

IBM RT PC Advanced Interactive Executive Operating System

AIX Operating System
Programming Tools and
Interfaces
Programming Family :. · .. , : --~-

--...- ------ -- - - --- - -- -. ---- - - ------ --_ _.._.,_
Personal
Computer
Software

First Edition (November 1985)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

Changes are made periodically to the information herein; these changes will be incorporated in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any functionally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either expresi:; or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985
©Copyright INTERACTIVE Systems Corporation 1984
©Copyright AT&T Technologies 1984

About This Book

This book introduces you to the programming tools and services for writing an application
program using an IBM RT PC. It provides an overview of the programming process, and
describes how to use the RT PC programming tools and interfaces within that
programming process. It includes information about:

• What the system structure is

• Designing output for the display

• C language programming tools

• Program maintenance and source code control

• Using System Calls

• Using Library Functions

• Installing a program on the system

• Using the trace and error logging facilities

• Writing messages.

What You Should Know

The book uses the C programming language in the examples, and many of the tools work
only with C language source files. Therefore, you should be familiar with the C
programming language to get the most out of this book. However, programmers working
with other high level languages can also benefit from the information in this book. In
addition to knowing the C language, you should:

• Have experience in writing application programs.

• Be able to use the RT PC system to:

Enter commands
Create and delete files
Edit files
Move around in the file system.

About This Book iii

Related Information

To get familiar with the operating procedures of the RT PC system, refer to the following
book(s):

• IBM RT PC Using and Managing the AIX Operating System

• IBM RT PC Using AIX Operating System DOS Services

To help understand the information in this book, and to provide more detail about the
commands, calls and library functions introduced in this book, refer to the following
books:

• IBM RT PC AIX Operating System Commands Reference

• IBM RT PC AIX Operating System Technical Reference

• IBM RT PC C Language Guide and Reference

To write device drivers for use on the RT PC system, refer to the following books:

• IBM RT PC Virtual Resource Manager Technical Reference

• IBM RT PC AIX Operating System Technical Reference

The programs described in this book generate messages when errors occur. Refer to the
following book for explanation of messages that the system programs generate:

• IBM RT PC Messages Reference

A Reader's Comment Form and Book Evaluation Form are provided at the back of this
book. Use the Reader's Comment Form at any time to give IBM information that may
improve the book. After you become familiar with the book, use the Book Evaluation
Form to give IBM specific feedback about the book.

iv Programming Tools and Interfaces

Ordering Additional Copies of This Book

To order additional copies of this publication (without licensed program diskettes), use
either of the following sources:

• To order from your IBM representative, use Order Number SV21-8010.

• To order from your IBM dealer, use Part Number 55X8932.

Ordering either of these numbers includes the following items:

• Book

• Binder

• Slipcase

• Example Program Diskette.

About This Book v

vi Programming Tools and Interfaces

TNL SN20-9797 (26 September 1986) to 55X8932

Contents

Chapter 1. Programming with RT PC . 1-1
About This Chapter . 1-2
Programming Tools . 1-3
Shared Libraries . 1-4.1
Programming Inter.faces . 1-5
Using the Programming Examples . 1-7

Chapter 2. Compiling and Linking Programs 2-1
About This Chapter . 2-2
Compiling A Program . 2-3
Checking C Programs . 2-5
Other C Programming Tools . 2-19
Processing Assembler Language Routines . 2-20
Building Programs with make . 2-22

Chapter 3. Using the Subroutine Libraries . 3-1
About This Chapter . 3-2
System Libraries ·. 3-3
The C Library . 3-8
Run Time Services Library . 3-24
Math Library . 3-25

Chapter 4. Using System Calls . 4-1
About This Chapter . 4-2
Header Files Needed for Calls . 4-3
Process Calls . 4-4
Interprocess Communications . 4-25
System Memory Management . 4-58
File System Calls . 4-67
Time System Calls . 4-73

Chapter 5. Controlling the Terminal Screen 5-1
About This Chapter 5-2
Introduction . 5-3
Using the Library Routines . 5-12
Routines for Panels and Panes . 5-21
Display Attributes . 5-26.1
Using Other Features . 5-32
Example Program . 5-35

Contents vii

TNL SN20-9797 (26 September 1986) to 55X8932

Chapter 6. Writing Messages and Help . 6-1
About This Chapter . 6-2
Messages . 6-3
Building a Message Table . 6-8
Using Messages in A Program . 6-13
Using Variable Fields in Message Text . 6-16
Help . 6-23
Building a Help File . 6-26
Using Help in a Program . 6-30

Chapter 7. Monitoring Program Activities . 7-1
About This Chapter . 7-2
Overview . 7-3
Using the Trace Facilities . 7-4
Using the Error Log Facilities . 7-22
Using the Dump Facilities . 7-41

Chapter 8. Debugging Programs . 8-1
About This Chapter . 8-2
Overview . 8-3
Features . 8-4
sdb Command Summary . 8-5
Using the Program . 8-9
Displaying and Manipulating the Source File . 8-14
Controlling Program Execution . 8-16
Debugging Assembler Language . 8-20
An Example of a Debug Session . 8-22

Chapter 9. Installing and Updating a Program 9-1
About This Chapter . 9-2
Understanding System Guidelines . 9-3
Using Installation and Update Services . 9-5
What You Need to Install a Program . 9-8
What You Need to Update a Program . 9-14
Installing and Updating Active Files . 9-20
Allowing for Recovery . 9-23
Creating the Program History File . 9-25
Creating the Program Requirements File . 9-28
Creating the Program Name File . 9-30
Creating an Apply List File . 9-31
Creating an Archive Control File . 9-32
Creating a Special Requirement File . 9-33
Creating a Save and Recover Directory . 9-35

viii Programming Tools and Interfaces

TNL SN20-9797 (26 September 1986) to 55X8932

Chapter 10. Maintaining Different Versions of a Program 10-1
About This Chapter . 10-2
Introducing SCCS . 10-3
Using SCCS Commands . 10-8

Chapter 11. Finding and Changing Strings 11-1
About This Chapter . 11-2
Finding Strings . 11-3
Scanning Files , ; . 11-6
Editing Files with sed ... 11-20

Chapter 12. Using the Macro Processor (m4) 12-1
About This Chapter . 12-2
Using the Macro Preprocessor . 12-3
Defining Macros . 12-4
Using Other m4 Macros . 12-8

Chapter 13. Creating an Input Language . 13-1
About This Chapter . 13-3
Writing a Lexical Analyzer Program with lex . 13-4
The lex Specification File . 13-6
Regular Expressions .. 13-8
Actions .. 13-14
Passing Code to the Generated Program 13-19
Defining Substitution Strings . 13-20
Start Conditions . 13-21
Compiling the Lexical Analyzer ... 13-22
Using lex with yacc .. 13-23
Creating a Parser with yacc . 13-25
Grammar File ... 13-26
Using the Grammar File . 13-28
Declarations . 13-31
Rules .. 13-34
Actions . 13-36
Programs . 13-39
Error Handling . 13-40
Lexical Analysis . 13-43
Parser Operation .. 13-44
Using Ambiguous Rules ... 13-47
Turning On Debug Mode .. 13-50
Creating a Simple Calculator Program - Example 13-51

Appendix A. Installing Programming Examples A-1

Contents ix

TNL SN20-9797 (26 September 1986) to 55X8932

Appendix B. Extended curses Structures B-1

Appendix C. RT PC Printer Support Data Stream C-1
Using Printers from A Program . C-2

Appendix D. ASCII Characters D-1

Appendix E. Customizing System Files for New Devices E-1
About This Appendix . E~2
Configuration Files . E-3
Customizing Tools . E-5
Adding Descriptions for devices Command Screens . E-11

Figures

Glossary

X-1

X-3

Index . X-21

x Programming Tools and Interfaces

Chapter 1. Programming with RT PC

CONTENTS
About This Chapter . 1-2
Programming Tools . 1-3

Entering a Program . 1-3
Checking a Program . 1-3
Compiling and Linking a Program . 1-4
Correcting Errors in a Program . 1-4
Building and Maintaining a Program . 1-4

Programming Interfaces . 1-5
Shell Commands . 1-5
Library Routines . 1-6
System Calls . 1-6

Using the Programming Examples . 1-7

Programming with RT PC 1-1

About This Chapter

This chapter describes the IBM RT PC tools and services for developing application
programs. In addition, it indicates where to get more information about these facilities,
both in this book and in other RT PC books.

1-2 Programming Tools and Interfaces

Programming Tools

The RT PC system has many tools to help develop a C language program. To access any of
these tools, enter a system command on the command line. These tools provide help in the
following programming areas:

• Entering a program into the system

• Checking a program

• Compiling and linking a program

• Correcting errors in a program

• Filing and maintaining a program.

Entering a Program

The system has a line editor to help enter a program into a file to be compiled. The editor
is called ed. Refer to Using and Managing the AIX Operating System for instructions
about how to use this editor.

In addition, the system has two full screen editors, INed1 and vi. These editors display a
full screen of data and allow interactive editing of the file.

Checking a Program

The following programs help check the format of a program for consistency and accuracy:

lint Checks for syntax, data type and other programming and usage errors. Refer to
"Checking C Programs" on page 2-5 for information about using this program.

cflow Generates a flow diagram of a C language program. Refer to "Other C
Programming Tools" on page 2-19 for information about this program.

cxref

ch

Generates a cross reference listing for a C language program. Refer to "Other C
Programming Tools" on page 2-19 for information about this program.

Reformats a C language source program into a consistent, indented format.
Refer to "Other C Programming Tools" on page 2-19 for information about this
program.

INed is a trademark of Interactive Systems Corporation

Programming with RT PC 1-3

Compiling and Linking a Program

The cc command compiles and links a C language program with one command line entry.
Refer to Chapter 2, "Compiling and Linking Programs" on page 2-1 for information about
using this program.

Correcting Errors in a Program

The symbolic debug program, sdb helps find logic errors in a C language program. Refer
to Chapter 8, "Debugging Programs" on page 8-1 for information about using this
program.

In addition, string searching programs such as grep, sed and awk help locate and change
character strings (such as parameter names and syntax problems) in program files. Refer
to Chapter 11, "Finding and Changing Strings" on page 11-1 for information about using
these programs.

Building and Maintaining a Program

Two programs help control changes to a program and build the final program module.
These programs are:

make A program that builds programs from several source modules and that compiles
only those modules that have changed. Refer to "Building Programs with
make" on page 2-22 for information about using this program.

sccs A program that maintains separate versions of a program without storing
separate copies of each version. Refer to Chapter 10, "Maintaining Different
Versions of a Program" on page 10-1 for information about using this program.

1-4 Programming Tools and Interfaces

Programming Interfaces

When writing an application program for RT PC, use the following system services:

• Shell commands

• Library routines

• System calls.

These services are available from a C language program.

Shell Commands

To include the functions of any of the shell commands in a program, use the fork and exec
system calls to allow the command to run in a part of the system (called a process) that is
separate from the program. The system library routine also runs a shell command in a
program, and the popen library routine uses shell filters. When using shell commands in a
program, ensure that these commands are also available on all systems that will use the
program. Refer to AIX Operating System Commands Ref ere nee for details about shell
commands.

Programming with RT PC 1-5

Library Routines

Routines from the system libraries handle many complex or repetitive programming
situations so that you can concentrate programming effort on the unique programming
situations. Details of each library subroutine are in AIX Operating System Technical
Reference. Some of the libraries on the system are:

C library
A collection of input/output formatting routines, system call interface routines
and other functions. This library includes the library stdio, which is the
standard buffered input/output system.

Run Time Services library
A collection of routines that help a program use the following system services:

• Configuration
• Messages
• Trace
• Error log.

Math library
A collection of mathematics functions.

Extended curses library
A collection of routines for writing programs that help control display screen
input and output without regard to the type of terminal that the system uses.

See Chapter 3, "Using the Subroutine Libraries" on page 3-1 for a summary of the
functions available in some of the libraries. See Chapter 5, "Controlling the Terminal
Screen" on page 5-1 for a description of using the Extended curses library.

System Calls

System calls offer some additional control of the system, allow more detailed control of
input and output operations, and provide functions not available through the library
routines. However, system calls do not format the data, or take care of system
housekeeping like the library routines do. Therefore, when using system calls, be sure to
provide data stream control and housekeeping functions. Each system call is explained in
AIX Operating System Technical Reference. See Chapter 4, "Using System Calls" on
page 4-1 for examples of how to use many of the system calls.

1-6 Programming Tools and Interfaces

Using the Programming Examples

Note: The Programming Examples in this book have been tested using Release 1.0 of the
operating system software. Changes that may be made to subsequent releases of the
operating system may change how these programs operate. Be sure that the level of the
Programming Examples is compatible with the level of the operating system at your site.

This book uses sample programs to demonstrate the tools and interfaces in the system.
These programs are working models that perform a task to demonstrate the function that
the text explains. The source code (in C language) for these programs is on the diskette
located in the back of this book. To install the Programming Examples, refer to Appendix
A, "Installing Programming Examples" on page A-1.

Although the programs may not perform useful functions, use the syntax and declarations
in the sample programs as templates for program development. Look at or change the
programs in these files as needed. However, if you change the program, change only a
copy of it. Please keep the original sample program files so that another person using this
book can also use them.

The sample program files contain detailed comments that explain how the program
operates. This book includes many of the program listings, but because of space
restrictions, the comments are not printed. To print the listings of the program files, use
the command:

print filename

Where filename is the path name of the file to print. For example, to print the file that
contains the source program for the signal system call (used in Chapter 4, "Using System
Calls" on page 4-1), use the following command:

print /usr/lib/samples/sigtst.c
You should also compile and run these programs. Compiling the programs helps you
become familiar with the compiler command cc. Seeing the program run (most of the
sample programs display output to the screen) helps you understand the idea that the
sample program demonstrates. To compile the programs, copy the programs from the
directory /usr/lib/samples to your current directory:

cp /usr/lib/samples/* .

Programming with RT PC 1-7

To compile a program from that directory into a file that can be run, use the command:

cc filename. c -o filename

where filename is the name of the file to compile. For example:

cc sigtst.c -o sigtst
compiles the signal sample program and puts the output in a file named sigtst. Run this
file by entering the command:

sigtst
If problems occur with the program, compare it with the listing in this book. Except for
the comments, the program should be identical to the listing in this book.

1-8 Programming Tools and Interfaces

Chapter 2. Compiling and Linking Programs

CONTENTS
About This Chapter . 2-2
Compiling A Program . 2-3

Choosing a Compiler . 2-3
Using the cc Program . 2-4

Checking C Programs . 2-5
Operation . 2-6
Program Flow . 2-6
Data Type Checking . 2-7
Variable and Function Checking . 2-10
Using Variables Before They Are Initialized . 2-12
Portability Checking . 2-12
Coding Errors and Style Differences . 2-14
Creating A lint Library . 2-15

Other C Programming Tools . 2-19
Processing Assembler Language Routines . 2-20

Using the as Program . 2-20
Using the Id Program . 2-20'
Using the cc Program . 2-21

Building Programs with make . 2-22
Operation . 2-22
Using the make Program . 2-23
Description Files . 2-24
Internal Rules . 2-29
Defining Default Conditions . 2-35
Including Other Files . 2-35
Defining Macros . 2-36
Using Macros in a Description File . 2-37
Internal Macros . 2-38
Changing Macro Definitions in a Command . 2-42
Using Make with SCCS Files . 2-43
How make Uses the Environment Variables . 2-44
Example of a Description File . 2-45

Compiling and Linking 2-1

About This Chapter

To make source code into a program that the system can run, process the source file with a
compiler program and a linker program. The compiler changes the source statements into
object code that the computer can run; the linker connects program modules together and
determines how to put the finished program into memory. This chapter discusses the
following programming processes:

• Compiling the program

• Checking C programs

• Other C programming tools

• Processing assembler language routines

• Linking the program

• Building the program using the make utility program.

This chapter does not contain complete information about any of the programs. For
complete information refer to the reference book for the language compiler or to AIX
Operating System Commands Reference (for the C language compiler).

2-2 Programming Tools and Interfaces

Compiling A Program

A compiler is a program that reads program text from a file and changes the programming
language statements in that file to a form that the system can understand. The following
steps show how the system creates this final form of the program:

1. Includes additional files specified with the #include directive, and expands macros
into programming language statements.

2. Changes the programming language statements into assembler language code using the
language compiler.

3. Changes the assembler language into object code (a form that the system can
understand) using the assembler (as command). The object code is stored in a file with
a .o suffix. This form of the program cannot be executed.

4. Links the object code (using the ld command) into a program that the system can
execute. If you do not specify differently, the executable program is in the file a.out in
the current directory.

If the program is written in the C language, use the cc program to perform these steps.
See "Using the cc Program" on page 2-4 and AIX Operating System Commands Reference
for information about this program. If the program is written in assembler language, see
"Processing Assembler Language Routines" on page 2-20.

Choosing a Compiler

The following list includes some of the programming languages that are available for use
with the AIX Operating System:

• BASIC
• FORTRAN
• Pascal
• c
• IBM RT PC Assembler Language.

The books that come with the compiler programs contain information for using those
languages. The examples in this chapter use the C language.

You can also write parts of the program in different languages and have one main routine
call the separate routines to execute. To do this, however, follow the rules explained in
Assembler Language Reference under the topic of calling conventions.

Compiling and Linking 2-3

Using the cc Program

The cc program calls the C language compiler, but it can do much more. The cc program
can:

• Process the input with a macro preprocessor

• Compile a high-level language program

• Assemble an assembler language program

• Link program modules.

You can select any or all of these functions. In addition, you can replace the supplied
programs for any of these steps with a program suited to special needs. AIX Operating
System Commands Reference contains detailed reference information about the cc program.

Examples of Commands
The following examples show some operations with the cc program using command line
flags.

Compile source file testfi 1 e. c using the C library (libc.a) and the run time library
(librts.a), link the resulting module and place the output in a.out:

cc testfil e. c

Process source file testfi 1 e. c to produce assembler language output, and place the
output in testfi 1 e. s:

cc testfile.c -5

Compile source file testfi 1 e. c using the C library (libc.a) and the run time library
(librts.a), and place-the unlinked output in testfi 1 e. o:

cc testfile.c -c

Process source file testfi 1 e. c using the macro preprocessor only, and place the output
in test f i 1 e . i :

cc testfile.c -P

Compile source file testfi 1 e. c using the C library (libc.a) and the run time library
(librts.a), but using the newcpp and newcomp compiler programs in the directory I u/ j i m.
Place the unlinked output in testfi 1 e. o:

cc testfile.c -c -B/u/jim/new -tpO

2-4 Programming Tools and Interfaces

Checking C Programs

Use the lint program to ensure that C programs do not contain syntax errors, as well as to
verify that the programs do not contain data type errors. The lint program checks these
areas of a program more carefully than the C compiler does, and displays many messages
that point out possible problems. These messages may not require you to change the
program if you decide to ignore the possible problems.

To start lint, enter the command according to the following diagram as shown in AIX
Operating System Commands Ref ere nee:

lint file
-a
-b
-h
-I key
-n
-p
-u
-v
-x

The parameters for the lint command are in the following categories:

flags

filename

Optional flags to control lint messages. This section contains examples of
some useful flags. See AIX Operating System Commands Ref ere nee for a
complete list of the flags for the system.

The name of the C language source file for lint to check. The file name
must end with .c.

library-name The name of a library that lint uses when checking the program. The
following libraries are included with the system:

-ldos Checks DOS file library call syntax
-lcurses Checks Extended curses library call syntax
-m Checks math library call syntax
-port Checks for portability with other systems.

You can also create your own lint library. See "Creating A lint Library"
on page 2-15 for more information.

Compiling and Linking 2-5

With no flags specified on the command line, the lint program checks the C source files
and writes messages about the following coding errors and programming style differences
that it finds:

• Data types that are not used correctly

• Variables and functions that are not used

• Functions that are not used correctly

• Syntax errors

• Techniques that could cause problems in moving the program to other systems.

Operation

The lint program checks a group of files using the following procedure:

1. Checks each file and writes messages for problems found in that file

2. Collects errors in included files and writes those messages

3. Checks for consistency of labels and data types among the group of files

4. Writes the source file name followed by a ? (question mark) if any errors remain that
are not assigned to either a source file or an included file.

If lint does not report any errors, the program has correct syntax and will compile without
errors. Passing that test, however, does not mean that the program will operate correctly,
or that the logic design of the program is accurate. The lint program does not check for
design problems. It only checks language semantics and syntax.

Program Flow

The lint program detects parts of the program that cannot be reached. It writes messages
about statements that do not have a label, but immediately follow statements that change
the program flow, such as:

• goto
• break
• continue
• return.

2-6 Programming Tools and Interfaces

The lint program also detects and writes messages for the following conditions:

• A loop that cannot be exited at the bottom
• A loop that cannot be entered at the top
• Infinite loops such as:

- while(l)
- for(;;)

Some programs that work may have such loops. However, the loops can cause problems.

The lint program does not detect functions that are called, but never return to the calling
program. For example, a call to exit may result in code that cannot be reached, but lint
does not detect it.

Programs generated by yacc and lex may have hundreds of break statements that cannot
be reached. The lint program normally writes an error message for each of these break
statements. Use the -0 flag for the cc command when compiling the program to eliminate
the resulting object code inefficiency, so that these extra statements are not important.
Use the -b flag with the lint program to prevent writing of these messages when checking
yacc and lex output code.

Data Type Checking

The lint program enforces the type checking rules of C language more strictly than the
compiler does. In addition to the checks that the compiler makes, lint checks for the data
type errors in the following areas:

• Binary operators and implied assignments

• Structures and unions

• Function definition and uses

• Enumerators

• Type checking control

• Type casts.

Compiling and Linking 2-7

Binary Operators and Implied Assignments
The C language allows mixing of the following data types in statements, and the compiler
does not indicate an error when they are mixed:

• char
• short
• int
• long
• unsigned
• float
• double .

The language converts data types within this group automatically to allow the programmer
more flexibility in programming. This flexibility, however, means that the programmer, not
the language, must ensure that the data type mixing produces the desired result.

You can mix these data types when using them in the following ways (in the examples,
alpha is type char, and num is type int):

• Operands on both sides of an assignment operator, for example:

alpha = num;
• Operands in a conditional expression, for example:

value = (alpha < num) ? alpha : num;
• Operands on both sides of a relational operator, for example:

if(alpha != num)
• The type of an argument in a return statement is converted to the type of the value

that the function returns. For example:

funct(x) /* returns an integer*/
{

return(alpha);
}

The data types of pointers must agree exactly, except that you can mix arrays of X's with
pointers to X's.

2-8 Programming Tools and Interfaces

Structures and Unions
The lint program checks structure operations for the following requirements:

• The left operand of the - > operator must be a pointer to a structure.

• The left operand of the . operator must be a structure.

• The right operand of these operators must be a member of the same structure.

The lint program makes similar checks for references to unions.

Function Definition and Uses
The lint program applies strict rules to function argument and return value matching.
Arguments and return values must agree in type with the following exceptions:

• You can match arguments of type float with arguments of type double.

• You can match arguments within the following types:

char
short
int
unsigned.

• You can match pointers with the associated arrays.

Enumerators
The lint program checks enumerated data type variables to ensure that:

• Enumerator variables or members are not mixed with other types or other enumerators

• The enumerated data type variables are only used in the following areas:

Assignment (=)
Initialization
Equivalence (= =)
Not equivalence(!=)
Function arguments
Return values.

Type Checking Control
To turn off strict type checking for one expression in the program, add the directive:

/*NOSTRICT*/
to the program immediately before the expression. This directive prevents strict type
checking for only the next line in the program.

Compiling and Linking 2-9

Type Casts
Type casts in the C language allows the program to treat data of one type as if it were data
of another type. The lint program can check for type casts and write a message if it finds
one.

The -c flag for the lint program controls the writing of comments about casts. Without the
-c flag, lint treats casts as though they were assignments subject to messages. The
resulting messages indicate the casts that are in the program. With the -c flag, lint
ignores all legal casts.

Variable and Function Checking

The lint program detects variables and functions declared in the program, but not used.
When it finds one of these cases, it writes a message. Variable and function errors that
lint finds include the following:

• Functions that return values inconsistently

• Variables and functions that are defined, but not used

• Arguments to a function call that are not used

• Functions that can return either with or without values

• Functions that return values that are never used

• Programs that use the value of a function when the function does not return a value.

Inconsistent Function Return
If a function returns a value under one set of conditions, but does not return a value under
another set of conditions, you cannot predict the results of the program. The lint program
detects this type of error. For example, if both of the following statements are in a
function definition:

return (expr) ;

and

return;

The lint program writes the message:

function name contains return(e) and return

When using this function, the program may or may not receive a return value. The error
message points out that problem.

2-10 Programming Tools and Interfaces

The lint program also detects function returns caused by reaching the end of the function
code (an implied return). For example, in the following part of a function:

checkout (a)
{

}

if (a) return (3);
fi x_it ();

If a tests false, checkout calls fix_ it and then returns with no defined return value. In
this case, lint writes the message:

function checkout contains return(e) and return
If fix_ it, like exit, never returns, lint still writes the message even though nothing is
wrong.

Function Values That Are Not Used
The lint program detects cases where a function returns a value and the calling program
may not use the value. If the value is never used, the function definition may be
inefficient and should be checked. If the value is sometimes used, the function may be
returning an error code that the calling program does not check.

Disabling Function Related Error Messages
To prevent lint from reporting these types of errors, specify one or more of the following
flags to the lint command:

-x Do not write messages about variables that are declared in an extern statement,
but are never used.

-v Do not write messages about arguments to functions that are not used (except
those that are also declared as register arguments).

-u Do not write messages about functions and external variables that are either
used and not defined, or defined and not used. Use this flag to run lint on a
subset of files of a larger program.

To prevent lint from reporting errors for one function add the directive:

/*ARGSUSED*/
to the program before the function.

Add the following directive before the function definition to prevent the program from
writing messages about variable numbers of arguments in calls to a function:

/*VARARGSn*/

Compiling and Linking 2-11

To check the first several arguments and leave the later arguments unchecked, add a digit
to the end of the VARARGS directive to give the number of arguments that should be
checked, such as:

/*VARARGS2*/
When lint reads this directive, it checks only the first two arguments.

When using lint with some (but not all) files that operate together, many of the functions
and variables defined in those files may not be used. Also, many functions and variables
defined elsewhere may be used. Use the -u flag to prevent lint from writing these
messages.

Using V aria bl es Before They Are Initialized

The lint program detects if a program uses a local variable (automatic and register storage
classes) before assigning a value to it. In this case, using a variable also includes taking
the address of the variable. This is because the program can use the variable (through its
address) any time after it knows the address of the variable. Therefore, if the program does
not assign a value to the variable before it finds the address of the variable, lint reports an
error. Because lint only checks the physical order of the variables and their usage in the
file, it may write messages about a program that actually does not contain errors.

The lint program recognizes and writes messages about:

• Initialized automatic variables
• Variables that are used in the expression that first sets them
• Local variables that are set and never used.

Note: The operating system initializes static and external variables to zero. Therefore,
lint assumes that these variables are set (to zero) at the start of the program, and does not
check to see if they have been assigned a value when they are used. When developing a
program for a system that does not do this initialization, ensure that the program sets
static and external variables to an initial value.

Portability Checking

Use lint to help ensure that you can compile and run the program on other systems that
have a C language compiler that conforms to the UNIX System V1 requirements for a C
compiler. The following paragraphs indicate areas to check before compiling the program
on another system. Checking only these areas, however, does not guarantee that the
program will run on any system.

Trademark of AT&T Bell Laboratories.

2-12 Programming Tools and Interfaces

Character Uses
Some systems define characters in a C language program as signed quantities with a range
from -128 to 127; other systems define characters as positive values. The lint program
writes messages when it finds character comparisons or assignments. The messages
indicate that the use of characters may not be portable to other systems. For example, the
fragment:

char c;

if((c = getchar()) <O) ...

may work on one system but fail on systems where characters always take on positive
values. The lint program writes the message:

nonportable character comparison

when it checks the program.

To make the program work on systems that use positive values for characters, declare C as
an integer because getchar returns integer values.

Bit Field Uses
Bit fields may also produce problems when transferring a program to another system.
When assigning constant values to bit fields, the field may be too small to hold the value,
because bit fields may be signed quantities on the new system. To make this assignment
work on all systems, declare the bit field to be of type unsigned before assigning values to
it.

External Name Size
When changing from one type of system to another, be aware of differences in the
information retained about external names during the loading process. The number of
characters allowed for external names can vary. The AIX Operating System C language
compiler considers at least the first 64 characters in internal and external identifiers as
significant. Some programs that the compiler command calls and some of the functions
that your programs call may further limit the number of significant characters in
identifiers. In addition, the compiler adds a leading underscore to all names, and keeps
uppercase and lowercase characters separate. On other systems, uppercase or lowercase
may not be important or allowed. To avoid problems with loading the program when
transferring from one system to another:

1. Find out the requirements of each system

2. Run lint with the -p flag.

Compiling and Linking 2-13

The -p flag tells lint to change all external symbols to one case and limit them to six
characters while checking the input files. The messages produced indicate the terms that
may need to be changed.

Multiple Uses and Side Effects
Be careful when using complicated expressions. Many C compilers evaluate complex
expressions in different orders. Function calls that are arguments of other functions may
or may not be treated the same as ordinary arguments. Also, operators such as
assignment, increment, and decrement may cause problems when used on another system.
For example, if any variable is changed by a side effect of one of the operators and is also
used elsewhere in the same expression, the result is undefined. For example, the
evaluation of the variable years in the following example is confusing because on some
machines years is incremented before the function call, while on other machines years is
incremented after the function call:

printf(11 %d %d\n 11
, ++years, amort(interest, years));

The lint program checks for simple scalar variables that may be affected by evaluation
order problems. For example, the statement:

a[i]=b[i++J;

causes lint to write the message:

warning: i evaluation order undefined

Coding Errors and Style Differences

Use lint to detect some coding errors and differences in coding style from the style that
lint expects. Although coding style is mainly a matter of individual taste, examine each
difference to ensure that the difference is both needed and accurate. The following
paragraphs indicate the types of coding and style problems that lint can find.

Assignments of Long Variables to Integer Variables
If you assign variables of type long to variables of type int, the program may not work
properly. The long variable is truncated to fit in the integer space and data may be lost.
An error of this type occurs frequently when converting a program that uses typedefs to
run on a different system. When changing a typedef variable from int to long, the
program can stop working because an intermediate result may be assigned to an integer
variable, and the intermediate result is truncated.

To assign a long variable to an integer variable and prevent lint from writing messages for
these assignments, use the -a flag with the lint program.

2-14 Programming Tools and Interfaces

Operator Precedence
The lint program detects errors in operator precedence. Without parentheses to show
order in complex sequences, these errors are hard to find by looking at the code. For
example, the following statements are not clear:

if(x&077==0) ...

or

x<<2+40

/* actually: if(x & (077 == 0)) */
/* should be: if((x & 077) == O) */

/* shift x left 42 positions */
/* should be: (x<<2) + 40 */

Use parentheses to make the operation more clearly understood. If you do not, lint writes
a message.

Conflicting Declarations
The lint program writes messages about variables that are declared in inner blocks in a
way that conflicts with their use in outer blocks. This practice is allowed but may cause
problems in the program. Use the -h flag with the lint program to prevent writing of
messages about conflicting declarations.

Creating A lint Library

For programming projects that define additional library routines, create an additional lint
library to check the syntax of the programs. Using this library, the lint program can
check the new functions in addition to the standard C language functions. Perform the
following steps to create a new lint library (see the following paragraphs for more
information about these steps).

1. Create an input file that defines the new functions

2. Process the input file to create the lint library file

3. Run lint using the new library.

Compiling and Linking 2-15

Creating the Input File
Figure 2-1 on page 2-17 shows an input file that defines three additional functions for lint
to check. This file is a text file that you create with an editor. It consists of:

1. A directive to tell the cpp program that the following information is to be made into a
library of lint definitions:

/*LINTLIBRARY*/
2. A series of function definitions that define:

• The type of the function (int in the example)
• The name of the function
• The parameters that the function expects
• The types of the parameters
• The value that the function returns.

Name this file in the following format:

11 i b- lpgm

In this format, the letters pgm represent a unique name that indicates the functions
contained in the input file. For example, in the example input file the name of this input
file could be llib-ldms. When choosing the name of the file, ensure that it is not the same
as any of the existing files in the /usr/lib directory.

2-16 Programming Tools and Interfaces

/*LINTLIBRARY*/

#include <dms.h>

int dmsadd(rmsdes, recbuf, reclen)
int rmsdes;
char *recbuf;
unsigned reclen;

{ return O; }
int dmsclos(rmsdes)

int rmsdes;
{ return O; }

int dmscrea(path, mode, recfm, reclen)
char *path;
int mode;
int recfm;
unsigned reclen;

{ return O; }

Figure 2-1. Example lint Library Input File

Creating the lint Library File
To create a lint library file, process the input file using the following command:

$ /lib/cpp -C -Dlint llib-lpgm I /usr/lib/lintl -Htmpfile > \
/usr/lib/llib-lpgm.ln

This command tells the preprocessor program cpp and an intermediate program lintl to
create a lint library file, I us r I 1ibI11ib-1pgm.1 n using the input file 11ib-1 pgm. In
each of these cases, the pgm in the file name represents the identifier for the input file.
The file name tmpfi 1 e can be any temporary file name. The lintl program creates this
file and uses it for intermediate storage. When the program completes, delete this file:

rm tmpfil e

Compiling and Linking 2-17

Checking a Program with the New Library
To check a program using the new library, use the command:

1 int - lpgm filename.c

In this command, the letters pgm represent the identifier for the library, and filename.c
represents the name of the file containing the C language source code to check. With no
other flags, the lint program checks the C language source code against the standard lint
library in addition to checking the indicated special lint library.

2-18 Programming Tools and Interfaces

Other C Programming Tools

The AIX Operating System provides tools to help format and check the structure of the C
language program. These tools include:

ch c beautifier: This program formats the C language source program into a form
that uses indention levels to show the structure of the program.

cflow c flow diagram generator: This program produces an output diagram that
shows the logic flow of the C language source program.

cxref c cross reference list: This program produces a list of all external references
for each module of the C language program, including where the reference is
resolved (if it is).

AIX Operating System Commands Ref ere nee explains the syntax and options for these
programs. The sample programs contain a C language source program that shows the
effects of the ch command. This file, cbtest, contains the program from one of the other
sample programs used in this book. However, the program in this file is without format.
Use the pg command to look at this file:

pg cbtest
Press Enter at the end of each screen. Then use the ch command to format the file and
put the formatted output in a file, test. pretty. c:

cb cbtest > test.pretty.c

Look at the output file test. pretty. c using the 1 command to see the effect of the ch
command.

Compiling and Linking 2-19

Processing Assembler Language Routines

To use program modules written in RT PC assembler language in a program, assemble the
source code and link the resulting output with any other modules in the program. To
perform these steps, either:

1. Use the as program to assemble the source code into an object module

2. Use the Id program to link the object modules with the other object modules that form
the program.

or

1. Use the cc program to both assemble and link the program.

Using the as Program

The following command sequences show some uses of the as program to assemble an
assembler language module into an object module:

·• Assemble source file asmtest. s and place the output in the default file, a.out.

as asmtest.s
• Assemble source file asmtest. s and place the output in the file myfi 1 e. o.

as -o myfile.o asmtest.s

Using the Id Program

After assembling the source program with the as program, use the Id program to link that
object module with other object modules, or to prepare it to run on the system.

2-20 Programming Tools and Interfaces

Using the cc Program

To use the cc program to process an assembler language file, the file name must end in .s
to indicate that it is an assembler language source file. The following command sequences
show some uses of the cc program to assemble an assembler language module into an
object module, and link it with other object modules to form the program:

• Assemble and link the file asmtest. s and place the resulting program in file a.out.

cc asmtest. s

• Assemble the file asmtest. s and place the resulting unlinked object code in file
asmtest. o.

cc asmtest. s -c

• Assemble the file asmtest. s, link it with object files o 1dfi1 e. o and otherfi 1 e. o,
and place the resulting program in file a.out.

cc asmtest.s oldfile.o otherfile.o

Compiling and Linking 2-21

Building Programs with make

The make program builds up-to-date versions of programs. It keeps track of the commands
that are needed to create the files, and uses a list of files that must be current before the
operations can be done. After changing any part of a program, enter the make command
on the command line. The make program then creates only the files that are affected by
the change, according to the rules in its rules file.

Using the make program to maintain programs, you can:

• Combine the instructions for creating a large program in a single file

• Define macros to use within the make description file

• Define new flags to use with the make program

• Create any file to use with the operating system, including SCCS files

• Use shell commands to define the method of file creation, or use the make program to
create many of the basic types of files

• Create libraries

• Include files from other programs when creating a file.

The make program is most useful for medium-sized programming projects. It does not
solve the problems of maintaining more than one source version and describing huge
programs (see Chapter 10, "Maintaining Different Versions of a Program" on page 10-1).

Operation

The make program uses the following sources of information:

• A description file that you create

• File names

• Time stamps of the files from the file system

• Rules in the make program that tell how to build many of the standard types of files.

The file containing the completed program is called a target file. The make program
creates a target file using a step-by-step procedure:

1. Finds the name of the target file in the description file, or in the make command

2. Ensures that the files on which the target file depends exist and are up-to-date

3. Determines if the target file is up-to-date with the files it depends on

2-22 Programming Tools and Interfaces

4. If the target file or one of the parent files is out of date, creates the target file using
one of the following:

a. Commands from the description file

b. Internal rules to create the file (if they apply)

c. Default rules from the description file.

If all files in the procedure are up-to-date when running the make program, make displays
a message to indicate that the file is up-to-date, and then stops. If some files have changed,
make creates only those files that are out of date, and does not create files that are
already current.

When the make program runs commands to create a target file, it replaces macros with
their values, writes each command line, and then passes the command to a new copy of the
shell.

Using the make Program

Start the make program from the directory that contains the description file for the file to
create. The variable name desc-file represents the name of that description file. Then,
enter the command:

make -f desc-file

on the command line. Enter macro definitions, flags, description file names, and target file
names along with the make command on the command line as follows:

make [flags] [macro definitions] [targets]

The make program then examines the command line entries to determine what to do.
First, it looks at all macro definitions on the command line (entries that are enclosed in
quotes and have equal signs in them) and assigns values to them. If it finds a definition for
a macro on the command line different from the definition for that macro in the
description file, it chooses the command line definition for the macro.

Next, the make program looks at the flags. See IBM RT PC AIX Operating System
Commands Ref ere nee for a list of the flags that make recognizes.

The make program expects the remaining command line entries to be the names of target
files to be created. The make program creates the target files in left to right order.
Without a target file name, the make program creates the first target file named in the
description file that does not begin with a period. With more than one description file
specified, make searches the first description file for the name of the target file.

Compiling and Linking 2-23

Description Files

The description file tells make how to build the target file, what files are involved, and
what their relationships are to the other files in the procedure. The description file
contains the following information:

• Target file name

• Parent file names that make up the target file

• Commands that create the target file from the parent files

• Definitions of macros in the description file.

The make program determines what files to create to get an up-to-date copy of the target
file by checking the dates of the parent files. If any parent file was changed more recently
than the target file, make creates the files that are affected by the change, including the
target file.

If you name the description file makefile or Makefile, and are working in the directory
containing that description file, enter the command:

make

to bring the first target file and its parent files up-to-date, regardless of the number of files
that were changed since the last time make created the target file. In most cases, the
description file is easy to write and does not change often.

To keep many different description files in the same directory, name them differently.
Then, enter the command:

make -f desc-file

substituting the name of the description file to use in place of the variable name desc-file.

Format of a Description File Entry
The general form of an entry is:

targetl [target2 ..] : [:] [parentl. .] [; commands] [# ..]
r/~~Z.\ ,..nmm.,, r1 1 r .J.I. 1
L\H.l-UJ \..VllllllUllU;:>j L7T • • • J

The items that are inside brackets are optional. Targets and parents are file names
(strings of letters, numbers, periods, and slashes). make recognizes wildcard characters
such as * (asterisk) and ? (question mark). Each line in the description file that contains a
target file name is called a dependency line. Lines that contain commands must begin with
a tab character.

2-24 Programming Tools and Interfaces

Put comments in the description file by using a# (number sign) to begin the comment
phrase. The make program ignores the # and all characters on the same line after the #.
The make program also ignores blank lines.

If the line is not a comment line, you can enter lines that are longer than the line width of
the input device. To continue a line on the next line, put a \ (backslash) at the end of the
line that is to be continued.

Using Commands in a Description File

A command is any string of characters not including a # or a new line. A command can
use a# if it is in quotes. Commands can appear either after a semicolon on a dependency
line, or on lines beginning with a tab immediately following a dependency line.

When defining the command sequence for a particular target, specify either one command
sequence for each target in the description file, or specify separate command sequences for
special sets of dependencies. Do not do both.

To use one command sequence for every use of the target, use a single : (colon) following
the target name on the dependency line. For example:

test:

test:

dependency listl ... ;
command list ...

dependency list2 ... ;
defines a target name, test, with a set of parent files, and a set of commands to create the
file. The target name, test, can appear in other places in the description file with another
dependency list, but that name cannot have another command list in the description file.
When one of the files that test depends on changes, make runs the commands in that one
command list to create the file, test.

Compiling and Linking 2-25

To specify more than one set of commands to create a particular target file, enter more
than one dependency definition. Each dependency line must have the target name,
followed by : : (two colons), a dependency list, and a command list that make uses if any
of the files in the dependency list changes. For example:

test::

test::

dependency listl ... ;
command 1 i stl ...

dependency list2 ... ;
command list2 ...

defines two separate processes to create the target file, test. If any of the files in
dependency listl changes, make runs command listl; if any of the files in dependency list2
changes, make runs command list2. To avoid conflicts, a parent file cannot appear in both
dependency listl and dependency list2.

Note: Because make passes the commands from each command line to a new shell, be
careful when using certain commands (for example, cd and shell control commands) that
have meaning only within a single shell process. The make program forgets these results
before running the commands on the next line.

To group commands together, use the \ (backslash) at the end of a command line. The
make program continues that command line into the next line in the description file. The
shell sends both of these lines to a single new shell.

Calling the Make Program from a Description File
Nest calls to the make program within a make description file by including the $(MAKE)
macro in one of the command lines in the file. If this macro is present, make calls another
copy of make even if the -n flag (do not execute) is set. The make program passes the
flags to the new copy of make through the MAKEFLAGS variable.

If the -n flag is set when the $(MAKE) macro is found, the new copy of make does not do
any of its commands, except another $(MAKE) macro. Use this characteristic to test a set
of description files that describe a program. Enter the command:

make -n
The make program does not do any of the operations, but it writes all of the steps needed
to build the program, including output from lower level calls to make.

2-26 Programming Tools and Interfaces

Preventing the make Program from Writing Commands
To prevent make from writing the commands while it runs, do any of the following:

• Use the -s flag on the command line when using the make command.

• Put the fake target name .SILENT on a dependency line by itself in the description
file. Because .SILENT is not a real target file, it is called a fake target.

• Put an@ in the first character position of each line in the description file that make
should not write.

Prevent Stopping on Errors
The make program normally stops if any program returns an error code that is not zero.
Some programs return status that has no meaning.

To prevent make from stopping on errors, do any of the following:

• Use the -i flag on the command line when using the make command.

• Put the fake target name .IGNORE on a dependency line by itself in the description
file. Because .IGNORE is not a real target file, it is called a fake target.

• Put a - (hyphen) in the first character position of each line in the description file
where make should not stop on errors.

Compiling and Linking 2-27

Example of a Description File
For example, a program named prog is made by compiling and loading three C language
files X. c , y . c , and z . c with the C library (libc.a) and the run time library (librts.a).
The files x. c and y. c share some declarations in a file named defs. The file z. c does
not share those declarations. A description file to create prog looks like:

Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog

cc x.o y.-0 z.o -o prog

Make x.o from 2 other files
x.o: x.c defs
Use the cc program to make x.o

cc -c x.c

Make y.o from 2 other files
y.o: y.c defs
Use the cc program to make y.o

-c y.c

Make z.o from z.c
z.o: z.c
Use the cc program to make z.o

cc -c z.c
If this file is called makefile, just enter the command:

make

to make prog up-to-date after making changes to any of the four source files X. c, y. c,
L c or defs.

2-28 Programming Tools and Interfaces

Making the Description File Simpler
To make this file simpler, use the internal rules of the make program. Using file system
naming conventions, make knows that there are three .c files corresponding to the needed
.o files. It also knows how to generate an object from a source file (that is, issue a cc -c
command).

By taking advantage of these internal rules, the description file becomes:

#Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog

cc x.o y.o z.o -o prog

Use the file defs and the .c file
when making x.o and y.o
x.o y.o: defs

Internal Rules

The internal rules for the make program are in a file that looks like a description file.
With the -r flag the make program does not use the internal rules file; you must supply
the rules to create the files. The internal rules file contains a list of file name suffixes
(such as, .o, or .a) that make understands, plus the rules that tell make how to create a
file with one suffix from a file with another suffix. If you do not change the list, make
understands the following suffixes:

.o Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f FORTRAN source file

.s Assembler source file

.y Y acc-c source grammar

.yr Yacc-Ratfor source grammar

.ye Y acc-Efl source grammar

.1 Lex source grammar

Compiling and Linking 2-29

The list of suffixes is like a dependency list in a description file, and follows the fake target
.SUFFIXES. Because make looks at the suffixes list in left to right order, the order of
the entries is important. The make program uses the first entry in the list that satisfies
two requirements:

• The entry matches input and output suffix requirements.

• The entry has a rule assigned to it.

The make program creates the name of the rule from the two suffixes of the files that the
rule defines. For example, the name of the rule to transform a .r file to a .o file is .r .o.

To add more suffixes to the list, add an entry for .SUFFIXES in the description file. For a
.SUFFIXES line without any suffixes following the target name in the description file,
make erases the current list. To change the order of the names in the list, erase the
current list and then assign a new set of values to SUFFIXES.

Figure 2-2 shows the paths that make uses to create a file. If two paths connect a pair of
suffixes, make uses the longer one only if the intermediate file exists or is named in the
description file.

Source Files
.y . I .yr .ye

~T,j, 1 1 } Preprocessing Source Files

~~t· { · r~· i _____,,___· r -1...--r -...L---r --.----z-· 1 ___._· r---L..· r______.· i~I
r

. o object file

Figure 2-2. Rules for Creating Files

Example of Default Rules File
Figure 2-3 on page 2-31 shows a portion of the default rules file.

2-30 Programming Tools and Interfaces

Define suffixes that make knows
.SUFFIXES: .o .c .e .r .f .y .yr .ye .1 .s

Begin macro definitions for
internal macros
YACC = yacc
YACCR = yacc -r
YACCE = yacc -r
YFLAGS =
LEX = lex
LFLAGS =
CC =cc
AS = as
CFLAGS =
RC = ec
RFLAGS =
EC = ec
EFLAGS =
FFLAGS =
End macro definitions for
internal macros

Create a .o file from a .c
file with the cc program
. c. 0:

$(CC) $(CFLAGS) -c $<

Create a .o file from either a
.e , a .r , or a .f
file with the efl compiler
.e.o .r.o .f.o:

$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<

Figure 2-3 (Part 1 of 2). Example Default Rules File

Compiling and Linking 2-31

Create a .o file from
a .s file with the assembler
. s. 0:

$(AS) -o $@ $<

.y.o:
Use yacc to create an intermediate file

$(YACC) $(YFLAGS) $<
Use cc compiler

$(CC) $(CFLAGS) -c y.tab.c
Erase the intermediate file

rm y.tab.c
#Move to target file

mv y.tab.o $@

.y.c:
Use yacc to create an intermediate file

$(YACC) $(YFLAGS) $<
Move to target file

mv y.tab.c $@

Figure 2-3 (Part 2 of 2). Example Default Rules File

2-32 Programming Tools and Interfaces

Single Suffix Rules
The make program also has a set of single suffix rules to create files directly to a file
name that does not have a suffix (command files for example). The make program has
rules to change the following source files with a suffix to object files without a suffix:

.c:

c-·

.sh:

.sh-:

From a c language source file

From an SCCS C language source file

From a shell file

From an SCCS shell file

Therefore, to maintain a program like cat, enter:

make cat
if all of the needed files are in the current directory.

Using Make with Archive Libraries
Use make to build libraries and library files. The make program recognizes the suffix .a
as a library file. The internal rules for changing source files to library files are:

.c.a c source to archive

.c-.a SCCS C source to archive

.s-.a SCCS assembler source to archive

Compiling and Linking 2-33

Changing Macros in the Rules File
The make program uses macro definitions in the rules file. To change these macro
definitions, enter new definitions for those macros on the command line or in the
description file. The make program uses the following macro names to represent language
processors that it uses:

• AS for the assembler
• CC for the c compiler
• RC for the ratfor compiler
• EC for the efl compiler
• YACC for yacc
• Y ACCR for yacc -r
• YACCE for yacc -e
• LEX for lex.

The make program uses the following macro names to represent flags that it uses:

• CFLAGS for c compiler flags
• RFLAGS for ratfor compiler flags
• EFLAGS for efl compiler flags
• YFLAGS for yacc flags
• LFLAGS for lex flags.

Therefore, the command:

make 11 CC=newcc 11

tells make to use the newcc program in place of the usual C language compiler.
Similarly, the command:

make 11 CFLAGS=-0 11

tells make to optimize the final object code produced by the C language compiler.

To look at the internal rules (in rules.c) that make uses, enter the following command:

make -f -p /dev/null 2>/dev/null
The output appears on the standard output.

2-34 Programming Tools and Interfaces

Defining Default Conditions

When make creates a target file and cannot find commands in the description file and
internal rules to create a file, it looks at the description file for default conditions. To
define the commands that make performs in this case, use the . DEFAULT target name in
the description file:

. DEFAULT:
command
command

Because . DEFAULT is not a real target file, it is called a fake target. Use the . DEFAULT
fake target for an error recovery routine, or for a general procedure to create all files in
the program that are not defined by an internal rule of the make program.

Including Other Files

Include files other than the current description file by using the word include as the first
word on any line in the description file. Follow the word with a blank or a tab, and then
the set of file names for make to include in the operation. For example:

include /u/tom/temp /u/tom/sample

tells make to read the files temp, s amp 1 e and the current description file to build the
target file.

Do not use more than 16 levels of nesting with the include files feature.

Compiling and Linking 2-35

Defining Macros

A macro is a name (or label) to use in place of several other names. It is a shorthand way
of using the longer string of characters. To define a macro:

1. Start a new line with the name of the macro.

2. Follow the name with an = (equal <sign).

3. To the right of the =, enter the string of characters that the macro name represents.

The macro definition can contain blanks before and after the = without affecting the
result. The macro definition cannot contain a : (colon) or a tab before the =.
The following are examples of macro definitions:

#Macro 11 211 has a value of 11 xyz 11

2 = xyz

#Macro 11 abc 11 has a value of 11 -ll -ly 11

abc = -11 -ly

#Macro 11 LIBES 11 has a null value
LI BES =
A macro that is named but is not defined has a value of the null string.

2-36 Programming Tools and Interfaces

Using Macros in a Description File

After defining a macro in a description file, use the macro in the description file commands
by putting a$ (dollar sign) before the name of the macro. If the macro name is longer than
one character, put () (parentheses) or { } (braces) around it. The following are
examples of using macros:

$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two examples have the same effect.

The following fragment shows how to define and use some macros:

#OBJECTS is the 3 files x.o, y.o and
z.o (previously compiled)
OBJECTS = x.o y.o z.o

LIBES is the standard library
LIBES =-le

prog depends on x.o y.o and z.o
prog: $(OBJECTS)
Link and load the 3 files with
the standard library to make prog

cc $(OBJECTS) $(LIBES) -o prog

Compiling and Linking 2-37

The make program that uses that description file loads the three object files with the
libc.a library.

A macro definition entered on the command line replaces any macro definitions in the
description file that define the same macro label. Therefore, the command:

make 11 LIBES= -11 11

loads the files with the Lex (- 11) library.

Note: When entering macros with blanks in them on the command line, put 11 (double
quotes) around the macro. Without the double quotes, the shell interprets the blanks as
parameter separators and not a part of the macro.

Internal Macros

The make program has built-in macro definitions for use in the description file. These
macros help specify variables in the description file. The make program replaces the
macros with one of the following values:

$@ The name of the current target file

$$@ The label name on the dependency line

$? The names of the files that have changed more recently than the target

$ < The name of the out-of-date file that caused a target file to be created

$* The name of the current parent file without the suffix

$% The name of an archive library member.

2-38 Programming Tools and Interfaces

Target File Name
If the $@macro is in the command sequence in the description file, make replaces the
symbol with the full name of the current target file before passing the command to the
shell to be run. The make program replaces the symbol only when it runs commands from
the description file to create the target file.

Label Name
If the $$@macro is on the dependency line in a description file, make replaces this symbol
with the label name that is on the left side of the colon in the dependency line. This name
could be a target file name, the name of a new flag, or the name of another macro. For
example, if the following is included in a dependency line:

cat: $$@.c
The make program translates it to:

cat: cat.c
when make evaluates the expression. Use this macro to build a group of files, each of
which has only one source file. For example, to maintain a directory of system commands,
use a description file like:

Define macro CMOS as a series
of command names
C~DS = cat dd echo date cc cmp comm ar ld chown

Each command depends on a .c file
$(CMOS): $$@.c

Create the new command set by compiling the out of
date files ($?) to the target file name ($@)

$(CC) -0 $? -o $@

Compiling and Linking 2-39

The make program changes the$$ (@F) macro to the file part of $@when it runs. For
example, use this symbol when maintaining the usr/include directory while using a
description file in another directory. That description file would look like:

Define directory name macro INCDIR
INCDIR = /usr/include

Define a group of fi 1 es- in the di rectory
with the macro name INCLUDES
INCLUDES = \

$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h \

Each file in the list depends on a file
of the same name in the current directory
$(INCLUDES): $$(@F)

Copy the younger files from the current
directory to /usr/include

cp $? $@

Set the target files to read only status
chmod 0444 $@

This description file creates a file in the /usr/include directory when the corresponding
file in the current directory has been changed.

2-40 Programming Tools and Interfaces

Younger Files
If the $? macro is in the command sequence in the description file, make replaces the
symbol with a list of parent files that have been changed since the target file was last
.changed. The make program replaces the symbol only when it runs commands from the
description file to create the target file.

First Out-of-date File
If the $< macro is in the command sequence in the description file, make replaces the
symbol with the name of the file that started the file creation. The file name is the name
of the parent file that was out of date with the target file, and therefore caused make to
create the target file again.

In addition, use a letter (D or F) after the < (less-than sign) to get either the directory
name (D) or the file name (F) of the first out-of-date file. For example, if the first
out-of-date file were:

/u/tom/sample.c
then make gives the following values:

$(<D)
$ (<F)
$<

=
=

=

/u/tom
sample
/u/tom/sample

The make program replaces this symbol only when it runs commands from its internal
rules or from the .DEFAULT list.

Current File Name Prefix
If the $*macro is in the command sequence in the description file, make replaces the
symbol with the file name part (without the suffix) of the parent file that make is
currently using to generate the target file. For example, if make is using the file:

test. c

then the $* represents the file name, test.

In addition, use a letter (D or F) after the* (asterisk) to get eitber the directory name (D)
or the file name (F) of the current file.

Compiling and Linking 2-41

For example, make uses many files (specified either in the description file or the internal
rules) to create a target file. Only one of those files (the current file) is used at any
moment. If that current file were:

/u/tom/sample.c
then make gives the following values for the macros:

$(*0)
$ (*F)
$*

= /u/tom
= sample
= /u/tom/sample

The make program replaces this symbol only when it runs commands from its internal
rules (or from the .DEFAULT list), and not when running commands from a description
file.

Archive Library Member
If the $%macro is in a description file, and the target file is an archive library member,
make replaces the macro symbol with the name of the library member. For example, if the
target file is:

1 i b (file. o)

then make replaces the$% with the member name, fi 1 e. o.

Changing Macro Definitions in a Command

When macros in the shell commands are in the description fi~e, you can change the values
that make assigns to the macro. To change the assignment of the macro, put a : (colon)
after the macro name, followed by a replacement string. The form is as follows:

$(macro:stringl=string2)

When make reads the macro and begins to assign the values to the macro from the macro
definition, it replaces each stri ngl in the macro definition with a value of stri ng2. For
example, if the description file contains the macro definition:

FILES=test.o sample.o form.o defs

you can replace the file form. o with a new file, input. o, by using the macro in the
description file commands:

cc -o $(FILES:form.o=input.o)

Changing the value of a macro in this manner is useful when maintaining archive libraries
(see the ar program in AIX Operating System Commands Ref ere nee).

2-42 Programming Tools and Interfaces

Using Make with SCCS Files

The make program does not allow references to prefixes of file names. Because SCCS file
names begin with ans., do not refer to them directly within a make description file. The
make program uses a different suffix, the - (tilde), to represent SCCS files. Therefore,
. c-. o refers to the rule that transforms an SCCS C language source file into an object.
The internal rule is:

.c-.o:
$(GET) $(GFLAGS) -p $< >$*.c
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

The - added to any suffix changes the file search into an SCCS file name search with the
actual suffix named by the . (period) and all characters up to (but not including) the - .
The GFLAGS macro passes flags to SCCS to determine the version of the SCCS files to be
used.

The make program recognizes the following SCCS suffixes:

.c- c source

.y- yacc source grammar

.s- assembler source

.sh- shell

.h- header

The make program has internal rules for changing the following SCCS files:

c-·
.sh-:
.c-.o:
.s-.o:
.y-.o:
.1- .o:
.y-.c:
.c-.a:
.s-.a:
.h-.h:

Compiling and Linking 2-43

Description Files Stored in SCCS
If you specify a description file, or a file named makefile is in the current directory, make
does not look for a description file within SCCS. If a description file is not in the current
directory and you enter the command, make, the make program looks for an SCCS file
named either s.makefile ors.Makefile. If either of these files are present, make uses a
get command to tell SCCS to build the description file from that source file. The value of
the internal macro, GETFLAGS, determines the level of the file that SCCS cr.eates. When
SCCS creates the description file, make uses the file as a normal description file. When
make finishes, it removes the created description file from the current directory.

How make Uses the Environment Variables

Each time make runs, it reads the current environment variables and adds them to its
defined macros. In addition, it creates a new macro called MAKEFLAGS. This macro is
a collection of all input flags to the make program (without the minus signs). Command
line flags and assignments in the description file can also change the MAKEFLAGS
macro. When make starts another process, it passes MAKEFLAGS to that process by
using the export command.

When make runs, it assigns macro definitions in the following order:

1. Reads the MAKEFLAGS environment variable to set debug on, if it is needed.

If MAKEFLAGS is not present or null, make sets its internal MAKEFLAGS variable
to the null string. Otherwise, make assumes that each letter in MAKEFLAGS is an
input flag. The make program uses these flags (except for the -f, -p, and -r flags) to
determine its operating conditions.

2. Reads and sets the input flags from the command line. The command line adds to the
previous. settings from the MAKEFLAGS environment variable.

3. Reads macro definitions from the command line. Make ignores any further
assignments to these names.

4. Reads the internal macro definitions.

5. Reads the environment, including the MAKEFLAGS macro. The make program
treats the environment variables as macro definitions and passes them to other shell
programs.

2-44 Programming Tools and Interfaces

Example of a Description File

Figure 2-4 shows the description file that maintains the make program. The source code
for make is spread over a number of C language source files and a Yacc grammar.

Description file for the Make program

Macro def: send to be printed
P = und -3 I opr -r2

#Macro def: source filenames used
FILES = Makefile version.c defs main.c

doname.c misc.c files.c
dosy.c gram.y lex.c gcos.c

#Macro def: object filenames used
OBJECTS = version.o main.o doname.o

misc.o files.o dosys.o
gram.o

#Macro def: lint program and flags
LINT= lint -p

#Macro def: c compiler flags
CFLAGS = -0

make depends on the files specified
in the OBJECTS macro definition
make: $(OBJECTS)
Build make with the cc program

cc $(CFLAGS) $(OBJECTS) -o make
Show the file sizes

size make

Figure 2-4 (Part 1 of 3). Example Description File

Compiling and Linking 2-45

The object files depend on a file
named def s
$(OBJECTS): defs

The file gram.a depends on lex.c
uses internal rules to build gram.a
gram.a: lex.c

Clean up the intermediate files
clean:

-rm *.o gram.c
-du

Copy the newly created program
to /usr/bin and deletes the program
from the current directory
install:

Empty
files
print:
Print

@size make /usr/bin/make
cp make /usr/bin/make ; rm make

fi 1 e 11 print 11 depends on the
included in the macro FILES
$(FILES)

the recently changed files
pr $? I $P

Change the date on the empty file,
print, to show the date of the last
printing

touch print

Figure 2-4 (Part 2 of 3). Example Description File

2-46 Programming Tools and Interfaces

Check the date of the old
file against the date
of the newly created file
test:

make -dp lgrep -v TIME >lzap
/usr/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

The program, lint, depends on the
files that are listed
lint: dosys.c doname.c files.c main.c misc.c

version.c gram.c
Run lint on the files listed
LINT is an internal macro

$(LINT) dosys. doname.c files.c main.c
misc.c version.c gram.c
rm gram.c

#Archive the files that build make
arch:

ar uv /sys/source/s2/make.a $(FILES)

Figure 2-4 (Part 3 of 3). Example Description File

Compiling and Linking 2-4 7

The make program usually writes out each command before issuing it.

The following output results from typing the simple command make in a directory
containing only the source and description file:

cc " -c version.c -v
cc -0 -c main.c
cc -0 -c doname.c
cc -0 -c misc.c
cc -0 -c files. c
cc -0 -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -0 -c gram.c
cc version.a main.a doname.o misc.o files.a dasys.a

gram.a -a make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars are specified in the description file, make
uses its suffix rules to find them and issues the needed commands. The string of digits is
the result of the size make command. The@ (at sign) on the size command in the
description file prevented writing of the command, so only the sizes are written.

The output can be sent to a different printer or to a file by changing the definition of the P
macro on the command line as follows:

make print 11 P = print -sp 11

or
make print 11 P = cat >zap 11

2-48 Programming Tools and Interfaces

Chapter 3. Using the Subroutine Libraries.

CONTENTS
About This Chapter . 3-2
System Libraries 3-3

Including Declarations 3-7
Linking the Library Routines . 3-7
Library Descriptions . 3~7

The C Library . 3-8
Input/Output Control . 3-8
String Manipulation . 3-13
Memory Manipulation . 3-14
Character Manipulation . 3-15
Time . 3-16
Numerical Conversion . 3-18
Group File Access . 3-18
Password File Access . 3-19
Parameter Access . 3-20
Hash Table Management . 3-20
Binary Tree Management . 3-20
Table Management . 3-21
Memory Allocation . 3-21
Pseudo-random Number Generation . 3-21
Signal Handling . 3-22
Miscellaneous . 3-23

Run Time Services Library . 3-24
Math Library ... -. 3-25

Trigonometry . 3-25
Bessel . 3-26
Hyperbolic . 3-26
Misce1laneous . 3-26

Subroutine Libraries 3-1

About This Chapter

This chapter describes the subroutine libraries that are included with the AIX Operating
System. Refer to AIX Operating System Technical Reference for complete technical
information about each library function. That book is organized alphabetically by the
name of the function. This section groups the functions by library, and by function within
the library. It describes the following commonly used libraries:

• C library (with or without hardware floating-point)

• Run time services library

• Math library (with or without hardware floating-point).

3-2 Programming Tools and Interfaces

System Libraries

Figure 3-1 on page 3-4 lists the system libraries. The libraries are collections of commonly
used functions and declarations. Use them in a program to avoid creating the functions
for each new program.

To use the library functions:

• Include any declarations for the variables that the library routines use in the program

• Link the library routines with the program files after the program is compiled, or in
the same process using the cc command.

Subroutine Libraries 3-3

Name Path name cc flag Function

General C Libraries:
C library /lib/libc.a Not Common C language .subroutines for file

required access, string operations, character
operations, memory allocation and other
functions.

C library /Ii b/li bfc. a -lfc The same routines as the C library,
(floating-point) except that some were compiled to use

the hardware Floating-Point Accelerator
to perform floating-point arithmetic.

Math library /lib/libm.a -Im Mathematical functions using software
routines to perform floating-point
arithmetic.

Floating-Point Math /lib/libfm.a -lfm The same routines as the math library,
library except that they were compiled to use the

hardware Floating-Point Accelerator to
perform floating-point arithmetic.

Run Time Services /lib/librts.a Not Support system services such as system
library required configuration, messages, trace and error

log support.

Programmer /lib/libPW.a -IPW Miscellaneous operating system
Workbench library functions.

Standalone /usr/lib/lib2.a -12 Miscellaneous operating system
Subroutine Library functions.

Figure 3-1 (Part 1 of 3). Summary of System Libraries

3-4 Programming Tools and Interfaces

Name Path name

Terminal 1/0 Libraries:
curses /usr/lib/libcurses.a

Extended curses

DOS Libraries:
DOS library

DOS I/0 library

Graphics Libraries:
DASI 300 Graphics
Interface library

DASI 300s Graphics
Interface library

DASI 450 Graphics
Interface library

Tektronix 4014
Graphics Interface
library

/usr/lib/libcur.a

/usr/lib/libdos.a

/usr/lib/libdossio.a

/usr/lib/lib300.a

/usr/lib/lib300s.a, or
/usr/lib/lib300S.a

/ usr /lib /li b450. a

/usr/lib/lib4014.a

cc flag Function

-llibcurses Control functions for writing data to and
getting data from the terminal screen.

-lcur
-!curses

-llibdos

-llibdossio

-1300

-1300s, or
-1300S

-1450

-14014

Control functions for writing data to and
getting data from the terminal screen
that support color, multiple windows, and
an enhanced character set. See Chapter
5, "Controlling the Terminal Screen" on
page 5-1.

DOS (Disk Operating System) functions
from a program running on RT PC.

Access to DOS (Disk Operating System)
file systems and I/O functions from a
program running on RT PC.

Graphics functions to a DASI 300
terminal.

Graphics functions to a DASI 300s
terminal.

Graphics functions to a DASI 450
terminal.

Graphics functions to a Tektronix 4014
terminal.

Figure 3-1 (Part 2 of 3). Summary of System Libraries

Subroutine Libraries 3-5

Name Path name cc flag Function

tplot Filters /usr/lib/libplot.a -lplot Graphics functions for tplot filters.
Graphics Interface
library

IBM PC Graphics /usr/lib/libprint.a -lprint Graphics functions to an IBM 5250
Printer Interface Graphics Printer.
library

Other Libraries:
Data Base /usr/lib/libdbm.a -ldbm Data base subroutines.
Subroutine library

Queue Backend /usr/lib/libqb.a -lqb Subroutines for queue backends.
Subroutine library

sdb library /usr/lib/libg.a -lg Subroutines that create object code with
extra space for debugging with the sdb
program.

lex library /usr/lib/libl.a -11 Subroutines for programs created by the
lex program generator.

yacc library /usr/lib/liby.a -ly Subroutines for programs created by the
yacc program generator.

Figure 3-1 (Part 3 of 3). Summary of System Libraries

3-6 Programming Tools and Interfaces

Including Declarations

Some functions require a set of declarations to operate properly. You must specifically
request that these declarations be included in a program. The system stores some
declaration files, called header files, in the /usr/include directory. To include a header
file, use the following directive within a C language program:

#inc 1 ude <file.h>

where file is the name of one of the header files. Put all header file directives at the
beginning of all files being compiled that use the header file.

Linking the Library Routines

When you compile a program, the cc program uses the Id program to search the C
language library and the run time services library to locate and include functions that are
used in the program. To locate and include functions from other libraries, specify these
libraries on the command line when starting the cc command. For example, when using
functions of the math library, request that the math library be searched by including the
argument:

-lm
on the command line, such as:

cc file. c - 1 m
Use this method for all functions that are not part of the C language or run time services
libraries. Using this method, the compiler searches the C library and the run time services
library after searching the specified libraries. Refer to the description of the ld command
in AIX Operating System Commands Reference for information about linking other
libraries to a program.

Library Descriptions

The rest of this chapter describes the functions and header files of the libraries. Each
library description begins with how to include the functions and/or header files in a
program. Then, each function is listed and briefly described. Following the listing are
descriptions of the header files associated with these functions (if any).

Subroutine Libraries 3-7

The C Library

The C library routines perform the following types of services:

• Input/output control

• String manipulation

• Character manipulation

• Time functions

• Miscellaneous functions.

The compiler loads the functions of the C library automatically. However, you must
include any required declarations in the program.

Input/Output Control

The input and output (I/O) functions provide buffered I/0 for a program that is easier to
use than using the read and write system calls (see Chapter 4, "Using System Calls" on
page 4-1). Do not specify any special flag to the compiler to use the I/O control functions.

Include the header file for these functions in the program. To include a header file, use
the following statement:

#include <stdio.h>
All include statements should be near the beginning of the first file being compiled, usually
in the declarations section before ma i n () , and must occur before using any library
functions.

Using 1/0 Routines
The system treats devices as if they were files for input and output. Any of the I/0 system
calls or library routines can send data to or from either a device or a file. You must also
open and close a device the same as a file.

3-8 Programming Tools and Interfaces

Some of the I/O library routines are actually macros defined in a header file, and some are
object modules of functions. In many cases the library contains a function and a macro
that do the same type of operation. Consider the following points when deciding which to
use:

• You cannot set a breakpoint for a macro using the debug program.

• Functions may have side effects to avoid.

• Macros usually are faster than the functions because the preprocessor replaces the
macros with actual lines of code in the program.

• Macros result in larger object code after being compiled.

Some of the I/O routines use stdin and stdout as their input and output channel. Most of
the routines, however, allow you to specify a file for the source or destination of the data
transfer. Some specify the file using a file pointer (which points to a structure containing
the file name); others accept a file descriptor (a positive integer assigned to the file when it
is opened).

Figure 3-2 on page 3-10 summarizes some important characteristics of the input and output
routines. The column headings mean:

Operation The name of the I/O routine or system call

Macro/Function If the operation is a library routine, this column shows if it is a macro
or a function. If it is a system call, this column shows that it is a
system call.

Input/Output The source and/or destination of the operation is either a file that you
can Specify or it uses stdio (standard input and output).

Formatted The resulting data stream is formatted (Yes) or not formatted (No).

Operation Type The data type of the information being transferred: byte, character,
word (4-bytes) or string.

Subroutine Libraries 3-9

Operation Macro/Function Input/Output Formatted Operation Type

read System Call Specify No Byte
write System Call Specify No Byte
fread Function Specify No Byte
fwrite Function Specify No Byte
printf Function stdio Yes Byte
fprintf Function Specify Yes Byte
sprintf Function Specify Yes Byte
scanf Function stdio Yes Byte
fscanf Function Specify Yes Byte

ungetc Function Specify No Character
getc Macro Specify No Character
getchar Macro stdio No Character
fgetc Function Specify No Character
putc Macro Specify No Character
putchar Macro stdio No Character
fputc Function Specify No Character

getw Function Specify No Word
putw Function Specify No Word

gets Function stdio No String
fgets Function Specify No String
puts Function stdio No String
fputs Function Specify No String
sscanf Function Specify Yes String

Figure 3-2. Comparison of 1/0 Operations

3-10 Programming Tools and Interfaces

1/0 Routines Descriptions
The I/O routine descriptions are grouped into the following categories:

• File access

• File status

• Input

• Output

• Miscellaneous .

In the following descriptions, stream input and output refers to sequential input and
output using open file descriptors. The terms stdin and stdout refer to the device or file
that is currently assigned as standard input or standard output.

File Access
fclose Closes an open stream.

fdopen Associates stream with an opened file.

fileno Returns a file descriptor associated with an open stream.

fopen Opens a stream with specified permissions. A stream is what fopen returns.

freopen Substitutes named file in place of open stream.

fseek Repositions stream pointer.

pclose Closes a stream opened by popen.

popen Creates a pipe as a stream between two processes.

rewind Repositions stream pointer at beginning of file.

setbuf Turns buffering to stream on and off.

File Status
clearerr Resets error con di ti on on stream.

feof

ferror

ft ell

Tests for end of file on stream.

Tests for error condition on stream.

Returns current stream pointer.

Subroutine Libraries 3-11

Input
fgetc

fgets

fread

fscanf

getc

get char

gets

getw

scanf

sscanf

ungetc

Output
fflush

fprintf

fputc

fputs

fwrite

printf

putc

putchar

puts

putw

sprintf

Reads next character from stream (function for the macro getc).

Reads string from stream.

Reads from stream, buffered.

Reads using format from stream.

Returns next character from stream.

Returns next character from stdin.

Reads string from. stdin.

Reads word from stream.

Reads using format from stdin.

Reads using format from string.

Puts back one character on stream.

Writes all currently buffered characters- from stream.

Writes using format to stream.

Writes next character to stream (function for putc).

Writes string to stream.

Writes to stream, buffered.

Writes using format to stdout.

Writes next character to stream.

Writes next character to stdout.

Writes string to stdout.

Writes word to stream.

Writes using format to string.

3-12 Programming Tools and Interfaces

Miscellaneous
ctermid

cuserid

system

tempnam

tmpnam

tmpfile

Returns file name for controlling terminal.

Returns login name for owner of current process.

Executes system command.

Creates temporary file name using directory and prefix.

Creates temporary file name.

Creates temporary file.

1/0 Header File
The I/0 header file is stdio.h in the /usr/include directory. This file contains macro
definitions and parameters that the I/O library routines use. The shell automatically opens
the following files:

stdin
stdout
std err

Standard input file
Standard output file
Standard error file.

String Manipulation

The string manipulation functions include:

• Locate a character position within a string

• Copy a string

• Concatenate strings

• Compare strings.

You do not need to specify any special flag to the compiler or include any header file for
these functions in the program to use the string functions.

Subroutine Libraries 3-13

The string routines perform the following functions:

regcmp

reg ex

strcat

strchr

strcmp

strcpy

strcpsn

strlen

strncat

Compiles a regular expression (consider using the regcmp command instead.

Executes a compiled regular expression against a string.

Concatenates two strings.

Searches string for character.

Compares two strings.

Copies string over string.

Returns the length of initial string not containing set of characters.

Returns the length of string.

Concatenates up to a specified number of characters from one string to another
string.

strncmp Compares up to a specified number of characters from one string with another
string.

strncpy

strpbrk

strrchr

strspn

strtok

Copies up to a specified number of characters from one string to another string.

Searches string for any set of characters.

Searches string backwards for character.

Returns the length of initial string containing set of characters.

Searches string for token separated by any of a set of characters.

Memory Manipulation

The memory functions operate on arrays of characters in memory called memory areas.
The memory manipulation functions include:

• Locating a character within a memory area

• Copying characters between memory areas

• Comparing contents of memory areas

• Setting a memory area to a value.

You do not need to specify any special flag to the compiler to use the memory functions.

Include the header file for these functions in the program. To include a header file, use
the following statement:

#include <memory.h>

3-14 Programming Tools and Interfaces

All include statements should be near the beginning of the first file being compiled, usually
in the declarations section before ma i n () , and must occur before using any library
functions.

The memory routines perform the following functions:

memccpy

memcpy

memchr

memcmp

memset

Copies characters from one memory area to another, stopping at the first
occurrence of a specified character or after a specified number of characters
are copied.

Copies a specified number of characters from one memory area to another.

Finds the first occurrence of a specified character in a memory area, and
returns a pointer to that character.

Compares the contents of two memory areas up to a specified maximum
number of characters.

Sets the contents of a memory area to a specified value.

Character Manipulation

The character manipulation functions test and translate ASCII characters. You do not
need to specify any special flag to the compiler to use the character manipulation
functions.

Include the header file for these functions in the program. To include a header file, use
the following statement:

#include <ctype.h>

All include statements should be near the beginning of the first file being compiled, usually
in the declarations section before ma i n () , and must occur before using any library
functions.

The character manipulation functions are grouped into the following categories:

• Character testing

• Character translation.

Subroutine Libraries 3-15

Character Testing
Use these functions to find out the type of a character:

isalnum Is character alphanumeric?

isalpha Is character alphabetic?

isascii

iscntrl

is digit

is graph

is lower

isprint

ispunct

is space

is upper

isxdigit

Is integer ASCII character?

Is character a control character?

Is character a digit?

Is character a printing character (not including space)?

Is character a lowercase letter?

Is character a printing character (including space)?

Is character a punctuation character?

Is character a white space character?

Is character an uppercase letter?

Is character a hex digit?

Character Translation
Use these functions to translate characters from one form to another:

toascii Converts integer to ASCII character.

tolower Converts character to lowercase.

toupper Converts character to uppercase.

Character Header File

Time

The character header file is ctype.h in the /usr/include directory. It contains macro
definitions and data declarations that the string functions use.

The time functions access and reformat the current system date and time. You do not need
to specify any special flag to the compiler to use the time functions.

Include the header file for these functions in the program. To include a header file, use
the following statement:

#include <time.h>

3-16 Programming Tools and Interfaces

All include statements should be near the beginning of the first file being compiled, usually
in the declarations section before ma i n () , and must occur before using any library
functions.

These functions (except tzset) convert a time such as the time returned by the time system
call:

asctime

ctime

gm time

local time

tzset

Returns string representation of date and time.

Returns string representation of date and time, given integer form.

Returns Greenwich Mean Time.

Returns local time.

Sets time zone field from environment variable.

Time Header File
The header file for the time functions is time.h in the /usr/include directory. It includes
declarations for variables that the time functions use, such as:

tm A structure that the gmtime and localtime functions return.

daylight An integer that is nonzero to use Daylight Savings Time conversions.

tzname A character that defines the name of time zones. (The system overides this
variable if the TZ variable is defined in the system environment. Setting the TZ
variable changes the values defined in the header file for daylight, timezone
and tzname.)

Subroutine Libraries 3-17

Numerical Conversion

These functions perform numerical conversion. You do not need to specify any special flag
to the compiler or include a header file to use these functions.

a641 Converts string to base 64 ASCII.

atof

atoi

atol

frexp

13tol

ltol3

ldexp

164a

modf

Converts string to floating.

Converts string to integer.

Converts string to long.

Splits floating into mantissa and exponent.

Converts 3-byte integer to long.

Converts long to 3-byte integer.

Combines mantissa and exponent.

Converts base 64 ASCII to string.

Splits mantissa into integer and fraction.

Group File Access

These functions access the group file. You do not need to specify any special flag to the
compiler to use these functions.

Include the header file for these functions in the program. To include a header file, use
the following statement:

#include <grp.h>

3-18 Programming Tools and Interfaces

All include statements should be near the beginning of the first file being compiled, usually
in the declarations section before ma i n () , and must occur before using any library
functions.

endgrent

getgrent

getgrgid

getgrnam

setgrent

Closes group file being processed.

Gets next group file entry.

Returns next group with matching gid.

Returns next group with matching name.

Rewinds group file being processed.

Password File Access

These functions search and access information stored in the password file /etc/passwd.

Include the header file for these functions in the program. To include a header file, use
the following statement:

#include <pwd.h>
All include statements should be near the beginning of the first file being compiled, usually
in the declarations section before main () , and must occur before using any library
functions.

endpwent

getpw

getpwent

getpwnam

getpwuid

putpwent

setpwent

Closes password file being processed.

Searches password file for uid.

Gets next password file entry.

Returns next entry with matching name.

Returns next entry with matching uid.

Writes entry on stream.

Rewinds password file being accessed.

Subroutine Libraries 3-19

Parameter Access

These functions get several different types of parameters from the system. You do not need
to specify any special flag to the compiler or include any header file to use these functions.

getopt Gets next option from option list in command.

getcwd Returns string representation of current directory.

getenv Returns string value associated with environment variable.

getpass Reads string from terminal without echoing.

Hash Table Management

These functions manage hash search tables. You do not need to specify any special flag to
the compiler or include any header file to use these functions.

hcreate Creates hash table.

hdestroy Destroys hash table.

hsearch Searches hash table for entry.

Binary Tree Management

These functions manage a binary tree. You do not need to specify any special flag to the
compiler or include any header file to use these functions.

tdelete Deletes nodes from binary tree.

tsearch Searches binary tree.

twalk Walks through a binary tree to a specified level, and performs a specified action
at each node of the tree.

3-20 Programming Tools and Interfaces

Table Management

These functions manage a table. The table is a two-dimensional character array. The first
subscript defines the maximum number of entries in the table. The second subscript
defines the width (or length) of a single entry. These functions do not allocate storage. Be
sure to allocate sufficient memory before using these functions.

You do not need to specify any special flag to the compiler or include any header file to
use these functions.

bsearch Searches table using binary search.

lsearch Searches table using linear search.

qsort Sorts table using quicker-sort algorithm.

Memory Allocation

These functions allocate or free memory from the program.

You do not need to specify any special flag to the compiler or include any header file to
use these functions.

calloc Allocates zeroed storage.

free Frees previously allocated storage.

malloc Allocates storage.

realloc Changes size of allocated storage.

Pseudo-random Number Generation

These functions generate pseudo-random numbers. The functions that end with 48 use a
pseudo-random number generator based upon the linear congruential algorithm and 48-bit
integer arithmetic. The rand and srand functions use a multiplicative congruential
random number generator with period of 2a2.

