

International Business Machines Corporation Armonk, New York 10504

IBM Program License Agreement
YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE OPENING THIS PACKAGE.
OPENING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF YOU DO NOT
AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACKAGE UNOPENED AND YOUR MONEY WILL BE
REFUNDED.

IBM provides this program and licenses its use in the
United States and Puerto Rico. Title to the media on which
this copy of the program is recorded and tb the enclosed
copy of the documentation is transferred to you, but title to
the copy of the program is retained by IBM or its supplier,
as applicable. You assume responsibility for the selection of
the program to achieve your intended results , and for the
installation, use and results obtained from the program.

LICENSE
You may:
a. use the program on only one machine at any one time

except as otherwise specified by IBM in the enclosed
Program Specifications (available for your inspection
prior to your acceptance of this Agreement);

b. copy the program into machine readable or printed
form for backup or modification purposes only in
support of such use. (Certain programs, however, may
include mechanisms to limit or inhibit copying. They
are marked "copy protected");

c. modify the progra m and/or merge it into another
program for your use on the single machine. (Any
portion of this program merged into another program
will continue to be subject to the terms and conditions
of this Agreement.); and,

d. transfer the program with a copy of this Agreement to
another party only if the other party agrees to accept
from IBM the terms and conditions of this Agreement.
If you transfer the program, you must at the same time
either transfer all copies whether in printed or machine
readable form to the same party or destroy any copies
not transferred; this includes all modifications and
portions of the program contained or merged into other
programs. IBM will grant a license to such other party
under this Agreement and the other party will accept
such license by its initial use of the program. If you
transfer possession of any copy, modification or merged
portion of the program, in whole or in part, to another
party, your license is automatically terminated.

You must reproduce and include the copyright notice on
any copy, modification, or portion merged into another
program.

You may not reverse assemble or reverse compile the
program without IBM's prior written consent.

You may not use, copy, modify, or transfer the program, or
any copy, modification or merged portion , in whole or in
part, except as expressly provided for in this Agreement.

You may not sublicense, assign, rent or lease this program.

TERM
The license is effective until terminated. You may terminate
it at any other time by destroying the program together with
a ll copies, modifications and merged portions in any form.
It will also terminate upon conditions set forth elsewhere in
this Agreement or if you fail to comply with any term o_r
condition of this Agreement. You agree upon such termi
nation to destroy the program together with all copies, mod
ifications and merged portions in any form.

LIMITED WARRANTY AND DISCLAIMER OF
WARRANTY
IBM warrants the media on which the program is furnished
to be free from defects in materials and workmanship under
normal use for a period of 90 days from the date of IBM's
delivery to you as evidenced by a copy of your receipt.

IBM warrants that each program which is designated by
IBM as warranted in its Program Specifications, suppli ed
with the program, will conform to such specifications pro
vided that the program is properly used on the IBM machine
for which it was designed. If you believe that there is a
defect in a warranted program such that it does not meet its
specifications, you must notify IBM within the warranty
period set forth in the Program Specifications.

ALL OTHER PROGRAMS ARE PROVIDED "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFEC
TIVE, YOU (AND NOT IBM OR AN IBM AUTHORIZED
REPRESENTATIVE) ASSUME THE ENTIRE COST OF
ALL NECESSARY SERVICING, REPAIR OR COR
RECTION.

IBM does not warrant that the functions contained in any
program will meet your requirements or that the operation
of the program will be uninterrupted or error free or that a ll
program defects will be corrected.

THE FOREGOING WARRANTIES ARE IN LIEU OF ALL
OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

SOME STATES DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. THIS WARRANTY GIVES
YOU SPECIFIC LEGAL RIGHTS AND YOU MAY ALSO
HAVE OTHER RIGHTS WHICH VARY FROM STATE TO
STATE.

LIMITATIONS OF REMEDIES
IBM's entire liability and your exclusive remedy shall be as
follows :
1. With respect to defective media during the warranty

period:
a. IBM will replace media not meeting IBM's "Limited

Warranty" which is returned to IBM or an IBM
authorized representative with a copy of your receipt.

b. In the alternative, if IBM or such IBM authorized rep
resentative is unable to deliver replacement media
which is free of defects in materials and workmanship,
you may terminate this Agreement by returning the
program and your money will be r efunded.

2. With respect to warranted programs, in all situations
involving performance or nonperformance during the
warranty period, your remedy is (a) the correction by
IBM of program defects , or (b) if, after repeated efforts,
IBM is unable to make the program operate as war
ranted, you shall be entitled to a refund of the money
paid or to recover actual damages to the limits set forth
in this section.

For any other claim concerning performance or nonper
formance by IBM pursuant to , or in any other way
related to, the warranted programs under this Agree
ment, you shall be entitled to recover actual damages to
the limits set forth in this section.

IBM's liability to you for actual damages for any cause
whatsoever, and regardless of the form of action, shall be

Z125-3301-X

limited to the greater of $5,000 or the money paid for the
program that caused the damages or that is the subject
matter of, or is directly related to , the cause of action.

In no event will IBM be liable to you for any lost profits ,
lost savings or other incidental or consequential damages
arising out of the use of or inability to use such program
even if IBM or an IBM authorized representative has been
advised of the possibility of such damages, or for any claim
by any other party.

SOME STATES DO NOT ALLOW THE LIMITATION OR
EXCLUSION OF LIABILITY FOR INCIDENTAL OR CON
SEQUENTIAL DAMAGES SO THE ABOVE LIMITATION
OR EXCLUSION MAY NOT APPLY TO YOU.

SERVICE
Service from IBM, if any, will be described in Program Spec
ifications or in the statement of service, supplied with the
program, if there are no Program Specifications.

IBM may a lso offer separate services under separate agree
ment for a fee.

GENERAL
Any attempt to sublicense, assign, rent or lease, or, except
as expressly provided for in this Agreement, to transfer any
of the rights, duties or obligations hereunder is void.

This Agreement will be construed under the Uniform Com
mercial Code of the State of New York.

--...- ------ - ---- - -- -. ---- - - ------ --_ _..._,
®

Program Specification
IBM RT Personal Computer BASIC Interpreter and Compiler Licensed Program Product
(55X8905)

Statement of Limited Warranty

The IBM RT PC BASIC Interpreter and Compiler
Licensed Program Product is warranted to conform
to this Program Specification when properly used in
its designated operating environments.

Any other documentation with respect to this
licensed program is provided for information
purposes only and does not extend or modify th is
IBM RT PC BASIC Interpreter and Compiler
Licensed Program Product Program Specification .

The IBM RT PC BASIC Interpreter and Compiler
Licensed Program Product Program Specification
may be updated from time to time. Such updates
may constitute a change to these specifications.

It is possible that this material may contain
reference to, or information about, IBM products
(machines and programs), programming, or
serv ices that are not announced in your country .
Such references or information must not be
construed to mean that IBM intends to announce
such IBM products, programming, or services in
your country.

This limited warranty and the 90-day program media
warranty are contained in the IBM Program License
Agreement supplied with this product. These
warranties are available to all licensees of the IBM
RT PC BASIC Interpreter and Compiler Licensed
Program Product. The limited warranty period is
until February 1, 1988, or unti I six months after
written notice by IBM that the warranty period has
been terminated , whichever is sooner.

Statement of Function Warranted

The IBM RT Personal Computer BASIC Interprete r
and Compiler Licensed Program Product (55X8905)
provides a level of function comparable to the IBM
PC BASIC 1.1 Interpreter, Advanced Ve rsion
Licensed Program Product (IBM PC BASIC), plus
extensions. The user can select the " PC Mode,"
which provides sim i larity to IBM PC BASIC, or the
" Native Mode," which provides additional IBM RT
PC capabilities .

The highlights of this licensed program are:

• Includes both a Compiler and an Interpreter

• Support for both the IBM PC mode and the IBM
RT PC Native mode

PC mode provides similarity to IBM PC
BASIC

Native mode provides addit ional capabil ity
such as IEEE format floating-po int numbers,
4-byte integers, AIX Operating System
standard interfaces, and programs larger
than 64K.

• Use of both the Compiler and Interpreter is
facilitated by common syntax and semantics

• IBM RT PC AIX Operating System Licensed
Program Product shell commands can be
invoked in both PC and Native modes

• Character and graphics modes supported fo r
IBM RT PC local work stations

• Character mode supported for ASCII work
stations that are supported by the IBM RT PC
AIX Operating System

• In native mode, support for subroutines written
in the C language provided with the IBM RT PC
AIX Operating System Licensed Program
Product (55X8994) .

Specified Operating Environment

Machine Requirements

The minimum machine requirement is an IBM RT
Personal Computer with a display (for example, the
IBM RT Personal Computer Advanced Color
Graphics Display , IBM RT Personal Computer
Advanced Monochrome Graphics Display, the IBM
Personal Computer Display, or equivalent display) .

Notes:

1. The number of users on the IBM RT PC AIX
Operating System Licensed Program Product
(55X8994), the number and type of tasks, and
the application requirements may expand the
requirements beyond these minimums.

2. The IBM RT PC Floating-Point Accelerator ,
designed to improve performance of
floating-point operations, may be optionally
installed.

Programming Requirements

The IBM RT PC AIX Operating System Licensed
Program Product (55X8994) is a prerequisite for
program execution .

