a new mapping is cached, and any pending Internet packets are transmitted.

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) is used in the Advanced Research Projects Agency
(ARP A) Internet and any network following the U.S. Department of Defense standards for
inter-network protocols. This protocol provides a reliable host-to-host protocol between
hosts in packet-switched computer communication networks, and in interconnected
systems of such networks. TCP assumes that the Internet Protocol (IP) is the underlying
protocol.

The interface to TCP consists of a set of library calls similar to the calls an operating
system provides to an application process in order to manipulate files. TCP communicates
asynchronously with application programs. TCP operates in a very general environment of
interconnected networks. It supports the transmission of 8-bit bytes. See "tcp" on
page C-2 for the TCP programming interface.

User Datagram Protocol (UDP)

User Datagram Protocol (UDP) allows a datagram mode of packet-switched communication
in the environment of an interconnected set of computer networks. This protocol assumes
that the IP is the underlying protocol. UDP provides a procedure for application programs
to send messages to other programs with a minimum of protocol mechanism. The protocol
is transaction oriented. It offers no guarantee of delivery and duplicate protection.
Applications that require reliable delivery of streams of data should use the Transmission
Control Protocol.

The interface to UDP consists of a set of library calls. UDP must be able to determine the
source and destination Internet addresses along with the protocol field from the Internet
header. The major users of this protocol are the host command (in resolving network

General Information 1-7

names and addresses), the sej;clock command (in providing the network time service), and
the Trivial File Transfer Protocol (TFTP) command. See "udp" on page 4-14 for the API
to UDP.

Other Network Protocols

In addition to the protocols for transmitting user data, two other protocols are used to
transmit network monitoring and management data:

• Gateway-to-Gateway Protocol (GGP)

• Internet Control Message Protocol (ICMP).

There is no programming interface for either of these protocols; they are imbedded in the
ping and icmpd commands and in the kernel.

Gateway-to-Gateway Protocol (GGP)
A gateway uses Gateway-to-Gateway Protocol (GGP) to determine connectivity to networks
and neighbor gateways. GGP is also used to implement the shortest-path routing
algorithm. The gateway sends routing information in GGP routing update messages. The
gateway receives and transmits routing information reliably using sequence-numbered
messages and a transmission and acknowledge scheme. GGP periodically sends GGP
echoes to each neighbor of the gateway to determine neighbor connectiyity and sends
interface status messages addressed to itself to determine network connectivity. GGP also
sends updated routing information when necessary.

Internet Control Message Protocol (ICMP)
Although gateways communicate between themselves for control purposes via a
Gateway-to-Gateway Protocol (GGP), occasionally a gateway or destination host
communicates with a source host, to report an error in datagram processing for example.
Internet Control Message Protocol (ICMP) is used for this purpose. ICMP uses the basic
support of IP as if it were a higher level protocol. However, ICMP is actually an integral
part of IP, and must be implemented by every IP module. See "icmpd" on page 3-5 for
related information.

ICMP messages are sent in several situations, for example:

• When a datagram cannot reach its destination

• When the gateway does not have the buffering capacity to forward a datagram

• When the gateway can direct the host to send traffic on a shorter route.

1-8 Interface Program for use with TCP/IP

In addition, the user can generate the following messages:

• timestamp (to measure the round trip time)

• echo (to determine whether the foreign host is available)

• subnet mask (to indicate whether a host supports sub-networks).

The purpose of control messages is to provide feedback about problems in the
communication environment, not to make IP more reliable. There is no guarantee that a
datagram will be delivered or that a control message will be returned.

VAX Trailer Encapsulation Protocol
VAX Trailer Encapsulation Protocol (the protocol that supports VAX trailers) moves all
variable length header information in a packet to a position following the data segment.
Trailer encapsulation allows the receiving host to receive data on a page-aligned boundary,
a requirement for exploiting a page-mapped virtual memory environment. The RT PC
receives and processes VAX trailer protocol data, but does not transmit it.

Note: If VAX trailers are to be transmitted, all hosts sharing the network environment
must accept them uniformly.

Routing Information Protocol
The routing daemon (routed) uses a variant of the Xerox NS Routing Information Protocol
to maintain current kernel routing table entries. For related information, see "routed" on
page 3-17.

Remote Printing Protocol
The lpd command provides the remote printing protocol. For information about lpd and
the remote printing protocol, see "lpd" on page 3-7.

Remote Command Execution Protocol
The rexecd command provides the remote command execution protocol. For information
about rexecd and the remote command execution protocol, see "rexecd" on page 3-15.

General Information 1-9

Internet Router

The Internet Router enables an Interface Program host to act as a gateway for routing
data between separate networks that use either of the following:

• IBM RT PC Baseband Adapter for use with Ethernet

• IBM Token-Ring Network RT PC Adapter.

Up to two adapters of each type (Baseband Adapter and Token-Ring Adapter) can be
installed in the RT PC. The adapters (or interfaces) are defined by adding one entry for
each adapter to each of the following files:

/etc/net
/etc/hosts

Each host has one primary name but, because of the entries in /etc/hosts, can have
multiple secondary names, which are used in routing. References to gateway hosts can be
by primary or secondary name.

Figure 1-2 on page 1-11 represents four networks and two gateway hosts, and it
demonstrates how routing can be designed. The networks are:

200 (host2, host4, host5, and host6)
201 (hostl, host2, and host3)
202 (host2, host8, hostlO, hostll, and hostl2)
203 (host?, host8, and host9)

Hosts host2 and host8 are the gateway hosts.

Routes can be established in either of two ways:

• Explicitly, by setting up specific hosts in routing tables

• Dynamically, by running routed (the routing daemon) on the gateway hosts.

In Figure 1-2 on page 1-11, the gateway host, hos t2, contains three interfaces: two
Token-Ring Adapters and one Baseband Adapter. The other gateway host, host8, contains
two interfaces: one Token-Ring Adapter and one Baseband Adapter.

Because hos t2 in this example is a gateway host, it is an appropriate host to designate as
both the network nameserver and timeserver. Such a host can be reached by all other
hosts on the network. In addition, a gateway host is frequently available 24 hours per day.
All other hosts on the network should identify host2 with the nameserver entry in their
/etc/hosts files.

1-10 Interface Program for use with TCP/IP

host1

B

192.9.201.1

host12

T t--,

192.9.202.12

host11

T

192.9.202.11

host10

T

192.9.202.10

host9

B

192.9.203.9

host3

B

192. 9.201.3
host2

.---' ------~~:~~------ r----,
192.9.201.2
192.9.200.2
192.9.202.2

host4

r-- T

192.9.200.4

host5

T

192.9.200.5

host8

T,B

192.9.202.8
192.9.203.8

host7

B

192.9.203.7

host6

- T

192.9.200.6

T = Token-Ring Adapter
--- - Token-Ring Network

B = Baseband Adapter
--- = Baseband Adapter Network

Figure 1-2. Network and Gateway Routing

OLR20035

In the Figure 1-2 configuration, routing could be established for hostlO as follows: First,
establish a default gateway; any packets sent to a host that is not on a network go to the
default gateway for that network. To establish hosts as the default gateway on the
network that includes hosts and hostlO, enter the following route command on
hostlO:

route add 0 hosts

General Information 1-11

This route command establishes host8 as the exit point, or default gateway, from that
network.

On the 202 network there are two gateways (host8, the default gateway, and host2). The
preferred form of routing in this network is to the default gateway; if necessary, the
gateway can issue ICMP redirect messages to route packets through hos t2 to other
networks.

Note: This approach to routing works only if the gateway host can send ICMP redirect
messages, which the RT PC can do.

An alternate way to establish routing to the other network from the 202 network is to set
up routes explicitly with route commands like the following ones:

route add 192.9.203.0 host8
route add 192.9.201.0 host2
route add 192.9.200.0 host2
The size of data packets transmitted through the gateway host may vary, which can affect
performance. TCP data transmitted to a gateway host that is not on the same network is
sent in 576-byte packets; it would not be efficient to fragment and reassemble TCP packets
and some gateways cannot fragment packets. However, IP and UDP packets transmitted
through gateways are fragmented and reassembled as necessary.

The Token-Ring Adapter supports both gateways and bridges. With bridging, the routing
information field can contain addresses that are up to eight hops away from the sending
host. The minimum frame size that can be passed through the bridge is lK bytes. If the
frame size is lK bytes, inetlen should be set to 576. Otherwise, inetlen can be set to 1064
or 1576 bytes.

1-12 Interface Program for use with TCP/IP

Commands

The Interface Program provides four general types of commands:

• File transfer

• Mail

• Remote login, command execution, and printing

• Network management.

Following are brief explanations of the individual commands in each of these groups.

File Tran sf er

The Interface Program contains two file transfer commands: xftp and tftp (utftp). xftp
provides more functions and is the preferred command for most file transfer tasks.

xftp
The xftp command implements the File Transfer Protocol (FTP), which makes it
possible to transfer data among hosts and to use foreign hosts indirectly.

FTP uses a Telnet connection to transfer commands and replies and a data
connection to transfer files. xftp can be used to transfer files between the user
and server or between two hosts. The user must request the close of the Telnet
connection when use of the FTP service is finished.

The xftp command provides subcommands for such tasks as listing directories
(local and foreign), changing directories (local and foreign), transferring
multiple files in a single request, creating and removing directories, and
escaping the shell (performing shell commands locally). See "xftp" on page 2-48
and "xftpd" on page 3-27 for related information.

tftp (utftp)
The tftp command implements the Trivial File Transfer Protocol (TFTP). Its
only function is to read and write files (or mail) to and from a foreign host. tftp
cannot list directories and it has no provisions for user authentication. tftp
passes 8-bit bytes of data. utftp is a form of tftp for use in a pipe.

TFTP is designed to be implemented using UDP. Since UDP is implemented
using Internet Protocol, packets have an IP header, a UDP header, and a TFTP
header. Additionally, the packets may have a header to allow them through the
local transport medium.

For related information, see:

• "tcom" on page 2-37

• "tftp" on page 2-40

General Information 1-13

Mail

smtp

net mail

• "tftpd" on page 3-25

• "utftp" on page 2-46.

The smtp command implements the Simple Mail Transfer Protocol (SMTP) for
transferring mail. smtp also provides mail forwarding. SMTP is independent of
the TCP subsystem and requires only an ordered data stream channel that is
reliable.

The smtp command is independent of the AIX INmail command and the AIX
mail command. However, the AIX mail command retrieves mail transferred by
SMTP.

See "smtp" on page 2-34, "maild" on page 3-11, and "smtpd" on page 3-21 for
additional information.

The netmail command is designed to make SMTP simpler to use. Besides
making it easier to mail files, netmail also allows you to automatically start the
editor of your choice, type a message, and then mail the message when you close
the file. netmail also provides mail forwarding.

See "netmail" on page 2-16 for related information.

Remote Login, Command Execution, and Printing

lprbe

rexec

tn

The lprbe command (a backend program) allows the local host to send a print
job to the printer on the foreign host. See "lprbe" on page 2-10, "lpd" on
page 3-7, and the print command in AIX Operating System Commands Reference
for additional information.

The rexec command makes it possible to execute commands remotely without
maintaining a tn session. For additional information, see "rexec" on page 2-26
and "rexecd" on page 3-15.

The tn command is a terminal emulation program that allows you to log in on a
foreign· host. It implements the Telnet Protocol, a bi-directional, 8 bit-per-byte
communications facility. It provides a standard method to interface terminal
devices and terminal-oriented processes to each other. This protocol can also be
used for terminal-to-terminal communication (called· linking) and inter-process
communication (called distributed computation). See "tn" on page 2-43 and
"telnetd" on page 3-23 for related information.

1-14 Interface Program for use with TCP /IP

Network Management

finger

host

The finger command returns information about users on the specified host.

The host command determines the network address of the specified host. It first
searches for the address in a small, local table,, then sends requests to the name
servers in the network.

hostname

netconfig

netstat

ping

route

set clock

The hostname command shows or sets the name and address of the local host.

The netconfig command specifies which adapter or adapters TCP is to run
across and what the adapter characteristics are.

The netstat command shows local and foreign addresses, routing tables,
hardware statistics, and summary of packets transferred.

The ping command sends an echo request to a network host to determine
whether that host is operational and on the network.

The route command permits you to manually manipulate the routing tables.

The setclock command reads the network time service and sets the time and
date of the local host accordingly.

Addresses and Names

This section explains the conventions for assigning addresses and names to hosts on the
network.

IP Addressing

The Internet Protocol (IP) uses a two-part, 32-bit address field. The first part of the
address field contains the network address; the second part contains the local address.
There are three different types of address fields (class A, B, or C), depending upon how the
bits are allocated.

General Information 1-15

Figure 1-3 on page 1-16 represents a class A address. It has a 7-bit network number and a
24-bit local address. The highest-order bit is set to 0. There are 128 possible class A
networks.

1 2 3
0 1234567 890123456789012345678901

0 Network Local Address

Figure 1-3. Class A Address

Figure 1-4 represents a class B address. It has a 14-bit network number and a 16-bit local
address. The highest-order bits are set to 1 and 0. There are 16,384 possible class B
networks.

1 2 3
0 1 23456789012345 6789012345678901

10 Network Local Address

Figure 1-4. Class B Address

Figure 1-5 represents a class C address. It has s 21-bit network number and an 8-bit local
address. The three highest-order bits are set to 1, 1, and 0. There are 2,097,152 possible
class C networks. In a class C address, a 0 in the last (local address) field is a wildcard;
that is, the address 192.9.200.0 addresses all hosts on network 192.9.200.

1 2 3
0 1 2 345678901234567890123 45678901

1 1 0 Network Local
Address

Figure 1-5. Class C Address

Notes:

1. Class C addresses starting at 192 are recommended for use with the Interface Program.

2. There is a set of reserved network addresses (for example, for accessing ARP A).

3. No addresses are allowed with the highest-order bits set to 1-1-1. These addresses
(sometimes called class D) are reserved.

A 2-byte type field in the local header of a packet distinguishes IP addresses from ARP

1-16 Interface Program for use with TCP/IP

addresses. The type numbers are:

Protocol Type Number

IP 0800

ARP 0806

Figure 1-6. IP and ARP Type Numbers

Figure 1-7 represents an IP or ARP local header for the Baseband Adapter:

Source Address Destination Address Type Field

6 bytes 6 bytes 2 bytes

Figure 1-7. Local Header, IP or ARP Packet, Baseband Adapter

Figure 1-8 represents an IP or ARP local header for the Token-Ring Adapter:

I Medium Access Control (MAC) Header Logical Link Control (LLC) Header

Figure 1-8. Local Header, IP or ARP Packet, Token-Ring Adapter

The Medium Access Control (MAC) header is composed of five fields, as Figure 1-9 shows:

MAC Header

AC FC DA SA RI

1 byte 1 byte 6 bytes 6 bytes s 18 bytes

Figure 1-9. Medium Access Control (MAC) Header, Token-Ring Adapter Local Address

The MAC header fields are:

AC Access Control. The value in this field is x'60', which gives the header priority
3.

FC Field Control. The value in this field is x' 40', which specifies the Logical Link
Control frame.

DA Destination Address

SA Source Address. If bit 0 of this field is set to 1, it indicates that routing
information (RI) is present.

RI Routing Information. The RI fields are shown in Figure 1-10.

General Information 1-17

Routing Information (RI)

RC Segment Numbers (up to 8)

2 bytes 2 bytes each

Figure 1-10. MAC Header Routing Information, Token-Ring Adapter Local Address

The RI fields are:

RC Routing Control. RC information is contained in bytes 0 and 1 of the
RI field. The settings of the first two bits of the RC field have the
following meanings:

bit (0) = 0 Use the non-broadcast route specified in the RI field.

bit (O) = 1 Create the RI field and broadcast to all rings.

bit (1) = 0 Broadcast through all bridges.

bit (1) = 1 Broadcast through limited bridges.

Segment Numbers Up to eight segment numbers of two bytes each to specify recipients
of a limited broadcast.

The Logical Link Control (LLC) header is composed of five fields, as Figure 1-11 shows:

LLC Header

DSAP SSAP CONTROL PROT-ID TYPE

1 byte 1 byte 1 byte 3 bytes 2 bytes

Figure 1-11. Logical Link Control (LLC) Header, Token-Ring Adapter Local Address

The fields of the LLC header are:

DSAP

SSAP

Destination Service Access Point. The value in this field is x' aa'.

Source Service Access Point. The value. in this field is x'aa'.

CONTROL Determines the LLC commands and responses. There are three possible
values for this field:

x'03'

x'AF'

Unnumbered Information (UI) frame. This is the normal, or
unsequenced, way in which Token-Ring Adapter data is transmitted
through the network. TCP sequences the data.

Exchange Identification (XID) frame. This frame conveys the
characteristics of the sending host.

1-18 Interface Program for use with TCP/IP

x'E3' Test frame. This frame supports testing of the transmission path,
echoing back the data that is received.

PROT-ID Protocol ID. This field is reserved. It has a value of x'O'.

TYPE Specifies whether the packet is IP or ARP.

A commonly used notation for Internet host addresses is the dotted decimal, which
divides the 32-bit address into four 8-bit fields. The value of each field is specified as a
decimal number and the fields are separated by periods (for example, 010.002.000.052, or
10.2.0.52).

Examples in this publication use the dotted decimal notation in the following forms:

Class A nnn. lll. lll. lll

Class B nnn.nnn.lll.lll

Class C nnn.nnn.nnn.lll

where nnn represents part or all of a network number and lll represents part or all of a
local address.

Internet addresses may also be specified in an octal format of four fields. In octal format,
fields are separated by commas. The following octal and dotted decimal addresses are
equivalent:

Octal Dotted Decimal

300, 11,310,2 192.9.200.2

Host Names
Each host on the network has a unique name and Internet address. Names are a maximum
of 24 characters and cannot contain embedded blanks.

Names and addresses are associated with each other by entries in the /etc/hosts file. For
more information about entries in /etc/hosts, see "hosts" on page 1-25.

The hostname command must be run to identify the local host to IP. hostname takes the
name of the host to be identified as a parameter and sets the host name in the uname
structure. The hostname command is typically run at system start by re. tcpip. All host
names and addresses to be set by hostname must appear in the /etc/hosts file. For more
information, see "hostname" on page 2-8.

The chparm command can permanently change the name for the local host that is set in
the /etc/system and /etc/master files. The hostname command can make a temporary
change to the local host name that is identified to IP.

General Information 1-19

Routes

Warning: If the.re are any differences in the name set for a host in
/etc/hosts, /etc/master, /etc/system, or by the chparm command, results
will be unpredictable.
For more information about rc.tcpip, see "rc.tcpip" on page 1-33. For more information
about the chparm command, see chparm in AIX Operating System Commands Ref ere nee.

A route defines a path for sending information through the network. With the route
command, you can add and delete the routes defined for a particular host or network.

Routes can specify:

• The host on the network that is the default gateway for sending information to a host
on another network

• The gateway from a particular host on one network to a different network

• The path from a particular host on one network to a particular host on a different
network.

Routes are defined in a route table, which can hold up to 32 routing definitions. The
route table is a dynamic structure maintained in the kernel by IP. It is updated by the
route command or the routing daemon.

The routing daemon (routed), which can be run on a gateway host, queries other defined
gateway hosts periodically for the information necessary to generate, update, and maintain
routing tables. routed uses two files, /etc/gateways and /etc/networks,, to determine
with which hosts to exchange routing information. For more information, see "routed" on
page 3-17, "gateways" on page 1-23, and "networks" on page 1-31.

TCP Addressing

TCP provides a set of 16-bit port numbers within each host. Each host generates port
numbers independently and, therefore, it is possible for port identifiers not to be unique.
To create an identifier that is unique throughout all networks, TCP concatenates the port
number with the IP address, producing a socket. A connection is fully specified by the
pair of sockets it joins.

1-20 Interface Program for use with TCP/IP

Sub-Networks

The sub-network capability of the Interface Program makes it possible to divide a single
network into multiple logical networks (subnets). For example, an organization can have
a single Internet network address that is known to users outside the organization, yet
configure its network internally into departmental subnets. Fewer Internet network
addresses are required while local routing capabilities are enhanced.

As is explained under "IP Addressing" on page 1-15, a standard Internet address field has
two parts, a network address and a local address. To make subnets possible, the local
address part of an Internet address is divided into a subnet nurr ber (or mask) and a host
number, for example:

network-number subnet-number host-number
where:

network-number is Internet address for the network.
subnet-mnnber is a field of a constant width for a given network.
ho.~t-number is a field that is at least one bit wide.

If the width of the subnet-number field is zero, the network is not organized into subnets,
and addressing to the network is done with the Internet network address
(network-number).

The subnetmask keyword must be set in the /etc/net file of a host if that host is to
support subnets. Before the sub-network capability can be used, all hosts on the network
must support it.

Figure 1-12 represents a class B network address with a 6-bit wide subnet field:

1 2 3
0 1 23456789012345 678901 2345678901

1 0 Network Subnet Host

Figure 1-12. Class B Address with Subnet

The bits that identify the subnet are specified by a bit mask and, therefore, are not
required to be adjacent in the address. However, it is generally desirable for the subnet
bits to be contiguous and located as the most significant bits of the local address.

General Information 1-21

Broadcast Messages

The Interface Program can send data to all hosts on a local network, or to all hosts on all
connected networks. Such transmissions are called broadcast messages. For example,
the routing daemon (routed) uses broadcast messages to maintain routing tables.

For data to be broadcast to a:ll hosts on connected networks, UDP and IP are used to send
the data, and the destination address in the IP header is set to x'FFFFFFFF'. For data to
be broadcast to all hosts on a specific network, the local address part of the IP address is
set to zero. There are no user commands that use the broadcast capability, although such
commands, or programs, can be developed.

File Formats

This section describes the Interface Program files that you may need to monitor or modify.
The files are:

/etc/gateways
Contains information about network gateways for use by the routed command.

/etc/hosts
Defines the hostname and associated addresses for hosts in the network.

/etc/hosts.equiv

/etc/net

Contains a list of foreign hosts that are allowed to execute commands on a
particular host.

Defines all IP characteristics for each adapter card.

/etc/networks
Contains information about known networks.

I etc/re. tcpip
Sets up network interfaces, host names, and addresses; initializes routes; starts
the Interface Program daemons.

$(HOME)/ .netrc
Defines user ID and password information for the xftp and rexec automatic
login features.

$(HOME)/.3270keys
Defines a user keyboard mapping for Telnet (3270). The /etc/3270.keys file
defines a default keyboard mapping for Telnet (3270) which is used when
$(HOME)/.3270keys does not exist.

1-22 Interface Program for use with TCP/IP

gateways

gateways

Purpose
Defines and maintains routing information.

Synopsis

/etc/gateways

Description
The /etc/gateways file identifies gateways for the routed command. Ordinarily, routed
queries the network, building routing tables from routing information transmitted by other
hosts that are directly connected to the network. However, there may be gateways that
routed cannot identify through its queries (distant gateways). Such gateways should be
identified in /etc/gateways, which routed reads when it starts.

The general format of an entry in /etc/gateways is:

destination namel gateway name2 metric value type
Following is a brief description of each element in an /etc/gateways file entry:

destination A keyword that indicates whether the route is to a network or to a specific

namel

gateway

name2

metric

value

type

host. The two possible keywords are net and host.

The name associated with destination. namel can be either a symbolic name
(as used in /etc/hosts or /etc/networks) or an Internet address specified in
dotted decimal format.

Indicator that the following string identifies the gateway host.

Name or address of the gateway host to which messages should be forwarded.

Indicator that the next string represents the hop count to the destination host
or network.

The hop count.

A keyword that indicates whether the gateway should be treated as active or
passive. The two possible keywords are active and passive. An active
gateway is treated like a network interface (that is, it is expected to exchange
routing information and if it does not do so for a period of time, the route
associated with it is deleted). A passive gateway is not expected to exchange

General Information 1-23

gateways

routing information; information about it is maintained in the routing tables
indefinitely and is included in any routing information that is transmitted.

Examples

File

Following are four sample /etc/gateways entries:

1. A route to a network, net2, through the gateway, host4. The hop count metric to
net2 is 4 and the gateway is treated as passive.

net net2 gateway host4 metric 4 passive
2. A route like the one in the previous example except that it is to a specific host (rather

than to a network):

host net2 gateway host4 metric 4 passive

3. A route to a specific host, hostlO, through the gateway, 192. 9. 201. 5. The hop count
metric to hostlO is 9 and the gateway is treated as active.

net hostlO gateway 192.9.201.5 metric 9 active
4. A route like the one in the previous example except that the gateway is treated as

passive (rather than active):

net hostlO gateway 192.9.201.5 metric 9 passive

/etc/gateways

Related Information
In this book: "routed" on page 3-17.

