


IBM RT Advanced Interactive Executive Operating System Version 2.2 

AIX Operating System 
Commands Reference 
Volume 1 

Programming Family 

--..- .------ -------- -.. _ ... -- ---------------,- SC23-2011-1 



Second Edition (September 1988) 

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer 
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the 
University of California. 

The Rand MH Message Handling System was developed by the Rand Corporation and the University of California. 

The Network File System was developed by Sun Microsystems, Inc. 

This edition applies to Version 2.2 of the IBM AIX Operating System. Changes are made periodically to the information herein; 
these changes will be reported in technical newsletters or in new editions of this publication. 

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in 
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or 
imply that only IBM's licensed program may be used. Any functionally equivalent program may be used instead. 

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either 
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a 
particular purpose. IBM may make improvements and/or changes in the product(s) and! or the program(s) described 
in this manual at any time. 

Products are not stocked at the address given below. Requests for copies of this product and for technical information about 
the system should be made to your IBM authorized RT dealer, your IBM marketing representative, or your IBM authorized 
remarketer. 

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM 
Corporation, Department 997,11400 Burnet Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information 
you supply in any way it believes appropriate without incurring any obligation to you. 

©Copyright International Business Machines Corporation 1985, 1988 
©Copyright INTERACTIVE Systems Corporation 1984 
©Copyright AT&T Technologies 1984 



Trademarks 

The following trademarks apply to this book: 

• AIX is a trademark of International Business Machines Corporation. 

• DEC and VT100 are trademarks of Digital Equipment Corporation. 

• Ethernet is a trademark of XEROX CORPORATION. 

• IBM is a registered trademark of International Business Machines Corporation. 

• PC-NFS and NFS are trademarks of Sun Microsystems, Inc. 

• Proprinter is a trademark of International Business Machines Corporation. 

• Quietwriter is a registered trademark of International Business Machines Corporation. 

• RT is a registered trademark of International Business Machines Corporation. 

• Sun Microsystems is a registered trademark of Sun Microsystems, Inc. 

• Tektronics is a trademark of Tektronix, Inc. 

• UNIX was developed and licensed by AT&T. It is a registered trademark of AT&T in 
the United States of America and other countries. 

• XEROX is a trademark of XEROX CORPORATION. 

iii 



iv 



About This Book 

This book contains reference information on Advanced Interactive Executive (AIX) 
Operating System commands. It describes the commands you can use and summarizes who 
can run them, how to run them, what they do, how they read input, how they write output, 
and how to modify their actions. 

Who Should Use This Book 

To use this book, you should be familiar with AIX or UNIX System V commands. If you 
are not already familiar with AIX or UNIX System V, see Using the AIX Operating System. 
If you are familiar with the commands but need to review how to use the shell and write 
shell procedures, see "sh" on page 913. 

How To Use This Book 

Most of the AIX commands described in this book are in alphabetical order by command 
name. Some related commands are combined in one description listed with a main or key 
command. The related commands have an entry with the main command in the table of 
contents and are listed individually in alphabetical order in the index. If you are having 
difficulty locating a particular command, check the "Contents" or "Index" sections of this 
publication. 

Command Information 
The "Commands" section begins on page 11. A discussion of a command may include the 
following information: 

Purpose 

Syntax 

Description 

A single-sentence description of the major function of each 
command 

A syntax diagram that shows command line options (For a 
discussion of how to use this syntax diagram, see "Syntax 
Diagrams" on page 5.) 

A discussion of the command that provides more details about its 
function and use 

About This Book v 



Flags A list of command line flags and associated parameters with an 
explanation of how the flags modify the action of the command 

Subcommands A list of subcommands (for interactive commands) that explains 
their use 

Examples Specific examples of how you can use the command 

Files A list of files used by the command 

Related Information A list of related commands in this book and related discussions in 
other books. 

For details on other conventions used in this book, see "How to Use the Commands" on 
page 3. 

A Task Index 
"Task Index" on page TASK-1 can help you locate the commands you need to perform 
specific tasks. It contains lists of commands grouped by task. Next to each command is a 
description of what it does. To find a command that performs a specific task, locate the 
task in the table of contexts at the beginning of the task index, go to the indicated page 
and review the list of commands associated with that task, then select the desired 
command. For more information about the command, refer to the discussion of the 
command in the "Commands" section. 

Other Reference Aids 
A cross-reference listing of commands and program packages appears in 
Appendix B, "Program Cross-Reference" on page 1269. Appendix C, "Syntax Diagram 
Guide" on page 1277 contains a detailed description of how to read syntax diagrams. The 
standard system devices are described in Appendix A, "AIX Device Table" on page 1267. 
A "Glossary" of terms appears after the Appendixes, followed by an "Index." 

In addition, a Reader's Comment Form and Book Evaluation Form are provided at the 
back of the second volume of this publication. Use the Reader's Comment Form at any 
time to give IBM information that may improve the book. After you have become familiar 
with the book, use the Book Evaluation Form to give IBM specific feedback about the 
book. 

Japanese Language Support 

vi 

Appendix D, "Japanese Language Support" on page 1287 contains a list of commands that 
have not been modified to support Japanese characters. 



Special Key Sequences 
You can use the AIX Operating System from any of several different display stations, each 
of which has a different keyboard. In some cases, you must press different keys to perform 
the same function from different keyboards. Throughout this publication both the function 
name (for example, INTERRUPT) and the necessary key sequence on the IBM RT system 
are identified. If you are not using an IBM RT Keyboard, look at your keyboard reference 
chart to find out which keys on your keyboard produce the same function. 

Prerequisite Information 

• IBM RT Managing the AIX Operating System provides instructions for performing 
such system management tasks as adding and deleting user IDs, creating and mounting 
file systems, repairing file system damage, and managing data communications 
facilities. 

• IBM RT Using the AIX Operating System describes using the AIX Operating System 
commands, working with file systems, developing shell procedures, and using data 
communications facilities. 

Related Information 

• IBM RT AIX Operating System Programming Tools and Interfaces describes the 
programming environment of the AIX Operating System and includes information 
about using the operating system tools to develop, compile, and debug programs. In 
addition, this book describes the operating system services and how to take advantage 
of them in a program. This book also includes a diskette that includes programming 
examples, written in C language, to illustrate using system calls and subroutines in 
short, working programs. (Available optionally) 

• IBM RT AIX Operating System Technical Reference is a four-volume set. 

System Calls and Subroutines, describes the system calls and subroutines that a C 
programmer uses to write programs for the AIX Operating System. 

Files and Extensions, contains information about the extensions to the kernel and base 
operating system, including file formats, special files, and GSL subroutines. 

VRM Programming Support, describes the VRM programming environment, including 
the internal VRM routines, VRM floating-point support, use of the VRM debugger, and 
the supervisor call instructions that form the Virtual Machine Interface. 

VRM Device Support, describes device IPL and configuration, minidisk management, 
the virtual terminal and block I/O subsystems, as well as the interfaces to VRM device 
driver and data link control components. This volume also describes the programming 

About This Book vii 



conventions for developing your own VRM code and installing it on the system. 
(Available optionally) 

• IBM RT Using DOS Services provides step-by-step information for using AIX 
Operating System shell. (Available optionally; packaged with IBM RT DOS Services 
Reference) 

• IBM RT DOS Services Reference provides reference information about the AIX 
Operating System shell. This book also includes information on sharing DOS files 
with Personal Computer AT Coprocessor Services, and on the differences between PC 
DOS and shell. (Available optionally; packaged with IBM RT Using DOS Services) 

• IBM RT C Language Guide and Reference provides guide information for writing, 
compiling, and running C language programs and includes reference information about 
C language data structures, operators, expressions, and statements. (Available 
optionally) 

• IBM RT Messages Reference lists messages displayed by the IBM RT and explains how 
to respond to the messages. 

• IBM RT AIX Operating System Text Formatting Guide describes the functions and 
capabilities of NROFF and TROFF to perform text processing tasks. (Available 
optionally) 

• IBM RT Bibliography and Master Index provides brief descriptive overviews of the 
books and tutorial program that support the IBM RT hardware and the AIX Operating 
System. In addition, this book contains an index to the RT and AIX Opera:ting System 
library. 

See IBM RT Bibliography and Master Index for order numbers of IBM RT publications 
and diskettes. 

Ordering Additional Copies of This Book 

viii 

To order additional copies of this publication (without program diskettes), use either of the 
following sources: 

• To order from your IBM representative, use Order Number SBOF-1814. 

• To order from your IBM dealer; use Part Number 27F4354. 

A binder is included with the order. For information on ordering the binder and manual 
separately, contact your IBM representative or your IBM dealer. 



Contents 

VOLUME 1 1 

How to Use the Commands ................................. 3 
Command Input and Output ............................................... 4 
File Name Substitution ................................................... 4 
Syntax Diagrams ........................................................ 5 
Command, Flag, and Parameter Notation ..................................... 8 

Commands ........... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 
acct/* ............................................................... 13 

chargefee ........................................................ 14 
ckpacct ......................................................... 14 
dodisk .......................................................... 14 
lastlogin ......................................................... 15 
monacct ......................................................... 15 
nulladm ......................................................... 15 
prctmp ......................................................... . 
prdaily ......................................................... . 
prtacct ......................................................... . 
remove ... ...................................................... . 
shutacct ........................................................ . 
startup ......................................................... . 
turnacct ........................................................ . 

acctcms 
acctcom ............................................................ . 
acctcon ............................................................ . 

acctconl ....................................................... . 
acctcon2 ....................................................... . 

acctdisk, acctdusg ................................................... . 
acctmerg ........................................................... . 
acctprc ............................................................. . 

acctprcl ........................................................ . 
acctprc2 ........................................................ . 
accton ......................................................... . 

actman ............................................................ . 
adb ................................................................ . 
admin .............................................................. . 
ali .................................................................. . 
anno 

15 
15 
16 
16 
16 
16 
16 
18 
20 
24 
24 
25 
26 
28 
30 
30 
31 
31 
32 
33 
41 
48 
50 

Contents ix 



ap ................................................................... 53 
ar .................................................................. 55 
arithmetic ........................................................... 59 
as .................................................................. 61 
at, batch ............................................................ 63 
audit . ............................................................... 67 
auditapp ............................................................ 69 
auditbin ............................................................. 71 
auditpr .............................................................. 73 
auditselect ........................................................... 76 
auditstream ......................................................... 78 
a uditwrite ........................................................... 80 
awk ........................ , ....................................... 81 
back ................................................................ 87 
backup .............................................................. 88 
banner .............................................................. 94 
basename, dirname ................................................... 95 
be .................................................................. 97 
bdiff ...... ,........................................................ 102 
bellmail ............................................................. 104 
bffcreate ........................................................... 108 
bfs ................................................................ 110 
biod ............................................................... 114 
biodd-cfg ........................................................... 115 
bj ................................................................. 117 
bs ................................................................. 118 
burst .............................................................. 129 
cal ................................................................ 132 
calendar ........................................... . . . . . . . . . . . . . . . .. 134 
cat ................................................................ 137 
cb ................................................................. 139 
cc ................................................................. 140 
cd ................................................................. 150 
cdc ................................................................ 152 
cflow .............................................................. 154 
chgrp .............................................................. 156 
chkcomp ........................................................... 158 
chmod ............................................................. 160 
chngstate .......................................... . . . . . . . . . . . . . . . .. 164 

installc ......................................................... 166 
updatec ........................................................ 167 

chown ............................................................. 169 
chparm ............................................................ 171 
chroot ............................................................. 172 
chtcb .............................................................. 174 
clri ................................................................ 175 

x 



cmp 
col ............................................................... . 
comb 
comm 
comp 
confer 
conflg ............................................................. . 
conflict 
connect ........................................................... . 
cp ................................................................ . 
cpio .............................................................. . 
cpp ............................................................... . 
craps ............................................................. . 
crash ............................................................. . 
cron .............................................................. . 
crontab ........................................................... . 
csh ............................................................... . 
csplit ............................................................. . 
ct ................................................................ . 
ctab .............................................................. . 
ctags ............................................................. . 
cu ................................................................ . 
cut ............................................................... . 
cvid .............................................................. . 
Cvt ............................................................... . 
cw, checkcw ....................................................... . 
cxref .............................................................. . 
date .............................................................. . 
dbx ............................................................... . 
dc ................................................................ . 
dcopy ............................................................. . 
dd ................................................................ . 
defkey ............................................................ . 
del ............................................................... . 
delta .............................................................. . 
deroff ............................................................. . 
devices ............................................................ . 
devnm ............................................................ . 
df ................................................................ . 
diff ............................................................... . 
diff3 .............................................................. . 
diffmk ............................................................ . 
dircmp ............................................................ . 
diskusg ........................................................... . 
display ............................................................ . 
dist ............................................................... . 

Contents 

177 
179 
181 
183 
185 
189 
194 
196 
198 
202 
205 
210 
214 
215 
220 
222 
225 
252 
254 
257 
261 
263 
269 
272 
274 
275 
279 
281 
284 
295 
299 
301 
306 
308 
310 
313 
315 
316 
318 
320 
323 
326 
328 
330 
332 
336 

xi 



domainname ........................................................ 340 
dos ................................................................ 341 
dosdel .............................................................. 345 
dosdir .............................................................. 346 
dosread ............................................................ 348 
doswrite ............................................................ 350 
dp ................................................................. 352 
dsipc ............................................................... 354 
dsldxprof ........................................................... 355 
dspcat ............................................................. 357 
dspmsg ............................................................. 359 
dsstate ............................................................. 361 
dsxla te ............................................................. 363 
du ................................................................. 364 
dump .............................................................. 366 
dumpfmt ........................................................... 368 
echo ............................................................... 369 
ed ................................................................. 371 
edconfig ............................................................ 385 
edit ................................................................ 387 
env ................................................................ 393 
eqn, neqn, checkeq ................................................... 395 
errdead ............................................................ 397 
errdemon ........................................................... 398 
errpt, errpd ......................................................... 400 
errstop ............................................................. 404 
errupdate ........................................................... 405 
ex ................................................................. 407 
expr ............................................................... 412 
factor .............................................................. 416 
ff .................................................................. 417 
file ................................................................ 420 
find ................................................................ 422 
fish ................................................................ 427 
fmt ................................................................ 428 
folder .............................................................. 429 
folders ............................................................. 433 
format ............................................................. 436 
fortune ............................................................. 437 
forw ............................................................... 438 
fptype .............................................................. 444 
fsck, dfsck .......................................................... 445 
fsdb ............................................................... 450 
fuser ............,.................................................. 455 
fwtmp .............................................................. 457 

acctwtmp ....................................................... 458 

xii 



wtmpfix ....................................................... . 
gdev .............................................................. . 

hpd ........................................................... . 
erase ......................................................... . 
hardcopy ...................................................... . 
tekset ......................................................... . 
td ............................................................ . 

ged ............................................................... . 
gencat ............................................................ . 
gend .............................................................. . 
get ............................................................... . 
getopt ............................................................. . 
gettext ............................................................ . 
getty . ............................................................. . 
graph ............................................................. . 
graphics ........................................................... . 
greek ............................................................. . 
grep .............................................................. . 
groups ............................................................ . 
gutil .............................................................. . 

bel ........................................................... . 
cvrtopt ........................................................ . 
gd ............................................................ . 
gtop .......................................................... . 
pd ............................................................ . 
ptog .......................................................... . 
quit . .......................................................... . 
remcom ....................................................... . 
whatis ........................................................ . 
yoo ........................................................... . 

hangman .......................................................... . 
help .............................................................. . 
hp ................................................................ . 
hyphen .. .......................................... '" . '" ......... . 
id ................................................................ . 
inc ............................................................... . 
init ............................................................... . 
install ............................................................. . 
install-mh ......................................................... . 
installp ............................................................ . 

inusave 
inurecv ....................................................... . 
inurest ........................................................ . 
ckprereq ...................................................... . 
mvmd ......................................................... . 

ipcrm 

Contents 

458 
460 
460 
461 
461 
461 
461 
463 
470 
475 
477 
485 
488 
490 
494 
497 
499 
501 
506 
508 
509 
509 
510 
510 
510 
510 
510 
510 
511 
511 
512 
513 
514 
516 
517 
518 
521 
524 
527 
529 
531 
532 
533 
533 
534 
537 

xiii 



xiv 

ipcs ................................................................ 539 
ipctable ............................................................ 544 
istat ............................................................... 545 
join ................................................................ 547 
keyboard ........................................................... 551 
kill ................................................................ 552 
killall .............................................................. 555 
Id ................................................................. 557 
lex ................................................................ 562 
Ii ................................................................... 567 
line ................................................................ 574 
link, unlink ......................................................... 575 
lint ................................................................ 577 
In ................................................................. 581 
locator ............................................................. 583 
login ............................................................... 584 
loginx .............................................................. 587 
logname ............................................................ 589 
logout .............................................................. 590 
lorder .............................................................. 591 
Ip ................................................................. 593 
Is .................................................................. 595 

VOLUME 2 

m4 ............................................................... . 
mail, Mail ......................................................... . 
mailstats .................................... ' ...................... . 
make ............................................................. . 
makedbm ........................................................... . 
makekey ................................................... ' ....... . 
man 
mark 
mdrc 
mesg .............................................................. . 
mhl ................................................................ . 
mhmail ........................................................... . 
mhpath ........................................................... . 
minidisks .......................................................... . 
mkcatdefs .......................................................... . 
mkdir .................................................... ; ........ . 
mkfs .............................................................. . 
mknod ............................................................ . 
mm, checkmm ..................................................... . 
mmt, checkmm ..................................................... . 
moo .............................................................. . 

601 

603 
608 
623 
625 
632 
634 
635 
637 
640 
642 
643 
646 
648 
650 
651 
657 
658 
661 
663 
666 
668 



mount ............................................................ . 
mountd ........................................................... . 
msgchk ........................................................... . 
msh .............................................................. . 
mv ................................................. , ............. . 
mvdir ............................................................. . 
ncheck ............................................................ . 
ndtable ............................................................ . 
newform .......................................................... . 
newgrp ............................................................ . 
news .............................................................. . 
next .............................................................. . 
nfsd .............................................................. . 
nfsstat ............................................................ . 
nice 
nl 
nm ............................................................... . 
nohup ............................................................. . 
nroff, troff ......................................................... . 
number ........................................................... . 
od ................................................................ . 
on ................................................................ . 
open .............................................................. . 
pack .............................................................. . 

peat .......................................................... . 
unpack ... ..................... '" .................. '" ., ....... . 

packf ............................................................. . 
passwd ............................................................ . 
paste ............................................................. . 
pcnfs ............................................................. . 
pdisable, phold ..................................................... . 
pg ........................................ ! •••••••••••••••••••••••• 

pick .............................................................. . 
piobe ............................................................. . 
portmap ........................................................... . 
post .............................................................. . 
pr ................................................................ . 
prev .............................................................. . 
print .............................................................. . 
pr9f .............................................................. . 
profiler ............................................................ . 

prfld .......................................................... . 
prfstat ........................................................ . 
prfdc, prfsnap .................................................. . 
prfpr .......................................................... . 

prompter .......................................................... . 

Contents 

669 
674 
675 
677 
679 
682 
683 
685 
686 
689 
691 
694 
696 
697 
699 
701 
705 
707 
709 
721 
723 
726 
728 
730 
731 
731 
733 
735 
736 
739 
741 
744 
748 
753 
757 
758 
761 
765 
767 
773 
775 
776 
776 
776 
776 
778 

xv 



xvi 

proto ............................................................. . 
prs ............................................................... . 
ps ................................... ' ............................. . 
pstart,penable, pshare, pdelay ........................................ . 
ptx ............................................................... . 
puttext ............................................................ . 
pwck .............................................................. . 
pwd ............................................................... . 
pwtable ........................................................... . 
qdaemon .......................................................... . 
quiz 
rc ................................................................ . 
rcvdist ............................................................ . 
rcvpack ........................................................... . 
rcvstore ............................... ' ............................ . 
rcvtty ............................................................. . 
refile .............................................................. . 
regcmp ............................................................ . 
repl ............................................................... . 
restore ............................................................ . 
rexd .............................................................. . 
rm ............................................................... . 
rmail ............................................................. . 
rmdel ............................................................. . 
rmdir ............................................................. . 
rmf ............................................................... . 
rmm .............................................................. . 
rpcgen ............................................................ . 
rpcinfo ............................................................. . 
rstatd ............................................................. . 
runacct ........................................................... . 
runcat ............................................................ . 

rup ............................................................... . 
rusers ............................................................. . 
rusersd ............................................................ . 
rwall .............................................................. . 
rwalld ............................................................. . 
sact .............................................................. . 
sadc .............................................................. . 

sag 
sar 

sal ........................................................... . 
sa2 ........................................................... . 

scan .............................................................. . 
sccsdiff ............................................................ . 
sdb ............................................................... . 

780 
781 
786 
791 
794 
796 
798 
800 
801 
802 
803 
806 
808 
810 
812 
815 
817 
820 
821 
826 
832 
833 
836 
837 
838 
839 
841 
843 
845 
847 
848 
852 
854 
856 
858 
859 
861 
862 
863 
864 
864 
865 
867 
871 
874 
875 



sdiff ............................................................... 883 
secure ............................................................. 885 
sed ................................................................ 887 
send ............................................................... 893 
sendmail ........................................................... 897 
setdma ............................................................. 910 
setmnt ............................................................. 911 
sh ................................................................. 913 
shell ............................................................... 938 
shlib ............................................................... 939 
show . .............................................................. 942 
showmount ......................................................... 945 
shutdown ........................................................... 946 
size ................................................................ 949 
skulk~r ............................................................ 951 
sleep ............................................................... 952 
slocal .............................................................. 954 
sno ................................................................ 956 
sort ............................................ . . . . . . . . . . . . . . . . . . .. 958 
sortm .............................................................. 965 
sound .............................................................. 967 
spell ............................................................... 969 
spline .............................................................. 972 
split ............................................................... 974 
splp ................................................................ 975 
spost ............................................................... 978 
spray .............................................................. 981 
sprayd ............................................................. 983 
stat ................................................................ 984 
strip .............................................................. 1017 
stty ............................................................... 1018 
su ................................................................ 1026 
sum .............................................................. 1029 
sync .............................................................. 1030 
sysck ............................................................. 1031 
syslogd ............................................................ 1037 
tab, untab ......................................................... 1040 
tabs .............................................................. 1041 
tail ............................................................... 1044 
tapechk ........................................................... 1047 
tar ............................................................... 1048 
tbl ................................................................ 1053 
tc .............................. ".................................. 1056 
tctl ...... :........................................................ 1058 
tee ............................................................... 1060 
termdef ........................ ". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1062 

Contents xvii 



test ................................................................ 1064 
tic ............................... '................................. 1067 
time .............................................................. 1068 
timex ............................................................. 1069 
tlog ............................................................... 1071 
tlogger ............................................................ 1072 
toc ............................................................... 1074 

dtoc .......................................................... 1074 
ttoc ........................................... . . . . . . . . . . . . . . .. 1075 
vtoc .......................................................... 1075 

touch ............................................................. 1077 
tplot .............................................................. 1079 
tput .............................................................. 1081 
tr ................................................................ 1083 
trace .............................................. . . . . . . . . . . . . . . .. 1086 
trcrpt ............................................................. 1091 
trcstop ............................................................ 1093 
trcupdate .......................................................... 1094 
trdiag ............................................................. 1097 
true .............................................................. 1099 
tsh ............................................................... 1100 
tsort .............................................................. 1102 
ttt ................................................................ 1104 
tty ............................................................... 1105 
turnon ............................................................ 1107 
tvi ................................................................ 1108 
ugtable ............................................................ 1109 
umask ............................................................ 1110 
umount, unmount .................................................. 1112 
uname ............................................................ 1114 
unget ............................................................. 1116 
uniq .............................................................. 1118 
units .............................................................. 1119 
updatep ........................................................... 1122 

inudocm ....................................... . . . . . . . . . . . . . . .. 1125 
inuupdt ....................................................... 1127 

users, adduser ................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1129 
uucpadm ....................................... "................... 1133 
uucheck ........................................................... 1137 
uucico ............................................................ 1139 
uucleanup ......................................................... 1141 
uucp ....................................................... .... . . . .. 1144 

Path Names Used with uucp ........................................ 1145 
Source and Destination File Names .................................. 1145 
Permissions ..................................................... 1146 

uulog ............................................................. 1149 

xviii 



uuname ........................................................... 1151 
uupiek ............................................................ 1153 

File-Handling Options .......................... . . . . . . . . . . . . . . . . . .. 1154 
uusched ........................................................... 1156 
uustat ............................................................ 1158 
uuto .............................................................. 1162 
uutry, Uutry, uukiek ................................................ 1164 
uux ............................................................... 1166 
uuxqt ............................................................. 1172 
val ............................................................... 1175 
vary off ............................................................ 1177 
varyon ............................................................ 1180 
ve ................................................................ 1182 
verify ............................................................. 1186 
vi, vedit, view ...................................................... 1187 
vmh .............................................................. 1203 
vrm2rtfont ...................................... . . . . . . . . . . . . . . . . . .. 1205 
vrmconfig ......................................................... 1206 
wall .............................................................. 1208 
watch ............................................................. 1209 
we ................................................................ 1211 
what .............................................................. 1213 
whatnow .......................................................... 1215 
who .............................................................. 1219 
whom ............................................................. 1222 
write ........................................... . . . . . . . . . . . . . . . . . .. 1225 
writesrv ........................................................... 1230 
wump ............................................................. 1231 
xargs ............................................................. 1232 
xdbx .............................................................. 1236 
yacc .............................................................. 1237 
ypbind ............................................................ 1239 
ypcat ............................................................. 1241 
ypinit ............................................................. 1243 
ypmatch .......................................................... 1245 
yppasswd .......................................................... 1247 
yppasswdd ......................................................... 1249 
yppoll ............................................................. 1251 
yppush ............................................................ 1252 
ypset ............................................................. 1254 
ypserv ............................................................ 1256 
ypw hieh ........................................................... 1258 
ypxfr ............................................................. 1260 
300 ............................................................... 1262 
4014 ............................................................... 1264 
450 ............................................................... 1265 

Contents xix 



xx 

Appendix A. AIX Device Table 

Appendix B. Program Cross-Reference ..................... . 

Appendix C. Syntax Diagram Guide ....................... . 

1267 

1269 

1277 

Appendix D. Japanese Language Support .................... 1287 

Glossary ............................................. 1291 

Task Index .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. T ASK-1 

Index ............................................ INDEX-1 



Figures 

1. SCCS Header Flags ................................................. 44 
2. SID Determination ................................................ 481 
3. Mailbox Commands ................................................ 611 
4. Mail Editor Commands ............................................. 617 
5. Binary Options ................................................... 619 
6. Valued Options ................................................... 620 
7. Delta Table Keywords .............................................. 782 
8. Header Flag Keywords ............................................. 783 
9. Other Keywords .................................................. 784 

10. Configuration Options .............................................. 905 
11. tbl Column and Item Specifiers ...................................... 1054 
12. Configuration File Parameters ...................................... 1129 
13. AIX Standard Devices (Special Files) ................................. 1268 

Figures xxi 



xxii 



VOLUME 1 

1 



2 



How to Use the Commands 

This section contains a description of: 

• Command input and output 

• File name substitution by the shell 

• Syntax diagrams 

• Command, flag, and parameter notation. 

To help you determine which command you want to use, see "Task Index" on page TASK-I. To help 
you determine in which program a command is located, see Appendix B, "Program Cross-Reference" 
on page 1269. 

How to Use the Commands 3 



Command Input and Output 

Many commands take their input from standard input and write their output to standard output. 
By default, standard input comes from the keyboard, and standard output goes to the display. It is 
important to remember this information as you read the command descriptions since they describe 
the default action. In this context, the verb display means "write to the standard output." Any 
command that reads standard input and writes to standard output can have its input or output 
redirected to a file and can be used in a pipeline, where the standard output of a previous command 
is directed to the standard input of the next command. For more information on pipelines, see "sh" 
on page 913. 

There are a few commands that must have a file name supplied or that must read standard input. 
You can see what a particular command can read by looking at the "syntax diagram at the beginning 
of the description of the command. For instructions on interpreting syntax diagrams, see "Syntax 
Diagrams" on page 5. 

File Name Substitution 

When file is supplied as an argument to either a command or a flag, you can automatically produce a 
list of file name arguments by specifying a pattern for the shell to match with file names in a 
directory. Most characters in such a pattern match themselves, but you can also use some special 
pattern-matching characters in your pattern. These special characters are: 

* 
? 

[ . . . ] 
[! . . . ] 

Matches any string, including the null string. 

Matches anyone character. 

Matches anyone of the characters enclosed in square brackets. 

Matches any character other than one of the characters that follow the exclamation mark 
within square brackets. 

Inside square brackets, a pair of characters separated by a - (minus) specifies a set of all characters 
that collate within the range of that pair, as defined by the variable NLCTAB or NLFILE, so that 
[a-dy] is equivalent to [abcdy] if only band c collate between a and d. 

Japanese Language Support Information 

You can also use character classes inside square brackets by enclosing the character class name 
between a [: and a : ] inside the square brackets. For example, [[: alp h a: ] ] matches any 
alphanumeric character. The character classes recognized are: 

[:lower:] All lowercase letters. 

4 



[:upper:] 

[:alpha:] 

[:digit:] 

All uppercase letters. 

All letters. 

Digits 0 - 9. 

[:alnum:] All letters and digits. 

[:print:] All printable characters. 

[:punct:] All punctuation characters. 

[:space:] Space, tab, form feed, or carriage return. 

[:jalpha:] SJIS Roman characters. 

[:jdigit:] SJIS Arabic numerals. 

[:jpunct:] SJIS punctuation characters. 

[:jparen:] SJIS parentheses characters. 

[:jkanji:] 

[:jhira:] 

[:jkata:] 

SJIS kanji characters. 

SJIS hiragana characters. 

SJIS and half-width katakana characters. 

1--__________ End of Japanese Language Support Information __________ --1 

U sing pattern-matching characters in file names on the command line has some restrictions. If the 
first character of a file name is a . (dot), it can be matched only by a pattern that begins with a dot. 
For example, *fi 1 e matches the file names myfi 1 e and yourfi 1 e, but not. myfi 1 e or .yourfi 1 e. 
Use the pattern. *fi 1 e to match these file names. 

If a pattern does not match any file names, the pattern itself is returned as the result of the match. 

Note: File and directory names should not contain the characters *, ?, [, or ] because this may 
create infinite loops during pattern matching attempts. 

Syntax Diagrams 

Before each command discussion in the "Commands" section is a syntax diagram. These diagrams 
are designed to provide information about how to enter the command on the command line. A syntax 
diagram can tell you: 

• Which flags can be entered on the command line 
• Which flags must take parameters 
• Which flags have optional parameters 
• Default values of flags and parameters, if any 
• Which flags can and cannot be entered together 

How to Use the Commands 5 



• Where you must enter flags or parameters and where you have a choice 
• Where you can repeat flag and parameter sequences. 

This command reference uses the following conventions in the syntax diagrams: 

• Diagram items that must be entered literally on the command line are in bold. These items 
include the command name, flags, and literal characters. 

• Variable diagram items that must be replaced by a name are in italics. These items include 
parameters that follow flags and parameters that the command reads, such as files and directories. 

• Default values that do not have to be entered are in the normal font on a bold path. 

The following diagram is an example that illustrates the conventions used in the syntax diagrams. 
Each part of the diagram is labeled. An explanation of the labels follows the diagram. 

ill COMMAND NAME @l DEFAULT UNE 

1 I OOooro 
.. A \NEXTUNE 

command~8~ 
ac eg cT 

)'b d ~, 'lID REQUIRED ITEM 

~ SINGLE CHOICE BOX [1] REPEAT ARROW 

r7l ,/IID DEFAULT VALUE / [IQ] INPUT OR OUTPUT t2J CONTINUE DIAGRAM 

~ O\VEvalue\ ;---\. , 

:-ZD-J. y ~Eparm~ filer 
~ parm 

\ 
rID OPTIONAL PARAMETER 

(j] FOOTNOTE 

1 Do not put a blank between these items. 
OL805370 

You interpret the diagram as follows: 

1 COMMAND NAME The first item in the diagram is the name of the command you want to 
invoke. It is in bold, so it must be entered exactly as it appears in the 
diagram. 

2 SINGLE CHOICE BOX 

6 

After the command name, the path branches into two paths. You can 
follow either path. 

If you follow the lower path, you encounter a box with the words one of 
over it. You can choose only one item from this box. 



3 DEFAULT LINE If you follow the upper path, you bypass the single choice box, and enter 
nothing. The bold line around the box is a default line, which means 
that you do not have to enter anything from that part of the diagram. 
Exceptions are usually explained under "Description." One important 
exception, the blank default line around input and output files, is 
explained in item 10. 

4 REPEAT ARROW When you follow a path that takes you to a box with an arrow around it, 
you must choose at least one item from the box. Then you can either 
follow the arrow back around and continue to choose items from it, or 
you can continue along the path. When following the arrow around just 
the box (rather than an arrow that includes several branches in the 
diagram), do not choose the same item more than once. 

5 R EQU I R ED I T EM Following the branch with the repeat arrow is a branch with three 
choices and no default line around them. This means that you must 
choose one of A, B, or C. 

6 GO TO NEXT LIN E If a diagram is too long to fit on one line, this character tells you to go to 
the next line of the diagram to continue entering your command line. 
Remember, the diagram does not end until you reach the vertical mark. 

7 CONTINUE DIAGRAM This character shows you where to continue with the diagram after it 
breaks on the previous line. 

S OPTIONAL PARAMETER If a flag can but does not have to take a parameter, the path branches 
after the flag. If you cannot enter a space between the flag and 
parameter, you are told in a footnote. 

9 DE FA U LTV A L U E Often, a command has defa ul t values or actions that it will follow if you 
do not enter a specific item. These default values are indicated in 
normal font in the default line if they are equivalent to something you 
could enter on the command line (for example, a flag with a value). If 
the default is not something you can enter on the command line, it is not 
indicated in the diagram. However, it is discussed under "Flags." 

Note: Default values are included in the diagram for your information. 
Do not enter them on the command line. 

10 I NPUT OR OUTPUT A command that can read either input files or standard input has an 
empty default line above the file parameter. If the command can write its 
output to either an output file or to standard output, it is also shown 
with an empty default line above the output file parameter. If a 
command can read only from standard input, an input file is not shown 
in the diagram, and standard input is assumed. If a command writes only 
to standard output, an output file is not shown in the diagram, and 
standard output is assumed. When you must supply a file name for input 
or output, the file parameter is included in the diagram without an empty 
default line above it. 

How to Use the Commands 7 



11 FOOTNOTE If a command has special requirements or restrictions, a footnote calls 
attention to these differences. 

Following are examples of valid ways this command can be entered based on this syntax diagram. 

command name A 
command name C 
command name a B 
command name d B 
command name e A 
command name e 9 f A 
command name C 0 
command name C 08 
command name A E7 
command name B myfile 
command name a e 9 B 03 E6 myfile 
command name d f e h C 0 myfile 
When the order of flags is important, it is indicated in the diagram, under "Flags," or in both places. 
Otherwise, the flags can be entered in any order. With this in mind, an additional example of how to 
enter this command is: 

command name E9 a 0 9 A h f myfile 
For more detailed information on syntax diagrams, see Appendix C, "Syntax Diagram Guide" on 
page 1277. 

Command, Flag, and Parameter Notation 

The following type style conventions are used in command descriptions to distinguish different kinds 
of information: 

bold 

italics 

[ ] 

Commands, flags, and other items in bold are to be entered literally. 

Command parameters, flag parameters, and other items in italics are items for which you 
substitute an appropriate value in that position on the command line. For example, if you 
see file, you should type in the name of a file in that position. 

Items in brackets are optional. The only exception is brackets that are in bold. Brackets 
in bold are part of what should be entered literally. 

Items followed by an ellipsis can be repeated. Thus, if you see file . .. , you can type 
several file names separated by blanks. 

Using these conventions, the following string: 

-Dname[ = value] 

8 



shows that, with the -D flag, the name parameter is required but assigning a value to name is 
optional. The following are valid ways to specify this flag and parameter combination: 

-Daxis 
-Daxis=lO 
The next string shows a parameter that can be replaced by several values: 

-1 file . . . 

The following are valid ways to enter the -I flag: 

-1 memo letter 
-1 memo 
-1 letter 

How to Use the Commands 9 



10 



Commands 

This section contains reference information for the AIX commands. This information may include 
the purpose of a command, one or more syntax diagrams to illustrate how a command can be entered 
on a command line, a description of how a command works, descriptions of command flags and 
subcommands, a list of related files, and cross references to related information. 

Commands 11 



12 



acct/* 

Purpose 

Provides accounting shell procedures. 

Syntax 

/usr/lib/acct/chargefee - user - number--l 

1000 

/usr/lib/acct/ckpacct -C \ I 

numblocksJ 

/usr/lib/acct/dodisk ~ 
\ -oj \!!!.d 

/usr /Iib/ acctjlastlogin --l 

/usr /lib/ aeel/monaee! ~ )~ 
number1 

/usr/lib/acct/nulladm T file -r 

/usr /Iib/ acct/prctmp --l 

~mmdd~ /usr/lib/aee!/prdaily --e 

1 The default number is the current month. 
2 The defaultmmddis the current day. 

acct/~ 

OL805236 

OL805237 

Commands 13 



acct/* 

/usr/lib/acct/prlaccl --I-I fieldspec U . \, 
I-v I ~'headlng·r 

/usr/lib/acct/remove --l 

/usr/lib/acct/shutacct .... ~ I 
~'reason' r 

/usr/lib/acct/startup --l 

/ usr /Iib/ acctjturnacct -

OL805238 

Description 

14 

Note: You should not share accounting files among nodes in a Distributed Services 
system. Each node should have its own copy of the various accounting files. 
chargefee 
The chargefee command charges the specified number of units to the specified user. 
number can have an integer or decimal value. It writes a record to /usr/adm/fee, to be 
merged with other accounting records by the runacct command. 

ckpacct 
The ckpacct command checks the size of /usr/adm/pacct. If the size exceeds the number 
specified in numblocks, ckpacct invokes turnacct switch. (The default value for 
numblocks is 1000.) If the number of free disk blocks in the /usr file system falls below 500, 
ckpacct automatically turns off the collection of process accounting records by invoking 
turnacct off. When 500 blocks are again available, accounting is activated again. This 
feature is sensitive to how frequently ckpacct is run (usually by cron). 
dodisk 
The dodisk command performs the disk-usage accounting functions. cron normally runs 
this command periodically. By default, it does disk accounting on the special files whose 
stanzas in /etc/filesystems contain the attribute account = true. If you specify the -0 

flag, it does a slower version of disk accounting by login directory. 

The file parameter specifies the one or more file system names where disk accounting is to 
be done. If you specify any file names, disk accounting is done on only these file systems. 
If you do not specify -0, file names should be the special file names of mountable file 
systems. If you specify both -0 and file names, the files should be mount points of mounted 
file systems. 



acct/* 

lastlogin 
The lastlogin command updates the file /usr/adm/acct/sum/loginlog to show the last 
date each user logged in. runacct normally calls this command. 

monacct 
The monacct command performs monthly (or periodic) accounting. cron should run this 
command once each month or accounting period. number indicates the month or period to 
process. The default number is the current month. This default is useful if monacct is 
run by cron on the first day of each month. The monacct command creates summary files 
in /usr/adm/acct/fiscal and restarts summary files in /usr/adm/acct/sum. 

Daily reports are deleted (and thus inaccessible) each time monacct runs. 

nulladm 
The nulladm command creates file, assigns it permission code 664, and ensures that its 
owner and group are adm. (See "chmod" on page 160 for an explanation of file 
permissions.) Various accounting shell procedures call nulladm. 

prctmp 
The prctmp command displays the session record file created by the acctconl command 
(normally /usr/adm/acct/nite/ctmp). 

prdaily 
The prdaily command formats a report of the day's accounting data. Use mmdd to specify 
a date other than the current day. The report resides in /usr/adm/acct/sum/rprtmmdd 
where mmdd specifies the month and day of the report. runacct invokes this command to 
format a report of the previous day's accounting data. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

Flags 

-c Reports exceptional resource usage by command, and may be used on the current 
day's accounting data only. 

-I Reports exceptional usage by login ID for the specified date. 

Commands 15 



acct/* 

Files 

16 

prtacct 
The prtacct command formats and displays any total accounting (tacct) file. You can 
specify a heading for the report by enclosing it in II " (double quotation marks). 

Flags 

-ffie Zdspec Selects fields to be displayed, using the field selection mechanism of 
acctmerg. 

-v Produces verbose output in which more precise notation is used for 
floating-point numbers. 

remove 
The remove command deletes all /usr/adm/acct/sum/wtmp*, 
/usr/adm/acct/sum/pacct*, and /usr/adm/acct/nite/lock* files. 

shutacct 
The shutacct command turns process accounting off and adds a "reason" record to 
/usr/adm/wtmp. It is usually invoked during a system shutdown. 

startup 
The startup command turns on the accounting functions when the system is started up. It 
should be called by the /etc/rc command file. 

turnacct 
The turnacct command provides an interface to accton for turning process accounting on 
or off. 

The switch flag turns accounting off, moves the current /usr/adm/pacct to the next free 
name in /usr/adm/pacctincr, where incr is a number starting at 1 and increased by one 
for each additional pacct file. After moving the pacct file, turnacct turns accounting 
back on. 

This command is usually called by ckpacct, which in turn is called by cron, keeping the 
pacct file down to a manageable size. 

/usrjadm/fee 
/usr j adm/pacct 
/usr j adm/pacct* 

Accumulator for fees charged to login names. 
Current file for process accounting. 
U sed if pacct gets large and during running of the daily 
accounting procedures. 



/usr/adm/wtmp 
/usr/lib/acct/ptelus.awk 

/usr/lib/acct/ptecms.awk 

/usr/adm/acct/nite 
/usr/lib/acct 
/usr/adm/acct/sum 

Related Information 

acct/* 

Login/logout history file. 
Shell procedure that calculates the limits for exceptional 
usage by login ID. 
Shell procedure that calculates the limits of exceptional 
usage by command name. 
Working directory. 
Holds all accounting commands. 
Summary directory. 

The following commands: "acctcms" on page 18, "acctcom" on page 20, "acctcon" on 
page 24, "acctmerg" on page 28, "acctprc" on page 30, "chmod" on page 160, "cron" on 
page 220, "fwtmp" on page 457, and "runacct" on page 848. 

The acct system call and the acct, utmp, and filesystems files in AIX Operating System 
Technical Reference. 

"Running System Accounting" in Managing the AIX Operating System. 

Commands 17 



acctcms 

acctcms 

Purpose 

Produces command usage summaries from accounting records. 

Syntax 

/usr /Iib/ acctj acctcms 

OL805421 

Description 

18 

The acctcms command reads the specified files. It adds together all records for identically 
named processes, sorts them, and writes them to standard output in a binary format. Files 
are usually in the acct file format described in AIX Operating System Technical Reference. 

'Vhen you use the -0 and -p flags together, acctcms produces a report that combines 
prime- and nonprime-time. All the output summaries are of total usage except for number 
of times run, CPU minutes, and real minutes, which are split into prime and nonprime 
minutes. 

A typical sequence for performing daily command accounting and for maintaining a 
running total is: 

acctcms file . .. > today 
cp total prey; oustotal 
acctcms -s today previoustotal > total 
acctcms -a -s today 



Flags 

acctcms 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

-a Displays output in ASCII summary format rather than binary summary format. Each 
output line contains the command name, the number of times the command was run, 
its total kcore-time, its total CPU time, its total real time, its mean memory size (in 
K bytes), its mean CPU time per invocation of the command, and its CPU usage 
factor. The listed times are all in minutes. acctcms normally sorts its output by 
total kcore-minutes. The unit kcore-minutes measures the amount of storage used 
(in K-bytes) multiplied by the amount of time it was in use. 

-c Sorts by total CPU time rather than total kcore-minutes. 

-j Combines under the heading ***other all commands called only once. 

-n Sorts by the number of times the commands were called. 

-0 Displays a command summary of nonprime-time commands only. You can use this 
flag with only the -a flag. 

-p Displays a command summary of prime-time commands only. You can use this flag 
with only the -a flag. 

-s Assumes that any named files that follow this flag are already in binary format. 

-t Processes all records as total accounting records. The default binary format splits 
each field into prime- and nonprime-time sections. . 

Related Information 

The following commands: "acct/*" on page 13, "acctcom" on page 20, "acctcon" on 
page 24, "acctmerg" on page 28, "acctprc" on page 30, "fwtmp" on page 457, and 
"runacct" on page 848. 

The acct system call and the acct and utmp files in AIX Operating System Technical 
Reference. 

"Running System Accounting" in Managing the AIX Operating System. 

Commands 19 



acctcom 

acctcom 

Purpose 

Displays selected process accounting record summaries. 

Syntax 

acctcom -c seconds -e time 
-g group -E time 
-H factor -s time 
-I num -5 time 
-I line 
-n pattern 
-0 seconds 
-u user 

OL805418 

Description 

20 

The acctcom command reads from specified files, from standard input, or from 
/usr/adm/pacct and writes records (selected by flags) to standard output. The input file 
format is described under acct in AIX Operating System Technical Reference. 

If you do not specify any file parameters and if standard input is assigned to a work station 
or to /dev/null (as it is when a process runs in the background), acctcom reads 
/usr/adm/pacct instead of standard input. 

By default, if you spe'cify any file parameters, acctcom reads each chronologically by 
process completion time. Usually, /usr/adm/pacct is the current file that you want 
acctcom to examine. Because the ckpacct procedure keeps this file from growing too 
large, a busy system may have several pacct files. All but the current file have the 
following path name: 

/usr/adm/pacct? 

where? (question mark) is an integer incremented each time a new file is created. 



Flags 

acctcom 

Each record represents one completed process. The default display consists of the 
command name, user name, tty name, start time, end time, real seconds, CPU seconds, and 
mean memory size (in kilobytes). These default items have the following headings in the 
output: 

COMMAND 
NAME 

START 
USER TTYNAME TIME 

END REAL CPU 
TIME (SECS) (SECS) 

MEAN 
SIZE(K) 

By using the appropriate flags, you can also display the fork/exec flag (F), the system exit 
value (STAT), the ratio of total CPU time to elapsed time (HOG FACTOR), the product of 
memory used and elapsed time (KCORE MIN), the ratio of user time to total (system and 
user) time (CPU FACTOR), the number of characters transferred in input/output operations 
(CHARS TRNS FD), and the total number of blocks read or written (BLOCKS READ). 

If a process ran with superuser authority, its name is prefixed with a # (pound sign). If a 
process is not assigned to a known work station (for example, when cron runs it), a ? 
(question mark) appears in the TTYNAME field. 

Notes: 

1. The acctcom command only reports on processes that have finished. Use the ps 
command to examine active processes. 

2. If a specified time is later than the current time, it is interpreted as occurring on the 
previous day. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

-a 

-b 

Shows some average statistics about the processes selected. The statistics 
will be displayed after the output records. 

Reads backwards, showing the most recent commands first. This flag has no 
effect when acctcom reads standard input. 

-C seconds Shows only processes whose total CPU time (system time + user time), 
exceeds number of seconds. 

-e time 

-E time 

Selects processes existing at or before the specified time. You can use the 
NLTIME environment variable to specify the order bf hours, minutes, and 
seconds. The default order is hh[mm[ss]]. 

Selects processes ending at or before the specified time. You can use the 
NLTIME environment variable to specify the order of hours, minutes, and 
seconds. The default order is hh[mm[ss]]. If you specify the same time for 

Commands 21 



acctcom 

-f 

-g group 

-h 

-H factor 

-i 

-I num 

-k 

-I line 

-m 

-n pattern 

-0 file 

both the -E and -8 flags, acctcom displays the process that existed at the 
specified time. 

Displays the fork/exec flag and the system exit value columns in the output. 

Selects processes belonging to group. You can specify either the group ID or 
the group name. 

Instead of mean memory size, shows the fraction of total available CPU time 
consumed by the process while it ran (hog factor). This factor is computed 
as: 

(total CPU time)/(elapsed time) 

Shows only processes that exceed factor. (See the -h flag for a discussion of 
how this factor is calculated.) 

Displays columns showing the number of characters transferred in read or 
write operations (the I/O counts). 

Shows only processes transferring more than num characters. 

Instead of memory size, shows total kcore minutes. 

Shows only processes belonging to work station /dev/line. 

Shows mean main memory size. This flag is on by default. Specifying the -h 
or -k flags turns off -m. 

Shows only commands matching pattern, where pattern is a regular expression 
like those in the ed command (see page 371), except that here you can use a 
+ (plus sign) as a special symbol for one or more occurrences of the 
preceding character. 

Copies selected process records to file, keeping the input data format. This 
flag suppresses writing to standard output. 

-0 seconds Shows only processes with CPU system time exceeding seconds. 

-q 

-r 

-8 time 

-8 time 

22 

Does not display any output records; just displays the average statistics that 
are displayed with the -a flag. 

Shows CPU factor. This factor is computed as: 

(user-time) / (system-time + user-time). 

Shows only those processes that existed on or after the specified time. You 
can use the NLTIME environment variable to specify the order of hours, 
minutes, and seconds. The default order is hh[mm[ss]]. 

Shows only those processes starting at or after the specified time. You can 
use the NLTIME environment variable to specify the order of hours, minutes, 
and seconds. The default order is hh[mm[ss]]. 



Files 

-t 

-u user 

-v 

acctcom 

Shows separate system and user CPU times. 

Shows only processes belonging to user. For user, you can give a user ID, a 
login name that is converted to a user ID, a # to select processes run with 
superuser authority, or a ? to select processes associated with unknown user 
IDs. 

Eliminates column headings from the output. 

/usr/adm/pacct 
/etc/passwd 
/etc/group 

Current process accounting file. 
User names and user IDs. 
Group names and group IDs. 

Related Information 

The following commands: "acctdisk, acctdusg" on page 26, "acctcms" on page 18, 
"acctcon" on page 24, "acctmerg" on page 28, "acctprc" on page 30, "acct/*" on 
page 13, "fwtmp" on page 457, "ps" on page 786, "runacct" on page 848, and "su" on 
page 1026. 

The acct system call, the acct and utmp files and the environment miscellaneous facility 
in AIX Operating System Technical Reference. 

"Running System Accounting" and "Overview of International Character Support" in 
Managing the AIX Operating System. 

Commands 23 



acctcon 

acctcon 

Purpose 

Performs connect-time accounting. 

Syntax 

/usr /Iib/ acctj acctcon 1 

/usr/lib/acctjacctcon2 --l 

OL805233 

Description 

24 

acctconl 
The acctconl command converts a sequence of login and logoff records (read from 
standard input) to a sequence of login session records (written to standard output). its 
input should normally be redirected from /usr/adm/wtmp. 

The acctconl command displays, in ASCII format, the login device, user ID, login name, 
prime connect time (seconds), nonprime connect time (seconds), session starting time 
(numeric), and starting date and time (in date/time format). It also maintains a list of ports 
on which users are logged in. When it reaches the end of its input, it writes a session 
record for each port that still appears to be active. It normally assumes that its input is a 
current file, so that it uses the current time as the ending time for each session still in 
progress (see the -t flag on page 25). 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 



Files 

acctcon 

Flags 

-1 file Writes to file a line-usage summary showing the line name, the number of minutes 
used, the percentage of total elapsed time used, the number of sessions charged, the 
number of logins, and the number of logoffs. This file helps track line usage and 
identify bad lines. All hang-ups, terminations of login, and terminations of the 
login shell cause the system to write logoff records, so the number of logoffs is 
often much higher than the number of sessions. 

-0 file Writes to file an overall record for the accounting period, giving starting time, 
ending time, number of restarts, and number of date changes. 

-p Displays input only, showing line name, login name, and time in both numeric and 
date/time formats. 

-t Uses the last time found in the input as the ending time for any current processes 
instead of the current time. This is necessary in order to have reasonable and 
repeatable values for noncurrent files. 

acctcon2 
The acctcon2 command converts a sequence of login session records, produced by the 
acctconl command, into total accounting records. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

/usr/adm/wtmp Login/logoff history file. 

Related Information 

The following commands: "acctdisk, acctdusg" on page 26, "acctcms" on page 18, 
"acctcom" on page 20, "acctmerg" on page 28, "acctprc" on page 30, "acct/*" on 
page 13, "fwtmp" on page 457, "init" on page 521, "login" on page 584, and "runacct" 
on page 848. 

The acct system call and the acct and utmp files in AIX Operating System Technical 
Reference. 

"Running System Accounting" in Managing the AIX Operating System. 

Commands 25 



acctdisk 

acctdisk, acctdusg 

Purpose 

Performs disk-usage accounting. 

Syntax 

/usr/lib/acct/acctdisk --l 

)~
-p letc/pa=rswd 

/usr/lib/acct/acctdusg -.I -u 
\ file -p file 

OL805192 

Description 

26 

acctdisk 
The acctdisk command reads lines from standard input that contain a user ID, the user's 
login name, and the number of disk blocks occupied by the user's files. It converts these 
lines to total accounting records that can be merged with other accounting records and 
writes those records to standard output. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

acctdusg 
The acctdusg command reads a list of file names from standard input (usually piped from 
a find / -print command), computes disk resource usage (including indirect blocks) using 
the login name of the owner of the files, and writes the results to standard output. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 



Files 

acctdisk 

Flags 

-p file Searches file for login names and numbers, instead of searching /etc/passwd. 

-u file Places in file records of file names for which it "does not charge. 

/etc/passwd 
/usr/lib/acct 

U sed to convert login names to user IDs. 
Directory holding all accounting commands. 

Related Information 

The following commands: "acct/*" on page 13, "acctcms" on page 18, "acctcom" on 
page 20, "acctcon" on page 24, "acctmerg" on page 28, "acctprc" on page 30, "fwtmp" 
on page 457, and "runacct" on page 848. 

The acct system call and the acct and utmp files in AIX Operating System Technical 
Reference. 

"Running System Accounting" in Managing the AIX Operating System. 

Commands 27 



acctmerg 

acctmerg 

Purpose 

Merges total accounting files. 

Syntax 

/usr /Iib/ aect/ acetmerg 
-a -j 
-h -p 2 

-v fieldspec 

1 aectmerg always reads standard imput in addition to any named files. 
200 not put 0 blank between these items. 

OL805234 

Description 

28 

The acctmerg command reads records from standard input and up to nine additional files, 
all in the tacct binary format or the tacct ASCII format. It merges these by adding 
records with keys (normally user ID and name) that are identical, and expects the input 
records to be sorted by those key fields. It writes these merged records to standard output. 

The optional fieldspecs allow you to select input or output fields. A field specification is a 
comma-separated list of fields or field ranges. Field numbers are in the order specified in 
the tacct file in AIX Operating System Technical Reference, with array sizes, except for the 
ta_name characters, taken into account. For example, - h2-3, 7 , 15-13,2 displays the 
login name, prime CPU and connect times, fee, queueing system, and disk usage data, and 
the login name again, in that order, with column headings. The default specification is 
"all fields" (1-18 or 1-), which produces very wide output lines containing all the 
available accounting data. 

Queueing system, disk usage, or fee data can be converted into tacct records using the 
-ifieldspec argument. For example, disk accounting records, produced by acctdisk, consist 
of lines containing the user ID, login name, number of blocks, and number of disk samples 
(always one). A file, dacct, containing these records can be merged into an existing total 
accounting file, tacct, with: 

acctmerg -il-2,13,18 <dacct I. acctmerg tacct >output 



acctmerg 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

Flags 

-ar!ieldspec] Produces output in the form of ASCII records. 

-hr!ieldspec] Displays column headings. This flag implies -a but is effective with -p or -v. 

-ir!ieldspec] Expects input files composed of ASCII records. 

-pr!ieldspec] Displays input without processing. 

-t Produces a single record that contains the totals of all input. 

-u Summarizes by user ID rather than by user name. 

-vr!ieldspec] Produces output in ASCII format, with more precise notation for 
floating-point numbers. 

Example 

The following sequence is useful for making repairs to any file in tacct format: 

acctmerg -v <filel >file2 
edit file2 as desired ... 

acctmerg -a <file2 >filel 

Related Information 

The following commands: "acct/*" on page 13, "acctcms" on page 18, "acctcom" on 
page 20, "acctcon" on page 24, "acctdisk, acctdusg" on page 26, "fwtmp" on page 457, 
"acctprc" on page 30, and "runacct" on page 848. 

The acct system call and the acct and utmp files in AIX Operating System Technical 
Reference. 

"Running System Accounting" in Managing the AIX Operating System. 

Commands 29 



acctprc 

acctprc 

Purpose 

Performs process accounting. 

Syntax 

~
/etc/Pas:rWd 

/usr /lib/ acct/ acctprc 1 
file 

/usr/lib/acct/acctprc2 ~ 

~
/usr/adm/:yacct 

/ usr /Iib/ acct/ accton 
file 

OL805235 

Description 

30 

acctprcl 
The acctprcl command reads records from standard input that are in the acct format 
(described in AIX Operating System Technical Reference), adds the login names that 
correspond to user Ins, and then writes an ASCII record to standard output. This record 
contains the user ID, login name, prime CPU time, nonprime CPU time, the total number 
of characters transferred (in 512-byte units), the total number of blocks read and written, 
and mean memory size (in 64-byte units) for each process. 

If specified, file contains a list of login sessions in utmp format (described in AIX 
Operating System Technical Reference), sorted by user ID and login name. By default, 
acctprcl gets login names from the password file, /etc/passwd. The information in file 
helps distinguish among different login names that share the same user ID. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 



Files 

acctprc 

acctprc2 
The acctprc2 command reads (from standard input) the records written by acctprcl, 
summarizes them by user ID and name, and writes the sorted summaries to standard output 
as total accounting records. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

accton 
The accton command without arguments turns process accounting off. If you specify file 
(the name of an existing file), the kernel adds process accounting records to it 
(fusr/adm/pacct by default). 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

/etc/passwd 
/usr / adm/pacct 

Password file; contains user IDs. 
Contains process accounting records. 

Related Information 

The following commands: "acct/*" on page 13, "acctdisk, acctdusg" on page 26, 
"acctcms" on page 18, "acctcom" on page 20, "acctcon" on page 24, "acctmerg" on 
page 28, "fwtmp" on page 457, and "runacct" on page 848. 

The acct system call and the acct and utmp files in AIX Operating System Technical 
Reference. 

"Running System Accounting" in Managing the AIX Operating System. 

Commands 31 



actman 

actman 

Purpose 

Permits interaction with multiple virtual terminals. 

Syntax 

aetman ---l 
OLS05323 

Description 

The actman command is the Activity Manager for the AIX Operating System. It is 
normally run by the AIX logger in the same manner as any program listed in the 
/etc/passwd file. Once started by the logger, actman creates the initial shell (fbin/sh) 
and monitors the number of open virtual terminals until all have been closed. It then exits 
to the AIX init process. If you try to end the initial shell when other virtual terminals are 
still open, actman restarts the initial shell. 

To take advantage of the multiple virtual terminal capability, use the open command (see 
page 728) to execute another shell in a separate virtual terminal. 

Notes: 

1. You must log off of each existing shell to end your login session. 

2. You do not need an Activity Manager if you do not have virtual terminal capabilities. 
Thus if you do not log in from the local console, actman overlays itself with the initial 
shell. 

Related Information 

The following command: "open" on page 728. 

"Using Display Station Features" in Using the A/X Operating System. 

32 



adb 

adb 

Purpose 

Provides a general purpose debugger. 

Syntax 

OL805465 

Description 

The adb command provides a debugger for C and assembler language programs. With it, 
you can examine object and core files and provide a controlled environment for running a 
program. 

Normally, objfil is an executable program file that contains a symbol table. If objfil does 
not contain a symbol table, the symbolic features of adb cannot be used, although the file 
can still be examined. The default objfil is a.out. 

The corfil is assumed to be a core image file produced by running objfil. The default corfil 
is core. 

While running, adb takes input from standard input and writes to standard output. adb 
does not recognize the Quit or Interrupt keys. These keys cause adb to wait for a new 
command. 

In general, requests to adb are of the form 

[address] [,count] [command] [;] 

where address and count are expressions. The default count is 1. If address is specified, 
then the expression. (dot) is set to address. 

The interpretation of an address depends on the context in which it is used. If a 
subprocess is being debugged, addresses are interpreted in the usual way in the address 
space of the subprocess. For more information, see "Addresses" on page 39. 

You can enter more than one command at a time by separating the commands with a ; 
(semicolon). 

Commands 33 



adb 

34 

Expressions 

+ 
1\ 

integer 

I ecce' 

< name 

symbol 

-symbol 

. symbol 

Specifies the last address used by a command; this is also known as the current 
address. 

Increases the value of . (dot) by the current increment. 

Decreases the value of. (dot) by the current increment. 

Specifies the last address typed by a command. 

Specifies an octal number if integer begins with 00, a hexadecimal number if 
preceded by Ox or #, or a decimal number if preceded by Ot; otherwise, a number 
interpreted in the current radix. The radix is initially 16. 

Specifies the ASCII value of up to 4 characters. \ (slash) can be used to escape 
an I (apostrophe). 

Reads the current value of name. name is either a variable name or a register 
name. adb maintains a number of variables (see "Variables" on page 39) named 
by single letters or digits. If name is a register name, the value of the register is 
obtained from the system header in corfiZ. The register names are rO ... rI5, pc, 
ics, cs, mq; the names fp, pcp, and link are recognized as synonyms for rl, rI4, 
and rI5. 

Specifies a sequence of upper- or lower-case letters, underscores, or digits, not 
starting with a digit. The value of the symbol is taken from the symbol table in 
o bjfi I. An initial - (underscore) is prefixed to symbol if needed. 

Specifies, in C, the true name of an external symbol begins with - (underscore), 
as does the name of the constant pool of an external function. It may be 
necessary to use this name to distinguish it from internal or hidden variables of 
a program. 

Specifies the entry point of the function named by symbol . 

routine.name 
Specifies the address of the variable name in the specified C routine. Both 
routine and name are symbols. If name is omitted, the value is the address of the 
most recently activated C stack frame corresponding to routine. 

(exp) Specifies the value of the expression expo 



Operators 
Integers, symbols, variables, and register names can be combined with the following 
operators: 

Unary 

*exp 

@exp 

-exp 

~exp 

Binary 

el+e2 

el-e2 

el*e2 

el%e2 

el&e2 

elle2 

el#e2 

Contents of location addressed by exp in corefile. 

Contents of the location addressed by exp in objfil. 

Integer negation. 

Bitwise complement. 

Integer addition. 

Integer subtraction. 

Integer multiplication. 

Integer division. 

Bitwise conjunction. 

Bitwise disjunction. 

el rounded up to the next multiple of e2. 

Binary operators are left associative and are less binding than unary operators. 

Commands 

adb 

You can display the contents of a text or data segment with the? (question mark) or the I 
(slash) command. The = (equal) command displays a given address in the specified format 
f. (The commands? and I may be followed by * (asterisk); see "Addresses" on page 39.) 

?f Displays, in the format f, the contents of the objfil starting at address. The 
value of . (dot) increases by the sum of the increment for each format letter. 

If Displays, in the format f, the contents of the corfil starting at address. The 
value of . (dot) increases by the sum of the increment for each format letter. 

= f Displays the value of address in the format f. The i and s format letters are not 
meaningful for this command. 

The format consists of one or more characters that specify print style. Each format 
character may be preceded by a decimal integer that is a repeat count for the format 
character. While stepping through a format, . (dot) increments by the amount given for 
each format letter. If no format is given, the last format is used. 

Commands 35 



adb 

36 

The format letters available are as follows: 

o 2 Prin ts 2 bytes in octal. 

o 4 Prin ts 4 bytes in octal. 

q 2 Prints 2 bytes in the current radix, unsigned. 

Q 4 Prints 4 bytes in the current radix, unsigned. 

d 2 Prin ts in decimal. 

D 4 Prints long decimal. 

x 2 Prints 2 bytes in hexadecimal. 

X 4 Prints 4 bytes in hexadecimal. 

u 2 Prints as an unsigned decimal number. 

U 4 Prints long unsigned decimal. 

b 1 Prints the addressed byte in the current radix, unsigned. 

c 1 Prints the addressed character. 

C 1 Prints the addressed character using the following escape conventions: 

1. Prints control characters as ~ followed by the corresponding printing 
character. 

2. Prints nonprintable characters as - < n > where n is a hexadecimal value 
of the character. The character - prints as ~ -. 

s n Prints the addressed character until a zero character is reached. 

S n Prints a string using the - escape convention. n specifies the length of the 
string including its zero terminator. 

y 4 Prints 4 bytes in date format (see "ctime" in A/X Operating System Technical 
Reference ). 

i n Prints as instructions. n is the number of bytes occupied by the instruction. 

a 0 Prints the value of . (dot) in symbolic form. Symbols are checked to ensure 
that they have an appropriate type as follows: 

/ local or global data symbol 
? local or global text symbol 

local or global absolute symbol 

p 4 Prints the addressed value in symbolic form using the same rules for symbol 
lookup as a. 

t 0 When preceded by an integer, tabs to the next appropriate tab stop. For 
example, 8t moves to the next 8-space tab stop. 



rO 

nO 

" ... "0 
1\ 

+ 

Prints a space. 

Prints a new line. 

Prints the enclosed string. 

Decreases. (dot) by the current increment. Nothing prints. 

Increases. (dot) by 1. Nothing prints. 

Decreases. (dot) decrements by 1. Nothing prints. 

adb 

newline Repeats the previous command incremented with a count of 1. 

[?/llvalue mask Words starting at . (dot) are masked with mask and compared with value 
until a match is found. If L is used, the match is for 4 bytes at a time 
instead of 2. If no match is found, . (dot) is unchanged; otherwise. (dot) 
is set to the matched location. If mask is omitted, -1 is used. 

[?j]wvalue... Writes the 2-byte value into the addressed location. If the command is 
W, write 4 bytes. If the command is V, write 1 byte. Alignment 
r~strictions may apply when using w or W. 

[?j]m bl el fl[?/] Records new values for bl, el, fl. If less than three expressions are 
given then the remaining map parameters are left unchanged. If the? 
or I is followed by * then the second segment (b2, e2, f2) of the mapping 
is changed. If the list is terminated by ? or I then the file (objfil or corfil 
respectively) is used for subsequent requests. (For example, 1m? causes 
I to refer to objfil). 

> name Assigns. (dot) to the variable or register name. 

$modifier 

Calls a shell to read the rest of the line following !. 

Miscellaneous commands. The available modifiers are: 

< file Reads commands from file and returns to the standard input. 

> file Sends output to file. If file is omitted, output returns to the 
standard output. file is created if it does not exist. 

r Prints the general registers and the instruction addressed by 
pc and sets. (dot) to pc. 

b Prints all breakpoints and their associated counts and 
commands. 

c C stack back trace. If address is given, it is taken as the 
address of the current frame (instead of using the frame 
pointer register). If C is used, then the names and values of 
all automatic and static variables are printed for each active 
function. If count is given then only the first count frames are 
printed. 

Commands 37 



adb 

:modifier 

38 

e Prints the names and values of external variables. 

w Sets the output page width for address. The default is 80. 

s Sets the limit for symbol matches to address. The default is 
255. 

o Sets the current radix to 8. 

d Sets the current radix to address or 16, if none is specified. 

q Exits adb. 

v Prints all non-zero variables in octal. 

m Prints the address map. 

p Uses the remainder of the line as a prompt string. 

Manages a subprocess. Available modifiers are: 

bc Sets the breakpoint at address. The breakpoint runs count -1 
times before causing a stop. Each time the breakpoint is 
encountered, the command c runs. If this command sets. 
(dot) to 0, the breakpoint causes a stop. 

d Deletes the breakpoint at address. 

r Runs objfil as a subprocess. If address is given explicitly, the 
program is entered at this point; otherwise, the program is 
entered at its standard entry point. count specifies how many 
breakpoints are to be ignored before stopping. Arguments to 
the subprocess may be supplied on the same line as the 
command. An argument starting with < or > causes the 
standard input or output to be established for the command. 
On entry to the subprocess, all signals are turned on. 

es Continues the subprocess with signal s (see the signal system 
call in AIX Operating System Technical Reference). If address 
is given, the subprocess is continued at this address. If no 
signal is specified, the signal that caused the subprocess to 
stop is sent. Breakpoint skipping is the same as for r. 

ss Continues the subprocess in single steps count times. If there 
is no current subprocess, objfil is run as a subprocess. In this 
case no signal can be sent; the remainder of the line is treated 
as arguments to the subprocess. 

k Stops the current subprocess, if one is running. 



Flags 

adb 

Variables 
adb provides a number of variables. On entry to adb, the following variables are set from 
the system header in the corfil. If corfil does not appear to be a core file, then these values 
are set from a bj/i I. 

b The base address of the data segment 
d The size of the data segment 
e The entry address of the program 
m The "magic" number (0405, 0407, 0410, or 0411) 
s The size of the stack segment 
t The size of the text segment. 

Addresses 
The address in a file associated with a written address is determined by a mapping 
associated with that file. Each mapping is represented by two triples (bl, el, fl) and (b2, 
e2, f2). The file address that corresponds to a written address is calculated as follows: 

bl ~ address < el = > file address = address + fl-bl 

or 

b2 ~ address < e2 = > file address = address + f2-b2 

Otherwise, the requested address is not legal. In some cases (for example, programs with 
separated I and D space) the two segments for a file may overlap. If a ? or / is followed by 
an *, then only the second triple is used. 

The initial setting of both mappings is suitable for normal a.out and core files. If either 
file is not of the kind expected, then for that file bi is set to 0, el is set to the maximum file 
size, and fi is set to 0; in this way, the whole file can be examined with no address 
translation. 

In order for adb to be used on large files, all appropriate values are kept as signed 32-bit 
integers. 

-pprompt Sets the prompt used by adb to prompt., If the prompt includes spaces, enclose 
the prompt in quotation marks. 

-w Opens the objfil and corfil for writing. This flag makes either file if they do not 
exist. 

Commands 39 



adb 

Files 

/dev/mem 
/dev/swap 
a.out 
core 

Related Information 

40 

The ptrace system call in AIX Operating System Technical Reference. 

The a.out and core files in AIX Operating System Technical Reference. 



admin 

Purpose 

Creates and initializes SCCS files. 

Syntax 

To Create SCCS Files: 

Odmln-{-n 

-1 --{

Q 

I 1 

num 

b j 
c num m module 
dSID n 
fnum q text 

ttype 

~-fV ~-m :y-<:-a user)-C:~~.1n:r 
-:-fv program FLm mrllst 

~-t file~ -Y:YT newfile T 
-ycomment 

2 If -0 is never used to specify users, 
then any user can run get -e on the file. 

admin 

OL805376 

OL805160 

OL805417 

Commands 41 



admin 

To Change Existing SCCS Files: 

odmin 

-d 

-C
O 

I 1 

num 
L, 

'------I b 
c m 
d n 
f q 

t 

-f 
one of 

b j 
cnum mmodule 
dSID n 
fnum qtext 

Hype 

-dv 

To Check and Correct Damaged SCCS Files: 
one of 

Odmin~ 

1 Do not put a blank between these items. 

OL805385 

OL805158 

OL805308 

Description 

42 

The admin command creates new Source Code Control System (SCCS) files or changes 
specified parameters in existing SCCS files. These parameters control how the get 
command builds the files that you can edit. They also provide information about who can 
access the file, who can make changes, and when changes were made. 



admin 

If the named file exists, admin modifies its parameters as specified by the flags. If it does 
not exist and you supply the -i or the -n flag, admin creates the new file and provides 
default values for unspecified flags. If you specify a directory name for file, admin 
performs the requested actions on all sees files in that directory (all files with the s. 
prefix). If you specify a - (minus) as a file name, admin reads standard input and 
interprets each line as the name of an sees file. An end-of-file character (Ctrl-D) ends 
input. 

The admin command is most often used to create new sees files without setting 
parameters. See "Examples" on page 46 for the syntax used to create an sees file with no 
parameters set in the new file. 

If you are not familiar with the delta numbering system, see AIX Operating System 
Programming Tools and Interfaces for more information. 

SCCS File Conventions 

All sees file names must have the form s.name. New sees files are created with 
read-only permission. You must have write permission in the directory to create a file (see 
"chmod" on page 160 for an explanation of file permissions). admin writes to a 
temporary x-file, which it calls x.name. The x-file has the same permissions as the original 
sees file if it already exists, and it is read-only if admin creates a new file. After 
successful completion of admin, the x-file is moved to the name of the sees file. This 
ensures that changes are made to the sees file only if admin does not detect any errors 
while it is running. 

Directories containing sees files should be created with permission code 755 (read, write, 
and execute permissions for owner, read and execute permissions for group members and 
others). sees files themselves should be created as read-only files (444). With these 
permissions, only the owner can use non-SeeS commands to modify sees files. If a group 
can access and modify the sees files then the directories should include group write 
permission. 

The admin command also uses a temporary lock file (called z.name), to prevent 
simultaneous updates to the sees file by different users. See "sees Files" on page 478 
for additional information on the z.name file. 

The following table contains the header flags that can be set with the -f flag and unset 
with the -d flags (see page 45). The header flags control the format of the g-file created 
with the get command (see "sees Files" on page 478 for details on the g-file). 

Commands 43 



admin 

Header 
Flag Header Flag Purpose 

b Lets you use the -b flag of a get command to create branch deltas. 

cnum Makes num the highest release number that a get -e can use. The value of 
num must be less than or equal to 9999. (Its default value is 9999.) 

fnum Makes num the lowest release number that a get -e can retrieve. num must 
be greater than 0 and less than 9999. (Its default value is 1.) 

dSID Makes SID the default delta supplied to a get command. 

i Treats the No i d keywords (ge6) message issued by the get or delta 
command as an error (see "Identification Keywords" on page 480). 

J Permits concurrent get commands for editing the same SID of an sees file. 
This allows multiple concurrent updates to the same version of the sees 
file. 

lnum[,num] ... Locks the releases specified by num . . . against editing, so that a get -e 
against one of these releases fails. You can lock all releases against editing 
by specifying -fla and unlock specific releases with the -d flag. 

n Causes delta to create a null delta in any releases that are skipped when a 
delta is made in a new release. For example, if you make delta 5.1 after 
delta 2.7, releases 3 and 4 will be null. The resulting null deltas can serve 
as points from which to build branch deltas. Without this flag, skipped 
releases do not appear in the the sees file. 

qtext Substitutes text for all occurrences of the %Q% keyword in an sees text 
file retrieved by a get command. (See "Identification Keywords" on 
page 480 for more information on keywords.) 

mmodule Substitutes module for all occurrences of the %M% keyword in an sees 
text file retrieved by a get command. The default module is the name of the 
sees file without the s. prefix. 

ttype Substitutes type for all % Y% keywords in a g-file retrieved by a get. 

v [program] Makes delta prompt for Modification Request (MR) numbers as the reason 
for creating a delta. program specifies the name of an MR number validity 
checking program (see "delta" on page 310). If v is set in the sees file, the 
admin -m flag must also be used, even if its value is null. 

Figure 1. sees Header Flags 

44 



Flags 

admin 

You can enter the flags and input file names in any order. All flags apply to all the files. 

-auser Adds the specified user to the list of users that can make sets of changes 
(deltas), to the sees file. user can be either a user name, a group name, 
or a group. ID. Specifying a group name or number is the same as 
specifying the names of all users in that group. You can specify more 
than one -a flag on a single admin command line. If an sees file 
contains an empty user list, then anyone can add deltas. 

If a file has a user list, the creator of the file must be included in the list 
in order for the creator to make deltas to the file. 

-dhdrflag Removes the specified header flag from the sees file. You can specify 
this flag only with existing sees files. You can also specify more than 
one -d flag in a single admin command. See Figure 1 on page 44 for 
the header flags that admin recognizes. 

-euser Removes the specified user from the list of users allowed to make deltas 
to the sees file. Specifying a group ID is equivalent to specifying all 
user names common to that group. You can specify several -e flags on a 
single admin command line. 

-fhdrflag[value] Places the specified header flag and value in the sees file. You can 
specify more than one header flag in a single admin command. See 
Figure 1 on page 44 for the header flags that admin recognizes. 

-h Checks the structure of the sees file and compares a newly computed 
checksum with the checksum that is stored in the first line of the sees 
file. When the checksum value is not correct, the file has been 
improperly modified or has been damaged. This flag helps you detect 
damage caused by the improper use of non-SeeS commands to modify 
sees files, as well as accidental damage. The -h flag prevents writing 
to the file, so it cancels the effect of any other flags supplied. If an error 
message is returned indicating the file is damaged, use the -z flag to 
recompute the checksum. Then test to see if the file is corrected by 
using the -h flag again. 

-i[name] Gets the text for a new sees file from name. This text is the first delta 
of the file. If you specify the -i flag but you omit the file name, admin 
reads the text from standard input until it reaches end-of-file (Ctrl-D). If 
you do not specify the -i flag, but you do specify the -n flag, admin 
creates an empty sees file. admin can only create one file containing 
text at a time. If you are creating two or more sees files with one call 
to admin, you must use the -n flag, and the sees files created are 
empty. 

Commands 45 



admin 

-m[mrlist] 

-n 

-rnum.num 

-t[file] 

-y[comment] 

-z 

Specifies a list of Modification Requests (MR) numbers to be inserted 
into the sees file as the reason for creating the initial delta. The v flag 
must be set. The MR numbers are validated if the v flag has a value (the 
name of an MR number validation program). admin reports an error if 
the v flag is not set or if MR validation fails. 

Creates a new, empty sees file. Do not specify this flag when you use 
the -i flag. 

Inserts the initial delta into num.num, the release and version 
respectively. You can specify -r only if you also specify the -i or -n flag. 
If you do not specify this flag, the initial delta becomes Release 1, 
Version 1. Use this flag only when creating an sees file. 

Takes descriptive text for the sees file from file. If you use -t when 
creating a new sees file, you must supply a file name. In the case of 
existing sees files: 

• Without a file name, -t causes removal of the descriptive text (if any) 
currently in the sees file. 

• With a file name, -t causes text in the named file to replace the 
descriptive text (if any) currently in the sees file. 

Inserts comment text into the initial delta in a manner identical to that 
of the delta command. Use this flag only when you create an sees file. 
If you do not specify a comment; admin inserts a line of the following 
form: 

date and time created YY/MMjDD HH:MM:SS by login 
Recomputes the sees file checksum and stores it in the first line of the 
sees file (see the -h flag on page 45). 

Warning: Using admin with this flag on a damaged file 
can prevent future detection of the damage. This flag 
should only be used if the sees file is changed using 
non-SeeS commands because of a serious error. 

Examples 

46 

1. To create an empty sees file named s.prog.c: 

admin -n s.prog.c 
2. To convert an existing text file into an sees file: 

admin -iprogram.c s.prog.c 



admin 

This converts the text file program. c into the sees file s. prog. c. The original file 
remains intact, but it is no longer needed. You must rename or delete it before you 
can use the get command on s. prog. c. 

Related Information 

The following commands: "delta" on page 310, "ed" on page 371, "get" on page 477, 
"help" on page 513, "prs" on page 781, and "what" on page 1213. 

The sccsfile file in AIX Operating System Technical Reference. 

"Maintaining Different Versions of a Program" in AIX Operating System Programming 
Tools and Interfaces. 

Commands 47 



ali 

ali 

Purpose 

Lists mail aliases and their addresses. 

Syntax 

-nonormalize 

one of 
-normalize 
-nonormalize 

ali - -help ---l 
AJ2FL150 

Description 

Flags 

48 

The ali command is used to list mail aliases and the addresses that the aliases represent. 
ali is part of the MH (Message Handling) package and can be used with other MH and AIX 
commands. 

The ali command searches the specified mail alias files for each given alias, and writes to 
standard output the addresses of each alias. If you specify the -user flag, ali interprets the 
alias arguments as actual addresses, searches the alias files for the addresses, and writes 
to standard output the aliases that contain definitions of the addresses. Thus, if you want 
to find the address of an alias, use the default -nouser flag. If you want to find the aliases 
that represent an address, use the -user flag. 

-alias file 

-help 

Specifies that file is a mail alias file to be searched for each given alias. 
The default alias file is /usr/lib/mh/MailAliases. 

Displays help information for the command. 



Files 

ali 

-list Displays each address on a separate line. 

-nolist Displays addresses separated by commas on as few lines as possible. This 
flag is the default. 

-nonormalize Does not attempt to convert local nicknames of hosts to their official host 
names. This flag is the default. 

-normalize Attempts to convert local nicknames of hosts to their official host names. 

-nouser Lists the addresses that the specified aliases represent. This flag is the 
default. 

-user Lists the aliases that contain the specified addresses. When the -user 
and -nonormalize flags are used together, the result may be a partial list 
of aliases that contain the specified addresses. 

/usr /lib/mh/MaiIAliases 
$HOME/.mh-profile 
/etc/passwd 
/etc/group 

The default mail alias file. 
The MH user profile. 
List of users. 
List of groups. 

Related Information 

The following commands: "comp" on page 185, "dist" on page 336, "forw" on page 438, 
"repl" on page 821, "send" on page 893, "whom" on page 1222. 

The mh-alias and mh-profile files in AIX Operating System Technical Reference. 

The "Overview of the Message Handling Package" in Managing the AIX Operating System. 

Commands 49 



anno 

anna 

Purpose 

Annotates messages. 

Syntax 

anno 

-component field 

anno -- -help ----l 

r---------sequence----------~ 

prev 
cur 

one of 
: num -prev 
:+num -cur 
:-num 
-' num -next 

next' -first -last 
last 

-noinplace 

one of 

-inplace 
-noinplace 

-text string 

1 Do not put a blank between these items. 

50 

AJ2FL221 

AJ2FL166 

OL805308 



anno 

Description 

Flags 

The anno command is used to annotate messages with specified text and dates. anno is 
part of the MH (Message Handling) package and can be used with other MH and AIX 
commands. 

The anno command annotates messages with the lines: 

field:date 
field:body 
Although dist, forw, and repl enable you to perform annotations, their annotations are 
limited to adding distribution information to messages. anno enables you to perform 
arbitrary annotations. The annotation fields must contain alphanumeric characters and 
dashes only. 

-component field 

+ folder msgs 

-help 

-inplace 

-noinplace 

-text string 

Specifies the field name for the annotation text. The field name must 
be a valid message field name, consisting of alphanumeric characters 
and dashes only. If you do not specify this flag, anno prompts you for 
the name of the field. 

Specifies the messages that you want to annotate. msgs can be several 
messages, a range of messages, or a single message. You can use the 
following message references when specifying msgs: 

num first prey 
cur next 
last all sequence 

The default message is the current message in the current folder. If 
several messages are specified, the first message annotated becomes 
the current message. If you specify a folder, that folder becomes the 
current folder. 

Displays help information for the command. 

Forces annotation to be done in place in order to preserve links to the 
annotated messages. 

Does not perform annotation in place. This flag is the default. 

Specifies the text to be annotated to the messages. 

Commands 51 



anno 

Profile Entries 

Current-Folder: 
Path: 

Files 

$HOME/.mh-profile 

Sets your default current folder. 
Specifies your user -mh-directory. 

The MH user profile. 

Related Information 

52 

The following commands: "dist" on page 336, "forw" on page 438, "repl" on page 821. 

The mh-profile file in AIX Operating System Technical Reference. 

The "Overview of the Message Handling Package" in Managing the AIX Operating System. 



ap 

ap 

Purpose 

Parses and reformats addresses. 

Syntax 

-normalize 

/usr/lib/mh/ap one of one of 
-form file -normalize -width num 
-format string 

/usr/lib/mh/ap - -help---l 
AJ2FL224 

Description 

Flags 

The ap command is used to parse and reformat addresses. ap is not designed to be run 
directly by the user; it is designed to be called by other programs. The ap command is 
typically called by its full path name. The ap command is part of the MH (Message 
Handling) package. 

The ap command parses each string specified as an address and attempts to reformat the 
string. The default output format for ap is the ARPA RFC822 standard. When the default 
format is used, ap displays an error message for each string it is unable to parse. 

-form file Reformats the given addresses into the alternate format described in file. 

-format string Reformats the given addresses into the alternate format specified by 
string. The default format string is: 

%<{error}%{error}:%{addresS}%I%{putstr{proper{address} ))%> 
-help Displays help information for the command. 

-nonormalize Does not attempt to convert local nicknames of hosts to their official host 
names. 

Commands 53 



ap 

Files 

-normalize 

-width num 

Attempts to convert local nicknames of hosts to their official host names. 
This flag is the default. 

Sets the maximum number of columns that ap uses to display dates and 
error messages. The default is the width of the display. 

$HOME/ .mh-profile 
/usr /lib/mh/mtstailor 

The MH user profile. 
The MH tailor file. 

Related Information 

54 

Other MH commands: "ali" on page 48, "dp" on page 352, "scan" on page 871. 

The mh-alias, mh-format, and mh-profile files in A/X Operating System Technical 
Reference. 

The "Overview of the Message Handling Package" in Managing the A/X Operating System. 



ar 

ar 

Purpose 

Maintains portable libraries used by the linkage editor. 

Syntax 

a 
b 

posname 

'--------1 d q 1---------------' 

v 

or - w - library --I 

P t 
x h 

1 Do not put a blank between these items. 

library T name T 

OL805377 

OL805349 

OL805308 

Description 

Flags 

The ar command combines one or more named files into a single library file written in ar 
archive format. When ar creates a library, it creates headers in a transportable format; 
when it creates or updates a library, it rebuilds the symbol table that the linkage editor 
(the ld command) uses to make efficient multiple passes over object file libraries. See the 
ar file entry in AIX Operating System Technical Reference for information on the format 
and structure of portable archives and symbol tables. 

In an ar command, you must list all selected flags together on t.he command line without 
blanks between them. You must specify one from the set dhmpqrtxw. You can also 
specify any number of optional flags from the set abcilsuv. If you select a positioning flag 
(a, b, or i), you must also specify the name of a file within library (posname), immediately 
following the flag list and separated from it by a blank. 

Commands 55 



ar 

a posname 

b posname 

c 

d 

h 

i posname 

1 

m 

p 

q 

r 

s 

t 

u 

56 

Positions the named files after the existing file identified by posname. 

Positions the named files before the existing file identified by posname. 

Suppresses the normal message that is produced when library is created. 

Deletes the named files from the library. 

Sets the modification times in the member headers of the named files to the 
current date and time. If you do not specify any file names, ar sets the time 
stamps of all member headers. 

Positions the named files before the existing file identified by posname (same 
as b). 

Places temporary files in the current (local) directory instead of directory 
/tmp. 

Moves the named files to some other position in the library. By default, it 
moves the named files to the end of the library. Use a positioning flag (abi) to 
specify some other position. 

Writes to the standard output the contents of the named files or all files in a 
library if you do not specify any files. 

Adds the named files to the end of the library. Positioning flags, if present, do 
not have any effect. Note that this process does not check to see if the named 
files are already in the library. In addition, if you name the same file twice, it 
may be put in the library twice. 

Replaces a named file if it already appears in the library. Since the named 
files occupy the same position in the library as the files they replace, a 
positioning flag does not have any additional effect. When used with the u 
flag (update), r replaces only files modified since they were last added to the 
library file. 

If a named file does not already appear in the library, ar adds it. In this case, 
positioning flags do affect placement. If you do not specify a position, new 
files are placed at the end of the library. If you name the same file twice, it 
may be put in the library twice. 

Forces the regeneration of the library symbol table whether or not ar modifies 
the library contents. Use this flag to restore the library symbol table after 
using the strip command on the library. 

Writes to the standard output a table of contents for the library. If you 
specify file names, only those files appear. If you do not specify any files, t 
lists all files in the library. 

Copies only files which have been changed since they were last copied (see the 
r flag discussed previously). 



v 

w 

x 

ar 

Writes to standard output a verbose file-by-file description of the making of 
the new library. When used with the t flag, it gives a long listing similar to 
that of the Is -1 command, described under "Is" on page 595. When used with 
the x 'flag, it precedes each file with a name. When used with the h flag, it 
lists the member name and the updated modification times. 

The environment variables NLLDATE and NLTIME control the format of 
the archive date and time. 

Displays the archive symbol table. Each symbol is listed with the name of the 
file in which the symbol is defined. 

Extracts the named files by copying them into the current directory. These 
copies have the same name as the original files, which remain in the library. 
If you do not specify any files, x copies all files out of the library. This 
process does not alter the library. 

Examples 

1. To create a library: 

ar vq lib.a strlen.o strcpy.o 

If 1 i b. a does not exist, then this creates it and enters into it copies of the files 
strl en. 0 and strcpy. o. If 1 i b. a does exist, then this adds the new members to the 
end without checking for duplicate members. The v flag sets verbose mode, in which 
ar displays progress reports as it proceeds. 

2. To list the table of contents of a library: 

ar vt lib.a 

This lists the table of contents of 1 i b. a, displaying a long listing similar to Is -1. To 
list only the member file names, omit the v flag. 

3. To replace or add new members to a library: 

ar vr lib.a strlen.o strcat.o 

This replaces the members strl en. 0 and strcat. o. If 1 i b. a was created as shown 
in Example 1, then the strl en. 0 member is replaced. A member named strcat. 0 
does not already exist, so it is added to the end of the library. 

4. To specify where to insert a new member: 

ar vrb strlen.o lib.a strcmp.o 

This adds strcmp. 0, placing the new member before strl en. o. 
5. To update a member if it has been changed: 

ar vru lib.a strcpy.o 

Commands 57 



ar 

Files 

This replaces the existing strcpy. 0 member, but only if the file strcpy. 0 has been 
modified since it was last added to the library. 

6. To change the order of the library members: 

ar vma strcmp.o lib.a strcat.o strcpy.o 

This moves the members strcat. 0 and strcpy. 0 to positions immediately after 
strcmp. o. The relative order of strcat. 0 and strcpy. 0 is preserved. In other 
words, if strcpy. 0 preceded strcat. 0 before the move, then it still does. 

7. To extract library members: 

ar vx lib.a strcat.o strcpy.o 

This copies the members strcat. 0 and strcpy. 0 into individual files named 
strcat.o and strcpy. 0, respectively. 

8. To extract and rename a member: 

ar p lib.a strcpy.o >stringcopy.o 

This copies the member strcpy. 0 to a file named stri ngcopy. o. 
9. To delete a member: 

ar vd lib.a strlen.o 

This deletes the member strl en. 0 from the library 1 i b. a. 

/tmp/ar* Temporary files. 

Related Information 

58 

The following commands: "backup" on page 88,"ld" on page 557, "lorder" on page 591, 
"make" on page 625, "nm" on page 705, "size" on page 949, and "strip" on page 1017. 

The a.out and ar files and environment miscellaneous facility in AIX Operating System 
Technical Reference. 

The "Overview of International Character Support" in Managing the AIX Operating 
System. 



arithmetic 

arithmetic 

Purpose 

Tests arithmetic skills. 

Syntax 

arithmetic 
10\ ... , 

ranger 

x 
/ 

OL805164 

1 Do not put a blank between these items. 
OL805308 

Description 

The arithmetic command displays simple arithmetic problems and waits for you to enter 
an answer. If your answer is correct, the program displays Ri ght ! and presents a new 
problem. If your answer is wrong, it displays Wh at? and waits for another answer. Every 
20 problems, arithmetic displays the number of correct and incorrect responses and the 
time required to answer. 

The arithmetic command does not give the correct answers to the problems it displays. It 
provides practice rather than instruction in performing arithmetic calculations. 

The range is a decimal number specifying the permissible range of all numbers (except 
answers). The default range is 10. At the start, all numbers within this range are equally 
likely to appear. If you make a mistake, the numbers in the problem you missed become 
more likely to reappear. 

To quit the game, press INTERRUPT (Alt-Pause); arithmetic displays the final game 
statistics and exits. 

Commands 59 



arithmetic 

Flags 

Two types of optional flags modify the action of arithmetic. The first set specifies the 
type of arithmetic problem: 

+ Specifies addition problems. 

Specifies subtraction problems. 

x Specifies multiplication problems. 

/ Specifies division problems. 

If you do not select any flags, arithmetic selects addition and subtraction problems. If 
you give more than one problem specifier ( + -xf), the program mixes the specified types of 
problems in random order. 

Examples 

60 

1. To drill on addition and subtraction of integers from 0 to 10: 

/usr/games/arithmetic 

2. To drill on addition, multiplication, and division of integers from 0 to 50: 

/usr/games/arithmetic +x/ 50 



as 

as 

Purpose 

Assembles a source file. 

Syntax 

as 

-I 

OL805165 

1 Do not put a blank between these items. 

OL805308 

Description 

Flags 

Files 

The as command reads and assembles the named file (conventionally this file ends with a 
.s suffix). If you do not specify a file, as reads and assembles standard input. It stores its 
output, by default, in a file named a.out. The output file is executable if no errors occur 
and if there are no unresolved external references. 

-l[listfile] Produces an assembler listing. If you do not specify a file name, a default 
name is produced by replacing the .. s extension of the source file name with an 
.1st extension. 

-n name Specifies the name that appears in the header of the assembler listing. By 
default, the header contains the name of the assembler source file. 

-0 objfile Writes the output of the assembly process to the specified file instead of to 
a.out. 

a.out Default output file. 

Commands 61 



as 

Related Information 

62 

The following commands: "cc" on page 140 and "Id" on page 557. 

The a.out file in AIX Operating System Technical Reference. 

The discussion of as in Assembler Language Reference and AIX Operating System 
Programming Tools and Interfaces. 



at 

at, batch 

Purpose 

Runs commands at a later time. 

Syntax 

~
time r today 

~date 
at 

-1-----...... 

-r 

increment 

batcl1--1 
OL805002 

Description 

The at and batch commands read from standard input the names of commands to be run at 
a later time: 

• at allows you to specify when the commands should be run. 
• batch runs jobs when the system load level permits. 

Both at and batch mail you all output from standard output and standard error for the 
scheduled commands, unless you redirect that output. They also write the job number and 
the scheduled time to standard error. 

Variables in the shell environment, the current directory, umask, and ulimit are retained 
when the commands are run. Open file descriptors, traps, and priority are lost. 

You can use at if your name appears in the file /usr/lib/cron/at.allow. If that file does 
not exist, at checks the file /usr/lib/cron/at.deny to determine if you should be denied 
access to at. If neither file exists, only the superuser can submit a job. The allow/deny 
files contain one user name per line. If at.allow does exist, the superuser's login name 
must be included in it for the superuser to be able to use the command. 

Commands 63 



at 

Flags 

64 

The required time parameter can be one of the following: 

1. A number followed by an optional suffix. at interprets one- and two-digit numbers as 
hours. It interprets four digits as hours and minutes. The NLTIME environment 
variable specifies the order of hours and minutes. The default order is the hour 
followed by the minute. You can also separate hours and minutes with a: (colon). The 
default order is hour:minute. 

In addition, you may specify a suffix of am, pm, or zulu. If you do not specify am or 
pm, at uses a 24 hour clock. The suffix zulu indicates that the time is GMT 
(Greenwich Mean Time). The NLTMISC environment variable controls the suffixes 
that at recognizes. 

2. at also recognizes the following keywords as special times: noon, midnight, and now. 
Note that you can use the special word now only if you also specify a date or an 
increment. -Otherwise, at tells you: too 1 ate. The NLTSTRS environment variable 
controls the additional keywords that at recognizes. 

You may specify the date parameter as either a month name and a day number (and 
possibly a year number preceded by a comma), or a day of the week. The NLDATE 
environment variable specifies the order of the month name and day number (by default, 
month followed by day). The NLLDA Y environment variable specifies long day names; 
NLSDA Y and NLSMONTH specify short day and month names. (By default, the long 
name is fully spelled out; the short name abbreviated to three characters.) at recognizes 
two special "days," today and tomorrow by default. (The NLTSTRS environment 
variable specifies these special days.) today is the default date if the specified time is later 
than the current hour; tomorrow is the default if the time is earlier than the current 
hour. If the specified month is less than the current month (and a year is not given), next 
year is the default year. The optional increment can be one of the following: 

1. A + (plus sign) followed by a number and one of the following words: minute[s], 
hour[s], day[s], week[s], month[s], year[s] (or their non-English equivalents). 

2. The special word next followed by one of the following words: minute[s], hour[s], 
day[s], week[s], month[s], year[s] (or their non-English equivalents). 

The NLTUNITS environment variable specifies the non-English equivalents of the English 
defaults. 

-I Reports your scheduled jobs. 
-r job . .. Removes jobs previously scheduled by at or batch, where job is the number 

assigned by at or batch. If you do not have superuser authority (see "su" 
on page 1026), you can remove only your own jobs. 



Examples 

1. To schedule the command from the terminal, use a command similar to one of the 
following: 

at 5 pm Friday uuclean 
Ctrl-D 
at now next week uuclean 
Ctrl-D 
at now + 2 days uuclean 
Ctrl-D 

2. To run uuclean at 3:00 in the afternoon on the 24th of January, use anyone of the 
following commands: 

echo uuclean 
echo uuclean 
echo uuclean 

at 
at 
at 

3:00 
3pm 
1500 

pm 
Jan 
jan 

January 
24 

24 

3. To run a job when the system load permits: 

batch «! 
longjob 2>&1 >outfile mai 1 myID 
! 

24 

This example shows the use of a here document to send standard input to at (see 
"Inline Input Documents" on page 928). 

at 

The order of redirections is important here, so that only error messages are sent into 
the pipe to the mail command. If you reverse the order, both standard error and 
standard output are sent to outfi 1 e (see the discussion of "Input and Output 
Redirection Using File Descriptors" on page 928 for details). 

4. To have a job reschedule itself, invoke at from within the shell procedure by including 
code similar to the following within the shell file: 

echo !Ish shellfile ll at now tomorrow 

5. To list the jobs you have sent to be run later: 

at -1 

6. To cancel jobs: 

at -r 103 227 

This cancels jobs 103 and 227. Use at -1 to list the job numbers assigned to your jobs. 

Commands 65 



at 

Files 

/usr/lib/cron 
/ usr /lib / cron/ at. allow 
/usr/lib/cron/at.deny 
/usr/spool/cron/atjobs 

Main cron directory. 
List of allowed users. 
List of denied users. 
Spool area. 

Related Information 

66 

The following commands: "cron" on page 220, "kill" on page 552, "mail, Mail" on 
page 608, "nice" on page 699, "ps" on page 786, and "sh" on page 913. 

The environment special facility in AIX Operating System Technical Reference. 

"Running Commands at Pre-set Times" and "Overview of International Character Support" 
in IBM RT Managing the AIX Operating System. 



audit 

audit 

Purpose 

Controls system auditing 

Syntax 

audit -query ---j 

-{

start=r 
audit 

shutdown 
AJ2FL131 

Description 

The audit command controls system auditing. The audit command enables or disables 
auditing, and no audit records are generated if the audit system is disabled. You must 
have superuser authority to run this command. 

The following arguments are available with the audit command: 

query 

start 

shutdown 

Gives the current status of the auditing system in the form: 

auditing on (or auditing off) 
bin processing off (or bin manager is process nuntber) 
audit events: 

audit class: auditevent,auditevent,auditevent 
(or none) 

Sets up and enables the auditing system. The system initialization file, 
/ete/re, normally includes the audit start command. 

Terminates the operation of the auditing system. This argument forces all 
audit records out to the audit trail. It then empties the bin files, invalidates 
the current configuration, and stops the collection process until the next 
audit start command is given. 

Commands 67 



audit 

Files 

off 

on [panic] 

Stops the auditing system, but leaves the auditing collection configuration 
valid; no records are lost, and the collection process pauses temporarily 
until the audit on or audit shutdown command is given. 

Enables auditing. Audit records are generated for enabled events. This 
argument assumes that Bin audit collection has already been established 
(see the discussion of information collection in Managing the AIX Operating 
System). 

Note: If you specify the panic option, reliable long-term storage of audit 
records is required. The auditbin procedure must already have been started 
to manage the disposition of audit bins. If the kernel is unable to write a 
record into a bin for archival, the audit system shuts down the system. 

To start the auditing system, audit reads configuration information from the 
/etc/security/config file. To start auditing, audit does the following: 

1. Starts the audit bin collection procedure if Bin audit collection is enabled. The 
procedure synchronously recovers any unprocessed bins. 

2. Enables the audit classes defined in the auditclasses stanza of the 
/etc/security/config file. 

3. Starts auditing. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

/etc/security/auditfevents 
/etc/security/config 
/etc/security/auditfcmds 
/ etc/ security /passwd 

Lists audit events. 
Specifies the audit configuration. 
Lists audit bin backend programs. 
Lists audit classes for which users will be audited. 

Related Information 

68 

The following commands: "auditbin" on page 71 and "auditpr" on page 73. 

The audit, auditbin, auditevents, auditlog, and auditproc system calls in the AIX 
Operating System Technical Reference. 

The audit, events, passwd, and config file formats in the AIX Operating System 
Technical Reference. 

The discussion of accountability in Managing the AIX Operating System. 



auditapp 

auditapp 

Purpose 

Adds an audit bin file to the end of the audit trail file. 

Syntax 

auditapp -o-trailfile 

OL805474 

Description 

Flags 

The auditapp command adds the audit records read from standard input to the audit trail 
file specified in the /etc/security/audit/cmds file. This command is part of the auditing 
system, which is fully discussed in Managing the AIX Operating System. 

If you specify a bin file, (binfile), then auditapp reads from binfile. 

If trailfile does not exist, auditappend creates the file. 

This command is designed to be used by auditbin (a daemon) and should not be used on 
the command line. The auditapp command expects to find a complete bin (has both 
header and trailer portions). Entering audit shutdown completes the bin for processing 
byauditapp. Error conditions occur if the auditapp command is executed when bins are 
not properly completed with header and trailer portions. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

-0 Specifies the the audit trail to which auditapp appends records. You must 
specify this flag. 

Commands 69 



auditapp 

Files 

-r Recovers bin files before processing them. When you specify -r during a 
recovery procedure, auditapp will recover and process any unprocessed audit 
records. If you specify the -r flag, you must also specify binfile; however, you 
can specify binfile without the -r flag. 

etc I securi ty I a udi t/ cmds Contains audit bin backend programs. 

Related Information 

70 

The following commands: "audit" on page 67, "auditbin" on page 71, and "auditselect" 
on page 76. 

The discussion of the audit trail in Managing the AIX Operating System. 



auditbin 

auditbin 

Purpose 

Manages bins of audit information. 

Syntax 

Quditbin --j 
OL805475 

Description 

The auditbin command (a daemon) delivers bins of audit records to audit backends. A 
bin is a file for storing audit information prior to processing. A backend is a program that 
sends its output, in this case the processed audit records, to a particular device or file. 
This device may then provide long-term storage. The default backend command is 
auditapp (see "auditapp" on page 69). This command is part of the auditing system, 
which is fully discussed in Managing the AIX Operating System. 