Statement of Service

Program service for valid program-related defects
in the IBM RT PC BASIC Interpreter and Compiler
Licensed Program Product is available to all IBM RT
PC BASIC Interpreter and Compiler Licensed
Program Product licensees, at no additional charge,
until February 1, 1988, or unti I six months after
written notice by IBM that the warranty period has
been terminated, whichever is sooner. However,
service will be provided only for the current update

level and for the prior release for ninety (90) days
following release of the current level of update.

Each licensee's access to program service is
determined by the marketing channel through which
the license was obtained. For example, in the
United States and Puerto Rico, if the IBM RT PC
BASIC Interpreter and Compiler Licensed Program
Product license was obtained through:

• An authorized IBM personal computer dealer.

Requests for program service should be made
through your dealer.

• The IBM North-Central Marketing Division or the
IBM South-West Marketing Division.

Your company will have established a technical
support location to interface to IBM central
service through an IBM Support Center, and
your request for program service should be
made through your company's technical support
location.

If the IBM RT PC BASIC Interpreter and Compiler
Licensed Program Product is obtained through
transfer of license from another party under the
conditions of the IBM Program License Agreement
supplied with this product, the new licensee may
obtain program service through the access
arrangement provided for the original licensee.

When a license is transferred , if the original license
was obtained through the IBM North-Central
Marketing Division or the IBM South-West Marketing
Division, the old licensee is responsible for
contacting their IBM marketing representative to
make arrangements to transfer service entitlement
to the new licensee; the new licensee must also
establish a qualified technical support location to
interface to IBM central service.

IBM does not guarantee service results or that the
program will be error free, or that all program
defects will be corrected.

IBM will respond to a reported defect in an
unaltered portion of a supported release of the
licensed program by issuing: defect correction
information such as correction documentation,

corrected code, or notice of availability of corrected
code; a restriction ; or a bypass.

Corrected code is provided on a cumulative basis
on diskettes; no source code is provided. Only one
copy of the corrections with supporting
documentation will be issued to the licensee, or the
agent of the licensee, reporting the defect. IBM will
authorize various agents such as the IBM Personal
Computer dealers and the IBM North-Central
Marketing Division or IBM South-West Marketing
Division customer' s technical support locations to
make and distribute a copy of the corrections if
needed, to each IBM RT PC BASIC Interpreter and
Compiler Licensed Program Product licensee which
they serve.

IBM will notify authorized IBM Personal Computer
dealers, IBM marketing and service
representatives, and IBM North-Central Marketing
Division and IBM South-West Marketing Division
customer's technical support locations if and when
an update is made available . Program updates
contain all currently available changes for the
licensed program.

Licensees may request available updates to this
licensed program , if any, prior to the program
service termination date. As with defect
corrections, IBM will authorize various agents such
as IBM Personal Computer dealers and the IBM

January 1986 Printed in U.S.A.
(GC23-0897-0)

North-Central Marketing Division and IBM
South-West Marketing Division customer' s technical
support locations to make and distribute a copy of
the update, if needed, to each IBM RT PC BASIC
Interpreter and Compiler Licensed Program Product
licensee which they serve .

The total number of copies of an update distributed
to IBM RT PC BASIC Interpreter and Compi ler
Licensed Program Product licensees within a
customer's location may not exceed the number of
copies of the IBM RT PC BASIC Interpreter and
Compiler Licensed Program Product licensed to the
customer.

IBM does not plan to release updates of IBM RT PC
BASIC Interpreter and Compiler Licensed Program
Product code on a routine basis for preventative
service purposes. However, should IBM determine
that there is a general need for a preventative
service update, it will be made available to all
l icensees through the same process that is ut il ized
to distribute general IBM RT PC BASIC Interpreter
and Compiler Licensed Program Product updates,
as described above.

Following the discontinuance of all program
services, this program will be distributed on an " As
Is " basis without warranty of any kind ei ther
express or implied.

IBM Corporation
Eng ineering Systems Products
472 Wheelers Farms Road
Milford , Connecticut 06460

IBM RT PC BASIC Interpreter and Compiler

BASIC Language Handbook

Programming Family

--------- - - --- - -- - ---- - - ------ ----- ·-
Personal
Computer
Software

First Edition (AUGUST 1985)

Changes are made periodically to the information herei n; these changes will be incorporated in new editions of this publication.

References in this publicati on to IBM products, programs, or services do not imply that IBM intends to make these available in a ll
cou nt ries in which IBM operates. Any reference to an IBM program product in this publication is not intended to state or imply
that onl y IBM 's program product may be used. Any function ally equivalent program may be used instead.

International Business Machines Corporation provides this manual "as is," without warranty of any kind, either express or implied,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. IBM may make
improvements and/ or changes in the product(s) and/ or the program(s) described in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about the
system should be made to your authorized IBM RT PC dealer.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997. 11400 Burnet Road, Austin, Texas 78758. IBM may use or distribute whatever information you
suppl y in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985

About This Book

IBM RT PC (Personal Computer) BASIC offers both the BASIC
Interpreter and the BASIC Compiler in one licensed product. You can
use the Interpreter and Compiler in two Modes: PC Mode and Native
Mode. See Chapter l, "The Environments of BASIC," for more
information about PC Mode and Native Mode.

This IBM RT PC BASIC Language Handbook (cited as the BASIC
Handbook) and the companion volume, the IBM RT PC BASIC
Language Reference, (cited as the BASIC Reference) are references for
IBM RT PC BASIC.

This manual describes IBM RT PC BASIC in PC Mode. The Native
Mode is identical to PC Mode except where noted in this manual. This
manual describes the Interpreter as well as the Compiler. All
descriptions in this manual apply equally to the Compiler BASIC and
the Interpreter BASIC unless otherwise specified. The name BASIC, as
used in this manual, refers to IBM RT PC BASIC.

This book contains general information about using BASIC. Chapters
2, 3, 4, and 5 help you get started using BASIC. Chapter 6 contains
information about graphics. The appendixes contain information on
advanced subjects for the experienced programmer. Appendix F
describes how to install BASIC.

The BASIC Reference is an encyclopedia-type manual. It contains, in
alphabetic order, the syntax and semantics of commands, statements,
and functions in BASIC. It also contains appendixes for error messages
and special codes.

The two BASIC books are indexed and cross-referenced.

It is important for you to know that this book is written only as a
reference for the BASIC programming language, not as a textbook that
teaches you how to program. If you need step-by-step instruction to
program in BASIC, we suggest that you ask for introductory materials
at your library, bookstore, or computer store.

About This Book iii

Related Publications

The following books contain related information that you might find
useful.

IBM RT PC Guide to Operations

This guide describes procedures for operating the hardware. It includes
information on the system unit, the display, the keyboard, and other
devices that can be attached.

IBM RT PC Problem Determination Guide

This guide describes procedures for locating, identifying, and correcting
problems with the system. It includes information on running the
hardware diagnostic utilities to gather information on software
problems. Included is a high-capacity (1.2MB) diskette containing the
system diagnostic routines.

IBM RT PC Messages Reference

This manual lists the errors you may see on your display, along with
how to respond to the messages.

IBM RT PC Using and Managing the AIX Operation System

This manual contains information on using the AIX Operating System
commands, working with the file system, developing Shell procedures,
and performing such system management tasks as creating and
mounting file systems, backing up the system, and repairing file system
damage.

IBM RT PC AIX Operating System: Commands Reference

This manual describes the AIX Operating System commands, including
the following:

• The proper syntax for each command with the acceptable flags and
arguments

• Examples on proper usage

iv BASIC Language Handbook

IBM RT PC AIX Operating System: Technical Reference

This manual gives details about the AIX Operating System, the file
system, files, special files, miscellaneous files, and writing device
drivers.

IBM RT PC BASIC Language Reference

This book is an encyclopedia-type manual. It contains, in alphabetical
order, the syntax and format of every command, statement, and
function in BASIC.

Ordering Additional Copies of This Book

To order additional copies of this publication (without program
diskettes), use either of the following sources:

• To order from your IBM representative, use Order Number
SV2 l-8019.

• To order from your IBM dealer, use Part Number 55X8907.

A binder is included with the order.