Subroutine Libraries 3-21

You do not need to specify any special flag to the compiler or include any header file to
use these functions.

drand48 Returns a random double , n, in the interval:

0 s n < 1.

lcong48 Sets parameters for drand48, lrand48, and mrand48.

lrand48 Returns a random long, n, in the interval:

0 s n < 231

mrand48 Returns a random long, n, in the interval:

-231 s n < 231

rand Returns a random integer, n, in the interval:

0 s n < 215

seed48 Seeds the generator for drand48, lrand48, and mrand48.

srand Seeds the generator for rand.

srand48 Seeds the generator for drand48, lrand48, and mrand48.

Signal Handling

These functions simulate the functions available from the signal handling functions
provided by the system calls for signals described in "Signal Calls" on page 4-26. These
functions indicate error handling to other processes, and communicate with other
cooperating processes.

You do not need to specify any special flag to the compiler to use these functions.

Include the header file for these functions in the program. To include a header file, use
the following statement:

#include <signal.h>
All include statements should be near the beginning of the first file being compiled, usually
in the declarations section before main () , and must occur before using any library
functions.

These declarations define ASCII names for each of the software signals.

gsignal Sends a software signal.

ssignal Arranges for handling of software signals.

3-22 Programming Tools and Interfaces

Miscellaneous

These functions perform services that do not appear in any of the previous categories.

You do not need to specify any special flag to the compiler or include any header file to
use these functions.

abort

abs

ecvt

fcvt

gcvt

Sends an IOT (I/O terminate) signal to the process.

Returns the absolute integer value.

Converts double to string.

Converts double to string using Fortran format.

Converts double to string using Fortran F or E format.

isatty Tests whether integer file descriptor is associated with a terminal.

mktemp Creates file using template.

monitor Causes process to record a histogram of program counter location.

swab Swaps and copies bytes.

ttyname Returns the path name of terminal associated with integer file descriptor.

Subroutine Libraries 3-23

Run Time Services Library

The run time services library routines allow you to access the following system functions
from your program:

• Configuration services

• Message services

• Trace

• Error logging.

The functions are in the file librts.a in the /usr/lib directory. The cc command
automatically locates and loads the requested functions when it compiles a C language
program.

Include header files, as needed, when using these routines. See AIX Operating System
Technical Reference for the header files needed with each routine, as well as detailed
information about their use.

cfgadev

cfgamni

cfgaply

cfgddev

cfgdmni

errunix

msghelp

msgimed

msgqued

msgrtrv

trcunix

vrcppr

Adds a device.

Adds a minidisk.

Applies configuration information.

Deletes a device.

Deletes a minidisk.

Logs errors that occur when running a program.

Retrieves and displays a predefineg help message.

Retrieves and outputs a predefined immediate message.

Retrieves and outputs a predefined queued message.

Retrieves text for a message, insert or help.

Records trace log entries for a program.

Installs a protocol procedure.

The library also contains other routines that these routines use to perform their functions.

3-24 Programming Tools and Interfaces

Math Library

The math library consists of functions and a header file. Use the following command line
entry to tell the cc command to locate and load the needed functions when it links a C
language program:

cc file.c -lm
Include the header file for these functions in the program. To include a header file, use
the following statement:

#include <math.h>
All include statements should be near the beginning of the first file being compiled, usually
in the declarations section before ma i n () , and must occur before using any library
functions.

The math header file is math.h in the /usr/include directory. This file contains
definitions for functions and macros that the math library routines use. All functions in
the math library return double precision values.

The functions are grouped into the following categories:

• Trigonometric functions
• Bessel functions
• Hyperbolic functions
• Miscellaneous functions.

Trigonometry

These functions compute angles (in decimal radian measure), sines, cosines, and tangents.
All of these values are expressed in double precision. The file math.h declares the values
as double.

a cos

as in

atan

atan2

cos

hypot

sin

tan

Returns arc cosine.

Returns arc sine.

Returns arc tangent.

Returns arc tangent of a ratio.

Returns cosine.

Returns the square root of the sum of the squares of two numbers.

Returns sine.

Returns tangent.

Subroutine Libraries 3-25

Bessel

These functions calculate bessel functions of the first and second kinds of several orders
for real values. The bessel functions are:

jO, jl, jn, yO, yl, and yn

For descriptions of the functions see bessel in AIX Operating System Technical Reference.

Hyperbolic

These functions compute the hyperbolic sine, cosine, and tangent for real values.

co sh

sinh

tanh

Returns hyperbolic cosine.

Returns hyperbolic tangent.

Returns hyperbolic tangent.

Miscellaneous

These functions do not fall into any of the previously defined categories.

ceil Returns the smallest integer not less than a given value.

exp Returns the exponential function of a given value.

fabs Returns the absolute value of a given value.

floor Returns the largest integer not greater than a given value.

fmod Returns the remainder produced by the division of two given values.

gamma Returns the natural log of gamma as a function of the absolute value of a given
value.

log Returns the natural logarithm of a given value.

pow Returns the result of a given value raised to another given value.

sqrt Returns the square root of a given value.

3-26 Programming Tools and Interfaces

Chapter 4. Using System Calls

CONTENTS
About This Chapter . 4-2
Header Files Needed for Calls . 4-3
Process Calls . 4-4

Process Handling Calls . 4-4
Process Identification Calls . 4-18
Process Tracking Calls . 4-24

Interprocess Communications . 4-25
Signal Calls . 4-25
Enhanced Signal Facility . 4-30
Semaphore Calls . 4-38
Message Calls . 4-50

System Memory Management . 4-58
Segment Registers . 4-59
Using a Mapped Data File . 4-60
Using a Mapped Executable File . 4-62
Shared Memory Calls . 4-63
Memory Management Calls . 4-66

File System Calls . 4-67
Data Handling Calls . 4-67
File Maintenance Calls . 4-72

Time System Calls . 4-73

System Calls 4-1

About This Chapter

This chapter discusses how to access the services of the operating system from a program
through system calls. See AIX Operating System Technical Reference for reference
information about a system call described in this chapter.

4-2 Programming Tools and Interfaces

Header Files Needed for Calls

Some system calls depend on special macro definitions and declarations for the values that
they return. The system provides this information in files called header files that are in
the directory /usr/include. Therefore, when using system calls, ensure to also include any
header files that the system call needs. To include a file in a program, use the following
statement in the program:

#inc 1 ude <file.h>

where the parameter, file.h, represents the name of the header file to use.

The header files needed for each system call are:

Header File Calls That Use The Header File

fcntl.h open, fcntl

stdio.h getpass

lockf.h lockf

sys/types.h msgxrcv, msgrget, msgop, msgctl, msgget, semctl, semget, semop, shmctl,
shmget, shmop, stat, fstat, times, ustat, utime

sys/ipc.h msgxrcv, msgrget, msgop, msgctl, msgget, semctl, semget, semop, shmctl,
shmget, shmop

sys/msg.h msgxrcv, msgrget, msgop, msgctl, msgget,

sys/shm.h shmctl, shmget, shmop

sys/sem.h semctl, semget, semop

sys/lock.h plock

sys/signal.h signal

sys/stat.h stat, fstat, open, creat

sys/times.h times

sys/utsname.h uname

ustat.h ustat

System Calls 4-3

Process Calls

When a program runs in the system, that program, together with the environment that it
runs in, is a process. Many processes are running in the system: some running system
programs (like init) and some running application programs. When each process begins,
the system assigns it an identification number (process ID) that is a positive integer
between 0 and 32,767. As long as the process remains active, the system uses this number
to identify that process. When the process ends, the system can assign the number to a
new process.

Process Handling Calls

Use the following calls to control creating, operating and stopping processes (see AIX
Operating System Technical Reference for more information about these calls):

Call

exec
exit
fork
nice
pipe
plock

Description

Runs a new program in the currently running process.
Stops a process.
Creates a new process.
Changes priority of a process.
Creates an inter-process channel.
Locks process, text, or data in memory.

Starting a Process
All processes that run in the system, except init, a-re started through the fork system call.
The fork call creates a second independent process from the one running process through
the following sequence of events:

1. Gets a new process ID from the system.

2. Creates a new process that has access to the code running in the existing process and
the environment of the existing process. By using virtual memory mapping, the system
does not actually copy the information into the new process until the new process
actually uses it. If, for example, the first instruction executed in the new process is an
exec system call, the system does not waste time copying the first program only to
throw it out when the exec call occurs.

3. Starts the new process running from the place in the program that immediately follows
the fork call.

The original process is called the parent; the new process is called the child. The value
returned to a process from the fork call tells that process whether it is a child or a parent
process. The parent process receives the process ID of the child process; the child process

4-4 Programming Tools and Interfaces

receives a value of zero. Therefore, in most programs that use a fork system call, it
appears within a conditional statement.

if(x = fork())
{

}
else
{

}

[code executed by the parent process]

[executed by the child process]
execv(newprog);

The parent process may continue running and create more new processes with other fork
calls. However, to ensure that the child process completes successfully, the parent process
usually stops running until the child process completes its assigned task. The parent
process uses the wait system call to stop until the child process ends. When used in this
manner, fork and wait are similar to calling a subroutine -- the calling program waits for
the subroutine to complete and return a value before continuing.

If the fork operation is successful, the first instruction that the child process executes is
usually an exec system call. The exec call replaces the program currently running in the
child process with a new program and starts executing the new program.

When the child process completes, the parent process receives a completion code to
indicate the conditions of the child process at the end. A value of zero indicates a normal
end; a value that is not zero indicates an error (defined by the value of errno, the system
variable that reports error codes).

Note: If the parent process does not wait for a completion code from the child process,
and the child ends with an error condition, no other process gets the completion code to
recover from the error. If the parent does not wait for a completion code when it creates
the child process, it can continue to perform operations as a separate process. After taking
care of some other tasks, the parent can then issue a wait call. If the child process has not
ended before the wait occurs, the parent still gets the completion code when the child
process ends.

System Calls 4-5

Example of Process Life Cycle
When the shell executes a command, it performs the fork and wait process just described.
See Figure 4-1 on page 4-7 for an illustration of the following process. For example, the
command:

pr
tells the shell to execute a program called pr. To do this:

1. The shell issues a fork system call to get a new process.

2. The system marks the shell data and stack space as copy on reference for the new
process space.

3. The system schedules the new process to be run.

4. The first shell issues a wait to wait for the new process (child) to complete.

The new process (also a shell) then:

1. Issues an exec system call to load and run the pr program in the new process

2. Issues an exit system call with a completion code when it is done.

When the parent shell process receives the completion code from the exit system call in
the child, it starts running again. You can then enter another command on the command
line.

4-6 Programming Tools and Interfaces

PROCESS 1
I·--- I
Program 1
{

PROCESS 2 if<x=forkO>;
)l

1
1--- I

[1] Program 1
'--------+II; {

execv(newprog); [2]

[3]wait(x); • L exit(Q); 141
I [5JProgram 1

continues I -- I

I --- I

[1] Process 1 forks to get Process 2.
[2] Process 2 executes next instruction in Program 1

which copies newprog into Process 2.
(3] Process 1 executes a wait() call.
[4] Newprog completes with an exit() call which

returns a value to Process 1 - Process 2 stops.
[5] Program 1 starts running again.

Figure 4-1. Using the Fork System Call

Special Processes
All processes in the system begin from a fork. One special process, process ID 1, is the
initialization process (init). This process is the ancestor process to all other processes in
the system. It uses the exec system call to start the remaining system programs.

Example of Fork System Call
The program in Figure 4-2 on page 4-8 uses the fork system call in a simple, but operating
program. If you are using the Programming Examples, the program is stored as
forktstl. c. Compile the program using the cc command:

cc forktstl.c -o forktstl
To run the program, enter the command:

forktstl

System Calls 4-7

When the program runs, it writes output to the screen. The two processes that the
program creates (parent and child) both write to the screen without regard to the other
process. Therefore, the result that appears on the screen depends upon system activity and
random luck. Sometimes it is a perfect output like in Figure 4-3 on page 4-9; other times
the output from the two processes mix together on the screen. Run the program several
times to experiment with the operation of two concurrent processes.

#include <stdio.h>
#define PR(value) fprintf(stdout, 11 %s\n 11 ,(value))

main()
{

}

int c_count;
int p_count;

PR("starting main process 11
);

if (fork() == O)
{

}

PR(11 starting child process 11
);

for(c_count = O; c_count <= 4; c_count++)
PR(11 child 11

);

PR(11 ending child process' 1
);

exit(O);

PR(' 1starting parent process");
for(p_count = O; p_count <= 4; p_count++)

PR("parent 11
);

PR(11 ending parent process' 1
);

Figure 4-2. Example of Fork System Call

4-8 Programming Tools and Interfaces

Well Behaved Output

starting main process
starting parent process
parent
parent
parent
parent
parent
ending parent process
starting child process
child
child
child
child
child
ending child process
$

Possible Output

starting main process
starting parent process
parent
parent
parstarting child process
child
child
child
child
child
ending child process
ent
parent
parent
ending parent process
$

Figure 4-3. Output from forktstl Program

An Interesting Side Effect
Run the sample program, forktstl, again. This time redirect the output of the program
to a file with the command:

forktstl > testout

Then look at the output from the program in the file:

pg testout

The output will be like the Well Behaved Output from before except for one major
difference: the message written in the program before the fork call (starting main
program) appears twice -- once before the start of each process. This repetition shows one
characteristic of the fork call. When the main process does the fork, each process (parent
and child) receives a copy of the buffers and open file descriptors of the parent process.

In this example, the buffer at the time of the fork contained the message, starting main
program, and each process got a copy of that message. When the processes ended, the

System Calls 4-9

system wrote each of the buffers into the same file space because both buffers contained
the same file pointers. Therefore, it produces one file that contains first the complete
output from one process and then the complete output from the second process. The order
that the outputs occur may vary, but they are not mixed as in the previous example when
the program wrote to the terminal.

Another Experiment

Copy the source file fork ts t 1 . c into another file called test . c using the command:

cp forktstl.c test.c

and then edit the new file, test. c. Delete the line in the child process code that contains
the exit system call:

exit(O);
Store the file. Then compile the file, rename a.out, and run the new program file. This
time the parent process code executes twice: once as part of the child process and once as
part of the parent process. This operation produces some confusing messages because the
child process is writing out parent messages. The exit call is in the original program to
end the child process and prevent the child process from falling into the parent code.

Note: This experiment also shows that the child process gets a complete copy of the
original parent program code, because the child does run code that it should not.

The exit system call also returns a completion code to the parent process if the parent uses
a wait system call (see "Example of Fork and Wait System Calls").

Example of Fork and Wait System Calls
The program in Figure 4-4 on page 4-11 uses the fork and wait system calls in a simple
program that runs. If you are using the Programming Examples, the program is stored as
forktst2. c. Compile the program using the cc command and copy it to its own file,
forktst2, as in the previous fork example.

To run the program, enter the command:

forktst2
When the program runs, it writes output to the screen. The two processes that the
program creates both write to the screen, but this time the parent waits for the child to
complete before it writes to the screen. Therefore, the result that appears on the screen is
much more predictable than the previous example. The output looks like Figure 4-5 on
page 4-12.

4-10 Programming Tools and Interfaces

#include <stdio.h>
#define PR(value)
#define PD(value)

fpri ntf(stdout, 11 %s\n 11
, (value)

fpri ntf(stdout, 11 %d\n 11
, (value)

main()
{

}

int c_count;
int p_count;
int status;
int frkpi d;
int chldpd;

PR("starting main process");
PD(frkpid);
i f ((fr kp i d = fork()) = = 0)
{

}

PR("starting child process");
for(c_count = O; c_count <= 4; c_count++)

PR("chi ld");
PR("ending child process");
PD (frkpi d);
exit(O);

chldpd = wait(&status);
PR("starting parent process 11

);

for(p_count = O; p_count <= 4; p_count++)
PR(11 parent 11

);

PR("ending parent process 11
);

PD(chldpd);
PD(status);

Figure 4-4. Fork and Wait System Calls - Sample Program

System Calls 4-11

starting main process
0
starting child process
chi. l d
child
child
child
child
ending child process
0
starting parent process
parent
parent
parent
parent
parent
ending parent process
96
0
$

Figure 4-5. Output from forktst2 Sample Program

Example of Exec System Call
The program in Figure 4-6 on page 4-13 uses exec system call together with the fork and
wait system calls in a simple program that runs. If you are using the Programming
Examples, the program is stored as forktst3. c. Compile the program using the cc
command and copy it to its own file, forktst3, as in the previous fork example.

To run the program, enter the command:

forktst3
When the program runs, it writes output to the screen. The two processes that the
program creates both write to the screen; the parent waits for the child to complete before
it writes to the screen. The output looks like Figure 4-7 on page 4-14.

4-12 Programming Tools and Interfaces

#include <stdio.h>
#define PR(value) fprintf(stdout, 11 %s\n 11 ,(value))

main()
{

}

int p_count;
int status;
int frkpi d;
int chldpd;

PR("starting main process");
if((frkpid = fork()) == 0)
{

}

PR("starting child process 11
);

execl(11 /bin/sh", 11 sh 11
,

11 -c",

chldpd = wait(&status);

11 date 11 NULL)·
' '

PR(11 starting parent process 11
);

for(p_count = O; p_count <= 4; p_count++)
PR(11 parent 11

);

PR("ending parent process 11
);

Figure 4-6. Exec System Call - Sample Program

The child portion of this program does not contain an exit call because when it performs
the execl call, the new program, date loads on top of the program in the child process
(destroying any program code that is there). When the new program ends, it stops the
child process and returns a completion code to the waiting parent process.

Example Pipe System Call
The program in Figure 4-8 on page 4-15 uses the pipe system call in a simple, but
operating program. If you are using the Programming Examples, the program is stored as
pi petst. c. Compile the program using the cc command and copy it to its own file,
pi petst, as in the previous fork example.

System Calls 4-13

starting main process
starting child process
Wed May 15 15:26:25 CDT 1985
starting parent process
parent
parent
parent
parent
parent
ending parent process
$

Figure 4-7. Output from forktst3 Sample Program

4-14 Programming Tools and Interfaces

#include <stdio.h>
#include <signal.h>
#define PR(value) fprintf(stdout, 11 %s\n 11

, (value)
#define WRITE 1
#define READ 0
#define chkmd(a, b) (mode -- READ ? (b) : (a)

int p_pid;

main()
{

int w_fdesc;
int lnmsg = 22;

w_fdesc = openp(11 pr 11
, WRITE);

if (write(w_fdesc, "Writing piped message. 11
, lnmsg) != lnmsg)

PR(11 error writing to pipe");
closep(w_fdesc);

}

openp(cmd, mode)
char *cmd;
int mode;
{

int p_ fdesc [2] ;

if (pipe(p_fdesc) < 0)
return(NULL);

Figure 4-8 (Part 1 of 2). Using the pipe System Call

System Calls 4-15

}

i f ((P-P i d = fork()) = = 0)
{

}

close(chkmd(p_fdesc[WRITE], p_fdesc[READ]));
close(chkmd(O, 1));
dup(chkmd(p_fdesc[READ], p_fdesc[WRITE]));
close(chkmd(p_fdesc[READ], p_fdesc[WRITE]));
execl (''/bin/sh 11

,
11 sh 11

,
11 -c", cmd, 0);

_exit (1);

i f (P-P i d = = -1)
return(NULL);

close(chkmd(p_fdesc[READ], p_fdesc[WRITE]));
return(chkmd(p_fdesc[WRITE], p_fdesc[READ]));

closep(fd)
int fd;
{

}

register r;
int status;

close(fd);
while ((r = wait(&status)
if (r == -1)

status = -1;
return(status);

!= p_pid && r != -1);

Figure 4-8 (Part 2 of 2). Using the pipe System Call

To run the program, enter the command:

pipetst

This program shows how to handle pipe file descriptors to use pipe for interprocess
communication. It creates a pipe, forks another process, and writes a simple message to
the pipe. The child process writes the message to the screen after receiving the message
through the pipe.

4-16 Programming Tools and Interfaces

When the program runs, it calls popen to open a pipe and fork to create a new process.
The pipe call returns two file descriptors to the calling program: one describes the end of
the pipe to use for writing; the other describes the end of the pipe to use for reading. Both
processes must cooperate to use the pipe. If one process writes to the pipe, the other
process should not write to the same pipe at the same time. Similarly, if one process reads
from the pipe, the other process should write something into the pipe to be read.
Therefore, after the fork in this program, the child process closes the write file descriptor
for the pipe and the parent process closes the read file descriptor for the pipe. The parent
can then write into the pipe and the child can read from the pipe, using the remaining
open file descriptors.

Note: To have two-way data transfer between processes, open two different pipes: one for
reading and one for writing. Do not use one pipe for two-way data transfer.

After the child process closes the read end of the pipe, it also closes the file descriptors for
standard input and standard output that belong to that process (file descriptors 0 and 1).
Then it uses a dup system call to copy the read file descriptor for the pipe. Because the
system assigns file descriptors starting at the lowest number available and file descriptors
0 and 1 are now available, the copy of the read end of the pipe becomes standard input for
the child process. The child then closes the original read file descriptor for the pipe,
leaving only the file descriptor for standard input assigned to the pipe in the child process.

Note: You can also use the dup2 system call in the previous description. The dup2
system call does much of the work for you.

Having set up the pipe as standard input, the child process loads and executes (execl) the
shell and the command that is passed to it from the parent process (pr). The new program
in the child process then waits for input from its standard input, the read end of the pipe.

The parent process closes the read file descriptor for the pipe and returns the write file
descriptor to the calling process (pipetst). Pipetst writes a message into the pipe, which
is written out by the pr command running in the child process.

Because the pr command writes a formatted page output to the screen (standard output),
the output may flash on the screen too fast to see it happen. If this occurs, use the
command:

stty page length 24
to set the terminal to paging mode. The output fills the screen and then waits for you to
press Enter before it displays another screen of data.

System Calls 4-17

Process Identification Calls

Each process in the system has a unique number (process ID) that the system uses to
control the activities in the system. In addition to the process ID, the system also assigns
the following identifiers to a process (see Figure 4-9 on page 4-20):

Parent Process ID
The process ID of the parent process that issued a fork call to create the
process.

Process Group ID
The process ID of the process that issued a fork call to create a group of
processes.

TTY Group ID
A process ID that identifies all processes that started from a particular terminal.

Real User ID
The user ID of the process that started the process.

Real Group ID
The group ID of the process that started the process.

Effective User ID
The user ID that determines what files the program can access. In most cases
this is the same as the real user ID; however, you can create a process that has
access permission that is different from your own, and the effective user ID
would be different. Refer to the exec system call in AIX Operating System
Technical Reference for information about setting the set user ID bit.

Effective Group ID
The group ID that determines what files the program can access. In most cases
this is the same as the real group ID; however, you can create a process that has
access permission that is different from your own, and the effective group ID
would be different. Refer to the exec system call in AIX Operating System
Technical Reference for information about setting the set group ID bit.

4-18 Programming Tools and Interfaces

A program can determine any of the above identification codes with the following system
calls:

Call

getegid
geteuid
getgid
getpass
getpgrp
getpid
getppid
getuid
setgid
setpgrp
setuid
ulimit
uname

Description

Gets effective group ID of the calling process.
Gets effective user ID of the calling process.
Gets real group ID of the calling process.
Reads a password.
Gets process group ID.
Gets process ID.
Gets parent process ID.
Gets real and effective, user and group IDs.
Sets group ID.
Sets process group ID.
Sets user ID.
Gets and sets user limits.
Gets name of current system.

See AIX Operating System Technical Reference for complete information about any of these
system calls.