Each audit backend is a command listed in /etc/security/audit/cmds. When auditbin 
receives a bin from the kernel, auditbin invokes each command in the 
/etc/security/audit/cmds file to process the bin. The auditbin command searches each 
command line for the keyword $bin and replaces it with the path name of the bin file. 

If a backend command fails, auditbin stops processing the bins. It sends a message to 
/dev/console alerting the user of the problem and indicating that the command be 
terminated. The message repeats every 60 seconds until the command is terminated. 

The audit bin command assures that each backend encounters each bin at least once. In 
the case of multiple commands, the auditbin command does not guarantee that each audit 
backend command will complete before the next one begins. Synchronization depends on 
the individual commands. Each backend command must wait for any duplicate command 
to complete. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

Commands 71 



auditbin 

Files 

/etc/security/auditfcmds 
/etc/security/config 

Lists audit backend commands .. 
Specifies the audit configuration. 

Related Information 

72 

The following commands: "audit" on page 67 and "auditpr" on page 73. 

The audit, auditevents, auditlog and auditproc system calls in AIX Operating System 
Technical Reference. 

The discussion of the audit trail in Managing the AIX Operating System. 

The following file format: config in AIX Operating System Technical Reference. 



auditpr 

auditpr 

Purpose 

Displays audit trail files. 

Syntax 

auditpr 
-m "message 11 

-r h 
-v 

A5AC5015 

Description 

Flags 

The auditpr command reads kernel audit records from standard input and sends formatted 
records to standard output. This command is part of the auditing system, which is fully 
discussed in Managing the A/X Operating System. 

By default auditpr searches the local /etc/passwd file to convert user and group IDs to 
names. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

The first series of flags, -0, -1, and -2, specify how often to print a title. 

-0 Never print a title. 

-1 This flag is the default. It specifies that a title be printed only once. 

-2 This flag specifies that a title be printed before each record. 

-m "message" Displays message before each output record. 

-r Displays numeric user IDs. 

Commands 73 



auditpr 

-v 

-h field 

74 

Displays the tail of each audit record. 

If the -v option is selected, auditpr prints the tail of each audit record in 
the format specified. The information in the tail is specific to the event 
that the record signifies. To print the tail of a record, auditpr searches the 
auditpr stanza of /etc/security/audit/events for an attribute name (audit 
event). 

Note: The audit event is the attribute name. The attribute value has the 
form: 

event = path[," arguments"] 

Where path specifies a command to be executed to print the tail of the 
record. Invoke this command as: 

program arguments 

The tail of the audit record is written to the program's standard input, and 
a formatted version is written to the program's standard output. 

If an attribute is not found, auditpr will print as the tail the warning: 
un known event. 
Displays header fields specified by field. The -h flag specifies the header 
fields to be printed. Field names and their widths are: 

ID Field Width Description 
e event 17 Audit event name. 
c command 17 Command name. 
I luid 6 User's login ID. 
r ruid 6 Process real user ID. 
u euid 6 Process effective user ID. 
p pid 6 Process ID. 
p ppid 6 Process ID of parent. 
R result 2 Result code of the action. 
t time 26 Time at which record was written. 

The default header format is the combination eclt. The records that result 
from this default format appear as follows: 

event command luid time 

login 

users 

login dick Fri Feb 8, 1988 14:03:57 
tail portion, if requested 

adduser jane Fri Feb 8, 1988 14:04:33 
tail portion, if requested 



File 

For system calls, the tail portion consists of: 

l. The arguments to the system call 

2. A list of path names, each followed by two digits: 

auditpr 

• Nonzero - indicates that the path name is a symbolic link to the 
next path name. A zero (0) indicates a non-symbolic link file. 

• A return code by the kernel after trying to access the path name. 

For items with the printf specification, the tail consists of the string of 
information specified in the quoted string that follows the specification. 

/etc/security/audit/events Lists audit events. 

Related Information 

The following commands: "audit" on page 67 and "auditselect" on page 76. 

The following system call: audit in AIX Operating System Technical Reference. 

The following file formats: attributes, events, and config in AIX Operating System 
Technical Reference. 

The discussions of hard copy labeling and the printer subsystem in Managing the AIX 
Operating System. 

Commands 75 



auditselect 

auditselect 

Purpose 

Selects audit records. 

Syntax 

-{

-e 'expr"\ /\.J 
auditselect ~ I-,,~:J r 

-f file trail 
OL805476 

Description 

Flags 

76 

The auditselect command reads audit records from standard input and writes records to 
standard output. This command is part of the auditing system, which is fully discussed in 
Managing the AIX Operating System. 

If trail is specified, audits elect extracts records from audit trail and writes selected 
records to standard output. 

The file is a file containing an expression. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

-e "expr" Specifies an expression, expr, which consists of terms in the following form: 

fie ld re lop value 

These terms are defined as: 

field One of the following: 

• event 
• command 
• login 
• real 



-f file 

relop 

value 

auditselect 

• effective 
• pid 
• ppid 
• time 
• prepend 

One of the following relational operation signs: ==(equal equal), 
! =(exclamation point equal), «less than), >(greater than),. 
>=(greater than equal), or <=(less than equal). 

A quoted string if the event or command field was specified; a time 
in the format specified by the NLTIME environment variable; a 
date in the format specified by the NLDATE environment variable; 
or an integer if one of the following fields was specified: pip, ppid, 
login, real, and effective. 

Combine these terms using the logical operators &&, (and) I I, (or) and ! (not). 
Use 0 (parentheses) to force the order of evaluation. Otherwise, normal 
precedence rules apply. 

Specifies a file containing an expression. 

Related Information 

The following commands: "auditbin" on page 71 and "auditpr" on page 73. 

The NLtmtime subroutine in AIX Operating System Technical Reference. 

Commands 77 



auditstream 

audit stream 

Purpose 

Creates a channel for the reading of audit records. 

Syntax 

auditstream -{ r 
-c class 

t 
OL805477 

Description 

Flags 

Files 

78 

The auditstream command creates a channel to the audit device, /dev/audit. Audit 
records are read from /dev/audit by means of this channel and copied to standard output. 
The auditstream command can be used as the first command in an audit stream pipeline. 

This command is part of the auditing system, which is fully discussed in Managing the 
AIX Operating System. 

Japanese IJanguage Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

-cclass Specifies audit classes as found in etc/security/config. Each audit record that 
belongs to an audit class specified by a -c option is read through the channel 
created by auditstream. If no audit classes are specified by a -c option in the 
/etc/security/config file, all currently enabled audit events are read through 
this channel. 

/ etc/ sec uri ty / config 
/dev/audit 

Specifies the audit configuration. 
The audit device. 



auditstream 

Related Information 

The discussion of the auditing subsystem in Managing the AIX Operating System. 

Commands 79 



auditwrite 

auditwrite 

Purpose 

Generates an audit record at the command level. 

Syntax 

auditwrite_ event_resu/t~ 

OL805478 

Description 

Files 

The auditwrite command combines an event, its result, and any arguments of supplied 
strings of data. 

The event is the audit event to be audited (audit events can be found in the 
/etc/security/audit/events file), and the result is an indicator of the outcome of the event. 
The arg includes the audit information pertaining to the event. 

This command is part of the auditing system, which is fully discussed in Managing the 
AIX Operating System. You must be a superuser t:o use this command. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

/etc/security/audit/events Lists audit events. 

Related Information 

80 

The following commands: "audit" on page 67, "auditbin" on page 71, "auditpr" on 
page 73, and "auditselect" on page 76. 

The discussion of auditing in Managing the AIX Operating System. 



awk 

awk 

Purpose 

Finds lines in files matching specified patterns and performs specified actions on them. 

Syntax 

aWk-{ X'ipatternXactionJr'X ~ 
. -F char 1 -f progfile variable =value file 

1 The default char is a tab. 
2 The default pattern is every line. 
3 The default action is to print the line. 

OL805422 

Description 

The awk command is a more powerful pattern matching command than the grep command. 
It can perform limited processing on the input lines, instead of simply displaying lines that 
match. Some of the features of awk are: 

• It can perform convenient numeric processing. 
• It allows variables within actions. 
• It allows general selection of patterns. 
• It allows control flow in the actions. 
• It does not require any compiling of programs. 

For a detailed discussion of awk, see AIX Operating System Programming Tools and 
Interfaces. 

The awk command, reads files in the order stated on the command line. If you specify a 
file name as - (minus) or do not specify a file name, awk reads standard input. 

The awk command searches its input line by line for patterns. When it finds a match, it 
performs the associated action and writes the result to standard output. Enclose 
pattern-action statements on the command line in single quotation marks to protect them 
from interpretation by the shell. 

Commands 81 



awk 

82 

The awk command first reads all pattern-action statements, then it reads a line of input 
and compares it to each pattern, performing the associated actions on each match. When 
it has compared all patterns to the input line, it reads the next line. 

The awk command treats input lines as fields separated by spaces, tabs, or a field 
separator you set with the FS variable. Fields are referenced as $1, $2, and so on. $0 
refers to the entire line. 

On the awk command line, you can assign values to variables as follows: 

variable = value 

Pattern-Matching Statements 
Pattern-matching statements follow the form: 

pattern { action } 
If a pattern lacks a corresponding action, awk writes the entire line that contains the 
pattern to standard output. If an action lacks a corresponding pattern, it matches every 
line. 

Actions 

An action is a sequence of statements that follow C Language syntax. These statements 
can include: 

statement 
if 
while 
for 
break 
continue 
{ statement 
(assignment) 
print 
printf 
next 
exit 

format 
if ( conditional) statement [ else statement] 
while ( conditional) statement 
for ( expression; conditional; expression) statement 

.. } 
variable = expression 
print [expression-list] [> expression] 
printf format[, expression-list] [> expression] 

Statements can end with a semicolon, a new-line character, or the right brace enclosing 
the action. 

If you do not supply an action, awk displays the whole line. Expressions can have string 
or numeric values and are built using the operators +, -, *, /, %, a blank for string 
concatenation, and the C operators ++, --, +=, -=, *=, /=, and %=. 



awk 

Variables can be scalars, array elements (denoted x[i]) or fields. Variable names can 
consist of upper- and lower-case alphabetic letters, the underscore character, the digits 
(0-9), and SJIS characters. 

Japanese Language Support Information 

Variable names can also include kanji characters. 

Variable names cannot begin with a digit. Variables are initialized to the null string. 
Array subscripts can be any string; they do not have to be numeric. This allows for a form 
of associative memory. String constants in expressions should be enclosed in double 
quotation marks. 

There are several variables with special meaning to awk. They include: 

FS Input field separator (default is a blank). This separator character cannot 

NF 
NR 
FILENAME 
OFS 

ORS 

OFMT 

be a 2-byte extended character. 
The number of fields in the current input line (record). 
The number of the current input line (record). 
The name of the current input file. 
The output field separator (default is a blank). This separator character 
cannot be a 2-byte extended character. 
The output record separator (default is a new-line character). This 
separator character cannot be a 2-byte extended character. 
The output format for numbers (default % • 69). 

Since the actions process fields, input white space is not preserved on the output. 

The printf expression list formats like the printf subroutine (see AIX Operating System 
Technical Reference). It writes arguments to standard output, separated by the output field 
separator and terminated by the output record separator. You can redirect the output 
using the print> file or printf> file statements. 

Note: You must enclose the file name in double quotes when redirecting output with the 
a wk command. 

You have two ways to designate a character other than white space to separate fields. You 
can use the -Fc flag on the awk command line, or you can start progfile with: 

BEGIN { FS = c } 

Either action changes the field separator to c. 

There are several built-in functions that can be used in awk actions. 

length [(arg)] 

blength [(arg)] 

exp(n) 

Returns the length in characters of the whole line if there is 
no argument or the length of its argument taken as a string. 
Returns the length in bytes of the whole line if there is no 
argument or the length of its argument taken as a string. 
Takes the exponential of its argument. 

Commands 83 



awk 

84 

log(n) 
sqrt(n) 
int(n) 
substr(s,m,n) 

sprintf(fmt,expr ,expr, . . . ) 

Patterns 

Takes the base e logarithm of its argument. 
Takes the square root of its argument. 
Takes the integer part of its argument. 
Returns the substring n characters long of s, beginning at 
position m. 
Formats the expressions according to the printf format 
string fmt and returns the resulting string. 

Patterns are arbitrary Boolean combinations of patterns and relational expressions (the!, 
II, and && operators and parentheses for grouping). You must start and end patterns with 
slashes (/). You can use regular expressions like those allowed by the egrep command (see 
"grep" on page 501), including the following special characters: 

+ One or more occurrences of the pattern. 
? Zero or one occurrences of the pattern. 

Either of two statements. 
( ) Grouping of expressions. 

Isolated patterns in a pattern apply to the entire line. Patterns can occur in relational 
expressions. If two patterns are separated by a comma, the action is performed on all lines 
between an occurrence of the first pattern and the next occurrence of the second. 

Regular expressions can contain extended characters with one exception: range constructs 
in character class specifications using square brackets cannot contain 2-byte extended 
characters. Individual instances of extended characters can appear within square 
brackets; however, 2-byte extended characters are treated as two separate I-byte 
characters. 

Japanese Language Support Information 

Regular expressions can contain kanji characters. In that case, range constructs in 
character class specifications using square brackets can contain 2-byte kanji characters, 
which are treated as 2-byte characters. 

Regular expressions can also occur in relational expressions. There are two types of 
relational expressions that you can use. One has the form: 

expression matchop pattern 

where matchop is either: ~ (for "contains") or ! - (for "does not contain"). The second has 
the form: 

expression relop expression 



Flags 

where relop is any of the six C relational operators: <,), <=, )=, ==, and! =. A 
conditional can be an arithmetic expression, a relational expression, or a Boolean 
combination of these. 

awk 

You can use the special patterns BEGIN and END to capture control before the first and 
after the last input line is read, respectively. You can only use these patterns before the 
first and after the last line in progfile. 

There are no explicit conversions between numbers and strings. To force an expression to 
be treated as a number, place a 0 at the beginning of the expression. However, note that 
only ASCII digits are treated as numeric. To force a regular expression to be treated as a 
string, append a null string (""). 

-f progfile Searches for the patterns and performs the actions found in the file progfile. 

-Fchar Uses char as the field separator character (by default a blank). 

Examples 

1. To display the lines of a file that are longer than 72 characters: 

awk "length )72" chapterl 

This selects each line of the file chapterl that is longer than 72 characters. awk 
then writes these lines to standard output because no action is specified. 

2. To display all lines between the words start and stop: 

awk Ii/start/ ,/stop/" chapterl 

3. To run an awk program (sum2. awk .) that processes a file (chapterl): 

awk -f sum2.awk chapterl 
The following awk program computes the sum and average of the numbers in the 
second column of the input file: 

{ 

} 

END { 

} 

sum += $2 

pri nt "Sum: ", sum; 
print "Average:", sum/NR; 

Commands 85 



awk 

The first action adds the value of the second field of each line to the variable s urn. 
awk initializes s urn (and all variables) to zero before starting. The keyword END 
before the second action causes awk to perform that action after all of the input file 
has been read. The variable NR, which is used to calculate the average, is a special 
variable containing the number of records (lines) that have been read. 

4. To print the names of the users who have the C shell as the initial shell: 

awk -F: I /csh/{pri nt $l} I /etc/passwd 

Related Information 

86 

The following commands: "lex" on page 562, "grep" on page 501, and "sed" on page 887. 

The printf subroutine in AIX Operating System Technical Reference. 

The "Overview of International Character Support" in Managing the AIX Operating 
System. 

The discussion of awk in AIX Operating System Programming Tools and Interfaces. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 



back 

back 

Purpose 

Plays backgammon. 

Syntax 

/usr / go mes/bock ---l 

OL805186 

Description 

Files 

The back game provides you with a partner for backgammon. You select one of three skill 
levels: beginner, intermediate, or expert. You may also choose to roll your own dice 
during your turns, and you are asked if you want to move first. 

The points are numbered such that: 

• 0 is the bar for removed white pieces. 

• 1 is white's extreme inner table. 

• 24 is brown's extreme inner table. 

• 25 is the bar for removed brown pieces. 

For details on how to make your moves, enter y when back asks Instructi ons at the 
beginning of the game. When it first asks Move?, enter? to see a list of choices other than 
entering a numerical move. 

When the game is finished, back asks you if you want to save game information. A y 
response stores game data in the file back.log in your current directory. 

The back game plays only the forward game, even at the expert level. It will obj ect if you 
try to make too many moves in a turn, but not if you make too few. Doubling is not 
implemented. 

To quit the game, press INTERRUPT (Alt-Pause). 

/usr/games/lib/backrules 
/tmp/b* 
back.log 

Rules file. 
Log temp file. 
Log file. 

Commands 87 



backup 

backup 

Purpose 

Backs up files. 

Syntax 

backup 
-f device 
-I num 
-v 
-Cnum 
-ddensity 
-s size 
-r 
-q 

Description 

----'-9~/1 

~ - level J\ -u~fi/esystem 

-j 

-Qqdir 

'-----mel 
filesystem 

The backup command copies files in backup format to a backup medium, such as a 
magnetic tape or diskette. 

There are three ways to back up data: 

• To back up specified files (backup by name) -i 
• To back up an entire file system (backup by file system or i-node) -level 
• To back up an entire mini disk (backup by minidisk) -m 

OL805082 

To back up by name, use the -i flag. The backup command reads standard input for the 
names of the files to be backed up. You can specify files by using the find command to 
generate a list of path names and pipe the list into the backup command. 

88 



backup 

Backing up by name allows you to back up files to a backup medium on the local system or 
on a remote system. 

When you specify -Q, -Q and -N, or when you use the print -backup command, the 
system writes a backup header to the backup medium. A header can contain the name of a 
qualifying directory and a target directory that subsequent restore commands can use to 
restore the files to the proper place. When a backup header is written if -Q is not 
specified, the system writes the path of the backup process's current directory to the 
header; if -N is not specified, the system writes the id of the node that requested the 
backup to the header. 

To back up by file system (i-node), specify -level and filesystem to indicate the files you 
want to back up. You can use the level to back up either all files on the system (a full 
backup) or only the files that have been modified since a specific full backup (an 
incremental backup). The possible levels are 0-9. If you do not supply a level, the default 
level is 9. A level 0 backup includes all files on the file system. A level n backup includes 
all files modified since the last level n-l backup. The levels, in conjunction with the -u 
flag, provide an easy way to maintain a hierarchy of incremental backups for each file 
system. For a discussion of backup strategy and the use of incremental backups, see 
Managing the AIX Operating System. 

If you specify the name of a filesystem, it can be either the physical device name (the block 
or raw name) or the name of the directory on which the file system is normally mounted. 
When you specify a directory, backup reads /etc/filesystems for the physical device 
name. In this case, it also acquires values for other backup parameters from 
/etc/filesystems. If you do not specify a file system, the default is the root file system on 
the current minidisk. 

To back up by minidisk, use the -m flag. This option copies an exact image of the entire 
minidisk. You can specify the file system name of the minidisk. The default is the root 
directory of the current minidisk. Because a backup by minidisk backs up an entire 
minidisk as an exact image, a large minidisk with a small or sparsely used file system may 
take longer and require more backup medium to back up this way, rather than by file 
system or by name. 

When you do not specify a backup device, the backup command writes files to a default 
backup device. For backup by name, backup -i, the system writes to /dev/rfdO unless you 
specify a device with the -f flag. For a backup by file system (i-node), backup -level, or a 
backup by minidisk, backup -m, if /etc/filesystems contains a stanza that matches the 
name you specified and a stanza with a backupdev entry, then the system writes to the 
device specified by backupdev. Otherwise, the system writes to /dev/rmtO or the device 
specified with the -f flag. 

The backup command recognizes a special syntax for the names of output files. If the 
argument is a range of names, such as /dev /rfdO-3, the backup command automatically 
goes from one drive in the range to the next. After exhausting all of the specified drives, it 
halts and requests that new volumes be mounted. 

Commands 89 



backup 

Flags 

90 

Notes: 

1. During execution of remote backup operations, the file system is unmounted. The file 
system is remounted after the backup completes. 

2. If you back up by either file system (i-node) or minidisk, the backup source and target 
must be on the local system. To back up to a remote system, back up by name with the 
-i flag. This flag allows users in a distributed services environment to back up files on 
a remote file system. 

3. You should use the -u flag when you do an incremental backup to ensure that 
information regarding the last date, time, and level of each incremental backup is 
written to the file /etc/budate. 

4. If the file system you are backing up is mounted and is not the root file system, 
backup unmounts the file system before it performs a file system (i-node) or minidisk 
backup and then remounts the file system before quitting. If the file systems you are 
backing up inchide the root file system, backup ensures that the other file systems are 
not in use. If one is, it warns you of this use and quits. 

Warning: Be sure that the flags you specify match the backup medium. 
If the backup medium is not a disk or diskette, do not specify the -I flag. 
Similarly, if the backup medium is not a tape, do not specify the -d or -8 

flags. If you do specify flags that do not go with the medium, backup 
displays an appropriate error message and continues the backup. 

-b Enables users to back up files in unattended mode (user input is not permitted) 
to a backup medium on a remote system. If any user input (such as Pl ease 
insert vol ume 2)is required, the command ends in an error. This enables 
users to set up a shell file that backs up files at night or at other times when 
the user is unavailable. 

-Cnum Specifies the number of blocks to write in a single output operation. If you do 
not specify num, backup uses a default value appropriate for the physical 
device selected. Larger values of num result in longer physical transfers to 
tape devices. The value of the -C flag is always ignored when backup writes to 
diskette. In this case, it always writes in clusters that occupy a complete track. 

-ddensity Specifies the amount of data a system can write to a tape medium in bytes per 
inch. The default density is 700 bytes per inch. 

Note: Tape drives vary in density capabilities. Use this flag with tape drives 
other than the IBM 6157 Streaming Tape Drive which has a density of 700. 



-fdevice 

-i 

-Inum 

-m 

-N node 

-q 

-Q qdir 

-r 

-slength 

-u 

-v 

-level 

backup 

Specifies the output device. Specify device as a file name (such as / dey / rmtO) 
to send output to the named device or specify - (minus) to send output to the 
standard output device. The - feature enables you to improve performance 
when backing up to streaming tape by piping the output of the backup 
command to the dd command (see example). 

Reads standard input for the names of files to back up. 

Uses num as the limit of the total number of block to use on a diskette. The 
default value is the entire diskette (2400 blocks for 1.2M, 720 blocks for 360K 
diskette, and 2700 for rmtO 6157). 

Backs up the entire minidisk as an exact image. 

Specifies the target node for subsequent restore commands. The node can be a 
node nickname or a node id (nicknames are translated to ids by backup). The 
backup command writes the id of node in the backup header. The default is 
the node id of the node where the backup command is running. 

Indicates that removable medium is ready to use. When you specify this flag, 
backup proceeds without prompting you to prepare the backup medium or 
waiting for you to press the Enter key to continue. Same as -r flag. 

Specifies the qualifying directory for subsequent restore commands. The 
backup command stores this name in the backup header. Then a subsequent 
restore command can use this information to place files with path names that 
are relative to a current directory in the qualifying directory. The qdir can be 
a relative or absolute directory. The default is the backup process's current 
working directory. 

Indicates that removable medium is ready to use. When you specify this flag, 
backup proceeds without prompting you to prepare the backup medium or 
waiting for you to press the Enter key to continue. Same as -q flag. 

Specifies the length in feet of usable space on a tape medium. This is a 
combination of the physical length and the number of tracks on the tape. In 
the case of IBM RT Streaming Tape, you should multiply the physical length of 
the tape by 9 (the number of tracks) to determine the usable space available. 

Updates the time, date, and level of the backup in the /etc/budate file. This 
file provides the information needed for incremental backups. 

Reports on each phase of the backup as it is completed and gives regular 
progress reports during the longest phase. 

Specifies the backup level (0-9). The default level is 9. 

Commands 91 



backup 

Examples 

92 

1. To back up selected files: 

find $HOME -print backup -i -v 

The - i flag tells the system to read from standard input the names of files to be backed 
up. The find command generates a list of files in the user's $HOME directory. This list 
is piped to the backup command as standard input. The -v displays a progress report 
as each file is copied. The files are backed up on the default backup device for the 
local system. 

2. To back up an entire file system: 

backup -0 -u / 

The - 0 level and the / file system tell the system to back up the entire root file system. 
The file system is backed up to the default device defined in the backupdev entry in 
/etc/filesystems if it exits. Otherwise, the files are backed up to /dev/rfdO. The-u 
tells the system to update the current backup level record in /etc/budate. Only the 
root file system is backed up, not mounted file systems. 

3. To back up all files modified since the last level 0 backup: 

backup -1 -u / 

4. To back up an entire minidisk: 

backup -mf/dev/rmtl /xyz 
This backs up the entire minidisk that contains the file system xyz. The -f tells the 
system to back up the mini disk to the streaming tape on / de v / rmt 1 instead of the 
default device. 

5. To back up files by name to the remote default device and specify the qualifying 
directory: 

find filelist -print I backup -; -Q /tmp/darlene 

The system backs up the files in fi 1 eli stand writes the qualifying directory 
/tmp/darl ene to the header. Since a target node is not specified, the default node 
(the node where the backup command is running) is written to the header. 

6. To back up files to a remote device and specify both the target node and the qualifying 
directory: 

find. -print I backup -i -N darlene -Q /tmp/darlene 

This command backs up the current directory (.). The node nickname darl ene is 
translated to a node id and written to the header with the qualifying directory 
/tmp/darl ene. Note that when -N is specified, the -Q flag must also be present. 



Files 

backup 

7. To improve performance on streaming tape, pipe the backup command to the dd 
command: 

backup -if- -C30 I dd of=/dev/rmtO bs=30b 

The backup command backs up by name (- i), directs the output to the standard 
output device (f -), and specifies an output size as 30 blocks (- C30). The output is 
piped to dd. The dd command copies the files to an output file which is a streaming 
tape device (of= / dey /rmtO) and specifies a file size of 30 blocks (bs=30b). The file 
size in both commands should be the same. To restore these files, pipe the dd command 
to restore. 

/ etc/file systems 
/etc/budate 
/dev/rfdO 
/dev/rhdO 

Read for default parameters. 
Log for most recent backup dates. 
Default backup device. 
Default file system. 

Related Information 

The following commands: "find" on page 422, "dd" on page 301, and "restore" on 
page 826. 

The budate and file systems files and the tape special file in AIX Operating System 
Technical Reference. 

"Backing up Files and File Systems" in Managing the AIX Operating System. 

Commands 93 



banner 

banner 

Purpose 

Writes character strings in large letters to standard output. 

Syntax 

banner T string r 
OL805080 

Description 

The banner command writes character strings to standard output in large letters. Each 
line in the output can be up to 10 uppercase or lowercase characters long. On output, all 
characters appear in uppercase, with the lowercase input characters appearing smaller 
than the uppercase input characters. 

Examples 

1. To display a banner at the work station: 

banner SMILE! 
2. To display more than one word on a line, enclose the text in quotation marks: 

banner "Out toll Lunch 

This displays Out to on one line, and Lunch on the next. 

3. To print a banner: 

banner We like Computers print 

Related Information 

The following command: "echo" on page 369. 

94 



basename 

basename, dirname 

Purpose 

Returns the base name of a string parameter. 

Syntax 

basename - string --CJ----l 
suffix 

dirname - path ----l 
Description 

OL805085 

OL805047 

The basename command reads the string specified on the command line, deletes any prefix 
that ends with a I (slash), as well as any specified suffix, if it is present, and writes the 
remaining base file name to standard output. 

Note: A basename of I is null and is considered an error. 

The dirname command writes to standard output all but the last part of the specified path 
name (all but the part following the last I). 
The basename and dirname commands are generally used inside. command 
substitutions within a shell procedure to specify an output file name that is some 
variation of a specified input file name. For more information, see "Command 
Substitution" on page 925. 

Examples 

1. To display the base name of a shell variable: 

basename $WORKFILE 

This displays the base name of the value assigned to the shell variable WORKFI LE. If 
WORKFI LE is set to lui j i m/program. C, then program. C is displayed. 

Commands 95 



basename 

2. To construct a file name that is the same as another file name, except for its suffix: 

OFILE='basename $1 .c'.o 

This assigns to 0 F I LEthe value of the first positional parameter ($1), but with its . c 
suffix changed to .0. If $1 is /u/jim/program.c, then OFILE becomes program.o. 
Because program. 0 is only a base file name, it identifies a file in the current 
directory. 

The' , (grave accents) perform command substitution. 

3. To construct the name of a file located in the same directory as another: 

AOUT F I L E='d i rname $TEXTF I L E'/ a. out 

This sets the shell variable AOUTFI LE to the name of an a.out file that is inthe same 
directory as TEXTFI LE. If TEXTFI LE is /u/fran/prog. c, then the value of di rname 
$TEXTFI LE is /u/fran and AOUTFI LE becomes /u/fran/ a. out. 

Related Information 

The following command: "sh" on page 913. 

96 



bc 

be 

Purpose 

Provides an interpreter for arbitrary-precision arithmetic language. 

Syntax 

be 

OL805081 

Description 

The be command is an interactive process that provides unlimited precision arithmetic. It 
is a preprocessor for the de command. be invokes de automatically, unless the -e (compile 
only) flag is specified. If the -e flag is specified, the output from be goes to the standard 
output. 

The be command lets you specify an input and output base in decimal, octal, or 
hexadecimal (the default is decimal). The command also has a scaling provision for 
decimal point notation. The syntax for be is similar to that of the C language. 

The be command takes input first from the specified file. When be reaches the end of the 
input file, it reads standard input. 

The following description of syntax for be uses the following abbreviations: L means 
letters a-z; E means expressions; S means statements. 

Names 
Simple variables: L 
Array elements: L[E] 
The words ibase, obase, and scale. 
Comments are enclosed in j* and *j. 

Commands 97 



be 

98 

Other Operands 
Arbitrarily long numbers with optional sign and decimal point. 
(E) 
sqrt ( E) 
length ( E ) number of significant decimal digits 
scale ( E) number of digits to the right of the decimal point 
L (E, ... ,E) 

Operators 
+ - * / % A (% is remainder; A is power) 
+ + -- (prefix and postfix; apply to names) 
==<=>=!=<> 
= = + =. =* =/ =0/0 = A 

Statements 
E 
{ 8; ... ;8} 
if(E) 8 
while (E) 8 
for (E;E;E) 8 
(null statement) 
break 
quit 

Function Definitions 
define L (L, . . . ,L) { 

} 

auto L, ... ,L 
8; ... S 
return ( E) 



Flags 

Functions in -1 Math Library 
s(x) 
c(x) 
e(x) 
l(x) 
a(x) 
j(n,x) 

SIne 
cosine 
exponential 
log 
arctangent 
Bessel function 

All function parameters are passed by value. 

be 

The value of a statement that is an expression is displayed unless the main operator is an 
assignment. A semicolon or new-line character separates statements. Assignments to 
scale controls the number of decimal places printed on output and maintained during 
multiplication, division, and exponentiation. Assignments to ibase or obase set the input 
and output number radix respectively. 

The same letter may refer to an array, a function, and a simple variable simultaneously. 
All variables are global to the program. "Auto" variables are pushed down during function 
calls. When you use arrays as function parameters, or define them as automatic variables, 
empty square brackets must follow the array name. 

All for statements must have all three E's. 

The quit statement is interpreted when read, not when executed. 

-c Compiles file, but does not invoke dc. 

-1 Includes a library of math functions. 

Examples 

1. To use bc as a calculator: 

You: bc 
1/4 

System: 0 
You: scale = 1 /* Keep 1 decimal place */ 

1/4 
System: 0.2 

You: scale = 3 /* Keep 3 decimal places */ 
1/4 

System: 0.250 
You: 16+63/5 

System: 28.600 

Commands 99 



be 

100 

You: (16+63) 15 
System: 15. 800 

You: 71/6 
System: 11.833 

You: 1/6 
System: O. 166 

You may type the comments (enclosed in 1* */), but they are provided only for your 
information. The be command displays the value of each expression when you press 
the Enter key, except for assignments. 

When you enter be expressions directly from the keyboard, press END OF FILE 
(Ctrl-D) to end the be session and return to the shell command line. 

2. To convert numbers from one base to another: 

3. 

You: bc 
obase 
i base 
12 

System: A 
You: 123 

System: 53 
You: 123456 

System: A72E 

= 16 
= 8 

1* Display numbers in Hexadecimal *1 
1* Input numbers in Octal *1 

When you enter be expressions directly from the keyboard, press END OF FILE 
(Ctrl-D) to end the be session and return to the shell command line. 

To write and run C-like programs: 

You: bc -1 prog.bc 
e(2) 1* e squared *1 

System: 7.38905609893065022723 
You: f(5) 1* 5 factorial *1 

System: 120 
You: f(10) 1* 10 factorial *1 

System: 3628800 



Files 

be 

This interprets the be program saved in prog. bc, then reads more be statements from 
the work station keyboard. Starting be with the -1 flag makes the math library 
available. This example uses the e (exponential) function from the math library, and f 
is defined in the program file prog. bc as: 

/* compute the factorial of n */ 

define f(n) { 

} 

auto i, r; 

r = 1; 
for (i=2; i<=n; i++) r =* i; 
return (r); 

The statement following a for or while statement must begin on the same line. When 
you enter be expressions directly from the keyboard, press END OF FILE (Ctrl-D) to 
end the be session and return to the shell command line. 

4. To convert an infix expression to reverse polish notation (RPN): 

You: bc -c 
(a * b) % (3 + 4 * c) 

System: 1 a 1 b* 3 41 c*+%ps. 

This compiles the be infix-notation expression into one that the de command can 
interpret. de evaluates extended RPN expressions. In the compiled output, the 1 (ell) 
before each variable name is the de subcommand to load the value of the variable onto 
the stack. The p displays the value on top of the stack, and the s. discards the top 
value by storing it in register. (dot). You can save the RPN expression in a file for de 
to evaluate later by redirecting the standard output of this command. For more details, 
see "Redirection of Input and Output" on page 926. When you enter be expressions 
directly from the keyboard, press END OF FILE (Ctrl-D) to end the be session and 
return to the shell command line. 

/usr/lib/lib.b 
/usr/bin/dc 

Mathematical library. 
Desk calculator proper. 

Related Information 

The following command: "de" on page 295. 

Commands 101 



bdiff 

bdiff 

Purpose 

Uses diff to find differences in very large files. 

Syntax 

-{
3500'}-O 

bdiff - file1 - file2 
num -s 

OL805083 

Description 

Flag 

The bdiff command compares filel and file2 and writes information about their differing 
lines to standard output. If either file name is - (minus), bdiff reads standard input. The 
bdiff command is used like diff to find lines that must be changed in two files to make 
them identical (see "diff" on page 320). Its primary purpose is to permit processing of files 
that are too large for diff. 

The bdiff command ignores lines common to the beginning of both files, splits the 
remainder of each file into num-line segments, and calls diff to compare the corresponding 
segments. In some cases, the 3500 line default for num is too large for diff. If diff fails, 
specify a smaller value for num and try again. 

The output of bdiff has the same format as that of diff. bdiff adjusts line numbers to 
account for the segmenting of the files. Note that because of the file segmenting, bdiff 
does not necessarily find the smallest possible set of file differences. 

-s Suppresses error messages from bdiff. (Note that the -8 flag does not suppress error 
messages from diff). 

Example 

102 

To display the differences between c hap 1 and C hap 1 . b a k: 
bdiff chapl chapl.bak 



bdiff 

Files 

/tmp/bd* Temporary files. 

Related Information 

The following command: "diff" on page 320. 

Commands 103 



bellmail 

bellmail 

Purpose 

Sends messages to system users and displays messages from system users. 

Syntax 

bellmail 

bellmail -~ user --' 
~_tJ-~1 

_f$HOME/mbOX~" 
-ffile---

J 
OL805347 

OL805034 

Description 

104 

The bellmail command with no flags writes to standard output, one message at a time, all 
stored mail addressed to the your login name. Following each message, bellmail prompts 
you with a ? (question mark). Press the Enter key to display the next mail message, or 
enter one of the subcommands that control the disposition of the message (see 
"Subcommands" on page 106). 

When sending mail, you specify users, and then bellmail reads a message from standard 
input until you press END OF FILE (Ctrl-D) or enter a line containing only a . (period). 
It prefixes this message with the sender's name and the date and time of the message (its 
postmark) and adds this message to the file /usr/mail/user for each user specified on the 
command line. 



Flags 

bellmail 

The action of bellmail can be modified in two ways by manipulating /usr/mail/user: 

• The default permission assignment for "others" is "read-only." If you change this 
permission assignment to "read/write" or to "all permissions denied," the system 
preserves the file, even when it is empty, in order to maintain the desired permissions. 

• You can edit the file to contain as its first line: 

Forward to person 
This causes all messages sent to user to be sent to person instead. The Forward to 
feature is especially useful for sending all of a person's mail to a particular machine in 
a network environment. 

To specify a recipient on a remote system, prefix the system name and an exclamation 
mark (!) to user. See "uucp" on page 1144 for a detailed discussion of how to address 
remote systems. 

-e Does not display any messages. This flag causes bellmail to return an exit value 
of 0 if the user has mail, an exit value of 1 if he has no mail. 

-f file Saves mail in the named file instead of in the default mailfile, $HOME/mbox. 

-p Displays mail without prompting for a disposition code. This flag does not delete, 
copy, or forward any messages. (For disposition codes, see "Subcommands" on 
page 106). 

-q Causes bellmail to exit when you press INTERRUPT (Alt-Pause). Normally, 
pressing INTERRUPT (Alt-Pause) stops only the message being displayed. (In 
this case, the next message sometimes does not display until you enter the p 
subcommand.) 

-r Displays mail in first-in, first-out order. 

-t Prefixes each message with the names of all recipients of the mail. (Normally, 
only the individual recipient's name appears as addressee.) 

Usually, user is a name recognized by the login command. It can also be the ASCII 
synonym that is automatically defined for any name that contains NLS code points. If the 
system does not recognize one or more of the specified users or if bellmail is interrupted 
during input, bellmail saves messages in the file $HOME/dead.letter to allow for editing 
and resending. 

Commands 105 



bellmail 

Subcommands 

The following subcommands control message disposition: 

+ Displays the next mail message (the same as pressing the Enter key). 

d 

p 

s [file] 

w [file] 

m user 

q 

x 

Displays the previous message. 

Deletes the current message and displays the next message. 

Displays the current message again. 

Saves the message in the named file instead of in the default mailfile, 
$HOME/mbox. 

Saves the message, without its postmark, in the specified file instead of in the 
default mailfile $HOME/mbox. 

Forwards the message to the named user. 

Writes any mail not yet deleted to /usr/mail/user and exits. Pressing END OF 
FILE (Ctrl-D) has the same effect. 

Writes all mail unchanged to /usr/mail/user and exits. 

!AIX-cmd Runs the specified AIX command. 

* Displays a subcommand summary. 

Examples 

106 

1. To display your mail: 

bellmail 

After the most recent message is displayed, a ? (question mark) indicates that bellmail 
is waiting for one of the subcommands explained previously ( +, -, d, p, etc.). Enter 
he 1 p or * (asterisk) to list the subcommands available. 

2. To send mail to other users: 

bellmail tom rachel 
Don't forget the 
meeting tomorrow at 9:30. 

Ctrl-D 

In this example the system mails the message Don I t forget the meeting 
tomorrow at 9: 30. to the users tom and rache 1. The Ctrl-D indicates the end of 
the message but it is not sent with the text. 



Files 

3. To send a file to another user: 

be11mail tran <proposal 

bellmail 

This command sends the contents of the file proposa 1 to fran. You can create memo 
with an editor, which allows you to correct your mistakes before sending the message. 
You can also use this form of the bellmail command to send someone a copy of a data 
file. 

4. To retrieve a file that was sent to you: 

be 11 mai 1 

This command displays the messages mailed to you one at a time. You need to look at 
them because the file you want was actually added to /usr/mail/user as a message. 
You may see several other messages before the file that was sent to you. If so, press 
the Enter key after the ? prompt until the desired file appears. If you go too far, enter 
the - (minus) subcommand to go back a message. After the? immediately following 
the file, enter: 

w mycopy 

This command creates a file named mycopy in the current directory that contains the 
text mailed to you. Actually, you can save a copy of any message this way. 

jetc/passwd 
jusrjmailjuser 
$HOME/mbox 
$HOME/dead.letter 
jtmpjma* 
jusrjmailj* .lock 

To identify sender and locate user. 
Incoming mail for user. 
Saved mail. 
Unmailable text. 
Temporary file. 
Lock for mail directory. 

Related Information 

The following commands: "login" on page 584, "uucp" on page 1144, "sendmail" on 
page 897, and "write" on page 1225. 

Commands 107 



bffcreate 

bffcreate 

Purpose 

Creates files in backup format for complete or subset programs in a code service 
environment. 

Syntax 

-(

/deV/rfdO 

bffcreate 

-d infile 

Itmp , , 

-w directory r 

1See flag description for special requirements, restrictions, and defaults 

AJ2FL137 

Description 

108 

The bffcreate command creates one or more files in backup format to support install and 
update by client systems in a code service environment. Input files must also be in backup 
format. You must be a member of the system group or operating with superuser authority 
to run this command. This command is also run when you specify the -b flag in either an 
installp or updatep command. 

This command creates one or more of the following: 

• A file that contains the files from an installp distribution media 
• One file per program subset that. contains the program subset file from an installp 

distribution media 
• A file that contains the files from an updatep distribution media 
• A file that contains the files that do not follow installp or updatep conventions. 

When this command runs, the contents of the distribution media are restored in a 
temporary working directory. Then a copy is created in backup format and put into either 
the /usr/lpp.install or the /usr/lpp.update directory for use in a code service 
environment. Program subset files are created automatically for any program subset on 
the distribution media. 



Flags 

Files 

bffcreate 

-d infile Specifies the name of the distribution media. If given, it must already exist. 
The default is /dev/rfdO. 

-f outfile Specifies the name of the backup format file. This flag is required for 
non-standard distribution media and installp distribution media that 
contain multiple program names. This flag is not allowed for distribution 
media that contain only one program name; in this case, the system names 
the output file in the form programname.vv.rr where programname is the 
name of the program, vv is the version, and rr is the release. This flag is 
optional for updatep distribution media. If not specified, the system 
creates a name in the form updt.yyddd.nnn where yyddd is the Julian date 
(for example, 88032 is February 1, 1988) and nnn represents a number in 
sequence for files created that day. 

-v Writes the name of the backup format file to standard output (verbose 
mode). 

-w directory Specifies the directory where a temporary working directory can be created 
to contain the restored files. The default is /tmp. If specified, the directory 
must already exist. 

/usr/lpp.install 

/usr/lpp. update 

Directory that contains files in backup format for use in installing 
complete or subset programs across a network. 
Directory that contains files in backup format for use in updating 
complete or subset programs across a network. 

Related Information 

The following commands: "installp" on page 529 and "updatep" on page 1122. 

Commands 109 



bfs 

bfs 

Purpose 

Scans files. 

Syntax 

bfS-Q- file----l 

OL805084 

Description 

110 

The bfs command reads a file but does not do any processing of it, allowing you to scan but 
not edit it. 

The bfs command is basically a read-only version of the ed command, except it can process 
much larger files and it has some additional subcommands. Input files can be up to 32K 
lines long, with up to 255 characters per line. bfs is usually more efficient than ed for 
scanning a file, because the file is not copied to a buffer. It is most useful for identifying 
sections of a large file where you can use the csplit command to divide it into more 
manageable pieces for editing. 

If you enter the P subcommand, bfs prompts you with an * (asterisk). You can turn off 
prompting by entering a second P. bfs displays error messages when prompting is turned 
on. 

Forward and Backward Searches 
The bfs command supports all the address expressions described under "ed" on page 371. 
In addition, you can instruct bfs to search forward or backward through the file, with or 
without wrap-around. If you specify a forward search with wrap-around, bfs continues 
searching from the beginning of the file after it reaches the end of the file. If you specify a 
backward search with wrap-around, it continues searching backwards from the end of the 
file after it reaches the beginning. The symbols for specifying the four types of search are 
as follows: 

/pattern/ Searches forward with wrap-around for the pattern. 

?pattern? Searches backward with wrap-around for the pattern. 

> pattern> Searches forward without wrap-around for the pattern. 

< pattern < Searches backward without wrap-around for the pattern. 



Flags 

The pattern matching routine of bfs differs somewhat from the one used by ed and 
includes additional features (see the regcmp subroutine in A/X Operating System 
Technical Reference). There is also a slight difference in mark names: only lowercase 
letters a through z may be used, and all 26 marks are remembered. 

bfs 

Suppresses the display of file sizes. Normally, bfs displays the size in bytes of the file 
being scanned. 

Subcommands 

The e, g, v, k, D, p, q, W, = , ! and null subcommands operate as explained under "ed" on 
page 371. Subcommands such as --, + + + -, + + + =, -12, and + 4p are accepted. Note that 
1, lOp and 1,10 both display the first ten lines. The f subcommand displays only the name 
of the file being scanned; there are no remembered file names. The W subcommand is 
independent of output diversion, truncation, or compression (see the xo, xt, and xc 
subcommands on page 111). Compressed output has strings of tabs and blanks reduced to 
one blank and blank lines suppressed. 

The following additional subcommands are available: 

xf file Reads bfs subcommands from the file. When bfs reaches the end of file 
or receives an INTERRUPT signal or if an error occurs, bfs resumes 
scanning the file that contains the xf subcommand. These xf 
subcommands may be nested to a depth of 10. 

xo [file] 

:label 

Sends further output from the p and null subcommands to the named 
file, which is created with read and write permission granted to all 
users. If you do not specify a file parameter, bfs writes to standard 
output. Note that each redirection to a file creates the specified file, 
deleting an existing file if necessary. 

Positions a label in a subcommand file. The label is ended with a 
new-line character. Blanks between the: (colon) and the start of the 
label are ignored. This subcommand may be used to insert comments 
into a subcommand file, since labels need not be referenced. 

[addr 1 [,addr2]]xb/pattern/ label 
Sets the current line to the line containing pattern and jumps to label in 
the current command file if pattern is matched within the designated 
range of lines. The jump fails under any of the following conditions: 

• Either addr 1 or addr2 is not between the first and last lines of the 
file. 

• addr 2 is less than addr 1. 
• The pattern does not match at least one line in the specified range, 

including the first and last lines. 

Commands 111 



bfs 

112 

This subcommand is the only one that does not issue an error message 
on bad addresses, so it may be used to test whether addresses are bad 
before other subcommands are run. Note that the subcommand: 

xb/A/label 

is an unconditional jump. 

The xb subcommand is allowed only if it is read from some place other 
than a work station. If it is read from a pipe, only a downward jump 
is possible. 

xt number Truncates output from the p and null subcommands to number 
characters. The default number is 255. 

xv[digitl [value] Assigns the specified value to the variable named digit (0 through 9). 
You can put one or more spaces between digit and value. For example: 

xv5 100 
xv6 1,100p 

assigns the value 100 to the variable 5 and the value 1, lOOp to the 
variable 6. 

To reference a variable, put a % (percent sign) in front of the variable 
name. Given the preceding assignments for variables 5 and 6, the 
following three subcommands: 

1,%5p 
1,%5 
%6 
each display the first 100 lines of a file. 

To escape the special meaning of %, precede it with a \ (backslash). For 
example: 

g/II. *\% [cds] /p 

matches and lists lines containing printf variables (%c, %d, or %s). 

You can also use the xv subcommand to assign the first line of 
command output as the value of a variable. To do this, make the first 
character of value an ! (exclamation point), followed by the command 
name. For example: 

xv5 tcat junk 

stores the first line of the file j un k in the variable 5. 



xbz label 

xbn label 

xc [switch] 

To escape the special meaning of ! as the first character of value, 
precede it with a \ (backslash). For example: 

xv7 \!date 

stores the value ! date in the variable 7. 

bfs 

Tests the last saved exit value from a shell command and jumps to label 
in the current command file if the value is zero. 

Tests the last saved exit value from a shell command and jumps to label 
in the current command file if the value is not zero. 

Turns compressed output mode on or off. (Compressed output mode 
suppresses blank lines and replaces multiple blanks and tabs with a 
single space.) 

If switch is 1, output from the p and ~ull subcommands is compressed; if 
switch is 0 it is not. If you do not specify switch, the current value of 
switch reverses. Initially, switch is set to O. 

Related Information 

The following commands: "csplit" on page 252 and "ed" on page 371. 

The regcmp subroutine in AIX Operating System Technical Reference. 

Commands 113 



biod 

biod 

Purpose 

Starts NFS asynchronous block I/O daemons. 

Syntax 

biod_ nservers----j 
OL805479 

Description 

File 

The biod command starts asynchronous block I/O daemons. This command is used on an 
NFS client to handle read-ahead and write-behind buffer cache. The nservers parameter 
specifies the number of asynchronous block I/O daemons started. Assign the number based 
on the load expected on the server. Four daemons can handle an average load. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

/etc/rc.nfs 

Related Information 

The following command: "nfsd" on page 696. 

114 



biodd-cfg 

Purpose 

Configures the block I/O AIX device driver. 

Syntax 

AJ2FL143 

Description 

Files 

The biodd-cfg command configures the block I/O kernel device driver so it can access 
specific adapter cards. The adapter cards which can be accessed by the block I/O kernel 
device driver are adapters whose VRM device drivers are written to interface with the 
VRM block I/O device manager. These include the token adapter, the baseband adapter, 
and multiprotocol/dual port (MPDP) adapter. 

Before you run this command, you must edit the /etc/biodd file to add the device names 
for the adapter cards you want to access. After the file has been edited, run the biodd-cfg 
command. This command must be run again after each IPL of the system for the block I/O 
kernel device driver to be configured to run with the devices listed in the file. To run this 
command automatically at each IPL, edit the /etc/rc.include file to uncomment the line: 

# /etc/biodd_cfg 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

/etc/biodd 

/etc/rc.include 

Contains the device names of the adapters to be accessed 
by the block I/O kernel device driver. 
Contains startup routines. 

Commands 115 



biodd-cfg 

Related Information 

116 

The discussion of the block I/O kernel device driver in AIX Operating System Technical 
Reference. 



bj 

bj 

Purpose 

Plays blackjack. 

Syntax 

/"-lsr/games/bj --I 
OL805187 

Description 

The bj game plays the role of the dealer in blackjack. The following rules apply. 

The bet is $2 every hand. If you draw a natural (blackjack), you win $3. If the dealer 
draws a natural, you lose $2. If you and the dealer both have naturals, you exchange no 
money (a push). If the dealer has an ace showing, you can make an insurance bet on the 
chance that the dealer has a natural, winning $2 if the dealer has a natural and lose $1 if 
not. If you are dealt two cards of the same value, you can double, that is, play two hands, 
each of which begins with one of these cards, betting $2 on each hand. If the value of your 
original hand is 10 or 11, you can double down, that is, double the bet to $4 and receive 
exactly one more card in that hand. 

Under normal play, you can draw a card (hit) as long as your cards total 21 or less. If the 
cards total more than 21, you bust and the dealer wins the bet. When you stand (decide 
not to hit), the dealer hits until he has a total of 17 or more. If the dealer busts, you win. 
If both you and the dealer stand, the one with the higher total wins. A tie is a push. 

The bj command deals, keeps score, and asks the following questions at appropriate times: 
? (Do you want a hit?) Insurance? Doub 1 e? Doub 1 e down? To answer yes, press y; 
to answer no, press the Enter key. 

The dealer tells you whenever the deck is being shuffled and displays the action (total bet) 
and standing (total won or lost). To quit the game, press INTERRUPT (Alt-Pause); bj 
displays the final action and standing and exits. 

Commands 117 



bs 

bs 

Purpose 

Compiles and interprets modest-sized programs. 

Syntax 

bs -{ file --GY 
flag 

OL805167 

Description 

118 

This compiler/interpreter provides interactive program development and debugging. To 
simplify program testing, it minimizes formal data declaration and file manipulation, 
allows line-at-a-time debugging, and provides trace and dump facilities and run-time error 
messages. 

The optional command line parameter file specifies a file of program statements that the 
compiler reads before it reads from the standard input. By default, statements read from 
this file are compiled for later execution. Likewise, statements entered from the standard 
input are normally executed immediately (see the compile keyword on page 119 and the 
execute keyword on page 119). Unless the final operation is assignment, the result of an 
immediate expression statement is displayed. 

Additional command line flags can be passed to the program using the built-in functions 
arg and narg (explained in more detail on page 123). 

Program lines must conform to one of the following formats: 

statement 
label statement 

The interpreter accepts labeled statements only when it is compiling statements. A label is 
a name immediately followed by a colon. A label and a variable can have the same name. 
If the last character of a line is a \ (backslash), the statement continues on the following 
physical line. 

A statement consists of either an expression or a keyword followed by zero or more 
expressions. 



bs 

Statement Syntax 
break Exits the innermost for or while loop. 

clear Clears the symbol table and removes compiled statements from memory. 
A clear is always executed immediately. 

compile [expr] Causes succeeding statements to be compiled (overrides the immediate 
execution default). The optional expression is evaluated and used as a 
file name for further input. In this latter case, the symbol table and 
memory are cleared first. compile is always executed immediately. 

continue Transfers control to the loop-continuation test of the current for or 
while loop. 

dump [name] Displays the name and current value of every global variable or, 
optionally, of the named variable. After an error or interrupt, dump 
displays the number of the last statement and (possibly) the user-function 
trace. 

exit [expr] Returns to the system level. The expression is returned as process 
status. 

execute Changes to immediate execution mode (pressing INTERRUPT 
[Alt-Pause] has the same effect). This statement does not cause stored 
statements to execute (see run on page 121). 

for name = expr expr statement 

for name = expr expr 
statement . .. 

next 

for expr, expr, expr statement 

forexpr, expr, expr 
statement 

next Repeatedly performs, under the control of a named variable, a statement 
(first format) or a group of statements (second format). The variable 
takes on the value of the first expression, then is increased by one on 
each loop until it exceeds the value of the second expression. The third 
and fourth formats require three expressions separated by commas. The 
first of these is the initialization, the second is the test (true to 
continue), and the third is the loop-continuation action. 

fun f ([a, ... ]) [u, ... ] 
statement 

nuf Defines the function name (f), parameters (a), and local variables (v) for a 
user-written function. Up to 10 parameters and local variables are 
allowed. Such names cannot be arrays, nor can they be I/O associated. 
Function definitions may not be nested. 

Commands 119 



bs 

120 

fret urn 

goto name 

ibase n 

if expr statement 

if expr 
statement 

[else 
statement 

fi 

include expr 

obase n 

onintr label 
onintr 

return [expr] 

] 

Signals the failure of a user-written function. Without interrogation, 
freturn returns zero. (See the unary interrogation operator? discussed 
on page 122.) With interrogation, freturn transfers to the interrogated 
expression, possibly bypassing intermediate function returns. 

Passes control to the compiled statement with the matching label. 

Sets the input base to n. The only supported values for n are 8, 10 (the 
default), and 16. Hexadecimal values 10-15 are entered as alphabetic 
characters a-f. A leading digit is required when a hexadecimal number 
begins with an alphabetic character (for example, fOa must be entered 
as OfOa). ibase is always executed immediately. 

Performs a statement (first format) or group of statements (second 
format) if the expression evaluates to nonzero. The strings 0 and "" 
(null) evaluate as zero. In the second format, an optional else allows a 
group of statements to be performed when the first group is not. The 
only statement permitted on the same line with an else is an if; only 
other fis can be on the same line with a fi. You can combine else and if 
into elif. Only a single fi is required to close an 
if ... elif ... [else ... ] sequence. 

The expression must evaluate to the name of a file containing program 
statements. Such statements become part of the program being compiled. 
include statements may not be nested, and are always executed 
immediately. 

Sets the output base to n. The only supported values for n are 8, 10 (the 
default), and 16. Hexadecimal values 10-15 are entered as alphabetic 
characters a-f. A leading digit is required when a hexadecimal number 
begins with an alphabetic character (that is, fOa must be entered as 
OfOa). Like ibase, obase is always executed immediately. 

Provides program control of interrupts. In the first format, control 
passes to the label given, just as if a goto had been performed when 
onintr was executed. The effect of the onintr statement is cleared after 
each interrupt. In the second format, pressing INTERRUPT 
(Alt-Pause) ends bs. 

Evaluates the expression and passes the result back as the value of a 
function call. If you do not provide an expression, the function returns 
zero. 



run 

stop 

trace [expr] 

Passes control to the first compiled statement. The random number 
generator is reset. If a file contains a run statement, it should be the 
last statement; run is always executed immediately. 

bs 

Stops execution of compiled statements and returns to immediate mode. 

Controls function tracing. If you do not provide an expression or if it 
evaluates to zero, tracing is turned off. Otherwise, a record of 
user-function calls/returns will be written. Each return decreases by 
one the trace expression value. 

while expr statement 

while expr 
statement 

next 

! AIXcmd 

#comment 

while is similar to for except that only the conditional expression for 
loop continuation is given. 

Runs an AIX command, then returns control to bs. 

Inserts a comment line. 

Expression Syntax 
name Specifies a variable or, when followed immediately by a colon, a label. 

Names are composed of a letter (uppercase or lowercase) optionally 
followed by letters and digits. Only the first six characters of a name are 
significant. Except for names declared locally in fun statements, all 
names are global. Names can take on numeric (double float) values or 
string values or be associated with input/output (see the built-in function 
open on page 125). 

name([expr[, expr] ... ) 
Calls function name and passes to it the parameters in parentheses. 
Except for built-in functions (listed in the following text), name must be 
defined in a fun statement. Function parameters are passed by value. 

name[expr[, expr] ... ] 

number 

References either arrays or tables (see built-in function table on page 
126). For arrays, each expression is truncated to an integer and used as 
a specifier for the name. The resulting array reference is syntactically 
identical to a name; a [1, 2J is the same as a [lJ [2]. The truncated 
expressions must be values between 0 and 32767. 

Represents a constant numerical value. This number can be expressed in 
integer, decimal, or scientific notation (it can contain digits, an optional 
decimal point, and an optional e followed by a possibly signed exponent). 

Commands 121 



bs 

122 

string 

(expr) 

Character string delimited by /I /I (double quotation marks). The \ 
(backslash) is an escape character that allows the double quotation mark 
(\"), new-line character (\n), carriage return (\r), backspace (\b), and tab 
(\t) characters to appear in a string. When not immediately followed by 
these special characters, \ stands for itself. 

Parentheses alter the normal order of evaluation. 

(expr, expr[, expr] ... ) [expr] 

expr op expr 

The bracketed expression outside the parentheses functions as a 
subscript to the list of expressions within the parentheses. List elements 
are numbered from the left, starting at zero. The expression: 

(False, True) [ a == b ] 

has the value True if the comparison is true. 

Except for the assignment, concatenation, and relational operators, both 
operands are converted to numeric form before the operator is applied. 

Unary Operators 

?expr 

-expr 

+ + name 

--name 

!expr 

The interrogation operator (?) tests for the success of the expression 
rather than its value. It is useful for testing end of file, for testing the 
result of the eval built-in function, and for checking the return from 
user-written functions (see freturn on'page 120). An interrogation trap 
( end of file, for example), causes an immediate transfer to the most 
recent interrogation, possibly skipping assignment statements or 
intervening function levels. 

Negates the expression. 

Increases by one the value of the variable (or array reference). 

Decreases by one the value of the variable. 

The logical negation of the expression. 

Binary Operators (in increasing precedence) 

& 

The assignment operator. The left operand must be a name or an array 
element. It acquires the value of the right operand. Assignment binds 
right to left; all other operators bind left to right. 

The concatenation operator (the underline character). 

Logical AND, logical OR. The result of: 

expr & expr 

is 1 (true) only if both of its parameters are nonzero (true); it is 0 (false) 
if one or both of its parameters are 0 (false). 



< <= > >= 

+ -

* / % 
A 

bs 

The result of: 

expr I expr 

is 1 (true) if one or both of its expressions are nonzero (true); it is 0 
(false) only if both of its expressions are 0 (false). Both operators treat a 
null string as a zero. 

= = != 
The relational operators « less than, . < = less than or equal to, > 
greater than, > = greater than or equal to, = = equal to, ! = not equal 
to) return 1 if the specified relation is True. They return 0 (false) 
otherwise. Relational operators at the same level extend as follows: 
a> b > c is the same as a> b & b > c. A string comparison is made if both 
operands are strings. The comparison is based on the collating sequence 
specified in the environment variable NLCTAB. 

Addition and subtraction. 

Multiplication, division, and remainder. 

Exponentiation. 

Functions Dealing With Arguments 
arg(i) 

narg( ) 

Returns the value of the i-th actual argument at the current function 
call level. At level zero, arg returns the i-th command-line argument. 
For example, arg(O) returns bs. 

Returns the number of arguments passed. At level zero, it returns the 
command line argument count. 

Mathematical Functions 
abs(x) 

atan(x) 

ceil(x) 

cos(x) 

exp(x) 

floor(x) 

log(x) 

rand( ) 

sin(x) 

sqrt(x) 

Returns the absolute value of x. 

Returns the arctangent of x. 

Returns the smallest integer not less than x. 

Returns the cosine of x. 

Returns e raised to the power x. 

Returns the largest integer not greater than x. 

Returns the natural logarithm of x. 

Returns a uniformly distributed random number between zero and one. 

Returns the sine of x. 

Returns the square root of x. 

Commands 123 



bs 

124 

String Functions 
size(s) 

bsize(s) 

format(f, a) 

index(x, y) 

Returns the size (length in characters) of s. 

Returns the size (length in bytes) of s. 

Returns the formatted value of a, f being a format specification string in 
the style of the printf subroutine. Use only the % ... f, % ... e, and % ... s 
formats. 

Returns a number that is the first position in x containing a character 
that any of the characters in y matches. If there is no match, index 
yields zero. For 2-byte extended characters, the index functions returns 
the location of the first byte. 

trans(s, f, t) Translates characters in the source string s which match characters in f 
into characters having the same position in t. Source characters that do 
not appear in f are copied unchanged into the translated string. If string 
f is longer than t, source characters that match characters found in the 
excess portion of f do not appear in the translated string. 

substr(s, start, length) 
Returns the substring of s defined by starting position in characters and 
length in characters. 

match(string, pattern) 
mstring(n) This function returns the number of characters in string that match 

pattern. The characters ., *, ? [, ], J\ (when inside square brackets), \( 
and \) have the following special meanings (see "ed" on page 371 for a 
more detailed discussion of this special notation): 

* 

$ 
[.-. J 
[ . . 

[J\ .-.J 

Matches any character except the new-line character. 

Matches zero or more occurrences of the pattern element that 
it follows (for example, . * matches zero or more occurrences of 
any character except the new-line character). 

Specifies the end of the line. 

Matches anyone character in the specified range ([-.J) or list 
([ . . . ]), including the first and last characters. 

[J\ ••• ] Matches any character except the new-line character and the 
remaining characters in the range or list. A circumflex (J\) has 
this special meaning only when it immediately follows the left 
bracket. 



[].-.] 
[] ... ] Matches] or any character in the list. The right square 

bracket does not terminate such a list when it is the first 
character within it (after an initial" , if any). 

\( ... \) Marks a substring and matches it exactly. 

To succeed, a pattern must match from the beginning of the string. It 
also matches the longest possible string. Consider, for example: 

match ( I a123ab123 I , It • *\ ( [a-z] \) II} == 6 

In this instance, . * matches a123a (the longest string that precedes a 
character in the range a-z); \ ( [a-z] \) matches b, giving a total of six 
characters matched in the string. In an expression such as [a-z], the 
minus means "through," according to the current collating sequence. 

bs 

A collating sequence may define equivalence classes for use in 
character ranges. See the "Overview of International Character 
Support" in Managing the AIX Operating System for more information 
on collating sequences and equivalence classes. 

Japanese Language Support Information 

Note: Japanese Language Support does not define equivalence classes 
for use in character ranges. To avoid unpredictable results when using a 
range expression, use a character class expression rather than a 
standard range expression. For information about character class 
expressions, see "File Name Substitution" on page 4. 

The mstring function returns the nth substring in the last call to 
match (n must be between 1 and 10 inclusive). 

File-Handling Functions 
open(name, file, mode) 
close(name) The name parameter must be a legal variable name (passed as a string). 

For open, the file parameter may be: 

• A 0, 1, or 2 for standard input, output, or error output, respectively 
• A string representing a file name 
• A string beginning with an !, representing a command to be run (via 

sh -c). 

The mode flag must be either r (read), w (write), W (write without 
new-line character), or a (append). After a close, the name becomes an 
ordinary variable. The initial associations are: 

Commands 125 



bs 

126 

access(p, m) 

ftype(s) 

open(HgetH, 0, Hrll) 
open (H put \I ~ 1, IIW'") 
open(Hputerrl!, 2, IlWH) 

Performs the access system call. Parameter p is the path name of a file; 
m is a bit pattern representing the requested mode of access. This 
function returns a 0 if the request is permitted, -1 if it is denied. (See 
A/X Operating System Technical Reference for a more extensive 
discussion of this system call.) 

Returns a single character indicating file type: f for regular file, p for 
FIFO (named pipe), d for directory, b for block special, or c for character 
special. 

Table Functions 
table(name, size) A table in bs is an associatively accessed, one-dimensional array. 

item(name, i) 
key( ) 

Subscripts (called keys) are strings (numbers are converted). The name 
parameter must be a bs variable name (passed as a string). The size 
parameter sets the minimum number of elements to be allocated. On 
table overflow, bs writes an error message. 

The item function accesses table elements sequentially (in normal use, 
there is an orderly progression of key values). Where the item function 
accesses values, the key function accesses the subscript of the previous 
item call. The name parameter should not be quoted. Since exact table 
sizes are not defined, the interrogation operator should be used to detect 
end-of-table; for example: 

table(l1t '1 ,100) 

#If word contains "party", the following expression 
#adds one to the count of that word: 
++t[word] 

. 
# To display the key/value pairs: 
for i=O, ?(s=item(t, i)), ++i if key() put=key()_I1:l!_s 

iskey(name, word) 
Tests whether the key word exists in the table name and returns one for 
true, zero for false. 



bs 

Miscellaneous Functions 
eval(string) The string parameter is evaluated as an expression. The function is 

handy for converting numeric strings to numbers. eval can also be used 
as a crude form of indirection, as in: 

name = "xyzll 
eval (1I++II_name ) 

which increments the variable xyz. 

In addition, eva I preceded by the interrogation operator permits you to 
control bs error conditions. For example: 

?eval (1I open (\lIX\'I,\"XXX\l1, \"r\")fI) 

returns the value zero if there is no file named II XXX" (instead of halting 
your program). The following performs a goto to the label L: (if it 
exists): 

1 abe 1 =fll:" 
if! (?eva 1 (ligoto"_l abe 1 )) puterr=fl no 1 abe 1 II 

plot(request, args) 
The plot function produces output on devices recognized by the tplot 
command. Some requests do not apply to all plotters. All requests 
except 0 and 12 are implemented by piping characters to tplot. The 
requests are as follows: 

Call 

plot(O, term) 

plot(l) 

plot (2, string) 

plot(3, xl, yl, x2, 

plot(4, x, y, r) 

plot(5, xl, yl, x2, 

plot(6) 

plot(7, x, y) 

plot(8, xy) 

plot(9, x, y) 

y2) 

y2, 

Function 

Causes further plot output to be piped into 
tplot with a flag of -Tterm. 

Erases the plotter. 

Labels the current point with string. 

Draws the line between (xl, yl) and (x2, y2). 

Draws a circle with center (x, y) and radius 
r. 

x3, y3) 
Draws an arc (counterclockwise) with center 
(xl, yl) and endpoints (x2, y2) and (x3, y3). 

Not implemented. 

Makes the current point at (x, y). 

Draws a line from the current point to (x, y). 

Draws a point at (x, y). 

Commands 127 



bs 

lastO 

plot(lO, string) Sets the line mode to string. 

plot(ll, xl, yl, x2, y2) Makes (xl, yl) the lower left corner of the 
plotting area and (x2, y2) the upper right 
corner of the plotting area. 

plot(12, xl, yl, x2, y2) Causes subsequent x (y) coordinates to be 
multiplied by xl (y1) and then added to x2 
(y2) before they are plotted. The initial 
scaling is plot(12, 1.0, 1.0, 0.0, 0.0). 

In immediate mode, last returns the most recently computed value. 

Related Information 

128 

The following commands: "ed" on page 371, "sb" on page 913, and "tplot" on page 1079. 

The access system call, the printf subroutine, and the plot file in AIX Operating System 
Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 



burst 

Purpose 

Explodes digests into messages. 

Syntax 

burst 

-noinplace 

one of 
-inploce 
-noinp;oce 

burst - -help----j 

~-----cur----------------------------~ 
.------011-------------.. 

~-------sequence--------~ 

one of 
num one of 

first 1 :num -prey 
prey :+num -cur 
cur :-num 

-num -next 

next -first -last 
last 

-noverbose 

one of 

-verbose 
-noverbose 

1 Do not put a blank between these items. 

Description 

burst 

AJ2FL220 

AJ2FL160 

OL805308 

The burst command is used to explode digests, messages forwarded by the forw command, 
and blind carbon copies sent by the forw and send commands. burst is part of the MH 
(Message Handling) package and can be used with other MH and AIX commands. 

Commands 129 



burst 

Flags 

130 

The burst command cannot explode more than about 1,000 messages from a single 
message. burst, however, generally does not place a specific limit on the number of 
messages in a folder after bursting is complete. 

The burst command uses encapsulation boundaries to determine where to separate the 
encapsulated messages. If an encapsulation boundary is located within a message, burst 
may split that message into two or more messages. 

+ folder msgs Specifies the messages that you want to burst. msgs can be several 
messages, a range of messages, or a single message. You can use the 
following message references when specifying msgs: 

-help 

-inplace 

num first prev 
cur next 
last all sequence 

The default message is the current message in the current folder. If 
-inplace is also specified, the first message burst becomes the current 
message. Otherwise, the first message extracted from the first digest 
becomes the current message. 

Displays help information for the comD,land. 

Replaces each digest by a table of contents for the digest, places the 
messages contained in each digest directly after the digest's table of 
contents, and renumbers all subsequent messages in the folder to make room 
for the messages in the exploded digest. 

Warning: The burst command does not place text that 
appears after the last encapsulated message in a separate 
message. When you specify the -inplace flag, burst loses this 
trailing text. In digests, this text is usually an End-of-Digest 
string. However, if the sender appended remarks after the last 
encapsulated message, burst loses these remarks. 

-noinplace Preserves each digest, does not produce a table of contents for each digest, 
and places the messages contained in each digest at the end of the folder. 
burst does not affect messages that are not part of digests. This flag is the 
default. 

-noquiet Reports information about messages that are not in digest format. This flag 
is the default. 



burst 

-noverbose Does not report the general actions that burst performs while exploding the 
digests. This flag is the default. 

-quiet Does not report information about messages that are not in digest format. 

-verbose Reports the general actions that burst performs while exploding the digests. 

Profile Entries 

Current-Folder: 
Msg-Protect: 
Path: 

Files 

$HOME/ .mh_ profile 

Sets your default current folder. 
Sets the protection level for your new message files. 
Specifies your user _mh-directory. 

The MH user profile. 

Related Information 

Other MH commands: "forw" on page 438, "inc" on page 518, "msh" on page 677, 
"packf" on page 733, "send" on page 893, "show" on page 942. 

The mh-profile file in A/X Operating System Technical Reference. 

The "Overview of the Message Handling Package" in Managing the A/X Operating System. 

Commands 131 



cal 

cal 

Purpose 

Displays a calendar. 

Syntax 

cal r--\. year --l 
~monthr 

OL805168 

Description 

The cal command writes to standard output a calendar for the specified year or month. 

The month parameter names the month for which you want the calendar. It can be a 
number between 1 and 12 for January through December, respectively. 

The year parameter names the year for which you want the calendar. Since cal can 
display a calendar for any year from 1 to 9999, enter the full year rather than just the last 
two digits. 

Japanese Language Support Information 

The name of the month is taken from the appropriate NLLMONTH string. The first two 
bytes of the NLSDA Y environment variable string are used as the abbreviation of the day 
of the week. 

Examples 

132 

1. To display a calendar for February 1984 at your work station: 

cal 2 1984 
2. To print a calendar for 1984: 

cal 1984 l print 
3. To display a calendar for the year 84 A.D.: 

cal 84 



Related Information 

The "Overview of International Character Support" in Managing the AIX Operating 
System. 

cal 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 

Commands 133 



calendar 

calendar 

Purpose 

Writes reminder messages to standard output. 

Syntax 

COlenoor-0 

OL805169 

Description 

Flag 

134 

The calendar command reads a file named calendar, which you create in your current 
(usually home) directory. It writes to standard output any line in the file that contains 
today's or tomorrow's date. 

The calendar command recognizes date formats such as Dec. 7 or 12/7. It also 
recognizes the special character * (asterisk). It interprets * /7, for example, as signifying 
the seventh day of every month. calendar does not recognize formats such as 7 
December, 7/12, or DEC. 7. 

On Fridays, calendar writes all lines containing the dates for Friday, Saturday, Sunday, 
and Monday. It does not, however, recognize holidays, so "tomorrow" is the holiday 
rather than the next working day. 

For you to get reminder service, your calendar should have read permission for others (see 
"chmod" on page 160). 

Calls calendar for everyone having a file calendar in his home directory and sends 
any reminders by mail. 



calendar 

Example 

To display information in the calendar file that pertains to the next two business days: 

calendar 

Commands 135 



calendar 

Files 

A typical calendar file might look like this: 

*/25 - Prepare monthly report 
Aug. 12 - Fly to Denver 
aug 23 - board meeting 
Martha out of town - 8/23, 8/24, 8/25 
8/24 - Mail car payment 
sat aug/25 - beach trip 
August 27 - Meet with Simmons 
August 28 - Meet with Wilson 
If today is Friday, August 24, then the calendar command displays: 

*/25 - Prepare monthly report 
Martha out of town - 8/23~ 8/24, 8/25 
8/24 - Mail car payment 
sat aug/25 - beach trip 
August 27 - Meet with Simmons 

$HOME/calendar 
/usr/lib/calprog 
/etc/passwd 
/tmp/cal* 

The program that determines dates. 
U sed to identify users. 
Temporary files. 

Related Information 

The following commands: "chmod" on page 160 and "mail, Mail" on page 608. 

136 



cat 

cat 

Purpose 

Concatenates or displays files. 

Syntax 

cat 

OL805086 

Description 

Flags 

The cat command reads each file in sequence and writes it to standard output. If you do 
not specify file or specify - (minus) instead of a file, cat reads from standard input. 

Warning: Do not redirect output to one of the input files using the > 
redirection symbol. If you do this, you will lose the original data in the 
input file because the shell truncates it before cat can read it (see "sh" on 
page 913). 

-s Does not display a message if cat cannot find an input file. 

-u Does not buffer output. 

Examples 

1. To display a file at the work station: 

cc,t. notes 

This displays the data in the file notes. If the file is more than about 23 lines long, 
some of it will scroll off the screen. To list a file one page at a time, use the pg 
command. (See "pg" on page 744 for details.) 

Commands 137 



cat 

2. To concatenate several files: 

cat sectionl.1 sectionl.2 sectionl.3 >sectionl 

This creates a file named sect; on 1 that is a copy of sect; on 1. 1 followed by 
sect; onl. 2 and sect; onl. 3. 

3. To suppress error messages about files that do not exist: 

cat -s section2.1 section2.2 section2.3 >section2 

If sect; on2.1 does not exist, this concatenates sect; on2. 2 and sect; on2. 3. The 
result is the same if you do not use the -s, except that cat displays the error message: 

cat: cannot open section2.1 
You may want to suppress this message with the -s flag when you use the cat 
command in shell procedures. 

4. To append one file to the end of another: 

cat sectionl.4 »sectionl 

This appends a copy of sect; on 1.4 to the end of sect; on 1. The» appends data to 
the end of sect; on1. If you want to replace the file, use the >. For more details, see 
"Redirection of Input and Output" on page 926. 

5. To add text to the end of a file: 

cat »notes 
Get milk on the way home 
Ctrl-D 

Get mi 1 k on the way home is added to the end of notes. The cat command does 
not prompt; it waits for you to enter text. Press Ctrl-D to indicate you are finished. 

6. To concatenate several files with text entered from the keyboard: 

cat section3.1 section3.3 >section3 

This concatenates secti on3 .1, text from the keyboard, and sect; on3. 3. 
7. To concatenate several files with output from another command: 

1; cat section4.1 - >section4 

This copies sect; on4. 1, and then the output of the Ii command to the file sect; on4. 

Related Information 

The following commands: "cp" on page 202, "pr" on page 761, and "sh" on page 913. 

138 



cb 

cb 

Purpose 

Puts C source code into a form that is easily read. 

Syntax 

-$ ::'j length ~ Cb~oneOf~ 
OL805170 

Description 

Flags 

The cb command reads C programs from standard input or from specified files and writes 
them to standard output in a form that shows, through indentations and spacing, the 
structure of the code. When called without flags, cb does not split or join lines. Note that 
punctuation in preprocessor statements can cause indentation errors. 

-j 

-1 length 

-s 

Joins lines that are split. 

Splits lines that are longer than length. 

Formats the source code according to the style of Kernighan and Ritchie in 
The C Programming Language (Englewood Cliffs, New Jersey: Prentice-Hall, 
Inc., 1978.). 

Example 

To create a version of pgm. c called pgm. pretty. c that is easy to read: 

cb pgm.c > pgm.pretty.c 

Related Information 

The following command: "cc" on page 140. 

The discussion of cb in AIX Operating System Programming Tools and Interfaces. 

Commands 139 



cc 

cc 

Purpose 

Compiles C programs. 

Syntax 

Ordinary Operation 

T file-r{. ~ 
, key 

-00. out 

dir 
-- dir 

name 
flag 1 

one of 

lJ
2 

;. :< num 

1 

1 Use any flag belonging to as, cpp, or Id (except -I key). 

2 Do not put a blank between these items. 

3 Put this flag last if used (see the Id command). 

140 

OL805171 

OL805472 



Extended Functions and Debugging 

ce 
fee 
vec 

-t We, flag 2 

1 Do not put a blank between these items. 

---<
/lib/O 

-8 1 

-prefix 

2 Use any flag belonging to as, cpp, or Id (except -I key). 

3 Use any flag from the first diagram (except -Ikey) or any flag 
belonging to as, cpp or Id. 

4 Put th is flag last if used (see the Id command). 

Description 

cc 

OL805389 

OL805343 

The ee command runs the C compiler. It accepts files containing C source code, assembler 
source code, or object code and changes them into a form that the computer system can 
run. ce compiles and assembles source files and then links them with any specified object 
files, in the order listed on the command line. It puts the resulting executable program in 
a file named a.out. 

The fcc command is a link to ec that compiles programs to run with the Floating-Point 
Accelerator. fcc should only be used on the 032 family of microprocessors. It 
automatically uses the -f flag as well as special versions of the standard libraries that have 
been compiled for direct floating-point applications. Note that programs compiled with fcc 
can run only on systems that have installed the Floating-Point Accelerator. 

The vee command is a link to ee that compiles modules to be installed in the VRM. Use 
the vrmfmt command to convert the a.out file produced by the vee command to a 
VRM-compatible object module. The syntax of this command is as follows: 

vrmfmt infile [outfile] 

Commands 141 



cc 

142 

The default output file name is a. vrm. 

The cc command runs the following programs. Each program processes the source file and 
then sends the results to the next program in the sequence: 

cpp The macro preprocessor. 

ccomO The first pass of the compiler. 

ccomq The intermediate code optimizer (if you specify the -0 flag). 

This program provides a variety of optimizations to the intermediate code, such 
as removing loop invariants, eliminating common subexpressions, and allocating 
registers. The following cannot be optimized: 

• Functions that call setjmp 
• Functions that contain asm statements 

If you are compiling a large program and the flow optimizer runs out of space, 
the compiler stops the process and displays a message describing the problem. 

ccoml The second pass of the compiler. 

copt The optimizer (if you specify the :-0 flag). 

as The assembler. 

Id The linkage editor. 

You can replace any or all of these passes with your own versions (see the -B and -t flags). 
Both cc and fcc use the cc.cfg configuration file, which specifies the standard run time, 
the link options, and the libraries to be used with each version of the compiler. 

Input File Types 

The cc command recognizes and accepts as input the following file types: 

file.c 

The name of a C language source file should end with .c. After cc compiles this source 
file, it gives the resulting object file the same name, except that it ends in .0 rather than 
.c. If you use one command both to compile and to load a single C program, the compiler 
normally deletes the .0 file when it loads the program. If you use the -c flag, the compiler 
does not delete the .0 file. 

file.i 

The name of a file that contains preprocessed C source code ends in .i. 



Flags 

cc 

file.o 

The name of an object file should end in .0. The cc command sends these files to the Id 
command. 

file.s 

The name of an assembly language source program should end with .s. After cc assembles 
this source file, it gives the resulting object file the same name, except that it ends in .0 

rather than .s. 

The cc command recognizes several flags. In addition, flags intended to modify the action 
of the linkage editor (Id), the assembler (as), or the preprocessor (cpp) may also appear on 
the cc command line. cc sends any flags it does not recognize to these commands for 
processing. The following list includes the most commonly used cpp flags (-D, -I), and Id 
flags (-1, -L, -0). See "as" on page 61, "cpp" on page 210, and "Id" on page 557 for a 
complete list of additional flags. 

Note: If you use the -1 flag, it must be the last entry on the command line, following any 
file parameters. 

Ordinary Operation 
-a 

-c 

-Dname[ = def] 

-E 

-f 

-£2 

Reserves a register for extended addressing. Use this flag if a compiled 
procedure creates a stack greater than 32,767 bytes. Because this flag 
causes the compiler to reserve a register for use by the assembler, it 
reduces the number of available registers by one. 

Does not send the completed object file to the Id command. With this 
flag, the output of cc is a .0 file for each .c or .s file. 

Defines name as in a #define directive. The default de! is 1. 

Runs the named C source file through only the preprocessor and writes 
the result to standard output. 

Generates code that uses the Floating-Point Accelerator or Advanced 
Floating-Point Accelerator. Programs compiled with this flag will run 
correctly only on 032 microprocessors configured with either of the 
Floating-Point Accelerators. 

Generates code that uses the Advanced Floating-Point Accelerator. 
Programs compiled with this flag will run correctly only on AIX 
processors configured with the Advanced Floating-Point Accelerator ~nd 
an Advanced Processor Card. 

Commands 143 



cc 

-g 

-G 

-h 

-Idir 

-I[key] 

-Ldir 

-N[ndpt]num 

-oname 

-0 

-p 

-p 

-Q! 

144 

Produces additional information for use with the sdb command (the 
symbolic debugger). 

Indicates that global variables are volatile. The optimizer (ccomq) 
makes fewer transformations when you specify this flag. To make a 
particular variable volatile, add the "volatile" specification to its 
declaration. 

Treats files with the suffix .h in the same way as files with the suffix .c. 

Looks first in dir, then looks in the directories on the standard list for 
#include files with names that do not begin with / (slash). 

Searches the specified library file, where key selects the file libkey.a. 
With no key, -I selects libc.a, the standard system library for C and 
assembly language programs. ld searches for this file in the directory 
specified by an -L flag, then in /lib and /usr/lib. The Id command 
searches library files in the order in which you list them on the command 
line. 

Looks in dir for files specified by -I keys. If it does not find the file in 
dir, ld searches the standard directories. 

Changes the size of the symbol table (n), the dimension table (d), the 
constant pool (p), or the space for building the parse tree (t). Each table 
must be changed separately. The default size of the symbol table is 1500; 
the default size of the dimension table is 2000; the default size for the 
constant pool is 600; the default space for the parse tree is 1000. 

Assigns name rather than a.out to the output file. 

Sends compiler output to the code optimizers. 

Prepares the program so that the prof command can generate an 
execution profile. The compiler produces code that counts the number of 
times each routine is called. If programs are sent to ld, the compiler 
replaces the startup routine with one that calls the monitor subroutine 
at the start (see AIX Operating System Technical Reference for a 
discussion of this subroutine), and writes a mon.out file when the 
program ends normally. 

Sends the specified C source file to the macro preprocessor and stores the 
output in a .i file. 

Controls inlining. The following may be used: 

? Shows the reason for not inlining in the output file. 

-name, name Does not inline name. 

+ name, name . .. Inlines name. 



-8 

-w 

-x 

-y[dmnpz] 

-z 

cc 

Inum Limits the size increase of the function in which 
inlining occurs to num intermediate operations. The 
default num is 100. 

#num 

-@file 

+@file 

Limits the expansion of an individual call to num 
intermediate operators. The default num is 100. 

Reads a list of forbidden functions from file. 

Reads a list of requested functions from file. 

Requesting a function to be inlined overrides size constraints. 

Compiles the specified C programs, storing assembly language output in 
a .s file. 

Prevents printing of warning messages about functions that cannot be 
optimized. 

Produces an assembler listing. This is stored in a file that has the same 
name as the assembler source file but with the extension .1st instead of 
.s. 

Specifies the rounding mode for floating-point constant folding. These 
modes are specified as follows: 

d Disables floating-point constant folding. 
m Rounds toward negative infinity. 
n Rounds to nearest whole number. This is the default action 

and applies to constant folding in all applicable passes of the 
compiler. 

p Rounds toward positive infinity. 
z Rounds toward O. 

Uses the libm.a version, or a version specified by the user, of the 
following transcendental functions: 

acos 
log 

as In 

loglO 
at an 
SIn 

atan2 
sqrt 

cos 
tan 

exp 

If this flag is not used, the compiler generates calls to the AIX kernel, or 
the Advanced Floating Point Accelerator if possible. For more 
information on libm.a, see math.h in AIX Operating System Technical 
Reference. For more information on the Advanced Floating Point 
Accelerator, see fpfp in AIX Operating System Technical Reference. 

Commands 145 



cc 

146 

Debugging 
-Ffile [:stanza] 

-v 

-# 

Uses an alternative file and/or stanza for cc configuration (see A/X 
Operating System Technical Reference for a discussion of the 
configuration file, cc.cfg). If used, this flag must be the first flag on 
the command line. 

Displays the trace as with -# and invokes the programs. 

Displays a trace of the actions to be taken (for example, invoking the 
preprocessor), without actually invoking any programs. 

Extended Functions 
-Bprefix 

-t[pcqgoal] 

Constructs path names for substitute preprocessor, compiler, 
optimizer, assembler, or linkage editor programs. prefix defines part 
of a path name to the new programs. To form the complete path name 
for each new program, cc adds prefix to the standard program names 
(see the discussion of the programs called by cc on page 142). For 
example, if you enter the command: 

cc testfile.c -B/usr/jim/new 

cc calls the following compiler programs: 

1. /usr/jim/newcpp 
2. /usr/jim/newccomO 
3. /usr/jim/newccoml 
4. /usr/jim/newas 
5. /usr/jim/newld 

Similarly, if you enter the command: 

cc testfile.c -B/usr/jim/new/ 
cc calls the following compiler programs: 

1. /usr/jim/new/cpp 
2. /usr/jim/new/ccom 
3. /usr/jim/new/ccoml 
4. /usr/jim/new/as 
5. /usr/jim/new/ld 

The default prefix is /lib/o. 

Applies the -B flag instructions for constructing file names to only the 
designated preprocessor (p), compiler first (c), intermediate code 
optimizer (q), compiler second (g), optimizer (0), assembler (a), or 
linkage editor (1) passes. You can select any combination of pcqgoal. 



The -t flag with no additional p, c, q, g, 0, a, or 1 designates by 
default the preprocessor, compiler and optimizer programs (see the 
discussion of the programs called by cc on page 142). 

If you do not specify the -B flag when you specify the -t flag, the 
default file name prefix is llib/n. 

cc 

Note: You can specify this prefix with the -B flag. However, 
depending on what combination of the -B and the -t flags you specify, 
prefix can have two possible default values. If you specify -B but no 
accompanying prefix, the default prefix is /lib/o. If you specify the -t 
flag without also specifying the -B flag, the default prefix is llib/n. 

-Wc,flagl[,flag2 ... ] 
Gives the listed flags to the compiler program c; c can be anyone of 
the values [pcqgoalJ discussed with the -t flag. For example, since 
both ld and as recognize a -0 flag, use -W to specify the program to 
which the flag is to be sent. That is, -WI,-o sends it to ld. -Wa,-o 
sends it to as. 

Examples 

1. To compile and link a C program, creating an executable a.out file: 

cc pgm.c 

2. To compile a program, producing an object file to be linked later: 

cc -c pgm.c 

This compiles pgm. c and produces an object file named pgm.o. 

3. To compile a program to run on the Floating-Point Accelerator: 

fcc pgm.c 

This compiles pgm. c using the special libraries libfc.a and libfm.a instead of the 
standard libraries libc.a and libm.a. 

4. To view the output of the macro preprocessor: 

cc -P -C pgm.c 

This creates a file named pgm.i that contains the preprocessed program text including 
comments. To view this file, use an editor or see "pg" on page 744. cc passes the -P 
and -C flags to the preprocessor. See "cpp" on page 210 for more details about them. 

Commands 147 



cc 

Files 

148 

. 5. To predefine macro identifiers: 

cc -DBUFFERSIZE=512 -DDEBUG pgm.c 

This assigns BUFFERSIZE the value 512 and DEBUG the value 1 before preprocessing. 
cc passes the -D flag to the preprocessor. 

6. To use #include files located in nonstandard directories: 

cc -I/u/jim/include pgm.c 

This looks in the directory that contains p gm . c for the #include files with names 
enclosed in double quotes CI "), then in /u/jim/i ncl ude, and then in the standard 
directories. It looks in /u/jim/i ncl ude for #include file names enclosed in angle 
brackets « », then in the standard directories. cc passes the -I flag to the 
preprocessor. 

7. To optimize the object code and produce an assembler listing: 

cc -S -0 pgm.c 

This uses the optimizing compiler (-0 is minus, capital oh), and produces an assembler 
listing in a file named pgm.s (-8). 

file.c 
file.o 
file.s 
a.out 
/etc/cc.cfg 
/tmp/ctm* 
/lib/cpp 
/lib/ccomO 
/lib/ccomq 
/lib/ccoml 
/lib/cgen 
/lib/copt 
/bin/as 
/bin/ld 
/lib/crtO.o 
/lib/mcrtO.o 
/lib/libc.a 
/lib/libfc.a 

C source file. 
Object file. 
Assembler file. 
Linked output. 
cc configuration file. 
Temporary. 
C preprocessor. 
Compiler first pass. 
Intermediate code optimizer. 
Compiler second pass. 
Compiler. 
Optimizer. 
Assembler. 
Linkage editor. 
Run-time startoff. 
Run-time startoff for profiling. 
Standard library. 
Standard library for use with Floating-Point Accelerator. 



/lib/libm.a 
/lib/libfm.a 
/lib/librts.a 
/usr/include 
/usr/tmp/ctm* 

Standard math library. 
Standard math library for use with Floating-Point Accelerator. 
Runtime services. 
Standard directory for #include files. 
Temporary. 

Related Information 

cc 

The following commands: "as" on page 61, "Id" on page 557, "cpp" on page 210, "prof' on 
page 773, and "sdb" on page 875. 

The discussion of cc in AIX Operating System Programming Tools and Interfaces, in C 
Language Guide and Reference and in Assembler Language Reference. 

The monitor subroutine, the a.out and cc.cfg files, the discussion of the Advanced 
Floating Point Accelerator (fpfp), and math.h in AIX Operating System Technical 
Reference. 

Commands 149 



cd 

cd 

Purpose 

Changes the current directory. 

Syntax 

r$HOME, ..... J 

cd ~directoryF 
OL805087 

Description 

The cd command moves you from your present directory to another. You must have 
execute (search) permission in the specified directory. 

If you do not specify a directory, cd moves you to your login directory ($HOME). If the 
specified directory name is a full path name, it becomes the current directory. A full path 
name begins with a / (slash-root directory), with a . (dot-current directory), or with a .. 
(dot dot-parent directory). If the directory name is not a full path name, cd searches for it 
relative to one of the paths specified by the $CDP ATH shell variable. This variable has 
the same syntax as, and similar semantics to, the $P ATH shell variable. (See "Shell 
Variables and Command-Line Substitutions" on page 917 for a discussion of these 
variables. ) 

Examples 

150 

1. To change to your home directory; 

cd 

2. To change to an arbitrary directory; 

cd /usr/include 

This changes the current directory to /usr/i ncl ude. Now file path names that do not 
begin with / or .. / specify files located in /usr/i ncl ude. 



3. To go down one level of the directory tree: 

cd sys 

cd 

If the current directory is Ius r Ii nc 1 ude and if it contains a subdirectory named sys, 
then lusr/i ncl ude/sys becomes the current directory. 

4. To go up one level of the directory tree: 

cd 

The special file name .. (dot-dot) refers to the directory immediately above the current 
directory. However, under symbolic links, .. (dot-dot) refers to the parent directory of 
the symbolic link, not to the directory above the current directory. 

Related Information 

The following commands: "esh" on page 225, "pwd" on page 800, and "sh" on page 913. 

Note: The esh and sh commands each contain a built-in subcommand named ed. The 
description of ed given above applies only to sh. For more information see the esh 
command. 

The ehdir system call in AIX Operating System Technical Reference. 

Commands 151 



cdc 

cdc 

Purpose 

Changes the comments in a Source Code Control System (SCCS) delta. 

Syntax 

cdc - -rSJD -( X }r file I ~mmrlist -ycomment 

cdc- -rSID-C-m~ i-Y ~- ----4 

-m mrl i st ~-y comment ~ 
OL805088 

Description 

Flags 

152 

The cdc command changes the Modification Requests (MRs) and comments for the SID 
specified by the -r flag for each named Source Code Control System (SCCS) file. If you 
specify a directory name, cdc performs the requested actions on all SCCS files in that 
directory (that is, all files with names that have the s. prefix). If you specify a - (minus) in 
place of file, cdc reads standard input and interprets each line as the name of an SCCS file. 
For more information on SCCS comments and Modification Requests, see AIX Operating 
System Programming Tools and Interfaces. 

You can change the comments and MRs for an SIn only if you made the SIn or you own 
the file and the directory. For more information on the permissions needed to change 
SCCS files, see "sccs Files" on page 478. 

-m[mrlist] Supplies a list of MR numbers for cdc to add or delete in the SIn specified 
by the -r flag. You can only use this flag if the file has the v header flag set 
(see Figure 1 on page 44). A null MR list has no effect. 



cdc 

In the mrlist, MRs are separated by blanks, tab characters, or both. To 
delete an MR, precede the MR number with an ! (exclamation point). If the 
MR you want to delete is currently in the list of MRs, it is changed into a 
comment line. cdc places a list of all deleted MRs in the comment section of 
the delta and precedes them with a comment line indicating that the 
following MRs were deleted. 

If you do not specify the -m flag, and the v header flag is set, MRs are read 
from standard input. If standard input is a work station, cdc prompts you 
for the MRs. The first new-line character not preceded by a backslash ends 
the list on the command line. cdc continues to take input until it reads an 
end-of-file character (Ctrl-D) or a blank line. MRs are always read before 
comments (see the -y flag). 

If the v flag has a value, cdc interprets the value as the name of a program 
which validates the MR numbers. If the MR number validation program 
returns a nonzero exit value, cdc stops and does not change the MRs. 

-rSID Specifies the sees identification number of the delta for which cdc will 
change the comments or MRs. 

-y[comment] Specifies text to replace any comment already existing for the delta specified 
by the -r flag. cdc keeps the existing comments and precedes them by a 
comment line stating that they were changed. A null comment has no effect. 

If you do not specify -y, cdc reads comments from standard input until it 
reads an end-of-file character. If the standard input is a work station, cdc 
prompts for the comments and also allows a blank line to end input. If the 
last character of a line is a \ (backslash), cdc ignores it and continues to 
read standard input. 

Note: If cdc reads standard input for file names (that is, when you specify 
a file name of -), you must use the -y and -m flags. 

Related Information 

The following commands: "admin" on page 41, "delta" on page 310, "get" on page 477, 
"help" on page 513, and "prs" on page 781. 

The sccsfile file in AIX Operating System Technical Reference. 

The discussion of sees in AIX Operating System Programming Tools and Interfaces. 

Commands 153 



cflow 

cflow 

Purpose 

Generates a C flow graph of external references. 

Syntax 

cflow 
-dnum 
-r 
-L 
-ix 

OL805172 

Description 

154 

The cflow command analyzes C, yacc, lex, assembler, and object files and writes a chart of 
their external references to standard output. 

It sends files with suffixes .y, .1, and .c to the yacc, lex, and cpp commands for the 
appropriate processing. This step is bypassed for .i files. It then runs the output of this 
processing through the first pass of lint. It assembles files which end in .s, extracting 
information from the symbol table (as it does with .0 files). From this output, cflow 
produces a graph of external references, which it writes to standard output. 

Each line of output begins with a line number followed by sufficient tabs to indicate the 
level of nesting. Then comes the name of the global, a colon, and its definition. This name 
is normally a function not defined as external and not beginning with an underline 
character; see the -L inclusion flag on p. 155. For information extracted from C source 
files, the definition consists of an abstract type declaration (for example, char*), the name 
of the source file, surrounded by angle brackets, and the line number on which the 
definition was found. Definitions extracted from object files contain the file name and 
location counter under which the symbol appeared. cflow deletes leading underline 
characters in C-style external names. 

Once cflow displays the definition of a name, later references to it contain only the cflow 
line number where the definition may be found. For undefined references, cflow displays 
only <> (redirection symbols). 



Flags 

cflow 

If the nesting level becomes too deep to display in available space, pipe the output from 
eflow to the pr command, using the -e flag to compress the tab expansion to something 
less than every eight spaces. 

Note: Files produced by lex and yace cause the reordering of line number declarations 
which can confuse cflow. To get proper results, feed eflow the yacc or lex input. 

In addition to the following, cflow recognizes the -I, -D, and -U flags of the cpp command. 

-dnum Sets to decimal integer num the depth at which the flow graph is cut off. By 
default this is a very large number. Do not set the cutoff depth to a nonpositive 
integer. 

-ix Includes external and static data symbols. The default includes only functions. 

-L Includes names that begin with an underline character. The default excludes 
these functions (and corresponding data if -ix is used). 

-r Produces an inverted listing which shows the callers of each function, sorted by 
called function. 

Related Information 

The following commands: "as" on page 61, "ee" on page 140, "lex" on page 562, "lint" on 
page 577, "nm" on page 705, "pr" on page 761, and "yace" on page 1237. 

The discussion of cflow in AIX Operating System Programming Tools and Interfaces. 

Commands 155 



chgrp 

chgrp 

Purpose 

Changes the group ownership of a file or directory. 

Syntax 

chgrp ~ group 

~-rr 
OL805090 

Description 

Flag 

The chgrp command changes the group associated with the specified file or directory to 
groupname or groupID. If you do not own the file, you must have superuser authority to 
change the group ID. 

If the file or directory resides in a Distributed Services remote virtual file system, the 
translated group ID is used. 

-r Causes the untranslated group ID to be used. Applies only to files or directories 
that reside in a Distributed Services remote virtual file system. 

Examples 

Files 

156 

To change the group ownership of the file or directory named proposal s to staff: 

chgrp staff proposals 

The group access permissions for proposal s now apply to the staff group. 

/etc/group File that identifies all known groups. 



Related Information 

The following command: "groups" on page 506. 

The chown and chownx system calls and the group file in AIX Operating System 
Technical Reference. 

"Distributed Services id Translation" in Managing the AIX Operating System. 

chgrp 

Commands 157 



chkcomp 

chkcomp 

Purpose 

Checks compatibility between a code server and an active-service client. 

Syntax 

~hkcomp- ·--n node - '--w directorY---i 
AJ2FL261 

Description 

158 

The chkcomp command checks compatibility between a code server and an active-service 
client before allowing active service. Generally, this command is run by the chngstate 
command. You must be a member of the system group or operating with superuser 
authority to run this command. 

When the command runs, it compares one or more programs installed at the code server to 
a program or program subset installed at the client and identifies incompatibilities between 
version, release, or level. If the client and server are compatible, chkcomp ends. If the 
client and server are not compatible, chkcomp writes a comprehensive set of install and 
update orders to a cs.compat file. 

There are two types of incompatibilities: incompatibilities that can be fixed by the system 
and incompatibilities that require manual intervention. These types of incompatibilities 
are handled in the following manner: 

• If the incompatibilities can be fixed by the system and the upgrade mode is automatic, 
the system automatically initiates the required install and update orders. 

• If the incompatibilities can be fixed by the system and the upgrade mode is manual, the 
system displays the list of required manual actions. 

• If the incompatibilities cannot be fixed by the system, the client defaults to stand-alone 
mode and the user is responsible for initiating the required install and update actions 
(orders in the cs.compat file) to resolve the incompatibilities. 

The upgrade mode is set by a value in the serverattach file or by -m flag to the 
chngstate command. For more information on the compatibility rules and which types of 
incompatibilities can be fixed by the system, see Managing the AIX Operating System. 



Flags 

chkcomp 

-n node Specifies the node ID or nickname of the code server. This flag and node 
are required and must be specified. 

-w directory Specifies the directory on the client where the code server's root file system 
is mounted. This mount must be done before chkcomp is run. If chkcomp 
is run from the chngstate command, the mount is done for you. If you 
want to run chkcomp directly, you must run the mount command before 
you run the chkcomp command. This flag and directory are required and 
must be specified. 

Example 

Files 

To create and mount a directory where a code server's root file system can reside on 
your system and to check compatibility between the code server and your system: 

mkdir /tmp/nick 
mount -n darlene / /tmp/nick 
chkcomp -n darlene -w Itmp/nick 

This makes the directory /tmp/ni c k, mounts the / (root) directory of the code server 
darl ene on this directory, and then checks the compatibility of the code server and 
your system. 

/etc/codeserve/cs.compat 
/ etc/ codeserve/ servera ttach 
/usr/lpp/lpp-name/lpp.hist 

/vrm/lpp/ lpp-name/lpp.hist 

Contains information on client and server compatibility. 
Contains code service attribute information. 
Contains history files for both the code server and the 
client 
Contains history files for both the code server and the 
client systems. 

Related Information 

The following command: "chngstate" on page 164. 

The /etc/codeserve/servattach file in AIX Operating System Technical Reference. 

The discussion of code service and the /etc/codeserve/cs.compat file in Managing the 
AIX Operating System. 

Commands 159 



chmod 

chmod 

Purpose 

Changes permission codes. 

Syntax 

SYMBOLIC 

chmod 

ABSOLUTE 

chmod - permcode 

1 
Do not put a blank between these items. 

2 Do not put a blank on either side of the comma. 

OL805091 

Description 

160 

The chmod command modifies the read, write, execute (file), or search (directory) 
permission codes of specified files or directories. You can use either symbolic or absolute 
mode to specify the desired permission settings. 