About This Book v

vi BASIC Language Handbook

Contents

Chapter 1. The Environments of BASIC 1-1
An Overview of IBM RT PC BASIC 1-3
PC Mode 1-4
Native Mode 1-4
Interpreter 1-5
Compiler . 1-5

Chapter 2. How to Use the BASIC Interpreter 2-1
Introduction 2-3
Logging On the System 2-3
Starting the Interpreter 2-4
Returning from BASIC to the Operating System 2-4
Executing Commands and Programs 2-5

Direct Method 2-5
Indirect Method ... 2-6

Working With Complete Programs 2-6
Running the SAMPLES Program 2-7
Interpreter Command Line Format 2-8
Command Line Examples 2-11
Interpreter Debugging Commands 2-1 2
Using a Shell Procedure 2-12
Recovering from Errors . 2-12

Chapter 3. How to Use the BASIC Editor 3-1
Introduction 3-3
The Console Keyboard 3-3

Function Keys 3-5
Typewriter Keys 3-5
The Arrow Keys 3-5
The Numeric Keypad 3-5
Special Key Combinations 3-6

The BASIC Program Editor 3-7
Command-level Editing 3-8
Full-screen Editing 3-8
Special Program Editor Keys 3-9
Entering or Changing a BASIC Line 3-13

Contents vii

Entering or Changing a BASIC Program 3-16
Syntax Errors 3-18

Chapter 4. How to Use the BASIC Compiler 4-1
Introduction 4-3
Logging On to the System 4-3
Starting the Compiler 4-3
A Session with demo.bas 4-4
Creating and Debugging a Source Program 4-6
Compiling 4-6

Compiler Command Line Format .. 4-7
Compiler Metacommands 4-11

The List File and Metacommands 4-12
$INCLUDE Metacommand 4-12
When the Compiler Finishes 4-13
Warnings and Error Messages 4-13

Linking 4-14
Compiling and Linking in One Step 4-15
Running the Program 4-16

Chapter 5. General Information about BASIC 5-1
BASIC Program Lines .. . 5-5

Line Numbers .. . 5-5
Long Lines 5-5
Comments ... 5-6

Character Set . 5-7
Reserved Words 5-8
BASIC Statements 5-9
BASIC Data Types 5-10
Constants . 5-10

String Constants 5-11
Numeric Constants . 5-12

Variables . 5-14
How to Name a Variable 5-15
How to Declare Variable Types 5-16
Arrays 5-17

Numeric Expressions and Operators 5-19
Arithmetic Operators 5-20
Numeric Functions 5-22
Numeric Precision 5-23
How BASIC Converts Numbers from One Precision to
Another 5-24

vm BASIC Language Handbook

Numeric Precision and Expression Evaluation 5-25
Techniques for Formatting Numeric Output . . . 5-28

Relational Expressions and Operators 5-28
Numeric Comparisons 5-29
String Comparisons 5-30

Logical Expressions and Operators 5-30
Logical Operators . 5-31
How Logical Operators Work 5-33

String Expressions and Operators 5-34
Concatenation 5-35
String Functions 5-35

Order of Evaluation . 5-36
Files .. 5-38

File Number . 5-38
Filename . 5-38
Device Names . 5-39
Naming Files 5-40
Tree-structured Directories . 5-42

Accessing Another Device . 5-43
Redirection of Standard Input and Output 5-44
Calling C Functions from BASIC . 5-46

Calling C Functions 5-47
Passing Strings to C Functions 5-48
Passing String from C Functions 5-49
Demonstration Program .. 5-50

Chapter 6. Graphics 6-1
Graphics .. 6-3
Text and Graphics Environments 6-3
Text Environment 6-4

Function Key Display 6-5
Text Statements, Functions, and Variables 6-5
Text Colors 6-6
Character and Screen Colors 6-6

Graphics Environments 6-7
Graphics Statements and Functions 6-7
Specifying Coordinates 6-8
Setting Graphics Environments 6-16

Appendix A. BASIC Input and Output A-5
Specifying File Names A-5

Contents ix

Data Files - Sequential and Random Input and Output A-5
Sequential Files A-6
Random Files A-8

Appendix B. How Variables are Stored B-1
PC Mode . B-1
Native Mode B-3

Appendix C. Communications C-1
Opening a Communications File C-1

Communications 1/ 0 C-1
GET and PUT for Communications Files C-2
I/0 Functions C-2
INPUT$ Function .. C-3
A Sample Program C-4
Linking to Operating System Device Drivers C-6

Appendix D. Control Sequences D-1
Key Name D-1
Code D-1

Appendix E. Converting Programs to IBM RT PC BASIC ... E-1
File I/ 0 E-1
Graphics E-1
IF .. . THEN E-2
Line Feeds E-3
Logical Operations E-3
MAT Functions E-4
Multiple Assignments E-4
Multiple Statements E-4
PEEKs and POKEs E-4
Relational Expressions E-5
Remarks E-5
Rounding of Numbers E-5
Scan Codes E-6
Sound Statement E-6
Sounding the Bell E-6
String Handling E-7
Use of Blanks E-8
Other .. E-8

Appendix F. BASIC Installation F-1
Installation Procedure .. F-1

Index ... Index-1

x BASIC Language Handbook

CONTENTS

An Overview of IBM RT PC BASIC 1-3
PC Mode . 1-4
Native Mode 1-4
Interpreter . 1-5
Compiler 1-5

1-2 BASIC Language Handbook

An Overview of RT PC BASIC

IBM RT PC BASIC offers both the BASIC Interpreter and the BASIC
Compiler in one licensed product. You can use the Interpreter and the
Compiler in each of two Modes: PC Mode and Native Mode. Thus,
four different environments are supported, as seen below:

IBM RT PC BASIC

PC MODE NATIVE MODE

Interpreter Compiler Interpreter Compiler
Environment Environment Environment Environment

Programs written for one mode might not run in the other mode
without modification. You should keep a record of the mode intended
for each program. This can be done in a comment statement early in
the program.

When you write a BASIC program you choose either PC Mode or
Native Mode. Within either Mode, you can write the program for the
Interpreter environment or the Compiler environment.

Both Modes of BASIC support the following features:

• Extended character set. You can display 256 different characters:
the usual letters, numbers, and symbols, plus international
characters and other symbols such as Greek letters that are used in
scientific and mathematical applications.

• Graphics capability. You can draw points, lines, objects, and entire
pictures. The screen is all points addressable in the graphics
environments.

• Special input/output device support. You can use sound and locator
devices to make your programs more interesting and more
productive.

The Environments of BASIC 1-3

PC Mode

Native Mode

The BASIC Reference describes in detail the commands, statements,
and functions of BASIC. This manual describes BASIC in PC Mode.
The Native Mode is identical to PC Mode except where noted in this
manual. This manual also describes the Interpreter as well as the
Compiler for BASIC. Descriptions in this manual apply equally to the
Compiler and Interpreter environments unless otherwise specified.

When you install BASIC, the installation process loads a number of
files into the system. One of these files (/usr/basic/basic.info) contains
a list identifying the files in the BASIC Interpreter and Compiler. This
file may also contain other information about the product.

PC Mode is similar to Advanced BASIC (BASICA) on the IBM
Personal Computer. Numbers are represented in the same way as in
BASICA, with 16-bit integers and PC BASIC floating point format.

In PC Mode, a graphics terminal is made to look like the IBM Personal
Computer graphics display with two graphics environments and a
screen buffer at an apparent segment address of B8000 hex. The user's
address space is limited to 64K bytes.

Native Mode BASIC is designed to let a programmer use the power of
the IBM RT PC computer and operating system.

Arithmetic in Native Mode differs from PC Mode. Integers are 32 bits,
giving an integer range of - 231 to 231 -1. Integer expressions are
evaluated using integer calculations. This provides some performance
benefits compared to converting to floating point form, but the
possibility of overflow exists. (Overflow is trappable by the
programmer.) Floating point uses the IEEE standard formats for
increased dynamic range in double precision and allowing optional
floating-point hardware to be used without changing the programming
interface.

1-4 BASIC Language Handbook

Interpreter

Compiler

The user's address space is limited only by the virtual address space of
the computer. As a result, you can manipulate very large quantities of data.

The Interpreter translates a program from BASIC into an intermediate
code. When you enter a new line of BASIC code, the Interpreter
immediately translates that line of code into the same intermediate
code. During this translation, the Interpreter checks for syntax errors. If
there is an error, the Interpreter lets you correct it before going on to
the next line.

After the Interpreter has translated the entire program and there are no
syntax errors, you can RUN the program. When you type the
command RUN, the BASIC Interpreter reads the intermediate code,
and carries out the instructions one line at a time.

An interpreted program is usually faster to write and debug than a
compiled program.

The BASIC Compiler translates an entire BASIC program at one time
and creates a new file called an object file. The object fi le contains
machine code. All translation is performed before you actually run your
program.

A compiled program usually runs faster than an interpreted program.

The Environments of BASIC 1-5

1-6 BASIC Language Handbook

CONTENTS

Introduction 2-3
Logging On the System 2-3
Starting the Interpreter 2-4
Returning .from BASIC to the Operating System 2-4
Executing Commands and Programs 2-5

Direct Method 2-5
Indirect Method 2-6

Working With Complete Programs 2-6
Running the SAMPLES Program 2-7
Interpreter Command Line Format 2-8

Command Line Examples 2-11
Interpreter Debugging Commands 2-12

Using a Shell Procedure 2-12

2-2 BASIC Language Handbook

Introduction

This chapter explains how to use the BASIC Interpreter. First, there is
a description of how to get the Interpreter started and how to stop it.
Then you are shown how to give commands to BASIC and how to load
and run a program called samples.bas. Finally, you can read about
more advanced features such as command line options. Actual use of
the Editor (how to type in and change a BASIC program) is explained
in Chapter 3.

Note: For the sake of clarity, many of the explanations given in this
chapter are brief. For more detailed information about commands such
as SYSTEM, RUN, SAVE, LIST and LOAD, refer to their entries in
the BASIC Reference.

Logging On to the System

To use the BASIC Interpreter, you must first log on to the system by
following the instructions in the IBM RT PC Using and Managing the
AIX Operating System manual.

Note: BASIC must be installed on your system. Appendix F contains
instructions on how to install BASIC.

How to Use the BASIC Interpreter 2-3

Starting the Interpreter

To start the BASIC Interpreter enter one of the following:

PC Mode: $ basic
Native Mode: $ basicn

Returning from BASIC to the Operating System

When you are done using the BASIC Interpreter, you can return to the
operating system by entering the command SYSTEM. The operating
system prompt ($) then appears on your screen. For example,

Ok SYSTEM
$

Note: When BASIC encounters the statement SYSTEM in a program,
it stops the program and returns you directly to the operating system.