System Calls 4-19

TIY Group ID is the same for all processes
started from this terminal.

~~~~/"'---~~~-
( Your Terminal ~ 

Process 20 Process 10 1 
Parent Process ID = }--
10 for processes P17P16 P13P12 6~~~~ss 

at th is level . . . h J t~~~l~ses 
in this 

Parent Process ID= 12 Lp14 p 15 leg. 
for these processes. r--

Real User ID=Your ID number for all processes. 
Effective User ID= Your ID number, or an ID number that gives special 

access permissions to the process. 
Real Group ID =Your group ID number for all processes. 
Effective Group ID =Your group ID number, or an ID number that gives 

special access permissions to the process. 

Figure 4-9. Relationship of IDs in the System 

Concurrent Groups 
The operating system allows you to belong to many different groups. Being a member of a 
group, you can access the files whose permission bits allow access to members of that 
group. If you belong to more than one group, you can access the files that are available to 
all of those groups at any time. The ability to access files from many groups at the same 
time is called concurrent groups. 

When you log in to the system, the login program checks /etc/passwd and /etc/group to 
determine group membership. The login program then sets up access to the files of those 
groups, and assigns a group ID to indicate which of the groups is the primary group. 
When you create files, those files become available to other members of the primary group. 
To change the primary group, use the newgrp command to change the group ID to that of 
another group to which you belong. 

4-20 Programming Tools and Interfaces 



You can run a program only if you own it, if it is available to one of your groups, or if the 
others permission of the program allows you to execute it. When the program runs, it 
behaves much like a user with respect to groups. It normally takes on the group 
memberships of the person running the program. For example, if you run a program, that 
program can access all files that you can access; if another user runs the same program, 
the program no longer can access your files, but can access the files that the new user can 
access. You can change this behavior by using the chmod command to set the program to 
always run under its own set of user and group IDs. See AIX Operating System Commands 
Reference for information about the chmod command. 

Example of Process ID 
The program in Figure 4-10 on page 4-22 uses the process ID system calls in a simple, but 
operational program. If you are using the Programming Examples, the program is stored 
as ppi dtst. c. Compile the program using the cc command and copy it to its own file, 
ppi dtst, as in the previous fork example. 

To run the program, enter the command: 

ppidtst 
When the program runs, it writes output to the screen. The program creates three 
processes: a parent, a child and a grandchild. Each process writes messages to the screen 
to indicate its: 

• Process ID 
• Process group ID 
• Parent process ID 
• Child process ID (except for the grandchild process). 

The processes cooperate so that the output to the screen is orderly. The output looks like 
Figure 4-11 on page 4-23. Notice that: 

• All process group IDs are the same, and are equal to the parent process ID of the 
parent process (the shell is the parent of the parent process in this case). 

• All process IDs are different. 

• The parent process ID of each of the child processes is the same as the process ID of its 
parent process. 

• The child process ID returned to each parent is the same as the process ID of its child. 

The ps (process status) command reports the process ID of active processes. Use the ps 
command to verify that the shell is the parent process of the parent process when you run 
this example. 

System Calls 4-21 



#include <stdio.h> 
#define PR(value) fprintf(stdout:; 11 %s\n 11

, (value)) 
#define PRT(sl, vl) fprintf(stdout, 11 %s%d.\n 11

, (sl), (vl) ) 

main() 
{ 

int statusl; 
int status2; 
int frkpidl; 
int frkpid2; 
int chldpd; 
int g_chldpd; 

PR( 11 starting main process 11
); 

i f ( (fr kp id 1 = fork() ) = = 0) 
{ 

} 

if( (frkpid2 = fork() ) == 0) 
{ 

} 

PRT ( 11 grandchi 1 d: my process id is 11
, getpi d () ) ; 

PRT( 11 grandchild: my parent process id is 11
, getppid() ); 

PRT ( "grandchi 1 d: my process group id is 11
, getpgrp () ) ; 

PR("ending grandchild process"); 
exit(O); 

g_chldpd = wait(&status2); 
PRT("child: my child's process id is 11

, g_chldpd); 
P RT ( 11 chi 1 d : my pro c es s i d i s 11 

, get p i d () ) ; 
PRT( 11 child: my parent process id is 11

, getppid() ); 
P RT ( 11 chi 1 d : my pro c es s group i d i s 11 

, get pg r p () ) ; 
PR( 11 ending child process 11

); 

exit(O); 

Figure 4-10 (Part 1 of 2). Example of Process ID System Calls 

4-22 Programming Tools and Interfaces 



} 

chldpd = wait(&statusl); 
PRT ("parent: my chi 1 d's process id is 11

, chl dpd); 
PRT ("parent: my process id is 11

, getpi d () ) ; 
PRT ("parent: my parent process id is 11

, getppi d () ) ; 
PRT("parent: my process group id is 11

, getpgrp() ); 
PR( 11 ending parent process"); 

Figure 4-10 (Part 2 of 2). Example of Process ID System Calls 

starting main process 
grandchild: my process id is 266. 
grandchild: my parent process id is 265. 
grandchild: my process group id is 221. 
ending grandchild process 
child: my child's process id is 266. 
child: my process id is 265. 
child: my parent process id is 264. 
child: my process group id is 221. 
ending child process 
parent: my child's process id is 265. 
parent: my process id is 264. 
parent: my process group id is 221. 
parent: my parent process id is 221. 
ending parent process 
$ 

Figure 4-11. Output for Process ID System Call Program 

System Calls 4-23 



Process Tracking Calls 

The system provides the following calls to monitor the operation of a process or group of 
processes in the system. These calls are the means by which the system commands of 
similar names are created. Use these calls within a program to gain information about 
how the program runs in each section of the program. They are primarily tools for use 
during development which would not be included in the final version of the program. See 
AIX Operating System Technical Reference for information about the syntax and flags of 
these calls. 

Call 

acct 
profil 
ptrace 
times 

Description 

Enables/disables process accounting. 
Provides an execution time profile. 
Provides a process trace. 
Gets process and child process times. 

4-24 Programming Tools and Interfaces 



Interprocess Communications 

The system provides many methods for two or more processes to communicate with each 
other. It provides system calls for: 

• Sending and receiving signals. 

• Setting and reading semaphores 

• Sending and receiving messages. 

Each of these sets of calls provides one method of sending small pieces of information 
between processes. For larger blocks of data, use the shared memory facility described in 
"Shared Memory Calls" on page 4-63. 

Signal Calls 

Signals provide a simple method of communication between two processes. Using signals, 
one process can inform another process of status conditions that occur during the process, 
or can tell the other process when an event occurs. Use signals to activate a process for 
error recovery, or to help control access to shared resources (see "Semaphore Calls" on 
page 4-38 and "Shared Memory Calls" on page 4-63 for more advanced control of shared 
resources). The signals that a program can use are defined in the system file, 
/include/sys/signal.h (see signal in AIX Operating System Technical Reference). The 
system calls that allow a program to use signals are: 

Call 

alarm 
kill 
pause 
signal 
wait 

Description 

Sets a process alarm clock. 
Sends signal to process(es). 
Suspends process until signal. 
Specifies what to do when the process receives a signal. 
Waits for child process to end. 

The signal is an integer value. The meanings of these values are defined in the header file 
/include/sys/signal.h. The system generates most of these signals to tell a program of 
error or status conditions in the system. A program should be able to respond to these 
conditions. The program can, however, use a few of the signals for its own purposes. 
Figure 4-12 lists the user signals. 

System Calls 4-25 



Signal Value Definition 

SIGALRM 14 Use the alarm system call to set a time value. The system sends 
SIGALRM to the program when that time is up. 

SIGUSRl 16 A signal defined by cooperating processes to mean the same thing to 
those processes. One process can generate this signal using the kill 
system call. The other cooperating processes that receive the signal 
can then react to the condition indicated by that signal. 

SIGUSR2 17 Another signal defined by cooperating processes. 

Figure 4-12. User Controlled Signals 

How to React to a Signal 
If a program does not have code to handle signals that it could receive, it will end when it 
receives a signal. Therefore, include enough code to recognize all signals that the program 
might receive (including system error signals). Use the signal system call to define the 
actions to be performed when the program receives a particular signal. The format of the 
signal call is: 

signal (sig,func); 
where: 

sig 

func 

Is the integer for the signal, or the system macro name that represents that 
value (defined in sys/signal.h) 

Is a function code to indicate what action to take when the program receives the 
signal. This code can indicate to: 

• End a program when the indicated signal occurs (a function code of 0). 
• Ignore the indicated signal (a function code of 1). 
• Go to a predefined routine to handle the condition (a function code that is 

the address of the routine). 

For example: 

signal(SIGPIPE,S1G_IGN); 
tells the program to ignore a signal that indicates a pipe error. 

4-26 Programming Tools and Interfaces 



Example of Trapping a Signal 
The program in Figure 4-13 on page 4-29 uses the signal system call in a simple program 
that runs. If you are using the Programming Examples, the program is stored as 
s i gts t. c. Compile the program using the cc command with the output going to the file, 
si gt st, as in the previous fork example. 

To run the program, enter the command: 

sigtst 
When the program runs, it asks you to press any letter key (the e letter key to exit the 
program). Whatever letter you enter, the program echoes to the screen. That is the main 
part of the program, but it does not use signal processing. 

You can generate an interrupt signal to the program (SIGINT) by pressing the key that the 
driver program for the terminal defines as sending that signal. This key is often the 
Ctrl-Bksp key sequence. When the program receives this signal, it branches to a routine 
that writes a message to the screen. The program then returns to its main program 
operation. 

Although this function is not very useful, it shows how to build interrupt handling 
routines into a program. The program first tests whether interrupts (SIGINT) are ignored, 
and creates the jump to the interrupt trap routine only if interrupts are not ignored. 

/* assign the previous value of */ 
/* SIGINT to istat. */ 

istat = signal (SIGINT, SIG_IGN); 

/* check previous condition of SIGINT */ 
if(istat != SIG_IGN) 

signal(SIGINT,onintr); 
/* jump to onintr when an */ 
/* interrupt signal occurs */ 

The program makes this check because, if the program is run in background, the shell sets 
SIGINT to be ignored. Therefore, the system only passes the interrupt signal to foreground 
processes. Testing this signal condition allows the program to get the interrupt signal 
when running in background as well as in foreground. 

The program also uses the setjmp and longjmp library functions to handle the return to 
the main program. Before the program begins running the main loop, it stores the machine 
status in a structure sj buf. The structure type, jmp_buf is defined in the system file 
setjmp.h. When the interrupt occurs, the system transfers control to the on i n tr routine. 
This routine is a dummy interrupt handling routine. When it finishes, it uses the longjmp 

System Calls 4-27 



function to set the machine status to the conditions stored in the sjbuf structure. The 
main routine begins running again as if an interrupt had not occurred. 

Each time the program returns from the oni ntr routine, it sets up the interrupt signal 
condition again. If it did not do this, it would not receive any more interrupt signals. The 
system sends only one interrupt signal for each request it receives. Once it sends that 
signal, the program must request another. If another interrupt signal occurs before the 
program sets up to catch the interrupt signal, the program stops. The enhanced signal 
facility (see "Enhanced Signal Facility" on page 4-30) provides a way to avoid this 
problem. 

4-28 Programming Tools and Interfaces 



#include <signal .h> 
#include <setjmp.h> 
#include <stdio.h> 
jmp_buf sjbuf; 

main() 
{ 

int (*istat)(), onintr(); 
int i; 
char c; 
istat = signal(SIGINT, SIG_IGN); 
setjmp(sjbuf); 
if (istat != SIG_IGN) 

signal (SI GI NT, oni ntr); 
printf( 11 %s\n 11

, 
11 Please enter a letter (e to exit). 11

); 

} 

while ( c ! = 1 e 1
) 

{ 

} 

c = fgetc(stdin); 
if (c != '\n' && c != 'e') 
{ 

} 

printf( 11 %s%c\n 11
, 

11 You typed the following letter: 11 c); 
i++; 
printf( 11 %d\n 11

, i); 
printf( 11 %s\n 11

, 
11 Please enter a letter (e to exit). 11

); 

oni ntr () 
{ 

printf( 11 %s\n 11
, 

11 You pressed an interrupt key! 11
); 

longjmp(sjbuf); 
} 

Figure 4-13. Example of Signal Trapping 

System Calls 4-29 



Enhanced Signal Facility 

In addition to the standard signal facilities described in "Signal Calls" on page 4-25, the 
system provides an enhanced signal facility. The enhanced facility treats signals received 
from the system in a way similar to the handling of hardware interrupts, allowing a 
program to mask each type of signal while it is processing. The facility allows for up to 32 
different signals, but only those defined in the file /include/sys/signal.h can be used. 
These are the same signals that the standard signal facility uses. You can choose to use 
either facility in a program, but for programs used only on RT PC, use the enhanced signal 
facility. 

The system calls that comprise the enhanced signal facility are listed in Figure 4-14. AIX 
Operating System Technical Reference provides complete information for each of these calls. 

Call Function 

sigblock Sets specified bits in the signal mask to block the signals associated with 
those bits. 

sigsetmask Sets the signal mask to a new value. 

sigpause 

sigstack 

sigvec 

execve 

Sets the signal mask to a new value, waits for a signal allowed by the new 
mask and restores the old mask value when a signal is received. 

Defines a separate stack to contain signal processing. 

Establishes conditions to handle a specified signal. 

Starts a new program in the current process, resets all signals that are being 
caught by the old program to terminate the new program, resets signal stack 
state, and retains the current signal mask value. 

Figure 4-14. Enhanced Signal Calls 

Responding to Signals 
A program can receive signals from the sources shown in Figure 4-15. 

4-30 Programming Tools and Interfaces 



Source Description 

Program faults A programming error such as an illegal instruction or memory reference 
produces this type of message. 

Terminal keys Special key sequences generate signals to running processes in the system 
that belong to the terminal group of the terminal. These signals include 
interrupt, quit, hangup or kill (the kill signal cannot be masked). 

Hardware Hardware faults, such as a power failure, generate signals to running 
exceptions processes. 

System The system can generate signals, such as the death of a child process, to 
aid in process control. 

Other Other processes can send signals to a process to coordinate system 
processes activities. 

Figure 4-15. Sources of Signals 

Figure 4-16 on page 4-32 shows the defined responses for responding to a signal once a 
program receives it. Each of these responses is defined in the header file signal.h as a 
pointer to a routine that returns the constant value assigned to that response. For 
example, that file defines SIG_DFL as follows: 

#define SIG_DFL (int ( *) ( ) ) 0 

This definition provides a function that always returns the value 0. Defining the 
responses as pointers to .functions allows you to use them in the sigvec structure (see 
"Using Enhanced Signals" on page 4-32) as the pointer to the handler routine. See 
"Example Programs" on page 4-36 for a sample of using the responses in the structure. 

System Calls 4-31 



Response 

SIG_DFL 

SIGJGN 

Meaning 

Specifies that the system should perform the default action for a specific 
signal when it receives that signal. For most signals, the default action is 
to terminate the process. For some signals the default action ignores the 
signal, or creates a core file before terminating. 
Specifes that the system should ignore the specified signal when it occurs. 

SIG_CATCH Specifies that the system should call a procedure in the current process 
when the specified signal occurs. The system also blocks any other 
occurrences of the same signal while the process is handling the signal. 

SIG_HOLD Specifies that the system should block a specified signal when it occurs. 
When blocked, the signal remains pending until the block is released. The 
signal is not lost. 

Figure 4-16. Signal Responses 

Using Enhanced Signals 
When a process receives a signal, the system automatically: 

1. Blocks another signal of that type from being sent to the process. 

2. Saves the environment of the process. 

3. Builds a new environment for the process to respond to the signal. 

4. Transfers control to the signal handler routine in the process. 

The signal handler is a routine that you provide to respond to the receipt of a signal. It 
may be a complex error recovery routine, or it may be SIG_DFL. You choose how the 
program responds to each of the signals. Once you have created the handler routines for 
all of the signals that you expect to receive, tell the system how to handle each of the 
signals. First, include the header file signal.h with the following statement: 

#include <signal .h> 
This file contains definitions for all the constant names used by the signal handling 
facility. In addition, this file contains the following structure definition: 

struct sigvec 
{ 

i n t ( * s v _h and 1 er ) ( ) ; 
int sv_mask; 
int sv_onstack; 

}; 

4-32 Programming Tools and Interfaces 



This is the structure type that passes information to the system when using the sigvec 
system call. It contains three integer members as shown in Figure 4-17 on page 4-33. 

Name 

(* sv _handler) 
( ); 

sv_mask; 

sv _onstack; 

Description 

A pointer to the routine that you have created to handle the signal 
processing for a particular signal, or one of the responses defined in 
signal.has pointers to routines that return constant values. 

A 32-bit mask containing one bit for each of the 32 possible signals (not 
all are used). If a bit in this mask is set, then the system adds the 
corresponding signal to the current set of signals that are blocked from 
interrupting the handler routine while the handler is running. In 
addition, the signal that caused the handler to be run is also blocked. 

Only bits 0 and 1 of this integer are valid; the rest of the bits should be 
zero. Valid values for this integer are: 

0 

1 

2 
3 

Use enhanced signals and process signals on the process 
stack. 
Use enhanced signals and process signals on a separate stack 
that you specify using the sigstack system call. 
Use standard signal processing 
Not a valid value. 

Figure 4-17. sigvec Structure Members 

For example, to set up a routine to receive the SIGALRM signal, use the following system 
call: 

sigvec( SIGALRM, new_vec , old_vec ); 
The parameters for this call have the following meaning: 

Parameter Meaning 

SIGALRM The name of the signal, SIGALRM, which is signal 14, the alarm clock. 

new_vec A pointer to the structure of type s i gvec that defines the information for the 
signal handler. 

old_vec A pointer to a structure of type s i gvec where the system returns the values it 
is using for the specified signal. If this pointer is NULL, the system ignores it. 

System Calls 4-33 



Using a Separate Signal Stack 
You can choose to handle signal conditions using a stack that is separate from the process 
stack. Using a separate stack is not often useful or needed. Use it when catching the 
signal SIGSEGV to detect a stack overflow. You can then use the small signal stack to 
operate from while trying to recover from the overflow condition. However, when using a 
separate stack, you must control all stack operations and detect overflow. The system does 
not. provide control for the separate stack. To use a separate stack for a particular 
handler, or set of handlers, perform the following steps: 

1. Use the sigstack call to create a signal stack for handlers in the process to use. 

2. Set the value of the sv_onstack variable to 1 in the structure of type s i gvec for each 
of the handlers that use the separate stack. 

Waiting for a Signal 
The sigpause system call stops processing in a program to wait for the occurrence of any 
or all of the signals, and then resume processing without altering the signal mask 
(sv_mask) with which the program normally operates. The following sequence illustrates 
how to stop program operation, wait for any signal to occur, and then resume program 
operation: 

1. Program begins. 

2. Program issues sigpause call with a mask value of zero to enable catching all signals: 

sigpause( 0 ); 

3. A signal occurs for the process. 

4. The sigpause call returns with a -1 return code, and errno set to EINTR. 

5. The system restores the previous signal mask value. 

6. The program continues. 

4-34 Programming Tools and Interfaces 



Protecting Important Program Events 
During some parts of a program, you may want to continue processing in spite of any 
signals that the program may receive. Some activities, such as processing a linked list, 
could be difficult or impossible to recover from if the program were interrupted at that 
point. To protect sections of the program from interruption from all but the most serious 
signals (SIGKILL cannot be masked), use the sigblock and sigsetmask system calls 
together, as shown in the following sequence: 

1. At the beginning of the important section of the program, use the sigblock system call 
with a mask value that, when ORed with the current mask, blocks all expected signals. 
Provide an integer variable to hold the returned value (the old mask value) for later 
use: 

old_mask = sigblock( block_mask ); 

2. Process the important section of the program. 

3. Restore the program to normal operation with the sigsetmask system call, using the 
saved mask value from the sigblock call: 

block_mask = sigsetmask( old_mask ); 

4. Continue normal program operation. 

Finding Out the Current Signal Mask 
Each process running in the system has its own signal mask, regardless of whether or not 
the process uses signals. If the program does not use the signal calls to change this mask, 
the system assigns a value of zero to the signal mask (no signals blocked). 

Two system calls provide information about the signal conditions that a program is using 
for a specified signal. The first call, sigvec, requires a defined structure of type sigvec 
where the system can write the current information. The following call tells the system to 
store the current information for the signal SIGINT in the structure o l d_vec. Because 
the second parameter that normally points to the new signal structure is NULL, the 
current signal structure for SIGINT does not change, but it is copied to the structure 
ol d_vec. 

sigvec( SIGINT , NULL , old_vec ); 

You can use the sigblock system call to get only the value of the current mask: 

old_mask = sigblock( 0 ); 

This call ORs the supplied value of zero with the current mask and returns the value of the 
current mask tool d_mas k. The supplied value of zero does not change the current mask. 

System Calls 4-35 



Example Programs 
Figure 4-18 shows an example program using enhanced signals. This program performs the 
same function as the example program used for signals in "Example of Trapping a Signal" 
on page 4-27. Refer to the program description in that section. This program is stored as 
newsig.c in the example program directory. 

#include <stdio.h> 
#include <signal.h> 
#include <setjrnp.h> 
char c; 
int i ; 
jrnp_buf sjbuf; 

main() 
{ 

int oni ntr(); 
char fgetc (); 
struct sigvec oldvec, newvec; 
newvec.sv_handler = SIG_IGN; 
newvec.sv_rnask = O; 
newvec.sv_onstack = O; 
sigvec( SIGINT, &newvec, &oldvec ); 
if( oldvec.sv_handler != SIG_IGN ) 
{ 

} 

newvec.sv_handler = onintr; 
sigvec( SIGINT, &newvec, NULL); 

Figure 4-18 (Part 1 of 2). Enhanced Signals Example Program 

4-36 Programming Tools and Interfaces 



setjmp ( sj buf ) ; 
printf( 11 %s\n 11

, 
11 Please enter a letter (e to exit). 11 

); 

while ( c ! = 1 e 1 
) 

{ 
c = fgetc( stdin ); 
if ( c ! = '\ n' && c ! = 'e' ) 
{ 

printf( 11 %s%c\n 11
, 

11 You typed the following letter: 11 c ); 
i ++; 
printf( 11 %d\n 11

, i ); 
printf( 11 %s\n 11

, 
11 Please enter a letter (e to exit). 11 

); 

} 
} 

} /* End Main */ 

onintr() 
{ 

printf( 11 %s\n 11
, 

11 Performing processing upon interrupt. 11 
); 

printf( 11 %s\n 11
, 

11 Finished interrupt processing; returning to main. 11 
); 

longjmp( sjbuf, 1 ) ; 
} /* End onintr */ 

Figure 4-18 (Part 2 of 2). Enhanced Signals Example Program 

System Calls 4-37 



Semaphore Calls 

Semaohores nrovide a e:eneral method of communication between two nrocesses that is an 
extension of the feature; of signals. Use semaphores in much the same ~way as signals, 
except that semaphores are: 

More flexible: Processes can define a semaphore to mean what they want it to mean. 

More controllable: Programs have direct control over semaphores and do not need to 
depend on the system to generate them. 

Broader in scope: A semaphore can be any integer value, not just 1 or 0. Use them 
for counting as well as process coordination (see program example). 

The system calls that allow a program to use semaphores are: 

Call 

semctl 
semget 
semop 

Description 

Semaphore control operations 
Get set of semaphores 
Semaphore operations 

Structure of a Semaphore Set 
When using the semget system call to create a set of semaphores, the system returns an 
integer that is the semid, or semaphore ID, for the set of semaphores that were created. 
Each semid points to a set of semaphores and a data structure that contains information 
about the semaphores. The data structure for semid is shown in Figure 4-19 on page 4-39. 
See Figure 4-20 on page 4-39 for the data structure of a semaphore. 

4-38 Programming Tools and Interfaces 



Name Function 

sem_perm OpP.ration Permission Struct 
cu id creator user ID 
cg id creator group ID 
uid user ID 
gid group ID 
mode read and alter permission 

sem_nsems Number of Semaphores in the Set 

sem_otime Time of the Last Operation 
(seconds since 1 /1 /1970) 

sem_ctime Time of the Last Change 
(seconds since 1 /1 /1970) 

Figure 4-19. Semid Data Structure 

Name Function 

semval Value of the semaphore CO or positive) 

sempid Process ID of the Last Operation 

semncnt The number of processes that are waiting 
for semval to be> current value of its 
last semop() call 

semzcnt The number of processes that are waiting 
for semval to be = 0. 

Figure 4-20. Semaphore Structure 

System Calls 4-39 



How to Use Semaphores 
Semaphores are counters that a program can test and change with a single system call 
(semop ). Specify the a:mount of the change in the semop call using the sem_op variable 
within the sops structure as shown in Figure 4-21. When using this call, the system tests 
the value of sem_op against the value of the semaphore indicated by sem_nuni. If 
(sem_flg & IPC_NOW AIT) is true, the call returns without further action. If it is false, the 
table in Figure 4-22 on page 4-41 summarizes the actions that occur. 

Use semaphores for passing data between processes and for other one time data transfers. 
You can also use them to control access to a limited resource, such as a shared buffer. 

semop( sem id, *Sops, 

Which semaphore J 
nsops) 

L How many structures in the 
sops structure set (* sops) 

set to change +--Define the operation to be done. 

DD 
/ 

One Typical Structure: 

Name Function 

D Set of 
Structures 

sem_num Number of the semaphore to be changed 

sem_op The semaphore operation 

sem_flg Operation flags 

Figure 4-21. Semop System Call Parameters 

4-40 Programming Tools and Interfaces 



Value of Relationship Actions 
sem _op to semval 

<O jsem_opl <= 1 . semval = semval - lsem_opl 
semval 

jsem_opl > 1 . semncnt = semncnt + 1 
semval 2. wait for semval >=I sem_op I; then 

semva I = semva I - I sem_op I 
semncnt = semncnt - 1 

>0 1 . semval = semval + sem_op 

0 semval== 0 1 . return 

semval !=O 1 . semzcnt = semzcnt + 1 
2. wait for semva I = 0; then 

semzcnt = semzcnt - 1 
return 

Figure 4-22. How sem_op Specifies a Semaphore Operation 

Example of Semaphores 
For example, two processes proca and procb share a buffer bu fr. proca produces data 
packages and places each package in the buffer as it produces that package. procb uses 
the data packages from the buffer in its operation, but does not use them at the same rate 
that proca puts them in the buffer. The buffer can hold only three data packages. The 
processes use two semaphores to ensure that: 

• proca does not try to put a package in a full buffer. 

• procb does not try to take a package from an empty buffer. 

System Calls 4-41 



The processes agree that the semaphores have the following meanings: 

seml 

sem2 

The number of empty slots in the buffer. If seml is greater than zero, then 
proca can put a package in the buffer. 

The number of data packages in the buffer. If sem2 is greater than zero, then 
procb can take a package from the buffer. 

Figure 4-23 shows the relation of the processes to the buffer and semphores. When the 
processes start, seml has a value of 3 (empty slots) and sem2 has a value of 0 (packages in 
bu fr). 

proca() 
Put data in bufr 

bu fr I • 
Number of empty 

sem1 +-slots in bufr 

sem2 Number of items 
+-in bufr 

I 
procb() 

Take data from bufr 
..._ 

Figure 4-23. Using Semaphores Concept Example 

4-42 Programming Tools and Interfaces 



proca 

proca puts items into the buffer. Before it can put an item in the buffer, it tests seml to 
find out if there is room in the buffer for the item. If seml is greater than, or equal to 1 
(the number of items to be put into bu fr), then it: 

1. Decrements seml by 1 
2. Puts an item in the buffer 
3. Increments sem2 by 1. 

If seml is less than 1, proca waits until there is room in the buffer (seml > = 1), and then 
performs the preceding steps. If proca has to wait, it increments the semncnt flag for 
seml to indicate that it is waiting. It decrements this flag when it continues. Figure 4-24 
shows the semop call and structure that handles all of the semaphore operations for 
pro ca. 

semop( xx , •sops, 2 ) 

Number of the J L Number of structures in the 
call structure set ( •sops) 

semaphore set +--Points to a set of structures that 
for sem1 and define the operation to be done 
sem2 

/" \ 

Value Function Value Function 

1 sem2 2 sem1 

-1 Test/ decrement 1 Increment 

0 Enable wait 0 Enable wait 

Figure 4-24. Semop Call for Proca 

System Calls 4-43 



procb 

procb takes items from the buffer. Before it can take an item, it tests sem2 to find out if 
there is anything in the buffer. If sem2 is greater than, or equal to 1 (the number of items 
to be taken), then it: 

1. Decrements s em2 by 1 
2. Takes an item from the buffer 
3. Increments sernl by 1. 

If sem2 is less than 1, procb waits until there is something in the buffer (sem2 > = 1), and 
then performs the preceding steps. If procb has to wait, it increments the semncnt flag 
for s em2 to indicate that it is waiting. It decrements this flag when it continues. 
Figure 4-25 shows the semop call and structure that handles all of the semaphore 
operations for procb. 

semop( xx 

Number of the J 
semaphore set 

, *Sops, 2 ) 

for sem1 and 

s..-------em2 ~/ 
/ 

Value Function 

2 sem2 

L Number of structures in the 
call structure set ( *Sops) 

+----Points to a set of structures that 
define the operation to be done 

Value Function 

1 sem1 

-1 Test/ decrement 1 Increment 

0 Enable wait 0 Enable wait 

Figure 4-25. Semop Call for procb 

Operation 

The chart in Figure 4-26 on page 4-45 shows the operation of the semaphores to control 
access to the buffer. 

4-44 Programming Tools and Interfaces 



Event 
sem1 sem2 

Value semncnt Value semncnt 

1 . Start: 
The initia I state 3 0 0 0 
of the parameters 

2. Procb tries to 
get item: 3 0 0 1 

3. Proco puts 
item in bufr. 2 0 1 1 

4. Procb can now 
get item. 3 0 0 0 

5. Proco puts 
item in bufr. 2 0 1 0 

6. Proco puts 
item in bufr. 1 0 2 0 

7. Proco puts 
item in bufr. 0 0 3 0 

8. Proco tries to 
put item in bufr. 0 1 3 0 

9. Procb gets 
item from bufr. 1 1 2 0 

10 .Proca can now 
put item in bufr. 0 0 3 0 

Figure 4-26. Semaphore Usage 

Example of Semaphore Programming 
The program in Figure 4-27 on page 4-46 shows the use of semaphores in a situation 
similar to the example concept described previously. This program also uses some shared 
memory calls as described in "Shared Memory Calls" on page 4-63. If you are using the 
Programming Examples, this program is stored under the name semtst.c. You can 
compile and run this program to see the effects of the system calls. 

System Calls 4-45 



#define STKSZ 2 
#define SNSLTS 0 
#define SNITMS 1 
static int sp = O; 
static char *itmstk[STKSZ]; 

#ir.clude <stdio.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/sem.h> 
#include <sys/shm.h> 
#include <errno.h> 
#define MADOR 0 

int semid; 
int shmid; 
extern int errno; 
struct ITM 

{ 
char *itmstk[2]; 
int sp; 

} *stkptr; 

Figure 4-27 (Part 1 of 5). Using Semaphore Calls 

4-46 Programming Tools and Interfaces 



main() 
{ 

char *popitm(); 
int nsems, semflg; 
int pid_l, pid_2; 
int stts_l, stts_2; 
register rt_l, rt_2; 
key_t key, ftok(); 
char *shmat (); 
int shmdt (); 
struct sembuf soal[l], 
struct sembuf *sopsl = 

*sops2 = 

soa2 [l] ; 
soal, 
soa2; 

key = ftok( "semtst. c11
, 's' ) ; 

nsems = 2; 
semid = semget( key, nsems, IPC_CREAT SEM_A SEM_R ) ; 
semctl ( semid, 0, SETVAL, 2 ); 
semctl{ semid, 1, SETVAL, 0 ); 
shmi d = shmget ( key, STKSZ, I PC_CREAT I SHM_W : SHM_R ) ; 
stkptr = (( struct ITM * ) shmat( shmid, MADOR, 

IPC_CREAT I SHM_W I SHM_R )); 
i f ( ( pi d_ l = fork () ) = = 0 ) 
{ 

} 

int i; 

stkptr->sp = O; 
for( i = O;i <= 5;i++) 
{ 

printf( 11 \nProducer: Sending item number %d 
p( SNSLTS, sopsl ); 
pus hi tm( "Test Item 11

, stkptr ) ; 
v( SNITMS, sops2 ); 

} 
exit(O); 

Figure 4-27 (Part 2 of 5). Using Semaphore Calls 

II ) ; 

System Calls 4-4 7 



if(( pid_2 = fork() 0 ) 
{ 

int i; 
char *itmptr; 

for( i = O;i <= 5;i++ ) 
{ 

p( SNITMS, sopsl ); 
semctl( semid, 1, GETVAL ); 
itmptr = popitm( stkptr ); 
v( SNSLTS, sops2 ); 
printf( 11 \nConsumer: Got item number %d; item is '%s' 11

, i, itmptr ); 

} 

} 

} 
exit(O); 

while ( ( ( rt_l = wait( &stts_l 
( rt_l != -1 ) ) && 

( ( rt_2 = wait( &stts_2 
( rt_2 != -1 ) ) ) 

' if ( rt_l -1 ) 
{ 

stts_l = -1; 
} 
i f ( rt_2 = = -1 ) 
{ 

stts_2 = -1; 
} 

!= pid_l 

!= pid_2 

pri ntf ( 11 Producer 
printf( 11 Consumer 

process ended with status 
process ended with status 

Figure 4-27 (Part 3 of 5). Using Semaphore Calls 

4-48 Programming Tools and Interfaces 

&& 

&& 

= %d\n 11
, stts_l ); 

= %d\n 11
, stts_2 ); 



int stpop, stvop; 

p( s, sops 
int s; 
struct sembuf *sops; 
{ 

} 

int nsops; 

nsops = l; 
sops->sem_num = s; 
sops->sem_flg = ~IPC_NOWAIT; 
sops->sem_op = -1; 
stpop = semop( semid, sops, nsops ); 
return; 

v( s, sops ) 
int s; 
struct sembuf *sops; 
{ 

} 

int nsops; 

nsops = l; 
sops->sem_num = s; 
sops->sem_flg = ~rPC_NOWAIT; 
sops->sem_op = l; 
stvop = semop( semid, sops, nsops ); 
return; 

Figure 4-27 (Part 4 of 5). Using Semaphore Calls 

System Calls 4-49 



char *popitm( ip 
c+v-11r+ TTM *;n• 
~\,I VI'-"\, .L t 1·1 If-', 

{ 
if( ip->sp > 0 
{ 

printf( 11 \npop: stack pointer = %d 
return( ip->itmstk[ip->sp] ); 

} 
e1se 

return( NULL ); 
} 

int s; 
pushitm( item, ip 
char *item; 
struct ITM *ip; 
{ 

} 

ip->itmstk[ip->sp++] = item; 
printf( 11 \npush: stack pointer %d 

II --ip->sp ); 

\n 11
, ip->sp ); 

Figure 4-27 (Part 5 of 5). Using Semaphore Calls 

Message Calls 

Messages provide a general method of communication between two processes. Using 
messages one process can pass information of any kind to another process. The 
information may be data that is produced by one process and used in another, or it could 
be flags that indicate when events occur. To use the message process,- perform the 
following steps: 

1. Use the ftok subroutine to get a key assigned to a message queue. 

2. Use the msgget call to get a message queue assigned to the processes. 

3. Use the msgsnd call to send a message to a queue that is assigned to another process. 

4. Use the msgrcv or msgxrcv call to receive a message from the message queue. 

4-50 Programming Tools and Interfaces 



Terms 

Use the following system calls to create and use message queues: 

Call Description 

msgctl Gets status, changes permissions, or removes a queue. 
msgget Gets message queue. 
msgrcv Receives a message. 
msgrget Gets remote message queue. 
msgsig Sends signal on arrival of a local message. 
msgsnd Sends a message. 
msgxrcv Receives a message with additional information. 

In addition, the ftok subroutine provides the key that the msgget call uses to create the 
message queue. Include the following header files when using message queue calls: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

The use of message queue elements is similar in structure to the way the system creates 
and uses files. Defining the terms used for message queues with respect to the more 
familiar file terms provides a framework to build an understanding of message queues. 
Figure 4-28 shows the new terms and how they relate to terms used with files. 

Term Definition 

key The key is a unique identifier (of type key_t) that names the particular 
message queue. It is always associated with the message queue as long as 
the message queue exists. In this respect, it is similar to the filename of a 
file. 

msqid The msqid is an identifier assigned to the message queue for use within a 
particular process. It is similar in use to a file descriptor of a file. 

Permissions The message queue structure also contains information that describes the 
access permissions for the message queue. These permissions are similar in 
function to the access permission bits for a file (owner, group and others). 

Figure 4-28. Message Queue Terms 

In effect, message queues are a more general form of the pipe system call. Either method 
passes information between two processes. For message queues, however, you do not need 
to perform the steps of opening a pipe, forking, and then closing two of the ends of the pipe 
as described in "Example Pipe System Call" on page 4-13 In fact, the two processes using 
message queues to communicate do not need to be created from the same ancestor process; 

System Calls 4-51 



they only need to cooperate by using the same name for the queue, and agreeing about 
what the messages mean. 

General Operation 
When a process gets a message queue, it uses an internal name (key) to apply to the queue. 
Any other programs that use that key can access that queue, subject to the read/write 
access permissions set up for the queue. The process can either send messages to the 
queue or receive messages from the queue (or both if it wants to send messages to itself). 
Normally, the process that receives a message does not receive any indication that there 
are messages in the queue unless it tries to get a message from the queue. In that case, if a 
message is not in the queue, the process is blocked until a message of the requested type is 
received. To allow the process to continue processing while waiting for a message, it can 
use the msgsig call. Using the msgsig call, the process can request that the system send 
a signal each time the queue receives a message. The process must allow for catching the 
signal in the program code (see "Enhanced Signal Facility" on page 4-30 for information 
about catching signals). 

After opening the queue, the process continues operating until it reaches the point that it 
needs input from the other cooperating process. The first process checks its message queue 
using the msgrcv call. Using the parameter, msgtype, in the msgrcv call, the process 
can specify which type of message it wants to receive. If a message that satisfies the 
request is not in the queue, the first process halts until something is put into the queue 
that does satisfy the request. If there is a message of the requested type in the queue, the 
system gives the process the first message of that type that was put into the queue 
(first-in-first-out). 

Similarly, after opening the queue, the other process can send messages to the queue of the 
first process. If the queue is full, the system returns an error indication and the process 
must wait until the first process empties the queue enough to add the new message. 

Because either of these wait conditions could halt the process indefinitely, the program 
should include a timeout loop to end the stalled condition. 

Sending messages to a queue is completely independent from receiving messages from that 
queue. The amount of data that one process can put into the message queue of the other 
process depends on the queue size and the speed that the other process takes the data from 
the queue. More than one prqcess can put messages into a queue. The receiving process 
must take them out of the queue in the order that they were put into the queue, modified 
only by selecting a message type. 

The receiving process can also use the msgxrcv call instead of the msgrcv' call to get 
messages. This call provides more information to the receiving process about the nature of 
the message. 

4-52 Programming Tools and Interfaces 



Using Message Queues 
The following sequence shows how to create and use a message queue: 

1. Create a key to uniquely identify the message queue. Use the ftok subroutine to 
create the key. For example, to create a key my key using a project ID of X contained 
in the char variable proj and a file name of nul l_fi 1 e, use a statement like: 

mykey = ftok( null_file, proj ); 
2. Either: 

• Create a new message queue with the msgget system call. For example, to create 
a message queue and assign the msqid to an integer variable msg_qi d, use a 
statement like: 

msg_qid = msgget( mykey, IPC_CREAT ); 
or 

• Get a previously created message queue with the msgget system call. For 
example, to get a message queue that is already associated with the key my key and 
assign the msqid to an integer variable msg_qi d, use a statement like: 

msg_qid = msgget( mykey, IPC_ACCESS ); 
3. Use the queue to send or receive messages with other processes. 

4. If the queue is no longer needed, eliminate it from the system using the msgctl system 
call: 

msgctl( msg_qid, IPC_RMID ); 
See AIX Operating System Technical Reference for specific information about parameters 
for the calls and subroutines. 

Using Distributed Message Queues 
The message calls can send messages to another system at a remote location and 
manipulate the queue for those messages without regard to the actual physical location of 
the queue. Each system on the network of systems maintains the local queues for the 
users on its system. Each local queue contains a queue header that stores the information 
to send messages to the other system associated with the queue and to identify the queue 
used on the remote system. In addition, each entry in the queue stores the information 
required to satisfy the msgxrcv system call requirements. The msgxrcv system call 
returns the following information: 

• The message 
• The time the message was sent 
• The user ID, group ID, node ID and process ID of the sender 
• The size of the message in bytes. 

System Calls 4-53 



A message queue structure contains this information in the following form: 

struct msg 
J 
'-

c-+v-11r+ mc-n *men nov+• I* nnin+ov- to next message *I ..) \..I VI\,,, \.. 11 IJ ::1 lllJ::t-11\..F\ ... ' I t-'V t 11 V'-1 I 

long msg_type; /* message type */ 
caddr_t msg_spot; /* message text address */ 
time_t msg_time; /* time message was sent */ 
short msg_uid; /* user ID of sender */ 
short msg_gid; /* group ID of sender */ 
short msg_nid; /* node ID of sender */ 
short msg_pid; /* process ID of sender */ 
short msg_ts; /* message text size in bytes */ 

} 

The msg_type is an integer value that the cooperating processes use to classify the 
messages that they send. The values do not have any system-defined meaning. However, 
the message queue handler interprets the values in the following manner: 

zero Returns the first message of any type. 

positive Returns the first message of only the indicated type. 

negative Returns the first message that has a type that is less than or equal to the 
absolute value of the indicated type. 

Use the time stamp information from this call to determine if the message contains current 
information, or whether to remove it from the system. The sending process must provide 
the information for this structure along with the message text. 

Example of Message Queue Calls 
The program in Figure 4-29 on page 4-55 shows the use of message queues in a simple 
producer-consumer relationship. One process produces an item for the other process and 
passes it to the other process on a message queue. 

If you are using the Programming Examples, this program is stored under the name 
msgqtst.c. You can compile and run this program to see the effects of the system calls. 

4-54 Programming Tools and Interfaces 



#include <stdio.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 
#include <errno.h> 
#define MSGSIZ 15 
#define MSGRTYP 0 
#define MTYPE I 

static char *msg [11] 

int msgqid; 
extern int errno; 

main() 
{ 

int pid_l, pid_2; 
key_t key, ftok(); 
char *receive(); 
int send(); 
register rt_l, rt_2; 
int stts_l, stts_2; 

{ 

}; 

this is item 0" 
' 

11 thi s is 
this is item 2" 

' 
11 thi s is 

this is item 411 

' 
11 thi s is 

this is i tern 6" 
' 

11 thi s is 
this is item 8" ' 

11 thi s is 
this is item 1011 

Figure 4-29 (Part 1 of 3). Example of Using Message Queues 

item 111 
' item 311' 

item 511 
' item 711 
' item 911 
' 

System Calls 4-55 



key= ftok( 11 msgqtst.c' 1
, 'm' ); 

m c n n ; rl = m c n n at- ( Ir a" T Dr r D I=' ll T MC::: r- D MC::: r- I.I \ • 
111..1::J'1'..... 111..>::J::J'- ... \ '''-J' .... "'-"'"'-''I ,.,....,"'-" ,.,....,"'-" I' 

printf( 11 msgqid = %d\n 11
, msgqid); 

if(( pid_l =fork() ) == 0) 
{ 

int i ; 

for( i = O;i <= lO;i++ ) 
{ 

printf( 11 Producer process: sending message number %d\n 11
, i ); 

send(msg[i]); 

} 

} 
exit(O); 

i f ( ( pi d_2 = fork () ) 0 ) 
{ 

int i; 

for( i = O;i <= lO;i++ ) 
{ 

printf( 11 Consumer process: message number %d is: %s\n 11
, 

i, receive() ) ; 

} 

} 
exit(O); 

while((( rt_l =wait( &stts_l 
( rt_l != -1 )) && 

(( rt_2 =wait( &stts_2 
( rt_2 != -1 ))) 

!= pid_l && 

!= pid_2 && 

Figure 4-29 (Part 2 of 3). Example of Using Message Queues 

4-56 Programming Tools and Interfaces 



if ( rt_l -- -1 ) 
{ 

stts_l = -1; 
} 
if ( rt_2 -- -1 ) 
{ 

stts_2 = -1; 
} 
printf( 11 Producer process ended with status 
printf( 11 Consumer process ended with status = 

%d\n 11
, stts_l ); 

%d\n 11
, stts_2 ); 

} 

struct msgbuf msgb, *msgp &msgb; 
char *strcpy(); 

send ( i tern ) 
char *item; 
{ 

} 

msgp->mtype = MTYPE; 
strcpy(( msgp->mtext ), item); 
msgsnd( msgqid, msgp, MSGSIZ, -IPC_NOWAIT ); 
return; 

char *receive() 
{ 

} 

msgrcv( msgqid, msgp, MSGSIZ, MSGRTYP, -IPC_NOWAIT ); 
return(( msgp->mtext )); 

Figure 4-29 (Part 3 of 3). Example of Using Message Queues 

System Calls 4-57 



System Memory Management 

The system provides a continuous range of memory addresses for accessing data from 
OxOOOOOOOOOO to OxFFFFFFFFFF, for a total addressable space of more than 1012 bytes. 
The system reserves some ranges of addresses for use by the VRM and the input/output 
bus, but it treats most of the addresses as memory that the operating system can use. The 
actual physical memory on any system is much smaller than the address space. Because 
the address space does not correspond, one-to-one, with real memory, the address space 
and the way the system makes it correspond to real memory is called virtual memory. 
Some other terms that are needed to define memory management are: 

page A unit of virtual memory space that holds 2 K-bytes of data. 

segment A unit of virtual memory space that holds up to 256 M-bytes, or 128K pages of 
data. 

K-byte A unit of data capacity equal to 1024 bytes. 

M-byte A unit of data capacity equal to 1,048,576 bytes. 

To accommodate the large virtual memory space with a limited real memory space, the 
system uses real memory as a work space and keeps the inactive data and programs that 
are not mapped in an area on disk called the paging space. When it needs data or a 
program that is in the paging space, the system: 

1. Finds an area of memory that is not currently active. 

2. Ensures that an up-to-date copy of the data or program from that area of memory is in 
the paging space on disk. 

3. Reads the new program or data from the paging space on disk into the newly freed area 
of memory. 

The process of moving data between memory and disk as the data is needed is called 
paging. The system also has methods for tracking the most frequently used data in the 
paging space to shorten the time that it takes to find that data. In addition, many 
important pieces of code, including much of the operating system kernel, are fixed in 
memory and cannot be paged to disk. 

The 1012 byte address space available implies that a program can use 40-l}it (or 10 
hexadecimal digits) addresses. However, programs can only use 32-bit (or 8 hexadecimal 
digits) addresses. To bridge the gap between the two addresses, the system uses a set of 
12-bit (or 3 hexadecimal digits) segment registers. The system loads these registers with 
values that become the high-order 12 bits of the 40-bit address needed to select all 
available addresses. The high-order 4 bits of the 32-bit address select which of the segment 
registers to use. This process, in effect, exchanges the top 4 bits for 12 bits, creating the 
40-bit address as shown in Figure 4-30 on page 4-59. 

4-58 Programming Tools and Interfaces 



Program 
Address Bits 

Selected Segment 
Register 

11 

Virtual Memory 
Address Bits 

I 
_J 

- Select Segment Register-+ 
(0 - F) 

~ 39 

- Select Segment Y 

271 0 

J (4096 segments) 28 

27 

0 

- Select address ----------------

J in segment 
C256M-bytes) 

Figure 4-30. Segment Register Addressing 

Segment Registers 

0 

The system uses a set of 16 segment registers for each process to select the areas of virtual 
memory that the process can use. Figure 4-31 shows how the system uses the segment 
registers. The VRM uses one of these registers (number 14) for its program space and 
another (register number 15) contains the addresses assigned to the input and output data 
bus hardware. Therefore, the operating system can use only registers 0 through 13. Of 
these registers, a process cannot address the kernel segment (register 0). Therefore, each 
process can access up to 13 different segments for a total available address space of 
approximately 3.5 billion bytes. The amount of actual memory and the paging space 
available on disk limit the addresses that can be used to a much smaller number that 
depends on system configuration. 

System Calls 4-59 



Register 

0 

1 

2 

3 

4 through 13 

14 

15 

Addresses 
(Hex) 

00000000 to 
OFFFFFFF 

10000000 to 
lFFFFFFF 

20000000 to 
2FFFFFFF 

30000000 to 
3FFFFFFF 

40000000 to 
DFFFFFFF 

EOOOOOOO to 
EFFFFFFF 

FOOOOOOO to 
FFFFFFFF 

Used for 

Kernel code, data and stack 
Floating point code 

Current program code 

Current program static data and heap 

Current program stack 

Shared segments accessed through shared memory 
system calls (shmxxx) - 10 different shared segments 
per process 

VRM 

Hardware input/output addresses 

Figure 4-31. Segment Register Usage 

Using a Mapped Data File 

The system provides a feature called mapped files to eliminate much of the overhead 
involved in writing and reading the contents of the files. This feature assigns the contents 
of the mapped file to an area of user memory. Once the program establishes this 
relationship, it can manipulate the file as if it were data in memory, using pointers to that 
data instead of input/output calls. However, the system does not detect end of file. If a 
program reads past the end of a file, it reads zeroes. The copy of the file on disk serves as 
the paging area for that file, saving paging space. 

4-60 Programming Tools and Interfaces 



A program can use any regular file as a mapped data file. To create the mapped data file, 
perform the following actions: 

1. Open (or create) the file and save the file descriptor: 

if ( fil des = open ( filename , 2 ) ) < 0 ) 
{ 

} 

printf( "cannot open file\n" ); 
exit(l); 

2. Map the file to a segment using the 
shmat system call: 

file_ptr = shmat( fildes, 0, SHM_MAP ); 
The parameter, SHM__MAP, is a constant defined in the header file, 
/usr/include/sys/shm.h. It indicates that the file is a mapped file. Include this 
header file and the other shared memory header files in a program with the directives: 

#include <sys/shm.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 
Note: The following steps show a method for detecting the end of a mapped file. The 
program must detect end of file in some manner. 

3. Use the lseek system call to go to the end of file: 

eof = file_ptr + lseek( fildes, 0, 2 ); 

This example sets the value of eof to an address that is 1 byte beyond the end of file. 
Use this value as the end of file marker in the program. 

4. Now use fi 1 e_ptr as a pointer to the start of the data file, and access the data as if it 
were in memory. The system calls for input and output, read and write, also work on 
the file, and produce the same data as when using pointers to access the data. 

while( file_ptr < eof ) 
{ 

(references to file using file_ptr) 
} 

System Calls 4-61 



5. Close the file when the program is finished working with it: 

close( fildes ); 

Using a Mapped Executable File 

You can also extend the features of mapped data files to files containing compiled and 
executable object code. Because mapped files can be accessed more quickly than regular 
files, the system can load a program more quickly if its executable object file is a mapped 
file. 

To create a program as a mapped executable file, compile and link the program using the 
-K flag with the cc or Id command. This flag tells the linker to create an object file with a 
page aligned format. That is, each part of the object file starts on a page boundary (an 
address that can be divided by 2K with no remainder). This option results in some empty 
space in the object file, but it allows the executable file to be mapped into memory. When 
the system maps an object file into memory, the text and data portions are handled 
differently: 

Text 

Data 

This part of the program is mapped as a read only file, unless the program is 
running under the sdb program while debugging. 

This part of the program is mapped as a copy on write file. Any changes made 
to the data are stored in the system paging area and are not written back to the 
original file (see "Copy on Write Mapped Files"). 

Copy on Write Mapped Files 
To prevent the changes made to mapped files from appearing immediately in the file on 
disk, map the file as a copy on write mapped file. This option creates a mapped file with 
changes that are saved in the system paging space, instead of saving the changes to the 
copy of the file on disk. You must choose to write those changes to the copy on disk to 
save the changes. Otherwise, you lose the changes when closing the file. 

Because the changes are not immediately reflected in the copy of the file that other users 
may access, use copy on write mapped files only among processes that cooperate with 
each other. See "Interprocess Communications" on page 4-25 for information about 
coordinating process activity. 

If a program writes beyond the current end-of-file in a copy-on-write mapped file by 
storing into the corresponding memory segment (where the file is mapped), the actual file 
(on disk) is extended with blocks of zeroes in preparation for the new data. If the program 
does not perform an fsync system call before closing the file, the data written beyond the 
previous end-of-file is not written to disk. The file appears larger, but contains only the 
added zeroes. Therefore, always use an fsync system call before closing a copy on write 
mapped file to preserve any added or changed data. 

4-62 Programming Tools and Interfaces 



To create a copy on write mapped data file, perform the following actions: 

1. Open (or create) the file and save the file descriptor: 

if ( fi l des = open ( filename , 2 ) ) < 0 ) 
{ 

} 

printf( "cannot open file\n'' 1 , 

exit(l); 

2. Map the file to a segment as copy on write, using the shmat system call: 

file_ptr = shmat( fildes, 0, SHM_CPY ); 
The parameter, SHM_CPY, is a constant defined in the header file, 
/usr/include/sys/shm.h. It indicates that the file is a copy on write mapped file. 
Include this header file and the other shared memory header files in a program with 
the directives: 

#include <sys/shm.h> 
#include <sys/types.h> 
#include <sys/ipc.h> 

3. Now use fi l e_ptr as a pointer to the start of the data file, and access the data as if it 
were in memory. 

4. Use the fsync system call to write changes to the copy of the file on disk to save the 
changes: 

fsync( fildes ); 
5. Close the file when the program is finished working with it: 

close( fildes ); 

Shared Memory Calls 

The shared memory calls set aside an area of memory that cooperating processes can 
access. This area can serve as a large pool for exchanging data among the processes. The 
shared memory calls do not provide locks or access control among the processes. 
Therefore, processes using the shared memory area must set up a signal or semaphore 
control method to prevent access conflicts and to keep one process from changing data that 
another process is using. Use shared memory when the amount of data to be exchanged 
between processes is too large to transfer with messages, or when many processes maintain 
a common large data base. 

System Calls 4-63 



Terms 

Use the following calls to create and use shared memory segments from a program: 

Call Description 

shmctl Controls shared memory operations. 
shmget Gets or creates a shared memory segment. 
shmat Attaches a shared memory segment to a process. 
shmdt Detaches a shared memory segment from a process. 

In addition, the ftok subroutine provides the key that the shmget call uses to create the 
shared segment. Include the following header files when using shared memory calls: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/shm.h> 

The use of shared memory segments is similar in structure to the way the system creates 
and uses files. Defining the terms used for shared memory with respect to the more 
familiar file terms provides a framework to build an understanding of shared memory. 
Figure 4-32 shows the new terms and how they relate to terms used with files. 

Term Definition 

key The key is a unique identifier that names the particular shared segment. It 
is always associated with the shared segment as long as the shared segment 
exists. In this respect it is similar to the filename of a file. 

shmid The shmid is an identifier assigned to the shared segment for use within a 
particular process. It is similar in use to a file descriptor of a file. 

attach A process must attach a shared segment to use the shared segment. 
Attaching a shared segment is similar to opening a file. 

detach A process must detach a shared segment once it is finished with the shared 
segment. Detaching a shared segment is similar to closing a file. 

Figure 4-32. Shared Memory Terms 

4-64 Programming Tools and Interfaces 



Using Shared Segments 
The following sequence describes the life cycle of a shared segment from initial creation to 
final removal from the system: 

1. Create a key to uniquely identify the shared segment. Use the ftok subroutine to 
create the key. For example, to create a key my key using a project ID of R contained 
in the variable proj (type char) and a file name of nul l_fi 1 e, use a statement like: 

mykey = ftok( null_file, proj ); 
2. Either: 

• Create the shared memory segment with the shmget system call. For example, to 
create a shared segment that contains 4096 bytes and assign the shmid to an 
integer variable mem_ id, use a statement like: 

mern_id = shmget( mykey, 4096, IPC_CREAT I 0666 ); 
or 

• Get a previously created shared segment with the shmget system call. For 
example, to get a shared segment that is already associated with the key my key and 
assign the shmid to an integer variable mem_ i d, use a statement like: 

mem_id = shmget( mykey, 4096, IPC_ACCESS ); 
3. Attach the shared segment to the process with the shmat system call. For example, to 

attach the previously created segment, use a statement like: 

ptr = shmat( mem_id ); 

In this example, the variable pt r is a pointer to a structure that defines the fields in 
the shared segment. Use this template structure to store and retrieve data in the 
shared segment. This template should be the same for all processes using the segment. 

4. Work with the data in the segment using the template structure. 

5. Detach from the segment using the shmdt system call: 

shmdt( mem_id ); 

System Calls 4-65 



6. If the shared segment is no longer needed, remove it from the system using the shmctl 
system call: 

shmctl( mem_id 7 IPC_RMI0 7 ptr) ; 
See AIX Operating System Technical Reference for specific information about parameters 
for the calls and subroutines. You can also use the commands ipcs to get information 
about a segment and ipcrm to remove a segment. See AIX Operating System Commands 
Reference for information about these commands. 

Memory Management Calls 

Use the following calls to control a program's use of memory during execution: 

Call Description 

brk Change data segment space allocation 
sbrk Change data segment space allocation (see brk) 

4-66 Programming Tools and Interfaces 



File System Calls 

The system provides calls to create files, move data into and out of files, close files, and 
describe the restrictions and structure of the file system. Because the system treats input 
and output to all devices the same as input and output to files, you can use many of the 
file system calls for control of devices in the system also. The system calls do not provide 
the data formatting and housekeeping services that the C library subroutines for input and 
output do. See Chapter 3, "Using the Subroutine Libraries" on page 3-1 for information 
about the library calls. 

Data Handling Calls 

Use the following system calls to control data handling in the system. These calls create 
files, open and close files, and move data into and out of them. 

Call 

close 
creat 
dup 
ioctl 
ls eek 
mknod 
open 
read 
readx 

write 
writ ex 

Description 

Closes a file descriptor. 
Creates a new file or rewrite an existing one. 
Duplicates an open file descriptor. 
Controls device. 
Moves read/write file pointer. 
Makes a special file that provides an interface to a device for input and output. 
Opens a file or device for reading or writing. 
Reads from a file or device. 
Reads from a file or device and uses an extra parameter for communication with 
the device driver. 
Writes on a file or device. 
Writes on a file or device and uses an extra parameter for communication with 
the device driver. 

System Calls 4-67 



Using Files 
When transferring data on the system, ensure that the files are created, opened and closed 
at the proper times so that data is not lost. The following sequence of events describes the 
actions to perform when using files for data storage: 

1. Use the creat system call to create the file 

or 

Use the open system call to open the file if it already exists (the creat call leaves the 
file open). 

2. Use the write and read system calls to transfer data into and out of the file. 

3. Use the close system call to close the file. 

In most cases, closing the file is enough. The system writes the file to disk from its buffers 
in memory at its own convenience. However, to write the data to disk immediately, use 
the fsync system call to force the system to write its buffers to disk before closing the file. 

File Descriptors 
The system performs all input and output by reading or writing files. It uses special files 
to form the interface between a device and the operating system. When you open a file, 
the system checks to see if you can access it. If you have access to the file, the system 
returns a small positive integer called a file descriptor. The system uses this file 
descriptor instead of the name to identify the file. Therefore, programs must use the file 
descriptor when doing input and output with system calls. 

The system assigns the file descriptor number on an as available basis, but it reserves three 
numbers for special functions: 

0 standard input: This file normally handles input from the keyboard of the terminal. 

1 standard output: This file normally handles output to the terminal screen. 

2 standard error: This file normally handles error messages to the terminal screen. 

These file descriptors are normally always open, so that a program can get input from the 
standard input and send output to standard output or error without opening a file. 

4-68 Programming Tools and Interfaces 



Opening and Closing Files 
To use input and output other than stdin, stdout, or stderr, either open or creat a file. 
The open system call sets up an existing file for access, and returns a file descriptor to the 
calling program: 

int fildes; 
fi 1 des = open (filename,oflag, [mode]); 

In this call, the parameters have the following meaning: 

filename The character string that corresponds to the external file name of the file to be 
opened. 

oflag A flag that indicates the conditions of the access for the file. 

mode An optional access mode for the operation to be performed: 

0 Read only access 
1 Write only access 
2 Read and write access 

If an error occurs, open returns -1 as the file descriptor. Trying to open a file that does 
not exist is an error. 

To create a new file, use the creat system call: 

fi 1 des = creat(filename,mode); 

In this call, the parameters have the following meaning: 

filename The character string that corresponds to the external file name of the file to be 
opened. 

mode The access permission bits for the file to be created as described for the chmod 
command in AIX Operating System Commands Reference. 

The creat call returns -1 as the file descriptor if it cannot create the file. If the file exists, 
this call truncates that file to zero length and returns the file descriptor for that file. 

System Calls 4-69 



To free up a file descriptor for use with another file, use the close system call when access 
to the file is complete: 

close(fildes); 

When the program stops using an exit call, or a return from main, the system closes all 
file descriptors associated with the program. 

Random Access to Files 
Normal access to files is sequential. Each read or write occurs in the file position directly 
following the previous operation. To perform random access I/O, use the lseek system call 
to move around in the file. This system call does not read or write to the file, it only 
changes the position where the next read or write will occur. The format of this call is: 

l seek (tildes, offset, whence) ; 

In this call, the parameters have the following meaning: 

fildes The file descriptor for the file. 

offset 

whence 

The number of bytes to move, or an absolute address as specified by the whence 
parameter. 

Determines how to use offset to move in the file: 

0 
1 

2 

Moves to the address contained in offset 
Moves to the address that is the current location plus the value 
contained in offset. 
Moves to the address that is the number of bytes contained in offset 
plus the address of the end of the file. 

For example, to append to a file when it is not positioned at the end, seek to the end before 
writing: 

lseek(fildes, 0, 2); 

To get back to the beginning of the file: 

lseek(fildes, 0, O); 

To create sparse files, or files with holes in them to allow for relative record access 
within the file, create a new file and then use the lseek call to move to selected places in 
the file before writing. The spaces between the data (holes) become part of the file, but do 
not take up disk space until they are actually filled with data. 

4-70 Programming Tools and Interfaces 



Reading and Writing to a File 
The read and the write system calls perform input and output for the system. These calls 
require three arguments: 

1. File descriptor: The integer assigned to the file involved in the read or write. 

2. Buffer: An area in the program that supplies or receives the data. 

3. Byte count: The number of bytes to be transferred. 

Each call returns the number of bytes actually transferred. For a read, this number may 
be less than the number requested in the byte count parameter. For a write, if this 
number is not the number requested, an error occurred. A returned value of 0 indicates 
the end of file; a returned value of -1 indicates an error occurred during the operation. 

The number of bytes to transfer is the programmer's choice. Some useful values are: 

1 One character at a time, or unbuffered transfer. 

512 The block size for many peripheral devices. 

1024 The internal block size for the operating system. This size, or a multiple of this size, 
is efficient for normal operations. 

Using the Extended Calls 
The system provides extended versions of the following system calls: 

readx 

writ ex 

These calls perform the same functions as their original versions, but they also provide an 
extra parameter to pass information to the device driver. How the parameter is used 
depends on the device driver with which the calls are used. The parameter can be used 
either as a value or a pointer to a buffer area containing additional information. Use them 
only with device drivers that understand the additional information. 

System Calls 4-71 



File Maintenance Calls 

Use the file maintenance calls for programs that change protection of files in the file 
system, access many different files, or provide control of files for the user of the program. 
Many of these calls are the base for the system commands that have similar names. You 
can, however, use these calls to write new commands or utilities to help in the program 
development process, or to include in an application program. The file maintenance calls 
on the system include: 

Call 

access 
chdir 
chmod 
ch own 
chroot 
fclear 
fcntl 
fstat 
fsync 
ftruncate 
link 
lockf 
mount 
stat 
sync 
um ask 
umount 
unlink 
ustat 
utime 

Description 

Determines accessibility of a file. 
Changes working directory. 
Changes mode of a file. 
Changes owner and group of a file. 
Changes root directory. 
Clears space in a file. 
Controls file operations. 
Gets data returned by stat system call. 
Forces changes in a file to disk. 
Makes a file shorter. 
Links to a file. 
Locks a region of a file, or provides exclusive regions in a file. 
Mounts a file system. 
Gets file status. 
Updates superblock. 
Sets and gets file creation mask. 
. U nmounts a file system. 
Removes a directory entry. 
Gets File system statistics. 
Sets file access and modification times. 

4-72 Programming Tools and Interfaces 



Time System Calls 

The system provides the following calls to set the system time and to find out what the 
system time is. See the description for the ctime library routine in AIX Operating System 
Commands Reference to get formatted time data from the system. 

Call 

stime 
time 

Description 

Sets time. 
Gets time. 

Both calls use a value of time that is the number of seconds since 00:00:00 Greenwich Mean 
Time (GMT) on January 1, 1970. Therefore, the program must be able to calculate the date 
using that starting date and the elapsed time value used by the time calls, total seconds. 
For convenience, some of the common time units converted to seconds are: 

Unit 

minute 
hour 
day 
week 
month 

year 

Value in Seconds 

60 
3600 
86,400 
604,800 
2,419,200 (28 days) 
2,592,000 (30 days) 
2,678,400 (31 days) 
31,536,000 (365 days) 
31,622,400 (366 days) 

System Calls 4-73 



4-74 Programming Tools and Interfaces 



Chapter 5. Controlling the Terminal Screen 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 

New Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 
What You Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 
Using the Screen Update Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 
What the Screen Looks Like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7 
Function Nam es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-9 
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 

Using the Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 
Setting Up the Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 
Writing to a Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 
Getting Input from the Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 
Controlling the Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-17 

Routines for Panels and Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 
Defining Panels and Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 
Creating Panels and Panes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23 

Display Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26 
Changing the Defined Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-28 
Changing Screen Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30 

Using Other Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32 
Getting Input with the keypad Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-32 
Scrolling Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34 
Improving Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-34 

Example Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35 

Controlling the Terminal Screen 5-1 



About This Chapter 

The system contains two libraries of routines to support input and output to the terminal 
screen. These libraries are: 

curses A set of screen control routines. This library is included for 
compatibility with existing application programs. 

Extended curses An enhancement to the curses set of routines for IBM RT PC that 
provides extended function for: 

• Expanded character set 
• Color 
• Multiple character attributes 
• Error detection and handling 
• Efficient handling of a window-oriented screen presentation, 

including: 
Window stacking and layers 
Linked scrolling of windows 

- Scrolling data in windows that are partially covered 
- Automatic tracking of active panes. 

Use these routines for new program development or to increase the 
function of existing programs. 

This chapter discusses only the Extended curses library. Information about both 
libraries is in AIX Operating System Technical Reference. 

5-2 Programming Tools and Interfaces 



Introduction 

The Extended curses library contains a set of C language routines that: 

• Updates a screen. 

• Gets input from the terminal in a screen-oriented fashion. 

• Moves the cursor from one point to another independent of other screen activities. 

• Creates and manages a screen containing windows, panels and panes. 

The routines do the most common type of terminal-dependent functions. The routines use 
the file /usr/lib/terminfo to describe what the terminal can do. 

The routines are in the following categories: 

• Screen updating 

• Screen updating with user input 

• Cursor motion optimization. 

You can use motion optimization by itself. You can use screen updating and input without 
knowing about either motion optimization or the data. 

New Terms 

The Extended curses routines use the concepts and terms listed in Figure 5-1 on 
page 5-4. 

Controlling the Terminal Screen 5-3 



Term 

terminal 

screen 

window 

Definition 

Sometimes called terminal screen, the terminal is a memory image of what 
the terminal screen currently looks like. This is a special screen. 

A screen is a special type of window that is as large as the terminal screen. 
You can define screens for a program. The Extended curses routines 
define two screens for their use: 

stdscr 

curs er 

The standard screen is a memory image of the screen that the 
routines make changes to. 
The current screen is the actual image that is currently on the 
terminal. 

A memory image of what a section of the terminal screen looks like at some 
point in time. A window can be either the entire terminal screen, or any 
smaller portion down to a single character. 

Presentation The data and attribute array associated with a window. 
Space 

Pane An area of the display that shows all or a part of the data contained in a 
presentation space associated with that pane. A pane is a subdivision of a 
panel. 

Panel A rectangular area on the display consisting of one or more panes that a 
program can treat as a unit. That is, the panes in a panel are displayed 
together, erased together and represent a unit to the operator. The routines 
stack or overlap panels on the screen, and remember the order of the stack 
and the contents of each panel. 

Field An area in a presentation space where the program can accept operator 
input. 

Figure 5-1. Terms 

5-4 Programming Tools and Interfaces 



What You Ne·ed 

To use the library, define the types and variables that the routines use. The file curOl.h 
contains all of the definitions that are needed for the library routines for most common 
uses. Include this file in the program by putting the statement: 

#include <curOl.h> 
at the top of the program source. When using the library routines for panel and pane 
management (those routines begin with the letters ec), use the statement: 

#include <cur05.h> 
in the program source to include a larger set of definitions. 

Use an additional header file curOO.h in the program if the program uses the global 
variables defined to represent the information taken from the terminal file. This header 
file also contains include statements for the following header files: 

• stdio.h 
• sgtty.h 
• curOl.h 

You do not need to include those files separately in the program. 

To compile a program with the cc command, specify the two additional libraries shown in 
the following example on the command line. This example compiles the program, 
myp rog . c, with the linked output going to a.out, by using the following command: 

cc myprog.c -lcur -lcurses 
See Chapter 3, "Using the Subroutine Libraries" on page 3-1 for information about using 
libraries in a program. 

Controlling the Terminal Screen 5-5 



Using the Screen Update Routines 

To update the screen, the routines must know what the screen currently looks like and 
what it should be changed to. The routines define a data type, WINDOW, to hold this 
information. This data type is a structure that describes a window image to the routines, 
including the starting position on the screen (the (line, col) coordinates of the upper left 
corner) and size. See Appendix B, "Extended curses Structures" on page B-1 for a 
definition of the WINDOW structure. 

A window is like an array of characters on which to make changes. Using the window, a 
program builds and stores an image of a portion of the terminal that it later transfers to 
the actual screen. When the window is complete, use one of the following routines to 
transfer the window to the terminal: 

refresh Transfers the contents of stdscr to the terminal 

wrefresh Transfers the contents of a named window (not stdscr) to the terminal 

ecrfpl 

ecrfpn 

Transfers the contents of a named panel to the terminal 

Transfers the contents of a named pane to the terminal. 

This two-step process maintains several different copies of a window in memory and selects 
the proper one to display at any time. In addition, the program can change the contents of 
the screen in any order. When it has made all of the changes, the library routines update 
the terminal in an efficient manner. 

5-6 Programming Tools and Interfaces 



What the Screen Looks Like 

The screen is a matrix of character positions that can contain any character from the 
character set (see Appendix D, "ASCII Characters" on page D-1) that can be displayed. Do 
not use control characters except when the descriptions of the library indicate that you 
can. The actual dimensions of the matrix are different for each type of terminal. These 
dimensions are defined in the file /usr/lib/terminfo that the initscr routine uses. 
However, the routines enforce the following limits on the terminal: 

Coordinate Description 

lines The number of lines on the terminal screen are in the range of 5 to 48. If 
the terminal specification defines less than 5 lines, the routines use a value 
of 24 lines. If the terminal specification defines more than 48 lines, the 
routines use a value of 48 lines. 

columns The number of columns on the terminal screen are in the range of 5 to 1000. 
If the terminal specification defines less than 5 columns, the routines use a 
value of 80 columns. If the terminal specification defines more than 1000 
columns, the routines use a value of 1000 columns. 

Line 0 is at the top of the screen. Line values in the routine syntax are represented by 
1 i ne. Column 0 is at the left side of the screen. Column values in the routine syntax are 
represented by co 1. When used in calls to the library routines, the line value comes first. 

move(line, col); 
Figure 5-2 on page 5-8 shows the coordinate boundaries of the largest screen that the 
routines allow. 

Controlling the Terminal Screen 5-7 



(c"o,m (Q,999~ 

Cline,col) 

(47,Q) (47,999) 

Figure 5-2. Screen Coordinate Boundaries 

5-8 Programming Tools and Interfaces 



Function Names 

Functions that change the contents of a specified window other than stdscr usually begin 
with the letter w, indicating an operation for a specific window. Deleting the leading W 

provides the name of the same function that uses stdscr. For example, the function addch 
adds a character to stdscr, but the function waddch adds a character to a specified 
window. If a function does not have a form that operates only on stdscr, the function does 
not have a form that begins with the letter w. Always indicate a window name when using 
these functions. 

Use the routines move and wmove to change the current (line, col) coordinates from one 
point to another. To move and then write to or read from the new position, use the 
following shorthand method for most routines: 

1. Add the letters mv to the front of the routine name. 

2. The first two arguments of the routine must be the (line, col) coordinates of the 
destination of the move. 

For example, the following call sequence: 

move(line, col); 
addch(ch); 

wmove(win, line, col); 
waddch(win, ch); 

is the same as the following call sequence: 

mvaddch{line, col, ch); 

mvwaddch(win, line, col, ch); 

Note that the window description pointer win comes before the added (line, col) 
coordinates. 

Controlling the Terminal Screen 5-9 



Variables 

The following system variables defined in the header files describe the terminal 
environment. Use these variables in a program. 

Name Type Description 

My_term bool If this value is TRUE, the routines use the terminal type 
specified by Def_ term as the terminal type being used. If this 
value is FALSE, the routines first check the terminal type 
specified in the $TERM for the system environment. If $TERM is 
not specified, the routines use the value in Def _term. 

DeLterm char* Default terminal type if $TERM is not specified in the system 
environment. 

ttytype char* Full name of the current terminal. 

COLS int Number of columns on the terminal. 

ERR int Flag that the routines return when a failure occurs. 

LINES int Number of lines on the terminal. 

OK int Flag that the routines return when the function completes 
successfully. 

curscr WINDOW* Current version of the terminal screen. 

stdscr WINDOW* Standard screen. 

5-10 Programming Tools and Interfaces 



The routines also define the following #define constants and types: 

bool A type of boolean used as: 

boo 1 donei t; /* defines v ari ab 1 e doneit *I 
reg A type with storage class register used as: 

reg inti; /*defines i */ 
FALSE The value of boolean false (0). 

TRUE The value of boolean true (1). 

Controlling the Terminal Screen 5-11 



Using the Library Routines 

The following paragraphs outline the steps to follow when building a program to use these 
routines. The description uses routines that change stdscr, but the same concepts work 
with any window when using the w form of the routine as described in "Function Names" 
on page 5-9. See AIX Operating System Technical Reference for complete descriptions of 
these library routines, and their w forms. 

Setting Up the Environment 

To use these routines, the program must set up the operating conditions for the program. 
Perform the following actions in the program, if they apply, in the order that they appear 
in the following procedure: 

1. Perform all necessary actions to load the program and make sure that it is operating 
successfully. 

2. To change the defined size of the terminal, set the variables LINES and COLS to new 
values. 

3. Use the routine initscr to get information about terminal characteristics, and to 
allocate memory for stdscr and curscr. Call initscr before calling any routines that 
affect windows. If the program uses a window routine before initscr, the program will 
not run. 

4. Check the value that initscr returns to see if the screen setup was successful. If this 
value is 0 (FALSE or ERR), then initscr could not get enough memory for the needed 
windows. 

5. Use any needed terminal status changing routines, such as, nl or crmode. 

6. Create any new windows with the newwin or subwin routines. 

7. Create panels using ecbpls, ecbpns, ecdvpl or ecdfpl. 

8. Define or change the characteristics of the windows as needed. For example, the 
routine scrollok allows the window to scroll; or the routine leaveok leaves the cursor 
at the position of the last. change. 

The program can now work with the windows that it has defined. When the program is 
done, use the routine endwin to clean up before exiting the program. This routine 
restores terminal modes to what they were when the program first started. 

5-12 Programming Tools and Interfaces 



Writing to a Window 

Use the following functions to change the contents of a window. Refer to AIX Operating 
System Technical Reference for complete information about each routine. 

Routine Description 

addch(c) 
Adds the character c on the window at the current (line, col) coordinates. 

addstr(str) 
Adds the string pointed to by st r on the window at the current (line, col) 
coordinates. 

box(win, vert, hor) 

cbox(win) 

Draws a box around the window using vert as the character for drawing the 
vertical sides, and hor for drawing the horizontal lines. See also fullbox and 
cbox. 

Draws a box around the window using the box characters defined in 
/usr/lib/terminfo (BX[ ]). If no box characters are defined, it uses I for vertical 
lines, - for horizontal lines, and + for corners. See also box and fullbox. 

chgat(num_chars, mode) 

clear 

Changes the attributes of the next num_chars characters, starting at the 
current (line, col) coordinates to the attribute(s) specified by mode (one or more 
of the attributes defined in "Display Attributes" on page 5-26). See also pchgat. 

Resets the entire window to blanks. 

clearok(scr, boolf) 
Sets the clear flag for the screen s c r to the value of boo 1 f. 

clrtobot 
Clears the window from the current (line, col) coordinates to the bottom. 

clrtoeol 
Clears the window from the current (line, col) coordinates to the end of the line. 

colorend 
Returns the terminal to normal attributes following a colorout call. 

Controlling the Terminal Screen 5-13 



Routine Description 

colorout(mode) 

delch 

deleteln 

ecactp 

ecshpl 

ecrfpl 

ecrfpn 

ecrmpl 

ecscpn 

erase 

Sets the current standout bit pattern (_csbp in the window structure) to the 
value of mode (one or more of the attributes defined in "Display Attributes" on 
page 5-26) and turns on _ST ANDO UT. All characters following this call are 
displayed with mode as the attribute. 

Deletes the character at the current (line, col) coordinates. 

Deletes the current line. 

Specifies the active pane. 

Shows a specified panel by bringing it to the top of the stack of panels. 

Refreshes the panel on the display. 

Refreshes the pane on the display. 

Removes a panel from the display. 

Scrolls a specified pane. 

Erases the window to blanks without setting the clear flag. See also perase. 

fullbox(win, vert, hor, topl, topr, botl, botr) 
Draws a box around the window using vert as the character for vertical sides, 
hor for horizontal, and top l, topr, botl and botr as the corner characters. 
See also box and chox. 

5-14 Programming Tools and Interfaces 



Routine Description 

insch(c) 
Inserts character C at the current (line, col) coordinates. 

insert In 
Inserts a line above the current line. 

move(line, col) 
Changes the current (line, col) coordinates of the window to (line, col). 

overlay(winl, win2) 
Overlays win 1 on wi n2. Windows need not be the same size. 

overwrite(winl, win2) 
Overwrites wi nl on wi n2. Windows need not be the same size. 

printw(fmt, argl, arg2, ... ) 
Performs a printf on the window starting at the current (line, col) coordinates. 

refresh 
Writes the contents of the specified window to the terminal. 

standend 
Stops putting characters onto win in standout mode. 

standout 
Starts putting characters onto win in standout mode. 

Use the refresh routine to transfer the contents of the current window to the screen after 
all changes to the window are complete. The refresh routine does not rewrite any part of 
the window that has not changed since the last refresh call. To force the whole window to 
be rewritten, use the touchwin routine before the refresh routine. Also use ecrfpn to 
refresh a pane, and ecrfpl to refresh a panel. 

Controlling the Terminal Screen 5-15 



Getting Input from the Terminal 

Input is the complementary function to output. The screen package needs to know what is 
on the terminal at all times. Therefore, if a program echoes input characters, the terminal 
must be in a mode that passes characters immediately to the program, rather than waiting 
for a carriage return to send input to the program. The getch routine sets the terminal to 
the character input mode and then reads in the character. 

Use the following routines for input from the terminal: 

Routine Description 

crmode 
Sets the terminal to allow character by character input and not wait for a 
carrier return to send input to the process. 

nocrmode 

echo 

noecho 

ecflin 

ecpnin 

getch 

Sets the terminal to wait for a carrier return to send input to the process. 

Sets the terminal to echo characters. 

Sets the terminal to not echo characters. 

Gets input from the screen as long as the cursor is in a specified area (field) of 
the screen. 

Gets input from the screen in a specified pane, and scrolls the pane as needed to 
keep the cursor in the field. 

Gets a character from the terminal and (if necessary) echoes it on the window. 

getstr(str) 
Gets a string through the window and puts it in the location pointed to by str. 
The location must be large enough to hold the string. The string is terminated 
by \ n (new-line). 

5-16 Programming Tools and Interfaces 



Routine Description 

keypad 

raw 

nor aw 

Gets input from the keyboard. See "Getting Input with the keypad Routine" on 
page 5-32 for more information. 

Sets the terminal to raw mode. 

Resets the terminal from raw mode. 

scanw(fmt, argl, arg2, ... ) 
Performs a scanf through the window using frnt. 

Controlling the Screen 

Use the following library routines to control and manipulate the windows, panes, and 
panels on the screen. 

Routine Description 

delwin(win) 

ecadpn 

ecaspn 

ecbpls 

ecbpns 

ecdfpl 

ecdppn 

Deletes the window and frees the resources assigned to the window. 

Adds the specified window to the list of windows that can be displayed in a 
pane, but does not display it. 

Specifies a window to be displayed in the specified pane, but requires a refresh 
call to display it. 

Builds a panel structure. 

Builds a pane structure. 

Creates WINDOW structures to define a panel. 

Removes the specified window from the list of windows that can be displayed in 
the pane. 

Controlling the Terminal Screen 5-17 



Routine Description 

ecdspl 

ecdvpl 

ecrlpl 

end win 

gettmode 

Returns all structures associated with a panel to the storage pool, including 
structures for panes linked to the panel. 

Divides a panel into panes. All panes must be defined, and be linked to the 
panel. 

Returns structures associated with a panel to the storage pool, but not those 
that define the panel or the panes linked to the panel. 

Restores the terminal to the state it was before initscr was called. Always use 
endwin before exiting. 

Gets the information about the terminal. This routine is called by initscr. 

getyx(win, line, col) 

inch 

initscr 

Puts the current (line, col) coordinates of win in the variables 1 i ne and co 1. 

Returns the character at the current (line, col) coordinates on the specified 
window. 

Initializes the screen routines. Call this routine before using any of the screen 
routines. Use the endwin before exiting the screen routines. 

leaveok(win, boolf) 
Sets the boolean flag _leave to the value specified by boo 1 f. This flag indicates 
that the cursor should be positioned after the last change. 

longname(termbuf, name) 
Fills in name with the long (full) name of the terminal described by the terminfo 
entry in termbuf. 

5-18 Programming Tools and Interfaces 



Routine Description 

mvcur(lastline, lastcol, newline, newcol) 
Moves the terminal cursor from (1ast1 i ne, 1 as tco 1) to (newline, newco 1 ). 

Note: Each window and the terminal have a cursor. The terminal cursor 
becomes the cursor on the active window or pane. 

mvwin(win, line, col) 
Moves the home position of the window win from its current starting 
coordinates to (line, col). 

newview(orig_win, num-1ines, num_cols) 
Creates a new window that is num_l i nes lines and num_col s columns. The 
window is a viewport of the ori g_wi n starting at the current (line, col) 
coordinates of ori g_wi n. 

newwin(lines, cols, begin-1ine, begin_col) 

nl 

nonl 

resetty 

savetty 

Creates a new window with 1 i nes lines and co 1 s columns starting at position 
(begin_ line, beg i n_co 1 ). 

Sets new-line mode so that the system starts changing return characters to 
linefeed characters. 

Resets new-line mode so that the system does not change return characters. 
This setting helps the refresh routine perform optimization. 

Restores the tty characteristic flags to what savetty stored. 

Saves the current tty characteristic flags. 

scroll(win) 
Scrolls the window upward one line. 

scrollok(win, boolf) 
Sets the scroll flag for the given window to the value specified by boo 1 f. A 
value of FALSE (disable scrolling) is the default setting. 

Controlling the Terminal Screen 5-19 



Routine Description 

setterm (name) 
Sets the terminal characteristics to be those of the terminal name name. 

subwin(win, lines, cols, begin-1ine, begin_col) 
Creates a new window with lines lines and cols columns starting at position 
(begin_ line, begi n_co l) in the window win. 

touchwin(win) 

tstp 

Forces the refresh routine to write all of the specified window, instead of just 
the parts that have changed. 

When using the tty driver, this function saves the current tty state and then 
puts the process to sleep. When the process is started again, the process 
restores the tty state and then calls wrefresh(curscr) to redraw the screen. 
The initscr routine sets the signal SIGTSTP to trap to this routine. 

unctrl(ch) 
Returns a string which is a representation of ch. To use unctrl, put the 
statement: 

#include <cur04.h> 
in the program file. 

vscroll(view_win, deltaline, deltacol) 
Scrolls the viewport window (see newview) down delta line lines and right 
de l taco l columns. If the numbers are negative, the directions are up and left, 
respectively. 

5-29 Programming Tools and Interfaces 



Routines for Panels and Panes 

The Extended curses library contains routines to help create a screen appearance similar 
to that used for Usability Services. The following paragraphs describe the concept of the 
panel and pane interface, and list the routines for creating a panel and pane interface. 
Refer to AIX Operating System Technical Reference for detailed information about each 
routine. 

Defining Panels and Panes 

To define a panel, provide the following information about the panel: 

• The size of the panel as it appears on the display 

• The location on the display of the upper left corner of the panel 

• Whether the panel is to have a border or not 

• How the panel is to be divided into panes. 

In addition, provide the following information for each pane within the panel: 

• The size of the presentation space associated with the pane 

• The relative size of the pane within the panel 

• Whether the pane is to have a border 

• If and how the pane is to be further divided into smaller panes. 

Controlling the Terminal Screen 5-21 



To divide panels and panes into smaller panes, follow a few simple rules. These rules 
ensure that a program can access all areas on the panel or pane that it creates: 

• You can divide a oanel or oane either horizontallv (using a horizontal dividing line) or 
vertically (using~ vertica( dividing line). ~ , - - -

• Panes created by a horizontal division must be linked together from top to bottom. 

• Panes created by a vertical division must be linked together from left to right. 

• Panes that are divided again must be linked to the first pane of its sub-panes. The 
original pane in this case is not a part of the presented panel, but it is needed to define 
the structure of the panel. 

• Panes created by a horizontal division have a fixed horizontal dimension that is the 
same as its parent pane. 

• Panes created by a vertical division have a fixed vertical dimension that is the same as 
its parent pane. 

• Specify the variable dimension for a pane as being in one of three categories: 

Fixed For a fixed pane, specify the number of rows or columns, including 
any border, to assign to the pane. 

Fractional For a fractional pane, specify the percentage of the available space to 
assign to the pane. 

Floating For a floating pane, do not specify a size. The floating pane shares the 
available space equally with any other floating panes that the program 
creates. 

The linkage of the panes forms a tree structure. The root of the tree is a panel description. 
All other elements in the tree are pane descriptions. 

5-22 Programming Tools and Interfaces 



Creating Panels and Panes 

To create a panel that looks like the outline shown in Figure 5-3 on page 5-24, perform the 
following steps (following the rules for dividing panels and panes) as shown in Figure 5-4 
on page 5-24. 

1. Define panel P using the ecbpls routine with a link to pane A. 

2. Divide the panel (P) with two horizontal splits into three panes. Use the ecbpns 
routine to define the three panes with the following links: 

A No links 
B Linked to A and D 
C Linked to B and F 

3. Divide pane B with a single vertical split into two panes. Use the ecbpns routine to 
define the two panes with the following links: 

D No links 
E Linked to D 

4. Divide pane C with two vertical splits into three panes. Use the ecbpns routine to 
define the three panes with the following links: 

F No links 
G Linked to F 
H Linked to G 

Although the program must create panes Band C to get the smaller panes, those two panes 
do not appear as panes in the final display. 

Figure 5-5 on page 5-25 shows how the panel and pane descriptions for the final structure 
are linked. Horizontal lines show the links within a pane; vertical lines show links to the 
parent panel or pane. 

Controlling the Terminal Screen 5-23 



A 

D E 

p 

F G H 

Figure· 5-3. Example Panel Final Appearance 

A 

p B 

c 

D E 

G H 

Figure 5-4. Creating Panes in the Panel 

5-24 Programming Tools and Interfaces 



Figure 5-5. Links in the Panel and Pane Structure 

Controlling the Terminal Screen 5-25 



Display Attributes 

Use the color and display characteristics defined in Figure 5-6 on page 5-27. These names 
are external variables that define the attributes that a program can use on the current 
terminal. The values of these variables depend on the capabilities of the current terminal 
and the priorities that you assign to the attributes. Change the values of these variables 
with the seLattr routine as explained in "Changing the Defined Attributes" on page 5-28. 

The characteristics that a program selects for the terminal are loaded into the attribute 
byte associated with the data being displayed. Select as many of the attributes as needed, 
but those selected are packed into the attribute byte in the following order: 

1. BOLD, 
2. REVERSE, 
3. F_WHITE, 
4. F_RED, 
5. F_BLUE, 
6. F_GREEN, 
7. F_BROWN, 
8. F_MAGENTA, 
9. F_CYAN, 
10. F_BLACK, 
11. B_BLACK, 
12. B_RED, 
13. B_BLUE, 
14. B_GREEN, 
15. B_BROWN, 
16. B_MAGENTA, 
17. B_CYAN, 
18. B_WHITE, 
19. UNDERSCORE, 
20. BLINK, 
21. INVISIBLE, 
22. DIM, 
23. STANDOUT, 
24. PROTECTED, 
25. FONTO, 
26. FONTl, 
27. FONT2, 
28. FONT3, 
29. FONT4, 
30. FONT5, 
31. FONT6, 
32. FONT7, 
33. NULL 

5-26 Programming Tools and Interfaces 



To change the order, see "Changing the Defined Attributes" on page 5-28. Once the 
attribute byte is full, the routines ignore the remaining lower priority attributes. If an 
attribute does not work with the current display, the routines ignore that attribute. 
Therefore, you can specify color attributes and still be able to use the program with a 
monochrome display. Figure 5-6 defines the external variable names that the routines use 
to set the display attributes. 

Name 

UNDERSCORE 
REVERSE 
NORMAL 
INVISIBLE 
STANDOUT 

BOLD 
BLINK 
DIM 
PROTECTED 
F_BLACK 
F_BLUE 
F_GREEN 
F_CYAN 
F_RED 
F_MAGENTA 
F_BROWN 
F_WHITE 
B_BLACK 
B_BLUE 
B_GREEN 
B_CYAN 
B_RED 
B_MAGENTA 
B_BROWN 
B_WHITE 
FONTO 
FONTl 
FONT2 
FONT3 
FONT4 

Attribute 

Display characters with underline. 
Display characters in reverse video. 
Display characters without highlighting (return to normal). 
Do not display characters. 
Display characters in high intensity (can be used with other attribute 
colors). On many terminals, this is the same as BOLD. 
Display characters in bold font (or high intensity on some terminals). 
Display blinking characters (can be used with other attribute colors). 
Display characters in reduced intensity. 
Protected display field. 
Set foreground color to black. 
Set foreground color to blue. 
Set foreground color to green. 
Set foreground color to cyan. 
Set foreground color to red. 
Set foreground color to magenta. 
Set foreground color to brown. 
Set foreground color to white. 
Set background color to black. 
Set background color to blue. 
Set background color to green. 
Set background color to cyan. 
Set background color to red. 
Set background color to magenta. 
Set background color to brown. 
Set background color to white. 
Select defined character font 0. 
Select defined character font 1. 
Select defined character font 2. 
Select defined character font 3. 
Select defined character font 4. 

Figure 5-6 (Part 1 of 2). Display Attributes 

Controlling the Terminal Screen 5-27 



Name 

FONT5 
FONT6 
FONT7 

Attribute 

Select defined character font 5. 
Select defined character font 6. 
Select defined character font 7. 

Figure 5-6 (Part 2 of 2). Display Attributes 

Changing the Defined Attributes 

To change the characteristics assigned to the external variables listed in Figure 5-6 on 
page 5-27, use the seLattr routine. This routine uses a set of defined constants contained 
in the header file cur04.h. To use this routine, put the following statement at the 
beginning of the program file: 

#include <cur04.h> 

5-28 Programming Tools and Interfaces 



The file cur04.h defines the following constants: 

_dNORMAL 
_dREVERSE 
_dBOLD 
_dB LINK 
_dUNDERSCORE 
_dDIM 
_dINVISIBLE 
_dPROTECTED 
_dSTANDOUT 
_dF_BLACK 
_dF_RED 
_dF_GREEN 
_dF_BROWN 
_dF_BLUE 
_dF_MAGENTA 
_dF_CYAN 
_dF_WHITE 
_dB_BLACK 
_dB_RED 
_dB_GREEN 
_dB_BROWN 
_dB_BLUE 
_dB_MAGENTA 
_dB_CYAN 
_dB_ WHITE 
_dFONTO 
_dFONTl 
_dFONT2 
_dFONT3 
_dFONT4 
_dFONT5 
_dFONT6 
_dFONT7 

These constants are only valid when using the seLattr routine. They cannot be used with 
any other routine. 

Controlling the Terminal Screen 5-29 



Changing Screen Attributes 

The code fragment in Figure 5-7 shows how to use these constants to change the default 
set of attributes. 

#include <curOO.h> 
#include <cur04.h> 

int attrs [] = 
{ 

}; 

main( 
{ 

_dBOLD, _dBLI NK, 
_dF_WHITE, _dF_RED, _dF_BLUE, _dF_GREEN, 
_dF_BROWN, _dF_MAGENTA, _dF_CYAN, _dF_BLACK, 
_dB_BLACK, _dB_RED, _dB_BLUE, _dB_GREEN, 
_dB_BROWN, _dB_MAGENTA, _dB_CYAN, _dB_WHITE, 
_dREVERSE, _dINVISIBLE, _dDIM, _dUNDERSCORE, 
NULL 

sel_attr(attrs); 
initscr( ); 
if( REVERSE == NORMAL ) REVERSE = F_BLACK I B_WHITE; 
if( INVISIBLE == NORMAL ) INVISIBLE = F_BLACK I B_BLACK; 
if( DIM == NORMAL ) DIM = F_BLACK I BOLD; 
if( UNDERSCORE == NORMAL ) UNDERSCORE = F_WHITE I B_RED; 
STANDOUT = REVERSE; 

<rest of program> 

endwin( ); 
} /* end main */ 

Figure 5-7. Example Panel Final Appearance 

5-30 Programming Tools and Interfaces 



The routines only define 8 bits of unique attribute information. Selecting foreground 
color, background color or font requires either 1, 2 or 3 bits depending upon the number of 
colors or fonts in the list: 1 bit for 2 or fewer, 2 bits for 3 or 4, and 3 bits for 5 to 8. Each 
character attribute takes 1 bit. However, the attribute names passed to wcolorout are 
variables, so that you can make combinations from the other attributes as shown in the 
last part of the previous example. If a requested attribute (that is not the terminal default) 
is equal to NORMAL, then it is either not supported by the terminal, or there is not 
enough space in the window structure for its mask. 

Controlling the Terminal Screen 5-31 



Using Other Features 

Getting Input with the keypad Routine 