You can change the permission code of a file or directory only if you own it or if you are 
operating with superuser authority. 



chmod 

Symbolic Mode 

When you use the symbolic mode to specify permission codes, the first set of flags selects 
the permission field, as follows: 

u User (owner) 
g Group 
o All others 
a User, group, and all others (same effect as ugo). This is the default permission 

field. 

The second set of flags selects whether permissions are to be taken away, added, or set 
exactly as specified: 

Removes specified permissions 
+ Adds specified permissions 

Clears the selected permission field and sets it to the code specified. If you do not 
specify a permission code following =, chmod removes all permissions from the 
selected field. 

The third set of flags of the chmod command selects the permissions as follows: 

r Read permission. 
w Write permission. 
x Execute permission for files; search permission for directories. 

s Set User-ID or Set Group-ID permission. This permission bit sets the effective 
user-ID or group-ID to that of the file whenever the file is run. Use this permission 
setting in combination with the u or g field to allow temporary or restricted access 
to files not normally accessible to other users. An s appears in the user or group 
execute position of a long listing (see "Is" on page 595 or "Ii" on page 567), to show 
that the file runs Set User-ID or Set Group-ID. 

t The save text permission. Setting this permission bit causes the text segment of a 
program to remain in virtual memory after its first use. The system thus avoids 
having to transfer the program code of frequently-accessed programs into the 
paging area. A character special file with this bit set is a multiplexed file. You 
can specify this permission only with the u field. A t appears in the execute 
position of the All Others field to indicate that the file has this bit (the sticky bit) 
set. 

You can specify multiple symbolic modes, separated with commas. Do not separate items 
in this list with spaces. Operations are performed in the order they appear from left to 
right. 

Commands 161 



chmod 

Absolute Mode 

The chmod command also permits you to use octal notation to set each bit in the 
permission code. chmod sets the permissions to the permcode you provide. This permcode 
is constructed by combining (the logical OR of) the following values: 

4000 Sets user-ID on execution 
2000 Sets group-ID on execution 
1000 Retains memory image after execution (executable file) 
1000 Indicates multiplexed character special file 
0400 Permits read by owner 
0200 Permits write by owner 
0100 Permits execute or search by owner 
0040 Permits read by group 
0020 Permits write by group 
0010 Permits execute or search by group 
0004 Permits read by others 
0002 Permits write by others 
0001 Permits execute or search by others 

All permission bits not explicitly specified are cleared. 

Examples 

162 

1. To add a type of permission to several files: 

chmod chap 1 ap2 

This adds write permission for group members to the files c hap 1 and c hap 2. 

2. To make several permission changes at once: 

chmod ~iO-w+;x: my(j-j r 

This denies group members and others the permission to create or delete files in mydi r 
(go-w). It allows them to search mydi r or use it in a path name (go+x). This is 
equivalent to the command sequence: 

chmod g-w mydir 
chmod o·~\f,j rnydir 
chmod g+x mydi r 
chmod O+'X myd-j r 

3. To permit only the owner to use a shell procedure as a command: 

chmod u=rwx,go= cmd 

This gives read, write, and execute permission to the user who owns the file (u=rwx). 
It also denies the group and others the permission to access cmd in any way (go=). 



chmod 

If you have permission to execute the shell command file cmd, then you can run it by 
entering: 

cmd 

This may not work in some cases, depending on the value of the shell variable PATH. 
See page 923 for more information about PATH. 

4. To use Set-ID modes: 

chrnod ug-t-s cllId 

When cmd is executed, this causes the effective user and group IDs to be set to those 
that own the file cmd. Only the effective IDs associated with the subprocess that runs 
cmd are changed. The effective IDs of the shell session remain unchanged. 

This feature allows you to permit restricted access to important files. Suppose that the 
file cmd has the Set-User-ID mode enabled and is owned by a user called dbms. dbms is 
not actually a person, but might be associated with a database management system. 
The user betty does not have permission to access any of dbms's data files. However, 
she does have permission to execute cmd. When she does so, her effective user ID is 
temporarily changed to dbms, so that the cmd program can access the data files owned 
by dbms. 

This way betty can use cmd to access the data files, but she cannot accidentally 
damage them with the standard shell commands. 

5. To use the absolute mode form of the chmod command: 

chrnod 644 text 

This sets read and write permission for the owner, and it sets read-only mode for the 
group and others. 

Related Information 

The following commands: "Is" on page 595, "Ii" on page 567, and "umask" on page 1110. 

Commands 163 



chngstate 

chngstate 

Purpose 

Changes the state of a code service client to either active-service or stand-alone. 

Syntax 

chngstote 
-b -s name 
-e name -t n ~neOf 

-0 

-m 

AJ2FL263 

Description 

164 

Use the chngstate command to change the state of a code service client to active-service 
or stand-alone. You must be a member of the system group or operating with superuser 
authority to run this command. It is also run by the rc command during system 
initialization. 

When the command runs, it validates and processes the code service attribute file 
/etc/codeserve/serverattach. The contents of this file tell chngstate whether the 
system should be an active-service system or a stand-alone system. 

If the target state is stand-alone, chngstate runs rc.standalone and rc.include. 

If the target state is active-service, chngstate checks the attribute file to determine: 

• The server to use 
• The time between attach attempts for the specified server 
• The maximum time to attempt individual server attach 
• The upgrade mode (automatic or manual). 

Then chngstate runs the chkcomp command to check for client-server compatibility 
before attempting to attach to the code server in active-service mode. 

If the client and server are compatible, chngstate runs rc.actvsrve and rc.include to 
attach the client to the code server in active-service mode. If the client and server are not 
compatible, chkcomp writes a comprehensive set of install and update orders to a 
cs.compat file. 



Flags 

chngstate 

There are two types of incompatibilities: incompatibilities that can be fixed by the system 
and incompatibilities that require manual intervention. These incompatibilities are 
handled in the following manner: 

• If the incompatibilities can be fixed by the system and the upgrade mode is automatic, 
the system attempts to fix incompatibilities by calling the internal command installc to 
upgrade the install and update state of the client. 

• If the incompatibilities can be fixed by the system and the upgrade mode is manual, the 
system displays the list of required manual actions. 

• If the incompatibilities cannot be fixed by the system, the client defaults to stand-alone 
mode. 

In the latter two cases, the user is responsible for initiating the required install and update 
actions (orders in the cs.compat file) to resolve the incompatibilities. The system will not 
attach a client as long as incompatibilities exist. To manually resolve incompatibilities: 

• Run installp or updatep to install or update programs on the client. 
• Rerun the chngstate command to verify compatibility and attach to the server as an 

active-service client. 

For more information on the compatibility rules and which types of incompatibilities can 
be fixed by the system, see Managing the A/X Operating System. 

Notes: 

1. The upgrade mode parameter (automatic or manual) must be specified in the attribute 
file or an error will result. However, you can override the attribute in the file by 
specifying the -a or -m flag in the chngstate command. 

2. If chngstate encounters a server timeout error while attempting to attach to a server, 
it reads the next system attribute file stanza and attempts to attach to that server 
according to the stanza attributes. Any other error causes the system to come up in 
stand-alone mode. 

3. You can also run the ckcomp command from the command line to get a list of which 
programs are incompatible. However, ckcomp does not leave you attached to the 
server in active-service mode. 

-a Uses automatic upgrade mode when attempting to attach to any server with a 
target state of active-service. This flag overrides the mode set in the system 
attribute file stanzas. 

-b Prevents chngstate from running a killall command. This flag should be used 
only when chngstate is run from /etc/rc during a system boot. 

-e name Excludes the attribute file stanza specified by name. To exclude more than one 
stanza, enter the -e flag for each stanza. 

Commands 165 



chngstate 

-m Uses manual upgrade mode when attempting to attach to any server with a 
target state of active-service. This flag overrides the mode set in the system 
attribute file stanzas. 

-s name Starts processing with this system attribute file stanza. 

-t n Specifies the total time in seconds to attempt to attach to any server. The time, 
n, must be greater than or equal to 60. 

Internal Commands 

166 

The chngstate command uses the following internal commands. Because they are internal 
commands, they do minimum validation of input parameters. 

installc 
The installc command installs a full program or subset program. It uses the following 
syntax: 

" ., -{/etc/cOdeserve/cs.compoty IriSl'Clllc - -r path 

file -------' 
AJ2FL140 

The installc command attempts to upgrade the installation or update state of an 
active-service client to make it fully compatible with a specific server by installing a full 
program or a subset program on the active-service client. Generally, installc is run by the 
chngstate command when there is an incompatibility that can be automatically corrected 
by installing a complete or subset program. A user's path would not normally include this 
command. It is located at /etc/codeserve/installc. The installc command requires you to 
be a member of the system group or operating with superuser authority. 

When run, installc processes install and update requests from an input file in the format 
defined in the file cs.compat. Install requests result in a call to the command installp 
and update requests result in a call to the internal command updatec. 

The chngstate command runs this command when the cs.compat file contains only 
install, update, or install and update records. If cs.compat does not exist or contains 
dbos, uplevel, or unknown records, installc will not be run. In this case the user must 
manually upgrade the client by running the installp or updatep command for the 
appropriate programs. 

If install records exist, then chngstate mounts the server directory /usr/lpp.install prior 
to running installc. If update records exist, then chngstate mounts the server directory 
/usr/lpp.update. 

! 

\ 



Files 

chngstate 

The -r path parameter is used to pass the path that installc must use to gain access to the 
server's /usr/lpp.install directory. It represents a local path where chngstate has 
mounted the / (root) directory of the server. 

The file is an input file in cs.compat format. This file contains specific install and update 
requests required to make the client fully compatible with a specific code server. 

updatec 
The updatec command controls the update process for complete or subset programs on 
active-service clients in a code service environment. It uses the following syntax: 

-C
/etc/cOdeserve/cs.compot-y 

LJ~_n:'laTec - --r- path 

file ____ ------J 

AJ2FL141 

Generally, this command is run from the installc internal command to upgrade the update 
state of an active service client and make it fully compatible with a specific server on an 
active service network. A user's path would not normally include this file. It is located at 
/etc/codeserve/updatec. You must be a member of the system group or be operating with 
superuser authority to run this command. 

When run, this command processes update requests from an input file in the format defined 
in the file cs.compat. Update requests result in a call to the updatep internal command, 
inuupdt. 

This command is run by installc only when the cs.compat file contains update records. If 
cs.compat does not exist or contains dbos, uplevel, or unknown records, installc will not 
be called. 

The -r path parameter is used to pass the path that updatec must use to gain access to the 
server's /usr/lpp.update directory. It represents a local path where chngstate has 
mounted the / (root) directory of the server. 

The file is an input file in cs.compat format. The file contains specific update requests 
required to make this client fully compatible with a specific code server. 

/ etc/ codeserve/ cs.compat 
/etc/codeserve/serverattach 
/etc/rc 
/etc/rc.standalone 

Contains information on client and server compatibility. 
Contains code service attribute information. 
Performs normal startup initialization. 
Initializes stand-alone system. 

Commands 167 



chngstate 

/etc/rc.actvsrvc 
/usr/lpp.install 

/usr/lpp.update 

Initializes active-service client. 
Server directory containing backup format files required 
to do installations. 
Server directory containing backup format files required 
to do updates. 

Related Information 

168 

The following commands: "chkcomp" on page 158, "installp" on page 529, "rc" on 
page 806, "updatep" on page 1122. 

The /etc/codeserve/serverattach file in AIX Operating System Technical Reference. 

The discussion of code service and the /etc/codeserve/cs.compat file in Managing the 
AIX Operating System. 



chown 

chown 

Purpose 

Changes the owner of files or directories. 

Syntax 

chown~ user 

'-~rr 
OL805095 

Description 

Flag 

The chown command changes the owner of the specified files or directories to username or 
userID. The group associated with the file or directory is not affected. 

Note: If you give ownership of a file or directory to another user, you cannot regain 
ownership unless you have superuser authority. 

If the file or directory resides in a Distributed Services remote virtual file system, the 
translated user ID is used. 

-r Causes the untranslated user ID to be used. Applies only to files or directories 
that reside in a Distributed Services remote virtual file system. 

Example 

Files 

chown jim program.c 

The user access permissions for program. c now apply to jim. As the owner, jim can use 
chmod to permit or deny the other users access to program. c. See "chmod" on page 160 
for details. 

/etc/passwd File that contains user IDs. 

Commands 169 



chown 

Related Information 

170 

The following command: "passwd" on page 735. 

The chown and chownx system calls and the passwd file in AIX Operating System 
Technical Reference. 

"Distributed Services id Translation" in Managing the AIX Operating System. 



chparm 

Purpose 

Changes or examines system parameters. 

Syntax 

nodename ~/unix=r 
chparm --<=n a m e= newval ue kernel-; mage 

Description 

chparm 

OL805093 

The chparm command lets you change a system parameter or look at its current setting. 
Currently, only the nodename parameter may be examined or changed. The name 
assigned cannot be longer than eight characters. If you do not assign a newvalue, chparm 
writes the current value of nodename to standard output. The default kernel-image is 
/unix. 

Changes do not affect the running system. You must restart the system for the change to 
become effective. 

Examples 

1. To display the nodename of your system: 

chparm nodename 
This displays the nodename of /unix, which is a file containing the kernel of the AIX 
Operating System. This file is loaded and run when you start up the computer. 

2. To change the nodename of a system: 

chparm nodename=COMP-CTR funix.compctr 

This changes the nodename of fun; x. compctr to COMP-CTR. fun; x. compctr is a 
file that contains an alternate version of the operating system kernel. The change does 
not affect the running system, even if you change the /unix kernel. 

Commands 171 



chroot 

chroot 

Purpose 

Changes the root directory of a command. 

Syntax 

chroot - directory - command ~ 

OL805094 

Description 

172 

Warning: If special files in the new root have different major and minor 
device numbers than they have in the real root, it is possible to overwrite 
the file system. 
The chroot command can be used only by a user operating with superuser authority (see 
"su" on page 1026). If you have superuser authority, the chroot command changes the 
root directory to the specified directory when executing command. The first / (slash) in any 
path name changes to directory for the specified command and any of its children. 

Notice that: 

chroot directory command > file 

creates the file. relative to the original root, not the new one. 

The directory path name is always relative to the current root. Even if a chroot is in 
effect, directory is relative to the current root of the running process. 

Several programs may not operate properly after chroot has been run. For example, the 
command Is -1 will fail to give user and group names if the current root location makes 
/etc/passwd beyond reach. In addition, utilities that depend on description files produced 
by the ctab command (see page 257) may fail altogether if these files are also not in the 
new root file system. It is your responsibility to ensure that all vital data files are present 
in the new root file system and that the path names accessing such files are changed as 
necessary. 



Examples 

1. To run a subshell with another file system as the root: 

chroot /disketteO /bin/sh 

chroot 

This makes the directory name / refer to /disketteO for the duration of the command 
/bin/sh. It also makes the original root file system inaccessible. The file system on 
/disketteO must contain the standard directories of a root file system. In particular, 
the shell will look for commands in /bin and /usr/bin on the /disketteO file system. 

Running the command /bin/sh creates a subshell, which runs as a separate process 
from your original shell. Press END OF FILE (Ctrl-D) to end the subshell and go back 
to where you were in the original shell. This restores the environment of the original 
shell, including the meanings of the current directory (.) and the root directory (/). 

2. To run a command in another root file system and save the output: 

chroot /disketteO /bin/cc -E /u/bob/prog.c >prep.out 

This runs the /bin/cc command with / referring to /disketteO. It saves the output in 
the file prep. out, which is in the original root file system. 

This runs the C language preprocessor (/ bin / c c - E) on the file 
/ di s ketteO/u/bob/prog. c, reading #include files from /disketteO/usr/include, and 
putting the preprocessed text in prep. out on the primary root file system. 

Related Information 

The following commands: "cc" on page 140, "cpp" on page 210, and "sh" on page 913. 

The chdir and chroot system calls in A/X Operating System Technical Reference. 

Commands 173 



chtch 

chtcb 

Purpose 

Sets or queries the tcb attribute of a file. 

Syntax 

one of 
on 

chtcb off 
query 

A5AC5021 

Description 

The chtcb command sets or queries the tcb attribute of the specified files. The tcb 
attribute of a file should be on in that file is in the trusted computing base; otherwise, is 
should be off. 

A file must be in the trusted computing base if it is to be executed from the trusted shell 
(tsh). 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

Related Information 

The following commands: "sysck" on page 1031 and "tsh" on page 1100. 

174 



clri 

clri 

Purpose 

Clears the specified i-node. 

Syntax 

clri ~ filesys/em t inumber r 
~ 

OL805097 

Description 

Warning: Use this command only in emergencies and with extreme care. 
The clri command is used to clear i-node entries for files that do not appear in a directory. 
In general, you do not need to use this program because fsck can deal with most file 
system inconsistencies. 

Always run fsck on a file system after you have used clri on it, because it may create 
dangling directory references or missing blocks. These can be fixed if they are attended to 
promptly. Do not run the system when the file system has dangling directory references or 
a bad free list. 

The clri command zeros over the flags' word of the i-node, thus freeing it for reallocation. 
The in umber parameter specifies the i-node and filesystem specifies the file system it is on. 
inumber should be a decimal number, while filesystem can be either the name of the device 
on which the file system resides or the name by which it is normally mounted. 

If you use clri to remove an i-node that does appear in. a directory, you should track down 
and remove all o~ these entries. Otherwise, when the i-node is reallocated to some new file, 
the old entry will still point to that file. At that point removing the old entry destroys the 
new file and the new entry again points to an unallocated i-node. 

By default, the clri command displays some information about the file and asks for 
confirmation before it destroys the file. If you enter a y or yes, the file is destroyed. 

Since clri only zeros the flags' word of the i-node, if you destroy the wrong file, you can 
recover the file by using the fsdb command to restore the flags' word. 

Note: If the file is open, clri is likely to be ineffective. For this reason, you should run 
clri only on an unmounted file system. 

Commands 175 



clri 

Flags 

-f Destroys the file without confirmation, but writes a description of the file. 

-q Destroys the file without confirming or writing a description of the file. 

Example 

To clear i-nodes 170 and 368 of the file system /disketteO and then clean up the file 
system: 

elri /disketteO 170 368 
fsek /disketteO 

Related Information 

176 

The following commands: "fsck, dfsck" on page 445 and "fsdb" on page 450. 

The fs file in A/X Operating System Technical Reference. 



cmp 

cmp 

Purpose 

Compares two files. 

Syntax 

cmp wne of· file1- fi/e2 ---l 
-I 
-s 

OL805157 

Description 

Flags 

The cmp command compares filel and file2 and writes the results to standard output. If 
you specify a - (minus) for filel, cmp reads standard input. Under default conditions, cmp 
displays nothing if the files are the same. If they differ, cmp displays the byte and line 
number at which the first difference occurs. If one file is an initial subsequence of the 
other (that is, if cmp reads an end-of-file character in one file before finding any 
differences), cmp notes this. Normally, you use cmp to compare non-text files and the diff 
command to compare text files. 

-1 Displays, for each difference, the byte number in decimal and the differing bytes in 
octal. 

-8 Returns only an exit value. (0 indicates identical files; 1 indicates different files; 2 
indicates inaccessible file or a missing argument) 

Examples 

1. To determine whether two files are identical: 

cmp prog.o.bak prog.o 

This compares prog. o. ba k and prog. o. If the files are identical, then a message is 
not displayed. If the files differ, then the location of the first difference is displayed. 

Commands 177 



cmp 

For instance: 

prog.o.bak prog.o differ: char 5, line 1 

If the message cmp: EOF on prog. o. bak is displayed, then the first part of prog. 0 is 
identical to p rog . 0 . b a k, but there is additional data in p rog . o. 

2. To display each pair of bytes that differ: 

cmp -1 prog.o.bak prog.o 

This compares the files, and then displays the byte number (in decimal) and the 
differing bytes (in octal) for each difference. For example, if the fifth byte is octal 101 
in prog. o. bak and 141 in prog. 0, then cmp displays: 

5 101 141 

3. To compare two files without writing any messages: 

cmp -$ prog.c.bak prog.c 

This gives an exit value of 0 if the files are identical, 1 if different, or 2 if an error 
occurs. This form of the command is normally used in shell procedures. For example: 

if cmp -$ prog.c.bak prog.c 
then 

echo No change 
fi 

This partial shell procedure displays No change if the two files are identicaL See page 
930 for details about the if command. 

Related Information 

The following commands: "comm" on page 183, "diff" on page 320, and "sh" on page 913. 

178 



col 

col 

Purpose 

Processes text having reverse linefeeds and forward/reverse half-linefeeds for output to 
standard output. 

Syntax 

OL805173 

Description 

The col command reads from standard input and writes to standard output. It performs the 
line overlays implied by reverse line feeds (ASCII ESC-7), and by forward and reverse 
half-line feeds (ASCII ESC-9 and ASCII ESC-8). col is particularly useful for filtering 
multicolumn output made by the nroff .rt command and output from the tbl command. 
The input format accepted by col matches the output format produced by nroff -T37 or by 
nroff -TIp. Use -T37 and the col -f flag if the output is being sent to a device that can 
interpret half-line motions; use -Tip otherwise. 

The col command assumes that the ASCII control characters SO (\017) and S1 (\016) begin 
and end text in an alternate character set. col remembers the character set each input 
character belongs to, and on output generates S1 and SO characters as appropriate to 
ensure that each character is printed in the correct character set. 

On input, col accepts only the control characters for Space, Backspace, Tab, Return, the 
new-line character, SI, SO, VT, and ESC-7, 8, or 9. VT (\013) is an alternate form of full 
reverse line feed included for compatibility with some earlier programs of this type. col 
ignores all other non-printing characters. 

Notes: 

1. The maximum number of lines that can be backed up is 128. 

2. Up to 800 characters, including backspaces, are allowed on a line. 

3. Local vertical motions that would result in backing up over the first line are ignored. 
As a result, the first line must not contain any superscripts. 

Commands 179 



col 

Flags 

-b Assumes that the output device in use is not capable of backspacing. In this case, if 
two or more characters are to appear in the same position, only the last one read 
appears in the output. 

-f Suppresses the default treatment of half-line motions in the input. Normally, col 
does not emit half-line motions on output, although it does accept them in its input. 
With this flag, output may contain forward half-line feeds (ESC-9) but not reverse 
line feeds (ESC-7 or ESC-8). 

-p Displays unknown escape sequences as characters, subject to overprinting from 
reverse line motions. Normally, col ignores them. You should be fully aware of the 
textual position of escape sequences before you use this flag. 

-x Suppresses changing the white space to tabs. Without this flag, col converts white 
space to tabs wherever doing so might shorten printing time. 

Related Information 

180 

The following commands: "nroff, troff" on page 709 and "tbl" on page 1053. 

The discussion of col in Text Formatting Guide. 



comb 

comb 

Purpose 

Combines sees deltas. 

Syntax 

comb file --l 
-0 -pSID 
-s -c list 

OL805098 

Description 

Flags 

The comb command writes to standard output a shell procedure that can combine the 
specified deltas (SIDs) or all deltas into one delta. You may reduce the size of your sees 
file by running the resulting procedure on the file. You can see how much the file will be 
reduced by running comb with the -s flag. If you specify a directory in place of file, comb 
performs the requested actions on all sees files (that is, those with file names with the s. 
prefix). If you specify a - (minus) in place of file, comb reads standard input and interprets 
each line as the name of an sees file. comb continues to take input until it reads END 
OF FILE (Ctrl-D). 

If you do not specify any flags, comb preserves only leaf deltas and the minimal number of 
ancestors needed to preserve the tree (see "delta" on page 310). 

Note: The comb command may rearrange the shape of the tree deltas. It may not save 
any space; in fact, it is possible for the reconstructed file to actually be larger than the 
original. 

Each flag or group of flags applies independently to each named file. 

-clist Specifies a list of deltas (SIDs) that the shell procedure will preserve (see get -i 
list for the SID list format on page 482). The procedure will combine all other 
deltas. 

Commands 181 



comb 

Files 

-0 Accesses the reconstructed file at the release of the delta to be created for each 
get -e generated; otherwise accesses the reconstructed file at the most recent 
ancestor. Using the -0 flag may decrease the size of the reconstructed sees file. 
It may also alter the shape of the delta tree of the original file. 

-pSID Specifies the SID of the oldest delta for the resulting procedure to preserve. All 
older deltas are combined in the reconstructed file. 

-s Causes comb to generate· a shell procedure that produces a report for each file 
giving: the file name, size (in blocks) after combining, original size (also in 
blocks), and percentage change computed by the formula: . 

s.COMB 
comb* 

100 * (original - combined) / original 

You should run comb using this flag and run its procedure before combining 
SCCS files in order to judge how much space will actually be saved by the 
combining process. 

The name of the reconstructed SCCS file. 
Temporary files. 

Related Information 

182 

The following commands: "admin" on page 41, "delta" on page 310, "get" on page 477, 
"help" on page 513, and "prs" on page 78l. 

The sccsfile file in AIX Operating System Technical Reference. 

The discussion of SCCS in AIX Operating System Programming Tools and Interfaces. 



comm 

comm 

Purpose 

Selects or rejects lines common to two sorted files. 

Syntax 

one of 

-1 -2 -3 
comm - -12 -13 -23 ~ fi/e1- fi/e2 --l 

-123 

OL805099 

Description 

Flags 

The comm command reads filel and file2 and writes, by default, a three-column output to 
standard output. The columns consist of: 

• Lines that are only in filel 
• Lines that are only in file2 
• Lines that are in both filel and file2. 

If you specify - (minus) for one of the file names, comm reads standard input. Both filel 
and file2 should be sorted according to the collating sequence specified by the environment 
variable NLCTAB (see "ctab" on page 257 and "sort" on page 958), 

-1 Suppresses the display of the first column (lines in filel). 
-2 Suppresses the display of the second column (lines in file2). 
-3 Suppresses the display of the third column (lines common to filel and file2). 

Note: Specifying -123 does nothing (a noop). 

Examples 

1. To display the lines unique to each file and common to both: 

comm things.to.do things.done 

Commands 183 



comm 

If the files thi ngs. to. do and thi ngs. done contain: 

things. to.do things .done 

buy soap 2nd revision 
groceries interview 
luncheon luncheon 
meeting at 3 system update 
system update tech. review 
tech. review weekly report 

then eomm displays: 

2nd revision 
buy soap 
groceries 

interview 
luncheon 

meeting at 3 
system update 
tech. review 

weekly report 
The first column contains the lines found only in thi ngs. to. do. The second column, 
indented with a tab character, lists the lines found only in thi ngs. done. The third 
column, indented with two tabs, lists the lines common to both. 

2. To display the lines that appear in only one file: 

comm -23 things.to.do things.done 
This suppresses the second and third columns of the eomm listing. If the files are the 
same as in Example 1, then the following is displayed: 

buy soap 
groceries 
meeting at 3 

Related Information 

184 

The following commands: "emp" on page 177, "etab" on page 257, "diff" on page 320, 
"sdifr' on page 883, "sort" on page 958, and "uniq" on page 1118. 

The environment miscellaneous facility in AIX Operating System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 



comp 

Purpose 

Composes a message. 

Syntax 

-form file 

comp r------cur----~ 

one of 

one of 
-file file 
-nodraftfolder 

one of 

num 
sequence 
first 
prey 

cur 

next 
last 

-draftfolder+ folder -draftmessage 
-draftfolder+ folder 
-draftmessage 

one of 
-editor cmd 
-noedit 

comp - -help ----I 

new ____ ~ 

one of 
num 
sequence next 
first last 
prey new 
cur 

one of 
-whatnowproc cmdstring 
-nowhatnowproc 

comp 

AJ2FL222 

AJ2FL167 

Commands 185 



comp 

Description 

Flags 

186 

The comp command is used to create and modify messages. comp is part of the MH 
(Message Handling) package and can be used with other MH and AIX commands. 

By default, comp copies a message form to a new draft message and invokes an editor. 
You can then fill in the message header fields To: and Subject:, fill in or delete the other 
header fields (such as cc: and Bee:), and add the body of the message. When you exit the 
editor, the comp command invokes the MH command whatnow. You can specify any of 
the whatnow subcommands, or you can press Enter to see a list of the subcommands. 
These subcommands enable you to continue composing the message, direct the disposition 
of the message, or end the processing of the comp command. See "whatnow" on 
page 1215 for a description of the subcommands. 

You can specify the form, or format, of the message by using the -form flag or the + folder 
flag. If you do not specify one of these flags, comp uses your default message format 
located in the file user -mh-directory/components. If this file does not exist, comp uses 
the system default message format located in /usr/lib/mh/components. 

You can compose a new message, or you can specify the -use flag and continue composing 
an existing message. The -file, -draftfolder, and -draftmessage flags enable you to 
specify the new or existing message that you want to compose. 

Note: The line of dashes or a blank line must be left between the header and the body of 
the message for the message to be identified when it is sent. 

-draftfolder + folder 

-draftmessage msg 

Places the draft message in the specified folder. If you do not 
specify this flag, comp selects a default draft folder according 
to the information supplied in the MH profiles. You can 
define a default draft folder in $HOME/ .mh-profile. If 
-draftfolder + folder is followed by msg, msg represents the 
-draftmessage attribute. 

Specifies the draft message. You can specify one of the 
following message references as msg: 

num 
prev 
next 

sequence 
cur 
last 

first 

new 

If the -use flag is specified, the default draft message is cur. 
Otherwise, the default draft message is new. 



-editor cmd 

-file file 

+folder msg 

comp 

Specifies that cmd is the initial editor for composing the 
message. If you do not specify this flag, comp selects a default 
editor or suppresses the initial edit, according to the 
information supplied in the MH profiles. You can define a 
default initial editor in $HOME/ .mh-profile. 

Places the draft message in the specified file. If you do not 
specify the absolute path name for file, comp places file in 
user -mh-directory. If file exists, comp prompts your for the 
disposition of the draft. 

Uses the form of the specified message in the specified folder. 
You can specify one of the following message references as 
msg: 

num 
prey 
next 

sequence 
cur 
last 

first 

The default message is the current message in the current 
folder. 

-form file Uses the form contained in the specified file. comp treats 
each line in file as a format string. 

-help Displays help information for the command. 

-nodraftfolder Places the draft in the file user -mh-directory/draft. 

-noedit Suppresses the initial edit. 

-nouse Creates a new message. 

-nowhatnowproc Does not invoke a program that guides you through the 
composing tasks. The -nowhatnowproc flag also prevents 
any edit from occurring. 

-use Continues composing an existing draft of a message. 

-whatnowproc cmdstring Invokes cmdstring as the program to guide you through the 
composing tasks. See "whatnow" on page 1215 for 
information about the default whatnow program and its 
subcommands. 

Note: If you specify whatnow for cmdstring, comp invokes 
an internal whatnow procedure rather than a program with 
the file name whatnow. 

Commands 187 



comp 

Profile Entries 

Files 

Draft-Folder: 
Editor: 
fileproc: 
Msg-Protect: 
Path: 
whatnowproc: 

Sets your default folder for drafts. 
Sets your default initial editor. 
Specifies the program used to refile messages. 
Sets the protection level for your new message files. 
Specifies your user -mh-directory. 
Specifies the program used to prompt 

What now? 
questions. 

/usr/lib/mh/components The system default message form. 
user -mh-directory/components 

$HOME/.mh-profile 
user -mh-directory / draft 

The user's default message form. (If it exists, it 
overrides the system default message form.) 
The MH user profile. 
The draft file. 

Related Information 

188 

Other MH commands: "ali" on page 48, "dist" on page 336, "forw" on page 438, 
"prompter" on page 778, "repl" on page 821, "refile" on page 817, "send" on page 893, 
"whatnow" on page 1215, "whom" on page 1222. 

The mh-alias, mh-format, and mh-profile files in AIX Operating System Technical 
Reference. 

The "Overview of the Message Handling Package" in Managing the AIX Operating System. 



confer 

Purpose 

Provides an online conferencing system. 

Syntax 

~
n$LOGNAME 

confer 

'" -nname 
-v 

joinconf - name ---l 

Description 

confer 

user 

OL805174 

The confer command sets up an online, written conference among logged-in users on your 
local node. You start a conference by running the confer command, specifying the users 
and/or work stations (@ttynum) that are part of the conference. If the users you specify 
are logged in and their work stations are writable, they are requested to join the 
conference by using the j oinconf command. The other conferees are informed as each user 
joins the conference. 

Once you join a conference, everything you enter at your work station displays at all other 
work stations that are part of the conference. This display continues until you press 
Ctrl-D to end your own active participation or until you excuse a conference participant, 
thus stopping the display of your contributions at his work station. (See page 190.) 

To prevent the confusion that can be caused by several conferees typing at the same time, 
users should follow some agreed on protocol. The following is one recommended protocol: 

• In order. to take the floor, a user presses the Enter key before entering his 
contribution. This notifies other participants that he has the floor because his name 
displays in brackets at their respective work stations. 

• A user is presumed to have the floor until he relinquishes it by entering a blank line. 

• If two or more users try to claim the floor at the same time, the last person to do so 
(the one whose name appears last), is assumed to have the floor. The others should 
immediately relinquish the floor by typing single blank lines. 

Commands 189 



confer 

190 

The confer command gives each conference a unique name, normally the name of the 
conference leader, with additional letters added to it, if necessary. The conference leader 
can. override this default by specifying the -n flag. 

A user who is logged in to more than one work station is normally written to on all of 
them, unless the conference leader specifies one of the work stations with the @ttynum 
flag when he invokes confer. 

A conferee ends his active participation by pressing Ctrl-D. This action causes his name 
and the word BY E to display at the work stations of the other conference participants. 
However, the contributions of the other participants will continue to display at his work 
station until the other participants each excuse him. 

You can run shell commands from within a conference by simply prefixing them with a I 
(vertical bar) or an! (exclamation point). Using the exclamation point causes the 
command to run in the normal fashion; the output displays only at the work station that 
runs it. Using the vertical bar, however, causes the command and all of its standard 
output and standard error output to become part of the conference, visible to all conferees. 

Three subcommands are run directly by confer and joinconf. These are: 

!excuse name Excuses the specified conferees from the conference. No further 
conference material displays at these work stations. 
Makes all contributions from the user who issues it off the record 
until he issues the ! - - subcommand. 
Cancels a preceding !-, placing the user's remarks back on the 
record. 

Unless the conference leader makes a conference off the record by specifying the - flag, 
confer makes a transcript of all conference proceedings. When a participant leaves the 
conference, he is asked whether he wants a transcript. If he does, he is mailed a copy 
when the conference concludes. Any participant can make a comment off the record in a 
conference that is otherwise on the record by beginning the line with a - (tilde). 

Conference contributions are normally transmitted one line at a time. If the conference 
leader specifies the -v flag, transmission occurs one character at a time. As this mode of 
transmission sends all user typing errors and hesitations and imposes a considerably larger 
load on the system, its use is strongly discouraged. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 



Flags 

confer 

-nname Assigns name to the conference transcript. The conference name is used by 
those joining the conference so that they get into the right one. The name of 
the user who starts the conference is the default conference name. 

-v Transmits conference messages one character at a time. 
Sets up the conference off the record, that is, no transcript of the proceedings 
is recorded. 

@ttynum Specifies a particular work station for a conferee, if a user is also specified (for 
example, ttyl). This is useful if a conferee is logged in to more than one work 
station. If no user is specified, this flag invites any user logged in to the 
specified work station to participate. 

Examples 

1. To start a conference with steve and rache 1 : 

confer steve rachel 
Running the confer command makes you the conference leader, so your login name is 
also the name of the conference. confer sends steve and rache 1 a message inviting 
them to join your conference and giving them the conference name. 

2. To specify work stations that may join the conference: 

confer steve@tty5 rachel @ttylO 

Suppose that steve is logged in at the work stations tty3, tty4, and tty5, and that 
rache 1 is logged in at tty7 and ttyS. This command invites steve to join the 
conference at work station tty5 only, invites rache 1 to join at either work station she 
is using or at both, and invites whoever is logged in at ttylO to join. 

3. To join a conference named paul a: 
joinconf paula 
Now the text you type becomes part of the dialog: prefixed with your name, displayed 
at each participant's work station, and recorded in the transcript of the conference. 

4. Suppose that you start a conference by entering the command given in Example 2, and 
the person using ttylO decides not to join the conference. If you do nothing, this 
person also sees the dialog, even though not participating in it. To prevent this from 
happening, each person that has joined the conference must enter: 

!excuse @ttylO 

Commands 191 



confer 

192 

Similarly, if rache 1 decides to join the conference from tty7, the discussion is also 
displayed at her other work station, tty8, unless everyone enters: 

lexcuse rachel@tty8 
rachel should enter this, too, but only at tty7, the work station she is using for the 
conference. 

5. To make a single-line statement off the record: 

"Coffee and donuts at my place. 
confer displays lines beginning with ~ (tilde) at participants' work stations, but does 
not include them in the record of the conference. 

To make a multiple-line statement: 

! ~ 
Everyone is invited 
to my place after the conference 
for coffee and donuts. 
IN~ 

6. To run a shell command privately, without leaving the conference: 

! 1 i 
This lists the current directory without including the Ii command or its output in the 
conference. 

7. To include the output of a shell command in the discussion: 

lcat notes.canf 

This lists the contents of the file notes. conf at each participant's work station, and 
includes it in the conference record. 

8. To send command output to others, off the record: 

!~ 

Icat nates.canf 
!~~ 

9. To leave the conference, press Ctrl-D. If your user name is paul a, then after you 
press Ctrl-D, the message: [p au 1 a] BY E is sent to the other participants. The rest 
of the discussion continues to appear at your work station until each of the other 
participants enters: 

!excuse paula 



Files 

/etc/utmp 
/dev/tty?? 
/tmp/*.cnf 
/tmp/*.ln? 
/tmp/*.mls 

List of logged-in users. 
Work station names. 
User transcript files. 
Links to main conference file. 
Transcript mailing list. 

Related Information 

The following command: "write" on page 1225. 

confer 

Commands 193 



config 

config 

Purpose 

Extracts configuration information from configuration files. 

Syntax 

~
m jete/master \ r-c canf.cX1 speCials}--

config . T\ systemfi/e --l 
-m mfi/e-- - _·c cfi/e"-I spfi/e 

OL805416 

Description 

Flags 

Files 

194 

The config program reads the AIX master and system configuration files (by default 
/etc/master and the specified systemfile). It writes a C Language configuration file and a 
special file list (by default conf.c and specials). The special file list is a list of the 
mknod, chown, and chmod commands that the shell runs to define the necessary special 
files. The return code is the number of errors encountered. 

The C Language configuration file can then be compiled and linked with other kernel 
object files to produce a new kernel. Normally, when you want to reconfigure the kernel, 
you should run the make command with the Makefile supplied in the /usr/sys directory. 
This runs config and then builds a new kernel. For a discussion of reconfiguring the 
kernel, se,e Managing the AIX Operating System. 

-c cfile 

-I spfile 

-m mfile 

/etc/master 
/etc/system 
conf.c 
specials 

Writes the C configuration file to cfile instead of to conf.c. 

Writes the special file list commands to spfile instead of to specials. 

Reads mfile instead of /etc/master. 

Default master configuration file. 
A system configuration file. 
Default C configuration file. 
Default special file list. 



Related Information 

The following commands: "make" on page 625 and "vrmconfig" on page 1206. 

The master and system files in AIX Operating System Technical Reference. 

The discussion of config in Managing the AIX Operating System. 

config 

Commands 195 



conflict 

conflict 

Purpose 

Searches for alias and password conflicts. 

Syntax 

/usr/I i b/m h/conf I iet 

~mail user 

_ r/usr/lib/mh/MaiIAliases~ 

~ ftle ---r----------' 

/usr/lib/mh/conflict - -help ----l 

search /usr/mail 

-search directory 

AJ2FL225 

Description 

196 

The conflict command is used to find conflicts in aliases and to find invalid mail drops. 
conflict is not designed to be run directly by the user; it is designed to be called by cron 
and other programs used for system accounting. conflict is a system administrator 
command that is usually invoked by its full path name. The conflict command is part of 
the MH (Message Handling) package. 

The conflict command searches all specified alias files for duplicate alias names that do 
not resolve to the same address. By default, conflict searches /usr/lib/mh/MailAliases. 
conflict also searches all specified mail drop directories for mailbox files with names that 
do not correspond to valid users defined in /etc/passwd. 

The conflict lists its output on the display, unless you specify the-mail flag. -mail causes 
conflict to mail its output to the specified user. 



Flags 

Files 

conflict 

-help Displays help information for the command. 

-mail user Sends the results of the conflict command to the specified user. 

-search directory Searches the indicated directories for invalid mailboxes. You can 
specify any number of -search flags. The default mailbox directory is 
/usr/mail. 

/usr/lib/mh/mtstailor 
/ etc/passwd 
/etc/group 
/usr /mail/$USER 

The MH tailor file. 
List of users. 
List of groups. 
The location of the mail drop. 

Related Information 

Other MH commands: "ali" on page 48, "whom" on page 1222. 

The mh-alias, mh-mail, and mh-profile files in AIX Operating System Technical 
Reference. 

The "Overview of the Message Handling Package" in Managing the AIX Operating System. 

Commands 197 



connect 

connect 

Purpose 

Establishes a connection to a remote system. 

Syntax 

connect - -b ~ .. rmthost ---l 

~file:T 

r--------zO------~ 

connect 
-j name -mprompt 
-Wsec -parg 
-t arg -x arg 

rmthost~ 
!cmd 

file: rmthost -r pgm 

OL805388 

Description 

198 

The connect command lets you establish a connection to a remote host. connect runs in 
two parts. The first part makes the connection with the remote system specified by 
rmthost. The second part is a program called the talker. It runs automatically and 
exchanges data with the rmthost. For more information about the talker program, see 
"connect" in AIX Operating System Technical Reference. Any flags that you specify are 
passed directly to the talker without interpretation. The default talker for asynchronous 
links is atalk. 

The connect command uses a system-wide control file, connect.con, located in 
/usr/lib/INnet. You can specify an additional control file, file:rmthost. If you do not 
specify an additional file, connect searches $HOME/bin fora connect. con file. 
Information needed to complete the connection is found in one of these files. 

Attributes needed to complete the connection are taken from the control file or from the 
command line assignment var = val. For a description of the parameters, see "connect" in 
AIX Operating System Technical Reference. 



Flags 

connect 

When atalk detects an escape sequence in the input, it places the work station in its 
former mode of operation and prompts you with the local prompt. You can then use the 
flags that follow. Once the flag has run, atalk returns to its former mode. 

The connect command does not limit access to the phone system to control dialing based 
on the number to be called. 

Warning: The connect command lets you set up and maintain 
connections through a wide variety of communications devices. It 
interacts with you through the file connect. con which is free-format. 
Problems with the format of this file may cause unpredictable results. 

Note: There are no spaces between the flags and the associated parameters. 

-b Sends a break to the port. This is done by lowering the transmission speed to 
75 bps and transmitting an ASCII NULL on the port. If the speed is too low, 
less than 100 bps, this may not work. 

-d 
-q 

-e[esc] 

-f 
-h 

-iname 

Closes, quits (q) or disconnects (d) the port. Note that this does not end your 
job or session at the remote site. After closing the port, connect exits. 

Sets the escape sequence to the character string esc. If you do not specify esc, 
connect displays escape sequence. It takes the default escape sequence from 
the environment variable CONESC, if defined, or else sets it to: 

Ctrl-VuCtrl-M 

Enables (-h) or disables (-f) local echoing. 

Writes file name to the port. 

Warning: If you are connected to the remote host by RS-232 
lines, data from the file may be lost if the remote host cannot 
keep up with the input. 
Normally, this flag is used to transfer a small file from the local site to the 
remote site. File transmission must be ended manually by pressing Ctrl-D. 

Commands 199 



connect 

200 

For example: 

cat> newfile 
[escape seq uence ] 
LOCAL: i fred 

Ctrl-D 

-mprompt Set the local prompt to the prompt character string. connect displays this 
prompt when it recognizes the escape sequence. By default, it sets the prompt 
to the value of the environment variable CONPMT. If this variable is not set, 
it uses the string LOCAL:. 

-parg Sets parity as specified by arg, where arg is one of the following characters: 0 
(odd), e (even), 7 (both even and odd), or 8 (eight data bits). 

-rpgm Runs the network program pgm. Anything following pgm on the command line 
is passed to pgm as an argument, along with the additional arguments -i3 -03. 
The port set up as file descriptor 3. The program is run as a child process. 

-srate Sets the transmission speed to rate, which is one of the following: 0, 50, 75, 
110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, exta, extb (0 effectively 
turns off the port). If you do not specify rate, current transmission speed 
displays. 

-targ Enables or disables transcripts. If arg is any character string other than a 
minus or plus sign, the transcript function is enabled with the specified file 
arg as transcript. When you use an existing file as a transcript file, new data 
is added to its end. Use t- to disable the transcript function, and t + to enable 
the transcript to the previous transcript file (no default). 

-wsec Sets the inter-line delay of the include function to cause a delay interval of the 
specified seconds between each line written to the port. The default value is o. 

-xarg Enables or disables input or output flow control. If the input flow control is 
enabled, CTRL-S and CTRL-Q are automatically sent to the remote host to 
control the rate at which it transmits data. If the output flow control is 
enabled, CTRL-S and CTRL-Q are automatically honored if received from the 
host. This is useful when using the include command. xi + enables input 
flow control. xi - disables input flow control. xi displays the current state. 
For control of output flow control, replace xi with xo. See the discussion of 
IXON and IXOFF in the termio file in AIX Operating System Technical 
Reference. 

!cmd Runs the AIX command cmd. Anything that follows! (exclamation point), 
including arguments to cmd, is passed to the local shell to be run by the 
system system call. In particular, all I/O redirection and piping works. 



Files 

/usr /lib /IN net/ connect. con 
$HOME/bin/connect.con 
/usr/lib/INnet/dialers/* 
$HOME/bin/* 
/usr /lib/IN net/ atalk 
/etc/sites 
/etc/locks 

System-wide connection control file. 
Private connection control file. 
System-wide dialer programs. 
Private dialer programs. 
Default talker program, asynchronous lines. 
Network sites file. 

connect 

Directory for locks on ports (devices) used for logins and 
out-going connections. 

Related Information 

The system and exec system calls, the connect subroutine, and the termio special 
facility in A/X Operating System Technical Reference. 

Commands 201 



cp 

cp 

Purpose 

Copies files. 

Syntax 

one of 

cp 

OL805100 

Description 

Flags 

202 

The cp (copy) command copies a source file or the files in a source directory to a target file 
or directory. If your output is to a directory, then the files are copied to that directory 
with the same file name. If either infile or outfile is a symbolic link, the link is followed 
when cp is performed. An error message is displayed if the link cannot be followed. 

You can also copy special device files. If the file is a named pipe, the data in the pipe is 
copied into a regular file. If the file is a device, the file is read until the end of file and 
that data is copied into a regular file. 

Notes: 

1. Do not name outfile as one of the input files. 

2. If you specify a directory for the outfile, the directory must already exist. 

3. If the infile contains subdirectories and the subdirectories do not exist, the system 
creates them. 

-p Preserves the modification times and modes of the infile for the copy. 

-r Copies each subtree rooted at the infile (recursive copy). If the infile is a directory, 
then the outfile must be a directory. 

Indicates that the arguments following this flag are to be interpreted as file names. 
This null flag allows the specification of file names that start with a minus. 



Examples 

1. To make another copy of a file in the current directory: 

cp prog.c prog.bak 

cp 

This copies prog. c to prog. bak. If the file prog. bak does not already exist, then cp 
creates it. If it does exist, then cp replaces it with a copy of prog. c. 

2. To copy a file to another directory: 

cp jones /u/nick/clients 

This copies jones to /u/nick/clients/jones. 
3. To copy a file to a new file and preserve the modification date and time: 

cp -p smith smith.jr 

This copies smi th to smi th . j r. Instead of creating the file with the current date and 
time stamp, the system gives smi th . j r the same date and time as smi tho 

4. To copy all the files in a directory to a new directory: 

cp /u/nick/clients/* /u/nick/customers 

This copies the files and directories in the directory c 1 i en t s to the directory 
customers. 

5. To copy a directory, its files and its subdirectories to another directory: 

cp -r /u/nick/clients /u/nick/customers 

This copies the directory eli ents, its files, its subdirectories, and the files in the 
subdirectories to the directory c u s tome r S. 

6. To copy a specific set of files to another directory: 

cp jones lewis smith /u/nick/clients 

This copies jones, lewis, and smith to /u/nick/clients. 
7. To use pattern-matching characters to copy files: 

cp programs/*.c 

This copies the files in directory programs that end with. c to the current directory 
(.). You must type a space between the c and the final period. 

Commands 203 



cp 

Related Information 

204 

The following commands: "cpio" on page 205, "link, unlink" on page 575, "In" on 
page 581, and "mv" on page 679. 



cpio 

cpio 

Purpose 

Copies files into and out of archive storage and directories. 

Syntax 

epio -- -0 

epio - -i 
bed 
m r t u 
v s 8 S 
6 

cpio-
-p ~L---__ ~_~_~_m_u-r--, directory ---l 

1 Do not put a blank between these items. 

Description 

OL805175 

OL805350 

OL805351 

Warning: If you redirect the output from cpio to a special file (device), 
you should redirect it to the raw device and not the block device. Because 
writing to a block device is done asynchronously, there is no way to know 
if the end of the device has been reached. 

Commands 205 



cpio 

Flags 

206 

cpio -0 

This command reads file path names from standard input and copies these files to standard 
output along with path names and status information. Path names cannot exceed 128 
characters. Avoid giving cpio path names made up of many unique linked files as it may 
not have enough memory to keep track of them and so would lose linking information. 

cpio -i 

This command reads from standard input an archive file created by the cpio -0 command 
and copies from it the files with names that match pattern. These files are copied into the 
current directory tree. You may list more than one pattern, using the file name notation 
described under "sh" on page 913. Note, however, that in this application the special 
characters * (asterisk), ? (question mark), and [ . . . ] (ellipse) match the / (slash) in 
path names, in addition to their use as described under "sh" on page 913. The default 
pattern is * (select all files in the current directory). In an expression such as [a-z], the 
minus means "through" according to the current collating sequence. 

A collating sequence may define equivalence classes for use in character ranges. See the 
"Overview of International Character Support" in Managing the AIX Operating System for 
more information on collating sequences and equivalence classes. 

Japanese Language Support Information 

Note: A collating sequence in Japanese Language Support does not define equivalence 
classes for use in range expressions. To avoid unpredictable results when using a range 
expression to match a class of characters, use a character class expression rather than a 
standard range expression. For information about character class expressions, see the 
discussion of this topic in "ed" on page 371. 

cpio -p 

This command reads file path names from standard input and copies these files into the 
named directory. The specified directory must already exist. If these path names include 
directory names and if these directories do not already exist, you must use the d flag to 
cause the directory to be created. 

Note: You can copy special files only if you have superuser authority. 

All flags must be listed together, without any blanks between them. Not all of the 
following flags can be used with each of the -0, -i, and -p flags. 



a Resets the access times of copied files to the current time. 

b Swaps both bytes and halfwords. 

Note: If there are an odd number of bytes or halfwords in the file being 
processed, data can be lost. 

B Performs block input/output, 5120 bytes to a record. 

c Writes header information in ASCII character form. 

Cvalue Performs block input/output, value * 512 bytes to a record. 

cpio 

Note: The C flag and the B flag are mutually exclusive. If you list both, cpio 
uses the last one it encounters in the flag list. 

d Creates directories as needed. 

f Copies all files except those matching pattern. 

Links files rather than copies them, whenever possible. This flag is usable only 
with cpio -po 

m Retains previous file modification time. This flag does not work when copying 
directories. 

r Renames files interactively. If you do not want to change the file name, enter the 
current file name or press the Enter key only. In this last case, cpio does not 
copy the file. 

s Swaps bytes. This flag is usable only with cpio -i. 

Note: If there are an odd number of bytes in the file being processed, data can 
be lost. 

S Swaps halfwords. This flag is usable only with cpio -i. 

Note: If there are an odd number of halfwords in the file being processed, data 
can be lost. 

t Creates a table of contents. This does not copy any files. 

u Copies unconditionally. An older file now replaces a newer file with the same 
name. 

v Lists file names. If you use this with the t flag, the output looks similar to that of 
the Is -1 command. 

6 Processes an old file (one written in UNIX Sixth Edition format). This flag is 
usable only with cpio -i. 

Commands 207 



cpio 

Examples 

208 

1. To copy files onto diskette: 

epio -ov <filenames >/dev/rfdO 

This copies the files with path names that are listed in the file fi 1 enames in a 
compact form onto the diskette (> / dey /rfdO). The -v flag causes cpio to display the 
name of each file as it is copied. This command is useful for making backup copies of 
files. The diskette must already be formatted, but it must not contain a file system or 
be mounted. 

2. To copy files in the current directory onto diskette: 

1s *.e epio -ov >/dev/rfdO 

This copies all the files in the current directory whose names end with. e. 

3. To copy the current directory and all subdirectories onto diskette: 

find -print epio -ov >/dev/rfdO 
This saves the directory tree that starts with the current directory (.) and includes all 
of its subdirectories and files. A faster way to do this is: 

find -epio /dev/rfdO -print 

The -pri nt displays the name of each file as it is copied. 

4. To list the files that have been saved onto a diskette with cpio: 

epio -itv </dev/rfdO 
This displays the table of contents of the data previously saved onto /dev /rfdO in cpio 
format. The listing is similar to the long directory listing produced by Ii -1. To list 
only the file path names, use only the -it flags. 

5. To copy the files previously saved with cpio from a diskette: 

epio -idmv </dev/rfdO 
This copies the files previously saved onto /dev/rfdO by cpio back into (-i) the file 
system. The -d flag allows cpio to create the appropriate directories if a directory tree 
was saved. The -m flag maintains the last modification time that was in effect when 
the files were saved. The -v causes cpio to display the name of each file as it is copied. 



cpio 

6. To copy selected files from diskette: 

epio -i 1I*.e ll 11*.0" </dev/rfdO 

This copies the files that end with. e or .0 from diskette. Note that the patterns 
II * . e II and II * .0 II must be enclosed in quotation marks to prevent the shell from 
treating the * as a pattern-matching character. This is a special case in which cpio 
itself decodes the pattern-matching characters. 

7. To rename files as they are copied from diskette: 

epio -ir </dev/rfdO 

The -r flag causes cpio to ask you whether or not to rename each file before copying it 
from diskette. For example, the message: 

Rename <prog.e> 

asks whether to give the file saved as p rog . e a new name as it is copied in. To 
rename the file, type the new name and press Enter. To keep the same name, you 
must enter the name again. To avoid copying the file at all, press the Enter key alone. 

8. To copy a directory and all of its subdirectories: 

mkdir /u/jim/newdir 
find -print epio -pdl /u/jim/newdir 

This duplicates the current directory tree, including the current directory and all of its 
subdirectories and files. The duplicate is placed in the new directory /ul j i m/newdi r. 
The -1 flag causes cpio to link files instead of copying them, when possible. 

Related Information 

The following commands: "ar" on page 55, "find" on page 422, and "In" on page 581. 

The cpio system call in AIX Operating System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 

Commands 209 



cpp 

cpp 

Purpose 

Performs file inclusion and macro substitution on C Language source files. 

Syntax 

/lib/cpp 

1 The default def is 1 . 

1 
h-f--- -D name ---}-r-f 

-Dname=def infi/e 

OL805378 

Description 

210 

The cpp program is the C Language preprocessor. It reads infile and writes to outfile 
(standard input and standard output by default). Although you can use this preprocessor 
by itself, it is best to use it through the cc command, which by default sends a C Language 
source file to cpp as the first pass in compilation. 

The cpp program recognizes two special names, --LINE-- (the current line number) and 
--FILE-- (current file name). These names can be used anywhere just as any other 
defined name. 

All cpp directive lines must begin with a hash sign (#). These directives are: 

#define name token-string 
Replaces subsequent instances of name with token-string. 

#define name(arg, . • . ,arg) token-string 

#undef name 

Replaces subsequent instances of the sequence name (arg, . . . ,arg) 
with token-string, where each occurrence of an arg in token-string is 
replaced by the corresponding token in the comma-separated list. Note 
that there must not be any space between name and the left 
parenthesis. 

Ignores the definition of name from this _point on. 



cpp 

#include "file" 
#include < file> Includes at this point the contents of file, which cpp then processes. 

If you enclose file in II II, (double quotation marks) cpp searches first 
in the directory of infile, second in directories named with the -I flag, 
and last in directories on a standard list . 

If you use the < file> notation, cpp searches for file only in the 
standard places. It does not search the directory in which infile 
resides. 

#line num ["file"] Includes line control information for the next pass of the C compiler. 
num is the line number of the next line and file is the file from which 
it comes. If you omit "file", the current file name remains unchanged. 

#endif Ends a section of lines begun by a test directive (#if, #ifdef, or 
#ifndef). Each test directive must have a matching #endif. 

#ifdef name Places the subsequent lines in the output only if name has been 
defined by a previous #define and has not been undefined by an 
in tervening #undef. 

#ifndef name Places the subsequent lines in the output only if name has not been 
defined by a previous #define or has been undefined by an intervening 
#undef. 

#if expr Places subsequent lines in the output only if expr evaluates to nonzero. 

#else 

All the binary non assignment C operators, the ?: operator, and the 
unary -, !, and - operators are legal in expr.The precedence of the 
operators is the same as that defined in the C Language. There is also 
a unary operator defined, which can be used in expr in these two 
forms: 

defined (name) 
defined name 

This allows the utility of #ifdef and #ifndef in a #if directive. Only 
these operators, integer constants, and names which are known by cpp 
should be used in expr. The sizeof operator is not available. 

Places subsequent lines in the output only if the expression in the 
preceding #if directive evaluates to False (and hence the lines 
following the #if and preceding the #else have been ignored). 

You can nest the test directives and the possible #else directives. 

Commands 211 



cpp 

Flags 

-C Copies source file comments to the output file. If you omit this flag, cpp 
removes all comments (except those found on cpp directive lines). 

-Dname[ = defJ Defines name as in a #define directive. The 4efault def is 1. 

-Idir Looks first in dir, then looks in the directories on the standard list for 
#include files with names that do not begin with a / (slash). See the 
previous discussion of #include. 

-p Preprocesses input without producing line control information for the 
next pass of the C compiler. 

-Uname Removes any initial definition of name, where name is a reserved symbol 
predefined by the preprocessor. 

Examples 

212 

1. To display the text that the preprocessor sends to the C compiler: 

/lib/cpp pgm.c 
This preprocesses pgm. c and displays the resulting text at the work station. You may 
want to see the preprocessor output when looking for errors in your macro definitions. 

2. To create a file containing more readable preprocessed text: 

/lib/cpp -P -C pgm.c pgm.i 
This preprocesses pgm. c and stores the result in pgm. i. It omits line numbering 
information intended for the C compiler (-P), and includes program comments (-C). 

3. To predefine macro identifiers: 

/lib/cpp -DBUFFERSIZE=512 -DDEBUG pgm.c pgm.i 
This defines BUFFERSIZE with the value 512 and DEBUG with the value 1 before 
preprocessing. 

4. To use #include files located in nonstandard directories: 

/lib/cpp -I/u/jim/include pgm.c 
This looks in the current directory for quoted #include files, then in 
/u/jim/i ncl ude, and then in the standard directories. It looks in /u/jim/i ncl ude 
for angle-bracketed #include files « » and then in the standard directories. 



cpp 

Files 

/usr/include Standard directory for #include files. 

Related Information 

The following commands: "cc" on page 140 and "m4" on page 603. 

Commands 213 



craps 

craps 

Purpose 

Plays craps. 

Syntax 

/usr/games/craps ~ 
OL805188 

Description 

214 

The craps game plays a form of the game of craps that is played in Las Vegas. It simulates 
the roller while you place bets. Bet with the roller by making a positive bet or with the 
House by making a negative bet. 

You start with a $2000 bankroll. When the program prompts with bet?, you may bet all 
or part of your bankroll. If you bet more than your bankroll, the program repeats the 
prompt until you make a legal bet. Then the roller throws the dice. The payoff odds are 
one to one. The player wins depending on whether the bet is placed with the roller or with 
the House. The first roll is the roIl immediately following abet. 

The following rules apply. On the first roll, 7 or 11 wins for the roller; 2, 3, or 12 wins for 
the House; and any other number becomes the point and you roll again (the next rule then 
applies). On subsequent rolls, the point wins for the roller; 7 wins for the House; and any 
other number rolls again. 

If you lose your bankroll, the House prompts mar ker?, offering to lend you an additional 
$2000. Accept the loan by responding y or yes. Any other response ends the game. When 
you hold markers, the House reminds you before a bet how many markers are outstanding. 
When you have markers and your bankroll exceeds $2000, craps asks Repay marker? If 
you want to repay part or all of your loan, respond with y (or yes). If you have more than 
one marker, craps asks you How many? If you respond with a number greater than the 
number of markers you hold, it repeats the prompt until you enter a valid number. If you 
accumulate 10 markers (a total loan of $20,000), craps tells you so and exits. If you 
accumulate a bankroll of more than $50,000 while holding markers, the money owed is 
repaid automatically. 

A bankroll of more than $100,000 breaks the bank, and craps will prompt New game? To 
quit the game, press INTERRUPT (Alt-Pause); craps displays whether you have won, lost, 
or broken even and exits. 



crash 

crash 

Purpose 

Examines system images. 

Syntax 

--c
/dev/mem~ 

crash 
system 

OL805101 

Description 

The crash command is an interactive utility for examining an operating system image (a 
core image or the running kernel). It has facilities for interpreting and formatting control 
structures in the system and certain miscellaneous functions useful for examining a dump. 

The system parameter specifies the file that contains the system image and the kernel 
symbol definitions. You can run crash with no arguments to examine an active system. 
The default value is /dev/mem. If you specify a system-image file, crash assumes it is a 
system dump file and sets the default process to the process running at the time of the 
crash. 

Notes: 

1. When using crash to identify the flags it uses, a source listing of system header files 
may be helpful. 

2. Stack tracing of the current process on a running system does not work. 

The crash command recognizes the following aliases in subcommand format specifications. 

Format Aliases Format Aliases Format Aliases 
byte b hexadecimal hexadec,hex,h,x octal oct, 0 
character char, c inode ino, i write w 
decimal dec, e longdec Id, D 
directory direct, dir, d longoct 10,0 

Commands 215 



crash 

Subcommands 

216 

The crash command presents a prompt (» when it is ready to interpret subcommands 
entered at the work station. The general subcommand format for crash is: 

subcommand [flags] [structures to be displayed] 

When allowed, flags modify the format of the data displayed. If you do not specify which 
structure elements you want to examine, all valid entries are displayed. In general, those 
subcommands that perform I/O with addresses assume hexadecimal notation. 

Most of the subcommands recognized by crash have aliases (abbreviated forms that give 
the same result). crash recognizes the following subcommands: 

buf [buffer-header] ... 
Displays the system buffer headers. 

buffer [format] [buffer] ... 
Displays the data in a system buffer according to format. If you do not provide a 
format parameter, the previous format is used. Valid formats include decimal, 
octal, hex, character, byte, directory, i-node and write. The write format 
creates a file in the current directory containing the buffer data. 

callout Aliases: calls, call, c, timeout, time, tout 
Displays· all entries in the callout table. 

cm [slot-number segment-number] 
If you specify the process slot-number and segment number, this subcommand 
changes the map of crash internal pointers for any segment of a process not 
swapped out. This allows the od subcommand to display data relative to the 
beginning of the segment desired. If you enter cm without any parameters, cm 
resets the map (equivalent of a reset subcommand). Use only when analyzing the 
currently running system. 

ds [data-address] . . . 
Finds the data symbols closest to the given addresses. 

du [slot-number] 
Uses the specified process slot number to display a combined hex and ASCII dump 
of the user block for any process that has not been swapped out. The default is the 
current process. 



crash 

file ffile-table-entry] . . . Aliases: files, f 
Displays the file table. Unless specific file entries are requested, only those with a 
nonzero reference are displayed. 

fs [slot-number] 
Traces a kernel stack for the process specified by the process slot number for any 
process that has not been swapped out. Displays the called subroutines with a hex 
dump of the stack frame for the subroutine which contains the parameters passed 
to the subroutine. The default process is the currently running process. 

inode [-] [i-node-table-entry] . . . Aliases: ino, i 
Displays the i-node table. The - flag also displays the i-node data block addresses. 
Unless specific i-node entries are requested, only those with a nonzero reference 
are displayed. 

map [map-name] ... 
Displays the named system map structures. 

mount [mount-table-entry] . . . Aliases: mnt, m 
Displays the mount table. Unless specific mount table entries are requested, only 
those in use are displayed. 

nm [symbol] ... 
Displays symbol value and type as found in the kernel-image file. 

od [symbol name or address] [count] fformat] 
Dumps count data values starting at the symbol value or address given according to 
format. Allowable formats are octal, longoct, decimal, longdec, character, hex 
or byte. 

proc [-] [-r] fprocess-table-entry] . .. Aliases: ps, p 

q 

Displays the process table. (See the /usr/include/sys/proc.h file for this structure 
definition.) The -r flag causes only runable processes to be displayed. The 
- (minus) alone displays a longer listing. 

Exits from crash. 

reset Aliases: r 
Reinitializes the crash data, takes another slice from /dev/mem, and updates the 
process table. Any new processes created can be displayed. Use only when 
analysing the currently running system. 

Commands 217 



crash 

218 

stack [process-table-entry] . . . Aliases: stk, s, kernel, k 

stat 

Displays a dump of the kernel stack of a process. The addresses shown are virtual 
data addresses rather than true physical locations. If you do not specify an entry, 
information about the last running process is displayed. You can not trace the 
stack of the current process on a running system. 

Displays statistics found in the dump. These include the panic message (if a panic 
occurred), time of crash, and system name. 

text [text-table-entry] . . . Aliases: txt, x 
Displays the text table. Unless specific text entries are requested, only those with 
a nonzero i-node pointer are displayed. 

trace [process-table-entry] . . . Aliases: t 
Displays a kernel stack trace of the current process. The trace starts at the bottom 
of the stack and attempts to find valid stack frames deeper in the stack. If you do 
not specify a process table entry, information about the last running process is 
displayed. 

ts [text-address] . . . 
Finds the text symbols closest to the given addresses. 

tty [type] [-] [tty-entry] . . . Aliases: term, dz, dh 
Displays the tty structures. The type parameter specifies which structure is used 
(such as ksr, or rs). The last type entered with the tty command becomes the 
default. The - flag displays the stty parameters for the given line. 

user [process-table-entry] . . . Aliases: uarea, u-area, u 
Displays the user structure of the named process as determined by the information 
contained in the process table entry. (See the /usr/include/sys/user.h file for this 
structure definition.) If you do not specify the entry, the information about the last 
running process is displayed. Attempting to display a paged process produces an 
error message. 

var Aliases: tunables, tunable, tune, v 
Displays the tunable system parameters~ 

vfs [-] [uis slot-number] 
Uses the specified vfs slot number to display an entry in the vfs table. The - flag 
displays the vnodes associated with the vfs. The default is to display the entire vfs 
table. 

vnode [unode slot-number] 
Uses the specified vnode slot number to display an entry in the vnode table. The 
default is to display the entire vnode structure. 



Files 

Runs shell commands. 

? 
Displays summary of crash commands. 

/usr/include/sys/*.h 
/dev/mem 
/unix 
buf.# 

Header files for table and structure information. 
Default system-image file. 
Default kernel-image file. 
Files containing buffer data. 

crash 

Related Information 

The following commands: "mount" on page 669, "nm" on page 705, "ps" on page 786, 
"sh" on page 913, and "stty" on page 1018. 

Commands 219 



cron 

cron 

Purpose 

Runs commands automatically. 

Syntax 

1 
eron --l 

1 Not usually run from the command line. but included in jete/reo 
OL805184 

Description 

Files 

220 

The cron command runs shell commands at specified dates and times. Regularly scheduled 
commands can be specified according to instructions contained in crontab files. You can 
submit your crontab file via the crontab command (see page 222). Use the at command 
(see page 63) to submit commands that are to be run only once. Because cron never exits, 
it should be run only once. This is best done by running cron from the initialization 
process through the /etc/rc command file (see page 806). 

The cron command examines crontab files and at command files only during process 
initialization and when a file changes. This reduces the overhead of checking for new or 
changed files at regularly scheduled intervals. 

The cron command also executes a sync system call approximately once a minute to 
assure that all information in memory that should be on disk (buffered output) is written 
out. These periodic updates minimize the possibility of file system damage in the event of 
a crash. In addition, cron keeps a number of frequently used system directories open to 
keep their i-nodes in kernel memory for faster access. 

The cron command creates a log of its activities in /usr/lib/cron/log. 

For a discussion of how to schedule commands, see "crontab" on page 222. 

/usr/lib/cron 
/usr/lib/cron/log 
/usr/spool/cron 
/bin 
/lib 

Main cron directory. 
Accounting information. 
Spool area. 
Directory kept open. 
Directory kept open. 



/usr 
/usr/bin 
/usr/lib 
/etc 
/tmp 

Related Information 

Directory kept open. 
Directory kept open. 
Directory kept open. 
Directory kept open. 
Directory kept open. 

cron 

The following commands: "at, batch" on page 63, "crontab" on page 222, and "rc" on 
page 806. 

The sync system call and the crontab file in AIX Operating System Technical Reference. 

Commands 221 



crontab· 

crontab 

Purpose 

Submits a schedule of commands to cron. 

Syntax 

crontab 

OL805003 

Description 

222 

The crontab command copies the specified file, or standard input if you do not specify a 
file, into a directory that holds all users' crontab files. The cron command runs 
commands according to the instructions in these crontab files. It then mails you the 
output from standard output and standard error for these commands, unless you redirect 
standard output or standard error. When entries are made to a crontab file, all previous 
entries are erased. 

You may use crontab if your logname appears in the file /usr/lib/cron/cron.allow. If 
that file does not exist, crontab checks the file /usr/lib/cron/cron.deny to determine if 
you should be denied access to crontab. If neither file exists, you can submit a job only if 
you are operating with superuser authority. The allow/deny files contain one user name 
per line. 

Notes: 

1. If your login ID is associated with more than one login name, crontab uses the first 
login name that appears in the /etc/passwd file, regardless of which login name you 
might actually be using. 

2. If cron.allow exists, the superuser's log name must appear there for the superuser to 
be able to use the command. 



Flags 

crontab 

Each crontab file entry consists of a line with six fields, separated by spaces and tabs, that 
contain, respectively: 

1. The minute (0-59) 
2. The hour (0-23) 
3. The day of the month (1-31) 
4. The month of the year (1-12) 
5. The day of the week (0-6 for Sunday-Saturday) 
6. The shell command. 

Each of these fields can contain: 

• A number in the specified range 
• Two numbers separated by a minus to indicate an inclusive range 
• A list of numbers separated by commas, which selects all numbers in the list 
• An asterisk, meaning all legal values. 

Note that the specification of days may be made by two fields (day of the month and day of 
the week). If you specify both as a list of elements, both are adhered to. For example, the 
following entry: 

a a 1,15 * 1 command 
would run command on the first and fifteenth days of each month, as well as every 
Monday. To specify days by only one field, the other field should contain an *. 
The cron command runs the command named in the sixth field at the selected date and 
time. If you include a % (percent sign) in the sixth field, cron treats everything that 
precedes it as the command invocation and makes all that follows it available to standard 
input, unless you escape or quote the percent sign (\% or II % "). 

Note: The shell runs only the first line of the command field (up to a % or end of line). All 
other lines are made available to the command as standard input. 

The cron command invokes a subshell from your $HOME directory. This means that it 
will not run your .profile file. If you schedule a command to run when you are not logged 
in and you want to have commands in your .profile run, you must explicitly do so in the 
crontab file. (For a more detailed discussion of how sh can be invoked, see "sh" on 
page 913). 

cron supplies a default environment for every shell, defining HOME, LOGNAME, SHELL 
(=/bin/sh), and PATH (= :/bin:/usr/bin). 

-1 Lists your crontab file. 

-r Removes your crontab file from the crontab directory. 

Commands 223 



crontab 

Examples 

Files 

The following examples show valid crontab file entries. 

1. To write the time to the console every hour on the hour: 

o * * * * echo The hour is 'date'. >/dev/console 
This example uses command substitution. For more information, see "Command 
Substitution" on page 925. 

2. To run calendar at 6:30 a.m. every Monday, Wednesday, and Friday: 

30 6 * * 1,3,5 /usr/bin/calendar -
3. To define text for the standard input to a command: 

o 16 10-31 12 5 /etc/wall%HAPPY HOLIDAYS!%Remember to turn in your time c, 
This writes a message to all users logged in at 4:00 p.m. each Friday between December 
10th and 31st. 

The text following the % (percent sign) defines the standard input to the wall command 
as: 

HAPPY HOLIDAYS! 
Remember to turn in your time card. 

/usr/lib/cron 
/usr/spool/cron/crontabs 
/usr/lib/cron/cron.allow 
/usr/lib/cron/cron.deny 

Main cron directory. 
Spool area. 
List of allowed users. 
List of denied users. 

Related Information 

The following commands: "cron" on page 220 and "sh" on page 913. 

224 



csh 

csh 

Purpose 

Interprets commands read from a file or entered from the keyboard. 

Syntax 

one of 

csh 
-c" cmd string" 
-s 
-t 

file 

OL805447 

Description 

The csh command is a system command interpreter and programming language that 
incorporates a history mechanism and a C-like syntax. Like the sh command, it is an 
ordinary user program that reads commands typed at the keyboard and arranges for their 
execution. In addition, it can read commands from a file, usually called a shell procedure 
or a command file. 

When you run csh, it begins by executing commands from the file .cshrc in your home 
directory, if it exists. If, on the other hand, csh runs as a login shell, it executes 
commands from your .cshrc file and your .login file. 

Commands 
A simple command is a sequence of words separated by single blanks or tabs. 

Japanese Language Support Information 

Words can also be separated by double blanks. 

A word is a sequence of characters and/or numerals that does not contain blanks without 
quotation marks. In addition, the following characters and doubled characters also form 
single words when used as command separators or terminators: 

Commands 225 



csh 

226 

& 
&& II 

II 

< > 
« » 

These special characters may be parts of other words. Preceding them with a \ (backslash), 
however, prevents the shell from interpreting them as special characters. When the shell 
is not reading input from a work station, it treats any word that begins with a # (number 
sign) as a comment and ignores that word and all characters following up to the next 
new-line character. Strings enclosed in I I or" "(matched pairs of quotation characters) 
or' '(grave accents) can also form parts of words. (Blanks, tab characters, and special 
characters do not form separate words when they are found within these quotation marks.) 
In addition, within I I or" "(pairs of single or double quotation marks), you may 
include the new-line character by preceding it with \ (backslash). 

The first word in the simple-command sequence (numbered 0), usually specifies the name of 
a command. Any remaining words, with a few exceptions, are passed to that command. If 
the command specifies an executable file that is a compiled program, the shell immediately 
runs that program. If the file is marked executable but is not a compiled program, the 
shell assumes that it is a shell procedure. In this case it spawns another instance of itself 
(a subshell), to read the file and execute the commands included in it. 

A pipeline is a sequence of one or more commands separated by a I (vertical bar). The 
output of each command in a pipeline provides the input to the next command. 

A list is a sequence of one or more pipelines separated by a ; (semicolon), & (ampersand), 
&& (two ampersands), or II (two vertical bars) and optionally ended by a ; (semicolon) or 
an & (ampersand). These separators and terminators have the following effects: 

Causes sequential execution of the preceding pipeline (the shell waits for the 
pipeline to finish). 

& Causes asynchronous execution of the preceding pipeline (the shell does not wait 
for the pipeline to finish). 

&& Causes the list following it to be executed only if the preceding pipeline returns a 
zero exit value. 

II Causes the list following it to be executed only if the preceding pipeline returns a 
nonzero exit value. 

Note: The cd command is an exception. If it returns a nonzero exit value, no 
subsequent commands in a list are executed, regardless of the separators. 

The ; and & separators have equal precedence, as do && and I;. The single-character 
separators have lower precedence than the double-character separators. A new-line 
character without quotation marks following a pipeline functions the same as a ; 
(semicolon). Place any of the above in parentheses to form a simple command. 



csh 

The shell associates a job with each pipeline. It keeps a table of current jobs and assigns 
them small integer numbers. When you start a job asynchronously by terminating the 
command with a &, the shell displays a line that looks like the following: 

[lJ 1234 

This line indicates that the job number is 1 and that the job is composed of one process 
with a process-ID of 1234. Use the built-in jobs command (page 243) to see what jobs are 
currently running. 

A job running in the background competes for input if it tries to read from the work 
station. Background jobs can also produce output that competes for the work station and 
is interleaved there with the output of other jobs. 

There are several ways to refer to jobs in the shell. Use the % (percent) character to 
introduce a job name. This name can be either the job number or the command name that 
started the job, if this name is unique. So, for example, if a make process is running as 
job 1, you can refer to it as %1. You can also refer to it as %make, if there is only one 
suspended job with a name that begins with the string make. You can also use 

%?: string 
to specify a job whose name contains string, if there is only one such job. 

The shell detects immediately whenever a process changes state. Whenever a job becomes 
blocked so that further progress is not possible, a message is sent to the work station, but 
not until just before the shell prompt. If, however, the notify shell variable is set (see 
page 237), the shell issues a message that indicates changes in status of background jobs 
immediately. Use the notify built-in command (page 244) to mark a single process so that 
its status changes are immediately reported. By default, notify marks the current process. 

History Substitution 
History substitution lets you modify individual words from previous commands to create 
new commands, thus making it easy to repeat commands, repeat the arguments of a 
previous command in the current command, or fix spelling mistakes in the previous 
command with little typing. 

History substitutions begin with the! (exclamation) character and may appear anywhere 
on the command line, provided they do not nest (in other words, a history substitution 
cannot contain another history substitution). You can precede the ! with a \ to prevent its 
special meaning. In addition, if you place the! before a blank, tab, new-line character, 
(equal sign), or ( (left parenthesis), it is passed unchanged. History substitutions also 
occur when you begin an input line with a 1\ (circumflex). (This special abbreviation is 
discussed on page 230.) The shell echoes any input line containing history substitutions at 
the work station before it executes that line. 

Commands 227 



csh 

228 

The history list saves commands that the shell reads from the work station and that 
consist of one or more words. History substitution reintroduces sequences of words from 
these saved commands into the input stream. 

The history shell variable (page 237) controls the size of the history'list. You must set the 
history shell variable either in the .cshrc file or on the command line with the built-in 
set command (page 245). The previous command is always retained, however, regardless of 
the value of history. Commands in the history list are numbered sequentially starting 
from 1. The built-in history command (page 242) produces output of the type: 

9 write michael 
10 ed write.c 
11 cat oldwrite.c 
12 diff *write.c 

The command strings are shown with their event numbers. It is not usually necessary to 
use event numbers to refer to events, but you can have the current event number displayed 
as part of your system prompt by placing an ! in the prompt string assigned to the prompt 
environmental variable (page 238). 

A full history reference contains an event specification, a word designator, and one or 
more modifiers in the following general format: 

event[:]word:modifier[:modifier] ... 

Note: Only one word can be modified. A string that contains blanks is not allowed. 

In the previous sample of history command output, the current event number is 13. Using 
this example, the following refer to previous events: 

Event Specification 

110 

!-2 

!d 

!?mic? 

Refers to event number 10 

Refers to event number 11 (the current event minus 2) 

Refers to a command word beginning with d (in this case event number 12) 

Refers to a command word that contains the string mi c (in this case, event 
number 9). 

These forms, without further modification, simply reintroduce the words of the specified 
events, each separated by a single blank. As a special case, ! ! refers to the previous 
command; the command! ! alone on an input line reruns the previous command. 

To select words from an event, follow the event specification with a : (colon) and one of the 
following word designators (the words of an input line are numbered sequentially starting 
from 0): 



csh 

Word Designator 

o 
n 
/\ 

$ 

% 
x-y 

-y 

* 

x* 

x-

The first word (the command name) 

The nth argument 

The first argument 

The last argument 

The word matched by an immediately preceding ?string? search 

A range of words from the xth word to the yth word 

A range of words from the first word (0) to the yth word 

The first through the last argument, or nothing if there is only one word (the 
command name) in the event 

The xth through the last argument 

Like x* but omitting the last word. 

You may omit the colon that separates the event specification from the word designator if 
the word designator begins with a /\, $, *, -, or %. You can also place a sequence of the 
following modifiers after the optional word designator, each preceded by a colon: 

Modifier 

h 

r 

e 

s/l/r/ 

Remove a trailing path name extension, leaving the head. 

Remove a trailing" .xxx" component, leaving the root name. 

Remove all but the trailing extension ".xxx." 

Substitute I for r. With substitutions, it is an error for no word to be 
applicable. 

The I (left) side of a substitution is not a pattern in the sense of a string 
recognized by an editor; rather, it is a word, a single unit without blanks. 
Normally, a / (slash) delimits the word (1) and its replacement (r). However, 
you can use any character as the delimiter if you precede that character with 
a \ (backslash). Thus, in the following example: 

s\%/ us r /myfi 1 e\%/ us r / yourfi 1 e\% 

the % becomes the delimiter allowing you to include the / in your word. If you 
include an & in the replacement, it is replaced by the text from the left-hand 
side (1). A null 1 side is replaced by either the last substitution or by the last 
string used in the contextual scan !? string? You may omit the trailing 
delimiter (/) if a new-line character follows immediately. 

Commands 229 



csh 

230 

t 

& 

g 

p 

q 

Remove all leading path name components, leaving the tail. 

Repeat the previous substitution. 

Apply the change globally, that is, g&. 

Display the new command, but do not run it. 

Quote the substituted words, thus preventing further substitutions. 

x Act like q, but break into words at blanks, tabs, and new-line characters. 

Unless the modifier is preceded by a g, the change applies only to the first modifiable word. 

If you give a history reference without an event specification, for example, ! $, the shell 
uses the previous command as the event, unless a previous history reference occurs on the 
same line, in which case it repeats the previous reference. Thus, the following sequence: 

!?foo?/\ !$ 

gives the first and last arguments of the command that matches ?foo? 

A special abbreviation of a history reference occurs when the first non-blank character of 
an input line is a /\ (circumflex). This is equivalent to ! : SA, thus providing a convenient 
shorthand for substitutions on the text of the previous line. The command Alb Ali b 
corrects the spelling of lib in the previous command. 

You can enclose a history substitution in {} (braces), if necessary, to insulate it from the 
characters that follow. For example, if you want to use a reference to the command: 

15 -ld -paul 
to perform the command: 

15 -ld -paula 
use the following: 

!{l}a 

whereas! 1 a would look for a command starting with 1 a. 

Quoting with Single and Double Quotes 
Enclose strings in single and double quotation marks to prevent all or some of the 
substitutions that remain. Enclosing strings in I I (single quotation marks) prevents any 
further interpretation. Enclosing strings in" "(double quotation marks) allows further 
expansion. In both cases, the text that results becomes (all or part of) a single word. Only 
in one special case does a string quoted by " "yield parts of more than one word; strings 
quoted by I I never do (see "Command Substitution" on page 231). 



csh 

Command and File-Name Substitution 
The shell performs command and file-name substitutions selectively on the arguments of 
built-in commands. This means that it does not expand those parts of expressions that are 
not evaluated. For commands that are not built-in, the shell substitutes the command 
name separately from the argument list. This occurs very late, after it performs 
input/output redirection and in a child of the main shell. 

Command Substitution 

The shell performs command substitution on a command string enclosed in ' , (grave 
accents). The shell normally breaks the output from such a command into separate words 
at blanks, tabs, and new-line characters; this text then replaces the original command 
string. Within strings surrounded by II II (double quotation marks), the shell treats only 
the new-line character as a word separator, thus preserving blanks and tabs within the 
word. 

In any case, the single final new-line character does not force a new word. Note that it is 
therefore possible for command substitution to yield only part of a word, even if the 
command outputs a complete line. 

File-name Substitution 

If a word contains any of the characters *, ?, [, or {, or begins with the ~ character, that 
word is a candidate for file-name substitution, also known as globbing. The word is then 
regarded as a pattern and replaced with an alphabetically sorted list of file names which 
match the pattern. 

The current collating sequence is used, which may be specified by the environment 
variables NLCTAB or NLFILE. In a list of words specifying file-name substitution, it is 
an error for no patterns to match an existing file name, but it is not required that each 
pattern match. Only the character-matching symbols *, ?, and [ imply pattern matching; 
the characters ~ and { being more related to abbreviations. 

In matching file names, the character. (dot) at the beginning of a file name or 
immediately following a I, and the character I, must be matched explicitly. The * 
character matches any string of characters, including the null string. The? character 
matches any single character. The sequence [abed] matches anyone of the enclosed 
characters. Within [J, a lexical range of characters may be indicated by [a-z]. The 
characters that match this pattern are defined by the current collating sequence (see 
"ctab" on page 257). 

Commands 231 



csh 

232 

Japanese Language Support Information 

Note: For information about matching file names, see "File-name Substitution in 
Japanese Language Support" on page 233. 

The ~ (tilde) character at the beginning of a file name is used to see home directories. 
Standing alone, ~ expands to your home directory as reflected in the value of the home 
shell variable. When followed by a name that consists of letters, digits, and - (dash) 
characters, the shell searches for a user with that name and substitutes their home 
directory. Thus, ~ken might expand to /usr/ken and ~ken/chmach to 
/usr/ken/chmach. If the ~ character is followed by a character other than a letter or /, 
or appears anywhere except at the beginning of a word, it is left undisturbed. 

The pattern a{b, c, d}e is a shorthand for abe ace ade. The shell preserves the 
left-to-right order, with results of matches being stored separately at a low level to preserve 
this order. This construct may be nested. Thus: 

~source/sl/{oldls,ls}.c 

expands to: 

/usr/source/sl/oldls.c /usr/source/sl/ls.c 

if the home directory for source is /usr/source. Similarly: 

.. /{memo,*box} 
might expand to: 

.. /memo .. /box .. /mbox 

(Note that memo is not sorted with the results of matching *box.) As a special case, {, }, 
and {} are passed undisturbed. 



csh 

File-name Substitution in Japanese Language Support 

You can also use the following notation to match file names within a range indication: 

[: charclass: ] 
This format instructs the system to match any single character belonging to class; the 
defined classes correspond to ctype subroutines. Following are the names of these classes: 

alnum 
alpha 
digit 
lower 
print 
punct 
space 
upper 
xdigit 

jalpha 
jdigit 
jhira 
jkanji 
jkata 
jparen 
jpunct 
jspace 
jxdigit 

For example, the expression that matches any single kanji character would be the 
following: 

[[:jkanji :JJ 
For additional information about character class expressions, see the discussion of this 
topic in "ed" on page 371. 

Alias Substitution 
The shell maintains a list of aliases that the alias and unalias built-in commands (page 
240) can establish, display, and modify. After the shell scans the command line, it divides 
it into distinct commands and checks the first word of each command, left to right, to see if 
it has an alias. If it does, the shell uses the history mechanism available (see "History 
Substitution" on page 227), to replace the text of the alias with the text of the command it 
stands for. The words that result replace the command and argument list. If reference is 
not made to the history list, the argument list is left unchanged. Thus, if the alias for the 
Is command is 1 s - 1 , the shell replaces the command 1 s / u s r with 1 s - 1 / u sr. The 
argument list is undisturbed because there is no reference to the history list in the 
command with an alias. Similarly, if the alias for lookup is: 

grep \!A /etc/passwd 

then the shell replaces 100 kup bill with: 

grep bill /etc/passwd 

Commands 233 



csh 

234 

Here, ! A refers to the history list and the shell replaces it with the first argument in the 
input line, in this case bi 11. Note that you can use special pattern-matching characters 
in an alias. Thus the command: 

alias lprint 'pr \1* » print' 

makes a command which formats its arguments to the line printer. The! is protected from 
the shell in the alias so that it is not expanded until pr runs. 

If an alias is found, the word transformation of the input text is performed and the alias 
process begins again on the reformed input line. If the first word of the next text is the 
same as the old, looping is prevented by flagging it to terminate the alias process. Other 
loops are detected and cause an error. 

Variable Substitution 
The shell maintains a set of variables, each of which has as its value a list of zero or more 
words. Some of these variables are set by the shell or referred to by it. For instance, the 
argv variable is an image of the shell variable list, and words which comprise the value of 
this variable are referred to in special ways. 

You can change and display the values of variables with the set and unset commands. Of 
the variables referred to by the shell, a number are toggles (variables that turn something 
on and off); the shell does not care what their value is, only whether they are set or unset. 
For instance, the verbose variable is a toggle which causes command input to be echoed. 
The setting of this variable results from the -v flag on the command line. 

Other operations treat variables numerically. The @ command performs numeric 
calculations and the result is assigned to a variable. Variable values are, however, always 
represented as (zero or more) strings. For numeric operations, the null string is considered 
to be zero, and the second and subsequent words of multiword values are ignored. 

After an input line is parsed and alias substitution is performed, and before each command 
is run, variable substitution is performed, keyed by $ characters. You can prevent this 
expansion by preceding the $ with a \, except within II II (double quotation marks, where it 
always occurs, and within' '(single quotation marks), where it never occurs. Strings 
quoted by , 'are interpreted later (see "Command Substitution" on page 231), so $ 
substitution does not occur there until later, if at all. A $ is passed unchanged if it is 
followed by a blank, tab, or new-line character. 

Input/output redirections are recognized before variable expansion and are expanded 
separately. Otherwise, the command name and complete argument list expands together. 
It is therefore possible for the first (command) word to this point to generate more than 
one word, the first of which becomes the command name and the rest of which become 
parameters. 



csh 

Unless enclosed in" "or given the :q modifier, the results of variable substitution may 
themselves eventually be command and file name substituted. Within pairs of double 
quotation marks, a variable with a value that consists of multiple words expands to a 
(portion of a) single word, with the words of the variable's value separated by blanks. 
When you apply the :q modifier to a substitution, the variable expands to multiple words. 
Each word is separated by a blank and quoted to prevent later command or file name 
substitution. 

The following notation allows you to introduce variable values into the shell input. 
Except as noted, it is an error to reference a variable that is not set. 

$name 
${name} Replaced by the words assigned to name, each separated by a blank. 

$name[selector] 
${name[selector]} 

$#name 
${#name} 

$0 

$number 
${number} 

$* 

Braces insulate name from any following characters that would 
otherwise be part of it. Shell variable names start with a letter and 
consist of up to 20 letters and digits, including the - (underline) 
character. If name is not a shell variable but is set in the 
environment, then that value is returned. The: modifiers and the 
other forms given below are not available in this case. 

Used to select only some of the words from the value of name. The 
selector is subjected to $ substitution and may consist of a single 
number, or two numbers separated by a -. The first word of a 
variable's string value is numbered 1. If the first number of a range 
is omitted, it defaults to 1. If the last member of a range is omitted, it 
defaults to $#name. The * symbol selects all words. It is not an 
error for a range to be empty if the second argument is omitted or is 
in range. 

Gives the number of words in the variable. This is useful for later 
use in a [selector]' 

Substitutes the name of the file from which command input is being 
read. An error occurs if the name is not known. 

Equivalent to $argv [number] 

Equivalent to $argv [*]. 

You can apply the modifiers :gh, :gt, :gr, :h, :r, :q, and :x to the substitutions above. If {} 
(braces) appear in the command form, then the modifiers must appear within the braces. 
The current implementation allows only one : modifier on each $ expansion. 

Commands 235 



csh 

236 

The following substitutions may not be changed with: modifiers. 

$?name 
${?name} 

$?O 

$$ 
$< 

Substitutes the string 1 if name is set; 0 if it is not set. 

Substitutes 1 if the current input file name is known; 0 if it is not 
known. 

Substitutes the (decimal) process number of the (parent) shell. 

Substitutes a line from the standard input, without further 
interpretation. Use it to read from the keyboard in a shell procedure. 

Predefined and Environmental Variables 
The following variables have special meaning to the shell. Of these, argv, cwd, home, 
path, prompt, shell, and status are always set by the shell. Except for cwd and status, 
this setting occurs only at initialization. These variables maintain their settings unless 
you explicitly reset them. 

The csh command copies the environment variables USER, TERM, HOME, and PATH 
into the csh variables user, term, home, and path, respectively. The values are copied 
back into the environment whenever the normal shell variables reset. It is not necessary 
to worry about the setting of the path variable other than in the .cshrc file, since csh 
subprocesses import the definition of path from the environment and re-export it if it is 
changed. 

argv 

cdpath 

cwd 

echo 

histchars 

Set to the arguments to the shell; it is from this variable that positional 
parameters are substituted. 

Can be given a list of alternate directories to be searched by the chdir 
commands to find subdirectories. 

The full path name of the current directory. 

Set when the -x command line flag is used; when set, causes each 
command and its arguments to echo just before it is run. For non-built-in 
commands, all expansions occur before echoing. Built-in commands are 
echoed before command and file name substitution, since these 
substitutions are then done selectively. 

Can be given a string value to change the characters used in history 
substitution. Use the first character of its value as the history 
substitution character, this replaces the default character !. The second 
character of its value replaces the A (circumflex) character in quick 
substitutions. 



history 

home 

ignoreeof 

mail 

no clobber 

noglob 

nonomatch 

notify 

csh 

Can be given a numeric value to control the size of the history list. Any 
command that is referenced in this many events is not discarded. Very 
large values of history may run the shell out of memory. Saves the last 
command that ran on the history list, regardless of whether history is 
set. 

Your home directory, initialized from the environment. The file name 
expansion of ~ refers to this variable. 

If set, the shell ignores an end-of-file character from input devices that 
are work stations. This prevents shells from accidentally being killed 
when it reads an end-of-file character (Ctrl-D). 

The files where the shell checks for mail. This is done after each 
command completion, which results in a prompt if a specified interval has 
elapsed. The shell displays the message, "You have new rna; 1" if the 
file exists with an access time not greater than its change time. 

If the first word of the value of mail is numeric, it specifies a different 
mail checking interval (in seconds); the default is 10 minutes. If you 
specify multiple mail files, the shell displays the message, II New rna; 1 i n 
file II , when there is mail in file. 

If set, places restrictions on output redirection to insure that files are not 
accidentally destroyed, and that> > redirections see existing files. (See 
"Redirecting Input and Output" on page 238). 

If set, inhibits file-name expansion. This is most useful in shell 
procedures that are not dealing with file names, or after a list of file 
names has been obtained and further expansions are not desirable. 

If set, it is not an error for a file-name expansion to not match any 
existing files; rather, the primitive pattern returns. It is still an error for 
the primitive pattern to be malformed. 

If set, the shell notifies asynchronously of changes in job status. The 
default presents status changes just before displaying the shell prompt. 

Commands 237 



csh 

238 

path 

prompt 

savehist 

shell 

status 

time 

verbose 

Each word of the path variable specifies a directory in which commands 
are to be sought for execution. A null word specifies the current 
directory. If there is no path variable set, then only full path names run. 
The usual search path is the current directory, Ibin, and lusr/bin. For, 
the superuser, the default search path is lete, Ibin, and lusr/bin. A shell 
which is given neither the -e nor the -t flags normally hashes the 
contents of the directories in the path variable after reading .eshre and 
each time the path variable is reset. If new commands are added to these 
directories while the shell is active, it may be necessary to give the 
rehash command (page 245), or the commands may not be found. 

The string which is displayed before each command is read from an 
interactive work station input. If a ! appears in the string, it is replaced 
by the current event number. If the ! is in a quoted string, it must be 
preceded by a \ (backs lash). The default prompt is %, # for the superuser. 

Given a numeric value to control the number of entries of the history list 
that are saved in ~ I.history when you log off. Any command which is 
referenced in this many events is saved. During startup, the shell reads 
~ I.history into the history list, enabling history to be saved across 
logins. Very large values of savehist slow down the shell startup. 

The file in which the shell resides. This is used in forking shells to 
interpret files which have execute bits set, but which are not executable 
by the system (see "Nonbuilt-in Command Execution" on page 249). This 
is initialized to the (system-dependent) home of the shell. 

The status returned by the last command. If it ended abnormally, then 
0200 is added to the status. Built-in commands that fail return exit status 
1; all other built-in commands set status O. 

Controls automatic timing of commands. If set, any command that takes 
more than the specified number of CPU seconds causes a line giving user, 
system, and real times and a utilization percentage, that is the ratio of 
user-plus-system-times to real time, displays when it ends. 

Set by the -v command line flag; causes the words of each command to 
display after history substitution. 

Redirecting Input and Output 
You can redirect the standard input and standard output of a command with the following 
syntax: 

< name Opens file name (which is first variable, command, and file name expanded) 
as the standard input. 



« word 

> name 
>! name 
>& name 
>&! name 

» name 
»& name 
»! name 

csh 

Reads the shell input up to a line which is the same as word. word is not 
subjected to variable, file name, or command substitution, and each input 
line is compared to word before any substitutions are done on this input line. 
Unless a quoting character (\, ", I, or ') appears in word, the shell performs 
variable and command substitution on the intervening lines, allowing \ to 
quote $, \, and '. Commands which are substituted have all blanks, tabs, and 
new-line characters preserved, except for the final new-line character, which 
is dropped. The resultant text is placed in an anonymous temporary file, 
which is given to the command as standard input. 

Uses the file name as standard output. If the file does not exist, it is made. 
If the file exists, it is truncated, its previous contents being lost. If the 
no clobber shell variable is set, the file must not exist or be a character 
special file, or an error results. This helps prevent accidental destruction of 
files. In this case, use the ! forms to suppress this check. The forms 
involving & route the diagnostic output into the specified file as well as the 
standard output. name expands in the same way as < input file names. 

»&! name Uses file name as standard output like >, but places output at the end of the 
file. If the noclobber shell variable is set, it is an error for the file not to 
exist, unless one of the ! forms is given. Otherwise, it is similar to >. 

A command receives the environment in which the shell was invoked, as changed by the 
input/output parameters and the presence of the command as a pipeline. Thus, unlike 
some previous shells, commands that run from a file of shell commands do not have any 
access to the text of the commands by default. Rather, they receive the original standard 
input of the shell. Use the «mechanism to present in-line data. This lets shell command 
files function as components of pipelines and lets the shell block read its input. Note that 
the default standard input for a command run detached is not changed to be the empty file 
/dev/null. Rather, the standard input remains as the original standard input of the shell. 

To redirect the diagnostics output through a pipe with the standard output, use the form 1& 
(vertical bar ampersand) rather than just 1 (vertical bar). 

Commands 239 



csh 

240 

Control Flow 
The shell contains some commands that can be used to regulate the flow of control in 
command files (shell procedures) and (in limited but useful ways) from work station input. 
These commands all operate by forcing the shell to reread or skip in its input and, because 
of the implementation, restrict the placement of some of the commands. 

The foreaeh, switch, and while statements, and the if-then-else form of the if statement, 
require that the major keywords appear in a single simple command on an input line. 

If the shell input is not searchable, the shell buffers input whenever a loop is being read 
and searches the internal buffer to do the rereading implied by the loop. To the extent 
that this allows, backward gotos succeed on inputs that you cannot search. 

Built-in Commands 
Built-in commands are run within the shell. If a built-in command occurs as any 
component of a pipeline except the last, it runs in a subshell. 

Notes: 

1. If you enter a command from esh at the prompt, the system searches for a esh built-in 
command first. If a built-in command does not exist, then the system searches for an 
AIX command. Some esh built-in commands and AIX commands have the same name. 
However, these commands do not necessarily work the same way. Check the 
appropriate command description for information on how the command works. 

2. If you run a shell procedure from esh and the first characters of the shell procedure 
are #!/shelLpathname, esh runs the shell specified in the comment to process the 
procedure. Otherwise, esh runs the standard shell (sh). If run by sh, esh built-in 
commands are not recognized. To get the system to run esh commands, the first line of 
the procedure should be: #! fbi nf csh. 

alias 
alias name 
alias name wordlist 

break 

breaksw 

case label: 

Displays all aliases (first form). The second form displays the 
alias for name. The final form assigns the specified wordlist as 
the alias of name. wordlist is command and file name substituted. 
name is not allowed to be alias or unalias. 

Resumes running after the end of the nearest enclosing foreaeh 
or while. Runs the remaining commands on the current line. 
Multilevel breaks are therefore possible by writing them all on 
one line. 

Breaks from a switch; resumes after the endsw. 

Defines a label in a switch statement, as discussed in the 
following. 



cd 
cd name 
chdir 
chdir name 

continue 

default: 

dirs 

dirstyle + 
dirstyle -

echo string 
echo -n string 

else 
end 
endif 
endsw 

eval arg 

exec cmd 

exit 

csh 

Changes the current directory to name. If no argument is given, 
then changes to your home directory. 

If name is not found as a subdirectory of the current directory and 
does not begin with /, . /, or .. /, then each component of the 
cdpath shell variable is checked to see if it has a subdirectory 
name. Finally, if all else fails, but name is a shell variable with a 
value that begins with /, then this is tried to see if it is a 
directory. 

Continues execution of the nearest enclosing while or foreach. 
The rest of the commands on the current line run. 

Labels the default case in a switch statement. The default should 
come after all case labels. 

Displays the directory stack, the top of the stack is at the left, the 
first directory in the stack being the current directory. 

Interprets directories in specified format so you can read their 
contents in System V format. The + flag converts path names 
from remote file systems to System V format. The - flag leaves 
the directory contents in raw form instead of converting the path 
names of remote file systems to the System V format. 

Writes the listed strings to the shell's standard output, separated 
by spaces and ending with a new-line character unless you specify 
the -n flag. 

See the description of the foreach, if, switch, and while 
statements. 

Reads arg as input to the shell and runs the resulting command(s) 
in the context of the current shell. Use this to run commands 
generated as the result of command or variable substitution, since 
parsing occurs before these substitutions. 

Runs the specified command in place of the current shell. 

Commands 241 



csh 

242 

exit (expr) 

foreach name (list) 

end 

glob list 

goto word 

history 
history num 
history -r num 
history -h num 

if (expr) cmd 

if (expr) then 

Exits the shell with either the value of the status shell variable 
(first form) or with the value of the specified expression (second 
form). 

Successively sets name to each member of list and runs the 
sequence of commands between the foreach and the matching 
end. Both foreach and end must appear alone on separate lines. 

Use the continue statement to continue the loop and the break 
statement to end the loop prematurely. When this command is 
read from the work station, the loop is read once, prompts with? 
before any statement in the loop runs. If a mistake is made in 
entering a loop, it can be corrected before you run the loop. 
Commands within loops, prompted for by ?, are not placed in the 
history list. 