2-4 BASIC Language Handbook

Executing Commands and Programs

Direct Method

After the BASIC Interpreter starts, it displays the Ok prompt. You are
at the command level and BASIC is ready to receive instructions from
you. You can give instructions using either the direct method or the
indirect method. You can only issue commands using the direct
method.

When you use the direct method, BASIC executes a command
immediately after it is entered (that is, just after you have typed the
command and pressed the Enter key). In the direct method you leave
out the line number from the statement. With no line number, the
instructions are not saved after they are performed. However, the direct
method allows you to issue BASIC commands such as RUN, LOAD,
SA VE, REPLACE, and RENUM. You can also quickly determine the
results of arithmetic and logical operations, store them for later use,
and look at the values currently assigned to variables in memory. This
is very useful for writing and debugging programs, as well as for quick
computations that do not require a complete program. For example,

Ok PRINT 20 + 2
22

Ok PRINT X
0

Ok

How to Use the BASIC Interpreter 2-5

Indirect Method

You use the indirect method to enter program lines into a BASIC
program in memory. A line must begin with a line number in order for
it to become part of the program. The program does not start until you
enter the command RUN. For example,

Ok 10 X = 20 + 2
Ok 20 PRINT X Ok RUN

22
Ok

To learn more about how to type in and change programs, see Chapter
3, "How to Use the BASIC Editor."

Working With Complete Programs

You can save a program in memory to a file by using the SA VE or
REPLACE command:

Ok SAVE "rnyprograrn"
Ok

To load a program from a file into memory, use the LOAD command:

Ok LOAD "rnyprograrn"
Ok

Note: All programs loaded into the BASIC Interpreter must be in
ASCII format only. Programs written using BASICA must be SA VEd
with the ,A option.

To see what instructions are in the program, use the LIST command:

Ok LIST

Ok

10 x = 20 + 2
20 PRINT X

2-6 BASIC Language Handbook

Finally, to run the program now in memory, use the RUN command:

Ok RUN
22

Ok

Note: You can load and run a program with one command by giving
the file name with the RUN command:

Ok RUN "myprogram"

Running the SAMPLES Program

This section shows you how to start BASIC, and load in and run an
example program called samples. To run the program:

l. At the operating system level, type

$ cd / usr / basic

and press Enter. The BASIC demonstration programs are installed
in / usr/basic. Next, type

$ basicn

and press Enter. This loads Native Mode BASIC into the
computer's memory. You will see the BASIC copyright, the BASIC
prompt (Ok), and, across the bottom of the screen, the ten BASIC
function keys.

2. Type

OK run "samples"

and press Enter. This loads the program and runs it.

3. When the samples title screen is displayed, press the space bar. You
will then see the menu screen.

4. Select the item you want from the menu screen. Note the remarks
next to the menu items. They tell you what you need to run the
program you select: whether you need a graphics display and the
amount of memory you need to run these sample programs.

How to Use the BASIC Interpreter 2-7

5. Try a program such as H, COLORBAR. Type

h

You do not have to press Enter. If you have a monochrome
display, you will see two rows of bars in different shades of one
color. If you have a color display, you will see bars of various
colors. Adjust the monitor controls as necessary until you achieve a
pleasing and appropriate display.

6. After you have entered your program selection, follow the
instructions on the screen. Press the Esc key to stop a program and
return to the menu.

7. When you have tried all the programs you want to see and have
returned to the menu, press the Esc key. This leaves the program
and returns you to the command level Ok prompt.

Interpreter Command Line Format

You can include options in the BASIC command line for the
Interpreter when you start BASIC. These options specify the amount of
storage you want BASIC to use for programs, data, and buffer areas.
You can also tell the Interpreter to immediately load and run a
program. You can use the Interpreter without the options.

The format of the BASIC command for the Interpreter is shown below:

basic[n] [< stdin] [> [>)stdout) (-r progname]
(-p name1 [name2 [name3]]] (-w workspace]
[-s sourcespace]

In this syntax, the following conventions are used:

• You must type exactly all words that are not in italics.

• Lowercase italic letters stand for names or numbers that you must
supply.

2-8 BASIC Language Handbook

• Items in square brackets ([]) are optional.

• All punctuation except square brackets (such as the greater-than
symbol (>), the less-than symbol (<), and hyphens(-)) must be
included where shown.

• The command line must start with basic[n], but you may place the
options in any order.

• All options must be separated by at least one space.

An explanation of the options follows.

n

<stdio

>[>]stdout

This option starts Native Mode BASIC. If you do
not use the n option, the PC Mode Interpreter starts
running.

Stdin is a pathname. A BASIC program normally
receives its input from the keyboard (standard input
device). Using < stdin allows BASIC to receive
input from a file instead of the keyboard. Refer to
"Redirection of Standard Input and Output" for
more information.

Stdout is a pathname. A BASIC program normally
writes its output to the screen (standard output
device). Using > stdout causes BASIC to write
output to the file designated by stdout instead of to
the screen. If the file already exists, BASIC writes
over the file. Using >>stdout causes BASIC to
append its output to the file you specify. You
cannot use graphics or sound statements if output
has been redirected to a file . Refer to "Redirection
of Standard Input and Output" for more information.

How to Use the BASIC Interpreter 2-9

-r progname This option tells BASIC to immediately load and
run the program named in progname. BASIC will
proceed as if you had given it a RUN progname
command. Progname is a pathname and it must
follow the rules for naming files described under
"Files" in Chapter 5. The program in the file must
be in standard ASCII format. Note that when you
specify -r progname, the program starts
immediately, the BASIC heading with the copyright
notices does not appear.

Note: You can run BASIC programs as a batch
process by putting the basic command line in a shell
procedure. If you do so, your program should finish
with the SYSTEM statement so that the shell
procedure can perform its next command. Also,
when BASIC encounters a STOP, END, or
untrapped error, it returns to the operating system.

-p namel [name2 [name3]]

2-10 BASIC Language Handbook

The -p option designates the output files for LPTl :,
LPT2: , and LPT3:. They are associated with namel ,
name2, and name3, respectively.

For example, the LUST command and the LPRINT
statement write to LPT 1 :, and the default file for
LPT 1: is lptl.lst. This means that when you use
LUST or LPRINT in BASIC, your output goes (by
default) to lptl.lst. If, however, you use the -p
name] option when you start BASIC, BASIC sends
LPT 1: output to the file given as name 1 and not to
lptl.lst.

-w workspace

-s sourcespace

Command Line Examples

Like LPT 1 :, using LPT2: and LPT3: in your
program is optional. However, LPT2: and LPT3:
have no default files. If your program uses LPT2:
and LPT3:, you must specify files (name2 and
name3) for them.

Workspace is an integer that specifies the size (in K
bytes) of the user area reserved for BASIC program
variables, strings, and arrays. One K byte is equal to
1024 bytes. For example, -w 64 reserves 64K bytes
of workspace. The default workspace size is 64K
bytes. In PC Mode, the maximum workspace size
you can reserve is 64K bytes; if you specify more
than 64K, the default value of 64K is used.

Sourcespace is an integer that specifies the size (in K
bytes) of the area reserved by the translator for
program text, variable names, and the intermediate
code generated by the translator. This space is
separate from the user workspace.

The default size for sourcespace is 256K bytes. The
minimum size for sourcespace is 32K bytes, and if
you specify less than 32K bytes, BASIC allocates
32K bytes.

Some examples of the BASIC command line for the Interpreter:

$ basic -r payroll

This example uses 64K of memory in PC Mode; it loads and starts
payroll.bas running.

How to Use the BASIC Interpreter 2-11

$ basicn -r invent -w 512 -p invent.spool

This example starts the Native Mode Interpreter with 5 l 2K bytes of
workspace; it loads and runs invent.bas, with LPRINT output sent to
the file invent.spool.

Interpreter Debugging Commands

The Interpreter contains commands very useful for debugging a
program. Some of them are as follows:

BREAK
FOLLOW
TRACE
TRON

UNBREAK
UNFOLLOW
UNTRACE
TROFF

These commands are described in the BASIC Reference.

Using a Shell Procedure

Shell procedures provide a convenient way to reuse options that you
use often. For example, to invoke the BASIC Native Mode Interpreter,
run a program, and print the output requires the following command lines:

basicn -r payroll -p payroll.spl cheques.spl -w 512
print payroll.spl

These command lines could be put in a text file called payroll and
given execution status with

chrnod +x payroll

Then, the single command line

payroll

can be used to execute all the steps in the shell procedure file.

2-12 BASIC Language Handbook

Recovering from Errors

If the BASIC Interpreter or a BASIC program terminates abnormally
and returns to the system prompt ($), you may be able to recover the
keyboard/screen environment that existed while the program was
running. There are two ways you can attempt recovery:

1. Enter the following operating system command.

$ stty sane

2. Invoke and then leave the Interpreter.

$ basic(n)
OK system

(OK is the Interpreter prompt.)