The keypad routine allows a program to recognize control sequences in the input without 
searching the input or introducing device dependencies. If keypad is active, it scans all 
input data for control sequences. If it finds a control sequence, it returns the associated 
code to the program instead of the actual control sequence. The control codes are shown 
in Figure 5-8. These codes are defined in the file cur02.h with values greater than Ox 100. 

Name 

KEY_NOKEY 
KEY_BREAK 
KEYJ>OWN 
KEY_UP 
KEY__LEFT 
KEY_RIGHT 
KEY_HOME 
KEY_BACKSPACE 
KEYJ>L 
KEY__IL 
KEYJ>C 
KEY__IC 
KEY_EIC 
KEY_CLEAR 
KEY_E,OS 
KEY_EOL 
KEY_SF 
KEY_SR 
KEY_NPAGE 
KEY_pPAGE 
KEY--8TAB 
KEY_CTAB 
KEY_CATAB 
KEY_ENTER 

Description 

No keyboard data and no delay on 
Break 
Cursor down 
Cursor up 
Cursor left 
Cursor right 
Home - top left 
Backspace 
Delete line 
Insert line 
Delete character 
Insert character mode start 
Exit insert character mode 
Clear screen 
Clear to end of screen 
Clear to end of line 
Scroll forward 
Scroll backward (reverse) 
Next page 
Previous page 
Set tab stop 
Clear tab stop 
Clear all tab stops 
Enter key 

Figure 5-8 (Part 1 of 2). Control Codes 

5-32 Programming Tools and Interfaces 



Name 

KEY-8RESET 
KEY_RESET 
KEY_FRINT 
KEY_LL 
KEY_Al 
KEY_A3 
KEY_B2 
KEY_Cl 
KEY_C3 
KEY_DO 
KEY_QUIT 
KEY_CMD 
KEY_FCMD 
KEY_NPN 
KEY_FPN 
KEY_CPN 
KEY_END 
KEYJILP 
KEY_SEL 
KEY_SCR 
KEY_SCL 
KEY_TAB 
KEY_BTAB 
KEY_NEWL 
KEY_FO 
KEY_F(n) 
KEY_ESCl 

KEY_ESC2 

Description 

Soft reset key 
Hard reset key 
Print or copy 
Lower left (last line) 
Pad upper left 
Pad upper right 
Pad center 
Pad lower left 
Pad lower right 
DO key 
QUIT key 
Command key 
Previous command key 
Next pane key 
Previous pane key 
Command pane key 
End key 
Help key 
Select key 
Scroll right key 
Scroll left key 
Tab key 
Back tab key 
New-line key 
Function key - 128 values 
Not used 
Added to the ending character code for ESC sequences in the form 
ESC c with c in the range Ox30 - Ox7f. The value sent is in the range 
Ox200 to Ox24f. 
Added to the ending character code for ESC sequences in the form 
ESC [ s c with c in the range Ox40 - Ox7f. The value sent is in the 
range Ox250 to Ox28f. 

Figure 5-8 (Part 2 of 2). Control Codes 

Controlling the Terminal Screen 5-33 



To use the control sequences in a program, first use a call to the keypad routine: 

keypad(TRUE); 

Scrolling Windows 

If a window includes the lower right corner of the terminal screen, the flag byte bit, 
-8CROLLWIN, in the WINDOW structure for that window is set. This bit indicates that 
if a character is placed in the lower right corner of the window, the terminal inserts a 
blank line at the bottom of the screen (scrolls) to make room for more information. If a 
program defines the window with scrollok to allow it to scroll and place a character in the 
lower right corner of the window, the routines automatically call the scroll routine. 

If a program does not define the window with scrollok, scrolling is not allowed. When a 
character is placed in the lower right corner of the window, the routines reset the current 
co 1 coordinate to zero (beginning of line) and does not scroll. 

To move a window to the lower right corner, use the mvwin routine. The _SCROLLWIN 
flag bit for that window is not automatically set. However, the wrefresh routine handles 
that window as if the _SCROLLWIN flag bit were set. 

Improving Performance 

To speed up output, create an output buffer using statements similar to the following 
program fragment: 

#include <stdio.h> 

char obuf[BUFSIZ]; 

main( 
{ 

setbuf (stdout, obuf); 

/* rest of program */ 
} 

5-34 Programming Tools and Interfaces 



Example Program 

Figure 5-9 shows the use of some of the routines to create a series of displays on the 
screen. If you are using the Programming Examples, the program is stored as twinkle.c. 
Compile and run the program to see the effects of the Extended curses functions. 

#include 11 curOO.h 11 

#include <signal .h> 

#define NCOLS 80 
#define NLINES 24 
#define MAXPATTERNS 11 

struct locs 
{ 

char y, x; 
}; 

typedef struct locs LOCS; 

LOCS layout[ NCOLS * NLINES ]; 

int pattern, 
numstars; 

/* current board layout */ 

/* current pattern number */ 
/* numbers of stars in ptern */ 

Figure 5-9 (Part 1 of 6). Example of Extended curses Program 

Controlling the Terminal Screen 5-35 



main() 
J 
l 

} 

char *getenv (); 
int die(); 

srand( getpid() ) ; 
i nitscr (); 
s i g n a 1 ( SIG I NT, die ) ; 
noecho(); 
leaveok( stdscr, TRUE); 
scrollok( stdscr, FALSE); 

for(;;) 
{ 

} 

makeboard(); 
puton( '*' ); 
system( 11 sleep 2 11 

); 

erase(); 
refresh(); 

die() 
{ 

/* initialize random sequence*/ 

/* make the board setup */ 
/* put on '*'s */ 

signal ( SI GI NT, SIG_IGN ) ; 
mvcur( LINES/2, COLS/2, 0, 0 ); 
wclear( curscr ); 
wrefresh( curscr ); 
endwi n (); 
exit(O); 

} 

Figure 5-9 (Part 2 of 6). Example of Extended curses Program 

5-36 Programming Tools and Interfaces 



makeboard () 
{ 

} 

reg int y, x; 
reg LOCS *lp; 

pattern = rand() % MAXPATTERNS; 
l p = 1 ayout; 
for( y = O; y < NLINES; y++ ) 
{ 

} 

for( x = O; x < NCOLS; x++ 
{ 

} 

if ( i son ( y, x ) ) 
{ 

} 

lp -> y = y; 
lp++ -> x = x; 

numstars = lp - layout; 

ison( y, x 

reg int y, x; 

{ 
switch( pattern ) 
{ 

/* 
**Alternating lines: 
*/ 
case 0: 

return !( y & 01 ); 

Figure 5-9 (Part 3 of 6). Example of Extended curses Program 

Controlling the Terminal Screen 5-37 



/* 
** Onv• UVA.e 

*/ 
case 1: 

/* 

if( y < 3 ll y >= NUNES - 3 ) 
return TRUE; 

return( x < 4 ll x >= NCOLS - 4 ); 

** Cross: 
*/ 
case 2: 

return( ( x + y) & 01 ); 
/* 
** Bar across center: 
*/ 
case 3: 

return( y >= 9 && y <= 15 ); 
/* 
** Alternating columns: 
*/ 
case 4: 

return !( x & 02 ); 
/* 
** Bar down center: 
*/ 
case 5: 

return( x >= 36 && x <= 44 ); 
/* 
** Bar across and down center: 
*/ 
case 6: 

return( ( y >= 9 && y <= 15) ll ( x >= 37 && x <= 43 )); 

Figure 5-9 (Part 4 of 6). Example of Extended curses Program 

5-38 Programming Tools and Interfaces 



/* 
** Bar across and down center, in a box: 
*/ 
case 7: 

if( y < 3 II y >= NUNES - 3 ) 
return TRUE; 

if ( x < 4 11 x >= NCOLS - 4 ) 
return TRUE; 

return ( ( y >= 10 && y <= 14 11 ( x >= 36 && x <= 44 ) ) ; 
/* 
**Asterisk: 
*/ 
case 8: 

if( abs( x - y) <= 2 II abs( NUNES - ( x + y )) <= 2 ) 
return TRUE; 

if( abs( ( NLINES/2 ) - x ) <= 2 ) 
return TRUE; 

return( abs( ( NLINES/2) - y) <= 1 && x <= NLINES ); 
/* 
** Ellipse: 
*/ 
case 9: 

return 
( 

) ; 

( ( fl oat ) ( ( x-40 ) * 
(( float) (( y-12 ) * 

<= 1 

x-40 )) ) I 1521 + 
y-12 )) ) I 121 

Figure 5-9 (Part 5 of 6). Example of Extended curses Program 

Controlling the Terminal Screen 5-39 



/* Circle: */ 
case 10: 

return 
( 

) ; 

( { fl oat ) ( ( x-28 
(( float) (( y-12 

<= 1 

* ( x-28 )) ) I 729 + 
* ( y-12 )) ) I 121 

} /* end of switch( pattern ) */ 
} /* not reached */ 

puton(ch) 
reg char ch; 
{ 

reg LOCS 
reg LOCS 
LOCS 

*lp; 
*end; 
temp; 

reg int r; 

end= &layout[ numstars ]; 
for ( 1 p = 1 ay out ; 1 p < end ; 1 p ++ ) 
{ 

} 

r = rand() % numstars; 
temp = *lp; 
*lp =layout[ r ]; 
layout[ r] = temp; 

for ( l p = layout; 1 p < end; 1 p++ 
{ 

} 

mvaddch( lp -> y, lp -> x, ch }; 
refresh (); 

} /* end of twinkle */ 

Figure 5-9 (Part 6 of 6). Example of Extended curses Program 

5-40 Programming Tools and Interfaces 



Chapter 6. Writing Messages and Help 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 
Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 

Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 
Building a Message Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 

Copying the Standard Format File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 
Naming the Message Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10 
Adding Message Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10 
Message Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 
Adding Text Insert Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 

Using Messages in A Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13 
Including Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13 
Using Routines to Display Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 

Using Variable Fields in Message Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15 
Example of the Integer Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 
Example of the Long Integer Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18 
Example of the Character String Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18 
Example of Text Insert Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 

Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22 
Help Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22 
File Path Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23 
Changing the File Path Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-23 
Changing the File Path Name for Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 

Building a Help File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25 
Content of the Help Text File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25 

Using Help in a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29 
Including Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29 
Using Routines to Display Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29 

Messages and Help 6-1 



About This Chapter 

The programs that run on RT PC should provide feedback information to the person using 
the program. If an error occurs while the program is running, no matter if the error is 
produced by the program or the operator, provide an indication to the operator that the 
error occurred. Error indications, or any brief information that a program writes to 
standard error or a queue, are called messages. 

In addition, a program may provide information that explains in detail how the program 
operates. This information can include command summaries, operating procedures, 
explanation of ideas or information to make using the program easier to understand. 
Explanatory information that a program provides is called help. 

This chapter explains how to use the operating system services to provide both messages 
and help from a program. It describes the message and help text files, how to make them, 
and how to incorporate them into a program. The chapter also describes the format of 
messages. 

6-2 Programming Tools and Interfaces 



Messages 

A message is information that the program generates to inform the person using the 
program, or /dev/console of conditions in the program. If the conditions require steps to 
recover, the message provides those steps. A program can generate two types of messages: 

Immediate message 
The message appears on the screen associated with the program. The message is 
usually in response to something that the person using the program did. 

Queued message 
The message appears in the message queue file /qmsg and can only be seen by 
listing or editing the message queue file. When a message enters the queue file, 
a beep tone notifies /dev/console. Programs that operate directly with the user 
usually do not produce queued messages. Background processes, such as 
daemons, produce queued messages. Queued messages cannot be longer than 
79 characters, including spaces but not including the message number. 

The operating system provides a set of routines, called message services to help create, 
update and display messages from a program. The routines are in the library file 
/lib/librts.a. The services for generating messages include: 

• A standard message format that matches the format of the operating system messages 

• A file containing a template to use to create messages 

• Two routines that help to generate either immediate or queued messages from a 
program 

• Header files to simplify declarations needed to use message services 

• Variable field symbols in the messages. When message services displays the message, it 
replaces these symbols with values that you specify. 

Messages and Help 6-3 



Message Format 

Each of the two types of messages has a different format. When displayed, queued 
messages are in the following format: 

MM/DD HH:mm y z pgm-nnn 
This is a sample queued message ( 79 characters or less). 
Immediate messages have the following format. 

pgm-nnn This is a sample immediate message: 
a. Short 1 i ne. 
b. This is a long line. Note that 

the message is presented 
as you format it. It is not 
reformatted before being displayed. 

Time = HH:mm. Severity = y. Error Number = z. 
The symbols have the following meaning. See "Using Routines to Display Messages" on 
page 6-14 for a description of the library routines for generating messages. 

Field 

pgm 

nnn 

Description 

A 3-character program identifier that is unique to the program. To ensure 
that these characters do not conflict with numbers already assigned to 
system programs, choose a number that is larger than 500. You can also use 
alphabetic characters for the program identifier. Figure 6-2 on page 6-6 
shows some of the identifiers that the system programs use. To match the 
style of the system messages, choose three digits for the program identifier. 
Message services displays this identifier to help the operator know what 
program generated the message. Message services does not use the 
identifier as an index into the messages. 

A 3-digit sequence number for the message within the set of messages for 
the program identifier specified by pgm. This number allows looking up a 
description of the message in a book. Message services does not use the 
number. 

Figure 6-1 (Part 1 of 2). Message Fields 

6-4 Programming Tools and Interfaces 



Field 

text 

MM/DD 

HH:mm 

y 

z 

Description 

The words that explain the condition associated with the message. If this is 
a queued message, the message cannot be longer than 79 characters. 

The month and day that the message was generated. 

Time (24 hour format) that the message was issued. When a program 
generates an immediate message with the msgimed function and uses the 
msgfltim flag, message services supplies the time. Message services 
automatically provides the time for queued messages. 

Severity code is the severity code specified when using the message services 
routines to write the message. If you do not specify a severity code, this 
field does not appear. 

Error number is the error code specified when using the message services 
routines to write the message. If you do not specify an error code, this field 
does not appear. 

Figure 6-1 (Part 2 of 2). Message Fields 

For example, if the operator makes a mistake when entering the date, the program could 
generate the following message: 

345-007 The system cannot recognize the date that you 
entered. Please enter the date again. 

The optional information (time, severity or error code) does not appear in this message 
because the program did not specify that they be displayed when it called for the message. 
The book for this program should include an entry for error number 345-007 that 
contains information about the correct date format, or other information to help correct 
this problem. 

Messages and Help 6-5 



ID 

000 
001 
002 
003 
005 
006 - 007 
008 
009 - 012 
013 
014 - 016 
017 
018 - 020 
021 
022 
023 
024 - 026 
027 
028 - 031 
032 
033 
040 - 041 
042 
043 
044 
046 
047 
048 
049 - 051 
052 
053 - 060 
061 
062 
063 
064 
065 - 067 
068 
069 
070 - 074 

System Program 

Common 
BASIC Compiler 
BASIC Interpreter 
VRMATOC 
Coprocessor Configuration 
Not Available 
Multiple Work Station Install 
Not Available 
Operating System Install and Maintenance 
Not Available 
Device Driver - AP A8 Display 
Not Available 
Operating System Trace Points 
Coprocessor Trace Points 
Coprocessor Control 
Not Available 
VRM Dump 
Not Available 
VRM Debugger 
Coprocessor Software 
Operating System Configuration 
Data Management Services 
Data Management Utilities 
Not Available 
VRM Install 
VRM Device Driver - Diskette 
Install and Update Services 
Not Available 
VRM Device Driver - Streaming Tape 
Not Available 
Dialog Manager 
Interactive Work Station 
Not Available 
Virtual Terminal Resource/Screen Control 
Not Available 
Device Driver - Keyboard 
Activity Manager 
Not Available 

Figure 6-2 (Part 1 of 2). System Identifiers 

6-6 Programming Tools and Interfaces 



ID 

075 
076 
077 
078 
079 
080 - 081 
082 
083 - 089 
090 
091 
092 - 094 
095 
096 
097 
098 
099 
100 
101 - 102 
103 
104 - 105 
106 
107 
108 
109 
110 
111 - 499 
500 + 

System Program 

Hardware Access Support 
Base LAN Install 
Pascal Compiler 
Not Available 
Device Drivers - ports 
Not Available 
Print I/O Services 
Not Available 
Message Services 
Tools Application 
Not Available 
Operating System 
Dialog Definition Statements 
Files Application 
Not Available 
Device Driver - Sound 
Device Driver - Locator (mouse) 
Not Available 
Operating System 
Not Available 
Data Base Command Line 
Data Base Program Interface 
dumpfmt Command 
Error Log 
Trace 
Not Available 
Available for new programs 

Figure 6-2 (Part 2 of 2). System Identifiers 

Messages and Help 6-7 



Building a Message Table 

The services of the operating system can help to build a table of messages that is separate 
from the source code of the program. To build the table of messages, first get a file 
containing the standard message format from the file system. Then add messages to that 
file, compile the table of messages (using cc), and link the messages with the compiled 
program (object modules) and the messages library /lib/librts.a. This method keeps the 
messages in memory when the program is in memory. Do not use this method for long text, 
such as help (see "Help" on page 6-22). 

Having a separate table of messages makes it easier to change messages, add messages, and 
translate the messages to another language. 

Perform the following steps to build a message table and incorporate it in the program. 
Refer to the following paragraphs for additional explanation for some of the steps: 

1. Copy the example message table file msg07 .h into the current directory: 

cp /usr/include/msg07.h . 
2. Rename the example file to the name of the message source file. Use a .c file 

extension. 

mv msg07.h mymsgs.c 
3. Replace the name of the table, tablename in the example file, with the external name of 

the table. 

4. Use an editor to add the message definitions and text to the message table source file. 

5. Compile the message table and program source files using the cc command. 

cc program-files.c mymsgs. c -o myname 
In this command, program-files.c can be any number of C language source files each 
with a .c extension. The resulting executable program is in the file myname. 

Copying the Standard Format File 

In the directory /usr/include is a file called msg07 .h. This file is an ASCII file that 
contains the framework for building a message table. Figure 6-3 on page 6-9 shows the 
major parts of this file. 

6-8 Programming Tools and Interfaces 



/*******************/ 
#define TABLE_NAME /***/ tablename /***/ 

/*******************/ 

#include <msg08.h> 
/* structure declarations */ 

/* 
** ** MESSAGE DEFINITIONS ** 
*/ 

static msg__msg msg_defs[] { 

0, 11 345 11
' 

11 007 11
' 

11 The system cannot recognize the date that you \n\ 
entered. Pl ease enter the date again. 11

, 

/* message 001 */ 
} 

/* 
** ** TEXT INSERT DEFINITIONS ** 
*/ 

static msg~ins ins_defs[] = { 

11 month 11
, 

llday11' 
11 year 11

, 

} ; 

#include <msg09.h> 

/* insert 001 */ 
/* insert 002 */ 
/* insert 003 */ 

/* pointers table */ 

Figure 6-3. Content of Message Standard Format File 

Messages and Help 6-9 



Naming the Message Table 

The name of the table is the name assigned to it in the first line of the table file. The 
following line defines a table name of 345tabl. 

#define TABLE_NAME 345tabl 
For consistency with system table conventions, use the following guidelines when naming 
the table: 

1. The first three characters should be the program identifier (345 in the example). 

2. The next three characters should be the letters tab to indicate a table. 

3. The last character should be an identifier to set this table apart from other tables in 
the program (1 in the example). 

Adding Message Definitions 

The message definition is the entry in the message table that describes the message. For 
example, in the previous standard format file, the entry: 

n 11~L1.i;11 11nn 7 11 
"""' ..., I-.,,. ' VU I ' 

11 The system cannot recognize the date that you \n\ 
entered. Pl ease enter the date again. 11

, 

is a message definition. The message definition has the following parts. 

0 
The first number should be the index number for the help for the message. In 
the example, the number 0 indicates that help is not available for the message. A 
positive number in this position is the index number for help. A negative 
number in this position is the index number for help contained in the common 
help file. This number can only be used by the dialog manager. 

program identifier 
The second field (345 in the example) is a 3-character field that identifies the 
program. It must not conflict with identifiers already used by the system 
programs. Figure 6-2 on page 6-6 shows the identifiers that the system 
programs use. The identifier is enclosed in quotes. 

message number 
The third field (007 in the example) is a 3-digit field that indicates the number 
of the message within all messages for the program identifier. This number 
helps to find the message in the documentation. Message services does not use 
it. 

6-10 Programming Tools and Interfaces 



message text 

}; 

Queued messages cannot be longer than 79 characters. Immediate messages can 
be any length, but must include \n (new-line) characters as appropriate to keep 
the final output line length, including expanded variable fields (see "Using 
Variable Fields in Message Text" on page 6-15), to no longer than 71 characters. 
Message text is enclosed in quotes. 

A comma that is not enclosed in a set of quotes marks the parts and the end of a 
message definition. 

A right brace followed by a semicolon that is not enclosed in a set of quotes 
indicates the end of all message definitions. 

Message Index 

The message index is the position of the message definition within all message definitions 
in the table. The first definition is number 1; the second definition is number 2. The index 
does not depend on any number in the table file, only on the order of the message 
definitions in the file. Therefore, to delete a message definition, replace it with a null 
definition. If you remove a definition without providing a place-holding null definition (or 
a new definition in that position), the index to all message definitions that occur later in 
the file will change. 

Adding Text Insert Definitions 

The text insert definition is the entry in the message table that describes the fixed text 
strings to insert into messages in place of the symbols @Tl, @T2 or @T3. If one or more 
of these symbols is in the message definition, the program can select any text insert string 
from the message table to replace that symbol. The method for doing that is described in 
"Using Variable Fields in Message Text" on page 6-15. 

Messages and Help 6-11 



The requirements of the text insert definition section of the message table are that it: 

• Follows the message definitions section 

• Begins with the statement: 

static msg~ins ins_defs[] = { 

• Contains a series of text strings that are: 

- Enclosed in quotes 
- Separated by commas 

• Ends with a } ; (right brace and semicolon). 

The example message table in Figure 6-3 on page 6-9 shows an example of the text insert 
definition section. That example contains the following text strings: 
11 month 11 , 
llday11' 
11 year 11 , 
}; 

6-12 Programming Tools and Interfaces 



Using Messages in A Program 

To use the operating system message services to display messages from a message table, the 
program should: 

1. Include the correct header files in the program 

2. Pass needed values to message services by setting system external variables (see 
"Using Variable Fields in Message Text" on page 6-15) 

3. Use the message services routines to generate the messages. 

Including Header Files 

Message services uses the header files shown in Figure 6-4. Include these files in the 
program when using message services. These header files are in the directory 
/usr/include. Display these files (using the pg command) to see the exact content. 

File Name 

msgOO.h 

msgOl.h 

msg02.h 

msg03.h 

msg04.h 

Function 

Contains #include statements for the following main header files to make 
including those files easier: 

• msgOl.h 
• msg02.h 
• msg03.h 
• msg04.h 
• msg05.h 
• msg06.h 
• msg08.h 

Defines the bits of the flags argument to message routines. 

Defines severity codes displayed in messages. 

Defines origin codes that indicate where the error was detected. 

Defines error return codes. 

Figure 6-4 (Part 1 of 2). Header Files 

Messages and Help 6-13 



File Name 

msg05.h 

msg06.h 

msg08.h 

Function 

Defines a structure for the msgrtrv function when a zero value is specified 
for the nbyte argument. 

Defines the external variables that pass values to message services. 

Defines structures to be used when compiling a message table. 

Figure 6-4 (Part 2 of 2). Header Files 

Using Routines to Display Messages 

After including the needed header files and setting any needed values in the message 
services external variables, use one of the following routines to display the message. The 
message can be either immediate or queued. 

Generating an Immediate Message 
The msgimed routine performs the following functions: 

1. Gets message text from the message table 

2. Expands standard symbols in the message text 

3. Outputs the message to either stderr or to a specified file. 

Refer to AIX Operating System Technical Reference for information about the format and 
syntax of this routine. 

Generating a Queued Message 
The msgqued routine performs the following functions: 

1. Gets message text from the message table 

2. Expands standard symbols in the message text 

3. Outputs the message to the queued message file /qmsg. 

Note: Queued messages: 

1. Are ·sent to /qmsg and generate a beep tone at the system console. They are not 
directed at the person using the program 

2. Cannot be longer than 79 characters after the standard symbols are expanded. 

Refer to AIX Operating System Technical Reference for information about the format and 
syntax of this routine. 

6-14 Programming Tools and Interfaces 



Using Variable Fields in Message Text 

A variable field is a standard symbol in the text of the message that is replaced with a 
value when message services displays the message. The value can be either a static 
(unchanging) text string or a new value each time, depending on the type of variable field 
used. The program passes values to message services by setting external variables. Use 
the following standard symbols in message definitions: 

Symbol Definition 

@Il Message services replaces this symbol with the character form of the integer value 
in the external variable msgvil. 

@I2 Message services replaces this symbol with the character form of the integer value 
in the external variable msgvi2. 

@LI Message services replaces this symbol with the character form of the long integer 
value in the external variable msgvll. 

@L2 Message services replaces this symbol with the character form of the long integer 
value in the external variable msgvl2. 

@Cl Message services replaces this symbol with the null-terminated character string 
pointed to by the external variable *msgvcl. 

@C2 Message services replaces this symbol with the null-terminated character string 
pointed to by the external variable *msgvc2. 

@C3 Message services replaces this symbol with the null-terminated character string 
pointed to by the external variable *msgvc3. 

@Tl Message services replaces this symbol with the text insert (from the text insert 
definitions section of the message table) selected by using the external variable 
msgvtl as an index value. 

@T2 Message services replaces this symbol with the text insert (from the text insert 
definitions section of the message table) selected by using the external variable 
msgvt2 as an index value. 

Figure 6-5 (Part 1 of 2). Standard Symbols 

Messages and Help 6-15 



Symbol Definition 

@T3 Message services replaces this symbol with the text insert (from the text insert 
definitions section of the message table) selected by using the external variable 
msgvt3 as an index value. 

Figure 6-5 (Part 2 of 2). Standard Symbols 

Example of the Integer Symbol 

If a message definition contains the message: 

"Your value of @Il is out of range. 11 

To display the value that the operator entered, assign that value to the external variable 
msgvil in the program before calling for the message to be displayed. 

Figure 6-6 on page 6-17 shows an outline of a program to display that message. In this 
program, if index 3 of 345tab 1 contains the message definition of the previous example, 
and the value of val is 14, message services displays the following message: 

Your value of 14 is out of range. 

6-16 Programming Tools and Interfaces 



/* Define integer to hold operator input */ 
integer val; 
/* Define integer for return code */ 
integer i; 
/* Include required files to use message services */ 
#include <msgOO.h> 

{ 
extern msg~table 345tabl; 

/* 
** Code that handles input and determines 
** that the value is out of range. 
*/ 

/* 
**Assign bad value to external variable, and 
** call the routine to display an immediate message 
** to standard error, using message index 3 
** and message table, 345tabl. 
*/ 
msgvil =val; 
i = msgimed(MSGFLTAB,&345tabl,3); 
/* 
** Rest of program 
*/ 
} 

Figure 6-6. Example of Integer Symbol Programming 

Messages and Help 6-17 



Example of the Long Integer Symbol 

Inserting a long integer value into a message is the same as inserting an integer value, 
except it uses the external variable msgvll to assign a value to the symbol @Ll, and the 
variable assigned to the msgvll must be of type long. With those exceptions, use the 
example for integer values as a framework to use a long integer value. 

Example of the Character String Symbol 

If the message definition contains the message: 
11 The day that you entered, @Cl, is not\n 
a correct day of the week. Please try again. 11 

To display the string that the operator entered, assign a pointer to that string to the 
external variable msgvcl in the program. Then call for the message to be displayed. The 
string must end with a \ 0 (null character). 

Figure 6-7 on page 6-19 shows the outline of a program to display that message. In this 
program if index 4 of 345tabl contains the message definition of the previous example and 
the string entered is munday, message services displays the following message: 

The day that you entered, munday, is not 
a correct day of the week. Please try again. 

6-18 Programming Tools and Interfaces 



/* Define pointer to operator input. */ 
char *inp; 
/* define integer for return code. */ 
integer i; 
/* Include required files to use message services. */ 
#include <msgOO.h> 

{ 
extern msg~table 345tabl; 

/* 
** Code that handles input and determines 
** that the string entered is not correct. 
**Code sets inp to point to the null 
** terminated string received from the user. 
*/ 

/* 
**Assign pointer inp to external variable, and 
** call the routine to display an immediate message 
** to standard error, using message index 4 
** and message table, 345tabl. 
*/ 
msgvcl = inp; 

= msgimed(MSGFLTAB,&345tabl,4); 

/* 
rest of program 

*/ 
} 

Figure 6-7. Example of Character String Symbol Programming 

Messages and Help 6-19 



Example of Text Insert Symbol 

If the message definition contains the message: 

"The @Tl that you entered is not\n 
a correct @Tl. Pl ease try again. 11 

Use this message to indicate .errors in many areas of the program. First create a text 
insert definition section in the message table. See "Adding Text Insert Definitions" on 
page 6-11 for the format of a text insert definition section. If the text insert definition 
section contains the following few entries at the beginning of the table: 
11 day 11 /* index 1 */ 
11 week 11 /* index 2 */ 
11 month 11 /* index 3 */ 
11 year 11 /* index 4 */ 

you can insert any of the strings day, week, month or year in place of the symbol @Tl in 
the message by setting the external variable msgvtl to the index value (1, 2, 3 or 4) that 
selects the string to insert. When displaying the message, message services looks up the 
text string in the message table and inserts it in place of the symbol @Tl. 

Figure 6-8 on page 6-21 shows the outline of a program that displays this message. In this 
example, if index 3 of 345tab 1 contains the message definition of the previous example 
and the value of i _text is 3, message services displays the following message: 

The month that you entered is not 
a correct month. Please try again. 

6-20 Programming Tools and Interfaces 



/* Define integer for return code. */ 
integer i; 
/* Define integer to select insert text. */ 
integer i_text; 
/* Include required files to use message services. */ 
#include <msgOO.h> 

{ 
extern msg~table 345tabl; 

/* 
** Code that handles input and determines 
** that a field entered is not correct. 
** Code sets i_text to the index value to 
** select the name of the field in error. 
*/ 

/* 
**Assign i_text to external variable, and 
** call the routine to display an immediate message 
** to standard error, using message index 3 
** and message table, 345tabl. 
*/ 
msgvtl = i_text; 

= msgimed(MSGFLTAB,&345tabl,3); 

/* 
rest of program 

*/ 
} 

Figure 6-8. Example of Text Insert Symbol Programming 

Messages and Help 6-21 



Help 

Help is text that explains difficult concepts, quick procedure steps, or other information to 
make it easier to use the program. You determine when to display the help from the 
program, and what information to include in the help. Message services provides a way to 
incorporate help into the program while lowering memory usage. 

You can use help in the program with all of the variable symbols used with messages, 
including text inserts. Define text inserts in the same file that defines the help text. 

Because help usually contains a lot of text, help is not compiled into the program like 
messages are. Instead, help is in a specially formatted help file that is not kept in 
memory unless it is being used. Overlaying the help file in this manner helps lower 
memory requirements for the program. 

Note: The method for storing and displaying help described in this part of the book can 
also be used for messages that are not kept in memory with the program. You can put 
both help definitions and message definitions in the same file. 

Message services provides a routine to help display help from the program. The 
routine is in the library file /lib/librts.a. When using message services, link this library 
file with the program. In addition, two programs gettext and puttext help to change or 
create information in the help files. The services include: 

• A routine that displays help from the program 

• Header files to simplify declarations needed to use message services 

• Variable field symbols in the help that message services replaces with values that you 
specify when it displays the help. 

Help Format 

Choose any format for the help text that fits the program. You can use the format 
described for messages (see "Message Format" on page 6-4), you can change that format, or 
you can define a different format. However, follow the format defined for the help file. 

6-22 Programming Tools and Interfaces 



File Path Name 

If you do not change the default path, the file that contains the help text must have the 
path name of: 

/usr /1 i b/msg/program_EN .m 
where the file name parts are: 

program 
A program identifier that is unique. 

_EN.m 
The ending sequence that message services requires of all help (and message) 
files that are not linked with the program. 

Changing the File Path Name 

You can specify an alternative directory to contain the help and message file for the 
program. Use the rules for naming the help file as described in "File Path Name." To 
specify the alternative directory, assign a pointer to the new path name prefix to the 
external variable msgpath in your program. For example: 

msgpath = 11 /u/myprog/"; 
This statement tells message services to look in directory /u/myprog for the new help file. 
Message services looks in the default directory only if it cannot find the file in the 
directory you specify with the msgpath variable. If msgpath contains a null value, 
message services looks only in the default directory. To specify the current directory as 
the directory that contains the help file, set the msgpath variable to a pointer to a null 
string. 

The msgpath variable is declared in msg06.h. 

Messages and Help 6-23 



Changing the File Path Name for Debugging 

You can also specify an alternative path name to use for the help file when testing help 
definitions. An alternative path name allows you to test new or changed help definitions 
without affecting the existing help file that is installed on the system. You can also use 
the alternative path name to test a new help file before installing it on the system. Use the 
rules for naming the help file as described in "File Path Name" on page 6-23. 

To specify the alternative directory, assign the new path name prefix to the environment 
variable MSGPATH from the command line. For example: 

MSGPATH=/u/mytest/ 
assigns the path name prefix /u/mytest/ to the MSGPATH variable. Then, export the 
variable with the export command on the command line: 

export MSGPATH 
This operaton tells message services to look in directory /u/mytest for the help file. 
Message services looks in the default directory only if it cannot find the file in the 
directory specified with the MSGPATH variable. 

6-24 Programming Tools and Interfaces 



Building a Help File 

Message services can help to build a file of help text that is separate from the source code 
of the program. To build the help file, first get a file containing the standard help format 
from the file system. Then add help definitions to that file, and, using a program from 
message services, format that file for use as a help file. This method puts the help text in a 
file that message services can read. 

Having a separate help file makes it easier to change the help text, add help text, and 
translate the text to another language. 

Perform the following steps to build a help file and format it for use by message services. 
Descriptions of the commands gettext and puttext are in AIX Operating System 
Commands Reference. Refer to the following paragraphs for additional explanation for 
some of the steps. 

1. Use the gettext command to create a file containing the input format for a help file. 
This file contains formats to fill in for including messages and text inserts, as well as 
help text, in the help file. For example: 

gettext myhelps 
creates a file my helps that contains the framework for a help file. 

2. Add help text to the proper places in the file. 

3. Use the puttext command to format the help file. For example: 

puttext myhelps myprog_EN.m 
uses the help text in the file my helps to create the help file myp rog_EN. m. See "File 
Path Name" on page 6-23 for information about naming the help file. 

Content of the Help Text File 

When the gettext command gets a help file format to fill in, the file that the command 
creates contains entries like those in Figure 6-9 on page 6-26. 

Messages and Help 6-25 



COMPONENT ID = prgxxx 

**(((Start message)))*********************************** 
INDEX#: 
COMPSRC: 
MSGSRC: 
DCOMPID: 
DMSGID: 
STATUS: 
HELP#: 
TEXT: 

**(((Start insert)))************************************ 
INDEX#: 
COMPSRC: 
MSGSRC: 
DCOMPID: 
DMSGID: 
STATUS: 
TEXT: 

**(((Start help)))************************************** 
INDEX#: 
COMPSRC: 
MSGSRC: 
DCOMPID: 
DMSGID: 
STATUS: 
TITLE: 
TEXT: 

Figure 6-9. Content of Help Text Format File 

6-26 Programming Tools and Interfaces 



The fields shown in the figure have the following meaning: 

COMPONENT ID = prgxxx 
Replace prgxxx with a 6-character identifier to indicate which program uses 
this help file. Do not use the characters: * ? [ ] and blank. 

**( ((Start type name)))******************** 

INDEX#: 

This line is a delimiter that starts each new message and must be in the format 
indicated. Replace typename with either message, insert or help, as 
appropriate. 

A 3-digit field that indicates the number of the message within each type 
(message, insert or help). Numbers start with 001 at the beginning of the 
definitions for each type. Message services uses this index number to locate the 
text to be displayed. 

COMPS RC: 
Component source - Defines where the text definition for this message is located. 
Enter ====== for in this file. 

MSGSRC: 
Message source - A 3-digit field that defines the index number to use to display 
text for this message. Enter either.=== to indicate the current INDEX#, or 
a number to get text from a different message in this file. 

DCOMPID: 

DMSGID: 

STATUS: 

Component ID - A 3-character field that identifies the program. It must not 
conflict with identifiers already used by the system programs. 

Message ID - A 3-digit field that indicates the number of the message within all 
messages for the program identifier. This number helps to find the message in 
the documentation. Message services does not use it. 

Status of the message - Enter n U 11 to indicate the message is not used. Enter 
current to indicate the message is an active message. 

Messages and Help 6-27 



HELP#: 

TITLE: 

TEXT: 

A 3-digit index number to locate the help text for a message. This field is not 
required. Access this field using the msgrtrv call. 

A character field of up to 79 characters that can provide a title for help text 
displayed on the screen. You can access this field only with the msgrtrv call, 
not with the msghelp call. 

Enter the text for the message, insert or help, formatted as it appears on the 
screen. 

Help text, like immediate messages, can be as long as _needed to cover the information. Do 
not include any message ID for help text unless it refers to the book supplied with the 
program. You can also use variable fields in the help text. Refer to "Using Variable 
Fields in Message Text" on page 6-15 for information about using variable fields. 

6-28 Programming Tools and Interfaces 



Using Help in a Program 

To use the operating system message services to display help from the help file, the 
program must: 

1. Include the correct header files in the program 

2. Pass needed values to the message services by setting system external variables (see 
"Using Variable Fields in Message Text" on page 6-15) 

3. Use the message services routines to display the help text. 

Including Header Files 

The operating system message services uses header files. Include these files in the 
program when using message services. These header files are described in "Including 
Header Files" on page 6-13. 

Using Routines to Display Help 

After including the needed header files and setting any needed values in the message 
services external variables, use the following routines to generate the help. 

Displaying a Help 
The msghelp routine performs the following functions: 

1. Gets help text from the help file 

2. Expands standard symbols in the help text 

3. Outputs the help to either stderr or to a specified file. 

Refer to AIX Operating System Technical Reference for information about the format and 
syntax of this routine. 

Messages and Help 6-29 



Putting Help in a Buffer 
The msgrtrv routine performs the following functions: 

1. Gets help text from the help file 

2. Expands standard symbols in the help text 

3. Outputs the help to a specified buffer. 

Refer to AIX Operating System Technical Reference for information about the format and 
syntax of this routine. 

6-30 Programming Tools and Interfaces 



Chapter 7. Monitoring Program Activities 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 
Using the Trace Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 

Altering the Trace Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 
Using the Trace Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8 
Using the Trace Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 
Creating Trace Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15 

Using the Error Log Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 
Altering the Error Log Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25 
Using the Error Log Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26 
Using the Error Log Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-28 
Creating Error Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-34 

Using the Dump Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-41 
Using the Dump Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-44 
Example of the Dump Formatter Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-44 

Monitoring Programs 7-1 



About This Chapter 

This chapter contains a short overview of the three categories of monitoring software plus 
one longer section for each group. 

The first section describes the trace facilities. The trace facilities allow you to log and 
format trace data. This includes a functional definition of the trace components and 
information on using the trace commands and subroutines. 

The second section describes the error log facilities. These are similar to the trace 
facilities except that you log error data rather than trace data. 

The third section describes the dump facilities. These are used to analyze data stored that 
was stored in memory at the time of a system failure. 

This chapter does not contain complete usage information for the commands and 
subroutines used with these facilities. For more detailed information, see: 

• EIX Operating System Technical Reference: 

errsave 
errunix 
trace_on 
trcunix 
trsave 

• EIX Operating System Commands Reference: 

dumpfmt 
errdead 
errdemon 
errpt 
errstop 
errupdate 
trace 
trcrpt 
trcstop 
trcupdate. 

• Virtual Resource 1vlanager Technical Reference: 

_dmptbl 
_errvrm 
_trcvrm. 

7-2 Programming Tools and Interfaces 



Overview 

The system provides several software components that enable you to monitor program 
activities. These components can be grouped into three basic categories: 

• Trace 

You use the trace facilities to monitor system performance or to aid in debugging 
programs. The system programs have several event classes, each of which can be 
turned on or off depending on your needs. For each event class, several trace points 
have been defined in various system software components. When a component 
containing a trace point is processed, the trace point generates a trace entry. You can 
also generate trace entries from your own programs using the three subroutines 
provided with the system. These subroutines allow you to generate trace entries from 
applications, AIX Operating System kernel components, or VRM components. 

All trace entries are stored in a trace log file. The trace log can be formatted into a 
readable trace report and sent to the display screen, a printer, or another file. 

• Error Logging 

Error logging is automatically enabled when you initialize the system. It can be 
disabled if necessary, but it usually runs as a background process, collecting error 
entries generated by software components. The error entries are stored in an error log 
that can be formatted into a readable error report. As with the trace facilities, you can 
use special subroutines to generate error entries from your own programs. 

• Dump 

The system supports a VRM dump function and an AIX Operating System command 
called dump. This chapter is concerned with the VRM dump function only. 

You use VRM dump to collect data stored in memory at the time of a system failure. 
The dump data is written to a blank, formatted diskette. The dump program collects a 
pre-defined set of VRM data plus any additional data structures that you identify 
through the use of a VRM subroutine. The amount of dump data is limited to the 
capacity of a formatted high-capacity diskette. 

Once the dump data is placed on a diskette, it can be formatted and analyzed. Because 
the data is obtained from VRM components, you will probably not be able to interpret 
the output. This data is mainly used by IBM to determine the cause of a system 
failure. 

Monitoring Programs 7-3 



Using the Trace Facilities 

The trace facilities are used to monitor changes to variable data within software 
components. Tracing can be used as a debugging aid and to check the performance of 
various sections of code. Some of the basic trace terms are defined below: 

trace entry 

trace point 

event class 

hook ID 

A data structure containing a header of identifying information plus up to 
20 bytes of defined data. Trace entries are generated by trace points and 
written to a trace log file that can be formatted by the trace formatter. 

A group of code statements that generates a trace entry from within a 
software component. Trace points are assigned to an event class which 
can be active or inactive. Trace points with active event classes are able 
to generate trace entries. 

A number assigned to a group of trace points that relate to a specific 
subject or system component. The defined event classes are listed in the 
trace profile, /etc/trcprofile. 

A unique number assigned to a specific trace point. All trace entries 
include the hook ID of the originating trace point in the trace entry 
header. Pre-defined trace points use assigned hook IDs ranging from 0 to 
299. User-defined trace points can choose hook IDs ranging from 300 to 
399. 

How you use the trace facilities depends on what you want to accomplish: 

• To choose the event classes that you want to trace, you should learn how to alter the 
default trace profile, /etc/trcprofile, and how to create your own trace profile. 

• To start a trace session, you should use the trace command. 

• To end a trace session, you should use the trcstop command. 

• To format a trace log file, you should learn how to use the trcrpt command. 

• To change the name or size of the default trace log file, you should learn how to alter 
the /etc/rasconf file. 

• To create trace points that generate trace entries, you should learn how to use the 
trace subroutines: trcunix, trsave, and -trcvrm. 

• If you create your own trace entries, you should learn how to create a trace template 
for each type of trace entry. You also need to learn how to use the trcupdate 
command to add trace templates to the template file, /etc/trcfmt. 

7-4 Programming Tools and Interfaces 



/etc/rasconf /usr/adm/ras/trcfile Trace Formatter 

Trace Daemon 

~l/_e_t_cl_t_rc_p_r_o_fi_le~~~~.__~~~~~~--' /usr/adm/ras/. trcevents I standard output 

User Application /usr /trcfmt 

Trace Device Drivers 

and 

Kernel Component 
Interrupt Handler 

Trace Buffers 

VRM Component 

Figure 7-1. Trace Components 

Figure 7-1 shows how data is passed between the various files and components that 
constitute the trace facilities. The lines labeled AP I, which stands for Application 
Program Interface, and VM I, which stands for Virtual Machine Interface, show the logical 
distinction between application programs, kernel components, and the VRM. The lines 
connecting the files and components show where data comes from and where it goes. 

The components and files in Figure 7-1 are described on the next page. They are explained 
in more detail elsewhere in this chapter in the appropriate sections. 

Monitoring Programs 7-5 



The following descriptions start at the point where the trace entries are first generated and 
end where the trace entries are formatted and sent to standard output. 

• Applications, kernel components, and VR!\1 components generate trace entries using 
trace points placed at strategic places in the execution path. The system programs 
contain several pre-defined trace points relating to various event classes. 

• The trace device drivers collect the trace entries in trace buffers. There is one trace 
buffer for each of the three trace subroutines. 

• The /etc/rasconf file contains configuration data. For the trace daemon, it defi~es the 
name and size of the trace log file to be opened to receive trace entries. For the trace 
formatter, it defines the default trace log file if none is specified when it is invoked. 

• The default trace profile is /etc/trcprofile. This file contains a list of the defined 
event classes. An event class is either active or inactive. If an event class is active, 
the trace points related to that event class will generate trace entries. You can use the 
default trace profile, or create your own trace profile. 

• The trace daemon is an important part of the trace facilities. When it is initialized, it 
performs three major tasks: 

It reads the trace profile to determine which event classes should be active. 

It opens the file specified in the trace stanza in /etc/rasconf as the trace log file. 

It begins reading the trace buffers as they become full and writes them out to the 
trace log file. 

• The default trace log file is /usr/adm/ras/trcfile. This file stores all of the trace 
entries generated by software programs. If the trace log file becomes full, the newest 
trace entry overwrites the oldest trace entry. 

• The /usr/adm/ras/.trcevents file contains lists of event classes and the hook IDs 
associated with those event classes. The hook ID is a specific number associated with 
a particular trace point. The trace formatter uses information in this file to count the 
trace entries that occur for each event class. You do not edit this file directly. It is 
automatically updated when you use the trcupdate command. 

• The trace format file, /etc/trcfmt, contains trace templates that determine how each 
trace entry appears when it is formatted. The pre-defined trace entries also have 
pre-defined templates. If you generate trace entries from your own programs, you need 
to define trace templates for those entries. 

• The trace formatter formats the trace entries in a trace log file into a readable format. 
If a trace log file is not specified when the trace formatter is invoked, it uses the file 
specified in /etc/rasconf. The formatted trace entries are sent to standard output and 
can therefore be sent to the display screen, a file, or a printer. 

7-6 Programming Tools and Interfaces 



Altering the Trace Configuration Files 

There are two basic files that you can alter to change the operation of the trace facilities. 
The first is the trace profile, which is used by the trace daemon to set up three bit masks 
that show which event classes are active. The trace daemon reads the trace profile when it 
is initialized. A trace profile contains a single line entry for each defined event class. 
Each line entry begins with a* (asterisk). Only those event classes that have had the* 
removed will be able to generate trace entries during a trace session. 

You edit a trace profile using a standard text editor. You can create several trace profiles, 
each designed for different tracing needs. When you run trace, you can specify which 
trace profile it should use. If you do not specify a trace profile, it uses the default trace 
profile, /etc/trcprofile. To create your own trace profile, copy the default trace profile 
into your current directory and edit the new copy. 

If you have defined trace points in your own programs, you need to have the trace daemon 
activate the User-defined Events event class. It appears in the trace profile as: 

* 150 User-defined Events 
To have the trace daemon activate this event class, remove the* from the beginning of 
that line in the trace profile. It should now appear as: 

150 User-defined Events 
If you do not enable this event class, your trace points will not be able to generate trace 
entries in the trace log file. 

The other file that you can alter is the /etc/rasconf file. This is a configuration file that 
is read by the trace daemon and the trace formatter. It contains various types of 
information, but the information you are interested in is the stanza that defines the name 
and maximum block size of the default trace log file. It appears in /etc/rasconf as: 

/dev/trace: 
file = /usr/adm/ras/trcfile 
size = 80 

Other users may change the contents of this file. You may want to change the trace log 
file name if the current trace log is full, or if you want to keep different logs for different 
trace sessions. 

Each time trace is invoked, the trace daemon checks /etc/rasconf to see which file it 
should open to receive trace entries. All trace entries generated during the trace session 
are directed to that file. When you use the trace formatter, it uses the file name in 
/etc/rasconf as the default trace log file if a trace log file is not specified. If you have 
several trace log files, you can format up to 10 at a time by invoking the trace formatter 
with a list of file names. 

Monitoring Programs 7-7 



Using the Trace Commands 

There are four commands associated with the trace facilities. 
task: 

trace 

trcstop 

trcrpt 

trcupdate 

Starts a trace session. This command accepts a trace profile as an input 
file name parameter. Once a trace session is initiated, all trace points with 
active event classes will generate trace entries if their particular 
component is run. 

If you do not specify a trace profile, the default trace profile, 
/etc/trcprofile, is used. The following example invokes trace with a 
user-defined trace profile. Note that an & (ampersand) is required at the 
end of the command line. This causes trace to run as a background 
process: 

trace /u/myfile/myprof & 
Stops a trace session. Any trace entries remaining in the trace buffers are 
written out to the trace log file. Any open files are closed and the trace 
daemon is terminated. This command does not require any input 
parameters. 

Formats trace entries contained in trace log files. This command accepts 1 
to 10 trace log file names as input parameters. lf you do not specify a trace 
log file, it uses the default trace log file specified in /etc/rasconf. The 
formatted trace entries are sent to standard output. 

The following example formats two trace log files named tracel and 
trace2 and sends the output to the printer: 

trcrpt tracel trace2 I print 
Because all trace entries are time-stamped, the trace formatter can also 
format a subset of a trace log file consisting of trace entries that fall 
within a certain time interval. You specify a starting time and end time 
using the -s and -e flags. The time is specified as MMddhhmmyy (month, 
day, hour, minute, year). 

The following example formats the default trace log entries ranging from 
January 3, 1985 at 11 a.m. to 11:06 a.m. of the same day: 

trcrpt -s0103110085 -e0103110685 
Adds, updates, or deletes trace templates in the /etc/trcfmt file. Also 
updates the /etc/.trcevents file. Before using this command to add or 
update trace templates, you need to create an input file with the extension 
. t re. This file will contain two types of entries: 

7-8 Programming Tools and Interfaces 



• Template definitions. These contain a + (plus sign) in the first column 
to specify that the template is to be merged into the master template 
file. A single template definition may require several lines. The + is 
only required on the first line of each template. 

• Template deletions. These contain a - (minus sign) in the first column, 
one blank, and the hook ID of the template you want to delete. 

Note: Do not delete the pre-defined trace templates (hook IDs 0 to 
299). These are required to format the pre-defined trace points 
imbedded in the system programs. 

The following example shows a file that will add trace template 330 to the 
master template file and delete templates 320 and 321. Note that the first 
line in the file must be entered as shown. It is used by the trcupdate 
command to verify that this file contains template information. 

* /etc/trcfmt 
+ 330 1.0 InitPtr Printer PtrNode AB: \n: \t: \ 

PtrType 04: PtrActv BO.l, 1 Yes, 0 No: 
- 320 
- 321 
To update a trace template, you need to create a new template with the 
same hook JD but with a version and release number (VV.RR field) greater 
than the version and release number of the trace template that you want to 
update. When trcupdate merges the . t re file into the master template 
file, it will replace the old template with the updated one. 

The trace formatter writes the total number of trace entries attributed to 
each event class at the end of a trace report. If you want trace entries 
generated by new trace points to be counted under the User-defined 
Events event class, you must also create a file with an extension of . evt. 

The . evt file contains entries that specify an event class number and any 
new hook IDs that you want to associate with that event class. It is 
merged into the /etc/.trcevents file when you use the trcupdate 
command. For user-defined trace entries, the event number is always 150. 
Thus, to add hook ID 330 to the User-defined Events event class, you 
would create a file as shown below. Note that the first line in the file must 
be entered as shown: 

* /ras/.trcevents 
150 330 
Once you create a file containing new or updated template definitions 
and/or template deletions, you can use trcupdate to process it. In the 
following example, the template definitions and deletions are contained in 

Monitoring Programs 7-9 



a file called newtemps.trc. The event class and hook ID lists are 
contained in a file called newtemps.evt: 

trcupdate newtemps 

Using the Trace Subroutines 

Before using the trace subroutines, you need to understand how the trace daemon uses the 
trace profile and how event classes are represented as active or inactive in the system. 

After the trace daemon reads the trace profile, it sets up three tables in memory. Each 
table consists of a one-word array of flag bits. Each bit -is called a channel and is named 
after the bit position it occupies. The most significant bit is called channel 0 and the least 
significant bit is called channel 31. Each event class "is represented by one or more of 
these channels. When the trace daemon reads the trace profile and sees that an event 
class should be active, it sets the appropriate channels in each channel table. 

When the trace daemon has read the entire trace profile, it sends one channel table to each 
of the three trace device drivers. When one of these drivers is called by a trace subroutine, 
the device driver compares the channel number, which is a required part of the trace entry, 
against its own channel table. If the channel is active, it puts the trace entry in a trace 
buffer. If not, it does nothing; however, in each case it returns a successful return code 
unless there is a problem in the calling procedure. 

With 32 bits available for each channel table, it is possible to have 96 different event 
classes. However, an event class may use the same channel in more than one table. Thus, 
the actual number of event classes is less than 96. The User-Defined Events event class 
uses channel 31 in each of the three channel tables. This allows you to create user-defined 
trace entries using any of the three trace subroutines. User applications can use the 
trace-on subroutine to see if a specific channel is enabled. 

Note: If you look at the trace profile, you will see a number placed before each event 
class. This number identifies a specific event class; however, it is not a channel number. 
Channel numbers can only be in the range from 0 to 31. 

When you use a trace subroutine, one of the input parameters contains a channel number 
and hook ID to identify which event class that trace entry belongs to and which trace 
point generated the call. This is called the trace ID. Bits 0 through 4 of the trace ID 
contain the binary representation of the channel number. Bits 5 through 15 contain the 
binary representation of the hook ID. Thus, for user trace entries, bits 0 through 4 should 
always be set to 1 (channel 31) and the hook ID should be a number ranging from 300 to 
399. 

7-10 Programming Tools and Interfaces 



The parameters used by the three trace subroutines are briefly explained below: 

trcunix 

trsave 

-trcvrm 

Generates a trace entry from an AIX Operating System application and 
requires two input parameters. The first is the address of a buffer 
containing the 2-byte trace ID and up to 20 bytes of trace data. The second 
is the length of the buff er. 

Generates a trace entry from an AIX Operating System kernel component 
and requires 3 input parameters. The first is a 2-byte trace ID. The second 
is the length of the data buffer. The third is the address of the data buffer. 

Generates a trace entry from a VRM component and requires 3 input 
parameters. The first is a 2-byte trace ID. The second is a buffer of trace 
data and the third is the length of the data buffer. 

When you create your own trace points, remember that each trace point should use a 
unique hook ID in the range from 300 to 399. You must also create trace templates for 
your trace points. Here are some general guidelines: 

• Put a trace point at the beginning or end of an important function. The trace data 
should show the values of any important data structures or I/O paramettrs. 

• If a function takes a significant amount of processing time, you may want to put a 
trace point at its entry and exit points. This will allow you to trace how long it takes 
to process different types of input parameters. 

• Put a trace point at a critical junction in the logic flow of a component. 

• Do not put a trace point inside a loop that is repeated many times if you can catch the 
important data before the loop begins. 

• Try to limit the trace entry data to four variables or less. 

The trace device drivers have access to the channel tables, so they know whether or not to 
put a trace entry in the trace buffers. However, you may want to explicitly check to see if 
your channel is active before you call a trace subroutine so you can design the trace point 
to skip around data collection code if the channel is not on. For kernel components, the 
usual procedure is to perform the subroutine call without checking for an active channel 
because kernel trace points do not contain much data. 

A sample trace point for application level components is shown in Figure 7-2 on page 7-12. 
Notice how it uses the trace-on subroutine to see if the User-Defined Events channel 
(31) is on before calling the trcunix subroutine. Also, notice how the trace ID is created. 
First, you shift the variable containing the channel number left 11 bits so that it is in bits 
0 through 4. Then you perform an OR operation on that variable with the variable 
containing the hook ID. The result is a trace ID containing the channel number in bits 1 
through 4 and the hook ID in bits 5 through 15. 

Monitoring Programs 7-11 



#include <sys/trace.h> 
#include <trcdefs.h> 
#include <stdio.h> 

main(argc, argv) 
int argc; 
char **argv; 

{ 
extern int trace_on(); 
extern int trcunix(); 
int chan_no = 31; 
long channel = Oxl; 
long hookid = 300; 
int tracing; 
int re = O; 
struct 

/*Set bit 31 (user-defined channel) to 1 */ 
/* Define the hook ID for this trace point */ 

{ unsigned short traceid; 
char data [20]; 

} trcstruct; 

/* See if channel 31 is active. */ 

if ( (tracing= trace_on(channel) ) < 0) 
{ 

} 

fprintf(stderr, 11 trace_on failed\n 11
); 

return(-1); 

Figure 7-2 (Part 1 of 2). Example Program Fragment Showing Use of trcunix 
Subroutine. 

7-12 Programming Tools and Interfaces 



/* Imbed this trace point anywhere in your program code. */ 

if (tracing) 
{ 

trcstruct.traceid = ((chan_no«ll) I hookid); 
sprintf(trcstruct.data, 11 This is trace data. 11

); 

if (trcunix(&trcstruct, sizeof(trcstruct)) < O) 
{ 

} 

fprintf(stderr, 11 trcunix failed\n 11
); 

re = -1; 

} 
exit(rc); 

} /* end main */ 

Figure 7-2 (Part 2 of 2). Example Program Fragment Showing Use of trcunix 
Subroutine. 

Figure 7-3 on page 7-14 creates a trace entry from within an AIX Operating System kernel 
component. Notice how it uses a defined constant (TR-USER) to set the channel number 
in the trace ID parameter. TR-USER contains channel number 31 in bits 0 through 4. 
This is only available for kernel components using the trsave routine. 

Monitoring Programs 7-13 



#include <sys/trace.h> 
#define TRACEDATA 1 

function() 
{ 

long hookid = 310; 
int t_data; 

/*The following trace point can appear anywhere in your function. */ 

t_data = TRACEDATA; 
trsave((TR_USER I hookid), sizeof(int), &t_data); 

} /* end function */ 

Figure 7-3. Example Program Fragment Showing Use of trsave Subroutine. 

7-14 Programming Tools and Interfaces 



Creating Trace Templates 

The trace formatter uses trace templates to determine how the data contained in trace 
entries should be formatted. All trace templates are stored in the master template file, 
/etc/trcfmt. After you create some new or updated trace templates, place them in a file 
that can then be merged into the master template file using the trcupdate command. The 
trcupdate command requires that trace templates identify themselves by placing a + and 
a blank in the first two columns of the first line of the trace template. 

Trace templates contain four required fields and zero or more data description fields. The 
required fields identify the template hook ID, the version and release number, the hook ID 
label, and the event class label. The data description fields contain formatting information 
for the trace entry data and can be repeated as many times as is necessary to format all of 
the trace data in the trace entry. 

Trace entries are formatted and written to standard output one entry at a time. For each 
entry, the trace formatter performs the following operations: 

L Locates the trace template corresponding to the hook ID in the trace entry. 

2. Writes the time the entry was generated. It also writes a sequence number that shows 
when the entry was generated as an interval within a second. This sequence number 
allows the formatter to sort trace entries that are generated during the same second. 
They can then be formatted and written in the order in which they occurred. These 
fields are placed in the trace entry header by the trace subroutine. 

3. Writes the PID, IODN, and IOCN contained in the trace entry header. These fields are 
placed in the trace entry header by the trace subroutine. 

4. Writes the hook ID and event class. You can use the actual numbers that equate to 
the hook ID and event class, or you can create a name up to eight characters for each 
field. The trace formatter will write whatever is placed in the field. 

5. Writes up to 20 bytes of data according to the data-descriptors in the trace template, if 
any are present. Any data that occurs after the last data-descriptor in the template is 
ignored. A data-descriptor does the following: 

a. Writes the data label (d-label), if it is specified. 
b. Writes the actual data according to the format field and the optional match fields. 

You can define match fields that will replace data values with descriptive labels or 
change to a different data-descriptor depending on the current data value. 

Figure 7-4 on page 7-16 shows the syntax used to define a trace template. Figure 7-5 on 
page 7-17 defines each of the fields in a trace template. 

Trace template lines can be as long as you need. You can continue a trace template on 
another line by adding the \ (backslash) character to the end of the line where the split 
occurs. Note that \ is not a substitute for a required blank. A blank is also required after 
a colon or comma. 

Monitoring Programs 7-15 



hook_idlVV .RR I hook_labe/ levent_labe/_( ;----) /n - : ---~ 
----- /t - :-----IT' 

data_descriptor = 

r--\. If or mat 
\_ ld_!abe/J 

lmatch_/abe/ · 

, I match_value { I { data_descriptor} 

I{ data_descriptor }--------~ 

I - indicates a blank 

Figure 7-4. Trace Template Syntax 

7-16 Programming Tools and Interfaces 



Field 

hook-id 
VV.RR 
hook-label 
event-label 
\n 
\t 
d-label 
format 

match-value 

match-label 

data-descriptor 

Description 

The 3-digit hook ID of the trace entries that use this template. 
A number representing the version and release level of this template. 
A label field of up to 8 characters that describes the hook ID. 
A label field of up to 8 characters that describes the event class. 
A special string used to start output data on a new line. 
A special string used to start output data aft

1
er one tab unit. 

A label field of up to 8 characters that describes the trace entry data. 
An alphanumeric code that defines the format of the trace data. 

Code Format of Data 

Am 
Bm 
Bm.n 

D2 
D4 
F4 
FS 
Om 
Om.n 

ASCII string of m characters. 
Binary string of m bytes. 
Binary string of m bytes and n bits. If this format leaves some 
unformatted bits in the current byte, they are not written 
unless this format is followed by another format that specifies 
bits. 
Decimal short integer. 
Decimal long integer. 
Floating-point number of type float, rounded to four places. 
Floating-point number of type double, rounded to four places. 
Omit (do not write) the next m bytes. 
Omit (do not write) the next m bytes and n bits. If this format 
leaves some unformatted bits in the current byte, they are not 
written unless this format is followed by another format that 
specifies bits. 

U2 Unsigned decimal short integer. 
U4 Unsigned decimal long integer. 
Xm Hexadecimal number of m bytes. 
A value with a data type the same as the format field. If you specify a 
match-value, you must also specify a match-label or data-descriptor. 
A character field up to 120 characters that replaces output data that 
matches a match-value field. 
A field containing formatting information for a portion of the output 
data. 

Figure 7-5. Fields in a Trace Template 

Monitoring Programs 7-17 



Replacing Values in the Output Data 
The match-value field provides a function that is similar to a switch statement in 
programming. You can use this function to do either or both of the following: 

• Replace an output data value with a character string that describes the data. For 
example, you can replace a numeric error code with a description of that error. The 
replacement character string is called a match-label. 

• Change the data descriptor used to format the output data. For example, you can 
design trace points that will record different data at different times, depending on the 
state of your machine or program. You can then define a set of match-values with a 
different data-descriptor for each type of data. 

You can specify any number of match-value fields for a particular output data value as 
long as each field is accompanied by a match-label and/or a data-descriptor field. If the 
output data value matches match-value, the trace formatter uses the match-label and/or 
data-descriptor associated with the match-value. 

You can use the special string \ * as a match-value. This will match any output data value 
in the current data field. When the trace formatter finds this string, it does not check any 
match-values that occur after this string. Therefore, you should use this string as the last 
match-value in a list to provide a default action if none of the other match-values are 
matched. If no match is found, the data value is written. 

If a new data-descriptor follows the match-value, the trace formatter uses the formats from 
the new data-descriptor until one of the following occurs: 

• It has formatted all of the trace entry data. 

• It has used all of the defined data-descriptors for the current output data. 

The trace formatter then looks for a new data-descriptor field to define the format for the 
rest of the data in the trace entry. If a new data-descriptor is not found, it writes the data 
literally according to the format given in the format field of the last data-descriptor. 

Note: The trace formatter compares a match-value field and the current output data as 
two character strings. For real numbers (F format), it uses the printf subroutine to round 
the data to four decimal places. If you plan to use a match-value field with output data 
formatted as a real number, the match-value field should use the same precision, four 
decimal places. 

7-18 Programming Tools and Interfaces 



Appearance of the Formatted Output Data 
The following examples show you how to format data using a single data-descriptor. The 
data is defined as 8 bytes consisting of IBM4341A. The data-descriptor fields have the 
following values: 

d-label 
format 
match-value 
match-label 

PtrNode 
AB 
I BM4341A 
Model4X 

Each of the following examples shows a data-descriptor using a combination of 
data-descriptor fields and how the output data would look if it used that data-descriptor: 

• If you just specify a format field, the data-descriptor would be: 

AB: 
The formatted trace report would show the data as: 

IBM4341A 
• If you specify d-label and format fields, but do not specify a match-value field, the 

data-descriptor would be: 

PtrNode AB: 
The formatted trace report would show the data as: 

PtrNode=IBM4341A 
• If you specify format, match-value, and match-label fields, but do not specify ad-label 

field, the data-descriptor would be: 

AB, IBM4341A Model4X: 
The formatted trace report would show the data as: 

Model4X 
• If you specify d-label, format, match-value, and match-label fields, the data-descriptor 

would be: 

PtrNode AB, IBM4341A Model4X: 
The formatted trace report would show the data as: 

Ptrnode=Model4X 

Monitoring Programs 7-19 



Trace Template Example 
This section shows you how a trace entry using a sample trace template would appear after 
being formatted. In the example, a trace point belonging to the Printer event class 
generated a trace entry during printer initialization. The header data for the trace entry 
includes the hook ID, which in this example is 330. The trace entry data is listed below: 

PtrNode The printer node ID (8 ASCII characters). The format for this data would 
be AB. 

PtrType 

PtrActv 

The printer type (a decimal long integer). The format for this data would 
be D4. 

A 1-bit flag that indicates if the printer is active (1) or inactive (0). The 
format for this data would be BO.I. 

Figure 7-6 shows a sample trace template for trace entries with a hook ID of 330. Notice 
the newline and tab descriptors before the PtrType field. This will cause the PtrType 
field to appear on the next line and indented one standard tab unit. Also, notice that two 
pairs of match-value and match-label fields are defined for the 1-bit PtrActv flag. This 
tells the trace formatter to write Yes if the flag equals 1 and No if the flag equals 0: 

330 1.0 InitPtr Printer PtrNode A8: \ ~ • \ .j.. • \ 

\ii. \ i,. \ 

PtrType 04: PtrActv B0.1, 1 Yes, 0 No: 

Figure 7-6. Example of a Trace Template for hook ID 330 

Figure 7-7 on page 7-21 shows how a trace entry with a hook ID of 330 might appear in a 
formatted trace report. In the report, the sample trace entry is the seventh formatted 
entry. Notice that the last part of the report shows a list of event classes and how many 
trace entries belong to each event class. 

7-20 Programming Tools and Interfaces 



File: /usr/adm/ras/trcfile 

Fri Jan 3 13:19:35 1985 
System: **** 

Version: 0 

TIME SEQ PIO 

23:23:34.01 0001 00195 
arg=536872136 

23:23:34.01 0002 00195 
23:23:34.01 0003 00195 
23:23:34.01 0004 00195 
23:23:34.01 0005 00142 
23:23:34.01 0006 00142 
23:23:34.01 0007 00140 

Node: 

IODN 

Ptrtype=3 PtrActv= No 
23:23:34.01 0008 00196 
23:23:34.01 0009 00196 
23:23:34.01 0010 00196 
23:23:34.01 0011 00196 

arg=1073737112 

Summary of event counts. 

TRACE LOG REPORT 

**** 

Machine: **** 

IOCN TYPE HOOK 

I/O_Sys ioctl [x] 

I/O_Sys ioctl [x] 
I/O_Sys write [x] 
I/O_Sys write [x] 
I/O_Sys write [x] 
I/O_Sys write [x] 
Printer Initptr 

I/O_Sys read [x] 
I/O_Sys access 
I/O_Sys access 
I/O_Sys ioctl [x] 

Event 0: 2 Event 66: 8 
Event 150: 1 

Total number of events: 3 

Figure 7-7. Example of Output from the Trace Formatter 

DATA 

fildes=5 request=23 

fildes=l nbyte=28 
fildes=l nbyte=40 
fil des=l nbyte=31 
fildes=2 nbyte=l 
fildes=2 nbyte=2 
PtrNode=IBM4341 

fildes=3 nbyte=128 
errno=2 filemode=l 
errno=2 filemode=l 
fildes=O request=17 

Monitoring Programs 7-21 



Using the Error Log Facilities 

The error log facilities are used to record errors that may occur in the system. These 
errors can be in hardware or software, and can be of several different types. Some of the 
basic error terms are defined below: 

error entry 

error point 

error ID 

A data structure containing a header of identifying information plus 
several bytes of defined data. Error entries are generated by error points 
and written to an error log file that can be formatted by the error 
formatter. 

A group of code statements that generates an error entry from within a 
software program. Error entries are generated when a software or 
hardware component encounters an error. 

This is part of the data required by an error entry. It is a unique 
combination of three hexadecimal digits that identifies the component that 
generated the error entry. 

error identifier 
A three-character code used to identify error templates and to specify 
which error entries the error formatter should process. This code is based 
on the error ID; however, it use alphanumeric characters instead of 
hexadecimal digits. 

How you use the error facilities depends on what you want to accomplish: 

• To start the error log facilities, you should use the errdemon command. You usually 
will not have to use this command because the default initialization process is set to 
turn error logging on. 

• To stop error logging, you should use the errstop command. You must have superuser 
authority to use this command. 

• To format the error log files, you should learn how to use the errpt command. 

• To change the name or size of the default error log files, you should learn how to alter 
the / etc/rasconf file. 

• To create error points that generate error entries, you should learn how to use the 
error subroutines: errunix, errsave, and -errvrm. 

• If you create your own error entries, you should learn how to create an error template 
for each type of error entry. You also need to learn how to use the errupdate 
command to add error templates to the template file, /etc/errfmt. 

7-22 Programming Tools and Interfaces 



/etc/rasconf ---.j /usr /adm/ras/errfile. 0 Error Formatter 

Error Daemon 

Error Log Analysis 1---1- /usr/adm/ras/errfile. 1 I standard output 

User Application /etc/errfmt 

Error Device Driver 

and 

Kernel Component 
Interrupt Handler 

Error Buffer 

VRM Component 

Figure 7-8. Error Components 

Figure 7-8 shows how data is passed between the various files and components that 
constitute the error facilities. The lines labeled AP I, which stands for Application 
Program Interface, and VM I, which stands for Virtual Machine Interface, show the logical 
distinction between application programs, kernel components, and the VRM. The lines 
connecting the files and components show where data comes from and where it goes. 

The components and files in Figure 7-8 are described on the next page. They are explained 
in more detail elsewhere in this chapter in the appropriate sections. 

Monitoring Programs 7-23 



The descriptions below start at the point where the error entries are first generated and 
end where the error entries are formatted and sent to standard output. 

• Applications; kernel components, and VRM components generate error entries using 
error points. The system programs contain several pre-defined error points that 
generate error entries when necessary. 

• The error device driver collects the error entries in the error buffer. There is one error 
buffer that collects error entries from all three error subroutines. 

• The /etc/rasconf file contains configuration data. For the error daemon, it defines the 
name and size of the file that the error daemon uses to open two error log files. For 
the error formatter, it defines the default error log file name if a file name is not 
specified when it is invoked. 

• The error daemon is an important part of the error facilities. When it is initialized, it 
performs the following major tasks: 

It opens two error log files by appending the extensions .0 and .1 to the file name 
specified in the error stanza in /etc/rasconf. 

It checks the non-volatile RAM and if there is data, generates an error entry. 

• The default error log files are /usr/adm/ras/errfile.O and /usr/adm/ras/errfile.l. 
These files are organized as a circular buffer and store all of the error entries 
generated by the software programs. If one of the error log files becomes foll, the next 
error entry is written into the other file, discarding any entries that may have been in 
the file. 

• The error format file, /etc/errfmt, contains error templates that determine how each 
error entry appears when it is formatted. The pre-defined error entries also have 
pre-defined templates. If you generate error entries from your own programs, you need 
to define error templates for those entries. 

• The error formatter formats the error entries in the error log files into a readable 
format. If an error log file is not specified when the error formatter is invoked, it uses 
the file specified in /etc/rasconf. It reads the error files and sends error entries to the 
error log problem determination program, errpd. The errpd program analyzes the 
error entries and returns probable cause information to the error formatter. When 
errpd is finished; the error formatter appends the errpd analysis information, if any, 
onto the error entry and formats the entry. The formatted error entries are sent to 
standard output and can therefore be sent to the display screen, a file, or a printer. 

7-24 Programming Tools and Interfaces 



Altering the Error Log Configuration File 

There is one file that you can modify before starting the error daemon. This is the 
/etc/rasconf/ file, which is a configuration file that is read by the error daemon and the 
error formatter. It contains various types of information, but the information you are 
interested in is the stanza that defines the name and maximum block size of the default 
error log file. It appears in /etc/rasconf in the following form: 

/dev/error: 
file = /usr/adm/ras/errfile 
size = 50 

Some other use may change the contents of this file. You may want to change the error 
log file name if the current error log files are full, or if you want to keep different logs for 
different types of error entries. 

Each time errdemon is invoked, the error daemon checks /etc/rasconf to see which files 
it should open to receive error entries. The error daemon does not open the actual file 
name specified in / etc/rasconf. It merely uses the file name as the basis for two other file 
names with extensions of .0 and .1. The file names with the extensions are the ones that 
are actually opened. For example, if the error stanza in /etc/rasconf is: 

/dev/error: 
file = /usr/adm/ras/errfile 
size = 50 

the error daemon will open two files using the names: 

/usr/adm/ras/errfile.0 
/usr/adm/ras/errfile.1 

All error entries generated while the error daemon is active are directed to these two files. 
When you use the error formatter, it uses the file name in /etc/rasconf as the default 
error log file if an error log file is not specified. The error formatter adds the .0 and .1 
extensions to the error log file name to determine the actual names of the two error log 
files. 

Monitoring Programs 7-25 



Using the Error Log Commands 

There are five commands associated with the error log facilities. They each perform one 
basic task: 

errdemon 

errs top 

errpt 

errupdate 

Starts an error session. Once the error daemon is initiated, all error points 
will generate error entries whenever their error conditions are met. This 
command is usually placed in the command file /etc/re, which is run when 
the system is initialized. This command does not require any input 
parameters. 

Stops the error daemon. Any error entries remaining in the error buffer 
are written out to the error log file. Any open files are closed and the 
error daemon is terminated. This command does not require any input 
parameters. Note that it is not necessary to stop the error daemon in order 
to format the error log files. 

Formats error entries contained in error log files. This command accepts 
one or more error log file names as input parameters. If you do not specify 
an error log file, it uses the default error log file specified in /etc/rasconf. 
The formatted error entries are sent to standard output. 

The following example formats two error log files named myerr .{) and 
myerr.1 and sends the output to the printer. Notice that you use the file 
name myerr as input. The error formatter automatically appends the 
extensions and looks for those files, not the file named in the command: 

errpt myerr I print 
There are several options available to format subsets of the entire error 
log. See the description of the errpt command in AIX Operating System 
Commands Ref ere nee. 

Adds, updates, or deletes error templates in the /etc/errfmt file. Before 
using this command to add or update error templates, you need to create 
an input file with the extension . err. This file will contain two types of 
entries: 

• Template definitions. These contain a + in the first column to specify 
that the template is to be merged into the master template file. A 
single template definition may require several lines. The + is only 
required on the first line of each template. 

• Template deletions. These contain a - (minus sign) in the first column, 
one blank, and the error identifier of the template you want to delete. 

Note: Do not delete the pre-defined error templates. The only 
templates that you should consider deleting are those that are 
user-defined. User-defined error templates have an error identifier 
beginning with U or HF. 

7-26 Programming Tools and Interfaces 



errdead 

The following example shows a file that will add error template U13 to the 
master template file and delete templates Ull and Ul2. Note that the first 
line in the file must be entered as shown. It is used by the errupdate 
command to verify that this file contains template information. 

* /etc/errfmt 
+ Ul3 Serial/Parallel Adapter: \n: \ 

ErrorType Al: -n: Lastl/0 Xl: \ 
LineStatus 04: PrinterStatus BO.l: 

- Ull 
- Ul2 
To update an error template, you need to create a new template with the 
same error identifier but with a version and release number (VV.RR field) 
greater than the version and release number of the error template that you 
want to update. When errupdate merges the . err file into the master 
template file, it will replace the old template with the updated one. 

Once you have created a file containing new or updated template 
definitions and/or template deletions, you can use errupdate to process it. 
In the following example, the template definitions and deletions are 
contained in a file called newtemps.err: 

errupdate newtemps 
Extracts hardware error information from memory or from a dump file. 
This is used if the error daemon was not running or did not have a chance 
to log the error before a system failure. To use this command, invoke 
errdead with the name of a file containing dump information: 

errdead mydump 

Monitoring Programs 7-27 



Using the Error Log Subroutines 

To use the error log subroutines, you need to understand the relationship between error 
IDs and error identifiers. You also need to know how to identify the type of an error. 

Error IDs are 3 bytes long, and are created using hexadecimal digits. When you use the 
error log subroutines, you must specify the error ID of the program that generates the 
error entry. The pre-defined error IDs can range from OxOlOOOO to Ox050FOF. User-defined 
error IDs can range from Ox060000 to Ox060FOF. There is a special set of user-defined error 
IDs for hardware error entries. These error IDs can range from OxOlOFOO to OxOlOFOF. 
Note that the second and third bytes cannot use values greater than OxOF for any error ID. 

The error ID is used to categorize the error entries into appropriate groupings. The first 
digit is the class; the second is the subclass, and the third is the mask. The digits are 
hierarchical in that a class consists of zero or more subclasses and a subclass consists of 
zero or more masks. 

The class digits range from OxOl to Ox06. Each value represents a general category of 
errors. The categories are assigned as follows: 

• OxOl - Hardware 
• Ox02 - Software 
• Ox03 - IPL/Shutdown 
• Ox04 - General System Condition 
• Ox05 - Not Available 
• Ox06 - User-Defined. 

The subclass and mask digits range from OxOO to OxOF. They are used to further subdivide 
the category represented by the class digit. Classes OxOl through Ox05 may have 
pre-defined subclasses and masks. Class Ox06 has no pre-defined subclasses or masks 
because it is user-defined. 

When you format a file containing error entries, you have the option of specifying which 
class of errors should be formatted. You can also specify the subclass within the class and 
the mask within the subclass. Note that when you format error entries, you do not use the 
error ID. Instead, you use an error identifier. Error identifiers are similar to error IDs, 
except they consist of characters instead of hexadecimal digits and an alphabetic letter is 
used to specify the class instead of a digit. The letter is the first letter of the first word 
describing the class. 

For example, if the error ID of an error entry is Ox010102, the error entry is in the 
Hardware class. The error identifier for this type of error entry would be H12. An error 
entry in the Software class might have an error ID of Ox020303. The error identifier 
would be S33. Thus, An error entry in the User-defined class would have an error 
identifier that began with the letter U. 

Note: You should avoid defining error IDs that have a subclass or mask value of OxOO. 
This is because the error formatter uses the character 0 as a pattern-matching character. 
For example, to format all hardware error entries, regardless of subclass or mask, you 

7-28 Programming Tools and Interfaces 



would specify HOO when you invoke the errpt command. The use of 0 within an error ID 
limits your selection options when you format the error entries. 

When you design a program, you must decide what constitutes an error condition and what 
actions should take place if an error does occur. You decide in advance what the error ID 
will be for any error entries generated by a specific component. You must also specify the 
type of error entry that is being generated. There are several pre-defined types of error 
entries. Your component must contain an algorithm for deciding which type of error has 
occurred. Once the type is identified, it is used as input data to the error log subroutines. 

The types of error entries are defined as follows: 

1 - Permanent 
These are errors that are severe enough to prevent successful completion of an 
operation. 

2 - Temporary 
These are errors that require an operation to be retried a defined number of times 
before being successfully completed. 

3 - Information 
These are not necessarily errors. A component may generate an error entry of this 
type if an unusual condition occurs. 

4 - Counters 
These error entries are generated by device driver components. Certain device drivers 
are able to generate retries if an operation is not successful on the first attempt. They 
use counters to monitor the number and cause of retries and contain algorithms that 
decide when these counters should be sent to the error log. 

5 - Abbreviated Error Entries 
If the system fails before storing an error entry in the error log, it writes an 
abbreviated entry into non-volatile storage. When the system is started following such 
a failure, it writes this abbreviated entry into the error log. 

6 - Expert Analysis Appended. 
These error entries contain information from the Error Log Analysis routine. 

Monitoring Programs 7-29 



The data in an error entry is entirely dependent on the component generating the error 
entry. There is no defined limit on the size of an error entry. How you organize the 
information required to generate an error entry depends on which error log subroutine you 
use. Both errunix and errsave use an integer length field. This field specifies the length 
plus one (in words) of the error entry data. They are briefly defined below: 

errunix 

errsave 

Generates an error entry from an AIX Operating System application and 
requires two input parameters. The first is the address of a buffer 
containing the 3-byte error ID, the 1-byte type number, an integer length 
field, and the error data for the error entry. The second is the length of 
the buffer. 

Generates an error entry from an AIX Operating System kernel component 
and requires two input parameters. The first is the address of a buffer 
containing the 3-byte error ID, the 1-byte type number, an integer length 
field, and the error data for the error entry. The second is the length of 
the buffer. 

-errvrm Generates an error entry from a VRM component and requires one input 
parameter. See the definition of the -errvrm subroutine for information 
on creating error entries within VRM components. 

A sample error point for application level components is shown in Figure 7-9. Notice how 
the input data structure used by the error log subroutine is organized and how the 
v-o.,,-.,n~V9Arl rlni-n ~C'C ......... lnnnrl ~"V'\. ~+. A 1.,,...... +k" n....,.....,.,....,,,. Tn ,f,-...,,. +h- +.._r\,,,ri.. l'"'\'Vto+ ......... .,. ~ ... f\,,..f\Cf\111A '111.....,,,., +:h..-.. 
..i..V'f'-1..i..i..V\..i.. \..i..U\JCA. .i.O ..tJ.i.CA.VVU. .i..i..i. .i..V. J..l..i.Uv, i.J.i..i.V V.i.iV.i. ..i....i...J .i.V.i. Ul...ic; V.i.Q.;.,...c,; C.i..iV..i..J .iO VAVVV...i..V"":i: • ..i..i.i.u~, V.i.i\'.; 

error template used to format the error entry would use an error identifier of U14. 

7-30 Programming Tools and Interfaces 



#include <sys/erec.h> 

main(argc, argv) 
int argc; 
char **argv; 

{ 
extern int errunix(); 
int error=O; 
struct error_struct /* this is an input parameter for errunix */ 
{ union 

{ struct 
{ 

char e_class; 
char e_subclass; 
char e_mask; 
char e_type; 

} e_csmt; 
int csmt; 

} e_id; 
int e_len; /* length + 1 of error entry data in words */ 
char e_data[40]; 

} error_data; 

#define CLASS 
#define SUBCLASS 
#define MASK 
#define TYPE 

Figure 7-9 (Part 1 of 2). 

error_data.e_id.e_class 
error_data.e_id.e_subclass 
error_data.e_id.e_mask 
error_data.e_id.e_type 

Example of a Program Fragment Showing Use of errunix 
Subroutine. 

Monitoring Programs 7-31 



/* Check for errors and increment error flag if an error is found. */ 

if (error_check() < O) 
error++; 

/* User-defined function */ I 

/* 

if 
{ 

} 

if the error flag is positive, generate an error entry. */ 

(error) 

CLASS E_USER; /* E_USER is predefined as Ox06. */ 
SUBCLASS OxOl; 
MASK Ox04; 
TYPE E_TMP; /* E_TMP is pre-defined as Ox40 */ 

/*Collect the error data and put it in error_data.e_data */ 

fill_in(error_data.e_data); /* User-defined function */ I 

/* Perform the subroutine call */ 

if (errunix(&error_data, sizeof(struct error_struct) ) < O) 
{ 

} 

fprintf(%s: Cannot log error. errunix failed.-n 11
, argv[O]); 

exit(-1); 

} /*end main */ 

Figure 7-9 (Part 2 of 2). Example of a Program Fragment Showing Use of errunix 
Subroutine. 

7-32 Programming Tools and Interfaces 



Figure 7-10 creates an error entry from within an AIX Operating System kernel 
component. Note that the user-defined subroutine filLin must define the error ID and 
error data. The method is similar to that used in Figure 7-9 on page 7-31; therefore, it is 
not repeated for this example: 

#include <sys/erec.h> 

main(argc,argv) 
int argc; 
char **argv; 

{ 
struct errinfo *errptr; 

if (error) 

/*collect error data and call errsave */ 
{ 

fill_in(errptr); /*User-defined subroutine) 
errsave(errptr, sizeof(struct errinfo)); 

} 
} /* end main */ 

Figure 7-10. Example of a Program Fragment Showing Use of errsave Subroutine. 

Monitoring Programs 7-33 



Creating Error Templates 

The error formatter uses error templates to determine how the data contained in error 
entries should be formatted. All error templates are stored in the master template file, 
/etc/errfmt. After you create some new or updated error templates, place them in a file 
that can then be merged into the master template file using the errupdate command. 

Error templates contain three required fields and zero or more data description fields. The 
required fields consist of the error identifier, the version and release number, and the error 
label. The data description fields contain formatting information for the error entry data 
and can be repeated as many times as is necessary to format all of the error data in the 
error en try. 

Error entries are formatted and written to standard output one entry at a time. For each 
entry, the error formatter performs the following operations: 

1. Locates the error template whose error identifier corresponds to the error ID in the 
error entry. If the error entry has an error ID of Ox010201, the corresponding error 
template would have an error identifier of H21. 

2. Writes the time the entry was generated. This field is placed in the error entry header 
by the error subroutine. 

3. Writes the PID, IODN, and IOCN contained in the error entry header. These fields are 
placed in the error entry header by the error subroutine. 

4. Writes the error label contained in the format template. You can use the actual error 
identifier, or you can create a name up to 8 characters. The error formatter will write 
whatever is placed in the field. 

5. Writes the error data according to the data-descriptors in the error template, if any are 
present. Any data that occurs after the last data-descriptor in the template is ignored. 
A data-descriptor does the following: 

a. Writes the data label (d-label), if it is specified. 
b. Writes the actual data according to the format field and the optional match fields. 

You can define match fields that will replace data values with descriptive labels or 
change to a different data-descriptor depending on the current data value. 

Figure 7-11 on page 7-35 shows the syntax used to define an error template. Figure 7-12 
on page 7-36 defines each of the fields in an error template. 

Error template lines can be as long as you need. You can continue an error template on 
another line by adding the \ (backslash) character to the end of the line where the split 
occurs. Note that\ is not a substitute for a required blank. A blank is also required after 
a colon or comma. 

7-34 Programming Tools and Interfaces 



error _identifier IVV. RR I error _label 

data_descriptor = 

r--\ ·· I format 
\. ld_labelJ 

lmatch_label 

I t h I 
{ 

.{ data descriptor} , mac _va ue -

I{ data_descriptor }----------J 

I - indicates a blank 

Figure 7-11. Error Template Syntax 

Monitoring Programs 7-35 



Field 

error -identifier 
TTTT T>T> v v . .Ll..L\ 

error -label 

\n 
\t 
d-label 
format 

match-value 

match-label 

data-descriptor 

Description 

The 3-character error identifier of this template. 
A number representing the version and release level of this template. 
A field of up to 14 characters that describes the error entries that use 
this template. This appears in the summary header list under the 
Subclass heading. 
A special string used to start output data a new line. 
A special string used to start output data after one tab unit. 
A field of characters that describes the error entry data. 
An alphanumeric code that defines the format of the error data. 

Code Format of Data 

Am 
Bm 
Bm.n 

D2 
D4 
F4 
F8 
Om 
Om.n 

ASCII string of m characters. 
Binary string of m bytes. 
Binary string of m bytes and n bits. If this format leaves some 
unformatted bits in the current byte, they are not written 
unless this format is followed by another format that specifies 
bits. 
Decimal short integer. 
Decimal long integer. 
Floating-point number of type float, rounded to four places. 
Floating-point number of type double, rounded to four places. 
Omit (do not write) the next m bytes. 
Omit (do not write) the next m bytes and n bits. If this format 
leaves some unformatted bits in the current byte, they are not 
written unless this format is followed by another format that 
specifies bits. 

U2 Unsigned decimal short integer. 
U4 Unsigned decimal long integer. 
Xm Hexadecimal number of m bytes. 
A value with a data type the same as the format field. If you specify a 
match-value, you must also specify a match-label or data-descriptor. 
A character field up to 120 characters that replaces output data that 
matches a match-value field. 
A field containing formatting information for a portion of the output 
data. 

Figure 7-12. Fields in an Error Template 

7-36 Programming Tools and Interfaces 



Replacing Values in the Output Data 
The match-value field provides a function that is similar to a switch statement in 
programming. You can use this function to do either or both of the following: 

• Replace an output data value with a character string that describes the data. For 
example, you can replace a numeric error code with a description of that error. The 
replacement character string is called a match-label. 

• Change the data descriptor used to format the output data. For example, you can 
design error points that will record different data at different times, depending on the 
state of your machine or program. You can then define a set of match-values with a 
different data-descriptor for each type of data. 

You can specify any number of match-value fields for a particular output data value as 
long as each field is accompanied by a match-label and/or a data-descriptor field. If the 
output data value matches match-value, the error formatter uses the match-label and/or 
data-descriptor associated with the match-value. 

You can use the special string \ * as a match-value. This will match any output data value 
in the current data field. When the error formatter finds this string, it does not check any 
match-values that occur after this string. Therefore, you should use this string as the last 
match-value in· a list to provide a default action if none of the other match-values are 
matched. 

If a new data-descriptor follows the match-value, the error formatter uses the formats from 
the new data-descriptor until one of the following occurs: 

• It has formatted all of the error entry data. 

• It has used all of the defined data-descriptors for the current output data. 

The error formatter then looks for a new data-descriptor field to define the format for the 
rest of the data in the error entry. If a new data-descriptor is not found, it writes the data 
literally according to the format given in the format field of the last data-descriptor. 

Note: The error formatter compares a match-value field and the current output data as 
two character strings. For real numbers (F format), it uses the printf subroutine to round 