1-24 Interface Program for use with TCP/IP

hosts

hosts

Purpose
Defines hostname and associated addresses for hosts in the network.

Synopsis

/etc/hosts

Description
This file contains the hostnames and their addresses for hosts in the network. This file is
used to resolve a name into an address (that is, to translate a hostname into its Internet
address).

This file can contain three additional entries (reserved, well-known host names):

nameserver
timeserver
printserver

If a hostname is not in the hosts file, a request to resolve hostname to an address is sent to
another host, the host associated with the nameserver entry. Generally, most hosts in the
network have a nameserver entry. For example, in a small network, one host can run the
nameserver daemon; the /etc/hosts file on that host contains an entry for all hosts in the
network. Each of the other hosts in the network contains an entry for itself and for the
nameserver.

Note: A nameserver entry must point to a foreign host.

The host associated with timeserver responds to setclock requests (a means for
synchronizing the time among hosts in the network). Each host may or may not run
timeserver. If network time is to be used on a particular host, that host must have a
timeserver entry in its /etc/hosts file. The printserver entry identifies the default host
for receiving print requests.

To tailor the network environment for a particular host, modify its /etc/hosts file. Each
en try is of the form:

address hostname
where address can be specified in decimal or octal and hostname is a string with a
maximum length of eight characters and no embedded blanks.

General Information 1-25

hosts

Examples
Following are sample entries in the /etc/hosts files for three different hosts in a network:

Host 1

192.9.200.1
192.9.200.2
192.9.200.3
128.114.1.15
128.114.1.14
128.114.2.7
192.9.200.2
192.9.200.3

Host 2

192.9.200.2
192.9.200.1
192.9.200.2
192.9.200.3

Host 3

hostl
host2
host3

timeserver
printserver

host2
nameserver
timeserver
printserver

192.9.200.3 host3
192.9.200.1 nameserver
192.9.200.2 timeserver

In this sample network, the /etc/hosts file for hostl contains address entries for all hosts
in the network; hostl runs the nameserver daemon. (The /etc/hosts file of hostl can
contain a nameserver entry if the entry specifies some host other than hostl.) The
entries in the hostl /etc/hosts file that begin with 128 .114 indicate that hostl also
resolves names for hosts on more than one network.

The /etc/hosts file of host2 contains an address entry only for host2 itself; host2 runs
the timeserver daemon. The /etc/hosts file of host3 contains an address entry only for
host3 itself. All three hosts use hostl to perform the nameserver function and host2 to
perform the timeserver function. host3 runs the printserver daemon and receives
remote print requests from hostl and host2.

1-26 Interface Program for use with TCP/IP

File
/etc/hosts

Related Information
"Addresses and Names" on page 1-15.

hosts

General Information 1-27

hosts.equiv

hosts.equiv

Purpose
Defines foreign hosts that are permitted to execute commands.

Synopsis

/etc/hosts.equiv

Description
The /etc/hosts.equiv file of a particular host defines which foreign hosts are permitted to
execute commands on it remotely. The format of the /etc/hosts.equiv file is a simple list
of host names.

Example

File

Following are sample entries in an /etc/hosts.equiv file:

hostl
host2
host3
host4

/etc/hosts.equiv

Related Information
In this book: "rexec" on page 2-26.

1-28 Interface Program for use with TCP/IP

net

net

Purpose
Defines adapter cards for TCP.

Synopsis

/etc/net

Description
The /etc/net file contains a keyword associated with each adapter card (device) that TCP
can use and a stanza that describes the characteristics for the adapter. There is one stanza
entry for each adapter defined for use with TCP. The netconfig command processes the
/etc/net file to establish the connection between the /dev/netO device driver and the
adapters.

The format of a stanza in /etc/net is:

sys-stanza-name:
netaddr =
inetlen =

subnetmask =

The information contained in the stanza is:

netaddr

inetlen

The IP network address to be used for this adapter. It can be in either of
the following forms:

• A dotted decimal address

• An octal address.

The maximum IP packet length for transmission to this adapter. The
default packet size for the Baseband Adapter and the IBM Token-Ring
Network RT PC Adapter is 1576 bytes. The minimum frame size that can be
passed through a bridge is lK bytes. If the frame size is lK bytes, inetlen
should be set to 576. Otherwise, inetlen can be set to 1064 or 1576 bytes.

subnetmask An optional, hexadecimal mask that defines a subnetwork within a local
address. A mask is specified only for the local address portion of an
Internet address. If subnetmask is not set, subnetworks are not possible.

General Information 1-29

net

If subnetworks are to be used, all hosts on the network must have
subnetmask set.

Example

File

Following is a sample entry in the /etc/net file:

netO:
netaddr = 192.9.200.1
inetlen = 1576
subnetmask = FO

The four high-order bits of the local address represent the subnet number. The four
low-order bits refer to the local host on the subnetwork.

/etc/net

Related Information
In this book: "netconfig" on page 2-13.

1-30 Interface Program for use with TCP/IP

networks

networks

Purpose
Contains a network name data base.

Synopsis

I etc/networks

Description
The networks file contains information about the known networks that comprise the
DARPA Internet. Each network is represented by a single line in the networks file. The
format for the entries in networks is:

name number aliases
where:

name is the official network name.

number is the network number.

aliases are the unofficial names used for the network.

Items on a line are separated by one or more blanks or tab characters. Comments begin
with the# character, and routines that search networks do not interpret characters from
the beginning of a comment to the end of that line. Network numbers are specified in
dotted decimal notation. A network name can contain any printable character except a
field delimiter, new line character, or comment character.

The networks file is normally created from the official network data base maintained at
the Network Information Control Center (NIC). The file may need to be modified locally to
include unofficial aliases or unknown networks.

General Information 1-31

networks

File
I etc/networks

Related Information
In this book: "routed" on page 3-17.

1-32 Interface Program for use with TCP/IP

rc.tcpip

rc.tcpip

Purpose
Sets up host names and addresses, initializes routes, and starts the Interface Program
daemons.

Synopsis

I etc/re. tcpip

Description

File

The re. tcpip file contains the commands necessary for a host to run the Interface
Program. The netconfig command defines the interfaces (adapter cards) to be configured.
The hostname command defines the host name and address (the parameter in rc.tcpip for
/bin/hostname must be a name for your system that can be resolved by an entry in
/etc/hosts to an address in /etc/net). The route command sets the routing tables. The
remaining entries execute the Interface Program daemons:

fingerd
icmpd
lpd

maild
named
rexecd

routed
smtpd
telnetd

tftpd
timed
xftpd

Note: The routed daemon should run only on hosts that function as gateways.

If the Interface Program is to be initialized when the system is started, the following line
must be in the /etc/re file:

sh /etc/rc.tcpip

I etc/re. tcpip

General Information 1-33

.net re

.netrc

Purpose
Contains information used by rexec and xftp for automatic login.

Synopsis

$(HOME)/ .netrc

Description
The .netrc file contains the user ID and password information required for the automatic
login features of rexec and xftp. It is a hidden file in the user's home directory, and its
permissions must be set to 600 (read and write by owner only).

The format of an entry in .netrc is:

machine hostname 1 ogi n userid password password
where:

hostname is the name of the host on which the user ID exists.

userid is the user ID on that host.

password is the password for that user ID.

The /usr/lpp/tcpip/samples/netrc file is a sample .netrc file. Use the following
procedure to create a .netrc file based on the sample:

1. Copy /usr/lpp/tcpip/samples/netrc to your home directory.

2. Edit netrc to supply the appropriate hostname, userid, and password.

3. Set the permissions on netrc to 600.

4. Rename the file .netrc (the initial ., or dot, causes the file to be hidden).

1-34 Interface Program for use with TCP/IP

Files
$(HOME)/ .netrc

/usr/lpp/tcpip/samples/netrc

Related Information
In this book: "rexec" on page 2-26 and "xftp" on page 2-48.

.netrc

General Information 1-35

.3270keys

.3270keys

Purpose
Defines a user-specific keyboard mapping for Telnet (3270).

Synopsis

$(HOME)/ .3270keys

Description
The .3270keys file allows a user to have a Telnet (3270) key mapping that is different from
the default mapping contained in the /etc/3270.keys file. (The mapping in /etc/3270.keys
is generic; the .3270keys file allows users to tailor a mapping to the RT PC keyboard.) The
.3270keys file exists as a hidden file (the name begins with a ., or dot) in the user's home
directory.

The /usr/lpp/tcpip/samples/3270keys.rt file is a sample that can be used to create a
.3270keys file. To create a $(HOME)/.3270keys file, use the following procedure:

1. Copy /usr/lpp/tcpip/samples/3270keys.rt to the name .3270keys in your home
directory.

2. Edit the local key seq column of .3270keys as necessary to create the new mapping.
Following is a general procedure for modifying .3270keys:

Note: The specific methods for performing these steps may be different for different
editors. If you have questions about how your editor performs a task, consult the
documentation provided with the program.

a. Open the .3270keys file with an editor.

b. Move the cursor to the local key seq column and then to the 3270 key that you
want to map.

c. Put the editor in insert mode (in the vi editor, use the i subcommand).

d. Press the key or key sequence that allows you to enter nonprinting characters (in
the vi editor, press Ctrl-V).

e. Press the key that is to be mapped to the 3270 key.

f. End insert mode (in the vi editor, enter ESC).

g. Repeat the steps for each key that is to be mapped.

1-36 Interface Program for use with TCP/IP

.3270keys

h. Save the .3270keys file and stop the editor.

Note: You can also change the default key mappings by editing /etc/3270.keys.

Files
/etc/3270.keys

/usr /lpp /tcpip / sam ples/3270keys .rt

$(HOME)/ .3270keys

Related Information
In this book: "tn" on page 2-43.

General Information 1-37

Assigned Numbers

For compatibility with the general network environment, numbers are assigned for ports,
the version, and protocols. The following three sections explain the assigned numbers.

Port Numbers

Ports are used in the TCP to name the ends of logical connections that carry long term
conversations. For the purpose of providing services to unknown callers, a service contact
port is defined. This list specifies the port used by the server process as its contact port.
The contact port is sometimes called the well-known port.

The assigned ports use a small portion of the possible port numbers. On an assigned port,
all but the low-order 8 bits are cleared to 0 (zero). The following table specifies the
low-order 8 bits of the assigned port numbers:

Port Number Keyword Description
(decimal)

21 FTP File Transfer [Control]

23 TELNET Telnet

25 SMTP Simple Mail Transfer

37 TIME Time

42 NAMESERVER Host Name Server

69 TFTP Trivial File Transfer

79 FINGER Finger

512 REXEC Remote execution

515 LPRBE Remote print

520 ROUTED Routing daemon

1-38 Interface Program for use with TCP/IP

Version Numbers

The Internet Protocol (IP) includes a 4-bit field to identify the version of the general
inter-network protocol in use. Following the assigned version number:

Version Keyword Version
Number
(decimal)

4 IP Internet Protocol

Protocol Numbers

The Internet Protocol (IP) includes an 8-bit field, called protocol, which identifies the next
level protocol. Following are the assigned protocol numbers:

Protocol Keyword Protocol
Number
(decimal)

1 ICMP Internet Control Message

3 GGP Gateway-to-Gateway

6 TCP Transmission Control

17 UDP User Datagram

Security

This section describes the security features provided with the Interface Program for use
with TCP/IP and some security considerations that are appropriate in a network
environment.

General Information 1-39

Security Features

The lprbe, rexec, Telnet, and xftp functions provide the following forms of system and
data security:

lprbe The /etc/hosts.equiv file provides a secure environment for the lprbe (remote
print) command. The only hosts that can use a particular host as a print
server are the ones listed in the /etc/hosts.equiv file of that host. For more
information about /etc/hosts.equiv, see "hosts.equiv" on page 1-28.

rexec The rexec command provides a secure environment for executing commands
on a foreign host. The user is prompted for both a login ID and a password.

To provide automatic login, the -n flag causes rexec to search the
$(HOME)/.netrc file for the user's ;CD and password on a foreign host. For
security, the permissions on $(HOME)/.netrc must be set to 600 (read and
write by owner only). Otherwise, automatic login fails.

For more information, see "rexec" on page 2-26 and ".netrc" on page 1-34.

tn The tn (Telnet) function provides a secure environment for login to a foreign
host. The user is prompted for both a login ID and a password. The user's
terminal is treated just like a terminal connected directly to the host. That is,
access to the terminal is controlled by permission bits; other users (group and
other) do not have read access to the terminal, but they can write messages to
it if the owner gives them write permission. For more information and an
example, see "tn" on page 2-43.

xftp The xftp function provides a secure environment for transferring files. When
a user invokes xftp to a foreign host, the user is prompted for a login ID. A
default login ID is shown-the user's current login ID on the local host. If a
password is associated with that login ID at the foreign host, the user is
prompted for a password.

To provide automatic login, the -n flag causes xftp to search the
$(HOME)/.netrc file for the user's ID and password on a foreign host. For
security, the permissions on $(HOME)/.netrc must be set to 600 (read and
write by owner only). Otherwise, automatic login fails. For more
information, see ".netrc" on page 1-34 and "xftp" on page 2-48.

1-40 Interface Program for use with TCP /IP

Data Security and Information Protection

The Interface Program for use with TCP/IP does not encrypt user data transmitted through
the network. Therefore, it is suggested that users identify any risk in communication that
could result in the disclosure of passwords and other sensitive information, and based on
that risk, apply appropriate countermeasures.

The use of this product in a Department of Defense environment may require adherence to
DoD 5200.5 and NCSD - 11 for communications security.

Program Customization

This section describes the usual means for customizing the Interface Program to meet your
requirements.

EDITOR
The netmail command uses an environment variable called EDITOR, which
defines the default editor invoked by netmail. If this variable is not defined,
netmail reads from standard input. For more information, see "netmail" on
page 2-16.

EMULATE

/etc/hosts

The tn command uses an environment variable called EMULATE that defines
the emulation mode used by Telnet. For more information, see "tn" on
page 2-43.

The /etc/hosts file contains the names and associated addresses for hosts on the
network. That is, /etc/hosts lists the foreign hosts with which a local host can
communicate. For more information, see "hosts" on page 1-25.

/etc/hosts.equiv

/etc/net

The /etc/hosts.equiv file contains the names of the foreign hosts that are
permitted to perform remote operations on a particular host. For more
information, see "hosts.equiv" on page 1-28 and "lpd" on page 3-7.

The /etc/net file contains a description of the interfaces available on a
particular host. For more information, see "net" on page 1-29.

I etc/networks
The /etc/networks file contains information about known networks that
comprise the DARPA network. For more information, see "networks" on
page 1-31.

General Information 1-41

/etc/rc.tcpip
The /etc/rc.tcpip file is a shell script that defines which adapters are used for
the Interface Program, initializes the host names and routing tables, and starts
the Interface Program daemons. The /etc/rc.tcpip file may be tailored to the
requirements of a particular host. For more information, see "rc.tcpip" on
page 1-33 and Appendix A, "Customizing the Program."

/etc/3270.keys

finger

The /etc/3270.keys file contains the default key mapping for use with Telnet
(3270).

The finger command provides information about a specific user. This
information is retrieved from the ful 1 name and site information fields of
the /etc/passwd file. The format of the fu 11 name is the user's real name (or
whatever is entered in the ful 1 name field of /etc/passwd, not the user's user
ID. The site information field is 20 characters long and has the following
format (no imbedded blanks, fields separated by commas):

office-number,office-phone-extension,home-phone

The office-phone-extension field can be up to four characters long. The
home-phone field can be either seven or 10 characters long.

Note: To update the /etc/passwd file, use the adduser command.

If you want to send additional information to other users who run finger on
your user ID, you can include the following files in your home directory:

.plan A file that contains plans. The .plan file can contain more than one
line .

. project A file that states what project you are currently working on. The
.project file can contain only one line.

For additional information about the finger command, see "finger" on page 2-3.

$(HOME)/.netrc
The $(HOME)/.netrc file contains the user ID and password information
required by the automatic login features of rexec and xftp. For more
information, see" .netrc" on page 1-34.

$(HOME)/.3270keys
The $(HOME)/ .3270keys file contains a user-specific keyboard mapping for
Telnet (3270). For more information, see ".3270keys" on page 1-36.

1-42 Interface Program for use with TCP /IP

Chapter 2. User Commands

CONTENTS

About This Chapter . 2-2
finger . 2-3
host . 2-6
hostname . 2-8
lprbe . 2-10
netconfig ~ . 2-13
netmail . 2-16
netstat .. ~. 2-19
ping . 2-23
rexec . 2-26
route . 2-29
setclock . 2-32
smtp . 2-34
tcom . 2-37
tftp . 2-40
tn . 2-43
utftp . 2-46
xftp . 2-48

User Commands 2-1

About This Chapter

This chapter describes the IBM RT PC Interface Program for use with TCP/IP user
commands (application programs). Chapter 3, "Server Commands" on page 3-1 describes
the Interface Program server commands, or daemons.

Following is a list of the user commands, grouped according to function:

• File transfer • Network manag_yment

tcom finger
tftp host
utftp hostname
xftp netconfig

Mail
netstat • ping

netmail route
smtp setclock

• Remote login, command
execution, and printing

lprbe
rexec
tn

In this chapter, the user commands are organized alphabetically.

2-2 Interface Program for use with TCP/IP

finger

finger

Purpose

Shows user information.

Syntax

finger @host ----l

-d user

0LR20004

Description

The finger command displays information about the users currently using the specified
host. If you specify a user name, finger displays information about that user, including:

• login ID

• full name

• termi na 1 name and write status (a *before termi na 1 name indicates that write
permission is denied)

• idle time

• 1 ogi n ti me

• offi ce-1 ocati on, offi Ce-phone-number, and home-phone (if known)

• The contents of a .plan file in the user's home directory, if one exists

• The contents of a .project file in the user's home directory, if one exists.

Otherwise, it provides a list of all users, like the who command. For other information
about finger, see "Program Customization" on page 1-41.

User Commands 2-3

finger

Flag

-d Records packets in the file ./finger.log.

Examples

1. To get information about all users logged in to the host, hostl:

$ finger @hostl
smith console Mar 15 13:19
green ptsO Mar 15 13:01
thomas ttyO Mar 15 13:01

$ -
User smith is logged in at the console, user green is logged in from a pseudo teletype
line (Telnet connection), and user thomas is logged in from a tty.

2. To get information about user smith at hostl:

$ finger smith@hostl
Login name: smith
Office: 3D08 ext5555
Directory: /u/smith
Never logged in.
No plan.
$ -

In real life:
Home phone:

3. To get information about user thomas at hostl:

$ finger thomas@hostl
Login name: thomas
Office: 3Dl0 ext5322
Di rectory: I

In real life:
Home phone:

Sam T. Smith
987-6543

A. B. Thomas
210-9876

On since April 16 11:06:18 on console 1 minute 28 seconds Idle Time
Project.: aquatic entomology
Plan:
Complete Phase 1 research by end of second quarter.
Produce draft report by end of year.
$ -

2-4 Interface Program for use with TCP/IP

Files

/dev/netO

./finger .log

Network device

Packets from finger transaction

Related Information

The who command in AIX Operating System Commands Reference.

In this book: "fingerd" on page 3-3.

finger

User Commands 2-5

host

host

Purpose

Resolves the network host name.

Syntax

host - hostname ---1

OLR20007

Description

The host command determines the network address of the specified host. It looks in a
small local table first, then sends requests to the name servers in the network, which is
defined in /etc/hosts as nameserver. The network address displays as four bytes in
decimal, separated by dots, and in octal notation, separated by commas. The host
command accepts both unique host names and the well-known host names nameserver
and timeserver as parameters.

Example

To display the address of host2:

$ host host2
host2 is 192.9.200.5 (300,11,310,5)
$ -

2-6 Interface Program for use with TCP/IP

Files

/dev/netO

/etc/hosts

Related Information

Network device

Name to address map table

In this book: "named" on page 3-13.

host

User Commands 2-7

host name

hostname

Purpose

Sets or displays the name of the local host system.

Syntax

hostname~ ·
~nameof hostF

0LR20008

Description

The hostname command displays the name of the local host. If you have superuser
authority, you can change the host name and address by supplying the nameofhost
parameter. This is usually done in the startup script /etc/rc.tcpip. The nameofhost
parameter must be supplied in the /etc/hosts file to set the host name and the Internet
address of this host. The nameofhost parameter is a character string of up to 24 characters.
If no parameter is supplied, the hostname command prints the name and Internet address
of the primary interface. hostname does not modify the /etc/hosts file.

Note: Before you can set the name of the local host, you must use the netconfig
command to map an address to nameofhost. Otherwise, hostname displays an error
message.

A gateway host (a host that connects independent networks) has multiple interfaces, each
with a different name and address. The hostname command sets the primary name of the
gateway host. References to gateway hosts can be by primary or secondary name.

Warning: The host name set by hostname for a particular host must be
the same as the name listed /etc/master (where it is called node rather
than hostname) and the name set by chparm, or results will be
unpredictable.

2-8 Interface Program for use with TCP/IP

hostname

Examples

File

1. To display the name and address of the local host:

$ hostname
Node name: hostl Internet Address: 192.9.200.2 (300,11,310,2)
$ -

2. To change the name of the local host:

$ hostname west
Nodename: west Internet Address: 192.9.200.3 (300,11,310,3)
$ -

/etc/hosts Name to address map table

Related Information

In this book: "host" on page 2-6.

User Commands 2-9

lprbe

lprbe

Purpose

Sends a file to a print server.

Syntax

I pr be
- pserver= host name
- pqueue= queuename -naix filename filter= filter

OLR20028

Description

Flags

The lprbe command is a backend program that sends print requests to a remote print
server (the lpd program and printer on a foreign host). lprbe is normally called by the
qdaemon command after you have enqueued a file with the print command. The flags
and parameters that you enter with print are passed to lprbe, and it is lprbe that
determines where and how the remote print job will be done. lprbe supports the AIX
piobe and print flags as well as a'. set of filters that may exist on non-AIX systems. For
more information on piobe and print, see AIX Operating System Commands Ref ere nee.

-pserver = hostname Specifies which host is to receive the print request. If -pserver =
is not specified, lprbe sends the print request to the host specified
in the printserver entry in the /etc/hosts file or to the remote
print server identified in the /etc/qconfig file.

-pqueue = queuename Specifies a particular remote printing queue that is to receive the
print request.

-filter= filter filter can be either a user-defined program (with or without its own
flags) that pipes its output to print, or one of the following flags
(which indicate that the files to be printed are not standard text
files). If filter contains embedded blanks, it must be enclosed in
double quotes (" "). These flags generate a control file that is

2-10 Interface Program for use with TCP/IP

-naix

filename

Examples

compatible with non-AIX systems; if they are sent to an AIX
system, they are ignored.

lprbe

-c Handles files that contain data produced by cifplot.

-d Handles files that contain tex data.

-f Uses a filter that interprets the first character of each
line as a standard FORTRAN carriage control character.

-g Handles files that contain standard plot data as
produced by the plot routines.

-1 Uses a filter which allows control characters to be
printed and suppresses page breaks.

-n Handles files that contain ditroff data.

-p Uses pr to format the files. The results are equivalent to
those obtained with the print command.

-r Handles files that contain FORTRAN carriage control
characters.

-t Handles files that contain troff data.

-v Handles files that contain a raster image for devices like
the Benson Varian.

Generates a print control file for a non-AIX system.

Names one or more files to be printed. If you enter lprbe without a
filename, it reads from standard input.

1. To print the file tes tease on a foreign AIX host (when rpO is the name of the local
host queue that handles outbound print requests):

$ print rpO testcase
$ -

2. To print on a foreign host (hostl) other than the default printserver:

$ print rpO -pserver=hostl testcase
$ -

User Commands 2-11

lprbe

Files

3. To select a specific print queue (1p1) on a foreign host:

$print rpO -pqueue=lpl testcase
$ -

4. To perform preprocessing on the foreign host (by the pr command) before printing:

$print rpO -filter"pr -w60 -i5" testcase
$ -
This filter generates the following command on the foreign host:

pr -w60 -i5 testcase I print
5. To print on a non-AIX foreign host (that is configured as the default printserver):

$ print rpO -naix testcase
$ -

/etc/qconfig

/dev/netO

Queueing system configuration

Network device

2-12 Interface Program for use with TCP/IP

netconfig

netconfig

Purpose

Configures /dev /netO for use with multiple adapter cards.

Syntax

netconf ig

-s stanza
query

OLR20030

Description

Flags

The netconfig command processes the /etc/net file, establishing which adapter cards the
/dev/netO device driver can communicate with. When issued without parameters,
netconfig processes the entire /etc/net file and adds each stanza.