How to Use the BASIC Interpreter 2-13

2-14 BASIC Language Handbook

CONTENTS
Introduction 3-3
The Console Keyboard 3-3

Function Keys 3-5
Typewriter Keys 3-5
The Arrow Keys 3-5
The Numeric Keypad 3-5
Special Key Combinations 3-6

Alt Key . 3-6
Ctrl Key . 3-7

The BASIC Program Editor 3-7
Command-level Editing 3-8
Full-screen Editing 3-8
Special Program Editor Keys 3-9
Entering or Changing a BASIC Line 3-13

Changing Characters . 3-14
Erasing Characters 3-14
Adding Characters 3-15
Erasing Part of a Line 3-15
Canceling a Line . 3-15

Entering or Changing a BASIC Program 3-16
Edi ting a Program Line on the Screen . 3-16
Copying a Line 3-17
Adding a New Line to a Program 3-17
Replacing a Program Line 3-17
Deleting a Program Line 3-17
Deleting an Entire Program 3-18
Saving the Program 3-18

Syn tax Errors . 3-18

3-2 BASIC Language Handbook

Introduction

This chapter describes the BASIC Editor, which is the primary interface
between you and the BASIC Interpreter or Compiler. The BASIC
Editor allows you to create new program text and change or delete
existing program text.

First, this chapter describes the general characteristics of the console
keyboard, and then describes how to use the BASIC Editor to
manipulate program text.

The Console Keyboard

The console keyboard is divided into four areas:

• The function keys and other special keys are on the top row of the
keyboard.

• The typewriter area is in the middle. This is where you find the
regular letter and number keys.

• The four arrow keys for moving the cursor are to the right of the
typewriter area.

• The numeric keypad, similar to a calculator keypad, is on the far
right side of the keyboard.

The console keyboard is shown on the following page. General use of
the keyboard is described in the IBM RT PC Guide to Operations. The
following paragraphs describe specific keyboard use for BASIC.

How to Use the BASIC Editor 3-3

Function Keys

Typewriter Keys

The Arrow Keys

The first ten function keys labeled Fl through FlO, can be used as
follows:

• As typing keys. You can set each key to automatically type any
sequence of up to 15 characters. Some frequently used commands
have already been pre-assigned to these keys. You can use the KEY
statement to change them if you wish.

• As program interrupts, through use of the ON KEY statement.

The typewriter area of the keyboard behaves much like a standard
keyboard. The shift, caps lock, and tab key work like they do on a
typewriter.

The Enter key is on the right side of the typewriter area. You use this
key in BASIC to enter information or a command. Pressing the Enter
key tells BASIC you have finished typing.

The cursor is the little blinking line or box on the screen. The four
arrow keys just to the right of the typewriter area move the cursor
around the screen. The section on "Special Program Editor Keys" will
describe how to do this.

The Numeric Keypad
You can enter numbers using the numbered keys either on the top row
of the typewriter area, or on the keypad on the right side of the
keyboard.

How to Use the BASIC Editor 3-5

Special Key Combinations

Alt Key

The section that follows describes some key combinations that are
available in BASIC.

The Alt (Alternate) keys are on both sides of the space bar. You can
use them to type an entire BASIC keyword with a single keystroke.

To do this, hold down one of the Alt keys while pressing one of the
alphabetic keys, a-z. Keywords associated with the letters are listed
below. Letters that do not have reserved words associated with them
are noted by "(no word)."

A AUTO N NEXT
B BSAVE 0 OPEN
c COLOR p PRINT
D DELETE Q (no word)
E ELSE R (no word)
F FOR s SCREEN
G GOTO T THEN
H HEX$ u USING
I INPUT v VAL
J (no word) w WIDTH
K KEY x XOR
L LOCATE y (no word)
M (no word) z (no word)

You can also use the Alt key with keys on the numeric keypad to enter
characters not found on the keys. To do this, hold down the Alt key
and type the three-digit ASCII code for the character. For example,
typing 168 on the numeric key pad while holding down the Alt key
prints an upside-down question mark on the screen. See Appendix B in
the BASIC Reference for a complete list of ASCII codes.

3-6 BASIC Language Handbook

Ctrl Key

The Ctrl key is also used to enter certain codes and characters not
otherwise available from the keyboard.

Ctrl-A: Ctrl-A followed by a-z has the same effect as Alt (a-z)
described in the Alt key section.

Ctrl-B: Ctrl-B interrupts the program at the next BASIC instruction
and returns to BASIC command level. It is also used to turn off AUTO
line numbering. To use Ctrl-B, hold down the Ctrl key while pressing
the B key.

Ctrl-G: Ctrl-G is the bell character. When this character is printed, the
speaker beeps. To enter the bell character, hold down the Ctrl key and
press the G key.

You also use the Ctrl key together with other keys when you edit
programs with the BASIC Program Editor. These operations are
explained in the section that follows. The numeric keypad keys and the
Alt key cannot be used with the following values to produce special
characters: 0 to 31 , 130, and 160 to 164.

The BASIC Program Editor

Any line of typed text is processed by the BASIC Program Editor.
There are two types of editing, command-level editing and full-screen
editing.

Note: It is important to make a distinction between a screen line and a
BASIC line. A screen line in the Editor is one horizontal row of 39 or
79 character positions on the screen. A BASIC line is a line of BASIC
code. It may be a line in a program, or a direct method command. It
may run several screen lines long. For example,

20 X$ 11 Thisisanexample 11
; _

+ 11 of one program line 11
; _

+ 11 on three screen 1 in es 11

How to Use the BASIC Editor 3-7

Command-level Editing

Full-screen Editing

You can also think of this as single-line editing. With command-level
editing, you enter and edit a line of BASIC freely within a single screen
line. The line is not completed until you press the Enter key. With
command-level editing, you cannot move the cursor up or down on the
screen. You are at the command level when you see the Ok prompt.

With the full-screen editor, you can enter text anywhere on the screen.
You must use the EDIT command to start full-screen editing. You can
do this by pressing the FlO function key (provided that you have not
changed FlO's meaning from "EDIT ." using the KEY statement).

You normally leave full-screen editing with the CONT command. This
takes you back to the command level (Ok). However, using any of the
following commands also takes you out of full-screen editing:

CONT
LOAD, R

RUN
STEP

Issuing any other BASIC command does not take you out of full-screen
editing.

Any direct method BASIC statement (those without initial line
numbers) also returns you to the command level (Ok).

In full-screen editing, a new or changed line of text is not read by the
Interpreter until after you have pressed the Enter key somewhere on
that line.

3-8 BASIC Language Handbook

If that line of text is a line-numbered BASIC statement, the line
becomes a part of your BASIC program when you press the Enter key.
Error checking occurs when you type RUN. If the line of text does not
have a line number with it, the Interpreter tries to perform it as a
command immediately. If the line does not contain a valid command
or statement, an error message appears immediately.

A command or single BASIC statement may run several screen lines
long. Pressing the Enter key with the cursor anywhere on any of the
screen lines of the command or statement tells the Interpreter to read
the entire command or statement.

During full-screen editing, you can issue the EDIT command again.
This keeps you in full-screen editing, clears the screen, moves the
cursor to the top of the screen, and lists the lines designated by your
EDIT command. You can also use the LIST command to display
program lines for changing. With LIST, the listing starts at the current
cursor position, not at the top of the screen.

To become familiar with the capabilities of the Program Editor, type in
a sample program and practice using the edit keys as described on the
pages that follow.

Special Program Editor Keys
You can use cursor control keys, the Backspace key, and the Ctrl key
to move the cursor on the screen, to insert characters, or to delete
characters.

There are two kinds of Program Editor keys. You can use all of the
keys during full-screen editing. However, command-level editing does
not allow you to move the cursor up and down on the screen; cursor
movement is restricted to the current line.

In the following list, two key combinations are shown for some
functions (such as Ctrl-Home or Ctrl-0). Some keyboards do not
support both combinations.

How to Use the BASIC Editor 3-9

Keys

Home

Ctrl-Home
or

Ctrl-0

Cursor Up (T)

Cursor Down (1)

Cursor Left (+--)

Cursor Right (_,)

Next Word
(Ctrl--)

or
(Ctrl-R)

3-10 BASIC Language Handbook

Function

Moves the cursor to the upper left-hand corner
of the screen. (Full-screen editing only.)

Clears the screen and positions the or cursor in
the original postion. (Full-screen editing only.)

Moves the cursor up one line. (Full-screen
editing only.)

Moves the cursor down one line. (Full-screen
editing only.)

Moves the cursor left one character position.
During full-screen editing, if the cursor moves
beyond the left edge of the screen, it wraps
around to the right side of the screen on the
line above.

Moves the cursor right one position. During
full-screen editing, if the cursor moves beyond
the right edge of the screen, it wraps around to
the left side of the screen on the next line down.

Moves the cursor right to the beginning of the
next word. A word is or any continuous string
of alphanumeric characters (letters and digits).

During full-screen editing, if the next word is at
the beginning of the next line down, then the
cursor moves down to the beginning of that word.

Previous Word
(Ctrl-,_)

or
(Ctrl-L)

End

Ctrl-End
or

Ctrl-E

Ins

Del

Moves the cursor left to the beginning of the
previous word.

During full-screen editing, if the previous word
is at the end of the next line up, the cursor
moves up to the beginning of that word.

Moves the cursor to the end of the BASIC line.

Erases characters from the current cursor
position to the end of the BASIC line.

Switches Insert Mode on and off. When Insert
Mode is on, the cursor forms a box covering
the lower half of a character position.