the data to four decimal places. If you plan to use a match-value field with output data 
formatted as a real number, the match-value field should use the same precision, four 
decimal places. 

Monitoring Programs 7-37 



Appearance of the Formatted Output Data 
The following examples show you how to format data using a single data-descriptor. The 
data is defined as 8 bytes consisting of IBM4341.L\. The data-descriptor fields have the 
following values: 

d-label 
format 
match-value 
match-label 

PtrNode 
A8 
IBM4341A 
Model4X 

Each of the following examples shows a data-descriptor using a combination of 
data-descriptor fields and how the output data would look if it used that data-descriptor: 

• If you just specify a format field, the data-descriptor would be: 

AS: 
The formatted error report would show the data as: 

IBM4341A 
• If you specify d-label and format fields, but do not specify a match-value field, the 

data-descriptor would be: 

PtrNode A8: 
The formatted error report would show the data as: 

PtrNode=IBM4341A 
• If you specify format, match-value, and match-label fields, but do not specify a d-label 

field, the data-descriptor would be: 

AS, IBM4341A Model4X: 
The formatted error report would show the data as: 

Model4X 
• If you specify d-label; format, match-value, and match-label fields, the data-descriptor 

would be: 

PtrNode AB, IBM4341A Model4X: 
The formatted error report would show the data as: 

Ptrnode=Model4X 

7-38 Programming Tools and Interfaces 



Error T·emplate Example 
This section shows you how an error entry using a sample error template would appear 
after being formatted. In the example, a hardware error entry was generated for the 
Serial/Parallel Adapter. The header data for the error entry includes the error ID, which 
in this example is Ox060103. Thus, the error identifier in the template is U13. The error 
entry data is listed below: 

ErrorType The type of error encountered (1 ASCII character). The format for this 
data would be Al. 

Last I /0 The last character transmitted (1 hexadecimal digit). The format for this 
data would be Xl. 

L ineStatus The status of the printer (1 decimal word). The format for this data would 
be D4. 

PrinterStatus 
A 1-bit flag that indicates if the printer is active (1) or inactive (0). The 
format for this data would be BO.l. 

Figure 7-1:3 shows a sample error template for error entries with an error ID of Ox060103. 
Notice the newline descriptor on the first line of the template. This will cause the data to 
start on a new line. 

U13 Ser/Par: \n: \ 
ErrorType Al: \n: Last_I/0 X1: LineStatus 04: PrinterStatus \ 
B0.1: 

Figure 7-13. Example of an Error Template for Error Entries with Error ID 613 

Figure 7-14 on page 7-40 shows how an error entry using the template U13 would appear 
in a formatted error report. The first entry is from a different error. The second entry is 
the one that uses template U13. 

Monitoring Programs 7-39 



ERROR LOG REPORT 

Error log: /usr/adm/ras/errfile 

Date/Time Class Subclass Type 
Thu May 9 16:54:42 Hardware 

IODN=4 IOCN=576 
Diskette Adptr Counters 

Base Port Addr=lOlO 
Dev Name=DSKT 
Internal Dev Type=Dl015200 

Counter_Type=OOOOOOOOOOOOOOOOOOOOOOOOOOOlOOOO 
Bad_Count=512 
Good_Count=3506438155 
Bad_Threshold=61624 
Ratio=5 

Date/Time Class 
Thu May 9 16:54:45 Hardware 

IODN=7 IOCN=600 
Base Port Addr=0278 
Dev Name=Ser/Par 
Internal Dev Type=91002300 

ErrorType=3 

Subclass 
Ser/Par 

Last_I/0=44 LineStatus=O PrinterStatus=O 

Type 
Perm 

Device Cause 
DSKT Hardware 

Device Cause 
Ser/Par Hardware 

================================================================================ 
Figure 7-14. Example Output from the Error Formatter 

7-40 Programming Tools and Interfaces 



Using the Dump Facilities 

The dump facilities allow you to dump VRM data onto a dump diskette in the event of a 
system failure at the VRM level. Some of the basic terms are defined below: 

dump data The data collected by the dump program. It is obtained from memory 
locations used by VRM components. 

dump diskette 
The diskette used to store the dump data. This must be a formatted, 
high-capacity diskette and it must be placed in diskette drive A before the 
dump is started. A dump operation is limited to the storage capacity of a 
single dump diskette. 

component dump table 
A structure used by VRM components to identify data structures that 
should be collected by the dump program. Each record in a component 
dump table identifies the name, length and location of a specific data 
structure. 

dump table entry 
A record in the master dump table that identifies the location of a 
component dump table. All VRM components that need to have special 
data collected by the dump program need to generate a dump table entry. 
Each entry contains the component ID, length, and location of a 
component dump table. 

master dump table 
A structure containing dump table entries generated by VRM components. 
The dump program uses this table to locate data structures that should be 
included in a dump. 

How you use the dump facilities depends on what you want to accomplish: 

• To start a dump operation, you should learn how to use the dump key sequence. 

• To format the contents of a dump diskette or dump file, you should learn how to use 
the dumpfmt command. 

• To create dump table entries in the master dump table, you should learn how to use the 
-dmptbl subroutine. All of the guide information for this subroutine is contained in 
Virtual Resource Manager Technical Reference. 

Monitoring Programs 7-41 



I standard output 

/vrmdump Dump Formatter 

Dump Diskette 

I VRM Component 1-j -.--111Ji.~1 Master Dump Table Dump Device Driver 

Comp. Dump Table 

VRM Dump Data 

Figure 7-15. Dump Components 

Figure 7-15 shows how data is passed between the various fiies and components that 
constitute the dump facilities. The lines labeled AP I, which stands for Application 
Program Interface, and VM I, which stands for Virtual Machine Interface, show the logical 
distinction between application programs, kernel components, and the VRM. The lines 
connecting the files and components show where data comes from and where it goes to. 

The components and files in Figure 7-15 are described on the next page. They are 
explained in more detail elsewhere in this chapter in the appropriate sections. 

The descriptions below start with the input to the dump program and end where the dump 
diskette or file is formatted and sent to standard output. 

7-42 Programming Tools and Interfaces 



• VRM components generate master dump table entries using the -dmptbl subroutine. 
Only VRM programs are supported by this subroutine. 

• The master dump table contains dump table entries that identify the component ID, 
length, and location of component dump tables. Your only interaction with the master 
dump table is through the -dmptbl subroutine. 

• Component dump tables are created and maintained by individual VRM components. 
Each component dump table contains a list of entries that specify the name, length, 
and location of data structures that should be included in the dump. There is a 4-byte 
length field at the beginning of each component dump table. This field contains the 
overall length of the component dump table. Each entry in the table is 20 bytes long. 
Thus, a component dump table with two entries would be 44 bytes long. 

• The VRM dump data is pre-defined and consists of various types of VRM data. This 
includes tables, control blocks, queue areas, error and trace buffers, virtual machine 
information, registers, and other data structures. You may not be able to understand 
all of this data. It is used by IBM to determine the cause of a system failure. 

• The VRM dump program collects the VRM dump data plus any data specified in 
component dump tables and writes it onto a dump diskette. This program is always 
resident in memory and is invoked through the dump key sequence or by a routine 
below the VMI executing a signal error. 

When VRM dump is initiated, it sets the two-digit display on the system unit to c6 to 
indicate that it wants to perform a dump. You can cancel the dump, or insert a dump 
diskette and press the dump key sequence that begins the dump operation. 

• The dump device driver is used only by the dump program to write to the dump 
diskette. This device driver allows the dump program to operate without the use of any 
VRM device drivers. The VRM dump program is independent of any VRM resources. 

Because the dump data is written in dump/restore format, you can use the restore 
command to write the diskette data onto a file in the current directory. The file name 
of a restored dump data file is always vrmdump., but you can rename it if you wish. 

• The dump formatter formats the data from the dump diskette or from a specified file 
into a readable format. If a file is not specified, it looks for the information in 
/dev /fdO, which is where the dump diskette should be. The formatted dump data is 
sent to standard output and can therefore be sent to the display screen, a file, or a 
printer. 

Monitoring Programs 7-43 



Using the Dump Commands 

There are only two dump commands. The first command is the key sequence that is used 
to start the dump program. You use this sequence when your system fails and c6 is 
displayed on the two-digit display on the system unit. The dump procedure is fully 
discussed in the Problem Determination Guide. The following steps outline the dump 
procedure: 

1. Insert a formatted diskette into diskette drive A:. The diskette can have AIX Operating 
System or DOS format. 

2. Press Ctrl-Alt-Num8. c9 is displayed on the two-digit display to indicate that the 
dump program has started. 

The dump program runs until it completes the dump or encounters an error condition. The 
two-digit display shows the result of the dump upon termination. The possible two-digit 
display values are: 

0 - Dump Successfully Completed 
2 - Dump Diskette Full 
3 - Dump Suspended Due to Recursive Call 
4 - Dump Abended. 

Before you can use the second command, dumpfmt, you have to get the system back in 
working order. Once you get the systen1 restarted, you can use dumpfmt to format the 
dump data and send it to standard output. 

The dumpfmt command invokes the dump formatter, which can be used in batch mode or 
interactive mode. In batch mode, all of the dump data appears in the report. In interactive 
mode, you select the data you want to format from a menu of options. If you do not specify 
batch mode using the -a flag, the formatter automatically comes up in interactive mode. 

Example of the Dump Formatter Output 

Figure 7-16 on page 7-45 shows how part of a dump diskette or dump file might appear 
after being formatted. It displays data in hexadecimal format with ASCII interpretation at 
the right. Non-printing hexadecimal values are shown as a period. Notice how each set of 
dump data structures has a different title. A name title (GP Register) indicates that the 
data is part of the standard VRM dump data. A number title (126) indicates that the data 
is obtained from a component dump table. 

Note: The dump report shown in Figure 7-16 does not show all of the pre-defined VRM 
dump data. The dump program collects all of the pre-defined VRM dump data before it 
begins collecting the component dump table data. If you use the dump formatter in 
interactive mode, you can select which types of dump data you wish to format. 

7-44 Programming Tools and Interfaces 



Tue Jan 03 12:00:00 1985 

Failing Component: 1111 

Module Start Address: 11 00000000 11 

Module Offset Address: 11 00000000 11 

GP Register Starting Address 11 C0028C40 11 

reg#_l3 
C0028C40 
C0028C50 
C0028C60 
C0028C70 
C0028C80 
C0028C90 
C0028CAO 
C0028C80 
C0028CCO 

Header 
00000000 
00000010 
00000020 
00000030 
00000040 
00000050 

002E0040 69FOCC68 04001920 000008AO 
0002CE08 FOOOOOOO 00028C20 OOOOB3EO 
70180203 65100008 659A8E50 63003013 
718BE28A 31830402 000292A8 00008854 
8E526002 3000009E 0040001C 6400E549 
64349141 6840E289 6910E298 849A0918 
E29A0204 E21A3118 OOOB63A9 E2133118 
62A4BE52 70386002 30303190 302BDD4E 
004031F7 8DFFB87A 62656500 302BDD4E 

126 Starting Address : 11 Q11 

54686973 64617461 63616065 66726F6D 
636F6070 6F6E656E 74206475 60702074 
61626C65 77697468 20494420 20313236 
70180203 65100008 659A8E50 63003013 
BE526002 3000009E 0040001C 6400E549 
71BBE28A 31830402 000292A8 00008854 

Figure 7-16. Example of Output from the Dump Formatter 

••• @ i .. k . . . . . ... I 
.... I 

p ... e ... e .. P c ... I 
q... . .. TI 
. Rm. .@ •• d .. I I 
d •• A h@ .• i... . ... I 
.......... c ..... I 
b •• R p;m .. - ..... NI 
.@.. • •. z bee. . ... I 

This data came froml 
comp onen t.du mp.ti 
able with .ID .. 1261 
p ... e ... e .. P c ... I 
. Rm. .@ •• d .. I I 
q... . .. Tl 

Monitoring Programs 7-45 



7-46 Programming Tools and Interfaces 



Chapter 8. Debugging Programs 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4 
sdb Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 

Start/Stop sdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
Setting Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
Setting Trace Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 
Running the Program from sdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
Single Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6 
Displaying Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 
Changing Values of Program Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-7 
Changing Position in the File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8 
Reference Metacharacters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-8 

Using the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 
Displaying a Stack Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 
Examining Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 
Referencing Arrays, Pointers, and Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 

Displaying and Manipulating the Source File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 
Displaying the Current File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 
Changing the Current File or Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 
Changing the Current Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-15 

Controlling Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 
Setting and Deleting Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-16 
Running the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 
Calling Procedures ................. _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 

Debugging Assembler Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 
Displaying Assembler Language Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 
Manipulating Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 

An Example of a Debug Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22 

Debugging Programs 8-1 



About This Chapter 

This chapter explains how to use the sdh program to help locate and fix program logic 
problems (bugs). It shows how to use the sdb commands and discusses the idea of a 
controlled program testing environment. At the end of the chapter is an example of an sdb 
session. 

8-2 Programming Tools and Interfaces 



Overview 

The sdb program performs three functions: 

• Examines core images of programs that did not end properly. 

• Displays and manipulates sections of source text. 

• Controls and monitors the execution of programs. 

The sdb commands that perform these functions are usually a single letter or character. 

Refer to AIX Operating System Commands Reference for complete reference information 
about the sdb program. 

Debugging Programs 8-3 



Features 

Using sdb, you can: 

• Debug programs at either the source language or assembler language level. 

• Issue commands from either standard input or a named file. 

• Access variables, including arrays and structure elements, symbolically and display 
them in the correct format. 

• Display or modify the contents of machine registers. 

• Examine the source text using simple search and scrolling functions. 

• Set breakpoints at selected statements. 

• Run a program one line at a time. 

• Call program or diagnostic procedures directly from the debugger. 

8-4 Programming Tools and Interfaces 



sdb Command Summary 

Start/Stop sdb 

sdb <filename> 
Starts sdb using file <filename > 

e <name> 
Uses the file or procedure indicated by <name> 

e 
Displays the name of the current file and current procedure 

q 
Quits sdb 

Setting Breakpoints 

[procedure] [line number]b 
Sets a breakpoint at line number in procedure. 

B 
Displays a list of all breakpoints that are set. 

[procedure] [line number]d 
Removes a breakpoint at line number in procedure. 

D 
Removes all breakpoints. 

[variable] $m [count] 
Runs current procedure one line at a time until variable changes or count 
number of lines are run. 

[address] :m[count] 
Runs current procedure one line at a time until address changes or count 
number of lines are run. 

Setting Trace Options 

[procedure]a 
Displays procedure name and its arguments each time it is called. 

[procedure] [line number]a 
Displays source line line number each time it is executed. 

t 
Traces procedure calls. 

Debugging Programs 8-5 



Running the Program from sdb 

r args 

r 

R 

Runs the current procedure using args as the starting parameters. 

Runs the current procedure using the same starting parameters as the last time 
the procedure ran. 

Runs the current procedure with no starting parameters. 
[procedure] [line number]c 

Continues running a stopped program. 
[procedure] [line number]C 

Continues running a stopped program - passes signal that stopped program back 
to program (test signal handler). 

[line number]g 
Starts running the program at line number in the current procedure. 

k 
Stops the program being debugged. 

Single Stepping 

[level]v 

s 

s 

i 

I 

Sets level of information displayed during single step mode. 

Runs a single line of source code. 

Runs a single line of source code, but does not stop during execution of called 
procedures. 

Runs a single assembler instruction rather than source line - ignores signals 
that stop the program. 

Runs a single assembler instruction rather than source line - passes signals that 
stop the program to the program. 

8-6 Programming Tools and Interfaces 



Displaying Information 

variable/ 
Displays value of variable. 

[procedure]:[line number]? 
Displays assembler language statements associated with line number. 

[address]:? 

x 

x 

variable= 

p 

w 

z 

ctrl-d 

Displays assembler language statement associated with address in text space. 

Displays the values of all registers and the process status word. 

Displays the value of IAR and the assembler language instruction at that 
location. 

Displays address of variable. 

Displays current line. 

Displays 10 lines around the current line. 

Displays 10 lines starting at the current line. Changes current line to current 
line + 10. 

Displays the next 10 lines of instructions, source code or data. 

Changing Values of Program Variables 

variable! value 
Assigns new value to variable. 

Debugging Programs 8-7 



Changing Position in the File 

n 
Sets current line to n. 

Enter key 

+ [n] 

-[n] 

/string 

?string 

Moves current line forward 1 line. 

Moves current line forward n lines (I line if non). 

Moves current line backward n lines (I line if non). 

Searches forward for string. 

Searches backward for string. 

Ref ere nee Metacharacters 

* 
? 

Matches any sequence of characters. 
Matches any single character. 
Refers to the last referenced variable. 

8-8 Programming Tools and Interfaces 



Using the Program 

To use sdb with a program, compile the source program with the -g flag. The compiler 
generates additional information about the variables and statements of the compiled 
program. 

The following rules apply to the use of the -g flag: 

• The sdb program displays an error message if used on a main program compiled 
without the -g flag. 

• Use sdb for any procedures compiled with the -g flag, even if the main program was 
compiled without the -g flag. 

• If an error occurs in a procedure compiled without the -g flag, sdb displays only the 
procedure name and the address at which the error occurred. 

The following example shows the generation of an executable program called samp. When 
the program runs, it produces a bus error and stops. The commands that follow the error 
message show how to start and end the sdb program: 

$ cc -g samp.c -o samp 
$ samp 
Bus error - core dumped 
$ sdb samp 
main:25: x[i] = O; 
*q 
$ 

In the example, the program samp has an error which causes a core dump. When sdb 
starts, it reports that the bus error occurred in procedure ma i n at line 25 (line numbers are 
always relative to the beginning of the file) and then displays line 25. The* indicates that 
sdb is waiting for an sdb command. The q command then exits the sdb program. 

In the above example, sdb is called with one argument, s amp. The sdb program can have 
up to three arguments on the command line: 

• The name of the executable file to be debugged. Without a file name, sdb uses a.out. 

• The name of the core file. Without a file name, sdb uses core. 

• The name of the directory containing the program source. The sdb program requires 
all source to reside in a single directory. Without a file name, sdb uses the current 
directory. 

In the example, the second and third arguments used the correct values, so only the first 
was specified. 

Debugging Programs 8-9 



You can redirect standard input or output while in sdb. Therefore, sdb command input 
can come from a file and output can be sent to another file or even the printer. Redirect 
input and output with the < and > commands. When redirecting standard input, all sdb 
commands come from a named file until the end of the file is reached. The input then 
reverts back to the keyboard. This command cannot be nested. The following example 
redirects input to come from a file of sdb commands called sdbbatch: 

*< sdbbatch # input now comes from sdbbatch 

Displaying a Stack Trace 

To get a listing of the procedure calls that led to an error, use the t command. In the 
following example, the executable file s amp . c contains the standard procedure ma i n and 
two additional procedures called 1 as t and mi dd 1 e: 

*t 
last(x=2,y=3) [samp.c:25] 
middle(i=16012) [samp.c:96] 
main(argc=l,argv=Ox7fffff54,envp=Ox7fffff5c) [samp. c: 15] 
The stack trace shows the calls in reverse order. Starting at the bottom, the following 
events occurred: 

1. shell called main with three arguments referred to as argc, a rgv and envp. Note 
that argv and envp are pointers, so their values are written in hexadecimal. 

2. main called middle at line 15 with the value i =16012. 

3. middle called 1 ast at line 96 with the values x=2, y=3. 

4. 1 as t contained an error at line 25. 

Refer to Assembler Language Reference for a description of how the system calling 
conventions operate. 

Examining Variables 

To display the value of a variable, type the variable name followed by a slash: 

*countvar/ # display the value of countvar 
Unless otherwise specified, variables are assumed to be either local to or useable by the 
current procedure. To specify a different procedure, use the form: 

procedure: variable/ 

8-10 Programming Tools and Interfaces 



The sdb program supports a limited form of pattern matching for variable and procedure 
names. The symbol* is used to match any sequence of characters of a variable name and? 
to match any single character. Consider the following commands: 

*x*/ 
*procwild:y?/ 
**/ 

The first writes the values of all variables beginning with X, the second writes the values 
of all two letter variables in procedure procwi 1 d beginning with y, and the third writes 
all variables. In the first and third examples, only variables useable by the current 
procedure are written. 

The following command displays the variables for each procedure on the call stack: 

**:*/ 
To reference a particular instance of a variable on the stack, use the form: 

procedure:variable,number 
For example, the following command displays the value of the variable y in the call to 
p rocwi 1 d closest to the top of the stack: 

*procwild:y,l/ 
To match only global variables, use the form: 

:variable 
The sdb program usually displays variables in a format determined by their type as 
declared in the source program. To request a different format, use the form: 

v a ri ab 1 e/ [count] [length] [format] 
Without a format parameter, sdb uses decimal notation. 

Debugging Programs 8-11 



This command is explained in detail in the reference information for sdb (see AIX 
Operating System Commands Reference). 

For exa...--nple, the variable i can be displayed in hexadecimal with~ 

*i/x 
To specify i in short form in hexadecimal, use the length specifier h, along with the format 
specifier X: 

*i/hx 
Memory locations can also be displayed by specifying their absolute addresses. The 
following command displays location 10 2 4 in decimal: 

*1024/ 
Because numbers can be specified in octal or hexadecimal, the following two commands 
also display location 10 2 4 in decimal: 

*02000/ 
*Ox400/ 
You can also mix numbers and variables. The next example refers to an element of a 
structure starting at address 1000: 

*1000.x/ 
The following example refers to a structure element whose address is at location 1000: 

*1000->x/ 
For commands of the type *1000.x/ and *1000->x/, sdb uses the format of the last 
structure referenced. 

The address of a variable is displayed with the= command: 

*i= 

The dot command redisplays the last referenced variable: 

*./ 

8-12 Programming Tools and Interfaces 



Referencing Arrays, Pointers, and Structures 

The sdb program also works with arrays, pointers, and structures, such as: 

*array [2] [3] I 
*sym. id/ 
*psym->usage/ 
*xsym[20].p->usage/ 

The only restriction is that array subscripts must be numbers. Note that as a special case: 

*psym->/d 

displays the location pointed to by psym in decimal. 

Elements of a multi-dimensional array may be referenced as variable[number][number] ... , 
or as variable[number,number ... ]. Number can be one of the following: 

number;number Indicates a range of values. 

* Indicates all legal values for that subscript. 

omitted Does not use a number parameter to display the full range of values if the 
number is the last subscript. 

As with structures, sdb normally displays all the values of an array or of the section of an 
array if trailing subscripts are omitted. When the = command is applied to an array, sdb 
displays only the address of the array itself or of the section specified by the user if 
subscripts are omitted. The following are all valid references to the two-dimensional array 
a[5][6]: 

*a/ 
*a[2;5] [4]/ 
*a [3] I 
*a[3,4]/ 
*a[*] [3] I 

Debugging Programs 8-13 



Displaying and Manipulating the Source File 

The sdh program allows you to search thrnugh and display portions of the source files for 
a program. You do not need a current source listing. The sdb program keeps track of the 
current file, current procedure and current line. If the core file exists, the current line and 
current file are initially set to the line and file containing the source statement where the 
process ended. Otherwise, they are initially set to the first line in ma i n. While 
manipulating the source file, the values for current line and current procedure may 
change. 

Displaying the Current File 

Four commands exist for displaying lines in the current file: 

p 

w 

z 

ctrl-d 

Print displays the current line. 

Window displays a window of 10 lines around the current line. 

Displays 10 lines starting at the current line. Advances the current line by 
10. 

Scroll displays the next 10 lines and advances the current. line by 10, 

The sdb program displays the line number corresponding to the displayed line. The line 
number not only gives an indication of the relative position of the line in the file, but some 
sdb commands also use it as input. 

Changing the Current File or Procedure 

Use the e command to change the current file or procedure. In both cases, the current line 
becomes the first line in that procedure or file. Use one of the following two forms: 

*e file.c 
*e procedure 
An e command without an argument displays the name of the current file and current 
procedure. 

8-14 Programming Tools and Interfaces 



Changing the Current Line 

The z and ctrl-d commands change the current line in the source file. The following 
commands also change the current line: 

/string/ Searches forward for string. You can omit the second/. 

?string? 

+ [n] 

-[n] 

enter key 

n 

Searches backward for string. You can omit the second?. 

Moves the current line forward n lines. 

Moves the current line backward n lines. 

Moves the current line forward one line. 

Sets the current line to n. 

You can combine these commands with the display commands. The following example 
advances the current line by 15, displays 10 lines, and advances the current line by 10: 

*+15z 

Debugging Programs 8-15 



Controlling Program Execution 

The sdb program allows you to set breakpoints, stopping places in the program. After 
entering sdb, specify what lines in the source program are to be breakpoints. Then run 
the program from within sdb. When the program reaches a breakpoint, it stops running. 
The sdb program reports that it has reached a breakpoint. Then use sdb commands to 
examine the procedure calls and variables. If the program is working correctly to this 
point, you can add or remove other breakpoints and continue running the program. 

An alternative to setting breakpoints is single stepping, which causes the program to run a 
single line of code and then stop. If the procedure was not compiled with the -g flag, the 
program runs until sdb finds a procedure that was compiled with the -g flag. You can also 
execute one assembler instruction at a time. 

Setting and Deleting Breakpoints 

Breakpoints can be set at any line in a procedure that contains executable code. Enter the 
command as follows: 

[procedure][line number]b 
The following examples show how to set a breakpoint: 

*12b 
*samp:l2b 
*samp:b 
*b 

# at line 12 in current procedure 
# at line 12 in procedure samp 
# at the first line of samp 
# at the current line 

The line numbers are relative to the beginning of the file as written by the source file 
display commands. 

Remove breakpoints using the letter d instead of b. The only difference is when using d by 
itself, sdb displays each breakpoint and asks whether to remove it or not. If you respond 
with y or d, sdb removes the breakpoint. 

To display a list of the current breakpoints, use the B command. To remove all of the 
breakpoints, use the D command. Remember that sdb commands are case sensitive. There 
is a big difference between the d command and the D command. 

The b command can also automatically perform a sequence of commands at a breakpoint 
and then continue running the program. For example, the command: 

*12b t;x/ 

displays both a trace back and the value of X each time the program runs line 12. 

8-16 Programming Tools and Interfaces 



The a command is a variation of the above command. There are two ways of using the a 
command: 

*samp: a 
*samp:l2 a 

The first displays the procedure name, in this case samp, and its arguments each time it is 
called. The second displays the source line, 12, each time it is about to be executed. For 
both forms of the a command, execution continues after the procedure name or source line 
is displayed. 

To change the value of a variable when the program is stopped at a breakpoint, use the 
following command format: 

variable!value 
The value may be a number, character constant, register, or the name of another variable. 
If the data type of the variable is float or double, the value can also be a floating-point 
constant. 

Running the Program 

The r command starts running the program. The command format is: 

*r args 

The program runs using the arguments as if they were typed on the shell command line. If 
arguments are not specified, then the arguments from the last execution of the program are 
used. To run a program without arguments, use the R command. 

After the program starts, it runs until one of the following occurs: 

• It reaches a breakpoint 

• A signal, such as INTERRUPT or QUIT, occurs 

• The program ends. 

In each case when the program stops, sdb receives control and displays a message to tell 
why the program stopped. 

Use the c command to continue running a stopped program. To specify a line number in 
the c command: 

*procwild:l2 c 
places a temporary breakpoint at the named line. The breakpoint is removed when the c 
command finishes. There is also a C command which continues execution but passes the 
signal that stopped the program back to the program. Use the C command for testing 
user-written signal handlers. 

Debugging Programs 8-17 



To tell sdb where to start running the program, specify a line number with the g command. 
For example: 

*17 g 
starts the program at line 17 of the current procedure. Use this command to avoid running 
a section of code that does not work. Do not start running in a different procedure than 
the one containing the breakpoint. 

The s command runs a single line of source code. Use it to slowly run the program to 
examine its behavior in detail. The S command is like the s command but does not stop 
within called procedures .. Use the S command to test the calling procedure when the 
called procedure works correctly. 

Use the m command to monitor a specified memory location. The sdb program runs the 
program one line at a time until: 

• The contents of the memory location change 
• A specified number of steps are executed. 

The m command is: 

[variable]$m [count] 
[address]:m [count] 
The following examples show some uses of the mcommand: 

*i$m 
*i $m 10 
*OxlOObc:m 
*OxlOObc:m 5 
If the count is omitted, sdb uses a value of infinity. The current procedure must be able to 
get to the variable. Them command is implemented in software and can be very slow. 

To control how much information is displayed when single-stepping, set the level with the 
v command. The following examples show the range of information available: 

*v # show current file and procedure name 
+h.; r , r +h .... r+,,_..,,.l,,."'rl \I,,_, Ill'"\ 11 r nrl 
1..111.;:> I.;) 1..11c; .;:>l..Ull\..IUI \.A VU I uc; I.A .;:>c;u 

*1 v # also display each source line before execution 
*2 v # also display each assembler statement 

8-18 Programming Tools and Interfaces 



Calling Procedures 

Call any of the procedures of the program from sdb for testing individual procedures with 
different arguments, or for calling diagnostic procedures that format data to aid in 
debugging. There are two ways to call a procedure: 

*proc(argl, arg2, 
*proc(argl, arg2, 

. . . ) 

. . . ) I 
The first way runs the procedure. The second way runs the procedure and writes the value 
that it returns. Use the second way for calling procedures. The value is written in 
decimal unless some other format is specified. Arguments to procedures may be integer, 
character or string constants, or values of variables that are accessible from the current 
procedure. 

Note: If a procedure is called when the program is not stopped at a breakpoint (such as 
when a core image is being debugged) all variables are initialized before the procedure is 
started. This makes it impossible to use a procedure which relies on data from a core 
dump. 

Debugging Programs 8-19 



Debugging Assembler Language 

The sdb program can also examine programs at the assembler language level. It can 
display the assembler language statements associated with a line in the source and place 
breakpoints at arbitrary addresses. The sdb program can also display or modify the 
contents of the machine registers. 

Displaying Assembler Language Statements 

To display the assembler language statements associated with line 25 in procedure main, 
use the command: 

*main:25? 

The? command is identical to the/ command except that it displays from the memory 
space for the program code (text space) instead of the data space. The standard format for 
displaying text space is the i format, which interprets the assembler language instruction. 

Absolute addresses may be specified instead of line numbers by adding a: to them. For 
example: 
*""1('\')JI.') 

VA..i..UL._,.. ~ 

displays the contents of address Oxl024 in text space. Note that the command: 

*Oxl024? 

displays the instruction corresponding to line Oxl024 in the current procedure. You can 
also set or remove a breakpoint by specifying its absolute address. The following example 
sets a breakpoint at address Ox1024: 

*Ox1024:b 

To single-step by assembler instruction rather than source line, use the i command. The i 
command ignores the signal that stopped the program. There is also the I command, which 
causes the program to execute one assembler instruction at a time, but also passes the 
signal that stopped the program back to the program. 

8-20 Programming Tools and Interfaces 



Manipulating Registers 

The x command writes the values of all the registers and the process status word (psw). 

To specify individual registers, append a % to their name. The next example changes the 
value of register r3 to 22: 

*r3%!22 
Use the following names when referring to the registers and pointers: 

• Floating point registers: ID, f2, f4, and f6 

• Frame pointer: r4 or fp 

• Argument pointer: r5 or ap 

The X command displays the value of the Instruction Address Register (IAR) and the 
assembler language instruction at that location. 

Debugging Programs 8-21 



An Example of a Debug Session 

Figure 8-1 shows the use of some sdb commands. 

$ cat testdiv2.c 
main(argc, argv, envp) 
char **argv, **envp; 
{ 

int i; 
i = div2( -1 ); 
printf( 11 -1/2 = %d\n 11 

, i ); 
} 
div2(i) 
{ 

int j; 
j = i»l; 
return(j); 

} 
$ cc-g testdiv2.c 
$ a.out 
-1/2 = -1 
$ sdb 
No core image #Warning message from sdb 
*/ div2 #Search for procedure 11 div2 11 

8:div2(i){ #It starts on line 8 
*z #Print the next few lines 
8:div2(i) 
9:{ 
10: 
11: 
12: 
13:} 

int j; 
j = i»l; 
return(j); 

*div2:b #Place a breakpoint at the beginning of 11 div2 11 

div2:llb #sdb echoes proc name and line number 

Figure 8-1 (Part 1 of 2). Example of Debug Session 

8-22 Programming Tools and Interfaces 



*r #Run the procedure 
a.out #sdb echoes command line executed 
Breakpoint at #Executions stops just before line 11 
div2:ll:j = i>>l; 
*t #Print trace of subroutine calls 
div2(i=-l)[testdiv2.c:ll] 
main(argc=l,argv=Ox7fffff50,envp=Ox7fffff58)[testdiv2.c:4] 
*i/ #Print i 
-1 
*s #Single step 
div2:1l:return(j)#Execution stops just before line 11 
*j/ #Print j 
-1 

#Delete the breakpoint *lOd 
*div2(1)/ 
0 
*div2(-2)/ 
-1 
*div2(-3)/ 
-2 

#Try running 11 div2 11 with different arguments 

*q 
$ 

Figure 8-1 (Part 2 of 2). Example of Debug Session 

Debugging Programs 8-23 



8-24 Programming Tools and Interfaces 



Chapter 9. Installing and Updating a Program 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2 
Understanding System Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3 

Protecting System Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9'-3 
Providing User Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-4 

Using Installation and Update Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-5 
Internal Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6 

What You Need to Install a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-8 
Control Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-9 
Program Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 
Creating the Installation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 

What You Need to Update a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14 
Using the updatep Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17 
Example Update Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18 

Installing and Updating Active Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20 
Installing and Updating /bin/sh or /etc/restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22 

Allowing for Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-23 
Recovering from Kernel or Configuration Changes . . . . . . . . . . . . . . . . . . . . . . . . 9-23 
Sequencing Configuration File Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24 

Creating the Program History File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-25 
Creating the Program Requirements File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-28 

Requirements File Example Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-29 
Creating the Program Name File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-30 
Creating an Apply List File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-31 
Creating an Archive Control File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-32 
Creating a Special Requirement File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-33 

Dependent Program Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-33 
Changes to Report Templates Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34 
IPL Required Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34 
Changes to Configuration Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34 
Changes to VRM Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-34 

Creating a Save and Recover Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-35 

Installing and Updating 9-1 



About This Chapter 

After finishing the development and testing of a program, prepare it to be installed on 
other systems. This chapter describes the operating system services that help simplify 
installation procedures for people using the program. It describes: 

• What the installation services can do 
• What an installation program must do 
• What files to include on the distribution diskette 
• The format of each of the needed files. 

At a later time you may need to change the program to provide additional features, or to 
correct problems encountered in actual usage of the program. This chapter also describes 
the operating system services that help change an installed program. It describes: 

• What the update services can do 
• What an update program must do 
• What files to include on the update diskette. 

Note: If your program includes support for a new device or added features for a currently 
supported device, you must also provide information to be added to the system 
configuration files. This information tells the system how to interface with the new driver 
support. Refer to Appendix E, "Customizing System Files for New Devices" on page E-1 
for information about the type of configuration information you must supply. 

9-2 Programming Tools and Interfaces 



Understanding System Guidelines 

When preparing your program to install on the RT PC system, be aware of how the system 
files are organized so that the program can work as an integral part of the whole system. 
The following paragraphs describe some of the system conventions that any new program 
should follow. 

Protecting System Directories 

Each of the directories supplied with the system has a defined purpose. The permissions, 
owner and group id for these directories are set so that the directories work properly with 
the system programs that use them. 

CAUTION 
Do not change the permission, owner or group id of any system file 
or directory. Changing these permissions prevents the programs 
supplied with the system from operating properly. 
Many of the administrative system functions can be performed by a member of the system 
group without having to log in as root or know the root password. Refer to the description 
of each command in AIX Operating System Commands Ref ere nee to determine which 
functions the system· group can perform. Some sensitive commands are still reserved for 
the person with superuser authority. 

In addition, reserve the following directories for their intended purpose only: 

/ Do not add files or mount file systems to subdirectories in the root file 
system without an urgent need to do so. The root file system contains fixed 
system directories and should not be used for application programs or user 
files. 

/usr 

/usr/bin 

Do not add files or directories to the /usr directory without an urgent need 
to do so. The /usr directory contains files and directories that the system 
uses. 

This directory contains common user executable files and is part of the 
default search path for all users. Put a short binary program or shell script 
in this directory that calls your large executable files. Put the large 
executable files in the directory /usr/lpp/pgm-name (pgm-name is the 
identifier you choose for your program, as described in "What You Need to 
Install a Program" on page 9-8). 

Installing and Updating 9-3 



/usr/lpp 

/n,,.._/l:J... 
/ u.0.1.1.1..1.u 

Create a directory in this directory to store your programs as described in 
"What You Need to Install a Program" on page 9-8. 

Use this directory to store those library files that have general use to all 
users. Store other library files in your directory, /usr/lpp/pgm-name. 

/usr/include Use this directory to store those include files that have general use to all 
users. Store other include files in your directory, /usr/lpp/pgm-name. 

Providing User Documentation 

You should provide documentation along with your program to enable the user to easily 
find any needed information, and to install and run your program properly. Pattern 
installation procedures after the format and steps shown in Installing and Customizing the 
AIX Operating System so that the user can use familiar procedures when installing any 
program on the system. Refer to information in AIX Operating System Technical Reference 
about creating device drivers and about the vrcppr routine when designing the 
installation. In addition to the normal installation and use information, provide 
information about your program's use of disk space in each of the following directories: 

• /usr 
• /usr/bin 
• /usr/lib 
• /usr/lpp 
• /usr /include 

Give usage information in terms of the number of 512-byte blocks that the program uses in 
each of the directories. The information for the operating system and VRM is in Installing 
and Customizing the AIX Operating System. The usage information helps the person 
installing your program determine if there is enough space on the file system to load the 
program. If there is not enough space, refer the user to Using and Managing the AIX 
Operating System for information about expanding an existing file system. Installing and 
Customizing the AIX Operating System contains information about expanding the VRM 
and page space minidisks. 

9-4 Programming Tools and Interfaces 



Using Installation and Update Services 

The installation and update services require only a few simple steps to install the program 
on the system. Typically, the person that installs the program only needs to put the first 
installation diskette in the diskette drive and enter the command: 

installp 
From that point on, messages to the screen tell the person when to change diskettes and 
what the status of the installation is. 

In addition to providing an easy interface for the person installing the program or update, 
installation and update services also help ensure that the installation is correct. They: 

• Maintain an accurate record of the revision state of the program on the system 

• Check the revision level of other needed programs to ensure that they will work with 
the program 

• Provide instructions to install the program 

• Provide online copies of changes to documentation. 

Commands 

Installation and update services provides the following commands to enter from the 
command line to install or update a program. Complete information about the syntax and 
usage of these commands is in AIX Operating System Commands Reference. 

Command Description 

installp Installs the program or programs on the diskette in the specified drive, 
according to an installation program on the installation diskette. 

updatep Installs one or more changes to an installed program. Changes must be in 
backup format, and can be in a file on disk, on tape, or on a diskette in the 
specified drive. Changes can be installed on a conditional basis to try them 
out. At a later time, you can either accept the changes for permanent 
installation or reject them. Rejecting the changes returns the changed 
program to its condition before the changes were installed: 

Figure 9-1. Install and Update Commands 

Installing and Updating 9-5 



Internal Commands 

Once either of the commands is running, the installation or update program can use the 
internal commands to access the installation and update servfoes. Use these commands 
like shell commands. If the installation program is a shell procedure, use the commands 
like any other command. If the installation program is a C language program, use the 
fork and exec system calls, or the system subroutine to run the commands. Detailed 
information about the internal commands is in AIX Operating System Commands 
Reference. The internal commands do the functions outlined in Figure 9-2 on page 9-7. 

9-6 Programming Tools and Interfaces 



Command 

/etc/ ckprereq 

/etc/cvid 

/etc/errupdate 

/etc/inudocm 

/etc/inurecv 

/etc/inurest 

/etc/inusave 

/etc/inuupdt 

/etc/mvmd 

/etc/trcupdate 

Description 

Checks the revision level of programs. 

Backs up the VRM minidisk. Use this command to make an 
install diskette before making any changes to the VRM minidisk. You 
can then recover the previous version from this diskette if the changes 
cause an error. 

Adds, replaces, or deletes the error report format templates in the file 
/etc/errfmt. 

Gets copies of update instructions or book changes to look at or print. 

Recovers all files and archived member files that a previous execution of 
inusave saved. This command also recovers any other saved files 
recorded in the configuration list file, or active list file. 

Does simple restores and archives. 

Saves some, or all, of the files and archived member files that will be 
replaced or modified when the program is installed or updated. 

Applies a maintenance update for a single program. 

Does one of the following actions to a file on a VRM minidisk. 
• Adds a file 
• Deletes a file 
• Replaces an existing file 
• Changes file permissions 
• Moves the position of a file entry in a VRM directory listing. 

Adds, replaces, or deletes trace report format templates in the file 
/etc/trcfmt. 

Figure 9-2. Internal Commands 

Installing and Updating 9-7 



What You Need to Install a Program 

To install a program on the RT PC system using the insiailp command, provide a set of 
control and program files in backup format on the installation media (either diskette or 
magnetic tape). The control files (see "Control Files" on page 9-9) must appear before the 
program files (see "Program Files" on page 9-10). 

Put the control and program files on the installation media using the backup -i command 
(backed up by name). See the description of this command in AIX Operating System 
Commands Reference. In addition, when backing up the files, use a relative path name 
with respect to the / directory on the installed system. For example, to create an 
installation diskette for a single program file (ftrn) to be stored in the /bin directory on 
the target system, provide an ordered list of files to the backup -i command: 

./lpp_name 

./usr/lpp/fortran/liblpp.a 

./bin/ftrn 
The first two files are control files; the last file is the program file (or a group of files). 
This is the minimum required list of files. 

9-8 Programming Tools and Interfaces 



Control Files 

Provide the following control files at the beginning of the installation media: 

• A file named lpp_name that contains the title of the program or programs on the 
installation media (see "Creating the Program Name File" on page 9-30). 

• A library file named ./usr/lpp/pgm-name/lihlpp.a (pgm-name is a name for the 
program with a maximum of 8 lowercase, alphabetic characters). Create this library 
using the ar command. The library contains the following files: 

!pp.hist A file for logging changes to the program (see "Creating the Program 
History File" on page 9-25). 

instal The installation program that installs special features and files that the 
program uses. This program must be either a shell procedure or an 
executable program in a.out format. 

al An apply list file that contains the relative path names with respect to the 
I directory of all files to be restored. 

copyright An optional file that contains appropriate copyright information for this 
program. 

prereq An optional file that lists the programs that the program uses and that, 
therefore, must be installed on the system (see "Creating the Program 
Requirements File" on page 9-28). 

lpp.acf An optional file that defines archiving procedures for the program (see 
"Creating an Archive Control File" on page 9-32). 

config An optional executable file that contains a procedure to update the system 
configuration. This is not the customization helper program specified in 
/etc/master. If the program does not do any customization, the config 
file is not needed. The procedure may be either a shell procedure, or a 
compiled procedure in a.out format. 

!pp.doc An optional file containing changes to the book for the program. 
Other files Other optional files can be added to the end of the archive file as needed 

by special installation programs that you decide to use. 

The installp program restores the library file, ./usr/lpp/pgm-name/lihlpp.a and extracts 
the files in it. Then installp executes your instal program and passes it a single 
parameter that specifies the device containing the restore files. Access this parameter with 
$1 if using a shell procedure or with a r g v [ 1 J if using a C language program: 

main(argc,argv) 
int argc; 
ch a r *a r g v [] ; 

When the instal program returns to installp, installp removes all files that do not begin 
with 1 pp from the directory, /usr/Ipp/pgm-name. Directories in that directory are not 
deleted, however. 

Installing and Updating 9-9 



Program Files 

The program files are the files needed to run the program. Include these files after the 
needed control files in backup -i format. 

Creating the Installation Procedure 

In the archive file ./usr/lpp/pgm-name/liblpp.a, provide an executable file, named instal 
to install the program and its files. The installp program executes this program during 
the installation procedure after it completes its preliminary tasks. 

The installation program can then do some of the following tasks to complete the 
installation of the program. 

1. Ensure that the needed level of other programs are installed on the system using 
ckprereq. 

2. Perform active file processing if any of the files to be restored are being used. See 
"Installing and Updating Active Files" on page 9-20. 

CAUTION 

Do noi use inusave when insialling large programs that will fill 
the disk with the backup files. 

3. Use inusave to back up any files that will be replaced. 

4. Use inui:est to restore files listed in the apply list file, and to archive constituent files. 

5. Customize the system for the program. See AIX Operating System Technical Reference 
and Appendix E, "Customizing System Files for New Devices" on page E-1 for 
information to help you customize the system. 

6. If an error occurs and inusave was previously used, then use inurecv to recover the 
previous state of the system. 

7. If inusave was used, delete the directory, /usr/lpp/pgm-name/inst-updt.save. 

8. Return a completioh--code to the instailp program. 

9-10 Programming Tools and Interfaces 



Restoring the Program Diskette 
After the installation program determines that the needed programs are on the system, it 
can use the inurest command to restore the program diskette. For example, to restore the 
files listed in the apply list file al for the program named myprog, use a shell command in 
the following format: 

/etc/inurest -d device /usr/lpp/myprog/al myprog 
This command restores all files from the specified device. The installation program uses 
the device passed to it by the installp program. The parameter I us r I l pp I my pro g I al is 
the full path name of the apply list file, and myp rog is the name of the program being 
installed. 

Also use the inurest command to archive and then delete any restored archive member 
files. To enable the archive process, include a file lpp.acf in the library 
./usr/lpp/pgm-name/liblpp.a on the product diskette. See "Creating an Archive Control 
File" on page 9-32 for the format of this file. If this file is present, inurest archives and 
then deletes all restored files that are listed in both lpp.acf and the apply list file (al in the 
example). 

Quiescing the System 
When installing the program, the installp and updatep programs instruct the user that he 
must be working with a quiet system (one that has just been started and has no other users 
or user programs running). The instal or update procedure expects that the system is in a 
quiet state. 

Allowing for Individual Needs 
The installation program may need to do some special tasks to ensure that the program 
operates properly. Special tasks to take care of include the following: 

• Use the inurest command together with an apply list file and archive control file to 
store files in a library. 

• Display progress messages during the different stages of the installation procedure. 

• Recover from errors, or back out of the installation if errors occur. 

Customizing the System for a Program 
If a program requires changes to the system configuration, such as adding a new device 
driver, include a procedure to do this customization task. This procedure must be called 
config and must be in the archive file ./usr/lpp/pgm-name/liblpp.a when the program is 
installed. Create an input file containing the stanzas to be added to the customization 
files. The stanzas may include a device stanza for the device and device driver stanzas 
associated with the device for both the VRM and the operating system. Refer to 
Appendix E, "Customizing System Files for New Devices" on page E-1 for more 

Installing and Updating 9-11 



information about providing configuration information to the system. Steps you may need 
to include in the customization procedure are: 

• Archive any new device driver code into the kernel libraries. 

• Back up system files that may be changed, such as: 

/etc/master 
- /etc/system 
- I etc/predefined 

• Restore any /etc/ddi files which may be associated with the new device. 

• Use the cfgcopsf routine to open the input file. 

• Use the cfgcrdsz routine to read each stanza from the input file. 

• Use the cfgddev routine to delete device stanzas from /etc/system, if appropriate. If 
the the program is reinstalled, remove previous device stanzas before adding the same 
device stanzas. 

• Use the cfgadev routine to add device stanzas to /etc/system and to add operating 
system and VRM device driver stanzas to /etc/master. The cfgadev routine receives 
a pointer to a device stanza to add to /etc/system, and pointers to an operating system 
and a VRM device driver stanza. It adds each of these device driver stanzas to 
/etc/master. 

• Use the cfgcadsz routine to add any device stanzas to /etc/predefined. If the new 
device associated with the program can be deleted from the system, adding the device 
stanza to /etc/predefined allows users to add the device again by using the devices 
command. 

• Use the cfgcclsf routine to close the input file. 

• Return a completion code to instal. 

Refer to AIX Operating System Technical Reference for detailed information about the 
subroutines and file formats for customizing the system files. 

9-12 Programming Tools and Interfaces 



Sending a Return Code to installp 
When the installation program completes, it must send a return code to the installp 
program. This return code signals the end of the install program, and determines what 
actions the installp program will do next. Use one of the following values for a return 
code: 

Code Description 

0 Successful completion. No additional action is needed. 

2 Successful completion. The installp program updates superblocks, the i-node list, 
and flushes the buffers (sync). Then it performs an IPL on the operating system. 

3 Successful completion. The installp program uses the cfgaply routine to build a 
new kernel. Then it updates superblocks, the i-node list, and flushes the buffers. 
Then it instructs the user to IPL the system and shuts down the VRM system. 

4 Successful completion. The installp program uses the cfgaply routine to build a 
new kernel. Then it updates superblocks, the i-node list, and flushes the buffers 
before it performs an IPL on the operating system. 

5 Installation cancelled by the install procedure without errors. 

6 Successful completion. The installp program updates superblocks and the i-node 
list, and flushes the buffers (sync). Then it instructs the user to IPL the system 
and shuts down the VRM system. 

other Error. The installp program sets the Version, Rel ease and Level fields of the 
last information record in !pp.hist to all zeros, and writes the return code value in 
!pp.hist as an error code. 

Figure 9-3. Return Codes to installp 

Installing and Updating 9-13 



What You Need to Update a Program 

Note: When providing an update for a program that has had previous updates, all 
previous updates since the last release of the program must also be supplied on the update 
media to ensure that the current update can be installed successfully. 

To update a program on the RT PC system using the updatep command, supply the 
following files on the first diskette of the product update. All files are in the format used 
by the backup command, and must be backed up by name, using a relative path name 
with respect to the/ directory on the target system. The files must be in the following 
order: · 

1. An optional file named ./copyright that contains a copy of the copyright information 
of each program on the diskette. If this file is present, it must be the first file on the 
diskette. It is referenced by the external diskette copyright label if there is not enough 
space on the label to include all of the appropriate copyright notices. 

2. A file named ./lpp_name that contains the title of each program (see "Creating the 
Program Name File" on page 9-30) 

3. A library named ./usr/sys/insLupdt/control and created with the ar command that 
contains the following files: 

pgm-name_vrl 
A file for each program to be updated that contains the version, release and 
level numbers of the program after the update has been applied. The format 
of the one-record file is: 

VV RR LLLL 
which is similar to all version numbers used in this section, except that 
there are spaces between the version, release and level numbers instead of 
periods. The record ends with a new-line character. 

9-14 Programming Tools and Interfaces 



lppsize 
An optional file that contains an entry for each program that is being 
updated. Each entry contains: 

pgm-name size 
The size parameter specifies the size of the update for the indicated program 
in 512-byte blocks. The two parameters must be separated by a blank. Each 
entry ends with a single new-line character. 

The updatep program uses the size information to determine if there is 
enough space in the /usr file system to save the old versions of the program 
during the update procedure. If the size of the programs being added is 
larger than the available free space in the /usr file system, updatep gives 
the user the following options: 

• Stop the update 

• Continue with the update 

If the user continues, updatep does not save the current versions of the files 
and automatically commits the update. The previous version of the program 
cannot be recovered. 

Although this file is optional, you should include an lppsize file in all 
program updates. If updatep does not find this information, it does not 
check to see if there is enough space to save the previous version of the 
program. 

pgm-name_instr 
An optional library, one for each program being updated, that contains a set 
of files that contain instructions. If you do not provide instruction files, do 
not include this library. These files are standard text files. They are named 
according to the update level to which they apply, according to the format: 

ui .VV.RR.LLLL 
In this format the symbols VV, RR and LLLL represent the version, release 
and level numbers. You can have instruction files for one or more of the 
program levels that are being updated. 

pgm-name_erata 
An optional library, one for each program being updated, that contains a set 
of files that contain changes to the book(s) for the program. If you do not 
provide changes to the books, do not include this library. These files are 
standard text files. They are named according to the update level to which 
they apply, according to the format: 

me.VV.RR.LLLL 

Installing and Updating 9-15 



In this format the symbols VV, RR and LLLL represent the version, release 
and level numbers. You can have book change files for one or more of the 
program levels being updated. 

4. One file named ./usr/sys/insLupdt/special that identifies special update 
requirements for each program being updated. See "Creating a Special Requirement 
File" on page 9-33 for information about this file. 

5. Program data for each program being updated, consisting of the following: 

• A library, created with the ar command and named 
./usr/lpp/pgm-name/inst_updt/arp, that contains the following files: 

update 

config 

An executable file that contains a procedure to update the program. The 
procedure may be either a shell procedure, or a compiled procedure in 
a.out format. 

An executable file that contains a procedure to update the system 
configuration. If the program does not do any customization, this file is 
not needed. The procedure may be either a shell procedure, or a 
compiled procedure in a.out format. 

aLVV.RR.LLLL 

lpp.acf 

copyright 

An apply list file that contains the relative path names with respect to 
the i directory of all files to be updated. See "Creating an Apply List 
File" on page 9-31 for information about the file format. Include one 
apply list file for each update to the program. The symbols V , R and L 
represent version, release and level numbers as described in "Creating 
the Program History File" on page 9-25. 

An optional file that defines archiving procedures for the program as 
described in "Creating an Archive Control File" on page 9-32. 

An optional file that contains appropriate copyright information for this 
program. If this file is present, updatep displays the contents of this file 
when it applies the update to this program. 

• The new and replacement program files. 

In addition, be sure to provide instructions for the update in the instr file (optional), 
instead of providing a manual that tells the operator how to do procedures required to 
update the program. This information should supply information needed for special 
configurations. 

9-16 Programming Tools and Interfaces 



Using the updatep Program 

In the library ./usr/lpp/pgm-name/inst_updt/arp, provide a program, named update to 
do the update procedures that the program needs. The updatep program executes this 
program during the update procedure after it does the following preliminary tasks: 

1. Restores the library that contains the update control files. 

2. Determines which files need to be updated. 

3. Extracts the update procedure update from the library file. 

4. Starts the update procedure. 

When the update procedure completes, the updatep program does the following cleanup 
tasks: 

1. Updates the !pp.hist file to the indicated revision level 

2. Performs any IPLs, kernel rebuild or shutdown based on the code returned by the 
update procedure. 

Sending a Return Code to updatep 
When the update program completes, it must send a return code to the updatep program. 
This return code signals the end of the update program, and determines what actions the 
updatep program will do next. Use one of the following values for a return code: 

Code Description 

0 Successful completion. No additional action is needed. 

2. Successful completion. The updatep program updates superblocks and the i-node 
list and flushes the buffers (sync). Then it performs an IPL on the operating 
system. 

3 Successful completion. The updatep program uses the cfgaply routine to build a 
new kernel. Then it updates superblocks and the i-node list and flushes the 
buffers. Then it instructs the user to IPL the system and shuts down the VRM 
system. 

4 Successful completion. The updatep program uses the cfgaply routine to build a 
new kernel. Then it updates superblocks and the i-node list and flushes the 
buffers before it performs an IPL on the operating system. 

Figure 9-4 (Part 1 of 2). Return Codes to updatep 

Installing and Updating 9-17 



Code Description 

5 Update cancelled by the update procedure without errors. 

6 Successful completion. The updatep program updates superbiocks and the i-node 
list and flushes the buffers (sync). Then it instructs the user to IPL the system 
and shuts down the VRM system. 

7 The update was cancelled by the update procedure with errors. The updatep 
program recovers the previous state of the system. 

Figure 9-4 (Part 2 of 2). Return Codes to updatep 

Example Update Procedure 

Figure 9-5 on page 9-19 shows a simple example shell procedure to update an example 
program. The example procedure is simple. It would be more complicated if the update 
included a kernel update and required an IPL following the update. In this program the 
parameters have the following meaning: 

$2 

A variable that passes the full path name of the apply list file to the update 
procedure. 

A variable that passes the device path, usually /dev /rfdO. 

programname The name of the program (up to 8 characters) 

9-18 Programming Tools and Interfaces 



programname = pgm-name 
/etc/inusave $1 11 $programname" 
re=$? 
if test $re -ne 0 
then 

exit $re 
f i 

# return an error code 

/etc/inurest -d 11 $2 11 $1 11 $programname 11 

re=$? 
if test $re -ne 0 
then 

exit $re 
f i 

#The following section exits with a return 
# code of 4 ( kerne 1 rebuild) if fi 1 e myfile.o 
#was included in the apply list. 

fgrep myfile.o $1 
re=$? 
if test $re -eq 0 
then 

exit 4 
f i 

exit 0 

Figure 9-5. Example of update Procedure Code 

Installing and Updating 9-19 



Installing and Updating Active Files 

\Vhen using i:nstallp and updatep with files on the system that are active at the start of 
the installation, the instal or update procedure provided with the program should ensure 
that the files are not active during the installation. The following suggestions can help to 
ensure that active files are installed correctly: 

1. Identify all files in your installation or update that could be active at the start of the 
procedure, or that may become active during the procedure. The following files are 
among those that are active even in a quiesced state: 

• /bin/sh 
• /etc/cron 
• /etc/qdaemon 
• /etc/init 
• /usr/lib/errdemon 
• /usr/lib/errpd 

If you do not have any potentially active files, ignore the rest of these guidelines. Do 
not perform any of this processing on active files that are not included in the apply 
list. 

2. In the instal or update procedure, provide code that performs the following functions 
in the indicated order: 

a. Call inusave as part of the normal procedure. 

b. First delete and then create a temporary directory named inst_updt.actv for each 
file system that is being updated. Each directory must be at the top level of the file 
system. For example, for active files in the /usr file system, the temporary 
directory must be /usr/inst-updt.actv. From a shell procedure, use the rm -rf 
command to delete the directory to prevent messages from being displayed. If an 
error occurs, return from the procedure with an error code of 40. 

9-20 Programming Tools and Interfaces 



c. Move all potentially active files in each file system to the temporary directory for 
that file system and rename the files in the format of act i v e . n, where n is an 
integer or other unique identifier for each file. If an error occurs, return from the 
procedure with an error code of 50. 

d. After moving each file, make an entry in the file 
/usr/lpp/pgm-name/inst_updt.save/active.list. (pgm-name represents the name 
of the program being installed.) The format of an entry in this file is: 

active.n pathname dirname 
Where: 

n is an integer or other identifier to identify the file in the directory. 
pathname is the full path name of the active file before being moved. 
dirname is the full path name of the temporary directory. 

For example, if the first active file is /etc/init, the entry in active.list is: 

active.l /etc/init /inst_updt.actv 
e. Copy the moved files from the active directory back to their original positions. 

f. Call inurest to restore the updated versions of the files. 

g. When the procedure completes successfully, return with one of the following codes: 

2 If an operating system IPL is required 
3 If the kernel must be rebuilt and a shutdown is required 
4 If the kernel must be rebuilt and an operating system IPL is required. 
5 If updatep cancels the update without an error occurring 
6 If a shutdown is required 
7 If updatep cancels the update with errors. 

For updates, ensure that the special file indicates that an IPL is required. If active 
files have been changed, return a code that causes updatep to IPL the system. 

For installations, tell the user in the written instructions that the installation 
performs an IPL when it completes. 

h. If inurest does not complete successfully, your procedure should: 

• If installing, call inurecv to recover the previous version (including any active 
files), log the error condition in the history file, and return,the inurest return 
code to installp. 

• If updating, return the inurest return code to updatep. updatep then calls 
inurecv to recover the previous version (including any active files). 

Installing and Updating 9-21 



Installing and Updating /bin/sh or /etc/restore 

The two files /bin/sh and /etc/restore are special case active files. Use the following 
guidelines to install or update these files: 

1. The user moves the file to a different name. 

2. The user restores the file by name from the restore diskette. 

Note: If the file /etc/restore is being changed, the user must use the name of the file 
where he moved this file. 

3. If /bin/sh was restored, IPL the operating system. 

4. The user executes the updatep or installp program. 

Use an update instruction to tell the user how to perform the update, and how to recover 
from any errors. If the update fails or is rejected, the user must move the saved copies of 
these files back to their original positions. If /bin/sh is moved, IPL the operating system. 

9-22 Programming Tools and Interfaces 



Allowing for Recovery 

The update program requires that you save enough information to allow it to recover the 
previous level of the program being updated. For simple updates you can save this 
information from your update procedure by calling inusave before trying to change 
anything. The inusave program saves the current version of any normal files, and can 
also save any constituent file in the directory /usr/lpp/pgm-name/inst-updt.save if you 
request that they be saved. 

The update program either restores or deletes the saved files, depending upon how the 
update turns out. It deletes the saved files if: 

• The user commits (accepts) the update 

• An error occurs during the update process, but before any files have been changed by 
the update process. 

It recovers the saved files if: 

• The user rejects the update 

• An error occurs during the update process after files have been changed by the update 
process. 

Recovering from Kernel or Configuration Changes 

When your program makes changes to either the kernel or configuration files, you must 
provide additional information and take extra steps. Supply an update instruction to 
inform the user that the kernel or a particular configuration file is being changed. Include 
in the instruction a warning that the files involved in the changes must not be further 
changed until the user either commits or rejects the update. 

In addition, your update procedure must include instructions to perform the following 
steps controlled by the information contained in the apply list file, al: 

1. Copy the current level of the file(s) being changed (either the kernel or the 
configuration file) into a file named, 

/usr /1 pp/pgm-name/i nsLupdt. save/confi g. n 

In this name, the letter n is a unique number assigned by the procedure. 

2. Add an entry in the file, 

/usr/lpp/pgm-name/inst-updt.save/config.list 
to document the saved file. Your procedure may need to create config.list if it does 
not already exist. 

Installing and Updating 9-23 



3. Run inusave. 

4. Run inurest. 

5. Perform any configuration dependent operations. 

6. Return one of the following exit codes to inuupdt: 

Sync and reboot 2 
4 Use cfgaply to build the kernel. Then sync and reboot. 

By following the preceding procedure, your program creates a copy of the current level of 
the updated file and provides information about whether a reboot is required to recover the 
current level. The update program can then recover from a rejected update. 

Sequencing Configuration File Updates 

When a program changes a particular configuration file more than once over a period of 
several updates, the changes must always be applied in the same order until the next 
release of the program. Your program's update procedure must adopt a file naming 
convention to allow it to do the updates in the required order. 

For example, if a program contains changes for a configuration file called 
/etc/confi g. l in its updates numbered 01. 00. 0010 and 
could be contained in files named: 

/usr /1 pp/pgm-name/ confi g. l/f .1 
/usr/l pp/pgm-name/confi g. l/f. 2 

('\ 1 ('\ ('\ ('\ ('\ ') ('\ .L 1_ - - - -- _1 - .L - -
v .i.. vv. VV.JV, LHe upua1,1;:;i:) 

If the program being updated is at level 0000, the two changes could be applied in order. 
Similarly, if the program being updated is at level 0020, only the level 0030 change file 
would be included in the update apply list. 

9-24 Programming Tools and Interfaces 



Creating the Program History File 

The program history file /usr/lpp/pgm-name/lpp.hist contains information to identify the 
installed release and version of a program on the system. This file is an ASCII file. List 
these files to see samples of history files that exist on the system. See also AIX Operating 
System Technical Reference for more information about the history file. 

Figure 9-6 shows the record format of the history file. Figure 9-7 defines the fields in the 
history record. 

Character Position 

1 3 11 18 29 36 45 80 

slpgm-namelllllllVV. RR. LLLLIDDMMYYlusernamel--------- comment field ---------\n 

I - indicates a blank position 

\n - indicates a single new-line character. 

Figure 9-6. Record Format for the History File 

Installing and Updating 9-25 



Field 

s 

pgm-name 

vv. 

RR. 

LLLL 

DDMMYY 

Description 

Indicates the condition that the program is in, using the following characters: 

a An update was applied. 
c An update was committed (accepted). 
r An update was rejected. 
t This record is a title record. Positions 3 through 32 contain a title 

v 

* 

for the program. 
The VRM minidisk has been changed. This entry occurs only in 
the VRM history file (refer to Virtual Resource Manager Technical 
Reference for more information). 
This record is a comment field (put an* in position 79 to ensure a 
full length record). 

The name assigned to the program (lowercase alphabetic characters only). If 
the name is less than 8 characters, the field must be filled out with blanks. 

A 2-digit numeric field followed by a period indicating the version level of the 
program. The version number indicates which level of the hardware and 
operating system the program works with. 

A 2-digit numeric field followed by a period indicating the release number of 
the program. The release number tracks changes to external programming 
interfaces since the last version change. This number increments each time 
the external interface to the program changes. 

A 4-digit numeric field indicating the update state of the program. This field 
increments when the program changes and the change does not affect external 
programs that may use the documented external interface for the program. 
The level, together with the S field, ensures that all changes up to and 
including the current change are installed on the system. Change only the 
high-order 3 digits; the low-order digit is used for local changes. 

These three numeric fields indicate the date of the change to the program: 

DD Day of the month (01 to 31) 
MM Month of the year (01 to 12) 
VY Year (00 to 99) 

Figure 9-7 (Part 1 of 2). Fields in a History Record 

9-26 Programming Tools and Interfaces 



Field Description 

username An alphanumeric field that contains the user ID of the person that installed 
the program. If the user ID is less than 8 characters, this field must be filled 
out with blanks. This field is filled in at installation time, and can be blank 
when the update is distributed. 

comment A 35-character field for adding comments. 
field 

\n A required new-line character. 

Figure 9-7 (Part 2 of 2). Fields in a History Record 

Installing and Updating 9-27 



Creating the Program Requirements File 

You can use the ckprereq routine to determine if required programs are already installed 
on the system. The ckprereq routine uses the program requirements file prereq to make 
that determination. This file is an ASCII file. Figure 9-8 shows the record format of an 
entry in the requirements file. Figure 9-9 defines the fields in the requirements record. 

Character Position 

9 16 18 last character 
~-1--1 ,,___ __ / I 

prereq-plllHHsl---- requirement stri n.g ---- \n 

I - indicates a blank 

\n - indicates a single new-line character. 

Figure 9-8. Record Format for Requirements File 

Field 

prereq-p 

s 

Description 

An 8-character alphabetic field that contains the pgm-name of the program 
that is required. 

ckprereq result code: Leave this field blank. The ckprereq command fills 
in this I-character field with one of the following letters: 

1 
n 
r 
s 
v 
blank 

The requested level is not installed on the system. 
A history file for that program is not installed on the system. 
The requested release is not installed on the system. 
The prereq file entry has a syntax error. 
The requested version is not installed on the system. 
The prerequisite program is installed on the system in the proper 
configuration. 

Figure 9-9 (Part 1 of 2). Fields in Requirements Record 

9-28 Programming Tools and Interfaces 



Field Description 

requirement A set of logical expressions that define the version, release and level 
string parameters that the prerequisite program must have. Use the following 

symbols to build expressions as shown in "Requirements File Example 
Entry." 

\n 

v 
r 
1 
< 
> 

0 

integers 

Version 
Release 
Level 
Less than 
Greater than 
Equal 
Logical OR 
Parameter values 

Required new-line character 

Figure 9-9 (Part 2 of 2). Fields in Requirements Record 

Requirements File Example Entry 

For example, the following entry: 

myprog v=2 r>30 o =10 o =15 
in a requirements file indicates that: 

• The program myprog is a required program 
• It must be version 2 
• Any level is valid (l is not specified) 
• The release may be either 10, 15 or greater than 30. 

Installing and Updating 9-29 



Creating the Program Name File 

The program name file contains the names of the programs on the set of installation or 
update diskettes. Name this file .jlpp_name. It contains one or more entries. 

Figure 9-10 shows the format of an entry in the program name file. Figure 9-11 defines the 
fields in the entry. 

Character Position 

47 or 
9 17 last character 

I 

pgm-nameHHHH- tit I e (up to 30 chars) -\n 

1- indicates a blank 

\n- indicates a single new-line character. 

Field Description 

pgm-name 

title 

\n 

Figure 9-11. 

The name assigned to the program (lowercase alphabetic characters only). 
If the name is less than 8 characters, this field must be filled out with 
blanks. 
A descriptive title of up to 30 characters. 

A required new-line character. 

Fields in Program Name Entry 

9-30 Programming Tools and Interfaces 



Creating an Apply List File 

The apply list file contains an entry for each file to restore during an installation or an 
update procedure. The apply list file for an install, or the merged apply list for an update 
cannot be larger than 14K bytes. If the list is larger, then the change should not be an 
update. Use the install procedure to replace the program. Your instal program should 
then use the restore command, rather than inurest to restore the files. 

Each entry in the file is a relative path name. The installp and updatep programs set the 
current directory to/ before doing the restore operations. Therefore, the path names in 
this file specify the full installed path name of the file relative to/. For example, if the 
apply list file contains the following entry: 

./usr/bin/newcmd 
the program will be installed as /usr /bin/newcmd in the system. 

Installing and Updating 9-31 



Creating an Archive Control File 

The instail and update programs use the archive control file to replace individual member 
files into libr.aries that other programs own, such as adding a new file to the kernel. The 
update program also uses the archive control file to replace individual member files in 
libraries that it owns. 

Supply an archive control file in the library liblpp.a for an install or in the arp file for 
an update (if the archive control file is not already present, or if the archive control file 
needs to be changed for the update procedure). The archive control file allows you to: 

• Save a library member file 

• Archive restored files into a library 

during an installation or update procedure. The archive control file lists the library 
member files to save along with the name of the library file where the file can be found. 
Name the archive control file lpp.acf. This file consists of one or more lines. Each line 
has the following format: 

filename archive-file 

The parameters on each line are separated by one or more blanks, and have the following 
meaning: 

filename 

archive_file 

The relative full path name (with respect to/) where the library 
member file should be restored. 

The full path name of the library file that contains the member file 
filename. 

When lpp.acf is present, the installation program can use the inusave command to save 
the listed files before it installs an update to the files. The inusave command compares 
the filename parameters in this file with the files to be updated (listed in the apply list 
file). If the same filename appears in both places, the inusave program saves the old 
version of the file before copying the new version of the file into the system. The inusave 
program does not produce an error message if a file listed in the apply list file does not 
exist. The inurest command also uses lpp.acf to archive the listed files. 

9-32 Programming Tools and Interfaces 



Creating a Special Requirement File 

The updatep command uses the special requirement file to determine the grouping of 
descriptive titles to be displayed to the user during the update procedure. You must 
provide this file, even if it is zero length (empty). Name this file 
./usr/sys/insLupdt/special. Depending on the program and the update being applied, 
this file can contain many types of entries, as described in the following paragraphs. 

Figure 9-12 defines the variable parameters used in the following paragraphs. 

Entry Definition 

pgm-name The name of the program. 

other-pgm The name of another program that this program depends on. 

LLLL The level of the program that causes the change. 

\n Required new-line character. 

Figure 9-12. Requirements File Parameters 

Dependent Program Entry 

The dependent program entry indicates that this update includes changes for another 
program that must also be applied. The format of this entry in the special requirement file 
is: 

coreq pgm-name LLLL other-pgm \ n 

If the special requirements file contains another entry for either of the programs listed in 
the dependent program entry, then both programs must be updated by themselves. They 
cannot be updated together as dependent programs. Include information in your update 
instructions to tell the user to update both programs independently. 

Installing and Updating 9-33 



Changes to Report Templates Entry 

This entry indicates that the update includes changes to the report templates for error 
tracking or trace reports. These templates are in the files ietcierrimt and ietcjtrcfmt. 
When this entry is present, the update for the program must be installed and accepted 
independent from updates for other programs. When using this entry, use an update 
instruction in the instr file to tell the user to recover the template files that were saved 
during the update procedure. The format of this entry in the special requirement file is: 

ras pgm-name LLLL\n 

IPL Required Entry 

This entry indicates that the operating system must be loaded and started again following 
installation of this update. When this entry is present, the update for the program must be 
installed and accepted independent from updates for other programs. The format of this 
entry in the special requirement file is: 

ipl pgm-name LLLL\n 

Changes to Configuration Entry 

This entry indicates that the update includes a change to the system configuration. When 
this entry is present, the update for the program must be installed and accepted 
independent from updates for other programs. The format of this entry in the special 
requirement file is: 

confi g pgm-name LLLL\n 

Changes to VRM Entry 

This entry indicates that the update includes a change to the VRM. when this entry is 
present, the update for the program must be installed and accepted independently from 
updates for other programs. The format of this entry in the special requirement file is: 

vrrn pgm-name LLLL\n 

9-34 Programming Tools and Interfaces 



Creating a Save and Recover Directory 

The save and recover directory (/usr/lpp/pgm-name/insLupdt.save) contains copied files 
and extracted archived files that were saved during a reinstallation, or during application 
of an update. If a reinstallation procedure created the directory, the installation procedure 
must run inurecv if an error occurs, or delete the directory when installation is complete. 
If an update procedure created the directory, the directory exists until the update is either 
committed or rejected, or until updatep recovers the directory because of an error during 
the update procedure. At that time the updatep program deletes this directory, after 
recovering the saved files if the update was rejected. However, if the update is rejected 
without automatic recovery, the directory is not deleted to allow for manual recovery of 
the saved files. The directory must then be manually deleted after the files are recovered. 

The directory contains the files listed in Figure 9-13. The order is not important. The 
directory can contain only the file names in the list. 

File 

update.list 

update.n 

Contents 

An optional file that lists any regular files that were saved in this 
directory as described by update.n below. This file consists of one 
record for each file saved. This record has the following format: 

update. n pathname\n 
Where pathname is the full path name of the file when it is restored on 
the system, and \n represents a single new-line character. 

A file named in this form for each record in the update.list file. In 
this form for naming the file: 

update Identifies the file as a backed up file. 
n Is an integer. Each backed up file has a unique n 

associated with it, starting with 1 for the first file backed 
up. For example, three backed up files have the names 
update. 1, update. 2 and update. 3. 

Figure 9-13 (Part 1 of 4). Save/Restore Directory Content 

Installing and Updating 9-35 



File 

archive.list 

archive.n 

config.list 

Contents 

An optional file that lists any archived files that were extracted and 
saved in this directory as described in archive.n below. This file 
consists of one record for each archive file saved. This record has the 
following format: 

archive. n member-name archive-name\n 
Where member-name is the full path name of the file when it is 
restored on the system, archive-name is the full path name of the target 
archive file where this file belongs, and \n represents a single new-line 
character. 

A file named in this form for each record in the archive.list file. The 
file contains the file that was saved as listed in the archive.list file. 
In this form for naming the file: 

archive Identifies the file as a backed up archive file. 
n Is an integer. Each backed up file has a unique n 

associated with it, starting with 1 for the first file backed 
up. For example, three backed up files have the names 
archive .1, archive. 2 and archive. 3. 

An optional file that lists any configuration files that were saved in 
this directory as described in config.n below. This file consists of one 
record for each configuration file saved. This record has the following 
format: 

confi g. n pathname\n 
Where pathname is the full path name of the configuration file when it 
is restored on the system, and \n represents a single new-line 
character. 

Figure 9-13 (Part 2 of 4). Save/Restore Directory Content 

9-36 Programming Tools and Interfaces 



File 

config.n 

active.list 

active.n 

Contents 

A file named in this form for every record in the config.list file. The 
file contains the file that was saved as listed in the config.list file. In 
this form for naming the file: 

config 
n 

Identifies the file as a backed up configuration file. 
Is an integer. Each backed up file has a unique n 
associated with it, starting with 1 for the first file backed 
up. For example, three backed up files have the names 
confi g .1, confi g. 2 and confi g. 3. 

An optional file that lists any active files that were saved by the 
program procedure. This file consists of one record for each active file 
saved. Each record has the format: 

active. n filename directory\n 
In this form the entries mean: 

n An integer that identifies the active file. 
filename The full path name of the active file before it was saved in 

the indicated directory 
directory The full path name of the directory where the active file is 

saved 
\ n A single new-line character 

A file named in this form for every record in the active.list file. The 
file contains the file that was saved as listed in the active.list file. In 
this form for naming the file: 

active Identifies the file as a backed up active file. 
n Is an integer. Each backed up file has a unique n 

associated with it, starting with 1 for the first file backed 
up. For example, three backed up files have the names 
active .1, active. 2 and active. 3. 

Figure 9-13 (Part 3 of 4). Save/Restore Directory Content 

Installing and Updating 9-37 



File 

uniq-dir.Iist 

Contents 

An optional file that lists any install or update directories that were 
created during the process of archiving library members during an 
update. It permits updatep to delete any inst-updt/libname 
directories when committing or rejecting an update (except for the 
directories /usr/sys/inst-updt and /usr/lpp/pgm-name/inst-updt 
which are used by the update process). The file consists of one record 
for each member file in the directory that is created. The record 
consists of the full path name of the member file: 

/path/i nst-updt/ libname/member 
In this form the parts have the following meanings: 

path The full path name to the inst-updt directory 
libname The name of the library that was created 
member The name of the member file 

Figure 9-13 (Part 4 of 4). Save/Restore Directory Content 

9-38 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Chapter 1. Programming with RT PC 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2 
Programming Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 

Entering a Program . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
Checking a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 
Compiling and Linking a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
Correcting Errors in a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 
Building and Maintaining a Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4 

Shared Libraries ........ ·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4.1 
Creating a Shared Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4.1 
Shared Library Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4.2 
Installing Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4.2 
Linking Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4.3 
Changing Shared Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4.3 

Programming Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
Shell Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5 
Library Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 
System Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 

Using the Programming Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7 

Programming with RT PC 1-1 



TNL SN20-9797 (26 September 1986) to 55X8932 

About This Chapter 

This chapter describes the IBM RT PC tools and services for developing application 
programs. In addition, it indicates where to get more information about these facilities, 
both in this book and in other RT PC books. 

1-2 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

1 Shared Libraries 

With traditional libraries, each program has a private copy of the program text for each 
library module it uses. The AIX shared library facility lets multiple processes share the 
same copy of program text. The text is the executable portion of a program. The programs 
are linked as before, but the text has been removed from each object module and combined 
into one text image that is loaded at runtime and shared by many programs. 

Shared libraries offer the following b~nefits: 

• Programs that use shared libraries may use less disk space because the text sections for 
shared routines are not linked into each executable program. 

• Processes that use shared libraries may require less main memory because the shared 
text sections are only mapped into main memory once. 

• The system may require less time to load programs that use shared libraries because 
the shared text image may already be in main memory. 

• Fewer page faults may be generated 'when shared libraries are used because the shared 
text image may already be in main memory. This can result in reduced disk activity 
which in turn can sometimes result in better response time. 

1 Creating a Shared Library 

Use the shlib command to create a shared library. shlib accepts the names of object 
modules or archive libraries (created by the ar command) as input and creates a shared 
library as output. See AIX Operating System Commands Reference for specific information 
about using the shlib command. 

You can use object modules produced by the C and Fortran compilers without modification 
as input to shlib. You can also use assembler language routines as input if there are no 
external references in the text section other than call or callr instructions. You cannot 
use an object file that is already shared as input. 

The shlib command copies the text section of each input module into one shared library 
text image. A shared library key is added to the header of each input module and the key 
identifies the name of the shared library text image so each module can be linked correctly 
by the Id command. 

It is important that you keep the original object files so you can rebuild the libraries if 
they change. 

Programming with RT PC 1-4.1 



TNL SN20-9797 (26 September 1986) to 55X8932 

1 Shared Library Keys 

You can use the -k option of the shlib command to assign a specific shared library key. 
The default key is the name of the first archive or object file on the shlib command line. If 
you do not supply a suffix for the key, the Julian date is appended in the form yyddd 
where yy is the year and ddd is the sequential day within the year. shlib puts the key in 
each modified output file and Id (the link program) includes the key in every program that 
uses the shared library text image. 

You can use the -r option of shlib to include an arbitrary character string in the shared 
library text image in addition to the key name. 

You can use the what command to display all shared library keys a program uses and the 
key embedded in a shared library text image. Use the -b option of the dump command to 
display the key for the shared library an object module belongs to. 

Normally, the system appends the key name to each LIBPATH directory to form the path 
name of a possible shared library, in the same way the shell searches for programs using 
PATH. However, if a shared library key begins with a / (slash), it is treated as an absolute 
name; the system does not append any directories to the key name, and the system 
attempts to open a file with that name. 

1 Installing Shared Libraries 

After you build a shared library, you need to install the text image in an appropriate 
library directory. If the shared library is not installed in /lib or /usr /lib, users of programs 
that are linked to the shared library need to define the LIBP ATH environment variable to 
include the directory containing the shared library text image. The LIBP ATH variable 
defines the search path for a shared library text image in the same manner the PATH 
variable defines the search path for a file. The system searches for the shared library as 
follows: 

• If the LIBP ATH variable is defined, the system combines the path names found in the 
LIBPATH variable and the library key found in the a.out header and searches for a 
shared library with that combined name. If the search does not produce a match, an 
error message is printed and the program is not started. 

• If the LIBP ATH variable is not defined, then the directories /lib and /usr /lib are 
searched for the shared library name. 

• If the program has the setuid or setgid flags set, only /lib and /usr /lib are searched. 
This prevents someone from replacing a library call with another, assuming write 
permission is restricted for the /lib and /usr /lib directories. 

1-4.2 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

/ Linking Shared Libraries 

To link (Id) shared modules, specify object file names or an archive library name just as 
you would if you were linking modules that are not shared. When the Id command 
processes shared modules, it gets the key (generated by shlib) from the object file or 
archive library header and places it in the a.out file so exec can determine what shared 
library text images are needed at run time. There is an option for the Id command to 
control which segment the text image is mapped into. 

It is best to keep the number of text images that must be mapped by a program to a 
minimum. This could reduce program startup overhead, assuming all the text images are 
not already mapped by some other proces~. 

If the shared library text image key is different from the file name of the text image, you 
must use the -k option of Id and specify the correct file name. See AIX Operating System 
Commands Ref ere nee for more information about the Id command. 

1 Changing Shared Libraries 

Very limited changes are allowed to programs that are a part of a shared library without 
requiring programs that use the library to relink it: 

• You can change integer constant values. 

• You cannot change: 

- Floating-point constants 
- String constants. 

• You cannot add, remove or rearrange: 

Static variable definitions 
External variable definitions 
References to functions 
References to external variables. 

You can use the -a or -v option on the shlib command to determine whether or not you 
have to relink your programs after changing a shared library. Both options create a new 
shared library text image, but instead of building new output files, shlib verifies whether 
or not the new files would be identical to the files created previously. If the output files 
would be identical, the key of the new shared library text image is identical to the previous 
key. Verifying that the new output files would be identical is sufficient proof that the 
existing programs do not have to be relinked. shlib reports any discrepancy between the 
previous key and the new key. 

If you make changes to a shared library that cause a change in the output files, you can 
handle the changes in either of two ways: 

Programming with RT PC 1-4.3 



TNL SN20-9797 (26 September 1986) to 55X8932 

• You can build a new version of the shared library and relink the programs that use it. 

• You can modify individual archive members locally and continue to use the old shared 
library. 

If you build a new shared library because of program changes and you specify the same key 
as an existing shared library, programs that use the new shared library may not run 
correctly until they are relinked because they may still be using the old text image. 

To make local changes to an archive that refers to a shared library text image, replace any 
member of the archive with an individual object file that has not been processed by shlib. 
You should also change the unshared version of the archive so you can generate a new 
shared library at some later date. When a program is linked with the modified archive, the 
new member is not shared and the text associated with the member is copied into the 
program. 

You can also replace a member of an archive with a member that refers to a different 
shared library if the new member has been processed by shlib. 

1-4.4 Programming Tools and Interfaces 



Chapter 10. Maintaining Different Versions of a 
Program 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2 
Introducing SCCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3 

Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3 
New Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4 
SCCS File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 
Command Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6 
Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 

Using SCCS Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-8 
Using the admin Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9 
Using the get Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-11 
Using the delta Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-16 
Using the help Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-17 

SCCS 10-1 



About This Chapter 

This chapter shows how to use the Source Code Control System (SCCS) to control 