Functions like echo, but does not recognize backs lash (\) escapes, 
and delimits words by null characters in the output. Useful if you 
want to use the shell to perform file-name substitution to expand 
a list of words. 

Continues to run after the line specified by word. The specified 
word is file-name and command expanded to yield a string of the 
form label. The shell rewinds its input as much as possible and 
searches for a line of the form label:, possibly preceded by blanks 
or tabs. 

Displays the history event list. If you specify a number, only the 
n most recent events are displayed. The -r flag reverses the order 
of display to the most recent first rather than the oldest first. The 
-h flag causes the history list to be displayed without leading 
numbers. Use this to produce files suitable for used with the -h 
flag of the source command. 

Runs the single command (with arguments) if the specified 
expression evaluates true. Variable substitution on cmd happens 
early, at the same time it does for the rest of the if statement. 
cmd must be a simple command, not a pipeline, command list, or 
parenthesized command list. 

Note: Input and output redirection occurs even if expr is false 
(and the command is not executed). 



else if (expr2) then 

else 

endif 

jobs 
jobs -1 

kill %job 
kill -signal %job 
kill pid 
kill -signal pid 
kill -1 

limit 
limit resource 
limit resource max-use 

login 

logout 

csh 

If expr is true, runs the commands that follow the first then; else 
if expr2 is true, runs the commands that follow the second then; 
else runs the commands that follow the second else. Any number 
of else-if pairs are possible; only one endif is needed. The else 
part is optional. The words else and endif must appear at the 
beginning of input lines. The if must appear alone on its input 
line or after an else. 

Lists the active jobs. With the -1 flag, lists process-IDs in addition 
to the job number and process-ID. 

Sends to the jobs or process that you specify either the TERM 
(terminate) signal or signal. Specify signals either by number or 
by names (as given in /usr/include/signal.h, stripped of the SIG 
prefix). Signal names are listed by kill -1. 

Limits the usage by the current process and each process it 
creates to not individually exceed max-use on the specified 
resource. If a max-use is not given, the current limit displays; if a 
resource is not given, all limitations are given. Controllable 
resources are limited to filesize, stacksize, and datasize. You 
can specify max-use as a (floating-point or integer) number 
followed by a scale factor: k or kilobytes (1024 bytes), m or 
megabytes, or b or blocks (the units used by the ulimit system 
call). For both resource names and scale factors, unambiguous 
prefixes of the names suffice. The filesize may be lowered by an 
instance of csh, but may only be raised by an instance whose 
effective user-ID is root. (See the ulimit system call in A/X 
Operating System Technical Reference.) 

Ends a login shell, and replaces it with an instance of /bin/login. 
This is one way to log off (included for compatibility with the sh 
command). 

Ends a login shell. Especially useful if ignoreeof is set. 

Commands 243 



csh 

244 

newgrp 

nice 
nice +num 
nice cmd 
nice + num cmd 

nohup 
nohup cmd 

notify 
notify %job 

onintr 
onintr -
onintr label 

popd 
popd +n 

Executes the newgrp command in the current shell process. See 
"newgrp" on page 689 for a discussion of command options. 

Sets the priority of commands run in this shell to 24 (first form). 
The second form sets the priority to the specified number. The 
final two forms run the specified command at priority 24 and the 
specified number, respectively. If you have superuser authority, 
you can specify nice with a negative number. The command 
always runs in a subshell, and the restrictions placed on 
commands in simple if statements apply. 

Causes hangups to be ignored for the remainder of the procedure 
(first form). The second form causes the specified command to be 
run with hangups ignored. To run a pipeline or list of commands 
with this form, put the pipeline or list in a shell procedure, give 
the procedure execute permission, and use the shell procedure as 
the cmd. All processes run in the background with & are 
effectively protected from being sent a hangup signal when you 
log off, but will still be subject to explicitly sent hangups unless 
nohup is used. 

Causes the shell to notify you asynchronously when the status of 
the current or specified jobs changes. Normally, notification is 
presented just before the shell prompt. This is automatic if the 
notify shell variable is set. 

Controls the action of the shell on interrupts. The first form 
restores the default action of the shell on interrupts, which is to 
end shell procedures or to return to the work station command 
input level. The second form causes all interrupts to be ignored. 
The third form causes the shell to run a goto label when it 
receives an interrupt or a child process ends due to an 
interruption. In any case, if the shell is running detached and 
interrupts are being ignored, all forms of onintr have no 
meaning, and interrupts continue to be ignored by the shell and 
all invoked commands. 

Pops the directory stack, returns to the new top directory. With a 
+ n, discards the nth entry in the stack. The elements of the 
directory stack are numbered from the top starting at O. 



pushd 
pushd name 
pushd +n 

rehash 

repeat count cmd 

set 
set name 
set name = word 
set name[index] = word 
set name = (list) 

setenv name value 

shift 

csh 

With no arguments, exchanges the top two elements of the 
directory stack. With name, changes to the new directory and 
pushes the old current directory (as given in the cwd shell 
variable) onto the directory stack. With a numeric argument, 
rotates the nth argument of the directory stack around to be the 
top element and changes to it. The members of the directory 
stack are numbered from the top starting at o. 
Causes the internal hash table of the contents of the directories in 
the path shell variable to be recomputed. This is needed if new 
commands are added to directories in path while you are logged 
in. This should only be necessary if commands are added to one 
of the user's own directories, or if someone changes the contents 
of one of the system directories. 

Runs the specified command, which is subject to the same 
restrictions as the if statement, count times. 

Note: I/O redirections occur exactly once, even if count is o. 

Shows the value of all shell variables (first form). Variables that 
have more than a single word as their value are displayed as a 
parenthesized word list. The second form sets name to the null 
string. The third form sets the indexth component of name to 
word; this component must already exist. The final form sets 
name to the list of words in list. In all cases, the value is 
command and file-name expanded. These arguments may be 
repeated to set multiple values in a single set command. 
However, variable expansion happens for all arguments before 
any setting occurs. 

Sets the value of environment variable name to be value, a single 
string. The most commonly used environment variables, USER, 
TERM, and PATH, are automatically imported to and exported 
from the esh variables user, term, and path; there is no need to 
use setenv for these. 

If you modify the environment variables NLFILE or NLCT AB, 
the current international character support environment and 
collating sequence are changed as specified for subsequent 
commands executed from the shell. 

Commands 245 



csh 

246 

shift variable· 

source name 
source -h name 

switch (string) 
case strl: 

breaksw 
default: 

breaksw 
endsw 

time 
time cmd 

umask 
umask value 

unalias pattern 

Shifts the members of argv to the left. It is an error for argv not 
to be set or to have less than one word as its value. The second 
form does the same function on the specified variable. 

Reads commands from name. You can nest the source commands. 
However, if they are nested too deeply, the shell may run out of 
file descriptors. An error in a source command at any level ends 
all nested source commands. Normally, input during source 
commands is not placed on the history list. The -h flag causes the 
commands to be placed in the history list without running. 

Successively matches each case label against string. The string is 
command and file-name expanded first. Use the pattern-matching 
characters *, ?, and [ ... ] in the case labels, which are 
variable expanded. If none of the labels match before a default 
label is found, then the execution begins after the default label. 
Each case label. and the default label must appear at the 
beginning of a line. The breaksw command causes execution to 
continue after the endsw. Otherwise, control may fall through 
case labels and the default labels, as in C. If no label matches 
and there is no default, execution continues after the endsw. 

With no argument, displays a summary of time used by this shell 
and its children. If arguments are given, the specified command is 
timed, and a time summary as described under the time shell 
variable is displayed. If necessary, an extra shell is created to 
display the time statistic when the command completes. 

Displays the file creation mask (first form) or sets it to the 
specified value (second form). The mask is given as an octal 
value. Common values for the mask are 002, giving all access to 
owner and group and read and execute access to others, or 022, 
giving all access to the owner and all access except write access 
for users in the group or others. 

Discards all aliases with names that match pattern. Thus, all 
aliases are removed by unalias *. The absence of aliases does not 
cause an error. 



unhash 

unlimit 
unlimit resource 

unset pattern 

unsetenv pattern 

wait 

while (expr) 

Disables the use of the internal hash table to locate running 
programs. 

csh 

Removes the limitation on resource. If you do not specify resource, 
then all resource limitations are removed. The only removable 
limitation is that on fllesize, and only the superuser can remove 
it. 

Removes all variables with names that match the pattern. Use 
unset * to remove all variables. It is not an error for nothing to 
be unset. 

Removes all variables from the environment whose names match 
the specified pattern. (See the setenv built-in command on page 
245.) 

Waits for all background jobs. If the shell is interactive, an 
INTERRUPT (Alt-Pause) can disrupt the wait, when the shell 
displays the names and job numbers of all jobs known to be 
outstanding. 

end Evaluates the commands between the while and the matching 
end while expr evaluates nonzero. You can use break to end and 
continue to continue the loop prematurely. The while and end 
must appear alone on their input lines. If the input is a work 
station, prompts occur the first time through the loop, as for the 
foreach statement. 

@ 
@ name = expr 
@ name[index] = expr Displays the values of all the shell variables (first form). The 

second form sets the specified name to the value of expr. If the 
expression contains <, >, &, or I, then at least this part of the 
expression must be placed within parentheses. The third form 
assigns the value of expr to the indexth argument of name. Both 
name and its indexth component must already exist. 

C operators, such as *= and += are available. The space 
separating name from the assignment operator is optional. Spaces 
are, however, required in separating components of expr, which 
would otherwise be single words. Special postfix + + and -
operators increase and decrease name. 

Commands 247 



csh 

248 

Expressions 
The @ built-in command and the exit, if, and while statements accept expressions which 
include operators similar to those of C, with the same precedence. The following operators 
are available: 

* I % 
+ 
« » 
<= >= > 
-- != =- !-

In the preceding list, operators of equal precedence appear on the same line, below those 
lines containing operators (if any) that have greater precedence and above those lines 
containing operators having lesser precedence. The ==, ! =, =-, and! - operators compare 
their arguments as strings; all others operate on numbers. The = - and ! - operators are 
similar to ! = and ==, except that the right-most side is a pattern against which the 
left-hand operand is matched. This reduces the need for use of the switch statement in 
shell procedures when all that is really needed is pattern matching. 

Strings which begin with 0 are considered octal numbers. Null or missing arguments are 
considered o. The result of all expressions are strings, which represent decimal numbers. 
It is important to note that now two components of an expression can appear in the same 
word; except when next to components of expressions which are syntactically significant to 
the parser (& I < > ( ), expression components should be surrounded by spaces. 

Also available in expressions as primitive operands are command executions enclosed in { 
and} and file inquiries of the form -l name where 1 is one of: 

r Read access 
w Write access 
x Execute access 
e Existence 
o Ownership 
z Zero size 
f Plain file 
d Directory 

The specified name is command and file-name, expanded and then tested to see if it has the 
specified relationship to the real user. If the f.ile does not exist or is inaccessible, then all 
inquiries return false, that is, o. (Command runs succeed, returning true (1), if the 
command exits with status 0; otherwise they fail, returning false (0).) If more detailed 
status information is required, run the command outside an expression and the examine 
status shell variable. 



csh 

Nonbuilt-in Command Execution 
When a command to run is found not to be a built-in command, the shell attempts to run 
the command with execve. (See the exec system call in AIX Operating System Technical 
Reference.) Each word in the path shell variable names a directory from which the shell 
attempts to run the command. If it is given neither a -c nor a -t flag, the shell will hash 
the names in these directories into an internal table so it only tries an exec in a directory 
if there is a possibility that the command resides there. If this mechanism has been turned 
off with unhash, or if the shell is given a -c or -t (and in any case for each directory 
component of path that does not begin with a I), the shell concatenates with the given 
command name to form a path name of a file, which it then attempts to run. 

Parenthesized commands always run in a subshell. Thus, (cd ; pwd) ; pwd displays 
the home directory without changing the current directory location, whereas cd ; pwd 
changes the current directory location to the home directory. Parenthesized commands 
are most often used to prevent chdir from affecting the current shell. 

If the file has execute permissions, but is not an executable binary to the system, then it is 
assumed to be a file containing shell commands and a new shell runs to read it. 

If there is an alias for shell, then the words of the alias will be prefixed to the argument 
list to form the shell command. The first word of the alias should be the full path name of 
the shell. Note that this is a special, late-occurring case of alias substitution and only 
allows words to be prefixed to the argument list without modification. 

Signal Handling 

The shell normally ignores QUIT signals. Jobs running detached are immune to signals 
generated from the keyboard (INTERRUPT, QUIT, and HANGUP). Other signals have the 
values the shell inherited from its parent. You can control the shell's handling of 
INTERRUPT and TERMINATE signals in shell procedures with onintr. Login shells catch 
the TERMINATE signal; otherwise, this signal is passed on to children from the state in 
the shell's parent. In no case are INTERRUPTs allowed when a login shell is reading the 
.logout file. 

Limitations 
The following are csh limitations: 

• Words can be no longer than 1024 characters. 

• Argument lists are limited to 5120 characters. 

• The number of arguments to a command that involves file-name expansion is limited to 
1/6th the number of characters allowed in an argument list. 

Commands 249 



csh 

Flags 

250 

• Command substitutions can substitute no more characters than are allowed in an 
argument list. 

• To detect looping, the shell restricts the number of alias substitutions on a single line 
to 20. 

If the first argument to the shell is - (minus), this is a login shell. The flags are interpreted 
as follows: 

-c Reads commands from the (single) following argument, which must be present. 
Any remaining arguments are placed in argv. 

-e Exits if any invoked command ends abnormally or yields a nonzero exit status. 

-f Starts without searching for or running commands from the .cshrc file in the your 
home directory. 

-i Prompts for its top-level input (an interactive shell), even if input does not appear 
to be coming from a work station. Shells are interactive without this flag if their 
input and output are attached to work stations. 

-n Parses commands but does not run them. This aids in syntactic checking of shell 
procedures. 

-s Takes command input from the standard input. 

-t Reads and processes a single line of input. You can use a \ to escape the new-line 
character at the end of the current line to continue onto another line. 

-v Sets the verbose shell variable, with the effect that command input is echoed after 
history substitution. 

-V Sets the verbose shell variable even before .cshrc runs. 

-x Sets the echo shell variable, so that commands are echoed immediately before they 
run. 

-x Sets the echo shell variable even before .cshrc runs. 

After processing of flag arguments, if arguments remain but none of the -c, -i, -s, or -t 
flags were given, the first parameter is taken as the name of a file of commands (shell 
procedure). The system opens this file and saves its name for possible resubstitution by $0. 
If the first characters of the shell procedure are #!/shell-pathname, csh runs the specified 
shell to process the procedure. Otherwise, csh runs the standard shell (sh). Remaining 
parameters initialize the argv variable. For more information on the #!/shelLpathname 
comment, see the exec system call in A/X Operating System Technical Reference. 



Files 

$HOME/.cshrc 
$HOME/.login 
$HOME/ .logout 
/bin/sh 
/tmp/sh* 
/etc/passwd 

Read at beginning of execution by each shell. 
Read by login shell, after .cshrc at login. 
Read by login shell, at logoff. 
Standard shell. 
Temporary file for < <. 
Source of home directories for - name. 

csh 

Related Information 

The following commands: "cd" on page 150, "make" on page 625, "pr" on page 761, and 
"sh" on page 913. 

The access, exec, fork, pipe, umask, and wait system calls, the a.out and environ files, 
and the environment miscellaneous facility in AIX Operating System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 

Commands 251 



csplit 

csplit 

Purpose 

Splits files by context. 

Syntax 

csplit file t" parm T 

OL805177 

Description 

252 

The csplit command reads a file and separates it into segments defined by the specified 
parameters (parm . . . ). By default, csplit writes these segments to files xxOO + 
... xxn, where n is the number of parms listed on the command line (n may not be 

greater than 99). These new files get the following pieces of file: 

00: From the start of file up to, but not including, the line referenced by the first 
parm. 

01: From the line referenced by the first parm up to the line referenced by the 
second parm. 

n + 1: From the line referenced by the last parm to the end of file. 

Note that csplit does not alter the original file. 

The specified parms can be a combination of the following: 

/pattern/ Creates a file that contains the segment from the current line up to (but not 
including) the line containing pattern, which becomes the current line. 

%pattern % Makes the line containing pattern the current line, but does not create a file 
for the segment. 

+num 
-num Moves forward or backward the specified number of lines from the line 

matched by an immediately preceding pattern parameter (for example, 
/Page/ -5). 



Flags 

csplit 

linenum Creates a file containing the segment from the current line up to (but not 
including) linenum, which becomes the current line. 

{number} Repeats the preceding argument the specified number of times. This number 
can follow any of the pattern or linenum parameters. If it follows a pattern 
parameter, csplit reuses that pattern the specified number of times. If it 
follows a linenum parameter, csplit splits the file from that point every 
linenum of lines for the specified number of times. 

Quote all pattern parameters that contain blanks or other characters special to the shell. 
Patterns may not contain embedded new-line characters. In an expression such as [a-z] , 
the minus means "through" according to the current collating sequence. A collating 
sequence may define equivalence classes for use in character ranges. See "Overview of 
International Character Support" in Managing the AIX Operating System for more 
information on collating sequences and equivalence classes. 

-f prefix Specifies the prefix name for the created file segments. xx is the default prefix. 

-k Leaves created file segments intact in the event of an error. 

-s Suppresses the display of character counts. 

Examples 

1. To split the text of a book into a separate file for each chapter: 

csplit book "/" Chapter *[0-9Jt' {9} 
This creates files named xxOO, xxOl, xx02, . . . ,xx9, which contain individual 
chapters of the file boo k. Each chapter begins with a line that contains only the word 
Chapter and the chapter number. The file xxOO contains the front matter that comes 
before the first chapter. The {9} after the pattern allows up to nine chapters. 

2. To specify the prefix for the created file names: 

csplit -f chap book "/" Chapter *[0-9J/" {9} 

This splits book into files named chapOO, chapOl, chap02, ... ,chap9. 

Related Information 

The following commands: "ed" on page 371, "sh" on page 913, and "regcmp" on 
page 820. 

The regxp file in AIX Operating System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 

Commands 253 



ct 

ct 

Purpose 

Dials an attached terminal and issues a login process. 

Syntax 

telno T 
-h -w 
-s speed -x 
-v 

AJ2FLIOI 

Description 

254 

The Basic Networking Utilities (BNU) command ct enables a user on a remote A,SCII 
terminal, such as an IBM 3161 or a DEC VT100, to communicate with an RT work station 
over a telephone line attached to a modem at each end of the connection. The user on the 
remote terminal can then log in and work on the RT wo~k station. 

A user on the local system issues ct with the appropriate telephone number to call the 
modem attached to the remote terminal. When the connection is established, ct issues an 
AIX login prompt that is displayed on the remote terminal. The user on the remote 
terminal enters an AIX login name at the prompt, and AIX opens a new shell. The user at 
the remote terminal then proceeds to work on the RT PC just like a local user. 

Note: In order to establish a ct connection, the remote user generally contacts a local 
user (with a regular phone call) and asks the local user to issue the command. 

The ct command is useful in the following situations: 

• When a user working off site needs to communicate with a local system under strictly 
supervised conditions. Because the local system contacts the remote terminal, the 
remote user does not need to know the phone number of the local system. 

• When the cost of the connection should be charged either to the local site, or to a 
specific account on the calling RT. If the remote user has the appropriate access 
permission and can make outgoing calls on the attached modem, that user can make 
the equivalent of a collect call. The remote user calls the specified local system, logs 
in, and issues the phone number of the remote terminal without the -h flag. The local 



Flags 

system hangs up the initial link so that the remote terminal is free for an incoming 
call, and then calls back to the modem attached to the remote terminal. 

ct 

Note: Before issuing the ct command, be certain that the remote terminal is attached to a 
modem that can answer the telephone. 

The ct command is not as flexible as the BNU command cu. For example, the user can not 
issue AIX commands on the local system while connected to a remote system via ct. 
However, the ct command does have two features not available with cu: 

• The user can instruct ct to continue dialing the specified number until the connection 
is established or a set amount of time has elapsed. 

• The user can specify more than one telephone number at a time to instruct ct to 
continue dialing each modem until a connection is established over one of the lines. 

If the user specifies alternate dialing paths by entering more than one number on the 
command line, ct tries each line listed in the file /usr/adm/uucp/Devices until it finds an 
available line with appropriate attributes, or runs out of entries. If there are no free lines, 
ct asks if it should wait for one, and if so, for how many minutes. The ct command 
continues to try to open the dialers at I-minute intervals until the specified time is 
exceeded. The user can override this prompt by specifying a time with the -wn flag when 
entering the command. 

After the user logs off, ct prompts the user on the remote terminal with a reconnect option; 
the system can either display a new login prompt or drop the line. 

-wn 

-xn 

-h 

-v 

-sspeed 

telno 

Allows the dialogue to be overridden by specifying n as the maximum number of 
minutes that ct is to wait for a line. The command then dials the remote modem 
at I-minute intervals until the connection is established or the specified time has 
elapsed. 

Used for debugging. Produces detailed information about the command's 
execution on standard error output on the local system. The debugging level, n, 
is a single digit between 0 and 9. The recommended default is 9. 

Prevents ct from hanging up the current line to answer an incoming call. 

Allows ct to send a running narrative to standard error output. 

Sets the data rate where speed is expressed in baud. The default is 1200. 

Specifies the telephone number of the modem attached to the remote terminal. 
The telno may include the digits 0 - 9, minus signs (-) representing delays, equal 
signs (=) representing secondary dial tones, asterisks (*), and pound/number 
signs (#). The phone number may contain a maximum of 31 characters. 

Commands 255 



ct 

Examples 

Files 

1. To connect to a modem with an internal number 4-1589 (the - is optional): 

ct 41589 
The system responds: 

Allocated dialer at 1200 baud 
Confirm hang_up? (y to hang_up) 

2. To dial a modem connected to a local telephone number (dialing 9 for an outside line 
and specifying a 3-minute wait time); 

ct -w3 9=2453017 
3. To dial a long-distance number (specifying an outside line and a 5-minute wait): 

ct -w5 9=15026647003 

/usr/adm/uucp/Devices 
/usr / adm/uucp/Dialcodes 
/usr/adm/uucp/Dialers 
/usr / adm/uucp/Permissions 
/usr / adm/uucp/Systems 

Information about available devices. 
Dialing code abbreviations. 
Initial handshaking on a link. 
Access permission codes. 
Accessible remote systems. 

Related Information 

The following commands: "eu" on page 263 and "login" on page 584. 

256 



ctab 

ctab 

Purpose 

Produces a collating table. 

Syntax 

-c-i ctab.i)-{-O ctab.ouyt 
ctab 

-j infile -ooutfile 
OL805451 

Description 

The ctab command takes an input file (by default a file named ctab.in found in the 
current directory) and produces a binary file (by default named ctab.out) containing a 
collating table. These output files should be stored in a special directory such as 
/usr/lib/nls. 

Programs that need the current collating information use the NLCTAB environment 
variable to access that information. 

The following conventions are used to make it easier to set up a table file: 

• One line of information is present for each character explicitly named. 

• A line beginning with the word option serves to change one or more of the default 
conditions or metacharacters built into ctab. An option line contains a set of 
name/value pairs, with each half of each pair delimited by tab or space characters. The 
following is a list of recognized names: 

eclass Turns the use of equivalence classes on or off globally. The assigned 
value must be on (the default) or off. (This name is ignored when 
Japanese Language Support is installed.) 

sep Uses the assigned value as the field separator character. The default 
value is : (colon). 

trans Uses the assigned value of the "translate" indicator in subject character 
fields. The default character is I (vertical bar). 

repeat Uses the assigned value as the "same as last line" indicator in subject 
character field. The default value is A (circumflex). 

comment Uses the assigned value as the comment character. The default value is 
the # character. 

Commands 257 



ctab 

• The order of the per-character input lines specifies the collating sequence. 

• By default, fields on a line are separated by colons. Tabs or spaces may surround fields 
or separators. You can change the separator character with an option line. 

• Use an octal escape sequence in the ASCII range to name a nonprintable character. A 
backslash character that does not form part of a valid escape sequence serves to strip 
the following character, including a second backslash, of any special meaning it 
otherwise would have. For example, to include the colon character in the collating 
sequence, use the following line: 

\ .. . . 
The input file format includes a comment convention, namely that the remainder of the 
line following a # character is ignored. The comment character can be changed with 
an option line. 

Input File Specification 

258 

Use the following rules to build infile, entering field information for each line: 

1. The first field on a line contains the subject character, a character to be inserted into 
the collating sequence at that point. 

• This subject character definition can include a translation mechanism: 

Instead of a single character, this field may contain two or more characters 
that are to be collated as a single un~t, or 

The single subject character may be followed by a vertical bar (I) and a single
or multiple-character string. The vertical bar indicates that the first character 
will be translated to the second string before being collated. 

For example, to treat an "e" (e acute) as equivalent to the character "e," use 
the following line: 

ele 

One restriction is placed on the translation mechanism: the subj ect character 
cannot be contained in the translated string of characters. For example, the 
following line is illegal: 

aloe 

• Any form of the first field may contain a trailing circumflex (A) to indicated that 
the current character is to collate to the same value as the preceding one. 
However, a circumflex following a translation string is illegal because the subject 
character to be translated has no inherent collating value. 



ctab 

• If the subject field contains a string of multiple characters (to collate as a unit), its 
first character must be declared elsewhere to establish the default collating 
sequence of that character. 

• The translate and collating no-change characters can be changed with option 
lines. 

2. The second and third fields specify whether or not a character is alphabetic and what 
its lower- and upper-case equivalents are: 

• If a subject character is to be treated as a lowercase alphabetic, the second field on 
its line is its uppercase equivalent, and the third field must be 1 or L. 

• If a subject character is to be treated as a uppercase alphabetic, the second field on 
its line is its lowercase equivalent, and the third field must be u or U. 

• If a subject character is to be treated as a control character or a space character, 
the third field must be c, C, s, or S. 

• Each character explicitly named whose line contains a non-null second field will be 
considered alphabetic (that is, matched by NCisalpha). Characters that do not 
have an uppercase or lowercase equivalent (that is, that have a null second field) 
but that you wish to be considered alphabetic should simply contain a third field 
that is I, L, u, or u. 

3. The fourth field on a line is used explicitly to specify the first charilcter in the 
equivalence class of the subject character. The members of one equivalence class 
must be consecutively listed in the input file. 

• There cannot be any gaps within a particular equivalence class. For example, the 
following lines will put the characters a, b, and c in the same equivalence class: 

a: A: 1 : a 
b: B: 1 : a 
c: c: 1 : a 

• As a convenience, if the fourth field is not specified, then the group of consecutive 
characters with blank fourth fields, provided that they are all based on the same 
Roman alphabetic character, will be placed in the same equivalence class. To 
reiterate, only characters with the same base will be placed into the same 
equivalence class by default. If you wish to have many characters from different 
bases belong to one equivalence class, as in the preceding example, the first 
character of the equivalence class has to be specified in the fourth field for every 
character specified. 

, 
Commands 259 



ctab 

Flags 

Files 

• It is illegal to specify an equivalence character that comes later in the collating 
sequence. The fourth field can refer only to characters that have already been 
mentioned. 

• All international character support characters hot based on Roman alphabetic 
characters by default are the sole members of their equivalence class. 

Japanese Language Support Information 

When Japanese Language Support is installed on your system, the information about 
the second, third, and fourth fields is irrelevant. 

Characters not named in the table file that have an ordinal value (that is, a value as an 
NLchar) below the ordinal value of the lowest-valued character named are put into the 
collating sequence below the first character in the table file. All other characters not 
named in the table file are put into the collating sequence above the last character in the 
table file. 

The standard characters for decimal and hexadecimal digits are always marked as digits (to 
be matched by NCisdigit and NCisxdigit). All other printable characters not marked as 
alphabetic are marked as punctuation. 

-i infile Specifies the name of the input file (ctab.in by default). 

-0 outfile Specifies the name of the output file (ctab.out by default). 

/usr/lib/nls/ascii.ctab Input file listing the ASCII range of characters. 
/usr/lib/nls/example.ctab 

Input file listing a sample Collating Sequence. 

Related Information 

260 

The NCisaipha, NCisdigit, NCisxdigit, nIs, and NLgetenv subroutines in AIX Operating 
System Technical Reference. 

"Overview of International Character Support" in IBM RT Managing the AIX Operating 
System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 



ctags 

ctags 

Purpose 

Makes a file of tags to help locate objects in source files. 

Syntax 

ctogs file 

OL805457 

Description 

The ctags command makes a tags file for ex and vi editors from the specified C, Pascal, 
and FORTRAN source files. A tags file gives the locations of specified objects (in this case 
functions) in a group of files. Each line of the tags file contains the object name, the file 
in which it is defined, and an address specification for the object definition. Functions are 
searched with a pattern. Specifiers are given in separate fields on the line, separated by 
blanks or tabs. Using the tags file, ex and vi can quickly find these object definitions. 

If a file name ends in .c or .h, it is assumed to be a C source file and is searched for C 
routine and macro definitions. Others are first examined to see if they contain any Pascal 
or FORTRAN routine definitions; if not, they are processed again for C definitions. 

The tag main is treated specially in C programs. The tag formed is created by prefixing M 
to the file name, removing a trailing .c (if any), and removing the leading path name 
components. This makes use of ctags practical in directories with more than one program. 

Notes: 

1. Recognitions of the keywords function, subroutine, and procedure in FORTRAN and 
Pascal code is performed in a very simple-minded way. No attempt is made to deal with 
block structure; if you have two Pascal procedures with the same name but in different 
blocks, ctags may yield inadequate results. 

2. The ctags command does not know about #ifdef. 

Commands 261 



ctags 

Flags 

Files 

-a Appends to tags file. 

-w Suppresses warning diagnostics. 

-x Causes ctags to display a list of object names, the line number and file name on which 
each is defined, as well as the text of that line. This provides a simple index. If you 
specify this flag, ctags does not build a tags file. 

-u Updates the specified files in tags; that is, all references to them are deleted, and the 
new values are appended to the file. This flag may be slow. (It is usually faster to 
simply rebuild the tags file.) 

tags Output tags file. 

Related Information 

The following commands: "ex" on page 407 and "vi, vedit, view" on page 1187. 

262 



cu 

ell 

Purpose 

Connects directly or indirectly to another UNIX system. 

Syntax 

cu telno -----j 
-d -5 speed 
-h -t 
-I line -n 

OL805553 

cu -I line -----j 

OL805554 

cu system name-----j 

OL805555 

Description 

The Basic Networking Utilities (BNU) command eu connects one system to another UNIX 
system, to a terminal connected to a UNIX system, or, if the proper hardware and software 
are installed, to a non-UNIX system. The connection can be established over a hard-wired 
line, or over a telephone line via a modem. 

Once the connection is established, a user can be logged in on both systems at the same 
time, executing commands on either one without dropping the BNU communication link. 
If the remote computer is also running under UNIX, the user can transfer ASCII files 
between the two systems. 

Note: The system should already be configured to use the eu command. Refer to 
Managing the AIX Operating System for details about this configuration. 

Commands 263 



eu 

After issuing cu from the local system, the user must press the Enter key (carriage return) 
and then log in to the remote system. 

After making the connection, cu runs as two concurrent processes: the transmit process 
reads data from standard input and, except for lines beginning with a ~ (tilde), passes that 
data to the remote terminal. The receive process accepts data from the remote system 
and, except for lines beginning with a ~, passes it to standard output. To control input 
from the remote system so the buffer is not overrun, cu uses an automatic DC3/DCI 
(Ctrl-Q/Ctrl-S) protocol. 

In addition to issuing regular AIX commands on the remote system, the user can also issue 
special cu "local commands," which are preceded by a -. Use these ~ commands to issue 
AIX commands on the local system and to perform tasks such as transferring files between 
two UNIX systems. 

Local ~ Commands 

264 

The transmit process interprets lines beginning with a tilde in the following ways: 

~!cmd .. . 

~$cmd .. . 

~%cd 

~ %take from [ to ] 

~ %put from [ to ] 

~ ~ line 

~%break 

-%debug 

-t 

Logs the user off the remote computer and terminates the remote 
connection. 

Returns the user to an interactive shell on the local system. Toggle 
between the local and remote systems using -! (remote to local) and 
Ctrl-D (local to remote). 

Executes the command denoted by cmd on the local system via sh -c. 

Runs the command denoted by cmd locally and sends its output to the 
remote system for execution. 

Changes the directory on the loc~l system. 

Copies the from file on the remote system to the to file on the local 
system. If to is omitted, the remote file is copied to the local system 
under the same file name. As each block of the file is transferred, 
consecutive single digits are displayed on the terminal screen. 

Copies the from file on the local system to the to file on the remote 
system. If to is omitted, the local file is copied to the remote system 
under the same file name. As each block of the file is transferred, 
consecutive single digits are displayed on the terminal screen. 

Sends the string denoted by -line to the remote system. 

Transmits a BREAK to the remote system. The BREAK can also be 
specified as - % b. 

Toggles the -debug flag on or off; this can also be specified as - %d. 

Prints the values of the TERMIO structure variables for the user's 
terminal. This is useful for de bugging. 



~I 

-%nostop 

eu 

Prints the values of the TERMIO structure variables for the remote 
communication line. This is useful for debugging. 

Toggles between DC3/DCI input control protocol and no input 
control. This is useful in case the remote system is one that does not 
respond properly to the DC3 and DCI characters. 

Note: As soon as the user enters ~!, ~ %, ~$, ~t, or -I, the system displays the name of the 
local computer in a format such as the following: 

~ [system_name]!/% 

The user then enters the command to be executed on the local computer. 

Additional Information 
• The receive process normally copies data from the remote system to the local system's 

standard output. Internally, the program accomplishes this by initiating an output 
diversion to a file when a line from the remote system begins with - > . 

Data from the remote system is diverted to file on the local system. The trailing ~ > 
marks the end of the diversion. 

• The use of - %put requires stty and eat on the remote system. It also requires that 
the current erase and kill characters on the remote system be identical to these current 
control characters on the local system. Backslashes are inserted at appropriate places. 

• The use of -%take requires eeho and cat on the remote system. Also, stty tabs mode 
should be set on the remote system if tabs are to be copied without expansion to spaces. 

• The eu command can be used to connect multiple systems, and commands can then be 
executed on any of the connected systems. For example, issue eu on system X to 
connect to system Y, and then issue eu on system Y to connect to system Z. System X 
is then the local computer, and systems Y and Z are remote computers. 

The user can execute commands on system Z by logging in and issuing the command. 
Commands can be executed on system X by prefixing the command with a single tilde 
( - cmd), and on system Y by prefixing the command with two tildes (~~ cmd). In 
general, one tilde causes the specified command to be executed on the original local 
computer, and two tildes cause the command to be executed on the next system on 
which eu was issued. 

For example, once the multiple systems are connected, the user can execute the uname 
command with the -n flag (to display the node name) on Z, X, and Y as follows: 

$ uname -n 
Z 
$ -!uname -n 
X 
$ - - ! un ame - n 
y 

Commands 265 



eu 

Flags 

266 

Notes: 

1. After executing eu, the user must log in to the remote system and press Enter 
(carriage return). 

2. The eu command does not do integrity checking on data it transfers. 

3. Data fields with special eu characters may not be transmitted properly. 

4. Depending on the interconnection hardware, it may be necessary to use a -. to 
terminate the conversation even if the normal logoff sequence has been used. 

5. There is an artificial slowing of transmission by eu during the - %put operation so 
that loss of data is unlikely. 

6. The exit code is ° for normal exit, otherwise, -1. 

-sspeed 

-Iline 

-h 

Specifies the transmission speed (300, 1200, 2400, 4800, 9600). The default 
value is "Any" speed, which instructs the system to use the rate 
appropriate for the default (or specified) transmission line. (The order of 
the transmission lines is specified in the /usr/adm/uuep/Deviees file.) 
Most modems operate at 300, 1200, or 2400 baud, while most hard-wired 
lines are set to 1200 baud or higher. 

Specifies a device name to use as the communication line. This can be 
used to override the search that would otherwise take place for the first 
available line with the right speed. When the -I flag is used without the 
-s flag, the speed of a line is taken from the /usr/adm/uuep/Deviees file. 

When the -1 and -s flags are used together, eu searches the 
/usr/adm/uuep/Deviees file to check whether the requested speed is 
available for the specified line. If so, the connection is made at the 
requested speed; otherwise, an error message is printed, and the call is 
not made. 

The specified device is generally a hard-wired asynchronous line (for 
example, /dev/tty2), in which case a telephone number (telno) is not 
required. If the specified device is associated with a modem, a telephone 
number must be provided. Using this flag with system_name rather than 
with telno does not give the desired result (see system_name, below). 

Note: Under ordinary circumstances, the user should not have to 
specify the transmission speed, or a line/device. The defaults set when 
BNU is installed should be sufficient. Referto Managing the AIX 
Operating System for information about setting defaults. 

Emulates local echo, supporting calls to other systems that expect 
terminals to be set to half-duplex mode. 



-t 

-d 

-0 

-e 

-n 

telno 

Examples 

ell 

Used to dial an ASCII terminal that has been set to auto answer. 
Appropriate mapping of carriage-return to carriage-return line-feed pairs 
is set. 

Prints diagnostic traces. 

Designates that odd parity is to be generated for data sent to the remote 
system. 

Designates that even parity is to be generated for data sent to the remote 
system. 

For added security, prompts the user to provide the telephone number to 
be dialed, rather than taking it from the command line. 

When using a modem, the argument is the telephone number, with 
appropriately placed equal signs for secondary dial tones, or minus signs 
for delays of 4 seconds. 

A uuep system name can be used rather than a telephone number; in that 
case, eu obtains an appropriate hard-wired line or telephone number from 
/usr/adm/uuep/Systems. System names must be ASCII characters only. 

Note: Do not use the systemJ£ame flag in conjunction with the -1 and -s 
flags. If you do, eu connects to the first available line for the requested 
system name, ignoring the specified line and speed. 

1. To connect to a remote system using a system name: 

cu hera 
2. To dial a remote system whose telephone number is 1-201-555-1212, where dialing 9 is 

required to get an outside dial tone and the baud rate is 1200: 

cu -s 1200 9=12015551212 
If the speed is not specified, "Any" is the default value. 

3. To log in to a system connected by a hard-wired line: 

cu -1 /dev/tty2 
or 

cu -1 tty2 
4. To dial a remote system with the specified line and a specific speed: 

cu -s 1200 -1 tty3 

Commands 267 



eu 

Files 

5. To dial a remote system using a specific line associated with a modem: 

cu -1 cu14 9=12015551212 
6. To copy a file from the local system to the remote system (after logging in to the 

remote system): 

~%put jujamyjfi1e 
or 

~%put jujamyjfi1e jujamyjtmpfi1e 

/etc/locks/LCK .. (tty-device) 
/usr/adm/uucp/Devices 
/usr/ adm/uucp/Dia1codes 
/usr/adm/uucp/Dialers 
/usr/adm/uucp/Permissions 
/usr/ adm/uucp/Systems 

Prevents multiple use of device. 
Information about available links. 
Dialing code abbreviations. 
Initial handshaking on a link. 
Access permission codes. 
Accessible remote systems. 

Related Information 

268 

The following commands: "cat" on page 137, "ct" on page 254, "echo" on page 369, 
"stty" on page 1018, "uuname" on page 1151, and "uucp" on page 1144. 



cut 

cut 

Purpose 

Writes out selected fields from each line of a file. 

Syntax 

~-Clist 

cut -flist~ r fileF 
-d char' 
-s 

1 The default char is a tab. 
OL805178 

Description 

Flags 

The cut command cuts out columns from a table or fields from each line of a file and 
writes these columns or fields to standard output. If you do not specify a file, cut reads 
standard input. 

You must specify either the -c or -f flag. The list parameter is a comma-separated and/or 
minus-separated list of integer field numbers (in increasing order). The minus separator 
indicates ranges. S'ome sam pIe lists are 1, 4, 7; 1-3 , 8; - 5 , 10 (short for 1- 5 , 10); and 3-
(short for third through last field). The fields specified by list can be a fixed number of 
character positions, or the length can vary from line to line and be marked with a field 
delimiter character, such as a tab character. 

You can also use the grep command to make horizontal cuts through a file and the paste 
command to put the files back together. To change the order of columns in a file use cut 
and paste. 

-clist Specifies character positions. For example, if you specify - c 1-72, cut writes out 
the first 72 characters in each line of the file. Note that there is no space 
between -c and list. 

Commands 269 



cut 

-dchar Uses the specified character as the field delimiter when you specify the -f flag. 
You must quote characters with special meaning to the shell, such as the space 
character. Any ASCII character can be used as char. 

Japanese Language Support Information 

char can either be any ASCII character, or any SJIS character. 

-flist Specifies a list of fields assumed to be separated in the file by a delimiter 
character, by default the tab character. For example, if you specify - fl ,7, cut 
writes out only the first and seventh fields of each line. If a line contains no field 
delimiters, cut passes them through intact (useful for table subheadings), unless 
you specify the -s flag. 

-s Suppresses lines that do not contain delimiter characters (use only with the -f 
flag). 

Example 

270 

To display several fields of each line of a file: 

cut -fl,5 -d: /etc/passwd 
This displays the login name and full user name fields of the system password file. These 
are the first and fifth fields (- f 1 , 5) separated by colons (- d : ). 

So, if the / etc/passwd file looks like this: 

su:UHuj9PgdvzOJ":O:O:User with special privileges:/:/bin/sh 
daemon:*:l:l::/etc: 
bin:*:2:2: :/bin: 
sys:*:3:3::/usr/src: 
adm:*:4:4:System Administrator:/usr/adm:/bin/sh 
pierre:boodwqT3irHFE:200:200:Pierre Harper:/u/pierre:/bin/sh 
joan:wijBNaYpCZuL.:202:200:Joan Brown:/u/joan:/bin/sh 
then cut produces: 

su:User with special privileges 
daemon: 
bin: 
sys: 
adm:System Administrator 
pierre:Pierre Harper 
joan:Joan Brown 



cut 

Related Information 

The following commands: "grep" on page 501 and "paste" on page 736. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 

Commands 271 



cvid 

cvid 

Purpose 

Creates a VRM install diskette for backup purposes. 

Syntax 

cvid_ device_ -f r-\.-v 
~ fs-idf prototypefi/e 

OL805104 

Description 

Flags 

272 

The cvid command backs up the VRM minidisk onto a diskette. Since you can reinstall 
the VRM system from this backup diskette, use cvid as a precautionary measure before 
modifying the VRM. You must be a member of the system group or operating with 
superuser authority to run this command. 

The device parameter specifies the device (special file) to which cvid copies the VRM. This 
can be a block device name or a directory name. If device is a directory name, cvid reads 
the /etc/fllesystems file for the corresponding device. cvid uses the prototypefile 
parameter to determine the size of the new file system. prototypefile defaults to 
/vrm/vproto. For more information on prototype files, see "mkfs" on page 658 and 
"proto" on page 780. ' 

When auditing is on, an audit record of the type cvid is created. 

Warning: If you used the mv command to change or modify the order of 
the files on a minidisk, you could lose files when restoring a cvid backup 
of the minidisk. To avoid problems, modifications, additions or changes to 
the /vrm/ldlist/posts directory must be reflected in the /vrm/inst.batch 
file. 

-f fs-ID Makes fs-ID the label for the new file system. The default label is vrmmnt. 

-v vol-ID Makes vol-ID the volume label for the new file system. The default label is 
ibmvrm. 



Files 

etc/filesystems 
/vrm/proto 

Contains device directories. 
Contains the default file size for new file systems. 

Related Information 

cvid 

The following commands: "mkfs" on page 658 and "mount" on page 669. 

Commands 273 



Cvt 

Cvt 

Purpose 

Moves old UUCP files into new BNU directories. 

Syntax 

CvtUfile-r 
AJ2FL122 

Description 

Flags 

Files 

274 

The Cvt command moves existing (old) UNIX-to-UNIX Copy Program (UUCP) data and 
command files into new Basic Networking Utilities (BNU) directories. 

After the new BNU programs are installed, issue Cvt before attempting to use the BNU 
functions. The Cvt shell handles the command (C.*) and data (D.*) files created under the 
old UUCP facility so that they will run under the new BNU facility. The command first 
creates the required new BNU directories and then moves the old UUCP files (located in 
the jusrjspooljuucp directory) into those directories. 

To issue Cvt from the command line, a user must have superuser privileges. 

Note: If Cvt is not used to move old UUCP command and data files into new BNU 
directories, those files will not run after the new BNU Program is installed. 

-n Displays the message explaining the actions that Cvt performs but does not execute 
the command. A file can be specified for D.* and C.* files, but not for X.* (execute) 
files. 

/usr/adm/uucp 
/usr/spool/uucp 

Directory in which Cvt is stored. 
Spooling directory. 



cw 

cw, checkcw 

Purpose 

Prepares constant-width text for troff. 

Syntax 

+t -f3 

cw-<in~: fX{=~fOntbX -Idelim - -rdelim ~ 
checkcw -( h file,-J 

-Idelim - -rdelim L-J 
OL805427 

Description 

The cw command preprocesses troff files containing text to be typeset in the 
constant-width (CW) font. cw reads standard input if you do not specify a file or if you 
specify a -. (minus) as one of the input file names. It writes its output to standard output. 

Since the text that is typeset by cw resembles the output of line printers and work 
stations, it can be used to typeset examples of programs and computer output in user 
manuals and programming texts. It has been designed to be distinctive when used with the 
Times Roman font. 

Because the CW font contains a "nonstandard" set of characters and because text typeset 
with it requires different character and interword spacing than is used for "standard 
fonts," you must use cw to preprocess documents that use the CW font. 

Commands 275 



cw 

276 

The CW font contains the 94 printing ASCII characters: 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
0123456789 
! $%& 0' I *+@.,/:;=? [] 1-_" _"<>{}#\ 
plus eight non-ASCII characters represented by four-character troff strings (in some cases 
attaching these strings to "nonstandard" graphics): 

Character Symbol Trott Name 
"Cents" sign rt \(ct 
EBCDIC "not" sign ~ \(no 
Left arrow +- \«-
Right arrow ~ \(-> 
Down arrow ~ \(da 
Vertical sinqle quote , \(fm 
Control-shift sign n \(dg 
Visible space sign n \(sq 
Hyphen - \(hy 
Up arrow f \(ua 
Home arrow '\ \(1 h 

OL805409 

The cw command recognizes five request lines, as well as user-defined delimiters. The 
request lines look like troff macro requests. cw copies them in their entirety onto the 
output. Thus, you can define them as troff macros; in fact, the .CW and .CN macros 
should be so defined. The five requests are: 

.CW Marks the start of text to be set in the CW font. This request causes a 
break. It can take the same flags (in the same format) as those 
available on the cw command line . 

. CN Marks the end of text to be set in the CW font. This request causes a 
break. It can take the same flags (in the same format) as those 
available on the cw command line . 

. CD Changes the delimiters and/or settings of other flags. It can take the 
same flags (in the same format) as those available on the cw command 
line. The purpose of this request is to allow the changing of flags 
other than at the beginning of a document . 

. CP argument-list Concatenates all the arguments (delimited like troff macro 
arguments), with the odd-numbered arguments set in the CW font and 
the even-numbered ones in the prevailing font . 

. PC argument-list Acts the same as .CP, except the even-numbered (rather than 
odd-numbered) arguments are set in CW font. 



cw 

The .CW and .CN requests should bracket text that is to be typeset in the CW font "as is." 
Normally, cw operates in the transparent mode. In that mode, every character between 
.CW and .CN request lines represents itself, except for the .CD request and the special 
four-character names listed previously. In particular, cw arranges for all periods (.) and 
apostrophes (') at the beginning of lines, and all backslashes (\) and ligatures (fi, ff, and so 
on) to be hidden from troff. The transparent mode can be turned off by using the -t flag, 
in which case normal troff rules apply_ In either case, cw hides from the user the effect of 
the font changes generated by the .CW and .CN requests. 

You can also use the -1 and -r flags to define delimiters with the same function as the .CW 
and .CN requests. They are meant to enclose words or phrases that are to be set in CW font 
in the running text. cw treats text between delimiters as it does text bracketed by 
.CW/.CN pairs, with one exception. Spaces within .CW/.CN pairs have the same width as 
other CW characters, while spaces within delimited text are half as wide, so they have the 
same width as spaces in the prevailing text. Delimiters have no special meaning inside 
.CW/.CN pairs. 

The checkcw command checks that left and right delimiters, and the .CW / .CN pairs are 
properly balanced. It prints out all lines in the section with the unmatched delimiters. 

Notes: 

1. It is unwise to use. (period) or \ (backslash) as delimiter characters. 

2. Certain CW characters do not combine well with certain Times Roman characters; for 
example, the spacing between a CW & (ampersand) followed by a Times Roman comma 
(,). In such cases, using troff half-and quarter-space requests can help. 

3. The troff code produced by cw is difficult to read. 

4. The mm and mv macro packages contain definitions of .CW and .CN macros that are 
adequate for most use. If you define your own, make sure that the .CW macro invokes 
the troff no-fill (.nt) mode, and the .CN macro restores the fill mode (.fi), if 
appropriate. 

5. When set in running text, the CW font is meant to be set in the same point size as the 
rest of the text. In displayed matter, on the other hand, it can often be profitably set 
one point smaller than the prevailing point size. The CW font is sized so that, when it is 
set in 9-point, there are 12 characters per inch. 

6. Documents that contain CW text may also contain tables and equations. If this is the 
case, the order of preprocessing must be CW, tbl, and eqn. Usually, the tables will not 
contain any CW text, although it is possible to have elements in the table set in the CW 
font. Care must be taken that cw does not modify the tbl format information. 
Attempts to set equations in the CW font are not likely to be pleasing or successful. 

7. In the CW font, overstriking is most easily accomplished with backspaces. Because 
spaces (and therefore backspaces) are half as wide between delimiters as inside 
.CW / .CN pairs, two backspaces are required for each overstrike between delimiters. 

Commands 277 



cw 

Flags 

Files 

-d 

-ffont 

-Ide lim 

-rdelim 

-t 

+t 

Displays the current flag settings on the standard error output in the form of 
troff comment lines. This flag is meant for debugging. 

Replaces font with the cw font (default = 3, replacing the bold font). -fS is 
commonly used for formatters that allow more than four simultaneous fonts. 

This flag is useful only on the command line. 

Sets the left delimiter as the one-or two-character string delim. The left 
delimiter is undefined by default. 

Set the right delimiter as delim The right delimiter is undefined by default. 
The left and right delimiters may (but need not) be different. 

Turns the transparent mode off. 

Turns the transparent mode on (this is the default). 

/usr/lib/font/ftCW CW font-width table. 

Related Information 

278 

The following commands: "eqn, neqn, checkeq" on page 395, "mmt, checkmm" on 
page 666, "thl" on page 1053, and "troff' on page 710. 

The mm and mv miscellaneous facilities in AIX Operating System Technical Reference. 



cxref 

cxref 

Purpose 

Creates a C program cross-reference listing. 

Syntax 

J-C-W80 

cxref~,--~_~_f_i/_e---JII . -W-(n::J-fl fife 
1 • 

Do not put a space between these Items. 
OL805180 

Description 

Flags 

The cxref command analyzes C program files and creates a cross-reference table, using a 
version of the cpp command to include #define directives in its symbol table. It writes to 
standard output a listing of all symbols in each file processed, either separately or in 
combination (see the -c flag on page 279). When a reference to a symbol is that symbol's 
declaration, an * (asterisk) precedes it. 

You can also use the -D, -I, and -U flags from the cpp command. 

-c displays a combined listing of the cross-references in all input files. 

-0 file Directs the output to the specified file. 

-8 Does not display the input file names. 

-t Makes the listing 80 columns wide. 

-w[num] Makes the listing num columns wide, where num is a decimal integer greater 
than or equal to 51. If you do not specify num or if num is less than 51, the 
listing will be 80 columns w~de. 

Commands 279 



cxref 

File 

jusrjlibjxcpp Special version of C-preprocessor. 

Related Information 

The following commands: "cc" on page 140 and "cpp" on page 210. 

The discussion of cxref in AIX Operating System Programming Tools and Interfaces. 

280 



date 

date 

Purpose 

Displays or sets the date. 

Syntax 

Operating With Superuser Authority 

date -«5- }- }- mm ~ t:\ , 
1 hh ~ .ssF\. yyF 

1 dd 
MM 

Operating Without Superuser Authority 

date r--\. , 
~ + "string lOr 

1 Do not put a blank between these items. 

Description 

OL805105 

OL805357 

Warning: Do not change the date while the system is running with more 
than one user. 
If called with no flags or with a flag list that begins with a + (plus sign), the date 
command writes the current date and time to standard output. Otherwise, it sets the 
current date. Only a user operating with superuser authority can change the date and 
time. The NLDATE variable, if it is defined, controls the ordering of the day and month 
numbers in the date specifications. The default order is MMddh:hmm.ssyy where: 

• MM is the month number 
• dd is the number of the day in the month 
• hh is the hour in the day (using a 24-hour clock) 
• mm is the minute number 
• .ss is the number of seconds 
• yy is the last two numbers of the year. 

The alternative ordering is ddMMhhmm.ssyy. 

Commands 281 



date 

The current month, day, hour, and year are default values. The system operates in 
Greenwich Mean Time (GMT). date takes care of the conversion to and from local 
standard and daylight time as specified in the NLTZ environment variable. 

If you follow date with a + (plus sign) and a field descriptor, you can control the output of 
the command. You must precede each field descriptor with a % (percent sign). The system 
replaces the field descriptor with the specified value. Enter a literal % as %%. date copies 
any other characters to the output without change. date always ends the string with a 
new-line character. Output fields are fixed size (zero padded if necessary). 

Field Descriptors 

a Displays the abbreviated day of the week (Sun to Sat or the non-English 
equivalent). 

d Displays the day of month (01 to 31). 

D Displays the date as mm/dd/yy (the default), or as dd/mm/yy. This format is 
specified by the NLDATE environment variable, if defined. 

h Displays the abbreviated month (Jan to Dec or the non-English equivalent). 

H Displays the hour (00 to 23). 

j Displays the day of year (001 to 366). 

m Displays the month of year (01 to 12). 

M Displays the minute (00 to 59) 

n Inserts a new-line character. 

r Displays the time in AM/PM notation (or the non-English equivalent). 

S Displays the second (00 to 59). 

t Inserts a tab character. 

T Displays the time as hh:mm:ss (the default), or as mm:hh:ss. This format is specified 
by the NLTIME environment variable, if defined. 

w Displays the day of the week numerically (Sunday = 0). 

y Displays the last two numbers of year (00 to 99). 

Examples 

282 

1. To display current date and time: 

date 



Files 

2. To set the date and time: 

date 02171425.45 

date 

This sets the date and time to 14:25:45 (45 seconds after 2:25 p.m.) February 17 of the 
current year. 

3. To display the date and time in a specified format: 

date +"%r %a %d %h %y (Julian Date: %j)" 

This displays the date (assume current year is 1984) shown in Example 2 as: 

02:25:03 PM Fri 17 Feb 84 (Julian Date: 048) 

jdevjkmem 

Related Information 

See the time and stime system calls and the environment miscellaneous facility in AIX 
Operating System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 

Commands 283 



dbx 

dbx 

Purpose 

Provides a tool to debug and run programs under AIX. 

Syntax 

dbx ,--_____ 0 -0 pid ------------. 

-c file 
-I dir 
-r 
-k 

ofile 

corefile -

AJ2FL127 

Description 

284 

The dbx command provides a symbolic debugger for C, Pascal, and FORTRAN programs. 
Use it to do the following: 

• Examine object and core files. 
• Provide a controlled environment for running a program. 
• Set breakpoints at selected statements or run the program one line at a time. 
• Debug using symbolic variables and display them in their correct format. 

The olile is an object (executable) file produced by a compiler. Use the -g (generate symbol 
table) flag when compiling your program to produce the information dbx needs. 

Note: If the object file is not compiled with the -g flag or if it contains compiler or loader 
errors, the symbolic capabilities of dbx are limited. 

When dbx is started, it checks for the .dbxinit file in the user's current directory. If the 
file is not found, it checks the user's $HOME directory. If .dbxinit exists, its 
subcommands run at the beginning of the debug session. Use an editor to create a 
.dbxinit file. 

If the file core exists in the current directory or a corefile is specified, use the dbx 
debugger to examine the state of the program when it faulted. 



Flags 

dbx 

When displaying variables and expressions, dbx resolves names first using the static scope 
of the current function. The dynamic scope is used if the name is not defined in the first 
scope. If static and dynamic searches do not yield a result, an arbitrary symbol is chosen 
and the system prints the message [usi ng module.variable]. The module.variable is 
the name of an identifier qualified with a block name. Override the name resolution 
procedure by qualifying an identifier with a block name. Source files are treated as 
modules named by the file name without the language suffix (such as, the .f suffix on a 
FORTRAN program or the .c suffix on a C Language program). 

Specify expressions in dbx with a subset of C and Pascal (or equivalent Modula-2) syntax. 
A prefix * or a postfix A denotes indirection. Use [ ] (square brackets) or ( ) 
(parentheses) to enclose array subscripts. Use the field reference operator. (period) with 
pointers and records. 

Note: This makes the C operator -> unnecessary (although it is supported). Specify 
portions of the array by separating the lower and upper bounds with. (period). 

The dbx debugger checks types of expressions. Override types of expressions by using 
type-name (expression). When there is no corresponding named type, use the special 
construct &type-name to represent a pointer to the named type. Represent a pointer to 
enum, struct, or union tag with the construct $$tag-name. 

The following operators are valid in expressions: 

Algebraic 
Bitwise 
Logical 
Comparison 
Other 

+, -, *, / (floating), div (integral), mod, exp (exponentiation) 
-, I, bitand, xor, ~, «, » 
or, and, not 
<, >, <=, >=, <> or !=, = or -
sizeof 

-a pid 

-c file 

-I dir 

-k 

-r 

Attaches the debugger to a process that is running. The debugger becomes 
active as soon as the process wakes up. In order to attach the debugger, you 
need authority to end a process. 

Runs the dbx commands in the file before reading from standard input. 

Includes dir in the list of directories searched for source files. The default is to 
look for source files in the current directory and in the directory where the 
object file is located. The search path is also set with the use subcommand. 

Maps memory addresses, this is useful for kernel debugging. 

Runs the object file immediately. If it ends successfully, exit dbx. Otherwise, 
enter the debugger and report the reason for termination. 

Note: Unless -r is specified, dbx prompts the user and waits for a command. 

Commands 285 



dbx 

Subcommands 

Run and Trace Subcommands 

286 

call proc (params) 

catch 
catch signum 
catch signame 
ignore 
ignore signum 
ignore signame 

clear sline 

cont 
cont signum 
cont signame 

delete num ... 

delete all 

detach 
detach signum 
detach signame 

Executes the object code associated with the named procedure 
or function. Use print proc (params) to perform the same 
function, but with a return code of procedure printed. 

Starts or stops trapping a signal before it is sent to the 
program. This subcommand is useful when a program being 
debugged handles signals such as interrupts. A signal is 
specified by a number or by a name. Signal names are case 
insensitive. The SIG prefix in names is optional. By default 
all signals are trapped except SIGHUP, SIGCLD, SIGALRM, 
and SIGKILL. 

Removes all stops at a given source line. The sline is an 
integer or a file name string followed by a : (colon) and an 
integer. 

Continues execution from the current stopping point until the 
program finishes or another break point is encountered. If a 
signal is specified, the process continues as though it received 
the signal. Otherwise, the process is continued as though it 
had not been stopped. 

Removes the traces and stops corresponding to the specified 
numbers. Use the status subcommand to display the numbers 
associated by dbx with a trace or stop. ' 

Removes all active traces and stops. 

Continues execution from where it stopped without debugger 
control. If a signal is specified, the process continues as 
though it received the signal. Otherwise, the debugger will 
exit, but the debugged process shall continue. 



goto sline 

multproc [on] 
multproc [off] 

prin t proc (params) 

next [num] 

return [proc] 

dbx 

Makes the specified source line the next line to be executed. 

Note: The source line must be in the same function as the 
current source line. To override this restriction, set 
$vnsafegoto. 

Turns on or off multiprocess debugging. The initial value is off. 
Issue the command without parameters to check the status of 
multiprocess debugging. 

Executes the object code associated with the named procedure 
or function. You use call proc (params) to perform the same 
function, but with a return code of procedure called. 

Runs the program up to the next source line. This subcommand 
and the step subcommand differ in that if the line contains a 
call to a procedure or function, step will stop at the beginning 
of that block, and next will not. Use num to perform a specfic 
number of next commands. 

Continues until a return to procedure is executed, or until the 
current procedure returns if none is specified. 

run [args][ < file][ > file] [> > file][2> file][2> > file] [> & file][ > > & file] 

rerun [args] [< fileH> file] [> > file] [2> file][2> > file] [> & file][ > > & file] 

Starts running the object file, passing args as command line 
arguments. 

skip num 

status [> file] 

< or > or 2> 
Redirects input, output, or standard error, 
respecti vely. 

> > Appends redirected output 
2> > Appends redirected standard error. 
>& Redirects both output and standard error to the 

same file. 
> >& Appends the redirected output and standard error 

to the same file. 

When rerun is used without arguments, the previous argument 
list is passed. 

Continues execution from the current stopping point until num 
+ 1 breakpoints are encountered or the program finishes. 

Displays out the currently active trace and stop commands. 

Commands 287 



dbx 

288 

step [num] 

stop if cond 
stop at sline [if cond] 
stop in proc [if cond] 
stop var [in proc] [if cond] 

trace 
trace in proc [if cond] 
trace sline [if cond] 

Runs one source line. Use num to execute a specific num~er of 
lines. 

Stops the program when: 

• The condition is true. 
• The source line number is reached. 
• The procedure (or function) is called. 
• The variable is changed. 

A condition can be specified for the source line, procedure, or 
variable stops. 

The debugger associates numbers with each stop subcommand. 
Use the status subcommand to view these numbers. Use the 
delete or clear subcommand to turn stopping off. You use the 
qualified name to get the actual variable stop. 

trace proc [in proc] [if cond] 

trace expr at sline [if cond] 

trace var [in proc][if cond] 

watch var [in proc] 

Prints the tracing information for the specified procedure (or 
function), source line, expression, or variable when the program 
runs. A condition can be specified. The debugger associates 
numbers with each trace subcommand. Use the status 
subcommand to view these numbers. Use the delete 
subcommand to turn tracing off. 

Traces changes to a variable in a watch window if invoked 
under xdbx. Otherwise, this is the same as trace. 



dbx 

Subcommands for Examining Program Data 
assign var = expr 

case [default] 
case [mixed] 
case [lower] 
case [upper] 

dump [proc] [> file] 

Assigns the value of the expression to the variable. 

Changes the way in which the debugger interprets symbols. The 
default handling of symbols is based upon the current language. 
Symbols fold to lowercase unless C is the current language. You use 
this command if a symbol needs to be interpreted in a way not 
consistent with the current language. Entering this command with 
no parameters displays the current case mode. 

Displays or puts in a file the names and values of variables in the 
specified procedure. If the procedure specified is . (period), then all 
active variables are dumped. The default is the current procedure. 

print expr [,expr ... ] Prints out the values of the expressions. 

whatis name 

where [> file] 

whereis identifier 

which identifier 

up [count] 
down [count] 

Displays the declaration of name where name is a variable, 
procedure, or function name qualified with a block name. 

Displays a list of the active procedures and functions. 

Displays the full qualification of all the symbols whose name matches 
the specified identifier. The order in which the symbols print is not 
significant. 

Displays the full qualification of the given identifier (the outer blocks 
with which the identifier is associated). 

Moves the current function, which is used for resolving names, up or 
down the stack count levels. The default is 1. 

Subcommands for Accessing Source Files 
[sline-exp [,sline-exp]] 
/regular expression[/] 

?regular expression[?] 

edit [file] 
edit proc 

Searches forward in the current source file for the specified 
pattern. 

Searches backward in the current source file for the specified 
pattern. 

Invokes an editor with file or the current source file if none is 
specified. If a procedure (or function) proc is specified, the 
editor is invoked on the file that contains it. The default editor 

Commands 289 



dbx 

290 

file [file] 

fune [proc] 

list [proc] 

is vi. Override the default by resetting the environment 
variable EDITOR to the name of the desired editor. 

Note: If the procedure has the same name as a file in the same 
directory, the editor starts the other file, not the file containing 
the procedure. 

Changes the current source file to file, but does not write to the 
file. If none is specified, displays the name of the current 
source file. 

Changes the current function to the specified procedure or 
function. If none is specified, displays the current function. 
Changing the current function implicitly changes the current 
source file to the one containing the function; it also changes 
the current scope used for name resolution. 

Lists lines f- n to f+m where f is the first statement in the 
procedure or function, n is a small number, and m is the number 
of lines remaining that fit in the default list window. Use set 
$1istwindow = value to set or change the number of lines 
displayed in the list window. 

list [sline-exp[ ,sline-exp]] Lists the source lines in the current source file from the first 
line number to the second inclusive. If no lines are specified, 
lists the next 10 lines or $listwindow lines. An sline of $ 
specifies the current line of execution. An sline of @ specifies 
the next line to be listed. An sline-exp is an sline followed by 
an optional + or - and an integer. 

listi [proc] Lists instructions from the specified procedure or function. 
The number of instructions displayed is controlled by the 
$listwindow value. 

listi at sline Lists instructions beginning with the source line specified. 

listi [address [address]] Lists instructions from the first address to the second address 
inclusive. If no lines are specified, list the next $listwindow 
instructions. 

move sline Changes the next line to be displayed to sline. Changes value 
of@. 

use dir [dir ... ] Sets the list of directories to be searched when looking for 
source files. 



dbx 

Machine Level Subcommands 
address,address/[mode][ > file] 

address/[count][mode] [> file] 

cleari addr 

gotoi addr 

registers [> file] 

stepi [num] 
nexti [num] 

tracei [addrH if cond] 
stopi [addr] [if cond] 

Displays the contents of memory starting at the first address and 
continuing up to the second address or until count items are 
printed. If the address is . (period), the address following the one 
printed most recently is used. The mode specifies how memory is 
to be printed; if it is omitted, the previous mode specified is used. 
The initial mode is X. The following modes are supported: 

b Prints a byte in octal. 
c Prints a byte as a character. 
d Prints a short word in decimal. 
D Prin ts a long word in decimal. 
f Prints a single precision real number. 
g Prints a double precision real number. 
h Prints a byte in hexadecimal. 
i Prints the machine instruction. 
o Prints a short word in octal. 
o Prints a long word in octal. 
s Prints a string of characters terminated by a null byte. 
x Prints a short word in hexadecimal. 
X Prints a long word in hexadecimal. 

Specify symbolic addresses by preceding the name with an &. 
Addresses can be expressions made up of other addresses and the 
operators +, -, and * (indirection). Any expression enclosed in 
parentheses is interpreted as an address. 

Remove all the breakpoints at a specified address. 

Change program counter address. 

Displays the values of all general purpose registers, system 
control registers, floating point registers, and the current 
instruction register. General purpose registers are denoted by 
$rn where n is the number of the register. Floating point 
registers are denoted by $frn. 

Runs a single step as in step or next, but runs a single 
instruction rather than source line. If num is specified, repeats a 
single step num times. 

Traces or sets a stop when the contents of addr change. 

Commands 291 



dbx 

tracei [addr][[ if cond] addr] [if cond] 

stopi [var][at addr][if cond] 
Turns on tracing or sets a stop at a machine instruction address. 

Subcommand Aliases and Variables 

292 

alias Displays aliases for subcommands. 

alias name name 
alias name "string" 
alias name (params) "string" 

When subcommands are processed, dbx checks first to see if the word 
is an alias for either a subcommand or a string. If it is, dbx treats the 
input as though the corresponding string (with values substituted for 
any parameters) has been entered. 

unalias name Removes the alias with the given name. 

unset name Deletes the debugger variable associated with name. 

The set Subcommand 

set var [= expr] 
Defines a value (expression) for a debugger variable. The name of the 
variable cannot conflict with names in the program being debugged. A 
variable is expanded to the corresponding expression within other 
commands. 

The following variables are selected with set and have special meaning: 

$dual 

$expandunions 

$frame 

Turns on both source- and machine-level dbx interface with 
X-Windows. 

Causes dbx to display values of each part of variant records or 
unions. 

Setting this variable to an address causes dbx to use the stack frame 
pointed to by the address for doing stack traces and accessing local 
variables. This facility is of particular use for kernel debugging. 



$hexchars 

$hexin 

$hexints 

$hexstrings 

$listwindow 

$machine 

$mapaddrs 

$octin 

$octints 

$noargs 

$noflargs 

$source 

$unsafeassign 

$unsafebounds 

$unsafecall 

$unsafegoto 

dbx 

Causes dbx to interpret integers as hexadecimal. 

Causes dbx to print out characters, integers, or character pointers 
respectively in hexadecimal. 

Specifies the number of lines to list around a function or when the 
list command is given without any parameters. Its default value is 10. 

Turns on machine-level dbx interface with X-Windows. This variable 
turns off $source. 

Setting (unsetting) this variable causes dbx to start (stop) mapping 
addresses. This is useful for kernel debugging. 

Causes dbx to interpret integers as octal. 

Causes dbx to print out integers in octal. 

Causes dbx to omit arguments from commands which walk the stack 
(where, up, down, dump). 

Causes dbx to omit display of floating point registers from the 
registers command. 

Turns on source-level dbx interface with X-Windows. 

Turns off strict type checking between the two sides of an assign 
statement. 

Note: Use these variables with great care. They severely limit the 
usefulness of dbx in detecting errors. 

Turns off subscript checking on arrays. 

Turns off strict type checking for arguments to subroutine or function 
calls. 

Turns off goto destination checking. 

Commands 293 



dbx 

Other Useful Subcommands 

Files 

help Prints out a synopsis of common dbx commands. 

prompt "string" 
Changes the dbx prompt to be the same as string. 

quit Quits dbx. 

screen Opens a virtual terminal for the dbx command interaction. The user 
continues to operate in the window in which the process originated. 

sh command Passes the command line to the shell for execution. The SHELL 
environment variable determines which shell is used. 

source file Reads dbx commands from the given file. 

a.out Contains object code; object file. 
core Contains core dump . 
. dbxinit Contains initial commands. 

Related Information 

294 

The following commands: "cc" on page 140 and "xdbx" on page 1236. 

The a.out and core files in AIX Operating System Technical Reference. 

The topic "Debugging Programs" in AIX Operating System Programming Tools and 
Interfaces. 



de 

de 

Purpose 

Provides an interactive desk calculator for doing arbitrary-precision integer arithmetic. 

Syntax 

de r-\. _ .... 1 

~ file r 
OL805106 

Description 

The de command is an arbitrary-precision arithmetic calculator. de takes its input from 
file or standard input until it reads an end-of-file character. It writes to standard output. 
It operates on decimal integers, but you may specify an input base, output base, and a 
number of fractional digits to be maintained. de is structured overall as a stacking, 
reverse Polish calculator. 

The be command (see page 118) is a preprocessor for de. It provides infix notation and a 
syntax similar to the C language which implements functions and reasonable control 
structures for programs. 

Subcommands 

number 

+ - / * % 1\ 

sx 

Sx 

Ix 

Pushes the specified value onto the stack. A number is an unbroken 
string of the digits 0-9. To specify a negative number, precede it with -
(underscore). A number may contain a decimal point. 

Adds (+), subtracts (-), multiplies (*), divides (f), remainders (%), or 
exponentiates e) the top two values on the stack. de pops the top two 
entries off the stack and pushes the result on the stack in their place. de 
ignores fractional parts of an exponent. 

Pops the top of the stack and stores it in a register named x, where x may 
be any character. 

Treats x as a stack. It pops the top of the main stack and pushes that 
value onto stack x. 

Pushes the value in register x on the stack. The register x is not changed. 
All registers start with zero value. 

Commands 295 



de 

296 

Lx 

d 

p 

P 

f 

q 

Q 

x 

X 

[string] 

<x 
>x 
=x 

v 

e 

i 

I 

o 

o 
k 

Treats x as a stack and pops its top value onto the main stack. 

Duplicates the top value on the stack. 

Displays the top value on the stack. The top value, remains unchanged. 
The p interprets the top of the stack as an ASCII string, removes it, and 
displays it. 

Interprets the top of the stack as a string, removes it, and displays it. 

Displays all values on the stack. 

Exits the program. If de is executing a string, it pops the recursion level 
by two. 

Pops the top value on the stack and the string execution level by that 
value. 

Treats the top element of the stack as a character string and executes it as 
a string of de commands. 

Replaces the number on the top of the stack with its scale factor. 

Puts the bracketed string onto the top of the stack. 

Pops the top two elements of the stack and compares them. Evaluates 
register x as if it obeys the stated relation. 

Replaces the top element on the stack by its square root. Any existing 
fractional part of the argument is taken into account, but otherwise the 
scale factor is ignored. 

Interprets the rest of the line as a AIX command. 

Cleans the stack: de pops all values on the stack. 

Pops the top value on the stack and uses that value as the number radix 
for further input. 

Pushes the input base on the top of the stack. 

Pops the top value on the stack and uses that value as the number radix 
for further output. 

Pushes the output base on the top of the stack. 

Pops the top of the stack, and uses that value as a nonnegative scale 
factor. The appropriate number of places displays on output and is 
maintained during multiplication, division, and exponentiation. The 
interaction of scale factor, input base, and output base is reasonable if all 
are changed together. 



z 

z 

? 

, . 

Pushes the number of elements in the stack onto the stack. 

Replaces the top number in the stack with the number of digits in that 
number. 

Gets and runs a line of in pu t. 

be uses these characters for array operations. 

de 

Examples 

1. To use de as a calculator: 

You: 1 4 / p 
System: 0 

You: 1 k [ Keep 1 decimal place ] s . 
1 4 / p 

System: 0.2 
You: 3 k [ Keep 3 decimal places Js. 

14/ P 
System: 0.250 

You: 16 63 5 / + P 
System: 28.600 

You: 16 63 5 + / p 
System: 0.235 

You may type the comments (enclosed in [ ] S.), but they are provided only for your 
information. 

When you enter de expressions directly from the keyboard, press Ctrl-D to end the be 
session and return to the shell command line. 

2. To load and run a de program file: 

You: dc prog.dc 
5 1 f x P [ 5 factorial ] s. 

System: 120 
You: 10 1 f x P [ 10 factorial ] s. 

System: 3628800 

This interprets the de program saved in prog. dc, then reads from the work station 
keyboard. 

Commands 297 



de 

The 1 f x evaluates the function stored in register f, which could be defined in the 
program file prog. Cas: 

[ f: compute the factorial of n Js. 
[ (n = the top of the stack) Js. 

[ If l>n do b; If l<n do r ] s . 
[d 1 >b d 1 <rJ sf 

[ Return f(n) = 1 ] s. 
[d - 1 + ] sb 

[ Return f(n) = n * f(n-l) ] s . 
[d 1 - 1 f x *] s r 

You can create de program files with a text editor, or with the -e (compile) flag of the 
be command. When you enter de expressions directly from the keyboard, press Ctrl-D 
to end the be session and return to the shell command line. 

Related Information 

The following command: "be" on page 97. 

"Overview of International Character Support" in Managing the AJX Operating System. 

298 



dcopy 

dcopy 

Purpose 

Copies file systems for the best access time. 

Syntax 

dcopy 1 
=~CYI:SkiP 

1 If not specified. the values from oldfs are used. 

OL805420 

Description 

Warning: oldfs and newfs must not refer to the same minidisk. Doing so 
will destroy the old file system. 
The dcopy command copies an existing file system oldfs to a new file system newfs, 
appropriately sized to hold the reorganized results. For best results, oldfs should be the 
raw device and newfs should be the block device. If oldfs or newfs is a file system name, 
dcopy uses the corresponding block device given in /etc/filesystems. You should run 
dcopy on unmounted file systems (in the case of the root file system, copy to a new 
minidisk). 

If you do not specify any flags, dcopy copies files from oldfs, compressing directories by 
removing vacant entries and spacing consecutive blocks in a file by the optimal rotational 
gap. 

The dcopy command makes newfs identical to oldfs and preserves the pack and volume 
labels. Thus, to compress a file system without moving it, use the dcopy command to copy 
the file to another file system and the dd command to copy the file back. 

The dcopy command catches INTERRUPT and QUIT signals and reports on its progress. 
To end dcopy, send a Quit signal (Ctrl-V) and dcopy no longer catches INTERRUPT or 
QUIT. dcopy also attempts to modify its command line arguments so that its progress can 
be monitored with the ps command. 

Commands 299 



dcopy 

Flags 

-anum Places files not accessed in the specified number of days after the free 
blocks of the destination file system. The default value of num is 7. If you 
do not specify num, no files are moved. 

-d Leaves the order of directory entries as is. If you do not specify this flag, 
dcopy moves subdirectories to the beginning of directories. 

-ffsize[:isize] Specifies the file system and i-node list sizes (in blocks). If not specified, the 
value from oldfs is used. 

-scyl:skip Supplies device information for creating the best organization of blocks in a 
file, where cyl is the number of block per cylinder and skip is the number of 
blocks to skip. 

-v Reports how many files were processed and how big the source and 
destination free lists are. 

Related Information 

300 

The following commands: "fsck, dfsck" on page 445, "mkfs" on page 658, and "ps" on 
page 786. 



dd 

Purpose 

Converts and copies a file. 

Syntax 

dd 4if= in file 
of= outfi/e 
cbs=num 
fskip=num 
skip= num 
seek=num 
count=num 

ibs=512 X ~bS=512 
ibs=num obs=num 

'------ bs=num 

1 
conv=-, ascii 2 

ebcdic 2 

iblock 
oblock 
block 
ton Is 5 

tosjis 6 

fromjis 6 

icase 3 

ucase 3 

swab 
noerror 
sync 
fromnls 5 

flatten 5 

1 Do not put a blank between these items. 
2 Use only one of ascii and ebcdic. 
3 Use ani y one of icase and ucase. 

---j 

4 infile and outfile default to standard input and standard output. 
5 Not active when using Japanese Language Support. 
6 Active when using Japanese Language Support. 

Description 

dd 

OL805373 

The dd command reads the specified infile or standard input, does the specified 
conversions, and copies it to the specified outfile or standard output. The input and output 
block size may be specified to take advantage of raw physical I/O. The terms block and 

Commands 301 



dd 

302 

record refer to the quantity of data read or written by dd in one operation and are not 
necessarily the same size as a disk block. 

Where sizes are specified, a number of bytes is expected. A number may end with w, b, or 
k to specify multiplication by 2, 512, or 1024 respectively; a pair of numbers can be 
separated by an x to indicate a product. 

The conversion requested by cony = fromnls translates each extended character in a text 
file to a printable ASCII escape sequence that uniquely identifies the extended character. 
The complementary conversion, provided by cony = tonls, translates ASCII escape 
sequences to the corresponding extended character. The conversion requested by 
cony = flatten translates an extended character to the single ASCII character most 
resembling it in appearance or to a ? (question mark) if no ASCII characters resemble that 
extended character. 

Japanese Language Support Information 

The conversion requested by con v = fromsjis translates each kanji character in a textJile 
to a printable ASCII escape sequence that uniquely identifies that kanji character. The 
conversion provided by cony = tosjis translates the ASCII escape sequences to the 
corresponding kanji character. 

The character set mappings associated with cony = ascii and cony = ebcdic are 
complementary operations, described in the ebcdic file in AIX Operating System Technical 
Reference. These attempt to map between ASCII and the subset of EBCDIC that is found 
on most terminals and keypunches. 

The cbs specification is used only if the ascii or ebcdic conversion is specified. For ASCII 
conversions, dd places characters in a conversion buffer of size cbs, converts these 
characters to ASCII, trims trailing blanks and adds new-line characters before sending 
data specified output. For EBCDIC conversions, it places ASCII characters in the 
conversion buffer, converts these characters to EBCDIC, adds trailing blanks to create 
records of size cbs. 

After it finishes, dd reports the number of whole and partial input and output blocks. 

Notes: 

1. Normally, you need only write access to the output file. However, when the output file 
is not on a direct access device and you use the seek parameter, you also need read 
access to the file. 

2. The dd command inserts new-line characters only when converting to ASCII; it pads 
only when converting to EBCDIC. 

3. Use the backup, tar, or cpio commands instead of the dd command whenever possible 
to copy files to tape. These commands are designed for use with tape devices. 



dd 

4. If you need to use dd to copy to a streaming tape and the data is an odd length (not a 
multiple of 512 bytes), you must use the conv = sync option to fill the last record. 
Streaming tape devices permit only multiples of 512 bytes. 

Parameters 

if= infile 

of= outfile , 

ibs=num 

obs=num 

bs=num 

cbs=num 

skip=num 

seek=num 

fskip=num 

count=num 

conv=spec[,spec ... ] 

Specifies the input file name; standard input is the default. 

Specifies the output file name; standard output is the default. 

Specifies the input block size in bytes; the default is 512. 

Specifies the output block size in bytes; the default is 512. 

Specifies both the input and output block size, superseding ibs 
and obs. 

Specifies the conversion buffer size. 

Skip num input records before starting copy. 

Seek to the numth record from the beginning of output file 
before copying. 

Skip past num end-of-file characters before starting copy; this 
parameter is useful for positioning on multifile magnetic tapes. 

Copies only num input blocks. The default block size is 512 
bytes (see the ibs parameter). 

Specifies one or more of the following conversions: 

ascii Converts EBCDIC to ASCII. 

ebcdic Converts ASCII to EBCDIC. 

tonls Converts ASCII escape sequences to extended 
characters. 

fromnls Converts extended characters to ASCII escape 
sequences. 

flatten Converts extended characters to the ASCII character 
most resembling it, or to a ? (question mark). 

Japanese Language Support Information 

tosjis Converts ASCII escape sequences to kanji characters. 

fromsjis Converts kanji characters to ASCII escape sequences. 

iblock 

Commands 303 



dd 

oblock· 
block 

lcase 

ucase 

swab 

noerror 

sync 

Minimizes data loss resulting from a read or write 
error on direct access devices. If you specify iblock 
and an error occurs during a block read (where the 
block size is 512 or the size specified by ibs = num), dd 
attempts to reread the data block in smaller size units. 
If dd can determine the sector size of the input device, 
it reads the bad record one sector at a time. 
Otherwise, it reads it 512 bytes at a time. The input 
block size (ibs) must be a multiple of this "retry size." 
This allows you to maximize disk input efficiency 
while ensuring that data loss associated with a read 
error is confined to a single sector. The oblock 
conversion works similarly on output. Specifying 
block is same as specifying iblock,oblock. 

Makes all alphabetic characters lowercase. 

Makes all alphabetic characters uppercase. 

Swaps every pair of bytes. 

Does not stop processing on an error. 

Pads every input record to ibs. 

Example 

304 

1. To convert an ASCII text file to EBCDIC: 

dd if=text.ascii of=text.ebcdic conv=ebcdic 

This converts text. asci i to EBCDIC representation, storing the EBCDIC version in 
text. ebcdi c. 

Note: When you specify conv=ebcd i c, dd converts the ASCII 1\ (circumflex) 
character to an unused EBCDIC character (9A hexadecimal), and ASCII - (tilde) to 
EBCDIC I (NOT symbol). 

2. To use dd as a filter: 

1i -1 I dd conv=ucase 

This displays a long listing of the current directory (1 i - 1) in uppercase. 



dd 

Related Information 

The following command: "cp" on page 202. 

The ebcdic and tape files in AIX Operating System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 

Commands 305 



defkey 

defkey 

Purpose 

Defines keyboard key assignments. 

Syntax 

defkey /\ /\ , 

L-?~fi/eF 
OL805453 

Description 

Flags 

The defkey command lets you redefine the keyboard keys on the active virtual terminal. 
Input to defkey comes either interactively from the keyboard or from a redirected file. 
Key assignments can be a single character, non-spacing characters, or strings. 

If you specify a file that does not exist, defkey creates and opens the file; if file exists, 
defkey opens the file. It then displays a menu that prompts you for input. This file can 
then be used as redirected input to defkey. 

-? Provides help information. 

Examples 

306 

1. To redefine a key or keys and create or add to a keyboard definition file: 

defkey mykeys 

This creates the file my keys and prompts for input. When defkey ends, the keys that 
you specified will be redefined on the active virtual terminal. You can also use the file 
mykeys to redefine the keyboard on another virtual terminal with the command: 

defkey < mykeys 

2. To interactively redefine one or more keyboard keys for the active virtual terminal: 

defkey 



Related Information 

hft and dispsym in AIX Operating System Technical Reference. 

Keyboard Description and Character Reference. 

defkey 

Commands 307 



del 

del 

Purpose 

Deletes files if the request is confirmed. 

Syntax 

del~ 
OL805049 

Description 

Flag 

308 

The del command displays the list of specified file names and asks you to confirm your 
request to delete the group of files. To answer yes (delete the files), press the Enter key 
or enter a line beginning with y. Any other response specifies no (do not delete the files). 

Japanese Language Support Information 

An affirmative response in Japanese Language Support matches one of the elements in the 
environment variable YESSTR. 

The del command does not delete directories. See "rmdir" on page 838 for information 
about deleting directories. 

Warning: The del command ignores file protection, allowing the owner of 
a file to delete a write-protected file. However, to delete a file, you must 
have write permission in the directory that the file exists in. 

Since pressing the Enter key by itself is the same as answering "yes," be 
careful not to delete files accidentally. 

Requests confirmation for each specified file rather than for the entire group. 



Examples 

1. To delete a file: 

del chapl.bak 

This displays the message: 

delete chapl.bak? (y) 

del 

to ask for confirmation before deleting chapl. bak. The (y) reminds you to press the 
Enter key or to enter y to answer yes. 

2. To use del with pattern-matching characters: 

del *.bak 

Before passing the command line to del, the shell replaces the pattern * . b a k with the 
names of all the files in the current directory that end with . b a k. (This is known as 
file-name expansion.) del asks for confirmation before deleting them all at one time. 

3. To interactively select files to be deleted: 

del * 
This displays the name of each file in the current directory one at a time, allowing you 
to select which ones to delete. 

Japanese Language Support Information 

The allowed affirmative responses are defined in the environment variable YESSTR. 

Related Information 

The following commands: "rmdir" on page 838 and "rm" on page 833. 

Commands 309 



delta 

delta 

Purpose 

Creates a delta in a Source Code Control System file. 

Syntax 

-y -m __ -. 

-yc=:J-( -mmrlisl 

delta 

-p 
-rSJD 
-s 

OL805056 

Description 

310 

The delta command is used to introduce into the named Source Code Control System 
(SeeS) file any changes that were made to the file version retrieved by a get -e command. 

The delta command reads the g-files that correspond to the specified files (see "sccs 
Files" on page 478) and creates a new delta. 

If you specify a directory in place of file, delta performs the requested actions on all sces 
files within that directory (that is, on all files with the s. prefix). If you specify a - (minus) 
in place of file, delta reads standard input and interprets each line as the name of an SCCS 
file. When delta reads standard input, you must supply the -y flag. You must also supply 
the -m flag if the v header flag is set. (For more information on header flags, see the 
discussion in the admin command on page 44.) delta reads standard input until it reaches 
END OF FILE (Ctrl-D). 

If you are not familiar with the delta numbering system, see AIX Operating System 
Programming Tools and Interfaces for more information. 

Note: Lines beginning with an SOH ASCII character (binary 001) cannot be placed in the 
sces file unless the SOH is quoted using a \ (backslash). SOH has special meaning to 
SCCS and causes an error. See the sccsfile file in AIX Operating System Technical 
Reference. 



Flags 

delta 

A get of many sees files, followed by delta of those files, should be avoided when the get 
generates a large amount of data. Instead, you should alternate the use of get and delta. 

-glist 

-m[mrlist] 

-n 

-p 

-rSID 

-s 

Specifies a list of SIDs (deltas) that are to be ignored when the get 
command creates the g-file. After you use this flag, get ignores this delta if 
it is one that it should not include when it builds the g-file. 

If the sees file has the v header flag set, then a Modification Request (MR) 
number must be supplied as the reason for creating the new delta. 

If you do not specify the -m flag, and the v header flag is set, delta reads 
MRs from the standard input. If standard input is a work station, delta 
prompts you for the MRs. delta continues to take input until it reads END 
OF FILE (Ctrl-D). It always reads MRs before the comments (see the -y 
flag). You can use blanks, tab characters, or both to separate MRs in a list. 

If the v header flag has a value, it is interpreted as the name of a program 
that validates the MR numbers. If delta returns a nonzero exit value from 
the MR validation program, delta assumes some of the MR numbers were 
invalid and stops running. 

Retains the g-file, which is normally removed at completion of delta 
processing. 

Writes to standard output (in the format of the diff command) the sees file 
differences before and after the delta is applied. See "diff' on page 320 for 
an explanation of the format. 

Specifies which delta is to be made to the sees file. You must use this flag 
only if two or more outstanding get -e commands were done on the same 
sees file by the same person. The SID can be either the SID specified on 
the get command line or the SID to be made as reported by the get 
command (see Figure 2 on page 481 for additional information). An error 
results if the specified SID cannot be uniquely identified, or if a SID must be 
specified but it is not. 

Suppresses the information normally written to standard output on normal 
completion of the delta command. 

-y[comment]· Specifies text used to describe the reason for making the delta. A null 
string is considered a valid comment. If your comment line includes special 
characters or blanks, the line must be enclosed in single or double quotation 
marks. 

If you do not specify -y, delta reads comments from standard input until it 
reads a blank line or END OF FILE (Ctrl-D). If input is from the keyboard, 
delta prompts for the comments. If the last character of a line is a 
backslash, it is ignored. Comments must be no longer than 512 characters. 

Commands 311 



delta 

Japanese Language Support Information 

Comments can include kanji characters. 

Example 

To record changes you have made to an sees file: 

delta s.prog.c 

This adds a delta to the sees file s. prog. c, recording the changes made by editing 
prog. c. delta then asks you for a comment that summarizes the changes you made. 
Enter the comment, then press END OF FILE (Ctrl-D) or press the Enter key twice to 
indicate that you have finished the comment. 

Related Information 

312 

The following commands: "admin" on page 41, "bdiff" on page 102, "cdc" on page 152, 
"get" on page 477, "help" on page 513, "prs" on page 781, and "rmdel" on page 837. 

The sccsfile file in AIX Operating System Technical Reference. 

The discussion of sees in AIX Operating System Programming Tools and Interfaces. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 



deroff 

deroff 

Purpose 

Removes nroff, troff, troff, tbl, and eqn constructs from files. 

Syntax 

deroff 

OL805181 

Description 

Flags 

The deroff command reads files (standard input by default), removes all troff requests, 
macro calls, backs lash constructs, eqn constructs (between .EQ and .EN lines and 
between delimiters), and tbl descriptions (perhaps replacing them with blanks or blank 
lines), and writes the remainder of the file to standard output. 

The deroff command normally follows chains of included files (.so and .nx troff 
commands). If a file has already been included, a .so naming it is ignored and a .nx 
naming that file ends execution. 

Notes: 

1. deroff is not a complete troff interpreter, so it can be confused by subtle constructs. 
Most errors result in too much rather than too little output. 

2. The -ml flag does not handle nested lists correctly. 

-i 

-I 

-mm 

-ml 

Suppresses the processing of included files. 

Suppresses the processing of included files whose names begin with /usr/lib, such 
as macro files in /usr /lib/tmac. 

Ignores MM macros in text so that only running text is output (no text from 
macro lines is included). 

Ignores MM macros in text (-mm) and also deletes MM list structures. 

Commands 313 



deroff 

-ms Ignores MS macros in text. 

-w Makes the output a word list, with one word per line and all other characters 
deleted. In text, a word is any string that contains at least two letters and is 
composed of letters, digits, & (ampersands), and I (apostrophes). In a macro call, 
a word is a string that begins with at least two letters and contains a total of at 
least three letters. Delimiters are any characters other than letters, digits, 
apostrophes, and ampersands. Trailing apostrophes and ampersands are removed 
from words. 

Related Information 

314 

The following commands: "eqn, neqn, checkeq" on page 395, "nroff, troff" on page 709, 
"thl" on page 1053, and "troff" on page 710. 



devices 

devices 

Purpose 

Adds, deletes, changes, and displays device information. 

Syntax 

devices --I 
OL805306 

Description 

Files 

The devices command lets you add, delete, change, or examine information about devices 
on the system. To use devices you must be a member of the system group or have 
superuser authority. 

The devices command is an interactive, menu-driven program. For information on how to 
use it, see Installing and Customizing the AIX Operating System. When auditing is 
enabled for your system, audit records are created. When a device is added or deleted, the 
audit record is of the type devices - add ot devices - del. When a device is changed, the 
audit record is of the type stanza - add or stanza - del. 

/ etc/filesystems 
/etc/predefined 
/etc/master 
/etc/system 
/etc/ports 
/etc/qconfig 
/tmp/CONFIGREPORT 

Related Information 

The discussion of devices in Installing and Customizing the AIX Operating System. 

The following command: "minidisks" on page 650. 

Commands 315 



devnm 

devnm 

Purpose 

N ames a device. 

Syntax 

devnm T path "1 
OL805114 

Description 

The devnm command reads path, identifies the special file associated with the mounted 
file system where path resides, and writes the special file name to standard output. Each 
path must be a full path name. 

The most common use of the devnm,command is by /etc/rc to construct a mount table 
entry for the root device. 

Note: This command is for local file systems only. 

Examples 

316 

1. To identify the device on which a file resides: 

devnm /disketteO/bob/textfile 
This displays the name of the special device file on which 
/disketteO/bob/textfile resides. Ifa diskette is/mounted as /disketteO, then 
devnm displays: 

fdO /disketteO/bob/textfile 
rfdO /disketteO/bob/textfile 

This means that /di sketteO/bob/textfi le resides on the diskette drive /dev/fdO. 



Files 

2. To identify the device on which a file system resides: 

devnm / 

devnm 

This displays the name of the device on which the root file system (/) resides. The 
following list appears on the screen: 

hdO ' / 

This means that / resides on /dev/hdO. 

/ dev Directory. 
/etc/mnttab Table of mounted devices. 

Related Information 

The following commands: "rc" on page 806 and "setmnt" on page 911. 

Commands 317 



df 

df 

Purpose 

Reports number of available disk blocks. 

Syntax 

df -o-c filesystem '7 
1 The default action is to provide information for each file 

system in /etc/filesystems with the attribute free=true. 
OL805052 

Description 

Flag 

318 

The df command writes to standard output information about total space and available 
space on the specified file systems. filesystem can be the name of the device on which the 
file system resides or the directory on which it is mounted. If you do not specify filesystem, 
df provides information on all mounted file systems. 

Normally, df uses free counts maintained in the superblock. Under certain exceptional 
circumstances, these counts may be in error. 

If a file system is being actively modified at the instant df is run, the free count may be 
inaccurate. 

-8 This flag is for backwards compatibility only. 



Examples 

L To list information about all file systems: 

df 
If your system is configured so that the I, lusr, lu, and Itmp directories reside in 
separate file systems, the output from the df command resembles this: 

Devi ce Mounted on tota 1 free used i free 
/dev/hdO / 19368 9976 48% 4714 
/dev/hd1 /usr 24212 4808 80% 5031 
/dev/hd2 /u 9744 9352 4% 1900 
/dev/hd5 /tmp 3868 3856 0% 986 

used 
5% 

19% 
4% 
0% 

df 

Note: On some remote file systems, such as NFS, columns are blank if the server does 
not provide the information. 

2. To list information about the file system on a diskette: 

df /dev/fdO 
3. To list information about the file system currently mounted as IdisketteO: 

df /disketteO 

Related Information 

The following command: "fsck, dfsck" on page 445. 

The discussion of df in Managing the AIX Operating System. 

Commands 319 



diff 

diff 

Purpose 

Compares text files. 

Syntax 

diff file1 - file2 ---l 

OL805046 

Description 

320 

The diff command compares filel and file2 and writes to standard output information about 
what changes must be made to bring them into agreement. If you specify a - (minus) for 
filel or file2, diff reads standard input. If filel is a directory, then diff uses a file in that 
directory with the name file2. If file2 is a directory, then diff uses a file in that directory 
with the name filel. 

The normal output contains lines of these forms: 

Lines Affected in filel Action Lines Affected in file2 

numl a num2[,num3] 

numl [,num2] d num3 

numl [,num2] c num3[,num4] 

These lines resemble ed subcommands to convert filel into file2. The numbers before the 
action letters pertain to filel; those after pertain to file2. Thus, by exchanging a for d and 
reading backward, you can also tell how to convert file2 into filel. As in ed, identical 
pairs (where numl = num2) are abbreviated as a single number. 

Following each of these lines, diff displays all lines affected in the first file preceded by a 
<, then all lines affected in the second file preceded by a >. 

Except in rare circumstances, diff finds a smallest sufficient set of file differences. An exit 
value of 0 indicates no differences, 1 indicates differences found, and 2 indicates an error. 

Note: Editing scripts produced by the -e or -f flags cannot create lines consisting of a 
single . (period). 



Flags 

diff 

-b Ignores trailing spaces and tab characters and considers other strings of blanks to 
compare as equal. 

-e Produces output in a form suitable for use with the ed command to convert filel to 
file2. 

-f Produces output in a form not suitable for use with ed, showing the modifications 
necessary to convert filel to file2 in the reverse order of that produced under the -e 
flag. 

-b Performs a faster comparison. This flag only works when the changed sections are 
short and well separated, but it does work on files of any length. The -e and -f flags 
are not available when you use the -b flag. 

Examples 

1. To compare two files: 

diff chapl.bak chapl 

This displays the differences between the files chapl. bak and chapl. 
2. To compare two files, ignoring differences in the amount of white space: 

diff -b prog.c.bak prog.c 
If two lines differ only in the number of blanks and tabs between words, then diff 
considers them to be the same. 

3. To create a file containing commands that ed can use to reconstruct one file from 
another: 

diff -e chap2 chap2.01d >new.to.old.ed 

This creates a file named new. to .01 d. ed that contains the ed commands to change 
chap2 back into the version of the text found in chap2. old. In most cases, 
new. to. old. ed is a much smaller file than chap2. old. You can save disk space by 
deleting ch ap2 .01 d, and you can reconstruct it at any time by entering: 

(cat new.to.old.ed ; echo II,$pl) I ed chap2 >chap2.01d 

The commands in parentheses add I, $p to the end of the editing commands sent to ed. 
The 1, $p causes ed to write the file to standard output after editing it. This modified 
command sequence is then piped to ed (I ed), and the editor reads it as standard input. 
The - flag causes ed not to display the file size and other extra information since it 
would be mixed with the text of chap2. 01 d. See page 931 for details about grouping 
commands with parentheses. 

Commands 321 



diff 

Files 

Itmp/d????? 
lusr IIi b I diffh 

Temporary files. 
For the -h flag. 

Related Information 

322 

The following commands: "bdiff"on page 102 "cmp" on page 177, "comm" on page 183, 
"ed" on page 371, and "sdiff" on page 883. 



diff3 

diff3 

Purpose 

Compares three files. 

Syntax 

diff3 -Vn~eOf fi/e1- fi/e2 - fi/e3 ~ 
-x 
-3 

Description 

OL805053 

The diff3 command reads three versions of a file and writes to standard output the ranges 
of text that differ, flagged with the following codes: 

= = = = All three files differ. 
= = = = 1 filel differs. 
= = = = 2 file2 differs. 
= = = = 3 file3 differs. 

The type of change needed to convert a given range of a given file to match another file is 
indicated in one of these two ways in the output: 

file nl a 

file nl[,n2] c 

Text is to be added after line number nl in file, where file is 1, 2, or 
3. 

Text in the range line nl to line n2 is to be changed. If nl = n2, 
the range may be abbreviated to nl. 

The original contents of the range follows immediately after a c indication. When the 
contents of two files are identical, diff3 does not show the contents of the lower-numbered 
file, although it shows the location of the identical lines for each. 

Notes: 

1. Editing scripts produced by the -e flag cannot create lines consisting only of a single 
period (.). 

2. The diff3 command does not work on files longer than 64K bytes. 

Commands 323 



diff3 

Flags 

-e Creates an edit script for use with the ed',command to incorporate into filel all 
changes between file2 and file3 (that is, the changes that normally would be flagged 
= = = = and = = = = 3). 

-x Produces an edit script to incorporate only changes flagged = = = =. 

-3 Produces an edit script to incorporate only changes flagged = = = = 3. 

Example 

324 

To list the differences among three files: 

diff3 fruit.a fruit.b fruit.c 

If frui t. a, frui t. b, and frui t. c contain the following data: 

fruit.a fruit.b fruit.c 
banana apple grape 
grape banana grapefruit 
ki wi grapefruit kiwi 
lemon kiwi lemon 
mango orange mango 
orange peach orange 
peach pear peach 
pare pear 

then the output from diff3 shows the differences between these files as follows. (The 
comments on the right do not appear in the output.) 

---- • All three files are different. 
1: 1, 2c - Lines 1 and 2 of the first file, frui t. a 

banana 
grape 

2 : 1 , 3 c - Lines 1 through 3 of f r u it. b 
apple 
banana 
grapefruit 

3: 1, 2c - Lines 1 and 2 of frui t. c 
grape 
grapefruit 

====2, • The second file, frui t. b, is different. 



Files 

1:4,5c 
2:4a 
3:4,5c 

lemon 
mango 

- Lines 4 and 5 are the same in frui t. a and frui t. c. 
- To make frui t. b look the same, add text after line 4. 

====1 • The first file, frui t. a, is different. 
1:8c 

pare 
2: 7 c - Line 7 of fruit.b and line 8 of fruit.c are the same. 
3:8c 

pear 

/tmp/d3* 
/usr/lib/diff3prog 

Related Information 

The following command: "difr' on page 320. 

diff3 

Commands 325 



diffmk 

diffmk 

Purpose 

Marks differences between files. 

Syntax 

diffmk 
-b 
-ab X 
-ae X 
-cb X 
-ce X 
-db X 
-de X 

file1 - file2 ;-----\ , 
~file3F 

OL805057 

Description 

Flags 

326 

The diffmk command compares filel and file2 and creates a third file that includes change 
mark commands for the nroff and troff commands. filel and file2 are the old and new 
versions of the file. diffmk writes the newly created file to file3, if specified, or to 
standard output. This file contains the lines of file2 with formatter change mark (.me) 
requests inserted as appropriate. When file3 is formatted, the changed or inserted text is 
marked by a I (vertical bar) at the right margin of each line. An * (asterisk) in the margin 
indicates that a line was deleted. 

If the environment parameter DIFFMARK is defined, it names a command string that 
diffmk uses to compare the files. (Normally, diffmk uses the dirf command.) For 
example, you might set DIFFMARK to di ff -h in order to better handle extremely large 
files. 