The netconfig command reads the specified stanza (or all stanzas) in the /etc/net file and,
from the stanza name, locates the corresponding stanza in the /etc/system file. The
/etc/system file provides the IODN and device type required by the IOCCONFIG structure
(which is defined in the file, /usr/include/sys/iocfg.h). To complete the configuration,
netconfig invokes the IOCCONFIG IOCTL routine of the /dev /netO device driver; the
IOCCONFIG IOCTL routine performs a NIOCSHOST for each IODN to set the local IP
address.

add

delete

Adds the interface specified by -s stanza-name. If -s stanza-name is not
specified, netcontig processes all stanzas in the /etc/net file and adds
those interfaces.

Deletes the interface specified by -s stanza-name. If -s stanza-name is not
specified, netcontig processes all stanzas in the /etc/net file and deletes
those interfaces.

User Commands 2-13

netconfig

query Returns the state of the interface specified in -s stanza-name. If -s
stanza-name is not specified, netconfig returns the state of all interfaces
defined by stanzas in /etc/net via the IOCINFO IOCTL.

-s stanza-name Indicates that only the specified stanza, stanza-name, is to be processed.

Examples

1. To add all interfaces defined in /etc/net:

netconfig
-

or

netconfig add
-

2. To add a specified interface, netl, that is defined in /etc/net:

netconfig add -s netl
-

3. To delete all interfaces defined in /etc/net:

netconfig delete
-

4. To delete a specified interface, netl, that is defined in /etc/net:

netconfig delete -s netl
-

5. To query all interfaces defined in /etc/net:

netconfig query

netO:
Internet Address: 192.9.200.1
hardware type=ethernet subnet

netl:
Internet Address: 192.9.201.1
hardware type=ethernet subnet

2-14 Interface Program for use with TCP /IP

inetlen: 1576
mask: 0

inetlen: 1576
mask: 0

Files

-

net2:
Internet Address: 192.9.202.1 inetlen: 1576
hardware type=token ring subnet mask: 0

net3:
Internet Address: 192.9.203.1 inetlen: 1576
hardware type=token ring subnet mask: 0

6. To query a specified interface, netO:

netconfig query -s netO
netO:
Internet Address: 192.9.200.1 inetlen: 1576
hardware type=ethernet subnet mask: 0

/dev/netO

/etc/net

Network device

Adapter card definition for TCP.

Related Information

In this book: "net" on page 1-29.

netconfig

User Commands 2-15

netmail

netmail

Purpose

Provides a simplified user interface to smtp.

Syntax

netmail j\ rcpt~
Lmail_fileJ ~

0LR20031

Description

Flags

The netmail command, used to send a mail-file to a user, is a simplified user interface to
smtp. The mail-file parameter specifies an existing file to be sent. If it is entered without
the mail-file parameter, netmail starts the editor specified in the environment variable,
EDITOR. (If no editor is specified, netmail reads from standard input.) When the editing
session is completed, netmail sends the newly created file to the recipient (rcpt). rcpt is a
mailbox address in the smtp format, user@host@host netmail will also accept
redirected standard input.

The netmail command uses the mail relay service provided by the maild daemon. If
maild is unable to deliver mail after 100 attempts, it notifies the sender that the mail
remains undelivered and returns the mail to the sender.

mail-file

rcpt

Name of the file that contains the message to be sent.

Mailbox address of the recipient of the message in the form of
user@host@host

2-16 Interface Program for use with TCP/IP

netmail

Examples

Files

1. To send the existing file mai 1 note to user smith at hostl:

$ netmail mailnote smith@hostl
$ -

2. To send the file mai 1 note to users smith and tom, specifying a forwarding path for
user tom:

$ netmail mailnote smith@hostl tom@hostl@host2
$-

3. To create a new note and send it to users smith and tom:

$ netmail smith@hostl tom@hostl@host2

(Editor defined by EDITOR started; note typed; editing session
ended.)
$ -

4. To create and send a note without the EDITOR environment variable set, enter the
note on the command line, pressing Enter at the end of each line, and then press EOF
(Ctrl-D) to end netmail and send the note:

$ netmail smith@hostl
(Enter note on the command line.)
Ctrl-D
$ -

/dev/netO

/etc/hosts

/etc/maild

/maild/inbox

/maild/smtp

/maild/smtp/t*

/maild/smtp/t* .reg

Network device

Name to address map table

Daemon that attempts to deliver mail

Unique message ID source (*)

Relay information for mail file

Mail file

Directory for relaying mail

User Commands 2-17

netmail

Related Information

In this book: "Program Customization" on page 1-41, "smtp" on page 2-34 and "maild" on
page 3-11.

2-18 Interface Program for use with TCP/IP

netstat

netstat

Purpose

Shows network status and provides problem determination information.

Syntax

netstat

-v

OLR20011

Description

Flags

The netstat command symbolically displays the contents of various network-related data
structures. netstat does not accept any arguments and returns information about active
connections only.

-a Shows the state of all connections. Connections used by server processes are not
normally shown.

-i Shows the state of automatically configured connections (connections statically
configured into a system, but not located at system start, are not shown).

-r Shows the routing tables.

-v Shows statistics about the VRM Baseband Adapter Device Driver and the VRM
Token-Ring Adapter Device Driver.

User Commands 2-19

netstat

Examples

1. To show the state of the connections that were automatically configured:

2.

$ netstat -i
My Internet Address:
My Ethernet Address:

192.9.200.2
OO:dd:00:94:62:00

Bytes in : 1162
Bytes out : 724
Pkts dropped : 0

DEVICE DRIVER STATISTICS ****
Pkts in 15
Pkts out : 17

Interrupts : 30
Solicited inter 15

Timeout : 0
Unsolicited inter

Data avai 1 : 15
$ -

IniLfail : 0
15
SLI H underflow

To show the state of all connections:

$ netstat -a

0 Device overflow 0

Proto Recv pkts Send pkts Local Address Foreign Address
TCP 0 0 192.9.200.2 .. 79 *
UDP 0 0 192.9.200.2 .. 37 *
UDP 0 0 192.9.200.2 .. 69 *
TCP 0 0 192.9.200.2 .. 512 *
TCP 0 0 192.9.200.2 .. 23 *
ICMP 0 0 192.9.200.2 .. * *
GGP 0 0 192.9.200.2 .. * *
TCP 0 0 192.9.200.2 .. 25 *
TCP 0 0 192.9.200.2 .. 21 *
UDP 0 0 192.9.200.2 .. 42 *

**** INTERNET ERROR STATISTICS ****

*
*
*
*
*
*
*
*
*

*

Bad pkt len: 0
Bad checksum: 0
Drops: 0

Bad proto: 0 Bad IP hdr len: 0
Bad dest: 0 Fragments: 0

Bad IP len: 0
No conn: 0

2-20 Interface Program for use with TCP/IP

File

netstat

Send: 1
Bad pkts: 0
$ -

**** ADDRESS RESOLUTION PROTOCOL STATISTICS ****
Rev req: 1 Rev reply: 1 Not for me: 1
Bad len: 0 Unexpected: 0

3. To show the routing tables:

$ netstat -r

$ -

Host

Host-Gateway Table
Gateway

Default Gateway: 192.9.200.6

Metric

4. To show VRM Baseband Adapter Device Driver and Token-Ring Adapter statistics:

$ netstat -v
***** VRM STATISTICS *****

netO:
Receive interrupts: 35 Packets accepted: 37 Packets Rejected: 0
Packets transmitted: 37
Collisions: 0 16 Collisions: 0 Shorted: 0 Underflow: 0
Short packets: 0 Alignment errors: 0 CRC errors: 0 Overflow: 0

tokenO:
Receive interrupts: 45 Packets accepted: 47 Packets Rejected: 0
Transmit Interrupts: 47 Transmit Completes: 47
Packets transmitted: 47

/dev/netO Network device

User Commands 2-21

nets tat

Related Information

IBM RT PC Virtual Resource Manager Technical Reference

2-22 Interface Program for use with TCP/IP

ping

ping

Purpose

Sends an echo request to a network host.

Syntax

ping host ----1

-m
-t

OLR20012

Description

Flags

With no flags or with the -g flag, ping sends a Gateway-to-Gateway Protocol (GGP) echo
request to the specified network host. If the host is operational and on the network, it
responds to the echo. If the -i flag is specified, an Internet Control Message Protocol
(ICMP) echo request is sent instead. If the -t flag is specified, an ICMP timestamp request
is sent. This is useful for determining round-trip delays to other hosts. The -m flag causes
ping to return the subnet mask for the specified host. ping is useful for determining the
status of the network and various foreign hosts.

-g Sends a GGP echo request to the specified host.

-i Sends an ICMP echo request to the specified host.

-m Returns the subnet mask for the specified host.

-t Sends an ICMP timestamp request.

User Commands 2-23

ping

Examples

1. To send a GGP echo request to host hostl:

$ ping -g hostl
Ping hostl: 192.9.200.2 responding
$ -
or

$ ping hostl
Ping hostl: 192.9.200.2 responding
$ -

2. To send an ICMP echo request to host hostl:

$ ping -i hostl
Ping hostl: 192.9.200.2 responding
$ -

3. To determine the round trip time to host hostl:

$ ping -t hostl
Ping hostl: Timestamp from 192.9.200.2

Orig: 14:35:20:300 Rcvd: 14:35:20:300 Xmtd: 14:35:20:300
Done: 14:35:20:316

$ -
4. To display the subnet mask for host 1:

$ ping -m hostl
Ping hostl: Address mask from 192.9.200.2:
$ -

2-24 Interface Program for use with TCP/IP

ff f ff fOO

Files

/dev/netO

/etc/locks/icmp

/etc/icmpd

Related Information

Network device

PID of icmpd

icmp daemon

In this book: "icmpd" on page 3-5.

ping

User Commands 2-25

rexec

rexec

Purpose

Executes commands one at a time on a foreign host in a secure environment.

Syntax

rexec --0--0--hostname-command__,
-d -n

0LR20032

Description

Flags

The rexec command executes a command on the specified foreign host. The user is
prompted for a valid user ID and password (if applicable) for the foreign host. rexec sends
and receives data over a TCP connection.

The rexec command also allows you to run interactive commands remotely, provided that
they do not require a full screen display. In interactive processing, rexec sends all
characters typed at the local keyboard to the foreign host until the EOF character is sent.
If the shell running on the foreign host is csh, rexec sends SIG INT and SIGQUIT to the
foreign host.

-d

-n

An optional flag that provides a debug service. The -d flag causes rexec to
print debug statements to the file rexec.log in the current directory.

For each user who concurrently runs commands on a host with rexec, that
host must have three PTY s configured. That is, if three users on host 1 are
using rexec to run commands on host2 concurrently, host2 must have nine
PTY s configured. In the PTY definitions, the auto enable and logger
keywords must be set to false.

An optional flag that provides an automatic login feature. The -n flag causes
rexec to search the $(HOME)/.netrc file for the user's ID and password on
the foreign host.

2-26 Interface Program for use with TCP/IP

rexec

hostname A required parameter that specifies the name of the host where the command
is to be executed. hostname can be in octal, dotted decimal, or name
(alphanumeric) form.

command A required parameter that specifies the command to be executed on the
foreign host. If command (that is, the command name, together with flags or
parameters) contains embedded blanks, it may be enclosed in double quotes.

Examples

1. To execute the date command on foreign host hostl:

$ rexec hostl date
User: tom
Password:
Command execution has begun.
[date command output]
& -

2. To list the directory of user tom on the foreign host, hostl:

$ rexec hostl 11 l i -1 /u/tom 11

User: tom
Password:
Command execution has begun.
[listing of tom's directory on foreign host]
$ -

3. To list the /tmp directory of the foreign host, hostl:

$ rexec hostl li /tmp
User: tom
Password:
Command execution has begun.
[listing of /tmp on foreign host]

User Commands 2-27

rexec

Files

4. To start a shell (csh) on the foreign host, hostl, enter:

$ rexec hostl csh
User: tom
Password:
Command execution has begun.
%

[EOF to end the foreign shell.]

5. To use the automatic login feature for the user ID tom on the foreign host, hostl,
enter:

$ rexec -n hostl date
User: tom
$ -

/etc/hosts

/dev/netO

./rexec.log

$(HOME)/ .netrc

Name to address map table

Network device

Debugging statements

User IDs and passwords for remote login.

Related Information

In this book: "rexecd" on page 3-15.

2-28 Interface Program for use with TCP/IP

route

route

Purpose

Manually manipulates the routing tables.

Syntax

route 0-add- destination - gatewa1
'-----delete - gateway----~·

0LR20013

Description

The route command manually manipulates the network routing tables. It accepts two
commands:

add Adds a route.

delete Removes a route.

The destination parameter names a host or network where the route is directed, and the
gateway parameter names the gateway to which the packets should be addressed.
Interpretation of the network address associated with destination distinguishes routes to a
particular host from those to a network. If the local address is not specified (that is, only
the network address is specified), the route is assumed to be the network. Otherwise, the
route is assumed to be to a host. All symbolic names specified for a destination or gateway
are resolved either through /etc/hosts or the network nameserver. The netstat
command shows the information contained in the routing tables. You must have superuser
authority or be a member of the system group to run the route command.

User Commands 2-29

route

Flag

-f Provides a flush option. When run with the -f flag, route clears the host gateway
table before changing the routing table.

Examples

1. To establish a route for sending a message to host address 192. 9. 201. 7, which is not
on the same network as the host sending the message:

$ route add 192.9.201.7 192.9.200.7
$ -

2. To establish a route that will enable you to send a message to any user on network
192. 9. 201:

$ route add 192.9.201.0 192.9.200.7
$ -

3. To establish a default gateway:

$ route add 0 192.9.200.7
$ -

The value 0 for the destination means that any packets sent to any destination on any
other network go through the default gateway, 192. 9. 200. 7.

4. To clear the host gateway table:

$ route -f
$ -

2-30 Interface Program for use with TCP/IP

File

5. To clear the host gateway table and then add a destination gateway:

$ route -f add 192.9.201.0 192.9.200.7
$ -

6. To delete a gateway:

$ route delete 192.9.200.7
$ -

/dev/netO Network device

Related Information

In this book: "routed" on page 3-17.

route

User Commands 2-31

setclock

set clock

Purpose

Sets the time and date.

Syntax

setclock ~
~time-serverF

OLR20014

Description

The setclock command reads the network time service and sets the RT PC time and date
accordingly. This command sends a request, using the standard Internet Protocol time
service protocol to a time-server. The time-server parameter is either a character-string
name or an address of a network host that provides an Internet Protocol time daemon. If
the time-server name is omitted, setclock sends requests to the default time server,
timeserver. setclock takes the first response, converts the calendar clock reading found
therein to the local date and time and displays it. Finally, if setclock is run by a user
with superuser authority, it calls the standard RT PC entry points to set the system date
and time.

If no time server responds, or the network is not operational, setclock displays a message
to that effect and leaves the current date and time settings of the system unchanged.

setclock is designed for use either as a stand-alone command or as a command that can be
invoked in the /etc/re command file.

2-32 Interface Program for use with TCP/IP

setclock

Examples

1. To display the date and time using the ti mes e rv er host specified in /etc/hosts:

$ setclock
Sat Mar 15:31:05 1986
$ -

2. To set the date and time from the timeserver in host 1:

$ SU

setclock hostl
Sat Mar 15:32:27 1986

File

/dev/netO Network device

Related Information

In this book: "timed" on page 3-26.

User Commands 2-33

smtp

smtp

Purpose

Provides the Simple Mail Transfer Protocol.

Syntax

smtp -mail-file -from-address -dest-hosf-recipient r-\ ·
~dbgr

0LR20015

Description

The smtp command implements a user-mode Simple Mail Transfer Protocol (SMTP). The
netmail command uses smtp to send outgoing mail to other hosts in the network (see
"netmail" on page 2-16 for additional information).

The smtp command accepts the following parameters:

mail-file Name of the file that contains the message text to be transmitted.

from-address Address of the original sender of the message, in the

de st-host

recipient

dbg

user@host@host ... format.

Name of the next host in the path for this message. dest-host must be an
entry in /etc/hosts.

Mailbox address of the ultimate recipient of the message, in the
user@host@host ... format, where host is the primary name.

Starts logging. The possible values for dbg are:

1 Gets smtp text type messages.

2 Performs tracing of input and output packets.

3 Performs the 1 and 2 tasks together.

2-34 Interface Program for use with TCP /IP

smtp

The smtp command displays a line on its standard output describing the results of the
transfer. The line includes a numeric code, indicating success or failure, to be used by the
mail daemon. In addition, the command returns a 0 exit status on success, and non-zero
exit status on failure. Following is a list of the smtp numeric reply codes:

211 System status or system help reply.

214 Help message (information on how to use the receiver or the meaning of a
particular non-standard command).

220 host-name Service ready.

221 host-name Service closing transmission channel.

250 Requested mail action okay, completed.

251 User not local; will forward to forward-path.

354 Start mail input; end with CRLF.CRLF.

421 host-name Service not available; closing transmission channel. (This may be a
reply to any command if the service knows it must shut down.)

450 Requested mail action not taken; mailbox unavailable (for example, the mailbox
is busy).

451 Requested action stopped; local error in processing.

452 Requested action not taken; insufficient system storage.

500 Syntax error, command unrecognized. (This may include errors such as a
command line that is too long.)

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command parameter not implemented.

550 Requested action not taken; mailbox unavailable (for example, if the mailbox
cannot be found or it does not allow appropriate access).

551 User not local; please try forward-path.

552 Requested mail action stopped; exceeded storage allocation.

553 Requested action not taken; mailbox name not allowed (for example, the mailbox
syntax is incorrect).

554 Transaction failed.

User Commands 2-35

smtp

Example

File

To send a copy of /etc/hosts to user j ane at tcprt1:

$ smtp ietc/hosts smith@tcprt3 tcprtl jane@tcprtl
250 ok
$ -

/dev/netO Network device

Related Information

In this book: "smtpd" on page 3-21 and "netmail" on page 2-16.

2-36 Interface Program for use with~ TCP/IP

tcom

tcom

Purpose

Controls the operation of tftpd.

Syntax

tcom---J

0LR20018

Description

The tcom command sends user commands to tftpd by writing them into a file (specified as
standard output when tftpd starts) and signaling the daemon. tcom then monitors the
tftpd log to obtain the results of the commands.

Subcommands

help

input-trace on I off

output-trace on I off

trace on I off

time

uptime

exit

Displays a list of commands.

Turns input packet tracing on or off.

Turns output packet tracing on or off.

Turns all packet tracing on or off.

Displays server parent and children process times.

Displays daemon start time.

Forces daemon to shut down and exit.

User Commands 2-37

tcom

Examples

1. To run interactively and trace all packets:

$ /etc/tftpd &
$ tcom trace on
$ tftp -w /etc/hosts smith /tmp/hosts netascii

(Display of all packets sent and received)

$ tcom trace off
$ -

2. To trace all packets and have the trace information redirected to a file:

$ /etc/tftpd > /tftpd/tftpd.log 2>&1 &
$ tcom trace on
$ tftp -w /etc/hosts smith /tmp/hosts netascii
$ tcom trace off
$ -

The /tftpd/tftpd.log file contains the trace data.

2-38 Interface Program for use with TCP/IP

Files

/etc/locks/tftp

/tftpd/command

/tftpd/slog

Related Information

Lock file containing daemon PID

Command file to daemon

Daemon log file

In this book: "tftpd" on page 3-25.

tcom

User Commands 2-39

tftp

tftp

Purpose

Provides the Trivial File Transfer Protocol.

Syntax

tftp- action-loco/name -host-foreignname ~ •
~moder

OLR20019

Description

The tftp command transfers files between hosts using minimal protocol. This command
does not contain the features described under "xftp" on page 2-48. The transferred files
are placed in the /tftpd directory or a file specified with a full path name. No command or
utility is supplied to automatically process files in this directory.

To read input from a source other than a file (as in a pipe), use the p (put) action and a -
(hyphen) for localname. To redirect output to standard output rather than to the tftpd
directory, use the g (get) action and a - (hyphen) for localname.

If action is:

w orp

r or g

Writes the local file, called localname, onto the file system of the foreign host as
foreignname. Note that foreignname must be in quotations if it contains shell
special characters.

Reads file foreignname from the foreign host into the local file, localname. With
action r or g, tftp prompts for verification before overwriting an existing local
file. This characteristic can make it impractical to use tftp g or tftp r in a
pipe. The utftp command performs the same r and g actions as tftp, but simply
stops before overwriting a local file; thus, utftp can be more appropriate for use
in a pipe.

o Supersedes or overwrites existing local files.

The mode parameter determines the form of the foreignname parameter. If mode is
netascii or image, foreignname is a file name (the recipient's mailbox). If mode is mail,
foreignname is a user ID (that is, user@host).

2-40 Interface Program for use with TCP/IP

tftp

The mode parameter can be netascii, image, or mail. These modes perform the following:

netascii Transfers the file as standard ASCII characters. This is the default.

image Transfers the file in binary, with no character conversion. image transfer is
more efficient than netascii transfer.

mail Appends the transferred file onto the end of the user mailbox specified. After
the file is appended, the user can retrieve it with the AIX mail command.

Examples

1. To transfer a binary file /uni x to the directory /tmp on host tcprt3:

$ tftp -w /unix tcprt3 /tmp/unix image
Transfer successful
309295 bytes in 15 seconds, 164957 band
$ -

2. To copy the I etc/hos ts file from host tcprt3 and redirect the output to standard
output of the local host:

$ tftp -g - tcprt3 /etc/hosts
192.9.200.3 nameserver
192.9.200.3 tcprt2
192.9.200.5 tcprtl
192.9.200.7 tcprt3
192.9.200.3 timeserver
Transfer successful
128 bytes in 1 second, 1024 band
$ -

User Commands 2-41

tftp

File

/dev/netO

Related Information

Network device

In this book: "tftpd" on page 3-25 and "utftp" on page 2-46.

2-42 Interface Program for use with TCP/IP

tn

tn

Purpose

Provides the Telnet interface for logging in to a foreign host.

Syntax

tn

OLR20020

Description

The tn command implements the Telnet protocol, which allows remote login to other hosts.
It uses the Transmission Control Protocol (TCP) to communicate with other hosts in the
network.

PTY s for use with tn should be defined with the following characteristics:

auto enable true

terminal hft (for an RT PC-to-RT PC connection), vtlOO, or dumb.

logger true

When started with a host parameter, tn opens a Telnet connection to the specified host. If
no host parameter is specified, tn prompts for a host name.

Once a connection is successfully opened, characters entered at the terminal are
transmitted to the foreign host and acknowledged. The client and server communicate to
determine whether to use a 3270 data stream. If the server supports the 3270 data stream,
tn uses the keyboard mapping contained in /etc/3270.keys or, if it exists,
$(HOME)/ .3270keys.

If the value of the environment variable EMULATE is defined as vtlOO, tn emulates a
DEC VT1001 terminal. If EMULATE is not defined, or has a value other than vtlOO, tn
operates normally. EMULATE is valid only for the console; if EMULATE is set for other
than the RT PC console, results may be unpredictable. If EMULATE is set to vtlOO, the

DEC VTlOO is a registered trademark of Digital Equipment Corporation.

User Commands 2-43

tn

value of TERM= in the remote login connection should also be vtlOO (check this with the
env command after the connection is open).

International Character Support Considerations

Flags

The Telnet protocol treats the decimal value 255 (hex FF) as a flag indicating that a
control value follows. Therefore, the following characters can produce unpredictable
results if sent across a Telnet connection:

n acute (lowercase)

: . (the therefore symbol).

-d Starts with debugging mode on.

-p port Opens the connection to the specified (decimal) foreign port number instead of
the default Telnet port. The -p flag is useful for testing other commands; for
example, you can specify the smtpd or xftp port, and use those daemons over
the tn connection. For more information on ports, see "Port Numbers" on
page 1-38.

Subcommands

To enter a character as a subcommand to tn, use Ctrl-T (the Telnet escape character). All
tn subcommands are a single character:

a Sends the Telnet are you there command. The foreign host should reply to
indicate it is still connected.

b Sends the Telnet break command in urgent mode. This is similar to typing the
interrupt character to AIX.

c Closes the Telnet connection and exits Telnet.

d Toggles the debugging mode. The debugging mode is displayed on the screen
when each packet is transmitted and received.

e Transmits on every character typed. This is the default.

I Sets local echo mode. Telnet attempts to negotiate the appropriate echo mode
automatically. This subcommand allows you to override it.

n Transmits after newline only. This reduces overhead for hosts, which only
process data when a full line is typed.

p Suspends tn and returns to the shell. To resume execution, press Ctrl-D.