revisions to source code or documentation files using the major SCCS commands. 

First it gives background information about SCCS. This includes new terms, the format of 
SCCS files, and how to use the SCCS commands. 

Next it shows a sample SCCS session and describes the three major SCCS commands in 
detail. These commands are admin, get, and delta. The other commands are described in 
AIX Operating System Commands Reference. 

10-2 Programming Tools and Interfaces 



Introducing SCCS 

The Source Code Control System (SCCS) allows one person or a group to control and 
account for changes made to source code or documentation files. It stores the changes 
made to a file instead of storing the changed file. This allows several versions of the same 
file to exist in the system. To edit the file, specify the version. SCCS builds that version 
based on its stored information about previous changes made. Using SCCS reduces storage 
requirements and helps track the development of a project that requires keeping many 
versions of large programs. 

Features 

The SCCS commands form a complete system. Once you create an SCCS file, use an SCCS 
command to change it. Do not edit or compile the SCCS file itself. Use another file that is 
derived from the original secs file for these operations. 

SCCS commands can do the following: 

• Create an SCCS file 

• Get a version of an SCCS file 

• Save changes made to that file version 

• Define who can change an SCCS file 

• Record who made changes to the SCCS file 

• Record when and why the changes were made. 

SCCS 10-3 



New Terms 

The following descriptions of SCCS terms are used in this chapter. 

SCCS file 

delta 

SID 

Any file containing text (source code or documentation) that is controlled 
with SCCS commands. All SCCS files begin with s . . This file contains 
the original file contents and sets of changes to the original file or later 
versions of that file. It also contains information about who can change 
the file, who made changes and when they were made. Do not edit this file 
directly. It contains information to build the stored files. 

A set of changes made to an SCCS file. After changing a file, use the 
delta command to save those changes in the SCCS file, thereby creating a 
new delta. Create a new delta only to save the changes made. When 
editing a specific version of an SCCS file, that version may consist of 
several different deltas. 

SCCS Identification: The name assigned to a delta. An SID has up to 
four parts as shown in Figure 10-1 on page 10-5. 

Every SCCS file starts out with an SID of 1.1. which means release 1, level 
1. After editing version 1.1 and saving the changes, SCCS gives the new 
delta an SID of 1.2, which means release 1, level 2. 
A -'-----~--1 onno .c~1- ___ , __________ , _______ .J , ____ , ------1----- __ .J -------- ~- _ 
rt LY jliCai uvvu Hit ViHY Ui::ito rtit<:U:::it a.uu itVti uu111uc;r;:; a.uu 5J.uvv;:; Hi a 

straight line. In these cases, the latest file version uses every previous 
delta to that file. However, a file may branch to a path where a file 
version consists of a subset of all of the deltas. For example, a common 
file can be used by two different groups. Both groups need the same code 
up to a certain point, and then each group goes its own way. In this case, 
create a branch delta that allows each group to add deltas onto a common 
base. 

The file then has a trunk, with deltas identified by release and level, and 
one or more branches, which have deltas containing all four parts of an 
SID. On a branch, the release and level numbers are fixed and new deltas 
are identified by changing sequence numbers. Note that a file version 
built from a branch does not use any deltas placed on the trunk after the 
point of separation. See Figure 10-2 on page 10-5. 

SCCS can combine different deltas. However, when combining many deltas 
into one, SCCS loses track of the changes that created each of the smaller 
(old) deltas and only tracks the change to create the larger (new) delta. 

10-4 Programming Tools and Interfaces 



SID = 1 . 2 . 1 . 4 

release~_j t 
level :=.J 
branch 
sequence 

Figure 10-1. Parts of an SID 

1.1 ---+1.2---+1.3---+2.1 trunk 

branch L 1 . 2. 1 . 1 -+ 1 . 2. 1 . 2-+ 1 . 2. 2. 1 

Figure 10-2. Growth of an SCCS File with Branching 

SCCS File Format 

SCCS files have two major sections called the header and the body. The header has five 
subsections, which identify who created the file, who can change it and other 
administrative details. The body has one or more subsections consisting of the text 
portions of the file. There is one text portion for each delta in the SCCS file. 

The get command uses the header and body to create the specified file version. Other 
SCCS commands make use of the header and body to perform their functions. 

Never edit the SCCS file itself except to modify incorrect information in the header as 
described in "Locating Damaged SCCS Files" on page 10-10. Editing the SCCS file can 
damage the structure of the file. The SCCS commands can do any necessary modifications 
of the header or body. To see how an SCCS file is organized, examine an SCCS file using 
simple commands such as cat or an editor. However, do not edit the SCCS file. 

SCCS 10-5 



The SCCS File Header 
The sections of an SCCS file header are described in the following. 

Checksum A number containing the logical sum of all of the characters in the file. 
The admin command uses the checksum to ensure that all changes to the 
file were made by using the SCCS system. 

Delta Table Information about each delta including type, SID, date and time of 
creation, and comments. 

User Names List of login names or group IDs of users who are allowed to modify the 
SCCS file by adding or removing deltas. If this parameter does not exist, 
anyone can modify the SCCS file. 

Options List of indicators that control specific actions of various SCCS commands. 

Comments Descriptive text provided by the user to describe the contents or purpose of 
the file. 

The SCCS File Body 
The SCCS File body includes the actual text of the deltas in the file. The body also 
contains SCCS control text intermixed with the delta text. Notice that the deltas are in 
reverse order. That is, the most recently created delta is the first one in the list. 

Warning: Using non-SCCS commands with SCCS files can damage the 
SCCS files. Changing an SCCS file with a non-SCCS command makes the 
checksum incorrect. See "Locating Damaged SCCS Files" on page 10-10 
for information about working with the checksum. 

Command Conventions 

In most cases, SCCS commands accept the following two types of parameters: 

flags 

arguments 

Flags begin with the - (minus sign), followed by a lowercase character, and 
sometimes followed by a value. They control how the command operates. 

Arguments may be file or directory names. They specify the file or files 
with which the command operates. Using a directory name as an 
argument specifies all SCCS files in the directory. 

Arguments cannot begin with a - (minus sign). If you specify the - (minus 
sign) by itself, the command reads standard input until it reaches an end of 
file character (Ctrl-D). This can be useful when using pipes. When using 
the keyboard for input, it reads until it finds Ctrl-D. 

10-6 Programming Tools and Interfaces 



Any flags specified for a command apply to all files specified for that command and are 
processed before arguments to that command. Their placement in the command line is not 
important. Arguments are processed left to right. Some SCCS files contain flags that 
determine how the command operates on the file. See "Using the admin Command" on 
page 10-9 for more information. 

SCCS Commands produce error messages with the following format: 

ERROR [file]: message text (code) 
The code in parentheses can be used as an argument to the help command. The help 
command can sometimes provide more information about a particular error code. 

An SCCS command stops processing a file that contains a fatal error. Any other files in 
the command are still processed. 

Command Summary 

The following summary presents the commands in the order of their use. They are further 
defined in AIX Operating System Commands Reference. 

admin 

get 

unget 

delta 

rmdel 

cdc 

what 

sccsdiff 

comb 

val 

prs 

help 

Creates an SCCS file or changes some characteristic of an existing SCCS file. 

Gets a specified version of an SCCS file. Use this command to get a copy of a 
file to edit or compile. 

Undoes the effect of a previous use of the get -e command. 

Adds a set of changes (delta) to the text of an SCCS file. 

Removes a delta from an SCCS file. The delta must be the most recent delta 
on its branch. 

Changes the comments associated with a delta. 

Searches a system file for a pattern and displays what follows it. Use this 
command to find identifying information. 

Shows the differences between any two versions of an SCCS file. 

Combines two or more consecutive deltas of an SCCS file into a single delta. 
Combining deltas may reduce storage requirements. 

Checks an SCCS file to see if its computed checksum matches the figure listed 
in the header. 

Prints portions of an SCCS file in a specified format. 

Provides an explanation of a diagnostic message. 

SCCS 10-7 



Using SCCS Commands 

Figure 10-3 sho\vs how to create, change and update the contents of an SCCS file. The 
SCCS commands have much more function than what is shown in the figure. System 
responses to the SCCS commands are not shown. 

prog. c 

$ admin -iprog. c s. prog. c 

$ mv prog. c prog. bak 

s. prog. c I 

$ get -e s. prog . c 

I prog . c I I p . prog . c 

$ ed prog. c 

prog. c 

$ delta s. prog. c 

This is your original 
file. It contains 
uncompiled C code. 

admin creates an SCCS 
file with the name 
s. prog. c. 

Rename the original file 
and keep it as a backup. 

You now have an SCCS file 
with an SID of 1 . 1 . It 
contains a header that 
describes the contents of 
the original. 

get creates two files. 
The file ~you can 
edit. SCCS uses the file 
p prog c to keep track of 
file versions. 

You can now work on your 
actual file. In this 
case, you are editing it. 
You can edit this file as 
often as you wish. 

delta updates s. prog. c 
with the changes you made 
to~· The SID of 
the new version is 1 . 2. 
You can now get version 
1 . 1 or 1 . 2. 

Figure 10-3. Example of Using SCCS to Create and Update a File 

10-8 Programming Tools and Interfaces 



Using the admin Command 

These examples use an imaginary text file called test. c, and an editor such as ed to edit 
files. 

First, create an ordinary SCCS file. If you use the -i flag, admin creates delta 1.1 from the 
specified file. Without the -i flag, admin creates an empty SCCS file. Once delta 1.1 is 
created, rename the original text file so it does not interfere with SCCS commands. For 
example, to create an SCCS file from a file test . c: 

$ admin -i test.c s.test.c 
No id keywords (cm7) 
$ li 
s.test.c test.c 
Then rename the original text file: 

$ mv test.c back.c 
The message, No id keywords ( cm7) does not indicate an error. SCCS writes this 
message when there are no identification keywords in the file. Identification keywords are 
variables that can be placed in an SCCS file. The values of these variables provide 
information, such as date, time, SID, or file name. See "Getting Read-Only File Versions" 
on page 10-11 for an explanation of identification keywords. If there are no identification 
keywords, SCCS writes the message. 

Name the SCCS file anything as long as it begins with S •• In the above example, the 
original file and the SCCS file have the same name, but that is not necessary. 

Because you did not specify a release number, admin gave the SCCS file an SID of 1.1. 
SCCS does not use the number 0 to identify deltas. Therefore, a file cannot have an SID of 
1.0 or 2.1.1.0. All new releases start with level 1. To start the test. c file with a release 
number of 3, use the -r flag with the admin command, as shown below: 

/*create SCCS file, version 3.1 */ 
$ admin -i test.c -r3 s.test.c 
To restrict permission to change SCCS files to a specific set of user IDs, list their user IDs 
or group ID numbers in the user list of the SCCS file by using the -a flag of the admin 
command. These IDs then appear in the SCCS file header. Without the -a flag to restrict 
access, all user IDs can change the SCCS files. 

/* dan is a user ID */ 
$ admin -adan s.test.c 

SCCS 10-9 



Locating Damaged SCCS Files 
Although SCCS provides some error protection, you may need to recover a file that was 
accidentally damaged. This damage may result from a system malfunction, operator error, 
m~ changing an SC-CS file without using SCCS commands. 

SCCS commands use the checksum to determine whether a file was changed since it was 
last used. The only SCCS command that processes a damaged file is the admin command 
when used with the -h or -z flags. The -h flag tells admin to compare the checksum stored 
in the SCCS file header against the computed checksum. The -z flag tells admin to 
recompute the checksum and store it in the file header. 

Check SCCS files on a regular basis for possible damage. The easiest way to do this is to 
run the admin command with the -h flag on all SCCS files or SCCS directories as shown 
below: 

$ admin -h s.filel s.file2 ... 

$ admin -h directory! directory2 
If admin finds a file where the computed checksum is not equal to the checksum listed in 
the SCCS file header, it displays this message: 

corrupted file (co6) 
11 a me was damaged, try to edit the me again, or read a backup copy. After fixing the 
file, run the admin command with the -z flag and the repaired file name: 

$ admin -z s.filel 
This operation replaces the old checksum in the SCCS file header with a new checksum 
based on the repaired file contents. Other SCCS commands can now process the file. 

10-10 Programming Tools and Interfaces 



Using the get Command 

The get command gets files in either read-only or editable form. You can only use the 
editable form to create a delta to the SCCS file. Use the read-only form to print or 
compile the file. The results of using get on a file depend on whether you specify the file 
as read-only or editable. The examples are divided into read-only examples and editable 
examples. The examples are not related unless the comments specify that they are related. 

Note: You must use the -e flag with the get command, to create a delta. 

Getting Read-Only File Versions 
To compile a program or print a document from an SCCS file, get the file as read-only. 
The get command performs different tasks when it gets a read-only document. 

The difference between the two types of get operations is important when using 
identification keywords in a file. Identification keywords can appear anywhere in a file. 
They are symbols that are replaced with some text value when get retrieves the file as 
read-only. For example, to print the current date and SID in a file, put the following 
symbols in the file: 

%H% %1% 
%H% is the symbol for the current date and % I% is the symbol for the SID. When get 
retrieves a file as editable, it leaves the symbols in the file and does not do text value 
substitution. See AIX Operating System Commands Reference for the identification 
keywords to use in a file. 

Several examples of the get command are shown below: 

$ li 
s.test.c 
$ get s.test.c 
3.5 
59 lines 
$ 1; 
s.test.c test.c 

/* check file directory*/ 

/* get file test.c */ 

/* check file directory */ 

SCCS 10-11 



Because you did not specify a version of the file, get built the version with the highest 
SID. In the next two examples, the -r flag specifies which version to get: 

$get -rl.3 s.test.c 
L3 
40 lines 
$ get -rl.3.1.4 s.test.c 
1.3.1.4 
50 lines 
If you specify just the release number of the SID, get finds the file with the highest level 
within that release number. 

$ get -r2 s.test.c 
2.7 
21 lines 
If the SID specified is greater than the highest existing SID, get gets the highest existing 
SID. If the SID specified is lower than the lowest existing SID, SCCS writes an error 
message. In the following example, release 7 is the highest existing release: 

$ get -r9 s.test.c 
7.6 
400 lines 
The -t flag gets the top version in a given release or level. The top version is the most 
recently created delta, independent of its location. In the next example, the highest 
existing delta in release 3 is 3.5, while the most recently created delta is 3.2.1.5. 

$get -t -r3 s.test.c 
3.2.1.5 
46 lines 

10-12 Programming Tools and Interfaces 



Getting Editable File Versions 
All of the previous examples use the get command to get a read-only file. To edit the file 
and create a new delta, use the -e flag. The get command works differently when using 
the -e flag, so the previous examples may not apply. Restrictions for files built with the -e 
flag are explained in the AIX Operating System Commands Ref ere nee under the get and 
admin commands. If you build the wrong version of the file, use unget to undo the effect 
of the get -e command. 

Several examples of the get command are shown below: 

$ li /* check file directory */ 
s.test.c 
$ get -e s.test.c /* get editable version of test.c */ 
1.3 
new delta 1.4 
67 lines 
$ 1; /* check file directory */ 
p.test.c s.test.c test.c 

The working file is test. c.. If you edit test. c and save the changes with the delta 
command, SCCS creates a new delta with an SID of 1.4. The file p. test. c is a temporary 
file used by SCCS to keep track of file versions. 

In the previous example, you could use the -r flag to get a specific version. Assuming delta 
1.3 already exists, the following three uses of the get command are the same: 

$get -e s.test.c 
$ get -e -rl s.test.c 
$get -e -rl.3 s.test.c 
To start using a new (higher in value) release number, get the file with the -r flag and 
specify a release number greater than the highest existing release number. In the next 
example, release 2 does not yet exist: 

$ get -e -r2 s.test.c 
1. 3 
new delta 2.1 
67 lines 

SCCS 10-13 



Notice that get indicates the version of the new delta that will be created if the delta 
command stores changes to the SCCS file. If the example did not include the -e flag, get 
would build the highest existing SID (1.3) and would not indicate a new delta, even though 
the -r2 11ag requests a version 2 . l. 

To develop a version of the SCCS file that does not depend on the most recently created 
delta, create a branch delta as shown in Figure 10-4. 

1 . 1 --+ 1 . 2 --+ 1 . 3 --+ 2 . 1 trunk 

branch L 1 . 2. 1 . 1 ...... 1 . 2. 1 . 2 ...... 1 . 2. 2. 1 

Figure 10-4. Growth of an SCCS File with Branching 

In the figure, a branch exists at version 1.2. Adding new deltas at two different places in 
the SCCS file creates programs for two environments that have some similar code (1.1 and 
1.2) and some code that is not the same. 

Creating another branch from delta 1.2 builds a second series of program files. The new 
branch begins with delta 1.2.2.1. 

To create a branch delta, use the -r flag and specify the release and level where the branch 
Ar>r>11 ... C' T.,... f.l...o .,...,.....,..j- """"~"'l" ...:1,.,.1+.n,-, 1 ') n~...:I 1 A n 1-~n..JT• ~T•~~+ 
'-.J'"-"V....._.i..o.,:;. ..i...i..i. iJ.i..i.V .i..i.'-"..a..i.J VA.Gi..i..i..i.¥.i.V' \.A..'G.i.i.JGlO ..i..U - Ci..i.i.U ..L.'7 U..i.i. i\:/U.U)' ~.A..iC>iJ. 

$ get -e -rl.3 s.test.c 
1.3 
new delta 1.3.1.1 
67 lines 
Create deltas on branches using the same methods. 

10-14 Programming Tools and Interfaces 



Getting Duplicate File Versions 
To edit a file, get the file version using the get command (with the -e flag) and save the 
changes with the delta command. Several different editable versions of an SCCS file can 
exist as long as each one is in a different directory. If you try to get the same editable file 
version more than once without using the delta command, SCCS writes an error message. 

To get the same editable file version more than once, set the j option in the SCCS file with 
the admin command. Set the j option using the -f flag. You can then get the same SID 
several times from different directories, creating a separate file for each get command. 
Although the files originate from a single SID, SCCS gives each of them a unique new SID. 

$ pwd 
/u/dan/sccs 

$ admin -fj s.test.c 
$get -e s.test.c 
1.1 
new delta 1. 2 
5 lines 

/* starting directory */ 
/* set the j option 
/* get latest version 

$ cd /u/new /* change to directory new 
/* get 1.1 again $get -e /u/dan/sccs/s.test.c 

1.1 
new delta 1.1.1.1 
5 1 i nes 

*/ 
*/ 

*/ 
*/ 

Notice that SCCS creates two deltas, 1.2 and 1.1.1.1, from the single original file version of 
1.1. Look at the p. test. C file. It shows a separate entry for each version currently in 
use. The p. test. c file remains in the directory until you take care of both file versions 
with either the delta command or the unget command. 

SCCS 10-15 



Using the delta Command 

The delta command saves the changes made to a particular version of an SCCS file. To 
use the delta command: 

1. Use get -e to get an editable version of the file 

2. Edit that file 

3. Use delta to create a new version of the SCCS file. 

When using the delta command, it prompts for comments. The comments are for that 
particular delta and appear in the SCCS file header. The comments are not retrieved when 
you get the delta and do not appear in the text of a retrieved file. Use comments to keep 
track of why a delta was created. 

To see the comments, use an editor to look at the SCCS file, write the SCCS file to the 
display screen with the cat command, or print selected parts of the file to standard output 
using the prs command. Refer to AIX Operating System Commands Reference for 
descriptions of these commands. Remember not to change the contents of the SCCS file 
directly. To change the delta comments, use the cdc command. 

A common use of the delta command is shown below: 

$ delta s.test.c 
Enter comments, terminated with EOF or blank line: 
Then enter comments, as follows: 

This delta contains the payroll function 
delta then finishes processing and displays: 

1.4 
24 inserted 
3 deleted 
45 unchanged 
The above example stores the comment in the SCCS file header and creates delta 1.4. It 
then lists how many lines of text are inserted, deleted1 or unchanged. SCCS may give 
unexpected numbers for these categories because of its definition for an edited line of text. 
However, the number of lines inserted plus the number of lines left unchanged should 
equal the total number of lines in the file. 

10-16 Programming Tools and Interfaces 



SCCS does not allow using the delta command if an editable file does not exist. However, 
once an editable file exists (created with get -e), SCCS creates the delta without checking 
the data being stored in the file. 

Note: When using identification keywords in SCCS files, do not use the delta command 
with a file built as read-only if an editable version of the file also exists. When you get a 
file as read-only, SCCS replaces identification keywords with their values. Using the delta 
command on the file saves the values and the identification keywords are lost. To recover, 
remove the delta, or re-edit the file and replace the identification keywords. 

Using the help Command 

SCCS provides a limited form of help for certain error codes and all of the SCCS 
commands. To get help on a specific command or error code, use the following format: 

help [command].. [code] .• 

The help program prompts for a command or an error code if those parameters are not 
included in the command. If it does not have information about a specific error code, help 
writes an error message and continues processing. For example, to get help on rmdel and 
two error codes, enter the following: 

$ help rmdel gee ge5 
The help command replies: 

rmdel: 
rmdel -r<SID> <file> 

ERROR: gee not found (hel) 

ge5: 
"nonexistent sid 11 

The specified sid does not exist in the given file. Check for typos. 
The response indicates that either the help command does not have information for the 
error code gee or the code does not exist. 

SCCS 10-17 



10-18 Programming Tools and Interfaces 



Chapter 11. Finding and Changing Strings 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2 
Finding Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3 

Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3 
Example of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-5 

Scanning Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 
Program File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6 
Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 
BEGIN and END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-8 
Using Regular Expressions as Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9 
Using Relational Expressions as Patterns ............................... 11-11 
Using Combinations of Patterns ....................................... 11-12 
Using Pattern Ranges ............................................... 11-12 
Using Functions in an Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-13 
Using Variables in an Action ......................................... 11-14 
Using Operators in an Action ......................................... 11-15 
Using Field Variables in an Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16 
Concatenating Strings .............................................. 11-17 
Using Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-17 

Using Control Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-18 
Editing Files with sed ................................................. 11-20 

Starting the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-20 
How sed Works .................................................... 11-21 
Selecting Lines for Editing ........................................... 11-23 
Regular Expressions ................................................ 11-23 
sed Command Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-25 
Text in Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-30 
String Replacement ................................................. 11-31 

grep, awk and sed 11-1 



About This Chapter 

This chapter contains introductory information to some of the system programs that are 
useful when developing a program on RT PC. These programs are not required to create 
programs, but they do provide added services that make checking and maintaining 
programs easier. Use these programs in shell programs that you develop. The commands 
described in this chapter: 

• Find a specified series of characters in a text file. 

• Find and change information in a text file. 

• Make fast editing changes on a large text file. 

Complete reference information about all commands is in AIX Operating System 
Commands Reference. 

11-2 Programming Tools and Interfaces 



Finding Strings 

The system provides three similar programs to help locate a series of characters (string) in 
a file. These programs are: 

grep 

fgrep 

egrep 

A general function program that finds literal strings in a file, and also finds 
strings that you specify using wildcard characters. (These are not the same as 
the shell wildcard characters). 

A faster version of grep that only finds literal strings in a file (wildcards are not 
allowed). 

An extended version of grep to look for more complex expressions. 

Use these programs to search one or more files at a time to answer the following questions: 

• In which file(s) does the string occur (-1 flag)? 

• On how many lines in each file does the string occur (-c flag)? 

• What is the line number of each place that the string occurs (-n flag)? 

• What lines in which file(s) contain the string (no flag)? 

• What lines in which file(s) exactly match the string (-x flag)? 

• What lines in which file(s) do not contain the string (-v flag)? 

• What is the disk block number of each place that the string occurs (-b flag)? 

Strings 

A string is any group of characters to find. Enclose the string in ' ' (single quotes) to 
ensure that the shell does not interpret blanks or special shell characters in the string as 
part of its syntax. 

For example, because blanks separate the parameters on the command line, the shell 
interprets the command: 

fgrep find me myfile 
as a request to find the string, find, in the files me and myfi 1 e. To find the string, find 
me, in myfi 1 e specify the command like: 

fgrep 'find me' myfile 

grep, awk and sed 11-3 



Literal Strings 
A literal string is a string that does not contain wildcard characters, and can, therefore, be 
interpreted just as it is. The previous exa..T..ple contains a literal string, find me. Use 
literal ·strings to specify exactly what to find. 

For example, to find the file that contains the module, eprog (), in five source files that 
contain several modules each, use the command: 

fgrep 'eprog()' filel file2 file3 file4 file5 
This command finds not only the actual module but any references to it. Look at the 
output lines to determine which reference actually contains the module definition. To find 
only the module definition, use the -x flag: 

fgrep -x 'eprog()' filel file2 file3 file4 file5 
For coding formats that put each module definition left-justified on a line by itself, this 
command writes out only that line, together with the name of the file in which it occurs. 

Regular Expressions 
A regular expression is a string that contains wildcard characters and operators that 
define a set of one or more possible strings. The find string programs use a set of wildcard 
characters that is different from the shell wildcards, but the same as the line editor, ed. 
These wildcard characters and operators are: 

.(period) 

A (caret) 

Specifies any character except new-line. 

Specifies the beginning of the line when it is the first character in a regular 
expression 

$(dollar sign) 
Specifies the end of the line when it is the last character in a regular expression 

[ ] (square brackets) 
Encloses a set of characters (not empty) that represents any one of the 
characters in the set. 

[abc] 
[a-c] 

[A-z] 

Represents either a orb or c 
Is the same as [abcl (grep only). The hyphen defines a range of 
ASCII values that starts with the value of the first letter and ends 
with the value of the second letter. 
Defines more than just the letters of the alphabet (grep only). It 
defines the range of ASCII values from A (065) to z (122). 

11-4 Programming Tools and Interfaces 



OR - indicates a search for either one string or another: 

egrep 'prog () I progl ()' fi 1 el 

finds lines containing either prog () or progl (). 
Refer to the ed program in AIX Operating System Commands Ref ere nee for details for 
building regular expressions. 

Example of Commands 

To check a C program for proper nesting of braces, use the following two commands: 

grep -c '{' filel 

and 

grep -c '}' filel 
Each command responds with a number that represents the number of lines in the file 
containing either { or}, respectively. If the numbers are not the same, you may have a 
problem. Check the file again using a different form of the command: 

egrep '{I}' filel 
This command displays each line in the file that contains either a { or a}. It displays the 
lines in the order that they occur in the file, so that you can quickly check for matching 
pairs of open and closed braces. 

grep, awk and sed 11-5 



Scanning Files 

The awk program is an extension of the features of grep. It performs the following 
operations: 

• Scans a file or list of files to find matches to a regular expression. 

• Performs an operation on the lines that are found, defined by an action. 

It uses all of the regular expression building features that egrep uses, plus it allows you 
to: 

• Write selected fields of the line 

• Calculate running totals 

• Change syntax in a program source file 

• Change system calls when porting from one system to another. 

The awk program finds and changes strings in text files. In addition, it provides numeric 
processing, variables, more general pattern selection for finding strings, and flow control 
statements. This program treats both string and numeric data. In general, this program is 
useful for: 

• Prnrpi;:.ii;:.iinO' inn11t. t.n finrl nnmP.rir rnnnt.R RllTnR or i;:.111 ht.nt.A li;:.i - -----.....-----0 ---r~- -- ----- ---------- --------., ..... ----...... -- ............... ...------....... 

• Verifying that the contents of a field contains only numeric information 

• Checking to see that delimiters are balanced in a programming file 

• Processing data contained in fields within lines 

• Changing data from one program into a form that can be used by a different program. 

Program File 

When using awk, you can either enter the search pattern directly on the command line as 
with grep, or you can build a file that contains both the search pattern and the actions to 
perform. Using a program file puts many patterns in one file, and saves typing the 
command again to correct an error in the search pattern. When using a program file, run 
awk with the -f flag, such as: 

awk -f pfile filel file2 file3 
In this command, pf i 1 e is the name of the program file, f i 1e1, f i 1 e2, and fi 1 e3 are the 
files to be searched, and -f tells awk to look in pfi 1 e for the search program. 

11-6 Programming Tools and Interfaces 



The program file is a series of statements that look like: 

pattern { action } 
pattern { action } 
pattern { action } 

Where: 

pattern Is a regular expression, or series of regular expressions, that defines the search 
pattern, including: 

• Boolean combinations of regular expressions using the operators ! 11 && 
and(). 

• Boolean combinations of relational operators on strings, numbers, fields, 
variables, and array elements. 

action Is a set of steps to perform on the line, designated with awk commands and 
operators, including: 

• Any expressions that are used in a pattern 
• Arithmetic and string expressions 
• Assignment statements 
• If-else statements 
• While-for statements 
• More than one output stream. 

{ } Are delimiters that set off the action from the search pattern. 

In any line, you can omit either the pattern or the action. If you omit the pattern, awk 
performs the action on all lines in the file(s); if you omit the action, awk copies the line to 
standard output. 

When awk runs, it reads the first line of the input data file and matches it against each of 
the patterns in the program file in the order that they appear in the program file. When 
awk finds a pattern that matches the line, it performs the associated action on that line. 
Then it continues to search for more matches in the program file. When it has compared 
the first input line against all patterns in the program file, awk reads the next input line 
and starts at the beginning of the program file with that line. 

grep, awk and sed 11-7 



Variables 

Awk recognizes the following built-in variables: 

FILENAME The name of the current input file. 

NR The number of the current record. 

NF 

FS 
RS 

$0 

$n 

OFS 

ORS 

The number of fields in the current record. 

The character used for a field separator. 

The character used for a record separator. 

The contents of the input record. 

The contents of field n of the input record. 

The character used for output field separator (the character between fields 
when the data is written; a blank if you do not change it). 

The character used for output record separator (the character between 
records when the data is written; a new-line if you do not change it). 

BEGIN and END 

The awk program recognizes two special keywords that define the beginning (BEGIN) and 
the end (END) of the input file. The pattern BEGIN matches the beginning of the input 
before reading the first record. Therefore, awk performs any actions associated with this 
pattern once, before processing any of the input file. BEGIN must be the first pattern in 
the program file. For example, to change the field separator to a colon for all records in 
the file, include the following line as the first line of the program file: 

BEGIN {FS= 11
:

11
} 

Similarly, the pattern, END, matches the end of the input file after processing the last 
record. Therefore, awk performs any actions associated with this pattern once, after 
processing all of the input file. END must be the last pattern in the program file. For 
example, to print the total number of lines in the input file, include the following line as 
the last line in the program file: 

END {print NR} 

11-8 Programming Tools and Interfaces 



Using Regular Expressions as Patterns 

The simplest regular expression is a literal string of characters, enclosed in slashes. For 
example, if the program file contains only the entry: 

/the/ 
the file is a complete program that displays all lines containing the string the. Because 
the string does not specify any blanks or other qualifiers, the program also displays lines 
containing words such as: 

theater 
northern 
that have the string as part of them. The program is sensitive to uppercase and lowercase, 
and only displays lines containing the lowercase form of the string. 

Character Class 
To find lines that contain The (the string as the first word in a sentence) in addition to the 
lowercase version, use a character class to represent either uppercase or lowercase. A 
character class is a set of characters, enclosed in [ ] (square brackets). Each character 
in the character class satisfies the search conditions for one character position. For 
example, to find lines containing both forms of the word the (and words containing it), 
use the string: 

I [Tt] he/ 
The following string: 

/[cCdDhH]ome/ 
finds lines that contain the words: 

come 
Come 
dome 
Dome 
home 
Home 

grep, awk and sed 11-9 



Use ranges within a character class to indicate a group of consecutive ASCII characters. 
To define a range, enter the following: 

I. [ 

2. The first character of the range 

3. - (minus) 

4. The last character of the range 

5. ] 

Note: Ranges specify a continuous sequence of ASCII character codes, not alphabetic 
order. For example, the range [Z-a] specifies only eight characters from ASCII code 90 (Z) 
to 97 (a). 

Special Characters 
The awk program defines 'the symbols shown in Figure 11-1 to use in building patterns: 

Symbol Meaning 

/ String delimiter: Indicates the start and end of a string or regular expression. 

\ ~c<r>O'no• 'Tlallc .,.Tlr71r +,,. +..,,.,..,+ +1-.n ..... ,,...,.+ ,..i,.,....,,..,..+,,.,.. nn n ,..,.,.,....,,1,..,.. AC!f'ITT ,...i,.,..,..,..,...j.,.,.,.. 
\ ..i.....iUVU.j:JV• ..i..V.&..i.O U.V'f.&&. ilV iJ.i..VCA.ll i.l.L.i.V .i..i.V~U V.i..i.U.i..CA.VU'C.'.i. a.o a .i.'V6U..i.Gi..i. .Cl..irrJ'-"'".Li. V.i..i.Gi..i.Gi.Vi.JV.i. 

instead of a symbol that awk treats as a special character. 

$0 Matches the entire line with the pattern. 

$n Matches field n (n is an integer) in each input line. 

Match field operator: Tells awk to match the regular expression with a specified 
field in each line, not the line. 

! ~ Not match field operator: Tells awk to compare the regular expression with a 
specified field in each line and perform the action only if the expression does not 
match the field. 

A Beginning of the line or field: When placed at the start of a string, tells awk to 
match the string only when it occurs at the start of a line or specified field. 

Figure 11-1 (Part 1 of 2). awk Special Characters 

11-10 Programming Tools and Interfaces 



Symbol Meaning 

$ End of the line or field: When placed at the end of a string, tells awk to match 
the string only when it occurs at the end of a line or specified field. 

Figure 11-1 (Part 2 of 2). awk Special Characters 

Using Relational Expressions as Patterns 

Use a relational expression as a pattern in the program file. The awk program defines the 
following relational operators for use in building patterns: 

< Less than 
> Greater than 
< = Less than or equal 
) = Greater than or equal 
-- Equivalent 
! = Not equivalent 

Examples of Relational Expressions in a Pattern 
To find all lines where the second field ($2) is at least 100 greater than the first field: 

$2 > $1 + 100 

To find lines that contain an even number of fields: 

NF % 2 == 0 

To find lines that begin with s, t, u, ... : 

$1 >= 11 s 11 

To perform a string comparison between the first two fields: 

$1 > $2 

grep, awk and sed 11-11 



Using Combinations of Patterns 

Combine two or more patterns using Boolean operators: 

II Or 
&& And 

Not 

For example, the pattern: 

$1 >= "T 11 && $1 < "U" && $1 != "The 11 

finds lines that begin with T, and are not the word The. 

Using Pattern Ranges 

A pattern range allows the use of one pattern to begin an action on the lines of text, and 
another pattern to end the action on lines of text. Specify a pattern range by using two 
patterns separated by commas. The first pattern specifies the starting pattern; the second 
pattern specifies the ending pattern. Therefore, the line: 

/The/,/End/ {action} 
finds the first line that contains the pattern The and begins performing the action on all 
lines following it in the file until awk finds a line containing the pattern End. Awk does 
not change either the line containing The or the line containing End. 
Similarly, the line: 

NR==100,NR==200 {action} 
performs the action starting at line 100 and ending at line 200 of the input file. 

11-12 Programming Tools and Interfaces 



Using Functions in an Action 

The awk program provides the following functions to use within an action: 

length Returns the length of the current record. 

length(arg) Returns the length of the string specified by arg. 

sqrt(arg) 

log(arg) 

exp(arg) 

int(arg) 

substr(s,m,n) 

index(sl,s2) 

Returns the square root of arg 

Returns the base e logarithm (natural logarithm) of arg. 

Returns the exponential part of arg. 

Returns the integer part of arg. 

Returns a string that is part of string s, beginning at character m and 
continuing for n characters (or the end of strings). If mis 1, the string 
starts at the beginning of strings. If you do not supply a value for n, 
the string continues to the end of string s. 

Returns the character position in string sl where string s2 occurs. If s2 
is not in sl, this function returns a zero. 

sprintf(f,el,e2, ... ) Returns a formatted string. The parameters are: 

f A formatting specification string defined using the 
formatting specifications of the printf library routine. 

el,e2,... A series of strings that the f format specification acts upon. 

The function formats the argument strings (el, e2, ... )using the format 
specification f, and returns the formatted string. 

grep, awk and sed 11-13 



Using Variables in an Action 

The awk program sets all variables in actions to zero when it begins executing the action. 
The variabies do not have a strict type; they take on numeric (floating point) values or 
string values depending on their use in the action expression. For example, the expression: 

x = 1 

indicates that X is a numeric variable. Similarly, the expression: 

x = "smith" 

indicates that xis a string variable. However, awk converts between strings and numbers 
when needed. Therefore, the expression: 

x = 11 3 11 + "4" 

assigns a value of 7 (numeric) to X, even though the arguments are literal strings. If awk 
cannot change a string variable to numeric when you are using it as a numeric variable, 
awk assigns it a numeric value of zero. To force a variable to be treated as a single type: 

string Add the null string (" ") to the value assigned to the variable 

numeric Add zero (0) to the value assigned to the variable. 

11-14 Programming Tools and Interfaces 



Using Operators in an Action 

Use the following operators to build expressions within the action statement: 

+ 

* 
I 
% 
+ 

+= 

*= 
/= 
O/o = 

Addition 
Subtraction 
Multiplication 
Division 
Modulo (remaindering) 
Increment 
Decrement 
Increment by value 
Decrement by value 
Multiply by value 
Divide by value 
Modulo by value 
Match string 

!- Not match string 

For example, to find the sum of all the first fields and the sum of all the second fields in a 
file with the program file: 

END 
{sl +=$1; s2 += $2} 
{print sl,s2} 

grep, aw k and sed 11-15 



Using Field Variables in an Action 

Fields in awk share the same properties as variables. They can be used in arithmetic or 
string operations and may be assigned to a numeric or string value. For example, to 
replace the first field with a sequence number: 

{$1 = NR;print} 
To accumulate two fields into a third field: 

{$1 = $2 + $3;print $0} 
Use numeric expressions for field references, such as: 

{print $i ,$(i+l) ,$(i+n)} 
How you use a field determines whether awk treats a field as numeric or string. If it 
cannot tell how the field is used, awk treats fields as strings. 

awk splits input lines into fields as needed. You can also split any variable or string into 
fields. For example: 

n = split(s,array,sep) 

splits the string s into array [1] ... array [n] and returns the number of elements. If you 
provide the sep argument, it is the field separator. If you do not provide sep, the field 
separator is the character defined by the variable FS. 

11-16 Programming Tools and Interfaces 



Concatenating Strings 

Concatenate strings by placing their variable names together in an expression. For 
example, the expression: 

length($1 $2 $3) 

Returns the length of the first three fields. The expression: 

print $1 11 is 11 $2 

Prints the first two fields separated by 11 i s 11 You can use variables and numeric 
expressions when concatenating strings. 

Using Arrays 

You do not need to declare array elements. awk sets them to zero when first used. Use 
any value that is not null, including a string valu€, for a subscript. An example of the 
numeric subscript is: 

x [NR] = $0 

This expression assigns the current input record to the NRth element of the array x. For 
an example of using a string subscript, suppose that the input contains fields with values 
like app 1 e or orange. Then the program: 

/apple/ 
/orange/ 
END 

{x[ 11 apple 11 ]++} 
{x [ 11 orange 11

] ++} 
{print x[ 11 apple 11

], x[ 11 orange 11
]} 

increments counts for the named array elements and prints them at the end of the input. 

grep, awk and sed 11-17 



Using Control Statements 

The awk language also provides the following control structures as in the C language: 

• If-else 
• While 
• For 
• Break 
• Continue 
• Next 
• Exit 
• Braces for statement grouping 
• Comments. 

If-Else Statement 
The if-else statement is exactly like that of the C language. The condition in parentheses 
of an if-else statement is evaluated; if it is true, the statement following the if is 
performed. The else part is optional. 

While Statement 
The while statement is exactly like that of the C language. For example, to print all input 
fields, one on each line, use the following program: 

i = 1 
while ( i <=NF) 
{ 

} 

For Statement 

print $i 
++i 

The for statement is also like that of the C language. For example, the previous while 
example could also be written: 

for(i=l;i<=NF;++i) 
print $i 

11-18 Programming Tools and Interfaces 



Break Statement 
The break statement causes an immediate exit from an enclosing while or for loop. 

Continue Statement 
The continue statement causes the next iteration of an enclosing loop to begin. 

Next Statement 
The next statement causes awk to skip to the next input record and begin scanning the 
patterns from the top of the program file. 

Exit Statement 
The exit statement causes the program to stop as if the end of the input occurred. 

Comments 
Include comments in the awk program file to explain program logic. Comments begin with 
the # character and end with the end of the line. For example: 

print x,y #this is a comment 

grep, awk and sed 11-19 



Editing Files with sed 

The sed program is a text editor that has similar functions to those of ed, the line editor. 
Unlike ed, however, the sed program performs its editing without interacting with the 
person requesting the editing. This method of operation allows sed to: 

• Edit very large files 

• Perform complex editing operations many times without requiring extensive retyping 
and cursor positioning (as interactive editors do) 

• Perform global changes in one pass through the input. 

The editor keeps only a few lines of the file being edited in memory at one time, and does 
not use temporary files. Therefore, the file to be edited can be any size as long as there is 
room for both the input file and the output file in the file system. 

Starting the Editor 

To use the editor, create a command file containing the editing commands to perform on 
the input file. The editing commands perform complex operations and require a small 
ol'l'ln11nt nf hrnina in tho r>nl'l'll'l'lonrl filo l?.or>h r>n"ml'l'lonrl in tho r>nl'l'll'l'lonrl filo l'l'llH:!t ho nn o 
~_ ................... ~ .............. --=- ""'J r..:..:....:..o ..:....:...:.. ......... .:..-.- .............. .::..:...:...::..::..:..~.::. .... _ -=-............... ~ ..:....,;;~.,,._,..:.. ..... _.....,...:..:...::..::..::..::.,._,._..:....:..~ ..:....:...::. ......... .::. ....... .._,.._,.....::._~ ..... .:..~ ..... .::.~- ..:.. ................ .:.. ........ ~~..., ~- ........ .:....:.. ~ 

separate line. Once the command file is created, enter the following command on the 
command line: 

sed -fcmdfile >output <input 

In this command the parameters mean: 

cmdfile The name of the file containing editing commands. 

output The name of the file to contain the edited output. 

input The name of the file, or files, to be edited. 

The sed program then makes the changes and writes the changed information to the 
output file. The contents of the input file are not changed. 

11-20 Programming Tools and Interfaces 



How sed Works 

The sed program is a stream editor that receives its input from standard input, changes 
that input as directed by commands in a command file, and writes the resulting stream to 
standard output. If you do not provide a command file and do not use any flags with the 
sed command, the sed program copies standard input to standard output without change. 
Input to the program comes from two sources: 

Input stream A stream of ASCII characters either from one or more files or entered 
directly from the keyboard. This stream is the data to be edited. 

Commands A set of addresses and associated commands to be performed, in the general 
form of: 

[linel [, line2] ] command [argument] 

The parameters 1ine1 and 1 i ne2 are called addresses. Addresses can be 
either patterns to match in the input stream, or line numbers in the input 
stream as explained in "Selecting Lines for Editing" on page 11-23. 

You can also enter editing commands along with the sed command by using 
the -e flag. 

When sed edits, it reads the input stream one line at a time into an area in memory called 
the pattern space as shown in Figure 11-3 on page 11-22. When a line of data is in the 
pattern space, sed reads the command file and tries to match the addresses in the command 
file with characters in the pattern space. If it finds an address that matches something in 
the pattern space, sed then performs the command associated with that address on the part 
of the pattern space that matched the address. The result of that command changes the 
contents of the pattern space, and thus becomes the input for all following commands. 

When sed has tried to match all addresses in the command file with the contents of the 
pattern space, it writes the final contents of the pattern space to standard output. Then it 
reads a new input line from standard input, and starts the process over at the start of the 
command file. 

Some editing commands change the way the process operates. See the Control commands 
in Figure 11-6 on page 11-26. 

Flags used with the sed command can also change the operation of the command as shown 
in Figure 11-2 on page 11-22. 

grep, awk and sed 11-21 



Flag 

-n 

-e 

-f 

Function 

sed does not copy all input lines to standard output. Instead, it copies only those 
lines that editing commands specifically write to standard output, See the prini 
lines and substitution commands in Figure 11-6 on page 11-26. 

sed uses the argument that directly follows this flag as an editing command. 

sed uses the argument that directly follows this flag as the name of the file 
containing the editing commands. This file must contain editing commands with 
each command on a separate line. 

Figure 11-2. sed Command Flags 

I Input Stream 1--
(stdin) I 

I Command File l_J 
(on disk) 

Pattern Space 

(in memory) 

Figure 11-3. sed Block Diagram 

11-22 Programming Tools and Interfaces 

--+ I Output Stream 

(std out) 



Selecting Lines for Editing 

Use one of the following forms of addressing to select lines in the input stream for editing: 

Line numbers As the editor reads each input line, it increments its line counter 
starting with line 1 as the first line of the first file in the input 
stream. The line counter runs cumulatively through all files in the 
input stream. The editor does not reset the counter when it opens a 
new file in the same input stream. The value of the line counter for 
each line is the line number for that line. 

Specifying a decimal integer as either 1ine1 or 1 i ne2 in the editing 
commands indicates the line number of the line to be edited. The 
character $ matches the last line of the last file in the input stream. 

Context addresses A context address is a regular expression enclosed in / (slashes). 
See "Regular Expressions" for a description of the regular 
expressions that sed recognizes. The whole regular expression must 
match some part of the pattern space for a successful context address 
match. 

Editing commands can have zero, one, or two addresses, depending on the command and 
how you use it. The number of addresses determines how the address is used: 

Addresses Use of Command 

No address 

One address 

Two addresses 

Regular Expressions 

The command is applied to every line in the input stream. 

The command is applied to each line that matches the address. 

The command is applied to the range of addresses starting with the 
line that matches the first address up to and including the first line 
that matches the second address. The editor then tries to match the 
first address again to find another range. 

Separate two addresses with a comma as shown in the syntax 
diagrams in Figure 11-6 on page 11-26. 

A regular expression is a string that contains literal characters, wildcard characters 
and/or operators that define a set of one or more possible strings. The stream editor uses a 
set of wildcard characters that is different from the shell wildcards, but the same as the 
line editor, ed. These wildcard characters and operators are shown in Figure 11-4 on 
page 11-24. 

grep, awk and sed 11-23 



Symbol Function 

/\ 

$ 

[ ] 

\n 

* 

\(and\) 

\d 

11 

A period specifies any character except new-line. 

A caret specifies the beginning of the line when it is the first character in a 
regular expression. 

A dollar sign specifies the end of the line when it is the last character in a 
regular expression. 

Square brackets enclose a set of characters (not empty) that represents any one 
of the characters in the set. If the first character inside the brackets is a /\ 
(caret), the regular expression matches any character except the characters in 
the set and the new-line at the end of the pattern space. 

[abc] Represents either a orb or c :dt[a-c] Is the same as [abc]. The hyphen 
defines a range of ASCII values that starts with the value of the first 
letter and ends with the value of the second letter. 

[A-z] Defines more than just the letters of the alphabet. It defines the 
range of ASCII values from A (065) to z (122). 

A new-line character matches a new-line character that is not the new-line 
character at the end of the pattern space. 

A regular expression followed by an asterisk matches any number (including 0) 
of adjacent occurrences of that regular expression. 

A set of backslash-parentheses enclose a regular expression that can be repeated 
using the \ d expression. 

dis a single digit. This symbol in string is repiaced by the set of characters in 
the input lines that matches the dth substring in pattern. Substrings begin with 
the characters \ ( and end with the characters \). See "String Replacement" 
on page 11-31 for more information about using this expression. 

The null string is the same as the last regular expression in the edit stream. 

A backslash tells sed to treat the next character as a regular ASCII character 
instead of a symbol that sed treats as a special character. 

Figure 11-4. sed Wildcard Characters 

Refer to the ed program in AIX Operating System Commands Ref ere nee for details for 
building regular expressions. 

11-24 Programming Tools and Interfaces 



sed Command Summary 

All sed commands are single letters plus some parameters, such as line numbers or text 
strings. Figure 11-6 on page 11-26 summarizes the commands that make changes to the 
lines in the pattern space. The table uses the symbols shown in Figure 11-5 in the syntax 
diagrams: 

Symbol Meaning 

[ ] Square brackets enclose optional parts of the commands 

italics Parameters in italics represent general names for a name that you enter. For 
example, filename represents a parameter that you replace with the name of an 
actual file. 

linel This symbol is a line number or regular expression to match that defines the 
starting point for applying the editing command. 

line2 This symbol is a line number or regular expression to match that defines the 
ending point to stop applying the editing command. 

Figure 11-5. Syntax Symbols 

grep, awk and sed 11-25 



Category Function 

Line Append lines 
l\lr ~-:-•• 1~+:.,.._ • 
.LT.&.A.1..1..1.}l".l.Q.".1.V.l..1.• 

Change lines 

Delete lines 

Insert lines 

Next line 

Syntax/Description 

[linel] a\ \ntext 

Writes the lines contained in text to the output stream after 
linel. The a command must appear at the end of a line. See 
"Text in Commands" on page 11-30 for the format of the text. 

{linel [,line2] ]c\\ntext 

Deletes the lines specified by linel and line2 as the delete lines 
command does. Then it writes text to the output stream in place 
of the deleted lines. 

[linel [, line2] ] d 

Removes lines from the input stream and does not copy them to 
the output stream. The lines not copied begin at line number 
linel. The next line copied to the output stream is line number 
line2 + 1. If you specify only one line number, then only that 
line is not copied. If you do not specify a line number, the next 
line is not copied. You cannot perform any other functions on 
lines that are not copied to the output. 

[line I] i \ \ ntext 

Writes the lines contained in text to the output stream before 
linel. The i command must appear at the end of a line. See 
"Text in Commands" on page 11-30 for the format of the text. 

[linel [ , line2 J ] n 

Reads the next line, or group of lines from linel to line2 into the 
pattern space. The current contents of the pattern space are 
written to the output if it has not been deleted. 

Figure 11-6 (Part 1 of 5). sed Command Summary 

11-26 Programming Tools and Interfaces 



Category 

Substitution: 

Input and 
Output: 

Matching 
Across Lines: 

Function 

Substitute for 
Pattern 

Print lines 

Write lines 

Read file 

Join next line 

Syntax/Description 

[line] [, line2] ] s/pattern/string/flags 

Searches the indicated line(s) for a set of characters that 
matches the regular expression defined in pattern. When it finds 
a match, the command replaces that set of characters with the 
set of characters specified by string. See "String Replacement" 
on page 11-31 for specifications for this command. 

[line] [, line2] ] p 

Writes the indicated lines to stdout at the point in the editing 
process that the p command occurs. 

[line] [, line2] ] W filename 

Writes the indicated lines to filename at the point in the editing 
process that the w command occurs. 

If filename exists, it is overwritten; otherwise, it is created. A 
maximum of 10 different files can be mentioned as input or 
output files in the entire editing process. Include exactly one 
space between wand filename. 

[linel] r filename 

Reads filename and appends the contents after the line indicated 
by linel. 

Inclued exactly one space between rand filename. If filename 
cannot be opened, the command reads it as a null file without 
giving any indication of an error. 

[linel [, line2] JN 

Joins the indicated input lines together, separating them by an 
imbedded new-line character. Pattern matches can extend across 
the imbedded new-line(s). 

Figure 11-6 (Part 2 of 5). sed Command Summary 

grep, awk and sed 11-27 



Category 

Pick up and 
Put down: 

Function 

Delete first line 
of pattern space 

Syntax/Description 

[linel [, line2] JD 

Deletes all text in the pattern space up to and including the first 
new-line character. If only one line is in the pattern space, reads 
another line. Starts the list of editing commands again from the 
beginning. 

Print first line [linel [, line2] JP 
of pattern space 

Pick up copy 

Pick up copy, 
appended 

Put down copy 

Prints all text in the pattern space up to and including the first 
new-line character to stdout. 

[linel [, line2] J h 

Copies the contents of the pattern space indicated by linel and 
line2 if present, to the holding area. The previous contents of 
the holding area are destroyed. 

[linel [, line2] J H 

Copies the contents of the pattern space indicated by linel and 
line2 if present, to the holding area, and appends it to the end of 
the previous contents of the holding area. 

[linel [, line2] Jg 
Copies the contents of the holding area to the pattern space 
indicated by linel and line2 if present. The previous contents of 
the pattern space are destroyed. 

Put down copy, [linel [, line2] JG 
appended 

Copies the contents of the holding area to the end of the pattern 
space indicated by linel and line2 if present. The previous 
contents of the pattern space are not changed. A new-line 
character separates the previous contents from the appended 
text. 

Figure 11-6 (Part 3 of 5). sed Command Summary 

11-28 Programming Tools and Interfaces 



Category 

Control: 

Function 

Exchange 
copies 

Negation 

Command 
groups 

Labels 

Branch to 
label, 
unconditional 

Syntax/Description 

[line] [, line2] J x 

Exchanges the contents of the holding area with the contents of 
the pattern space indicated by linel and line2 if present. 

[line] [, line2] J ! 

The ! (exclamation point) applies the command that follows it on 
the same line to the parts of the input file that are not selected 
by linel and line2. 

[line] [, line2] J { 
grouped commands 
} 

The { (left brace) and the } (right brace) enclose a set of 
commands to be applied as a set to the input lines selected by 
linel and line2. The first command in the set can be on the same 
line or on the line following the left brace. The right brace must 
be on a line by itself. You can nest groups within groups. 

: label 

Marks a place in the stream of editing commands to be used as a 
destination of a branch (see the b and t commands). The symbol 
label is a string of up to 8 characters. Each label in the editing 
stream must be different from any other label. 

[linel [, line2] J blabel 

Branches to the point in the editing stream indicated by label 
(see :label above) and continues processing the current input 
line with the commands following label. If label is null, branches 
to the end of the editing stream, which results in reading a new 
input line and starting the editing stream over. The string label 
must appear as a label in the editing stream. 

Figure 11-6 (Part 4 of 5). sed Command Summary 

grep, awk and sed 11-29 



Category Function 

Test and 
Branch 

Quit 

Find line 
number 

Syntax/Description 

[linel [, line2] J tlabel 

If any successful substitutions were made on the current input 
line, branches to label. If no substitutions were made, does 
nothing. Clears the flag that indicates a substitution was made. 
This flag is cleared at the start of each new input line. 

[linel] q 

Stops editing in an orderly fashion by: 

• Writing the current line to the output 
• Writing any appended or read text to the output 
• Stopping the editor. 

[linel] = 

Writes to standard output the line number of the line that 
matches linel. 

Figure 11-6 (Part 5 of 5). sed Command Summary 

Text in Commands 

The append, insert and change lines commands all use a supplied text string to add to 
the output stream. This text string conforms to the following rules: 

• Can be one or more lines long, 

• Each \n (new-line character) inside text must have an additional\ character before it 
(\ \n). 

• The text string ends with a new-line that does not have an additional\ character before 
it (\n). 

• Once the command inserts the text string, the string: 

Is always written to the output stream, regardless of what other commands do to 
the line that caused it to be inserted. 
Is not scanned for address matches. 
Is not affected by other editing commands. 
Does not affect the line number counter. 

11-30 Programming Tools and Interfaces 



String Replacement 

The s command performs string replacement in the indicated lines in the input file. If the 
command finds a set of characters in the input file that satisfies the regular expression 
pattern, it replaces the set of characters with the set of characters specified in string. 

The string parameter is a literal set of characters (digits, letters and symbols). Two special 
symbols can be used in string: 

& This symbol in string is replaced by the set of characters in the input lines that 
matched pattern. For example, the command: 

s/boy/&s/ 

tells sed to find a pattern boy in the input line, and copy that pattern to the 
output with an appended s. Therefore, it changes the input line: 

Froni:The boy look at the game. 
To: The boys look at the game. 

\d dis a single digit. This symbol in string is replaced by the set of characters in 
the input lines that matches the dth substring in pattern. Substrings begin with 
the characters \ ( and end with the characters \). For example, the command: 

s/\(stu\)\{dy\)/\lr\2/ 

tells sed to find a pattern study in the input line, and copy that pattern to the 
output with an r inserted in the middle. Therefore, it changes the inp_ut line: 

Froni:The study chair 
To: The sturdy chair 

grep, awk and sed 11-31 



The letters that appear as flags change the replacement as follows, 

g Substitute string for all instances of pattern in the indicated line(s). 
Characters in strin~ are not scanned for a match of pattern after thev are 
inserted. For exarr;ple, the command: - ~ 

s/r/R/ 

changes: 

From: the round roe k 
To: the Round rock 

But, the command: 

s/r/R/g 

changes: 

From: the round roe k 
To: the Round Rock 

p Print (to stdout) the line that contains a successfully matched pattern. 

w filename Write to filename the line that contains a successfully matched pattern. If 
filename exists, it is overwritten; otherwise, it is created. A maximum of 10 
different files can be mentioned as input or output files in the entire editing 
process. Include exactly one space between wand filename. 

11-32 Programming Tools and Interfaces 



Chapter 12. Using the Macro Processor (m4) 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2 
Using the Macro Preprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3 
Defining Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-4 

Using the Quote Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-5 
Argum-ents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6 

Using Other m4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-8 
Changing the Quote Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-10 
Removing a Macro Definition ......................................... 12-11 
Checking for A Defined Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-11 
Using Integer Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-12 
Manipulating Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13 
Redirecting Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-13 
Using System Programs in A Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14 
Using Unique File Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-14 
Using Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-15 
Manipulating Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-16 
Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-17 

m4 12-1 



About This Chapter 

The m.4 macro processor is a front-end processor for a compiled (or assembled) 
programming ianguage. The #define statement in C language is an example of the facility 
provided by the macro processor. 

At the beginning of a program, you can define a symbolic name or symbolic constant as a 
particular string of characters. The m4 macro processor then replaces later unquoted 
occurrences of the symbolic name with the corresponding string. Besides replacing one 
string of text with another, the m4 macro processor provides the following features: 

• Arithmetic capabilities 
• File manipulation 
• Conditional macro expansion 
• String and substring functions. 

A token is a string of letters and digits. The m4 program reads each alphanumeric token 
and determines if the token is the name of a macro. It then replaces the name of the macro 
with its defining text, and pushes the resulting string back onto the input to be rescanned. 
You can call macros with arguments, in which case the arguments are collected and 
substituted into the right places in the defining text before the defining text is rescanned. 

The m4 program provides built-in macros; you can also define new macros. Built-in and 
user-defined macros work the same way except that some of the built-in macros change the 
state of the process. Refer to "Using Other m4 Macros" on page 12-8 for a list of the 
macros. 

12-2 Programming Tools and Interfaces 



Using th_e Macro Preprocessor 

To use the m4 macro processor, enter the following command: 

m4 [file] 
The m4 program processes each argument in order. If there are no arguments or if an 
argument is - , m4 reads standard input as its input file. The m4 program writes its 
results to standard output. Therefore, to redirect the output to a file for later use, use a 
command like: 

m4 [file] >outputfile 

m4 12-3 



Defining Macros 

The define macro is a built-in function that defines macros. For example, if the following 
statement is in a program: 

define (name, stuff) 

the m4 program defines the string name as stuff. When the string name occurs in a 
program file, m4 replaces it with the string stuff. The string name must be 
alphanumeric and must begin with a letter or underscore. The string stuff is any text, 
but if the text contains parentheses the number of open, or left, parentheses must equal the 
number of close, or right, parentheses. Use the/ slash character to spread the text for 
stuff over multiple lines. The open parenthesis must immediately follow the word define. 
For example: 

define(N, 100) 

if (i > N) 

defines N to be 100 and uses the symbolic constant N in a later if statement .. Macro calls 
-in a program have the following form: 

name{argl,arg2, ... argn) 
A macro name is only recognized if it is surrounded by nonalphanumerics. Using the 
following example: 

define(N, 100) 

if (NNN > 100) 

the variable NNN is not related to the defined macro N. 

You can define macros in terms of other names. For example: 

define(N, 100) 
define(M, N) 

defines both Mand N to be 100. If you later change the definition of N and assign it a new 
value, M retains the value of 100, not N. 

12-4 Programming Tools and Interfaces 



The m4 macro processor expands macro names into their defining text as soon as possible. 
The string N is replaced by 100. Then the string M is also replaced by 100. The overall 
result is the same as using the following input in the first place: 

define (M, 100) 

The order of the definitions can be interchanged as follows: 

define(M, N) 
define(N, 100) 

Now Mis defined to be the string N, so when the value of Mis requested later, the result is 
the value of N at that time (because the Mis replaced by N, which is replaced by 100). 

Using the Quote Characters 

To delay the expansion of the arguments of define, enclose them in the quote characters. 
If you do not change them, the quote characters are left and right single quotes (' '). See 
"Changing the Quote Characters" on page 12-10 to change these characters. Any text 
surrounded by the quote characters is not expanded immediately, but the quote characters 
are removed. The value of a quoted string is the string with the quote characters removed. 
If the input is: 

define(N, 100) 
define(M, 'N') 

The quote characters around the N are removed as the argument is being collected. The 
result of using quote characters is to define M as the string N, not 100. The general rule is 
that m4 always strips off one level of quote characters whenever it evaluates something. 
This is true even outside of macros. To make the word define appear in the output, enter 
the word in quote characters, as follows: 

'define' = 1; 

Another example of using quote characters is redefining N. To redefine N, delay the 
evaluation by putting N in quote characters. For example: 

define(N, 100) 

define ( 'N', 200) 

m4 12-5 



To prevent problems from occurring, quote the first argument of a macro. For example, 
the following fragment does not redefine N: 
J _ r .! ·- _ I~• ., "" \ 
u e 1 1 n e \ '" , 1 u u J 

define(N, 200) 

The N in the second definition is replaced by 100. The result is the same as the following 
statement: 

define ( 100, 200) 
The m4 program ignores this statement because it can only define names, not numbers. 

Arguments 

The simplest form of macro processing is replacing one string by another (fixed) string. 
However, macros can also have arguments, so that you can use the macro in different 
places with different results. To indicate where an argument is to be used within the 
replacement text for a macro (the second argument of its definition), use the symbol $n to 
indicate the nth argument. When the macro is used, m4 replaces the symbol with the 
value of the indicated argument. For example, the symbol: 

$2 

refers to the second argument of a macro. Therefore, if you define a macro called bump as: 

define(bump, $1 = $1 + 1) 

m4 generates code to increment the first argument by 1. The bump (x) statement is 
equivalent to x = X + 1. 

A macro can have as many arguments as needed. However, you can access only nine 
arguments using the $n symbol ($1 through $9). To access arguments past the ninth 
argument, use the shift macro which drops the first argument and reassigns the remaining 
arguments to the $n symbols (second argument to $1, third argument to $2 ... tenth 
argument to $9). Using the shift macro more than once allows access to all arguments 
used with the macro. 

12-6 Programming Tools and Interfaces 



The macro name $0 returns the name of the macro. Arguments that are not supplied are 
replaced by null strings, so that you can define a macro that concatenates its arguments 
like this: 

define(cat, $1$2$3$4$5$6$7$8$9) 
Thus: 

cat(x, y, z) 
is the same as: 

xyz 
Arguments $4 through $9 in this example are null since corresponding arguments were not 
provided. 

The m4 program discards leading unquoted blanks, tabs, or new lines in arguments, but 
keeps all other white space. Thus: 

define(a, b c) 
defines a to be b c. 
Arguments are separated by commas. Use parentheses to enclose arguments contaiBing 
commas, so that the comma does not end the argument. For example: 

define(a, (b,c)) 
has only two arguments. The first argument is a. The second is ( b , c) . To use .a comma 
or single parenthesis, enclose it in quote characters. 

m4 12-7 



Using Other m4 Macros 

The m4 program provides a set of macros that are already defined. The define macro 
already mentioned is one of them. Figure 12-1 lists each of these macros and provides a 
brief explanation of its function. The following paragraphs further explain many of the 
macros and how to use them. 

Macro 

changecom( l , r ) 

changequote( l , r ) 

deer( number ) 

define( macroname , replacement ) 

defn( macroname ) 

divert( number) 

divnum 

dnl 

dumpdef( 'macroname' ... ) 

errprint( string) 

eval( expression ) 

ifdef( 'macroname' , argl , arg2) 

Function 

Changes the left and right comment characters to 
the characters represented by land r. 

Changes the left and right quote characters to the 
characters represented by land r. 

Returns the value of number - 1. 

Defines new macro macroname with a value of 
replacement. 

Returns the quoted definition of macroname. 

Changes output stream to number. 

Returns the value of the current output stream. 

Delete characters up to and including new-line. 

Prints the macroname and current definition of 
named macros. 

Prints string to the diagnostic output file. 

Evaluates expression as a 32-bit arithmetic 
expression. 
If macro macroname is defined, returns argl; 
otherwise, it returns arg2. 

Figure 12-1 (Part 1 of 3). m4 Built-in Macros 

12-8 Programming Tools and Interfaces 



Macro 

ifelse( stringl , string2, argl , 
arg2) 

include( file ) 

incr( number ) 

index( string] , string2) 

len( string ) 

m4exit( code) 

m4wrap( macroname ) 

maketemp( 
string ... XXXXX ... string ) 

popdef( macroname ) 

pushdef( macroname, replacement) 

shift( parameter list ) 

sinclude( file ) 

substr( string , position , length ) 

Function 

If stringl matches string2, returns the value of argl; 
otherwise, returns the value of arg2. 

Returns the contents of the file file. 

Returns the value of number + 1. 

Returns the character position in stringl where 
string2 starts ( starting with character number 0 ), 
or -1 if stringl does not contain string2. 

Returns the number of characters in string. 

Exits m4 with a return code of code. 

Runs macro macroname at the end of m4. 

Creates a unique file name by replacing the 
characters XXXXX in the argument string with the 
current process ID. 

Removes the definition of macroname and then 
defines macroname to be its previous value that was 
saved with the pushdef macro. 

Saves the current definition of macroname and then 
defines macro name to be replacement. 

Returns all but the first element of parameter list to 
perform a destructive left shift of the list. 

Returns the contents of the file file, but does not 
report an error if it cannot access file. 

Returns a substring of string that begins at 
character number position and is length characters 
long. 

Figure 12-1 (Part 2 of 3). m4 Built-in Macros 

m4 12-9 



Macro 

syscmd( command ) 

sys val 

traceoff( macro list ) 

traceon( macroname ) 

translit( string , setl , set2) 

undefine( 'macroname') 

undivert( number, number ... ) 

Function 

Executes the system command command with no 
___ ...._ _________ , __ _ 
re-.urn va1ue. 

Gets the return code from the last use of the syscmd 
macro. 

Turns off trace for any macro in macro list. If macro 
list is null, turns off all tracing. 

Turns on trace for macro macroname. If macroname 
is null, turns trace on for all macros. 

Searches string for characters that are in setl. If it 
finds any, changes those characters to corresponding 
characters in set2. 

Removes the definition of macroname. 

Appends the contents of the indicated diversion 
numbers to the current diversion. 

Figure 12-1 (Part 3 of 3). m4 Built-in Macros 

Changing the Quote Characters 

Quote characters are normally left and right single quotes (' '). If those characters are not 
convenient, change the quote characters with the following built-in macro: 

ch angequote ( [,]) 

The built-in changequote makes the left and right brackets the new quote characters. To 
restore the originai quote characters, use changequote without .Arguments as follows: 

changequote 

12-10 Programming Tools and Interfaces 



Removing a Macro Definition 

The undefine macro removes the definition of some macro or built-in. For example: 

undefi ne ('N') 

The macro removes the definition of N. undefine can also remove built-ins, as follows: 

undef i ne ('define') 

Once you remove a built-in macro, you cannot use the definition of the built-in again. 

Checking for A Defined Macro 

The built-in ifdef determines if a macro is currently defined. The ifdef macro permits 
three arguments. If the first argument is defined, the value of ifdef is the second 
argument. If the first argument is not defined, the value of ifdef is the third argument. If 
there is no third argument, the value of ifdef is null. If the first argument is undefined, 
the value of ifdef is the third argument. 

m4 12-11 



Using Integer Arithmetic 

The m4 program provides the following built-in functions for doing arithmetic on integers 
only: 

incr Increments its numeric argument by 1 

deer Decrements its numeric argument by 1 

eval Evaluates an arithmetic expression 

Thus, to define a variable as one more than N, use the following: 

define(N, 100) 
define(Nl, 'incr(N)') 

which defines N 1 as one more than the current value of N. 

The eval function can evaluate expressions containing the following operators (listed in 
decreasing order of precedence): 

unary+ and -

** or " (exponentiation) 

* / % (modulus) 

+ -

==!=<<=>>= 

!(not) 

& or && (logical and) 

I or 11 (logical or). 

Use parentheses to group operations where needed. All operands of an expression must be 
numeric. The numeric value of a true relation (like 1 > 0) is 1, and false is 0. The 
precision in eval is 32 bits. 

For example, define M to be 2==N+ 1 using eval as follows: 

define(N, 3) 
define(M, 'eval (2==N+l)') 

Use quote characters around the text that defines a macro unless the text is very simple. 

12-12 Programming Tools and Interfaces 



Manipulating Files 

To merge a new file in the input, use the built-in function: include. For example: 

inc 1 ude {filename) 

This function inserts the contents of filename in place of the include command. 

A fatal error occurs if the file named in include cannot be accessed. To avoid a fatal 
error, use the alternate form sinclude. The built-in sinclude (silent include) does not 
write a message, but continues if the file named cannot be accessed. 

Redirecting Output 

The output of m4 can be redirected to temporary files during processing, and the collected 
material can be output upon command. The m4 program maintains nine possible 
temporary files, numbered 1 through 9. If you use the built-in macro: 

divert(n) 
The m4 program writes all output from the program after the divert function at the end of 
temporary file, n. To return the output to the display screen, use either the divert or 
divert(O) command, which resumes the normal output process. 

The m4 program writes all redirected output to the temporary files in numerical order at 
the end of processing. The m4 program discards the output if you redirect the output to a 
temporary file other than 0 through 9. 

To bring back the data from all temporary files in numerical order, use the built-in 
undivert. To bring back selected temporary files in a speCified order, use the built-in 
undivert with arguments. When using undivert, m4 discards the temporary files that are 
recovered and does not search the recovered data for macros. 

The value of undivert is not the diverted text. 

The built-in divnum returns the number of the currently active temporary files. If you do 
not change the output file with the divert macro, m4 puts all output in temporary file 0. 

m4 12-13 



Using System Programs in A Program 

You can run any program in the operating system from a program by using the syscmd 
built-in. For example, the following statement runs the date program: 

syscmd(date) 

Using Unique File Names 

Use the built-in maketemp to make a unique file name from a program. If this macro 
receives an argument that contains the string XXXXX, it changes the XXXXX to the process 
ID of the current process. For example, for the statement: 

maketemp(myfileXXXXX) 

the m4 program returns a string that is myfi 1 e concatenated with the process ID. Use 
this string to name a temporary file. 

12-14 Programming Tools and Interfaces 



Using Conditional Expressions 

The built-in ifelse performs conditional testing. In the simplest form: 

ifelse(a, b, c, d) 

compares the two strings a and b. If a and bare identical, ifelse returns the string c. If 
they are not identical, it returns string d. For example, you can define a macro called 
compare to compare two strings and return yes if they are the same, or no if they are 
different, as follows: 

define(compare, 'ifelse($1, $2, yes, no)') 

The quote characters prevent the evaluation of i fe 1 se from occurring too early. If the 
fourth argument is missing, it is treated as empty. 

The built-in ifelse can have any number of arguments, and therefore, provides a limited 
form of multiple path decision capability. For example: 

ifelse(a, b, c, d, e, f, g) 

This statement is logically the same as the following fragment: 

if(a == b) x = c; 
else if(d == e) x = f; 
else x = g; 
return(x); 

If the final argument is omitted, the result is null, so: 

ifel se(a, b, c) 

is c if a matches b, and null otherwise. 

m4 12-15 



Manipulating Strings 

The built-in len returns the length of the string (number of characters) that makes units 
argument. Thus: - - , , ~ 

len(abcdef) 
is 6, and: 

len((a,b)) 
is 5. 

The built-in substr provides substrings of strings. Using input, substr(s, i, n) returns the 
substring of s that starts at the ith position (origin zero) and is n characters long. If n is 
omitted, the rest of the string is returned. For example, the function: 

substr('now is the time',l) 
returns the following string: 

ow is the time 
The built-in index(sl, s2) returns the index (position) in sl where the string s2 occurs, or 
-1 if it does not occur. As with substr, the origin for strings is 0. 

The built-in translit performs character transliteration. It has the general form: 

translit(s, f, t) 

which modifies s by replacing any character found in f by the corresponding character of 
t. For example, the function: 

translit(s, aeiou, 12345) 

replaces the vowels by the corresponding digits. If tis shorter than f, characters that do 
not have an entry in t are deleted. If tis not present at all, characters from fare deleted 
from s. So: 

translit(s, aeiou) 

12-16 Programming Tools and Interfaces 



deletes vowels from string s. 
The built-in dnl deletes all characters that follow it up to and including the next new line. 
Use this macro to get rid of empty lines. For example, the function: 

define(N, 100) 
define (M, 200) 
define(L, 300) 
results in a new-line at the end of each line that is not part of the definition. These 
new-line characters are passed to the output. To get rid of the new-lines, add the built-in 
dnl to each of the lines. 

define(N, 100) dnl 
define(M, 200) dnl 
define(L, 300) dnl 

Printing 

The built-in errprint writes its arguments on the standard error file. For example: 

errpri nt ('error') 
The built-in dumpdef dumps the current names and definitions of items named as 
arguments. If you do not supply arguments, dumpdef prints all current names and 
definitions. Do not forget to quote the names. 

m4 12-17 



12-18 Program.ming Tools and Interfaces 



Chapter 13. Creating an Input Language 

CONTENTS 
About This Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3 
Writing a Lexical Analyzer Program with lex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 

What lex Does . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 
How the Lexical Analyzer Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5 

The lex Specification File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 
Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6 

Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-8 
Putting Blanks in an Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-11 
Other Special Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-11 
Character Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-11 
Matching Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12 

Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14 
Null Action ....................................................... 13-14 
Same as Next Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-14 
Printing a Matched String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-15 
Finding the Length of a Matched String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-15 
Getting More Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-15 
Putting Characters Back ............................................ 13-16 
Input/Output Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-17 
Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-18 
End of File Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-18 

Passing Code to the Generated Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-19 
Defining Substitution Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-20 
Start Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-21 
Compiling the Lexical Analyzer ......................................... 13-22 
Using lex with yacc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-23 
Creating a Parser with yacc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-25 
Grammar File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-26 

main and yyerror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-26 
yylex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-27 

Using the Grammar File ............................................... 13-28 
Using Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-28 
Using Literal Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-29 
How to Format the Grammar File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-29 
Using Recursion in a Grammar File .................................... 13-30 
Errors in the Grammar File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-30 

Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-31 

lex and yacc 13-1 



Defining Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-32 
Start Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 13-32 
Token Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-32 

Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-34. 
Repeating Nonterminal Names ........................................ 13-34 
Empty String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-34 
End of Input Marker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-35 

Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-36 
Passing Values Between Actions ...................................... 13-37 
Putting Actions in the Middle of Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-38 

Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-39 
Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-40 

Providing for Error Correcting ........................................ 13-41 
Clearing the Look Ahead Token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-42 

Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-43 
Parser Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-44 

Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-45 
Redu_ce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-45 

Using Ambiguous Rules ............................................... 13-47 
Understanding Parser Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4 7 
How the Parser Responds to Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-49 

Turning On Debug Mode .............................................. 13-50 
Creating a Simole Calculator Program - Examole . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-51 

Compiling the Example Progra~ ....... ~ ............................... 13-51 
The Parser Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-52 
The Lexical Analyzer Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-57 

13-2 Programming Tools and Interfaces 



About This Chapter 

If a program needs to receive input, either interactively or in a batch environment, you 
must provide a program or routine to receive the input. If the input is complicated, it may 
require additional code to break the input into pieces that mean something to the program. 
This section describes two programs that help develop these input programs. 

First this chapter describes lex, a program that generates a program from a set of rules. 
The lex program generates a program, called a lexical analyzer, that analyzes input and 
breaks it into categories, such as: numbers, letters or operators. Define the categories in 
the input to lex. 

Next the chapter describes the yacc program. This program also generates a program from 
a set of rules. However, the program that yacc generates is a parser program. A parser is 
a program that analyzes input, using the categories that the lexical analyzer identified, 
and determines what to do with the input. 

Finally, this chapter includes an example of a lex and a yacc program that together 
generate a third program, a simple desk calculator. 

lex and yacc 13-3 



Writing a Lexical Analyzer Program with lex 

The lex program helps ·write a C language progra..."D. that can receive a character strea..."D. 
input and translate that input into program actions. To use the lex program, write a 
specification file that contains the following parts: 

Regular expressions 
Character patterns that the generated lexical analyzer recognizes 

Action statements 
C language program fragments that define how the generated lexical analyzer 
reacts to regular expressions that it recognizes. 

The actual format and logic allowed in this file is discussed in "The lex Specification File" 
on page 13-6. 

What lex Does 

Using the information in the specification file, the lex program generates a C language 
program to analyze an input stream according to the specifications. The lex program puts 
the output program in a file called yy .lex.c. If the output program recognizes a simple 
one-word input structure, compile the yy.lex.c output file using the command: 

cc -11 yy.lex.c 
to get an executable lexical analyzer. However, if the lexical analyzer recognizes more 
than one-word syntax, create a parser to ensure proper handling of the input (see 
"Creating a Parser with yacc" on page 13-25). 

The yy .lex.c output file can be moved to other systems that have a C compiler that 
supports the lex library functions. 

The compiled lexical analyzer performs the following functions: 

• Reads an input stream of characters 

• Copies the input stream to an output stream 

• Breaks the input stream into smaller strings that match the regular expressions in the 
lex specification file 

• Executes an action for each regular expression that it recognizes. The action(s) are C 
language program fragments in the lex specification file. The action fragments can 
call actions or subroutines outside of the action fragment. 

13-4 Programming Tools and Interfaces 



How the Lexical Analyzer Works 

The lexical analyzer that lex generates uses an analysis method called a deterministic 
finite-state automaton. This method provides for a limited number of conditions that the 
lexical analyzer can exist in, along with the rules that determine what state the lexical 
analyzer is in. 

For a simple example, Figure 13-1 shows a chart of a program that has three states: start, 
good and bad. The program gets a stream of characters for input. It begins in the st a rt 
condition. When it receives the first character, the program compares the character with 
the rule. If the character is alphabetic (according to the rule), the program changes to the 
good state; if it is not alphabetic, the program changes to the bad state. The program 
stays in good until it finds a character that does not match its conditions, and then it 
moves to bad (which terminates the program). 

other 

input= A -Z;a - z D input= A - Z; 
a - z 

start---------- good 

L _J other characters 
bad 

characters l 
quit 

Figure 13-1. Simple Finite State Model 

The automaton allows the generated lexical analyzer to look ahead in an input stream 
more than one or two characters. For example, define two rules in the lex specification 
file, one that looks for the string ab and the other that looks for the string abcdefg. If 
the lexical analyzer gets an input string of abcdefh, it reads characters to the end of 
string abcdefg before finding that the input string does not match the string abcdef g. 
The lexical analyzer then returns to the rule that looks for the string ab, decides that it 
matches part of the input, and begins trying to find another match using the remaining 
input cdefh. 

lex and yacc 13-5 



The lex Specification File 

Rules 

The format of the lex specification file is: 

{definitions} 
% % 
{rules} 
% % 
{user subroutines} 
You can omit the definitions and the user subroutines. The second % % is optional, but 
the first% % is required to mark the beginning of the rules. The minimum lex 
specification file contains no definitions and no rules: 

% % 
Without a specified action for a pattern match, the lexical analyzer copies the input 
pattern to the output without changing it. Therefore, the previous specification file results 
in a lexical analyzer that copies all input to the output unchanged. 

The rules section of the specification file contains control decisions that define the lexical 
analyzer that lex generates. The rules are in the form of a table. The left column of the 
table contains regular expressions; the right column of the table contains actions. Actions 
are C language program fragments. When the lexical analyzer finds a match for the 
regular expression that appears in the left column of the table, the lexical analyzer 
executes the action. 

For example, to create a lexical analyzer to look for the string integer and print a 
message when the lexical analyzer finds the string, define a rule: 

integer printf("found keyword int"); 
This example uses the C language library function printf to print the string. The first 
blank or tab character in the action indicates the end of the expression. When using only 
one expression in an action, put it on the same line and to the right of the regular 
expression (integer). When using more than one statement, or if the statement takes 
more than one line, enclose the action in braces, the same as in a C language program. 

13-6 Programming Tools and Interfaces 



For another example, a lexical analyzer to change some words in a file from British 
spelling to the American spelling has a specification file that contains rules such as: 

colour 
mechanise 
petrol 

pr i n t f ( 11 co 1 or 11 
) ; 

printf( 11 mechanize 11
); 

printf( 11 gas 11
); 

This specification file is not complete because it changes the word petro 1 eum to gaseum. 

lex and yacc 13-7 



Regular Expressions 

Specifying regular expressions in a lex specification file is similar to methods used in sed 
or ed. A regular expression specifies a set of strings to be matched. It contains text 
characters and operator characters. Text characters match the corresponding characters 
in the strings being compared. Operator characters specify repetitions, choices, and other 
features. 

The letters of the alphabet and the digits are always text characters. For example, the 
regular expression integer matches the string integer, and the expression a57D looks 
for the string a57D. 

Operators 
The operator characters for specifying a regular expression are: 

Symbol 

II 

[ ] 

I\ 

Use 

Encloses literal strings to interpret as text characters 

(Escape character). Indicates that the operator symbol represents the character 
rather than the operator when used before one of the character class operators. 
For example, [\I\ abc] represents the class of characters that includes the 
characters I\ abc. 
Encloses character classes. 

In a character class, indicates the complement of the set of characters when the 
I\ is the first character in a set of characters. For example, [I\ abc] matches all 
characters except a, b or c, including all special or control characters. 
Similarly, [I\ a-zA-Z] is any character that is not a letter. 

In an expression, indicates a match only when the expression is at the beginning 
of the line when the I\ is the first character in an expression. 

Figure 13-2 (Part 1 of 3)e Regular Expression Operators 

13-8 Programming Tools and Interfaces 



Symbol Use 

In a character class, indicates a range of characters from the ASCII value of the 
character that comes before the - to the ASCII value of the character that 
follows the - . For example, [a-z0-9] indicates the character class containing 
all the lowercase letters and the digits. A range can be either in ascending or 
descending order, but the order is that of the ASCII values of the characters for 
RT PC. If the program is moved to a system that uses a different set of 
character codes (like EBCDIC), the range may be a different set of characters. 
lex displays a warning message if moving to another system is likely to cause a 
problem. 

? (Optional element). Indicates that the character that precedes the ? is not 
required to match the string, but may be present in that position. For example, 
ab?e matches either ac or abe 

* 

+ 

Matches any single character except new-line. 

Matches any number of consecutive occurrences, including zero, of the 
character that comes before the*. For example, a* is any number of 
consecutive a characters, including zero. The usefulness of matching zero 
occurrences is more obvious in complicated expressions. For example, the 
expression, [A-Za-z] [A-Za-z0-9] *indicates all alphanumeric strings with a 
leading alphabetic character, including strings that are only one alphabetic 
character. Use this expression for recognizing identifiers in computer 
languages. 
Matches any number of consecutive occurrences, but not zero, of the character 
that comes before the +. For example, a+ is one or more instances of a. Also, 
[a-z] +is all strings of lowercase letters. 

Indicates a match for either the expression that precedes the I or the expression 
that follows the I. For example, ab I ed matches either ab or ed. 

( ) Groups more complex expressions. For example, (ab I ed+)? ( ef) * matches 
such strings as abefef, efefef, edef, or eddd; but not abe, abed, or abedef. 

a/b / indicates a match of expression a only if expression b immediately follows 
expression a. For example, ab/ ed matches the string ab but only if followed by 
ed. 

Figure 13-2 (Part 2 of 3). Regular Expression Operators 

lex and yacc 13-9 



Symbol Use 

$ Indicates a match only when the expression is at the end of the line when used 
as the last character in an expression. For example, ab$ is the same as ab/\n 
where \n is a new-line character. See the description of the a/b operator. 

{ } When enclosing numbers, the numbers indicate a number of consecutive 
occurrences of the expression that comes before it. For example, a { 1, 5} 
indicates a match for from 1 to 5 occurrences of the letter a. 
When enclosing a name, the name represents a string defined earlier in the 
specification file. Define the named string in the first part of the lex 
specification, before the rules. For example, {di g i t} looks for a defined string 
named di g i t and inserts it at that point in the expression. 

< x > Encloses a start condition (see "Start Conditions" on page 13-21). The lexical 
analyzer executes the associated action only if the lexical analyzer is in the 
indicated start condition (X). If the condition of being at the beginning of a line 
is start condition ONE, then the " operator would be the same as the expression, 
<ONE>. 

Figure 13-2 (Part 3 of 3). Regular Expression Operators 

To use the operator characters as text characters, indicate that they are text characters by 
using one of the escape sequences: 11 11 (quotes) or \ (backslash). The operator" 
(quotation mark) indicates that what is between a pair of quotes is text. Thus: 

xyz 11 ++ 11 

matches the string xyz++. Note that a part of a string may be quoted. Quoting an 
ordinary text character has no effect. For example, the expression: 
11 xyz++ 11 

is the same as the previous one. Quoting all characters that are not letters or numbers, 
ensures that text is interpreted as text. 

Another way to turn an operator character into a text character is to put a backslash 
character before it. For example: 

xyz\+\+ 

is another form of the above expressions. 

13-10 Programming Tools and Interfaces 



Putting Blanks in an Expression 

Normally, blanks or tabs end a rule and therefore, the expression that defines a rule. 
However, you can enclose the blanks or tab characters in quotation marks to include them 
in the expression. Use quotes around all blanks in expressions that are not already within 
sets of brackets ([ ]). 

Other Special Characters 

The lex program recognizes many of the normal C language special characters. These 
character sequences are: 

Sequence Meaning 
\n New-line - Do not use the actual new-line character in an expression. 
\t Tab 
\ b Backspace 
\ \ Backslash 

Figure 13-3. Special Characters 

When using these special characters in an expression, you do not need to enclose them in 
quotes. Every character, except these special characters and the previously described 
operator symbols, is always a text character. 

Character Classes 

Character classes are ranges of characters that lex uses to match a single character in 
the input stream. For example, a character class may contain the letters a, b, C. If this 
character class is a match pattern, lex accepts any one of the characters a, b or C from 
the input stream. 

Define character classes using the [ ] operator pair. Therefore, to define the above 
character class use the following expression: 

[abc] 

The operator symbols, -, " and \ can also help define the patterns represented in a 
character class. See "Operators" on page 13-8 for the definitions of these symbols. All 
other operators within square brackets do not have any meaning other than as an ordinary 
character. 

lex and yacc 13-11 



Matching Rules 

When more than one expression can match the current input, lex chooses in the following 
order: 

1. The longest match 

2. Among rules that match the same number of characters, the rule that occurs first. 

For example, if the rules 

integer 
[a-z]+ 

keyword action ... ; 
identifier action ... ; 

are given in that order, and integers is the input word, lex matches the input as an 
identifier, because [a-z] matches eight characters while integer matches only seven. 
However, if the input is integer, both rules match seven characters. lex selects the 
keyword rule because it occurs first. A shorter input, such as i n t, does not match the 
expression integer and so lex selects the identifier rule. 

Matching a String Using Wildcard Characters 
Because lex chooses the longest match first, do not use rules containing expressions like 
* Fnl' P>vi::aninle>• 

"" • ..... _....... - ... =~.:...:...:..r.;;.~.;. 

I *' 
might seem like a good way to recognize a string in single quotes. However, the lexical 
analyzer reads far ahead, looking for a distant single quote to complete the long match. If 