-abX 

-aeX 

-b 

-cbX 

Uses X to mark where added lines begin. 

Uses X to mar k where added lines end. 

Ignores differences that are only changes in tabs or spaces on a line. 

Uses X to mark where changed lines begin. 



diffmk 

-ceX Uses X to mark where changed lines end. 

-dbX Uses X to mark where deleted lines begin. 

-deX Uses X to mark where deleted lines end. 

Examples 

1. To mark the differences between two versions of a text file: 

diffmk chapl.old chapl > chapl.nroff 

This produces a copy of chapl containing nroff/troff change mark commands to 
identify text that has been added to, changed in, or deleted from ch ap 1.01 d. This 
copy is saved in the file chapl. nroff. 

2. To mark differences with non-nroff/troff messages: 

diffmk -ab'»New:' -ae'«End New' chapl.old chapl >chapl.nroff 

This causes diffmk to write> >New: on the line before a section of new lines that have 
been added to chapI and to write «End New on the line following the added lines. 
Changes and deletions still generate nroff/troff commands to put a 1 or * in the 
margin. 

3. To use different nroff/troff marking commands and ignore changes in white space: 

diffmk -b -cb' .mc %' chapl.old chap 1 > chapl.nroff 

This imbeds commands that mark changes with %, additions with I, and deletions with 
*. It does not mark changes that only involve a different number of spaces or tabs 
between words (- b). 

Related Information 

The following commands: "diff" on page 320, "nroff, troff" on page 709, and "troff" on 
page 710. 

Commands 327 



dircmp 

dircmp 

Purpose 

Compares two directories and the contents of their common files. 

Syntax 

dircmp ~ directory1 - directory2 ---I 
-d 
-s 

OL805004 

Description 

Flags 

The dircmp command reads directoryl and directory2 and writes information about their 
contents to standard output. First, dircmp compares the file names in each directory. 
When the same file name appears in both, dircmp compares the contents of both files. 

In the output, dircmp lists the files unique to each directory. It then lists the files with 
identical names in both directories, but with different contents. With no flag, it also lists 
files that have identical contents as well as identical names in both directories. 

-d Displays for each common file name both versions of the differing file lines. The 
display format is the same as that of "diff" on page 320. 

-8 Does not list the names of identical files. 

Examples 

328 

1. To summarize the differences between the files in two directories: 

dircmp proj.verl proj.ver2 

This displays a summary of the differences between the directories proj. verI and 
proj . ver2. The summary lists separately the files found only in one directory or the 
other, and those found in both. If a file is found in both directories, dircmp notes 
whether or not the two copies are identical. 



2. To show the details of the differences between files: 

dircmp -d -5 proj.verl proj.ver2 

dircmp 

The -8 flag suppresses information about identical files. The -d flag displays a diff 
listing for each of the differing files found in both directories. 

Related Information 

The following commands: "cmp" on page 177 and "diff" on page 320. 

Commands 329 



diskusg 

diskusg 

Purpose 

Generates disk accounting data by user ID. 

Syntax 

-P/etc/PaS~Wd 

diskusg i-~ . ?-C-Pfile ~~~i~; ~file 
-I fnmllst -v ~ ~ 

'------' 

OLS05402 

Description 

Flags 

330 

The diskusg command generates intermediate disk accounting information from data in 
files or from standard input if you do not specify any files. diskusg writes lines to 
standard output, one per user, in the following format: 

uid login #b locks 
where: 

uid 
login 
#blocks 

Is the numerical user ID of the user 
Is the login name of the user; and 
Is the total number of disk blocks allocated to this user. 

The diskusg command normally reads only the i-nodes of file systems for disk accounting. 
In this case, files are the special file names of these devices. 

Note: This command is for local devices only. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

-i fnmlist Ignores the data on those file systems with a file system name in fnmlist. 
fnmlist is a list of file system names separated by commas or enclosed within 
quotation marks. diskusg compares each name in this list with the file 
system name stored in the volume ID. 



-p file 

-s 

-u file 

-v 

Uses file as the name of the password file to generate login names. 
/etc/passwd is used by default. 

diskusg 

Combines all lines for a single user into a single line. (The input date is 
already in diskusg output format.) 

Writes records to file of files that are charged to no one. Records consist of 
the special file name, the i-node number, and the user ID. 

Writes a list to standard error of all files that are charged to no one. 

The output of diskusg is normally the input to acctdisk, which generates total accounting 
records that can be merged with other accounting records. diskusg is normally run in 
dodisk (see "acct/*" on page 13). 

Examples 

Files 

The following will generate daily disk accounting information: 

for i in /dev/hdO /dev/hd1 /dev/hd2 /dev/hd3 
do 

diskusg $i > dtmp. 'basename $i I & 
done 
wait 
diskusg -s dtmp.* sort +On +1 acctdisk > dacct 

/etc/passwd U sed for user ID to login name conversions. 

Related Information 

The following commands: "acct/*" on page 13, "acctcms" on page 18, "acctcom" on 
page 20, "acctcon" on page 24, "acctmerg" on page 28, "acctprc" on page 30, "fwtmp" 
on page 457, and "runacct" on page 848. 

The acct system call and the acct and utmp files in A/X Operating System Technical 
Reference. 

The discussion of accounting in Managing the A/X Operating System. 

Commands 331 



display 

display 

Purpose 

Selects the physical display that an existing or new virtual terminal uses and sets colors 
and fonts. 

Syntax 

display 

-m -t 

addr -size 

® 
OL805442 

Description 

332 

The display command changes the physical display assigned to the current virtual 
terminal or assigns a default display to be used when you open a virtual terminal. It also 
sets the foreground and background colors, the active color palette, and the active and 
alternate fonts on the current display. The display parameter can be one of the following 
names: 

pcmono 

egamono 

ega col 

advmono 

advcol 

extmono 

megapel 

PC Monochrome Adapter and Display 

Enhanced Graphics Adapter and PC Monochrome Display 

Enhanced Graphics Adapter and Display 

Advanced Monochrome Graphics Adapter and Display 

Advanced Color Graphics Adapter and Display 

Extended Monochrome Graphics Adapter and Display 

IBM Megapel Display Adapter and IBM 5081 Display Models 16 and 19. 



Flags 

display 

You can request only those displays that are actually installed on the system. If you have 
more than four, only four will be displayed on the -c and -d menus. Before display makes 
any changes, it checks all arguments for errors and, if it encounters one, displays a list of 
valid arguments and exits. 

Note: You must insure that the TERM shell variable contains the proper value for 
whatever the current display is. See "termder' on page 1062 and the term info file in 
AIX Operating System Technical Reference for a list of these values. 

-b [color] 

-c [display] 

-d [display] 

-f [color] 

-m [addr size] 

Selects the background color. The color parameter is an integer 
from 1 to 8 for the Enhanced Graphics Display and from 1 to 16 for 
other color graphics displays. These values correspond to the first 
eight or sixteen entries in the active color palette (see the -p flag). 
For example, -b 5 selects the fifth entry. If you do not specify a 
number, display lists the palette of active background colors and 
prompts you to select a number for the new background color. 

Changes the display used by the current virtual terminal. 

If you do not specify a display, you are given a menu of available 
options. This menu consists of a numbered list of display names and 
descriptions. The display number reflects the number of physical 
displays installed and their relative positions in the Real Screen 
Table. The current default is always display number 1 in this list. 
Changing the default alters the display number associated with each 
physical display. If the virtual terminal does not know the 
display/adapter combination, the Name column will contain the 
words Un known Di sp 1 ay or ????? A prompt at the bottom of the 
display list asks you to enter the new display number for the current 
or default display setting. Whenever you change the current display, 
the screen of that display clears. 

Changes the default display used when a virtual terminal is opened. 
If you do not specify a display, you are given a menu of available 
options (see the -c flag). 

Selects the foreground color. The color parameter is an integer from 
1 to 16. These values correspond to the first sixteen entries in the 
active color palette (see the -p flag). If you do not specify a color 
number, display lists the palette of active foreground colors and 
prompts you to select a number for the new foreground color. 

Changes the DMA pinned page at the specified starting address to 
size 256K blocks. If you do not specify an address and a size, the 
current starting address and size is displayed. 

Commands 333 



display 

-p [file] Changes the active color palette. The optional file parameter is the 
full path name to a file that contains a list of colors for the current 
display, one color per line, where each color is the decimal 
representation of the 32-bit color value. The color palette file can 
a.lso contain blank lines and comment lines (a comment line must 
begin with a * character in column one). Each supported display 
has a corresponding color file which contains its default active color 
palette. The name of this file is /etc/vtm/pal.name where name is 
the display name described on page 332. This is the default value for 
the file parameter. 

-t [font [,font] ... ] Selects the primary and active alternate fonts for the current virtual 
terminal on the current display. The first font named in the optional 
list following -t will be the primary font. The remaining fonts will 
be alternates, in the order listed, for the active font table. If you do 
not specify eight font IDs, the first font will be used to fill out in the 
remaining entries in the active font table. 

Notes: 

1. All of the fonts in the list must be of the same size. 

2. Some applications that use the term info file expect the italic 
font to be the first alternate and the bold font to be the second 
alternate fonts (see the terminfo file in A/X Operating System 
Technical Reference for more information). 

If you do not specify any fonts, all of the fonts available for the 
current display will be listed, and you will be prompted first for the 
desired primary font ID and then for alternate font IDs until you 
enter F. As you enter alternate fonts, the display command checks 
that they are the same size as the new primary font. If you enter 
fewer than eight fonts, the primary font will be repeated in the 
remaining entries of the active font table. 

You can specify combinations of the same flags on a single command line. display 
processes -c and -d flags first. If you specify -c, you will see the message Changi ng to 
current di sp 1 ay ... " and the current display will be changed. Any menu interface for 
the color or font parameters will be displayed there. A -p flag will be processed next. The 
screen will be immediately redrawn with the colors from the new color palette. Then any 
foreground, background, or font flags will be processed. 

Examples 

334 

1. To change the current virtual terminal display: 

display -c egamono 



display 

This changes the display to the Enhanced Graphics Adapter and PC Monochrome 
Display. 

2. To make the Advanced Color Graphics Display the default virtual terminal display: 

display -d advcol 

3. To change both the current and the default displays: 

display -c pcmono -d egacol 

This makes the PC Monochrome Adapter and Display the current display and makes 
the Enhanced Graphics Adapter and Display the default display. 

4. To change the active color palette for the current display: 

display -p /u/new/palette 

Related Information 

The following commands: "open" on page 728 and "termdef" on page 1062. 

The terminfo file in AIX Operating System Technical Reference. 

"U sing Display Station Features" in IBM RT Using the AIX Operating System and 
"Managing Display Station Features" in IBM RT Managing the A/X Operating System. 

The default color palettes in Virtual Resource Manager Technical Reference. 

Commands 335 



dist 

dist 

Purpose 

Redistributes a message to additional addresses. 

Syntax 

dist 

_--cur--__ 

one of 
num 
sequence 
first 
prey 

cur 

next 
last 

-noonnotate 

one of 
-annotate 
-noannotate 

-nodraftfolder _______________________ ___ 

one of _---new 
-draftfolder + folder -draftmessage 
-draftfolder + folder one of 

sequence next 
-draftmessage num 

first last 
prey new 
cur 

one of one of 
-editor cmd 
-noedlt 

-whatnowproc cmdstring 
-nowhatnowproc 

dist - -help ----i 

336 

AJ2FL242 

AJ2FL157 

AJ2FL243 



dist 

Description 

Flags 

The dist command is used to redistribute messages to a new list of addresses. dist is part 
of the MH (Message Handling) package and can be used with other MH and AIX 
commands. 

By default, dist copies a message form to a new draft message and invokes an editor. You 
can then fill in the message header fields Resent-To: and Subject: and fill in or delete the 
other header fields (such as Resent-ee: and Resent-Bee:). Since the body of the message 
will be the message you are redistributing, do not fill in the body. dist does not 
automatically display the body of the message. When you exit the editor, the dist 
command invokes the MH command whatnow. You can press Enter to see a list of the 
available whatnow subcommands. These subcommands enable you to continue editing the 
message header, list the message header, direct the disposition of the message, or end the 
processing of the dist command. "whatnow" on page 1215 describes the subcommands. 

When you send the draft message, the recipients are sent the headers and body of the 
original message appended to the new message. dist does not automatically store a copy of 
the original message with the new draft message. The draft message you create using the 
dist command consists of header fields only. 

You can specify the message that you want to distribute by using the + folder msg flag. If 
you do not specify a message, dist redistributes the current message. 

You can specify the format, of the message header by using the -form flag. If you do not 
specify this flag, dist uses your default message format located in the file 
user -mh-directory/disteomps. If this file does not exist, dist uses the system default 
message format located in /usr/lib/mh/disteomps. dist prepends the form to the message 
being redistributed. 

Note: The line of dashes or a blank line must be left between the header and the body of 
the message for the message to be identified when it is sent. 

-annotate Annotates the message being redistributed with the lines: 

Resent: date 
Resent: addrs 
The annotation appears in the original draft message so that 
you can maintain a complete list of recipients with the 
original message. If you do not actually redistribute the 
message using the immediate dist command, the -annotate 
flag may fail to provide annotation. The -inplaee flag forces 
annotation to be done in place. 

Commands 337 



dist 

-draftfolder + folder 

-draftmessage msg 

-editor cmd 

+folder msg 

-form file 

-help 

-inplace 

-noannotate 

-nodraftfolder 

-noedit 

-noinplace 

338 

Places the draft message in the specified folder. If you do not 
specify this flag, dist selects a default draft folder according to 
the information supplied in the MH profiles. You can define a 
default draft folder in $HOME/ .mh-profile. If 
-draftfolder + folder is followed by msg, msg represents the 
-draftmessage attribute. 

Specifies the draft message. You can specify one of the 
following message references as msg: 

num 
prey 
next 

sequence 
cur 
last 

first 

new 

The default draft message is new. If you specify a draft 
message, that message becomes the current message. 

Specifies that cmd is the initial editor for preparing the 
message for distribution. If you do not specify this flag, dist 
selects a default editor or suppresses the initial edit, according 
to the information supplied in the MH profiles. You can 
define a default initial editor in $HOME/.mh-profile. 

Redistributes the specified message in the specified folder. You 
can specify one of the following message references as msg: 

num sequence first 
pre v cur 
next last 

The default message is the current message in the current 
folder. If you specify a folder, that folder becomes the current 
folder. 

Prepends the form contained in the specified file to the 
message being resent. dist treats each line in file as a format 
string. 

Displays help information for the command. 

Forces annotation to be done in place in order to preserve 
links to the annotated message. 

Does not annotate the message. This flag is the default. 

Places the draft in the file user -mh-directory /draft. 

Suppresses the initial edit. 

Does not perform annotation in place. This flag is the default. 



dist 

-nowhatnowproc Does not invoke a program that guides you through the 
distribution tasks. The -nowhatnowproc flag also prevents 
any edit from occurring. 

-whatnowproc cmdstring Invokes cmdstring as the program to guide you through the 
distribution tasks. See "whatnow" on page 1215 for 
information about the default whatnow program and its 
subcommands. 

Note: If you specify whatnow for cmdstring, dist invokes an 
internal whatnow procedure rather than a program with the 
file name whatnow. 

Profile Entries 

Files 

Current-Folder: 
Draft-Folder: 
Editor: 
fileproc: 
Path: 
w hatnowproc: 

Sets your default current folder. 
Sets your default folder for drafts. 
Sets your default initial editor. 
Specifies the program used to refile messages. 
Specifies your user -mh-directory. 
Specifies the program used to prompt What now? questions. 

/usr /lib/mh/ distcomps The system default message skeleton 
user -mh-directory / distcomps 

$HOME/.mh-profile 
user -mh-directory/draft 

The user's default message skeleton. (If it exists, it 
overrides the system default message skeleton.) 
The MH user profile. 
The draft file. 

Related Information 

Other MH commands: "ali" on page 48, "anno" on page 50, "comp" on page 185, "forw" 
on page 438, "prompter" on page 778, "refile" on page 817, "repl" on page 821, "send" 
on page 893, "whatnow" on page 1215. 

The mh-alias, mh-format, mh-mail, and mh-profile files in AIX Operating System 
Technical Reference. 

"Overview of the Message Handling Package" in Managing the AIX Operating System. 

Commands 339 



domainname 

domainname 

Purpose 

Sets or displays the name of the current Yellow Pages (YP) domain. 

Syntax 

domainname ~ 
~domainr 

OL805481 

Description 

File 

340 

The domainname command displays the name of the current YP domain. If you have 
superuser authority, you can also use this command to set the name of the domain. 

A domain is a group of host machines in the network. The name of the domain typically 
is set in /etc/rc.nfs file. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

/etc/rc.nfs The NFS startup shell script. 



dos 

dos 

Purpose 

Starts shell. 

Syntax 

dos 

tyneOf 

-v 
-x 

OL805330 

Description 

The dos command starts a DOS emulation environment. It interprets DOS commands and 
runs programs that can use the routines that simulate DOS run-time behavior. (For more 
information on these routines and this environment, see DOS Services Reference and 
Installing and Customizing the AIX Operating System.) 

When you enter dos, a DOS environment file is created from the process environment. 
(For details on how this is done, see dosinit in AIX Operating System Technical Reference.) 
Upon invocation, dos sets the current drive to A or the first valid drive. The environment 
variable DOSDISK can be set to define the default current drive (B, C, D, and so on). 

The file parameter specifies a dos batch file to be run. file must have the extension .bat or 
.BAT. 

If the current DOS Services directory contains the batch file autoexec.bat or 
AUTOEXEC.BAT, then DOS Services initially reads and runs commands from this file. 

Commands 341 



dos 

342 

DOS commands are either built-in (to the dos command itself), or they are external. 
External commands reside in the /usr/dos/bin directory. Normally, the search order for 
commands that you enter is as follows: 

• The directory /usr/dos/bin 
• The working directory 
• Each directory in the dos path. 

When you enter a command, dos searches each directory for a file with a name composed 
of the command name and either the extension .BAT, the extension .bat, or no extension. 
If the file has the extension .BAT or .bat, it runs as a batch file. Otherwise, it runs as an 
AIX program. If it is an AIX program, it can be either a compiled program or a shell file. 
In either case you must have execute access to it. 

The dos command supports two types of file systems: AIX file systems and DOS file 
systems. Each dos minidisk can contain either an AIX-formatted file system or a 
DOS-formatted file system. However, diskette drives (such as /dev/fdO) may contain only 
DOS-formatted file systems, unless the device is mounted as an AIX file system before you 
invoke dos. 

Warning: Only one user or process at a time can access a dos file system. 
If a dos file system resides on a minidisk, two or more users may attempt 
to access the minidisk at the same time. Because dos has no way to warn 
you that another process is using a minidisk, you should allocate minidisks 
containing dos file systems on a per-user basis. 

If a coprocessor on the system accesses a dos-formatted minidisk at the 
same time as an RT process,' there is no conflict because only the first 
process has read/write privileges. Subsequent opens at the device level are 
limited to read-only access. 
There are different restrictions for file names on DOS drives and AIX drives. For 
DOS Services drives: 

• File names cannot be longer than 12 characters. 
• The name is always stored in uppercase. 
• All files in the directory must have unique names. 
• There can be only one period in a file name. 

For AIX file systems: 

• File names cannot be longer than 14 characters. 
• Names may contain either uppercase or lowercase letters. 
• Two files in the same directory can have the same name if the letter case is different. 
• There can be more than one period in a file name. 
• All files in the directory must have unique names. 

On AIX drives, file names that begin with a period specify hidden files. On DOS Services 
drives, hidden files have a bit set in the attribute byte of the file directory. 



dos 

There are differences between AIX and DOS Services file formats. AIX ASCII files and 
DOS Services ASCII files are similar and can be converted from one format to the other. 
Two new commands, FILE TYPE and CONVERT, are available for detecting and changing 
a file format. 

DOS Services Commands and Programs 

There are several differences between the set of supported DOS Services commands and 
DOS commands. 

Unsupported DOS Commands and Programs 
You can use all of the standard DOS commands except BREAK, CTTY, EDLIN, 
EXE2BIN, GRAPHICS, and SYS. 

Modified DOS Commands 
The following DOS Services commands behave differently than the corresponding standard 
DOS commands: 

backup 

chdir 

date 

dir 

format 

label 

mode 

print 

The 1M parameter is not valid for DOS Services file systems. 

Unlike DOS, DOS Services may not allow you to change to the highest 
directory in the file system. 

This command lets only the superuser change the date. 

Does not list file-name extensions in a separate column when executed on an 
AIX drive. 

The IB is not supported. Two additional flags, IU and IH are supported. Use 
the IU flag to format a AIX diskette. Use the IH flag to format a fixed disk to 
contain DOS Services file systems in a single partition. 

Note: The format command makes use of the mksf command, which in turn 
uses the letc/fllesystems file. If you modify this file, it will affect the 
format command. 

On an AIX-formatted drive, the label is written to a file called LABEL. VOL. 
Reading a label is accomplished by reading this file. Changing a label 
modifies the contents of this file. 

Note: The command del *.* deletes the volume label. 

Only option 3 (for an asynchronous communications adapter) is supported. 

The DOS Services version does not ask you which device to store the print 
queue on. This information is set up in your user profile. 

The IB, D, M, IS, IQ, and IU configuration flags are not supported. 

Commands 343 



dos 

Flags 

Files 

set A IU flag lets you display the AIX environment as it is inherited by the dos 
command. You can change the environment variables internal to dos. When 
you exit from dos, the environment variables remain unchanged. 

time Allows only the superuser to change the time. 

Additional Commands 
In addition to DOS commands, the following commands are available: 

COMMAND The new flags which have been added to dos also apply to this command. 

CONVERT Converts a DOS format ASCII file to an AIX format ASCII file or an AIX 
format ASCII file to a DOS format ASCII file. 

ed Starts the line editor. 

EXIT Ends DOS Services. You can also use END OF FILE (Ctrl-D). 

FILE TYPE Attempts to determine the format (AIX or DOS) and contents of the 
specified file. 

shutdown Provides for an orderly exit from the system. 

-a 

-c cmd 

-n 

-v 

-x 

Does not run the AUTOEXEC.BAT file. 

Runs the specified command. 

Reads commands but does not run them. 

Displays the commands and their flags as they are read. 

Displays the commands and their flags as they are run. 

/usr/dos/bin/* 
AUTOEXEC.BAT 
autoexec.bat 

DOS Services external commands. 
Batch file that can run commands automatically. 
Batch file that can run commands automatically. 

Related Information 

344 

The following commands: "dosdel" on page 345, "dosread" on page 348 and "doswrite" 
on page 350. 

The dosinit subroutine in AIX Operating System Technical Reference. 

The discussion of dos in Using DOS Services and DOS Services Reference. 



dosdel 

dosdel 

Purpose 

Deletes DOS files. 

Syntax 

dOSd.l~ -v . 0 !ile ---r 
1] -Ddevlce r 

OL805108 

Description 

Flags 

The dosdel command deletes the DOS file specified by file. Use the -v flag to obtain 
format information about the disk. 

File-naming conventions are those of DOS, with one exception. doswrite replaces the \ 
(backslash) character used to separate components of a DOS path name with the I (slash) 
because the backslash can have special meaning to AIX. dosdel converts lowercase 
characters in the filel name to uppercase before it checks the disk. Because all file names 
are assumed to be full (not relative) path names, you need not add the initial / (slash). 

-D device Specifies a device or file system to use as the DOS disk. If you do not specify 
this flag the default device is /dev /fdO. 

-v Writes format information about the disk. Use primarily to verify the identify 
of a disk or file system as a DOS disk. 

Related Information 

The following commands: "dos" on page 341, "dosdir" on page 346, "dosread" on 
page 348, and "doswrite" on page 350. 

The pcdos subroutine in AIX Operating System Technical Reference. 

Commands 345 



dosdir 

dosdir 

Purpose 

Lists the directory for DOS files. 

Syntax 

• -{ ~-D/deV/fdOr dosdlr 
-0 

-I -t -D device 
-e -d 

OL805358 

Description 

Flags 

346 

The dosdir command displays information about the specified DOS file or directory (the 
current directory by default). If you specify a directory without also specifying the -d flag, 
dosdir displays information about the files in that directory. 

File-naming conventions are those of DOS, with one exception. dosdir replaces the \ 
(backslash) character used to separate components of a DOS path name with a / (slash) 
because the backslash can have special meaning to the AIX Operating System. dosdir 
converts lowercase characters in the file or directory name to uppercase before it checks 
the disk. Because all file names are assumed to be full (not relative) path names, you need 
not add the initial I (slash). 

-a 

-d 

Writes information about all files. This includes hidden and system files as 
well as the. (dot) and .. (dot dot) files. 

Treats file as a file, even if it is a directory. If a directory is specified, 
information about the directory is listed rather than information about the 
files it contains. 



dosdir 

-D [device] Specifies a device or file system to use as the DOS disk. If you do not specify 
this flag the default device is /dev/fdO. 

-e Uses the -I flag to write the list of clusters allocated to the file. 

-1 Produces a long list that includes the creation date, size in bytes, and 
attributes. The size of a subdirectory is specified as 0 bytes. The attributes 
have the following meanings: 

A Archive - the file has not been backed up since it was last modified. 
D Directory - the file is a subdirectory, and is not included in the normal 

DOS directory search. 
H Hidden - the file is not included in the normal DOS directory search. 
R Read-only - the file cannot be modified. 
S System - the file is a system file, and is not included in the normal DOS 

directory search. 

-t Lists the entire directory tree starting at the named directory. 

-v Writes information about the format of the disk. 

Related Information 

The following commands: "dosdel" on page 345, "dosread" on page 348, and "doswrite" 
on page 350. 

The pcdos subroutine in AIX Operating System Technical Reference. 

Commands 347 



dosread 

dosread 

Purpose 

Copies a DOS file. 

Syntax 

dosread 
-O/deV/fdo)- -c:r 

file1 

-Ddevice file2 

OL805111 

Description 

348 

The dosread command copies the specified DOS filel to standard output or to the specified 
AIX file2 (by default the root directory). Unless otherwise specified, dosread copies as 
many bytes as are specified in the directory entry for filel. This means, in particular, that 
copying directories does not work, since directories by convention have a record size of O. 

File-naming conventions are those of DOS, with one exception. dosread replaces the \ 
(backslash) character used to separate components of a DOS path name with a / (slash) 
because the backslash can have special meaning to the AIX Operati~g System. dosread 
converts lowercase characters in the filel name to uppercase before it checks the disk. 
Because all file names are assumed to be full (not relative) path names, you need not add 
the initial / (slash). 

Notes: 

1. Wild card characters (* and ?) are not treated in a special way by this command 
(although they are by the shell). If, for example, you do not specify a file-name 
extension, the file name is matched as if you had specified a blank extension. 

2. This command must be named dosread. 



Flags 

dosread 

-a Replaces the sequence CR-LF (carriage return-line feed) with NL (new-line 
character) and interprets a Ctrl-Z (ASCII SUB) as the end-of-file character. 

-D device Specifies the name of the DOS device or file system. The default device is 
/dev/fdO. This device must have the DOS-disk format. 

-v Writes information to the standard output about the format of the disk. Use 
this flag to verify that a device or file system is a DOS disk. 

Examples 

Files 

1. To copy a text file from a DOS diskette to the AIX file system: 

dosread -a chapl.doc chapl 

This copies the DOS text file \CHAPI. DOC on /dev/fdO to the AIX file chapl in the 
current directory. 

2. To copy a binary file from a fixed-disk DOS file system to the AIX file system: 

dosread -D/dev/hdl /survey/test.dta /u/fran/testdata 

This copies the DOS data file \SURVEY\TEST. OTA on /dev/hdl to the AIX file 
/ u/ fran/tes tdata. 

/dev/fdO Device name for diskette drive. 

Related Information 

The following commands: "dosdel" on page 345, "dosdir" on page 346, and "doswrite" on 
page 350. 

The pcdos subroutine in AIX Operating System Technical Reference. 

Commands 349 



doswrite 

doswrite 

Purpose 

Copies AIX files to DOS files. 

Syntax 

doswrite 
-D/dev/fdO J-

file1- file2 --l 
-Dfilesystem 

OL805112 

Description 

Flags 

350 

The doswrite command copies the specified AIX filel to the specified DOS file2. If file2 
contains a /, each intervening component must exist as a directory and the last component 
(the named file), must not exist. 

File-naming conventions are those of DOS, with one exception. doswrite replaces the \ 
(backslash) character used to separate components of a DOS path name with the / (slash) 
because the backslash can have special meaning to AIX. doswrite converts lowercase 
characters in the filel name to uppercase before it checks the disk. Because all file names 
are assumed to be full (not relative) path names, you need not add the initial / (slash). 

Notes: 

1. Wild card characters (* and ?) are not treated in a special way by this command 
(although they are by the shell). If, for example, you do not specify a file-name 
extension, the file name is matched as if you had specified a blank extension. 

2. This command must be named doswrite. 

-a Replaces NL (new-line characters) with the sequence CR-LF (carriage 
return-line feed). Ctrl-Z is added to the output at the end of file. 

-D filesystem Specifies the name of the DOS device or file system. The default device is 
/dev /fdO. This device must have the DOS-disk format. 

-v Writes information to the standard output about the format of the disk. 
Use this flag to verify that a device or file system is a DOS disk. 



doswrite 

Examples 

File$ 

1. To copy a text file from the AIX file system to a DOS diskette: 

doswrite -a chapl chapl.doc 
This copies the AIX file C hap 1 in the current directory to the DOS text file 
\CHAPI. DOC on /dev/fdO. 

2. To copy a binary file from the AIX file system to a fixed-disk DOS file system: 

doswrite -O/dev/hdl /u/fran/testdata /survey/test.dta 
This copies the AIX data file /u/fran/testdata to the DOS file \SURVEY\TEST. OTA 
on /dev/hdl. 

/dev/fdO Device name for diskette drive. 

Related Information 

The following commands: "dosdir" on page 346, "dosread" on page 348, and "dosdel" on 
page 345. 

The pcdos subroutine in AIX Operating System Technical Reference. 

Commands 351 



dp 

dp 

Purpose 

Parses and reformats dates. 

Syntax 

/usr/lib/mh/dp one of 

-form file -width num 
-format string 

/usr/lib/mh/dp- -help---1 
AJ2FL227 

Description 

Flags 

352 

The dp command is used to parse and reformat dates. dp is not designed to be run directly 
by the user; it is designed to be called by other programs. The dp command is typically 
called by its full path name. The dp command is part of the MH (Message Handling) 
package. 

The dp command parses each string specified as a date and attempts to reformat the string. 
The default output format for dp is the ARPA RFC822 standard. For each string it is 
unable to parse, dp displays an error message. 

-form file Reformats the given dates into the alternate format described in file. 

-format string Reformats the given dates into the alternate format specified by string. 

-help 

-width num 

The default format string is: 

%«nodate{date})error:%{date}%I%(putstr(pretty{date})) %> 
Displays help information for the command. 

Sets the maximum number of columns that dp uses to display dates and 
error messages. The default is the width of the display. 



Files 

$HOME/.mh_profile The MH user profile. 

Related Information 

The MH command "ap" on page 53. 

The mh-format a~d mh-profile files in AIX Operating System Technical Reference. 

"Overview of the Message Handling Package" in Managing the AIX Operating System. 

dp 

Commands 353 



dsipc 

dsipc 

Purpose 

Installs the Interprocess Communication key mapping in the kernel. 

Syntax 

dsipc--I 
OL805461 

Description 

The dsipc command replaces all IPC key mapping currently in the kernel with new 
mapping from the profile database. The dsipc command is usually called, at system startup 
time, by /etc/rc.include to update the Distributed Services kernel. To use dsipc command 
from the command line, you must be a member of the system group or have superuser 
authority (see "su" on page 1026). 

Related Information 

"Using Distributed Services" in Managing the AIX Operating System. 

354 



dsldxprof 

dsldxprof 

Purpose 

Loads translate information into the UIDIGID translate profiles. 

Syntax 

dsldxprof 

OL805460 

Description 

The dsldxprof command loads translate information from a file into the UID/GID translate 
profiles. Each line in the file contains a row of translate information in the following 
format: 

UsrlGrp-name UIG Local-id Outbound-id Inbound-id Originating-node 
This format is the same as the translate information from the Network Users/Groups 
Table. You must specify the UIO, LocaLid, and either the Inbound-id or Outbound-id 
fields. If you specify the Inbound-id field, the Originating-node field must also be 
specified. Data entered after the Originating Nickname/Node ID is treated as a comment 
and ignored. A - (hyphen) is placed in unused fields as a place holder. 

The dsldxprof command reads a line of data from the file. If a line begins with a * 
(asterisk), it is a comment line. Comment lines are ignored and the next line is read. If 
the line is not a comment line, dsldxprof validates the data and loads the data into 
profiles. Translate rows are rejected due to improper syntax or incorrect values, or they 
may conflict with translate rows already in the profiles. A translate row is in conflict if 
there is an existing row in the profiles with a matching UfO, LocaLid, Inbound-id, and 
Originating-node, or if there is an existing row in the profiles with a matching UfO, 
LocaLid, and Outbound-id, or both. If there is conflict, you are prompted to replace or 
reject the conflicting row. Rejected rows are written to standard error along with the 
information on why they are rejected. 

To delete a translate row from the profiles, precede an identical row in the file with ##. 

To use dsldxprof command, you must be a member of the system group or have superuser 
authority (see "su" on page 1026). 

Commands 355 



dsldxprof 

Flags 

Files 

-a 

-d 

Places all rows that are in conflict into the profiles without prompting. 

Deletes the pfsuidgid profile and then recreates it without any entries. This 
option is handled before the -f option if both exist. 

-f filename Reads translate information from filename. 

-D nodename Updates translate profiles on the remote node nodename. 

-r 

pfsuidgid 
. pfsuidgid 

Rejects all conflicting rows without prompting. 

Contains translate information. 
Contains indexes defined for pfsuidgid . 

Related Information 

356 

The discussion on distributed services (which includes information on the Network 
Users/Groups Table) and the discussion on using the dsldxprof command in Managing the 
AIX Operating System. 



dspcat 

Purpose 

Displays all or part of a message catalog. 

Syntax 

dspcat - cotnome 

dspcat - -9 -cotnome· I\. I 

~setnumr 

Description 

dspcat 

OL805482 

Use dspcat to display a particular message, all of the messages in a set, or all of the 
messages in a catalog. The syntax for dspcat is: 

$ dspcat catname [set-numJ [msg-numJ 

catname specifies a message catalog, set-num specifies a set in the catalog, and msg-num 
specifies a particular message in the set. If you include all three parameters, dspcat 
displays a particular message. If you do not include msg-num or the msg- is in error, all 
the messages in the set are displayed. If you specify a nonexistent set-num, all messages in 
the catalog are displayed. If you specify only catname, all the messages in the catalog are 
displayed. You must include set-num if you include msg-num. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

Commands 357 



dspcat 

Flags 

-g Formats the output so that it can be used as input to gencat. 

Related Information 

358 

The following commands: "dspmsg" on page 359, "gencat" on page 470, "mkcatdefs" on 
page 651, and" runcat" on page 852. 

The catopen, catgets, catgetmsg, catclose, NLcatopen, NLcatgets, and NLgetamsg 
files in AIX Operating System Technical Reference. 

The discussion of dspcat in AIX Operating System Programming Tools and Interfaces. 



dspmsg 

dspmsg 

Purpose 

Displays a selected message from a message catalog. 

Syntax 

dspmsg r-\ catname_ msgnum---':' default message' Targument:::r 

~-ssetnumr 

Description 

OL805483 

dspmsg displays a particular message from a catalog. It allows you to pass up to ten 
string arguments for substitution into the message if it contains the printf conversion 
specification %s, or the NLprintf conversion specification %n$s. The syntax for dspmsg 
is: 

$ dspmsg catname [-s set-numJ msg-num [I default-message I [argsJJ 

You must specify the catalog (catname) and the message (msg-num). The default set 
number is 1. Specify another set by using the -s flag followed by the set number. 

If dspmsg cannot find the message, the default-message is displayed. You must enclose the 
default message in single quotes if you are using the %n$s notation for message inserts. If 
dspmsg cannot find the message, and you do not specify a default message, a 
system-generated error message is displayed. 

Follow the default message with up to ten arguments to substitute into the catalog 
message (or the default message). Missing arguments for conversion specifications are 
replaced by null strings. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

Commands 359 



dspmsg 

Related Information 

360 

The following commands: "dspcat" on page 357, "gencat" on page 470, "mkcatdefs" on 
page 651, and" runcat" on page 852. 

The catopen, catgets, catgetamsg, catclose, NLcatopen NLcatgets, and NLgetamsg 
files in A/X Operating System Technical Reference. 

The discussion of dspmsg in A/X Operating System Programming Tools and Interfaces. 



dsstate 

dsstate 

Purpose 

Sets the state of the Distributed Services kernel logic. 

Syntax 

dsstate J ~oneo; onfl-C:of _on~:e of ~-c s -a_b -s 
e a 

~-S-iJ~-k Y 
a -(_p number 

OL805462 

Description 

Flags 

The dsstate command changes the state of the Distributed Services kernel logic, including 
the number of kernel processes allocated for Distributed Services, whether incoming and 
outgoing remote requests are allowed, and where temporary storage takes place. Only 
members of the system group or users operating with superuser authority can use dsstate 
to change the state of the Distributed Services kernel logic (see "su" on page 1026). Other 
users can use dsstate with no flags to write to the standard output the current state of the 
Distributed Services kernel logic. 

-c s Starts client sync, which forces all files for which this node is the client to be 
written directly to the server, preventing caching (temporary storage) of the 
file contents at the client. Starting client sync often affects the performance of 
file operations, and is used primarily for certain system startup and shutdown 
routines. 

-c e Ends client sync and allows some data to be stored at the local node. 

-a b Breaks all connections with remote nodes and blocks new requests for remote 
file services. 

Commands 361 



dsstate 

-a a Allows requests from this client node for remote file services. 

-s s Starts server sync, which forces all files for which this node is the server to be 
written directly to the server, preventing caching (temporary storage) of the 
file contents at the client node. Starting server sync often affects the 
performance of file operations, and is used primarily for certain system startup 
and shutdown routines. 

-s e Ends server sync and allows some data to be stored at the client node. 

-s b Blocks all requests for file services from other nodes, including both new 
requests and requests for files already in use. 

-s a Allows this server to accept requests for file services from other nodes. 

-k Starts the Distributed Services kernel processes. 

-p number Sets the number of active Distributed Services kernel processes to number. If 
number is greater than the number of kernel processes allocated for 
Distributed Services, then those that are available are activated. If number is 
o or a negative value, the number of kernel processes is not changed. 

By adjusting the number of active Distributed Services kernel processes, the 
rate at which services are provided to remote nodes can be varied. Lowering 
the number of active Distributed Services kernel processes lowers remote use 
of this node's processor, leaving more system resources for local use. 

Note: The Distributed Services kernel processes must have been started with 
a -k flag on either this dsstate command or an earlier dsstate command. 

Related Information 

362 

The dsstate system call in AIX Operating System Technical Reference. 

"Using Distributed Services" in Managing the AIX Operating System. 



dsxlate 

dsxlate 

Purpose 

Installs Distributed Services UID/GID translate tables into the kernel. 

Syntax 

dsxlate --l 
OL805463 

Description 

The dsxlate command installs Distributed Services UID/GID translate tables. This 
command is usually called at system startup by /etc/rc.ds to update the kernel. It ensures 
that the Distributed Services kernel tables reflect the current profiles. All existing 
Distributed Services kernel information is discarded. To use dsxlate command, you must 
be a member of the system group or have superuser authority (see "su" on page 1026). 

Related Information 

The following commands: "ipctable" on page 544, "ndtable" on page 685, and "ugtable" 
on page 1109. 

The loadtbl system call in A/X Operating System Technical Reference. 

"Using Distributed Services" in Managing the A/X Operating System. 

Commands 363 



du 

du 

Purpose 

Summarizes disk usage. 

Syntax 

OL805113 

Description 

Flags 

364 

The du command gives the number of blocks in all files and (recursively), directories 
within each specified directory. By specifying the -a flag, you can also have du report the 
number of blocks in individual files. The block count includes the indirect blocks of each 
file and is in units of 512 bytes, independent of the cluster size used by the system. If you 
provide no file or directory name, du uses the current directory. 

Notes: 

1. If you do not specify the -a flag, du does not report on any files. 

2. If there are too many distinct linked files, du counts the excess files more than once. 

3. Block counts are based only on file size; therefore, unallocated blocks are not 
accounted for in the block counts reported. 

-a Displays disk use for each file. 

-1 Allocates blocks in files with multiple links evenly among the links. By default, a file 
with two or more links is counted only once. 

-r Indicates inaccessible files and directories. 

-s Displays only the grand total (for each of the specified files or directories given). 



Examples 

1. To summarize the disk usage of a directory tree and each of its subtrees: 

du /u/fran 

For /u/fran and each of its subdirectories, this displays the number of disk blocks 
that the files in the tree beneath it contain. 

2. To display the disk usage of each file: 

du -a /u/fran 

du 

This displays the number of disk blocks contained in each file and subdirectory of 
/u/fran. The number beside a directory is the disk usage of that directory tree. The 
number beside a regular file is the disk usage of that file alone. 

3. To display only the total disk usage of a directory tree: 

du -rs /u/fran 

This displays only the sum total disk usage of /u/fran and the files it contains (-s). 
The - r flag tells du to display an error message if it cannot read a file or directory. 

Commands 365 



dump 

dump 

Purpose 

Dumps selected parts of an object file. 

Syntax 

dump 

-zname 

~+t num -{ -I num 9r file T 

1 Do not put a space between these items. 

2 Use -p only with -a, or -0 . 

3 Do not use -v with -s or -0 . 
OL805404 

Description 

Flags 

366 

The dump command dumps selected parts of the specified file. dump accepts object files, 
archive object files, and executable files (with the -x flag). It writes information in 
character, hexadecimal, octal, or decimal representation, as appropriate to format the 
information in a meaningful way. 

You must use at least one of the following flags: 

-a 

-b 

Dumps the archive header of each member of each specified archive. 

Dumps the shared library key. 



-c 

-d 

-g 

-1 

-0 

-r 

-s 

-t 

Dumps the string table. 

Dumps the contents of the data section. 

Dumps the global symbols in the archive symbol table. 

Dumps line number information. 

Dumps each optional header. 

Dumps relocation information. 

Dumps the contents of the object file section. 

Dumps symbol table entries. 

dump 

-x Dumps the object module extended header from executable files. The 
extended header contains the table of shared libraries that the program 
uses. 

The following optional flags are also available: 

-p Does not print the headers. 

-tnum Dumps only the index symbol table entry specified with num. Use -t with 
the +t flag to specify a range of symbol table entries. 

+ tnum Dumps the symbol table entry in the range that ends with num. The range 
starts at either the first symbol table entry or at the entry specified by -to 

-u Underlines the name of the file. 

-v Dumps the information in symbolic representation rather the numeric. 
You can use this with any of the above flags except -s or -0. 

-zname[,num] Dumps line number entries for name function or a range of line number 
entries that starts at the specified number. You can use a blank to replace 
the comma that separates name and num if the entire argument is quoted. 

+ znum Dumps all line numbers up to num. 

Related Information 

The following commands: "ar" on page 55, "nm" on page 705, "shlib" on page 939, and 
"size" on page 949. 

The a.out and ar files in AIX Operating System Technical Reference. 

Commands 367 



dumpfmt 

dumpfmt 

Purpose 

Formats the VRM dump file. 

Syntax 

~deV/f~a;r 
dumpfmt -s 

file 
-h 

OL805109 

Description 

Flags 

The dumpfmt command formats a file containing VRM dump structures. If you do not 
specify a file name,. the system reads data from /dev /fdO. 

By default, dumpfmt is an interactive utility program. To see the list of commands 
available for selecting a specific structure to format, enter a ? (question mark). To quit, 
enter q. 

-a Batches the output and formats the entire diskette. 

-h Includes a Dump Data Header. This header contains general information about data 
on the dump diskette: the module name of the component, the data address of the 
module containing the component,and the offset address within the module of the 
component. 

-n Does not display a prompt when the screen fills with data during interactive output. 

-8 Limits the output of each structure to a maximum size of 32 bytes. 

Related Information 

The discussion of dumpfmt in AIX Operating System Programming Tools and Interfaces. 

368 



echo 

echo 

Purpose 

Writes its arguments to standard output. 

Syntax 

echo T string r 
OL805115 

Description 

The echo command writes its arguments to standard output. strings are separated by 
blanks and a new-line character follows the last string. Use echo to produce diagnostic 
messages in command files and to send data into a pipe. 

The echo command recognizes the following escape conventions: 

\b Display a backspace character. 

\c Suppress the new-line character. 

\f Display a form-feed character. 

\n Display a new-line character. 

\r Display a carriage return character. 

\t Display a tab character. 

\ \ Display a backslash character. 

\num Display an 8-bit character whose ASCII value is the 1-, 2- or 3-digit octal number 
num. The first digit of num must be a zero. 

Examples 

1. To write a message to standard output: 

echo Please insert diskette ... 

Commands 369 



echo 

2. To display a message containing special characters: 

echo "\n\n\nl lm at lunch.\nIlll be back at 1:00," 

This skips three lines and displays the message: 

11m at lunch. 
I'll be back at 1:00. 

Note: You must put the message in quotation marks if it contains escape sequences 
like \n. Otherwise, the shell treats the \ specially. See page 918 for details about 
quoting. 

3. To use echo with pattern-matching characters: 

echo The back-up files are: *.bak 

This displays the message The back-up fi 1 es are: followed by the file names in the 
curren t directory ending with . b a k. 

4. To add a single line of text to a file: 

echo Remember to set the shell search path to $PATH. »notes 

This adds the message to the end of the file notes after the shell substitutes the value 
of the shell variable PATH. 

5. To write a message to the standard error output: 

echo Error: file already exists. >&2 

Use this in shell procedures to write error messages. If the >&2 is omitted, then the 
message is written to the standard output. For details about this type of file 
redirection, see "Input and Output Redirection Using File Descriptors" on page 928. 

Related Information 

370 

The following commands: "csh" on page 225 and "sh" on page 913. 

Note: The csh command contains a built-in subcommand named echo. The command and 
subcommand do not necessarily work the same way. For information on the subcommand, 
see the csh command. 



ed 

ed 

Purpose 

Edits text by line. 

Syntax 

OL805182 

Description 

The ed command is a line editing program that works on only one file at a time by copying 
it into a temporary file buffer and making changes to that copy. ed does not alter the file 
itself until you use the write (w) subcommand. You can specify on the command line the 
file you want to edit, or you can use the edit subcommands. 

When ed reads a new file into the buffer, the contents of that file replaces the buffer's 
previous contents, if any. 

There is also a restricted version of ed, the red command, for use with the r~stricted shell 
(see "sh" on page 913). With red, you can edit only files that reside in the current 
directory, or in the /tmp directory, and you cannot use the !AIX-cmd subcommand (see 
page 383). 

An ed subcommand consists of zero, one, or two addresses, followed by a single-character 
subcommand, possibly followed by parameters to that subcommand. These addresses 
specify one or more lines in the buffer. Because every subcommand has default addresses, 
you frequently do not need to specify addresses. 

The ed program operates in one of two modes, command mode and text mode. In 
command mode, ed recognizes and executes subcommands. In text mode, ed adds text to 
the file buffer but does not recognize subcommands. To leave text mode, enter a . (period) 
alone at the beginning of a line. 

Commands 371 



ed 

372 

Pattern Matching 

The ed command supports a limited form of special pattern-matching characters that 
you can use as regular expressions (REs) to construct pattern strings. You can use 
these patterns in addresses to specify lines and in some subcommands to specify portions of 
a line. 

Regular Expressions (REs) 
The following REs match a single character: 

char An ordinary character (one other than one of the special pattern-matching 
characters), matches itself. 

A . (period) matches any single character except for the new-line character. 

[string] A string enclosed in [ ] (square brackets) matches anyone character in the 
string. Certain pattern-matching characters have special meanings within 
square brackets: 

A If the first character of string is a A (circumflex), the RE ([A string]) 
matches any character except the characters in string and the 
new-line character. A A has this special meaning only if it occurs 
first in the string. 

You can use a - (minus) to indicate a range of consecutive ASCII 
characters according to the current collating sequence. For example, 
[a-f] might be equivalent to [abcdef] or [aAbBcCdDeEfF] or 
[aaabcdeeef]. The collating sequence is defined by the environment 
variable NLCTAB or NLFILE. See Managing the AIX Operating 
System for more information. A collating sequence may define 
equivalence classes for characters. For example, if three 
characters-e, e, and e-are equivalent, the following expressions 
identify the same sequence of characters: 

[a-e] 
[a-e] 

The minus character loses its special meaning if it occurs first 
([-string]), if it immediately follows an initial circumflex ([ A -string]), or 
if it appears last ([string-]) in the string. 

When the right square bracket (]) is the first character in the string 
([]string]) or when it immediately follows an initial circumflex 
([ A ]string]), it is treated as a part of the string rather than as the 
string terminator. 



Japanese Language Support Information 

Japanese Language Support introduces a character class expression, in 
addition to the standard range expression, see 375. 

For information about how a string enclosed in square brackets matches 
characters, see 375. 

ed 

\sym A \ (backslash) followed by a special pattern-matching character matches the 
special character itself (as a literal character). These special pattern-matching 
characters are: 

. * [ \ 
1\ 

Always special except when they appear within square brackets ([D. 

Special at the beginning of an entire pattern or when it immediately 
follows the left bracket of a pair of brackets ([ 1\ • • • D. 

$ Special at the end of an entire pattern. 

In addition, the character used to delimit an entire pattern is special for that 
pattern. (For example, see how / (slash) is used in the g subcommand on page 
379.) 

Forming Patterns 
The following rules describe how to form patterns from REs: 

1. An RE that consists of a single, ordinary character matches that same character in a 
string. 

2. An RE followed by an * (asterisk) matches zero or more occurrences of the character 
that the RE matches. For example, the following pattern: 

ab*ed 
matches each of the following strings: 

aed 
abed 
abbed 
abbbed 
but not the following string: 

abd 

Commands 373 



ed 

374 

If there is any choice, the longest matching leftmost string is chosen. For example, 
given the following string: 

122333444 

the pattern. * matches 122333444, the pattern. *3 matches 122333, and the pattern 
. *2 matches 122. 

3. An RE followed by: 

\{m\} Matches exactly m occurrences of the character matched by the RE. 

\{m,\} 

\{m,n\} 

Matches at least m occurrences of the character matched by the RE. 

Matches any number of occurrences of the character matched by the RE 
from m to n inclusive. 

m and n must be integers from 0 to 255, inclusive. Whenever a choice 
exists, this pattern matches as many occurrences as possible. 

4. You can combine REs into patterns that match strings containing that same sequence 
of characters. For example, AB\*CD matches the string AB*CD and [A-Za-zJ * [0-9J * 
matches any string that contains any combination of alphabetic characters (including 
none), followed by any combination of numerals (including none). 

5. The character sequence \ (pattern\) marks a subpattern that matches the same string 
it would match if it were not enclosed. 

6. The characters \num match the same string of characters that a subpattern matched 
earlier in the pattern (see the preceding discussion of item 5). num is a digit. The 
pattern \num matches the string matched by the numth subpattern, counting from left 
to right. For example, the following pattern: 

\ (A\) \ (B\) C\2\1 

matches the string ABCBA. You can nest subpatterns. 

Restricting What Patterns Match 
A pattern can be restricted to match only the first segment of a line, the final segment, or 
both: 

1. A" (circumflex) at the beginning of a pattern causes the pattern to match only a 
string that begins in the first character position on a line. 

2. A $ (dollar sign) at the end of a pattern causes that pattern to match only a string that 
ends with the last character (not including the new-line character) on a line. 

3. The construction "pattern$ restricts the pattern to matching only an entire line. 

In addition, the null pattern (that is, / /) duplicates the previous pattern. 



ed 

Japanese Language Support Information 

Several characters can have the same collating value; for instance, the ASCII letter a and 
the SJIS roman letter a could be collated together. In such a case, the expression [a- a] 
would match both the ASCII and the SJIS roman letters. 

You can mix ASCII and SJIS characters in a range expression, as long as the character 
preceding the minus sign collates equal to or lower than the character following the minus 
sign. If the character preceding the minus collates higher than the character following the 
sign, the system interprets the range as consisting only of the two end points. 

A common use of the range expression is to match a character class. For example, [0-9] is 
used to mean all digits, and [a-z A-Z] is used to mean all letters. This form may produce 
unexpected results when ranges are interpreted according to the current collating 
sequence. 

Instead of the preceding form, use a character class expression within brackets to match 
characters. The system interprets this type of expression according to the current 
character class definition. However, you cannot use character class expressions in range 
expressions. 

Following is the syntax of a character class expression: 

[: charclass: ] 
that is, a left bracket, followed by a colon, followed by the name of the character class, 
followed by another colon and a right bracket. 

Japanese Language Support supports the following character classes: 

[:upper:] 

[: lower:] 

[:alpha:] 

[:di gi t:] 

[:alnum:] 

[:xdi gi t:] 

[:punct:] 

[:space:] 

[:pri nt:] 

ASCII uppercase letters 

ASCII lowercase letters 

ASCII uppercase and lowercase letters 

ASCII digits 

ASCII alphanumeric characters. 

ASCII hexadecimal digits 

ASCII punctuation character (neither a control character nor 
alphanumeric) 

ASCII space, tab, carriage return, new-line, vertical tab, or 
form-feed character 

ASCII printing character 

Commands 375 



ed 

376 

[:jalpha:] 

[:jdigit:] 

[:jxdi gi t:] 

[:jparen:] 

[:j punct:] 

[:j space:] 

[:j pri nt:] 

[:j kanj i:] 

[:j hi ra:] 

[:j kana:] 

SJIS roman characters 

SJIS Arabic digits 

SJIS hexadecimal digits 

SJIS parentheses characters 

SJIS punctuation characters 

SJIS space characters 

SJIS printing characters 

kanji characters 

Full-width hiragana characters 

Half-width and full-width katakana characters 

The brackets are part of the character class definition. To match any uppercase ASCII 
letter or ASCII digit, use the following regular expression: 

[[:upper:J [:digit:]] 

Do not use the expression [A-ZO-9]. 

1..--_______ End of Japanese Language Support Information _______ ----1 

Addressing 

There are three types of ed addresses: line number addresses, addresses relative to the 
current line, and pattern addresses. The current line (usually the last line affected by a 
command) is the point of reference in the buffer. This is the default address for several ed 
commands. (See "Subcommands" on page 378 to find out how each subcommand affects 
the current line.) 

Following are guidelines for constructing addresses: 

1. . (dot) addresses the current line. 

2. $ (dollar sign) addresses the last line of the buffer. 

3. n addresses the nth line of the buffer. 

4. IX addresses the line marked with a lowercase ASCII letter, x, by the k subcommand 
(see page 380). 

5. /pattern/ (a pattern enclosed in slashes) addresses the next line contains a matching 
string. The search begins with the line after the current line and stops when it finds a 
match for the pattern. If necessary, the search moves to the end of the buffer, wraps 



around to the beginning of the buffer, and continues until it either finds a match or 
returns to the current line. 

ed 

6. ?pattern? (a pattern enclosed in question marks) addresses the previous line that 
contains a match for the pattern. The ?pattern? construct, like /pattern/, can search 
the entire buffer, but it does so in the opposite direction. 

7. An address followed by + n or -n (a plus sign or a minus sign followed by a decimal 
number) specifies an address plus or minus the indicated number of lines. (The + sign 
is optional.) 

8. An address that begins with + or - specifies a line relative to the current line. For 
example, - 5 is the equivalent of . - 5 (five lines above the current line). 

9. An address that ends with - or + specifies the line immediately before (-) or 
immediately after ( + ) the addressed line. U sed alone, the - character addresses the 
line immediately before the current line. The + character addresses the line 
immediately after the current line; however, the + character is optional. The + and -
characters have a cumulative effect; for example, the address -- addresses the line two 
lines above the current line. 

10. For convenience, a , (comma) stands for the address pair 1, $ (first line through last 
line) and a ; (semicolon) stands for the pair. ,$ (current line through last line). 

Commands that do not accept addresses regard the presence of an address as an error. 
Commands that do accept addresses can use either given or default addresses. When given 
more addresses than it accepts, a command uses the last (rightmost) one(s). 

In most cases, commas (,) separate addresses (for example 2 ,8). Semicolons (;) also can 
separate addresses. A semicolon between addresses causes ed to set the current line to the 
first address and then calculate the second address (for example, to set the starting line for 
a search based on rules 5 and 6 above). In a pair of addresses, the first must be 
numerically smaller than the second. 

For many purposes, you may prefer to use a different editor that has different features. 
Refer to the following discussions for more information: 

• "edit" on page 387, a simple line editor for novice or casual users 
• "sed" on page 887, a stream editor often used for writing programs 
• "ex" on page 407, an extended (line) editor with interactive subcommand features 
• "vi, vedit, view" on page 1187, a visual (screen) editor that also accesses ex line 

editing features while letting you view the text. 

The following is a list of ed size limitations: 

• 64 characters per file name. 
• 512 characters per line (although there is currently a system-imposed limit of 255 

characters per line entered from the keyboard). 
• 256 characters per global subcommand list. 

Commands 377 



. ed 

• 128K characters buffer size. (Note that the buffer not only contains the original file 
but also editing information. Each line occupies one word in the buffer.) 

The maximum number of lines depends on the amount of memory available to you. The 
maximum file size depends on the amount of physical data storage (disk or tape drive) 
available or on the maximum number of lines permitted in user memory. 

Subcommands 

378 

In most cases, only one ed subcommand can be entered on a line. The exceptions to this 
rule are the p and 1 subcommands, which can be added to any subcommand except e, f, r, 
or w. The e, f, r, and w subcommands accept file names as parameters. The ed program 
stores the last file name used with a subcommand as a default file name. The next e, f, r, 
or w given without a file name uses the default file name. 

The ed program responds to an error condition with one of two messages: ? (question 
mark) or ?file. When ed receives an INTERRUPT signal (Alt-Pause), it displays a ? and 
returns to command mode. When ed reads a file, it discards ASCII NULL characters and 
all characters after the last new-line character. ed cannot edit a file that contains 
characters not in the ASCII set (for example, an a.out file with bit 8 set on). 

In the following list of ed subcommands, default addresses are shown in parentheses. Do 
not key in the parentheses. The address . (period) refers to the current line. When a . is 
shown in the first position on an otherwise empty line, it is the signal to return to 
command mode. 

(.)a 
<text> 

(.)c 
<text> 

(.,.)d 

The append subcommand adds text to the buffer after the 
addressed line. The a subcommand sets the current line to the 
last inserted line, or, if no lines were inserted, to the addressed 
line. Address 0 causes the a subcommand to add text at the 
beginning of the buffer. 

The change subcommand deletes the addressed lines, then 
replaces them with new input. The c command sets the 
current line to the last new line of input, or, if there were 
none, to the first line that was not deleted. 

The delete subcommand removes the addressed lines from the 
buffer. The line after the last line deleted becomes the current 
line. If the deleted lines were originally at the end of the 
buffer, the new last line becomes the current line. 



e file 

ed 

The edit subcommand first deletes any contents from the 
buffer, then loads another file into the buffer, sets the current 
line to the last line of the buffer, and displays the number of 
characters read in to the buffer. If the buffer has been changed 
since its contents were last saved (with the w subcommand), e 
displays a ? (question mark) before it clears the buffer. 

The e subcommand stores file as the default file name to be 
used, if necessary, by subsequent e, r, or w subcommands. (See 
the f subcommand.) 

When an ! (explanation mark) replaces file, e takes the rest of 
the line as a AIX shell (sh) command and reads the command 
output. The e subcommand does not store the name of the 
shell command as a default file name. 

E file The Edit subcommand works like e, with one exception: E 
does not check for changes made to the buffer since the last w 
subcommand. 

f [file] The file name subcommand changes the default file name (the 
stored name of the last file used) to file, if file is given. If file is 
not given, the f subcommand prints the default file name. 

(1, ?)g/pattern/subcmd-list The global subcommand first marks every line that matches 
the pattern. Then, for each marked line, this subcommand sets 
the current line to that line and executes subcmd-list. A single 
subcommand, or the first subcommand of a list, should appear 
on the same line with the g subcommand; subsequent 

(1, ?)G/pattern/ 

sub commands should appear on separate lines. Except for the 
last line, each of these lines should end with a \. 

The subcmd-list can include the a, i, and c subcommands and 
their input. If the last command in subcmd-list would normally 
be the . (period) that ends input mode, the . is optional. If 
there is no subcmd-list, ed displays the current line. The 
subcmd-list cannot include the g, G, v, or V subcommands. 

Note: The g subcommand is similar to the v subcommand, 
which executes subcmd-list for every line that does not contain 
a match for the pattern. 

The interactive Global subcommand first marks every line that 
matches the pattern, then displays the first marked line, sets 
the current line to that line, and waits for a subcommand. G 
accepts any but the following ed subcommands: a, c, i, g, G, v, 
and V. After the subcommand finishes, G displays the next 
marked line, and so on. G takes a new-line character as a null 
subcommand. A : & (colon ampersand) causes G to execute the 

Commands 379 



ed 

h 

H 

(.)i 
< text> 

(.,. + l)j 

(.)kx 

(.,.)1 

(.,.)ma 

(.,.)n 

380 

previous subcommand again, if there was one. Note that 
subcommands executed within the G subcommand can address 
and change any lines in the buffer. The G subcommand can be 
terminated by pressing INTERRUPT (Alt-Pause). 

The help subcommand gives a short explanation (help message) 
for the most recent? diagnostic or error message. 

The Help subcommand causes ed to display the help messages 
for all subsequent ? diagnostics. H also explains the previous 
? if there was one. H alternately turns this mode on and off; it 
is initially off. 

The insert subcommand inserts text before the addressed line 
and sets the current line to the last inserted line. If there no 
lines are inserted, i sets the current line to the addressed line. 
This subcommand differs from the a subcommand only in the 
placement of the input text. Address 0 is not legal for this 
subcommand. 

The join subcommand joins contiguous lines by removing the 
intervening new-line characters. If given only one address, j 
does nothing. (For splitting lines, see the s subcommand.) 

The mark subcommand marks the addressed line with name x, 
which must be a lowercase ASCII letter. The address 'x (single 
quotation mark before the marking character) then addresses 
this line. The k subcommand does not change the current line. 

The list subcommand displays the addressed line(s). The 1 
subcommand wraps long lines and, unlike the p subcommand, 
represents non-printing characters, either with mnemonic 
overstrikes or in hexadecimal notation. An 1 subcommand may 
be appended to any ed subcommand except: e, f, r, or w. 

The move subcommand repositions the addressed line(s). The 
first moved line follows the line addressed by a. Address 0 for 
a causes m to move the addressed line(s) to the beginning of 
the file. Address a cannot be one of the lines to be moved. 
The m subcommand sets the current line to the last moved 
line. 

The number subcommand displays the addressed lines, each 
preceded by its line number and a tab character (displayed as 
blank spaces); n leaves the current line at the last line 
displayed. An n subcommand may be appended to any ed 
subcommand except e, f, r, or w. 



(.,.)p 

P 

q 

Q 

(?)r file 

(.,.)s/pattern/replacement/ 

ed 

The print subcommand displays the addressed line(s) and sets 
the current line set to the last line displayed. A p 
subcommand may be appended to any ed subcommand except: 
e, f, r, or w. For example, the subcommand dp deletes the 
current line and displays the new current line. 

The P subcommand turns on or off the ed prompt string * 
(asterisk). Initially, P is off. 

The quit subcommand exits the ed program. Before ending the 
program q checks to determine whether the buffer has been 
written to a file since the last time it was changed. If not, q 
displays the? message. 

The Quit subcommand exits the ed program without checking 
for changes to the buffer since the last w subcommand 
(compare with the q subcommand). 

The read subcommand reads a file into the buffer after the 
addressed line; r does not delete the previous contents of the 
buffer. When entered without file, r reads the default file, if 
any, into the buffer (see e and f subcommands). r does not 
change the default file name. Address 0 causes r to read a file 
in at the beginning of the buffer. After it reads a file 
successfully, r, displays the number of characters read into the 
buffer and sets the current line to the last line read. 

If! (exclamation point) replaces file in a r subcommand, r 
takes the rest of the line as a AIX shell (sh) command whose 
output is to be read. The r subcommand does not store the 
names of shell commands as default file names. 

(.,.)s/pattern/replacement/g The substitute subcommand searches each addressed line for a 
string that matches the pattern and then replaces the string 
with the specified replacement string. Without the global 
indicator (g), s replaces only the first matching string on each 
addressed line. With the g indicator, s replaces every 
occurrence of the matching string on each addressed line. If s 
does not find a match for the pattern, it returns the error 
message? Any character except a space or a new-line 
character can separate (delimit) the pattern and replacement. 
The s subcommand sets the current line to the last line 
changed. 

An & (ampersand) in the replacement string is a special symbol 
that has the same value as the pattern string. For example, the 
subcommand s/are/&n't/ has the same effect as the 
subcommand s/are/aren't/ and replaces are with aren't on 

Commands 381 



ed 

382 

the current line. A \& (backslash ampersand) removes this 
special meaning of & in rep lacement. 

A subpattern is part of a pattern enclosed by the strings \( and 
\); the pattern works as if the enclosing characters were not 
present. In replacement, the characters \n refer to strings that 
match subpatterns; n, a decimal number, refers to the nth 
subpattern, counting from the left. (for example, s/\(t\)\(h\) 
\(e\)/t\1\2ose) replaces the with those if there is a match for 
the pattern the on the current line). Whether subpatterns are 
nested or in a series, \n refers to the nth occurrence, counting 
from the left, of the delimiting characters, \). 

The % (percent sign) character, when used by itself as 
replacement, causes s to use the previous replacement again. 
The % character does not have this special meaning if it is part 
of a longer replacement or if it is preceded by a \. 

Lines may be split by substituting new-line characters into 
them. In replacement, the sequence \Enter quotes the new-line 
character (not displayed) and moves the cursor to the next line 
for the remainder of the string. New-lines cannot be 
substituted as part of a g or v subcommand list. 

(.,.)ta The transfer subcommand inserts a copy of the addressed lines 
after address a. The t subcommand accepts address 0 (for 
inserting lines at the beginning of the buffer). The t 
subcommand sets the current line to the last line copied. 

u The undo subcommand restores the buffer to the state it was in 
before it was last modified by an ed subcommand. The 
commands that u can undo are: a, c, d, g, G, i, j, m, r, s, t, v, 
and V. 

(1, ?)v/pattern/subcmd-list The v subcommand executes the subcommands in subcmd-list 
for each line that does not contain a match for the pattern. 

Note: The v subcommand is a complement for the global 
subcommand g, which executes subcmd-list for every line that 
does contain a match for the pattern. 

(l,$)V /pattern/ / The V subcommand first marks every line that does not match 
the pattern, then displays the first marked line, sets the 
current line to that line, and waits for a subcommand. 

Note: The V subcommand complements the G subcommand, 
which marks the lines that do match the pattern. 



(1, ?)w file 

($)= 

!AIX-cmd 

num 
+num 
-num 

ed 

The write subcommand copies the addressed lines from the 
buffer to the file named in file. If the file does not exist, the w 
subcommand creates it with permission code 666 (read and 
write permission for everyone), unless the umask setting 
specifies another file creation mode. (For information about 
file permissions, see "umask" on page 1110 and "chmod" on 
page 160.) The w subcommand does not change the default file 
name (unless file is the first file name used since you started 
ed). If you do not provide a file name, ed uses the default file 
name, if any (see the e and f subcommands). The w 
subcommand does not change the current line. 

If ed successfully writes the file, it displays the number of 
characters written. When! replaces file, ed takes the rest of 
the line as a AIX shell (sh) command whose output is to be 
read; w does not save shell command names as default file 
names. 

Note: 0 is not a legal address for the w subcommand. 
Therefore, it is not possible to create an empty file with ed. 

Without an address, the = (equal sign) subcommand displays 
the current line number. With the address $, = displays the 
number of the last line in the buffer. The = subcommand does 
not change the current line and cannot be included in a g or v 
subcommand list. 

The! (exclamation point) subcommand allows AIX commands 
to be run from within ed. Anything following! on an ed 
subcommand line is interpreted as an AIX command. Within 
the text of that command string, ed replaces the unescaped % 
(percent sign) with the current file name, if there is one. 

When used as the first character of a shell command (after the 
! that runs a subshell) ed replaces the ! character with the 
previous AIX command; for example, the command !! repeats 
the previous AIX command. If the AIX command interpreter 
(the sh command), expands the command string, ed echoes the 
expanded line. The ! subcommand does not change the 
current line. 

ed interprets a number alone on a line as an address and 
displays the addressed line. Addresses can be absolute (line 
numbers or $) or relative to the current line (+num or - num). 
Entering a new-line character (a blank line) is equivalent to 

Commands 383 



ed 

Flags 

Files 

-p string 

/tmp/e# 
ed.hup 

+ Ip and is useful for stepping forward through the buffer one 
line at a time. 

Suppresses character counts that the editor displays with the e, r, and w 
subcommands, suppresses diagnostic messages for the e and q subcommands, 
and suppresses the ! prompt after a !A/X-cmd. 

Sets the editor prompt to string. The default for string is null (no prompt). 

Temporary file; # is the process number. 
Work is saved here if the terminal hangs up while ed is running. 

Related Information 

384 

The following commands: "grep" on page 501, "sed" on page 887, "sh" on page 913, 
"stty" on page 1018, and "regcmp" on page 820. 

The regexp system call in A/X Operating System Technical Reference. 

The environment miscellaneous facility in Text Formatting Guide. 

The discussion and examples of ed in Using the A/X Operating System. 

"Overview of International Character Support" in Managing the A/X Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 



edconfig 

edconfig 

Purpose 

Edits values in a sendmail configuration file. 

Syntax 

/usr/lib/edconfig- file -----i 

AJ2FL249 

Description 

The edconfig command allows you to edit a specified configuration file for the sendmail 
program. It provides a menu interface to changing some of the characteristics defined in 
the configuration file. To change other characteristics, you must use a text editor. You 
must have superuser authority to edit the configuration file that the system uses 
(fusr/adm/sendmail/sendmail.cf). The edconfig command allows you to define or 
change the following types of entries in the configuration file: 

• The content of the host name class and macro 

• The domain name macro 

• The four classes that define the separate tokens of the domain name 

• Configuration options (with help information) for: 

Operational logging level 
Default delivery mode 
Alias file path 
Statistics file path 
Queue file path 
Maximum mail retention time in queue 
Queue uses of expensive mailers 

• Configuration File Revision level 

The file parameter provides the path name of the configuration file that you want to edit. 
The file must be in the format of the configuration file that is supplied with the operating 
system. The program searches for comment lines in that file of the form #parameter to 
locate the information in that file concerning parameter. For example, the comment line 
#Or precedes the line that defines the read timeout option. 

Commands 385 



edconfig 

Files 

To change parameters in the standard sendmail configuration file, enter the following 
command (while operating with superuser authority): 

edconfig /usr/adm/sendmail/sendmail .cf 
The program reads the contents of the configuration file into memory. It then displays a 
menu to help you select what to change. All changes are made only to the copy of the file 
in memory until you choose to exit and write the changes to the file. You can also exit 
without writing changes. The program provides information with each step in the menus 
to help you decide how to enter the correct information. However, you should be familiar 
with the sendmail program and its use before changing information in the configuration 
file. 

/usr /lib/ edconfig 
/usr/lib/edconfig.hf 

/usr / adm/ sendmail/ sendmail.cf 

The edconfig program. 
A text file containing the help information that edconfig 
displays. 
The configuration file for the sendmail program. 

Related Information 

386 

"sendmail" on page 897. 

The chapter about managing the mail system in IBM RT Managing the AIX Operating 
System. 

The entry for sendmail.cf in AIX Operating System Technical Reference. 



edit 

edit 

Purpose 

Provides a simple line editor for the new user. 

Syntax 

edit ~- file ---' 
---~ -r-'C:J 

OL805329 

Description 

The edit command provides a line editor designed for beginning users. It is a simplified 
version of the ex command (see "ex" on page 407). To edit the contents of a file, enter: 

edit file 

If file is the name of an existing file, edit copies it to a buffer and displays the number of 
lines and characters in it. Then it displays a : (colon) prompt to show that it is ready to 
read subcommands from standard input. If file does not already exist, edit tells you this, 
but still stores the name as the current file name. You can give more than one file name, 
in which case edit copies the first file into its buffer and stores the remaining file names in 
an argument list for later use. 

The edit command operates in one of two modes: command mode and text entry mode. 
In command mode, edit displays the colon prompt to show you that it is ready to accept 
edit subcommands. In text entry mode, edit places all input into its editing buffer. The 
general format of an edit subcommand is as follows: 

[addr ]subcommand [parameters] [count] 

If you do not specify an address, edit works on the current line. If you add a numeric 
count to most subcommands, edit works on the specified number of lines. 

For most subcommands, the last line affected becomes the new current line. That means, 
for example, that after edit reads a file into its buffer, the last line in the file becomes the 
current line. addr can be a line number or a pattern to be matched or, in some cases, a 
range of line numbers or patterns. To specify a range, separate two line numbers or 
patterns with a comma or a semicolon (for example, 1,5 or 1; 5). In a range, the second 
address must refer to a line that follows the first addressed line in the range. 

Commands 387 



edit 

388 

Addressing Lines within a File 

The simplest way to address a line within a file is to use its line number. But this can be 
unreliable because line numbers change when you insert and delete lines. edit provides a 
way to search through the buffer for strings. Given the following address: 

/patternj 

edit searches forward for pattern, while given: 

?pattern? 

it searches backwards for pattern. If a forward search reaches the end of the buffer 
without finding pattern, it continues the search at the beginning of the file until it reaches 
the current line. A backwards search does just the reverse. 

The following characters have special meanings in these search patterns: 
A 

$ 

Matches the beginning of a line. 

Matches the end of a line. 

Thus, you can use j A pattern/ to search for patterns at the beginning of a line, and 
/pattern$/ to search for patterns at the end of the line. 

The current line has a symbolic name, . (period) and the last line in the buffer has a 
symbolic name, dollar sign ($), that you can use in addresses. This is useful when working 
with a range of lines. For example, 

. ,$pri nt 

displays all lines from the current line to the last line in the buffer. Arithmetic with line 
references is also possible, so that $-5 refers to the fifth line from the last and . +20 
refers to the line 20 lines past the current line. You can also use the = (equal) command 
to find out the line number of the current line or the last line, as follows: 

= 
$= 

To view the next line in the buffer, press the Enter key. Press Ctrl-D to display the next 
half-screen of lines. 

Note: Do not confuse the meaning of $ in text patterns (end of line) with its meaning in 
addresses (last line). 

Using a Family of Editors 

The edit command is part of a family of editors that includes edit, ex, and vi. The edit 
command is a simple line editor designed for beginning users. It is a simplified version of 
ex. After you become more experienced with edit, you may want to try the advanced 



Flag 

features of one of the other editors in the family. Because edit is part of a family of 
editors, you can apply your knowledge of edit to the other editors in the family. 

edit 

The ex editor is a powerful interactive line editor. The edit subcommands work the same 
way in ex, but the editing environment is somewhat different. For example in edit, only 
the characters 1\, $, and \ have special meanings as pattern-matching characters; however, 
several additional characters also have special meanings in ex. For more information on 
ex, see "ex" on page 407. 

The vi editor is a display-based editor designed for experienced users who edit intensively 
at their display. It contains many of the advanced features of ex, but focuses on the 
display editing portion of ex. The edit editor prevents you from accidentally entering vi's 
two alternative modes of editing, the open mode and the visual mode. For more 
information on vi, see "vi, vedit, view" on page 1187. 

-r Recovers file after an editor or system crash. 

Subcommands 

You can enter most edit subcommands as either a complete word or an abbreviation. In 
the following list, a subcommand abbreviation appears in parentheses. Unless noted 
otherwise, all subcommands work by default on the current line. edit recognizes and 
interprets the following subcommands when it displays the colon prompt: 

[addr ] append 
text 

Reads the input text into the file being edited, placing the text after the 
line at the specified address. If you specify address 0, edit places the 
text at the beginning of the buffer. To return to command mode, enter a 
line with only a . (period) in the first position. 

[addr 1 [,addr2]] change 
text 

Replaces the specified line or lines with the input text. If any lines are 
input, the last input line becomes the new current line. 

[addr 1 [,addr2]]delete [buffer] 

edit file 

Removes the specified line or lines from the editing buffer. The line 
following the last deleted line becomes the current line. If you specify a 
buffer by giving a letter from a to Z, edit saves the specified lines in that 
buffer or, if the letter is uppercase, appends the lines to that buffer. 

Begins an editing session on a new file. The editor first checks to see if 
the buffer has been modified (edited) since the last write subcommand. 
If it has, edit issues a warning and cancels the edit subcommand. 
Otherwise, it deletes the complete contents of the editor buffer, makes 

Commands 389 



edit 

390 

file 

file file 

the named file the current file, and displays the new file name. After 
insuring that this file can be edited, it reads the file into its buffer. If 
edit reads the file without error, it displays the number of lines and 
characters that it read. The last line read becomes the new current line. 

Displays the current file name along with the following information 
about it: 

• Whether it has been modified since the last write. 
• What the current line is. 
• How many lines are in the buffer. 
• What percentage of the way through the buffer the current line is. 

Changes the name of the current file to file. edit considers this file not 
edited. 

[addrl[,addr2]]global/pattern/cmds 

[addr]insert (i) 
text 

Marks each of the specified lines that matches the pattern. Then edit 
carries out the specified subcommands (cmds) on each marked line. 

A single cmd or the first cmd in a subcommand list appears on same line 
as global. The remaining cmds must appear on separate lines, where 
each line (except the last) ends with a \ (backslash). The default 
subcommand is print. 

The list can include the append, insert, and change subcommands and 
their associated input. In this case, if the ending period comes on the 
last line of the command list, you can omit it. The undo subcommand 
and the global subcommand itself, however, may not appear in the 
command list. 

Places the given text before the specified line. The last line input 
becomes the current line. Otherwise, the current line does not change. 

[addrl[,addr2]]move addr3 (m) 
Repositions the specified line or lines to follow addr3. The first of the 
moved lines becomes the current line. 

next (n) Copies the next file in the command line argument list to the buffer for 
editing. 

[addr 1 [, addr2]] number (nu) 

preserve 

Displays each specified line or lines preceded by its buffer line number. 
The last line displayed becomes the current line. 

Saves the current editor buffer as though the system had just crashed. 
Use this command when a write subcommand has resulted in an error, 
and you do not know how to save your work. 



edit 

[addrl[,addr2]]print (p) 
Displays the specified line or lines. The last line becomes the current 
line. 

[addr]put buffer (pu) 

quit (q) 
quit! (q!) 

recover file 

Retrieves the contents of the specified buffer and places it after addr. If 
you do not specify a buffer, edit restores the last deleted or yanked text. 
Thus you can use this subcommand together with delete to move lines or 
with yank to duplicate lines between files. 

Ends the editing session. 

Note: The quit command does not write the editor buffer to a file. 
However, if you have modified the contents of the buffer since the last 
write, edit displays a warning message and does not end the session. In 
this case, either use the quit! subcommand to discard the buffer or write 
the buffer and then quit. 

Recovers file from the system save area. Use this after a system crash, or 
a preserve subcommand. 

[addr 1 [,addr2]]substitute/pattern/repl/ (s) 
[addr 1 [,addr2]]substitute/pattern/repl/g 

Replaces on each specified line the first instance of pattern with the 
replacement pattern repl. If you add the g flag, it replaces all instances 
of pattern on each specified line. 

undo (u) Reverses the changes made in the buffer by the last buffer editing 
subcommand. Note that global subcommands are considered a single 
subcommand to an undo. You cannot undo a write or an edit. 

[addrl,[addr2]]write file (w) 
Writes the contents of the specified line or lines to file. The default 
range is all lines in the buffer. edit displays the number of lines and 
characters that it writes. If you do not specify a file, edit uses the 
current file name. If file does not exist, edit creates it. 

[addr l,[addr2]]yank [buffer] (ya) 

[addr]z 

[addr]z-

[addr]z. 

Places the specified line or lines in buffer (a single alpha character name 
a - z). 

Displays a screen of text, beginning with the specified line. 

Displays a screen of text, with the specified line at the bottom of the 
screen. 

Displays a screen of text, with the specified line in the middle of the 
screen. 

Commands 391 



edit 

Related Information 

392 

The following commands: "ed" on page 371, "ex" on page 407, and "vi, vedit, view" on 
page 1187. 



env 

env 

Purpose 

Sets the environment for execution of a command. 

Syntax 

env n name =valuer commandr 

OL805117 

Description 

The env command lets you get and change your current environment, and then run the 
named command with the changed environment. Changes in the form name = value are 
added to the current environment before the command is run. If - (minus) is used, the 
current environment is ignored and the command runs with only the changed environment. 
Changes are only in effect while the named command is running. 

If a command is not specified, env displays your current environment one name = value pair 
per line. 

Examples 

1. To add a shell variable to the environment for the duration of one command: 

TZ=MST7MDT date 
env TZ=MST7MDT date 
Each of these commands displays the current date and time in Mountain Standard 
Time. The two commands shown are equivalent. When date is finished, the previous 
val ue of TZ takes effect again. . 

2. To replace the environment with another one: 

env - PATH=$PATH IDIR=/u/jim/include LIBDIR=/u/jim/lib make 
This runs make in an environment that consists only of these definitions for PATH, 
I 0 I R, and L I BD I R. You must redefine PATH so that the shell can find the make 
command. 

When make is finished, the previous environment takes effect again. 

Commands 393 



env 

Related Information 

394 

The following command: "sh" on page 913. 

The exec system call, the profile file, and the environ miscellaneous facility in AIX 
Operating System Technical Reference. 



eqn 

eqn,neqn,checkeq 

Purpose 

Formats mathematical text for the nroff, troff and troff commands. 

Syntax 

-dxy -pnum 
-ssize -ffont 

CheCkeq~ 
~ 

OL805183 

Description 

The eqn command is a troff preprocessor for typesetting mathematical text on a 
phototypesetter. The neqn command is used with nroff for other printing devices. The 
output of eqn and neqn is generally piped into troff and nroff as follows: 

eqn file I troff 
neqn file I nroff 
If you do not specify any files or if you specify - as the last file name, the commands read 
standard input. A line consisting of .EQ marks the start of equation text; the end of 
equation text is marked by a line consisting of .EN. Neither of these lines is altered by the 
commands, so they can be defined in macro packages to give you centering and numbering. 
The program checkeq reports missing or unbalanced delimiter pairs and .EQj .EN pairs. 
For information on how to format eqn text, see Text Formatting Guide. 

Commands 395 



eqn 

Flags 

The eqn command recognizes the following mathematical words, and prints the associated 
symbol: 

above 
back 
bar 
bold 
eeol 
col 
epile 
define 
delim 
dot 

-dxy 

-ffont 

-pnum 

-ssize 

dotdot italic reol to 
down leol right under 
dyad left roman up 
fat lineup rpile vee 
font lpile rpile 
from mark size A 

fwd matrix sub {} 
gfont ndefine sup " " 
gsize over tdefine 
hat pile tilde 

Sets x and y as one character delimiters of the text to be processed by eqn, in 
addition to the .EQ and .EN macros. The text between these delimiters will be 
treated as input to eqn. 

Note: Within a file, you can also set delimiters for eqn text using the 
command delim xy. They are turned off by the command delim off. All text 
that is not between delimiters or .EQ and .EN is passed through unprocessed. 

Acts the same as -s for fonts. See the discussion of gfont and font in Text 
Formatting Guide for information on changing font within the text. 

Reduces subscripts and superscripts num points in size (the default is 3). 

Changes point size in all eqn processed text to size. See the discussion of gsize 
and size in Text Formatting Guide for information on changing the point size 
within the text. 

Related Information 

396 

The following commands: "ew, eheekew" on page 275, "mm, eheekmm" on page 663, 
"mmt, eheekmm" on page 666, "nroff, troff' on page 709, and "troff' on page 710. 

The eqnehar and mv miscellaneous facilities in AIX Operating System Technical 
Reference. 

The discussion of eqn in Text Formatting Guide., 



errdead 

errdead 

Purpose 

Extracts error records from dump. 

Syntax 

-c/unix=r 
errdead- dumpfile 

kernel-image 
OL805120 

Description 

Files 

When the system detects a hardware error, it produces an error record containing 
information pertinent to the error. If errdemon, the error-logging daemon, is not running 
or if the system crashes before it can place the record in the error file, the system holds the 
error information in a local buffer. errdead examines a system dump (or memory), 
extracts the error records, and passes them to errpt to generate a report. Note that no 
analysis is available because these error entries were never sent back via errdemon. 

The dumpfile parameter specifies the file (or memory) to be examined. The kernel-image 
parameter specifies the system name list, by default /unix. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

/unix 
/usr/bin/errpt 
/usr/tmp/err* 

System kernel image. 
Analysis program. 
Temporary file. 

Related Information 

The following command: "errpt, errpd" on page 400. 

The discussion of errdead in AIX Operating System Programming Tools and Interfaces. 

Commands 397 



errdemon 

errdemon 

Purpose 

Starts the error-logging daemon. 

Syntax 

/usr/lib/errdemon ---11 

This command is not usually 
run from the command line. 

OL805118 

Description 

398 

The error-logging daemon errdemon collects error records from the operating system by 
reading the special file /dev/error and places them in one of two error log files. 
errdemon creates the names of the two log files by adding a .0 and .1 to the end of the file 
name found in /etc/rasconf. If an error log file does not already exist, errdemon creates 
one. 

The errdemon command adds error records to the first error log file until it reaches the 
maximum allowable length specified in /etc/rasconf. At that point, errdemon closes the 
first error log file, changes the file name from filename.O to filename.I, and opens a new 
filename.O. Thus, the newest error records are always in filename.O. When it is full, 
errdemon overwrites the first file. 

You can stop the error-logging daemon by sending it a SIGKILL signal (see "errstop" on 
page 404). Normally, the /etc/rc command file runs errdemon at system startup. Only a 
user operating with superuser authority can start errdemon, and only one daemon may be 
active at any time. 

If errdemon is unable to log an error, it logs it in abbreviated form in /dev/nvram. Just 
one error can be logged in /dev/nvram, so each subsequent error overwrites any previous 
entries. When the system is started, errdemon searches for a previously written entry in 
/dev/nvram and, if a record is found, records it in one of the error log files and clears 
/dev/nvram. 



Files 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

/dev/error 
/dev/nvram 
/etc/rasconf 
/etc/rc 
/usr/adm/ras/errfile* 

Source of error records. 
Non-volatile read-only memory. 
Configuration file. 
System startup file. 
Reposi tory for error records. 

errdemon 

Related Information 

The following commands: "errpt, errpd" on page 400, "errstop" on page 404, and "kill" 
on page 552. 

The error and nvram files in AIX Operating System Technical Reference. 

AIX Operating System Programming Tools and Interfaces. 

Commands 399 



errpt 

errpt, errpd 

Purpose 

Processes a report of logged errors. 

Syntax 

errpt 
-5 date 
-e date 
-0 
-n node 
-v vmid 
-d list 

OL805410 

Description 

Flags 

400 

The errpt command reads a specified error file or files, processes the data, and writes a 
report of that data to standard output. These error files should be named file.O or file.l, 
but do not include the .0 or .1 extension when you specify the file name argument. errpt 
adds the extension. If you do not specify a file name, errpt uses the file listed in 
/etc/rasconf, adding the .0 and .1 extensions (these are usually /usr/adm/ras/errfile.O 
and /usr/adm/ras/errfile.l). The default report is a summary of all errors posted in the 
named file, as well as system information events, such as time changes, system starts, and 
so on. 

The errpt command pipes error entries through the program /usr/lib/errpd, which adds 
probable cause information to certain entries. If no probable cause information is added, 
errpt logs records exactly as it receives them. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

-a Produces a detailed report. This contains specific error information for 
every event that errpt formats. 



-d list 

-e date 

errpt 

Limits the report to certain types of error records as defined by list. The 
list items can either be separated by commas or enclosed in double 
quotation marks and separated by commas or blanks. See "Error 
Identifiers" for the valid list values. 

Includes all records posted earlier than date, where date has the form 
MMddhhmmyy (month, day, hour, minute and year). 

-n node Includes only entries in the error report from the specified nodename. 

Includes all records posted later than date, where date has the form 
MMddhhmmyy. 

-s date 

-v umid Includes only entries in the error report from the system name specified 
with umid. 

Error Identifiers 

In the following error identifiers, 0 acts as a wildcard character, such that, for example, 
HOO gives you all hardware errors (Hll to HFF), and HIO gives you all errors from Hll to 
HIF, and so on. 

1. Class 

HOO = Hardware (01) 
SOO = Software (02) 
100 = IPL/Shutdown (03) 
GOO = General System Condition (04) 
UOO = User Defined, Non-Hardware 

2. Class/Subclass 

HIO = Hardware/Processor and Memory Management Card Machine Check 
HII = Hardware/Main Processor 
Hl2 = Hardware/Main Memory 
H20 = Hardware/Fixed Disk Drive and Adapter 
H30 = Hardware/Diskette Drive and Adapter 
H40 = Hardware/Tape and Adapter 
H50 = Hardware/Display Station 
H51 = Hardware/5080 Display Adapter 
H52 = Hardware/ AP Al6 Display Adapter 
H60 = Hardware/Display Station Adapter 
H70 = Hardware/Keyboard/Mouse 
H80 = Hardware/Communication Adapters 
H81 = Hardware/RS232 Multi-port 
H84 = Hardware/Serial or Serial/Parallel 
H85 = Hardware/IBM PC Network Adapter 
H86 = Hardware/RS422 Multi-port 
H87 = Hardware/Native Serial I/O 

Commands 401 



errpt 

402 

H8E = Hardware/SSLA 
H90 = Hardware/Parallel Printer and Adapter 
H91 = Hardware/Parallel or Serial/Parallel 
H92 = Hardware/Parallel or PC Monochrome 
HAO = Hardware/Printers 
HFO 

HFF = User Defined Hardware 

S10 = Software/Processor and Memory Management Card Program Check 
S20 = Software/Abend 
S21 = Software/Abend dump taken 
S22 = Software/Abend No dump taken 
S30 = Software/Program Error AIX 
S33 = Software/Program Error Kernel 
S40 = Software/Program Error Kernel Device Driver 
S42 = Software/5080 Display Device Driver 
S50 = Software/Program Error Kernel Device Driver 
S60 = Software/Program Error VRM Base 
S61 = Software/Program Error VRM Attach Device 
S70 = Software/Program Base VRM Component 
S72 = Software/Program Base VRM Component - Virtual Terminal 
S74 = Software/5080 Display VRM Device Driver 
S75 = Software/5080 Peripherals VRM Device Driver Manager 
S80 = Software/Program Error Application 
S80 = Software/Program Error Application - Error Log Analysis 
S80 = Software/Program Error Application - Interactive Workstation 
S90 = Software/Program Error Application 
SAO = Software/Program Error Application 
SBO = Software/Program Error Application 
SCO = Software/Program Error Application 
SDO = Software/Program Error Application 
SEO = Software/Program Error Application 
SFO = Software/Program Error Application 

110 = IPLfShutdown/ManualIPL 
120 = IPL/Shutdown/Soft IPL 
130 = IPL/Shutdown/Auto IPL 
140 = IPL/Shutdown/Shutdown 
150 = IPLfShutdown/Maintenance Shutdown 

G 10 = General System Condition/Degraded Config 
G20 = General System Condition/Set Date/ Time 
G40 = General System Condition/Error Reporting 
G50 = General System Condition/LPOST 



Files 

errpd 

G41 = General System Condition/Cause Codes 
G42 = General System Condition/Device Information 
G43 = General System Condition/Counters 
G51 = General System Condition/Memory Test LPOST 
U10 

UFF = User Defined, Non-Hardware 

errpt 

The error log analysis program, /usr/lib/errpd, analyzes the error log data. 
/usr/lib/errpd processes error data to determine if the error is a hardware error and if the 
error is a temporary or permanent error. 

The analysis does the following: 

• Generates a number that corresponds to a service request number. 
• Analyzes the data and generates the ALERT number. 
• Makes the description message ID number. The description consists of the following: 

Error Analysis determines, from the error data passed, the nature of the operation 
at the time of the failure. This becomes part of the error description. 
Error Analysis determines what failed and what the error indication is. This 
becomes part of the error description and is used to create the ALERT number. 
Field Replacement Unit (FRU) Analysis determines the Service Request Code. This 
becomes part of the error description. 

/usr/adm/ras/errfile? Error file. 

Related Information 

The following command: "errdemon" on page 398. 

The errfile file in AIX Operating System Technical Reference. 

AIX Operating System Programming Tools and Interfaces. 

Commands 403 



errstop 

errstop 

Purpose 

Terminates the error-logging daemon. 

Syntax 

-c/uniX:y 
errsTop 

kernel-image 
OL805121 

Description 

The errstop command stops the error-logging daemon err demon by running the ps 
command to determine the daemon process ID and then sending it a Software Terminate 
signal (see the signal system call in AIX Operating System Technical Reference). If you do 
not specify kernel-image, errstop uses /unix. Only a user operating with superuser 
authority can run errstop. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

Files 

/unix System kernel image. 

Related Information 

404 

The following commands: "errdemon" on page 398 and "ps" on page 786. 

The kill system call in AIX Operating System Technical Reference. 

AIX Operating System Programming Tools and Interfaces. 



errupdate 

errupdate 

Purpose 

Updates an error report template. 

Syntax 

errupdcte- file 0 
OL805332 

Description 

The errupdate command adds, replaces, or deletes error report format templates in the file 
/etc/errfmt. errupdate creates an undo file in the current directory that it names 
file.undo.err. You can use this undo file as input to errupdate with the -0 (override) flag 
to undo the changes errupdate has just made. 

The errupdate command adds the extension .err to the file name you specify and reads 
update commands from the file with that name and extension. The first field of each 
template contains an operator: 

+ To add or replace a template 

To delete a template. 

If the operation is +, then the following fields contain the template to be replaced. If the 
operation is a -, then the second field contains the class/subclass/mask identifier of the 
template to delete. errupdate checks for valid combinations of identifiers and writes error 
messages if it encounters invalid combinations. When adding or replacing, it compares the 
version numbers of each input template with the version number of the existing template 
of the same class/subclass/mask and, if the version number of the input template is later, 
replaces the old template with the input template. If the template does not already exist, 
then it is added to the file. The input template must contain an identifier line on the first 
line: 

* /etc/errfmt 
or errupdate rejects the input file. All delete operations are performed before the 
add/replace operations. 

Commands 405 



errupdate 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

Flag 

-0 Does no version number checking. 

Example 

Files 

The following is an example input file: 

* /etc/errfmt 
+ H8l 2.0 Native Serial: lOON D2: IOCN D2: Base-Addr D4:\ 

- H92 

Dev-Name A4: \n: Dev-Type X4: DDI-Length D4: Error -Type XI:\ 
Last-I/O Xl: Line-Status Xl: Printer-Status Xl: 

/etc/errfmt 
file. err 
file.undo.err 

Related Information 

406 

The following command: "errpt, errpd" on page 400. 

AIX Operating System Programming Tools and Interfaces. 



ex 

ex 

Purpose 

. Edits lines interactively, with screen display. 

Syntax 

ex 

-wnum 
-x 

-r 

OL805325 

1 Do not put a blank between these items. 

OL805308 

Description 

The ex command is a line-oriented text editor that is a subset of the vi screen editor. The 
ex editor is similar to ed, but is more powerful, providing multiline displays and access to 
a screen editing mode. You may prefer to call vi directly to have environment variables 
set for screen editing. Also edit, a limited subset of ex, is available for novice or casual 
use. For more information on vi, see "vi, vedit, view" on page 1187. For more 
information on edit, see "edit" on page 387. 

Notes: 

1. Some vi subcommands have meanings that differ from ed subcommands. 

2. To determine how to drive your work station more efficiently, ex uses the work station 
capability database terminfo and the type of the work station you are using from the 
shell environment variable TERM. 

Commands 407 



ex 

408 

The ex editor has the following features: 

• You can view text in files. The z subcommand lets you access windows of text, and you 
can scroll through text by pressing Ctrl-D and Ctrl-U. The vi subcommand provides 
further viewing options and active screen-editing by invoking the vi editor. 

• You can revoke the last previous subcommand entered (except for q and w). The undo 
subcommand allows you to "undo" the last subcommand, even if it was an undo 
subcommand. Thus you can switch back and forth between the latest change in the 
edit file and the last prior file status and view the effect of a subcommand without that 
effect being permanent. The ex command displays changed lines and indicates when 
more than a few lines are affected by a subcommand. The undo subcommand causes 
all marks to be lost on lines changed and then restored if the marked lines were 
changed. It does not clear the buffer modi fi ed condition. 

• You can retrieve your work. (except changes that were in the buffer) if the system or 
the editor crashes by re-entering the editor with the -r flag and the file name. When 
the file name is not specified, all open files in your partition are listed. 

• You can queue a sequence or group of files to edit. You can list the files in the ex 
command and then use the next subcommand to access each file sequentially. Or after 
you enter the editor, you can enter the next subcommand with a list of file names or a 
pattern (as' used by the shell) to specify a set of files. In general, you can designate file 
names to the editor using the pattern-matching symbols that the shell will accept. You 
can use the wild card character % to form file names and represent the name of the 
current edit file. 

• You can use a group of buffers (buffers named a through z) to move text between files 
and within a file. You can temporarily place text in these buffers and copy or reinsert 
it in a file, or you can carry it over to another file. The buffers are cleared when you 
quit the editor. The editor does not notify you if text is placed in a buffer and not used 
before exiting the editor. 

• You can use patterns that match words. For example, you can search only for the 
word "ink" when your document also contains the word "inkblot" or "blink." 

• You can display a window of logical lines. The z subcommand allows you to select the 
number of lines displayed and locate the current line within the display 
simultaneously. More than a screen of output can result when the file lines are longer 
than the output display lines because the set number of logical lines are displayed 
rather than a number of physical lines. 

• You can read a file of editor subcommands. The so command allows you to read a file 
of subcommands. Nesting of source files is permitted, allowing one file to call another; 
however, no return mechanism is provided. 



ex 

The ex editor has the following maximum limits: 

• 1024 characters per line 
• 256 characters per global command list 
• 128 characters in the previous inserted and deleted text 
• 100 characters in a shell escape command 
• 63 characters in a string-valued option 
• 30 characters in a tag name 
• 250,000 lines of 1024 characters per line silently enforced 
• 32 map macros with 512 characters total. 

Editing States 
command Normal and initial state. Input is prompted for by : (colon). Pressing END OF 

FILE (Ctrl-D) clears an uncompleted subcommand from the command line. 

entry Entered by a, i and c. In this state you can enter text. Entry state ends 
normally with a line that has only a . (period) on it or ends abnormally if you 
press INTERRUPT (Alt-Pause). 

visual Entered by vi, vi., vi-, or o. Each of the first three commands gives you a full 
screen vi editor, but puts the current line in a different place on entry. Enter 
vi to put the current line at the top of the screen; enter vi. to put the current 
line in the middle of the screen; and enter vi- to put the current line at the 
bottom of the screen. The 0 command opens a one-line window. All three 
commands share the input state of the visual editor. Press the Esc key to exit 
the input state. To return to the ex command state at the current line, enter Q 
or A \ while not in the input state. 

Subcommands 

The following table lists the ex subcommands. Most of these subcommands are discussed 
under "edit" on page 387 or "vi, vedit, view" on page 1187. 

ab abbrev I list rec recover x exit 
a append map map rew rewind ya yank 
ar args ma mark se set z window 
c change m move sh shell ! escape 
co copy n next so source < lshift 
d delete nu number s substitute CR print next 
e edit pre preserve una unabbrev & resubst 
f file p print u undo > rshift 
g global pu put unm unmap AD scroll 

insert q quit vi visual 
j join re read w write 

Commands 409 



ex 

Flags 

410 

Subcommand Addresses 

$ 
+ 

+ num 
-num 

% 

num 

The last line 
The next line 
The previous line 
The numth line forward 
The numth previous line 

The first through last lines 

line num 
The current line 

x-num 
x,Y 
'm 
" 
/$pat 

/Apat 

/pat 
?pat 

The numth line before x 
Lines x through y 
The line marked with m 
The previous context 
The next line with pat at end 
of line 
The next line with pat at start 
of line 
The next line with pat 
The previous line with pat 

Scanning Pattern Formation 

-1 

-r [file] 

-R 

-t tag 

-v 

A 

$ 
The beginning of the line 
The end of the line 
Any character 

\< The beginning of the word 
The end of the word \> 

[string] 
[A string] 
[x-y] 

Any character in string 
Any character not in string 
Any character between x and y, inclusive 
Any number of the preceding character. * 

Indents appropriately for Lisp code, and accepts the () {} [[ and ]] characters as 
text rather than interpreting them as vi subcommands. The Lisp modifier is 
active in open or visual modes. 

Recovers file after an editor or system crash. If you do not specify file, a list of 
all saved files is displayed. 

The read only option is set, preventing you from altering the file. 

Loads the file that contains tag and positions the editor at tag. 

Invokes the visual editor. 

Note: When the v flag is selected, an enlarged set of subcommands are 
available, including screen editing and cursor movement features. See "vi, 
vedit, view" on page 1187. 

Suppresses all interactive-user feedback. If you use this flag, file input/output 
errors do not generate a helpful error message. 



Files 

ex 

+ subcmd Begins edit at the specified editor search or subcommand. When subcomand is 
not entered, + places the current line to the bottom of the file. Normally ex 
sets current line to the start of the file, or to some specified tag or pattern. 

/usr/lib/exrecover 
/usr /li b/ expreserve 
/usr/lib/* /* 
$HOME/.exrc 
. /.exrc 
/tmp/Exnnnnn 
/tmp/Rxnnnnn 
/usr/preserve 

Recover subcommand. 
Preserve subcommand. 
Describes capabilities of work stations. 
Editor startup file . 
Editor startup file. 
Editor temporary. 
Names buffer temporary. 
Preservation directory. 

Related Information 

The following commands: "vi, vedit, view" on page 1187, "edit" on page 387, "awk" on 
page 81, "ed" on page 371, "grep" on page 501, and "sed" on page 887. 

The curses subroutine and the TERM, INIT, and terminfo files in AIX Operating System 
Technical Reference. 

Commands 411 



expr 

expr 

Purpose 

Evaluates arguments as expressions. 