2-44 Interface Program for use with TCP/IP

tn

q Quits Telnet immediately, without waiting for the connection to close. This is
useful when the host you are talking to terminates the connection abnormally.

r Requests remote echo. This is the default for hosts that support the r
subcommand.

s Displays the connection status on the terminal.

? Displays help for available Telnet commands.

Example

Files

To log in to host 1:

$ tn hostl
Telnet escape character is AT
Trying ... Open
IBM RT PC Advanced Interactive Executive Operating System
55X8994 (C) COPYRIGHT IBM CORP. 1985, 1986
(I dev /ptsO)
login: _

/dev/netO

/etc/3270.keys

$(HOME)/ .3270keys

Network device

Default keyboard mapping (used when $(HOME)/.3270keys does
not exist)

Keyboard mapping for 3270 emulation

Related Information

In this book: "telnetd" on page 3-23.

pty in AIX Operating System Technical Reference.

User Commands 2-45

utftp

utftp

Purpose

Supports the Trivial File Transfer Protocol.

Syntax

utftp -oction-/oca/nome -host-foreignname r--\. '
~madeF'

0LR20024

Description

The utftp command transfers files between hosts using minimal protocol. utftp is
equivalent to tftp except that it does not overwrite a file; tftp can overwrite a file, but it
prompts the user before doing so. Because it is not interactive, utftp can be more useful
than tftp in a pipe. For more information, see "tftp" on page 2-40.

2-46 Interface Program for use with TCP /IP

utftp

Example

The following command gets the file ju/john/schedule from the foreign host hostl into
the local file newsched, and pipes it to the grep command:

$ utftp -g newsched hostl Ju/john/schedule I grep Jones
$ -

Related Information

In this book: "tftp" on page 2-40.

User Commands 2-4 7

xftp

xftp

Purpose

Transfers files.

Syntax

xftp I\ . host /__,
~ -n __;--. ~dbg_;--~

OLR20026

Description

The xftp command is the user interface to the File Transfer Protocol (FTP). This
command allows a user to transfer files to and from a foreign network location. The xftp
window size is 6K bytes; the packet size is 1576 bytes.

The name of the client host must be specified on the command line. The xftp command
then prompts for the user's login ID and password. While xftp is waiting for the user to
supply subcommands, the user sees the xftp> prompt. To end the xftp command, use the
quit subcommand or the xftp break key sequence (Ctrl-v). Input to xftp can be
redirected; that is, xftp can read input from a shell program rather than from the command
line.

The default file transfer type is ASCII. However, binary file transfers can be more
efficient. To set the file transfer type to binary, use the binary subcommand.

The signals SIGHUP, SIGTERM, and SIGQUIT cause xftp to close the control
connection. The SIGINT signal causes xftp to stop any data transfer that is in progress.
If no data transfer is in progress, SIGINT has no effect on on xftp.

2-48 Interface Program for use with TCP/IP

Flags

xftp

-n An optional flag that provides an automatic login feature. The -n flag causes
xftp to search the $(HOME)/.netrc file for the user's ID and password on the
foreign host.

dbg An optional parameter that turns logging on or off, and specifies the type of
logging to be done. The possible values for dbg are:

0 Gets trace messages.

1 Gets error messages.

2 Shows all received packets.

4 Shows all sent packets.

To perform more than one type of logging, add the appropriate dbg values
together (for example, to show all received packets and all sent packets, use the
dbg value 6). xftp writes logging information to the /usr/tmp/ftp.log log file.

Subcommands

! (exclamation mark)
Invokes a shell on the local host.

acct Sends account information.

append local-file [Jo reign-file]

ascii

binary

cd foreign-directory

cdup

delete foreign-file

Appends a local file to a file on the foreign host. If foreign-file is not
specified, the local file name is used in naming the foreign file. File
transfer uses the current settings for type, format, mode, and structure.

Sets the file transfer type to network ASCII. This is the default type.
For more efficient file transfer, set the file transfer type to binary.

Sets the file transfer type to support binary image transfer.

Changes the working directory on the foreign host to foreign-directory.

Changes to the parent directory.

Deletes the file foreign-file on the foreign host.

dir [foreign-directory]
Displays a listing of the directory contents in the foreign-directory
directory. If no directory is specified, dir lists the contents of the
current foreign directory.

User Commands 2-49

xftp

get [local-file] [foreign-file]
Retrieves the foreign-file and stores it on the local host. If you do not
provide local-file, xftp gives it the same name it has on the foreign
host. It uses the current settings for type, form, mode, and structure
while transferring the file.

help [command] Displays a message about the meaning of command. If you do not
specify command, xftp displays a list of known commands.

led [directory] Changes the working directory on the local host. If you do not specify
a directory, xftp uses your home directory.

ls [foreign-directory]
Displays an abbreviated listing of the contents of a directory on the
foreign host. If you do not specify foreign-directory, xftp uses the
current directory.

mdelete (foreign-files]
Deletes multiple files.

mget [foreign-files] Gets multiple files.

mkdir [foreign-directory]
Creates the directory foreign-directory on the foreign host.

mode Sets file transfer mode. The only mode available is stream.

mput [local-files] Puts multiple files.

noop Sends noop command.

pass password Sends password information.

put local-file [foreign-file]
Stores a local file on the foreign host. If you do not specify
foreign-file, xftp uses the local file name to name the foreign file. File
transfer uses the current settings for type, format, mode, and structure.

pwd Displays the name of the current directory on the foreign host.

quit

quote [line

Ends the FTP session with the foreign server and exits xftp.

Quotes the next line to be sent; that is, the next line is sent literally.
Quoting commands that involve data transfer can produce
unpredictable results.

rename from-name to-name
Renames a file on the foreign host.

rmdir [foreign-directory]
Removes the directory foreign-directory on the foreign host.

2-50 Interface Program for use with TCP/IP

send port

status

struct

type [type-name]

user user-name

xftp

Toggles the use of port commands. By default, xftp uses a port
command when establishing a connection for each data transfer.
When the use of port commands is disabled, xftp does not use port
commands for data transfer. This is useful for FTP implementations,
which ignore port commands while incorrectly indicating they have
been accepted.

Displays current status of the connection.

Sets data transfer structure type. The only structure supported is file.

Sets the file transfer type to type-name. If no type is specified, the
current type is printed. The default type is network ASCII; the type
binary can be more efficient.

Allows a different user ID to be entered. If a user attempts to log in
with an invalid ID, xftp starts and then displays a message indicating
that the user is not recognized. At that point, the user can enter user
user-name, where user-name is a user ID different from the one
originally entered.

User Commands 2-51

xftp

Examples

1. The user smith is logged in on hostl. This example shows how smith can log in as
the user tcpi p (a password protected account) on the foreign host host2, and then
transfer the file /unix to /tmp/unix:

$ xftp host2
connected to host2
220 host2 c05 FTP Server, Sat Mar 15 14:42:21 1986
Name (host2: smith) tcpi p
331 Need password for user tcpip
Password (host2:tcpip) <enter password>
230 User tcpip logged in
xftp> bi nary
200 Command ok
xftp> put /unix /tmp/unix
200 Command ok
150 Opening data connection for /tmp/unix (192.9.200.1,1016)
308310 bytes sent in 3.58 seconds (85.71 Kbytes/s)
226 Closing data connection; requested file action successful

xftp> quit
221 Quit command received. Goodbye.
Connection to host2 closed
$ -

2. The user smith is logged in on hostl. This example show how smith can log in as
the user smith (not a password protected account) on the foreign host host2:

$ xftp host2
connected to host2
220 host2 c05 FTP Server, Sat Mar 15 14:49:01 1986
Name (host2:smith) <enter>
230 User smith logged in
xftp>

2-52 Interface Program for use with TCP/IP

Files

3. The user smith makes a typing error and tries to log in as the user mi ths:

$ xftp test
220 test Cl7 FTP Server, Fri May 9 08:26:25 1986
Name (test: root) miths
530 User miths unknown
ftp > user smith
230 User smith logged in
xftp>

/dev/netO

/usr/tmp/ftp.log

Network device

Log file for protocol interpretation process of xftp

Related Information

In this book: "xftpd" on page 3-27.

xftp

User Commands 2-53

xftp

2.:.,54 Interface Program for use with TCP/IP

Chapter 3. Server Commands

CONTENTS

About This Chapter . 3-2
tinge rd . 3-3
icmpd . 3-5
lpd . 3-7
maild . 3-11
named . 3-13
rexecd . 3-15
routed . 3-17
smtpd . 3-21
telnetd . 3-23
tftpd . 3-25
timed . 3-26
xftpd . 3-27

Server Commands 3-1

About This Chapter

This chapter describes the IBM RT PC Interface Program for use with TCP/IP ,server
commands, or daemons. Server commands provide support for user commands (described in
Chapter 2, "User Commands" on page 2-1). Server commands should be started at system
start by the /etc/rc.tcpip file, and usually are not entered on the command line.

• File transfer

tftpd
xftpd

• Mail

maild
smtpd

• Remote login, command
execution, and printing

lpd
rexecd
telnetd

• Network management

fingerd
icmpd
named
routed
timed

In this chapter, the server commands are organized alphabetically.

3-2 Interface Program for use with TCP /IP

fingerd

fingerd

Purpose

Provides the server function for the finger command.

Syntax

fingerd r--\. '
~-d~

OLR20021

Description

The fingerd command is a server for the finger command. It returns information about a
particular user at the host, or about all users logged in at the host.

Flag

Files

-d Writes debugging messages to the /usr/tmp/fingerd.log file.

/dev/netO

I etc/locks/finger

I etc/passwd

/etc/utmp

$HOME/.plan

$HOME/ .project

/usr /bin/who is

/bin/who

/usr /tmp/fingerd.log

Network device

Interlock, PID storage

Password file

who file

Plans for requested user

Projects for requested user

whois command

who command

Debugging message log file

Server Commands 3-3

fingerd

Related Information.

In this book: "finger" on page 2-3.

3-4 Interface Program for use with TCP/IP

icmpd

Purpose

Provides the server function for Internet Control Message Protocol and the
Gateway-to-Gateway Protocol.

Syntax

icmpd ;-----\.. ·
~ log-level F

Description

icmpd

OLR20009

The icmpd command is a daemon that deals with sending and processing Internet Control
Message Protocol (ICMP) and Gateway-to-Gateway Protocol (GGP) packets. The ICMP
and GGP provide network management, routing, and error notification functions. This
daemon performs the following functions:

• Sends ICMP GGP echoes, timestamp packets, and subnet masks and receives the
appropriate replies. These functions aid in network management and debugging.
Sending of echoes, timestamping packets, and subnet mask packets is initiated by using
the ping command.

• Displays received ICMP redirect packets.

Messages that the daemon was started or stopped are written to standard output. The
icmpd file in the /etc/locks directory is used to prevent two daemons from being active
simultaneously. It also contains the daemon process ID, which ping uses to wake up the
daemon when it has work to do.

Server Commands 3-5

icmpd

Files

icmpd accepts only one parameter, 1og-1eve1, to indicate what logging is to be done.
The following 1 o g-1 eve 1 s are defined:

0 Logs all ICMP and GGP errors.

1 Logs all locally originated ICMP and GGP transactions.

2 Logs all foreign originated ICMP and GGP transactions.

3 Logs all transmitted packets.

4 Logs all received packets.

All logging goes to standard output, but can be redirected at the time the icmpd daemon is
started. If no 1 og- l eve 1 parameter is present, no logging is done. When the icmpd
daemon is running, l og-1eve1 may be changed dynamically with one of the following kill
commands (where pid is the process ID number of the icmpd daemon):

kill -20 pid Changes 1 og-1 eve l to 0.

kill -21 pid Changes 1og-1eve1 to 1.

kill -22 pid Changes 1og-1 eve l to 2.

kill -23 pid Changes 1 og- l eve 1 to 3.

kill -24 pid Changes 1 og-1 eve l to 4.

I etc/locks/icmp

/dev/netO

Interlock, PID storage

Network device

Related Information

In this book: "ping" on page 2-23.

3-6 Interface Program for use with TCP/IP

lpd

lpd

Purpose

Provides the server function for remote printing.

Syntax

lpd~·
__d_r

Description

OLR20034

The lpd command (the remote print server) monitors port 515 for print requests. Each
request is placed in the /usr/spool/lpd directory. A print request consists of three parts:

• Control file

• Data

• Status file (AIX controls).

A host that can create a TCP /IP data stream and handle the lpd protocol can print
remotely or act as a print server. As a security feature, lpd accepts print requests only
from hosts that are listed in the /etc/hosts.equiv file of the host it runs on.

The lpd daemon may run on any host in the network; its function is to accept print
requests from foreign hosts (port 515). lpd handles each request by forking a child process.
Remote requests are first checked against the /etc/hosts.equiv file for permission to print
on the local host.

In the lpd protocol, the first byte of a message indicates which action is to be performed,
and the remaining characters are taken as arguments. lpd recognizes the following four

Server Commands 3-7

lpd

types of requests:

Request Meaning

\2printer\n Receive and queue job

\3printer [users ...] [jobs ...]\n Short list of queue

\4printer [users ...] [jobs ...]\n Long list of queue

\5printer person [users ...] [jobs ...]\n Remove jobs from queue

Figure 3-1. lpd Requests

Note: In Figure 3-1, \xis the standard C language notation of characters, the spaces are
ASCII 32, and material enclosed in [] is optional.

The lprbe command creates three files in the spooling directory for each queued job. The
names of these files are unique for each job, consisting of a special prefix for each type of
file, a job sequence number, and the name of the originating host. The format for a
spooling directory file name is:

spooling _directory I xf A#host

where:

x is one of the following prefixes:

c Control file

d Data file

t Temporary file

#is the sequence number of the job.

host is the name of the originating host.

The file name in the following example corresponds to the control file, sequence number
124, from a job printed on the Ip line printer queue on hostl:

/usr/spool/lpd/cfA124hostl
The three types of files created in the spool directory are:

Control A file that contains information about the job (for example, who the job is for,
which host is to print the job, and what information should go on the title
page). Each line of the control file is of the form xstring, where xis an
element of the set shown in Figure 3-2 on page 3-9.

Data A file that contains a copy of the file to be printed or a symbolic link to that
file.

3-8 Interface Program for use with TCP/IP

lpd

Temporary A file used to create the control and data files. This file is discarded once the
job is queued.

Figure 3-2 lists the control codes processed by AIX:

C class name on banner page
f file name, text file to print
H host name of host where lprbe was run
I indent, amount to indent output, for pr
J job name on banner page
L literal name of user to print on banner
N name of file (used by lpq)
P person, the login ID of the user
p file name, text file to print with pr
T title for pr
U unlink, name of file to remove after printing
W width, width to print output, for pr

Figure 3-2. lpd Control File Codes

If -naix is not specified, AIX keywords of the form -xxx = sss are appended to the control
file.

Following is a sample control file created when user jim prints the /etc/re. tcpip file on
hostl:

hostl
Pjim
Jrc.tcpip
Chostl
Ljim
f df Al23hostl
Udf Al23hostl
N/etc/rc.tcpip

The local print client opens the known printer port, 515, on the remote host and sends the
\2pri nter\n message, indicating to the service that it should prepare to receive a job. If
the remote daemon does not respond with the message \0, there is some problem with the
request; otherwise, the local daemon sends the control file to the remote daemon.
Communication between the daemons is accomplished with lines of text if the first byte
indicates what action is to be taken:

\1 Abandon the request; some problem prevents its completion.

\2 Read the control file.

\3 Read the data file.

Server Commands 3-9

lpd

Flag

The control file contains the names of the data files to be queued to print on the remote
host. When the control file is sent, the local files are deleted. The remote lpd daemon
starts a process to print the files. At this point, the local processing is finished.

-d Provides debugging information in the /usr/tmp/lpd.log file.

Examples

Files

1. To start the lpd server daemon:

/etc/lpd &
[process ID number]
-

2. To start the lpd server daemon with the debugging option:

/etc/lpd -d &
[process ID number]
-

/dev/lp*

/dev/netO

/etc/hosts.equiv

/etc/locks

/usr/spool/lpd

Print devices

Network device

Names of hosts allowed to print

Interlock, PID storage

Spool directory for control, status, and data files

3-10 Interface Program for use with TCP/IP

maild

maild

Purpose

Provides a mail relay server function for the Simple Mail Transfer Protocol.

Syntax

maild
-d timeout

OLR20029

Description

Flags

The maild command is a relay program for SMTP. All mail to be relayed is stored in the
/maild/smtp directory, and maild periodically scans /maild/smtp for *.reg files. maild
then updates forward and reverse paths and invokes smtp to send the mail.

An optional parameter, timeout, sets the length of time (in seconds) that maild is to wait
between scans of /maild/smtp. The default value of timeout is 600 (10 minutes). An
optional flag, -d, causes maild to produce debugging messages and write them to standard
output.

At each scan of /maild/smtp, maild attempts to deliver stored mail. After 100
unsuccessful attempts to deliver a particular mail file, maild notifies the sender that the
file remains undelivered and returns the mail to the sender.

-d

timeout

Causes maild to write debugging messages to standard output

Sets the amount of time (in seconds) to wait between scans of the
/maild/smtp directory.

Server Commands 3-11

maild

Examples

Files

1. To start maild with the default timeout value:

/etc/mai 1 d &
-

2. To start maild with a timeout value of 15 minutes (900 seconds) and debugging
messages written to the file /usr/tmp/maild.log:

/etc/maild -d 900 >>/usr/tmp/maild.log 2>&1 &
[process ID number]
-
After 25 hours (100 delivery attempts at 15-minute intervals), mail that has not been
delivered is returned to the sender.

/etc/locks

/maild/smtp

/maild/smtp/t*

/maild/smtp/t* .reg

Interlock, PID storage

Relay information for mail file

Mail file

Directory for relaying mail

Related Information

In this book: "smtp" on page 2-34.

3-12 Interface Program for use with TCP/IP

named

named

Purpose

Provides the server function for the Name Server Protocol.

Syntax

named /\. 1

_ _d r
OLR20010

Description

Flag

The named command is the server for the Name Server Protocol. named uses a UDP
connection port. It uses the /etc/hosts file to resolve name to address mapping. To put
changes to the /etc/hosts file into effect without restarting the system, send SIGINT (kill
-2 PID); this causes the /etc/hosts data base to be reloaded.

Note: Generally, named should not run on every host in the network.

-d Provides a debugging option. The -d flag causes named to write debugging
information to standard output for each packet generated.

Server Commands 3-13

named

Files

/dev/netO

/etc/hosts

/etc/hosts.dir

/etc/hosts.pag

/etc/locks/name

Related Information

Network device

Name to address map table

Database file built from /etc/hosts for name resolution

Database file built from /etc/hosts for name resolution

Interlock, PID storage

In this book: "host" on page 2-6.

3-14 Interface Program for use with TCP/IP

rexecd

rexecd

Purpose

Provides the server function for the rexec command.

Syntax

rexecd ~ ·
~-d___/'

OLR20033

Description

The rexecd command is the server for the rexec command; it processes commands issued
by a foreign host and returns the output of those commands to the foreign host. rexecd
sends and receives data over a TCP connection.

Note: The host running rexecd must have available three PTY s defined without loggers;
they are used for standard input, standard output, and standard error.

The rexecd daemon listens for requests at port 520. When rexecd receives a request, it
initiates the following protocol:

1. The server reads characters from the socket up to a null (\0) byte and interprets the
resulting string as an ASCII number (decimal).

2. If the number received is non-zero, rexecd interprets it as the port number of a
secondary stream to be used for standard error output. rexecd then creates a second
connection to the specified port on the client machine.

3. A null terminated user name of up to 16 characters is retrieved on the initial socket.

4. A null terminated, encrypted password of up to 16 characters is retrieved on the initial
socket.

5. A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system's
argument list.

6. rexecd validates the user (as is done at log in) and, if successful, changes the user's
home directory and establishes the user and group protections of the user. (If any part

Server Commands 3-15

rexecd

Flag

of this procedure fails, rexecd abandons its attempt to create the connection and
returns a diagnostic message.)

7. A null byte is returned on the connection associated with standard error and the
command line is passed to the normal login shell of the user. The shell inherits the
network connections established by rexecd.

-d An optional flag that provides a debug service. The -d flag causes rexecd to write
debugging statements to standard output.

Examples

Files

1. To start the rexec server:

/etc/rexecd &
[PI DJ
~

2. To start the server with the debug option and redirect the debugging statements to the
log file, /usr/tmp/rexecd.log:

/etc/rexecd -d l>>/usr/trnp/rexecd.log 2>&1 &
-

/dev/netO

/etc/locks

/dev/ptc*

/dev/pts*

Network device

Interlock, PID storage

PTY controller device

PTY server device

Related Information

In this book: "rexec" on page 2-26.

3-16 Interface Program for use with TCP/IP

routed

routed

Purpose

Manages network routing tables.

Syntax

-t log file

OLR20036

Description

The routed command is a daemon that manages the network routing tables. It is started
at system start time. routed uses a variant of the Xerox NS Routing Information Protocol1
to maintain current kernel routing table entries. Ordinarily, routed listens on UDP
socket 520 (decimal) for routing information packets. If a host is an internetwork router, it
periodically supplies copies of its routing tables to any directly connected hosts and
networks.

When routed starts, it finds any interfaces to directly connected hosts and networks that
are configured into the system and marked as up. If multiple interfaces are present,
routed assumes that the host forwards packets between networks. Once it has determined
which interfaces are configured, routed transmits a request packet on each interface
(using a broadcast packet if the interface supports it) and then enters a loop, listening for
request and response packets from other hosts.

When it receives a request packet, routed generates a reply (response packet) based on the
information maintained in its internal tables. The response packet contains a list of
known routes, each marked with a hop count metric (the number of host-to-host
connections in the route). The metric for each route is relative to the sender. A metric of
16 or greater is considered to be infinite, or beyond reach.

If any one of the following conditions exists, routed uses the information contained in

Defined in Internet Transport Protocols, XSIS 028112, Xerox System Integration Standard.

Server Commands 3-17

routed

response packets to update the routing tables:

• No routing table entry exists for the destination network or host, and the metric
associated with the route is finite (that is, the metric is less than 16).

• The source host of the packet is the same as the router in the existing routing table
entry. That is, updated routing information is being received from the same
internetwork router through which packets for the destination are being routed.

• The existing entry in the routing table has not been updated for some time and the
route is at least as efficient as the current route.

• The new route is shorter than the one to the same destination that is currently stored
in the routing tables. (routed determines relative route length by comparing the new
metric with the one stored in the routing table.)

When routed updates its internal routing tables, it generates a response packet to all
directly connected hosts and networks. Before updating the kernel routing tables, routed
pauses for a brief period to allow any unstable conditions to stabilize.

Besides processing incoming packets, routed also checks the routing table entries
periodically. The metric for any entry that has not been updated for 3 minutes is set to
infinity and marked for deletion. The deletion is delayed for 60 seconds so that
information about the invalidated route can be distributed throughout the network.

A host that acts as an internetwork router supplies its routing tables to all directly
connected hosts and networks every 30 seconds.

Besides its ability to manage routes involving directly connected hosts and networks,
routed also employs the concept of distant gateways, both passive and active. When it
starts, routed reads the /etc/gateways file for information about gateways which may not
be identified by querying. If a gateway specified in this way exchanges routing
information (that is, it runs its own routed process), it should be marked active. A
gateway that does not exchange routing information should be marked passive. Passive
gateways are maintained in the routing tables indefinitely and information about them is
included in any routing information transmitted. Active gateways are treated as if they
were network interfaces; that is, routing information is distributed to the active gateway
and, if no routing information is received from the gateway for a period of time, routed
deletes the associated route. For information about /etc/gateways, see "gateways" on
page 1-23.

3-18 Interface Program for use with TCP/IP

Flags

routed

-q Prevents routed from supplying routing information whether it is functioning as
an internetwork router or not. (-q is the opposite of -s; do not use these two flags
together.)

-s Causes routed to supply routing information whether it is functioning as an
internetwork router or not. (-sis the opposite of -q; do not use these two flags
together.)

-t Causes all packets sent or received to be written to standard output. routed
remains under control of the host that started it; therefore, an interrupt from the
controlling host kills the routed process.

logfile Specifies the file in which routed writes the log information about its actions. The
log contains information about any changes to the routing tables and a history of
recent messages sent and received which are related to the changes route.