Insert Mode allows you to type in new
characters without erasing characters already on
the line. It pushes towards the end of the line
characters that are at and to the right of the
current cursor position, and inserts a
newly-typed character into the empty space.

When Insert Mode is off, any characters typed
replace the existing characters at the current
cursor position. Initially Insert Mode is off.

Note: You also turn off Insert Mode when you
press any of the cursor movement keys or the
Enter key.

Deletes the character at the current cursor
position. All characters to the right of the
deleted character move one position left to fill
in the empty space. Line wrapping can occur.

How to Use the BASIC Editor 3-11

Backspace

Ctrl-Delete
or

Ctrl-F

Ctrl-B

Ctrl-S

3-12 BASIC Language Handbook

Deletes the character to the left of the cursor.
All characters to the right of the deleted
character move left one position to fill in the
space. Line wrapping can occur.

When pressed anywhere on a BASIC line,
Ctrl-Delete erases (blank fills) the entire BASIC
line from the screen. The resulting blank screen
lines stay on the screen. The cursor goes to the
beginning of the blanked line. The erased line
is not passed to BASIC for processing.
However, if it is an existing program line
(begins with a line number), it is not deleted
from the program in memory.

This key combination provides the break
function. If you press Ctrl-B during
command-level editing, BASIC ignores changes
made to the line, moves the cursor to the next
screen line, and waits for a new command.
BASIC does not save any changes made to the
line that the cursor was on, and it does not
erase the line from the screen.

During full-screen editing, Ctrl-B first turns off
AUTO line generation. It then cancels any
changes made to the line and moves the cursor
to the beginning of the next BASIC line.

If your program is scrolling out on the screen
after a LIST command, pressing Ctrl-B stops
the listing.

If your program is scrolling on the screen after
a LIST command, pressing Ctrl-S pauses
(stalls) the listing temporarily. Pressing Ctrl-Q
restarts it.

Ctrl-Z

Tab

Ctrl-C

Ctrl-N

Entering or Changing a BASIC Line

Sometimes the operating system allows you to
put information on the screen from outside the
BASIC Editor. Ctrl-Z clears that information
from the screen, refreshes the text and clears
any extraneous information from the screen.

Moves the cursor right to the next tab stop.
Tab stops occur every eight character positions
(l , 9, 17, ... ' 73).

If Insert Mode is on, BASIC inserts spaces into
the text as the cursor moves right. If Insert
Mode is off, pressing the Tab key just moves
the cursor right to the next tab stop without
inserting spaces.

When pressed anywhere on a screen line, the
Ctrl-C key combination concatenates Uoins) the
line to the following screen line, thereby
creating a new BASIC line.

The Ctrl-N key combination inserts a
line-continuation underline into the program
text.

Since any line of text typed while BASIC is at the command level is
processed by the Program Editor, you can use most of the keys
described in the previous section to make corrections on the current
line. (BASIC is at the command level when you see the prompt Ok.)

You can extend a BASIC line over more than one screen line by
simply typing beyond the edge of the screen. The cursor wraps down to
the next screen line.

How to Use the BASIC Editor 3-13

Changing Characters

Erasing Characters

You can also use Ctrl-C to enter subsequent text on the next screen
line. The Ctrl-C actually fills the remainder of the screen line with
blank characters and concatenates it to the next line. These blanks are
included in the 1896 characters allowed for a BASIC line.

The Ctrl-N key combination inserts a line-continuation underline into
the program text to allow the Compiler to translate long program lines
written in the full-screen editor. This line-continuation underline
becomes an underline and newline combination when the program is
LISTed or written to a file.

When the Enter key is finally pressed, the entire BASIC line is passed
to BASIC for processing.

If you are typing a line and make an error, you can correct it. Use the
Cursor Left or other cursor movement keys (explained in the previous
section) to move the cursor to the position where the mistake occurred,
and type the correct letters over the wrong ones. Then, move the cursor
back to the end of the line using the Cursor Right or End keys, and
continue typing.

If you notice that you have typed an extra character in the line you are
typing, you can erase (delete) it using the Del key. Use the Cursor Left
or other cursor movement keys to move the cursor to the character you
want to erase; press the Del key, and the unwanted character is deleted.
Then use the Cursor Right or End keys to move the cursor back to the
end of the line, and continue typing.

3-14 BASIC Language Handbook

Adding Characters

Erasing Part of a Line

Canceling a Line

If you see that you have left out characters in the line you are typing,
move the cursor to the position where you want to put the new
characters; press the Ins key to get into Insert Mode; type the
characters you want to add. The characters you type appear at the
cursor position. The characters above and following the cursor are
pushed to the right. As before, when you are ready to continue typing
at the end of the line, use the Cursor Right or End keys to move the
cursor there and just continue typing. Insert Mode automatically turns
off when you use either of these keys.

To erase to the end of a line on the screen, press Ctrl-E.

For example, suppose you have typed the following:

Ok 10 REM *** this is a remark_

You decide to change the line. You move the cursor to under the t in
the first word this, to erase the rest of the line, press Ctrl-E:

Ok 10 REM *** _

To cancel a line that is currently being typed, press the Ctrl-F key
anywhere in the line. You do not have to press Enter. The entire line
beginning with the previous Enter will be erased. For example, suppose
you have this line:

Ok THIS IS A LINE THAT HAS NO MEANING_

Even though the cursor is at the end of the line, the entire line is
erased when you press Ctrl-F, and the cursor goes to the beginning of
the line.

How to Use the BASIC Editor 3-15

Entering or Changing a BASIC Program

An Interpreter BASIC program line always begins with a line number,
and ends with an Enter key. The entire BASIC program line must be
on the screen when you press the Enter key. It can contain a maximum
of 1896 characters, including the line number and Enter (1896
characters is one screen full of text). If a line contains more than
1896 characters, the extra characters are truncated (removed) when
Enter is pressed. Even if the extra characters still appear on the screen,
they are not processed by BASIC.

You can enter BASIC keywords and variable names in any
combination of uppercase (capital) and lowercase (small) letters.

Editing a Program Line on the Screen

You can edit any program line on the screen. First, move the cursor to
where you want to make the change. Then use any or all of the
techniques described in the previous section to change, delete, or add
characters to the line. The changes do not become part of your
program until you press Enter.

If you want to modify program lines that are not displayed at the
moment, you can use the EDIT or LIST command to display them.
EDIT clears the screen before listing the lines. LIST does not.

Note that when you are making corrections to a BASIC line you have
already entered, you do not have to move the cursor to the end of that
BASIC line before pressing Enter. The Program Editor knows where
each BASIC line ends and it processes the whole line even if Enter is
pressed at the beginning of the line.

Note: Use of the AUTO command for automatic line numbering can
be very helpful when you are entering your program. However, you
must turn AUTO off, by pressing Ctrl-B, before changing any lines
other than the current one.

3-16 BASIC Language Handbook

Copying a Line

You can copy a line in a program by moving the cursor to the
beginning of the line to be copied and changing its line number to the
new line number (by typing over the old number). When you press
Enter, both the old line and the new line are in the program.

Adding a New Line to a Program

To add a new line to a program, type a valid line number (1 through
65529) that has not already been used in the program, then at least one
non blank character, then Enter. The line is saved as part of the BASIC
program in storage.

If a line already exists that has the same line number as the line you
have just entered, the old line is erased and replaced with the new one.

If you try to add a line to a progral)1 when there is no more room in
storage, an Out of memory error occurs and the line is not added.

Replacing a Program Line

You can replace an existing line by typing the number of the line
already in the program, the new text as you want it to appear, and then
Enter.

Deleting a Program Line

To delete an existing program line, type only the number of the line
and then press Enter. For example, if you just enter

Ok 10

line 10 is deleted from the program.

To delete a group of program lines, use the DELETE command.

How to Use the BASIC Editor 3-17

Do not use the Ctrl-F key to delete program lines. Ctrl-F causes a line
to be erased only from the screen, not from the BASIC program.

Deleting an Entire Program

Saving the Program

Syntax Errors

To delete the entire program that currently resides in memory, enter
the NEW command.

Remember, changes made using these techniques change only the
program in memory. To permanently save the program with the new
changes, use the SA VE or REPLACE command before entering a NEW
command or leaving BASIC.

During command-line editing, the BASIC Interpreter shows most of
your errors immediately. Program lines entered during full-screen
editing have their errors shown after you type RUN. See Appendix A
in the BASIC R eference for a list of error messages and what they
mean.

When you edit a line and store it in the program while the program is
in Break Mode (you see the Br prompt) you cannot use CONT to
continue the program.

3-18 BASIC Language Handbook

CONTENTS

Introduction 4-3
Logging On to the System 4-3
Starting the Compiler 4-3
A Session with demo.bas 4-4

Creating and Debugging demo.bas 4-4
Compiling demo.bas 4-5
Linking demo.o 4-5
Running demo 4-6

Creating and Debugging a Source Program 4-6
Compiling 4-6

Compiler Command Line Format 4-7
Command Line Example 4-10

Compiler Metacommands 4-11
The List File and Metacommands 4-12
$INCLUDE Metacommand 4-12
When the Compiler Finishes 4-13
Warnings and Error Messages 4-13

Linking 4-14
Compiling and Linking in One Step . 4-15
Running the Program 4-16

4-2 BASIC Language Handbook

Introduction

This chapter first shows you how to start the Compiler. Then it
describes the steps of compiling and running, using a demonstration
program as an example. Finally, it lists command line options, and
describes program development in more detail.