Syntax 

expr - expression --I 

OL805048 

Description 

412 

The expr command reads an expression, evaluates it, and writes the result to standard 
output. Within expression, you must separate each term with blanks, precede characters 
special to the shell with a backslash (\), and quote strings containing blanks or other 
special characters. Note that expr returns 0 to indicate a zero value, rather than the null 
string. Integers may be preceded by a unary minus sign. Internally, integers are treated 
as 32-bit, twos complement numbers. 

The operators and keywords are described in the following listing. Characters that need to 
be escaped are preceded by a backslash (\). The list is in order of increasing precedence, 
with equal precedence operators grouped within braces ({}). 

expressionl \ I expression2 
Returns expressionl if it is neither null nor 0; otherwise it returns 
expression2. 

expressionl \& expression2 
Returns expressionl if neither expressionl nor expression2 is null or 0; 
otherwise it returns O. 

expressionl { , \>, \>=, \<, \<=, ! = } expression2 
Returns the result of an integer comparison if both expressions are integers; 
otherwise returns the result of a string comparison. 

expressionl {+, -} expression2 
Adds or subtracts integer-valued arguments. 

expressionl { \ * , / , %} expression2 
Multiplies, divides, or provides the remainder from the division of 
integer-valued arguments. 



expressionl 

expr 

expression2 
Compares expressionl with expression2, which must be a pattern; pattern 
syntax is the same as that of the ed command (see page 371), except that all 
patterns are anchored, so 1\ (which anchors a pattern to the beginning of a 
line), is not a special character in this context. 

Normally, the matching operator returns the number of characters 
matched. Alternatively, you can use the \( ... \) symbols in expression2 
to return a portion of expressionl. In an expression such as [a-z], the 
minus means "through" according to the current collating sequence. 

A collating sequence can define equivalence classes for use in character 
ranges. See "Overview of International Character Support" in Managing 
the AIX Operating System for more information on collating sequences and 
equivalence classes. 

Japanese Language Support Information 

A collating sequence does not define equivalence classes for use in 
character ranges. To avoid unpredictable results when using a range 
expression to match a class of characters, use a character class 
expression rather than a standard range expression. For information 
about character class expressions, see the discussion of this topic included 
in the description of the command "ed" on page 371. 

The expr command returns the following exit values: 

o The expression is neither null nor O. 

1 The expression is null or O. 

2 The expression is invalid. 

Note: After parameter processing by the shell, expr cannot distinguish between an 
operator and an operand except by the value. Thus, if $ a is =, the command: 

expr $a = '=' 

looks like: 

expr = = 
after the shell passes the arguments to expr, and they will all be taken as the 
The following works: 

expr X$a = X= 

operator. 

Commands 413 



expr 

Examples 

414 

1. To modify a shell variable: 

COUNT='expr $COUNT + l' 

This adds 1 to the shell variable COUNT. The expr command is enclosed in grave 
accents, which causes the shell to substitute the standard output from expr into the 
COUNT= command. For more details, see "Command Substitution" on page 925. 

2. To find the length of a shell variable: 

LENGTH='expr $STR : ". *11\ 

This sets LENGTH to the value given by the : (colon) operator. The pattern. * matches 
any string from beginning to end, so the colon operator gives the length of STR as the 
number of characters matched. Note that II. *11 must be in quotes to prevent the shell 
from treating the * as a pattern-matching character. The quotes themselves are not 
part of the pattern. 

If STR is set to the null string, the error message expr: syntax error is displayed. 
This happens because the shell does not normally pass null strings to commands. In 
other words, the expr command sees only 

* .. 
(The shell also removes the quotation marks.) This does not work because the colon 
operator requires two values. This problem can be fixed by enclosing the shell variable 
in double quotation marks: 

LENGTH='expr II$STR" : 11.*11' 

Now if STR is null, LENGTH is set to zero. Enclosing shell variables in double 
quotation marks is recommended in general. However, do not enclose shell variables 
in single quotation marks. See page 918 for details about using quotation marks. 

3. To use part of a string: 

FLAG='expr II$FLAGII : 11_*\(. *\) II, 

This removes leading minus signs, if any, from the shell variable FLAG. The colon 
operator gives the part of FLAG matched by the part of the pattern enclosed in \( \). If 
you omit the \( \), the colon operator gives the number of characters matched. 

If FLAG is set to - (minus), a syntax error message is displayed. This happens because 
the shell substitutes the value of FLAG before running the expr command. expr does 
not know that the minus is the value of a variable. It can only see: 

- : - *\ ( . *\) 



expr 

and it interprets the first minus sign as the subtraction operator. We can fix this 
problem by using: 

FLAG=expr IIx$FLAG" : IIX_*\(.*\)II 

4. To use expr in an if statement: 

if expr "$ANSWERII : I[yYJ" >/dev/null 
then 

# ANSWER begins with lIy " or "V" 
fi 

If ANSWER begins with y or V, the then part of the if statement is performed. If the 
match succeeds, the result of the expression is 1 and expr returns an exit value of 0, 
which is recognized as the logical value TRUE by if. If the match fails, the result is 0 
and the exit value 1 (FALSE). 

Redirecting the standard output of expr to the /dev/null special file discards the result 
of the expression. If you do not redirect it, the result is written to the standard output, 
which is usually your work station display. 

5. Consider the following expression: 

expr "$STR" = "=" 

If STR has the value = (equal sign), then after the shell processes this command expr 
sees the expression: 

The expr command interprets this as three = operators in a row and displays a syntax 
error message. This happens whenever the value of a shell variable is the same as one 
of the expr operators. You can avoid this problem by doing the following: 

expr "x$STRIl = II X=" 

Related Information 

The following commands: "ed" on page 371 and "sh" on page 913. 

"Overview of International Character Support" in Managing the AIX Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 

Commands 415 



factor 

factor 

Purpose 

Factors a number. 

Syntax 

factor r--\.. I 

~numberr 
OL805051 

Description 

When called without an argument, the factor command waits for you to enter a positive 
number less than 256. It then writes the prime factors of that number to standard output. 
It displays each factor the proper number of times. To exit, enter a 0 or any nonnumeric 
character. 

When called with an argument, factor determines the prime factors of number, writes the 
results to standard output, and exits. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

Example 

416 

To calculate the prime factors of 123: 

factor 123 

This displays: 

123 
3 
41 



ff 

ff 

Purpose 

Lists the file names and statistics for a file system. 

Syntax 

-0 num -n file 
device---i ff 

-c num -p prefix 
-I -s 
-m num-u 
-I 

OL805122 

Description 

Warning: This program is not intended for use with diskette-based file 
systems because of the difference in superblock structure and the general 
format of the file system. 
The ff command reads the i-list and directories specified by device and writes information 
about them to standard output. It assumes that device is a file system, and saves i-node 
data for files specified by flags. The output from the ff command consists of the path name 
for each saved i-node, in addition to other file information that you request with the flags. 
The output is listed in order by i-node number, with tabs between all fields. The default 
line produced by ff includes the path name and i-number fields. With all flags enabled, the 
output fields include path name, i-number, size, and UID. 

The num parameter in the flags descriptions is a decimal number, where + num means 
more than num, -num means less than num, and num means exactly num. A day is defined 
as a 24-hour period. 

The ff command lists only a single path name out of many possible ones for an i-node with 
more than one link, unless you specify the -1 flag. With -1, ff applies no selection criteria 
to the names listed. All possible names for every linked file on the file system are included 
in the output. On very large file systems, memory may run out before ff does. 

Commands 417 



ff 

Flags 

-a 

-c 

-i 

-I 

-1 

-m 

-n 

num 

num 

i-node 

num 

file 

Selects if the i-node has been accessed in num days. 

Selects if the i-node has been changed in num days. 

Generates names for only those i-nodes specified in the inode list. 

Does not display the i-node number after each path name. 

Generates a list of all path names for files with more than one link. 

Selects if the file associated with the i-node has been modified in num days. 

Selects if the file associated with the i-node has been modified more recently 
than the specified file. 

-p prefix Adds the specified prefix to each path name. The default prefix is . (dot). 

-8 Writes the file size, in bytes, after each path name. 

-u Writes the owner's login name after each path name. 

Examples 

418 

1. To list the path names of all files in a given file system: 

ff -I Idev/hdO 

This displays the path names of the files on the / dey /hdO disk. If you do not specify 
the - I flag, then ff also displays the i-number of each file. 

2. To list files that have been modified recently: 

ff -m -2 -u /dev/hdO 

This displays the path name, i-number, and owner's user name (- u) of each file on 
/dev /hdO that has been modified within the last two days (-m -2). 

3. To list files that have not been used recently: 

ff -a +30 /dev/hdO 
This displays the path name and i-number of each file that was last accessed more than 
30 days ago (- a +30). 



4. To find out the path names of certain i-nodes: 

ff -1 -i 451,76 /dev/hdO 

This displays all the path names (-1) associated with i-nodes 451 and 76. 

Related Information 

The following commands: "find" on page 422 and "ncheck" on page 683. 

ff 

Commands 419 



file 

file 

Purpose 

Determines file type. 

Syntax 

• ~m letc/mo:ycie d-f file 
file 

-m mfile file 

~
-m lete/mOyie 

file- -e 

-m mfile 
OL805124 

Description 

420 

The file command reads its input files, performs a series of tests on each one, and attempts 
to classify them by their types. The command then writes the file types to standard output. 

If a file appears to be ASCII, file examines the first 512 bytes and tries to determine its 
language. If a file does not appear to be ASCII, file further attempts to distinguish a 
binary data file from a text file that contains extended characters. 

If file is an a.out file, and the version number is greater than zero (see "ld" on page 557), 
file displays the version stamp. 

The file command uses the file /ete/magie to identify files that have a magic number, 
that is, any file containing a numeric or string constant that indicates its type. Comments 
at the beginning of /ete/magie explain its format. 

Japanese Language Support Information 

The file command uses the magie.eat message catalog. If magic. cat cannot be opened, 
the file command uses the jete/magic file mentioned earlier. 



Flags 

file 

-c Checks the mfile (fetc/magic by default) for format errors. This validation is 
not normally done. File typing is not done under this flag. 

-f file Reads file for a list of files to examine. 

-m mfile Specifies mfile as the magic file (fetc/magic by default). 

Examples 

Files 

1. To display the type of information a file contains: 

file myfile 

This displays the file type of myfi 1 e (directory, data, ASCII text, C-program source, 
archive, and so forth). 

2. To display the type of each file named in a list of file names: 

file -f filenames 

This displays the type of each file with a name that appears in fi 1 enames. Each file 
name must appear alone on a line. 

To create fi 1 enames: 
1s >filenames 

then edit fi 1 enames as desired. 

/etc/magic File type database. 

Related Information 

"Overview of International Character Support" in Managing the AIX Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 

Commands 421 



find 

find 

Purpose 

Finds files matching expression. 

Syntax 

find T path -,- expression ---l 

OL805125 

Description 

The find command recursively searches the directory tree for each specified path, seeking 
files that match a Boolean expression written using the terms given below. The output 
from find depends on the terms used in expression. 

Expression Terms 

422 

In the following descriptions, the parameter num is a decimal integer that can be specified 
as + num (more than num), -num (less than num), or num (exactly num). 

-inurn n 

-name file 

True if file has inode n. 

True if file matches the file name. You can use pattern-matching 
characters, provided they are quoted. In an expression such as [a-z], the 
minus means "through" according to the current collating sequence. 

A collating sequence may define equivalence classes for use in character 
ranges. See "Overview of International Character Support" in Managing 
the AIX Operating System for more information on collating sequences 
and equivalence classes. 



-node nname 

-perm anum 

find 

Japanese Language Support Information 

A collating sequence in Japanese Language Support does not define 
equivalence classes for use in character ranges. To avoid unpredictable 
results when using a range expression to match a class of characters, use 
a character class expression rather than a standard range expression. 
For information about character class expressions, see the discussion in 
"File Name Substitution" on page 4. 

True if the file resides in the node nname where the nodes are connected 
through Distributed Services. If nname is a valid nickname, it is used as 
is. If nname is not a valid nickname but has a valid NID syntax, it is 
used as a NID. 

True if the file permission code of the file exactly matches the octal 
number anum (see "ehmod" on page 160 for an explanation of file 
permissions). The anum parameter may be up to three octal digits. If you 
want to test the higher-order permission bits (the set-user-ID bit or 
set-groupoID bit, for example), prefix the anum parameter with a minus (-) 
sign. This makes more flag bits significant (see the stat system call for 
an explanation of the additional bits), and also changes the comparison 
to: 

(flags&anum) = = anum 

-type type True if the file type is of the specified type as follows: 

b Block special file 
e Character special file 
d Directory 
f Plain file 
p FIFO (a named pipe). 

-links num True if the file has num links. See "In" on page 58l. 

-user uname True if the file belongs to the user uname. If uname is numeric and does 
not appear as a login name in the /ete/passwd file, it is interpreted as a 
user ID. 

-group gname True if the file belongs to the group gname. If gname is numeric and does 
not appear in the fete/group file, it is interpreted as a group ID. 

-size num True if the file is num blocks long (512 bytes per block). For this 
comparison the file size is rounded up to the nearest block. 

-atime num True if the file has been accessed in num days. 

-mtime num True if the file has been modified in num days. 

Commands 423 



find 

-ctime num 

-exec cmd 

-ok cmd 

-print 

-cpio device 

-newer file 

-depth 

True if the file i-node has been changed in num days. 

True if the cmd runs and returns a zero value as exit status. The end of 
cmd must be punctuated by a quoted or escaped semicolon. A command 
parameter {} is replaced by the current path name. 

The find command asks you whether it should start cmd. If your 
response begins with y, cmd is started. The end of cmd must be 
punctuated by a quoted or escaped semicolon. 

Always true; causes the current path name to be displayed. find does not 
display path names unless you specify this expression term. 

Write the current file to device in cpio format. See "cpio" on page 205. 

True if the current file has been modified more recently than the file 
indicated by file. 

Always true. This causes the descent of the directory hierarchy to be 
done so that all entries in a directory are affected before the directory 
itself. This can be useful when find is used with cpio to transfer files 
that are contained in directories without write permission. 

\( expression \) True if the expression in parentheses is true. 

You may perform the following logical operations on these terms (listed in order of 
decreasing precedence): 

• Negate a term (! is the NOT operator). 

• Concatenate terms (juxtaposing two terms implies the AND operation). 

• Alternate terms (-0 is the OR operator). 

Examples 

424 

1. To list all files in the file system with a given base file name: 

find I -name .profile -print 
This searches the entire file system and writes the complete path names of all files 
named. prof; 1 e. The I tells find to search the root directory and all of its 
subdirectories. This may take a while, so it is best to limit the search by specifying the 
directories where you think the files might be. 

2. To list the files with a specific permission code in the current directory tree: 

find -perm 0600 -print 
This lists the names of the files that have only owner-read and owner-write permission. 
The. (dot) tells find to search the current directory and its subdirectories. See 
"chmod" on page 160 for details about permission codes. 



Files 

3. To search several directories for files with certain permission codes: 

find manual clients proposals -perm -0600 -print 

find 

This lists the names of the files that have owner-read and owner-write permission and 
possibly other permissions. The directories manual, cl i ents, and proposal s, and 
their subdirectories, are searched. Note that -perm 0600 in the previous example 
selects only files with permission codes that match 0600 exactly. In this example, 
-perm -0600 selects files with permission codes that allow at least the accesses 
indicated by 0600. This also matches the permission codes 0622 and 2744. 

4. To search for regular files with multiple links: 

find -type f -links +1 -print 

This lists the names of the ordinary files (- type f) that have more than one link 
(- 1 inks + 1). Note that every directory has at least two links: the entry in its parent 
directory and its own. (dot) entry. See "In" on page 581 for details about multiple file 
links. 

5. To back up selected files in cpio format: 

find -name II*.C" -cpio /dev/rfdO 

This saves all the. C files onto the diskette in cpio format. See "cpio" on page 205 
for details. Note that the pattern "*. C" must be quoted to prevent the shell from 
treating the * as a pattern-matching character. This is a special case in which find 
itself decodes the pattern-matching characters. 

6. To perform an action on all files that meet complex requirements: 

find. \( -name a.out -0 -name "*.0" \) -atime +7 -exec rm {} \; 

This deletes (-exec rm {} \;) all files named a. out or that end with. 0, and that 
were last accessed over seven days ago (- at i me +7). The - 0 flag is the logical OR 
operator. 

/etc/group 
/etc/passwd 

File that contains all known groups. 
File that contains all known users. 

Related Information 

The following commands: "cpio" on page 205, "sh" on page 913, and "test" on page 1064. 

The stat system call and the cpio and fs files in AIX Operating System Technical 
Reference. 

Commands 425 



find 

426 

"Overview of International Character Support" and "Using Distributed Services" in 
Managing the A/X Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 



fish 

fish 

Purpose 

Plays the card game Go Fish. 

Syntax 

/usr/games/fish --I 

OL805189 

Description 

The object of the fish game is to accumulate books of four cards with the same face value. 
You and the program take turns asking each other for a card in your hand. If your 
opponent has one or more cards of that value, he must hand them over. If not, he says GO 
FI SH, and you draw a card from the pool of undealt cards. If you draw the card you asked 
for, you draw again. As books are made, they are laid down on the table. Play continues 
until there are no cards left. The player with the largest number of books wins the game. 
fish tells you the winner and exits. 

The fish game asks if you want instructions before play begins. To see the instructions, 
enter y or yes. 

Entering p as your first move gives you the professional-level game. 

The fish game tells you the cards in your hand each time it prompts for a move. It tells 
you when either side makes a book, says GO FI SH for you, and draws for you. All you 
must enter as play progresses is the value of the card you want to ask for. If you press 
only the Enter key, you are given information about the number of cards in your 
opponent's hand and in the pool. 

To exit the game before play is completed, press INTERRUPT (Alt-Pause). 

Commands 427 



fmt 

fmt 

Purpose 

Formats mail messages prior to sending. 

Syntax 

/usr/bin/fmt -- file-----j 

AJ2FL123 

Description 

The fmt command invokes a simple text formatter that reads the concatenation of input 
files (or standard input if no files are specified). It then produces, on standard output, a 
version of the input with lines as close to 72 characters long as possible. The spacing at 
the beginning of the input lines is preserved in. the output, as are blank lines and 
interword spacing. 

The fmt command is generally used to format mail messages prior to sending them through 
the mail facility. It may also be useful, however, for other simple formatting tasks. For 
example, within visual mode of a text editing program such as vi, the command! }fmt 
reformats a paragraph so that all lines are approximately 72 characters long. 

Note: The fmt command is a fast, simple formatting program. Standard text editing 
programs are more appropriate than fmt for complex formatting operations. 

Related Information 

The following commands: "mail, Mail" on page 608, and "nroff, troft"" on page 709. 

428 



folder 

folder 

Purpose 

Selects and lists folders and messages. 

Syntax 

folder one of 
num cur 
sequence . 
first next 
prey last 

fotder - -help----l 

AJ2FL228 

Description 

The folder command is used to set the current folder and the current message for that 
folder, and to list information about your folders. The folder command is part of the MH 
(Message Handling) package and can be used with other MH and AIX commands. 

Commands 429 



folder 

Flags 

430 

The folder command entered with only the -all flag gives a line of information for each 
folder in your mail directory. This information tells how many messages are in each 
folder, what the current message is for each folder, what the range of message numbers is 
in each folder, and if a folder is the current folder. The folder command specified without 
arguments provides information for the current folder. The -recurse flag displays this 
information for all folders and subfolders in your entire mail directory structure. 

Specify a folder with the folder command to make it the current folder, and a message to 
make it the current message for that folder. You can also create a folder-stack to 
manipulate a group of folders by using the -push, -pop, and -list flags. 

-all 

-fast 

+folder msg 

-header 

-help 

-list 

-nofast 

-noheader 

-nolist 

-nopack 

-noprint 

Displays a line of information about each folder in your mail directory. 
Specify + folder to display the information about that folder and the· 
subfolders within that folder's directory. Add the -recurse flag to display 
the information about the specified folder and for all subfolders in all 
directories under the specified folder's directory. 

Displays only the names of the folders. 

Sets the specified folder as the current folder, and the specified message as 
the current message. You can use the following message references when 
specifying msgs: 

num 
pre v 
next 

sequence 
cur 
last 

first 

If you specify a sequence, that sequence must contain one message only. 

The default folder is the current folder. The default message is none. 

Displays column headings for the folder information. 

Displays help information for the command. 

Displays the current folder followed by the contents of the folder-stack. 

Displays information about each folder. This flag is the default. 

Suppresses column headings for the folder information. This flag is the 
default. 

Suppresses the display of the folder-stack contents. This flag is the default. 

Does not renumber the messages in the folder. This flag is the default. 

Does not display folder information. If -push, -pop, or -list is specified, 
-noprint is the default. 



folder 

-norecurse Displays information about the top-level folders in your current folder only, 
not about subfolders. This flag is the default. 

-nototal Does not display a total of all messages and folders in your mail directory 
structure. -total is the default when -all is specified, otherwise -nototal is 
the default. 

-pack Renumbers the messages in the specified folder. This renumbering 
eliminates the gaps in the message numbering after messages have been 
deleted. 

-pop Removes the folder from the top of the folder-stack and makes it the current 
folder. + folder cannot be specified with the -pop flag. 

-print Displays information about the folders. This information includes the 
number of messages in each folder, the current message for each folder, and 
the current folder. If -push, -pop, or -list is specified, -noprint is the 
default, otherwise -print is the default. 

-push Moves the current folder to the top of the folder-stack and sets the specified 
folder as the current folder. If no folder is specified, -push swaps the 
current folder with the folder on the top of the folder-stack. 

-recurse Displays information about all folders and subfolders in your current folder. 
You can specify a folder to display the information about that folder and its 
subfolders only. 

-total Displays a total of all messages and folders in your mail directory structure. 
-total does not display information for subfolders unless you also specify 
the -recurse flag. The -total flag is the default if -all is specified. 

Profile Entries 

Files 

Current-Folder: 
Folder-Protect: 
Folder-Stack: 
lsproc: 
Path: 

$H OME/ .mh-profile 

Sets your default current folder. 
Sets the protection level for your new folder directories. 
Specifies your folder stack. 
Specifies the program used to list the contents of a folder. 
Specifies your user -mh-directory. 

The MH user profile. 

Commands 431 



folder 

Related Information 

432 

Other MH commands: "folders" on page 433, "mhpath" on page 648, "packf" on 
page 733, "refile" on page 817. 

The mh-profile file in AIX Operating System Technical Reference. 

"Overview of the Message Handling Package" in Managing the AIX Operating System. 



folders 

folders 

Purpose 

Lists folders and messages. 

Syntax 

folders 

folders - -help--l 

AJ2FL229 

Description 

The folders command is used to list information about your folders. The folders command 
is part of the MH (Message Handling) package and can be used with other MH and AIX 
commands. 

The folders command is equivalent to the folder command specified with the -all flag. 

Commands 433 



folders 

Flags 

-fast 

-header 

-help 

-list 

-nofast 

-noheader 

-nolist 

-nopack 

-noprint 

-norecurse 

-nototal 

-pack 

-pop 

-print 

-push 

-recurse 

-total 

434 

Displays only the names of the folders in your mail directory. 

Displays column headings for the folder information. This flag is the 
default. 

Displays help information for the command. 

Displays the current folder followed by the contents of the folder-stack. 

Displays information about each folder in your mail directory. This flag is 
the default. 

Suppresses column headings for the folder information. 

Suppresses the display of the folder-stack contents. This flag is the default. 

Does not renumber the messages in the folder. This flag is the default. 

Does not display folder information. If -push, -pop, or -list is specified, 
-noprint is the default. 

Displays information about the folders in your mail directory only, not 
about subfolders. This flag is the default. 

Does not display a total of all messages and folders in your mail directory 
structure. 

Renumbers the messages in the folders. This eliminates the gaps in the 
message numbering after messages have been deleted. 

Removes the folder from the top of the folder-stack and makes it the 
current folder. 

Displays information about the folders. This information includes the 
number of messages in each folder, the current message for each folder, and 
the current folder. If -push, -pop, or -list is specified, -noprint is the 
default, otherwise -print is the default. 

Swaps the current folder with the folder on the top of the folder-stack. 

Displays information about all folders and subfolders in your entire mail 
directory structure. 

Displays a total of all messages and folders in your mail directory 
structure. -total does not display information for subfolders unless you 
also specify the -recurse flag. The -total flag is the default. 



folders 

Profile Entries 

Files 

Current-Folder: 
Folder-Protect: 
Folder-Stack: 
lsproc: 
Path: 

$HOME/.mh_profile 

Sets your default current folder. 
Sets the protection level for your new folder directories. 
Specifies your folder stack. 
Specifies the program used to list the contents of a folder. 
Specifies your user -mh-directory. 

The MH user profile. 

Related Information 

Other MH commands: "folder" on page 429, "mhpath" on page 648, "pack£" on 
page 733, "refile" on page 817. 

The mh-profile file in AIX Operating System Technical Reference. 

"Overview of the Message Handling Package" in Managing the AIX Operating System. 

Commands 435 



format 

format 

Purpose 

Formats diskettes. 

Syntax 

format 
-d/dev/fdO""\ I 

-ddevice ~ 

OL805395 

Description 

Flags 

The format command formats diskettes in the specified device (fdev/fdO by default). 
format determines the device type, either a 360K or a 1.2M diskette drive. By default, it 
formats a diskette in a 360K drive to have 40 cylinders, 9 sectors per track, and 2 sides and 
a diskette in a 1.2M drive to have 80 cylinders, 15 sectors per track, and 2 sides. 

-ddevice Specifies the device containing the diskette to be formatted. 

-f Formats the diskette without checking for bad tracks, thus formatting the 
diskette faster. 

-1 Formats a 360K diskette in a 1.2M diskette drive. 

Warning: A 360K diskette drive may not be able to read a 360K 
diskette that has been formatted in a 1.2M drive. 

-s Specifies a single-sided diskette. Use only for 360K diskette drives. 

-t Specifies that the number of sectors on a 360K diskette should be 8. 

Related Information 

The fd file in AIX Operating System Technical Reference. 

436 



fortune 

Purpose 

Tells a fortune. 

Syntax 

/usr / games/fortune --I 

Description 

The fortune game tells a fortune, selected at random from the file 
jusrjgamesjlibjfortunes, and exits. 

fortune 

OL805190 

You can edit the file jusr/games/lib/fortunes to add your own fortunes. Each saying in 
the file should be a single line. fortune folds long sayings into multiple lines as necessary. 

Commands 437 



forw 

forw 

Purpose 

Forwards messages. 

Syntax 

forw 

r-------cur------------------------------~ 

~-----all------------_.., 

~------__ sequence-----------

one of 
num one of 

first :num -prey 
prey :+num -cur 
cur :-num 

-num -next 

next -first -last 
last 

-nodraftfolder------------------------~ 

one of 

-draftfolder +folder -draftmessage 
-draftfolder + folder 
-draftmessage 

_-----new 

one of 
num 
sequence 
first 

next 
last 

prey new 
cur 

1 Do not put a blank between these items. 

438 

-noannotate 

one of 
-annotate 
-noannota.te 

AJ2FL218 

AJ2FL157 

OL805308 



forw 

~-digest name -{ }{ 0-form ~issue num -volume nurn 

one of one of 
-editor cmd 
-noedit 

-whotnowproc cmdstring 
-nowhatnowproc 

forw - -help ---j 
AJ2FL219 

Description 

The forw command is used to create a message containing other messages. forw is part of 
the MH (Message Handling) package and can be used with other MH and AIX commands. 

By default, forw copies a message form to a new draft message and invokes an editor. You 
can then fill in the message header fields To: and Subject: and fill in or delete the other 
header fields (such as ce: and Bee:). When you exit the editor, the forw command invokes 
the MH command whatnow. You can press Enter to see a list of the available whatnow 
subcommands. These subcommands enable you to continue editing the message, list the 
message, direct the disposition of the message, or end the processing of the forw command. 
See "whatnow" on page 1215 for a description of the subcommands. 

You can specify the messages that you want to distribute by using the + folder msgs flag. 
If you do not specify a message, forw forwards the current message. 

You can specify the format of the message by using the -form flag. If you do not specify 
this flag, forw uses your default message format located in the file 
user -mh-directory/forwcomps. If this file does not exist, forw uses the system default 
message format located in /usr/lib/mh/forweomps. 

Note: The line of dashes or a blank line must be left between the header and the body of 
the message for the message to be identified when it is sent. 

Commands 439 



forw 

Flags 

-annotate 

-digest name 

-draftfolder + folder 

-draftmessage msg 

-editor cmd 

-filter file 

440 

Annotates the messages being forwarded with the lines: 

Forwarded: date 
Forwarded: addrs 
The annotation appears in the original draft message so that 
you can maintain a complete list of recipients with the 
original message. If you do not actually redistribute the 
message using the immediate forw command, the -annotate 
may fail to provide annotation. The -inplace flag forces 
annotation to be done in place. 

Uses the digest facility to create a new issue for the digest 
called name. forw expands the format strings in the 
components file (using the same format string mechanism used 
by the repl command) and composes the draft using the 
standard digest encapsulation algorithm. After the draft has 
been composed, forw writes out the volume and issue entries· 
for the digest and invokes the editor. 

Places the draft message in the specified folder. If you do not 
specify this flag, forw selects a default draft folder according 
to the information supplied in the MH profiles. You can 
define a default draft folder in $HOME/.mh-profile. If 
-draftfolder + folder is followed by msg, msg represents the 
-draftmessage attribute. 

Specifies the draft message. You can specify one of the 
following message references as msg: 

num 
prev 
next 

sequence 
cur 
last 

The default draft message is new. 

first 

new 

Specifies that cmd is the initial editor for preparing the 
message. If you do not specify this flag, forw selects a default 
editor or suppresses the initial edit, according to the 
information supplied in the MH profiles. You can define a 
default initial editor in $HOME/ .mh-profile. 

Reformats each message being forwarded and places the 
reformatted message in the draft message. -filter uses the 
mhl command and the specified format file. When you also 
specify the -digest flag, you may want to use the filter file 
/usr/lib/mh/mhl.digest. 



+ folder msgs 

-form file 

-format 

-help 

-inplace 

-issue num 

-noannotate 

-nodraftfolder 

-noedit 

-noformat 

-noinplace 

forw 

Specifies the messages that you want to forward. msgs can be 
several messages, a range of messages, or a single message. 
You can use the following message references when specifying 
msgs: 

num 
cur 
last 

first 

all 

prev 
next 
sequence 

The default message is the current message in the current 
folder. If you specify several messages, the first message 
forwarded becomes the current message. If you specify a 
folder, that folder becomes the current folder. 

Uses the form contained in the specified file to construct the 
beginning of the message. forw treats each line in file as a 
format string. If the -digest flag is also specified, forw uses 
the form specified in file for the format of the digest. If you do 
not specify a form for a digest, forw uses the format in the file 
user -mh-directory/digestcomps. If this file does not exist, 
forw uses the system default digest form specified in the file 
/usr/lib/mh/digestcomps. 

Reformats each message being forwarded and places the 
reformatted message in the draft message. -format uses the 
mhl command and a default format file. If 
user -mh-directory/mhl.forward exists, it contains the default 
format. Otherwise, /usr/lib/mh/mhl.forw contains the 
default format. 

Displays help information for the command. 

Forces annotation to be done in place in order to preserve 
links to the annotated message. 

Specifies the issue number of the digest. The default issue 
number is one greater than current value of the 
digest-name-issue-list entry in user -mh-directory/context. 

Does not annotate the message. This flag is the default. 

Places the draft in the file user -mh-directory/draft. 

Suppresses the initial edit. 

Does not reformat the messages being forwarded. This flag is 
the default. 

Does not perform annotation in place. This flag is the default. 

Commands 441 



forw 

-nowhatnowproc Does not invoke a program that guides you through the 
forwarding tasks. The -nowhatnowproc flag also prevents 
any edit from occurring. 

-volume num Specifies the volume number of the digest. The default volume 
number is the current value of the digest-name-volume-list 
entry in user .-'nh-directoryfcontext. 

-whatnowproc cmdstring Invokes cmdstring as the program to guide you through the 
forwarding tasks. See "whatnow" on page 1215 for 
information about the default whatnow program and its 
subcommands. 

Note: If you specify whatnow for cmdstring, forw invokes an 
internal what now procedure rather than a program with the 
file name whatnow. 

Profile Entries 

Files 

442 

Current-Folder: 
Draft-Folder: 
Editor: 
fileproc: 
mhlproc: 

Sets your default current folder. 
Sets your default folder for drafts. 
Sets your default initial editor. 
Specifies the program used to refile messages. 

Msg-Protect: 
Specifies the program used to filter messages being forwarded. 
Sets the protection level for your new message files. 

Path: 
whatnowproc: 

Specifies your user -mh-directory. 
Specifies the program used to prompt What now? questions. 

/usr /lib/mh/forwcomps 
user -mh-directory /forwcomps 

/usr/lib/mh/digestcomps 

user -mh-directory / digestcom ps 

/usr /lib/mh/mhl.forward 
user -mh-directory/mhl.forward 

$HOME/ .mh-profile 
user -mh-directory/draft 
user -mh-directory / context 

The MH default message skeleton. 
The user's default message skeleton. (If it exists, it 
overrides the MH default message skeleton.) 
The MH default message skeleton when -digest is 
specified. 
The user's default message skeleton when -digest is 
specified. (If it exists, it overrides the MH default 
message skeleton.) 
The default MH message filter. 
The user's default message filter. (If it exists, it 
overrides the MH default message filter.) 
The MH user profile. 
The draft file. 
The context file. 



forw 

Related Information 

Other MH commands: "ali" on page 48, "anno" on page 50, "comp" on page 185, "dist" 
on page 336, "dp" on page 352, "inc" on page 518, "mhl" on page 643, "msh" on 
page 677, "repl" on page 821, "send" on page 893, "whatnow" on page 1215, "whom" on 
page 1222. 

The mh-alias, mh-format, mh-mail, and mh-profile files in AIX Operating System 
Technical Reference. 

"Overview of the Message Handling Package" in Managing the AIX Operating System. 

Commands 443 



fptype 

fptype 

Purpose 

Displays the floating point configuration of the system. 

Syntax 

fptype --l 
OL805471 

Description 

The fptype command calls the subroutine, -FPtype, which determines the current floating 
point configuration. Then fptype returns one of the following values and displays the 
corresponding message: 

Value Message 

o Floating Point Type = Software Emulation 

1 Floating Point Type = FP A Card 

2 Floating Point Type = APC Card with MC68881 

4 Floating Point Type = AFPA - No DMA Support 

12 Floating Point Type = AFPA - With DMA Support 

Related Information 

The fpfp subroutine in AIX Operating System Technical Reference. 

444 



fsck, dfsck 

Purpose 

Checks file system consistency and interactively repairs the file system. 

Syntax 

fsck -scy/ : skip 

-bb/ocknum 

-Scy/ : skip 

~ -dblocknum A-iinumXfileSystemr 

1 The default action is to check every file system with the attribute check=true in the file 

/etc/filesystem. 

dfsck r--\. fi/esystem1 - - 1 r-\. fi/esystem2 ---1 

~ f/ag/ist1 r ~ f/ag/ist2 r 
1 • 
Use a ._- to separate the groups when you specify flags as part of 
the argument. 

Description 

fsck 

OL8055384 

OL805456 

W arning: Always run fsck on file systems after a system crash. 
Corrective actions may result in some loss of data. The default action for 
each consistency correction is to wait for the operator to respond yes or 
no. If you do not have write permission for an affected file, fsck defaults 
to a no response in spite of your actual response. 
The fsck command checks and interactively repairs inconsistent filesystems. It should be 
run on every file system as part of system initialization (see "rc" on page 806). You must 

Commands 445 



fsck 

446 

have superuser authority to run fsck. Normally, the file system is consistent, and fsck 
merely reports on the number of files, used blocks and free blocks in the file system. If the 
filesystem is inconsistent, fsck displays information about the inconsistencies found and 
prompts you for permission to repair them. fsck is conservative in its repair efforts and 
tries to avoid actions that might result in the loss of valid data. In certain cases, however, 
fsck recommends the destruction of a damaged file. 

If you do not specify filesystem, fsck looks at /etc/filesystems to find a list of file systems 
to check by default. fsck can perform checks (on separate arms) in parallel (running in 
parallel processes). This can reduce the time required to check a large number of file 
systems. 

In /etc/filesystems, automatic checking may be enabled by adding a line in the stanza, as 
follows: 

check=true 

If you specify the -p flag, fsck can perform multiple checks at the same time. To tell fsck 
which file systems are on the same drives, change the check specification in 
/etc/filesystems as follows: 

chec k=number 

The number tells fsck which group contains a particular file system. File systems on a 
single drive are placed in the same group. Each group is checked in a separate parallel 
process. File systems are checked, one at a time, in the order that they appear in 
/etc/filesystems. All check=true file systems are in group 1. fsck attempts to check the 
root file system before any other file system regardless of order specified on the command 
line or in /etc/filesystems. 

The fsck command checks for the following inconsistencies: 

• Blocks allocated to multiple files or to a file and the free list. 
• Blocks allocated to a file or on the free list outside the range allowable block numbers. 
• Discrepancies between the number of directory references to a file and the link count 

in the file. 
• Size checks: 

- Incorrect number of blocks. 
- Directory size not I6-byte aligned. 

• Bad i-node format. 
• Blocks not accounted for anywhere. 
• Directory checks: 

File pointing to an i-node that is not allocated. 
I-node number out of range. 
Dot (.) link missing or not pointing to itself. 
Dot dot ( .. ) link missing or not pointing to the parent directory. 
Files that are not referenced or directories that are not reachable. 



fsck 

• Superblock checks: 
- More than 65535 i-nodes. 
- More blocks for i-nodes than there are in the file system. 

• Bad free block list format. 
• Total free block and/or free i-node count incorrect. 

Orphaned files and directories (those that cannot be reached) are, if you allow it, 
reconnected by placing them in the lost + found subdirectory in the root directory. The 
name assigned is the i-node number. The only restriction is that the directory lost + found 
must already exist in the root directory of the file system being checked and must have 
empty slots in which entries can be made (accomplished by copying a number of files to the 
directory and then removing them before you run fsck). If you do not allow fsck to 
reattach an orphaned file, it requests permission to destroy the file. When fsck displays 
i-node information, the NLTIME environment variable controls the format of the 
modification time. 

In addition to its messages, fsck records the outcome of its checks and repairs through its 
exit value. This exit value can be any sum of the following conditions: 

o All checked file systems are now okay. 
2 fsck was interrupted before it could complete checks or repairs. 
4 fsck changed the mounted file system; the user must restart the system immediately. 
8 The file system contains unrepaired damage. 

When the system is being started up normally, fsck runs with the -p flag from /etc/rc (see 
"rc" on page 806). If fsck detects and repairs errors on the root or other mounted file 
systems, it displays a message on the console and restarts the system, if possible. If it 
cannot restart the system or if it detects errors that it cannot repair, it displays 
appropriate messages on the console and returns an exit value indicating that an 
immediate restart is necessary. 

Note: All statistics reported by fsck are in 512-byte blocks, regardless of the actual block 
size of the file system being checked. All user specifications should be specified in 512-byte 
blocks. 

dfsck 
The dfsck command lets you simultaneously check two file systems on two different drives. 
Use the flaglistl and flaglist2 arguments to pass flags and parameters for the two sets of 
file systems. Use a - (minus) to separate the file system groups if you specify flags as part 
of the arguments. 

The dfsck command permits you to interact with two fsck commands at once. To aid in 
o this, dfsck displays the file system name with each message. When responding to a 

question from dfsck, you must prefix your response with a 1 or a 2 to indicate whether the 
answer refers to the first or second file system group. . 

Warning: Do not use dfsck to check the root file system (fdev/hdO). 

Commands 447 



fsck 

Flags 

448 

-bblocknum Designates a block as bad. fsck searches for any files that contain the 
specified block. If it finds any such files, it asks permission to delete them. 
If it finds no such files or is told to delete all such files, the specified block is 
added to the bad block list in i-node 1. This keeps the block out of 
circulation so that it cannot be allocated to any user file. 

-dblocknum Searches for references to a specified disk block. Whenever fsck encounters 
a file that contains a specified block, it displays the i-node number and all 
path names that refer to it. 

-f Performs a fast check. Under normal circumstances, the only file systems 
likely to be affected by halting the system without shutting down properly 
are those that were mounted when the system stopped. The -f flag tells fsck 
not to check file systems that were cleanly unmounted. The fsck command 
determines this by inspecting the sJmod flag in the file system superblock. 
This flag is set whenever a file system is mounted and cleared when it is 
cleanly unmounted. If a file system was cleanly unmounted, it is unlikely to 
have any problems. Because most file systems are cleanly unmounted, not 
checking those file systems can reduce the checking time. 

-iinum Searches for references to a specified i-node. Whenever fsck encounters a 
directory reference to a specified i-node number, it displays the full path 
name of the reference. 

-n Assumes a no response to all questions asked by fsck; does not open 
filesystem for writing. 

-p Does not display messages about minor problems, but fixes them 
automatically. This flag does not grant the wholesale license that the -y flag 
does and is useful for performing automatic checks when the system is to be 
started normally. You should use this flag whenever the system is being run 
automatically as part o~e system startup procedures. 

-s[cyl:skip] Ignores the actual free list and unconditionally reconstructs a new one. You 
can specify an optional interleave specification with this flag: cyl specifies 
the number of blocks per cylinder; skip specifies the number of blocks to 
skip. If you do not specify cyl or skip, fsck uses the interleave parameters in 
the superblock. The file system should be unmounted while this is done; if 
this is not possible, be sure that you are running no programs and that you 
perform a system restart immediately afterwards so that the old copy of the 
superblock in memory is not written to disk. 

-S[cyl:skip] Conditionally reconstructs the free list. This flag is like the -s flag except 
that the free list is rebuilt only if there are no discrepancies discovered in 
the file system. Using -8 forces a no response to all questions asked by fsck. 
Use this flag to force free list reorganization on uncontaminated file systems. 



fsck 

-tfile Uses file as a scratch file if fsck cannot obtain enough memory to keep its 
tables. If you do not specify -t and fsck needs a scratch file, it prompts you 
for the name of the scratch file. However, if you have specified the -p flag, 
fsck fails. The file chosen must not be on the file system being checked. If 
it is not a special file, it is removed when fsck ends. 

-y Assumes a yes response to all questions asked by fsck. This lets fsck take 
any action that it considers necessary. Use this flag only on severely 
damaged file systems. 

Examples 

Files 

1. To check all the default file systems: 

fsck 

This checks all the file systems marked chec k=t rue in /etc/filesystems. This form of 
the fsck command asks you for permission before making any changes to a file system. 

2. To fix minor problems with the default file systems automatically: 

fsck _po 

3. To check a specific file system: 

fsck /dev/hdl 

This checks the unmounted file system located on the /dev /hdl device. 

4. To simultaneously check two file systems on two different drives: 

dfsck -p /dev/hdl -p /dev/hd7 

This checks both file systems simultaneously, if the file systems on the devices 
/dev /hdl and /dev /hd7 are located on two different drives. You can also specify the 
file system names that are found in the /etc/filesystems file. 

/ etc/filesystems Contains default list of file systems to check. 

Related Information 

The following commands: "rc" on page 806, "fsdb" on page 450, "istat" on page 545, 
"mkfs" on page 658, "ncheck" on page 683, and "shutdown" on page 946. 

The filesystems and fs files in AIX Operating System Technical Reference. 

The discussion of fsck and dfsck in Managing the AIX Operating System 

Commands 449 



fsdb 

fsdb 

Purpose 

Debugs file systems. 

Syntax 

fsdb - filesystem -G 
OL805244 

Description 

Flag 

450 

Warning: This program is not intended for use with diskette-based file 
systems because of the difference in superblock structure and the general 
format of the file system. 
You can use the fsdb command to examine and patch a damaged file system after 'a system 
crash. It allows you to access blocks and i-numbers and to examine various parts of an 
i-node. You can reference components of the i-node symbolically. These features simplify 
procedures for correcting control-block entries or for descending the file-system tree. 

The file system to be examined can be specified by a block device name, a raw device name, 
or a mounted file system name. In the latter case, fsdb determines the associated file name 
by reading the file jetcjfilesystems. 

Any numbers you enter are considered decimal by default, unless you prefix them with a 0 
(zero) to indicate an octal number. 

Because fsdb reads and writes one block at a time, it works with raw as well as with block 
I/O. It uses a buffer management routine to retain commonly used blocks of data in order 
to reduce the number of read system calls. All assignment operations write the 
corresponding block immediately. 

Disables the error checking routines used to verify i-node and block addresses. The 0 
subcommand toggles these routines on and off. When these routines are running, 
fsdb reads the i-size and f-size entries from the superblock of the file system. 



fsdb 

Subcommands 

The subcommands you give to fsdb are requests to display or modify information. A 
display subcommand is a block address optionally followed by a display format 
specification. A field modification subcommand is similar to the display subcommand but 
may include a subfield specification, an operator, and a value. An address specification is 
a number optionally followed by a type specifier and subfield specification. 

The display subcommands are: 

num 
i-numberi 
block-addressb 
directory-slot-offsetd 
q 
! 

Display data at absolute address num. 
Display data at i-number. 
Display data at block-address. 
Display data at directory-slot-offset. 
Quit. 
Escape to the shell. 

The display formats are: 

P 
f 

General display facilities 
File display facility. 

You can step through the i-node information examining each byte, word, or double word. 
Select the desired display mode by entering one of the following subcommands: 

B 
D 
W 
o 

Begin displaying in byte mode. 
Begin displaying in double-word mode. 
Begin displaying in word mode. 
Toggle error checking on or off. 

Moving forward or backward through the i-node data is done with the following symbols: 

+num 
-num 

Move forward the specified number of units currently in effect. 
Move backward the specified number of units currently in effect. 

The following symbols allow you to store the current address and return to it conveniently: 

> address Store address for later reference. If you do not specify address, fsdb 
stores the current address. 

< Return to the previously stored address. 

The display format applied to the information at the selected address is the one currently 
in effect. You may receive an error message indicating improper alignment if the address 
you specify does not fall on an even boundary. 

The display facilities display a formatted output in various styles. The current address is 
normalized to an appropriate boundary before display begins. The boundary advances with 
display and is left at the address of the last item displayed. The output can be ended at 
any time by pressing INTERRUPT (Alt-Pause). 

Commands 451 



fsdb 

452 

If you enter a number after the p symbol, fsdb displays that number of entries. A check is 
made to detect block boundary overflows because logically sequential blocks are generally 
not physically sequential. If you enter a count of zero, fsdb displays all entries to the end 
of the current block. 

The display formats available are: 

i 
d 
o 
e 
c 
b 
y 

Display as i-nodes. 
Display as directories. 
Display as octal words. 
Display as decimal words. 
Display as characters. 
Display as octal bytes. 
Display as hex bytes. 

Use the f symbol to display data blocks associated with the current i-node. If you enter a 
number after f, fsdb displays that block of the file. Block numbering begins at zero. The 
desired display subcommand follows the block number, if present, or the f symbol. The 
display facility works for large as well as small files. It checks for special devices and also 
checks the data are not zero. 

You can use dots (.), tabs, and spaces as subcommand delimiters, but they are not 
necessary. Pressing just the Enter key (entering a blank line) increments the current 
address by the size of the data type last displayed. That is, the address is set to the next 
byte, word, double word, directory entry or i-node, allowing you to step through a region of 
a file system. fsdb displays information in a format appropriate to the data type. Bytes, 
words and double words are displayed as an octal address followed by the octal 
representation of the data at that address and the decimal equivalent enclosed in 
parentheses. fsdb adds a .B or .D to the end of the address to indicate a display of byte or 
double word values. It displays directories as a directory slot offset followed by the 
decimal i-number and the character representation of the entry name. It displays i-nodes 
with labeled fields describing each element. The environment variables NLLDATE and 
NL TIME control the formats of the date and time. 

The following mnemonics are used for the names of the fields of an i-node and refer to the 
current working i-node: 

md 
In 
uid 
gid 
sz 
an 
at 
mt 
maj 
min 

Permission mode 
Link count 
User number 
Group number 
File size 
Data block numbers (0 - 12) 
Access time 
Modification time 
Major device number 
Minor device number. 



fsdb 

The general form for assigning new values is: 

mnemonic operator new-value 

The fsdb command modifies the value of the field specified by mnemonic according to the 
operator and new-value. 

Valid operators include: 

= Assign new-value to the specified mnemonic. 
=+ Increment the mnemonic by the specified new-value. The default new-value is l. 
-- Decrease the mnemonic by the specified new-value. The default new-value is l. 
= II Assign character string new-value to the specified mnemonic. 

Examples 

The following examples show subcommands that you can use after starting fsdb. 

1. To display an i-node: 

386i 

This displays i-number 386 in i-node format. It now becomes the current i-node. 

2. To change the link count for the current i-node to 4: 

In=4 

3. To increase the link count of the current i-node by 1: 

In=+l 
4. To display part of the file associated with the current i-node: 

fc 

This displays as ASCII text block zero of the file associated with the current i-node. 

5. To display entries of a directory: 

2i .fd 

This changes the current i-node to the root i-node (i-node 2), then displays the 
directory entries in the first block associated with that i-node. 

6. To go down a level of the directory tree: 

d5i .fc 

This changes the current i-node to the one associated with directory entry 5. Then it 
displays the first block of the file as ASCII text (fc). Directory entries are numbered 
starting from 0 (zero). 

Commands 453 



fsdb 

7. To display a block when you know its block number: 

1b.pOo 

This displays the superblock (block 1) of file system in octal. 

8. To change the i-number of a directory entry: 

2i .aOb.d7=3 

This changes the i-number of directory entry 7 in the root directory (2;) to 3. This 
example also shows how several operations can be combined on one line. 

9. To change the file name of a directory entry: 

d7 . nm=" ehap1. ree·· 

This changes the name field of directory entry 7 to chap1. rec. 

10. To display a given block of the file associated with the current i-node: 

a2b.pOd 

This displays block 2 of the current i-node as directory entries. 

Related Information 

454 

The following command: "fsck, dfsck" on page 445. 

The fs and dir files and the environment miscellaneous facility in AIX Operating System 
Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 



fuser 

fuser 

Purpose 

Identifies processes using a file or file structure. 

Syntax 

fuser~ file Dr 
OL805055 

Description 

Flags 

The fuser command lists, for local processes, the process numbers of the processes using 
the specified local or remote file. For remote processes that use local files, fuser lists the 
node (NID) that has the files open. It does not list the process numbers, user names, or 
usage information. For block special devices, all processes using any file on that device 
are listed. The process number is followed by a letter indicating how the process is using 
the file: 

c Using file as the current directory 
p Using file as the parent of the current directory (only when in use by the system) 
r Using file as the root directory. 

The process numbers are written as a single line to standard output, separated by spaces 
and ended with a single new-line character. All other output is written to standard error. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

-k Sends the SIGKILL signal to each local process. Only the person operating with 
superuser authority can kill another user's process (see "kill" on page 552). 
SIGKILL is not sent to remote processes. 

Commands 455 



fuser 

-u Indicates the login name in parentheses after the process number. The login name is 
not listed for remote processes. 

Cancels any flags selected for the previous set of file or files. 

Flags may be respecified between groups of files on the command line. The new set of flags 
replaces the old set. 

Examples 

Files 

1. To list the ID numbers of the processes using the /etc/passwd file: 

fuser /etc/passwd 

2. To list the process IDs and user names of the processes using the /etc/filesystems fiie: 

fuser -u /etc/filesystems 
3. To stop all of the processes using a given disk drive: 

fuser -k -u /dev/hdl 
This lists the process ID and user name, and then stops each process that is using the 
/dev /hdl disk drive. You must have superuser authority to stop processes that belong 
to someone else. You might want to do this if you are trying to unmount /dev /hdl, 
and a process accessing it is preventing you from doing so. 

4. To perform the actions of the previous examples in reverse order: 

fuser -k -u /dev/hdl -u /etc/filesystems /etc/passwd 

Note that lone dashes before the - u and before / etc / pas s w d turn off both the - k and 
-u flags. 

/unix 
/dev/kmem 
/dev/mem 

System kernel image. 
For system image. 
Also for system image. 

Related Information 

456 

The following commands: "killall" on page 555, "mount" on page 669, and "ps" on 
page 786. 

The kill and signal system calls in AIX Operating System Technical Reference. 

"Using Distributed Services" in Managing the AIX Operating System. 



fwtmp 

fwtmp 

Purpose 

Manipulates connect accounting records. 

Syntax 

/usr/lib/acc+/fw+mp ~ 
~-iCr 

/usr/lib/acc+/w+mpfix ~ 
~ 

/ usr /lib/ acct/ acctwtmp - "reason "--I 

OL805239 

Description 

fwtmp 
The fwtmp command reads wtmp records from standard input and converts them to 
formatted ASCII records, which it writes to standard output. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

Flag 

-ic Reads ASCII input and writes output in binary form. 

Commands 457 



fwtmp 

Files 

458 

acctwtmp 
The acctwtmp command writes to standard output a utmp record containing the string 
reason and the current date and time. A reason can contain 11 or fewer characters. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

wtmpfix 
The wtmpfix command examines standard input or the named files containing records in 
wtmp format, corrects the date and time stamps to make the entries consistent, and writes 
the corrected input to standard output. (It is necessary that date and time stamps be 
consistent because acctconl generates an error and stops when it encounters inconsistent 
date change records.) 

Each time the date is set (on system startup or with the date command) a pair of date 
change records is written to /usr/adm/wtmp. The first record is the old date, denoted by 
the string old time placed in the line field and the flag OLD_TIME placed in the type 
field. The second record is the new date, denoted by the string new time placed in the 
line field and the flag NEW_TIME placed in the type field. The wtmpfix command uses 
these records to synchronize all date and time stamps in the file. 

In addition to correcting date and time stamps, wtmpfix checks the validity of the name 
field to ensure that it consists solely of alphanumeric characters, a dollar sign ($), or 
spaces. If it encounters an invalid name, it changes the login name to INVALID and 
writes a diagnostic to standard error. In this way, wtmpfix reduces the chance that 
acctcon2 will fail when it processes connect accounting records. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

/usr/adm/wtmp 

/usr /include/utmp.h 

Contains records of date changes that include an old date and a 
new date. 
Contains history records that include a reason, date, and time. 



fwtmp 

Related Information 

The following. commands: "acct/*" on page 13, "acctcms" on page 18, "acctcom" on 
page 20, "acctcon" on page 24, "acctdisk, acctdusg" on page 26, "acctmerg" on 
page 28, "acctprc" on page 30, and "runacct" on page 848. 

The acct system call and the acct and utmp files in AIX Operating System Technical 
Reference. 

"Running System Accounting" in Managing the AIX Operating System. 

Commands 459 



gdev 

gdev 

Purpose 

Provides graphical device routines and filters. 

Syntax 

hpd 
-cnum 
-pnum 
-snum 
-xd num 

erase ----l 

hardcopy ----l 

tekset ----l 

-xvnum 
-ydnum 
-yv num 

td ---o--r ~~e of \. file T 
\.- -e -.! ~ -r num I '-

OL777036 

Description 

460 

The following commands provide various graphical device routines and filters. They all 
reside in the /usr/bin/graf directory (see "graphics" on page 497). 

hpd 
The hpd command takes a graphical file in gps format (standard input by default), and 
translates it into instructions for the Hewlett-Packard 7221A Graphics Plotter. See tp.e 
gps file in A/X Operating System Technical Reference for a description of this file format. 
It computes a viewing window from the maximum and minimum points in the file, unless 
you specify the -r or -u flags. 



gdev 

Flags 

cnum Selects character set num, where num is an integer between 0 and 5. See the 
Hewlett-Packard 7221A Graphics Plotter documentation for a list of these 
character sets. 

pnum Selects pen-numbered num, where num is an integer between 1 and 4 inclusive. 

rnum Displays a window on a GPS region, where num is an integer from 1 to 25 
inclusive. 

snum Slants characters num degrees clockwise from the vertical. 

u Displays window on the entire GPS universe. 

xdnum Sets x displacement of the view port's lower left corner to num inches. 

xvnum Sets width of view port to num inches. 

ydnum Sets y displacement of the view port to num inches. 

yvnum Sets height of view port to num inches. 

erase 
The erase command sends characters to a Tektronix 4010 series storage terminal to erase 
the screen. 

hardcopy 
When issued at a Tektronix display terminal with a hard copy unit, the hardcopy 
command produces a screen copy on the unit. 

tekset 
The tekset command send characters to a Tektronix terminal to clear the display screen, 
set the display mode to alpha, and set characters to the smallest font. 

td 
The td command translates a GPS object to scope code for a Tektronix 4010 series storage 
terminal. It computes a viewing window from the maximum and minimum points in file, 
unless you specify the -u or -rnum flag. Standard input is the default input file. 

Commands 461 



gdev 

Flags 

e Does not erase the screen before initiating display. 

rnum Displays GPS region num, where num is an integer between 1 and 25 inclusive. 

u Displays the entire GPS universe. 

Related Information 

462 

The following commands: "ged" on page 463, "gend" on page 475, and "graphics" on 
page 497. 

The gps file in AIX Operating System Technical Reference. 



ged 

ged 

Purpose 

Displays, makes, and edits graphical files on Tektronix 4010 terminals. 

Syntax 

ged ~~e ~~eOf ~ me 
-R -rnum . 

OL777037 

Description 

Flags 

The ged command is an interactive graphical editor used to edit drawings on Tektronix 
4010 series display terminals. The drawings are a sequence of objects that consist of lines, 
arcs, and text. With ged you can view the objects at various magnifications and from 
various locations. The drawings are stored in graphics primitive string (GPS) files. If you 
specify - (minus) as the file name, ged reads standard input into the edit buffer. 

An arc or lines object has a start point (object-handle), followed by zero or more points 
(point-handles). A text object has only an object-handle. These objects are positioned 
within a Cartesian plane (universe), having 64K (-32K to + 32K) points (universe-units) 
on each axis. The GPS universe is divided into 25 equal sized areas called regions. These 
regions are arranged in five rows of five squares each, numbered 1 to 25 from the lower left 
of the universe to the upper right. 

The ged command maps rectangular areas (windows) from the universe onto the display 
screen. Windows let you view pictures from different locations and at different 
magnifications. The universe-window is the window with minimum magnification; that 
is, the window that views the entire universe. The home-window is the window that 
completely displays the contents of the display buffer. 

-e Does not erase the screen before the initial display 

-rnum Displays region number num. 

-u Displays the entire GPS universe. 

-R Invokes the restricted shell on use of! (exclamation character). 

Commands 463 



ged 

Subcommands 

464 

The ged subcommands are entered in stages. Typically each stage ends with a < cr > 
(Return). Prior to the final < cr >, you may cancel the subcommand by pressing 
INTERRUPT (Alt-Pause). You can edit the input of a stage, during the stage, by using 
the erase and kill characters of the calling shell. The * (star) prompt indicates that ged is 
waiting at stage 1. 

Each subcommand consists of a subset of the following stages: 

1. Command line, whose format is the same as the format of a shell command: 

subcommand-name [-flags] [filename] 

followed by pressing the Enter key. The subcommand-name consists of the first 
character of the subcommand. ged echoes the full command name and pauses for the 
remainder of the command line. Flags are indicated by a leading - (minus). To 
generate a list of ged subcommands, enter: ? . 

2. Text, a sequence of characters terminated by an unescaped Enter. You can have a 
maxim um of 120 lines of text. 

3. Points, a sequence of one or more screen locations (maximum of 30), indicated either 
by the terminal cross hairs or by name. The prompt for entering points is the 
appearance of the cross hairs. When the cross hairs are visible, type: 

sp (space) Enters the current location as a point. The point is identified by a 
number. 

$num 

>x 

$x 

$.num 

# 
@ 

Enters the previous point numbered num. 

Labels the last point entered with the upper case letter x. 

Enters the point labeled x. 

Establishes the previous points as the current points. At the start of a 
command, the previous points are those locations given with the previous 
command. 

Echoes the current points. 

Enters the point. 

Erases the last point entered. 

Erases all of the points entered. 

4. Pivot, a single location entered by pressing the Enter key or by using the $ operator 
and indicated with a * (star). 

5. Destination, a single location entered by pressing the Enter key or by using $ (dollar 
sign). 



ged 

Subcommand Summary 
In the following lists, characters printed in bold are to be entered literally. Subcommand 
stages are printed in bold italics. Arguments surrounded by [] (brackets) are optional. 
Parentheses surrounding arguments separated by "or" indicate that you must specify 
exactly one of the arguments. 

Construct Subcommands 
Arc [-echo,style,weight] points 

Box [-echo,style,weight] text 

Circle [-echo,style,weight] point 

Hardware [-echo] text points 

Lines [-echo,style,weight] points 

Text [-angle,echo,height, mid-point,right-point,text, weight] text points 

Edit Subcommands 
(-(universe or view) or points) Delete 

Edit 

Kopy 

Move 

Rotate 

Scale 

[-angle,echo,height,style,weight] (-(universe or view) or points) 

[-echo,points,x] points pivot destination 

[-echo,points,x] points pivot destination 

[-angle,echo,kopy,x] points pivot destination 

[-echo,factor,kopy,x] points pivot destination 

View Subcommands 
coordinates points 

erase 

new-display 

object-handles (-(universe or view) or points) 

point-handles (-(labelled-points or universe or view) or points) 

view (-(home or universe or region) or [-x] pivot destination) 

x [-view] points 

zoom [-out] points 

Commands 465 



ged 

466 

Other Subcommands 
quit or Quit 

read [-angle,echo,height, mid-point,right-point,text, weight] file-nameldestinationJ 

set [-angle,echo,factor, height,kopy,mid-point,points, right-point,style,text, weight,x] 

write file-name 

!command 

? 

Options 
Options specify parameters used to construct, edit, and view graphical objects. If a 
parameter used by a subcommand is not specified as an option, the default value for the 
parameter will be used (see set following). The format of subcommand options is: 

-option[,optionj 

where option is keyletter[value}. Flags take on the values of true or false indicated by + 
and - respectively. If no value is given with a flag, true is assumed. 

Object Options 

anglen 

echo 

factorn 

heightn 

kopy 

mid-point 

points 

right-point 

style type 

text 

Specifies an angle of n degrees. 

When true, changes made to the display buffer are echoed to the screen. 

Specifies a scale factor is n percent. 

Sets the height of text to n universe-units (0 ::;; n < 1280). 

When true, copies rather than moves. 

When true, uses the mid-point of a text string to locate string. 

When true, operates on points; otherwise operates on objects. 

When true, uses the rightmost point of the text string to locate string. 

Sets the line sty Ie to one of following types: 

so solid 
da dashed 
dd dot-dashed 
do dotted 
Id long-dashed. 

When false, outlines rather than draws text strings. 



ged 

weighttype Sets line weight to one of following types: 

n narrow 
m medium 
b bold. 

Area Options 

home References the home-window. 

out Reduces magnification during zoom. 

regionn References the region n. 

unIverse References the universe-window. 

view References those objects currently in view. 

x Indicates the center of the referenced area. 

Subcommand Descriptions 

Construct Subcommands 

Arc 
Lines 

Box 
Circle 

Text 
Hardware 

Behave similarly. Each consists of a command line followed by points. The 
first point entered is the object-handle. Successive points are point-handles. 
Lines connects the handles in numerical order. Arc fits a curve to the handles 
(currently a maximum of 3 points will be fit with a circular arc; splines will be 
added in a later version). 

Special cases of Lines and Arc, respectively. Box generates a rectangle with 
sides parallel to the universe axes. A diagonal of the rectangle would connect 
the first point entered with the last point. The first point is the 
object-handle. Point-handles are created at each of the vertices. Circle 
generates a circular arc centered about the point numbered zero and passing 
through the last point. The circle's object-handle coincides with the last 
point. A point-handle is generated 180 degrees around the circle from the 
object-handle. 

Generate text objects. Each consists of a command line, text and points 
Text is a sequence of characters delimited by < cr >. Multiple lines of text 
may be entered by preceding a cr with a \ (backslash). The Text subcommand 
creates software-generated characters. Each line of software text is treated as 
a separate text object. The first point entered is the object-handle for the first 
line of text. The Hardware command sends the characters in text, 
uninterpreted, to the terminal. 

Commands 467 



ged 

468 

Edit Subcommands 

Edit subcommands operate on portions of the display buffer called defined-areas. A 
defined-area is referenced either with an area option or interactively. If an area option is 
not given, the perimeter of the defined-area is indicated by points. If no point is entered, a 
small defined-area is built around the location of the < cr >. This is useful to reference a 
single point. If only one point is entered, the location of the < cr > is taken in 
conjunction with the point to indicate a diagonal of a rectangle. A defined-area referenced 
by points will be outlined with dotted lines. 

Delete Removes all objects whose object-handle lies within a defined-area. The universe 
option removes all obj ects and erases the screen. 

Edit Modifies the parameters of the objects within a defined-area. Parameters that can 
be edited are: 

Kopy 
Move 

Rotate 

Scale 

angle 
height 
style 
weight 

Specifies the angle of text 
Specifies the height of text 
Specifies the style of lines and arc 
Specifies the weight of lines, arc, and text 

Copies (or moves) object- and/or point-handles within a defined-area by the 
displacement from the pivot to the destination. 

Rotates objects within a defined-area around the pivot. If the kopy flag is true, 
the objects are copied rather than moved. 

For object whose object-handles are within a defined-area, point displacements 
from the pivot are scaled by factor percent. If the kopy flag is true then the 
objects are copied rather than moved. 

View Subcommands 

coordinates 

erase 

new-display 

o bj ect-handles 
poin t-handles 

VIew 

Displays the location of point(s) in universe- and screen-units. 

Clears the screen (but not the display buffer). 

Erases the screen; then displays the display buffer. 

Labels object- (and/or point-handles) that lie within the defined-area with 
o (or P). point-handles identifies labeled points when the labeled-points 
flag is true. 

Moves the window so that the universe point corresponding to the pivot 
coincides with the screen point corresponding to the destination. 
Options for home, universe, and region display particular windows in the 
universe. 



x 

zoom 

ged 

Indicates the center of a defined-area. Option view indicates the center of 
the screen. 

Decreases (zoom out) or increases the magnification of the viewing 
window based on the defined-area. For increased magnification, the 
window is set to circumscribe the defined-area. For a decrease in 
magnification the current window is inscribed within the defined-area. 

Other Subcommands 

quit 
Quit 

read 

set 

write 

Exit from ged. quit responds with? if the display buffer has not been written since 
the last modification. 

Inputs the contents of a file. If the file contains a GPS object, it is read directly. 
If the file contains text it is converted into text object(s). The first line of a text 
file begins at destination. 

When given option(s) resets default parameters; otherwise it prints current default 
values. 

Outputs the contents of the display buffer to a file. 

Escapes ged to execute an AIX Operating System command. 

? Lists ged subcommands. 

Related Information 

The following commands: "gdev" on page 460, "graphics" on page 497, and "sh" on 
page 913. 

The GPS file in AIX Operating System Technical Reference. 

Commands 469 



gencat 

gencat 

Purpose 

Creates and modifies a message catalog. 

Syntax 

gencat _ catfi/e 

OL805484 

Description 

470 

Use gencat to create a message catalog from a message text source file. Because gencat 
conforms to X/Open specifications, gencat does not accept symbolic identifiers. You must 
run mkcatdefs as described in "Symbolic Message Identifiers" on page 474 if you want to 
use symbolic identifiers. 

The format for gencat is: 

$ gencat catfile [sourcefiles] 

If a message catalog with the name catfile exists, gencat will modify it according to the 
statements in the message source files. If it does not exist, gencat creates a catalog file 
with the name catfile. 

You may specify any number of message text source files. gencat processes multiple 
source files one after the other in the sequence that you specify them. Each successive 
source file will modify the catalog. If you do not specify a source file, gencat accepts 
message source data from standard input. 

A message text source file is a text file that you create to enter messages into. You can 
use any text editor to enter the messages. Assign message set numbers and message ID 
numbers to each message by using the commands described in this section. 

Use the $set command in a source file to give a group of messages a set number. The 
format of the $set command is: 

$set n [comment] 



gencat 

The message set number is specified by n. All messages following the $set command are 
assigned that set number, up until the next occurrence of a $set command. You must 
specify at least one set number if the source file contains message text. The set numbers 
must be assigned in ascending order, but need not be contiguous. Large gaps in the 
number sequence do not affect performance, but will increase the size of the catalog. 
There is no performance advantage to using more than one set number in a catalog. Set 
numbers must start at 1. The highest set number in a X/Open-conforming application is 
255. 

You may include a comment in the $set command, but it is not required. The following 
example includes a comment: 

$set 10 Communication Error Messages 
Use the $delset command to remove all of the messages belonging to the specified set from 
a catalog. The format of the $delset command is: 

$de 1 set n [comment] 

The message set is specified by n. The $delset command must be placed in the proper set 
number order with respect to any $set commands in the same source file. You may include 
a comment in the $delset command also. 

You may include a comment line anywhere in the source file, except within message text. 
Indicate comments as shown below: 

$ [comment] 

You must leave at least one space after the $. 

Enter the message text and assign message ID numbers as follows: 

m message-text 

This assigns the message ID number m to the text that follows it. You must leave at least 
one space after the message number.! Message numbers must be in ascending order within 
a single message set, but need not be contiguous. Large gaps in the number sequence do 
not affect performance, but will increase the size of the catalog. In an X/Open-conforming 
application, message numbers must be in the range 1-32767. 

All text following the message number is included as message text, up to the end of the 
line. Use the escape character \ to continue message text on the following line. The \ 
must be the last character on the line. Consider the following example: 

5 This is the text associated with \ 
message number 5. 

AIX allows any amount of white space after the message ID number; however X/Open specifies 
that you leave only one space between the message number and the message text. 

Commands 471 



gencat 

472 

These two lines define the single-line message: 

This is the text associated with message number 5. 
The escape character \ may be used to include special characters in the message text. 
These special characters are defined as follows: 

\n Performs a new-line function when the message is displayed. 

\t Inserts a horizontal tab character when the message is displayed. 

\v Inserts a vertical tab when the message is displayed. 

\b Performs a backspace function when the message is displayed. 

\r Inserts a carriage return character when the message is displayed. 

\f Inserts a form feed character when the message is displayed. 

\ \ Displays the \ (backslash) character in the message. 

\ddd Displays the single-byte character associated with the octal value represented by 
the valid octal digits ddd. One, two, or three octal digits may be specified; 
however you must include leading zeros if the characters following the octal 
digits are also valid octal digits. For example, the octal value for $ is 44. To 
display $5.00 use \0445.00, not \445.00, or the 5 will be parsed as part of 
the octal value. 

\xdddd2 Displays the single-byte or double-byte character associated with the 
hexadecimal value represented by the four valid hexadecimal digits dddd. You 
may specify one, two, three, or four digits, but you must include leading zeros to 
avoid parsing errors (see \ddd). 

You can also include printf conversion specifications in messages that are displayed by 
applications using printf or NLprintf (see printf in A/X Operating System Technical 
Reference). If you display a message from a shell script with dspmsg, the message can 
contain the %s or %n$s conversion specifications (see "dspmsg" on page 359). 

You can use the $q uote command in a message source file to define a character for 
delimiting message text. The format for this command is: 

$quote [char] [comment] 

Use the specified character before and after the message text as shown in the following 
example source file: 

2 This escape sequence is an AIX extension to X/Open specifications. 



$quote .. 

$set 10 

Use a double quote to delimit message text 

Message Facility - Quote command messages 

1 IIUse the $quote command to define a character \ 
\n for delimiting message textll 

2 lIyou can include the \lIquote\1I character in a message \n \ 
by placing a \\ in front of it ll 

3 You can include the IIquote ll character in a message \n \ 
by having another character as the first nonblank \ 
\n character after the message 1D number 

$quote 

4 You can disable the quote mechanism by \n \ 
using the $quote command without \n a character \ 
after it 

gencat 

In this example, the $quote command defines the double quote C·) as the quote character. 
The quote character must be the first non-blank character following the message number. 
Any text following the next occurrence of the quote character is ignored. 

The example also shows two ways the quote character can be included in the message text: 

• Place a \ in front of the quote character. 

• Use some other character as the first non-blank character following the message 
number. This disables the quote character only for that message. 

The example shows these other things: 

• A \ is still required to split a quoted message across lines. 

• To display a \ in a message you must place another \ in front of it. 

• You can format your message with a new-line character by using \n. 

• If you use the $quote command with no character argument, you disable the quote 
mechanism. 

After entering your messages into a source file you must use the message facility program 
gencat to process the source file to create a message catalog. 

Commands 473 



gencat 

Symbolic Message Identifiers 
AIX provides a mechanism that allows symbolic references to messages by letting you use 
alphanumeric identifiers instead of set numbers and message ID numbers.3 You assign the 
identifiers to sets and messages in the source file in the same manner that you assign set 
numbers and message ID numbers. 

The symbolic identifiers can contain ASCII letters, digits, and underscores. The first 
character cannot be a digit. The maximum length cannot exceed 64 bytes. 

The following example shows a message source file with symbolic message identifiers: 

$set symbolic Message Facility - Symbolic ID's 
$quote * 

10-names *Symbolic identifier syntax: \n \ 
\talphanumerics or underscores \n \ 
\tnon-digit first character \n \ 
\t64 byte maximum length * 

set-use *To assign set 10: \n \ 
\t$set "identifier" [comment] * 

msg-use *To assign message 10: \n \ 
\t"identifier" message-text * 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

Related Information 

474 

The following commands: "dspcat" on page 357, "dspmsg" on page 359, "mkcatdefs" on 
page 651, and " runcat" on page 852. 

The catopen, catgets, catgetamsg, catclose, NLcatopen, NLcatgets, and NLgetamsg 
files in AIX Operating System Technical Reference. 

The discussion of gencat in AIX Operating System Programming Tools and Interfaces. 

3 Symbolic references are not defined by the X/Open specification. This mechanism is an AIX 
extension. 



gend 

gend 

Purpose 

Provides a general graphics device backend .. 

Syntax 

gend 

OL805458 

Description 

Flags 

The /usr/bin/graf/gend command displays GPS files on the graphics output devices 
supported by the Advanced Display Graphics Support Library (GSL). For more 
information about GSL, see the "Advanced Display Graphics Support Library" in A/X 
Operating System Technical Reference. By default, gend reads standard input and writes to 
the current display (see "display" on page 332), but gend can also drive printers and 
plotters if you have installed the VDI drivers that are in the Extended Services Program. 
You can specify the name of one or more GPS files on the command line. If you enter a 
file name of - (minus), gend reads standard input. 

When gend displays an image, it opens a new virtual terminal. You can move to and from 
this virtual terminal by pressing Next Window (Alt.,.Action). See "open" on page 728 and 
Using the AIX Operating System for information on virtual terminals. To end gend and 
close the virtual terminal, press END OF FILE (Ctrl-D). 

Note: The gend command produces the standard GPS line style attributes with one 
exception. Line style 4 (long dashed) is rendered as dash-dot-dot. 

-nnum Specifies the number of chords per circle. Legal values are 64, 128, 256, or 512. 
The default value is 128. 

Rather than drawing truly circular arcs or circles, gend converts them into a 
series of very short line segments (chords), whose end points lie on the circle. 
For most devices and images, the default value of 128 is satisfactory. The higher 
values give a smoother image; the lower value provides faster drawing time. 

Commands 475 



gend 

Files 

-rnum Displays data in GPS region num. A GPS object is defined in a Cartesian plane 
of 64K points on each axis. The plane, or universe, is divided into 25 square 
regions numbered 1 to 25 from the lower left to the upper right. 

-u Displays data in the entire GPS universe. 

-Tname Uses the device specified by the name environment variable. The default is the 
current display (this must be supported by /dev/hft). When the image is to be 
displayed on other devices, you must ensure that the proper VDI device handler 
is installed. 

jusrjbinj grafj gend 
jtmpjdev.XXXXXX 

The general devices backend. 
Temporary file. 

Related Information 

476 

The following commands: "ged" on page 463, "gdev" on page 460, "graphics" on 
page 497, and "open" on page 728. 

"Advanced Display Graphics Support Library" in AIX Operating System Technical 
Reference 

Installing programs in Installing and Customizing the AIX Operating System. 



get 

get 

Purpose 

Creates a specified version of a Source Code Control System (SCCS) file. 

Syntax 

-9 -m -s 

get -c cutoff -n -t 
-I list -p -x list 

-rSID -w string 

OL805058 

get 

-b -r SID 
-c cutoff -5 
-j list -t 

-x list 

OL805355 

Description 

The get command reads the specified versions of the named Source Code Control System 
(SeeS) files, creates an ASCII text file for each file according to the specified flags, and 
writes each text file to a file with the same name as the original SCCS file without the s. 
(s period) prefix (the g-file). The flags and files can be specified in any order, and all flags 
apply to all named files. 

If you specify a directory in place of file, get performs the requested actions on all the files 
in the directory that begin with the s. prefix. If you specify a - (minus) in place of a file, 
get reads standard input and interprets each line as the name of an SCCS file. get 
continues to read input until it reads END OF FILE (Ctrl-D). 

If the effective user has write permission in the directory containing the SCCS files but the 
real user does not, then only one file can be named when the -e flag is used. 

If you are not familiar with the terms SID and delta or you do not know the numbering 
system of the deltas, see AIX Operating System Programming Tools and Interfaces for more 
information. 

Commands 477 



get 

478 

sees Files 
In addition to the file with the s. prefix (the s-file), get can create several auxiliary files: 
the g-file, I-file, p-file, and z-file. These files are identified by their tag, the letter before 
the hyphen. get names auxiliary files by replacing the leading s. in the sees file name 
with the proper tag, except for the g-file, which is named by removing the s. prefix. So, for 
a file named s.sample, the auxiliary file names would be sample, l.sample, p.sample, and 
z.sample. 

These files serve the following purposes: 

s-file This file contains the original file text and all the changes (deltas) made to the file. 
It also includes information about who can change the file contents, who has made 
changes, when those changes were made, and what the changes were. You cannot 
edit this file directly since the file is read-only. It contains the information needed 
by the sees commands to build the g-file, the file you can edit. 

g-file The g-file is an ASeII text file that contains the text of the sees file version that 
you specify with the -r flag (or the latest trunk version by default). You can edit 
this file directly. When you have made all your changes and you want to make a 
new delta to the file, you can then apply the delta command to the file. get creates 
the g-file in the current directory. 

The get command creates a g-file whenever it runs, unless the -g flag or the -p flag 
is specified. The real user owns it (not the effective user). If you do not specify the 
-k or the -e flag, the file is read-only. If the -k or the -e flag is specified, the owner 
has write permission for the g-file. You must have write permission in the current 
directory to create a g-file. 

I-file The get command creates the I-file when the -1 flag is specified. The I-file is a 
read-only file. It contains a table showing which deltas were applied in generating 
the g-file. You must have write permission in the current directory to create an 
I-file. Lines in the I-file have the following format: 

1. A blank character if the delta was applied; a * appears otherwise. 

2. A blank character if the delta was applied or was not applied and ignored; a * 
appears if the delta was not applied and was not ignored. 

3. A code indicating a special reason why the delta was or was not applied: 

Blank Included or excluded normally. 
I Included using the -i flag. 
X Excluded using the -x flag. 
C Cut off using the -c flag. 

4. The SID. 

5. The date and time the file was created. 

6. The login name of person who created the delta. 



Comments and MR data follow on subsequent lines, indented one horizontal tab 
character. A blank line ends each entry. 

For example, for a delta cutoff with the -c flag, the entry in the I-file might be: 

**C 1.3 85/03/13 12:44:16 pat 
and the entry for the initial delta might be: 

1.1 85/02/27 15:42:20 pat 
date and time created 85/02/27 15:42:20 by pat 

get 

p-file The get command creates the p-file when the -e or the -k flag is specified. The 
p-file passes information resulting from a get -e to a delta command. The p-file also 
prevents a subsequent execution of get with a -e flag for the same SID until delta is 
run or the joint edit key letter (j) is set in the sees file. The j key letter allows 
several gets on the same SID. The p-file is created in the directory containing the 
sees file. To create a p-file in the sees directory, you must have write permission 
in that directory. The permission code of the p-file is read-only to all but its owner, 
and it is owned by the effective user. The p-file contains: 

• The current SID 
• The SID of new delta to be created 
• The user name 
• The date and time of the get 
• The -i flag, if it was present 
• The -x flag, if it was present. 

The p-file contains an entry with the preceding information for each pending delta 
for the file. No two lines have the same new delta SID. 

z-file The z-file is a lock mechanism against simultaneous updates. The z-file contains the 
binary process number of the get command that created it. It is created in the 
directory containing the sees file and exists only while the get command is 
running. 

When you use the get command, it displays the SID being accessed and the number of lines 
created from the sees file. If you specify the -e flag, the SID of the delta to be made 
appears after the SID is accessed and before the number of lines created. If you specify 
more than one file, or a directory, or standard input, get displays the file name before each 
file is processed. If you specify the -i flag, get lists included deltas below the word 
Inc 1 uded. If you specify the -x flag, get lists excluded deltas below the word Exc 1 uded. 

Commands 479 



get 

480 

Identification Keywords 
You can use identification keywords in your files to insert identifying information. These 
keywords are replaced by their values in the g-file when get is invoked without the -e or 
-k flag. The following identification keywords can be used in sees files: 

%M% Module name: the value of the m flag in the sees file. 
%1% The SID (%R%.%L%.%B%.%S%) of the g-file. 
% R % Release. 
%L% Level. 
%B% 
%S% 
%D% 
%H% 
%T% 
%E% 
%G% 
%U% 
%Y% 
%F% 
%P% 
%Q% 
%C% 

%Z% 

Branch. 
Sequence. 
Date of the current get (YY /MM/DD). 
Date of the current get (MM/DD/YY). 
Time of the current get (HH:MM:SS). 
Date newest applied delta was created (YY /MM/DD). 
Date newest applied delta was created (MM/DD/YY). 
Time newest applied delta was created (HH:MM:SS). 
Module type: the value of the t flag in the sees file. 
sees file name. 
Full path name of the sees file. 
The value of the q flag in the file. 
The current line number. This keyword is intended for identifying messages 
output by the program. It is not intended to be used on every line to provide 
sequence numbers. 

The 4-character string @ ( #) recognized by the what command. 
% W% A shorthand notation for constructing what strings for AIX program files. Its 

value is the characters and key letters: 

%VV% = %Z%%~%<horizontal-tab>%I% 

%A % Another shorthand notation for constructing what strings for non-AIX program 
files. Its value is the key letters: 

%A% = %Z%%Y% %M% %I%%Z% 
The following table illustrates how get determines the SID of the file it retrieves, and what 
the pending SID is. The column SID Specified shows the various ways the SID can be 
specified with the -r flag. The two columns illustrate the various conditions that can exist, 
including whether or not the -b flag is used with the get -e. The SID Retrieved indicates 
the SID of the file that makes up the g-file. The SID of Delta to be Created column 
indicates the SID of the version that will be created when delta is applied. 



get 

SID -b Other SID SID of Delta 
Specified Used Conditions Retrieved to be Created 

none l no R defaults to mR2 mR.mL mR.(mL+1) 

none l yes R defaults to mR mR.mL mR.mL.(mB+ 1).1 

(R)elease no R > mR mR.mL R.13 

R no R = mR mR.mL mR.(mL+1) 

R yes R > mR mR.mL mR.mL.(mB + 1).1 

R yes R = mR mR.mL mR.mL.(mB + 1).1 

R N/A R < mR and R does not exist hR.mL4 hR.mL.(mB + 1).1 

R N/A R < mR and R exists R.mL R.mL.(mB + 1).1 

R.(L)evel no No trunk successor R.L R.(L+ 1) 

R.L yes No trunk successor R.L R.L(mB+1).1 

R.L N/A Trunk successor in release 2: R R.L R.L.(mB + 1).1 

R.L.(B)ranch no No branch successor R.L.B.mS R.L.B.(mS + 1) 

R.L.B yes No branch successor R.L.B.mS R.L.(mB+ 1).1 

R.L.B.(S)equence no No branch successor R.L.B.S R.L.B.(S+l) 

R.L.B.S yes No branch successor R.L.B.S R.L.(mB+ 1).1 

R.L.B.S N/A Branch successor R.L.B.S R.L.(mB + 1).1 

1 Applies only if the d (default SID) flag is not present in the file (see "admin" on page 41). 
2 The mR indicates the maximum existing release. 
3 Forces creation of the first delta in a new release. 
4 The hR is the highest existing release that is lower than the specified, nonexistent, release R. 

Figure 2. SID Determination 

Flags 

-b Specifies that the delta to be created should have an SID in a new branch. The 
new SID is numbered according to the rules stated in Figure 2. You can use -b 
only with the -e flag. It is only necessary when you want to branch from a leaf 
delta (a delta without a successor). Attempting to create a delta at a nonleaf 
delta automatically results in a branch, even if the b header flag is not set. If 
you do not specify the b header flag in the sees file, get ignores the -b flag 
because the file does not allow branching (see the discussion of header flags on 
page 44). 

Commands 481 



get 

482 

-ccutoff Specifies a cutoff date and time, in the form: YY[MM[DD[HH[MM[SS]]]]] get 
includes no deltas to the sees file created after the specified cutoff in the g-file. 
The values of any unspecified items in the cutoff default to their maximum 
allowable values. Thus, a cutoff date and time specified with only the year (YY) 
would specify the last month, day, hour, minute, and second of that year. Any 
number of nonnumeric characters can separate the two-digit items of the cutoff 
date and time. This allows you to specify a date and time in a number of ways, 
as follows: 

-c85/9/2,9:00:00 
-c"85/9/2 9:00:00" 
"- c85/9/2 9:00:00" 

-e Indicates that the g-file being created is to be edited by the user applying get. 
The changes are recorded later with the delta command. get -e creates a p-file 
that prevents other users from issuing another get -e and editing a second g-file 
on the same SID before delta is run. The owner of the file can override this 
restriction by allowing joint editing on the same SID through the use of the 
admin command with the -fj flag. Other users, with permission, can obtain 
read-only copies by using get without the -e flag. The get -e command enforces 
sees file protection specified via the ceiling, floor, and authorized user list in 
the sees file (see "admin" on page 41). 

-g Suppresses the actual retrieval of text from the sees file. Use the -g flag 
primarily to create an I-file or to verify the existence of a particular SID. Do 
not use it with the -e flag. 

-ilist Specifies a list of deltas to be included in the creation of a g-file. The SID list 
format consists of a combination of individual SIDs separated by commas and 
SID ranges indicated by two SIDs separated by a hyphen. You specify the same 
SIDs with both the following command lines: 

get -e -i1.4,1.5,1.6 s.file 
get -e -i1.4-1.6 s.file 
You can specify the sees identification of a delta in any form shown in the 
SID Specified column of Figure 2 on page 481. get interprets partial SIDs as 
shown in the SID Retrieved column of the table. 

-k Suppresses replacement of identification keywords in the g-file by their value 
(see "Identification Keywords" on page 480). The -k flag is implied by the -e 
flag. If you accidentally ruin the g-file created by get with an -e flag, you can 
recreate it by reissuing the get command with the -k flag in place of the -e flag. 

-l[p] Writes a delta summary to an I-file. If you specify -lp, the delta summary is 
written to standard output, and get does not create the I-file. Use this flag to 
determine which deltas were used to create the g-file currently in use. See 
"sees Files" on page 478 for the format of the I-file. 



get 

-m Writes before each line of text in the g-file the SID of the delta that inserted the 
line into the sees file. The format is: 

SID tab line of text 

-n Writes the value of the %M% keyword before each line of text in the g-file (see 
"Identification Keywords" on page 480 for information on keywords). The 
format is the value of %M%, followed by a horizontal tab, followed by the text 
line. When both the -m and -n flags are used, the format is: . 

%M% value tab SID tab line of text 

-p Writes the text created from the sees file to standard output and does not 
create a g-file. get sends output normally sent to standard output to file 
descriptor 2 instead. If you specify the -s flag with the -p flag, output normally 
sent to standard output does not appear anywhere. Do not use -p with the -e 
flag. 

-rSID Specifies the sees identification string (SID) of the sees file version to be 
created. Figure 2 on page 481 shows what version of a file is created and the 
SID of the pending delta as functions of the SID specified. 

-s Suppresses all output normally written to standard output. Error messages 
(written to standard error output), remain unaffected. 

-t Accesses the most recently created delta in a given release or release and leveL 
Without the -r flag, get accesses the most recent delta regardless of its SID. 

-wstring Substitutes string for the % W% keyword in g-files not intended for editing (see 
"sees Files" on page 478 for information on g-files). 

-xlist Excludes a list of deltas in the creation of a file. See the -i flag for the SID list 
forma t on page 482. 

Examples 

1. To get an sees file for editing: 

get -e s.prog.c 

This creates a file named prog. c that only you have permission to modify. No one 
else can use prog. C or s. prog. c until you use the delta command to indicate that 
you are finished. 

Commands 483 



get 

2. To get an sees file for reading: 

get s.prog.c 

This creates a file named prog. c that anyone can read, but that no one can modify. 
You can do this before searching files with the grep command or before compiling 
programs that are controlled with sees. If you are also using the make command to 
manage the development of a software project, make automatically does the get before 
compiling a program. 

Related Information 

484 

The following commands: "admin" on page 41, "delta" on page 310, "help" on page 513, 
"prs" on page 781, and "what" on page 1213. 

The sccsfile file in AIX Operating System Technical Reference. 

The discussion of sees in AIX Operating System Programming Tools and Interfaces. 



get opt 

Purpose 

Parses command line flags and parameters. 

Syntax 

set - - - -' getopt - opstring - $*' ---l 1 

1 This command is not entered on the command 
line, but is used in shell procedures. 

Description 

get opt 

OL805050 

The get opt command is used to break up flags and parameters in command lines for easy 
parsing by shell procedures and to check for valid flags. opstring is a string of recognized 
flags (see the getopt subroutine call in AIX Operating System Technical Reference). 
Extended characters are not permitted. If a letter within opstring is followed by a colon, 
the flag is expected to take a modifying parameter that mayor may not be separated from 
it on the command line by one or more tabs or spaces. If you specify -- as the last flag on a 
command line processed by getopt, getopt recognizes it and stops its processing; 
otherwise, getopt creates the terminating --. In either case, getopt places it at the end of 
the flags. 

When the output from getopt is passed by command substitution to the shell set command, 
set resets all of the shell positional parameters ($1, $2 ... ) so that each flag is preceded 
by a - (minus) and occupies its own positional parameter. Each parameter (for example, 
file names and other parameters) is also parsed into its own positional parameter. 

The get opt command writes a message to standard error when it encounters a flag not 
included in opstring. The set command returns a nonzero value if a flag appears on the 
command line but is not specified in opstring. Consequently, you can test the validity of 
command flags by testing the value of the shell variable $1. If it is nonzero, the command 
line contains an unrecognized flag. 

Commands 485 



getopt 

Example 

486 

The following shell procedure is a front end to the ar command. It uses getopt to separate 
the flags and parameters, then translates them into the ar command syntax and runs ar 
with these flags. 

# @(#) lib: Front end to the ar command. 
# 
# Accepts the following flags: 
# ar flags with "_" prefixes. See the ar command. 
# -L library The default library is "1ibsubs.a". 
# Note: "1ib -r -b subl.o -v -1 newsub.o" performs 
# liar rbvl subl.o libsubs.a newsub.o". 
# The ar command DOES interpret this correctly. 
set -- 'getopt clsvmrua:b:i :dpqtxwL: $*' 
if [ $? != 0 ] # Test for syntax error 
then 

exit 2 
fi 
FLAGS= POSNAME= LIBRARY=libsubs.a 
while [ $1 != -- ] 

# Default library name 

do 
case $1 in 

-L) 
LIBRARY=$2 
shift; shift # Shift past the -L and library name 
, , 

-al-bl-i) 
FLAGS=$FLAGS'expr "$1" : "-\(.\)'" 
POSNAME=$2 
shift; shift # Shift past the flag and parameter 
, , 

-*) # Strip the "_" from the flag 
FLAGS=$FLAGS'expr "$1" : '1_\(.\)'" 
shift 
, , 

esac 
done 
shift # Shift past the " __ " from getopt 
FLAGS=${FLAGS:-vt} # Default if action not specified 
ar $FLAGS $POSNAME $LIBRARY $* 



getopt 

If this shell procedure is stored in a file named 1 i b, then all of the following commands are 
equivalent: 

lib -L mylib.a -v -r -b putfld.o getnam.o getfld.o getaddr.o 
lib -Lmylib.a -v -r -bputfld.o getnam.o getfld.o getaddr.o 
lib -Lmylib.a -vrbputfld.o getnam.o getfld.o getaddr.o 
lib -Lmylib.a -v -rbputfld.o -- getnam.o getfld.o getaddr.o 
In each of these cases, getopt breaks down the command into: 

-L mylib.a -v -r -b putfld.o -- getnam.o getfld.o getaddr.o 
The getopt command writes to its standard output. Because this command is enclosed in 
, '(grave accents), the shell takes its standard output and uses it to construct the 
command: 

set -- -L mylib.a -v -r -b putfld.o -- getnam.o 
getfld.o getaddr.o 
This is called command substitution. For more details, see "Command Substitution" on 
page 925. 

The set command (page 933) sets the positional parameters $1, $2, $3 . . . to each of the 
values -L, myl i b. a, -v ... ,respectively. 

The shell procedure then uses the positional parameters to construct and run the 
command: 

ar vrb putfld.o mylib.a getnam.o getfld.o getaddr.o 
The ar command (page 55) accepts the flags in any order. Therefore, you can specify flags 
to 1 i b in any order, as long as a parameter immediately follows a -a, -b, -i, or -L flag, and 
all the flags come before any file names. This means that: 

lib -bputfld.o -rv -Lmylib.a getnam.o getfld.o getaddr.o 
produces the command: 

ar brv putfld.o mylib.a getnam.o getfld.o getaddr.o 
which performs the same action as each of the previous commands. See "test" on 
page 1064 and "expr" on page 412 for more information about these commands. 

Related Information 

The following command: "sh" on page 913. 

The get opt subroutine in AIX Operating System Technical Reference. 

Commands 487 



gettext 

gettext 

Purpose 

Extracts message/insert/help descriptions. 

Syntax 

gettext 
~-----p-------------------~ 

maximum three each )- outfi/e ----l 

J -h he/pnum infi/e 
-m mesgnum 
-t insertnum 

OL805130 

Description 

Flags 

488 

The gettext command gets message, insert, or help descriptions from infile and places the 
descriptions ih outfile. If you specify the -p flag or gettext outfile, gettext places a 
message/insert/help template in outfile. When you have your message, insert, or help 
descriptions or your message/insert/help template in outfile; you can edit outfile. 

The outfile is an AIX ASCII file that consists of a header to identify the component and a 
group of message/insert/help descriptions. The contents of the message/insert/help 
descriptions includes a delimiter, control information and message/insert/help text. See 
AIX Operating System Programming Tools and Interfaces for a description of the outfile 
format and contents. 

-h helpnum Extracts help information from infile. You specify the index value used for 
the desired help number with helpnum. 

-m mesgnum Extracts message information from infile. You specify the index value used 
for the desired message number with mesgnum. 

-p Makes a message/insert/help template for outfile. 

-t insertnum Extracts text insert information from infile. You specify the index value 
used for the desired insert number with insertnum. 



gettext 

The syntax for the mesgnum, insertnum, and helpnum parameters is as follows: 

num-num 

num,num 

num-

-num 

Retrieves index numbers num to num. 

Retrieves a list of index numbers specified with num, num, num, and so 
on (maximum of 50 numbers). 

Retrieves index numbers equal to and larger than num. 

Retrieves index numbers from one to num. 

Related Information 

The following command: "puttext" on page 796. 

The discussion of gettext in AIX Operating System Programming Tools and Interfaces. 

Commands 489 



getty 

getty 

Purpose 

Sets the characteristics of ports. 

Syntax 

getty port name ----l 

OL805333 

Description 

490 

The init process runs the getty command for each portname enabled for login. Its primary 
function is to set the characteristics of the port specified by portname. Port characteristics 
include: 

• Bidirectional use (tty line can be used in both directions) 
• Line speed (baud rate) 
• Parity 
• Carriage return, tab, new-line, and form feed delays 
• Character set mapping, such as lowercase to uppercase, carriage return to new-line 

translation, and tab expansion 
• Extended character support 
• Character erase and line erase editing characters 
• Local or remote echo 
• Screen length for paging. 

The getty command obtains these settings by reading the port attributes specified in the 
fete/ports configuration file and by observing the behavior of the port itself. (For details 
regarding the format of fete/ports, see AIX Operating System Technical Reference. For the 
logmodes pnd runmodes parameter settings, see "stty" on page 1018.) 

When get~y is invoked, it opens the specified port. However, if carrier detection (modem 
control) is available on the port, getty cannot open the port until the carrier is present; 
Once the port is opened, getty sets the work station attributes according to the first 
parameters in the ports file (for example, speed, Iogmodes, parity, erase, and kill). Then 
getty writes the message herald to the port and reads a login name from the port. 



getty 

Note: If the login name contains extended characters, these extended characters are 
translated to the single ASCII characters that most resemble them. 

Japanese Language Support Information 

Login names are limited to ASCII characters. 

If a framing error occurs while reading, either because a user generates a BREAK signal 
from the work station or because the line speed is not the same as that of the transmitting 
work station, the port parameters are reset to the next combination specified in the ports 
file. 

Once getty reads a login name, it does the following: 

1. Resets the work station modes according to the runmodes parameter. 

2. Turns on carriage-return-to-new-line mapping if the login name was ended by a 
carriage return. 

3. Turns on lowercase-to-uppercase mapping if the alphabetic characters in the login 
name were all uppercase. 

4. Executes the program specified by the logger parameter. That program, defaulting to 
/bin/login, runs in the same process as getty, not as its child. 

Any additional arguments entered after the login name are passed to the logger program. 
The login command interprets these as shell variable settings and places them in the 
environment. 

On dial-in ports, it is often necessary to set no parity generation or checking as a default, 
but to permit the user to select parity as an option. For example, the following line in the 
jete/ports file: 

parity = none,odd+inpck,even+inpck 
accepts logins with any parity. However, if a user generates BREAK before typing a login 
name, getty sets the port to generate odd parity and to check incoming characters for odd 
parity, while two BREAKs generate and check for even parity. Similarly, the following 
line: 

speed=1200,300 
works with 1200 baud, reverting to 300 baud when a BREAK is received before the login 
name. The default runmodes parameter (which must appear on one line in the ports file), 
is generally satisfactory. However, for work stations that have built-in tabs to every eight 
character positions and do not require tab delays, eliminating the tab3 from the default in 
jete/ports will provide faster output with less system load. 

Notes for secure Command: After you run the secure command, the jete/ports file can 
contain new attributes. These attributes are used by getty to manage the trusted path. 

Commands 491 



getty 

Flags 

492 

The following is a list of the possible attributes: 

sak Turns on secure attention key (SAK) detection for the port and causes getty to 
perform a frevoke system call. 

synonym This attribute specifies another port that requires the same protection and 
ownership as the port on which getty is working. 

shell This attribute names the terminal manager program, usually /bin/actman. 
This program is passed to the logger program and is executed as the user's login 
shell when the user logs in successfully. 

Special Purpose Options 

If there is a timeout keyword in the ports file, getty waits only the specified number of 
seconds for a response to the herald before advancing to the next port settings or, after all 
the settings are exhausted, exiting. If there is a program keyword for the port, then 
instead of displaying the herald and gathering a login name, it executes the specified 
program immediately. This feature is a general mechanism for supporting special service 
ports such as network mail daemons that need to be spawned when a connection is made 
from the outside world. As a special case, if you specify: 

program = HOLD 
the runmodes, owner, and protection of the port are set and getty holds the port open 
indefinitely, thereby preventing the port modes from reverting to their open-default 
settings. This is useful, for example, in setting the modes on serial printer ports when it is 
inconvenient or impossible to have the programs that use them do so. 

-d Uses standard input as the work station for which parameters are to be set according 
to those governing portname. Instead of executing a logger or a program, getty 
displays the name of the program that would have been run. 

-r Makes the port available for shared (bidirectional) use. With this flag, getty 
attempts to create a lock file in /etc/locks with the name of the device. This file can 
then be used by uucp to determine the status of the line. If the lock fails (because 
some other process is using the line), getty waits until the lock file is removed, then 
exits. The init command creates a new getty to attempt the locking process again. 

-u Makes the port available for shared (bidirectional) use without displaying the login 
herald. This flag is used for direct lines or lines that have intelligent modems that 
need to return immediately on opening a port. This prevents getty from 
communicating with a getty on the remote system or modem. 



getty 

Example 

Files 

To test a new fete/ports entry, enter the following: 

getty -d /dev/tty5 
This tests a new port definition for /dev /tty5 by simulating the login sequence of this 
device at your work station. 

/bin/ actman 
/etc/locks 
/etc/ports 
/bin/login 
/bin/ setma ps 

A terminal manager program. 
Con tains terminal devices to be locked 
Specifies terminal mode 
Contains the authorization and identification program 
Contains characters for National Language Support (NLS) 

Related Information 

The following commands: "login" on page 584, "init" on page 521, and "stty" on 
page 1018. 

The tty and ports files in AIX Operating System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 

The discussion of the trusted path in Managing the AIX Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 

Commands 493 



graph 

graph 

Purpose 

Draws a graph. 

Syntax 

-g grid --s 
--h space -t 
--lIable --u space 
-m style -w space 
-r space 

--0 {1-(0 
~num 

lowlim 

-x 

lolirn 

uplirn 

-y 

lolirn 

uplirn 

OL805429 

494 



graph 

Description 

Flags 

The graph command reads pairs of numbers from standard input, where each pair is the x 
and y coordinates of a point on a graph. It processes the data that allows the successive 
points to be connected by straight lines when printed and then writes the graph to 
standard output. See "tplot" on page 1079 for information on how to code the output for 
printing. 

In the input, non-numeric strings following the coordinates of a point are labels. Labels 
begin on the point. Labels can be surrounded with II (double quotation marks), in which 
case they can be empty or contain blanks and numbers. Labels cannot contain new-line 
characters. 

The graph command stores all points internally and drops those for which there is not 
room. It also drops segments that run out of bounds. The graph command produces a 
legend indicating grid range with a grid unless you specify the -8 flag. If a specified lower 
limit exceeds the upper limit, graph reverses the axis. Note that logarithmic axes cannot 
be reversed. 