a lexical analyzer with such a rule gets the following input: 

'first' quoted string here, 'second' here 
it matches: 

'first' quoted string here, 'second' 

To find the smaller strings, first and second, use the following rule: 

I [ ;, I\ n] * ! 
This rule stops after ' f i rs t ' . 

Errors of this type are not far reaching, because the . (period) operator does not match a 
new-line character. Therefore, expressions like . *stop on the current line. Do not try to 
defeat this with expressions like [.\n] +. The lexical analyzer tries to read the entire input 
file and an internal buffer overflow occurs. 

13-12 Programming Tools and Interfaces 



Finding Strings within Strings 
The lex program partitions the input stream, and does not search for all possible matches 
of each expression. Each character is accounted for once and only once. For example, to 
count occurrences of both she and he in an input text, try the following rules: 

she 
he 
\n 

s++ 
h++ 

where the last two rules ignore everything besides he and she. However, because she 
includes he, lex does not recognize the instances of he that are included in she. 

To override this choice, use the action REJECT. This directive tells lex to go to the next 
rule. lex then adjusts the position of the input pointer to where it was before the first rule 
was executed, and executes the second choice rule. For example, to count the included 
instances of he, use the following rules: 

she 
he 
\n 

{s++; REJECT;} 
{h++; REJECT;} 

After counting the occurrences of she, lex rejects the input stream and then counts the 
occurrences of he. Because in this case "she" includes "he" but not vice versa, and you 
can omit the REJECT action on "he". In other cases, it may be difficult to determine which 
input characters are in both classes. 

In general, REJECT is useful whenever the purpose oflex is not to partition the input 
stream but to detect all examples of some items in the input, and the instances of these 
items may overlap or include each other. 

lex and yacc 13-13 



Actions 

\Vhen the lexical analyzer matches one of the regular expressions in the rules section of 
the specification file, it executes the action that corresponds to the regular expression. 
Without rules to match all strings in the input stream, the lexical analyzer copies the 
input to standard output. Therefore, do not create a rule that only copies the input to the 
output. Use this default output to find gaps in the rules. 

When using lex to process input for a parser that yacc produces, provide rules to match 
all input strings. Those rules must generate output that yacc can interpret. 

Null Action 

To ignore the input associated with a regular expression, use a (C language null 
statement) as an action. For example: 

[ \ t\n] 

ignores the three spacing characters (blank, tab, and new-line). 

Same as Next Action 

To avoid repeatedly writing the same action, use the l (vertical bar) character. This 
character indicates that the action for this rule is the same as the action for the next rule. 
For example, the example to ignore blank, tab and new-line characters (shown above), can 
be written as: 
II II 

II \tll 
II \nll 

The quotes around \ n and \ t are not required. 

13-14 Programming Tools and Interfaces 



Printing a Matched String 

To find out what text matched an expression in the rules section of the specification file, 
include a C language printf function as one of the actions for that expression. When the 
lexical analyzer finds a match in the input stream, the program puts that matched string in 
an external character array, called yytext. To print the matched string, use a rule like: 

[a-z] + printf( 11 %s 11 ,yytext); 
The C language function printf accepts a format argument and data to be printed. In this 
example the arguments to printf have the following meanings: 

%s A symbol that converts the data to type string before printing. 
yytext The name of the array containing the data to be printed 

Printing the output like this is common. You may want to define it as a macro in the 
definitions section of the specification file. If this action is defined as ECHO, then the rules 
section entry looks like: 

[a-z] + ECHO; 

Finding the Length of a Matched String 

To find the number of characters that the lexical analyzer matched for a particular regular 
expression, use the external variable yyleng. For example, to count both the number of 
words and the number of characters in words in the input, use the following action: 

[a-zA-Z]+ {words++;chars += yyleng;} 
This action totals the number of characters in the words matched and puts that number in 
chars. 
The following expression finds the last character in the string matched: 

yytext[yyleng-1] 

Getting More Input 

The lexical analyzer may run out of input before it completely matches an expression in a 
rules file. In this case, include a call to the lex function yymore in the action for that 
rule. Normally, the next string from the input stream overwrites the current entry in 
yytext. If you use yymore, the next string from the input stream is added to the end of 
the current entry in yytext. 

lex and yacc 13-15 



For example, to define a language that includes the following syntax: 

• A string is any set of characters between " (quotes) 

• A \ (backslash) must come before all strings. 

use the rules: 

\II [A II]* { 

else 

if (yytext[yyleng-1] =='\\') 
yymore(); 

normal user processing 
} 

When this lexical analyzer receives a string such as 11 abc\ "def", it first matches the five 
characters "abc\. Then the call to yymore adds the next part of the string "def to the 
end. The part of the action code labeled normal processing must process the final 
quote that ends the string. 

Putting Characters Back 

The lexical analyzer may not need all of the characters that are matched by the currently 
successful expression, or it may need to return matched characters to the input stream to 
be checked again for another match. To return characters to the input stream, use the 
call: 

yyless(n) 

where n is the number of characters of the current string to keep. Characters that are 
beyond the nth character in the stream are returned to the input stream. This function 
provides the same type of look ahead that the I operator uses, but it allows more control 
over its usage. 

13-16 Programming Tools and Interfaces 



Use the yyless function to process text more than once. For example, when parsing a C 
language program an expression such as x=-a is difficult to understand. Does it mean xis 
equal to minus a, or is it an older representation of x -= a which means decrement x by the 
value of a? To treat this expression as xis equal to minus a, but print a warning message, 
use a rule such as: 

=-[a-zA-Z] { 
printf( 11 0perator (=-) ambiguous\n 11

}; 

yyless(yyleng-1); 
action for =- ... 

} 

Input/Output Routines 

The lex program allows a program to use the input/output (I/0) routines it uses. These 
routines are: 

input Returns the next input character 

output(c) Writes the character con the output 

unput(c) Pushes the character C back onto the input stream to be read later by input. 

lex provides these routines as macro definitions. You can override them and provide other 
versions. 

These routines define the relationship between external files and internal characters. If 
you change them, change them all in the same way and they should follow these rules: 

• All routines must use the same character set. 

• The input routine must return a value of zero to indicate end of file. 

• Do not change the relationship of unput to input or the look ahead functions will not 
work. 

The standard lex library allows the lexical analyzer to back up a maximum of 100 
characters. 

Create a different version of input to be able to read a file containing nulls. Using the 
normal version of input, the returned value of 0 (from the null characters) indicates the 
end of file and ends the input. 

lex and yacc 13-17 



Character Set 

The lexical analyzers that lex generates process character I/O through the routines input, 
output, and unput. Therefore, to return values in yytext, lex uses the character 
representation that these routines use. Internally however, lex represents each character 
with a small integer. When using the standard library, this integer is the value of the bit 
pattern that the computer uses to represent the character. Normally, the letter a is 
represented in the same form as the character constant 'a'. If you change this 
interpretation with different 1/0 routines, put a translation table in the definitions section 
of the specification file. The translation table begins and ends with lines that contain only 
the entries: 

%T 
The translation table contains lines of the form: 

%T 
{integer} 
{integer} 
{integer} 
%T 

{character string} 
{character string} 
{character string} 

that indicate the value associated with each character~ 

End of File Processing 

When the lexical analyzer reaches the end of a file, it calls a library routine called 
yywrap. This routine returns a value of 1 to indicate to the lexical analyzer that it should 
continue with normal wrap-up at the end of input. However, if the lexical analyzer 
receives input from more than one source, change the yywrap function. The new function 
must get the new input and return a value of 0 to the lexical analyzer. A return value of 0 
indicates that the program should continue processing. 

You can also include code to print summary reports and tables when the lexical analyzer 
ends in a new version of yywrap. The yywrap function is the only way to force yylex to 
recognize the end of input. 

13-18 Programming Tools and Interfaces 



Passing Code to the Generated Program 

You can define variables in either the definitions section or the rules section of the 
specification file. lex changes statements in the specification file into a lexical analyzer. 
Any line in the specification file that lex cannot interpret is passed, unchanged, to the 
lexical analyzer. Three types of entries can be passed to the lexical analyzer in this 
manner: 

• Lines beginning with a blank or tab that are not a part of a lex rule are copied into the 
lexical analyzer. If this entry occurs before the first %% in the specification file, the 
entry is external to any function in the code. If the entry occurs after the first %%, it 
must be a C language program fragment that defines a variable. Define these 
statements before the first lex rule in the specification file. 

• Lines beginning with a blank or tab that are program comments are included as 
comments in the generated lexical analyzer. The comments must be in the C language 
format for comments. 

• Any lines that lie between lines containing only%{ and %} is copied to the lexical 
analyzer. The symbols%{ and%} are not copied. Use this format to enter preprocessor 
statements that must begin in column 1, or to copy lines that do not look like program 
statements. 

• Any lines occurring after the third % % delimiter are copied to the lexical analyzer 
without format restrictions. 

lex and yacc 13-19 



Defining Substitution Strings 

You can define string macros that iex expands when it generates the lexical analyzer. 
Define them before the first % % delimiter in the lex specification file. Any line in this 
section that begins in column 1 and that does not lie between % { and % } defines a lex 
substitution string. Substitution string definitions have the general format: 

name translation 

where name and translation are separated by a least one blank or tab, and name begins 
with a letter. When lex finds the string name enclosed in { } (braces) in the rules part of 
the specification file, it changes name to the string defined in trans 1 at i on and deletes 
the braces. 

For example, to define the names D and E, put the following definitions before the first 
% % delimiter in the specification file: 

[0-9] D 
E [DEde] [ -+] {D}+ 
Then, use these names in the rules section of the specification file to make the rules 
shorter: 

{D}+ 
{D}+ 11

•
11 {D}*({E})? 

{D}* 11
•

11 {D}+({E})? 
{D}+{E} printf( 11 real "); 
You can also include the following items in the definitions section: 

• Character set table 
• List of start conditions 
• Changes to size of arrays to accommodate larger source programs. 

13-20 Programming Tools and Interfaces 



Start Conditions 

Any rule may be associated with a start condition. lex recognizes that rule only when lex 
is in that start condition. You can change the current start condition at any time. 

Define start conditions in the definitions section of the specification file by using a line in 
the following form: 

% Start namel name2 
The symbols, namel and name2, are names that represent conditions. There is no limit to 
the number of conditions and they can appear in any order. You can also shorten the 
word Start to s or S. 

When using a start condition in the rules section of the specification file, enclose the name 
of the start condition in <> (angle brackets) at the beginning of the rule: 

<name l> expression 

defines a rule, expression that lex recognizes only when lex is in start condition name 1. 
To put lex in a particular start condition, execute the action statement (in the action part 
of a rule): 

BEGIN namel; 

This statement changes the start condition to name 1. To resume the normal state: 

BEGIN O; 
resets lex to its initial condition. A rule can be active in several start conditions. For 
example: 

<namel,name2,name3> 
is a legal prefix. Any rule that does not begin with a start condition is always active. 

lex and yacc 13-21 



Compiling the Lexical Analyzer 

Compiling a lex program is a two-step process: 

1. Use lex to change the specification file into a C language program. The resulting 
program is in the lex.yy .c file. 

2. Use the cc -11 command to compile and link the program with a library of lex 
subroutines. The resulting executable program is in the a.out file. 

For example, if the lex specification file is called lextest, enter the following commands: 

lex lextest 
cc lex.yy.c -11 
Although the default lex I/0 routines use the C language standard library, the lexical 
analyzers that lex generates do not. You can include different copies of the input, 
output, and unput routines to avoid using the library (see "Input/Output Routines" on 
page 13-17). 

13-22 Programming Tools and Interfaces 



Using lex with yacc 

When used alone, the lex program generator makes a lexical analyzer that recognizes 
simple one-word input or receives statistical input. You can also use lex with a parser 
generator, such as yacc. The yacc program generates a program, called a parser, that 
analyzes the construction of more than one word input. This parser program operates well 
with lexical analyzers that lex generates. The lex program recognizes only regular 
expressions and formats them into character packages called tokens. 

token The smallest independent unit of meaning as defined by either the parser or the 
lexical analyzer. A token can contain data, a language keyword, an identifier, 
or other parts of a language syntax. 

yacc produces parsers that recognize many types of grammar with no regard to context. 
These parsers need a preprocessor to recognize input tokens such as the preprocessor that 
lex produces. 

When using lex to make a lexicalanalyzer for a parser, the lexical analyzer (from lex) 
partitions the input stream. The ,parser (from yacc) assigns structure to the resulting 
pieces. Figure 13-4 on page 13-24 shows how the two generated programs work together. 
You can also use other programs along with the programs generated by either lex or yacc. 

The yacc program must have a lexical analyzer named yylex, which is what the lexical 
analyzer from lex is named. Normally, the default main program in the lex library calls 
this routine, but if yacc is loaded and its main program is used, yacc calls yylex. In this 
case, each lex rule should end with: 

return(token); 
where the appropriate token value is returned. 

To find out the names for tokens that yacc uses, compile the lex output file as part of the 
yacc output file by placing the line: 

#include 11 lex.yy.c 11 

in the last section of the yacc grammar file. For example, if the grammar file is good and 
the specification file is better, the final program is created with the following command 
sequence: 

yacc good 
lex better 
cc y.tab.c -ly -11 

The yacc library (- ly in the preceding example) should be loaded before the lex library to 
get a main program that invokes the yacc parser. You can generate lex and yacc 
programs in either order. 

lex and yacc 13-23 



lexical 
rules 

1 
8 

1 

grammer 
rules 

I • 
B 

l 
yylex.c 1-----.-------i yyparse.c 

- cc command 

Input---+B 

I._---... ~ Parsed 
Input to 
another 
program 

Figure 13-4. Lex With Y ace 

Source 
Files 

Program 
Generators 

Generated 
Output Files 

Compiled 
Program 

13-24 Programming Tools and Interfaces 



Creating a Parser with yacc 

The yacc program creates parsers that define and enforce structure for character input to 
a computer program. To use this program, supply the following inputs: 

Grammar file 

main 

yyerror 

yylex 

A source file that contains the specifications for the language to recognize. 
This file also contains the programs main, yyerror and yylex. You must 
supply these programs. 

AC language program that as a minimum contains a call to the function 
yyparse that yacc generates. A limited form of this program is in the yacc 
library. 

AC language program to handle errors that can occur during parser operation. 
A limited form of this program is in the yacc library. 

AC language program to perform lexical analysis on the input stream and pass 
tokens to the parser. You can generate this lexical analyzer using the lex 
program. 

When yacc gets a specification, it generates a file of C language programs, called y.tab.c. 
When compiled using the cc command, these programs form a function called yyparse that 
returns an integer. When it is called, yyparse calls yylex, the lexical analyzer to get 
input tokens. yylex continues providing input until either the parser detects an error, or 
yylex returns an end-marker token to indicate the end of operation. If an error occurs and 
yyparse cannot recover, it returns a value of 1 to main. If it finds the end-marker token, 
yyparse returns a value of 0 to main. 

lex and yacc 13-25 



Grammar File 

To use yacc to generate a parser; give it a grammar file that describes the input data 
stream and what the parser is to do with the data. The grammar file includes rules 
describing the input structure, code to be invoked when these rules are recognized, and a 
routine to do the basic input. 

The yacc program uses the information in the grammar file to generate a program that 
controls the input process. This program, called a parser, calls an input routine (the 
lexical analyzer) to pick up the basic items (called tokens) from the input stream. The 
parser organizes these tokens according to the structure rules in the grammar file. The 
structure rules are called grammar rules. When the parser recognizes one of these rules, 
it executes the user code supplied for that rule. The user code is called an action. Actions 
return values and use the values returned by other actions. 

Use the C programming language to write the action code and other subroutines. yacc 
uses many of the C language syntax conventions for the grammar file. 

main and yyerror 

You must provide these two routines for the parser, To e21_se the initial effort of using 
yacc, the yacc library contains simple versions of main and yyerror. Include these 
routines using the - ly argument to the loader (or to the cc command). The source code 
for the main library program is: 

main() 
{ 

return ( yyparse() ); 
} 

The source code for the yyerror library program is: 

#include <stdio.h> 

yyerror(s) 
char *s; 

{ 
fpri ntf ( stderr, 11 %s\n 11 

, s); 
} 

The argument to yyerror is a string containing an error message, usually the string 
syntax error. 

13-26 Programming Tools and Interfaces 



yylex 

These are very limited programs. You should provide more function in these routines. For 
example, keep track of the input line number and print it along with the message when a 
syntax error is detected. You may also want to use the value in the external integer 
variable yychar. This variable contains the look-ahead token number at the time the 
error was detected. 

The input routine that you supply must be able to: 

• Read the input stream 

• Recognize basic patterns in the input stream 

• Pass the patterns to the parser along with tokens that define the pattern to the parser. 

A token is a symbol or name that tells the parser which pattern is being sent to it by the 
input routine. A nonterminal symbol is the structure that the parser recognizes. 

For example, if the input routine separates an input stream into the tokens of WORD, 
NUMBER and PUNCTUATION, and it receives the input: 

I have 9 turkeys. 
the program could choose to pass the following strings and tokens to the parser: 

String Token 

I WORD 
have WORD 
9 NUMBER 
turkeys WORD 

PUNCTUATION 

The parser must contain definitions for the tokens that the input routine passes to it. If 
you use the -d option for yacc, it generates a list of tokens in a file called y.tab.h. This 
list is a set of #define statements that allow the lexical analyzer (yylex) to use the same 
tokens as the parser. 

To avoid conflict with the parser, do not use names that begin with the letters yy. 
You can use lex to generate the input routine, or you can write it in the C language. See 
"The lex Specification File" on page 13-6 for information about using lex. 

lex and yacc 13-27 



Using the Grammar File 

A yacc grammar file consists of three sections: 

• Declarations 

• Rules 

• Programs. 

Two%% (percent signs) that appear together separate the sections of the grammar file. To 
make the file easier to read, put the %% on a line by themselves. A complete grammar file 
looks like: 

declarations 
% % 
rules 
% % 
programs 

The declarations section may be empty. If you omit the programs section, omit the second 
set of%%. Therefore, the smallest yacc grammar file is: 

"'' "' lo fc> 

rules 

yacc ignores blanks, tabs and new-line characters in the grammar file. Therefore, use 
these characters to make the grammar file easier to read. Do not, however, use blanks, 
tabs or new-lines in names or reserved symbols. 

Using Comments 

Put comments in the grammar file to explain what the program is doing. You can put 
comments anywhere in the grammar file that you can put a name. However, to make the 
file easier to read, put the comments on lines by themselves at the beginning of functional 
blocks of rules. A comment in a yacc grammar file looks the same as a comment in a C 
language program; it is enclosed in /* * /. For example: 

/*This is a comment on a line by itself. */ 

13-28 Programming Tools and Interfaces 



Using Literal Strings 

A literal string is one or more characters enclosed in ' ' (single quotes). As in the C 
language, the \ (backslash) is an escape character within literals, and all the C language 
escape codes are recognized. Thus, yacc accepts the symbols in the following table: 

Symbol 
I \n I 

I \r I 

I\ I I 

I\\ I 
I \t I 
I \b I 

I \fl 
'\xxx' 

Definition 
New-line 
Return 
Single quote (' ) 
Backslash (\) 
Tab 
Backspace 
Form feed 
The value XXX in octal 

Figure 13-5. yacc Literal Strings 

Never use \0 or 0 (the NUL character) in grammar rules. 

How to Format the Grammar File 

Use the following guidelines to help make the yacc grammar file more readable: 

1. Use uppercase letters for token names and lowercase letters for nonterminal symbol 
names. 

2. Put grammar rules and actions on separate lines to allow changing either one without 
changing the other. 

3. Put all rules with the same left side together. Enter the left side once and use the 
vertical bar to begin the rest of the rules for that left side. 

4. For each set of rules with the same left side, enter the semicolon once on a line by 
itself following the last rule for that left side. You can then add new rules easily. 

5. Indent rule bodies by two tab stops and action bodies by three tab stops. 

lex and yacc 13-29 



Using Recursion in a Grammar File 

Recursion is the process of using a function to define itself, In language definitions, these 
rules normally take the form: 

rule <end case> 
rule,<end case> 

which means that the simplest case of the rule is the end case, but rule can also be 
made up of more than one occurrence of end case. The entry in the second line that uses 
rule in the definition of rule is the recursion. The parser cycles through the input 
until the stream is reduced to the final end case. 
When using recursion in a rule, always put the call to the name of the rule as the leftmost 
entry in the rule (as it is in the above example). If the call to the name of the rule occurs 
later in the line, such as: 

rule <end case> 
<end case>,rule 

the parser may run out of internal stack space, stopping the parser. 

Errors in the Grammar File 

The yacc program cannot produce a parser for all sets of grammar specifications. If the 
grammar rules contradict themselves or require different matching techniques than yacc 
has, yacc will not produce a parser. In most cases, yacc provides messages to indicate the 
errors. To correct these errors, redesign the rules in the grammar file, or provide a lexical 
analyzer (input program to the parser) to recognize the patterns that yacc cannot. 

13-30 Programming Tools and Interfaces 



Declarations 

The declarations section of the yacc grammar file contains: 

1. Declarations for any variables or constants used in other parts of the grammar file 

2. #include statements to use other files as part of this file (used for library header files) 

3. Statements that define processing conditions for the generated parser. 

A declaration for a variable or constant follows the syntax of the C programming 
language: 

type specifier declarator; 

where, type specifier is a data type keyword, and declarator is the name of the variable or 
constant. Names can be any length and consist of letters, dots, underscores, and digits. A 
name cannot begin with a digit. Uppercase and lowercase letters are distinct. The names 
used in the body of a grammar rule may represent tokens or nonterminal symbols. 

Without declaring a name in the declarations section, you can use that name only as a 
nonterminal symbol. Define each nonterminal symbol by using it as the left side of at least 
one rule in the rules section. The #include statements are identical to C language syntax, 
and perform the same function. 

The yacc program has a set of keywords that define processing conditions for the 
generated parser. Each of the keywords begin with a % and is followed by a list of tokens. 
These keywords are: 

%left Identifies tokens that are left associative with other tokens 

%nonassoc Identifies tokens that are not associative with other tokens 

%right 

%start 

%token 

Identifies tokens that are right associative with other tokens 

Identifes a name for the start symbol 

Identifies the token names that yacc accepts. Declare all token names in the 
declarations section. 

All of the tokens on the same line have the same precedence level and associativity; the 
lines appear in the file in order of increasing precedence or binding strength. Thus: 

%1 eft I+ I I - I 

%1 eft '*' 'I' 
describes the precedence and associativity of the four arithmetic operators. The (plus) and 
- (minus) are left associative and have lower precedence than * (asterisk) and / (slash), 
which are also left associative. 

lex and yacc 13-31 



Defining Global Variables 

To define variables to be used by some or all actions, as well as the lexical analyzer, 
enclose the declarations for those variables in the %{ % } symbols. Declarations enclosed 
in these symbols are called global variables. For example, to make the var variable 
available to all parts of the complete program, use the following entry in the declarations 
section of the grammar file: 

%{ int var = O; %} 

Start Conditions 

The parser recognizes a special symbol called the start symbol. The start symbol is the 
name of the rule in the rules section of the grammar file that describes the most general 
structure of the language to be parsed. Because it is the most general structure, it is the 
structure where the parser starts in its top down analysis of the input stream. Declare the 
start symbol in the declarations section using the keyword, %start. If you do not declare 
the name of the start symbol, the parser uses the name of the first grammar rule in the 
grammar file. 

For example, when parsing a C language procedure, the most general structure for the 
parser to recognize is: 

main() 
{ 

code_segment 
} 

The start symbol should point to the rule that describes this structure. All remaining rules 
in the file describe ways to identify lower-level structures within the procedure. 

Token Numbers 

Token numbers are nonnegative integers that represent the names of tokens. If the 
lexical analyzer passes the token number to the parser instead of the actual token name, 
both programs must agree on the numbers assigned to the tokens. 

You can assign numbers to the tokens used in the yacc grammar file. If you do not assign 
numbers to the tokens, yacc assigns numbers using the following rules: 

1. A literal character is the numerical value of the character in the ASCH character set. 

2. Other names are assigned token numbers starting at 257. 

13-32 Programming Tools and Interfaces 



Note: Do not assign a token number of 0. This number is assigned to the endmarker 
token. You cannot redefine it. 

To assign a number to a token (including literals) in the declarations section of the 
grammar file, put a positive integer (not zero) immediately following the token name in the 
% to ken line. This integer is the token number of the name or literal. Each number must 
be different from the rest of the token numbers. All lexical analyzers used with yacc must 
return a 0, or a negative value for a token when they reach the end of their input. 

lex and yacc 13-33 



Rules 

The rules section contains one or more grammar rules. Each rule describes a structure 
and gives it a name. A grammar rule has the form: 

A : BODY; 

where A is a nonterminal name, and BODY is a sequence of zero or more names and literals. 
The colon and the semicolon are required yacc punctuation. 

Repeating Nonterminal Names 

If there are several grammar rules with the same nonterminal name, use the I (vertical bar) 
to avoid rewriting the left side. In addition, use the ; (semicolon) only at the end of all 
rules joined by vertical bars. Thus the grammar rules: 

A B C D 
A E F 
A G 

can be given to ya.cc as: 

A B C D 
E F 
G 

by using the vertical bar. 

Empty String 

To indicate a nonterminal symbol that matches the empty string, use a ; (semicolon) by 
itself in the body of the rule. Therefore, to define a symbol empty that matches the empty 
string, use a rule like the following rule: 

empty 

13-34 Programming Tools and Interfaces 



End of Input Marker 

When the lexical analyzer reaches the end of the input stream, it sends an end of input 
marker to the parser. This marker is a special token called endmarker, and has a token 
value of 0. When the parser receives an end of input marker, it checks to see that it has 
assigned all of the input to defined grammar rules, and that the processed input forms a 
complete unit (as defined in the yacc grammar file). If the input is a complete unit, the 
parser stops. If the input is not a complete unit, the parser signals an error and stops. 

The lexical analyzer must send the end of input marker at the correct time, such as the end 
of a file, or the end of a record. 

lex and yacc 13-35 



Actions 

With each grammar rule, you can specify aciions to be performed each time the parser 
recognizes the rule in the input stream. Actions return values and obtain the values 
returned by previous actions. The lexical analyzer can also return values for tokens. 

An action is a C language statement that does input and output, calls subprograms, and 
alters external vectors and variables. Specify an action in the grammar file with one or 
more statements enclosed in braces { and } . For example: 

A 
{ 

} 

and 

xxx 

' ('BI ) I 

hello(l, 11 abc 11 
); 

yyy zzz 
{ 
printf("a message\n 11

); 

flag = 25; 
1 
I 

are grammar rules with actions. 

13-36 Programming Tools and Interfaces 



Passing Values Between Actions 

An action can get values generated by other actions by using the yacc parameter 
keywords that begin with a dollar sign ($1, $2 ... ). The keywords that begin with a dollar 
sign refer to the values returned by the components of the right side of a rule, reading from 
left to right. For example, if the rule is: 

A B C D 

then $2 has the value returned by the rule that recognized C, and $3 the value returned by 
the rule that recognized D. 

To return a value, the action sets the pseudo-variable $$ to some value. For example, the 
action: 

{ $$ = 1;} 

returns a value of one. 

By default, the value of a rule is the value of the first element in it ($1). Therefore, you do 
not need to provide an action for rules that have the following form: 

A : B ; 

lex and yacc 13-37 



Putting Actions in the Middle of Rules 

To get control of the parsing process before a rule is completed, write an action in the 
middle of a rule. If this rule returns a value through the $ parameters, actions that come 
after it can use that value. It can use values returned by actions that come before it. 
Therefore, the rule: 

A B 
{ 

$$ =1; 
} 
c 

{ 
x = $2; 
y = $3; 

} 

sets x to 1 and y to the value returned by C. 

Internally, yacc creates a new nonterminal symbol name for the action that occurs in the 
middle, and it creates a nc\.v rule matching this name to the empty st1~ing. Tl1erefore, yacc 
treats the above program as if it were written in the following form: 

$ACT /* empty */ 
{ 

$$ = l; 
} 

A B $ACT c 
{ 

x = $2; 
y = $3; 

\ 
j 

where $ACT is an empty action. 

13-38 Programming Tools and Interfaces 



Programs 

The programs section contains C language programs to perform functions used by the 
actions in rules section. In addition, if you write a lexical analyzer (input routine to the 
parser), include it in the programs section. 

lex and yacc 13-39 



Error Handling 

When the parser reads an input stream, that input stream might not match the rules in the 
grammar file. The parser detects the problem as early as possible. If there is an error 
handling routine in the grammar file, the parser can allow for entering the data again, 
skipping over the bad data, or a cleanup and recovery action. When the parser finds an 
error, for example, it may need to reclaim parse tree storage, delete or alter symbol table 
entries, and set switches to avoid generating any further output. 

When an error occurs, the parser stops unless you provide error handling routines. To 
keep processing the input to find more errors, restart the parser at a point in the input 
stream where the parser can try to recognize more input. One way to restart the parser 
when an error occurs is to discard some of the tokens following the error, and try to 
restart the parser at that point in the input stream. 

The yacc program has a special token name, error, to use for error handling. Put this 
token in the rules file at places that an input error might occur so that you can provide a 
recovery routine. If an input error occurs in this position, the parser executes the action 
for the error token, rather than the normal action. 

To prevent a single error from producing many error messages, the parser remains in error 
state until it processes three tokens following an error. If another error occurs while the 
parser is in the error state, the parser discards the input token and does not produce a 
message. 

As an example, a rule of the form: 

stat error ';' 
tells the parser that, when there is an error, it should skip over the token and all following 
tokens until it finds the next semicolon. All tokens after the error and before the next 
semicolon are discarded. When the parser finds the semicolon, it reduces this rule and 
performs any cleanup action associated with it. 

13-40 Programming Tools and Interfaces 



Providing for Error Correcting 

You can also allow the person entering the input stream in an interactive environment to 
correct any input errors by entering a line in the data stream again. For example: 

input : 

{ 

} 

error '\n' 
{ 

printf( 11 Reenter last line: 11 
); 

} 
input 

$$ = $4; 

is one way to do this. However, in this example the parser stays in the error state for 
three input tokens following the error. If the corrected line contains an error in the first 
three tokens, the parser deletes the tokens and does not give a message. To allow for this 
condition, use the yacc statement: 

yyerrok; 

When the parser finds this statement, it leaves the error state and begins processing 
normally. The error recovery example then becomes: 

input : error '\n' 
{ 

yyerrok; 
pri ntf ( "Reenter 1 ast 1 i ne: 11 

) ; 

} 
input 

{ 
$$ = $4 

} 

lex and yacc 13-41 



Clearing the Look Ahead Token 

The look ahead token is the next token that the parser examines. When an error occurs, 
the look ahead token becomes the token at which the error was detected. However, if the 
error recovery action includes code to find the correct place to start processing again, that 
code must also change the look ahead token. To clear the look ahead token, include the 
statement: 

yyclearin ; 
in the error recovery action. 

13-42 Programming Tools and Interfaces 



Lexical Analysis 

You must provide a lexical analyzer to read the input stream and send tokens (with values, 
if required) to the parser that yacc generates. The lexical analyzer is a function called 
yylex. The function must return an integer that represents the kind of token that was 
read. The integer is called the token number. In addition, if a value is associated with 
the token, the lexical analyzer must assign that value to the external variable yylval. 

To build a lexical analyzer that works well with the parser that yacc generates, use the 
lex program (see "The lex Specification File" on page 13-6). 

lex and yacc 13-43 



Parser Operation 

The yacc program turns the grammar file into a C language program. That program, when 
compiled and executed, parses the input according to the grammar specification given. 

The parser is a finite state machine with a stack. The parser can read and remember the 
next input token (called the look ahead token). The current state is always the state that 
is on the top of the stack. The states of the finite state machine are represented by small 
integers. Initially, the machine is in state 0, the stack contains only 0, and no look ahead 
token has been read. 

The machine can perform one of four actions: 

shift n 

reducer 

accept 

error 

The parser pushes the current state onto the stack, makes n the current state', 
and clears the look ahead token. 

The letter r is a rule number. When the parser finds a string defined by rule 
number r in the input stream, the parser replaces that string with the rule 
number in the output stream. 

The parser looked at all input, matched it to the grammar specification, and 
recognized the input as satisfying the highest level structure (defined by the 
start symbol). This action appears only when the look ahead token is the 
endmarker and indicates that the parser has successfully done its job. 

The parser cannot continue processing the input stream and still successfully 
match it with any rule defined in the grammar specification. The input 
tokens it looked at, together with the look ahead token, cannot be followed by 
anything that would result in a legal input. The parser reports an error and 
attempts to recover the situation and resume parsing. 

The parser performs the following actions during one process step: 

1. Based on its current state, the parser decides whether it needs a look ahead token to 
decide the action to be taken. If it needs one and does not have one, it calls yylex to 
obtain the next token. 

2. Using the current state and the look ahead token if needed, the parser decides on its 
next action and carries it out. This may result in states being pushed onto the stack or 
popped off of the stack and in the look ahead token being processed or left alone. 

13-44 Programming Tools arid Interfaces 



Shift 

The shift action is the most common action the parser takes. Whenever the parser does a 
shift, there is always a look ahead token. For example, for the following grammar 
specification rule: 

IF shift 34 

if the parser is in the state that contains this rule and the look ahead token is IF, the 
parser: 

1. Pushes the current state down on the stack 
2. Makes state 34 the current state (puts it on the top of the stack) 
3. Clears the look ahead token. 

Reduce 

The reduce action keeps the stack from growing too large. The parser uses reduce actions 
after it has matched the right side of a rule with the input stream and is ready to replace 
the characters in the input stream with the left side of the rule. The parser may have to 
use the look ahead token to decide if the pattern is a complete match. 

Reduce actions are associated with individual grammar rules. Because grammar rules also 
have small integer numbers, you can easily confuse the meanings of the numbers in the 
two actions, shift and reduce. For example, the action: 

. reduce 18 

refers to grammar rule 18, while the action: 

IF shift 34 

refers to state 34. 

For example, to reduce the rule: 

A x y z ; 
The parser pops off the top three states from the stack. The number of states popped 
equals the number of symbols on the right side of the rule. These states are the ones put 
on the stack while recognizing X, y, and z. After popping these states, a state is uncovered 
which is the state the parser was in before beginning to process the rule (the state that 
needed to recognize rule A to satisfy its rule). Using this uncovered state and the symbol 
on the left side of the rule, the parser performs an action called goto, which is similar to a 
shift of A. A new state is obtained, pushed onto the stack, and parsing continues. 

lex and yacc 13-45 



The goto action is different from an ordinary shift of a token. The look ahead token is 
cleared by a shift but is not affected by a goto. When the three states are popped, the 
uncovered state contains an entry such as: 

A goto 20 

causing state 20 to be pushed onto the stack and become the current state. 

The reduce action is also important in the treatment of user-supplied actions and values. 
When a rule is reduced, the parser executes the code that you included in the rule before 
adjusting the stack. In addition to the stack holding the states, another stack running in 
parallel with it holds the values returned from the lexical analyzer and the actions. When 
a shift takes place, the external variable yylval is copied onto the value stack. After 
executing the code that you provide, the parser performs the reduction. When the parser 
performs the goto action, it copies the external variable yyval onto the value stack. The 
yacc variables that begin with $refer to the value stack. 

13-46 Programming Tools and Interfaces 



Using Ambiguous Rules 

A set of grammar rules is ambiguous if any possible input string can be structured in two 
or more different ways. For example, the grammar rule: 

expr : expr 1
-

1 expr 
states a rule that forms an arithmetic expression.by putting two other expressions together 
with a minus sign between them. Unfortunately, this grammar rule does not specify how 
to structure all complex inputs. For example, if the input is: 

expr - expr - expr 
using that rule, a program could structure this input as either left associative: 

expr - expr ) - expr 
or as right associative: 

expr - ( expr - expr 
and produce different results. 

Understanding Parser Conflicts 

When the parser tries to handle an ambiguous rule, it can become confused over which of 
its four actions to perform when processing the input. Two major types of conflicts 
develop: 

shift/reduce conflict 
A rule can be evaluated correctly using either a shift action or a reduce action 
but the result is different. 

reduce/reduce conflict 
A rule can be evaluated correctly using one of two different reduce actions, 
producing two different actions. 

lex and yacc 13-47 



A shift/shift conflict is not possible. These conflicts result from a rule that is not as 
complete as it could be. For example, using the previous ambiguous rule, if the parser 
receives the input: 

expr - expr - expr 

after reading the first three parts the parser has: 

expr - expr 

which matches the right side of the grammar rule above. The parser can reduce the input 
by applying this rule. After applying the rule, the input becomes: 

ex pr 
which is the left side of the rule. The parser then reads the final part of the input: 

- expr 
and reduces it. This produces a left associative interpretation. 

However, the parser can also look ahead in the input stream. If when it receives the first 
three parts: 

expr - expr 
it reads the input stream until it has the next tv;o parts, it the11 l-1as tl1e following .ir1put: 

expr - expr - expr 

Applying the rule to the rightmost three parts reduces them to expr. The parser then has 
the expression: 

expr - expr 
Reducing the expression once more produces a right associative interpretation. 

Therefore, at the point that the parser has read only the first three parts, it can take two 
legal actions: a shift or a reduction. If the parser has no rule to decide between them, this 
situation is called a shift/reduce conflict. 

A similar situation occurs if the parser can choose between two legal reduce actions. That 
situation is called a reduce/reduce conflict. 

13-48 Programming Tools and Interfaces 



How the Parser Responds to Conflicts 

When shift/reduce or reduce/reduce conflicts occur, yacc produces a parser by selecting 
one of the valid steps wherever it has a choice. If you do not provide a rule that makes the 
choice, yacc uses two rules: 

1. In a shift/reduce conflict, do the shift. 

2. In a reduce/reduce conflict, reduce by the grammar rule that it can apply at the 
earliest point in the input stream. 

Using actions within rules can cause conflicts if the action must be done before the parser 
can be sure which rule is being recognized. In these cases, using the above rules leads to 
an incorrect parser. For this reason, yacc reports the number of shift/reduce and 
reduce/reduce conflicts that it resolved using its rules. 

lex and yacc 13-49 



Turning On Debug Mode 

For normal operation, the external integer variable yydehug is set to 0. However; if you 
set it to a value that is not zero, the parser generates a description of: 

• The input tokens that it receives 

• The actions that it takes for each token 

while it is parsing an input stream. 

Set this variable in one of two ways: 

• Put the C language statement: 

yydebug = l; 
in the declarations section of the yacc grammar file. 

• Use sdb to execute the final parser, and set the variable on or off using sdb commands. 
See Chapter 8, "Debugging Programs" on page 8-1 for information about using sdb. 

13-50 Programming Tools and Interfaces 



Creating a Simple Calculator Program - Example 

This section describes the example programs for lex and yacc that are in the set of 
example programs. The lex and yacc programs together create a simple desk calculator 
program that performs addition, subtraction, multiplication and division operations. The 
calculator program also allows you to assign values to variables (each designated by a 
single lower case letter) and then use the variables in calculations. The files that contain 
the program are: 

File Content 

calc.lex The lex specification file that defines the lexical analysis rules. 

calc.yacc The yacc grammar file that defines the parsing rules, and calls the yylex 
function created by lex to provide input. 

To use these files, they must be in your current directory. Copy them from the directory 
/usr/lib/samples if you have installed the Programming Examples. The remaining text 
expects that the current directory is the directory that contains the lex and yacc example 
program files. 

Compiling the Example Program 

Perform the following steps, in order, to create the example program using lex and yacc: 

1. Process the yacc grammar file using the -d option. The -d option tells yacc to create 
a file that defines the tokens it uses in addition to the C language source code: 

yacc -d calc.yacc 
2. Use the Ii command to verify that the following files were created: 

y.tab.c The C language source file that yacc created for the parser. 

y.tab.h A header file containing define statements for the tokens used by the parser. 

3. Process the lex specification file: 

1 ex cal c. 1 ex 

4. Use the Ii command to verify that the following file was created: 

lex.yy .c The C language source file that lex created for the lexical analyzer. 

lex and yacc 13-51 



5. Compile and link the two C language source files: 

cc y.tab.c lex.yy.c 

6. U ~e the 1i command to verify that the following files were created: 

y.tab.o The object file for y.tab.c. 

lex.yy .o The object file for lex.yy .c. 

a.out The executable program file. 

You can then run the program directly from a.out by entering the command: 

$ a.out 

or, you can move the program to a file with a more descriptive name, like in the following 
example, and then run it: 

$ mv a.out calculate 
$ calculate 

In either case after you start the program, the cursor moves to the line below the $ 
(command prompt); Then enter numbers and operators in calculator fashion. After you 
press the Enter key, the program displays the result of the operation. If you assign a 
value to a variable: 

m=4 <enter> 

the cursor moves to the next line. You can then use the variable in calculations and it 
will have the value assigned to it: 

m+5 <enter> 
9 

The Parser Source Code 

Figure 13-6 on page 13-53 shows the contents of the file calc.yacc. This file has entries in 
all three of the sections of a yacc grammar file: declarations, rules and programs. 

13-52 Programming Tools and Interfaces 



%{ 
#include <stdio.h> 

int regs [26] ; 
int base; 

%} 

%start list 

%token DIGIT LETTER 

% 1 eft I 11 

%left 1 &1 

%1 eft I+ I I - I 
%1 eft I* I I; 1 I% I 
%left UMINUS /*supplies precedence for unary minus */ 

%% /* beginning of rules section */ 

list: /*empty*/ 

list stat 1 \n 1 

list error 1 \n 1 

{ 
yyerrok; 

} 

Figure 13-6 (Part 1 of 4). yacc Grammar File for Calculator Program - calc.yacc 

lex and yacc 13-53 



stat: expr 
{ 

pr i n t f ( 11 %d \ n 11 
, $1 ) ; 

} 

LETTER 1 =1 expr 
{ 

regs [$1] = $3; 
} 

' expr: I ( I exp r I ) I 

{ 
$$ = $2; 

} 

expr 1 * 1 expr 
{ 

$$ = $1 * $3; 
} 

expr 1
/

1 expr 
{ 

$$ = $1 I $3; 
} 

expr 1 %1 expr 
{ 

$$ = $1 % $3; 
} 

expr 1 + 1 expr 
{ 

$$ = $1 + $3; 
} 

Figure 13-6 (Part 2 of 4). yacc Grammar File for Calculator Program - calc.yacc 

13-54 Programming Tools and Interfaces 



expr 1
-

1 expr 
{ 

$$ = $1 - $3; 
} 

expr 1 &1 expr 
{ 

$$ = $1 & $3; 
} 

expr 1 I 1 expr 
{ 

$$ = $1 I $3; 
} 

1
-

1 expr %prec UMINUS 
{ 

$$ = -$2; 
} 

LETTER 
{ 

$$ = regs [$1]; 
} 

number 

number: DIG IT 
{ 

$$ = $1; 
base = ($1==0) ? 8:10; 

} 

Figure 13-6 (Part 3 of 4). yacc Grammar File for Calculator Program - calc.yacc 

lex and yacc 13-55 



number DIGIT 

%% 
main() 
{ 

{ 

} 
$$ = base * $1 + $2; 

return(yyparse()); 
} 

yyerror(s) 
char *s; 
{ 

fprintf(stderr, 11 %s\n 11 ,s); 
} 

yywrap() 
{ 

return(l); 
} 

Figure 13-6 (Part 4 of 4). yacc Grammar File for Calculator Program - calc.yacc 

Declarations Section 
This section contains entries that perform the following functions: 

• Includes standard I/0 header file 

• Defines global variables 

• Defines the rule 1 i St as the place to start processing 

• Defines the tokens used by the parser 

• Defines the operators and their precedence. 

13-56 Programming Tools and Interfaces 



Rules Section 
The rules section defines the rules that parse the input stream. 

Programs Section 
The programs section contains the following routines. Because these routines are included 
in this file, you do not need to use the yacc library when processing this file. 

main( ) The required main program that calls yyparse( ) to start the program. 

yyerror(s) 

yywrap( ) 

This error handling routine only prints a syntax error message. 

The wrap-up routine that returns a value of 1 when the end of input occurs. 

The Lexical Analyzer Source Code 

Figure 13-7 on page 13-58 shows the contents of the file calc.lex. This file contains 
include statements for standard input and output, as well as for the file y. tab.h. The yacc 
program generates that file from the yacc grammar file information if you use the -d flag 
with the yacc command. The file y.tab.h contains definitions for the tokens that the 
parser program uses. In addition, calc.lex contains the rules to generate the tokens from 
the input stream. 

lex and yacc 13-57 



%{ 

#include <stdio.h> 
#include '1y.tab.h 11 

int c; 
extern int yylval; 
%} 
%% 
II II 

' [a-z] { 

} 
[0-9] { 

} 

c = yytext[O]; 
yylval = c - 'a'; 
return(LETTER); 

c = yytext[O]; 
yylval =c- '0'; 
retlJrn (DIGIT); 

[" a-z0-9\b] { 

} 

c = yytext[O]; 
return(c); 

Figure 13-7. lex Specification File for Calculator Program - calc.lex 

13-58 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

System Libraries 

Figure 3-1 on page 3-4 lists the system libraries. The libraries are collections of commonly 
used functions and declarations. Use them in a program to avoid creating the functions 
for each new program. 

To use the library functions: 

• Include any declarations fbr the variables that the library routines use in the program 

• Link the library routines with the program files after the program is compiled, or in 
the same process using the cc command. 

Note: You should not store your files in .the following system libraries because you could 
lose the files if you reinstall or update the AIX Operating System. You should instead 
keep your files in your own seperate library. 

Subroutine Libraries 3-3 



TNL SN20-9797 (26 September 1986) to 55X8932 

Name Path name cc flag Function 

General C Libraries: 
C library /lib/libc.a Not Common C language subroutines for file 

required access, string operations, character 
operations, memory allocation and other 
functions. 

C library /lib/libfc.a -lfc The same routines as the C library, 
(floating-point) except that some were compiled to use 

the hardware Floating-Point Accelerator 
to perform floating-point arithmetic. 

Math library /lib/libm.a -lm Mathematical functions using software 
routines to perform floating-point 
arithmetic. 

Floating-Point Math /lib/libfm.a -lfm The same routines as the math library, 
library except that they were compiled to use the 

hardware Floating-Point Accelerator to 
perform floating-point arithmetic. 

Run Time Services /lib /li brts. a Not Support system services such as system 
library required configuration, messages, trace and error 

log support. 

Programmer /lib/libPW.a -lPW Miscellaneous operating system 
Workbench library functions. 

Standalone /usr/lib/lib2.a -12 Miscellaneous operating system 
Subroutine Library functions. 

Figure 3-1 (Part 1 of 3). Summary of System Libraries 

3-4 Programming Tools,and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Header Files Needed for Calls 

Some system calls depend on special macro definitions and declarations for the values that 
they return. The system provides this information in files called header files that are in 
the directory /usr/include. Therefore, when using system calls, ensure to also include any 
header files that the system call needs. To include a file in a program, use the following 
statement in the program: 

#include <file.h> 

where the parameter, file.h, represents the name of the header file to use. 

The header files needed for each system call are: 

Header File Calls That Use The Header File 

fcntl.h open, fcntl 

stdio.h getpass 

lockf .h lockf 

sys/types.h msgxrcv, msgop, msgctl, msgget, semctl, semget, semop, shmctl, shmget, 
shmop, stat, fstat, times, ustat, utime 

sys/ipc.h msgxrcv, msgop, msgctl, msgget, semctl, semget, semop, shmctl, shmget, 
shmop 

sys/msg.h msgxrcv, msgop, msgctl, msgget, 

sys/shm.h shmctl, shmget, shmop 

sys/sem.h semctl, semget, semop 

sys/lock.h plock 

sys/signal.h signal 

sys/stat.h stat, fstat, open, creat 

sys/times.h times 

sys/utsname.h uname 

ustat.h us tat 

System Calls 4-3 



TNL SN20-9797 (26 September 1986) to 55X8932 

Process Calls 

When a program runs in the system, that program, together with the environment that it 
runs in, is a process. Many processes are running in the system: some running system 
programs (like init) and some running application programs. When each process begins, 
the system assigns it an identification number (process ID) that is a positive integer 
between 0 and 32, 767. As long as the process remains active, the system uses this number 
to identify that process. When the process ends, the system can assign the number to a 
new process. 

Process Handling Calls 

Use the following calls to control creating, operating and stopping processes (see AIX 
Operating System Technical Reference for more information about these calls): 

Call 

exec 
exit 
fork 
nice 
pipe 
plock 

Description 

Runs a new program in the currently running process. 
Stops a process. 
Creates a new process. 
Changes priority of a process. 
Creates an inter-process channel. 
Locks process, text, or data in memory. 

Starting a Process 
All processes that run in the system, except init, are started through the fork system call. 
The fork call creates a second independent process from the one running process through 
the following sequence of events: 

1. Gets a new process ID from the system. 

2. Creates a new process that has access to the code running in the existing process and 
the environment of the existing process. By using virtual memory mapping, the system 
does not actually copy the information into the new process until the new process 
actually uses it. If, for example, the first instruction executed in the new process is an 
exec system call, the system does not waste time copying the first program only to 
throw it out when the exec call occurs. 

3. Starts the new process running from the place in the program that immediately follows 
the fork call. 

The original process is called the parent; the new process is called the child. The value 
returned to a process from the fork call tells that process whether it is a child or a parent 
process. The parent process receives the process ID of the child process; the child process 

4-4 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986} to 55X8932 

} 

chldpd = wait(&statusl); 
PRT("parent: my child's process id is", chldpd); 
PRT("parent: my process id is ", getpid() ); 
PRT ("parent: my parent process id is ", getppi d () ) ; 
PRT("parent: my process group id is ", getpgrp() ); 
PR( 11 ending parent process"); 

Figure 4-10 (Part 2 of 2). Example of Process ID System Calls 

starting main process 
grandchild: my process id is 266. 
grandchi 1 d: my parent process id is 2·65. 
grandchild: my process group id is 221. 
ending grandchild process 
child: my child's process id is 266. 
child: my process id is 265. 
child: my parent process id is 264. 
child: my process group id is 221. 
ending child process 
parent: my child's process id is 265. 
parent: my process id is 264. 
parent: my process group id is 221. 
parent: my parent process id is 221. 
ending parent process 
$ 

Figure 4-11. Output for Process ID System Call Program 

System Calls 4-23 



TNL SN20-9797 (26 September 1986) to 55X8932 

I Changing the Controlling Terminal 
I 
I 
I 
I 

Typically, each process is associated with a process group and has a controlling terminal. 
Each process group has a group leader process. For example, when you log in, the shell 
process is the process group leader and any process descendants are in that process group. 
The terminal you are typing on is the controlling terminal. 

However, it is sometimes necessary for a program to establish the controlling terminal on 
its own or to disassociate itself from the process group and not have a controlling terminal. 
You use the setpgrp system call in both cases, and in both cases it is important that you 
perform a series of steps completely and in the correct order. If you do not follow the 
correct procedures, problems can occur that are sometimes intermittent and always very 
difficult to diagnose. 

I Establishing a Controlling Terminal 

To establish a controlling terminal, perform the following steps in the following order: 

1. Close all the file descriptors of the controlling terminal for the current process, if there 
are any. 

2. Issue the setpgrp system call. This makes the current process the group leader. 

3. Open the desired terminal. If this terminal is not already a controlling terminal for 
some other process group, it becomes the controlling terminal for this process group. 
The rule is as follows: The first group leader process to open a terminal that is not 
already a controlling terminal, acquires that terminal as a controlling terminal for that 
process group. 

4. Issue the dup system call so that additional file descriptors also refer to that terminal. 
File descriptors 0, 1, and 2 refer to the terminal as the default. 

4-24 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

The following program fragment illustrates these steps: 

close(O); 
close(l); 
close(2); 

setpgrp(); 

if ( open( 11 /dev/console 11 ,0_RDWR) -1) 
return(errno); 

else 
{ 

} 

dup(O); 
dup(O); 

If you fail to establish the process group correctly, some functions behave improperly. For 
example, the SIGINT signal is sent to all processes in the process group and if the process 
group is incorrect for a particular terminal, the signal is not sent or is sent to the wrong 
group of processes. The SIGHUP signal is sent to all processes in the process group when 
the group leader exits and if the process group is incorrect, the signal behaves incorrectly. 

I Eliminating the Controlling Terminal 

It is sometimes necessary that a program not have a process group and a controlling 
terminal. For example, a program that runs in the background might want to write error 
or information messages to a terminal (such as the system console) but not accept 
information from the terminal. 

To eliminate the controlling terminal, perform the following steps in the following order: 

1. Close all the file descriptors for the controlling terminal for the current process if 
there are any. Do this even if the inherited files are for the same terminal as the 
desired output terminal. 

2. Open the desired output terminal. 

3. Issue the setpgrp system call. This makes the current process the group leader. This 
also means that the terminal opened in the previous step is not the controlling 
terminal. In fact, this process group has no controlling terminal. 

The following program fragment illustrates these steps: 

System Calls 4-24.1 



TNL SN20-9797 (26 September 1986) to 55X8932 

close(O); 
close(l); 
close(2); 

if ( open( 11 /dev/console 11 ,0-RDWR) -- -1) 
return(errno); 

setpgrp(); 

In this situation, the program can write to the terminal (system console) but should not 
read from it. The interrupt key from the terminal does not affect the program because the 
terminal is not the controlling terminal for that process group. It is valid for another 
process to obtain the terminal (system console) as a controlling terminal. 

A typical scenario would be where you invoke a background program from the /etc/re shell 
and the background program, traditionally called a daemon, uses /dev/console as an 
output device for messages. /dev/console is enabled to allow another user to log into it. 

Failure to observe the above rules could cause the following undesirable behavior for the 
user who managed to log into terminal /dev/console: 

• The interrupt key might not work as expected because the terminal is not the 
controlling terminal for the proper group. 

• Many commands would fail because /dev/tty could not be opened. /dev/tty is a 
pseudo device that is the controlling terminal for some command processes. If the 
process has no controlling terminal, the open for /dev/tty fails. 

4-24.2 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Process Tracking Calls 

The system provides the following calls to monitor the operation of a process or group of 
processes in the system. These calls are the means by which the system commands of 
similar names are created. Use these calls within a program to gain information about 
how the program runs in each section of the program. They are primarily tools for use 
during development which would not be included in the final version of the program. See 
AIX Operating System Technical Reference for information about the syntax and flags of 
these calls. 

Call 

acct 
profil 
ptrace 
times 

Description 

Enables/disables process accounting. 
Provides an execution time profile. 
Provides a process trace. 
Gets process and child process times. 

System Calls 4-24.3 



TNL SN20-9797 (26 September 1986) to 55X8932 

4-24.4 Programming Tools and Interfaces 



Terms 

TNL SN20-9797 (26 September 1986) to 55X8932 

Use the following system calls to create and use message queues: 

Call Description 

msgctl Gets status, changes permissions, or removes a queue. 
msgget Gets message queue. 
msgrcv Receives a message. 
msgsnd Sends a message. 
msgxrcv Receives a message with additional information. 

In addition, the ftok subroutine provides the key that the msgget call uses to create the 
message queue. Include the following header files when using message queue calls: 

#include <sys/types.h> 
#include <sys/ipc.h> 
#include <sys/msg.h> 

The use of message queue elements is similar in structure to the way the system creates 
and uses files. Defining the terms used for message queues with respect to the more 
familiar file terms provides a framework to build an understanding of message queues. 
Figure 4-28 shows the new terms and how they relate to terms used with files. 

Term Definition 

key The key is a unique identifier (of type key_t) that names the particular 
message queue. It is always associated with the message queue as long as 
the message queue exists. In this respect, it is similar to the filename of a 
file. 

msqid The msqid is an identifier assigned to the message queue for use within a 
particular process. It is similar in use to a file descriptor of a file. 

Permissions The message queue structure also contains information that describes the 
access permissions for the message queue. These permissions are similar in 
function to the access permission bits for a file (owner, group and others). 

Figure 4-28. Message Queue Terms 

In effect, message queues are a more general form of the pipe system call. Either method 
passes information between two processes. For message queues, however, you do not need 
to perform the steps of opening a pipe, forking, and then closing two of the ends of the pipe 
as described in "Example Pipe System Call" on page 4-13 InJact, the two processes using 
message queues to communicate do not need to be created from the same ancestor process; 
they only need to cooperate by using the same name for the queue, and agreeing about 
what the messages mean. 

System Calls 4-51 



TNL SN20-9797 (26 September 1986) to 55X8932 

General Operation 
When a process gets a message queue, it uses an internal name (key) to apply to the queue. 
Any other programs that use that key can access that queue, subject to the read/write 
access permissions set up for the queue. The process can either send messages to the 
queue or receive messages from the queue (or both if it wants to send messages to itself). 

After opening the queue, the process continues operating until it reaches the point that it 
needs input from the other cooperating process. The first process checks its message queue 
using the msgrcv call. Using the parameter, msgtype, in the msgrcv call, the process 
can specify which type of message it wants to receive. If a message that satisfies the 
request is not in the queue, the first process halts until something is put into the queue 
that does satisfy the request. If there is a message of the requested type in the queue, the 
system gives the process the first message of that type that was put into the queue 
(first-in-first-out). 

Similarly, after opening the queue, the other process can send messages to the queue of the 
first process. If the queue is full, the system returns an error indication and the process 
must wait until the first process empties the queue enough to add the new message. 

Because either of these wait conditions could halt the process indefinitely, the program 
should include a timeout loop to end the stalled condition. 

Sending messages to a queue is completely independent from receiving messages from that 
queue. The amount of data that one process can put into the message queue of the other 
process depends on the queue size and the speed that the other process takes the data from 
the queue. More than one process can put messages into a queue. The receiving process 
must take them out of the queue in the order that they were put into the queue, modified 
only by selecting a message type. 

The receiving process can also use the msgxrcv call instead of the msgrcv call to get 
messages. This call provides more information to the receiving process about the nature of 
the message. 

4-52 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Creating Panels and Panes 

To create a panel that looks like the outline shown in Figure 5-3 on page 5-24, perform the 
following steps (following the rules for dividing panels and panes) as shown in Figure 5-4 
on page 5-24. 

1. Define panel P using the ecbpls routine with a link to pane A. 

2. Divide the panel (P) with two horizontal splits into three panes. Use the ecbpns 
routine to define the three panes with the following links: 

A No links 
B Linked to A and D 
C Linked to B and F 

3. Divide pane B with a single vertical split into two panes. Use the ecbpns routine to 
define the two panes with the following links: 

D No links 
E Linked to D 

4. Divide pane C with two vertical splits into three panes. Use the ecbpns routine to 
define the three panes with the following links: 

F No links 
G Linked to F 
H Linked to G 

Although the program must create panes Band C to get the smaller panes, those two panes 
do not appear as panes in the final display. 

Figure 5-5 on page 5-25 shows how the panel and pane descriptions for the final structure 
are linked. Horizontal lines show the links within a pane; vertical lines show links to the 
parent panel or pane. 

The program in Figure 5-5.0 on page 5-26 creates the panel shown in Figure 5-3 on 
page 5-24. 

Controlling the Terminal Screen 5-23 



TNL SN20-9797 (26 September 1986) to 55X8932 

A 

D E 

p 

F G H 

Figure 5-3. Example Panel Final Appearance 

A 

p B 

c 

I D E 

H 

Figure 5-4. Creating Panes in the Panel 

5-24 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Figure 5-5. Links in the Panel and Pane Structure 

Controlling the Terminal Screen 5-25 



TNL SN20-9797 (26 September 1986) to 55X8932 

#include <curOl.h> 
#include <cur05.h> 

main() 

{ 

pane *A, *B, *C, *D, *E, *F, *G, *H 
panel *P ; 

i nitscr () 

A = ecbpns (24, 80, NULL, NULL, 0, 2500, Pdivszp, Pbordry, NULL, NULL); 

D = ecbpns (24, 80, NULL, NULL, 0, 0, Pdivszf, Pbordry, NULL, NULL); 
E = ecbpns (24, 80, D, NULL, 0, 0, Pdivszf, Pbordry, NULL, NULL); 

B = ecbpns (24, 80, A, D, Pdivtyh, 3000, Pdivszp, Pbordry, NULL, NULL); 

F = ecbpns (24, 80, NULL, NULL, 0, 0, Pdivszf, Pbordry, NULL, NULL); 
G = ecbpns (24, 80, F, NULL, 0, 5000, Pdi vszp·, Pbordry, NULL, NULL); 
H = ecbpns (24, 80, G, NULL, 0, 3000, Pdivszp, Pbordry, NULL, NULL); 

c = ecbpns (24, 80, B, F, Pdivtyh, 0, Pdivszf, Pbordry, NULL, NULL); 

p = ecbpls (24, 80, 0, 0, NULL, Pdivtyv, Pbordry, A); 

ecdvpl 
ecdfpl 
ecshpl 
ecrfpl 

endwi n (); 

p ); 
P, FALSE ) ; 
p ); 
p ) ; 

} /* end main program */ 

Figure 5-5.1. Program to Create Example Panel 

5-26 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Display Attributes 

Use the color and display characteristics defined in Figure 5-6 on page 5-27. These names 
are external variables that define the attributes that a program can use on the current 
terminal. The values of these variables depend on the capabilities of the current terminal 
and the priorities that you assign to the attributes. Change the values of these variables 
with the seLattr routine ·as explained in "Changing the Defined Attributes" on page 5-28. 

The characteristics that a program selects for the terminal are loaded into the attribute 
byte associated with the data being displayed. Select as many of the attributes as needed, 
but those selected are packed into the attribute byte in the following order: 

1. BOLD, 
2. REVERSE, 
3. F_WHITE, 
4. F_RED, 
5. F_BLUE, 
6. F_GREEN, 
7. F_BROWN, 
8. F_MAGENTA, 
9. F_CYAN, 
10. F_BLACK, 
11. B_BLACK, 
12. B_RED, 
13. B_BLUE, 
14. B_GREEN, 
15. B_BROWN, 
16. B_MAGENTA, 
17. B_CYAN, 
18. B_WHITE, 
19. UNDERSCORE, 
20. BLINK, 
21. INVISIBLE, 
22. DIM, 
23. STANDOUT, 
24. PROTECTED, 
25. FONTO, 
26. FONTl, 
27. FONT2, 
28. FONT3, 
29. FONT4, 
30. FONT5, 
31. FONT6, 
32. FONT7, 
33. NULL 

Controlling the Terminal Screen 5-26.1 



TNL SN20-9797 (26 September 1986) to 55X8932 

5-26.2 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

To change the order, see "Changing the Defined Attributes" on page 5-28. Once the 
attribute byte is full, the routines ignore the remaining lower priority attributes. If an 
attribute does not work with the current display, the routines ignore that attribute. 
Therefore, you can specify color attributes and still be able to use the program with a 
monochrome display. Figure 5-6 defines the external variable names that the routines use 
to set the display attributes. 

Name 

UNDERSCORE 
REVERSE 
NORMAL 
INVISIBLE 
STANDOUT 

BOLD 
BLINK 
DIM 
PROTECTED 
F_BLACK 
F_BLUE 
F_GREEN 
F_CYAN 
F_RED 
F_MAGENTA 
F_BROWN 
F_WHITE 
B_BLACK 
B_BLUE 
B_GREEN 
B_CYAN 
B_RED 
B_MAGENTA 
B_BROWN 
B_WHITE 
FONTO 
FONTl 
FONT2 
FONT3 
FONT4 

Attribute 

Display characters with underline. 
Display characters in reverse video. 
Display characters without highlighting (return to normal). 
Do not display characters. 
Display characters in high intensity (can be used with other attribute 
colors). On many terminals, this is the same as BOLD. 
Display characters in bold font (or high intensity on some terminals). 
Display blinking characters (can be used with other attribute colors). 
Display characters in reduced intensity. 
Protected display field. 
Set foreground color to black. 
Set foreground color to blue. 
Set foreground color to green. 
Set foreground color to cyan. 
Set foreground color to red. 
Set foreground color to magenta. 
Set foreground color ·to brown. 
Set foreground color to white. 
Set background color to black. 
Set background color to blue. 
Set background color to green. 
Set background color to cyan. 
Set background color to red. 
Set background color to magenta. 
Set background color to brown. 
Set background color to white. 
Select defined character font 0. 
Select defined character font 1. 
Select defined character font 2. 
Select defined character font 3. 
Select defined character font 4. 

Figure 5-6 (Part 1 of 2). Display Attributes 

Controlling the Terminal Screen 5-27 



TNL SN20-9797 (26 September 1986) to 55X8932 

Name 

FONT5 
FONT6 
FONT7 

Figure 

Attribute 

Select defined character font 5. 
Select defined character font 6. 
Select defined character font 7. 

5-6 (Part 2 of 2). Display Attributes 

Changing the Defined Attributes 

To change the characteristics assigned to the external variables listed in Figure 5-6 on 
page 5-27, use the seLattr routine. This routine uses a set of defined constants contained 
in the header file cur03. To use this routine, put the following statement at the beginning 
of the program file: 

#include <cur03.h> 

5-28 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

The file cur03.h defines the following constants: 

_dNORMAL 
_dREVERSE 
_dB OLD 
_dB LINK 
_dUNDERSCORE 
_dDIM 
_dlNVISIBLE 
_dPROTECTED 
_dSTANDOUT 
_dF_BLACK 
_dF_RED 
_dF_GREEN 
_dF_BROWN 
_dF_BLUE 
_dF_MAGENTA 
_dF_CYAN 
_dF_WHITE 
_dB_BLACK 
_dB_RED 
_dB_GREEN 
_dB_BROWN 
_dB_BLUE 
_dB_MAGENTA 
_dB_CYAN 
_dB_ WHITE 
_dFONTO 
_dFONTl 
_dFONT2 
_dFONT3 
_dFONT4 
_dFONT5 
_dFONT6 
_dFONT7 

These constants are only valid when using the seLattr routine. They cannot be used with 
any other routine. 

Controlling the Terminal Screen 5-29 



TNL SN20-9797 (26 September 1986) to 55X8932 

Changing Screen Attributes 

The code fragment in Figure 5-7 shows how to use these constants to change the default 
set of attributes. 

#include <curOO.h> 
#include <cur03.h> 

int attrsD = 
{ 

}; 

main( 
{ 

_dBOLD, _dBLINK, 
_dF_WHITE, _dF_RED, _dF_BLUE, _dF_GREEN, 
_dF_BROWN, _dF_MAGENTA, _dF_CYAN, _dF_BLACK, 
_dB_BLACK, _dB_RED, _dB_BLUE, _dB_GREEN, 
_dB_BROWN, _dB_MAGENTA, _dB_CYAN, _dB_WHITE, 
_dREVERSE, _dINVISIBLE, _dDIM, _dUNDERSCORE, 
NULL 

sel_attr(attrs); 
initscr( ); 
if( REVERSE == NORMAL ) REVERSE = F_BLACK I B_WHITE; 
if( INVISIBLE == NORMAL ) INVISIBLE = F_BLACK I B_BLACK; 
if( DIM == NORMAL ) DIM = F_BLACK I BOLD; 
if( UNDERSCORE == NORMAL ) UNDERSCORE = F _WHITE I B_RED; 
STANDOUT = REVERSE; 

<rest of program> 

endwi n ( ) ; 
} /* end main */ 

Figure 5-7. Example Panel Final Appearance 

5-30 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

/etc/rasconf /usr /adm/ras/trcfi le Trace Formatter 

Trace Daemon 

~l/_e_tc_l_t_rc_p_ro_f_il_e~___.~~~~~~~~~ /usr/adm/ras/. trcevents I standard output 

User Application /etc/trcfmt 

Trace Device Drivers 

and 

Kernel Component 
Interrupt Handler 

Trace Buffers 

VRM Component 

Figure 7-1. Trace Components 

Figure 7-1 shows how data is passed between the various files and components that 
constitute the trace facilities. The lines labeled AP I, which stands for Application 
Program Interface, and VM I, which stands for Virtual Machine Interface, show the logical 
distinction between application programs, kernel components, and the VRM. The lines 
connecting the files and components show where data comes from and where it goes. 

The components and files in Figure 7-1 are described on the next page. They are explained 
in more detail elsewhere in this chapter in the appropriate sections. 

Monitoring Programs 7-5 



TNL SN20-9797 (26 September 1986) to 55X8932 

The following descriptions start at the point where the trace entries are first generated and 
end where the trace entries are formatted and sent to standard output. 

• Applications, kernel components, and VRM components generate trace entries using 
trace points placed at strategic places in the execution path. The system programs 
contain several pre-defined trace points relating to various event classes. 

• The trace device drivers collect the trace entries in trace buffers. There is one trace 
buffer for each of the three trace subroutines. 

• The /etc/rasconf file contains configuration data. For the trace daemon, it defines the 
name and size of the trace log file to be opened to receive trace entries. For the trace 
formatter, it defines the default trace log file if none is specified when it is invoked. 

• The default trace profile is /etc/trcprofi.le. This file contains a list of the defined 
event classes. An event class is either active or inactive. If an event class is active, 
the trace points related to that event class will generate trace entries. You can use the 
default trace profile, or create your own trace profile. 

• The trace daemon is an important part of the trace facilities. When it is initialized, it 
performs three major tasks: 

It reads the trace profile to determine which event classes should be active. 

It opens the file specified in the trace stanza in /etc/rasconf as the trace log file. 

It begins reading the trace buffers as they become full and writes them out to the 
trace log file. 

• The default trace log file is /usr/adm/ras/trcfile. This file stores all of the trace 
entries generated by software programs. If the trace log file becomes full, the newest 
trace entry overwrites the oldest trace entry. 

• The /usr/adm/ras/.trcevents file contains lists of event classes and the hook IDs 
associated with those event classes. The hook ID is a specific number associated with 
a particular trace point. The trace formatter uses information in this file to count the 
trace entries that occur for each event class. You do not edit this file directly. It is 
automatically updated when you use the trcupdate command. 

• The trace format file, /etc/trcfmt, contains trace templates that determine how each 
trace entry appears when it is formatted. The pre-defined trace entries also have 
pre-defined templates. If you generate trace entries from your own programs, you need 
to define trace templates for those entries. 

• The trace formatter formats the trace entries in a trace log file into a readable format. 
If a trace log file is not specified when the trace formatter is invoked, it uses the file 
specified in /etc/rasconf. The formatted trace entries are sent to standard output and 
can therefore be sent to the display screen, a file, or a printer. 

7-6 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Error Template Example 
This section shows you how an error entry using a sample error template would appear 
after being formatted. In the example, a hardware error entry was generated for the 
Serial/Parallel Adapter. The header data for the error entry includes the error ID, which 
in this example is Ox060103. Thus, the error identifier in the template is U13. The error 
entry data is listed below: 

ErrorType The type of error encountered (1 ASCII character). The format for this 
data would be Al. 

Last I / 0 The last character transmitted (1 hexadecimal digit). The format for this 
data would be XL 

Li neStatus The status of the printer (1 decimal word). The format for this data would 
be D4. 

PrinterStatus 
A 1-bit flag that indicates if the printer is active (1) or inactive (0). The 
format for this data would be B0.1. 

Figure 7-13 shows a sample error template for error ·entries with an error ID of Ox060103. 
Notice the newline descriptor on the first line of the template. This will cause the data to 
start on a new line. 

Ul3 Ser/Par: \n: \ 
ErrorType Al: \n: Last_I/0 Xl: LineStatus 04: PrinterStatus \ 
B0.1: 

Figure 7-13. Example of an Error Template for Error Entries with Error ID 613 

Figure 7-14 on page 7-40 shows how an error entry using the template U13 would appear 
in a formatted error report. The first entry is from a different error. The second entry is 
the one that uses template U13. 

Monitoring Programs 7-39 



TNL SN20-9797 (26 September 1986) to 55X8932 

ERROR LOG REPORT 

Error log: /usr/adm/ras/errfile 

Date/Time Class 
!Thu May 9 16:54:42 Hardware 
I IODN=0004 IOCN=0240 
I Base-Port-Address=000003F2 
IDev-Name=DSKT 
I Internal-Dev-Type=D1015200 
I Switchable-to-Coprocessor 
I 8-bit-device 
I No.-Interrupts=l 
I Slot-Number=l 
I Adapter-Type=52 
I Port-Number=OO 
I Bad-IO-Address-Mark 

I Bad_Count=4 
1Good_Count=74 
I Bad_Threshold=3 
1Ratio=O 

Date/Time Class 
Thu May 9 16:54:45 Hardware 

IODN=7 IOCN=600 
Base Port Addr=0278 
Dev Name=Ser/Par 
Internal Dev Type=91002300 

ErrorType=3 

Subclass 
Diskette 

Subclass 
Ser/Par 

Last_I/0=44 LineStatus=O PrinterStatus=O 

Type 
Counters 

Type 
Perm 

Device Cause 
DSKT Hardware 

Device Cause 
Ser/Par Hardware 

================================================================================ 
Figure 7-14. Example Output from the Error Formatter 

7-40 Programming Tools and Interfaces 



Appendix A. Installing Programming Examples 

This appendix explains how to install the Programming Examples. Before installing 
Programming Examples on the system, install the IBM RT PC Virtual Resource Manager 
Licensed Program Product and the IBM RT PC AIX Operating System Licensed Program 
Product. 

Locating The Programming Examples Diskette 

Remove the Programming Examples diskette from the plastic envelope in the back of the 
binder, as shown below: 

Installing Programming Examples from the Command Line 

To install Programming Examples from the command line, use the steps that follow. If an 
error occurs during the procedure, see IBM RT PC Messages Reference for details. 

Installing Programming Examples A-1 



~ 
How to Install Programming Examples 

Log in as SU. 

I 2. 

3. 

After the # prom pt, type i n st a l l p Then press Enter. 

Follow the prompts to insert the Programming Examples diskette and install the 
sample programs. 

4. When installation is complete, remove the diskette and return it to the plastic 
envelope in the binder. 

5. Log off the system. 

More Detailed Information 
1. Log in to the system as SU. See Using and Managing the AIX Operating System for 

information about logging in as su. 

2. Type i nstal 1 p command at the# prompt, then press Enter. The following prompt 
appears: 

Insert the licensed program product volume 1 diskette 
into diskette drive 0 and then press Enter. 

3. Insert the Programming Examples diskette into the diskette drive, and press Enter. 
The following prompt appears: 

Beginning installation of the licensed program product 
"Programming Examples" 

Type 11 y 11 to continue or 11 n11 to cancel, then press Enter. 

--> y 

A-2 Programming Tools and Interfaces 



4. Type y to continue the installation, and press Enter. The following message appears: 

Installation of the licensed program product 
"Programming Examples" 

is in progress. 
When installation is complete, the following message appears: 

Installation of the licensed program product 
11 Programming Examples 11 

was successfully completed. 
5. Remove the Programming Examples diskette from the diskette drive. Return it to the 

plastic envelope in the binder or other safe place. 

6. Log off the system. 

Use the Programming Examples as directed in this book. 

Installing Programming Examples A-3 



A-4 Programming Tools and Interfaces 



Appendix B. Extended curses Structures 

WINDOW Structure 

The Extended curses library routines use a structure, WINDOW, to hold information 
about each window that it is working with. Figure B-1 on page B-2 shows the contents of 
that structure. 

Extended curses Structures B-1 



struct _win_st 
.f 
l 

short _cury, _curx; 
short _maxy, _maxx; 
short _begy, _begx; 
short _winy, _winx; 
short _flags; 
short *_firstch; 
short *_lastch; 
bool _clear; 
bool _leave; 
bool _scroll; 
char _csbp; 
char **_y; 
char **_a; 
struct _win_st *_view; 

} 

#define WINDOW struct _win_st 
#define _SUBWIN 001 
#define _ENDLINE 002 
#define _FULLWIN 004 
#define _SCROLLWIN 010 
#define _ISVIEW 040 
#define _HASVIEW 100 
#define _STANDOUT 200 
#define _NOCHANGE -1 

Figure B-1. Structure Definition for WINDOW 

B-2 Programming Tools and Interfaces 



The variables in this structure perform the following functions: 

_cury and _curx 
The current (y, x) coordinates for the window. New characters added to the 
screen are added at this point. 

_maxy and _m.axx 
One more than the maximum values allowed for _cury and _curx. 

_begy and _begx 
The starting (y, x) coordinates on the terminal for the window (the home 
position for the window). The variables _cury, _curx, _maxy, and _maxx 
are measured relative to _begy and _begx, not the home position for the 
terminal. 

_winy, _winx 

_flags 

*_firstch 

The starting (y, x) coordinates of a viewport within the original window. 

A flag byte that can have one or more of the following values ORed into it: 

-8UBWIN 
Indicates that the window is a subwindow. The delwin( ) call checks 
this flag. If this flag is set, the space for the lines is not freed when 
the window is deleted. 

_END-LINE 
Indicates that the end of the line for this window is also the end of a 
screen. 

_FULL WIN 
Indicates that this window is a full screen window. 

_SCROLL WIN 

JS VIEW 

Indicates that the last character of this screen is at the lower right 
corner of the terminal. If a character is put there, the terminal 
scrolls. 

Indicates that the window is a viewport window. 
_HAS VIEW 

Indicates that the window has a viewport window in it. 
_STANDOUT 

Indicates that all characters added to the screen are in standout 
mode. 

Pointer to the first position (row by row) in the optimization array that was 
changed. If this pointer contains the value _NOCHANGE, then a change was not 
made to a line since the last time that refresh( ) changed curscr. 

Extended curses Structures B-3 



*_lastch 

_ciear 

_leave 

_scroll 

_csbp 

** v -J 

**_a 

Pointer to the last position (row by row) in the. optimization array that has been 
changed. 

Tells if a clear-screen sequence is to be generated on the next refresh( ) call. 
This is only meaningful for screens. The initial clear-screen for the first 
refresh( ) call is generated by initially setting cl ear to be TRUE for curscr. 
When this variable is set for the current screen (curscr), each refresh( ) 
generates a clear screen. 

TRUE if the current (y, x) coordinates and the cursor are to be set to the 
character position following the last character changed on the terminal, or not 
moved if there is not a change. 

TRUE if scrolling is allowed. 

Current Standout Bit Pattern: The attribute pattern for characters that are 
written to the window in standout mode. See the _STANDOUT flag. See 
Figure 5-6 on page 5-27 for the patterns that can be combined into this variable. 

A pointer to an array of lines which describe the terminal. The expression: 

-Y [i] 

is a pointer to the i th line, and: 

-Y [ i J [j] 
is the j th character on the i th line. 

A pointer to the attribute array space. The expression: 

_a [;] [j] 

is a pointer to the attribute byte that corresponds to the j th character on the 
i th line, represented as _y [ i J [j] in the array specified by the ** _y field. 

struct _win_st *_view 
A pointer to the original window from a viewport window. 

B-4 Programming Tools and Interfaces 



PANEL Structure 

The Extended curses library routines use a structure, PANEL, to hold information about 
each panel that it is working with. Figure B-2 shows the contents of that structure. 

#define 

struct 
{ 
short 
short 
short 
short 
char 
char 
char 
PANEL 
PANEL 
PANE 
PANE 
PANE 
WINDOW 
int 
char 
char 
char 
} 

PANEL 

Panel 

int 
int 
int 
int 

struct Panel 

p_depth 
p_width 
orow 
ocol 
*title 
divty 
bordr 
*p_under; 
*p_over 
*fpane 
*dpane 
*apane 
*p_win 
dfid 
plobsc 
plmodf 
Plfill[6] 

Figure B-2. Structure Definition for PANEL 

Extended curses Structures B-5 



The variables in this structure perform the following functions: 

p_depth Number of rows in panel 

p_width Number of columns in panel 

orow Origin row (top left) 

ocol Origin column 

*title Title string pointer 

divty Divide type code 

bordr Border flag byte 

The following fields are used to relate multiple panels on the display: 

*p_under Next panel in chain under this panel 

*p_over Previous panel in chain over this panel 

The following fields are used by the library routines. Do not change these fields directly: 

*fpane 

*dpane 

*a pane 

*p_win 

dfid 

First pane after divisions 

First root pane for div 

Current active pane 

Window struct for panel 

External panel ident 

plobsc Panel obscured flag 

plmodf Panel modified flag 

PLfill[6] Not used 

PANE Structure 

The Extended curses library routines use a structure, PANE, to hold information about 
each pane that it is working with. Figure B-3 on page B-7 shows the contents of that 
structure. 

B-6 Programming Tools and Interfaces 



#define PANE struct Pane 

struct Pane 
{ 
short int w_depth ; 
short int w_width ; 
short int v_depth; 
short int v_width 
short int orow 
short int ocol 
PANE *vscr 
PANE *hscr 
PANE *nxtpn 
PANE *prvpn 
PANE *divs 
PANE *divd 
char divty 
short int divsz 
char divszu 
char bordr 
WINDOW *w_win 
WINDOW *v_win 
int pnvsid 
PANEL *hpanl 
PANEPS *exps 
char alloc 
char pnobsc 
char pnmodf 
char PNfill [6] 
} 

Figure B-3. Structure Definition for PANE 

Extended curses Structures B-7 



The variables in this structure perform the following functions: 

w_depth Rows of data in presentation space for this pane. 

w_width Columns of data in presentation space for this pane. 

v_depth Rows being shown on the display of this pane including space for borders. 

v_width Columns being shown on the display of this pane including space for borders. 

orow Top row on panel of view for this pane (including the border). 

ocol First column on panel of view for this pane (including the border). 

*vscr Pane to scroll vertically with this pane. 

*hscr Pane to scroll horizontally with this pane. 

*nxtpn Next pane in chain. 

*prvpn Previous pane in chain. 

*divs Next pane that is part of current division specification. 

*divd Start of division of this pane into smaller parts. 

divty Division type code that applies to divisions of this pane. May have the 
following values: 

divsz 

divszu 

Pdivtyv 'O' Divide vertical dimension of this pane. Divisions appear above each 
other. 

Pdivtyh '1' Divide horizontal dimension of this pane. Divisions appear beside 
each other. 

Division size specification: 

Division size unit specification that indicates the form for divsz value using one 
of the following values: 

Pdivszc '1' Size is a fixed constant. Fixed constants must be in the range from 
1 to the dimension being divided. 

Pdivszp '2' Size is a proportional value. Proportional values must be in the 
range of 1 to 10,000. They represent the number of 10,000ths of the 
available screen space to assign to the pane. 

Pdivszf 'O' Size is float. A float pane shares an equal amount of the available 
screen space with all other panes that have the float attribute. 

B-8 Programming Tools and Interfaces 



bordr Border flag for this pane. 

*w_win Pointer to pspace window. 

*v_win Pointer to view window. 

pnvsid External identifier for this p-pspace and view window. 

*hpanl Pointer to panel that contains this pane. 

*exps Pointer to chain of extra p-spaces for this pane. 

alloc An allocation flag that indicates whether ecdfpl allocated the window so that 
ecr 1 pl should free it. 

pnobsc A flag that indicates that the pane is obscured by an overlayed panel. 

pnmodf A flag that indicates the pane was modified. 

PNfi.11[6) Not used. 

Extended curses Structures B-9 



B-10 Programming Tools and Interfaces 



Appendix C. RT PC Printer Support Data Stream 

Printer Codes C-1 



Using Printers from A Program 

The printer support of the RT PC system allows a program to produce output on any 
installed printer, as long as the program produces an output data stream that conforms to 
the control and data characters defined in this appendix. Printer support changes that 
data stream into the specific data stream that the installed printer needs. 

Figure C-1 on page C-3 lists the printer control codes to use when printing using the RT 
PC printer support. If the printer can perform the function by itself, printer support passes 
the codes directly to the printer. If the codes do not work on the printer that is installed 
on your system, printer support performs one of the following actions: 

• Tries to emulate the control with functions that the installed printer does have. 

• Removes the control from the output stream. The function is not performed. 

The three code columns in the table show different representations of the same code, 
depending on how you enter the code into the data stream: 

Control Name This column shows the name of the control character. In many cases this 
name is the same as the keyboard keys that produce the required ASCII 
code for the control code. 

Hex Code 

ASCII Code 

This column shows the hexadecimal representation of the control code. 

This column shows the decimal representation of the control code. 

C-2 Programming Tools and Interfaces 



Category Function Performed Control Name Hex Code ASCII Code 

Control: Null value. NUL 00 0 
Used as a list terminator. 

Sound the buzzer. 1 BEL 07 7 

Print the next character as a printable ESC " 185E 27 94 
character. The next character is a 
control with an ASCII value of less than 
32. 

Print more than one character with an ESC \ m n c 185C mn 27 92 mn 
ASCII value that is below 32. c c 

Positioning Back space. BS 08 8 
the 
Printhead: Horizontal tab. HT 09 9 

Set horizontal tabs. ESC D n NUL 1B44n00 27 68 n 0 
(n is a list of one or more tab positions.) 

Set tab stops to power-on settings. ESC R 1852 27 82 

Line feed. LF OA 10 

Reverse line feed. ESC J 1850 27 93 

Start automatic line feed. ESC 5 1 1835 1 27 53 1 

Stop automatic line feed. ESC 5 0 1B35 0 27 53 0 

Carriage return (no line feed). CR OD 13 

Vertical tab. VT OB 11 

Set vertical tabs ESC B n NUL 1B42n 27 66 n 0 
(n is a list of one or more tab positions). 

Figure C-1 (Part 1 of 5). Printer Control Codes 

Printer Codes C-3 



Category 

Paper 
Control: 

Function Performed 

Form feed. 

Set top of forms. 1 

Ignore End of Forms. 1 

Respect End of Forms. 1 

Set skip perforation 1 

(n is lines to skip). 

Stop skip perforation 1 

Formatting Use 12 characters-per-inch printing. 
the Page 
Image: Set 1/8" Line spacing. 

Start n/72" Line spacing. 

Set n/72" Line spacing. 

Set Page Length. 1 

(n is lines per page). 

Set Page Length. i 

n is inches per page. 

Set left and right margins 
(m and n are column numbers). 

Set top and bottom margins 
(m and n are length of control; 
tl tO are high/low order bytes of top 
margin; 
bl bO are high/low order bytes of bottom 
margin). 

Figure C-1 (Part 2 of 5). Printer Control Codes 

C-4 Programming Tools and Interfaces 

Control Name Hex Code ASCII Code 

FF 

ESC 4 

ESC 8 

ESC 9 

ESC N n 

ESC 0 

ESC 

ESC 0 

ESC 2 

ESC A n 

ESC C n 

ESC C 0 n 

ESC X m n 

ESC [ S m n 
tl .tO bl bO 

OC 

1834 

1838 

1839 

lB4E n 

lB4F 

lB3A 

1830 

12 

27 52 

27 56 

27 57 

27 78 n 

27 79 

27 58 

27 48 

1832 27 50 

1841 n 27 59 n 

1843 n 27 67 n 

1843 0 n 27 67 0 n 

1858 m n 27 88 m n 

185853 m 27 91 83 
n tl tO bl m n tl tO 
bO bl bO 



Category Function Performed 

Start automatic line justification. 

Stop automatic line justification. 

Start proportional spacing. 

Stop proportional spacing. 

Controlling Set color band 1 (yellow). 
the Ribbon: 

Selecting 
Print 
Mode: 

Set color band 2 (magenta). 

Set color band 3 (cyan). 

Set color band 4 (black). 

Set automatic ribbon band shift. 

Start double wide. 

Stop double wide. 

Start double wide continuous. 

Stop double wide continuous. 

Start compressed. 

Stop compressed. 

Start underline. 

Stop under line. 

Start emphasized. 

Stop emphasized. 

Figure C-1 (Part 3 of 5). Printer Control Codes 

Control Name Hex Code ASCII Code 

ESC M 1 

ESC M 0 

ESC P 1 

ESC P 0 

ESC y 

ESC m 

ESC c 

ESC b 

ESC a 

so 
DC4 

ESC W 1 

ESC W 0 

SI 

DC2 

ESC -1 

ESC -0 

ESC E 

ESC F 

1B4D 1 

1B4D 0 

1B50 1 

1B50 0 

1B79 

1B6D 

1B63 

1B62 

1B61 

OE 

14 

1B57 1 

1B57 0 

OF 

12 

1820 1 

1820 0 

1845 

1846 

27 77 1 

27 77 0 

27 80 1 

27 80 0 

27 121 

27 109 

27 99 

27 98 

27 97 

14 

20 

27 87 1 

27 87 0 

15 

18 

27 45 1 

27 45 0 

27 69 

27 70 

Printer Codes C-5 



Category Function Performed Control Name Hex Code ASCII Code 

Start double strike. ESC G 1847 27 71 

Stop double strike. ESC LI 1848 27 72 Ii 

Start superscript. ESC S 0 1853 0 27 83 0 

Start subscript. ESC S 1 1853 1 27 83 1 

Stop superscript or subscript. ESC T 1854 27 84 

Selecting Use PC character set 2 ESC 6 1836 27 54 
the 
Character Use PC character set 1 ESC 7 1837 27 55 
Set: 

Select font ESC I n 1849 n 27 73 n 
(n specifies the font; varies with printer 
type.). 

Set graphic set ID ESC [ T 1 0 185854 1 27 91 84 1 
(c selects graphic set 0, 1 or 2) c 0 c 0 c 

Using Bit Bit graphics normal ESC K n 1848 n 27 75 n 
Image (n is a string of control bytes.). 
Graphics: 2 

Graphics dual-half speed ESC L n 184C n 27 76 n 
(n is a string of control bytes.). 

Bit graphics dual-normal speed ESC Y n 1859 n 27 89 n 
(n is a string of control bytes.). 

Bit graphics high-half speed ESC Z n lB5A n 27 90 n 
(n is a string of control bytes.). 

Set aspect ratio to 1:1. ESC n 1 186E 1 27 llO 1 

Set aspect ratio to 5:6. ESC n 0 lB6E 0 27 110 0 

Figure C-1 (Part 4 of 5). Printer Control Codes 

C-6 Programming Tools and Interfaces 



Category Function Performed Control Name Hex Code ASCII Code 

Move carriage to home position. 

Move right n/120. 

Move left n/120. 

Start unidirectional printing. 

Stop unidirectional printing. 

Set 7 dot line spacing. 

Set graphics line spacing 
(n is the number of 1/216-inch steps). 

Variable space line feed 
(n is the number of 1/216-inch steps). 

Selecting a Select. 1 

Printer: 
Deselect. 1 

Specific deselect. 1 

Set initialize function on. 1 

Set initialize function off. 1 

Figure C-1 (Part 5 of 5). Printer Control Codes 

ESC < 
ESC d n 

ESC e n 

ESC U 1 

ESC U 0 

ESC 1 

ESC 3 n 

ESC J n 

DCl 

DC3 

ESC Q 2 

ESC ? 1 

ESC ? 0 

Do not use these controls when using the print queue. 

1B3C 

1B64 n 

1865 n 

1B551 

1B550 

1B31 

1B33 n 

1B4A n 

11 

13 

1B51 2 

1B3F 1 

1B3F 0 

27 60 

27 100 n 

27 101 n 

27 85 1 

27 85 0 

27 49 

27 51 n 

27 74 n 

17 

19 

27 81 2 

27 63 1 

27 63 0 

2 These controls may not work on the installed printer. Use passthrough mode to send these 
codes to the printer. 

Printer Codes C-7 



C-8 Programming Tools and Interfaces 



Appendix D. ASCII Characters 

First Hexadecimal Digit 

0 1 2 3 4 5 6 7 8 9 A B c D E F 

@ p ~ ---- / T 0 NUL DLE BLANK 

0 ' p E oc: -a -
(SPACE) -....... 

1 ' I A Q q .. / 

i~i~i~ti~~~i~ -- /3 + SOH DCl a u re 1 -
2 

11 2 B R b r / 

ff / r > STX DC2 e 0 TI -
3 ETX DC3 # 3 c s /\ /\ / 1C 1T < c s a 0 u 1--

-
4 $ 4 D T d t 

.. -v ~ I: EOT DC4 a 0 n 1-- ~ r 
/. 5 E u ,.-,..,; 

5 ENQ NAK e u 
....____ ....____ 

N I== E a a 0 ~ +--

6 & 6 F v f 0 /\ a. I== /1 ACK SYN v a u y-- -

7 BEL ETB 
, 

7 G w g w '-.... 0 T 
,......_, 

~ u hl ,......_, 

( 8 H x h /\ .. . :rr 0 8 BS CAN x e y 6 FJ 
9 

.. .. p 9 HT EM ) I y 1 y e 0 I Ill ~ e • 
z .. rn n A LF SUB * 

. J J 
....____ u . z e I 

. 
B + . 

K [ k { .. c Yi 0 VT ESC ' I ni F'-'1 .J 

c FF FS < L 
""' 

I I A £ Y4. g 00 l1 ' I I 

D - M ] } ....... 

* 
. [] 0 2 CR GS - - m I ' E so RS > N /\ n rv A Pt « Q D E I . h 

') 0 
0 s n F SI us / 0 L) A » BLANK . - h FF 

ASCII Characters D-1 



D-2 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Appendix E. Customizing System Files for New 
Devices 

!CONTENTS 
About This Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-2 
Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-3 
Customizing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-5 

The devices Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-5 
The Device-Dependent Information (ddi) Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-5 
The Keyword Attribute (KAF) Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-6 
The /etc/predefined File .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-8 
The /etc/system File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-8 
The /etc/master File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-11 

Adding Descriptions for devices Command Screens . . . . . . . . . . . . . . . . . . . . . . . . . . E-11 
Descriptions in /etc/master, /etc/system and /etc/predefined . . . . . . . . . . . . . . . . . . E-11 
Descriptions in /etc/ddi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-12 
Adding POSSIBLE CHOICES For Devices Command Screens . . . . . . . . . . . . . . . E-13 
The vrmconfig Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-13 
Customizing Helper Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-14 
Programming Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-17 

Customizing System Files E-1 



TNL SN20-9797 (26 September 1986) to 55X8932 

About This Appendix 

The operating system provides tools and programming interfaces to help customize the 
system for adding new devices. If you_r program supports a new device, or adds capability 
to the system support of a device, this chapter outlines the programs and interfaces that 
help you install that support into the system. For detailed information about any of the 
described programs, refer to AIX Operating System Commands Reference. For information 
about the described files and routines, refer to AIX Operating System Technical Reference. 

E-2 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Configuration Files 

The configuration files provide the information that the customizing routines use to install 
the device drivers for the system. The information in these files must conform to the 
format for an attribute file as described in the file formats section of AIX Operating 
System Technical Reference. Figure E-1 on page E-4 shows the relationship of the 
configuration files using a printer as an example device. 

Customizing System Files E-3 



TNL SN20-9797 (26 September 1986) to 55X8932 

/etc/predefined 

5152: 
name=5152 

/etc/system 

lpO: 
name=5152 

file= 
use= 

/etc/ddi/pprinter 

_ ___._ d5152sp1: 
lm=5 
fl=60 
cp= 

file= 
use= 
kaf_file= kaf_file=---------. sn= 

driver= L 
specproc=cf gaqcfg----, 

5182: 
name=5182 

/etc/ddi/pprinter. kaf 
xx: 

'----~- /etc/qconfig 

lpO: 
device=dlpO 

•: dlpO: 
file= 
backend= 

Im: 
vtype= 
required= 

fl: 
vtype= 

/etc/master 

.___ __ ___...-;-~ u51 52sp 1 : 

vdriver=v5152sp1 

·+ 
v5152sp1: 

Figure E-1. Relationship of the Configuration Files and Keywords 

E-4 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

Customizing Tools 

Use the following programs and routines to help configure the system to work with the 
new device: 

• devices command 

• vrmconfig command 

• Customizing helper programs 

The devices Command 

Use the devices command to add, delete, change and display devices on the system. It 
processes information in the following configuration files: 

• I etc/master 

• /etc/system 

• /etc/predefined 

• Files in the /etc/ddi directory 

- Device-dependent information files (ddi) 
- Keyword attribute files (kafj 

Refer to Installing and Customizing the AIX Operating System for more information about 
the devices command. 

The Device-Dependent Information (ddi) Files 

The /etc/ddi directory contains a file for each type of device that: 

• Can be installed on the system 

• Requires special device information. 

This file contains device-dependent information (ddi) in the form of keywords that define 
device characteristics. Each keyword in a ddi file has an associated stanza in the kaf file. 
The keyword in the ddi file is the name of the corresponding stanza in the kaf file. For 
example, in Figure E-1 on page E-4, the ddi file is named /etc/ddi/pprinter. That file is 