Logging On to the System

To use the BASIC Compiler, you must first log on to the system by
following the instructions in the IBM RT PC Using and Managing the
AIX Operating System manual.

Starting the Compiler

To start the BASIC Compiler enter one of the following:

PC Mode: $basic -c progname
Native Mode: $ basicn - c progname

Note: For both PC Mode and Native Mode the -c option specifies use
of the Compiler. Progname is a pathname designating the file
containing the BASIC program. It should follow the rules for naming
files described in "Files" in Chapter 5. If you do not specify a
progname or if the file is not found, BASIC returns an error.

How to Use the BASIC Compiler 4-3

A Session with demo. bas

This section uses a demonstration program to illustrate the step-by-step
instructions for using the BASIC Compiler.

We recommend compiling the demonstration program before compiling
any other programs, because this sample session gives you an overview
of the compilation process. Also, you should read all the following
sections. They contain information that is important to successful
development of a program.

If you enter commands exactly as described in this section, you should
have a successful session with the BASIC Compiler. If a problem does
arise, check and redo each step carefully.

The steps involved in developing a program with the BASIC Compiler are

• Creating and debugging a source file

• Compiling and linking the code

• Running the program

We will follow these steps on the following pages, using the demo.bas
program as an example.

Creating and Debugging demo.bas

We have prepared a debugged demonstration program called demo.bas.
Because it is already prepared, you can start compiling it. (Please note
that you can also run this program with the Interpreter.)

Before you compile the demonstration program, you should copy it to
your own directory. To do so, enter the following commands:

$ cd
$ cp / usr / basic / derno.bas.

4-4 BASIC Language Handbook

Compiling demo.bas

Linking demo.o

To compile the demonstration program, type

$ basic -c demo - 1

As soon as you press the Enter key, the Compiler begins its work.
When it is done, the $ prompt appears.

The Compiler generates an object file named demo.o. At the same time,
it writes a listing file to the file demo.1st because we used the -1 option.
The Compiler should not find any errors in demo.bas, so there should
not be any error messages on the screen. If you enter the operating
system command li, you should see the two new files listed in your
directory: demo.o and demo.1st.

At this point in the demonstration, you can view or print out the
source listing file (demo.1st). To print the listing, enter:

$ print demo.1st

When you finish looking at the listing file , you can delete it. To do
this, enter:

$ rm demo.1st

To LINK the demonstration program, type

$ bas1ink demo.o

the baslink shell procedure links demo.o with standard system libraries
to create an executable file named demo.

How to Use the BASIC Compiler 4-5

Running demo

To run the demonstration program, enter:

$ demo

When you are done with the program, press the Esc key to return to
the operating system prompt.

Creating and Debugging a Source Program

Compiling

You can create a BASIC source file using any general purpose text
editor that produces a standard ASCII file. Files saved by the IBM PC's
BASICA without its A option do not compile.

Perhaps the best way to create a Compiler program is to use the editing
and debugging facilities of the BASIC Interpreter. Compiler BASIC is
similar to Interpreter BASIC. (The few differences are mentioned in
notes in this handbook and in the BASIC Reference.) Because your
programs will usually run in the same way with both versions, you can
use the BASIC Interpreter as a powerful writing and debugging tool.
This will save you from doing time consuming compilations and links
while trying to find a bug in your program.

Note: The Compiler rnetacornrnands ($INCLUDE and others) and its
-n option (relaxed line numbering) are not supported by the Interpreter.

After you have created a BASIC source program, the next step is to
compile it. This converts your program into a relocatable object code.
If there are any BASIC errors, the Compiler will list them.

4-6 BASIC Language Handbook

Compiler Command Line Format

You can include options in the BASIC command for the Compiler
when you start BASIC. You can use these options to select Native
Mode or PC Mode, redirect standard output, and specify a name for
your object file.

The format of the BASIC command line for the Compiler is

basic[n] [> [>]stdout] -c progname [-d] (-1 [pathname]] [-n]

(-o pathname] [-p name1 [name2 [name3]]][-v] [-w workspace]

[-s sourcespace]

This syntax uses the following conventions:

• You must type exactly all words that are not in italics.

• You must supply any items shown in lowercase italic letters.

• Items in square brackets ([]) are optional.

• All punctuation except square brackets must be included where
shown.

• The command line must start with basic[n], but you may place the
options in any order.

• All options must be separated by at least one space.

An explanation of the options follows.

n

> [>]stdout

This option starts Native Mode BASIC. If you
do not use the n option, the PC Mode
Compiler starts running.

Stdout is a pathname. The Compiler normally
writes its output to the screen (standard output
device). Using >stdout causes BASIC to
redirect error messages and any statistics to a
file instead of the screen. See "Redirection of
Standard Input and Output" for more
information.

How to Use the BASIC Compiler 4-7

-c progname

-d

-I pathname

-n

-o pathname

4-8 BASIC Language Handbook

This parameter causes BASIC to compile the
file specified by progname. The progname is a
pathname and it must conform to the rules for
specifying files described in Chapter 5. The
program in the file must be in standard ASCII
format.

Normally, the generated object code includes
line numbers so that runtime error messages
can indicate where the error occurred. The -d
option turns this feature off.

This option generates a Compiler listing to the
file specified by pathname. The pathname is
optional. If you do not specify a pathname, the
name will be the same as the program, but with
an extension of .!st (progname.lst) . If the -1
option is not used, then the Compiler does not
generate a Compiler listing. If you have
metacommands in your source program, the
listing is produced under control of the
metacommands.

The -n option tells the Compiler to relax line
numbering constraints. When -n is specified,
line numbers in your source file may be in any
order, or they may be eliminated entirely. Any
line numbers which exist have nothing to do
with the sequence of the lines; they serve as
necessary target labels for GOSUBs, GOTOs,
and any other statements which use line
numbers as references for branching.

The -o option specifies a name for your object
file. If you do not use the -o option, the name
of the object file is the same as that of the
program, but with an extension of .o
(progname.o).

-p namel [name2 [name3]]

-v

-w workspace

The -p option designates the output files for
LPTl: , LPT2:, and LPT3:. They are associated
with namel, name2, and name3, respectively.

For example, the LPRINT statement writes to
LPTl:, and the default file for LPTl : is
lptl.lst. This means that when you use the
LPRINT statement in BASIC, your output goes
(by default) to lptl.lst. If, however, you use the
-p name] option when you compile your
program, then LPRINT's output goes to the file
given as name] and not to lptl.lst.

Like LPT 1 :, using LPT2: and LPT3: in your
program is optional. However, LPT2: and
LPT3: have no default files. If your program
uses LPT2: and LPT3: , you must specify files
(name2 and name3) for them.

If your BASIC source program uses event traps,
the Compiler inserts an event trap check
between each statement. This option inserts an
event trap check at each line number instead of
at each statement. If your program uses event
traps, the -v option can produce a smaller
program that may take less time to run.

Workspace is an integer that specifies the size
of the user area reserved for BASIC program
variables, strings, and arrays. The integer
specifies the number of K bytes reserved. One
K byte is equal to 1024 bytes. For example, -w
64 reserves 64K bytes of workspace. The
default workspace size is 64K bytes. In PC
Mode, the maximum workspace size you can
reserve is 64K bytes; if you specify more than
64K, the default value of 64K is used.

How to Use the BASIC Compiler 4-9

-s sourcespace

Command Line Example

Sourcespace is an integer that specifies the size
(in K bytes) of the area reserved by the
translator for program text, variable names,
and the intermediate code generated by the
translator. This space is separate from the user
workspace.

The default size for sourcespace is 256K bytes.
The minimum size for sourcespace is 32K
bytes, and if you specify less than 32K bytes,
BASIC allocates 32K bytes.

Some examples of the BASIC command line for the Compiler:

$ basic -c prog1

This example tells the PC Mode Compiler to compile progl.bas into
progl.o. No print file is specified.

$ basicn >error -c prog2 -d -p prog2.spl -w512

This example starts the Native Mode Compiler. It compiles prog2.bas
into prog2.o. The > error option sends any compile time error
information to the file named error. The -d option suppresses
debugging code. The -p option sends LPRINT output to prog2.spl. The
-w option establishes a workspace of 5 l 2K bytes.

4-10 BASIC Language Handbook

Compiler Metacommands

A feature of the BASIC Compiler are the metacommands. They are
called Compiler metacommands rather than BASIC statements because
they are really not a part of the BASIC language, but rather they are
commands to the Compiler. The metacommands for the Compiler are
as follows:

$INCLUDE
$LINESIZE
$LIST
$PAGE
$PAGEIF
$PAGESIZE
$SKIP
$SUBTITLE
$TITLE

Note the distinctive $ prefix on the Compiler metacommands.

The metacommands are included in your source file as part of a
remark, after the keyword REM or the single quote ('). (Because they
are embedded in a remark, the metacommands do not cause a syntax
error in the BASIC Interpreter.) You can use more than one
metacommand on a line. All the metacommands are discussed in more
detail in the BASIC Reference.

Most of the metacommands control the format of the listing file
created by the Compiler. The $INCLUDE metacommand lets you
combine several program files into one.