-a [num [lolim]] 

-b 
-c char 
-g grid 

-h space 

-I " label" 
-m style 

-r space 
-8 

-t 

-u space 
-w space 

Supplies abscissas missing from the input automatically. num determines the 
spacing on the axis (the default is 1). lolim determines the starting point for 
automatic abscissas (the default is 0 or the lower limit given by -x[lolim]. 
Breaks the graph after each label in the input. 
Uses the character string char as the default label for each point. 
Uses grid as the grid style, where grid = 0 indicates no grid, grid = 1 
indicates a frame with tick marks, and grid = 2 indicates a full grid (default). 
Uses space as a fraction of space for height. 
Uses label as a label for the graph. 
Uses style as the style of connecting lines, where style = 0 indicates 
disconnected lines, and style = 1 indicates connected lines (default). 
Uses space as the fraction of space to move to the right before plotting. 
Saves the current graphic screen image, does not erase before starting the plot. 
Transposes horizontal and vertical axes. (-x now applies to the vertical axis). 
Uses space as the fraction of space to move up before plotting. 
Uses space as a fraction of space for width. 

Commands 495 



graph 

-x [I] [lolim [up lim [space]]] 
Makes the x axis logarithmic if 1 is used. Use lolim as the lower x axis limit 
and uplim as the upper x axis limit. Use space for the grid spacing on x axis. 
Normally these are determined automatically. 

-y [I] [lolim [up lim [space]]] 
Acts the same as -x for the y axis. 

Related Information 

The following commands: "spline" on page 972 and "tplot" on page 1079. 

496 



graphics 

graphics 

Purpose 

Accesses graphical and numerical commands. 

Syntax 

graphics /\., 
~-rr 

OL777038 

Description 

Flag 

The graphics command appends the path name /usr/bin/grafto the current $PATH 
value, changes the primary shell prompt to /\, and executes a new shell. The directory 
/usr/bin/graf contains all of the graphics subsystem commands. 

The command line format for a command in graphics is command name followed by 
argument(s). An argument may be a filename or an flag string. A filename is the name of 
any AIX Operating System file, except those beginning with -. The filename - is the name 
for the standard input. An flag string consists of - followed by one or more flag(s). A flag 
consists of a key letter possibly followed by a value. Flags may be separated by commas. 

The graphical commands have been partitioned into four groups. 

• Commands that manipulate and plot numerical data; see "stat" on page 984. 

• Commands that generate tables of contents; see "toc" on page 1074. 

• Commands that interact with graphical devices; see "gdev" on page 460 and "ged" on 
page 463. 

• A collection of graphical utility commands; see "gutil" on page 508. 

To produce a list of graphics commands, enter what is in the graphics environment. 

-r Creates access to the graphical commands in a restricted environment; that is, it 
sets $PATH to :/usr/bin/graf:/rbin:/usr/rbin and invokes the restricted shell, 
rsh. To restore the environment that existed prior to issuing the graphics 
command, press Ctrl-D (END OF FILE). To log off of the graphics environment, 
enter quit. 

Commands 497 



graphics 

Related Information 

498 

The following commands: "gdev" on page 460, "ged" on page 463, "gend" 0n page 475, 
"gutil" on page 508, "stat" on page 984, and "toe" on page 1074. 

The gps file in AIX Operating System Technical Reference. 



greek 

greek 

Purpose 

Converts output for a Teletype Model 37 work station to output for other work stations. 

Syntax 

-C
-T$TERM:::y 

greek 
- Tworkstation 

OL805185 

Description 

Flag 

The greek command reinterprets the Teletype Model 37 character set, including reverse 
and half-line motions, for display on other work stations. It simulates special characters, 
when possible, by overstriking. greek reads standard input and writes to standard output. 

-Tworkstation Uses the specified workstation. If you omit the -T flag, greek attempts 
to use the work station specified in the environment variable $TERM 
(see the environ special facility in AIX Operating System Technical 
Reference.) workstation can be anyone of the following: 

300 
300-12 
300s 
300s-12 
450 
450-12 
1620 
1620-12 
2621 
2640 
2645 
4014 
hp 
tek 

DASI300. 
DASI 300 in 12-pitch. 
DASI300s. 
DASI 300s in 12-pitch. 
DASI450. 
DASI 450 in 12-pitch. 
Diablo 1620 (alias DASI 450). 
Diablo 1620 (alias DASI 450) in 12-pitch. 
Hewlett-Packard 2621, 2640, and 2645. 
Hewlett-Packard 2621, 2640, and 2645. 
Hewlett-Packard 2621, 2640, and 2645. 
Tektronix 4014. 
Hewlett-Packard 2621, 2640, and 2645. 
Tektronix 4014. 

Commands 499 



greek 

Files 

/usr/bin/300 
/usr/bin/300s 
/usr/bin/4014 
/usr/bin/450 
/usr/bin/hp 

Related Information 

500 

The following commands: "300" on page 1262, "4014" on page 1264, "450" on page 1265, 
"eqn, neqn, checkeq" on page 395, "hp" on page 514, "mm, checkmm" on page 663, 
"tplot" on page 1079, and "nroff, troff" on page 709. 

The greek miscellaneous facility in A/X Operating System Technical Reference. 



grep 

grep 

Purpose 

Searches a file for a pattern. 

Syntax 

grep 

egrep 

fgrep 

Description 

pattern ~ 
~ 

pattern a <d-" 
'---J.--_- -e pattern --~ 

-f stringfile file 

pat/ern 3 
-e pattern 
-f stringfile 

OL805375 

OL805359 

OL805361 

Commands of the grep family search input files (standard input by default), for lines 
matching a pattern. Normally, they copy each line found to standard output. Three 
versions of the grep command permit you to express the matching pattern in varying levels 
of complexity: 

grep Searches forpatterns, which are limited regular expressions in the style of the ed 
command. grep uses a compact nondeterministic algorithm. 

Commands 501 



grep 

502 

egrep Searches for patterns which are full regular expressions as in ed, except for \ ( and 
\) and with the addition of the following rules: 

• A regular expression followed by a plus sign ( + ) matches one or more 
occurrences of the regular expression. 

• A regular expression followed by a question mark (?) matches 0 or 1 
occurrences of the regular expression. 

• Two regular expressions separated by a vertical bar (I) or by a new-line 
character match strings that are matched by either. 

• A regular expression may be enclosed in parentheses 0 for grouping. 

The order of precedence of operators is [], then *? +, then concatenation, then I 
and the new-line character. 

The egrep command uses a deterministic algorithm that needs exponential space. 

fgrep Searches for patterns that are fixed strings. It searches for lines that contain one 
of the strings (lines are separated by new-line characters). 

All versions of grep display the name of the file containing the matched line if you specify 
more than one file name. Characters with special meaning to the shell ($ * [ I" ( ) 
\), must be quoted when they appear in patterns. When pattern is not a simple string, you 
usually must enclose the entire pattern in single quotation marks. In an expression such 
as [a-z], the minus means "through" according to the current collating sequence. 

A collating sequence may define equivalence classes for use in character ranges. See 
"Overview of International Character Support" in Managing the AIX Operating System for 
more information on collating sequences and equivalence classes. 

Japanese Language Support Information 

A collating sequence in Japanese Language Support does not define equivalence classes for 
for use in character ranges. To avoid unpredictable results when using a range expression 
to match a class of characters, use a character class expression rather than a standard 
range expression. For information about character class expressions, see the discussion in 
"ed" on page 371. 

The exit value of these commands is: 

o A match was found. 

1 No match was found. 

2 A syntax error was found or a file was inaccessible (even if matches were found). 



Flags 

grep 

Notes: 

1. Lines are limited to 512 characters; longer lines are broken into multiple lines of 512 or 
fewer characters (grep only). 

2. Paragraphs (under the -p flag) are currently limited to a length of 5000 characters. 

3. Running grep on a special file produces unpredictable results and is discouraged. 

-b 

-c 

-e pattern 

Precedes each line by the block number on which it was found. Use this flag 
to help find disk block numbers by context. 

Displays only a count of matching lines. 

Specifies a pattern. This works the same as a simple pattern but is useful 
when the pattern begins with a - (does not work with grep). 

-f string file Specifies a file that contains patterns (egrep) or strings (fgrep). 

-1 Lists just the names of files (once) with matching lines. Each file name is 

-n 

-pparsep 

-s 

-v 

-x 

separated by a new-line character. 

Precedes each line with its relative line number in the file. 

Displays the entire paragraph containing matched lines. Paragraphs "are 
delimited by paragraph separators, parsep, which are patterns in the same 
form as the search pattern. Lines containing the paragraph separators are 
used only as separators; they are never included in the output. The default 
paragraph separator is a blank line (grep only). 

Suppresses error messages about inaccessible files (grep only). 

Displays all lines except those that match the specified pattern. 

Displays lines that match the pattern exactly with no additional characters 
(fgrep only). 

Examples 

1. To search several files for a simple string of characters: 

fgrep "strcpy" *.c 

e 

This searches for the string strcpy in all files in the current directory with names 
ending in . C 

Commands 503 



grep 

504 

2. To count the number of lines that match a pattern: 

fgrep -c "{" pgm.c 
fgrep -c "} II pgm.c 

This displays the number of lines in pgm. c that contain open and close braces. 

If you do not put more than one {or } on a line in your C programs, and if the braces 
are properly balanced, then the two numbers displayed will be the same. If the 
numbers are not the same, then you can display the lines that contain braces in the 
order that they occur in the file with: egrep "{I}" pgm. c 

3. To use a pattern that contains some of the pattern-matching characters *, A, ?, [, ], \(, 
\), \ {, and \}: 

grep II A [a-zA-I] II pgm. s 

This displays all lines in pgm. s that begin with a letter. 

Note that because fgrep does not interpret pattern-matching characters: 

fgrep IIA[a-zA-ZJII pgm.s 

makes fgrep search only for the string A [a-zA-ZJ in pgm. s. 

4. To use an extended pattern that contains some of the pattern-matching characters +, 
?, I, (, and),:: 

egrep 11\( *([a-zA-ZJ*1 [0-9J*) *\)" my.txt 

This displays lines that contain letters in parentheses or digits in parentheses, but not 
parenthesized letter-digit combinations. It matches (y) and ( 783902), but not 
(alpha19c). 

Note: 

When using egrep, \( and \) match parentheses in the text, but ( and) are special 
characters that group parts of the pattern. The reverse is true for grep. 

Japanese Language Support Information 

When Japanese Language Support is installed on your system, use the following 
format: 

egrep 11\( *([[:alpha:]]*I[[:digit:]J*) *\)11 my.txt 



5. To display all lines that do not match a pattern: 

grep -v 111\#11 

This displays all lines that do not begin with a # character. 

6. To display the names of files that contain a pattern: 

fgrep -1 Ilstrcpyll *.c 

This searches the files in the current directory that end with . c and displays the 
names of those files that contain the string strcpy. 

Related Information 

grep 

The following commands: "ed" on page 371, "sed" on page 887, and "sh" on page 913. 

"Overview of International Character Support" in Managing the AIX Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 

Commands 505 



groups 

groups 

Purpose 

Displays your group membership. 

Syntax 

groups-~ 
~user1r 

1The default user is the person running the command. 
OL805129 

Description 

Files 

506 

The groups command writes to standard output the groups to which you or the specified 
user belong. The AIX Operating System allows you to belong to many different groups at 
the same time. 

Your primary group is specified in the file /ete/passwd. Once you are logged in, you can 
change your active group with the newgrp command (see page 689). When you create a 
file, its group ID is that of your active group. 

Other groups that you belong to are specified in the file fete/group. If you belong to more 
than one group, you can access files belonging to any of those groups without changing 
your primary group ID. These are called your concurrent groups. 

Note: The /ete/passwd and /ete/opasswd files must be on the same node. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

/etc/group 
/etc/ogroup 
/etc/passwd 
/ etc/ opasswd 

Group file; contains group IDs. 
Previous version of the group file. 
Password file; contains user IDs. 
Previous version of the password file. 



groups 

Related Information 

The following command: "newgrp" on page 689. 

The setgroups system call and the initgroups subroutine in AIX Operating System 
Technical Reference. 

Commands 507 



gutil 

gutil 

Purpose 

Provides graphical utility programs. 

Syntax 

508 

bel --j 

cvrtopt 

=sstring 
=f string 
=i string 
=t string 

gd ~file2r 
gtop 

pd ~file~ 

ptog ~file~ 

quit --j 

OL777039 

OL805449 



gutil 

remcom i;fi,e!r 
WhotiS~ If 

o name 

YOO - file --l 

OL805450 

Description 

The following are the miscellaneous device-independent utility commands found in the 
/usr/bin/graf directory. If you do not specify any files, these commands read standard 
input. All output is sent to standard output. Graphical data is stored in GPS format; see 
the gps file in AIX Operating System Technical Reference. 

bel 
Sends the ASCII BEL character to the terminal. 

cvrtopt 
The cvrtopt command reformats its arguments (usually the command line arguments of a 
calling shell procedure) to facilitate processing by shell procedures. An arg is either a file 
name or a flag string. A file name is either a - (minus) by itself or a string not beginning 
with a -. A flag string is a string of flags beginning with a - (minus). cvrtopt produces 
output of the following form: 

-flag -flag .. : file ... 

All flags appear singularly in the output and precede any file names. Arguments that take 
values or are two letters long must be described through flags to cvrtopt. 

The cvrtopt command is usually used with the set command as the first line of a shell 
procedure (see page 933 for a description of the set command): 

set 'cvrtopt [=flagsJ . .. $@' 

Flags 

sstring The specified string accepts string values, where string is a one or two letter flag 
name. 

Commands 509 



gutil 

510 

fstring The specified string accepts floating point numbers as values, where string is a 
one- or two-letter flag name. 

istring The specified string accepts integers as values, where string is a one- or two-letter 
flag name. 

tstring The specified string is a two-letter flag name that takes no value. 

gd 
The gd command produces a readable listing of a file in GPS format. 

gtop 
The gtop command transforms a GPS format into plot file commands displayable by plot 
filters. GPS objects are translated if they fall within the window that circumscribes the 
first file, unless you specify one of the following flags: 

Flags 

rnum 

u 

pd 

Translates objects in GPS region num. 

Translates all objects in the GPS universe. 

The pd command displays a readable listing of plot format graphical commands. 

ptog 
The ptog command transforms plot file commands into a GPS file. 

quit 
The quit command terminates the session. 

rem com 
The remcom command copies its input to its output with comments removed. Comments 
are as defined in the C language (/* comment * I). 



gutil 

whatis 
The what is command displays a short description of each name specified. If you do not 
specify a name, then whatis displays the current list of description names. The command 
what; S \* displays every description. 

Flag 

-0 Displays only command flags. 

yoo 

The yoo command is a piping primitive that deposits the output of a pipeline into a file 
used in the pipeline. Note that without yoo, this is not usually successful because it 
causes a read and write on the same file simultaneously. 

Related Information 

The following command: "graphics" on page 497. 

The gps format in AIX Operating System Technical Reference. 

Commands 511 



hangman 

hangman 

Purpose 

Plays hangman, the word-guessing game. 

Syntax 

/usr/games/hangman .~ 
~fi'er 

Description 

OL805228 

The hangman game chooses a word of at least seven letters from a standard dictionary. 
You try to guess the word by guessing the letters in it, one at a time. You are allowed 
seven mistakes. The file parameter specifies an alternate dictionary. 

To quit the game, press INTERRUPT (Alt-Pause) or END OF FILE (Ctrl-D). 

512 



help 

help 

Purpose 

Provides information about a Source Code Control System (SCCS) message or command or 
about certain non-SCeS commands. 

Syntax 

help -f errorcode 2r 
command 

OL805054 

Description 

Files 

The help command writes to standard output information about the use of a specified 
SCCS command or about messages generated while using the commands. Each message 
has an associated errorcode, which can be supplied as a argument to the help command. 
Zero or more arguments may be supplied. If you do not supply a argument, help prompts 
for one. You may include any of the sees commands as arguments to help. 

The errorcode consists of numbers and letters, and is found at the end of the message. For 
example, in the message no i d keywords (ge6), the error code is ge6. 

/usr/lib/help 
/usr/lib/help/helploc 

Directory containing files of message text. 
File containing locations of help files not in /usr/lib/help. 

Related Information 

The discussion of secs in AIX Operating System Programming Tools and Interfaces. 

Commands 513 



hp 

hp 

Purpose 

Handles special functions for the HP2640- and HP2621-series terminals. 

Syntax 

hP~ 
~ 

OL805018 

Description 

514 

The hp command reads standard input (usually output from nroff), and writes to standard 
output, which is usually Hewlett-Packard 2640-and 2621-series terminal displays. 

If your terminal has the display enhancement feature, you can display subscripts and 
superscripts. With the mathematical-symbol feature, you can display Greek and other 
special characters the same way as the 300 command, with two exceptions: hp 
approximates the logical operator NOT with a right arrow and it only shows the top half of 
the integral sign. 

For overstrike characters (characters followed by a backspace and another character), if 
either character is an underscore character, the other appears underlined or in inverse 
video depending on terminal enhancements. 

Note: Some sequences of control characters (reverse line-feeds and backspaces) can make 
text disappear from the display. Tables with vertical lines generated by the tbl command 
will often be missing lines of text containing the bottom of a vertical line. You can avoid 
these problems by first piping the input through col, and then through hp. 



Flags 

hp 

-e Shows overstruck characters underlined, superscripts in half-bright, and subscripts 
half-bright underlined. Otherwise, all overstruck characters, subscripts, and 
superscripts appear in inverse video (dark-an-light). Use this flag only if your display 
has the display enhancements feature. 

-m Produces only one blank line for any number of successive blank lines in the text. 

Related Information 

The following commands: "300" on page 1262, "col" on page 179, "eqn, neqn, checkeq" 
on page 395, "greek" on page 499, "nroff, troft'" on page 709, and "tbl" on page 1053. 

Commands 515 



hyphen 

hyphen 

Purpose 

Finds hyphenated words. 

Syntax 

hYPhen~ 
L:J 

OL805019 

Description 

The hyphen command reads the input files (standard input by default), finds all the lines 
ending with hyphenated words, and writes those words to standard output. A word is 
considered hyphenated only if the hyphen occurs at the end of a line. hyphen reads 
standard input if you do not specify any file names on the command line. 

Note: The hyphen command cannot handle hyphenated italic words. It also sometimes 
gives unnecessary output. 

Examples 

1. To check the way words are hyphenated in a text file: 

hyphen chapl 
This lists the words in chap 1 that are hyphenated at the end of a line. 

2. To check the hyphenation performed by a text formatting program: 

mm chapl hyphen 
This lists the words that nroff decides to hyphenate across lines. 

Related Information 

516 

The following commands: "mm, checkmm" on page 663, "nroff, troff' on page 709, and 
"troff' on page 710. 



id 

id 

Purpose 

Displays the system identity of the user issuing the command. 

Syntax 

id ---I 
OL805131 

Description 

The id command writes a message to standard output containing the user and group IDs 
and corresponding names of the invoking process. When effective and real names and IDs 
do not match, id writes both. 

Related Information 

The following command: "logname" on page 589. 

The getuid subroutine in AIX Operating System Technical Reference. 

Commands 517 



inc 

inc 

Purpose 

Incorporates new mail. 

Syntax 

--(

+inbOX 

inc 

+ folder 

-file file 

inc - -help---l 

-noaud it 

one of 

-audit file 
-noaudit 

one of 
-truncate 
-notruncate 

-changecur 

one of 

-changecur 
-nochangecur 

one of 

-form file 
-format string 

-width 72, , 

-width num r 

AJ2FL156 

Description 

518 

The inc command is used to incorporate incoming mail. inc is part of the MH (Message 
Handling) package and can be used with other MH and AIX commands. 

The inc command takes all of the new messages from your mail drop and places them in 
the specified folder. If the specified folder does not exist, inc asks you if it should be 
created. inc assigns the new messages consecutive message numbers starting with the 
next highest number in the folder. inc assigns the new messages the protection code 
specified in the Msg-Protect: entry in your .mh-profile. If there is no Msg-Protect: 
entry, inc assigns the messages the protection code of 644. inc calls the scan command to 
display information about the new messages. If the Unseen-Sequence: profile entry 
specifies any sequences, inc adds the new messages to each sequence. 



Flags 

inc 

-audit file Copies the current date to the specified file and appends the output from 
the scan command to the file. 

-changecur Sets the first new message as the current message for the specified folder. 
This flag is the default. 

-file file Incorporates messages from the specified file instead of the user's 
maildrop. 

+ folder Incorporates the new messages into the specified folder. + inbox is the 
default folder. 

-form file Displays the scan command output in the alternate format described in 
file. 

-format string Displays the scan command output in the alternate format described by 
string. 

-help Displays help information for the command. 

-no audit Does not record information about incorporating the new messages (see 
the -audit flag). This flag is the default. 

-nochangecur Does not alter the setting for the current message in the specified folder. 

-nosilent Prompts the user for any necessary information. This flag is the default. 

-notruncate Does not clear the mailbox or file from which inc is taking new messages. 
If -file is specified, -notruncate is the default. 

-silent Does not prompt you for any information. This flag is useful for running 
inc in the background. 

-truncate Clears the mailbox or file from which inc is taking new messages. If -file 
is not specified, -truncate is the default. 

-width num Sets the number of columns in the scan command output. The default is 
the width of the display. 

Profile Entries 

Alternate-Mailboxes: 
Folder-Protect: 
Msg-Protect: 
Path: 
Unseen-Sequence: 

Specifies your mailboxes. 
Sets the protection level for your new folder directories. 
Sets the protection level for your new message files. 
Specifies your user -mh-directory. 
Specifies the sequences used to keep track of your unseen 
messages. 

Commands 519 



inc 

Files 

$HOME/.mh-profile 
/usr /lib/mh/mtstailor 
/usr/mail/$USER 

The MH user profile. 
The MH tailor file. 
The location of the mail drop. 

Related Information 

520 

Other MH commands: "mhmail" on page 646, "post" on page 758, "scan" on page 87l. 

The mh-format, mh-mail, and mh-profile files in AIX Operating System Technical 
Reference. 

"Overview of the Message Handling Package" in Managing the AIX Operating System. 



init 

init 

Purpose 

Initializes the system. 

Syntax 

1 
init --I 

1 This command should not be entered on the command line. 

Description 

OL805132 

After the kernel completes the basic processor initialization, it starts the init process, 
which is the ancestor of all other processes in the system. The init command controls the 
mode in which the system is running; this usually is either maintenance mode or multiuser 
mode. A user with superuser authority can alter init so that the system runs in controlled 
access mode. It is the program from which all loggers and most system daemons start. 

When init starts, it determines what the startup mode should be, based on information in 
the /etc/.init.state file. If this file does not exist or is unreadable, init bases the startup 
mode on information passed to it by the kernel. The following are the usual startup modes 
for init: 

maintenance 

multiuser 

exec-program 

Maintenance Mode 

Starts a shell on the console, but does not start any other processes 
(single-user mode). 

Runs the command file /etc/rc and spawns loggers on all enabled 
ports. " 

Runs the specified program. 

Use maintenance mode for the following: 

• System installation 
• Correcting problems on the file system using the fsck command 
• All operations requiring an inactive system. 

Commands 521 



init 

There are three ways to bring the system up in maintenance mode: 

1. If the system is currently running in normal (multiuser) mode, use the shutdown -m 
command to bring the system down to maintenance mode (shutdown sends init a 
SIGINT signal). 

2. Start the system from the Installation/Maintenance Diskette and specify the 
Mai ntenance Mode option from the End System Management menu. 

3. Edit the /ete/.init.state file so that it consists of the character m. This causes the 
system to come up in maintenance mode each time it is started up. 

Maintenance mode starts a shell program with superuser authority on the console. When 
you log off this shell by pressing END OF FILE (Ctrl-D), init asks you if you want to 
leave maintenance mode. A response beginning with n or N indicates "no," and init starts 
another shell on the console. Any processes running in the background continue to run. 
Any other response indicates "yes." 

If the response is yes, in it enters normal mode, as described in the following section. It 
also asks if the file system integrity should be checked. A response beginning with n or N 
indicates "no." Any other response indicates "yes." Your answer determines whether the 
re command runs with an m or d argument. 

Normal Mode 

After the normal startup of the system (either from system startup or by leaving 
maintenance mode), init runs the normal initialization command file, fete/reo It passes re 
an argument of either m (normal startup, clean root), or d (normal startup, dirty root). 
The latter is the default argument if the startup is from maintenance mode. re is 
responsible for performing integrity checks, doing any necessary cleanups, mounting the 
normal file systems, enabling standard ports, and starting system daemons. If an error 
occurs during the running of this command file (indicated by a nonzero return code), init 
either forces a system restart by executing the reboot system call or enters maintenance 
mode. 

Once re completes successfully, init starts logger processes (normally getty) on each 
,,~ enabled port. Whenever someone ends a logger by logging off a port, init notes the logoff 

and starts a new logger on the port. Everything init knows about enabling ports is 
contained in the /ete/portstatus file, which is maintained by the penable command. 
Through this file, you can enable new ports or disable ports that were previously enabled. 
Whenever init receives a SIGHUP (hangup) signal, it rereads the portstatus file to see if 
any changes of port status have been requested. 

522 

The init commands then reads the commands in the /ete/re.ds file, if that file exists. 
Typically, /ete/rc.ds contains commands to start.Distributed Services. Any commands 
that are needed to run remote mounts should be placed in /ete/rc.ds. 



init 

If, at any time after the system starts up normally, in it discovers that no ports are enabled 
or if init receives an INTERRUPT signal, it decides again on startup options. Generally, 
this means init will go through normal startup, assuming a dirty root. 

Environments 

Files 

Because init is the ultimate ancestor of every process on the system, its environment 
parameters are inherited by every process. As part of its initialization sequence, in it reads 
the file fete/environment and copies any assignments found in that file into the 
environment passed to all of its subprocesses. It treats umask differently. If it is assigned 
a reasonable octal value, init does a umask system call for the specified value, rather than 
passing the value in the environment. Similarly, if fllesize is specified, init issues a 
ulimit call with the given size as the argument. 

/etc/utmp 
/usr/adm/wtmp 
/etc/portstatus 
/etc/rc 
/etc/environment 

Record of logged-in users 
Permanent login accounting file 
Enabled port status file 
Initialization command file 
System environment variables 

Related Information 

The following commands: "getty" on page 490, "pstart, penable, pshare, pdelay" on 
page 791, "re" on page 806, and "shutdown" on page 946. 

The reboot and umask system calls and the portstatus file in A/X Operating System 
Technical Reference. 

The discussion of the trusted path in Managing the A/X Operating System and Using the 
A/X Operating System. 

Commands 523 



install 

install 

Purpose 

Installs a command. 

Syntax 

-n directory 
file~ 
~ 

install 

Instoll-(-C directorY~file--j 
-f directory---<-- -0 y ~ -s F 

OL805022 

Description 

524 

The install command installs file in a specific place within a file system. It is most often 
used in makefi 1 es (see "make" on page 625). When replacing files, install copies each 
file into the appropriate directory, thereby retaining the original owner and permissions. 
A newly-created file has permission code 755, owner bin, and group bin. install writes a 
message telling you exactly which files it is replacing or creating and where they are 
going. 

If you do not supply any arguments, install searches a set of default directories (lbin, 
/usr/bin, fete, /lib, and /usr/lib, in that order) for a file with the same name as file. The 
first time it finds one, it overwrites it with file and issues a message indicating that it has 
done so. If a match is not found, install issues a message telling you there was no match 
and exits with no further action. 

If any directories are specified on the command line, install searches them before it 
searches the default directories. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 



Flags 

install 

-c directory Installs a new command file in directory only if that file does not already 
exist there. If it finds a copy of file there, it issues a message and exits 
without overwriting the file. This flag can be used alone or with -so 

-f directory Forces installation of file in directory whether or not file already exists. If 
the file being installed does not already exist, install sets the permission 
code and owner of the new file to 755 and hin, respectively. This flag can be 
used alone or with -0 or -so 

-i Ignores the default directory list and searches only those directories 
specified on the command line. This flag cannot be used with -c or -f. 

-n directory Installs file in directory if it is not in any of the searched directories and sets 
the permissions and owner of the file to 755 and hin, respectively. This flag 
cannot be used with -c or -f. 

-0 Saves the old copy of file by copying it to OLDfile in the directory in which 
it found it. This flag cannot be used with -c. 

-s Suppresses display of all but error messages. 

Examples 

1. To replace a command that already exists in one of the default directories: 

install fixit 

This replaces fi xi t if it is found in thin, /usr/hin, /etc, /lih, or /usr/lih. Otherwise, 
it is not installed. For example, if Ius rib in I fi xi t exists, then this file is replaced by 
a copy of the file fi xi t in the current directory. 

2. To replace a command that already exists in a specified or default directory, and to 
preserve the old version: 

install -0 fixit jete /usr/games 

This replaces fi xi t if found in /etc, /usr/games, or one of the default directories. 
Otherwise it is not installed. If fi xi t is replaced, the old version is preserved by 
renaming it OLDfi xi t in the directory in which it was found (-0). 

3. To replace a command that already exists in a specified directory: 

install -i fixit /u/jim/bin /u/joan/bin lusr/games 

This replaces fi xi t if found in lu/ j i m/bi n, lui j oan/bi n, or /usr/games. 
Otherwise it is not installed. 

Commands 525 



install 

4. To replace a command if found in a default directory, or install it in a specified 
directory if not found: 

install -n lusr/bin fixit 

This replaces fi xi t if found in one of the default directories. If fi xi t is not found, it 
is installed as lusr/bi n/fi xi t (-n /usr/bin). 

5. To install a new command: 

install -c /usr/bin fixit 

This creates a new command by installing a copy of fi xi t as lusr/bi n/fi xi t, but 
only if this file does not already exist. 

6. To install a command in a specified directory whether or not it already exists: 

nstall -f IU5r/bin -0 -5 fixit 

This forces fi xi t to be installed as lusr Ibi n/fi xi t whether or not it already exists. 
The old version, if any, is preserved by moving it to I us r Ibi n/OLDfi xi t (-0). The 
messages that tell where the new command was installed are suppressed (-s). 

Related Information 

The following command: "make" on page 625. 

The mk system maintenance procedure in AIX Operating System Technical Reference. 

526 



install-mh 

install-mh 

Purpose 

Initializes the MH environment. 

Syntax 

install-mh /\. I 

~-autor 
AJ2FL230 

Description 

Flag 

The install-mh command is used to set up mailbox directories. install-mh is not designed 
to be run directly by the user; it is designed to be called by other programs. The 
install-mh command is part of the MH (Message Handling) package. 

The install-mh command is issued automatically the first time you run any MH command. 
install-mh prompts you for the name of your mail directory. If the directory does not 
exist, install-mh asks you if it should be created. install-mh creates the file 
$HOME/.mh-profile and places the Path: profile entry in it. This entry identifies the 
location of your mailbox. 

-auto Creates the standard MH path without prompting. 

Profile Entry 

Path: Specifies your user -mh-directory. This entry is created by install-mho 

Commands 527 



install-mh 

Files 

$HOME/.mh-profile The MH user profile. 

Related Information 

The mh-profile file in A/X Operating System Technical Reference. 

"Overview of the Message Handling Package" in Managing the A/X Operating System. 

528 



installp 

installp 

Purpose 

Installs a licensed program. 

Syntax 

. -Cd IdeV/rfd0J-Cn $LOGNAME~ 
Installp 

-b 
-d device - -n name _q 

OL805021 

Description 

Warning: Before you install a program, restart your system and make 
sure that no other users are on the system and no other programs are 
runnIng. 

The installp command installs a program. You must be a member of the system group or 
operating with superuser authority to run this command. 

When auditing is on, an audit record of the type, installp is created. If your system is 
running in controlled access mode, this command should only be run under the watch 
command. 

Because more than one program may be on a set of diskettes, installp asks whether or not 
you want to install each program. If you do, installp checks to see if it is an older version 
than the one currently installed. If the version to be installed is older than the version on 
the system, installp informs you and asks if you want to continue. 

When installp is instructed to perform the installation of a program subset for code 
service clients on a system where the complete program is already installed, it checks to 
see if the program subset is compatible with the existing complete program. If the program 
subset and complete program are incompatible, installp warns you and then prompts you 
for a response. 

The installp command makes a backup copy of the program history file before installation 
begins. If installation is unsuccessful, it sets the Version, Release, and Level fields of the 
last record of the history file to 00.00.0000 and logs the exit value in the program history 
file. The history file remains on the system as /usr/lpp/pgm-name/lpp.hist, where 
pgm-name is the program name. 

Commands 529 



installp 

Flags 

530 

Pressing INTERRUPT (Alt-Pause) will not stop the installp command. To stop installp, 
press QUIT WITH DUMP (Ctrl-V). Use this only in extreme circumstances since the 
system state is unpredictable and one of the following can occur: 

• The write-verify feature may be left on for all minidisks 
• All terminals other than the console may be disabled 
• Some install control files may need to be deleted. 

Notes: 

1. Only ordinary files with the prefix lpp. remain in /usr/lpp/pgm-name after completion 
of installp. All other ordinary files are removed. 

2. Installing a complete program on a client where a program subset already exists causes 
the history file information for the program subset to be destroyed. 

-b Runs the bffcreate command to create an installation file in backup format 
from the distribution media. Then tells installp to use the file as the 
distribution media for the install. A server in a code service environment uses 
this flag to install. 

-d device Installs the program from the specified device. The default device is /dev /rfdO. 

-n name Logs the first eight nonblank characters of name in the program history file. 
The default name is the value of the environment variable $LOGNAME. 

-q Runs in quiet mode suppressing most of the interactive queries. 

The installp command runs a program-provided installation procedure instal. Each 
installation procedure returns one of the following exit values to installp: 

o Installation completed. Take no action. 
2 Update superblocks, i-nodes, and delayed block I/O (sync), then restart the AIX 

Operating System. 
3 Build the kernel, then update the superblocks, i-nodes, and delayed block I/O (sync) 

and shut down the AIX Operating System. 
4 Build the kernel, then update the superblocks, i-nodes, and delayed block I/O (sync) 

and restart the kernel. 
5 Installation cancelled without errors. 
6 Update superblocks, i-nodes, and delayed block I/O (sync), then shut down the AIX 

Operating System. 

Any other return value indicates that installation failed. 



installp 

Internal Commands 

Install procedures can use the internal install commands. These commands provide 
common code for the save and recovery functions frequently needed by most 
program-provided procedures. They do a minimum validation of input parameters and 
ret.urn exit values like subcommands. You can, however, receive messages from system 
commands that they call. C Language procedures that call these commands can use the 
/usr/include/inu21.h file to define return codes. 

inusave 
The inusave command saves some or all of the files and archive files that will change 
during a program install or update procedure. It uses the following syntax: 

inusave listfile pgm-name 

The pgm-name parameter specifies the program to be installed or updated. pgm-name can 
be a maximum of eight characters. listfile, which must be a full path name, contains a list 
of relative path names (relative to the root) for all of the files that need to be saved. listfile 
must be in the format of an apply list. (See AIX Operating System Programming Tools 
and Interfaces for a discussion of the format of an apply list.) 

The" inusave command creates the save directory (jusr/lpp/pgm-name/inst_updt.save). 
This is the directory in which the install and update procedures store saved files and the 
control list that correlates the local file names with their full path names. inusave uses 
listfile as a basis to determine which files need to be temporarily saved. 

If the file named in listfile already exists, inusave copies that file to 
/usr/lpp/pgm-name/inst_updt.save/update.n, where n is an integer assigned by inusave. 
If the file does not exist, inusave assumes that this entry in listfile represents either a new 
file or a file to be archived or processed by the archive procedure. inusave maintains a 
list of saved files in /usr/lpp/pgm-name/inst_updt.save/update.list. The format of each 
entry in the list is: 

update.n file 

where update.n is the name of the saved file and file is the full path name of the file. 

An archived constituent file is saved if there is a valid archive control file, 
/usr/lpp/pgm-name/lpp.acf, for the program. If this file exists, inusave compares each of 
the file names in listfile to the constituent file names in /usr/lpp/pgm-name/lpp.acf. When 
it finds a match, inusave uses the ar command to extract the constituent file from its 
associated archive file. 

Commands 531 



installp 

532 

It then moves it to /usr/lpp/pgm-name/inst_updt.save/archive.n, where n is an integer 
selected by inusave. inusave maintains a list of the extracted files that have been saved 
in the file /usr/lpp/pgm-name/inst_updt.save/archive.list. The format of each entry in 
the list is: 

archive.n cfile afile 

where archive.n is the name of the saved file and cfile and afile are the constituent and 
archive files defined in the archive control file. 

The inusave command returns the following exit values: 

o No error conditions occurred. 
105 Failure occurred trying to create a save directory. 
107 Copy of a file from one directory to another failed. This implies that the update 

apply has not yet begun and that the old level of the program is still usable. 
202 One or more parameters missing. 
204 Too many parameters were entered. 
207 Could not access the apply list. 

inurecv 
The inurecv command recovers all files and archive-constituent files saved from the 
previous inusave. inurecv uses the following syntax: 

illurecv pgm-name reject-flag 

It uses the control lists from the /usr/lpp/pgm-name/inst_updt.save directory to recover 
the files. inusave creates the /usr/lpp/pgm-name/inst_updt.save directory and control 
lists. inurecv also recovers files that may have been saved by the program-provided install 
or update procedure (see AIX Operating System Programming Tools and Interfaces for 
details). 

The inurecv command has to distinguish between an immediate recovery that occurs 
because of an error condition during an install or update and an update rejection that 
occurs because a user rejects an update (updatep -r). If the reject-flag argument is yes, 
inurecv assumes that it is being run because of an update rejection. If the argument is no 
or if no flag is specified, inurecv assumes that it is being run because of an immediate 
recovery. 

The inurecv command returns the following exit status values: 

o No error conditions occurred. 
101 The save directory does not exist. 
102 A copy of a file from one directory to another failed. This implies that the program 

could not be recovered and that it must be reinstalled and any updates reapplied. 
104 A file that was saved in the save directory was not found. 
205 Replacement of a constituent file in an archive file failed while attempting to 

recover a program. This implies that the program is no longer useable and should be 
reinstalled and any updates reapplied. 



installp 

inurest 
The inurest command does simple restores and archives. It does not do any additional 
processing or user interaction. inurest uses the following syntax: 

inurest -ddevice] [-q] listfile pgm-name 

The listfile is the full path name of a file containing the relative directory target path name 
(relative to the root), of files that a program needs to restore. It must be in the format of 
an apply list. inurest restores all files in the list relative to the root directory. pgm-name 
specifies the name of the program to be installed or updated. It can be a maximum of eight 
characters. 

To archive a file, there must be an archive control file, /usr/lpp/pgm-name/lpp.acf. If it 
exists, inurest compares each of the target names in listfile to the component files listed in 
there. Whenever inurest finds a match, it archives the restored file into the 
corresponding archive file and deletes the restored file. 

Flags 

The following flags modify the action of inurest: 

-d device Specifies the input device. The default device is /dev/rfdO. 

-q Prohibits restore from displaying the insert vol ume 1 prompt. 

The inurest command returns the following exit status values: 

o No error conditions occurred. 
106 Failed trying to restore an updated version of files. 
201 An invalid flag was specified. 
202 One or more parameters missing. 
204 Too many parameters were entered. 
206 Failed trying to replace file in an archive file. 
208 Could not access the apply list. 

ckprereq 
The ckprereq command determines whether the system level is compatible with the 
program to be installed or updated. It uses the following syntax: 

ckprereq [-v] [-f prerequisites] 

You can run ckprereq only if you are a member of the system group or are operating with 
superuser authority. prerequisites is a program prerequisite list file. Each record in this 
file contains the name of a prerequisite program and describes the version, release, and 
level requirements. There is one record for each prerequisite program. The default 
prerequisites file is prereq. See AIX Operating System Programming Tools and Interfaces 
for details on the format of ckprereq file entries. 

Commands 533 



installp 

534 

The ckprereq command tests the current version, release, and level found in the history 
file and marks each prereq state field of the prereq file with one of the following codes if 
the test fails: 

1 The test is false for level. 
f The history file format is not fixed 80. 
n The history file was not found. 
r The test is false for release. 
s There is a syntax error in the prereq file. 
u The history file is in an unknown state. 
v The test is false for version. 

A blank prereq state field indicates that the test was true. The exit value of ckprereq is 
the number of records that did not test true. If all records test true, the exit value is O. 

Note: If a program is installed on a local node and executed on a remote node, the remote 
node must have file trees that have all necessary prerequisite files available. When 
auditing is on, an audit record of the type, ckprereq is created. 

Flags 

-f prerequisites Specifies the prerequisites file to use in place of prereq. 

-v Sends a descriptive message to standard error for each failure in the 

mvmd 

prerequisite program test. The messages give the same information as the 
prereq state field of the prereq file. 

The mvmd command updates the VRM minidisk. It uses the following syntax: 

mvmd -a file -D VRM-dir [-fp [file]] -1 pgm-name 
mvmd -c VRM-file permissions -1 pgm-name 
mvmd -d VRM-file -1 pgm-name 
mvmd -m VRM-file [-fp [file]] -1 pgm-name 
mvmd -r file -D VRM-dir -1 pgm-name 

You must be a member of the system group or operating with superuser authority to run 
mvmd. When auditing is on, an audit record of the type, mvmd is created. 

Flags 

-a file Adds the specified file to the VRMminidisk. Use the -D flag to specify the 
destination VRM directory. file must not already exist in the specified 
directory. By default, mvmd adds the file to the first unused position in 
the VRM directory. To specify a position, use the -f or -p flag. 



-c VRM-file 

-d VRM-file 

-D VRM-dir 

-f [file] 

-lpgm-name 

-m VRM-file 

-p [file] 

-r file 

installp 

permissions 
Changes the permission code of the specified VRM-file to the octal value, 
permissions. The VRM-file parameter must be a full path name. Valid 
combinations of permission bits are as follows: 

0700 The loadlist processor loads, runs, and deletes this module. 
0450 The loadlist processor transfers control to this module after all 

loadlist directory entries have been processed. 
0440 The loadlist processor loads this module. 
0410 This module is a virtual machine. 
0040 If the system startup device is a diskette, the loadlist processor is 

to load the module. If the system startup device is a fixed disk, the 
loadlist processor does not load the module. Instead, it maps the 
module. 

The loadlist processor ignores any module that does not have the load bit 
set. For more information about these permission bits, see Virtual 
Resource Manager Technical Reference. 

Deletes the specified file from the VRM minidisk. The VRM-file parameter 
must be a full path name. 

Specifies the full path name of the VRM directory. 

Specifies the position following file in the directory list or, if you do not 
specify file, the bottom of the directory list. Use this positioning flag with 
the -a or -m flags. 

Specifies the name of a program that is modifying the VRM minidisk. The 
pgm-name, the date, the user name, and a descriptive title are place in a 
record appended to the VRM history file. If you do not specify this flag, 
then a record with the name UNKNOWN is appended to the VRM history file. 

Moves the specified file within its VRM directory. By default, mvmd 
moves the file to the first unused position. To specify a position, use the -f 
or -p flag. 

Specifies the position prior to file in the directory list or, if you do not 
specify file, the top of the directory list. Use this positioning flag with the 
-a or -m flags. 

Replaces the specified file on the VRM minidisk. Use the -D flag to select 
the VRM directory of the file to be replaced. Both the replacement file and 
the file to be replaced must have the same name. 

The mvmd command returns an exit status of 0 if no errors occurred. A nonzero return 
indicates that an error occurred. 

Commands 535 



installp 

Files 

/usr/include/inu21.h 
/usr/lpp/pgm-name/instal 
/usr/lpp/pgm-name/inst_updt.save 
/usr/lpp/pgm-name/inst_updt/inuPIDtempn 
/usr/lpp/pgm-name/liblpp.a 
/usr /1 pp/pgm-name/lpp. acf 
/usr/lpp/pgm-name/lpp.hist 
/usr/lpp/pgm-name/prereq 
/usr/lpp/pgm-name/inst-updt.save/archiven 

usr/lpp/pgm-name/inst-updt.save/archive.list 

Defines error codes for internal commands 
Program installation procedure 
Directory for saved files 
Temporary files 
Central archive file 
Archive control file 
Program history file 
Program prerequisite list file 
File containing saved, archived, 
constituent files 
List of the saved, extracted, archived files 

Related Information 

536 

The following commands: "updatep" on page 1122 and "bffcreate" on page 108. 

The discussion of code service in Managing the AIX Operating System. 

The fork and exec system calls and the Ipp.hist file in AIX Operating System Technical 
Reference. 

The discussion of installing programs in AIX Operating System Programming Tools and 
Interfaces. 



ipcrm 

ipcrm 

Purpose 

Removes message queue, semaphore set or shared memory identifiers. 

Syntax 

ipcrm -I msqid 

r 
-L msgkey 
-m shmid 
-q msgid 
-s semid 
-M shmkey 
-Q msgkey 
-S semkey 

OL805135 

Description 

Flags 

The ipcrm command removes one or more message queue, semaphore set, or shared 
memory identifiers. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

-lmsqid 

-Lmsgkey 

-m shmid 

Removes local information about the remote queue msqid without removing 
the remote queue. 

Removes local information about the remote queue msgkey without removing 
the remote queue. 

Removes the shared memory identifier shmid. The shared memory segment 
and data structure associated with shmid are also removed after the last 
detach. 

Commands 537 



ipcrm 

-M shmkey Removes the shared memory identifier, created with key shmkey. The shared 
memory segment and data structure associated with it are also removed after 
the last· detach. 

-q msqid Removes the message queue identifier msqid and the message queue and data 
structure associated with it. 

-Q msgkey Removes the message queue identifier, created with key msgkey, and the 
message queue and data structure associated with it. 

-s semid Removes the semaphore identifier semid and the set of semaphores and data 
structure associated with it. 

-8 semkey Removes the semaphore identifier, created with key semkey, and the set of 
semaphores and data structure associated with it. 

The details of the remove operations are described in msgetl, shmetl, and semetl in the 
A/X Operating System Technical Reference. The identifiers and keys can be found by using 
the ipes command. 

Related Information 

538 

The following command: "ipes" on page 539. 

The msgetl, msgget, msgrev, msgsnd, semetl, semget, semop, shmetl, shmget, and 
shmop system calls in A/X Operating System Technical Reference. 



ipcs 

ipcs 

Purpose 

Reports interprocess communication facility status. 

Syntax 

ipcs 
-c /dev/kmem \ ,-N /unix 

-c corefile ~ -N kernel_iJ 

-0 

-p 
-t 

OL805432 

Description 

The ipcs command writes to the standard output information about active interprocess 
communication facilities. If you do not specify any flags, ipcs writes information in a 
short form about currently active message queues, shared memory segments, semaphores, 
remote queues, and local queue headers. 

The column headings and the meaning of the columns in an ipcs listing follow. The letters 
in parentheses indicate the flags that cause the corresponding heading to appear. all 
means that the heading always appears. These flags only determine what information is 
provided for each facility. They do not determine which facilities will be listed. 

T (all) Type of facility: 

ID 

KEY 

q message queue 
Q message queue resides on a remote node 
m shared memory segment 
s semaphore. 

(all) The identifier for the facility entry. 

(all) The key used as a parameter to msgget, semget, or shemget to make 
the facility entry. 

Note: The key of a shared memory segment is changed to IPC-PRIVATE 
when the segment is removed until all processes attached to the segment 
detach it. 

Commands 539 



ipcs 

540 

MODE 

OWNER 

GROUP 

(all) The facility access modes and flags. The mode consists of 11 characters 
that are interpreted as follows: 

The first two characters can be: 

R if a process is waiting on a msgrcv 
S if a process is waiting on a msgsnd 
D if the associated shared memory segment has been removed. It disappears 

when the last process attached to the segment detaches it. 
C if the associated shared memory segment is to be cleared when the first 

attach is run 
if the corresponding special flag is not set. 

The next 9 characters are interpreted as three sets of 3 bits each. The first set 
refers to the owner's permissions; the next to permissions of others in the 
user-group of the facility entry; and the last to all others. Within each set, 
the first character indicates permission to read, the second character indicates 
permission to write or alter the facility entry, and the last character is 
currently unused. 

The permissions are indicated as follows: 

r if read permission is granted 
w if write permission is granted 
a if alter permission is granted 

if the indicated permission is not granted. 

(all) The login name of the owner of the facility entry. 

(all) The" name of the group that owns the facility entry. 

CREATOR (a,c) The login name of the creator of the facility entry. 

CGROUP (a,c) The group name of the group of the creator of the facility entry. 

Note: For the OWNER, GROUP, CREATOR, and CGROUP, the user and 
group IDs display instead of the login names. 

CBYTES (a,o) The number of bytes in messages currently outstanding on the 
associated message queue. 

QNUM (a,o) The number of messages currently outstanding on the associated 
message queue. 

QBYTES (a,b) The maximum number of bytes allowed in messages outstanding on the 
associated message queue. 

LSPID (a,p) The ID of the last process that sent a message to the associated queue. 
If the last message sent was from a process in a node other than the node 
which holds the queue, then LSPID is the PID of the kernel process which 
actually placed the message on the queue, not the PID of the sending process. 



ipcs 

LRPID (a,p) The ID of the last process that received a message from the associated 
queue. If the last message received was from a process in a node other than 
the node which holds the queue, then LRPID is the PID of the kernel process 
which actually received the message on the queue, not the PID of the 
receiving process. 

STIME (a,t) The time when the last message was sent to the associated queue. For 
remote queues, this is the server time. No attempt is made to compensate for 
time-zone differences between the local clock and the server clock. 

RTIME (a,t) The time when the last message was received from the associated queue. 
For remote queues, this is the server time. No attempt is made to compensate 
for any clock skew between the local clock and the server clock. 

CTIME (a,t) The time when the associated entry was created or changed. For remote 
queues, this is the server time. No attempt is made to compensate for any 
clock skew between the local clock and the server clock. 

NATTCH (a,o) The number of processes attached to the associated shared memory 
segment. 

SEGSZ (a,b) The size of the associated shared memory segment. 

CPID (a,p) The process ID of the creator of the shared memory entry. 

LPID (a,p) The process ID of the last process to attach or detach the shared 
memory segment. 

ATIME (a,t) The time when the last attach was completed to the associated shared 
memory segment. 

DTIME (a,t) The time the last detach was completed on the associated shared memory 
segment. 

NSEMS (a,b) The number of semaphores in the set associated with the semaphore 
entry. 

OTIME (a,t) The time the last semaphore operation was completed on the set 
associated with the semaphore entry. 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

Commands 541 



ipcs 

Flags 

Files 

542 

-a Uses the -b, -c, -0, -p and -t flags. 

-b Writes the maximum number of bytes in messages on queue for message 
queues, the size of segments for shared memory, and the number of 
semaphores in each semaphores set. 

-c Writes the login name and group name of the user that made the facility. 

-Ccorefile Uses the file corefile in place of /dev/kmem. corefile is a memory image 
file produced by the Ctrl-(left)Alt-End key sequence. 

-m Writes information about active shared memory segments. 

-Nkernel-image Uses the specified kernel-image (funix is the default). 

-0 Writes the following usage information: 

• Number of messages on queue 
• Total number of bytes in messages in queue for message queues 
• Number of processes attached to shared memory segments. 

-p Writes the following: 

-q 

-s 

-t 

/unix 
/dev/kmem 
/etc/passwd 
/etc/group 

• Process number of the last process to receive a message on message 
queues 

• Process number of the creating process 
• Process number of last process to attach or detach on shared memory 

segments. 

Writes information about active message queues. 

Writes information about active semaphore set. 

Writes the following: 

• Time of the last control operation that changed the access 
permissions for all facilities 

• Time of the last msgsnd and last msgrcv on message queues 
• Time of the last shmat and last shmdt on shared memory 
• Time of the last semop on semaphore sets. 

System kernel image 
Memory 
User names 
Group names 



ipcs 

Related Information 

The ipcs, msgrcv, msgsnd, semop, shmat, and shmdt system calls in AIX Operating 
System Technical Reference. 

The discussion of generating core files in Problem Determination Guide. 

Commands 543 



ipctable 

ipctable 

Purpose 

Creates, displays, or changes the Distributed Services IPC Queues Table. 

Syntax 

ipctable ---l 

OL805468 

Description 

f1he ipctable command lets you build, examine, or modify the Distributed Services IPC 
Queues Table. Only members of the system group or users operating with superuser 
authority can use ipctable to change the state of the Distributed Services IPC Queues 
Tables (see "su" on page 1026). Other user can use ipctable to browse the IPC Queues 
Table. 

Related Information 

544 

. 
"Getting Started With Distributed Services Configuration Menus" in Managing the AIX 
Operating System. 



istat 

istat 

Purpose 

Examines i-nodes. 

Syntax 

~ filename 

istat ~ ; .... " 
inumber -dJ 

Description 

OL805138 

The istat command writes information about the i-nodes specified with in umber to 
standard output. Use the istat command to write information about the i-node for a 
specified filename, or to write the contents of a specified i-node, inumber on an arbitrary 
file system. 

If you specify filename, istat writes the following information about the file: 

• The device where the file resides. 
• The i-node number of the file, on that device. 
• The file type (normal, directory, block device, and so on). 
• What protection is on the file. 
• The name and identification number of the owner and group. 

Note: The owner and group names for remote files are taken from the local 
/ etc/passwd file. 

• The number of links to the file. 
• If the i-node is for a normal file, the length of the file. 
• If i-node is for a device, the major and minor device designations. 
• The date of the last time the i-node was updated. 
• The date of the last time the file was modified. 
• The date of the last time the file was referenced. 

If you specify inumber and device, istat also displays, in long decimal values, the block 
numbers recorded in the i-node. You can specify the device as either a device name or as a 
mounted-file-system name. 

Note: in umber and device cannot specify a remote device. 

Commands 545 



istat 

Japanese Language Support Information 

This command has not been modified to support Japanese characters. 

Examples 

l. To display the information stored in a file i-node: 

istat /bin/sh 

This displays the i-node information for the file fbi n/ sh. The information looks 
something like this: 

Inode 34 on device 0/10 File 
Protection: rwxr-xr-x Sticky 
Owner: O(su) Group: O(system) 
Link count: 1 Length 54240 bytes 

Last updated: 
Last modified: 
Last accessed: 

Tue Dec 18 01:07:36 1984 
Sat Jun 30 18:11:47 1984 
Wed Feb 13 11:06:37 1985 

2. To display i-node information if given a file i-number: 

istat 34 /dev/hdO 

This displays the information contained in i-node number 34 on the / dev /hdO device. 
In addition to the information shown in Example 1, this displays: 

Block pointers: 
219 220 221 
227 228 229 

222 
o 

223 
o 

224 225 226 

These numbers are addresses of the disk blocks that contain the data in the file. 

Related Information 

546 

The following command: "fsdb" on page 450. 

The stat system call and the filesystems and fs files in AIX Operating System Technical 
Reference. 



join 

join 

Purpose 

Joins data fields of two files. 

Syntax 

join file1 - file2 ---I 

1 Do not put a blank on either side of the comma. 
OL805371 

Description 

The join command reads filel and file2, joins lines in the files according to the flags, and 
writes the results to standard output. Both files must be sorted according to the collating 
sequence specified by the NLCTAB environment variable, if set, for the fields on which 
they are to be joined (normally the first field in each line). 

One line appears in the output for each identical join field appearing in both filel and 
file2. The join field is the field in the input files that join looks at to determine what will 
be included in the output. The output line consists of the join field, the rest of the line 
from file 1 , then the rest of the line from file2. You can specify standard input in place of 
filel by substituting a - (minus) for the name. 

Both input files must be sorted in increasing ASCII collating sequence on the fields on 
which they are to be joined (the join field, normally the first field in each line). 

Fields are normally separated by a blank, a tab character, or a new-line character. In this 
case, join treats consecutive separators as one, and discards leading separators. 

Commands 547 



join 

Flags 

-anum 

-e string 

-j[n] num 

When num is 1, join produces an output line for each line found in filel 
but not in file2. When num is 2, join produces an output line for each 
line found in the file2 but not in filel. 

Replaces empty output fields with string. 

Joins the two files on the numth field of file n. n is 0 or 1. If you do not 
specify n, join uses the numth field in each file. 

-0 n.num[,n.num ... ] 

-tchar 

Makes each output line consist of the fields specified in list, in which 
each element has the form n.num, where n is a file number and num is a 
field number. 

Uses char as the field separator character in the input and the output. 
Every appearance of char in a line is significant. The default separator 
is a blank. With default field separation, the collating sequence is that 
of sort -b. If you specify -t, the sequence is that of a plain sort. To 
specify a tab character, enclose it in single quotation marks ("). 

Examples 

Note: The vertical alignment shown in these examples may not be consistent with your 
output. 

1. To perform a simple join operation on two files whose first fields are the same: 

join phonedir names 

If phonedi r contains the and names contains then join displays: 
following telephone these names and 
directory: 

Adams 
Di c kerson 
Erwin 
Jackson 
Lewis 
Norwood 
Smartt 
Wright 
Xandy 

548 

departments numbers: 

A. 555-6235 Erwin Dept. 389 Erwin G. 555-1234 Dept. 389 
B. 555-1842 Frost Dept. 217 Norwood M. 555-5341 Dept. 454 
G. 555-1234 Nicholson Dept. 311 Wright M. 555-1234 Dept. 520 
J. 555-0256 Norwood Dept. 454 Xandy G. 555-5015 Dept. 999 
B. 555-3237 Wright Dept. 520 
M. 555-5341 Xandy Dept. 999 
D. 555-1540 
M. 555-1234 
G. 555-5015 

Each line consists of the join field (the last name), followed by the rest of the line 
found in phonedi r and the rest of the line in names. 



2. To display unmatched lines with the command: 

join -a2 phonedir names 

join 

If phonedi r contains: and name s contains: then join displays: 

Adams A. 555-6235 Erwin Dept. 389 Erwin G. 555-1234 Dept. 389 
Dickerson B. 555-1842 Frost Dept. 217 Frost Dept. 217 
Erwin 
Jackson 
Lewis 
Norwood 
Smartt 
Wright 
Xandy 

G. 555-1234 Nicholson Dept. 311 Nicholson Dept. 311 
J. 555-0256 Norwood Dept. 454 Norwood M. 555-5341 Dept. 454 
B. 555-3237 Wright Dept. 520 Wright M. 555-1234 Dept. 520 
M. 555-5341 Xandy Dept. 999 Xandy G. 555-5015 Dept. 999 
D. 555-1540 
M. 555-1234 
G. 555-5015 

This performs the same join operation as in Example 1, and also lists the lines of 
names that have no match in phonedi r. Frost and Ni cho 1 son are included in the 
listing, since they do not have entries in phonedi r. 

3. To display selected fields: 

join -0 2.3 2.1 1.2 1.3 phonedir names 
This displays the following fields in the order given: 

Field 3 of names (Department Number) 
Field 1 of name s (Last Name) 
Field 2 of phonedi r (First Initial) 
Field 3 of phonedi r (Telephone Number) 

If phonedi r contains: and names contains: then join displays: 

Adams A. 555-6235 Erwin Dept. 389 389 Erwin G. 555-1234 
Dickerson B. 555-1842 Frost Dept. 217 454 Norwood M. 555-5341 
Erwin G. 555-1234 Nicholson Dept. 311 520 Wright M. 555-1234 
Jac kson J. 555-0256 Norwood Dept. 454 999 Xandy G. 555-5015 
Lewis B. 555-3237 Wright Dept. 520 
Norwood M. 555-5341 Xandy Dept. 999 
Smartt D. 555-1540 
Wright M. 555-1234 
Xandy G. 555-5015 

Commands 549 



join 

4. To perform the join operation on a field other than the first: 

sort +2 -3 phonedir I join -j1 3 - numbers 

This combines the lines in phoned; r and numbers, comparing the third field of 
phoned; r to the first field of numbers. 

First, this sorts phoned; r by the third field, because both files must be sorted by their 
join fields. The output of sort is then piped to join. The - (minus sign) by itself causes 
the join command to use this output as its first file. The -j 1 3 defines the third field 
of the sorted phoned; r as the join field. This is compared to the first field of numbers 
because its join field is not specified with a -j flag. 

If numbers then this command displays the names listed in phoned; r for 
contains: each telephone number: 

555-0256 555-0256 Jackson J. 
555-1234 555-1234 Erwin G. 
555-5555 555-1234 Wright M. 
555-7358 

Note that join lists all the matches for a given field. In this case, join lists both Erw; n 
G. and Wri ght M. as having the telephone number 555-1234. The number 
555-5555 is not listed because it does not appear in phonedi r. 

Related Information 

550 

The following commands: "awk" on page 81, "comm" on page 183, "sort" on page 958, 
"cut" on page 269, and "paste" on page 736. 

The environment miscellaneous facility in AIX Operating System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 



keyboard 

keyboard 

Purpose 

Controls the delay and repetition rates of the keyboard. 

Syntax 

keyboard 

OL805443 

Description 

Flags 

The keyboard command changes the keyboard delay and repetition rates. These rates are 
initially set at system startup to 500 milliseconds and 14 characters per second, 
respectively. 

-drate Sets the delay rate to the specified value. rate can be 300, 400, 500, or 600 
milliseconds. 

-rrate Sets the rate of repetition to the specified value. This rate can be an integer from 
2 to 40, inclusive. 

Example 

To change both the delay and repetition rates: 

keyboard -d300 -r40 
This sets the keyboard to a delay of 300 milliseconds and the repetition rate to 40 
characters per second. 

Commands 551 



kill 

kill 

Purpose 

Sends a signal to a running process. 

Syntax 

-(-15~ kill . process-ID 

- signal 
OL805139 

Description 

552 

The kill command sends a signal to a running process, by default signal 15 (SOFTWARE 
TERMINATE). This default action normally kills processes that do not catch or ignore 
the signal. You specify a process by giving its process-ID (process identification number, 
or PID). The shell reports the PID of each process that is running in the background 
(unless you start more than one process in a pipeline, in which case the shell reports the 
number of the last process). You can also use the ps command to find the process ID 
number of commands. 

In addition, there are special process-IDs that cause the following special actions: 

o 

-1 

The signal is sent to all processes having a process-group ID equal to the 
process-group ID of the sender (except those with PID's 0 and 1). 

If the effective user ID of the sender is not 0 (root), signal is sent to all 
processes with a process-group ID equal to the effective user ID of the sender. 
(except those with PID's 0 and 1). 

If the effective user ID of the sender is 0 (root), signal is sent to all processes, 
excluding numbers 0 and 1. 

-process-ID The signal is sent to all processes whose process-group number is equal to the 
absolute value of process-ID. Note that when you specify a minus PID, you 
must also specify the signal to be sent, even signal 15. 

See the kill system call in AIX Operating System Technical Reference for a complete 
discussion of kill. For a list of signal numbers, see the signal systems call in AIX 
Operating System Technical Reference. 

Unless you are operating with superuser authority, the process you wish to stop must 
belong to you. When operating with superuser authority, you can stop any process. 



Examples 

1. To stop a given process: 

kill 1095 

kill 

This stops process 1095 by sending it the default signal, 15 (also called SIGTERM). 
Note that process 1095 might not actually stop if it has made special arrangements to 
ignore or override signal 15. 

2. To stop several processes that ignore the default signal: 

ki 11 -9 1034 1095 

This sends signal 9 (SIGKILL) to processes 1034 and 1095. Signal 9 is a special 
signal that normally cannot be ignored or overridden. 

3. To stop all of your background processes: 

ki 11 0 

This sends signal 15 to all members of the shell process group. This includes all 
background processes started with &. (See page 914 about running background 
processes.) Although the signal is sent to the shell, it has no effect because the shell 
ignores signal 15. 

4. To stop all of your processes and log yourself off: 

kill -9 0 

This sends signal 9 to all members of the shell process group. Because the shell cannot 
ignore signal 9, this also stops the login shell and logs you off. If you are using 
multiple windows on a high-function terminal, then this closes the active window. 

5. To stop all processes that you own: 

ki 11 -9 -1 

This sends signal 9 to all processes owned by the effective user, even those started at 
other work stations and that belong to other process groups. If you are using multiple 
windows on a high-function terminal, then this closes all of the windows. If a listing 
that you requested is being printed, then it is also stopped. 

Note: To send signal 15 with this form of the kill command, you must specify -15 
explicitly: 

kill -15 -1 

Commands 553 



kill 

6. To send a different signal code to a process: 

kill -16 1103 

This sends signal 16 (SIGUSRl) to process 1103. 

The name of the kill command is misleading because many signals, including 16, do 
not stop processes. The action taken on signal 16 is defined by the particular 
application you are running. 

Related Information 

554 

The following commands: "csh" on page 225, "ps" on page 786, and "sh" on page 913. 

Note: The csh command contains a built-in subcommand named kill. The command and 
subcommand do not necessarily work the same way. For information on the subcommand, 
see the csh command. 

The "kill and signal system calls in AIX Operating System Technical Reference. 



killall 

killall 

Purpose 

Cancels all processes except the calling process. 

Syntax 

killell 
/uniX~ . 

kernel-image r 
OL805140 

Description 

Flags 

The killall command cancels all processes that you started, except those producing the 
killall process. This command provides a convenient means of canceling all processes 
created by the shell that you control. When started by a user operating with superuser 
authority, killall cancels all cancelable processes except those that started it. 

The kernel-image parameter specifies the name of the system load module (by default, 
/unix). 

Sends a SIGTERM signal initially and then sends a SIGKILL (kill) signal to all 
processes that survive for 30 seconds after receipt of the signal first sent. This 
gives processes that catch SIGTERM signal an opportunity to clean up. (For 
more information, see the signal system call in AIX Operating System Technical 
Reference.) 

-signal Sends the specified signal number. (For information about signal numbers, see 
the signal system call in AIX Operating System Technical Reference.) 

Examples 

1. To stop all background processes that have started: 

killall 

This sends all background processes the kill signal 9 (also called SIGKILL). 

Commands 555 



killall 

Files 

. } . , 
2. To stop all backgr~un:d pi-ocesses, giving them a chance to clean up: 

killall -

This sends signal 15 (SIGTERM), waits 30 seconds, and then sends signal 9 
(SIGKILL). . 

3. To send a specific signal to the background processes: 

killall -2 

This sends signal 2 (SIGINT) to the background processes. 

/unix 
/dev/mem 

System kernel image. 
Used for reading the process table. 

Related Information 

The following command: "kill" on page 552. 

The signal system call in A/X Operating System Technical Reference. 

556 

\ 



ld 

ld 

Purpose 

Links object files. 

Syntax 

Id 

-d -Anum -z str 
-j -e label -8 num 
-K -Hnum -Dnum 
-m -L dir -$ 
-n -R num 
-r -T num 
-s -u sym 
-x -vnum 

-y num 

-(-i-C}-num~ 
key: 

OL805362 

1 Do not put a blank between these items. 

OL805308 

Description 

The ld command (the linkage editor) combines the specified object files into one file, 
resolving external references and searching libraries. It produces an object module that 
can be run or that can become a file parameter in another call to ld. In the latter case, 
you must use the -r flag to preserve the relocation bits. ld places its output in a file named 
a.out. It makes this file executable if no errors occur during the link and if the -r flag is 
not specified. 

Commands 557 



ld 

Flags 

558 

The linkage editor links object files and searches object libraries in the order specified. It 
links object modules unconditionally, but links from the library only those files that define 
an unresolved external reference. If a routine from a library calls another routine in that 
library, the called routine must follow the calling routine. 

Unless you use the -e flag to specify another entry point, the first byte of the first nonnull 
text segment (or the first byte of the data segment if all text segments are null) becomes 
the entry point of the output file. 

The reserved symbols -text, -data, -sdata, -etext, -edata, and -end (in C, text, data, 
sdata, etext, edata, and end) are set to the first location of the program, the first location 
of the data, the segment number of the data, the first location above the program, the first 
location above initialized data, and the first location above all data, respectively. You 
cannot define these symbols. 

Because you can use Id to link modules intended to run on other machines, some of its 
action depends upon the architecture of the computer system on which you intend to run 
the module. Id recognizes that architecture automatically from the input modules and 
modifies its action accordingly. You can use some of its flags to alter the default behavior 
of Id for a particular architecture. 

The Id command recognizes several flags. Except for -I entries, which are really 
abbreviations for file names, the order in which you specify flags does not affect the way 
they work. You can specify numeric values in either decimal, octal (with a leading 0), or 
hexadecimal (with a leading Ox or OX) format. 

-Anum Stores num in the a-mise field of the output file header. This field indicates the 
size of memory, in bytes, allocated to the process which runs the file. On many 
systems, the stand-alone loader or kernel uses this value to set the base of the 
run-time stack pointer. 

-Bnum Makes num the starting address for the uninitialized data (bss) segment of the 
output file. The default starting address is the first storage unit after the end' of 
the data segment. Not all architectures support the separation of data and bss 
segments. 

-d Defines common storage, even if you have specified the -r flag. 

-Dnum Makes num the starting address for the initialized data segment of the output 
file. The default starting address begins at location 0 (if -i is in effect), at the 
first storage unit after the end of the text segment, or, if -n is in effect, at the 
next page or segment boundary. 

-elabel Makes label the entry point of the executable output file. 

-Hnum Makes num the boundary, usually the page size, to which the text segment must 
be padded if it has a different protection than does the data segment. Specify 
this parameter only to override the default value for the given architecture. 



ld 

-i Assigns text and data segments to separate address spaces in memory, with the 
text segment read-only-if the architecture supports read-only memory-and 
shared among all users. The data segment starts at location zero unless set with 
-D. If the architecture does not support separate instruction and data space, 
this flag is treated as if it were -no 

-j[key:]num 
Assigns the shared library image key to location num. If you do not specify key, 
do not use location num when you assign the run-time location of the shared 
library text images. The exact interpretation of num depends on the target 
architecture. On the RT work station, num refers to the segment register, one of 
4 through 13. You can specify -j once for each shared library image that has an 
assigned location. 

-kkey:path 
Maps any reference to the shared library image with the shared library key into 
path. Instead of adding the shared library key to the run-time table, add path. 
You can specify -k once for each shared library image with a remapped key. 

-K Loads the a.out header into the first bytes of the text segment, followed by the 
text segments from the object modules. This flag causes pages of executable files 
to be aligned on pages in the file system so that they can be paged upon demand 
on systems that support paging. This flag provides mapped file support for the 
text and data segments. 

-Ikey Searches the specified library file, where key selects the file libkey.a. Id searches 
for this file in the directory specified by an -L flag, then in /lib and /usr/lib. It 
searches library files in the order that you list them on the command line. 

-Ldir Looks in dir for files specified by -I keys. If it does not find the file in dir, ld 
searches the standard directories. 

-m Lists on standard output the names of all files and archive members used to 
create the output file. 

-n Makes the text segment read-only-if the architecture supports read-only 
memory-and shared among all users running the file. The data segment starts 
at the first segment boundary following the end of the text unless set with -D. 
On architectures which only permit read-only text with separate text and data 
spaces, the -n flag is treated as if it were the -i flag. 

-0 name Assigns name rather than a.out to the output file. 

-r Writes relocation bits in the output file so that it can serve as a file parameter 
in another Id call. This flag also prevents common symbols from being assigned 
final definitions and suppresses the undefi ned symbo 1 diagnostic messages. 

-Rnum Makes num bytes the allocation unit for objects manipulated by Id, such as 
segments or common objects. Typically this value ranges from 1 to 8. Specify 
this parameter only to override the default value for the given architecture. 

Commands 559 



ld 

-s Strips the symbol table, line number information, and relocation information 
from the output. This saves space but impairs the usefulness of the debugger. 
U sing the strip command has the same effect. This flag is turned off if there are 
any undefined symbols. 

-S num Makes num the maximum size the user stack is allowed to grow. This value 
represents the number of bytes allowed. If you do not specify this argument, the 
system assumes a default limit of 1 MB. 

-Tnum Makes num the starting address for the text segment of the output file. If not 
specified, the text segment begins at location zero. 

-u sym Enters sym into the symbol table as an undefined symbol. This is useful when 
linking from only a library, since initially the symbol table is empty and an 
unresolved reference is needed to force the linking of the first routine. 

-Vnum Stores num in the a-version field of the output file header; num must be in the 
range 0 to 32767. 

-x Does not enter local symbols in the output symbol table; enters only external 
symbols. This flag saves some space in the output file. 

-Ynum In a segmented system, makes num the boundary to which the text segment 
should be padded if it has a protection different from that of the data segment. If 
num is zero, the padding is either that selected by the -H flag or the default 
value associated with that flag. Specify this parameter only to override the 
default value for the given architecture. 

-Zstr Prefixes with str the names specified by the -I key. For example, with -Z/test 
and -Ixyz, Id looks for the file /test/lib/llbxyz.a or, if that file does not exist, 
/test/usr/lib/libxyz.a. The ordinary directories will not be searched. This flag 
is most useful when cross-compiling. 

Examples 

560 

1. To link several object files and produce an a.out file to run under the AIX Operating 
System without the Floating-Point Accelerator: 

ld -n -tOxlOOOOOOO -K /lib/crtO.o pgm.o subsl.o subs2.o -lrts -lc 
A simpler way to accomplish this is to use the cc command to link the files as follows: 

cc pgm.o subsl.o subs2.o 
Since the cc command automatically uses the link options and necessary support 
libraries, you do not need to specify them on the command line (it gets this information 
from the configuration file cc.cfg). For this reason, you should use cc to link files 
when you are producing programs that run under the AIX Operating System. 



Files 

2. To specify the name of the output file: 

cc -0 pgm pgm.o subsl.o subs2.o 

This stores the linked output in the file p gm. 

3. To conditionally link library subroutines: 

cc pgm.o subsl.o subs2.o mylib.a -ltools 

ld 

This links the object modules pgm.o, subsl.o, and subs2.o unconditionally. It then 
links the subroutines from my 1 i b . a that are used by the preceding modules. (This is 
often called conditional linking.) Then Id conditionally links subroutines from the 
library specified by - 1 too 1 s. (This means /1 i b/ 1 i btoo 1 s. a, if it exists. If ld does 
not find this file, then it looks for /usr/l i b/l i btool s. a.) 

Note: Always list libraries and -1 flags at the end of the ld or cc command lines. 

/lib/lib* .a 
/usr/lib/lib*.a 
a.out 

Libraries. 
Libraries. 
Output file. 

Related Information 

The following commands: "ar" on page 55, "as" on page 61, "cc" on page 140, and 
"shlib" on page 939. 

The a.out file in AIX Operating System Technical Reference. 

The discussion of ld in AIX Operating System Programming Tools and Interfaces and in 
Assembler Language Reference. 

Commands 561 



lex 

lex 

Purpose 

Generates a C Language program that matches patterns for simple lexical analysis of an 
input stream. 

Syntax 

lex 

OL805025 

Description 

562 

The lex commfl,nd reads file or standard input, generates a C Language program, and 
writes it to a file:named lex.yy.c. This file, lex.yy.c, is a compilable C Language program. 

The lex command uses rules and actions contained in file to generate a program, lex.yy.c, 
which can be compiled with the cc command. It can then receive input, break the input 
into the logical pieces defined by the rules in file, and run program fragments contained in 
the actions in file. For a more detailed discussion of lex and its operation, see AIX 
Operating System Programming Tools and Interfaces. 

The generated program is a C Language function called yylex. lex stores yylex in a file 
named lex.yy.c. You can use yylex alone to recognize simple, one-word input, or you can 
use it with other C Language programs to perform more difficult input analysis functions. 
For example, you can use lex to generate a program that simplifies an input stream before 
sending it to a parser program generated by the yacc command. 

The function yylex .analyzes the input stream using a program structure called a finite 
state machine. This structure allows the program to exist in only one state (or condition) 
at a time. There is a finite number of states allowed. The rules in file determine how the 
program move,s from one state to another. 

If you do not specify a file, lex reads standard input. It treats multiple files as a single file. 

Note: Since lex uses fixed names for intermediate and output files, you can have only one 
lex-generated program in a given directory. 



lex 

Input File Format (file) 

The input file can contain three sections: definitions, rules, and user subroutines. Each 
section must be separated from the others by a line containing only the delimiter, % %. 
The format is: 

definitions 
%% 
rules 
%% 
user subroutines 

The purpose and format of each are described in the following sections. 

Definitions 

If you want to use variables in your rules, you must define them in this section. The 
variables make up the left column, and their definitions make up the right column. For 
example, if you want to define D as a numerical digit, you would write; 

D [0-9J 

You can use a defined variable in the rules section by enclosing the variable name in 
braces ({D}). 

In the definitions section, you can set table sizes for the resulting finite state machine. 
The default sizes are large enough for small programs. You may want to set larger sizes 
for more complex programs. 

%p n Number of positions is n (default 2000) 

%n n Number of states is n (default 500) 

%t n 

%a n 

Number of parse tree nodes is n (default 1000) 

Number of transitions is n (default 3000) 

If extended characters appear in regular expression strings, you may need to reset the 
output array size with the %0 parameter (possibly to array sizes in the range 10,000 to 
20,000). This reset reflects the much larger number of characters relative to the number of 
ASCII characters. 

Commands 563 



lex 

564 

Rules 

Once you have defined your terms, you can write the rules section. It contains strings and 
expressions to be matched in file to yylex, and C commands to execute when a match is 
made. This section is required, and it must be preceded by the delimiter % %, whether or 
not you have a definitions section. The lex command does not recognize your rules 
without this delimiter. 

In this section, the left column contains the pattern to be recognized in an input file to 
yylex. The right column contains the C program fragment executed when that pattern is 
recognized. 

Patterns can include extended characters with one exception: these characters cannot 
appear in range specifications within character class expressions surrounded by square 
brackets. The columns are separated by a tab. For example, if you want to search files for 
the keyword KEY, you might write: 

(KEY) 
printf(llfound KEYIl); 

Japanese Language Support Information 

Patterns can include SJIS characters, with the same exception as previously noted: the 
SJIS characters cannot appear in range specifications within character class expressions 
enclosed in square brackets. 

If you include this rule in file, the lexical analyzer yylex matches the pattern KEY and runs 
the printf command. 

Each pattern can have a corresponding action, that is, a C command to execute when the 
pattern is matched. Each statement must end with a semicolon. If you use more than one 
statement in an action, you must enclose all of them in braces. A second delimiter, % %, 
must follow the rules section if you have a user subroutine section. 

When yylex matches a string in the input stream, it copies the matched file to an external 
character array, yytext, before it executes any commands in the rules section. 

You can use the following operators to form patterns that you want to match: 

x 

[ ] 

"" 

Matches the character written. x matches the literal character x. 

Matches anyone character in the enclosed range ([.-.]) or the enclosed list ([ ... ]). 
[a,b,c,x-z] matches a,b,c,x,y,or z. 

Matches the enclosed character or string even if it is an operator. "$" prevents 
lex from interpreting the character $ as an operator. 



\ 

* 

+ 
? 

[A] 

$ 

/ 

( ) 

{} 

{m,n} 

lex 

Acts the same as " ". \$ also prevents the shell from interpreting the character 
$ as an operator. 

Matches zero or more occurrences of the character immediately preceding it. 
x* matches zero or more repeated. 

Matches one or more occurrences of the character immediately preceding it. 

Matches either zero' or one occurrences of the character immediately preceding 
it. 

Matches the character only at the beginning of a line. A X matches an x at the 
beginning of a line. 

Matches any character except the one following the A. [A X] matches any 
character except x. 

Japanese Language Support Information 

The character following the A cannot be a 2-byte character. 

Matches any character except the new-line character. 

Matches the end of a line. 

Matches either of two characters. X I Y matches either x or y. 

Matches one character only when followed by a second character. It reads only 
the first character into yytext. x/y matches x when it is followed by y, and 
reads x into yytext. 

Matches the pattern in the parentheses. This is used for grouping. It reads the 
whole pattern into yytext. A group in parentheses can be used in place of any 
single character in any other pattern. (xyz123) matches the pattern xyz123 
and reads the whole string into yytext. 

Matches the character as you defined it in the definitions section. If you defined 
D to be numerical digits, {D} matches all numerical digits. 

Matches m to n occurrences of the character. x{2,4} matches 2, 3, or 4 
occurrences of x. 

If a line begins with only a blank, lex copies it to the output file, lex.yy.c. If the line is in 
the declarations section of file, lex copies it to the declarations section of lex.yy.c. If the 
line is in the rules section, lex copies it to the program code section of lex.yy.c. 

Commands 565 



lex 

Flags 

Files 

User Subroutines 

The lex library has three subroutines defined as macros, which you can use in the rules. 

input( ) Reads a character from yyin. 

unput( ) 

output( ) 

Replaces a character after it has been read. 

Writes an output character to yyout. 

You can override these three macros by writing your own code for these routines in the 
user subroutines section. But if you write your own, you must undefine these macros in 
the definition section as follows: 

%{ 
#undef input 
#undef unput 
#undef output 
}% 
There is no main( ) in lex.yy.c because the lex library contains the main( ) that calls 
yylex. Therefore, if you do not include main( ) in the user subroutines section, when you 
compile lex.yy.c, you must enter cc -11 lex.yy.c, where 11 will call the lex library. 

External names generated by lex all begin with the preface yy, as in yyin, yyout, yylex, 
and yytext. 

-n Suppresses the statistics summary. When you set your own table sizes for the finite 
state machine (see page 563), the lex automatically produces this summary if you do 
not select this flag. 

-t Writes lex.yy.c to standard output instead of to a file. 

-v Provides a one-line summary of the generated finite-state-machine statistics. 

/usr/lib/libl.a Run-time library. 

Related Information 

566 

The following command: "yacc" on page 1237. 

The description of lex in AIX Operating System Programming Tools and Interfaces. 

"Overview of International Character Support" in Managing the AIX Operating System. 

The discussion of Japanese Language Support in Japanese Language Support User's Guide. 



Ii 

Purpose 

Lists the contents of a directory. 

Syntax 

~
-oa1 bcdfpx 

Ii 

-0 a f 
b p 
c x 
d 

r-__________ -R1 __________ ~ 

-R~ one of 
-R num ~ q 

-f -v -num 
-k 

di 

1 Do not put a blank between these items. 

a m 
b n 
c 0 

f p 
9 r 
h s 

u 

Ii 

OL805372 

OL805346 

OL805308 

Commands 567 



Ii 

Description 

568 

The Ii command lists the contents of each named directory or archive file on standard 
output. For each nonarchive file named, Ii displays the file name and any information 
requested. If you do not specify a file or directory, Ii lists the current directory. 

By default, Ii sorts the output alphabetically and lists it in multiple columns. The 
collating sequence is determined by the NLCTAB environment variable (see "ctab" on 
page 257). It displays control characters in file names in expanded form (for example, AD, 
\177). When you specify more than one file or directory, Ii sorts them appropriately, but 
files appear before directories and their contents. When the date and time appear, the 
NLLDATE and NLTIME environment variables control their format. The NLSMONTH 
environment variable controls the short names for months. 

The di command is equivalent to 1 i-I a 1 mops. 

Permissions Field 
The permissions field displayed with the -Ip flag contains 11 characters. The first 
character is: 

d The entry is a directory. 
b The entry is a block-type special file. 
c The entry is a character-type special file. 
1 The entry is a symbolic link. 
p The entry is a pipe (FIFO). 

The entry is an ordinary file. 
D The entry is a remote directory. 
F The entry is a remote ordinary file. 
B The entry is a remote block special file. 
C The entry is a remote character special file. 
L The entry is a remote symbolic link. 
P The entry is a remote first-in first-out (FIFO) special file. 

The next nine characters are interpreted as three sets of 3 bits each. The first set refers to 
owner permissions, the next to permissions for others in the same group, and the last to all 
others. Each of the three characters within each set indicate, respectively, permission to 
read, write, or execute the file. For a directory, execute permission is interpreted as 
permission to search the directory for a specified file. These permissions are indicated as 
follows: 

r If the file is readable. 
w If the file is writable. 
x If the file is executable. 

If the corresponding permission is not granted. 



Flags 

The group-execute permission is given as s if the file has set-groupoID mode. The 
user-execute permission character is given as s if the file has set-user-ID mode. (For a 
discussion of these modes, see "chmod" on page 160.) 

Ii 

The last character of the field is normally blank, but is displayed as t if the 1000 bit of the 
mode is on. (See the chmod system call in A/X Operating System Technical Reference for 
the current meaning of this mode.) 

Note: Some combinations of flags do not work well together. For example, 1 i -vRa 
looks unusual, and 1 i -RSx and 1 i -Sx * are both nearly unintelligible if there are 
subdirectories contained in the current directory, due to confusion about what level is 
being listed. 

Flags are grouped into five classes, four of which are always introduced by an uppercase 
letter: fields (lor E), restrictions (0), recursion (R), sort orders (8), and miscellaneous. 
The following flags modify the action of Ii: 

-I [hiplogcsmaunrfb] 
-E [hiplogcsmaunrfb] 

Requests the inclusion (-I) or exclusion (-E) of certain fields. These fields are 
selected by the flags in the subset hiplogcsmaunrfb. -I includes and -E excludes 
the selected fields in the order in which they appear in the argument list. For 
example, - 1 - Ep excludes the protections field, while - Ep - 1 includes it, since 
-1 (the equivalent of -Icg1mop) follows -Ep. 

The only field included by default is the name (n) field. If you include any other 
fields, Ii lists the output in single-column rather than multiple-column format. Ii 
lists the following fields in the following order: . 

h Headers 
I-number 

p Protections 
I Link count 
o Local owner (name or UID) 
g Local group (name or GID) 
c Character count 
s Size in blocks 
m Modified time 
a Accessed time 
u Updated (i-node modified) time 
n Name 
r Node where the entry resides 
f Raw UID of the entry's owner 
b Raw GID of the entry's group. 

Commands 569 



Ii 

570 

If the file is a special file, the size (8) field contains the major-and minor-device 
numbers. If you select the c (character count) or 8 (size in blocks) flags, Ii writes a 
total number of blocks for each directory and a gr'and total when appropriate. 

For remote files and directories, the local owner and local group are obtained by 
using inverse IDs. If there is no inverse ID or if Ii cannot determine the inverse ID, 
a - (minus sign) displays in the corresponding field. If possible, remote nodes are 
identified with nicknames. Otherwise, they are identified by their NID displayed in 
hexadecimal. (See "Distributed Services Concepts" in Managing the A/X Operating 
System.) 

For local files and directories that do not have a nickname defined for the local 
node ID, the node ID field displays as a - (minus sign), and the raw UID (GID) field 
contains the local owner UID (group GID). 

-L Follows a symbolic link and reports on the file at the end of the link. 

-0 [abcdfpx] 
Requests that the listing be restricted to files of certain types. These types are 
selected from the subset abcdfpx. The possible types are: 

a Archives 
b Block devices 
c Character devices 
d Directories 
f Files (normal, not special) 
p Pi pes (FIFOs) 
x Executable files (any file with execute permission) 

-R[num]apq 
Lists recursively to num levels deep. The default depth is infinite. This normally 
displays a single column, with a two-column indentation for each level of the 
directory structure. When Ii reaches a directory with no subdirectories, it lists the 
contents of that directory in multiple-column form. Specifying either -Ra or -Rp 
suppresses the indentation and multiple-column display. These flags display either 
the full (-Ra) or relative (-Rp) path names of each file found. The -Rq flag also 
lists the contents of archive files. When using the -Rq flag to list the contents of 
remote archive files, the user and group fields display as a - (minus sign) unless 
the -k flag is specified. With the -k flag, the user and group fields for archive 
entries display as raw as found in the archive. (See the archive file format in A/X 
Operating System Technical Reference.) 

-s [acmnrsux] 
Describes the order in which the listing is to be displayed. The default order is by 
name (n). The -Sx flag specifies no sorting. Choosing a flag from the subset 
acmnsu selects which field the listing will be sorted by: 

a Accessed time, latest first 
c Character count, largest first 



m Modified time, latest first 
n Name 
s Size (same as character count) 
u Updated time, latest first 

If you include the r flag with any of these, Ii reverses the order of the sort. 

The miscellaneous flags are: 

-a Lists all entries, including those beginning with. (dot). 

-d Lists only the name, not the contents, of directories. 

-f Forces Ii to interpret each file as a directory and to list the name found in each 

Ii 

slot. All flags requiring information not found in directory entries are turned off 
and the -a flag is turned on. Names are listed in the order that they appear in the 
directory. 

-k Provides a listing that is equivalent to 1 i - Ibcfmpr. That is, it lists the 
permission code, node ID, remote UID, remote GID, time of last modification, 
character count, and file name for remote entries. 

-1 Uses a listing that is equivalent to 1 i-I cg 1 mop (the long form listing). That is, it 
lists the permission code, link count, owner, group, character count, time of last 
modification, time of last access, and name of each file. 

Note: A symbolically linked file is followed by an ~ and then the contents 
of the symbolic link. 

-n Inhibits the interpretation of control characters in file names. This flag is useful 
for generating lists of file names for program input or for editing into per-file 
commands. 

-s Provides a listing similar to that of the -v flag, except that the distinguishing 
marks for file types do not affect sorting (a sortable verbose list). Subdirectories 
appear in the listing as name/, files with execute permission as name*~ special files 
as name?, and symbolic links as name@. 

-v Lists files in a way that visually differentiates file types (a verbose visual listing). 
With this flag, Ii lists subdirectories as [name], files with execute permission as 
< name>, special files as *name*, and symbolic links as @name@. This 
differentiation occurs before the -8 sort. Thus, different types of files are sorted 
into different parts of the listing. 

-x Displays every available field except headers (an extended form listing). This is 
equivalent to specifying 1 i-I abcfgl i moprsu. 

-num Lists with a maximum of num columns. If num is unreasonable, Ii picks its own 
num. This flag can be used as in 1 i -1 to make shell files or 1 i-I 09 to force Ii to 
display its output in multiple columns. A number appearing in any flag argument 
is assumed to be the number of columns unless it follows the -R flag. 

Commands 571 



Ii 

Examples 

572 

1. To list the files in the current directory in alphabetical order: 

1 i 

2. To list all files in the current directory, including those with names beginning with a 
. (dot): 

1i -a 

3. To display detailed information: 

1i -1 chapl .profile 

This displays a long listing with detailed information about chapl and .profile. It 
lists all the information that you probably need to see. However, Ii can supply even 
more information with the -x flag. 

4. To display detailed information about a directory: 

l-j -d -1 . manual manual/chapl 

This displays a long listing for the directories. and manua 1, and for the file 
ma n u a 1 / chap 1. -d flag, this would list the files in . and manu a 1 instead of the 
detailed information about the directories themselves. 

5. To list the files in order of modification time: 

1i -Sm -1 

This displays a long listing of the files that were modified most recently, followed by 
the older files. 

6. To include extra information in the listing: 

li -Ichil 

In addition to the file name, this lists the character count (-Ie), i-number (-Ii), and link 
count (-11) for each file in the current directory. The -Ih tells Ii to write a heading at 
the top of each column of information. 

7. To list the contents of each directory in a tree: 

1 i -R manual 

This lists the names in each subdirectory of the tree that starts with manua 1. 



Files 

/etc/passwd 
/etc/group 

Contains user names for 1 i-I o. 
Contains group names for 1 i-I g. 

Related Information 

The following commands: "ctab" on page 257 and "Is" on page 595. 

The chmod system call and the environment miscellaneous facility in AIX Operating 
System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 

"Distributed Services Concepts" in Managing the AIX Operating System. 

Ii 

Commands 573 



line 

line 

Purpose 

Reads one line from the standard input. 

Syntax 

line --I 
OL805142 

Description 

The line command copies one line from standard input and writes it to standard output. It 
returns an exit value of 1 on an end-of-file and always writes at least a new-line character. 
Use this command within a shell command file to read from your work station. 

Example 

To read a line from the keyboard and append it to a file: 

echo 'Enter comments for the log: I 

echo I: \c' 
line »log 

This shell procedure displays the message: 

Enter comments for the log: 

then reads a line of text from the work station keyboard and adds it to the end of 1 og. The 
echo ': \c' command displays a colon prompt. See "echo" on page 369 for information 
about the \c escape sequence. 

Related Information 

The following command: "sh" on page 913. 

The read system call in A/X Operating System Technical Reference. 

574 

( 

\ 



link 

link, unlink 

Purpose 

Performs a link or unlink system call. 

Syntax 

link - file1 - file2 ---j 

OL805143 

unlink - file ---j 

OL805227 

Description 

The link and unlink commands perform the corresponding system calls of the same name 
on the specified file, abandoning all error checking. These commands can be run only by a 
user operating with superuser authority (see "su" on page 1026). You should be familiar 
with the link and unlink system calls described in A/X Operating System Technical 
Reference. 

The link and unlink commands do not issue error messages when the associated system 
call fails; you must check the exit value to determine if the command completed normally. 
Each returns a 0 if it succeeds, a 1 if you specify too few or too many parameters, and a 2 if 
its system call fails. 

Warning: The link and unlink commands allow the superuser to deal 
with unusual problems, such as moving an entire directory to a different 
part of the directory tree. They also permit you to create directories that 
cannot be reached or escaped from. Be careful to preserve directory 
structure. 

Commands 575 



link 

To preserve directory structure observe the following rules: 

• Be certain every directory has a . (dot) link to itself. 
• Be certain every directory has a .. (dot dot) link to its parent directory. 
• Be certain every directory has no more than one link to it. 
• Be certain every directory is accessible from the root of its file system. 

Note: If the. (dot) entry has been destroyed and fsck is unable to repair it (a rare 
occurrence), you can use the link command to restore the. (dot) entry of the damaged 
directory with the command: link dir dir/. where dir is the name of the damaged 
directory. However, use this only as a last resort when the directory is destroyed and fsck 
is unable to fix it. 

Related Information 

The following commands: "In" on page 581 and "fsck, dfsck" on page 445. 

The link and unlink system calls in AIX Operating System Technical Reference. 

576 



lint 

lint 

Purpose 

Checks C programs for potential problems. 

Syntax 

lint 
-0 -Ikey 
-b -n -v 
-h -p -x 
-Nnnum 

OL805433 

Description 

The lint program checks C language source code for coding and syntax errors and for 
inefficient or nonportable code. You can use this program to: 

• Identify source code and library incompatibility 
• Enforce type checking rules more strictly than does the compiler 
• Identify potential problems with variables 
• Identify potential problems with functions 
• Identify problems with flow control 
• Identify legal constructions that may produce errors or be inefficient 
• Identify possibly nonportable code. 

The lint command assumes that file names ending in .c are C Language source files. It 
assumes that those ending in .In are the result of an earlier running of lint with either the 
-c or the -0 flag used. These.In files are analogous to the .0 (object) files produced by the 
cc command when given a .c file as input. lint warns you about files with other suffixes 
and ignores them. 

The lint command takes all the .c and .In files and the libraries specified by -I flags and 
processes them in the order that they appear on the command line. By default, it adds the 
standard lint library (llib-Ic.In) to the end of the list of files. However, when you select 
the -p flag, lint uses the portable library llib-port.In. By default, the second pass of lint 
checks this list of files for mutual compatibility; however, if you specify the -c flag, lint 
ignores the .In and lib-Ix files. 

Commands 577 



lint 

Flags 

578 

The -c and -0 flags allow for incremental use of lint on a set of C Language source files. 
Generally, you use lint once for each source file with the -c flag. Each of these runs 
produces a .In file that corresponds to the .c file and writes all messages that are about 
just that source file. After you have run all source files separately through lint, you run it 
once more, without the -c flag, listing all the .In files with the needed -1 arguments. This 
writes all interfile inconsistencies. This procedure works well with the make command, 
allowing it to run lint on only those source files that have been modified since the last 
time that set of source files was checked. 

The following comments in a C source program change the way that lint operates when 
checking the source program: 

/*NOTREACHED*/ Suppresses comments about unreachable code. 

/*VARARGSn*/ Suppresses checking the following function declaration for varying 
numbers of arguments but does check the data type of the first n 
arguments. If you do not include a value for n, lint checks no 
arguments (n = 0). 

/* ARGSUSED* / Turns on the -v flag for the next function. 

j*LINTLIBRARY* / If you place this comment at the beginning of a file, lint does not 
identify unused functions in the file. 

The lint command first writes messages about each source file as it processes the file. It 
collects messages about included files and writes those after it has gone through all the 
source files. Finally, if you have not specified the -c flag, it collects information gathered 
from all input files and checks it for consistency. At this point, if it is not clear whether a 
message stems from a given source file or from one of its included files, lint displays the 
source file name followed by a question mark. 

-a 

-b 

-h 

-c 

-lkey 

Suppresses messages about assignments of long values to variables that 
are not long. 

Suppresses messages about unreachable break statements. 

Does not try to detect bugs, improve sty Ie, or reduce waste. 

Causes lint to produce a .In file for every .c file on the command line. 
These .In files are the product of the first pass of lint only and are not 
checked for interfunction compatibility. 

Includes the additional lint library llib-lkey.In. You can include a lint 
version of the math library llib-lm.In by specifying -1m on the command 
line or llib-ldos.In by specifying -ldos on the command line. Use this 
flag to include local lint libraries when checking files that are part of a 
project having a large number of files. This flag does not prevent lint 
from using the llib-lc.In library. 



-n 

-Nnnum 

-0 lib 

-p 

-u 

-v 

-x 

lint 

Does not check for compatibility with either the standard or the portable 
lint libraries. 

Increases the size of the symbol table. The default size is 1500. 

Causes lint to create a lint library with the name llib-llib.ln. The -e flag 
nullifies any use of the -0 flag. The lint library produced is the input 
that is given to the second pass of lint. The -0 flag simply causes this file 
to be saved in the named lint library. To produce a llib-llib.ln without 
extraneous messages, use the -x flag. The -v flag is useful if the source 
files for the lint library are just external interfaces (for example, the way 
the file llib-Ie is written). These flag settings are also available through 
the use of lint comment lines. 

Checks for portability to other C dialects. 

Suppresses messages about functions and external variables that are 
either used and not defined or defined and not used. Use this flag to run 
lint on a subset of files of a larger program. 

Suppresses messages about function parameters that are not used. 

Suppresses messages about variables that have external declarations but 
are never used. 

In addition, lint recognizes the following flags of the epp command (macro preprocessor): 

-Dname[ = def] Defines the name, as if by #define. The default def is 1. 

-Idir 

-Uname 

Examples 

Adds dir to the list of directories in which lint searches for #inelude 
files. 

Removes any initial definition of name, where name is a reserved 
symbol that is predefined by the particular preprocessor. 

1. To check a C program for errors: 

lint program.c 
2. To suppress some of the messages: 

lint -v -x program.c 
This checks p rog ram. c, but does not display error messages about unused function 
parameters (-v) or unused externals (-x). 

Commands 579 



lint 

Files 

3. To check the program against an additional lint library: 

lint -lsubs program.c 
This checks program. c against both the standard lint library (fusr/lib/llib-Ic.ln) and 
/usr /lib/llib-Is u b s .In. 

4. To check against the portable library and an additional library: 

lint -lsubs -p program.c 
This checks program. c against both the portable lint library (fusr/lib/llib-port.ln) 
and /usr/lib/llib-Isubs.ln. 

5. To check against a nonstandard library only: 

lint -lsubs -n program.c 

This checks program. c against only /usr/lib/llib-Isubs.ln. 

/usr/lib/lint[12] 
/usr /lib/llib-Ic.ln 
/usr/lib/llib-Ic 
JusrJlibJllib-port.ln 
/ usr /li b /lli b-port 
/usr/lib/llib-Im.ln 
/usr/lib/llib-Im 
/usr/lib/llib-Idos.ln 
/usr/lib/llib-Idos 
/usr/tmp/*lint* 

Programs. 
Declarations for standard functions (binary format). 
Declarations for standard functions (source). 
Declarations for portable functions (binary format). 
Declarations for portable functions (source). 
Declarations for standard math functions (binary format) 
Declarations for standard math functions (source) 
Declarations for shell functions (binary format). 
Declarations for shell functions (source). 
Temporary files. 

Related Information 

580 

The following command: "cc" on page 140. 

The topic "Checking C Programs" in A/X Operating System Programming Tools and 
Interfaces. 

"Overview of International Character Support" in Managing the A/X Operating System. 



In 

In 

Purpose 

Links files. 

Syntax 

In /~directory\ , 

L file _ newname F 

1~file directory~ 
In_ -5 

file - newname 

1This flag is not supported by Japanese Language Support 
OL805028 

Description 

Flags 

The In command links file to newname (in the current directory), or to the same name (file) 
in another existing directory. You can link directories, provided the two directories have 
the same parent. 

If you are linking a file to a new name, you can list only one file. If you are linking to a 
directory, you can list more than one file. 

Note: You can only link files across file systems using symbolic links. 

-s Creates a symbolic link to a file or directory. Specifying the complete path name of the 
file or directory is recommended. 

Examples 

1. To create another name (also called an alias) for a file: 

ln chapI intra 

Commands 581 



In 

This links chap 1 to the new name i n t roo If i n t ro does not already exist, the file 
name is created. If i ntro does exist, the file is replaced by a link to chapl. Now 
chap 1 and i n t ro are two file names that refer to the same file. Any changes made to 
one also appear in the other. If one name is deleted with del or rm, the file is not 
actually deleted, but remains under the other name. 

2. To link a file to the same name in another directory: 

1 n index manual 

This links index to the new name manua 1 /i ndex. 

Note the difference: i ntro in Example 1 is the name of a file; manual in Example 2 is a 
directory that already exists. 

3. To link several files to names in another directory: 

In chap2 jim/chap3 /u/manual 

This links chap2 to the new name /u/manual /chap2 and jim/chap3 to 
/u/manual/chap3. 

4. To use In with pattern-matching characters: 

In manual/* 
This links all files in the directory man u a 1 into the current directory (.), giving them 
the same names they have in manual. Note that you must type a space between the 
asterisk and the period. 

Related Information 

582 

The following commands: "rm" on page 833, "mv" on page 679, and "cp" on page 202. 

The chmod and link system c'B.lls in AIX Operating System Technical Reference. 

The symbolic link section in Using the AIX Operating System. 



locator 

locator 

Purpose 

Controls the sample rate of the locator. 

Syntax 

locator - -rrate --I 
OL805444 

Description 

The locator command sets the rate at which the system checks, per second, the cursor 
position controlled by the mouse. You can specify any of the following rates: 10, 20, 40, 60, 
80, or 100. Initially, at system startup, this rate is set at 60. 

Note: You can run the locator command only from the system console. 

Flag 

-rrate Sets the sampling rate to the specified value. 

Example 

To set the locator rate to 40: 

locator -r40 

Commands 583 



login 

login 

Purpose 

Allows you to sign on to the system and performs user identification and authentication. 

Syntax 

1 .~1 ogm 

-r node 

1 This command is not normally entered on the command line 

OL805005 

Description 

584 

The login program logs you in to the system and performs user authentication. Its 
primary functions are the following: 

• Identify the user and validates the user's password 
• Make the required audit, accoun'ting, and log entries 
• Execute loginx or passwd. 

A logger process, initially running the getty program, is started for each enabled port. 
The getty command reads a login name and sets work station modes (see "getty" on 
page 490). Then it runs login, which may ask for a password. If you do not have a 
password, press the Enter key. 