for a printer. It includes information for left margin (1 m) and forms length (fl) and could 
include other similar characteristics. If you want to change device characteristics, use the 
devices command to display some or all of the keywords. 

Customizing System Files E-5 



TNL SN20-9797 (26 September 1986) to 55X8932 

ddi Parameters 
Some important ddi parameters are: 

sysadd This parameter indicates the action that devices takes after adding the device. 

sysdel 

Valid entries are: 

sysadd=a IPL the system 
sysadd=v Call vrmconfig 
sysadd=none Take no special action. 

This parameter indicates the action that devices takes after deleting the device. 
Valid entries are: 

sys de 1 =a IPL the system 
sys de 1 =v Call vrmconfig 
sys de 1 =none Take no special action. 

The Keyword Attribute (KAF) Files 

The /etc/ddi directory also contains kaf files_. These files contain stanzas that: 

• Contain instructions for processing device information 

• Control whether the devices command displays the associated information 

• Control whether the information can be changed 

• Determine what input validation the devices command should perform. 

kaf File Parameters 
Some important parameters in the kaf file stanzas are: 

syschg The value of this parameter determines what action the devices command 
should take when the user changes a device characteristic. Meaningful values 
are: 

syschg=a 

syschg=s 

IPL the system. 

Call the special processing routine specified by the specproc 
keyword in /etc/system. 

syschg=none Take no special action. 

display This parameter determines whether the devices command displays the keyword 
in the ddi file. If, 

display=true 

E-6 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

is in a stanza, devices displays the device characteristic keyword so you can 
change its value. 

dsrc This parameter determines whether the devices command displays the adapter 
characteristic keyword in the ddi file. If, 

dsrc=XX,XX, ... ,XX 
is in a stanza and the number XX matches that of the adapter associated with 
the device, the devices command displays the adapter characteristic keyword so 
you can change its value. 

required This parameter determines whether the devices command requires you to 
change the value of the associated keyword to match system customizing. If the 
entry, 

required=true 
occurs in a stanza, devices displays the keyword and advises you to be sure this 
keyword value matches the system configuration. The devices command does 
not verify that the entered value matches the system configuration. 

rsrc This parameter determines whether the devices command displays the 
associated adapter characteristic keyword in the ddi file and requires you to 
enter a value. If, 

range 

rsrc=xx,xx, ... ,xx 
is in a stanza and the number XX matches that of the adapter associated with 
the device, the devices command displays the associated keyword and does not 
continue until you enter a valid value for the keyword. The devices command 
does not verify that the entered value matches the system configuration. 

This parameter defines the valid range of values for a keyword, so that the 
devices command can validate input for that keyword. It is required if the 
vtype parameter is 3. If the entry, 

range=f,l,i 

occurs in a stanza, then devices validates input for that keyword using fas the 
first number of the range, l as the last number of the range, and i as the 
allowable increment value. 

type This parameter defines the data type of the value for this field. If the entry, 

type=T 
occurs in a stanza, devices ensures that the values entered are the correct data 
type, according to the following values of T: 

F 
H 

Float 
Hex 

Customizing System Files E-7 



TNL SN20-9797 (26 September 1986) to 55X8932 

vtype 

I Integer 
L Long 
S Short 
U Unsigned 

This parameter defines the type of input validation the devices command 
performs. If the entry, 

vtype=V 

occurs in a stanza, devices validates input according to the following values of 
V: 

0 
1 

2 

3 

No validation 
Mapping Validation: The input must match one of the keywords 
found in the stanza named by the map keyword. Each keyword in the 
map stanza should be prefixed with an m. 
List Validation: The input must match the list of possible choices. 
The choices that come with the system are shown in the comment 
following the keyword in the ddi file. 
Range Validation: The input must fall within the range specified by 
the range keyword, it must also be the correct data type as specified 
by the type parameter. 

The /etc/predefined File 

The /etc/predefined file contains information about all configurable adapters and devices. 
The devices command uses this file to build the list of devices that can be added to the 
system. When you select a device to add, the devices command copies the device stanza 
from /etc/predefined, makes any needed changes to the stanza, and adds the stanza to 
/etc/system. 

The /etc/system File 

The /etc/system file contains information about currently configured hardware adapters 
and devices. The stanzas in the file are set up so specific operating system and VRM 
device drivers are associated with each device. Stanzas in /etc/system also point to 
device characteristics associated with that particular device. The devices command 
deletes the device stanza from /etc/system when you select a device to be deleted from the 
system. The following keywords in /etc/system provide information to help the system 
install a device: 

E-8 Programming Tools and Interfaces 



adp 

a flag 

crname 

dname 

dtype 

TNL SN20-9797 (26 September 1986) to 55X8932 

The list of adapters that can be added with the device. If the aflag keyword 
is true, then devices looks at the adp keyword when adding devices. It 
reads each value of this keyword, finds the adapter description for that 
value under the adpts keyword in /etc/predefined, and displays the 
adapter as a member of the list of adapters from which you can choose. 

This is a required parameter that indicates whether or not an adapter is 
associated with the device. If the entry, 

afl ag=true 
appears in a stanza, devices displays the values of the adp keyword as 
adapters from which you can choose. 

This is a required parameter that indicates whether a new driver name must 
be created. If the entry, 

crname=true 
appears in a stanza, the devices command takes one of the following 
actions: 

• If aflag is true, the devices command appends the adapter you chose for 
aflag to the current driver keyword value. 

• If aflag is false, the devices command appends a number from 0 to n to 
the current driver keyword value. n is the maximum number of devices 
that can be configured for this device type (maxminor). 

This parameter indicates the prefix name that is used to create the name of 
the special file in the /dev directory. For example, stanzas for printers 
supplied with the system contain the following entry, 

dname=lp 
This parameter supplies the descriptive type name for a device. After you 
choose add, devices displays a list of all dtype parameters defined in 
/etc/predefined as device classes from which you can choose. For example, 
the entry for an IBM 5152 printer has the following keyword: 

dtype=printer 
nname This is a required parameter that identifies the type and adapter of the 

device. If aflag is true, the devices command appends the adapter you chose 
for aflag to nname. If aflag is false, the devices command appends the next 
available integer between 0 and n - 1, where n is maxminor for this device. 

noduplicate This entry prevents devices from installing more than one device of the 
indicated dtype on the system. If the entry, 

noduplicate=true 

Customizing System Files E-9 



TNL SN20-9797 (26 September 1986) to 55X8932 

nosh ow 

nodl 

nod di 

appears in a stanza, devices determines whether a device of this dtype is 
already installed. If a duplicate type is not found, the name of the device 
class is displayed, allowing you to select a device of that class for addition. 

This parameter controls the displaying of device information. If the entry, 

noshow=true 
appears in a stanza, devices does not display the device on the showall 
summary screen, and does not display any of the device characteristics. If 
the entry, 

noshow=false 
appears in a stanza, devices displays all device characteristics in response 
to a device information request. However, you cannot change those 
characteristics from the device information display. 

This parameter indicates that devices cannot delete the device from the 
system. If the entry, 

nodl=true 
appears in a stanza, devices does not display this device for you to delete. 

This parameter indicates if there is a device-dependent information file for 
this device. If the entry, 

noddi=true 
appears in a stanza, there is no ddi file and no additional device 
characteristic information. 

specproc This is the name of the special processing routine that runs when a device 
is added, changed or deleted. This name must be a full path name unless 
the routine is a system-supplied routine. For example, devices calls a 
special processing routine to add device and queue stanzas to /etc/qconfig 
when you add a printer. 

switchable This parameter indicates whether the device can be shared with the 
Personal Computer AT Coprocessor Services. If the entry, 

switchable=true 
appears in a stanza, devices displays the associated device as one that you 
can add to the Personal Computer AT Coprocessor Services. 

E-10 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

The /etc/master File 

The /etc/master file contains information about all device drivers in the system. Some 
operating system device driver stanzas contain a keyword that points to its associated 
VRM device driver stanza. Another keyword in /etc/master is: 

maxminor This parameter specifies the maximum number of minor devices that this 
driver supports. An error code is returned if this limit is exceeded when 
you try to add a stanza to the configuration files. 

Refer to Installing and Customizing the AIX Operating System for more information about 
the devices command. 

Adding Descriptions for devices Command Screens 

Most screens displayed by the devices command contain a column for descriptions. You 
must provide the descriptions in the configuration files in order for them to be displayed. 

Descriptions fall into two categories: 

• Descriptions for keywords in the /etc/master, /etc/system, and /etc/predefined files 

• Descriptions for keywords in the ddi files. 

Descriptions in /etc/master, /etc/system and /etc/predefined 

To add a descriptive phrase for a keyword in one of these files, put the description in a 
comment line following the keyword it describes. Figure E-2 on page E-12 shows how the 
comment for the 5152 printer might appear in the /etc/predefined file. 

Customizing System Files E-11 



TNL SN20-9797 (26 September 1986) to 55X8932 

5152: 
* IBM PC Graphics Printer (5152) 

noddi = false 
dtype = printer 
* Printer 

Figure E-2. Example Descriptive Information in /etc/predefined 

Descriptions in /etc/ddi 

There are two methods for providing descriptions in the /etc/ddi files. They both produce 
the same results but the second method can save some file space. 

Method one -This method is the same as descriptions for the master, system and 
predefined files. Put the description in a comment line following the keyword it describes. 
Figure E-3 shows descriptive information added to the ddi file for the printer. 

default: 

lpi = 6 
* Lines Per Inch 

ep = no 
*Emphasized Print 

* 6,8 

* yes,no 

Figure E-3. Example Descriptive Information in a ddi File 

Method Two - For this method, you combine all the descriptions into file 
/etc/ddi/descriptions. This file is in a specific format that is described in AIX Operating 
System Technical Reference in the File Formats chapter under the ddi topic. You must 
follow the format described. If a description line following the keyword (as described in 

E-12 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

method one) is not found, devices uses the keyword as the key to search the 
/etc/ddi/descriptions file for a description to display. 

Adding POSSIBLE CHOICES For Devices Command Screens 

Some screens provided by the devices command contain a Possible Choices column 
heading that shows the valid choices for the associated ddi keyword. Possible Choices is 
also used by the devices command to perform list validation (vtype = 2). You must 
provide the possible choices in the configuration files in order for them to be displayed. 
There are two methods for providing the possible choices. 

Method One - Incorporate the possible choices with the keyword descriptions as 
explained in "Descriptions in /etc/ddi" on page E-12. In the same line as the keyword 
description, insert an* (asterisk) followed by the possible choices. For example, in 
Figure E-3 on page E-12 the second set of comments (6,8 and yes,no) are the valid choices 
for the possible choices column and also for list validation if the vtype parameter is set 
to 2. 

Method Two - Combine all valid options into one file called /etc/ddi/options. This file 
is in a specific format that is described in AIX Operating System Technical Reference in the 
File Formats chapter under the ddi topic. You must follow the format described. If the 
devices command does not find a description line following the keyword as explained in 
method one under "Descriptions in /etc/ddi" on page E-12, devices looks for the opts 
keyword in the kaf file stanza for the keyword. devices then uses the opts keyword to 
generate a key to search on in the /etc/ddi/options file. The devices command then 
displays the choices column. The format of the /etc/ddi/options file is important. 

The vrmconfig Command 

The vrmconfig command installs VRM device drivers and initializes the corresponding 
operating system device drivers to allow them to attach to and use the VRM device driver. 
This command reads the contents of /etc/system and /etc/master to determine what to 
do. When the system starts, vrmconfig installs the devices defined in these files, such as 
terminals and printers. Other options for this command allows the addition or deletion of 
individual devices. Refer to AIX Operating System Commands Reference for more 
information about this command. One step that vrmconfig may take is to run the 
customizing helper program defined by the keyword config. 

Some keywords that vrmconfig uses are in the /etc/predefined and /etc/system files: 

noipl This parameter determines whether this stanza is processed when the 
system is started. If the entry, 

noipl=true 

Customizing System Files E-13 



TNL SN20-9797 (26 September 1986) to 55X8932 

nospecial 

modes 

occurs in a stanza, then that stanza is not processed when the system is 
started. 

This parameter determines whether a new file is created in the /dev 
directory when the system is started. If the entry, 

nospecial=true 
occurs in a stanza, then a special file is not created and a /dev file is not 
created. 

This parameter specifies the read, write and execute permissions assigned to 
the /dev file for this device. vrmconfig passes this information to the 
mknod program to create the special file in the /dev directory. 

Customizing Helper Programs 

You must provide a customizing helper program to build Define-Device Structures (DDS) 
for the VRM device drivers. The helper program must also issue the Define-Device 
system call for the VRM device drivers. Programs provided with RT PC use the 
customizing helper program /etc/vrcmain. 

Another cusomizing helper program available is /etc/biohelp. You can use this program 
for devices that use the BIOCA area. /etc/biohelp builds the DDS for the device, 
including the BIOCA device characteristics. See Virtual Resource Manager Technical 
Reference for more information about devices that use block I/0. 

A tool is available to create a customizing helper that builds a Define-Device Structure as 
documented in the Define-Device SVC section of the Virtual Resource Manager Technical 
Reference. The tool is subroutine cfgabdds and it allows you to build the DDS for devices 
(devices only and not for device managers). The tool also builds the AIX device driver 
structure and calls the init routine for that driver. 

The following sections describe how you should set up customizing files and how you 
should interface to existing code to create a customizing helper for a device. When you 
are testing the customizing helper, vrmconfig and library routines used by the 
customizing helper, expect certain keywords in the appropriate files. Refer to the file 
formats section of AIX Operating System Technical Reference for more detailed information 
about files and keywords. 

E-14 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

/etc/ddi/<ddi-file-name> 
<ddi-file-stanza_name>: 

- nr 
if nr =false 

- rsa 
- rea 

- biopa 
- i opar 
- brsa 
- brea 
- dmas 

if dmas = true 
- fp 
- i occb 
- sdmac 
- dmao 
- dnec 
- sg 
- now 
- en 

- if noi > 0 

- rl 
- ddbw 
- noi 
- sn 
- at 
- pn 

ei<n> where n = 1 through 4 
- si<n> 
- i c<n> 
- il<n> 

Figure E-4 (Part 1 of 3). Example Of Descriptive Information in /etc/ddi 

Customizing System Files E-15 



TNL SN20-9797 (26 September 1986) to 55X8932 

/etc/ddi/<kaf _file-name> 
<kaf _use-stanza_name>: 

- add 
- delete 
- startup 
- shutdown 

/etc/system and /etc/predefined device stanza: 
- iodn 
- name 
- switchable 
- vint 
- minor 

kaL file = <kaf_file-name> 
kaf _use 
file 

- use 
- noipl 
- nospecial 

= <kaf-use-stanza_name> 
= <ddi_file-name> 
= <ddi_file-stanza-name> 

if nospecial = 
- modes 

false 

- driver 

Figure E-4 (Part 2 of 3). Example Of Descriptive Information in /etc/ddi 

E-16 Programming Tools and Interfaces 



TNL SN20-9797 (26 September 1986) to 55X8932 

/etc/master 
AIX device driver stanza 

- major 
- prefix 
- routines 
- mpx 
- vdriver 
- config 

VRM device driver stanza 
- i ocn 
- code 
- ctype 

Figure E-4 (Part 3 of 3). Example Of Descriptive Information in /etc/ddi 

Programming Interfaces 

After you have determined the values for these keywords, create the device stanza for the 
/etc/predefined and /etc/system files and the AIX and VRM device driver stanzas for the 
/etc/master file. Append the stanzas to the appropriate files. 

The Define-Device SVC section in AIX Operating System Technical Reference refers to 
device dependent information (ddi). Some examples of ddi are in the chapter on predefined 
device drivers in Virtual Resource Manager Technical Reference. If the device you are 
adding requires ddi, you must write the code that creates and initializes the structure 
containing the ddi. 

Write a main() routine that builds the ddi and that includes a call to cfgabdds. This 
subroutine in the librts library builds the common sections (header and hardware 
characteristics) of the dds. It then copies the structure you have created to the end of the 
common sections and calls the Define-Device SVC. 

The value for the config keyword in the AIX device driver stanza in /etc/master is the 
name of your executable module. When you invoke vrmconfig to configure the device, it 
looks at the config keyword to see what to execute. vrmconfig expects the executable 
customizing helper to be in the /etc directory. vrmconfig passes all keyword-value pairs 
associated with your device to the executable module. These parameters must be passed 
along to the library routine, along with the pointer and length of your ddi structure. 

Customizing System Files E-17 



TNL SN20-9797 (26 September 1986) to 55X8932 

The following is an example of the customizing helper interface: 

main(argc, argv) 

int argc; /*argument count passed from vrmconfig */ 
/* argument list passed from vrmconfig * / char * argvffi"; 

{ 

/* 
* 
*I 

} 

char *ptr; 
int len; 
int re; 

/* pointer to structure to be created * / 
/* length (bytes) of structure *I 
/*return code from library routine */ 

code to create and initialize ddi goes here 

re = cfgabdds(argc, argv, ptr, len); 
if (re!= 0) 

printf("Define-Device Structure not created\n"); 
return (re); 

Figure E-5. Example of Customizing Helper Interface 

E-18 Programming Tools and Interfaces 



2-1. 
2-2. 
2-3. 
2-4. 
3-1. 
3-2. 
4-1. 
4-2. 
4-3. 
4-4. 
4-5. 
4-6. 
4-7. 
4-8. 
4-9. 

4-10. 
4-11. 
4-12. 
4-13. 
4-14. 
4-15. 
4-16. 
4-17. 
4-18. 
4-19. 
4-20. 
4-21. 
4-22. 
4-23. 
4-24. 
4-25. 
4-26. 
4-27. 
4-28. 
4-29. 
4-30. 
4-31. 
4-32. 

5-1. 
5-2. 

Figures 

Example lint Library Input File .......................................... . 
Rules for Creating Files ................................................ . 
Example Default Rules File ............................................. . 
Example Description File ............................................... . 
Summary of System Libraries ............................................ . 
Comparison of I/O Operations ........................................... . 
Using the Fork System Call .............................................. . 
Example of Fork System Call ............................................. . 
Output from forktstl Program ............................................ . 
Fork and Wait System Calls - Sample Program .............................. . 
Output from forktst2 Sample Program ..................................... . 
Exec System Call - Sample Program ....................................... . 
Output from forktst3 Sample Program ..................................... . 
Using the pipe System Call ............................................. . 
Relationship of IDs in the System ........................................ . 
Example of Process ID System Calls ...................................... . 
Output for Process ID System Call Program ................................ . 
User Controlled Signals ................................................ . 
Example of Signal Trapping ............................................. . 
Enhanced Signal Calls ................................................. . 
Sources of Signals .................................................... . 
Signal Responses ..................................................... . 
sigvec Structure Members .............................................. . 
Enhanced Signals Example Program ...................................... . 
Semid Data Structure .................................................. . 
Semaphore Structure .................................................. . 
Semop System Call Parameters .......................................... . 
How sem_op Specifies a Semaphore Operation .............................. . 
Using Semaphores Concept Example ...................................... . 
Semop Call for Proca .................................................. . 
Semop Call for procb .................................................. . 
Semaphore Usage ..................................................... . 
Using Semaphore Calls ................................................ . 
Message Queue Terms ................................................. . 
Example of Using Message Queues ....................................... . 
Segment Register Addressing ............................................ . 
Segment Register Usage ................................................ . 
Shared Memory Terms ................................................. . 
Terms ............................................................... . 
Screen Coordinate Boundaries ............................................ . 

2-17 
2-30 
2-31 
2-45 

3-4 
3-10 

4-7 
4-8 
4-9 

4-11 
4-12 
4-13 
4-14 
4-15 
4-20 
4-22 
4-23 
4-26 
4-29 
4-30 
4-31 
4-32 
4-33 
4-36 
4-39 
4-39 
4-40 
4-41 
4-42 
4-43 
4-44 
4-45 
4-46 
4-51 
4-55 
4-59 
4-60 
4-64 

5-4 
5-8 

Figures X-1 



5-3. Example Panel Final Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24 
5-4. Creating Panes in the Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24 
5-5. Links in the Panel and Pane Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25 
5-6. 
5-7. 
5-8. 
5-9. 
6-1. 
6-2. 
6-3. 
6-4. 
6-5. 
6-6. 
6-7. 
6-8. 
6-9. 
7-1. 
7-2. 
7-3. 
7-4. 
7-5. 
7-6. 
7-7. 
7-8. 
7-9. 

7-10. 
7-11. 
7-12. 
7-13. 
7-14. 
7-15. 
7-16. 

8-1. 
9-1. 
9-2. 
9-3. 
9-4. 
9-5. 
9-6. 
9-7. 
9-8. 
9-9. 

9-10. 
9-11. 
9-12. 
10-1. 

n~n ...... lnn /\++ ... ~h •• +,..,.,... 
.LJJ.O_pJ.CA.J' ~'-''-'J.J.UU.'-'vi::I • • • • • • • • • • , , , , , • , • , , • • , • , , • • , • • • , • • , , • • • • • • • • • • • • • • • • 

Example Panel Final Appearance ........................................ . 
Control Codes ....................................................... . 
Example of Extended curses Program ..................................... . 
Message Fields ........................................................ . 
System Identifiers ..................................................... . 
Content of Message Standard Format File ................................... . 
Header Files ......................................................... . 
Standard Symbols ..................................................... . 
Example of Integer Symbol Programming .................................. . 
Example of Character String Symbol Programming ........................... . 
Example of Text Insert Symbol Programming ............................... . 
Content of Help Text Format File ........................................ . 
Trace Components ..................................................... . 
Example Program Fragment Showing Use of trcunix Subroutine ................. . 
Example Program Fragment Showing Use of trsave Subroutine. . ................ . 
Trace Template Syntax ................................................ . 
Fields in a Trace Template .............................................. . 
Example of a Trace Template for hook ID 330 ............................... . 
Example of Output from the Trace Formatter ............................... . 
Error Components .................................................... . 
Example of a Program Fragment Showing Use of errunix Subroutine. . ........... . 
Example of a Program Fragment Showing Use of errsave Subroutine. . ........... . 
Error Template Syntax ................................................. . 
Fields in an Error Template ............................................. . 
Example of an Error Template for Error Entries with Error ID 613 .............. . 
Example Output from the Error Formatter ................................. . 
Dump Components .................................................... . 
Example of Output from the Dump Formatter ............................... . 
Example of Debug Session .............................................. . 
Install and Update Commands ............................................ . 
Internal Commands .................................................... . 
Return Codes to installp ............................................... . 
Example of update Procedure Code ....................................... . 
Record Format for the History File ....................................... . 
Fields in a History Record .............................................. . 
Record Format for Requirements File ..................................... . 
Fields in Requirements Record .......................................... . 
Entry Format for Program Name File ..................................... . 
Fields in Program Name Entry .......................................... . 
Requirements File Parameters ........................................... . 
Save/Restore Directory Content .......................................... . 
Parts of an SID ...................................................... . 

X-2 Programming Tools and Interfaces 

5-27 
5-30 
5-32 
5-35 
6-4 
6-6 
6-9 

6-13 
6-15 
6-17 
6-19 
6-21 
6-26 

7-5 
7-12 
7-14 
7-16 
7-17 
7-20 
7-21 
7-23 
7-31 
7-33 
7-35 
7-36 
7-39 
7-40 
7-42 
7-45 
8-22 

9-3 
9-4 

9-10 
9-14 
9-17 
9-18 
9-20 
9-20 
9-22 
9-22 
9-25 
9-27 
10-5 



10-2. 
10-3. 
10-4. 
11-1. 
11-2. 
11-3. 
11-4. 
11-5. 
11-6. 
12-1. 
13-1. 
13-2. 
13-3. 
13-4. 
13-5. 
13-6. 
13-7. 
B-1. 
B-2. 
B-3. 
C-1. 

Growth of an SCCS File with Branching ................................... . 
Example of Using SCCS to Create and Update a File ......................... . 
Growth of an SCCS File with Branching ................................... . 
awk Special Characters ................................................ . 
sed Command Flags ................................................... . 
sed Block Diagram .................................................... . 
sed Wildcard Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Syntax Symbols ...................................................... . 
sed Command Summary ................................................ . 
m4 Built-in Macros ................................................... . 
Simple Finite State Model .............................................. . 
Regular Expression Operators ........................................... . 
Special Characters .................................................... . 
Lex With Yacc ....................................................... . 
yacc Literal Strings ................................................... . 
yacc Grammar File for Calculator Program - calc.yacc ........................ . 
lex Specification File for Calculator Program - calc.lex ........................ . 
Structure Definition for WINDOW ........................................ . 
Structure Definition for PANEL .......................................... . 
Structure Definition for PANE ........................................... . 
Printer Control Codes .................................................. . 

10-5 
10-8 

10-14 
11-10 
11-22 
11-22 
11-24 
11-25 
11-26 

12-8 
13-5 
13-8 

13-11 
13-24 
13-29 
13-53 
13-58 

B-2 
B-5 
B-7 
C-3 

Figures X-3 



X-4 Programming Tools and Interfaces 



access. To obtain data from or put data in 
storage. 

access permission. A group of designations 
that determine who can access a particular AIX 
file and how the user may access the file. 

action. In awk, lex and yacc, a C language 
program fragment that defines what the 
program does when it finds input that it 
recognizes. 

All Points Addressable (AP A) display. A 
display that allows each pel to be individually 
addressed. An AP A display allows for images to 
be displayed that are not made up of images 
predefined in character boxes. Contrast with 
character display. 

allocate. To assign a resource, such as a disk 
file or a diskette file, to perform a specific task. 

alphabetic. Pertaining to a set of letters a 
through z. 

alphanumeric character. Consisting of 
letters, numbers and often other symbols, such 
as punctuation marks and mathematical 
symbols. 

American National Standard Code for 
Information Interchange (ASCII). The code 
developed by ANSI for information interchange 
among data processing systems, data 
communications systems, and associated 
equipment. The ASCII character set consists of 
7-bit control characters and symbolic 
characters. 

American National Standards Institute. An 
organization sponsored by the Computer and 
Business Equipment Manufacturers Association 
for establishing voluntary industry standards. 

Glossary 

application. A program or group of programs 
that apply to a particular business area, such as 
the Inventory Control or the Accounts 
Receivable application. 

application program. A program used to 
perform an application or part of an 
application. 

ASCII. See American National Standard Code 
for Information Interchange. 

attribute. A characteristic. For example, the 
attribute for a displayed field could be blinking. 

auto carrier return. The system function 
that places carrier returns automatically within 
the text and on the display. This is 
accomplished by moving whole words that 
exceed the line end zone to the next line. 

background process. (1) An activity that 
does not require operator intervention that can 
be run by the computer while the work station 
is used to do other work. (2) A mode of 
program execution in which the shell does not 
wait for program completion before prompting 
the user for another command. 

backup copy. A copy, usually of a file or 
group of files, that is kept in case the original 
file or files are unintentionally changed or 
destroyed. 

backup diskette. A diskette containing 
information copied from a fixed disk or from 
another diskette. It is used in case the original 
information becomes unusable. 

bad block. A portion of a disk that can never 
be used reliably. 

Glossary X-5 



base address. The beginning address for 
resolving symbolic references to locations in 
storage. 

hasename. The last element to the right of a 
full path name. A file name specified without 
its parent directories. 

batch printing. Queueing one or more 
documents to print as a separate job. The 
operator can type or revise additional 
documents at the same time. This is a 
background process. 

batch processing. A processing method in 
which a program or programs process records 
with little or no operator action. This is a 
background process. Contrast with interactive 
processing. 

binary. (1) Pertaining to a system of numbers 
to the base two; the binary digits are 0 and 1. 
(2) Involving a choice of two conditions, such 
as on-off or yes-no. 

bit. Either of the binary digits 0 or 1 used in 
computers to store information. See also byte. 

block. (1) A group of records that is recorded 
or processed as a unit. Same as physical record. 
(2) In data communications, a group of records 
that is recorded, processed, or sent as a unit. 
(3) A block is 512 bytes long. 

block flie. A file listing the usage of blocks on 
a disk. 

block special file. A special file that provides 
access to a device which is capable of 
supporting a file system. 

branch. In a computer program an instruction 
that selects one of two or more alternative sets 
of instructions. A conditional branch occurs 
only when a specified condition is met. 

breakpoint. A place in a computer program, 
usually specified by an instruction, where 
execution may be interrupted by external 
intervention or by a monitor program. 

X-6 Programming Tools and Interfaces 

buffer. (1) A temporary storage unit, 
especially one that accepts information at one 
rate and delivers it at another rate. (2) An area 
of storage, temporarily reserved for performing 
input or output, into which data is read, or from 
which data is written. 

bug. A problem in the logic of a program that 
causes the program to perform differently than 
expected. 

byte. The amount of storage required to 
represent one character; a byte is 8 bits. 

C language. A general-purpose programming 
language that is the primary language of the 
AIX Operating System. 

call. To activate a program ,or procedure at its 
entry point. Compare with load. 

cancel. To end a task before it is completed. 

carrier return. (1) In text data, the action 
causing line ending formatting to be performed 
- L L 1_ - _ J 1 , • n "!"! "? '! ~ • aL Lne curreni cursor iOcauon rouowea oy a nne 
advance of the cursor. Equivalent to the 
carriage return of a typewriter. (2) A keystroke 
generally indicating the end of a command line. 

channel. One of 32 bits in a table used to 
represent which event classes are active or 
inactive. The most significant bit is called 
channel 0 and the least significant bit is called 
channel31. 

character. A letter, digit, or other symbol. 

character class. Ranges of characters that 
match a single character. 

character display. A display that uses a 
character generator to display predefined 
character boxes of images (characters) on the 
screen. This kind of display can not address the 
screen any less than one character box at a 
time. Contrast with All Points Addressable 
display. 



character key. A keyboard key that allows 
the user to enter the character shown on the 
key. Compare with function keys. 

character position. On a display, each 
location that a character or symbol can occupy. 

character set. A group of characters used for 
a specific reason; for example, the set of 
characters a printer can print or a keyboard 
can support. 

character special file. A special file that 
provides access to an input or output device. 
The character interface is used for devices that 
cannot or do not want to use a file system. 

character string. A sequence of consecutive 
characters. 

character variable. The name of a character 
data item whose value may be assigned or 
changed while the program is running. 

child. (1) Pertaining to a secured resource, 
either a file or library, that uses the user list of 
a parent resource. A child resource can have 
only one parent resource. (2) In the AIX 
Operating System, child is a process spawned by 
a parent process that shares resources of parent 
process, for example, the definition is one 
characteristic of the parent/child relationship. 
Contrast with parent. 

close. To end an activity and remove that 
window from the display. 

code. (1) Instructions for the computer. 
(2) To write instructions for the computer; to 
program. (3) A representation of a condition, 
such as an error code. 

code segment. See segment. 

collating sequence. The sequence in which 
characters are ordered within the computer for 
sorting, combining, or comparing. 

color display. A display device capable of 
displaying more than two colors and the shades 

produced via the two colors, as opposed to a 
monochrome display. 

column. A vertical arrangement of text or 
numbers. 

column headings. Text appearing near the 
top of columns of data for the purpose of 
identifying or titling. 

command. A request to perform an operation 
or execute a program. When parameters, 
arguments, flags, or other operands are 
associated with a command, the resulting 
character string is a single command. 

command line editing keys. Keys for editing 
the command line. 

compile. (1) To translate a program written in 
a high-level programming language into a 
machine language program. (2) The computer 
actions required to transform a source file into 
an executable object file. 

compiler. A program that reads program text 
from a file and changes the programming 
language statements in that file to a form that 
the system can understand. 

component dump table. A structure used by 
VRM components to identify data structures 
that should be collected by the VRM dump 
program. 

compress. (1) To move files and libraries 
together on disk to create one continuous area 
of unused space. (2) In data communications, 
to delete a series of duplicate characters in a 
character string. 

compression. A technique for removing 
strings of duplicate characters and for removing 
trailing blanks before transmitting data. 

concatenate. (1) To link together. (2) To 
join two character strings. 

concurrent groups. The ability to access files 
from many groups at the same time. 

Glossary X-7 



condition. An expression in a program or 
procedure that can be evaluated to a value of 
either true or false when the program or 
procedure is running. 

configuration. The group of machines, 
devices, and programs that make up a computer 
system. See also system customization. 

constant. A data item with a value that does 
not change. Contrast with variable 

control block. A storage area used by a 
program to hold control information. 

control program. Part of the AIX Operating 
System that determines the order in which basic 
functions should be performed. 

controlled cancel. The system action that 
ends the job step being run, and saves any new 
data already created. The job that is running 
can continue with the next job step. 

copy. The action by which the user makes a 
whole or oartial dunlicate of alreadv existin2" 
data. - ~ v ~ 

crash. An unexpected interruption of 
computer service, usually due to a serious 
hardware or software malfunction. 

creation date. The program date at the time a 
file is created. 

current directory. The currently active 
directory, displayed with the pwd command. 

current file. In make, the file that the make 
command is working with at a given moment. 
make replaces the macro $*with the name of 
the current file. 

current line. The line on which the cursor is 
located. 

current screen. In Extended curses, the 
actual image that is currently on the terminal. 

current working directory. See current 
directory. 

X-8 Programming Tools and Interfaces 

cursor. (1) A movable symbol (such as an 
underline) on a display, used to indicate to the 
operator where the next typed character will be 
nl!:!r>t:>rl /Yr txTht:>Y'o t"ho ..... av+ ant~""' nr~ll h,._ ,:i~ ... ,..,,...t-,..,,:J .I:"_......._..._,...._,'"" '-IA.. Y't'.L.L'-'.L'-' V.L.L'-"' .1..1.V~\I CA."""\l.l.V.1..1. VYJ...1..1. UV UJ.J.'Ci'-"l.rVU. 

(2) A marker that indicates the current data 
access location within a file. 

cursor movement keys. The directional keys 
used to move the cursor. 

customize. To describe (to the system) the 
devices, programs, users, and user defaults for a 
particular data processing system. 

cylinder. All fixed disk or diskette tracks that 
can be read or written without moving the disk 
drive or diskette drive read/write mechanism. 

daemon. See daemon process. 

daemon process. A process begun by the root 
or the root shell that can be stopped only by the 
root. Daemon processes generally provide 
services that must be available at all times such 
as sending data to a printer. 

data communications. The transmission of 
data between computers, or remote devices or 
both (usually over long distance). 

data stream. All information (data and 
control information) transmitted over a data 
link. 

declaration. A statement in a program that 
defines how a label is used. 

default. A value, attribute, or option that is 
used when no alternative is specified by the 
operator. 

default directory. The directory name 
supplied by the operating system if none is 
specified. 

default drive. The drive name supplied by the 
operating system if none is specified. 

default value. A value stored in the system 
that is used when no other value is specified. 



delete. To remove. For example, to delete a 
file. 

dependent work station. A work station 
having little or no standalone capability, that 
must be connected to a host or server in order 
to provide any meaningful capability to the 
user. 

device. An electrical or electronic machine 
that is designed for a specific purpose and that 
attaches to your computer, for example, a 
printer, plotter, disk drive, and so forth. 

device driver. A program that operates a 
specific device, such as a printer, disk drive, or 
display. 

device name. A name reserved by the system 
that refers to a specific device. 

diagnostic. Pertaining to the detection and 
isolation of an error. 

diagnostic aid. A tool (procedure, program, 
reference manual) used to detect and isolate a 
device or program malfunction or error. 

diagnostic routine. A computer program that 
recognizes, locates, and explains either a fault 
in equipment or a mistake in a computer 
program. 

digit. Any of the numerals from 0 through 9. 

directory. A type of file containing the names 
and controlling information for other files or 
other directories. 

diskette. A thin, flexible magnetic plate that 
is permanently sealed in a protective cover. It 
can be used to store information copies from the 
disk or another diskette. 

diskette drive. The mechanism used to read 
and write information on diskettes. 

display device. An output unit that gives a 
visual representation of data. 

display screen. The part of the display device 
that displays information visually. 

display station. A device that includes a 
keyboard from which an operator can send 
information to the system and a display screen 
on which an operator can see the information 
sent to or received from the computer. 

dump. (1) To copy the contents of all or part 
of storage, usually to an output device. 
(2) Data that has been dumped. 

dump data. The data collected by the VRM 
dump program. It is obtained from memory 
locations used by VRM components. 

dump table entry. A record in the master 
dump table that identifies the location of a 
component dump table. All VRM components 
that need to have special data collected by the 
VRM dump program need to generate a dump 
table entry. 

EBCDIC. See extended binary-coded decimal 
interchange code. 

EBCDIC character. Any one of the symbols 
included in the 8-bit EBCDIC set. 

edit. To modify the form or format of data. 

editor. A program used to enter and modify 
programs, text, and other types of documents. 

emulation. Imitation; for example, when one 
computer imitates the characteristics of another 
computer. 

enable. To make functional. 

enter. To send information to the computer by 
pressing the Enter key. 

entry. A single input operation on a work 
station. 

environment. The settings for shell variables 
and paths set when the user logs in. These 
variables can be modified later by the user. 

error-correct backspace. An editing key that 
performs editing based on a cursor position; the 
cursor is moved one position toward the 
beginning of the line, the character at the new 

Glossary X-9 



cursor location is deleted, and all characters 
following the cursor are moved one position 
toward the beginning of the line (to fill the 
uo.no-n.nn loft- hu i-ha rlnlnf-r.rl ,...1,......,..,... ..... t-\ 
YCA.'-'<.A..L.1.VJ' .L\....-.L\J V.J \.l.L.L"-' \.A..V.L\.J\JV'-A. '-1.L'-'.1.l.J.V.1..1.\J}• 

error entry. A data structure containing a 
header of identifying information plus several 
bytes of defined data. Error entries are 
generated by error points and written to an 
error log file. 

error ID. This is part of the data required by 
an error entry. It is a unique combination of 
three hexadecimal digits that identifies the 
component that generated the error entry. 

error identifier. A three-character code used 
to identify error templates and to specify which 
error entries the error formatter should process. 
This code is based on the error ID; however, it 
uses alphanumeric characters instead of 
hexadecimal digits. 

error point. A group of code statements that 
generates an error entry from within a software 
program. Error entries are generated when a 
software or hardware component encounters an 
error. 

error type. One of six categories of errors. 
The type of an error is determined by the 
software program that generates the error. 
When you format an error log, you can specify 
which types of errors you want to format. 

escape character. The backslash character, 
used to indicate to the shell that the next 
character is not intended to have the special 
meaning normally assigned to it by the shell. 

event class. A number assigned to a group of 
trace points that relate to a specific subject or 
system component. The defined event classes 
are listed in the trace profile. 

exit value. (1) A code sent to either standard 
output or standard error on completion of the 
command. (2) A numeric value that a command 
returns to indicate whether it completed 
successfully. Some commands return exit 

X-10 Programming Tools and Interfaces 

values that give other information, such as 
whether a file exists. Shell programs can test 
exit values to control branching and looping. 

expression. A representation of a value. For 
example, variables and constants appearing 
alone or in combination with operators. 

extended binary-coded decimal interchange 
code (EBCDIC). A set of 256 eight-bit 
characters. 

fake target name. A control name used in a 
makefile that looks like a target name, but 
actually tells make to perform some operation 
differently. 

feature. A programming or hardware option, 
usually available at an extra cost. 

field. (1) An area in a record or panel used to 
contain a particular category of data. The 
smallest component of a record that can be 
referred to by a name. (2) In Extended curses, 
an area in a presentation space where the 
program can accept operator input. 

FIFO. See first-in-first-out. 

file. A collection of related data that is stored 
and retrieved by an assigned name. 

file descriptor. A small positive integer that 
the system uses instead of the file name to 
identify the file. 

file name. The name used by a program to 
identify a file. See also label. 

file specification (filespec). The name and 
location of a file. A file specification consists 
of a drive specifier, a path name, and a file 
name. 

file system. The collection of files and file 
management structures on a physical or logical 
mass storage device, such as a diskette or 
mini disk. 

filename. In DOS, that portion of the file 
name that precedes the extension. 



filter. A command that reads standard input 
data, modifies the data, and sends it to standard 
output. 

first-in-first-out (FIFO). A named permanent 
pipe. A FIFO allows two unrelated processes to 
exchange information using a pipe connection. 

fixed disk. A flat, circular, nonremoveable 
plate with a magnetizable surface layer on 
which data can be stored by magnetic 
recording. 

fixed-disk drive. The mechanism used to read 
and write information on fixed disk. 

flag. A modifier that appears on a command 
line with the command name that defines the 
action of the command. Flags in the AIX 
Operating System almost always are preceded 
by a dash. 

font. A family or assortment of characters of a 
given size and style. 

foreground. A mode of program execution in 
which the shell waits for the program specified 
on the command line to complete before 
returning your prompt. 

format. (1) A defined arrangement of such 
things as characters, fields, and lines, usually 
used for displays, printouts, or files. (2) The 
pattern which determines how data is recorded. 

formatted diskette. A diskette on which 
control information for a particular computer 
system has been written but which may or may 
not contain any data. 

free list. A list of available space on each file 
system. This is sometimes called the free-block 
list. 

full path name. The name of any directory or 
file expressed as a string of directories and files 
beginning with the root directory. 

function. A synonym for procedure. The C 
language treats a function as a data type that 

contains executable code and returns a single 
value to the calling function. 

function keys. Keys that request actions but 
do not display or print characters. Included are 
the keys that normally produce a printed 
character, but when used with the code key 
produce a function instead. Compare with 
character key. 

generation. For some remote systems, the 
translation of configuration information into 
machine language. 

Gid. See group number. 

global. Pertains to information available to 
more than one program or subroutine. 

global action. An action having general 
applicability, independent of the context 
established by any task. 

global character. The special characters * 
and ? that can be used in a file specification to 
match one or more characters. For example, 
placing a ? in a file specification means any 
character can be in that position. 

global search. The process of having the 
system look through a document for specific 
characters, words, or groups of characters. 

global symbol. A symbol defined in one 
program module, but used in other 
independently assembled program modules. 

graphic character. A character that can be 
displayed or printed. 

group name. A name that uniquely identifies 
a group to the system. 

group number (Gid). A unique number 
assigned to a group of related users. The group 
number can often be substituted in commands 
that take a group name as an argument. 

handler. A software routine that controls a 
program's reaction to specific external events, 
such as an interrupt handler. 

Glossary X-11 



hardware. The equipment, as opposed to the 
programming, of a computer system. 

header. Constant text that is formatted to be 
in the top margin of one or more pages. 

header file. A text file that contains 
declarations used by a group of functions or 
users. 

header label. A special set of records on a 
diskette describing the contents of the diskette. 

help. Explanatory information that a program 
provides. 

highlight. To emphasize an area on the 
display by any of several methods, such as 
brightening the area or reversing the color of 
characters within the area. 

history file. A file containing a log of system 
actions and operator responses. 

hole in a file. See sparse file. 

home directory. (l) A directory associated 
with an individual user. (2) The user's current 
directory on login or after issuing the cd 
command with no argument. 

hook ID. A unique number assigned to a 
specific trace point. All trace entries include 
the hook ID of the originating trace point in 
the trace entry header. Pre-defined trace points 
use assigned hook IDs ranging from 0 to 299. 
User-defined trace points can choose hook IDs 
ranging from 300 to 399. 

1/0. See input/output. 
TT"it.. Tl A •p• l • 

i1..1. iaenuncanon. 

IF expressions. Expressions within a 
procedure, used to test for a condition. 

informational message. A message providing 
information to the operator, that does not 
require a response. 

X-12 Programming Tools and Interfaces 

initial program load (IPL). The process of 
loading the system programs and preparing the 
system to run jobs. See initialize. 

iniiialize. To set counters, switches, addresses, 
or contents of storage to zero or other starting 
values at the beginning of, or at prescribed 
points in, the operation of a computer routine. 

i-node. The internal structure for managing 
files in the system. I-nodes contain all of the 
information pertaining to the node, type, owner, 
and location of a file. A table of i-nodes is 
stored near the beginning of a file system. 

i-number. A number specifying a particular 
i-node on a file system. 

input. Data to be processed. 

input device. Physical devices used to provide 
data to a computer. 

input file. A file opened in the input mode. 

input list. A list of variables to which values 
are assigned from input data. 

input-output file. A file opened for input and 
output use. 

input-output device number. A value 
assigned to a device driver by the guest 
operating system or to the virtual device by the 
virtual resource manager. This number 
uniquely identifies the device regardless of 
whether it is real or virtual. 

input/output (1/0). Pertaining to either 
input, output, or both between a computer and 
a device. 

interactive processing. A processing method 
in which each system user action causes 
response from the program or the system. 
Contrast with batch processing. 

interface. A shared boundary between two or 
more entities. An interface might be a 
hardware component to link two devices 
together or it might be a portion of storage or 



registers accessed. by two or more computer 
programs. 

interrupt. (1) To temporarily stop a process. 
(2) In data communications, to take an action 
at a receiving station that causes the sending 
station to end a transmission. (3) A signal sent 
by an I/O device to the processor when an error 
has occurred or when assistance is needed to 
complete I/0. An interrupt usually suspends 
execution of the currently executing program. 

IPL. See initial program load. 

job. (1) A unit of work to be done by a system. 
(2) One or more related procedures or programs 
grouped into a procedure. 

job queue. A list, on disk, of jobs waiting to 
be processed by the system. 

justify. To print a document with even right 
and left margins. 

K-byte. See kilobyte. 

kernel. The memory-resident part of the AIX 
Operating System containing functions needed 
immediately and frequently. The kernel 
supervises the input and output, manages and 
controls the hardware, and schedules the user 
processes for execution. 

key. A unique identifier (of type key_t) that 
names the particular interprocess 
communications member. 

key pad. A physical grouping of keys on a 
keyboard (for example, numeric key pad, and 
cursor key pad). 

keyboard. An input device consisting of 
various keys allowing the user to input data, 
control cursor and pointer locations, and to 
control the user-to-work station dialogue. 

keylock feature. A security feature in which 
a lock and key can be used to restrict the use of 
the display station. 

keyword. One of the predefined words of a 
programming language; a reserved word. 

kill. An AIX Operating System command that 
stops a process. 

kill character. The character that is used to 
delete a line of characters entered after the 
user's prompt. 

kilobyte. 1024 bytes. 

label. (1) The name in the disk or diskette 
volume table of contents that identifies a file. 
See also file name. (2) The field of an 
instruction that assigns a symbolic name to the 
location at which the instruction begins, or 
such a symbolic name. 

left margin. The area on a page between the 
left paper edge and the leftmost character 
position on the page. 

left-adjust. The process of aligning lines of 
text at the left margin or at a tab setting such 
that the leftmost character in the line or filed is 
in the leftmost position. of the field is in the 
leftmost position. Contrast with right-adjust. 

lexical analyzer. A program that analyzes 
input and breaks it into categories, such as: 
numbers, letters or operators. 

library. A collection of functions, calls, 
subroutines, or other data. 

licensed program product (LPP). Software 
programs that remain the property of the 
manufacturer, for which customers pay a 
license fee. 

linefeed. An ASCII character that causes an 
output device to move forward one line. 

literal. A symbol or a quantity in a source 
program that is itself data, rather than a 
reference to data. 

load. (1) To move data or programs into 
storage. (2) To place a diskette into a diskette 
drive, or a magazine into a diskette magazine 
drive. (3) To insert paper into a printer. 

Glossary X-13 



loader. A program that reads run files into 
main storage, thus preparing them for 
execution. 

local. Pertaining to a device directly 
connected to your system without the use of a 
communications line. Contrast with remote. 

log .. To record; for example, to log all messages 
on the system printer. 

log in (v). To sign on at a work station. 

log off (v). To sign off at a work station. 

lo;4ical device. A file for conducting input or 
output with a physical device. 

loop. A sequence of instructions performed 
repeatedly until an ending condition is reached. 

main storage. The part of the processing unit 
where programs are run. 

mapped file. A file that can be accessed using 
direct memory operations, rather than having 
to read it from disk each time it is accessed. 

mask. A pattern of characters that controls 
the keeping, deleting, or testing of portions of 
another pattern of characters. 

master dump table. A structure containing 
durnp table entries generated by VRM 
components. The dump program uses this table 
to locate data structures that should be 
included in a dump. 

matrix. An array arranged in rows and 
columns. 

memory. Storage on electronic chips. 
Exam pl es of memory are random access 
memory, read only memory, or registers. See 
storage. 

memory areas. Arrays of characters in 
memory. 

menu. A displayed list of items from which an 
operator can make a selection. 

X-14 Programming Tools and Interfaces 

message. (1) A response from the system to 
inform the operator of a condition which may 
affect further processing of a current program. 
(2) An error indication, or any brief 
information that a program writes to standard 
error or a queue. (3) Information sent from one 
user in a multi-user operating system to 
another. ( 4) A general method of 
communication between two processes. 

message queue ID. An identifier assigned to 
a message queue for use within a particular 
process. It is similar in use to a file descriptor 
of a file. 

message services. A set of routines to help 
create, update and display messages from a 
program. 

minidisk. A logical division of a fixed disk 
that may be further subdivided into one or more 
partitions. See partitions. 

modem. See modulator-demodulator. 

modulation. Changing the frequency or size 
of one signal by using the frequency or size of 
another signal. 

modulator-demodulator (modem). A device 
that converts data from the computer to a 
signal that can be transmitted on a 
communications line, and converts the signal 
received to data for the computer. 

module. A discrete programming unit that 
usually performs a specific task or set of tasks. 
Modules are subroutines and calling programs 
that are assembled separately, then linked to 
make a complete program. 

msqid. See message queue ID. 

multiprogramming. The processing of two or 
more programs at the same time. 

multivolume file. A diskette file occupying 
more than one diskette. 

nest. To incorporate a structure or structures 
of some kind into a structure of the same kind. 



For example, to nest one loop (the nested loop) 
within another loop (the nesting loop); to nest 
one subroutine (the nested subroutine) within 
another subroutine (the nesting subroutine). 

network. A collection of products connected 
by communication lines for information 
exchange between locations. 

new-line character. A control character that 
causes the print or display position to move to 
the first position on the next line. 

null. Having no value, containing nothing. 

null character (NUL). The character hex 00, 
used to represent the absence of a printed or 
displayed character. 

numeric. Pertaining to any of the digits 0 
through 9. 

object code. Machine-executable instruction, 
usually generated by a compiler from source 
code written in a higher level language. 
Consists of directly executable machine code. 
For programs that must be linked, object code 
consists of relocatable machine code. 

octal. A base eight numbering system. 

open. To make a file available to a program 
for processing. 

operating system. Software that controls the 
running of programs; in addition, an operating 
system may provide services such as resource 
allocation, scheduling, input/output control, 
and data management. 

operation. A specific action (such as move, 
add, multiply, load) that the computer performs 
when requested. 

operator. A symbol representing an operation 
to be done. 

output. The result of processing data. 

output devices. Physical devices used by a 
computer to present data to a user. 

output file. A file that is opened in either the 
output mode or the extend mode. 

override. (1) A parameter or value that 
replaces a previous parameter or value. (2) To 
replace a parameter or value. 

overwrite. To write output into a storage or 
file space that is already occupied by data. 

owner. The user who has the highest level of 
access authority to a data object or action, as 
defined by the object or action. 

pad. To fill unused positions in a field with 
dummy data, usually zeros or blanks. 

page. A block of instructions, data, or both. 

pagination. The process of adjusting text to 
fit within margins and/or page boundaries. 

paging. The action of transferring 
instructions, data, or both between real storage 
and external page storage. 

paging space. An area on disk that the 
system uses to store information that is resident 
in virtual memory, but is not currently being 
accessed. 

pane. In Extended curses, an area of the 
display that shows all or a part of the data 
contained in a presentation space associated 
with that pane. A pane is a subdivision of a 
panel. 

panel. In Extended curses, a rectangular 
area on the display consisting of one or more 
panes that a program can treat as a unit. 

parallel processing. The condition in which 
multiple tasks are being performed 
simultaneously within the same activity. 

parameter. Information that the user supplies 
to a panel, command, or function. 

parent. (1) Pertaining to a secured resource, 
either a file or library, whose user list is shared 
with one or more other files or libraries. 
Contrast with child. (2) Also pertains to a 

Glossary X-15 



process that has forked to create one or more 
child processes. 

parent directory. The directory one level 
above the current directory. 

parser. A program that analyzes input and 
determines what to do with the input. 

partition. A logical division· of a fixed disk. 

password. A string of characters that, when 
entered along with a user identification, allows 
an operator to sign on to the system. 

password security. A program product option 
that helps prevent the unauthorized use of a 
display station, by checking the password 
entered by each operator at sign-on. 

path name. A complete file name specifying 
all directories leading to that file. 

pattern-matching character. Special 
characters such as * or ? that can be used in a 
search pattern. Some are used in a file 
specification to match one or more characters. 
For example, placing a ? in a file specification 
means any character can be in that position. 
Pattern-matching characters are also called 
wildcards. 

permission code. A three-digit octal code 
indicating the access permissions. The acc·es 
permissions are read, write, and execute. 

permission field. One of the three-character 
fields within the permissions column of a 
directory listing indicating the read, write, and 
run permissions for the file or directory owner, 
group, and all others. 

physical device. See device. 

physical file. An indexed file containing data 
for which one or more alternative indexes have 
been created. 

physical record. (1) A group of records 
recorded or processed as a unit. Same as block. 
(2) A unit of data moved into or out of the 
computer. 

X-16 Programming Tools and Interfaces 

PID. See process ID. 

pipe. To direct the data from one process to 
another process. 

pipeline. A direct, one-way connection 
between two or more processes. 

pitch. A unit of width of typewriter type, 
based on the number of times a letter can be set 
in a linear inch. For example, 10-pitch type has 
10 characters per inch. 

platen. The support mechanism for paper on a 
printer, commonly cylindrical, against which 
printing mechanisms strike to produce an 
impression. 

position. The location of a character in a 
series, as in a record, a displayed message, or a 
computer printout. 

presentation space. In Extended curses, the 
data and attribute array associated with a 
window. 

primary group. In concurrent groups, the 
group that is assigned to the files that you 
create. 

print queue. A file containing a list of the 
names of files waiting to be printed. 

printing device. Any printer or device that 
prints, such as a typewriter-like device or a 
plotter. 

printout. Information from the computer 
produced by a printer. 

priority. The relative ranking of items. For 
example, a job with high priority in the job 
queue will be run before one with medium or 
low priority. 

problem determination. The process of 
identifying why the system is not working. 
Often this process identifies programs, 
equipment, data communications facilities, or 
user errors as the source of the problem. 



problem determination procedure. A 
prescribed sequence of steps aimed at recovery 
from, or circumvention of, problem conditions. 

procedure. See shell procedure. 

process. (1) A sequence of actions required to 
produce a desired result. (2) An entity 
receiving a portion of the processor's time for 
executing a program. (3) An activity within the 
system begun by entering a command, running 
a shell program, or being started by another 
process. 

process ID (PID). A unique number assigned 
to a process that is running. 

profile. (1) A file containing customized 
settings for a system or user (2) Data describing 
the significant features of a user, program, or 
device. 

program. A file containing a set of 
instructions conforming to a particular 
programming language syntax. 

prompt. A displayed request for information 
or operator action. 

propagation time. The time necessary for a 
signal to travel from one point on a 
communications line to another. 

queue. A line or list formed by items waiting 
to be processed. 

queued message. A message from the system 
that is added to a list of messages stored in a 
file for viewing by the user at a later time. This 
is in contrast to a message that is sent directly 
to the screen for the user to see immediately. 

quit. A key, command, or action that tells the 
system to return to a previous state or stop a 
process. 

random access. An access mode in which 
records can be read from, written to, or 
removed from a file in any order. 

real memory. Memory that is physically 
present in the system. Contrast with virtual 
memory. 

recovery procedure. (1) An action performed 
by the operator when an error message appears 
on the display screen. Usually, this action 
permits the program to continue or permits the 
operator to run the next job. (2) The method of 
returning the system to the point where a major 
system error occurred and running the recent 
critical jobs again. 

recursion. The process of using a function to 
define itself. 

redirect. To divert data from a process to a 
file or device to which it would not normally 
go. 

regular expression. A set of characters, 
metacharacters and operators that define a 
string or group of strings in a search pattern. 

relational expression. A logical statement 
describing the relationship (such as greater 
than or equal) of two arithmetic expressions or 
data items. 

relational operator. The reserved words or 
symbols used to express a relational condition 
or a relational expression. 

relative address. An address specified 
relative to the address of a symbol. When a 
program is relocated, the addresses themselves 
will change, but the specification of relative 
addresses remains the same. 

relative addressing. A means of addressing 
instructions and data areas by designating their 
locations relative to some symbol. 

relative path name. The name of a directory 
or file expressed as a sequence of directories 
followed by a file name, beginning from the 
current directory. 

remote. Pertaining to a system or device that 
is connected to your system through a 
communications line. Contrast with local. 

Glossary X-17 



reserved word. A word that is defined in a 
programming language for a special purpose, 
and that must not appear as a user-declared 
identifier. 

reset. To return a device or circuit to a clear 
state. 

restore. Return to an original value or image. 
For example, to restore a library from diskette. 

right adjust. The process of aligning lines of 
text at the right margin or tab setting such that 
the right-most character in the line or file is in 
the right-most position. 

right-adjust. To place or move an entry in a 
field so that the rightmost character of the field 
is in the rightmost position. Contrast with 
left-adjust. 

right margin. The area on a page between the 
last text character and the right upper edge. 

root. Another name sometimes used for 
superuser. 

root directory. The top level of a 
tree-structured directory system. 

root file system. The basic AIX Operating 
System file system, which contains operating 
system files and onto which other file systems 
can be mounted. The root file system is the file 
system that contains the files that are run to 
start the system running. 

routine. A set of statements in a program 
causing the system to perform an operation or a 
series of related operations. 

run. To cause a program, utility, or other 
machine function to be performed. 

run-time environment. A collection of 
subroutines and shell variables that provide 
commonly used functions and information for 
system components. 

SCCS. See Source Code Control System. 

X-18 Programming Tools and Interfaces 

SCCS identification. In SCCS, a number 
assigned to a version of a program to keep 
track of each version of the program. 

scratch file. A file, usually used as a work 
file, that exists until the program that uses it 
ends. 

screen. (1) See display screen. (2) In 
Extended curses, a special type of window 
that is as large as the terminal screen. 

scroll. To move information vertically or 
horizontally to bring into view information that 
is outside the display or pane boundaries. to 
bring into view information that is outside the 
display' s boundaries. 

sector. (1) An area on a disk track or a 
diskette track reserved to record information. 
(2) The smallest amount of information that 
can be written to or read from a disk or diskette 
during a single read or write operation. 

security. The protection of data, system 
operations, and devices from accidental or 
intentional ruin, damage, or exposure. 

segment. A contiguous area of virtual storage 
allocated to a job or system task. A program 
segment can be run by itself, even if the whole 
program is not in main storage. 

segment registers. Registers in the system 
that hold the actual addresses of the memory 
segments currently in use. 

semaphore. A general method of 
communication between two processes that is 
an extension of the features of signals. 

semaphore ID. An integer that points to a set 
of semaphores and a data structure that 
contains information about the semaphores. 

semid. See semaphore ID 

separator. A character used to separate parts 
of a command. See delimiter. 

sequential access. An access method in 
which records are read from, written to, or 



removed from a file based on the logical order 
of the records in the file. 

shared memory. A area of memory that more 
than one cooperating process can access 
simultaneously. 

shared memory ID. An identifier assigned to 
the shared segment for use within a particular 
process. It is similar in use to a file descriptor 
of a file. 

shared printer. A printer that is used by 
more than one work station. 

shell. See shell program. 

shell procedure. A series of commands 
combined in a file that carry out a particular 
function when the file is run or when the file is 
specified as an argument to the sh command. 
Shell procedures are frequently called shell 
scripts. 

shell program. A program that accepts and 
interprets commands for the operating system 
(there is an AIX shell program and a DOS shell 
program). 

shmid. See shared memory ID. 

sign off. To end a session at a display station. 

sign on. To begin a session at a display 
station. 

sign-off. The action an operator uses at a 
display station to end working at the display 
station. 

sign-on. The action an operator uses at a 
display station to begin working at the display 
station. 

signal. A simple method of communication 
between two processes. 

software. Programs. 

sort. To select a particular group of records 
from a file based upon some criterion. Also, to 

rearrange some or all of a group of records 
based upon items in a particular field of those 
records. 

Source Code Control System (SCCS). A 
program for maintaining version control for the 
source files of a developing program. 

source diskette. The diskette containing data 
to be copied, compared, restored, or backed up. 

source program. A set of instructions written 
in a programming language, that must be 
translated to machine language compiled before 
the program can be run. 

sparse file. A file that is created with a length 
greater than the data it contains, leaving empty 
spaces for future addition of data. 

special character. A character other than an 
alphabetic or numeric character. For example; 
*, + , and % are special characters. 

special file. Special files are used in the AIX 
system to provide an interface to input/output 
devices. There is at least one special file for 
each device connected to the computer. 
Contrast with directory and ordinary AIX files. 

standalone work station. A work station 
that can be used to preform tasks independent 
of (without being connected to) other resources 
such as servers or host systems. 

standard error. The place where many 
programs place error messages. 

standard input. The primary source of data 
going into a command. Standard input comes 
from the keyboard unless redirection or piping 
is used, in which case standard input can be 
from a file or the output from another 
command. 

standard output. The primary destination of 
data coming from a command. Standard output 
goes to the display unless redirection or piping 
is used, in which case standard output can be to 
a file or another command. 

Glossary X-19 



standard screen. In Extended curses, a 
memory image of the screen that the routines 
make changes to. 

stanza. A group of lines in a file that together 
have a common function. Stanzas are usually 
separated by blank lines, and each stanza has a 
name. 

statement. An instruction in a program or 
procedure. 

status. (1) The current condition or state of a 
program or device. For example, the status of a 
printer. (2) The condition of the hardware or 
software, usually represented in a status code. 

stderr. See standard error. 

stdin. See standard input. 

stdout. See standard output. 

storage. (1) The location of saved 
information. (2) In contrast to memory, the 
saving of information on physical devices such 
as disk or tape. See memory. 

storage device. A device for storing and/or 
retrieving data. 

stream. Sequential input or output from an 
open file descriptor. 

string. A linear sequence of entities such as 
characters or physical elements. Examples of 
strings are alphabetic string, binary element 
string, bit string, character string, search 
string, and symbol string. 

subdirectory. A directory contained within 
another directory in the file system hierarchy. 

subprogram. A program invoked by another 
program. Contrast with main program. 

subroutine. (1) A sequenced set of statements 
that may be used in one or more computer 
programs and at one or more points in a 
computer program. (2) A routine that can be 
part of another routine. 

X-20 Programming Tools and Interfaces 

subscript. An integer or variable whose value 
refers to a particular element in a table or an 
array. 

substring. A part of a character string. 

subsystem. A secondary or subordinate 
system, usually capable of operating 
independently of, or synchronously with, a 
controlling system. 

superblock. The most critical part of the file 
system containing information about every 
allocation or deallocation of a block in the file 
system. 

superuser. The system user with superuser 
privileges. 

superuser priviledges. The unrestricted 
ability to access and modify any part of the 
operating system associated with the user who 
manages the system. 

system. The computer and its associated 
devices and programs. 

system call. A request by an active process 
for a service by the system kernel. 

system customization. A process of 
specifying the devices, programs, and users for 
a particular data processing system. 

system date. The date assigned by the system 
user during setup and maintained by the 
system. 

system dump. A printout of storage from all 
active programs (and their associated data) 
whenever an error stops the system. Contrast 
with task dump. 

system profile. A file containing the default 
values used in system operations. 

system unit. The part of the system that 
contains the processing unit, the disk drives, 
and the diskette drives. 

system user. A person who uses a computer 
system. 



target diskette. The diskette to be used to 
receive data from a source diskette. 

task. A basic unit of work to be performed. 
Examples are a user task, a server task, and a 
processor task. 

task dump. A printout of storage from a 
program that failed (and its associated data). 
Contrast with system dump. 

terminal. (1) An input/output device 
containing a keyboard and either a display 
device or a printer. Terminals usually are 
connected to a computer and allow a person to 
interact with a computer. See work station. 
(2) In Extended curses, a memory image of 
what the terminal screen currently looks like. 

text. A type of data consisting of a set of 
linguistic characters (for example, alphabet, 
numbers, and symbols) and formatting controls. 

text application. A program defined for the 
purpose of processing text data (for example, 
memos, reports, and letters). 

token. (1) The smallest independent unit of 
meaning as defined by either the parser or the 
lexical analyzer. A token can contain data, a 
language keyword, an identifier, or other parts 
of a language syntax. (2) In M4, any string of 
letters and digits that m4 recognizes. 

token numbers. Nonnegative integers that 
represent the names of tokens. 

trace. To record data that provides a history 
of events occurring in the system. 

trace entry. A data structure containing a 
header of identifying information plus up to 20 
bytes of defined data. Trace entries are 
generated by trace points and written to a trace 
log file. 

trace point. A group of code statements that 
generates a trace entry from within a software 
program. Trace points are assigned to an event 
class which can be active or inactive. Trace 

points with active event classes can generate 
trace entries. 

trace profile. An ASCII file that can be 
modified to activate or deactivate the various 
event classes. The trace profile is used by the 
trace daemon to set up three channel tables 
that show which event classes are active. 

trace template. Used by the trace formatter 
to determine how the data contained in a trace 
entry should be formatted. All trace templates 
are stored in the master template file. 

track. A circular path on the surface of a 
fixed disk or diskette on which information is 
magnetically recorded and from which recorded 
information is read. 

trap. An unprogrammed, hardware-initiated 
jump to a specific address. Occurs as a result of 
an error or certain other conditions. 

tree-structured directories. A method for 
connecting directories such that each directory 
is listed in another directory except for the root 
directory, which is at the top of the tree. 

truncate. To shorten a field or statement to a 
specified length. 

typematic key. A key that repeats its 
function multiple times when held down. 

type style. Characters of a given size, style, 
and design. 

Uid. See user number. 

user ID. See user number. 

user name. A name that uniquely identifies a 
user to the system. 

user number (Uid). A unique number 
identifying an operator to the system. This 
string of characters limits the functions and 
information the operator is allowed to use. The 
Uid can often be substituted in commands that 
take a user's name as an an argument. 

Glossary X-21 



user profile. A file containing a description of 
user characteristics and defaults (for example, 
printer assignment, formats, group ID) to be 
conveyed to the system while the user is signed 
on. 

utility. A service; in programming, a program 
that performs a common service function. 

valid. (1) Allowed. (2) True, in conforming to 
an appropriate standard or authority. 

value. (1) In Usability Services, information 
selected or typed into a pop-up. (2) A set of 
characters or a quantity associated with a 
parameter or name. (3) In programming, the 
contents of a storage location. 

variable. A name used to represent a data 
item whose value can change while the program 
is running. Contrast with constant. 

verify. To confirm the correctness of 
something. 

'rcr§1on. Information in addition to an object's 
name that identifies different modification 
levels of the same logical object. 

virtual device. A device that appears to the 
user as a separate entity but is actually a 
shared portion of a real device. For example, 
several virtual terminals may exist 
simultaneously, but only one is active at any 
given time. 

virtual machine. A functional simulation of a 
computer and its related devices. 

virtual machine interface (VMI). A software 
interface between work stations and the 
operating system. The VMI shields operating 
system software from hardware changes and 
low-level interfaces and provides for concurrent 
execution of multiple virtual machines. 

X-22 Programming Tools and Interfaces 

virtual memory. Addressable space that 
appears to be real memory. From virtual 
memory, instructions and data are mapped into 
real memory locations. Contrast ~Nith real 
memory. 

virtual resource manager (VRM). A set of 
programs that manage the hardware resources 
(main storage, disk storage, display stations, 
and printers) of the system so that these 
resources can be used independently of each 
other. 

virtual storage. See virtual memory 

Volume ID (Vol ID). A series of characters 
recorded on the diskette used to identify the 
diskette to the user and to the system. 

VRM. See virtual resource manager. 

wildcard. See pattern matching characters. 

window. In Extended curses, a memory 
image of what a section of the terminal screen 
looks like at some point in time. A window can 
be either the entire terminal screen, or any 
smaller portion down to a single character. 

word. A contiguous series of 32 bits (four 
bytes) in storage, addressable as a unit. The 
address of the first byte of a word is evenly 
divisible by four. 

work file. A file used for temporary storage of 
data being processed. 

work station. A device at which an individual 
may transmit information to, or receive 
information from, a computer for the purpose of 
performing a task, for example, a display 
station or printer. 

working directory. See current directory. 



I Special Characters I 
.DEFAULT 2-35 
.SUFFIXES 2-30 
$ < macro 2-38 
$$@ macro 2-38 
$*macro 2-38 
$ % macro 2-38 
$? macro 2-38 
$@ macro 2-38 
# 2-25 

about this book m 
absolute value 3-26 
admin command, using 10-9 
apply list file 9-16, 9-31 
archive control file 9-32 
archive libraries, with make program 2-33 
ARGSUSED 2-11 
arguments, SCCS command 10-6 
arrays 11-17 

sdb, referencing in 8-13 
as command 2-20 

using 2-20 
assembler language 2-20 

debugging 8-20 
registers, manipulating 8-21 

assembling source file 2-20 
audience of this book iii 
awk 1-4 

action 11-7 
arrays 11-17 
control statements 

break 11-19 
continue 11-19 

TNL SN20-9797 (26 September 1986) to 55X8932 

exit 11-19 
for 11-18 
if-else 11-18 
next 11-19 
while 11-18 

defined variables 11-8 
field separator 11-8 
field variables 11-16 
functions 11-13 
macros 11-8 
operation 11-7 
operators 11-15 
program file 11-6 

syntax 11-7 
record separator 11-8 
regular expressions 11-9 
relational expressions 11-11 
search pattern 11-6 

defining 11-7 
special characters 11-10 
strings 

concatenating 11-17 
variables 11-14 

backslash (\) 2-25 
commands 2-25 

bessel functions 3-26 
binary tree 3-20 
bit fields 2-13 
body, in SCCS file 10-6 
branch, SID 10-5 
break statement 2-7 
breakpoints 

variable initialization 8-19 
breakpoints, setting 8-16 
building programs 2-22 

Index 

Index X-23 



TNL SN20-9797 (26 September 1986) to 55X8932 

c 

description file 2-22 
macros 2-22 
operation 2-22 
parent file 2-23 
rules 2-23 
target file 2-22 

library functions 3-8 
operator precedence 2-15 
program checking 2-5 

data type 2-7 
external names 2-13 
function definitions 2-9 
functions 2-10 
initializing variables 2-12 
portability 2-12 
structure 2-9 
union 2-9 
use of characters 2-13 
variables 2-10, 2-12 

C language 
libraries 

c library 1-6 
Extended curses 1-6 
math library 1-6 
run time services library 1-6 
stdio 1-6 

macro preprocessor, m4 12-2 
C language book iv 
calls 

error reporting 4-5 
file maintenance 4-72 
file system 4-67 
header files 4-3 
include files 4-3 
memory management 4-66 
message 4-50 

operation 4-52 
sample program 4-54 

pipe 4-13 
process 

X-24 Programming Tools and Interfaces 

exec 4-4 
exit 4-4 
fork 4-4 
nice 4-4 
pipe 4-4 
plock 4-4 

process ID 4-18 
sample program 4-21 

process tracking 4-24.3 
reference book iv 
semaphore 4-38 

operation 4-40 
sample program 4-45 
structures 4-38 

shared memory 4-63 
signal 

sample program 4-27 
signals 4-25 
time 4-73 
wait 4-10 

calls, displaying sequence of 8-10 
case sensitivity 8-3, 8-16 
casts 2-10 
cc command 2-3, 2-4 

examples 2-4 
using 

for assembler language 2-21 
for c programs 2-4 

what it does 2-4 
changing a program 9-2 
changing strings 11-7 
channels tables, trace 7-10 
character 

header file 3-16 
library functions 3-15 

characters 
use in a C program 2-13 
wildcard 8-11 

checksum, in SCCS header 10-6 
child process 4-5 
ckprereq 9-7 
codes, printer 

See printer codes 
command 

cc 2-3, 2-4 
installation 9-5 



installation, internal 9-6 
installp 9-5 

command conventions, SCCS 10-6 
commands 

as 2-20 
case sensitivity 8-3 
dump, summary of 7-44 
error log, summary of 7-26 
ld 2-20 
reference book iv 
SCCS, summary of 10-7 
trace, summary of 7-8 

comments 2-25 
comments 2-25 

comments, in SCCS header 10-6 
compilation 

-g flag 8-9 
-g flag, using 8-16 

compiler 2-3 
compiling 2-2 
component dump table 7-41 
compressed printing C-5 
config 9-16 
configuration 

error log file 7-25 
trace log file 7-7 
trace profile 7-7 

converting numbers 3-18 
creating files 2-23 

using 2-23 
curses 5-2 
cursescontrolling display screen 

See Extended 
cursesdisplay screen 

See Extended 
cursesscreen handling 

See Extended 
curseswriting to display screen 

See Extended 
curOO.h 5-5 
curOl.h 5-5 
cur05.h 5-5 
cvid 9-7 

TNL SN20-9797 (26 September 1986) to 55X8932 

data type 2-7 
array 2-8 
array pointer 2-8 
casts 2-10 
checking 

turning off 2-9 
mixing 2-8 

debug 
See also sdb 
sdb 1-4 

delta command 10-4 
delta command, using 10-16 
delta table, in SCCS header 10-6 
description file 

colon, double 2-26 
colon, single 2-25 
command sequences 2-25 
contents 2-24 
example 2-28 
format 2-24 
line continuation 2-25 
macro 2-37 
simplifying 2-29 

DOS Services 
books iv 

double strike printing C-5 
double wide printing C-5 
dump 

commands, using 7-44 
component dump table 7-43 
dump diskette 7-43 
dump formatter 7-43 
initiation by VRM 7-43 
master dump table 7-43 
report, example 7-44 
restore command 7-43 

dump components, diagram of 7-41 
dump data 7-41 
dump diskette 7-41 
dump facilities 7-41 
dump table entry 7-41 

Index X-25 



TNL SN20-9797 (26 September 1986) to 55X8932 

emphasized printing C-5 
enumerated data type 2-9 
enumerator 2-9 
environment variables 2-44 

used by make command 2-44 
environment, system 

Extended curses 5-10 
errno 4-5 
error entry 7-22 
error ID 7-22 
error identifier 7-22 
error log 

class 7-28 
commands, using 7-26 
data_descriptor 7-36 
definition 7-36 
device driver 7-24 
error daemon 7-24 
error ID 7-28 
error identifier 7-28 
errsave, example 7-33 
format file 7-24 
log file, altering the 7-25 
mask 7-28 
match values, using 7-37 
output data, formatting 7-38 
report, example 7-39 
subclass 7-28 
subroutines, using 7-28, 7-30 
template, example 7-39 
templates, creating 7-34 
templates, defining 7-26 
templates, syntax 7-34 
templates, updating 7-27 
type 7-29 

error log components, diagram of 7-22 
error log facilities 7-22 
error messages 

SCCS, format of 10-7 
error point 7-22 
errors, logging 7-1 
errupdate 9-7 
event class 7-4 

X-26 Programming Tools and Interfaces 

exec 4-6, 4-12 
sample program 4-12 

execution, controlling 
See sdb 

exit 4-6 
exponential 3-26 
Extended curses 5-2, 5-5 

attributes 5-13 
boxes 5-13 
compiling a program 5-5 
curscr 5-4 
display attributes 5-26.1 

changing attributes 5-28 
environment 5-10 

setting up 5-12 
example program 5-35 
features 5-2 
field 5-4 
function names 5-9 

combining 5-9 
getting input 5-16, 5-32 
header files 5-5 
initializing the screen 5-12 
insert functions 5-15 
keypad routine 5-32 
pane 5-4 
PANE structure B-6 
panel 5-4 
PANEL structure B-5 
panels 5-21 
panes 5-21 

linkage 5-22 
prerequisites 5-5 
presentation space 5-4 
programming structures B-1 
routine categories 5-3 
routines 5-3 

using 5-12 
screen 5-4 
screen appearance 5-7 
screen dimensions 5-7 
screen update 5-6 
stdscr 5-4 
system environment 5-10 
terminal 5-3 
terms 5-3 



variables 5-10 
what you need 5-5 
window 5-4 
WINDOW structure B-1 
windows 5-17 

scrolling 5-34 
writing to a window 5-13 

external names 2-13 

FF 
See form feed 

file control 10-1 
file system calls 4-67 
file, current 8-14 

changing 8-14 
file, SCCS 10-4 
files 

accessing 
with library functions 3-11 

apply list 9-31 
archive control 9-32 
branch delta, creating 10-14 
corrupted 10-10 
creating 10-9 
duplicate version, getting 10-15 
editable version, getting 10-13 
format, SCCS 10-5 
maintenance 4-72 
program history 9-25 
program name 9-30 
program requirements 9-28 
read-only version, getting 
recovering 10-10 
release number, changing 10-13 
SCCS, naming conventions 10-9 
sdb, displaying in 8-14 
special requirement 9-33 
status 

with library functions 3-11 
system calls 4-72 
updating 10-16 
using with system call 4-68 

TNL SN20-9797 (26 September 1986) to 55X8932 

files, library description 2-15 
finding strings 11-3 
flags, SCCS command 10-6 
fork 4-4 

sample program 4-8 
form feed C-4 
formats, changing sdb 8-11 
Forms control, printer C-4 
function 2-10, 2-14 

calling 2-7 
calling another function 2-14 

functions 2-9 

get command, using 10-11 
Graphics codes, printer C-6 
grep 1-4 

defining string patterns 11-4 
extended grep ( egrep) 11-3 
fast grep (fgrep) 11-3 
wildcard 11-4 

group ID 
effective 4-18 
real 4-18 

hash tables 3-20 
header files 4-3, 5-5 

Extended curses 5-5 
help 6-1, 6-23 

definition 6-2, 6-23 
displaying 6-30 
file path name 

changing 6-24 
changing for debug 6-25 
default 6-24 

format 6-23 
header files 6-30 
help file 6-26 

building 6-26 

Index X-27 



TNL SN20-9797 (26 September 1986) to 55X8932 

contents 6-26 
routines 6-23 
using 6-23, 6-30 

hook ID 7-4 
hyperbolic functions 3-26 

I/0 
display screen 1-6 
header file 3-13 
library functions 3-12 

ID keywords 10-11 
identification keywords 10-9, 10-11 

warning, getting files 10-17 
include 

m4 built-in function 12-13 
index, message 6-11 
information in this book iii 
information, controlling in sdb 8-18 
init 4°7 
initializing variables, C 2-12 
installation 

apply list file 9-31 
archive control file 9-32 
procedure 9-10 

customization 9-11 
customizing 9-11 
quiescing the system 9-11 
returning to installp 9-13 
what it must do 9-10 

program history file 9-25 
program name file 9-30 
program requirements file 9-28 
special requirement file 9-33 
what you need 9-8 

installation services 9-2 
using 9-5 

installing a program 9-2 
installing Programming Examples A-1 
installp 9-5, 9-13, 9-17 

return codes to 9-13 
inudocm 9-7 
inurecv 9-7 

X-28 Programming Tools and Interfaces 

inurest 9-7 
inusave 9-7 
inuupdt 9-7 

languages 2-3 
assembler 2-20 

ld command 2-20 
level, SID 10-5 
lex 2-7 
libraries 1-6, 3-1 

accessing files 3-11 
bessel functions 3-26 
binary tree functions 3-20 
C library 3-8 
character functions 3-15 

header file 3-16 
converting numbers 3-18 
get status information 3-11 
getting system parameters 3-20 
group access functions 3-18 
hash table function 3-20 
hyperbolic functions 3-26 
including from program 3-7 
including on command line 3-7 
input functions 3-12 
math 3-25 

including on the command line 3-25 
memory allocation functions 3-21 
memory functions 3-14 
output functions 3-12 
password functions 3-19 
pseudo-random number functions 3-21 
random number functions 3-21 
run time services 3-24 
signal functions 3-22 
string functions 3-13 
table management functions 3-21 
time function header file 3-17 
trigonometry functions 3-25 

libraries, with make program 2-33 
library control 10-1 
library description files 2-15 



line, current 8-14 
changing 8-15 

linking 2-2, 2-20 
lint 2-5 

command syntax 2-5 
creating a library 2-15 
flags 2-5 
library description files 2-15 
operation 2-6 
starting 2-5 

logarithm 3-26 

macro 2-36 
make's internal 2-38 
precedence for make program 2-38 
preprocessor, m4 12-2 

make 1-4, 2-22 
.DEFAULT 2-35 
adding suffixes 2-30 
command syntax 2-23 
description file 2-24 

example 2-45 
macros in a 2-37 

environment variables 2-44 
flags 2-23 
functions 2-22 
including other files 2-35 
internal rules 2-29 

default 2-35 
libraries 2-33 
macro 2-34 

defining 2-36 
internal 2~38 
precedence 2-38 

macro definitions 2-23 
makefile 2-24 
nested calls 2-26 
parent file 2-24 
rules file 2-34 
rules file example 2-30 
rules, internal 

writing 2-34 

TNL SN20-9797 (26 September 1986) to 55X8932 

rules, single suffix 2-33 
shell commands 2-26 
target file 2-23 
using with SCCS files 2-43 

MAKEFLAGS 2-26 
description file example 2-28 
error handling 2-27 
ignore errors 2-27 
MAKEFLAGS 2-26 
prevent writing 2-27 
write only flag 2-26 

master dump table 7-41 
math library functions 3-25 
memory 

library functions 3-14 
memory allocation 3-21 
memory management calls 4-66 
message calls 4-50 

sample program 4-54 
message services 

See messages 
message table 6-8 
messages 6-1 

adding 6-10 
definition 6-2 
displaying 6-14 
error number 6-5 
example message table 6-8 
format 6-4 

standard file 6-8 
· header files 6-13 
immediate 6-3 

format 6-4 
generating 6-14 

index 6-11 
message table 6-8 
program identifiers 6-6 
queued 6-3 

format 6-4 
generating 6-14 

sample message 6-5 
severity code 6-5 
symbols for variables 6-16 
table 

naming 6-10 
text insert 

Index X-29 



TNL SN20-9797 (26 September 1986) to 55X8932 

example 6-21 
text insert definition 6-11 
time stamp 6-5 
types of 6-3 
using 6-13 
variable fields in 6-16 

example 6-17, 6-19, 6-21 
moving a program 2-12 
msghelp 6-30 
msgrtrv 6-31 
m4 

function 
divert 12-13 
sinclude 12-13 
undivert 12-13 

functions 
eval 12-12 
include 12-13 
incr 12-12 
maketemp 12-14 
syscmd 12-14 

integer arithmetic 12-12 
system command 12-14 

m4 macro preprocessor 
command syntax 12-3 
defining macros 12-4 
functions 

arguments for 12-6 
changequote 12-10 
define 12-4 
ifdef 12-11 
undefine 12-11 

natural logarithm 3-26 
numbers 

converting to other forms 3-18 

X-30 Programming Tools and Interfaces 

Operating system 
reference books for 1v 
using, books for iv 
writing device drivers iv 

options, in SCCS header 10-6 

panels B-5 
panes B-6 
parent process 4-4 
password 

library functions 3-19 
password file 3-19 
pattern matching 

See wildcards 
pios 

See printer 
pipe 4-13 

sample program 4-13 
pointers 

sdb, referencing in 8-13 
portability 2-12 

bit fields 2-13 
external names 2-13 

power, raising to a 3-26 
precedence, operator 2-15 
printer 

codes, control C-1 
graphics C-6 
page appearance C-4 
paper control C-4 
print mode C-5 
prin thead C-3 
ribbon control C-5 
type style C-5 

data stream C-1 
printing C-2 

codes, control 
ASCII C-2 



hexadecimal C-2 
Keys to generate C-2 
Miscellaneous C-3 
Names C-2 

I/0 support C-2 
Printing ASCII codes less than 32. C-3 
procedure, current 8-14 

changing 8-14 
procedures 

sdb, calling from 8-19 
process 4-4 

group 4-18 
ID 4-18 
special IDs 4-7 

process group 4-18 
process ID 4-18 
program 

changes 9-2 
installation 9-2 
updating 9-2 

program checking, C 2-5 
program control 10-1 
program history file 9-25 
program name file 9-30 
program requirements file 9-28 

example entry 9-29 
programming languages 2-3 
programming tools 

ch 1-3 
cc 1-4 
cflow 1-3 
cxref 1-3 
ed 1-3 
lint 1-3 

programs 
sdb, execution in 8-16 
sdb, running in 8-17 

programs, monitoring 7-1 
programs, testing 

See sdb 
pseudo-random number generator 3-21 

TNL SN20-9797 (26 September 1986) to 55X8932 

random number generator 3-21 
redirecting I/O 4-9 
redirection 

sdb 8-9 
registers, manipulating in sdb 8-21 
regular expressions 

definition 11-4, 11-23 
used with awk 11-9 

related books iv 
related information iv 
relational expressions 11-11 
release, SID 10-5 
RTPC 

programming tools 1-2 
system services 1-2 

rules 
changing, make 2-34 

rules, make program 2-29, 2-30 
rules, single suffix 2-33 

sample programs 
c source files 1-7 
compiling 1-7 
printing 1-7 

scanning files 11-6 
SCCS 1-4, 2-33 

admin, using 10-9 
command conventions 10-6 
commands 

summary of 10-7 
delta, using 10-16 
error messages, format of 10-7 
features 10-3 
file format 10-5 
files 

branch delta, creating 10-14 
duplicate version, getting 10-15 
editable version, getting 10-13 
naming conventions 10-9 

Index X-31 



TNL SN20-9797 (26 September 1986) to 55X8932 

read-only version, getting 
recovering 10-10 
release number, changing 10-13 
warning, non-SCCS commands 10-6 

get, using 10-11 
identification keywords 10-9 
overview 10-3 
terminology 10-4 
using make with 2-43 

description files 2-44 
SCCS identification 10-4 
scrolling 5-34 
sdb 1-4 

arguments 8-9 
arrays, referencing 8-13 
assembler language, debugging 8-20 
breakpoints, setting 8-16 
case sensitivity 8-3 
commands 

case sensitivity 8-16 
features 8-4 
files, displaying 8-14 
formats, changing 8-11 
I/O, redirecting 8-9 
overview 8-3 
pointers, referencing 8-13 
procedures, calling 8-19 
programs, controlling 8-16 
registers, manipulating 8-21 
running programs 8-17 
sample session 8-22 
single stepping 8-16 

information, controlling 8-18 
stack trace, displaying 8-10 
structures, referencing 8-13 
using 8-9 
variables, examining 8-10 

search algorithm 3-20 
searching 

sed 
tables 3-21 

defining string patterns 11-23 
wildcard 11-23 

see awk.changing strings 11-3 
semaphore 4-38 

sample program 4-45 

X-32 Programming Tools and Interfaces 

structures 4-38 
sequence, SID 10-5 
shared memory calls 4-63 
sharp 2-25 
shell commands 

in a c language program 1-5 
SID 10-4 
signal 4-25 

handling 4-26 
sample program 4-27 
trapping 4-27 

signals 
library functions 3-22 
software generated 3-22 

single stepping 8-16 
Source Code Control System 10-1 
source files 

See files 
special requirement file 9-33 

change configuration 9-34 
change report templates 9-34 
change VRM 9-34 
dependent program 9-33 
ipl required 9-34 

square root 3-26 
stack, displaying sequence of 8-10 
stdio 3-13 
storage 

getting 3-21 
string 

converting to other forms 3-18 
definition 11-3 
functions 

dnl (delete to new-line) 12-17 
dumpdef 12-17 
errprint 12-17 
index 12-16 
substr 12-16 
translit 12-16 

library functions 3-13 
literal 11-4 
printing 12-17 
single quotes with 11-3 
strings 12-16 
with m4 12-16 

strings 



changing 11-3 
concatenating, in awk 11-17 
finding 11-3 

structures 2-9 
sdb, referencing in 8-13 

subscript printing C-6 
suffixes, file name 2-29 

suffixes 2-29 
superscript printing C-6 
syntax 

make command 2-23 
system calls 4-3 
system commands 11-2 
system parameters 3-20 

table, message 6-8 
tables 

managing from a program 3-21 
time 

library functions 
header file 3-17 

time system call 4-73 
trace 

channel tables 7-10 
commands, using 7-8 
data_descriptor 7-17 
definition 7-17 
device drivers 7-6 
format file 7-6 
guidelines 7-11 
log file, altering the 7-7 
match values, using 7-18 
output data, formatting 7-19 
profile, altering the 7-7 
report, example 7-20 
subroutines, using 7-10, 7-11 
template, example 7-20 
templates, creating 7-15 
templates, defining 7-8 
templates, syntax 7-15 

TNL SN20-9797 (26 September 1986) to 55X8932 

templates, updating 7-9 
trace ID 7-10 
trsave, example 7-13 

trace components, diagram of 7-4 
trace daemon 7 -6 
trace en try 7-4 
trace facilities 7-4 
trace formatter 7-6 
trace ID 7-10 
trace log file 7-6 
trace point 7-4 
trace profile 7-6 
tracing 7-1 
trigonometry functions 3-25 
tty group 4-18 
typedef 2-14 

underline printing C-5 
unions 2-9 
update services 9-2 
updatep 9-5 

example procedure 9-18 
return codes to 9-17 
using 9-17 

updating 
apply list file 9-31 
archive control file 9-32 
program history file 9-25 
program name file 9-30 
program requirements file 9-28 
special requirement file 9-33 

updating a program 9-2, 9-14 
what you need 9-14 

updating files 2-23 
updating the program 9-17 
user ID 

effective 4-18 
real 4-18 

user names, in SCCS header 10-6 

Index X-33 



TNL SN20-9797 (26 September 1986) to 55X8932 

VARARGS 2-11 
variable 2-10, 2-12 

integer 2-14 
long 2-14 

variable fields in messages 6-16 
variables 

sdb 8-19 
formats, changing 8-11 

sdb, examining in 8-10 
VRM 

data, dumping 7-1 

X-34 Programming Tools and Interfaces 

wait 4-10 
sample program 4-10 

wildcard 11-4, 11-23 
wildcard characters 2-24 

wildcard characters 2-24 
wild cards 

sdb 8-11 
windows B-1 

panels B-5 
panes B-6 

yacc 2-7 



Reader's Comment Form 

IBM RT PC AIX Operating 
System Programming Tools 
and Interfaces 

The IBM RT PC 
Family 

SV21-8010-0 

Your comments assist us in improving our products. IBM may 
use and distribute any of the information you supply in any way it 
believes appropriate without incurring any obligation whatever. 
You may, of course, continue to use the information you supply. 

For prompt resolution to questions regarding set up, operation, 
program support, and new program literature, contact the 
authorized IBM RT PC dealer in your area. 

Comments: 



Q) 

c 
:.J 
Cl 
c 
0 

<{ 
-0 
0 
LL 

adei pue PIO.:! 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 997, Building 998 
11400 Burnet Rd. 
Austin, Texas 78758 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

adei pue PIO.:! 

ade.L 



©IBM Corp. 1985 
All rights reserved . 

International Business 
Machines Corporation 
Department 997, Building 998 
11400 Burnet Rd. 
Austin , Texas 78758 

Printed in the 
United States of America 

59X9111 

--------- - ---- - -- - ---- - - ------ ----- ·-

/ 



E : =~~~ TECHNICAL NEWSLETTER 

for the 

RT Personal Computer 

AIX Operating System Programming Tools and 
Interfaces 

©Copyright International Business Machines Corporation 1985 

Order Numbers: 
74X9945 
SN20-9797 
26 September 1986 
© Copyright IBM Corp. 1986 

-OVER-

TB74X9945 
Printed in U.S.A. 



Summary of Changes 

This technical newsletter contains various changes and additions to the explanations 
provided in AIX Operating System Programming Tools and Interfaces. The TNL updates 
the publication to Version 1.01 which is functionally equivalent to Version 1.1. 

Perform the following: 

Remove Pages 

vii through x 

1-1 and 1-2 

none 

3-3 and 3-4 

4-3 and 4-4 

4-23 and 4-24 

4-51 and 4-52 

5-23 through 5-30 

7-5 and 7-6 

7-39 and 7-40 

E-1 through E-18 

X-23 through X-34 

Notes: 

Insert Update Pages 

vii through x 

1-1 and 1-2 

1-4.1 through 1-4.4 

3-3 and 3-4 

4-3 and 4-4 

4-23 through 4-24.4 

4-51 and 4-52 

5-23 through 5-30 

7-5 and 7-6 

7-39 and 7-40 

E-1 through E-18 

X-23 through X-34 

1. Keep the original diskette that came with Version 1.0. 

2. A change to the text or to an illustration is indicated by a vertical line to the left of 
the change. 

3. Please file this cover letter at the back of the manual to provide a record of changes. 

26 September 1986 


	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	07-43
	07-44
	07-45
	07-46
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	1-01
	1-02
	1-04.1
	1-04.2
	1-04.3
	1-04.4
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	13-41
	13-42
	13-43
	13-44
	13-45
	13-46
	13-47
	13-48
	13-49
	13-50
	13-51
	13-52
	13-53
	13-54
	13-55
	13-56
	13-57
	13-58
	3-03
	3-04
	4-03
	4-04
	4-23
	4-24.0
	4-24.1
	4-24.2
	4-24.3
	4-24.4
	4-51
	4-52
	5-23
	5-24
	5-25
	5-26.0
	5-26.1
	5-26.2
	5-27
	5-28
	5-29
	5-30
	7-05
	7-06
	7-39
	7-40
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	X-21
	X-22
	X-23
	X-24
	X-25
	X-26
	X-27
	X-28
	X-29
	X-30
	X-31
	X-32
	X-33
	X-34
	replyA
	replyB
	xBack
	z-01
	z-02