Examples

1. To start routed (normally done automatically at system start) and cause it to return
routing information whether or not it is functioning as an internetwork router, enter:

/etc/routed -s &
[PID]
-

2. To start routed without causing it to return routing information, enter:

/etc/routed -q &
[PIO]
-

3. To start routed and cause it to write all packets sent or received to standard output,
enter:

/etc/routed -t &
[PIO]
-

4. To start routed and cause it to write its logging information to the file rout 1 og,
enter:

/etc/routed routlog &
[PIO]
-

Server Commands 3-19

routed

File

/etc/gateways

Related Information

Distant gateways

In this book: "route" on page 2-29.

3-20 Interface Program for use with TCP/IP

smtpd

smtpd

Purpose

Provides the server function for the Simple Mail Transfer Protocol.

Syntax

smlpd~
log-level

Description

OLR20016

The smtpd daemon runs the Simple Mail Transfer Protocol (SMTP) server. It is
integrated into the AIX mail system and suitable for receiving mail from other hosts in the
network. When mail arrives, the mail daemon queues it for processing. The mail
command is used to process mail sent via smtp.

The daemon listens for incoming connection requests on a TCP connection port and
performs a fork call to create a child process to handle each connection request. Incoming
messages are received into temporary files in the mail daemon's directory. A mail daemon
file is created and the mail daemon is awakened to process it.

The smtpd daemon uses the /maild directory. The smtp file in /etc/locks prevents two
daemons from becoming active simultaneously.

The log-level parameter indicates the level of logging that smtpd is to perform. The
log-level parameter can have one of the following values:

1

2

3

Logs data sent to the network and received from it.

Performs full packet tracing.

Performs the tasks of log-level 1 and 2 together.

The smtpd daemon supports a number of requests from the smtp command. Following is
a list of those requests together with a brief explanation their actions:

DATA

HELP

MAIL

Treats following lines as mail data from sender.

Sends helpful information from receiver to sender of HELP.

Initiates mail transaction.

Server Commands 3-21

smtpd

Files

NOOP
QUIT

RCPT
RSET
VRFY
HELO
EXPN

Takes no action.

Closes receiver of transmission channel.

Identifies individual recipient of mail data.

Stops current mail transaction.

Confirm that the received parameter identifies a user.

Identifies sender to receiver.

Not supported.

/bin/sig-maild

/dev/netO

/etc/locks/smtp

Dispatcher of mail received by smtpd

Network device

Interlock, PID storage

Related Information

In this book: "netmail" on page 2-16 and "smtp" on page 2-34.

The mail command in AIX Operating System Commands Reference.

3-22 Interface Program for use with TCP/IP

telnetd

Purpose

Provides the server function for the Telnet protocol.

Syntax

telnetd r-\. '
_dbg_J1

Description

telnetd

OLR20003

The telnetd command is a server that supports the DARPA standard Telnet virtual
terminal protocol. It operates at the assigned port 23. (For information about assigned
ports, see "Port Numbers" on page 1-38.)

The telnetd server assumes that getty has opened the server side of a pseudo-terminal
device. The server opens the client side, thus allowing getty to execute a login process.

When a Telnet session is started, telnetd sends a Telnet option to the client side
indicating it will perform remote echo of characters. Aside from this initial setup, the only
mode changes telnetd will carry out are those required for echoing characters at the
client side of the connection. A host running the telnetd daemon must have pseudo
teletype (PTY) devices defined as described under "tn" on page 2-43. PTY lines are
configured with the devices command.

The optional parameter, dbg, turns logging on or off, and specifies the type of logging to be
done. The possible values for dbg are:

1

2

4

Gets error messages.

Shows all received packets.

Shows all sent packets.

To perform more than one type of logging, add the appropriate dbg values together (for
example, the dbg value 6 shows all received packets and all sent packets). The log file is:

/usr /tmp/telnetd.log

Server Commands 3-23

telnetd

Files

The telnetd server supports the following options:

• Echo/no echo

• Timing marks

• Suppress go ahead.

telnetd also supports the following commands (available as subcommands of the tn
command):

break
abort output
are you there?
erase character

/dev/netO

/etc/ports

/usr /tmp/telnetd.log

Network device

File describing configured ports

Log file

Related Information

In this book: "tn" on page 2-43.

The devices command in AIX Operating System Commands Reference.

The pty device driver in AIX Operating System Technical Reference.

3-24 Interface Program for use with TCP/IP

tftpd

tftpd

Purpose

Provides the server function for the Trivial File Transfer Protocol.

Syntax

tftpd~

OLR20017

Description

Files

The tftpd daemon runs the Trivial File Transfer Protocol (TFTP) server. It listens for
incoming connections and performs a fork call to create a child to perform each requested
transfer. Files sent using TFTP can be found in the /tftpd directory or the file specified
with a full path name. No command is provided to automatically extract files in this
directory. Files in the /etc/locks directory prevent two daemons from becoming active
simultaneously. It also contains the daemon process ID, which the tcom command uses to
control the operation of the daemon.

/dev/netO

I etc/locks/tftp

Network device

Interlock, PID storage

Related Information

In this book: "tftp" on page 2-40 and "tcom" on page 2-37.

Server Commands 3-25

timed

timed

Purpose

Provides a network time service.

Syntax

timed--l

0LR20023

Description

The timed command returns a 32-bit time value. The value represents time as the number
of seconds since 12:01:01 a.m., January 1, 1970.

Files

/dev/netO

I etc/locks/timed

Related Information

Network device

Interlock, PID storage

In this book: "setclock" on page 2-32.

3-26 Interface Program for use with TCP /IP

xftpd

xftpd

Purpose

Provides the server function for the xftp command.

Syntax

xftpd ~
_dbgj I

Description

The xftpd command is the server process for the File Transfer Protocol (FTP).

xftpd interprets file names according to the conventions the sh command uses. This
allows using metacharacters like" (open double quotes), " (close double quotes), *
(asterisk), ? (question mark), [(left bracket), and] (right bracket).

xftpd authenticates users according to these rules:

• The user name must be in the password data base, /etc/passwd. The client must
provide the password (if the password is not null) before any file operations are
performed.

• A non-active connection is dropped after 30 minutes.

OLR20027

The optional parameter, dbg, turns logging on or off, and specifies the type of logging to be
done. The possible values for dbg are:

0

1

2

4

Gets trace messages.

Gets error messages.

Shows all received packets.

Shows all sent packets.

To perform more than one type of logging, add the appropriate dbg values together (for

Server Commands 3-27

xftpd

example, the dbg value 6 shows all received packets) and all sent packets). The log file is:

/usr/tmp/ftpd.log

Requests

The xftp server supports the following FTP requests:

ALLOC No operation.

ABORT

APPE

CDUP

CWD

DELE

LIST

MKD

MODE

NLST

NOOP

PASS

PORT

PWD

QUIT

RETR

RMD

Aborts transaction.

Appends to a file.

Changes to the parent directory.

Changes current directory.

Deletes a file.

Gives list files in a directory (ls - 1 s).

Creats a directory on the foreign host

Specifies data transfer mode.

Gives name list of files in directory (l s).

Does nothing.

Specifies password.

Specifies data connection port.

Prints the current working directory.

Terminates session.

Retrieves a file.

Removes a directory on the foreign host.

RNFR Specifies rename-from file name.

RNTO Specifies rename-to file name.

STOR Stores a file.

STRU Specifies data transfer structure.

TYPE Specifies data transfer type.

USER Specifies user name.

The remaining xftp requests specified in File Transfer Protocol, RFC 959, are recognized,
but not implemented.

3-28 Interface Program for use with TCP/IP

Files

/dev/netO

/etc/locks/ftpd

/etc/passwd

$(HOME)/ .netrc

/usr/tmp/ftpd.log

Network device

Interlock, PID storage

Password file.

User IDs and passwords for remote login.

Log file for protocol interpretation process

Related Information

In this book: "xftp" on page 2-48.

The passwd file in AIX Operating System Technical Reference.

xftpd

Server Commands 3-29

xftpd

3-30 Interface Program for use with TCP/IP

Chapter 4. Protocol Library Routines

CONTENTS

About This Chapter . 4-2
tcpm . 4-3

Routines . 4-3
User-Defined Routines . 4-9
The Interface Program Tasking System . 4-11

udp . 4-14
Ro.utines . 4-15
Macros and Type Definitions . 4-17

internet . 4-19
Routines . 4-20
Macros and Type Definitions . 4-22

libS . 4-24

Routines 4-1

About This Chapter

This chapter describes the libraries that contain the routines used by the Interface
Program. The routines in these libraries also can be used by programmers developing their
own applications; that is, the libraries provide the Application Programming Interface
(API) to the Interface Program. For a description of the tcp library, which supports a
single tcp connection, see Appendix C, "tcp Library Routines" on page C-1.

The following include files are in the /usr/include directory:

in-extern.h
in-params.h
ip.h
netioctl.h
notice.h
udp.h
task.h
taskm.h
q.h

Comment lines in these files explain their functions.

Note: In this chapter, the term socket or foreign socket refers to the 16-bit port number
(not to the IP socket, which is the port number concatenated with the IP address).

4-2 Interface Program for use with TCP/IP

tcpm

tcpm

Purpose

Provides the layer that supports multiple TCP connections.

Library

/usr/lib/libtcpm.a

Syntax

#include < ip.h >
#include < taskm.h >

Description

The tcpm library provides support for multiple tcp connections, up to a maximum of 32
per process. The Interface Program supports a window size of 6K bytes and a packet size
of up to 1576 bytes.

The tcpm library provides some support for the internal tasking system within a single
AIX process. Task calls must be issued by the user. For more information about the
tasking system, see "The Interface Program Tasking System" on page 4-11.

The routines in the /usr/lib/libtcpm.a library interface with the IP library and the AIX
network driver. The libtcpm.a library contains the following routines:

Routines

int tcp-init (stacksize)
int stacksize;

Initializes TCP, timers, and the tasking system, and sends and receives tasks.
stacksize is the size of the stack of the current task. tcp-init () returns TRUE if
initialization succeeds, FALSE if it fails.

Routines 4-3

tcpm

int tcp-open (fh, lh, fs, ls, win, us-procs)
long fh; /* foreign host to open to
long lh; /* local host to open to
short fs; /* foreign socket to open to
short ls; /* local socket to open to
int win; /* window size, see below
int (*us-procs[])();/* 6 user defined

procedures, see below *I

*/
*/

*/
*/
*/

Immediately tries to open a connection to foreign host (fh) on foreign socket (fs)
from the local socket (ls). If the local socket is zero, tcp-open () selects an
unused socket number greater than 1000. If the value for local host is 0, tcp-open
selects the optimal interface from the ones that are configured.

Note: This routine returns immediately. To determine whether the connection is
open, your current task must block/yield until the us-open () routine completes.
(us-open () is described under "User-Defined Routines" on page 4-9.)

A small, non-negative number (the connection ID) is returned if the routine opens
an Internet connection with the specified hosts and sockets. If the connection is
not opened, or if no more connection blocks are available, the routine returns -1.

int tcp-passive-open (fh, fs, ls, win, us-procs)
long fh; /* foreign host to open to * /
short fs; /* foreign socket to open to * /
short ls; /* local socket to open to * /
int win; /* window size, see below * /
int (*us-procs[])();/* 6 user defined procedures, see below */

Performs a passive open on the specified foreign host, foreign socket, and local
socket; that is, the process will accept incoming connection requests rather than
attempting to initiate a connection. Both the foreign host and foreign socket may
be zero.

Note: This routine returns immediately. To determine whether the connection is
open, your current task must block/yield until the us-open () routine completes.
(us-open () is described under "User-Defined Routines" on page 4-9.)

A small, non-negative number (the connection ID) is returned if the routine opens
an Internet connection with the specified hosts and sockets. If the connection is
not opened, or if no more connection blocks are available, the routine returns -1.

4-4 Interface Program for use with TCP/IP

tcpm

int tcp-listen(ls, win, us-procs)
short ls; /*local host to open to */
int win; /* window size, see below *I
int (*us-procs[])();/* 6 user defined procedures, see below */

Listens for a server connection on the specified local socket with the foreign host
and port unspecified. A small, non-negative number (the connection ID) is returned
if the routine opens an Internet connection with the specified hosts and sockets. If
the connection is not opened, or if no more connection blocks are available, the
routine returns -1.

A child process runs the connection while the parent process returns to listen on
the connection. A double fork makes the child process a child process of /etc/init;
thus, clean up can be done after the process exits without the parent process
having to wait for the exit. To determine whether the connection is open, the child
process must block/yield until the us-open routine completes; us-open is
described under "User-Defined Routines" on page 4-9.

int tcp-puts (con, str)
int con; /*connection id
char *str; /*string to output

*/
*/

Functions like to the AIX puts routine except that the network connection must be
specified. This routine returns FALSE if there is not enough room for the entire
string in the TCP send buffer; the task that issues this call should either block or
yield until room in the TCP send buffer becomes available.

Note: This routine does not awaken the send task (to send the character) unless
the TCP send buffer is full. To force the character to be sent, use the tcp-flusb ()
routine.

int tcp-putc (con, c)
int con;
char c;

/* connection id
/* character to output

*/
*/

Tries to write the character to the network. This routine returns FALSE if the
TCP send buffer is full, TRUE otherwise.

Note: This routine does not awaken the send task (to send the character) unless
the TCP send buffer is full. To force the character to be sent, use the tcp-flusb ()
routine.

Routines 4-5

tcpm

int tcp-write (con, buf, Zen)
int con; /* connection id * /
char *buf; /* buffer to output *I
int len; /* length of buffer * /

Functions like to the AIX write () routine except that the network connection
must be specified. This routine returns FALSE if there is not enough room for the
entire string in the TCP send buffer.

Note: This routine does not awaken the send task (to send the character) unless
the TCP send buffer is full. To force the character to be sent, use the tcp-flush ()
routine.

int tcp-close (con)
int con; /* connection id *I

Closes the local side of the current connection by sending FIN to the foreign host.
This routine returns immediately, but the user must wait for the user defined
procedure us-close () to be called to indicate that the connection is completely
closed.

int tcp-urgent (con)
int con; /* connection id * /

Indicates that all data in the TCP send buffer is urgent. Subsequent tcp-urgent
() calls can be made, and they extend the length of the urgent data portion.

int tcp-clean (con)
int con; /* connection id */

Erases the connection. This routine can eliminate listening TCP connections or
active TCP connections when the foreign host is down or does not respond.

int tcp-abort (con)
int con; /* connection id * /

Sends TCP RESET to the foreign host and calls the procedure us-close () with
the value of reason set to FALSE. This routine returns immediately, so the user
must wait until us-close ()is called before the reset is complete.

int tcp-flush (con)
int con; /* connection id * /

Tries to send all outstanding data in the TCP send buffer to the foreign host.

4-6 Interface Program for use with TCP/IP

tcpm

int tcp-nput (con)
int con; /* connection id * /

Returns the amount of free space in the TCP send buffer. This number can be used
later to determine how much data a user can put in the TCP send buffer.

int tcp-setu (con, ucb)
int con; /* connection id */
char *ucb; /* user control block */

char *tcp-getu (con)
int con; /* connection id */

Two routines that make it possible to set and access a user-defined character
pointer field for the connection. The value given to this field can be a pointer to
the task that will send data through the network. The pointer is supplied to
tk-wake () when the us-buf () call occurs.

tcp-new-window (con, window)
int con; /* connection id * /
int window; /* window size * /

Changes the value of the local window. This routine should be used primarily to
open a local window that has shrunk to zero; it is the only way to do so. If this
routine is used at other times, poor performance and confusion from the foreign
host may result.

conn-info (con, plhost, pfhost, plsock, pfsock)
int con; /* connection id *I
long *plhost, *pfbost; /*local host, foreign host/*
short *plsock, *pfsock; /* local socket, foreign socket /*

Gets complete information about the connection: local host, foreign hostl, local
port, and foreign port. If the user does not need information about a particular
argument (for example, foreign host), he should pass NULL as the argument.

Routines 4-7

tcpm

tcp-debug (con, dbg)
int con; /* connection id *I
int dbg; /* level of debug, valid are 0, 1, 2;

are additive */
extern char *logfname; /* log file name for trace output

0 = trace messages
1 = error messages
2 = shows received packets
3 = shows sent packets */

extern int TCPDEBUG;

Turns on or off different levels of TCP debug tracing. In order to use this routine,
the external variable logfname should be set to the name of the file into which all
tracing will be written, and TCPDEBUG should be set to 1 before the call is made
to tcp-init (). TCPDEBUG controls default tracing for all TCP connections.
This default may be changed by using the tcp-debug () routine.

tcp-ioff (conn); /* connection id *I
Turns interrupts off; used while writing data to the display.

tcp-ion (conn); /* connection id *I
Turns network interrupts on.

tm-on ();

Wakes up the timer task to process any events that went off while timer interrupts
were disabled and to start a new alarm.

tm-off ();

Turns off timer interrupts; useful when writing data to the display.

tk-hlock ();

Blocks the current task and forces it to be rescheduled.

tk-cur

Points to the task control block of the currently running task; a global variable.

4-8 Interface Program for use with TCP/IP

tk-yield ();

Yields the processor to any other task that can be run~

tk-wake (tk)
task *tk /* task control block */

tcpm

Wakes up a specified task. The tk parameter is a pointer to a control block, which
is defined in taskm.h.

tk-setef (tk, ef)
task *tk
task ushort ef

/*task control block
/* event flag

*/
*/

Wakes up a task and sets a specified event flag for it. The tk parameter is a pointer
to a control block, which is defined in task.h. The ef parameter specifies the event
flag.

User-Defined Routines

Following are definitions of the six user-defined routines in the array that TCP calls. The
names of these procedures are not fixed; that is, they can be renamed to meet your
requirements.

User defined routines must be in the following order in the array definition:

us-procs [OJ = US-Open
[1] = us-dispose
[2] = us-close
[3] = us_ fore lose
[4] = us-timeout
[5] US-buff

us-open (con, fh, fs)
int con; /* connection id *I
long fh; /* foreign host *I
short fs; /*foreign socket */

Called when the TCP connection reaches the ESTABLISHED state (that is, when
both the local and foreign hosts can send data. Most applications should use this
routine to wake up a task that writes data to the network.

Routines 4-9

tcpm

int us-dispose (con, ptr, Zen, urg)
int con; /*connection id */
char *ptr; /*pointer to buffer to dispose */
int len; /* length of buffer *I
int urg; /*urgent pointer (see below) */

Called to send data to the user's program. This routine must return the size of the
new local window, which will be made known to the foreign host

Warning: Do not return a window size of zero. If the local window
size is set to zero, no more calls will occur.
A non-negative value for urg represents an offset in the buffer to the urgent data.
If no urgent data is present, the value of urg is -1.

us-close (con, reason)
int con; /* connection id * /
int reason; /* 1 = normal close; 0 = abnormal close * /

Called to indicate that both sides have closed and that the connection block is
erased. The value of reason is TRUE if the connection closes normally, FALSE if
the connection closes abnormally due to a TCP RESET.

us-forclose (con, reason)
int con; /* connection id * /
int reason; /* 1 = normal close; 0 = abnormal close * /

Called if the foreign host sends FIN (that is, the foreign host closes its side of the
connection) or TCP RESET. The us-forclose (foreign close) routine immediately
closes the local side of the connection. The value of reason is TRUE if the
connection closes normally, FALSE if the connection closes abnormally due to a
TCP RESET.

us-timeout (con)
int con; /* connection id */

Called when a timeout occurs.

us-buff (con, count)
int con;
int count;

/* connection id *I
/* amount of free space in TCP send buffer * /

Called when the output buffer is filled and buffer space is not available. Usually a
task which writes to the network should block itself when it determines that no

4-10 Interface Program for use with TCP/IP

tcpm

more space is available in the TCP send buffer. The main purpose of us-huff is to
awaken the blocked task, which it always should do.

The Interface Program Tasking System

A task is a process together with the procedures that run in the process. The procedures
are often from different protocol layers. Tasking is a way of organizing procedures and
processes to form layers that:

• Preserve layer modularity

• Process the asynchronous data of layers efficiently.

One task cannot preempt another, but tasks can be preempted by routines (which are
signal driven). A task stops running when it calls a blocking routine in the tasking
module.

Tasks that are internal to the same protocol layer are said to share states. In task
programming, one task can awaken another only if the two tasks share states. For
example, if one task is to awaken another, it must have access to the task control block of
the other task.

The tasking system is used by TCP and applications that use TCP. Each task has a stack
and a task control block. A task control block is allocated by calling the calloc()
structure. The pointer that tk-fork() returns is a pointer to this structure.

Figure 4-1 on page 4-12 compares the memory organization of a single AIX process
running on the RT PC without tasking to the memory organization of single AIX process
running with tasking. In the lower horizontal row (the one that represents memory
organization with tasking), TS refers to a task stack and TCB refers to a task control
block.

Routines 4-11

tcpm

Process 3 2 1
without F F F
Tasking F F F

F Stack F Static Data F Program
~

F F F Code
F F F
F F F
F F F

Process 3 2 1
with F F F
Tasking F F F

F T T T F T T T F Program
~

F s s s F c c c F Code
F F B B B F
F F F
F F F

Figure 4-1. Relationship of Tasking to Memory Organization

These memory organizations are similar except that, for the process running with tasking,
the stack is partitioned for multiple tasks and the static data area contains task control
blocks. Each task stack is organized like the original program stack.

To use the tasking system, include the file < taskm.h >. < taskm.h > associates a task
control block with every task; the task control block is a structure that provides a new
task type. < taskm.h > also provides events, or binary semaphores, that allow
communication between tasks and allow tasks to determine why they are started. The task
control block is included in < taskm.h >.

A pointer to a task control block is analogous to a process ID. Task control blocks are
chained together by the tk-elt member of the task control block structure to form a
circular list. The tasking scheduler is a non-preemptive, round-robin scheduler that simply
loops through the circular list of tasks until it finds one that can be run (that is, a task
with a tk-evf that is set TK-TRUE) and then switches to that task. A combination of
setjmp and longjmp routines performs the context switch. The global variable, tk-cur is
a pointer to the task control block of the task that is currently running.

4-12 Interface Program for use with TCP /IP

tcpm

Generally, task wakeups should be treated as hints. When a task runs, it should try to
determine why it was started and perform accordingly. Part of the function of a task
should be to respond appropriately to nonspecific wakeups. Tasks are forked as runnable;
therefore, the following structure is correct for a task:

task-definition(tk)
struct task *tk;
{
/* all local declarations */

set-task(tk); /*must be first executable statement*/

}

for (; ;) {
if (no-work) {

t k_ b 1 0 ck () ;
continue;
}

do-the-right-thing;
}

Routines 4-13

udp

udp

Purpose

Provides the User Datagram Protocol (UDP) layer.

Libraries

/usr/lib/libU.a
/usr/lib/libudp.a

Syntax

#include < in-extern.h >
#include < udp.h >

Description

The UDP provides a set of routines that allow commands to send messages (datagrams) to
and receive messages from the other processes, possibly running on other hosts attached to
other networks. It places no restriction on the format of data in the messages. The
maximum length of a message is 512 bytes in the AIX implementation. The protocol is
transaction oriented. Reliability and duplicate protection of datagrams are not
guaranteed.

The routines in the /usr/lib/libudp.a and /usr/lib/libU.a libraries provide a user interface
to the AIX network driver. (If you will perform packet tracing, link to libudp.a; otherwise,
link to libU .a.) The udp library provides a basic set of routines to allocate, free, send, and
receive UDP packets.

In order to use these routines, the user program must include a header file, containing type
and structure definitions, and so on. To use the udp library, the < udp.h > and
< in-extern.h > files must be included. The program must then be linked using the -I udp
flag to include the udp library. In addition, the program must include the standard I/O
library to use this library. This means that the -IS flag must also be used when the
program is linked.

4-14 Interface Program for use with TCP/IP

udp

Routines

The /lib/libudp library contains the following routines:

udp-open(fhost, {sock, lsock)
udp-name fbost;
ushort fsock;
ushort lsock;

ushort

Opens a UDP connection to the specified foreign host with the specified local and
foreign sockets. The foreign host address is a standard network address. The
combination of foreign host, local socket, and foreign socket must be unique among
all connections currently in progress on this host. The udp-socket routine may be
used to obtain a unique local socket number. Note that any or all of the fields may
be NULL to indicate all. It returns a file descriptor to be used in future read and
write calls, or -1 for error. The external variable errno contains the error code.

udp-socket()

Returns a unique 16-bit value for the local UDP socket. It calls the operating
system to obtain a unique value. The socket returned is > 1000 (decimal) to ensure
that it is a unique socket.

udp-close(f d)
int fd;

Closes the specified UDP connection. The parameter is an AIX file descriptor
returned by the udp-open call.

caddr-t
int

udp-alloc(datalen, optlen)
datalen;

int optlen;

Allocates the space for a UDP packet, with enough space for a data area of length
datalen and enough space for oplen bytes of Internet options, plus room at the
beginning for the local net, Internet, and UDP headers. It returns a pointer to the
packet or NULL if unable to allocate. Also, it sets up the length fields of the
Internet packet so that the *in-head, udp-head, and udp-data macros work
properly (see "internet" on page 4-19). These macros return pointers to the
Internet header, the UDP header, and the UDP data portions of the packet,
respectively. They are described under "Macros and Type Definitions" on-
page 4-17.