Your login attempt might fail for the following reasons: 

• Your login name/password pair does not match an entry in the password file. 
• Your password has expired. This can happen if your system requires that you change 

your password after a set number of days. In this case, login runs the passwd 
command instead of letting you log in. (For more information, see "passwd" on 
page 735.) After you change your password, you can attempt to log in again. 

• The system has reached the limit of simultaneously logged-in users. Each AIX kernel 
sets a limit on the number of concurrent logins by nonprivileged users; this limit may 
be one. A privileged user is one that has a user ID from 0 to 20. A privileged user can 
log in at any time. 



Files 

login 

• Your account is no longer active. The administrator of the system has invalidated 
your account by specifying the nouse value for the restrictions attribute in the 
/ete/seeurity/passwd file. This failure results in the message: You cannot 1 ogi n 
with this account .. 

• You are not allowed to login with this account. The administrator of the system has 
prevented logins to your account by specifying the nologin value for the restrictions 
attribute in the /ete/seeurity/passwd'file. This failure results in the message: You 
cannot login with this account .. 

In one special case, login does not ask for a user name and password pair. When the login 
port is the console and the file /ete/autolog contains a valid user name, login creates a 
login session for that user automatically. Other processing by login proceeds normally. 

When a user logs in successfully, the login program makes entries in /ete/utmp, the 
record of users logged in to the system, and in /usr/adm/wtmp (if it exists), for use in 
accounting. On invalid login attempts (due to incorrect login names or passwords), login 
makes entries in the /ete/.Hog file. 

When you log in as user root or su and the /ete/ .Hog file is not empty, you see a message 
advising you to check the /ete/.Hog file for a record of unsuccessful login attempts. 

Environment variables inherited from getty and in it (such as those specified in 
fete/environment) are kept. You may expand or modify the environment by supplying 
additional parameters to login when it requests your login name. These may take the form 
xxx or xxx = yyy. Parameters without an equal sign are placed in the environment as 
Lnum = xxx, where num is a number starting at 0 and incremented each time a new 
variable name is required. Parameters containing an equal sign are placed into the 
environment without modification. If they already exist, the new assignment replaces the 
older value. However, you cannot change the shell variables PATH and SHELL. (This 
restriction prevents people who log in to restricted environments from creating 
unrestricted secondary shells.) 

-rnode Identifies the login as a remote login and specifies the node requesting the login. 

/etc/utmp 
/usr / adm/wtm p 
/etc/.ilog 
/etc/autolog 
/etc/passwd 
/etc/security /config 
/ etc / securi ty /passwd 

Accounting file. 
Accounting file. 
Accounting file. 
Login ID for automatic login. 
Password file. 
File containing security-relevant information. 
File containing password information. 

Commands 585 



login 

Related Information 

586 

The following commands: "users, adduser" on page 1129, "csh" on page 225, "getty" on 
page 490, "init" on page 521, "passwd" on page 735, and "pstart, penable, pshare, 
pdelay" on page 79l. 

Note: The csh command contains a built-in subcommand named login. The command 
and subcommand do not necessarily work the same way. For information on the 
subcommand, see the csh command. 

The passwd and utmp files in AIX Operating System Technical Reference. 

The discussion of login sessions in Managing the AIX Operating System. 



loginx 

loginx 

Purpose 

Sets up a user's execution environment. 

Syntax 

logii1X user - tty -shell--l 
-rnanaqe r -s howno i d 
--prcdile -trusted 

-env new:add 

A5ACG022 

Description 

Flags 

This command is called by login and suo The loginx command sets up your execution 
environment and enhances the environment according to the flags you select. It then runs 
the specified shell on the specified terminal. 

This program always sets the uid and gid to that of the specified user. It sets the user's 
audit classes as defined in /ete/seeurity/passwd as well as the file size limit for this user. 
In addition, it sets the HOME, LOGNAME, PATH, MAIL, and SHELL environment 
variables. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

-manager 

-profile 

-showmotd 

The -manager flag causes this command to read the fete/ports file for 
the shell attribute and executes that value. The shell given on the 
command line becomes the first parameter to the attribute value. 

The -profile flag causes loginx to change the current directory to the 
user's home directory as specified in /ete/passwd. When the user's shell 
is run, its name is preceded by a - (minus) sign. 

The -showmotd flag causes /ete/motd to be displayed on the screen. 

Commands 587 



loginx 

Files 

-trusted The -trusted flag causes the terminal to become untrusted and the 
terminal mode and ownership to change. The mode changes to 0600, and 
the ownership changes to that of the specified user. 

-env newladd The -env flag must be followed by either new or add If new is specified, 
the current shell environment variables are cleared. If add is specified, 
the current shell environment variables are preserved. 

/etc/ports 

/ etc/security /passwd 

Contains the names and characteristics of the system terminal 
ports. 
Contains password information necessary for security. 

Related Information 

588 

The following commands: "login" on page 584, "su" on page 1026, "shell" on page 938, 
"tty" on page 1105, and "users, adduser" on page 1129 

The /ete/passwd and fete/ports files in A/X Operating System Technical Reference. 

The discussion of login sessions in Managing the A/X Operating System. 



logname 

logname 

Purpose 

Displays your login name. 

Syntax 

logname --I 

OL805145 

Description 

The logname command writes to standard output the name you used to log in to the 
system. It is the contents of the environment variable $LOGNAME, which is set when 
you log in to the system. 

Files 

/etc/profile System profile. 

Related Information 

The following commands: "env" on page 393 and "login" on page 584. 

The logname subroutine AIX Operating System Technical Reference. 

The environ special facility in AIX Operating System Technical Reference. 

Commands 589 



logout 

logout 

Purpose 

Stops all processes on a port, returning it to a dead state. 

Syntax 

!oyout ---l 

OL805485 

Description 

Files 

The logout command provides a thorough method of logging off your system. The 
command verifies that the user invoking logout logged in at the same port. If the login 
user and the logout user do not match, logout permission is denied, and the command 
stops. 

Note: Only the superuser can redirect standard input for this command. The logout 
command is a setuid-root program. It sends a SIGKILL to the process group leader 
running on the port from which the logout command is entered. This command also issues 
the revokeO system call for the logout port and any synonym of that port. 

Japanese Language Support Information 

If Japanese Language Support is installed on your system, this command is not available. 

/etc/utmp 
/etc/ports 

Contains a record of logged-in users. 
Specifies the port synonym. 

Related Information 

590 

The following commands: "login" on page 584 and "tsh" on page 1100. 

The jete/ports and the /ete/utmp file formats in AIX Operating System Technical 
Reference. 



lorder 

lorder 

Purpose 

Finds the best order for member files in an object library. 

Syntax 

lorder T file --r 
OL805029 

Description 

The lorder command reads one or more object or library archive files, looking for external 
references and writing a list of paired file names to standard output. The first of each 
paired files contains references to identifiers that are defined in the second file. You can 
send this list to the tsort command to find an ordering of a library member file suitable for 
one-pass access by ld. 

If object files do not end with .0, lorder overlooks them and attributes their global symbols 
and references to some other file. 

Example 

To create a subroutine library: 

IOY'der c;harinoo scanfld,o scan.o scanln.Q : tsort t )(oY'gs eH' qv I·ib::.ub~) a 

This creates a subroutine library named l; bsubs. a that contains char; n. 0, scanfl d. 0, 

scan.o, and scan In. 0. The ordering of the object modules in the library is important. 
The ld command requires each module to precede all the other modules that it calls or 
references. The lorder and tsort commands together add the subroutines to the library in 
the proper order. 

Commands 591 



lorder 

Files 

Suppose that scan. 0 calls scanfl d. 0 and scan 1 n. o. scanfl d.o also calls chari n. o. 
First, the Iorder command creates a list of pairs that shows these dependencies: 

Next, the I (vertical bar) sends this list to the tsort command, which converts it into the 
ordering we need: 

Note that each module precedes the module it calls. chari n. 0, which does not call 
another module, is last. 

The second I then sends this list to xargs, which constructs and runs the following ar 
command: 

i; 

This ar command creates the properly ordered library. 

jtmpjsym* Temporary files. 

Related Information 

592 

The following commands: "ar" on page 55, "Id" on page 557, "nm" on page 705, "tsort" 
on page 1102, and "xargs" on page 1232. 

The ar file in A/X Operating System Technical Reference. 



lp 

lp 

Purpose 

Prints a file in a format suitable for sending to a line printer. 

Syntax 

__ ---fl=66 -fw=80-----

/usr/lpd/lp-
-fl = value -plot 
-fw = value -elite 
-indent = val ue -wp 
-skip = val ue -pip 
-statusfile 

OL805396 

Description 

Flags 

The lp command prints file on its standard output in a form that is suitable for a line 
printer. The lp command is normally invoked by the qdaemon command. qdaemon 
directs the output from lp to the appropriate device. 

Flags are passed to lp in the following ways: 

• Flags specified in the qconfig structure are passed each time that lp is invoked. The 
-pIp, -ibmgp, -oki, and -statusfile flags most likely appear in qconfig. 

• Flags that are not recognized by the print command are assumed to be for lp and are 
passed to lp with the requested job. 

-elite 

-fl= value 

-fw=value 

-ibmgp 

Prints the text at 12 characters per inch instead of 10 characters per 
inch. This flag changes the default forms width to 96 characters. 

Sets the forms length equal to value. The default length is 66 lines. 

Sets the forms width equal to value. The default width is 80 columns. 
Lines that are wider than value are truncated. If you set value to 0, no 
truncation is performed. 

Specifies an IBM Graphic Printer. 

Commands 593 



lp 

-indent = value Indents the printed output the number of spaces specified with value. 

-oki Specifies an Okidata Model 92 or 93. 

-plot Passes text directly to the printer without processing. This is useful 
when using the printer as a plotter. Normally, lines that contain 
backspaces and carriage-return characters are processed so that they 
print with minimum print head motion. The sequence ESC-9 maps to 
half-line feeds. 

-pIp Sets and resets printer port parameters, if the printer is attached with a 
parallel interface. 

-skip = value Does not print the first value blank lines in the file. 

-statusfile Updates the status information in the status file that is open on file 
descriptor 3. The status information is passed from qdaemon. 

-wp Sets the printer, if possible, to the Word Processing mode. 

Related Information 

594 

The following commands: "print" on page 767 and "qdaemon" on page 802. 

The qconfig file in AIX Operating System Technical Reference. 



Is 

Is 

\ Purpose -..... 
Displays the contents of a directory. 

Syntax 

Is 
-0 -R 
-d -r 
-j -s 
-L 

-I -0 

-k 

OL805030 

Is --f 
di rectory 

OL805243 

Description 

The Is command writes to standard output the contents of each specified directory or the 
name of each specified file, along with any other information you ask for with the flags. If 
you do not specify a file or directory, Is displays the contents of the current directory. 

Commands 595 



Is 

596 

By default, Is displays all information in alphabetic order by file name. The collating 
sequence is determined by the NLCTAB environment variable (see "ctab" on page 257). 
Individual file names are listed before directory names. 

There are three main ways to format the output: 

• List one entry per line. This is the default format. 
• List entries in multiple columns by specifying either the -C or -x flags. 
• List entries in a comma-separated series by specifying the -m flag. 

To determine the number of character positions in the output line, Is uses the environment 
variable COLUMNS. If this variable is not set, it reads the terminfo file. If Is cannot 
determine the number of character positions by either of these methods, it uses a default 
value of 80. 

The mode displayed with the -1 flag is interpreted as follows: 

If the first character is: 

d The entry is a directory. 
b The entry is a block special file. 
c The entry is a character special file. 
1 The entry is a symbolic link. 
p The entry is a first-in first-out (FIFO) special file. 

The entry is an ordinary file. 
D The entry is a remote directory. 
F The entry is a remote ordinary file. 
B The entry is a remote block special file. 
C The entry is a remote character special file. 
L The entry is a remote symbolic link. 
P The entry is a remote first-in first-out (FIFO) special file. 

The next nine characters are divided into three sets of three characters each. The first 
three characters show the owner's permission. The next set of three characters show the 
permission of the other users in the group. The last set of three characters show the 
permission of anyone else with access to the file. The three characters in each set show 
read, write, and execute permission of the file. Execute permission of a directory lets you 
search a directory for a specified file. 

Permissions are indicated as follows: 

r You can read the file. 
w You can edit (write) the file. 
x You can search the file. 

You do not have permission to access the file. 

The group-execute permission character is s if the file has set-group ID mode. The 
user-execute permission character is s if the file has set-user-ID mode. The last character 
of the mode (normally x or -) is t if the 1000 (octal) bit of the mode is set; see "chmod" on 



Flags 

Is 

page 160 for the meaning of this mode. The indications of set-ID and 1000 bit of the mode 
are capitalized (S and T respectively) if the corresponding execute permission is not set. 

When the size of the files in a directory are listed, the Is command displays a total count of 
blocks, including indirect blocks. 

The environment variables NLLDATE and NLTIME control the format of the date and 
time. The environment variable NLSMONTH controls the short names of months. 

-a Lists all entries in the directory including the entries that begin with a . (dot). 

-b Displays nonprintable characters in an octal \nnn notation. 

-c Uses the time of last modification of the i-node (file created, mode changed, and so on) 
for sorting (when used with -t) or for displaying (when used with -1). This flag has no 
effect when not used with either -t or -lor both. 

-c Sorts output vertically in a multicolumn format. 

-d Displays only the information for the directory named. This is useful with the -I flag 
to get the status of a directory. 

-f Lists the name in each slot for each named directory. This flag turns off -I, -t, -s, and 
-r, and turns on -a; the order is the order in which entries appear in the directory. 

-F Puts a / (slash) after each file name if the file is a directory, an * (asterisk) after each 
file name if the file can be executed, and an @ sign after each file name if the file is a 
symbolic link. 

-g Displays the same information as with -I, except for the owner. 

-i Displays the i-number in the first column of the report for each file. 

-k Displays the permission codes, node ID, remote UID, remote GID, time of last 
modification, size (in bytes), and file name for remote entries. 

For remote files and directories, the local owner and local group are obtained by 
using inverse IDs. If there is no inverse ID or if Is cannot determine the inverse ID, a 
- (minus sign) displays in the corresponding field. If possible, remote nodes are 
identified with nicknames. Otherwise, they are identified by their NID displayed in 
hexadecimal. (See "Distributed Services Concepts" in Managing the AIX Operating 
System.) 

For local files and directories that do hot have a nickname defined for the local node 
ID, the node ID field displays as a - (minus sign), and the raw UID (GID) field 
contains the local owner UID (group GID). 

Commands 597 



Is 

-I Displays the mode, number of links, owner, group, size (in bytes), and time of last 
modification for each file. If the file is a special file, the size field will instead contain 
the major and minor device numbers. 

Note: A symbolically linked file is followed by an ~ and then the contents of 
the symbolic link. 

-L Follows a symbolic link and reports on the file at the end of the link. 

-m Uses stream output format (a comma-separated series). 

-n Displays the same information as with -I, except that it displays the user and the 
group IDs instead of the user and group names. 

-0 Displays the same information as with -I, except for the group. 

-p Puts a slash after each file name if that file is a directory. This is useful when you 
pipe the output of Is to the pr command as follows: 

15 -p I pr -5 -t -w8D 
-q Displays nonprintable characters in file names as the character? 

-r Reverses the order of the sort, giving reverse alphabetic or the oldest first, as 
appropriate. 

-R Lists all subdirectories recursively. 

-s Gives size in blocks (including indirect blocks) for each entry. 

-t Sorts by time of last modification (latest first) instead of by name. 

-u Uses the time of the last access instead of time of the last modification for sorting 
(when used with -t) or for displaying (when used with -I). This flag has no effect 
when not used with either -t or -lor both. 

-x Sorts output horizontally in a multicolumn format. 

Examples 

598 

1. To list all files in the current directory: 

-1 s -a 

This lists all files, including. (dot), .. (dot-dot), and other files with names beginning 
with a dot. 

2. To display detailed information: 

ls -1 chapl .profile 

This displays a long listing with detailed information about chapl and .profile. 



Files 

Is 

3. To display detailed information about a directory: 

ls -d -1 manual manual/chapl 

This displays a long listing for the directories. and manua 1, and for the file 
manual/chapl. Without the -d flag, this would list the files in . and manual instead 
of the detailed information about the directories themselves. 

4. To list the files in order of modification time: 

ls -1 -t 
This displays a long listing of the files that were modified most recently, followed by 
the older files. 

/etc/passwd 
/etc/group 
/usr /li b/terminfo /* 

Con tains user IDs. 
Contains group IDs. 
Contains terminal information. 

Related Information 

The following commands: "chmod" on page 160, "ctab" on page 257, and "find" on 
page 422. 

The environment miscellaneous facility in AIX Operating System Technical Reference. 

"Overview of International Character Support" in Managing the AIX Operating System. 

"Distributed Services Concepts" in Managing the AIX Operating System. 

The symbolic link section in Using the AIX Operating System. 

Commands 599 



Is 

600 



Task Index 

This index groups commands by task. Each command listing includes a command, a page reference, 
and a description of the command. Commands are grouped under the following tasks: 

Managing the System ................................................... . 
Installing and Maintaining Programs ..................................... . 
Configuring the System ............................................... . 
Backing Up and Restoring System Files ................................... . 
Managing File Systems ................................................ . 
Analyzing System Activity ............................................. . 
Performing System Accounting Functions ................................. . 

Controlling System Security .............................................. . 
Managing System Auditing ............................................ . 
Managing the Secure System ........................................... . 
Managing the Trusted Path ........................................... .' . 
Managing Access Permissions and Ownerships ............................. . 

U sing the System ...................................................... . 
Starting and Stopping the System ........................................ . 
U sing Shells and Interfaces ............................................ . 
Displaying System Statistics and Information .............................. . 
Controlling System Processes ........................................... . 
U sing Disks and Diskettes ............................................ . 
Using Tape ........................................................ . 
Working with Work Stations .......................................... . 

Working with Files and Directories ....................................... . 
Working with Directories ............................................. . 
Creating and Editing Files ............................................ . 
Printing and Displaying Files .......................................... . 
Copying and Moving Files ............................................ . 
Deleting Files ...................................................... . 
Comparing Files .................................................... . 
Scanning Files ..................................................... . 
Sorting Files ....................................................... . 
Merging and Splitting Files ........................................... . 
Working with Remote Files ........................................... . 
Formatting Text .................................................... . 
Working with Graphics ............................................... . 
Protecting Files with File Permissions ................................... . 
Backing Up and Restoring Files ........................................ . 

Working with Data .................................................... . 
U sing Data Tools ................................................... . 

Task Index 

TASK-3 
TASK-3 
TASK-3 
TASK-4 
TASK-4 
TASK-5 
TASK-6 
TASK-6 
TASK-6 
TASK-6 
TASK-7 
TASK-7 
TASK-8 
TASK-8 
TASK-8 
TASK-8 
TASK-9 

TASK-IO 
TASK-IO 
TASK-IO 
TASK-II 
TASK-II 
TASK-I2 
TASK-I2 
TASK-I2 
TASK-I3 
TASK-I3 
TASK-I3 
TASK-I4 
TASK-I4 

. TASK-I4 
TASK-I5 
TASK-I5 
TASK-I6 
TASK-I6 
TASK-I6 
TASK-I6 

TASK-l 



Performing Calculator Functions ....................................... . 
Communicating on the System ........................................... . 

Sending Messages and Notices ......................................... . 
Using Mailboxes .................................................... . 
Using the MH (Message Handling) Package .............................. . 
Communicating with Other Systems ..................................... . 

Developing Programs .................................................. . 
Programming in Assembler ............................................ . 
Programming in C .................................................. . 
Programming in Miscellaneous Languages ................................ . 
Programming in Shell ................................................ . 
Working with Messages .............................................. . 
Debugging Programs ................................................. . 
Managing Source Programs Using the Source Code Control System (SCCS) ...... . 
Managing Object Files ............................................... . 

Playing Games ....................................................... . 

TASK-2 

TASK-17 
TASK-17 
TASK-17 
TASK-17 
TASK-17 
TASK-19 
TASK-19 
TASK-19 
TASK-19 
TASK-20 
TASK-20 
TASK-21 
TASK-21 
TASK-21 
TASK-22 
TASK-22 



Managing the System 

The following groups of commands are important for managing various aspects of the system. 

Installing and Maintaining Programs 

cvid 
install 
installp 
make 
mdrc 

ndtable 
pwtable 
updatep 

272 
524 
529 
625 
640 

685 
801 
1122 

Creates a VRM install diskette for backup purposes. 
Installs a command. 
Installs a licensed program. 
Maintains up-to-date versions of programs. 
Allows you to reinstall a user-created minidisk after you have reinstalled 
AIX. 
Accesses the Distributed Services Node Table. 
Accesses the Distributed Services Node Security Table. 
Updates one or more programs. 

Configuring the System 

bffcreate 

biodd-cfg 
chkcomp 
chngstate 

chparm 
config 
devices 
defkey 
display 

dsipc 
dsldxprof 
dsxlate 
env 
getty 
init 
ipctable 
keyboard 
locator 
minidisks 

108 

115 
158 
164 

171 
194 
315 
306 
332 

354 
355 
363 
393 
490 
521 
544 
551 
583 
650 

Creates files in backup format for complete or subset programs in a code 
service environment. 
Configures the block I/O AIX device driver. 
Checks compatibility between a code server and an active-service client. 
Changes the state of a code service client to either active-service or 
stand-alone. 
Changes or examines system parameters. 
Extracts configuration information from configuration files. 
Adds, deletes, changes, and displays device information. 
Defines keyboard key assignments. 
Selects the physical display that an existing or new virtual terminal uses and 
sets colors and fonts. 
Installs the Interprocess Communication key mapping in the kernel. 
Loads translate information into the UID/GID translate profiles. 
Installs Distributed Services UID/GID translate tables into the kernel. 
Sets the environment for execution of a command. 
Sets the characteristics of ports. 
Initializes the system. 
Creates, displays, or changes the Distributed Services IPC Queues Table. 
Controls the delay and repetition rates of the keyboard. 
Controls the sample rate of the locator. 
Adds, deletes, changes, and displays minidisks. 

Task Index TASK-3 



mknod 
pdisable, 
phold 
pstart, 
penable, 
pshare, 
pdelay 
rc 
setdma 
sound 
splp 
stty 
termdef 
trdiag 
ugtable 

users, 
adduser 
varyon 

varyoff 
verify 
vrmconfig 

661 
741 

791 

806 
910 
967 
975 
1018 
1062 
1097 
1109 

1129 

1180 

1177 
1186 
1206 

Creates a special file. 
Kills the logger running on the specified port. 

Enables or reports the availability of login ports. 

Performs normal startup initialization. 
Sets the DMA channel of the specified adapter. 
Controls the volume and click of the keyboard speaker. 
Changes or displays printer driver settings. 
Sets, resets, or reports work station operating parameters. 
Queries terminal characteristics. 
Starts diagnostics on the Token-Ring Network. 
Creates, displays, and changes the Distributed Services Network 
Users/Groups Table. 
Adds, deletes, and changes user and group information. 

Makes an external disk drive and any minidisks or file systems defined on it 
available for use. 
Removes an external disk drive from the operating system configuration. 
Turns write verification on or off for a particular minidisk. 
Installs peripheral devices. 

Backing Up and Restoring System Files 

backup 
pack 
restore 
tapechk 
tar 
tctl 

88 
730 
826 
1047 
1048 
1058 

Backs up files. 
Compresses files. 
Copies back files created by the backup command. 
Performs consistency checking of the streaming tape device. 
Manipulates archives. 
Gives commands to streaming tape. 

Managing File Systems 

basename 
chroot 
clri 
cpio 
crash 

TASK-4 

95 
172 
175 
205 
215 

Returns the base name of a string parameter. 
Changes the root directory of a command. 
Clears the specified i-node. 
Copies files into and out of archive storage and directories. 
Examines system images. 



dcopy 
devnm 
df 
env 
ff 
fsck 
fsdb 
istat 
link 
mkfs 
mknod 
mount 
ncheck 
proto 
setmnt 
skulker 
sync 
umount, 
unmount 
varyon 

varyoff 

299 
316 
318 
393 
417 
445 
450 
545 
575 
658 
661 
669 
683 
780 
911 
951 
1030 
1112 

1180 

1177 

Copies file systems for the best access time. 
N ames a device. 
Reports number of available disk blocks. 
Sets the environment for execution of a command. 
Lists the file names and statistics for a file system. 
Checks file system consistency and interactively repairs the file system. 
Debugs file systems. 
Examines i-nodes. 
Performs a link or unlink system call. 
Makes a file system. 
Creates a special file. 
Makes a file system available for use. 
Generates path names from i-numbers. 
Constructs a prototype file for a file system. 
Creates mount table. 
Cleans up file systems by removing unwanted files. 
Updates the superblock and writes buffered files to the fixed disk. 
Unmounts a previously mounted file system, directory, or file. 

Makes an external disk drive and any minidisks or file systems defined on it 
available for use. 
Removes an external disk drive from the operating system configuration. 

Analyzing System Activity 

du 
dumpfmt 
errdead 
errdemon 
errpt 
errstop 
errupdate 
fuser 
profiler 
time 
trace 
trcrpt 
trcstop 
trcupdate 

364 
368 
397 
398 
400 
404 
405 
455 
775 
1068 
1086 
1091 
1093 
1094 

Summarizes disk usage. 
Formats the VRM dump file. 
Extracts error records from dump. 
Starts the error-logging daemon. 
Processes a report of logged errors. 
Terminates the error-logging daemon. 
Updates an error report template. 
Identifies processes using a file or file structure. 
Profiles the operating system. 
Times the execution of a command. 
Starts the trace function. 
Formats a report from the trace log file. 
Stops the trace function. 
Updates trace format templates. 

Task Index TASK-5 



Performing System Accounting Functions 

acct/* 
acctcms 
acctcom 
acctcon 
acctdisk, 
acctdusg 
acctmerg 
acctprc 
diskusg 
fwtmp 
runacct 
sadc 

13 
18 
20 
24 
26 

28 
30 
330 
457 
848 
863 

Provides accounting shell procedures. 
Produces command usage summaries from accounting records. 
Displays selected process accounting record summaries. 
Performs connect-time accounting. 
Performs disk-usage accounting. 

Merges total accounting files. 
Performs process accounting. 
Generates disk accounting data by user ID. 
Manipulates connect accounting records. 
Runs daily accounting. 
Provides a system activity report package. 

Controlling System Security 

The following groups of commands are important to ensure the security of the system. 

Managing System Auditing 

audit 67 
auditapp 69 
auditbin 71 
auditpr 73 
auditselect 76 
auditstream 78 
auditwrite 80 

Controls system auditing. 
Adds an audit bin file to the end of the audit trail file. 
Manages bins of audit information. 
Displays audit trail files. 
Selects audit records. 
Creates a channel for the reading of audit records. 
Generates an audit record at the command level. 

Managing the Secure System 

init 
login 

loginx 
passwd 
print 
secure 
shell 

TASK-6 

521 
584 

587 
735 
767 
885 
938 

Initializes the system. 
Allows you to sign on to the system and performs user identification and 
authentication. 
Sets up a user's execution environment. 
Changes login password. 
Enqueues a file. 
Establishes a more secure system configuration 
Executes a shell in a user's login environment. 



sysck 
tsh 
tvi 
watch 

1031 
1100 
1108 
1209 

Verifies the secure system state. 
Interprets commands in a trusted shell. 
Acts as trusted editor for system administration. 
Observes and reports security-relevant actions on the system. 

Managing the Trusted Path 

actman 
getty 
init 
login 

loginx 
logout 
shell 
tsh 
tvi 

32 
490 
521 
584 

587 
590 
938 
1100 
1108 

Permits interaction with multiple virtual terminals. 
Sets the characteristics of ports. 
Initializes the system. 
Allows you to sign on to the system and performs user identification and 
authentication. 
Sets up a user's execution environment. 
Stops all processes on a port, returning it to a dead state. 
Executes a shell in a user's login environment. 
Interprets commands in a trusted shell. 
Acts as trusted editor for system administration 

Managing Access Permissions and Ownerships 

chgrp 
chmod 
chown 
chtcb 
groups 
id 
logname 
login 

makekey 
newgrp 
passwd 
pwck 
su 
umask 
users, 
adduser 

156 
160 
169 
174 
506 
517 
589 
584 

634 
689 
735 
798 
1026 
1110 
1129 

Changes the group ownership of a file or directory. 
Changes permission codes. 
Changes the owner of files or directories. 
Sets or queries the tcb attribute of a file. 
Displays your group membership. 
Displays the system identity of the user issuing the command. 
Displays your login name. 
Allows you to sign on to the system and performs user identification and 
authentication. 
Generates an encryption key. 
Changes your primary group identification. 
Changes login password. 
Checks the password and group files for inconsistencies. 
Obtains the privileges of another user, including superuser authority. 
Displays and sets file-creation permission code mask. 
Adds, deletes, and changes user and group information. 

Task Index TASK-7 



U sing the System 

The following groups of commands help you use the various functions of the system. 

Starting and Stopping the System 

actman 
login 

open 
passwd 
shutdown 

32 
584 

728 
735 
946 

Permits interaction with multiple virtual terminals. 
Allows you to sign on to the system and performs user identification and 
authentication. 
Opens a virtual terminal. 
Changes login password. 
Ends system operation. 

U sing Shells and Interfaces 

act man 
csh 
dos 
sh 
tsh 

32 
225 
341 
913 
1100 

Permits interaction with multiple virtual terminals. 
Interprets commands read from a file or entered from the keyboard. 
Starts shell. 
Interprets commands read from a file or entered at the keyboard. 
Interprets commands in a trusted shell. 

Displaying System Statistics and Information 

date 
devices 
diskusg 
dsstate 
errpt 
errupdate 
file 
fptype 
fuser 
groups 
help 

id 
ipcs 
ipctable 
istat 

TASK-8 

281 
315 
330 
361 
400 
405 
420 
444 
455 
506 
513 

517 
539 
544 
545 

Displays or sets the date. 
Adds, deletes, changes, and displays device information. 
Generates disk accounting data by user ID. 
Sets the state of the Distributed Services kernel logic. 
Processes a report of logged errors. 
Updates an error report template. 
Determines file type. 
Displays the floating point configuration of the system. 
Identifies processes using a file or file structure. 
Displays your group membership. 
Provides information about a Source Code Control System (SCCS) message 
or command or about certain non-SCCS commands. 
Displays the system identity of the user issuing the command. 
Reports interprocess communication facility status. 
Creates, displays, or changes the Distributed Services IPC Queues Table. 
Examines i-nodes. 



logname 
man 
minidisks 
ncheck 
ndtable 
news 
od 
profiler 
PostScript 
pstart, 
penable, 
pshare, 
pdelay 
pwck 
pwd 
pwtable 
rstatd 
rup 
rusers 
sact 
sadc 
sag 
sar 
splp 
stty 
sum 
time 
timex 
tty 
ugtable 

uname 
uustat 

who 

589 
635 
650 
683 
685 
691 
723 
775 
786 
791 

798 
800 
801 
847 
854 
856 
862 
863 
865 
867 
975 
1018 
1029 
1068 
1069 
1105 
1109 

1114 
1158 

1219 

Displays your login name. 
Displays manual entries online. 
Adds, deletes, changes, and displays minidisks. 
Generates path names from i-numbers. 
Accesses the Distributed Services Node Table. 
Writes system news items to standard output. 
Writes the contents of storage to the standard output. 
Profiles the operating system. 
Reports process status. 
Enables or reports the availability of login ports. 

Checks the password and group files for inconsistencies. 
Displays the path name of the working directory. 
Accesses the Distributed Services Node Security Table. 
Returns NFS performance statistics from the kernel. 
Displays the host status of local machines. 
Identifies users logged in on network hosts. 
Displays current Source Code Control System (SCCS) file editing status. 
Provides a system activity report package. 
Displays a graph of system activity. 
Collects, reports, or saves system activity information. 
Changes or displays printer driver settings. 
Sets, resets, or reports work station operating parameters. 
Displays the checksum and block count of a file. 
Times the execution of a command. 
Times a command, and reports process data and system activity. 
Writes to standard output the full path name of your work station. 
Creates, displays, and changes the Distributed Services Network 
Users/Groups Table. 
Displays the name of the current operating system. 
Reports the status of and provides rudimentary job control for BND 
commands. 
Identifies the users currently logged in. 

Controlling System Processes 

at 
cron 
crontab 

63 
220 
222 

Runs commands at a later time. 
Runs commands automatically. 
Submits a schedule of commands to cron. 

Task Index TASK-9 



errdemon 
errstop 
kill 
killall 
nice 
nohup 
open 
qdaemon 
sleep 
syslogd 
tlog 
tlogger 
writesrv 

398 
404 
552 
555 
699 
707 
728 
802 
952 
1037 
1071 
1072 
1230 

Starts the error-logging daemon. 
Terminates the error-logging daemon. 
Sends a signal to a running process. 
Cancels all processes except the calling process. 
Runs a command at a different priority. 
Runs a command without hangups and quits. 
Opens a virtual terminal. 
Schedules jobs enqueued by the print command. 
Suspends execution for an interval. 
Reads and logs messages. 
Stops or restarts sending of terminal I/O to a daemon. 
Gathers I/O from a terminal and writes it to a log file. 
Allows Distributed Services users to send messages to and receive messages 
from a remote system. 

U sing Disks and Diskettes 

format 
mdrc 

minidisks 
mount 
umount, 
unmount 
varyon 

varyoff 
verify 

Using Tape 

tapechk 
tar 
tctl 

436 
640 

650 
669 
1112 

1180 

1177 
1186 

1047 
1048 
1058 

Formats diskettes. 
Allows you to reinstall a user-created minidisk after you have reinstalled 
AIX. 
Adds, deletes, changes, and displays minidisks. 
Makes a file system available for use. 
Unmounts a previously mounted file system, directory, or file. 

Makes an external disk drive and any minidisks or file systems defined on it 
available for use. 
Removes an external disk drive from the operating system configuration. 
Turns write verification on or off for a particular minidisk. 

Performs consistency checking of the streaming tape device. 
Manipulates archives. 
Gives commands to streaming tape. 

Working with Work Stations 

defkey 
display 

TASK-tO 

306 
332 

Defines keyboard key assignments. 
Selects the physical display that an existing or new virtual terminal uses and 
sets colors and fonts. 



echo 
hp 
keyboard 
locator 
pdisable, 
phold 
pstart, 
penable, 
pshare, 
pdelay 
stty 
tabs 
termdef 
tic 
tput 
tty 
300 
4014 
450 

369 
514 
551 
583 
741 

791 

1018 
1041 
1062 
1067 
1081 
1105 
1262 
1264 
1265 

Writes its arguments to standard output. 
Handles special functions for the HP2640- and HP2621-series terminals. 
Controls the delay and repetition rates of the keyboard. 
Controls the sample rate of the locator. 
Kills the logger running on the specified port. 

Enables or reports the availability of login ports. 

Sets, resets, or reports work station operating parameters. 
Sets tab stops on work stations. 
Queries terminal characteristics. 
Translates terminfo files from source to compiled format. 
Queries the terminfo file. 
Writes to standard output the full path name of your work station. 
Handles special line-motion functions for DASI 300/300s work stations. 
Formats a full page 66-line screen display for a Tektronix 4014 work station. 
Handles special line-motion functions for the DASI 450 work station. 

Working with Files and Directories 

The following groups of commands allow you to create and manipulate files and directories. 

Working with Directories 

cd 
chroot 
dircmp 
dosdir 
find 
Ii 
Is 
mkdir 
mvdir 
pwd 
rm 
rmdir 

150 
172 
328 
346 
422 
567 
595 
657 
682 
800 
833 
838 

Changes the current directory. 
Changes the root directory of a command. 
Compares two directories and the contents of their common files. 
Lists the directory for DOS files. 
Finds files matching expression. 
Lists the contents of a directory. 
Displays the contents of a directory. 
Makes a directory. 
Moves (renames) a directory. 
Displays the path name of the working directory. 
Removes files or directories. 
Removes a directory. 

Task Index TASK-II 



Creating and Editing Files 

admin 
cdc 
ed 
edit 
ex 
get 
mknod 
sed 
spell 
tab 
uniq 
vi 

41 
152 
371 
387 
407 
477 
661 
887 
969 
1040 
1118 
1187 

Creates and initializes SCCS files. 
Changes the comments in a Source Code Control System (SCCS) delta. 
Edits text by line. 
Provides a simple line editor for the new user. 
Edits lines interactively, with screen display. 
Creates a specified version of a Source Code Control System (SCCS) file. 
Creates a special file. 
Provides a stream editor. 
Finds spelling errors. 
Changes spaces into tabs or tabs into spaces. 
Deletes repeated lines in a file. 
Edits files with a full screen display. 

Printing and Displaying Files 

cat 
cut 
lp 
nl 
od 
pg 
piobe 

pr 
prs 
print 
qdaemon 
splp 
tail 
vc 

137 
269 
593 
701 
723 
744 
753 

761 
781 
767 
802 
975 
1044 
1182 

Concatenates or displays files. 
Writes out selected fields from each line of a file. 
Prints a file in a format suitable for sending to a line printer. 
Numbers lines in a' file. 
Writes the contents of storage to the standard output. 
Formats files to the work station. 
Writes a file to standard output in a format suitable for sending to a line 
printer. 
Writes a file to standard output. 
Displays a Source Code Control System (SCCS) file. 
Enqueues a file. 
Schedules jobs enqueued by the print command. 
Changes or displays printer driver settings. 
Writes a file to standard output, beginning at a specified point. 
Substitutes assigned values in place of keywords. 

Copying and Moving Files 

cat 
cp 
Cvt 
dd 
dosread 

TASK-12 

137 
202 
274 
301 
348 

Concatenates or displays files. 
Copies files. 
Moves old UUCP files into new BNU directories. 
Con verts and copies a file. 
Copies a DOS file. 



doswrite 
In 
mv 
uuep 
uuto 

350 
581 
679 
1144 
1162 

Deleting Files 

del 
dosdel 
rm 
uniq 
uueleanup 

308 
345 
833 
1118 
1141 

Comparing Files 

bdiff 
emp 
eomm 
diff 
diff3 
diffmk 
diremp 
sdiff 
seesdiff 

102 
177 
183 
320 
323 
326 
328 
883 
874 

Scanning Files 

awk 81 

bfs 110 
file 420 
find 422 
grep 501 
hyphen 516 
we 1211 
what 1213 

Copies AIX files to DOS files. 
Links files. 
Moves files. 
Copies files from one AIX system to another AIX system. 
Copies public files from one AIX system to another AIX system, with local 
system control of file access. 

Deletes files if the request is confirmed. 
Deletes DOS files. 
Removes files or directories. 
Deletes repeated lines in a file. 
Deletes selected files older than a specified number of hours from the BND 
spool directory or a named directory. 

D ses diff to find differences in very large files. 
Compares two files. 
Selects or rej ects lines common to two sorted files. 
Compares text files. 
Compares three files. 
Marks differences between files. 
Compares two directories and the contents of their common files. 
Compares two files and displays the differences in a side by side format. 
Compares two versions of a Source Code Control System (SCCS) file. 

Finds lines in files matching specified patterns and performs specified 
actions on them. 
Scans files. 
Determines file type. 
Finds files matching expression. 
Searches a file for a pattern. 
Finds hyphenated words. 
Counts the number of lines, words, and characters in a file. 
Displays identifying information in files. 

Task Index TASK-I3 



Sorting Files 

lorder 
sort 
tsort 

591 
958 
1102 

Finds the best order for member files in an object library. 
Sorts or merges files. 
Sorts an unordered list of ordered pairs (a topological sort). 

Merging and Splitting Files 

csplit 
join 
paste 
sort 
split 

252 
547 
736 
958 
974 

Splits files by context. 
Joins data fields of two files. 
Merges the lines of several files or subsequent lines in one file. 
Sorts or merges files. 
Splits a file into pieces. 

Working with Remote Files· 

biod 
domainname 
makedbm 
mountd 
nfsd 
nfsstat 
on 
pcnfs 
portmap 
rexd 
rpcgen 
rpcinfo 
rstatd 
rup 
rusers 
rusersd 
rwall 
rwalld 
showmount 
spray 
sprayd 
ypbind 
ypcat 
ypinit 

TASK-14 

114 
340 
632 
674 
696 
697 
726 
739 
757 
832 
843 
845 
847 
854 
856 
858 
859 
861 
945 
981 
983 
1239 
1241 
1243 

Starts daemons that handle NFS block I/O requests. 
Displays or sets YP domain name. 
Makes a Yellow Pages dbm map. 
Answers NFS mount requests. 
Starts NFS client request daemons. 
Displays NFS statistics. 
Executes a command remotely via NFS. 
Serves PC-NFS client requests. 
Maps RPC programs to the servicing ports on RPC servers. 
Executes remote programs. 
Compiles a Remote Procedure Call program. 
Reports Remote Procedure Call status information. 
Returns NFS performance statistics from the kernel. 
Displays the host status of local machines. 
Identifies users logged in on network hosts. 
Displays list of active NFS users. 
Writes to all network users. 
NFS daemon for rwall and shutdown. 
Displays list of remotely mounted file systems. 
Sprays packets to host when NFS is installed. 
Receives packets sent by the spray command. 
Allows Yellow Pages client processes to communicate with the YP server. 
Displays values in a Yellow Pages data base. 
Builds and installs the Yellow Pages data base. 



ypmatch 1245 
yppasswd 1247 
yppasswdd 1249 
yppoll 1251 
yppush 1252 
ypserv 1256 
ypset 1254 
ypwhich 1258 

ypxfr 1260 

Formatting Text 

col 179 

cw 275 
deroff 313 
eqn 395 
fmt 428 
greek 499 

hp 514 
mm 663 
mmt 666 
new form 686 
nl 701 
nroff, troff 709 
ptx 794 
tbl 1053 
tc 1056 
vrm2rtfont 1205 
300 1262 
4014 1264 
450 1265 

Displays the values of one or more keys from a Yellow Pages map. 
Changes Yellow Pages passwords 
Handles Yellow Pages password change requests 
Displays the version of a Yellow Pages map located at a Yellow Pages host. 
yppush. 
Looks up information in a local Yellow Pages data base. 
Directs the ypbind daemon to a particular server. 
Displays the name of the host machine acting as the Yellow Pages server or 
as a map YP master server. 
Transfers a Yellow Pages map to the local host machine. 

Processes text having reverse linefeeds and forward/reverse half-linefeeds for 
output to standard output. 
Prepares constant-width text for troff. 
Removes nroff, troff, troff, tbl, and eqn constructs from files. 
Formats mathematical text for the nroff, troff and troff commands. 
Formats mail messages prior to sending. 
Converts output for a Teletype Model 37 work station to output for other 
work stations. 
Handles special functions for the HP2640- and HP2621-series terminals. 
Displays or checks documents formatted with Memorandum Macros. 
Typesets documents, manual pages, view graphs, and slides. 
Changes the format of a text file. 
Numbers lines in a file. 
Formats text for printing devices. 
Generates a permuted index. 
Formats tables for the nroff, troff and troff commands. 
Simulates phototypesetter output for a Tektronix 4014 work station. 
Converts a standard AIX font file to RT rtx font format. 
Handles special line-motion functions for DASI 300/300s work stations. 
Formats a full page 66-line screen display for a Tektronix 4014 work station. 
Handles special line-motion functions for the DASI 450 work station. 

Working with Graphics 

gdev 
ged 
gend 

460 
463 
475 

Provides graphical device routines and filters. 
Displays, makes, and edits graphical files on Tektronix 4010 terminals. 
Provides a general graphics device backend. 

Task Index TASK-I5 



graph 
graphics 
gutil 
spline 
stat 
toc 
tplot 

494 
497 
508 
972 
984 
1074 
1079 

Draws a graph. 
Accesses graphical and numerical commands. 
Provides graphical utility programs. 
Interpolates smooth curve. 
Provides tools for analyzing numerical data. 
Provides graphical table of contents routines. 
Produces plotting instructions for a particular work station. 

Protecting Files with File Permissions 

chgrp 
chmod 
chown 
groups 
li 
Is 
umask 

156 
160 
169 
506 
567 
595 
1110 

Changes the group ownership of a file or directory. 
Changes permission codes. 
Changes the owner of files or directories. 
Displays your group membership. 
Lists the contents of a directory. 
Displays the contents of a directory. 
Displays and sets file-creation permission code mask. 

Backing Up and Restoring Files 

ar 
backup 
cpio 
lorder 
pack 
restore 
shlib 
tar 

55 
88 
205 
591 
730 
826 
939 
1048 

Maintains portable libraries used by the linkage editor. 
Backs up files. 
Copies files into and out of archive storage and directories. 
Finds the best order for member files in an object library. 
Compresses files. 
Copies back files created by the backup command. 
Creates a shared library. 
Manipulates archives. 

Working with Data 

The following groups of commands allow you to use various data tools. 

Using Data Tools 

banner 
cal 
calendar 
ctab 

TASK-I6 

94 
132 
134 
257 

Writes character strings in large letters to standard output. 
Displays a calendar. 
Writes reminder messages to standard output. 
Produces a collating table. 



echo 
tr 
units 

369 
1083 
1119 

Writes its arguments to standard output. 
Translates characters. 
Converts units in one measure to equivalent units in another measure. 

Performing Calculator Functions 

bc 
dc 

factor 

97 
295 

416 

Provides an interpreter for arbitrary-precision arithmetic language. 
Provides an interactive desk calculator for doing arbitrary-precision integer 
arithmetic. 
Factors a number. 

Communicating on the System 

The following groups of commands allow you to use mail and message facilities on the system. 

Sending Messages and Notices 

confer 
mesg 
news 
wall 
write 

189 
642 
691 
1208 
1225 

Using Mailboxes 

bellmail 
fmt 
mail, Mail 
mailstats 
sendmail 

104 
428 
608 
623 
897 

Provides an online conferencing system. 
Permits or refuses write messages. 
Writes system news items to standard output. 
Writes a message to all logged-in users. 
Sends messages to other users on the system. 

Sends messages to system users and displays messages from system users. 
Formats mail messages prior to sending. 
Sends and receives mail. 
Displays statistics regarding mail traffic. 
Routes mail for local or network delivery. 

Using the MH (Message Handling) Package 

ali 
anno 
ap 
burst 
comp 

48 
50 
53 
129 
185 

Lists mail aliases and their addresses. 
Annotates messages. 
Parses and reformats addresses. 
Explodes digests into messages. 
Composes a message. 

Task Index TASK-17 



conflict 
dist 
dp 
folder 
folders 
forw 
inc 
install-mb 
mark 
mhl 
mhmail 
mhpath 
msgchk 
msh 
next 
packf 
pick 
post 
prev 
prompter 
rcvdist 
rcvpack 
rcvstore 
rcvtty 
refile 
repl 
rmf 
rmm 
scan 
send 
show 
slocal 
sortm 
spost 
vmh 
whatnow 
whom 

TASK-I8 

196 
336 
352 
429 
433 
438 
518 
527 
637 
643 
646 
648 
675 
677 
694 
733 
748 
758 
765 
778 
808 
810 
812 
815 
817 
821 
839 
841 
871 
893 
942 
954 
965 
978 
1203 
1215 
1222 

Searches for alias and password conflicts. 
Redistributes a message to additional addresses. 
Parses and reformats dates. 
Selects and lists folders and messages. 
Lists folders and messages. 
Forwards messages. 
Incorporates new mail. 
Initializes the MH environment. 
Creates, modifies, and displays message sequences. 
Produces formatted listings of messages. 
Sends or receives mail. 
Prints full path names of messages and folders. 
Checks for messages. 
Creates an MH shell. 
Shows the next message. 
Compresses the contents of a folder into a file. 
Selects messages by content, and creates and modifies sequences. 
Delivers a message. 
Shows the previous message. 
Invokes a prompting editor. 
Sends a copy of incoming messages to additional recipients. 
Saves incoming messages in a packed file. 
Incorporates new mail from standard input into a folder. 
Notifies the user of incoming messages. 
Files messages in other folders. 
Replies to a message. 
Removes a folder. 
Removes messages. 
Produces a one line per message scan listing. 
Sends a message. 
Shows messages. 
Processes incoming mail. 
Sorts messages. 
Delivers a message. 
Invokes a visual interface for use with MH commands. 
Invokes a prompting interface for draft disposition. 
Lists the addresses of the proposed recipients of a message and verifies the 
addresses. 



Communicating with Other Systems 

connect 
ct 
cu 
Cvt 
sum 
uucheck 
uucheck 
uucico 
uucleanup 

uucp 
uulog 
uuname 
uucpadm 
uusched 
uustat 

uuto 

uutry, 
Uutry, 
uukick 
uux 
uuxqt 

198 
254 
263 
274 
1029 
1137 
1137 
1139 
1141 

1144 
1149 
1151 
1133 
1156 
1158 

1162 

1164 

1166 
1172 

Establishes a connection to a remote system. 
Dials an attached terminal and issues a login process. 
Connects directly or indirectly to another UNIX system. 
Moves old UUCP files into new BNU directories. 
Displays the checksum and block count of a file. 
Checks for files and directories required by BNU. 
Checks for files and directories required by BNU. 
File transport program for the BNU facility. 
Deletes selected files older than a specified number of hours from the BNU 
spool directory or a named directory. 
Copies files from one AIX system to another AIX system. 
Provides information about uucp and uux activities on a system. 
Provides information about other systems accessible to the local system. 
Enters basic uucp configuration information. 
Schedules work for the BNU file transport program. 
Reports the status of and provides rudimentary job control for BNU 
commands. 
Copies public files from one AIX system to another AIX system, with local 
system control of file access. 
Contacts a remote system with debugging turned on. 

Runs a command on another AIX system. 
Executes remote command requests. 

Developing Programs 

The following groups of commands are for use in programming. 

Programming in Assembler 

Assembles a source file. as 
sdb 

61 
875 Provides a symbolic debugger for C .and assembler programs. 

Programming in C 

cb 139. Puts C source code into a form that is easily read. 

Task Index TASK-I9 



cc 
cflow 
cpp 
cxref 
factor 
ipcrm 
m4 
lex 

lint 
regcmp 
sdb 
tic 
yacc 

140 
154 
210 
279 
416 
537 
603 
562 

577 
820 
875 
1067 
1237 

Compiles C programs. 
Generates a C flow graph of external references. 
Performs file inclusion and macro substitution on C Language source files. 
Creates a C program cross-reference listing. 
Factors a number. 
Removes message queue, semaphore set or shared memory identifiers. 
Preprocesses files, expanding macro definitions. 
Generates a C Language program that matches patterns for simple lexical 
analysis of an input stream. 
Checks C programs for potential problems. 
Compiles patterns. 
Provides a symbolic debugger for C and assembler programs. 
Translates terminfo files from source to compiled format. 
Generates a LR(l) parsing program from input consisting of a context-free 
grammar specification. 

Programming in Miscellaneous Languages 

bc 
bs 
ctags 
m4 
sno 

97 
118 
261 
603 
956 

Provides an interpreter for arbitrary-precision arithmetic language. 
Compiles and interprets modest-sized programs. 
Makes a file of tags to help locate objects in source files. 
Preprocesses files, expanding macro definitions. 
Provides a SNOBOL interpreter. 

Programming in Shell 

basename 
cron 
crontab 
csh 
echo 
env 
expr 
find 
getopt 
line 
nice 
nohup 
open 
sh 

- TASK-20 

95 
220 
222 
225 
369 
393 
412 
422 
485 
574 
699 
707 
728 
913 

Returns the base name of a string parameter. 
Runs commands automatically. 
Submits a schedule of commands to cron. 
Interprets commands read from a file or entered from the keyboard. 
Writes its arguments to standard output. 
Sets the environment for execution of a command. 
Evaluates arguments as expressions. 
Finds files matching expression. 
Parses command line flags and parameters. 
Reads one line from the standard input. 
Runs a command at a different priority. 
Runs a command without hangups and quits. 
Opens a virtual terminal. 
Interprets commands read from a file or entered at the keyboard. 



sleep 
tee 
test 
time 
true 
xargs 

952 
1060 
1064 
1068 
1099 
1232 

Suspends execution for an interval. 
Displays the output of a program and copies it into a file. 
Evaluates conditional expressions. 
Times the execution of a command. 
Returns an exit value of zero. 
Constructs argument lists and runs commands. 

Working with Messages 

dspcat 
dspmsg 
gencat 
gettext 
mkcatdefs 
puttext 
runcat 

357 
359 
470 
488 
651 
796 
852 

Displays all or part of a message catalog. 
Displays a selected message from a message catalog. 
Creates and modifies a message catalog. 
Extracts message/insert/help descriptions. 
Preprocesses a message source file. 
D pdates an output file that contains message/insert/help descriptions. 
Pipes data from mkcatdefs to runcat. 

Debugging Programs 

crash 
dbx 
dump 
dumpfmt 
od 
prof 
adb 
sdb 
time 
timex 
xdbx 

215 
284 
366 
368 
723 
773 
33 
875 
1068 
1069 
1236 

Examines system images. 
Provides a tool to debug and run programs under AIX. 
Dumps selected parts of an object file. 
Formats the VRM dump file. 
Writes the contents of storage to the standard output. 
Displays program profile data. 
Provides a general purpose debugger. 
Provides a symbolic debugger for C and assembler programs. 
Times the execution of a command. 
Times a command, and reports process data and system activity. 
Provides an overlaying X-Window application for the dbx symbolic debugger. 

Managing Source Programs Using the Source Code Control System (SCCS) 

admin 
cdc 
comb 
delta 
get 
help 

41 
152 
181 
310 
477 
513 

Creates and initializes SCCS files. 
Changes the comments in a Source Code Control System (SCCS) delta. 
Combines SCCS deltas. 
Creates a delta in a Source Code Control System file. 
Creates a specified version of a Source Code Control System (SeCS) file. 
Provides information about a Source Code Control System (SeCS) message 
or command or about certain non-SeCS commands. 

Task Index T ASK-21 



prs 
rmdel 
sact 
sccsdiff 
unget 
val 
what 

781 
837 
862 
874 
1116 
1175 
1213 

Displays a Source Code Control System (SCCS) file. 
Removes a delta from a Source Code Control System (SCCS) file. 
Displays current Source Code Control System (SCCS) file editing status. 
Compares two versions of a Source Code Control System (SCCS) file. 
Cancels a previous get command. 
Validates Source Code Control System (SCCS) files. 
Displays identifying information in files. 

Managing Object Files 

ar 
as 
dump 
ld 
lorder 
make 
nm 
prof 
size 
strip 
touch 
tsort 

55 
61 
366 
557 
591 
625 
705 
773 
949 
1017 
1077 
1102 

Playing Games 

Maintains portable libraries used by the linkage editor. 
Assembles a source file. 
Dumps selected parts of an object file. 
Links object files. 
Finds the best order for member files in an object library. 
Maintains up-to-date versions of programs. 
Displays the symbol table of an object file. 
Displays program profile data. 
Displays the section sizes of common object files. 
Removes symbol and line number information from a common object file. 
D pdates the access and modification times of a file. 
Sorts an unordered list of ordered pairs (a topological sort). 

The following groups of commands allow you to play games on the system. 

arithmetic 
back 
bj 
craps 
fish 
fortune 
hangman 
moo 
number 
quiz 
ttt 
turnon 
wump 

TASK-22 

59 
87 
117 
214 
427 
437 
512 
668 
721 
803 
1104 
1107 
1231 

Tests arithmetic skills. 
Plays backgammon. 
Plays blackj ack. 
Plays craps. 
Plays the card game Go Fish. 
Tells a fortune. 
Plays hangman, the word-guessing game. 
Plays a number-guessing game. 
Displays the written form of a number. 
Tests your knowledge. 
Plays tic-tac-toe. 
Turns on execute permission for games. 
Plays the game Hunt the Wumpus. 



I Special Characters I 

$- 925 
$! 924 
$$ 924 
$? 924 
$# 924 

abs command 988 
access times of a file, changing 1077 
accounting 

ASCII format 29 
ASCII summary format 19 
billing summary file 848 
binary summary format 19 
combining total accounting files 28 
connect 24 
daily 848 
disk 14 
line-usage summary 25 
login 15 
merging total accounting files 28 
monthly reports 15 
process 14, 30 
reports 15 
session 15 
shell procedures 13 
start 16 
turn off process 16 
usage summaries 18 

accounting commands 
acctcms 18 
acctcom 20 
acctconl 24 
acctcon2 25 

acctdisk 26 
acctdusg 26 
acctmerg 28 
accton 31 
acctprcl 30 
acctprc2 31 
acctwtmp 458 
chargefee 14 
ckpacct 14 
dodisk 14 
fwtmp 457 
lastlogin 15 
monacct 15 
nulladm 15 
prctmp 15 
prdaily 15 
prtacct 16 
runacct 848 
shutacct 16 
startup 16 
turnacct 16 
wtmpfix 458 

accounting file 15 
accounting files 

/usr/adm/acct/fiscal 15 
/usr/adm/acct/nite/active 848 
/usr/adm/acct/nite/ctmp 15 
/usr/adm/acct/nite/lastdate 848 
/usr/adm/acct/nite/lock 848 
/usr/adm/acct/nite/lockl 848 
/usr/adm/acct/nite/statefile 848 
/usr/adm/acct/sum 15 
/usr/adm/acct/sum/loginlog 15 
/usr/adm/acct/sum/rprt 15 
/usr/adm/fee 14 
/usr/adm/pacct 14 

acctcom 20 
accton 31 
ckpacct 14 
turnacct 16 

Index 

Index INDEX-l 



/usr/adm/wtmp 
acctcon1 24 

billing summary file 848 
creating 15 

accounting records 
ASCII 30 
ASCII format 24 
converting ASCII to binary 457 
converting binary to ASCII 457 
display 20 
examining connect records 457 
login session 24 
repairing wtmp records 458 
session 24 
total accounting login session 25 

accounting report, process 21 
accounting, disk usage 26 
acctcms command 18-19 
acctcom command 20-23 
acctcon1 command 24-25 
acctcon2 command 25 
acctdisk command 26 
acctdusg command 26-27 
acctmerg command 28-29 
accton command 31 
acctprc2 command 31 
acctwtmp command 458 
activity graph, system 865 
activity manager 32 
activity reporter, system 863, 867 
actman command 32 
adb command 33-40 
adding 

audit bin file 69 
devices 315 
groups 1129 
header flags, SCCS 45 
users 1129 
users, SCCS 45 

adduser command 1129-1132 
admin command 41-47 
Advanced Floating-Point Accelerator 143 
Advanced Processor Card 143 
af command 989 
AIX device driver 115 
AIX-KJ commands 

INDEX-2 

awk command 83, 84 
bs command 125 
cal command 132 
character class expressions 413, 423, 502, 
916 

cpio command 206 
csh command 225, 232 
ctab command 257,260 
cut command 270 
dd command 302 
delta command 312 
df command 319 
ed command 375 
expr command 413 
file command 420 
find command 423 
getty command 491 
grep command 502, 504 
lex command 564 
mkfs command 660 
od command 723 
pattern matching 375, 564 
sh command 916 
sort command 959 
tail command 1044 
tar command 1048 
tr command 1083 
translating characters 1083 
uname command 1114 
xargs command 1233 

ali command 48-49 
anno command 50-52 
ap command 53-54 
ar command 55-58 
arbitrary precision arithmetic 97 
arithmetic game 59-60 
arithmetic, shell variable 412 
as command 61-62, 143 
assembler 61 
assembling 

source code 
as 61 
asm 61 
cc 141 
masm 61 

at command 63-66 



audit command 67-68,77 
auditappend command 69-70,79 
auditbin command 71 
auditd command 72 
auditing commands 

audit 67 
auditapp 69' 
auditbin 71 
auditpr 73 
auditselect 76 
auditstream 78 
auditwrite 80 

auditpr command 73-75 
auditselect command 76 
auditstream command 78 
auditwrite command 80 
awk command 81-86 

back game 87 
backing up files 88 
backup command 88-93 
banner command 94 
bar command 1009 
basename command 95-96 
batch command 63-66 
bc command 97-101 
bdiff command 102-103 
bel command 509 
bellmail command 104 
belonging to different groups 506 
bffcreate command 108-109 
bfs command 110-113 
billing summary file, accounting 848 
biod command 114 
biodd-cfg command 115-116 
bj game 117 
blackjack game 117 
block count of a file, display 1029 
block I/O device driver 115 
branching from nonleaf deltas 481 
break command 931 
bs command 118-128 

bucket command 1001 
burst command 129-131 

C Language programming 
See also managing programs 
See also programming 
assembling source code 141 
commands 

ar 55 
as 61 
cb 139 
cc 140 
cflow 154 
cpp 210 
fcc 141 
lint 577 
vcc 141 
vrmfmt 141 

cross-reference listing 279 
files 

a.out 141 
formatting source code 139 
linking object files 141 
maintaining linkage libraries 55 
preprocessing source code 141 
syntax checking 577 

cal command 132-133 
calculating 

CPU factor 22 
CPU time 21 
hog factor 22 

calculator program 97 
calculator, desk 295 
calendar command 134-136 
calprog program 136 
case command 930 
case in Japanese Language Support 257 
cat command 137-138 
cb command 139 
cc command 140-149, 173 
cd command 150-151, 931 
cdc command 152-153 

Index INDEX-3 



CDPATH 922 
ceil command 991 
cflow command 154-155 
changing 

ASCII accounting records to binary 457 
binary accounting records to ASCII 457 
changing permission codes 160 
current directory 150 
devices 315 
files, SCCS 310 
format of a file 686 
group identification 689 
group ownership 156 
groups 1129 
login environment 689 
owner-ID of files or directories 169 
password 735 
primary group 689 
root directory 172 
SCCS delta comments 152 
system parameters 171 
users 1129 

changing Distributed Services ipc queues 
table 544 

changing Distributed Services network 
Users/Groups table 1109 

changing Distributed Services node table 685 
changing password table 801 
changing state values 361 
character class expressions (Japanese Language 
Support) 84, 125, 206, 257, 413, 423, 502, 916 

equivalence classes 
ctab command 257 

character classes 4 
chargefee command 14 
charting 

external references 154 
checkcw command 277 -278 
checkeq command 395-396 
checking process accounting files 14 
checking programs 

awk command 81 
bs 118 
cvid 272 
managing programs 

awk 81 

INDEX-4 

make 625 
messages 
miscellaneous languages 

ar 55 
awk 81 

checkmm command 663 
checksum of a file, display 1029 
chgrp command 156-157 

changing 
group ownership 156 

chkcomp command 158-159 
chmod command 160-163 
chng command 168 
chngstate command 164 
chown command 169-170 
chparm command 171 
chroot command 172-173 
chtcb command 174 
ckpacct command 14 
ckprereq command 533 
clearing an i-node 175 
clri command 175-176 
cmp command 177-178 
col command 179-180 
collating sequence 

collating sequence 
csh command 231 
ctab command 257 
sh command 916 
sort command 958 

csh command 231 
ctab command 257 
Ii command 568 
Is command 596 
NLCTAB environment variable 923 
sh command 916 
sort command 958 

colors 
setting active display palette 332 
setting background display 332 
setting foreground display 332 

comb command 181-182 
combining 

deltas, SCCS 181 
total accounting files 28 

comm command 183-184 



command execution environment 393 
command line flag parsing 485 
command usage summary 18 
commands 

See accounting commands 
See AIX-KJ commands 
See auditing commands 
See C Language programming 
See communication commands 
See controlled access mode commands 
See editors 
See filter commands 
See graphics commands 
See maintenance commands 
See managing programs, commands 
See Multi-User Services commands 
See programming 
See reading standard input 
See system group commands 
See text processing commands 
See writing to standard output 

comments in sees files, including kanji 
characters 312 

communication commands 
confer 189 
connect 198 
ct 254 
cu 263 
evt 274 
edconfig 385 
fmt 428 
mail, Mail 608 
mailstats 623 
mesg 642 
news 691 
rmail 836 
sendmail 897 
uucheck 1137 
uucico 1139 
uucleanup 1141 
uucp 1144 
uulog 1149 
uuname 1151 
uupick 1153 
uusched 1156 
uustat 1158 

uuto 1162 
uutry 1164 
uux 1166 
uuxqt 1172 
wall 1208 
who 1219 
300 1262 
4014 1264 
450 1265 

communication, interprocess status 539 
comp command 185-188 
comparing 

directories 
dircmp 328 

files 883 
bdiff 102 
cmp 177 
diff 320 
diffmk 326 
diff3 323 
dircmp 328 

sees files 874 
compilers 

bs 118 
cc 140 
sno 956 

compress program 971 
compressing files 730 
concatenate files 137 
concurrent groups 506 
conditional expressions, evaluating 1064 
confer command 189-193 
config command 194-195 
configuration information 194 
configuring 

block I/O device driver 115 
conflict command 196-197 
connect accounting 24 
connect command 198-201 
consistency check and repair of files 

dfsck command 447 
fsck command 445 

constant-width text 275 
constructing a file system 658 
contents of directory, listing 346, 567 
context split 252 

Index INDEX-5 



continue command 931 
controlled access mode commands 

audit 67 
auditapp 69 
auditbin 71 
auditpr 73 
audits elect 76 
auditstream 78 
auditwrite 80 
chtcb 174 
getty 491 
login 584 
logout 590 
tsh 1100 
watch 1209 

conversion routines 
fromnls 302 
fromsjis (Japanese Language Support) 302 
ton Is 302 
tosjis (Japanese Language Support) 302 

converting 
ASCII accounting records to binary 457 
binary accounting records to ASCII 457 
kanji characters 302 

copy command 202-204 
copying 

AIX files 
copy 202 
cp 202 

DOS files 
dosread 348 
doswrite 350 

cor command 1002 
cp command 202-204 
epio command 205-209 
cpp command 143, 210-213 
CPU factor computation 22 
CPU time computation 21 
craps game 214 
crash command 215-219 
creating 

C program cross-reference listing 279 
delta, SCCS 310 
mount table 911 
SCCS files 41 
special file 661 

INDEX-6 

specified version of an SCCS file 477 
cron command 220-221,848 

used with the sal command 864 
used with the sa2 command 864 

crontab command 222-224 
cross-reference listing, C; program 279 
csh command 225-251 
csplit command 252-253 
ct command 254-256 
ctab command 257-260 
ctags command 261-262 
cu command . 263-268 
current directory 
current directory, changing 150 
cusum command 991 
cut command 269-271 
cvid command 272-273 
cvrtopt command 509 
Cvt command 274 
cw command 275-278 

used in pipeline with nroff 710 
cxref command 279-280 

daemon, error-logging 398 
daemon, error-logging termination 404 
daemon, terminal logging 1072 
daemon, tlogger 1071 
daily accounting 848 
database operator 547 
date command 281-283, 356, 363 
dbx 1236 
dbx command 284-294 
dc command 295-298 
dcopy command 299-300 
dd command 301-305 
debugger, file system 450 
defining shell functions 931 
defkey command 306-307 
del command 308-309 
deleting 

delta from SCCS file 837 
devices 315 



directories 
rm 833 
rmdir 838 

DOS files 345 
files 

del 308 
rm 833 
skulker 951 

groups 1129 
repeated words 1118 
users 1129 
users, sees 45 

delta command 310-312 
delta summary of sees file 482 
deltas, branching from nonleaf 481 
deroff command 313-314 
description file, make command 630 
desk calculator 295 
device (special) files 

/dev/audit 78 
/dev/null 

acctcom 20 
standard input assigned to 20 

adding 315 
changing 315 
creating 661 
deleting 315 

device driver 
block I/O 115 

device name 316 
devices 
devices command 315 
devnm command 316-317 
df command 318 
dfsck command 447-449 
di command 567-573 
diagnostic 

token-ring 1097 
trdiag 1097 

diff command 177, 320-322 
diffmk command 326-327 
diff3 command 323-325 
dircmp command 328-329 
directories 

changing 
owner-ID 169 

comparing 
dircmp 328 

listing contents 
di 567 
DOS directories 346 
Ii 567 
Is 595 

removing 
rm 833 
rmdir 838 

directory 682 
change root 172 
changing 
changing current 150 
create 657 
moving 682 
renaming 682 
return path name 95 

directory contents, listing 346, 567 
dirname command 95-96 
disk usage accounting 26 
disk usage summary 364 
diskusg command 330-331 
display command 332-335 
display station 

changing DMA pinned page 333 
setting active color palette 332 
setting background colors 332 
setting fonts 332 
setting foreground colors 332 

displaying 
a calendar 132 
accounting report 15 
audit record 

auditpr 73 
auditselect 76 

audit trail 73 
compressed files 730 
connect accounting records 457 
contents of i-nodes 545 
corresponding group names and IDs 517 
corresponding user names and IDs 517 
curren t directory 800 
date 281 
documents formatted with the Memorandum 

Macros 663 

Index INDEX-7 



file checksum 1029 
files 110, 137 
forI?-atted files 744, 761 
logIn name 589 
news items 691 
packed files 730 
process accounting records 20 
process status 786 
profile data 773 
SCC.S file editing activity 862 
seSSIon record 15 
squeezed files 730 
system images 215 
system parameters 171 
total accounting report 16 

dist command 336-339 
Distributed Services 

dsldxprof 355 
dividing a file into pieces 974 
DMA channel, setting 910 
dodisk command 14 
dos command 341-344 
dosdel command 345 
dosdir command 346-347 
dosread command 348-349 
doswrite 350-351 
dp. command 352-353 
drill in arithmetic skills 59 
dsipc command 354 
dsldxprof command 355 
dspcat command 357-358 
dspmsg command 359-360 
dsstate command 361-362 
dsxlate command 363 
dtoc command 1074 
du command 364-365 
dump command 366-367 
dump, extracting error records 397 
dump, octal 723 
dumpfmt command 368 

INDEX-8 

echo command 369-370 
ed command 371-384 
edconfig command 385-386 
edit command 387-392 
editors 

ed 371 
edit 387 
ex 407 
ged 463 
red 371 
sed 887 
tvi 1108 
vedit 1187 
vi 1187 
view 1187 

egrep command 501-505 
end a process 552 
env command 393-394 
environment, changing login 689 
eqn command 395,396 

constructs removed by the deroff 
command 313 

used in pipeline with nroff 710 
used with tbl 1053 

erase command 461 
errdead command 397 
errdemon command 398-399 
error-logging daemon 398 
error-logging daemon termination 404 
error records extraction from dump 397 
error report 400 
errpd command 399, 403 
errpt command 400-403 
errs top command 404 
errupdate 406 
errupdate command 405 
eval command 932 
evaluating expressions 

expr 412 
test 1064 

ex command 407-411 
examining 

connect accounting records 457 



contents of i-nodes 545 
files 110 
system images 215 
system parameters 171 

exec command 932 
exercising link system call 575 
exit command 932 
exp command 992 
expanding packed files 730 
export command 932 
expr command 412-415 
expression evaluation 412 
extended character support 

See international character support 
external references, flow graph 154 
extract error records from dump 397 

factor command 416 
factoring a number 416 
false command 1099 
fcc command 141 
ff command 417-419 
fgrep command 501-505 
file 

display checksum 1029 
file command 420-421 
file formats 

acct 18,30 
ar 55 
backup 88 
tacct 28 
utmp 458 
wtmp 458 

file pattern search 501 
file system 

See also device (special) files 
See also maintenance commands 
See also system files 
backing up 88 
make available for use 669 
make unavailable for use 1112 
making 658 

moving a directory 682 
renaming a directory 682 
unmount 1112 

file system debugger 450 
files 

See also accounting files 
See also device (special) files 
See also managing programs, files 
See also system files 
a.out 141 
auditing files 
backing up 88 
calendar 134 
changing 

owner-ID 169 
checking consistency 

dfsck command 447 
fsck command 445 

comparing 883 
cmp 177 
diff 320 
diffmk 326 
diff3 323 
dircmp 328 

comparing large files 102 
compressing 730 
concatenating 137 
copying 

AIX files 202 
DOS files 348, 350 

creating sees files 41 
deleting 

del 308 
DOS files 345 

determining type 420 
displaying 137 
displaying formatted files 744, 761 
expanding 730 
finding 422 
identifying the processes using a file 455 
initializing sees files 41 
linking 581 
merge lines 736 
merging 958 
modifying the user mask 1110 
naming sees files 43 

Index INDEX-9 



packing 730 
parallel merging 736 
removing 

rm 833 
skulker 951 

repairing 
dfsck command 447 
fsck command 445 

repairing damage 215 
return base name 95 
scanning 110 
searching 110 
searching for a pattern 501 
serial merging 736 
setting file-creation permission code 
mask 1110 

sorting 958 
squeezing 730 
text 

changing the format 686 
transforming 301 
translating 301 
unpacking 730 
unsqueezing 730 
writing the last part 1044 
3-way comparison 323 

filter commands 
acctcom 20 
acctcon1 24 
acctmerg 28 
awk 81 
bdiff 102 
cb 139 
cmp 177 
col 179 
comb 181 
cw 275 
definition of 914 
fwtmp 457 
hp 514 
nl 701 
nroff 710 
paste 736 
ptx 794 

INDEX-tO 

tbl 1053 
troff 710 
wtmpfix 458 

find command 422, 426 
acctdusg 26 

find hyphenated words 516 
find necessary order of files in an object 
library 591 

fish game 427 
fixed minidisk information 650 
Floating-Point Accelerator 143 
floating point configuration 444 
floor command 992 
flow graph of external references 154 
fmt command 428 
folder command 429-432 
folders command 433-435 
fonts 

setting virtual terminal 332 
for command 930 
format command 436 
formats 

See file formats 
formatting C Language source code 139 
formatting text 

constant-width text 275 
for a phototypesetter 709 
for a printing device 709 
inverse line feeds and half-line feeds 179 
mathematical text 395 
tables for nroff, troff 1053 

fortune game 437 
forw command 438-443 
forwarding mail 105 
fptype command 444 
free disk space, reporting 318 
fromnls conversion routine 302, 303 
fromsjis conversion routine (Japanese Language 
Support) 302, 303 

fsck command 445-449 
fsdb command 175, 450-454 
fuser command 455-456 
fwtmp command 457 



games 
arithmetic 59 
back 87 
backgammon 87 
bj 117 
blackjack 117 
craps 214 
fish 427 
fortune 437 
hangman 512 
man 635 
moo 668 
number 721 
quiz 803 
ttt 1104 
wump 1231 

gamma command 993 
gd command 510 
gdev commands 460-462 
ged command 463-469 
gencat command 470-474 
gend command 475-476 
generating C program cross-reference 
listing 279 

generating names from i-numbers 683 
get command 310, 311, 477-484 
getopt command 485-487 
gettext command 488-489 
getty command 490-493 
going to maintenance mode 946 
graph command 494-496 
graph, system activity 865 
graphical editor 463 
graphics command 497-498 
graphics commands 

abs 988 
af 989 
bar 1009 
bel 509 
bucket 1001 
ceil 991 
cor 1002 
cusum 991 

cvrtopt 509 
dtoc 1074 
erase 461 
exp 992 
floor 992 
gamma 993 
gd 510 
ged 463 
gend 475 
graph 494 
graphics 497 
gtop 510 
hardcopy 461 
hilo 1003 
hist 1010 
hpd 460 
label 1011 
list 993 
log 994 
lreg 1004 
mean 1005 
mod 995 
pair 996 
pd 510 
pie 1012 
plot 1014 
point 1006 
power 997 
prime 986 
prod 1006 
ptog 510 
qsort 1007 
quit 510 
rand 987 
rank 1007 
remcom 510 
root 997 
round 998 
siline 999 
sin 1000 
spline 972 
subset 1000 
td 461 
tekset 461 
title 1016 
total 1008 

Index INDEX-II 



tplot 1079 
ttoc 1075 
utility commands 508 
var 1008 
vtoc 1075 
whatis 511 

graphing 
external references 154 

greek command 499-500 
grep command 501-505 
group 

adding 1129 
changing 1129 
deleting 1129 

group identification, changing 689 
group IDs and names, displaying 517 
group membership 506 
group membership, display 506 
groups command 506-507 
gtop command 510 
guess a word 512 

hangman game 512 
hardcopy command 461 
hash command 932 
hashcheck command 970 
hashmake command 970 
header flags, SCCS 43, 45 
help command 513 
hilo command 1003 
hist command 1010 

. hog factor computation 22 
HOME 922 
hp command 514-515 
hpd command 460-461 
hyphen command 516 
hyphenated words 516 

INDEX-12 

~-node content, displaying 545 
I-node examination 545 
i-numbers 

generating names 683 
I/O counts 22 
id command 517 
if command 930 
IFS 924 
inc command 518-520 
init command 521-523 
initialization, normal startup 806 
initializing 

SCCS files 41 
install command 524-526 
install-mh command 527-528 
installp command 529-536 
interactive processor 97 
international character support 

at command 64 
batch command 64 
collating sequence 
csh command 231 
ctab command 257 
dd command 302 
dfsck command 447 
equivalence classes 
fsck command 447 
fsdb command 452 
Ii command 568 
Is command 596 
od command 724 
print command 770 
ps command 787 
sh command 923 
sort command 958 
stty command 1023 

interpolating a smooth curve 972 
interpreters 

bc 97 
bs 118 
sno 956 

Int~rproces~ Communication key mapping 
Installation 354 



interprocess communication status 539 
inudocm command 1125-1126 
inuupdt command 1127 
ipc queues table 

access 544 
ipcrm command 537-538 
ipcs command 539-543 
ipctable command 544 
istat command 545-546 

join command 547-550 
j oinconf command 189 
joining database files 547 
joint editing of an sees file 482 

kanji characters, used in variable names 83 
kcore minutes, definition 19 
keyboard command 551 
keyboard, redefine 306 
kill all nonancestral processes 555 
kill command 552-554 
kill all command 555 

label command 1011 
language support 

See international character support 
lastlogin command 15 
ld command 143, 557-561 
lex command 562-566 
Ii command 567-573,838 
LIBPATH 922 
library maintainer 55 

library search order 144 
line command 574 
line editor 371 
line numbering filter 701 
line printer back end 593 
link command 575-576 
link library maintaining 55 
linkage editor 557 
linking 

files 581 
object files 

cc 141 
ld 557 

lint command 577-580 
list command 993 
listing 

directory contents 
di 567 
Ii 567 
Is 595 

DOS directory contents 346 
file names for a file system 417 
statistics for a file system 417 

In command 581-582 
locator command 583 
log command 994 
logged error report 400 
login command 584-586 
login environment, changing 689 
login names 491 
login session records 24 
loginx command 587 -588 
LOGNAME 922 
logname command 589 
logout command 590 
looking at 

connect accounting records 457 
contents of i-nodes 545 
files 110 
system images 215 
system parameters 171 

lorder command 591-592 
lp command 593-594 
lreg command 1004 
Is command 595-599 

Index INDEX-13 



m4 command 603, 607 
macroprocessor 603 
MAIL 922 
mail command 107 
mail, Mail command 608-622 
MAILCHECK 922 
MAILMSG 923 
MAILPATH 922 
mailstats command 623-624 
maintaining groups of programs 625 
maintaining linkage libraries 55 
maintenance commands 

backup 88 
clri 175 
cpio 205 
mount 669 
umount 1112 
unmount 1112 

maintenance mode, going to 946 
make a directory 657 
make a tags file 261 
make command 625-631 
makekey command 634 
making a file system 658 
making two files the same 102 
man pubs 635-636 
manager, virtual terminals 32 
managing programs 

See also programming 
See also SCCS 
commands 

admin 41 
cdc 152 
comb 181 
delta 310 
get 477 
help 513 
prs 781 
sact 862 
sccsdiff 874 
unget 1116 
val 1175 
what 1213 

INDEX-14 

files 
auxiliary files 478 
creating a delta 310 
g-file 43, 310, 311, 477, 478 483 
I-file 478, 482 ' 
lock file 43 
p-file 478, 479, 482 
s-file 478 
x-file 43 
z-file 43, 478 

make 625 
security management 

auditbin command 71 
auditstream command 78 

z-file 479 
mant command 666 
mark command 637-639 
marking differences between files 326 
mdrc command 640-641 
mean command 1005 
membership, display group 506 
merging files 958 
merging lines in files 736 
merging total accounting files 28 
mesg command 642 
Message Handling commands 

ali 48 
anno 50 
ap 53 
burst 129 
comp 185 
conflict 196 
dist 336 
dp 352 
folder 429 
folders 433 
forw 438 
inc 518 
install-mh 527 
mark 637 
mhl 643 
mhmail 646 
mhpath 648 
msgchk 675 
msh 677 
next 694 



packf 733 
pick 748 
post 758 
prev 765 
prompter 778 
rcvdist 808 
rcvpack 810 
rcvstore 812 
rcvtty 815 
refile 817 
repl 821 
rmf 839 
rmm 841 
scan 871 
send 893 
show 942 
slocal 954 
sortm 965 
spost 978 
vmh 1203 
whatnow 1215 
whom 1222 

message queue removal 537 
messages, permitting 642 
messages, refusing 642 
messages, send 104 
messages, sending 1225 
MH commands 

See Message Handling commands 
mhl command 643-645 
mhmail command 646-647 
mhpath command 648-649 
minidisks 650 
minidisks command 650 
mkcatdefs command 651-656 
mkdir command 657 
mkfs command 658-660 
mknod command 661-662 
mm command 663-665 
mmt command 666-667 
mod command 995 
modification request number 311 
modification times of a file, changing 1077 
modifying 

changing permission codes 160 
current directory 150 

devices 315 
files, sees 310 
group identification 689 
group ownership 156 
groups 1129 
login environment 689 
owner-ID of files or directories 169 
password 735 
primary group 689 
root directory 172 
sees delta comments 152 
system parameters 171 
users 1129 

modifying access times of a file 1077 
modifying modification times of a file 1077 
monacct command 15 
moo game 668 
mount a file system 669 
mount command 669-673 
mount table, creating 911 
mountd command 674 
move command 679-681 
moving a directory 682 
moving files 679 
msgchk command 675-676 
msh command 677 -678 
mt command 666 
Multi-User Services commands 

acctcms 18 
acctcom 20 
acctcon1 24 
acctcon2 25 
acctdisk 26 
acctdusg 26 
acctmerg 28 
accton 31 
acctprcl 30 
acctprc2 31 
acctwtm p 458 
chargefee 14 
ckpacct 14 
dodisk 14 
fwtmp 457 
id 517 
lastlogin 15 
mesg 642 

Index INDEX-I5 



monacct 15 
nulladm 15 
prctmp 15 
prdaily 15 
prtacct 16 
runacct 848 
sar 867 
shutacct 16 
startup 16 
turnacct 16 
who 1219 
wtmpfix 458 
300 1262 
4014 1264 
450 1265 

mv command 679-681 
mvdir command 682 
mvmd command 534-535 
mvt command 666 

ncheck command 683-684 
ndtable command 685 
neqn command 395-396 

used with tbl 1053 
network Users/Groups table 

access 1109 
newform command 686-688 
newgrp command 689-690,933 
news command 691-693 
n ext command 694-695 
nice command 699-700 
nl command 701-704 
NLCTAB 923 
nm command 705-706 
node table 

access 685, 801 
nohup command 707-708 
normal startup initialization 806 
nroff command 709-720 

tbl, preprocessor 1053 
nulladm command 15 
number factoring 416 

INDEX-I6 

number game 721 
numbering lines 701 

object library 
ordering relation 591 

octal dump 723 
od command 723-725 
open command 728, 729 

used after actman command 32 

pack command 730-732 
packf command 733-734 
pair command 996 
parallel merging of lines in files 736 
parameters 

work station 
erase 490 
kill 490 
logmodes 490 
owner 492 
parity 490 
program 492 
protection 492 
runmodes 490, 491, 492 
special purpose options 492 
speed 490 

parameters, setting work station 1018 
terminal mapping 1023 

parsing command line flags 485 
passwd command 735 
password table 801 
password, change 735 
passwords, characteristics 
paste command 736-738 
PATH 923 
path name, return directory 95 
pattern matching 



wtmpfix 458 
readonly command 933 
recovering from a system crash 215 
red command 371 
redefine keyboard 306 
refile command 817-819 
refusing messages 642 
regcm p command 820 
rej ecting lines common to two sorted files 183 
relational database operator 547 
remcom command 510 
reminder service 134 
remote system mail 836 
remote system, connection 198 
remotely-settable hardware tabs 1041 
remove a message queue 537 
remove a semaphore set 537 
remove a shared memory id 537 
remove command 16 
removing 

delta from sees file 837 
devices 315 
directories 

rm 833 
rmdir 838 

DOS files 345 
files 

del 308 
rm 833 
skulker 951 

groups 1129 
repeated words 1118 
users 1129 
users, sees 45 

renaming a directory 682 
renaming files 679 
repairing damaged files 215 
repairing wtmp records 458 
repeated words, deleting 1118 
repl command 821-825 
report process data and system activity 1069 
report, process accounting 21 
reporting free disk space 318 
reports 

sees 182 
reports, accounting 

restarting tlogger daemon 1071 
restore command 826-831 
return base file name or directory path 
name 95 

return command 933 
returning a true or false value 1099 
rexd command 832 
rm command 833-835, 838 
rmail command 836 
rmdel command 837 
rmdir command 838 
rmf command 839-840 
rmm command 841-842 
root command 997 
root directory, changing 172 
round command 998 
rpcgen command 843 
rpcinfo command 845 
rsh command 935 
rsprayd command 983 
rstatd command 847 
runacct command 848-851 
runcat command 852-853 
running a command at low priority 699 
running commands at a later time 63 
rup command 854 
rusers command 856 
rusersd command 858 
rwall command 859 
rwalld command 861 

sact command 862 
sadc command 863-864 
sag command 865-866 
sar command 867 -870 
saving files 88 
sal command 863-864 
sa2 command 863-864 
scan command 871-873 
scanning files 110 
sees 

branching from leaf deltas 481 

Index INDEX-I9 



changing delta comments 152 
checking the structure of SCCS files 45 
comments, including kanji characters 312 
creating a file 41 
creating a specified version of a file 477 
Data Keywords 781 
delta summary 482 
getting help information 513 
header flags 43 
identification keywords 480 
initializing a file 41 
interpreting errors 513 
joint editing of files 482 
modification request (MR) number 46, 311 
Modification Requests 152 
naming a file 43 
recalculating the SCCS file checksum 46 
removing a delta 837 
reports 182 
SID (SCCS Identification) 311 
specifying version date cutoff 482 

sccsdiff command 874 
scheduling commands 63 
scheduling queue requests 802 
sdb command 875-882 
sdiff command 883-884 
search order, library 144 
searching files 110 
secure command 885-886 
sed command 887 -892 
segment files 252 
selecting fields from a file 269 
selecting lines common to two sorted files 183 
semaphore set removal 537 
send command 893-896 
sending messages 104, 1225 
sendmail command 897 -909 
serial merging of lines in files 736 
session records 24 
set command 485, 933 
set environment 393 
setdma command 910 
setmnt command 911-912 
setting DMA channel 910 
setting file-creation permission code 
mask 1110 

INDEX-20' 

setting port characteristics 490 
setting tabs on a work station 1041 
setting the date 281 
setting the parameters for a work station 1018 
sh command 913-937 

See also shell 
command line separators and 
terminators 914 

SHACCT 924 
shared memory id removal 537 
shell 924 

actman 32 
blank interpretation 930 
built-in commands 931 
command environment 919 
command execution 914 
command-line substitution 917 
command substitution 925 
conditional substitution 920 
control commands 930 
diagnostic output 927 
file descriptors 926 
file-name substitution 916 
inline input documents 928 
positional parameters 918 
predefined special variables 
profile file 915 
quoting mechanisms 925 
redirection of input and output 926, 930 
running the shell 935 
shell variables 

$- 925 
$! 924 
$$ 924 
$? 924 
$# 924 
CDPATH 922 
HOME 922 
IFS 924 
LIBPATH 922 
LOGNAME 922 
MAIL 922 
MAILCHECK 922 
MAILMSG 923 
MAILP A TH 922 
NLCTAB 923 



PATH 923 
PSI 923 
PS2 923 
SHACCT 924 
SHELL 924 
TIMEOUT 924 

signals 915 
standard input and output 926 
subshell 915 
summary of redirection options 929 
user-defined variables 918 
variables 917 

shell command 938 
shell environment 491 
shell procedures for accounting 13 
shell variable arithmetic 412 
shift command 934 
shlib command 939-941 
show command 942-944 
show login records 15 
showing 

a calendar 132 
accounting report 15 
audit record 

auditpr 73 
auditselect 76 

audit trail 73 
compressed files 730 
corresponding group names and IDs 517 
corresponding user names and IDs 517 
current directory 800 
date 281 
documents formatted with the Memorandum 
Macros 663 

file checksum 1029 
formatted files 744, 761 
login name 589 
news items 691 
packed files 730 
process accounting records 20 
process status 786 
profile data 773 
SCCS file editing activity 862 
session record 15 
squeezed files 730 
total accounting report 16 

showmount command 945 
shutacct command 16 
shutdown command 946-948 
shutting down the system 946 
siline command 999 
sin command 1000 
sinstallck command 1036 
size command 949-950 
skulker command 951 
sleep command 952-953 
slocal command 954-955 
sno command 956-957 
sort command 958-964 
sorting characters (Japanese Language 
Support) 959 

sorting files 958 
sortm command 965-966 
sound command 967 -968 
source code 

external references flow graph 154 
Source Code Control System 

See SCCS 
special (device) files 

/dev/audit 78 
/dev/null 

acctcom 20 
standard input assigned to 20 

adding 315 
changing 315 
creating 661 
deleting 315 

specifying version date cutoff 482 
spell command 969-971 
spellin command 970 
spellprog program 971 
spline command 972-973 
split command 974 
split files by context 252 
splitting a file into pieces 974 
splp command 975-977 
spost command 978-980 
spray command 981 
squeezing files 730 
standard input 

acctconl 24 
acctmerg 28 

Index INDEX-21 



as 61 
at 63 
awk 81 
batch 63 
bdiff 102 
cb 139 
cmp 177 
comb 181 
fwtmp 457 
wtmpfix 458 

standard output 
acctcon1 24 
acctmerg 28 
acctwtmp 458 
awk 81 
bdiff 102 
cal 132 
cb 139 
cflow 154 
cmp 177 
comb 181 
fwtmp 457 
wtmpfix 458 

start accounting functions 16 
starting up the system 521 
startup command 16 
startup initialization 806 
startup shell 

actman 32 
stat commands 984-1016 
state values 

changing 361 
status of interprocess communication 539 
stop a process 552 
stopping error-logging daemon 404 
stopping tlogger daemon 1071 
stream editor 887 
strings 94 
strip command 1017 
stty command 1018-1025 
su command 1026-1028 
subset command 1000 
sum command 1029 
summarize disk usage 364 
summary of command usage 18 
superblock update 1030 

INDEX-22 

superuser authority 770, 771, 1050, 1159 
biodd-cfg 115 
commands 

adduser 1129 
at 63 
chmod 160 
chroot 172 
ckprereq 533 
cpio 206 
crontab 222 
cvid 272 
date 281 
devices 315 
dfsck 447 
errdemon 398 
errstop 404 
fsck 446 
installc 166 
installp 529 
killall 555 
mesg 642 
mini disks 650 
mount 669 
mvmd 534 
nice 699 
passwd 735 
print 770 
removing scheduled jobs 64 
rm 833 
shown in report 21 
shutdown 946 
tar 1049 
tlog 1071 
updatec 167 
updatep 1122 
users 1129 
uustat 1159 

dsipc 354 
dsldxprof 355 
dsstate 361 
dsxlate 363 
ipctable 544 
ndtable 685 
pwtable 801 
removing files 833 
ugtable 1109 



suspend a process 552 
sync command 1030 
syntax checking, C programs 577 
sysck command 1031 
syslogd command 1037-1039 
system activity graph 865 
system activity reporter 863, 867 
system files 

$HOME/.profile 1027 
/dev/null 

expr 415 
/etc/.ilog 585, 1220 
/etc/budate 

mount 90 
/etc/environment 523, 585 
/etc/filesystems 272, 446, 456, 658 

cvid 272 
mount 89,669,670 

/etc/group 1129 
groups 506 

fetc/magic 420 
/etc/mnttab 

mount 669 
umount 1113 

/etc/ogroup 1129 
/etc/opasswd 1129 
/etc/passwd 585, 1026, 1027, 1129 

acctdisk 27 
acctprc1 30 
groups 506 

/etc/portstatus 522, 742, 792 
/etc/profile 1027 
/etc/qconfig 754 
/etc/rasconf 398 
/usr/adm/sulog 1026 
/usr/adm/user.cfile 1129, 1131 
/usr/adm/wtmp 458, 1220 
/usr/games/lib/backrules 87 
/usr/lib/cron/at.allow 63 
/usr/lib/cron/at.deny 63 
/usr/lib/eign 795 
/usr/lib/terminfo 746 
/usr/lib/tmac 313 

a.out 61 
connect. con 198 
group 423,689 
passwd 423, 689 
ports 741, 791, 1220 
portstatus 741, 791 
utmp 1220 

system group commands 
adduser 1129 
backup 88 
biodd-cfg 115 
ckprereq 533 
cvid 272 
date 281 
devices 315 
dsipc 354 
dsldxprof 355 
dsstate 361 
dsxlate 363 
installc 166 
installp 529 
i pctable 544 
mini disks 650 
mount 669 
mvmd 534 
ndtable 685 
print 770 
pwtable 801 
turnoff 1107 
turnon 1107 
ugtable 1109 
updatec 167 
users 1129 

system image examination 215 
system parameters, changing or examining 171 
system procedures 

restarting the terminal-logging 
daemon 1071 

starting the error-logging daemon 398 
starting the terminal-logging daemon 1072 
stopping the terminal-logging daemon 1071, 

1072 
system startup 521 

Index INDEX-23 



tab command 1040 
tabs command 1041-1043 
tail command 1044-1046 
tape archiver 1048 
tapechk command 1047 
tar command 1048-1052 
tbl command 1053, 1055 

descriptions removed by the deroff 
command 313 

used in pipeline with nroff 710 
tc command 1056-1057 
tctl command 1058-1059 
td command 461-462 
tee command 1060-1061 
tekset command 461 
termdef command 1062 
terminal characteristics 1062 
terminal-logging daemon 1072 
terminal mapping 1023 
terminals 

DASI300 1262 
DASI 300s 1262 
DASI450 1265 
Diablo 1620 1265 
HP2621 514 
HP2640 514 
phototypesetter simulator 1056 
Tektronix 4014 1056, 1264 
Xerox 1700 1265 

terminals, multiple virtual 32 
terminating error-logging daemon 404 
terminating tlogger daemon 1071 
test command 934, 1064-1066 
text file, changing the format of 686 
text processing commands 

checkcw 275 
checkeq 395 
checkmm 663 
col 179 
cw 275 
eqn 395 
eqncheck 395 
greek 499 

INDEX-24 

mant 666 
mm 663 
mmt 666 
mt 666 
mvt 666 
neqn 395 
nroff 709 
spell 969 
tbl 1053 
troff 710 

tic command 1067 
time a command 1068 1069 
time command 1068 ' 
TIMEOUT 924 
times command 934 
timex command 1069-1070 
title command 1016 
tlog command 1071, 1073 
tlogger command 1072-1073 
tlogger daemon 1071 
toc commands 1074-1076 
tonls conversion routine 302 303 
tosjis conversion routine (Jap~nese Language 
Support) 302, 303 

total command 1008 
touch command 1077-1078 
tplot command 1079-1080 
tput command 1081-1082 
tr command 1083-1085 
trace command 1086-1090 
translate characters 1083 
translate profile 
trap command 934 
trcrpt command 1091-1092 
trcstop command 1093 
trcupdate command 1094-1096' 
trdiag command 1097 -1098 
troff command 710, 720 

requests removed by thederoff 
command 313 

tbl, preprocessor 1053 
true command 1099 
tsh command 1100-1101 
tsort command 1102-1103 
ttoc command 1075 
ttt game 1104 



tty command 1105-1106 
turn off process accounting 16 
turn on accounting functions 16 
turnacct command 16 
turning the computer off 946 
turnoff command 1107 
turn on command 1107 
tvi command 1108 
type command 934 

uadm command 1133-1136 
ugtable command 1109 
ulimi t command 934 
umask command 935, 1110-1111 
umount command 1112-1113 
uname command 1114-1115 
unget command 1116-1117 
uniq command 1118 
units command 1119-1121 
unlink 575 
unlink command 576 
unmount command 1112-1113 
unmounting a file system 1112 
unpack command 730-732 
unset command 935 
untab command 1040 
until command 931 
update a program 1127 
update groups of programs 625 
updatep command 1122-1128 
updating access times of a file 1077 
updating modification times of a file 1077 
updating the superblock 1030 
usage, command summary 18 
user 

adding 1129 
adm 15 
changing 1129 
deleting 1129 

user IDs and names, displaying 517 
user mask, modifying 1110 
userid 

adm 848 
root 552, 848, 1026, 1027 

users command 1129-1132 
uSIng 

display station features 332 
uucheck command 1137-1138 
uucico command 1139-1140 
uucleanup command 1141-1143 
uucp command 1144-1148 
uulog command 1149-1150 
uuname command 1151-1152 
uupick command 1153-1155 
uusched command 1156-1157 
uustat command 1158-1161 
uuto command 1162-1163 
uutry command 1164-1165 
uux command 1166-1171 
uuxqt command 1172-1173 

val command 1175-1176 
var command 1008 
varyoff command 1177-1179 
varyon command 1180-1181 
vc command 1182-1185 
vcc command 141 
vedit command 1187-1202 
verify command 1186 
version date cutoff, specifying 482 
vi command 1187 -1202 
view command 1187 -1202 
virtual terminal 

assigning default display 332 
assigning physical display 332 
changing DMA pinned page 333 
setting active color palette 332 
setting background colors 332 
setting fonts 332 
setting foreground colors 332 

virtual terminal manager 32 
vmh command 1203-1204 
vrmconfig command 1206-1207 
vrmfmt command 141 

Index INDEX-25 

, 



vrm2rtfont command 1205 
vtoc command 1075 

wait command 935 
wall command 1208 
watch command 1209 
wc command 1211-1212 
what command 1213-1214 
whatis command 511 

utility commands 511 
whatnow command 1215-1218 
while command 931 
who command 1219-1221 
whom command 1222-1224 
work station characteristics 1062 
work station parameters, setting 1018 
work stations 

DASI 300 1262 
DASI300s 1262 
DASI450 1265 
Diablo 1620 1265 
HP2621 514 
HP2640 514 
phototypesetter simulator 1056 
Tektronix 4014 1056, 1264 
Xerox 1700 1265 

write command 1225-1229 
write operations 22 
writesrv command 1230 
writing audit records 80 
writing buffered files to fixed disk 1030 
writing the last part of a file 1044 
writing to standard output 

acctcon1 24 
acctmerg 28 
acctwtm p 458 
awk 81 

INDEX-26 

bdiff 102 
cal 132 
cb 139 
cflow 154 
cmp 177 
comb 181 
fwtmp 457 
wtmpfix 458 

wtmpfix command 458 
wump game 1231 

X windows 1236 
xargs command 1232-1235 
xdbx command 1236 

yacc command 1237 -1238 
ypbind daemon 1239 
ypinit command 1243 
yppasswd command 1247 
yppasswdd command 1249 
yppoll command 1251 
yppush command 1252 
ypserv daemon 1256 
ypwhich command 1258 
ypxfr command 1260 

I Numerics I 

300 command 1262-1263 
4014 command 1264 
450 command 1265-1266 



acctcom 22 
awk 81 

pattern matching (Japanese Language 
Support) 232 

pattern, search for 501 
pca t command 730-732 
pd command 510 
pdelay command 791-793 
pdisable command 741-743 
penable command 791-793 
perform disk accounting functions 14 
perform monthly accounting 15 
performing process accounting 30 
permission codes, changing 160 

changing 
permissions 160 

permitting messages 642 
pg command 744-747 
phold command 741-743 
pick command 748-752 
pie command 1012 
piobe command 753-756 
pipe fitting 1060 
pipeline 

asynchronous execution 914 
conditional execution 914 
definition of 914 
sequential execution 914 

plot command 1014 
point command 1006 
port characteristics 490 
port characteristics, setting 490 
portmap 757 
post command 758-760 
power command 997 
pr command 761-764 
prctmp command 15 
prdaily command 15, 848 
precision arithmetic 97 
preprocessing 

source code 
cc 141 
cpp 210 

preprocessor 
macro 603 

prev command 765-766 

primary group 506 
primary group, changing 689 
prime c6mmand 986 
print command 767-772 
printer back end 593 
printing 

a calendar 132 
-accounting report 15 
audit record 

auditpr 73 
auditselect 76 

audit trail 73 
compressed files 730 
corresponding group names and IDs 517 
corresponding user names and IDs 517 
current directory 800 
date 281 
documents formatted with the Memorandum 
Macros 663 

file checksum 1029 
formatted files 744, 761 
login name 589 
news items 691 
packed files 730 
process accounting records 20 
process status 786 
profile data 773 
sees file editing activity 862 
session record 15 
squeezed files 730 
total accounting report 16 

priority, running a command 699 
process a report of logged errors 400 
process accounting 30 
process accounting records, display 20 
process accounting report 21 
process accounting, turn off 16 

/usr/adm/wtmp 
shutacct 16 

process suspension 552 
prod command 1006 
producing e program cross-reference 
listing 279 

prof command 144, 773-774 
profiler commands 775 
profiling the operating system 775 

Index INDEX-17 



program checking, C programs 577 
program maintenance 625 
program update 1127 
program updating 625 
programming 

See also managing programs 
assembler 

as 61 
assembling source code 141 
C Language 

cb 139 
cc 140 
cflow 154 
cpp 210 
fcc 141 
formatting source code 139 
lint 577 
vcc 141 
vrmfmt 141 

debugging programs 
files 

a.out 141 
linking object files 141 
preprocessing source code 141 
the shell 

programs, checking 
awk command 81 
bs 118 
cvid 272 
managing programs 

awk 81 
make 625 

messages 
miscellaneous languages 

ar 55 
awk 81 

prompter command 778-779 
proto command 780 
prs command 781-785 
prtacct command 16 
ps command 786-790 
pshare command 791-793 
pstart command 791-793 
PSI 923 
PS2 923 
ptecms.awk program 17 

INDEX-IS 

ptelus.awk program 17 
ptog command 510 
ptx command 794-795 
puttext command 796-797 
pwck command 798-799 
pwd command 800, 933 
pwtable command 801 

qdaemon command 802 
qsort command 1007 
query terminal characteristics 1062 
quit command 510 
quiz game 803-805 

rand command 987 
rank command 1007 
rc command 806, 807 

startup 16 
rcvdist command 808-809 
rcvpack command 810-811 
rcvstore command 812-814 
rcvtty command 815-816 
read command 933 
read operations 22 
reading one line 574 
reading standard input 

acctconl 24 
acctmerg 28 
as 61 
at 63 
awk 81 
batch 63 
bdiff 102 
cb 139 
cmp 177 
comb 181 
fwtmp 457 