Routines 4-15

udp

udp-free(pkt)
caddr-t pkt;

Frees the packet pointed to by pkt. The packet must have been allocated by
udp-alloc. It is an error to attempt to free something not previously allocated by
udp-alloc. Also, the user is responsible to remove any remaining references to the
packet.

udp-read(fd, bu{, Zen)
int fd;
caddr-t buf;
int len;

Attempts to read the next available UDP packet on the specified connection into
the specified buffer of length Zen. It returns the length of the received packet in
bytes. If no packet is available, it returns 0. Note that this routine is
non-blocking. It also validates the UDP length and checksum of the received
packet. If either are invalid, the packet is dropped and 0 is returned. The
udp-data macro can be used to obtain a pointer to the start of the data area of the
packet.

udp-bread(fd, bu{, Zen, timeout)
int fd;
caddr-t buf;

len;
timeout;

int
int

Performs a blocking read for UDP packets, with a timeout on the read. It waits
timeout seconds for a UDP packet to arrive on the specified UDP connection, then
reads it into the specified buffer. If a packet is presently available, the routine
reads it and returns immediately. It returns the length of the received packet in
bytes, or 0 if the timeout expires before a valid UDP packet is received. It also
returns 0 on network error, or if interrupted by a signal. In these cases errno
contains the error code.

udp-time ()

Attempts to find the current time by requesting it from other UDP time servers.
udp-time builds a time server request for each of the known time servers, then
sends the request and waits for a response. If the request is answered, udp-time
returns the time in seconds since midnight, 1-Jan-70 GMT. If the request is not
answered (that is, no time server is running on the network), udp- returns 0.

4-16 Interface Program for use with TCP/IP

udp

udp-write(fd, bu{, datalen)
udp-writex(f d, bu{, datalen, lh)
int fd;
caddr-t
int

buf;
datalen;
lh; int

Writes the specified packet out to the specified net connection. The buf parameter
is a pointer to a packet buffer as allocated by udp-alloc. The write routine
assumes that the foreign address, Internet packet ID, protocol, and type of service
fields (in the Internet header), and the local and foreign sockets (in the UDP
header) have been supplied by the caller. If the Internet ID field is 0, the system
assigns a unique ID. The system provides the rest of the UDP header, including
checksum, then writes it to the net connection. The system returns the number of
bytes written, if successful. If not successful, the system returns -1, and the
external variable errno contains the error code. If the value of lh is zero, the
optimal interface of those configured is selected.

long resolve-name (name)
register char *name;

Resolves a host name into an Internet address. Three name formats are accepted:

• A character string host name.

• An octal or decimal host number in the form net, subnet, rsd, host. Values for
net, subnet, and rsd can be left blank or left out entirely; they default to the
local net or subnet.

• A 32-bit hex number, preceded by a#, which is used without interpretation as
the host number.

If a character string name is supplied, it is first looked up in a local host table. If
it is not found there, the routine goes off to Internet name servers to try to resolve
the name.

Macros and Type Definitions

In addition to the routines previously described, several data type definitions and macros
are supplied in the < udp.h > header file to simplify writing network programs.

The following data types are defined:

ushort An unsigned 16-bit integer, used many places in the UDP header.

caddr-t An address in memory. On the RT PC, this is a character pointer. Packet
pointers and other pointers to untyped data are of this type.

Routines 4-17

udp

The UDP level provides the following macros to obtain pointers to various useful portions
of UDP packets and other useful data:

udp-head(pip)
Returns a pointer (struct ip *pip) to the UDP packet when given a pointer to
the start of the *internet header.

udp-da ta(pup)
Returns a pointer (struct udp *pup) to the start of the data portion of a UDP
packet, given a pointer to the UDP header. The pointer is a memory address,
and can be cast to the appropriate type.

4-18 Interface Program for use with TCP/IP

internet

Purpose

Provides the Internet protocol layer.

Libraries

/usr /lib /lib I .a
/usr/lib/libinternet.a

Syntax

#include < ip.h >
#include < in-extern.h >

Description

internet

The Internet Protocol (IP) provides a set of routines for sending raw datagrams between
hosts. It is used by a number of higher-level protocols, like User Datagram Protocol (UDP)
and Transmission Control Protocol (TCP). Most users never need to access the Internet
Protocol layer, but instead must be able to use it indirectly by using one of the higher-level
protocols.

The routines in the /usr/lib/libinternet.a and /usr/lib/libl.a libraries provide a user
interface to the AIX network driver. (If you perform packet tracing, link to libinternet.a;
otherwise, link to libl.a.) The internet library contains routines to allocate, free, send,
and receive the lower-level Internet Protocol packets, which are used by higher-level
protocols. Routines in the internet library support packet fragmentation but not packet
reassembly.

In order to use these routines, the user program must include a header file, containing type
and structure definitions, and other necessary information. To use the internet library,
the < ip.h > and < in-extern.h > files must be included. The program must then be
linked with either the -1 internet or -11 flag to include the internet library, and with the
-IS flag. In addition, using this library requires that the program include the standard I/O
library. This means that the -IS flag must also be used when the program is linked. For
additional information about Internet header fields, see "Tasks of Kernel and User
Processes" on page 5-14.

Routines 4-19

internet

Routines

The internet library provides the following routines:

in-open(prot, {host, {sock, Zsock)
ushort prot;
in-name fbost;
ushort fsock;
ushort lsock;

Opens an Internet connection on the specified protocol, to the specified foreign
host, with the specified local and foreign sockets. Note that any or all of the
parameters may be NULL to indicate that the field is to be ignored in packet
demultiplexing. If this routine is called directly, rather than by udp or tcp, the
value for foreign host, foreign socket and local socket should be 0. It also
initializes a number of network parameters, like the local net header and trailer
sizes for this connection. Note that this routine must be called before attempting
to allocate a packet for this connection. It returns a file descriptor suitable for use
in future read and write system calls on this connection, or -1 for error. In the
event of an error, the external variable errno contains the error.

Note: The in-open call opens with NINTRUP mode enabled for the process
issuing the call. This request can generate an EACCES error that indicates
NINTRUP enabled by another process.

For related information, see "Tasks of Kernel and User Processes" on page 5-14.

in-logkkt (ppkt, Zen, dir)
unsigned char *ppacket
int-len
int-dir

Logs specified packets to standard output. ppkt is a pointer to the packet. Zen
specifies the length of the data portion of the packet in bytes. dir specifies the
direction of the packet; its value can be either INPKT (for an input packet) or
OUTPKT (for an output packet).

in-close(f d)
int fd;

Closes the network connection specified by fd. The connection should have been
opened by the in-open call.

4-20 Interface Program for use with TCP/IP

internet

caddr-t
int

in-alloc(datalen, optlen)
datalen;

int optlen;

Allocates the storage for an Internet packet with data area of size datalen, and
including space for an Internet option string of length optlen, including space for
the local net header and trailer and for the Internet header. The length will be
increased to an even number of bytes if needed. It also sets up the Internet header
length fields so that the various macros like in-data (see below) will work
properly. It returns a pointer to the allocated packet, or NULL if unable to
allocate one.

in-free(pkt)
caddr -t pkt;

Frees the packet pointed to by pkt. The packet must have been allocated by
in-alloc. It is an error to attempt to free something not allocated by in-alloc.

in-read(fd, buf, Zen)
int fd;
caddr-t buf;

len; int

Reads the next available Internet packet for the specified connection from the net
into the specified buffer of length len. It returns the length of the received packet
in bytes, or 0 if no packet is available. Note that this routine is non-blocking. The
in-data macro may be called to obtain a pointer to the start of the data area of the
packet.

in-bread(fd, buf, len, timeout)
int fd;
caddr-t buf;
int
int

len;
timeout;

Performs a blocking read for an Internet packet, with a timeout on the read. It
wai.ts up to timeout seconds for an Internet packet to arrive on the specified
Internet connection, then reads it into the specified buffer. If a packet is presently
available, the routine then reads the packet and returns immediately. It returns
the length of the received packet in bytes, or 0 if the timeout expires before a valid
packet arrives. It also returns 0 if a net error occurs or if the call is interrupted by
the arrival of a signal. In these cases, errno contains the error code.

Routines 4-21

internet

in-write(fd, bu{, datalen)
in-writex(fd, bu{, datalen, lh)
int fd;
caddr -t buf;
int datalen;
int lh;

Writes the specified packet to the net. The buf parameter is a pointer to the start
of a packet buffer, such as one allocated by in-alloc. The datalen parameter is
the length of the data portion of the packet in bytes. The packet buffer is assumed
to have space at the beginning for local net and Internet headers. It is also
assumed that there is enough space in the packet buffer to pad the packet up to an
even number of bytes, because all transmitted packets must be an even number of
bytes in length. (If the packet was obtained by in-alloc or by in-read, this is the
case.) The caller is assumed to have provided the foreign host address, Internet
packet ID, protocol, and the type of service fields in the Internet header, as well as
any option fields. If the Internet ID field is 0, the system assigns a unique ID. The
Internet header length field is assumed to have been provided by the allocator of
the packet (for example, in in-alloc). This routine provides the remainder of the
Internet header before writing the packet out to the network. It returns the
number of bytes written if successful. If not, it returns -1 and the external variable
errno contains the system error code. If the value of lh is zero, the optimal
interface of those configured is selected.

Macros and Type Definitions

In addition to the routines previously described, several macros and data type definitions
are supplied in the < ip.h > header file to simplify writing network programs.

The following data types are defined:

ushort An unsigned 16-bit integer, used in many places in the Internet header.

caddr-t An address in memory. On the RT PC, this a character pointer. Packet pointers
and other pointers to untyped data are of this type.

in-name An Internet address. This is a 4-byte value appearing in the Internet header.
Routines are available to deal with Internet addresses.

Several macros are provided at the Internet level to aid in obtaining pointers to various
useful portions of Internet packets and other useful data. The following macros are
presently available:

in-head(ppkt)
Returns a pointer (caddr-t p pkt) to the start of the Internet header of the
specified packet. The packet is assumed to have been allocated by one of the
packet allocation routines described in this manual, such as in-alloc, in order
to ensure that the Internet header length is set up correctly.

4-22 Interface Program for use with TCP/IP

internet

in-data(pip)
Returns a pointer (struct ip *pip) to the data portion of an Internet packet
given a pointer to the Internet header. The pointer is a memory address and
may be converted into the appropriate data type.

in-options(pip)
Returns a pointer (struct ip *pip) to the start of the Internet option string in
an Internet packet given a pointer to the Internet header. Although the
internet library on AIX does not process Internet options, this macro and the
in-optlen macro (and the optlen parameters to udp-alloc and in-alloc) permit
user programs to deal with Internet options if they wish. The pointer returned
is a character pointer to permit the user program to parse the option string.

in-optlen(pip)
Returns the length of the Internet option string in an Internet packet in bytes
given a pointer to the Internet header (struct ip *pip). Note that the string is
always a multiple of 4 bytes in length, but can include padding (NULL bytes).

Routines 4-23

libS

libS

Purpose

Provides miscellaneous routines for use with the TCP, UDP, and IP layers.

Library

/usr/lib/libS.a

Description

The /usr/lib/libS is a collection of routines that are used with the TCP, UDP, and IP
layers but are not included in the other Interface Program libraries. The two routines in
libS that may be of interest to the application programmer are cksum and netopen:

cksum (bu{, lenhw, Zen)
char * buf; /*address of buffer to checksum* I
int lenhw; /*length of buffer in half words*/
int intval; /*initial checksum value, normally O* /

The checksum is a ones complement of the buffer. Data to be check summed is on
a half- or full-word boundary. This routine returns the checksum value.

netopen (devname, netstruct)
char* devname /*device name, "/dev/netO"*/
struct netdf netstruct
#include netioctl.h

Opens the /dev/netO device. To close the /dev/netO device, use the system call
close (). This routine returns a file descriptor.

4-24 Interface Program for use with TCP /IP

Chapter 5. /dev/netO Device Driver

CONTENTS

About This Chapter . 5-2
/dev /netO . 5-3

/dev/netO Calls . 5-4
/dev/netO IOCTLs . 5-5

Tasks of Kernel and User Processes . 5-14

Device Driver 5-1

About This Chapter

This chapter describes the Application Programming Interface (API) to the Interface
Program /dev /netO device driver.

Note: Generally, you do not use the /dev/netO device driver directly except to issue
IOCTLs. Rather, you should use the libraries described in Chapter 4, "Protocol Library
Routines."

5-2 Interface Program for use with TCP /IP

net

/dev/netO

Purpose

Provides kernel services for the Interface Program.

Synopsis

#include < netioctl.h >

Description

The /dev/netO device driver is the kernel-level support for Interface Program. It is a
multiplexed device driver that supports up to 32 simultaneous open calls, providing one
connection per call. As physical media, /dev/netO supports both the IBM RT PC Baseband
Adapter for use with Ethernet and the IBM Token-Ring Network RT PC Adapter. The
principal functions of /dev/netO are to:

• Reading Internet packets from the network.

• Writing Internet packets to the network.

• Performing address translation (using ARP) between Internet and its physical media
addresses.

• Providing gateway support between Baseband Adapter networks, Token-Ring networks,
or both, and bridge support between Token-Ring networks.

The interface to the /dev/netO device driver is through the Internet library calls.

The /dev /netO device driver supports the following types of incoming packets:

• IP

• ARP or broadcast

• VAX

The /dev /netO device driver can process VAX trailer encapsulation protocol (VAX
trailers) on incoming packets. /dev/netO supports three types of VAX trailers: OxlOOl,
Ox1002, and Ox1003. If VAX trailers are to be transmitted, all hosts sharing the
network environment must accept them uniformly. While the Interface Program
accepts and processes VAX trailers, it does not transmit them.

Device Driver 5-3

net

The following IOCTLs must be issued by root; otherwise, /dev /netO returns an error:

IOCCONFIG
NIOCGATE
NIOCGDEL
NIOCHGADD
NIOCHGCLR
NIOCSHOST

Following is a list of the IOCTLs that /dev/netO supports.

/dev/netO Calls

open

close

read

/dev /netO is a multiplexed device driver that can have a maximum of 32
concurrent opens. The open call initializes the device driver structures,
initializes ARP, opens the block I/O device manager, and starts devices for ARP
and IP. To complete the open, the user must issue the NIOCNODS IOCTL. The
open call returns file descriptors.

Note: The netopen subroutine in libS.a opens the device driver and issues the
IOCTL.

The structure of the open call is:

int open (path,oflag[,mode])
char *path;
int oflag,mode;

/* path = /dev/netO */

Closes /dev/netO when it has been opened with either the open system call or
the libS.a subroutine netopen. If this is the last close of the device driver,
close issues the halt device for IP and ARP and closes the block I/0 manager.
close also cleans up the structures of the device driver, freeing any packets that
were pending for it. The structure of the close call is:

int c 1 ose (fildes)
int fildes; /* file descriptor returned by open */

Reads a packet from the network. The read may be blocking or non-blocking.
Blocking status is controlled by the timeout field in the· structures of the device
driver. If the timeout value is not 0, then a blocking read is performed until
timeout; otherwise, a non-blocking read is performed. The NIOCSTMO IOCTL
controls the timeout value. When read completes, it clears the timeout value. If
incoming data is fragmented, it is reassembled; the user receives a complete

5-4 Interface Program for use with TCP/IP

write

net

packet. The structure of the read call is:

int read (fildes,buf,nbyte)
int fildes; /* file descriptor returned by open */
char *buf; /* buffer to place data in */
unsigned int nbyte; /* length of buffer */

Writes a packet to the network. write fills in the ID, checksum, and source
address fields of the IP header, and also fills in the local header. The structure
of the write call is:

int write (fildes, buf, nbyte)
int fildes; /* file descriptor returned by open */
char *buf; /* packet to send */
unsigned int nbyte; /* size of buffer, including local */

/* header and IP header */

/dev/netO IOCTLs

IOCCONFIG
Defines the association between the /dev/netO device driver and multiple VRM
device drivers (for the Baseband Adapter and the Token-Ring Adapter). arg is a
pointer to an IOCCONFIG structure defined in < sys/iocfg.h >. The option
field pointer in the < sys/iocfg.h > structure points to information specific for
/dev/netO for each interface to be defined. The structure is:

define IFNAMSIZ 16
struct ifreq {

char ifr_name [IFNAMSIZ]; /*name of interface*/
unsigned long ifr_mymach; /* local IP address */
unsigned long ifr_mask; /* subnet mask */

int ifr_mtu; /*maximum transmission unit */
char ifr_type; /* type of interface */

To issue IOCCONFIG:

int ioctl (fildes, IOCCONFIG, arg);
int fildes;
int IOCCONFIG;
struct iocfg ~arg;

Device Driver 5-5

net

IOCINFO
Returns tlie following structure, defined in < sys/devinfo.h >:

struct devinfo {
char devtype;
char flags;
union {
struct {

struct {
char type;

char haddr [] ;

long mymach;
long subnet-mask;
int mtu;
char i L flags;

/* DD-BIO */
/* 0 */

/* hardware type: ethernet or
token ring */

/* hardware ethernet/token
ring address */

/* local IP address */
/* subnet mask */

/* maximum transmission unit */
/* up/down: l=ATTACHED

2=RUNNING
3=PRIMARY INTERFACE */

char if-name [IFNAMSIZ]; /*interface name */
} l an [8] ;

} bio;

/* for other devices */
} un;

};

The structure from char if _name through char if_ flags is repeated an
indefinite number of times.

To issue IOCINFO:

int ioctl (fildes,IOCINFO,O);
int fil des
int IOCINFO

5-6 Interface Program for use with TCP/IP

IOCTYPE
Returns the device type Block 1/0, DD-BIO, defined

in < sys/devinfo.h >. The parameter is ignored. To issue IOCTYPE:

int ioctl (fildes,IOCTYPE, O);
int fildes;
int IOCTYPE;

net

NIOCGATE
Defines the default gateway. If the defined gateway replaces an existing one,
NIOCGATE updates connections as necessary for use of the new gateway. The
arg parameter points to an integer that contains the local net address of the
gateway to which packets (without a destination host in the host gate table)
should be sent. To issue NIOCGATE:

int ioctl (fildes,NIOCGATE,arg);
int fildes;
int NIOCGATE
char *arg;

NIOCGDEL
Deletes a gateway. arg points to an integer containing the address of the
gateway to be deleted. All entries in the host gate table for that gateway are
deleted. The default gateway is set to NULL if it is the same as the gateway
being deleted. To issue NIOCGDEL:

int ioctl (fildes,NIOCGDEL,arg);
int fildes;
int N IOCDGEL;
char *arg;

NIOCGETHOST
Gets the Internet address of this host. arg is a pointer to a four-byte array.
Upon return, arg contains the Internet address of the host. To issue
NIOCGETHOST:

int ioctl (fildes ,NIOCGETHOST,arg);
int fildes;
int N IOCGETHOST;
char *arg;

NIOCGETHT
Gets the local net header and trailer sizes. htsize is a two-word array. Upon
return from this request, htsize [OJ contains the number of bytes to allocate for

Device Driver 5-7

net

the packet local net header and htsize {l} contains the number of bytes to
allocate for the local net trailer. To issue NIOCGETHT:

i n t ioctl (fildes, NIOCG ETHT, htsize) ;
int fildes;
int N IOCGETHT;
int htsi ze [2];

NIOCGETL
Gets the net mode for the net connection. The possible modes are:

NINTRUP 01
Indicates that interrupts are enabled and that no packets have been
missed. With interrupts enabled, the interrupt SIGAIO is sent to the
process when a packet for this connection is read into the net handler
read buffer. Only one process per connection can enable this mode.

NINTMISS 02

00

03

Indicates that interrupts are not enabled and that packets have been
missed (that is, a packet arrived when no process had enabled
SIGAIO).

Indicates that interrupts are not enabled and that no packets have
been missed.

Indicates that interrupts are enabled and that packets have been
missed.

To issue NIOCGETL:

int ioctl (fildes,NIOCGETL,arg);
int fildes;
int N IOCGETL;
char *arg; /* mode returned */

NIOCGETMAXPKT
Gets the maximum Internet packet size (in bytes) that may be received. Upon
return, the integer pointed to by arg contains that value. To issue
NIOCGETMAXPKT:

int ioctl (fildes,NIOGETMAXPKT,arg);
int fil des;
int NIOCGETMAXPKT
char *arg;

5-8 Interface Program for use with TCP/IP

NIOCGIF

net

Returns the address of the interface used to send data to a particular foreign
host. temp is a two-word array. When the address of a foreign host is supplied
for temp[O], NIOCGIF returns the address of the interface for sending to the
host in temp[l}. To issue NIOCGIF:

ioctl (fd, NIOCGIF, temp);
unsigned long temp[2]

NIOCGSKT
Gets a unique socket ID. arg is a pointer to an integer that indicates where the
returned 16-bit unique socket ID (or port number) is placed. To issue
NIOCGSKT:

int ioctl (fildes,NIOCGSKT,arg);
int fil des;
int N IOCGSKT;
char *arg;

NIOCHGADD
Adds a host to the host gateway table. For input, gt-host should contain an
Internet host address and gate should contain the local net address of the first
hop gateway to which packets destined for the host should be sent. If the host
name is already in the table, this option replaces its current entry. If the local
address is 0, the address for the entire network is used. If more than 32 entries
are specified, an attempt is made to drop a host that currently has no net
connection. To issue NIOCHGADD:

int ioctl (fildes,NIOCHGADD,arg);
int fildes;
int N IOCHGADD;
struct gt-host *arg;

struct gLhost {
long gLfhost;
long gt-gate;
}

NIOCHGCLR
Clears the host gateway table. The arg is NULL. To issue NIOCHGCLR:

int ioctl (fildes,NIOCHGCLR,O);
int fildes;
int NIOCHGCLR

Device Driver 5-9

net

5-10

NIOCNODS
Issued after the open system call to /dev/netO to define the connection at the
time it is opened. arg is a pointer to the following netdf structure:

struct netdf {
ushort nd-protl;
ushort nd-prot2;
in-name nd-fhost;
ushort nd-fsock;
ushort nd-lsock;

To issue NIOCNODS:

/*net protocol id=l*/
/*Internet protocol id*/
/*foreign host*/

/*foreign socket*/
/*local socket*/

int ioctl (fildes,NIOCNODS,arg);
int fildes;
int NIOCNODS;
struct netdf *arg;

NIOCQUERY
Gets VRM device driver statistics for Baseband Adapter and Token-Ring
devices. The arg structures are:

union {
struct { /*statistics for Ethernet*/
int dummy; /*iodn of VRM device */
int intr-rcv; /*Receive interrupts */
int pkt-accept; /*Packets accepted */
int bytes-rev; /*Receive byte count */
int pkt-reject; /*Packets rejected */
int ring_queue_full; /*Ring queue full count */
int rcv-pkLovfl ow; /*Receive pkts overflow */
int slih-ring-empty; /*SLIH ring empty count */
int pkLxmt; /*Transmit interrupts */
int bytes-xmt; /*Bytes transmitted */
int queues-saved; /*Number of queue saved */
int wr_queue-proc; /*Write queue processed */
unsigned short collision; /*Collision counter */
unsigned short collision16; /*Collision 16 counter */
unsigned short shorted; /*Shorted counter */
unsigned short underflow; /*Underflow counter */
unsigned short short-pkt; /*Short pkt counter */
unsigned short align-error; /*Alignment err counter */

Interface Program for use with TCP/IP

unsigned short
unsigned short
} eLstat; ·

struct {
int
int
int
int
int
int
int
int
int
int
int
int
int
int
} tk-stat;

} query_vrm;

ere-error;
overflow;

dummy;
intr-rcv;
pkLreject;
pkLaccept;
bytes-rev;
ring_queue-full;
slih_ring_empty;
xmLintr;
xmLcompletes;
bytes-xmt;
snd_qcnt;
s io_qcnt;
pkLxmt;
queues-saved;

To issue NIOCGQUERY:

int ioctl (fildes,NIOCQUERY,arg);
int fildes;
int N IOCQU ERY;
struct query_vrm *arg;

NIOCSETL
Sets the net mode for the net connection:

NINTRUP 01

/*CRC error counter
/*Overflow counter

/*statistics for Token
/*iodn of VRM device
/*Receive interrupts
/*Packets rejected
/*Packets accepted
/*Receive byte count
/*Ring queue full count
/*SLIH ring empty count
/*Transmit interrupts
/*Transmit completes
/*Bytes transmitted
/*Send Queues Counter
/*SIO Queues Counter
/*Packets Transmitted
/*Number of queue saved

net

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Indicates that interrupts are enabled and that no packets have been
missed. With interrupts enabled, the interrupt SIGAIO is sent to the
process when a packet for this connection is read into the net handler
read buffer. Only one process per connection can enable this mode.

00
Indicates that interrupts are not enabled and that no packets have
been missed.

Device Driver 5-11

net

To issue NIOCSETL:

i n t i oc t 1 (fildes, NIOCSETL, arg) ;
int fil des;
int NIOCSETL;
char *arg; /* mode to set*/

NIOCSHOST
Sets a local IP address. arg is a pointer to an unsigned integer that contains the
local IP address .. The IP address of the host is marked as the primary interface.
To issue NIOCSHOST:

int ioctl (fildes ,NIOCSHOST,arg);
int fil des;
int NIOCSHOST;
char *arg;

NIOCSNODE
Sets the node name (host name) in the uname structure. arg is a pointer to a
NULL terminated string containing the node name. To issue NIOCSNODE:

int ioctl (fildes,NIOCSNODE,arg);
int fildes;
int NIOCSNODE;
char *arg;

NIOCSTMO
Sets the timeout value, in seconds, to be used by udp-hread and in-bread in
setting the timeout value for return from a read. arg is a pointer to an integer
containing the timeout value. To issue NIOCSTMO:

int ioctl (fildes,NIOCSTMO,arg);
int fildes
int N IOCSTMO;
char *arg;

NIONREAD
Gets a read count. Upon return, arg is a pointer to an integer that contains the
number of bytes in the first packet in the /dev/netO read buffer for this
connection. To issue NIONREAD:

int ioctl (fildes,NIONREAD,arg);
int fildes;
int NIONREAD;
char *arg;

5-12 Interface Program for use with TCP/IP

net

NIONWRITE
Gets write count. The arg structure is:

struct nwrite {
int in-name;
int maxfrag;
}

Upon return, maxfrag contains the maximum fragment size that may be sent
between this host and the foreign host specified in in-name. To issue
NIONWRITE:

int ioctl (fildes,NIONWRITE,arg);
int fildes;
int NIONWRITE;
struct nwrite *arg;

Device Driver 5-13

Tasks of Kernel and User Processes

The following table shows the Internet header fields used or modified by the kernel and
user processes.

Internet Header Output Kernel Checks Input Checked
Field Filled By or Uses Output? or Used By

Header length user yes kernel/user

Version user

Type of service user

Packet length user yes kernel/user

ID kernel/user kernel

Fragment offset user kernel

Flags user kernel

Time to live user

Protocol user kernel

Checksum kernel kernel

Source kernel kernel/user

Destination user yes kernel

Options user user

Figure 5-1. Tasks Performed, Internet Header

Notes:

1. If the Internet ID field is 0 in an outgoing packet, the kernel fills it. If it is not 0, the
kernel does not fill it.

2. The user process does the fragmenting.

5-14 Interface Program for use with TCP/IP

The following table shows the local header fields used or modified by the kernel processes:

Local Header Output Kernel Checks Input Checked
Field Filled By or Uses Output? or Used By

Dummy not used

Source kernel

Destination kernel yes kernel

Type kernel kernel

Figure 5-2. Tasks Performed, Local Header

The following table shows the TCP header fields used or modified by user processes.

TCP Header Output Kernel Checks Input Checked
Field Filled By or Uses Output? or Used By

Source port user yes user

Destination port user yes user

Sequence number user user

Acknowledgement user user
number

Offset to data user user

Flags user user

Window Size user user

Checksum user user

Urgent pointer user user

Figure 5-3. Tasks Performed, TCP Header

Device Driver 5-15

The following table shows the UDP header fields used or modified by user processes.

UDP Header Output Kernel Checks Input Checked
Field Filled By or Uses Output? or Used By

Source port user user

Destination port user yes

Length user user

Checksum user user

Figure 5-4. Tasks Performed, UDP Header

5-16 Interface Program for use with TCP/IP

Appendix A. Customizing the Program

About This Appendix

Before you can use the Interface Program, you must install the necessary hardware and software,
and then customize the software to meet your requirements. For information about the software and
hardware prerequisites, see "Before You Begin" on page iv. Once you have installed the Interface
Program, return to this section for information about establishing a network.

Customizing A-1

How to Customize an Interface Program Network

Following are the general steps in customizing an Interface Program network. You must be able to
supply the specific information pertaining to your system and network.

1. Set the jumpers on the IBM RT PC Baseband Adapter for use with Ethernet, the IBM Token-Ring
Network RT PC Adapter, or both, according to the instructions in Options Installation.

• If more than one Baseband Adapter is installed, each one must be set at a different interrupt
level and address space. Interrupt levels cannot be shared among Baseband Adapter cards or
other devices.

• Multiple Token-Ring Adapters can share the same interrupt level.

2. Use the devices command to add adapters. You can add Baseband Adapters and Token-Ring
Adapters to run the Interface Program. The keyword values must match the adapter switch
settings.

3. Use the devices command to add PTY s if your system is to be available to other users for remote
login (as in Telnet sessions.). Select the appropriate terminal type for each PTY (just as you
would for a TTY). If that PTY is to be used for Telnet (remote login to this host), set the values
of logger and automatic enable to true. (automatic enable causes the penable command to
be run for that device at system start, making it available for use by Telnet.) For more
information about customizing PTYs for Telnet, see "tn" on page 2-43. For information about
customizing PTY s for rexec, see "rexecd" on page 3-15.

4. Customize the /etc/hosts file according to the information under "hosts" on page 1-25.

5. Customize the /etc/rc.tcpip file according to the information under "rc.tcpip" on page 1-33.

6. Customize the /etc/hosts.equiv file according to the information under "hosts.equiv" on
page 1-28.

7. Customize the /etc/net file according to the information under "net" on page 1-29.

8. Customize the /etc/networks file according to the information under "networks" on page 1-31.

Note: The name of your host must be used as the parameter to /bin/hostname in /etc/rc.tcpip,
and it must correspond with the appropriate address in the /etc/net stanza.

9. Customize the /etc/gateways file according to the information under "gateways" on page 1-23.

A-2 Interface Program for use with TCP /IP

10. Customize the /etc/3270.keys file if necessary. For related information, see" .3270keys" on
page 1-36.

11. Customize the $(HOME)/.3270keys file according to the information under" .3270keys" on
page 1-36.

12. Customize the $(HOME)/ .netrc file according to the information under ".netrc" on page 1-34.

13. In /etc/re, remove the comment symbols from the lines that start the Interface Program daemon
processes. (This causes the network to be configured and the daemons started when the system is
started.)

14. Run shutdown and then restart the system.

Customizing A-3

A-4 Interface Program for use with TCP /IP

Appendix B. Samples

About This Appendix

This appendix contains samples of how to use the routines in the tcp and tcpm libraries, and the
tasking system. "Running the test Programs" on page B-2 explains how to run the tcptestm.c and
tcptest.c programs. "tcptestm.c" on page B-3 is a listing of the tcptestm program for multiple TCP
connections (libtcpm.a). "tcptest.c" on page B-12 is a listing of the tcptest program for a single
TCP connection (libtcp.a).

To understand these samples, you must be familiar with the C programming language.

Samples B-1

Running the test Programs

"Running tcptestm" shows how to run tcptestm (using the library that supports multiple TCP
connections libtcpm.a). "Running tcptest" explains how to run tcptest (using the library that
supports a single TCP connection, libtcp.a). Both programs support the same commands, which are
listed in "tcptestm and tcptest commands" on page B-3.

Note: tcptestm and tcptest should be run on two hosts.

To compile the programs and place them in the /usr/bin directory, enter the following command:

make install -f make.tcptest

Running tcptestm

1. Start the program on the first host with the following command:

tcptes tm - 1 1001

The - 1 flag sets this host to listen; the 1001 parameter specifies a port.

2. Start the program on the second host with the following command:

tcptestm hostname 1001
The hostname parameter is the name of the host that is listening.

Running tcptest

1. Start the program on the first host with the following command:

tcptest -1 1001

The - 1 flag sets this host to listen; the 1001 parameter specifies a port.

2. Start the program on the second host with the following command:

tcptest hostname 1001
The hostname parameter is the name of the host that is listening.

B-2 Interface Program for use with TCP/IP

tcptestm and tcptest commands
After the connection is open, enter commands by:

1. Pressing the ESC key

2. Entering the command name.

The commands are:

c Close connection.

e Echo local.

r Echo remote.

q Quit.

v Quote next character. This command allows you to send a character as an octal number
(for example, < ESC > v007 produces a beep on the foreign host).

d Toggle debug state.

tcptestm.c

/* tcptestm.c */

/* Copyright 1984 by the Massachusetts Institute of Technology */
/* See permission and disclaimer notice in the file 11 notice.h 11 */
#include <notice.h>

/* EMACS-MODES: c !fill */

typedef unsigned char uchar-t;
#include <stdio.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <termio.h>
#include <errno.h>
#include <ip.h>
#include <netioctl.h>
#include <taskm.h>

Samples B-3

#define ESCHAR 033

#define WINDOW 1024 * 2

extern
extern
us-tmo
extern
extern

int displa ();
int us-opna (),

(), us-space();
int done () ;
int his-els();

US-Opn 1 () , US-C 1 S () ,

extern char *ip2ascii ();

event open-done = O;
event close-done = O;

task *main-tk;

struct termio stermio;

int con;

main (argc, argv)
int argc;
char **argv;
{

long
register unshort
register char
register int
register int
register int
struct termio
char
register int
int

/* set to 1 when open completed */
/* set to 1 when close completed */

/* main task */

fhost, lhost;
fsock, lsock;
c;
i .

' lstn = FALSE;
dbg = FALSE;
termio;
forname [17], locname [17]
escseen = FALSE;
(*pblock[6]) ();

B-4 Interface Program for use with TCP/IP

extern char
extern int

*l ogfname;
TCPDEBUG;

if (argc < 3) {
printf (11 usage: %s [-1] [-d] host port\n 11

, argv[O]);
exit (1);
}

for (i = 1; i < argc && argv[i] [OJ == '-'; i++)
switch (argv [i] [1]) {

case 'l': /*listen*/
lstn =TRUE;
break;

case 'd': /* debug *I
dbg = TRUE;
l ogfname = 11 tcptest. trace";
TCPDEBUG = Ox3f;
break;

default:
printf ("usage: %s [-1] [-d] host port\n 11

, argv[O]);
exit (1);

}

setbuf(stdout, O);

ioctl(O,TCGETA,&termio);
stermio = termio;

if (!lstn) { /*active open */
termio.c-lflag = 070;
termiO.C-CC[4] = 1;
termio.c-cc[5] = 1;
termio.c_oflag = ONLCR I OPOST;
termio.c_cflag &= -PARENB;
termio.c-cflag 1= CS8;
termio:c-iflag = 0 I ICRNL;
ioctl (0, TCSETAF, &termio);
}

Samples B-5

signal (SIGINT, done);
signal (SIGTERM, done);

tcp-init(6000);

main-tk = tk_cur; /* save current task */

if (lstn)
pblock[O] = US-Opnl;

else
pblock[O] = us-opna;

pblock[l] = displa;
pblock[2] = us-els;
pblock[3] = his-els;
pblock[4] = us-tmo;
pblock[5] = us-space;
if (lstn) {

else {

lsock = atoi(argv[i]);
if ((con= tcp-listen (lsock, WINDOW, pblock)) == -1) {

printf(11 tcp_lstn failed: lsock %d\n 11
, lsock);

exit (1);
}

}

if ((fhost =resolve-name (argv[i])) == OL) {
printf (11 %s: unknown host\n 11

, argv[i]);
exit (1);
}

fsock = atoi(argv[i+l]);

printf ("Trying ... 11
);

if ((con= tcp-open (fhost, OL, fsock, (short) 0, WINDOW,
p b,l 0 c k)) = = - 1) {

B-6 Interface Program for use with TCP/IP

case 'c':

case 'e':

case 'r':

case 'a':

case 'i':

printf("tcp-open failed: fhost = %x, fsock = %d\n 11
,

fhost, fsock);

}

for(;;) {

exit(l);
}

if (lstn) {
t k-b 1 0 c k () ;
continue;
}

c = get key () ;
if (escseen) {

esceen = FALSE;
switch (c) {

/* close connection */
tcp_close (con);
while (!close-done)

tk_b 1 ock;
done ();
break;

/* echo local */
ioctl (O,TCGETA,&termio);
termio.c_lflag I= ECHO;
ioctl (O, TCSETA,&termi o);
break;

/* echo remote */
ioctl(O,TCGETA,&termio);
termio.c_lflag &= ~ECHO;

ioctl (O,TCSETA,&termio);
break;

/* abort */
tcp_abort(con);
while (!close-done)

t k-b 1 0 c k () ;
done () ;
break;

/* get connection info */

Samples B-7

case 'q':

case 'v':

case 'd':

default:

else

conn-info (con, &lhost, &fhost,
&lsock, &fsock);

strcpy (forname, i p2asci i (fhost));
st r c p y (1 o c name , i p 2 as c i i (1 host)) ;
printf ("Connection infomation:

local host %s, foreign host %s,
local port %d, remote port
%d\n",
locname, forname, lsock, fsock);

break;

/* quit *I
tcp_close (con);
done () ;
break;

/* quote next character */
c = O;
for (i = 0; i < 3; i ++)

c = (c << 3) + (getkey () - 'O');
tcp-putc (con, c);

tcp_flush(con);
break;

/* toggle debug state */
dbg = !dbg;
break;

tputc (con, c);
tcp_ flush (con) ;
break:
}
continue:
}

if (c == ESCHAR) {
escseen = TRUE;
continue;

B-8 Interface Program for use with TCP/IP

}

}
tcp-putc (con, c);
tcp_ flush (con) ;
}

displa (con, buf, len, urg)
register int con;
register char *buf;
register int len;
register int urg;
{

register char *bp;

char *endp = &buf[len];
for (bp=buf;bp < endp;bp++)

if (*bp & 0200) {

}

write (1, buf, bp-buf-1);
buf = bp + 1;
printf("\\%0 11 ,(*bp & 0377));

write (1, buf, bp-buf);

return(WINDOW);
}

us-opna (con,
register int
register long
register short
{

fhost, fsock)
con;
fhost;
fsock;

printf (11 \nActive connection opened foreign host %s, fsock %d.\n 11
,

fhost, fsock);
}

Samples B-9

us-opnl (con,
register int
register long
register short
{

fhost, fsock)
con;
fhost;
fsock;

printf (11 \nServer connection opened foreign host %s, foreign port %d.\n 11
,

ip2ascii (fhost), (fsock);
tk-setef (main_tk, &open-done); /*wake up main task*/

}
us-opn 1 (con,
register int
register long
register short

fhost, fsock)
con;
fhost;
fsock;

{

}

printf ("\nServer connection opened foreign host %s, foreign port %d. \n",
ip2ascii (fhost), fsock);

tk-setef (main_tk, &open-done); /*wake up main task*/

us-space (con, count)
register int con;
register int count;
{
}

us-cls (con, reason)
register int con;
int reason;
{

}

printf (11 \nClosed %d\n 11
, reason);

tk-setef (main-tk, &close-done);

his-cls(con, reason)
int con;

B-10 Interface Program for use with TCP/IP

int reason;
{

printf(11 \nForeign
if (!reason) {

done();
}

closed %d\n 11
, reason);

/* received reset

tcp-close(con);
}

us-tmo (con)
int con;
{

}

done ()
{

}

printf (11 Host not responding\n 11
);

done ();

ioctl (O,TCSETAWk,&stermio);
exit (0);

getkey ()
{

char
int

for

}
/*

c-' nch;

(; ;) {
ioctl (0, TIONREAD, &nch);
if (nch == O) {

t k_ y i e 1 d () ;
continue;
}

if (read (0, &c, sizeof(c))
return (c & 0377);

}

sizeof(c))

*/

Samples B-11

* Convert IP address into char string xxx.xxx.xxx.xxx
*/

char *ip2ascii (ipaddr)
register long ipaddr;
{

}

union {
long l;
char c[4];
{ foo;

static char tmp[17];

foo.l = ipaddr;
sprintf (tmp, "%d.%d.%d.%d", foo.c[O] & Oxff, foo.c[l] & Oxff,

foo.c[2] & Oxff, foo.c [3] & Oxff);

return (tmp);

tcptest.c

/* tcptes t. c *I

/* Copyright 1984 by the Massachusetts Institute of Technology */
/* See permission and disclaimer notice in file 11 notice.h 11 */
#include <notice.h>

/* EMACS-MODES: c !fill */

typedef unsigned char uchar-t;
#include <stdio.h>
#include <signal .h>
#include <sys/ioctl.h>
#include <termio.h>
#include <sys/errno.h>
#include <ip.h>

B-12 Interface Program for use with TCP/IP

#include
#include

<netioctl .h>
<task.h>

#define ESCHAR 033

displa (); extern int
extern int
extern int
extern int

US-Opna ()' US-Opnl ()' US-Cl s ()' US-tmo ()' US-Space();
done ();
hi S-C 1 S () ;

struct termio stermio;

main (argc, argv)
int argc;
char **argv;
{

in-name
register unshort
register char
register int
register int
register int
struct termio
register int

if (argc < 3) {

fhost;
fsock, l sock;
c.
' i ;

lstn = FALSE;
dbg = FALSE;
termio;
escseen = FALSE;

printf (11 usage: %s [-1] [-d] host port\n 11
, argv[O]);

exit (1) ;
}

for (i = l; i < argc && argv[i] [OJ --

switch (argv[i] [l]) {
case 'l': /* listen */

lstn = TRUE;
break;

' '· - ' i ++)

Samples B-13

case 'd': /* debug * /

default:

}

dbg = TRUE;
tcpdebug (dbg);
break;

printf ("usage: %s [-1] [-d] host port\n 11
, argv[O]);

exit (1);

setbuf(stdout, O);

ioctl (O,TCGETA,&termio);

stermio = termio;
termio.c-lflag = 070;
termio.c-cc[4] = l;
termio.c_cc[5] = l;
termio.c_oflag = ONLCR I OPOST;
termio.c_cflag &= &similarPARENB;
termio.c_cflag I= CS8;
termio.c-iflag = 0 I ICRNL;

ioctl (0, TCSETAF, &termio);

signal (SIGINT, done);
signal (SIGTERM, done);

if (!tcp-init (3000, 0, (lstn? us-opnl : us-opna), displa, us-els,
his-els, us-tmo, us-space)) {

printf(11 tcp-init failed\n 11
);

exit (1);
}

if (lstn) {
lsock = atoi(argv[i]);
if (tcp-lstn (lsock, 1000) == FALSE) {

printf(11 tcp-lstn failed: lsock %d\n 11
, lsock);

exit(l);

B-14 Interface Program for use with TCP/IP

}
else {

}

if ((fhost = resolve-name (argv[i])) == OL) {
printf (11 %s: unknown host\n 11

, argv[i]);
exit (1);
}

fsock = atoi (argv[i+l]);

pri ntf (11 Tryi ng ... 11
);

if (tcp-open {fhost, fsock, 1000) == FALSE) {
printf{ 11 tcp-open failed: fhost = %X, fsock = %d\n 11

, fhost, fsock);
exit{l);
}

}

for (; ;) {
if {lstn) {

tk-block ();
continue;
}

c = getkey ();
if (escseen) {

case 'c':

case 'e':

escseen = FALSE;
switch (c) {

/* close connection */
tcp-close ();
break;

/* echo local */
ioctl {O,TCGETA,&termio);
termio.c-lflag I= ECHO;
ioctl {O,TCSETA,&termio);

Samples B-15

case 'r':

case 'q':

case 'v':

case 'd':

default:

}

}

break;
/* echo remote */

ioctl (O,TCGETA,&termio);
termio.c-lflag &= &similarECHO;
ioctl (O,TCSETA,&termio);
break;

/* quit */
tcp-cl ose ();
done ();
break;

/* quote next character */
c = O;
for (i = O; i < 3; i++)

c = (c << 3) + (getkey () - 'O');
tc-fput (c);
break;

/* toggle debug state */
dbg = !dbg;
tcpdebug (dbg);
break;

tc-fput (c);
break;

continue;
}

else
if (c == ESCHAR) {

escseen = TRUE;
continue;
}

tc_fput (c);
}

B-16 Interface Program for use with TCP/IP

displa (buf, len, urg)
register char *buf; ·
register int len;
register int urg;
{

}

US-Opna
{

}

US-Opnl
{

}

us-space
{
}

register char *bp;

char *endp = &buf[len];
for (bp=buf;bp < endp;bp++)

write

()

printf

()

printf

()

if (*bp & 0200) {

}
(1, buf,

write (1, buf, bp-buf-1);
buf = bp + l;
printf(11 \\%0 11 ,(*bp & 0377));

bp-buf);

(
11 \nActive connection opened.\n 11

);

(''\nServer connection opened.\n 11
);

Samples B-17

us-els ()
{

}

printf (11 Closed\n 11
);

done ();

his-els()
{

}

printf(11 Foreign closed\n 11
);

tcp-close();

us-tmo ()
{

}

done ()
{

}

printf ("Host not responding\n");
done ();

ioctl (O,TCSETAW,&stermio);
exit (O);

getkey ()
{

char c;
int nch;

for (; ;) {
ioctl(O, TIONREAD, &nch);
if (nch == 0) {

tk-Yi el d ();
continue;
}

if (read (0, &c, sizeof(c)) -- sizeof(c))

B-18 Interface Program for use with TCP/IP

return (c & 0377);
}

}

Samples B-19

B-20 Interface Program for use with TCP/IP

Appendix C. tcp Library Routines

About This Appendix

This appendix describes a version of the tcp library routines that support a single tcp connection. It
is provided only for compatibility with existing programs. The tcpm library, described under
"tcpm" on page 4-3 should be used in the development of new programs.

tcp Library C-1

tcp

tcp

Purpose

Provides the Transmission Control Protocol (TCP) layer.

Library

/usr/lib/libtcp.a

Syntax

#include < ip.h >
#include < task.h >

Description

The TCP provides a set of routines suitable for reliable data transmission. It assumes that
the receiver can keep pace with the sender and that it will never run out of receive
window. Also it does not handle out of sequence packets received. Any packets that are
out of sequence are ignored.

Note: The Interface Program supports a window size of 6K bytes and a packet size of 1576
bytes.

The TCP library provides some support for the internal tasking system within a single AIX
process. Task calls must be issued by the user.

The routines in the /usr/lib/libtcp.a library interface with the IP library and the AIX

C-2 Interface Program for use with TCP/IP

tcp

network driver. The libtcp.a library contains the following routines:

tcp-init (stksiz, 0, ofcn, infcn, cfcn, fcfcn, tmofcn, sfcn) int stksiz;
int extsiz;
int (*ofcn) ();
int (*infcn) (prt, Zen, urgent);
int (*cfcn) (TRUElFALSE);
int (*fcfcn) ();
int (*tmofcn) ();
int (*sfcn) ();

Initializes the TCP layer. This routine starts the internal tasking system, initiates
the timer and sets the pointers to the user routines that can be called. It does not
attempt to open the connection. That function is performed by tcp-open. When it
returns, the caller is running as the first task on the primary process stack.
tcp-init sets the following pointers:

stksiz Value for the depth that the thread or task will require.

ofcn Called once TCP reaches the ESTABLISHED state (both the local and
foreign hosts are able to send data). Most commands use this routine to
awaken a task that writes data to the network.

inf en Called to send some data to the user program. TCP does not
acknowledge data until this routine returns. inf en sets the following
pointers:

char* prt Sets pointer to the beginning of the data.

int len Returns the number of bytes of data sent.

ushort urgent The normal value is -1. If the value is greater than 0, it
implies urgent data in the buffer and points to it.

cfcn Called to signal that both sides have closed, and the connection block is
erased. The returned status is TRUE if the connection closed normally,
or FALSE if the connection closed abnormally due to a TCP RESET.

fcfcn Called if the foreign host sends a FIN (the foreign host has closed its
half of the connection) before a close in the local host. This initiates an
immediate close in the local host.

tmofcn Called when a timeout has occurred.

sfcn Called when the previously full output buffer has buffer space available.
TCP immediately blocks the writing process, which prevents writing to a
connection before the connection is open. Also, if TCP determines the
foreign window is full, or when the curre:qt output packet is full, any
attempt to write to the network blocks the writing process. In these

tcp Library C-3

tcp

three cases, this call signals that the cause of the block has disappeared.
The user routine should always awaken those tasks that are blocked.

tcp-open (fh, fs, win)
in-name fb;
ushort fs;
int win;

Opens an active tcp connection to foreign host fh, on foreign socket fs, with a
receive window size of win bytes. Gets a unique local socket on which to open the
connection. Returns FALSE if unable to open an Internet connection with the
specified hosts and sockets. Otherwise it returns the local socket on which the
connection is opened. This routine forks a child process to handle the connection;
it does not wait until the connection is actually opened before it returns. Instead,
the ofcn (user open routine) specified in the call to tcp-init is called when the
connection is successfully opened. (The tcp-init call must precede the tcp-open
call.) open allows a single AIX process on a single port; the tasking system allows
multiple threads within each process.

tcp-close ()

Initiates the TCP closing sequence. This routine returns immediately. When the
close is complete, the cfcn (user close routine) is called.

tcp-lstn (ls, win)
ushort ls;
int win;

Listens for a server connection on the specified local socket with the foreign host
and port unspecified. Returns FALSE if unable to open an Internet connection
with the specified hosts and sockets, or TRUE otherwise. This routine returns
immediately. It does not wait until the connection is actually opened before
returning. When a connection is successfully opened, a process performs a fork
call while in the tcp-rcv() routine, the child process proceeds to open a specified
Internet connection with the appropriate parameters, and the ofcn (user open
routine) is in the child process. The parent returns to listen on the connection.
lstn supports one TCP process on one or more ports; the tasking system allows
multiple threads within each process.

tc-put (c)
char c;

Inserts a character into the send buffer for transmission, does not wake up the TCP
sending task.' It assumes that more data immediately follows. It returns TRUE if
there is more room to store data in the buffer. Otherwise, it returns FALSE.

C-4 Interface Program for use with TCP/IP

tc-fput (c)
char c;

tcp

Inserts a character to be transmitted into the send buffer, and wakes up the TCP
sending task to send it. It returns TRUE if there is more space in the buffer to
store data. Otherwise, it returns FALSE.

tcpurgent ()

Indicates that urgent data is present. Sets the urgent pointer to the current data
length and awakens TCP to send it.

tcp-passive-open (fh, fs, ls, win)
in-name fh;
ushort fs;
ushort ls;
int win;

Indicates that the process will accept incoming connection requests rather than
attempt to initiate a connection. Often the process requesting a passive OPEN will
accept a connection request from any caller. In this case, a foreign socket of all
zeros is used to denote an unspecified socket. Unspecified foreign sockets are
allowed only on passive OPENs. In this case, fh specifies the foreign host, fs
specifies the foreign socket, ls specifies the local socket, win specifies the receive
window size. passive-open allows a single AIX process on a single port; the
tasking system allows multiple threads within each process.

tcp-debug (onoff)
int onoff;

Turns TCP debugging (packet-level tracing) on or off.

tcp-abort ()

Makes a user-level request to abort connection.

tcp-flush 0
Wakes up a TCP send task so that all outstanding data will be sent over the TCP
connection.

tcp Library C-5

tcp

tc-write (bu{, count)
char *buf; ·
int count;

Writes a block of data to a TCP connection. bu{ is a counter and count is an
integer.

tm-on ()

Wakes up the timer task to process any events that went off while timer interrupts
were disabled and to start a new alarm.

tm-off (')

Turns off timer interrupts; useful when writing data to the display.

tk-block

Blocks the current task and forces it-to be rescheduled.

tk-yield

Yields the processor to any other task that can be run.

tk-wake (tk)
task *tk

Wakes up a specified task. The tk parameter is a pointer to a control block, which
is defined in task.h.

tk-setef (tk, ef)
task *tk
task ushort ef

Wakes up a task and sets a specified event flag for it. The tk parameter is a pointer
to a control block, which is defined in task.h. The ef parameter specifies the event
flag.

C-6 Interface Program for use with TCP/IP

Figures

1-1. Interface Program for use with TCP/IP Commands, Protocols, and APis 1-5
1-2. Network and Gateway Routing . 1-11
1-3. Class A Address . 1-16
1-4. Class B Address . 1-16
1-5. Class C Address . 1-16
1-6. IP and ARP Type Numbers . 1-17
1-7. Local Header, IP or ARP Packet, Baseband Adapter . 1-17
1-8. Local Header, IP or ARP Packet, Token-Ring Adapter . 1-17
1-9. Medium Access Control (MAC) Header, Token-Ring Adapter Local Address 1-17

1-10. MAC Header Routing Information, Token-Ring Adapter Local Address 1-18
1-11. Logical Link Control (LLC) Header, Token-Ring Adapter Local Address 1-18
1-12. Class B Address with Subnet . 1-21

3-1. lpd Requests . 3-8
3-2. lpd Control File Codes . 3-9
4-1. Relationship of Tasking to Memory Organization . 4-12
5-1. Tasks Performed, Internet Header . 5-14
5-2. Tasks Performed, Local Header . 5-15
5-3. Tasks Performed, TCP Header . 5-15
5-4. Tasks Performed, UDP Header . 5-16

Figures X-1

X-2 Interface Program for use with TCP/IP

This glossary contains a list of some of the
common terms that you may read or hear when
working with data communications. The terms
are described only as they relate to data
communications.

access. The manner in which files or data sets
are referred to by the computer.

adapter. See communications adapter.

address field. The part of a packet containing
addressing information.

addressing. (1) The way that the sending or
control station selects the station to which it is
sending data. (2) A means of identifying
storage locations.

American National Standard Code for
Information Interchange (ASCII). The code
developed by ANSI for information interchang~
among data processing systems, data
communications systems, and associated
equipment. The ASCII character set consists of
7-bit control characters and symbolic
characters.

American National Standards Institute
(ANSI). An organization sponsored by the
Computer and Business Equipment
Manufacturers Association for establishing
voluntary industry standards.

bandwidth. The difference, in hertz, between
the two limiting frequencies of a band.

baseband system. A system whereby
information is encoded, modulated, and
impressed on the transmission medium. At any
point on the medium, only one information
signal at a time is present.

Glossary

bit rate. The speed at which serialized data is
transmitted, usually expressed in bits per
second.

block. A group of reGords that is recorded,
processed, or sent as a unit.

bridge. In the connection of local loops,
channels, or rings, the equipment and
techniques used to match circuits and facilitate
accurate data transmission.

broadband. Transmission media and
techniques that use a broad frequency range,
divided into sub-bands of narrower frequency.

cable. The physical media for transmitting
signals; includes copper conductors and optical
fibers.

cancel. To end a task before it is completed.

carrier. A continuous frequency that can be
modulated with a second (information-carrying)
signal.

carrier sense multiple access with collision
detection (CSMA/CD). The generic term for a
class of medium access procedures that (1)
allows multiple stations to access the medium
at will without explicit prior coordination, (2)
avoids contention by way of carrier sense and
deference, and (3) resolves contention by way of
collision detection and transmission~

channel. A path along which data passes.

character. A letter, digit, or other symbol.

client. On a network, the computer requesting
services or data from another computer.

clock. A device that generates periodic signals
used for synchronization.

Glossary X-3

coaxial cable. A cable consisting of one
conductor, usually a small copper tube or wire,
within and insulated from another conductor of
larger diameter, usually copper tubing or
copper braid.

collision. A condition caused by multiple
overlapping transmissions on the medium,
which results in garbled data.

communication channel. An electrical path
that facilitates transmission of information from
one location to another.

communications. See data communications.

communications adapter. A hardware
feature that enables a computer or device to
become a part of a data communications
network.

communications line. The line over which
data communications takes place; for example,
a telephone line.

configuration. The group of machines,
devices, and programs that make up a data
processing system.

confirmation. A transmission by a receiver
that permits a sender to continue.

console. A part of a computer used for
communications between the operator or
maintenance engineer and the computer.

console display. A display that can be
requested only at the system console. From a
console display an operator can display, send,
and reply to messages and use all control
commands.

contention. A condition on a communications
channel when two stations attempt to use the
same channel simultaneously.

contention resolution. The process of
resolving contention (medium access control
conflicts) according to a defined algorithm.

X-4 Interface Program for use with TCP/IP

control block. A storage area used by a
program to hold control information.

control character. A character, occurring in
a particular context, that initiates, modifies, or
stops any operation that affects the recording,
processing, transmission, or interpretation of
data (such as carriage return, font change, and
end of transmission).

CSMA/CD. See carrier sense multiple access
with collision detection (CSMA/CD).

current host. See local host.

daemon. A background process that is usually
started at system start, runs continuously, and
performs a function required by other processes.

data circuit. Associated transmit and receive
lines that provide a means of two-way data
communications.

data communications. The transmission of
data between computers and/or remote devices
(usually over a long distance).

data link. The equipment and rules (protocols)
used for sending and receiving data.

data stream. All information (data and
control information) transmitted over a data
link.

digital data. Data represented by on and off
conditions called bits.

display station. A device that includes a
keyboard from which an operator can send
information to the system and a display screen
on which an operator can see the information
sent to or received from the computer.

distortion. An undesirable change in a data
communications signal.

dotted decimal. A common notation for
Internet host addresses, which divides the 32-bit
address into four 8-bit fields. The value of each
field is specified as a decimal number and the

fields are separated by periods (for example,
010.002.000.052, or 10.2.0.52).

echo. A reflected signal on a communications
channel.

emulation. Imitation; for example, the
imitation of a computer or device.

enable. In interactive communications, to load
and start a subsystem.

foreign host. Any host on the network except
the one at which a particular operator is
working; sometimes called remote host.

gateway. An entity operating above the link
layer, which translates, when required, the
interface and protocol used by one network into
those used by another distinct network.

host. (1) The primary or controlling computer
in the communications network. (2) A
computer attached to a network.

interface. A common boundary, but not of
internal connections.

interrupt. To take an action at a receiving
station that causes the sending station to end a
transmission.

LAN. See local area network.

local. Pertaining to a device, file, or system
that is accessed directly from your system,
without the use of a communications line.
Contrast with remote.

local area network. A network in which
communications are limited to a moderate-sized
geographic area (1 to 10 km) such as a single
office building, warehouse, or campus. A local
network depends upon a communications
medium capable of moderate to high data rate,
and normally operates with a consistently low
error rate.

local host. The host on the network at which
a particular operator is working; sometimes
called current host.

medium (media). The material in or on
which data may be represented (for example,
twisted pairs, coaxial cables, and optical fibers).

network. A collection of data processing
products connected by communication lines for
information exchange between stations.

network adapter. Circuitry that allows
devices using a directly attached network to
communicate with the system.

network management. The conceptual
control element of a data station that interfaces
with all of the layers of that data station and is
responsible for the resetting and setting of
control parameters, obtaining reports of error
conditions, and determining if the station
should be connected to or disconnected from
the medium.

node. See host.

packet. The data of one transaction between a
host and its network. A packet usually
contains a network header, followed by one or
more headers used by high level protocols,
followed by data blocks.

physical layer (or level). The lowest layer of
network design as specified by the ISO Open
System Interconnection (OSI) reference model.
This layer is responsible for interfacing with
the medium, detecting and generating signals
on the medium, and converting and processing
signals received from the medium and from the
data link layer.

port. (1) An access point for data entry ox
exit. (2) An entrance to or exit from a network.

protocol. Rules for transferring data.

process. A program in execution.

remote. Pertaining to a device, file, or system
that is accessed by your system through a
communications line. Contrast with local.

remote host. See foreign host.

Glossary X-5

retransmit. To repeat the transmission of a
message or segment of a message.

retry. To resend a transmission that did not
achieve the desired or intended result; usually
follows a timeout.

route. A path defined for sending data across
a network.

route table. A structure in memory that
describes, for the computer, all of the routes
that are currently defined.

server. On a network, the computer that
contains the data to be accessed.

session. The logical connection by which a
host program or device can communicate with a
program or device at a remote location.

socket. (1) A unique host identifier created by
the concatenation of a port identifier with an IP
address. (2) A port identifier.

status. The state of affairs or the condition of
a station that determines its ability to enter
into exchanges of control or information.

telecommunications. Transmitting signals
over long distance.

teleprocessing. Processing data that is
received from or transmitted to a remote
location via communication channels.

terminal. A device, usually equipped with a
keyboard and a display device, capable of
sending and receiving information over a
communications line.

timeout. Measurement of time interval
allotted for certain events to occur (such as a

X-6 Interface Program for use with TCP/IP

response to polling or other controls) before
corrective (recovery) action is taken.

transfer. To send data to one place and to
receive data at another place.

transmission control characters. Special
characters that are included in a message to
control communication over a data link. For
example, the sending station and the receiving
station use transmission control characters to
exchange information; the receiving station
uses transmission control characters to indicate
errors in data it receives.

transparent. In communications, pertaining
to transmissions that have no possibility of
interference with data link control, regardless
of format or content. Transparent
tr:ansmissions are unrecognized by data link
controls.

well-known host name. A conventional name
associated with an IP address on a particular
network (for example, nameserver and
timeserver.

well-known port. A conventional port
assignment used by hosts that support the same
protocols, whether or not the hosts are on the
same network.

wide area network. A network that provides
data communication capability in geographic
areas larger than those serviced by local area
networks.

work station. A device that lets people
transmit information to or receive information
from a computer; for example, a display station
or printer.

additional copies of this book vii
additional information vi
address field

definition of X-3
IP 1-15

Address Resolution Protocol
See ARP

addressing
See also naming
address types

class A 1-16
class B 1-16
class C 1-16
class D 1-16

definition of X-3
IP 1-15
IP address field 1-15
notation

dotted decimal 1-19
octal 1-19

sockets 1-20
TCP 1-20

API
for /dev/netO 5-3
illustration 1-5
to libraries

internet 4-19
libS 4-24
tcp C-2
tcpm 4-3
udp 4-14

Application Programming Interfaces
See API

applications
See commands

ARP
addresses 1-16

overview 1-7
assigned numbers

ports 1-38
protocols 1-39
versions 1-39

Baseband Adapter 1-4
broadcast messages 1-22

calls
See /dev/netO

chparm
host name consistency 1-19
warning 1-19

client
definition of X-3
term usage 1-3

commands

Index

See also server commands, user commands
file transfer

tcom 2-37
tftp 1-13, 2-40
tftpd 3-25
utftp 1-13, 2-46
xftp 1-13, 2-48
xftpd 3-27

illustration 1-5
mail

maild 3-11
netmail 1-14, 2-16
smtp 1-14
smtpd 3-21

Index X-7

network management
finger 2-3
fingerd 3-3
host 1-15, 2-6
hostname 1-15, 2-8
icmpd 3-5
named 3-13
netconfig 1-15
netstat 1-15, 2-19
ping 1-15, 2-23
route 1-15, 2-29
setclock 1-15, 2-32
timed 3-26

remote command execution
/etc/hosts.equiv 1-28
lpd 3-7
lprbe 2-10
rexec 2-26
rexecd 3-15

remote login
telnetd 3-23
tn 1-14, 2-43

routed 3-17
configuration

See also customizing
/etc/hosts 1-25, 1-41
/etc/hosts.equiv 1-41
/etc/net 1-29, 1-41
/etc/networks 1-41
/etc/rc.tcpip 1-42
definition of X-4
EDITOR 1-41
finger 1-42
variables 1-41

configuring multiple adapters 2-13
contention

definition of X-4
resolution

definition of X-4
customizing

/etc/hosts 1-25
/etc/net 1-29
steps A-2

X-8 Interface Program for use with TCP/IP

daemons
fingerd 3-3
icmpd 3-5
named 3-13
smtpd 3-21
telnetd 3-23
timed 3-26
xftpd 3-27

DARPA vi
data security 1-41
Defense Advanced Research Projects
Agency vi

Defense Communications Agency vi
determining host addresses 2-6
/dev/netO

calls
close 5-4
open 5-4
read 5-4
write 5-5

incoming packets supported 5-3
IOCTLs 5-5
tasks

kernel 5-14, 5-15
user process 5-14, 5-15 5-16

device driver '
See /dev/netO

displaying local host name 2-8
dotted decimal

definition of X-4
notation 1-19

echo request 2-23
emulation

definition of X-5
terminal 1-14

/etc/gateways 1-23
examples 1-24

format 1-23
/etc/hosts

examples 1-26
format 1-25
host name consistency 1-19

/etc/hosts.equiv
format 1-28

I etc/master
host name consistency 1-19

/etc/net
format 1-29

/etc/networks 1-31
format 1-31

/etc/rc.tcpip
purpose 1-33
relation to /etc/re 1-33

/etc/system
host name consistency 1-19

executing commands remotely 2-26, 3-15

file formats
.netrc 1-34
.3270keys 1-36
gateways 1-23
hosts 1-25
hosts.equiv 1-28
net 1-29
networks 1-31
overview of 1-22
rc.tcpip 1-33

file transfer
commands 2-2, 3-2
type 2-48

files

ASCII 2-48
binary 2-48

See file formats
finger command 2-3
fingerd command 3-3

Gateway-to-Gateway Protocol
See GGP

gateways
definition of X-5
description 1-6
using hosts as 1-10

illustration 1-11
GGP

in routing 1-8

hardware prerequisites iv
header

local 1-17
$(HOME)/ .netrc 1-34

format 1-34
home 3270 keys 1-36
$(HOME)/ .3270keys

format 1-36
host command 2-6
hostname command 2-8
hosts

as gateways 1-10
definition of X-5
foreign 1-3

definition of X-5
local 1-3

definition of X-5
names 1-19

IBM RT PC Baseband Adapter for use with
Ethernet 1-4

IBM RT PC Interface Program for use with
TCP/IP

customizing A-2

Index X-9

installing iv, A-1
icmpd command 3-5
ICMPoverview 1-8
information about users 2-3
information protection 1-41
installing the Interface Program A-1
interface

definition of X-5
international character support considerations

tn command 2-44
Internet Control Message Protocol 1-8
Internet environment 1-4
internet library 4-19
Internet Protocol

overview 1-6
Internet Router 1-10

libraries
internet 4-19
libS 4-24
tcp B-1, C-2
tcpm 4-3, B-1

usage sample B-1
udp 4-14

libS library 4-24
lpd command 3-7
lprbe command 2-10

mail commands 2-2, 3-2
maild command 3-11
manipulating route tables 2-29
messages

broadcast 1-22

X-10 Interface Program for use with TCP/IP

named command 3-13
nameserver 1-25
naming

See also addressing
host

conventions 1-19
netconfig command 2-13
netmail command 1-14, 2-16
netstat command 2-19
network

customizing A-2
definition of X-5
problem determination 2-19
status 2-19

network adapter
definition of X-5

Network Information Center v1
network management

commands 2-2, 3-2
definition of X-5
sub-networks 1-21

networks
&I2@nets.

networks 1-31
IBM RT PC Baseband Adapter for use with
Ethernet 1-4

nodes
See hosts

numbers
See assigned numbers

octal notation 1-19
ordering this book vii

packets
definition of X-5
description 1-3

ping command 2-23
pipes 2-46
plan file 2-3
ports

definition of X-5
identification 1-4
numbers 1-38
well-known 1-38

printing remotely 2-10, 3-7
process

definition of X-5
description 1-3

programming interfaces
/dev /netO 5-3
illustration 1-5
internet 4-19
libS 4-24
tcp C-2
tcpm 4-3
udp 4-14

project file 2-3
protocols

Address Resolution Protocol 1-7
ARP 1-7
definition of X-5
illustration 1-5
Internet 1-6
IP

addressing 1-15
lpd 1-9
minimal 2-40
numbers 1-39
other network

GGP 1-8
ICMP 1-8
overview 1-8

overview 1-4
remote command execution 1-9
remote printing 1-9

rexecd 1-9
RIP 1-9
TCP

addressing 1-20
overview 1-7
sockets 1-20

Telnet 1-14
UDP

overview 1-7
VAX trailer 5-3
VAX trailer encapsulation protocol 1-9

rc.tcpip file 1-33
related information vi
related publications v1
retry

definition of X-6
definition X-6

rexec command 2-26
rexecd command 3-15
route command 2-29
routed command 3-17
routes

broadcast to all 1-22
definition of X-6
Internet Router 1-10

illustration 1-11
route table

description 1-20
gateways 1-23
routed 3-17

Routing Information Protocol 1-9
sub-networks 1-21
types 1-20

routines 4-2
internet layer 4-19
libS layer 4-24
tcp layer C-2
tcpm layer 4-3
udp layer 4-14

routing 3-17
Routing Information Protocol 1-9

Index X-11

samples
tcptest.c B-12
tcptestm.c B-3

security
considerations 1-41
features

lprbe 1-40
rexec 1-40
Telnet 1-40
xftp 1-40

information protection 1-41
sending mail 2-16, 2-34, 3-11
server

definition of X-6
term usage 1-4

server commands
fingerd 3-3
icmpd 3-5
lpd 3-7
maild 3-11
named 3-13
rexecd 3-15
routed 3-17
smtpd 3-21
telnetd 3-23
tftpd 3-25
timed 3-26
xftpd 3-27

session
definition of X-6

setclock command 2-32
setting time 2-32
Simple Mail Transfer Protocol 1-14
smtp command 2-34

reply codes 2-34
smtpd command 3-21
sockets

definition of X-6
in routines 4-2

X-12 Interface Program for use with TCP/IP

in TCP addressing 1-20
software prerequisites iv
special characters

n acute (lowercase) 2-44
therefore 2-44

sub networks 1-21
subnets 1-21
system calls

See /dev /netO

tasking system
description 4-11
usage sample B-1

tcom command 2-37
subcommands 2-37

TCP
overview 1-7

tcp library C-2
tcpm library 4-3
Telnet 1-14
telnetd command 3-23
tftp command 2-40

minimal
tftp 2-40

tftpd command 3-25
time

service 3-26
setting 2-32

timed command 3-26
timeserver 1-25
tn command 2-43

subcommands 2-43
trailer encapsulation 1-9, 5-3
Transmission Control Protocol

See TCP
type numbers

ARP 1-17
IP 1-17

typography in this book v

UDP
overview 1-7

udp library 4-14
user commands

finger 2-3
host 2-6
hostname 2-8
lprbe 2-10
netconfig 2-13
netmail 2-16
netstat 2-19
ping 2-23
rexec 2-26
route 2-29
setclock 2-32
smtp 2-34
tcom 2-37
tftp 2-40
tn 2-43
utftp 2-46
xftp 2-48

User Datagram Protocol
See UDP

utftp command 2-46

VAX trailers 1-9, 5-3
version numbers 1-39

warnings
host name consistency 1-20, 2-8

window size 2-48

xftp command 2-48
packet size 2-48
subcommands 2-48
window size 2-48

xftpd command 3-27

Index X-13

X-14 Interface Program for use with TCP/IP

--------- -- --- - -- ----- -- -----------·-

Reader's Comment Form

IBM RT PC Interface Program
for use with TCP/IP

The IBM RT Personal
Computer

Family

SC23-0812-0

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

L - - -

Q.l
c
:J
Cl
c
0
<{
"'C
0
u..

0
:I

(.)

adei pue PIO::l

ade..L

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

a1deis JON oa asea1d

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

adBl puB PIO::l

ader

IBM RT PC Interface Program for use with TCP/IP SC23-0812
Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its
organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as
you become familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may
improve this book.

y N Is the purpose of this book clear?

y N Is the table of contents helpful?

y N Is the index complete?

y N Are the chapter titles and other headings
meaningful?

y N Is the information organized appropriately?

y N Is the information accurate?

y N Is the information complete?

y N Is only necessary information included?

y N Does the book refer you to the appropriate
places for more information?

y N Are terms defined clearly?

y N Are terms used consistently?

y N Are the abbreviations and acronyms
understandable?

y N Are the examples clear?

y N Are examples provided where they are needed?

y N Are the illustrations clear?

y N Is the format of the book (shape, size, color)
effective?

Other Comments

What could we do to make this book or the entire set of
books for this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

L __ _

Q)

c
::i
C>
c
0
<(
-c
0
u..
0
:J
()

adei pue p10.::1

adeJ.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

adei pue PIO.::J

adeJ.

© IBM Corp. 1987
Al I rights reserved .

International Business
Machines Corporation
Department 997 , Building 998
11400 Burnet Rd .
Austin , Texas 78758

Printed in the
United States of America

SC23-0812-0

--------- - ---- - -- -. ---- - - ------------ ·-

SC23-0812-00

92Xl291

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	replyA
	replyB
	replyC
	replyD
	xBack