How to Use the BASIC Compiler 4-11

The List File and Metacommands
The Compiler listing is a list of your source program with any error
messages that occurred during compilation. To get a listing, you must
use the Compiler's -1 pathname option. The format of the listing can
be affected by the BASIC Compiler metacommands listed earlier.

Every page of the BASIC Compiler source listing has a header at the
top. In the upper left-hand portion of the page, the first two lines
contain your choice of title and subtitle, set with the $TITLE and
$SUBTITLE metacommands, respectively.

The first three lines in the upper right-hand portion of the page contain
the page number, the date, and the time. The name and version
number of the Compiler appear on the line below the time, aligned
with the right margin. The column labels also appear on that line.

You can turn the source code listing off and on with the $LIST - and
$LIST+ metacommands. Errors are always listed. For example, you
can get a listing of a program without the contents of $INCLUDE files
by putting a $LIST - metacommand at the first line of each
$INCLUDE file and a $LIST+ at the end of each $INCLUDE file.

$INCLUDE Metacommand

The $INCLUDE metacommand allows you to combine files for your
source file. The $INCLUDE metacommand looks like this:

REM $INCLUDE: "pathname"

The Compiler includes the specified file in the source file at the point
where it encounters this metacommand. That is, the contents of
pathname, known as the included file, are read and processed as though
the included file were inserted in your source file immediately
following the $INCLUDE metacommand. When the Compiler finishes
processing the included file , it goes back to the original BASIC source
file and resumes processing the source file .

4-12 BASIC Language Handbook

This process may be thought of as embedding pathname into your
source file at the location of the $INCLUDE metacommand.

Included files can themselves include other files. You can nest up to
eight levels of files in this way. If you go beyond that, you will get a
Too many $INCLUDE levels error.

If you use a text editor other than the BASIC Program Editor, you can
create a file of lines without line numbers. The Compiler allows lines
without line numbers if you use its -n option. The $INCLUDE
metacommand makes it very easy to include the same file in many
different programs.

Included files can be very useful for COMMON declarations existing in
programs that are linked or chained together, or for useful subroutines
that you might have in an external library of subroutines.

When the Compiler Finishes

As soon as you enter the command line, the Compiler begins its work.
If there are no errors in your program, the Compiler translates your
program and sends the object code to a file with the name progname.o
(unless you specify a different name using the -o option). When the
Compiler is finished processing, the operating system prompt ($)
appears. You can interrupt the Compiler run prior to its normal
completion by pressing the Delete key.

Warnings and Error Messages
There are two kinds of error messages, warnings and severe errors.
Warnings do not have to be corrected. Severe errors must be corrected,
which means that you must rewrite part of your source program and
start the compilation process again. Appendix A in the BASIC
Reference lists and explains error messages.

How to Use the BASIC Compiler 4-13

Linking

After the Compiler has listed the errors, it then reports the number of
errors found. The error report takes the form:

nnnnn Warning Error(s)
nnnnn Severe Error(s)

If you use the Compiler's -1 option it includes the error messages in the
listing.

When the Compiler is done, it returns you to the operating system ($).
If a severe error was encountered during compilation, the Compiler
returns a nonzero exit value.

The .o file created by the Compiler is not executable and needs to be
linked to the appropriate library. Linking is the process of

• Combining separately produced object (.o) modules

• Searching the appropriate library files for definitions of unresolved
external references

• Resolving external cross-references

• Computing absolute addresses for local references within modules

• Producing an executable file

To link a compiled program, use the shell procedure baslink (for a PC
Mode program) or baslinkn (for a Native Mode program):

baslink[n] progname [mod1. 0 [mod2. 0 ...]]

where progname.bas is the source file, progname.o is your object file,
and progname is the name of the executable file. modl.O mod2.0 .. . are
the names of any object modules you intend to include in the program.
Typically, modules are written in the C programming language. The
module names on the command line must be separated by spaces.

4-14 BASIC Language Handbook

The shell procedure invokes the AIX linker, Id. For more information
on the Id command, refer to the IBM RT PC AIX Operating System:
Commands Reference manual.

Compiling and Linking in One Step

Use the shell procedure basicc (for a PC Mode program) or basicnc (for
a Native Mode program). The format of the command line for the shell
procedure is:

basic[n)c progname [compiler options
[-- mod1.0 [mod2.0 ...]]]

An explanation of the options follows:

progname

compiler options

-- (two hyphens)

modl.O, mod2.0 ...

This is the name of the program to be compiled and
linked. The source must be in progname.bas; the
executable program will be written to progname.

These are any of the compiler options documented in
the Compiler Command Line Format section
presented earlier in this chapter.

These separate Compiler options from the names of
object modules passed to Id. There should be at least
one blank space before and after the hyphens.

These are the names of the object modules you intend
to include in the executable program.

How to Use the BASIC Compiler 4-15

Running the Program

The executable object file can be run by entering the file's name at the
system prompt. The following command loads and starts the program.

$ demo

The executable file can also be started from within another program,
as in the following statement:

10 CHAIN "demo"

If the program terminates abnormally, you may be able to recover
the keyboard/screen environment. See Recovering from Errors in
Chapter 2.

4-16 BASIC Language Handbook

CONTENTS
BASIC Program Lines 5-5

Line Numbers 5-5
Long Lines 5-5
Comments 5-6

Character Set . 5-7
Reserved Words . 5-8
BASIC Statements 5-9
BASIC Data Types 5-10
Constants 5-10

String Constants 5-11
Numeric Constants 5-12

Real Number Constants: Decimal Notation 5-12
Real Number Constants: Exponential Notation 5-13
Integer Constants 5-13

Variables 5-14
How to Name a Variable 5-15
How to Declare Variable Types 5-16
Arrays 5-17

Numeric Expressions and Operators 5-19
Arithmetic Operators 5-20
Numeric Functions 5-22
Numeric Precision 5-23
How BASIC Converts Numbers from One Precision to Another 5-24
Numeric Precision and Expression Evaluation 5-25
Techniques for Formatting Numeric Output 5-28

Relational Expressions and Operators 5-28
Numeric Comparisons 5-29
String Comparisons 5-30

Logical Expressions and Operators 5-30
Logical Operators 5-31
How Logical Operators Work 5-33

5-2 BASIC Language Handbook

String Expressions and Operators 5-34
Concatenation 5-35
String Functions 5-35

Order of Evaluation 5-36
Files . 5-38

File Number 5-38
Filename ... 5-38
Device Names 5-39
Naming Files ... 5-40
Tree-structured Directories 5-42

Naming Directories 5-43
Current Directory 5-43

Accessing Another Device 5-43
Redirection of Standard Input and Output 5-44
Calling C Functions from BASIC 5-46

Calling C Functions 5-47
Passing Strings to C Functions 5-48
Passing Strings from C Functions 5-49
Demonstration Program . 5-50

General Information about BASIC 5-3

5-4 BASIC Language Handbook

BASIC Program Lines

Line Numbers

Long Lines

Program fines in a BASIC program have the following format:

nnnnn BASIC statement[:BASIC statement . . .]['comment]

Program lines begin with a line number and end with Enter.

"nnnnn" is a line number from 1 to 65529. Line numbers show the
order in which the program lines are stored and serve as reference
points for branching and editing.

Note: If you are using the Compiler with the relaxed line number
option (-n), you can put line numbers in any order or even leave them
out. See "Compiler Command Line Format" in Chapter 4.

You can, if you wish, have more than one BASIC statement on a
program line, but each statement must be separated from the one
before it by a colon. For example,

10 FOR I = 1 TO 3 : PRINT I : NEXT

General Information about BASIC 5-5

Comments

A program line can be up to 1896 characters long.

If you want to continue a program line onto the next line, the
underline character (_) must be at the end of the continued line. For
example,

10 REM This is a BASIC remark _
that continues on to the next line, _
and on to the next one too.

20 PRINT A, B, _
C, D

30 PRINT "This is a string constant _
continued on the next line."

The underline characters must not break up any BASIC keywords, line
numbers, numeric constants, or variable names. For example, the next
three lines are illegal:

100 IF SumOfAB = 100 THEN SumOf
AB = 0 : GO_
SUB 500

The Interpreter accepts ASCII BASIC files using the underline
character for line continuation. To type a line-continuation underline in
the BASIC full-screen Editor, use the Ctrl-N key combination. This
inserts an underline into the text onto the screen, which is interpreted
as an underline/newline combination when the program is LISTed or
written to a file.

Comments are statements that you write to describe how the program
works. They improve your understanding of the program, but are not
executed by BASIC. Comments can be included at the end of a line.
The single quote (') or the keyword REM separates the comment from
the rest of the line. For example,

10 INPUT "Type your name" ; N$ REM comment
2 0 PRINT "Thank you, " ; N$ 'also a comment

5-6 BASIC Language Handbook

Character Set

The BASIC character set consists of alphabetic (a-z, A-Z), numeric
(0-9), and special characters.

The following characters have specific meanings in BASIC:

Character

+

*

/\

(
)
%

$

&

?

<
>

Name

Blank
Equal sign or assignment symbol
Plus sign or concatenation symbol
Minus sign
Asterisk or multiplication symbol
Slash, division symbol, or path separator
Backslash; integer-division symbol
Caret or exponentiation symbol
Left parenthesis
Right parenthesis
Percent sign or integer type-declaration character
Number (or pound) sign, or double-precision
type-declaration character
Dollar sign or string type-declaration character
Exclamation point or single-precision
type-declaration character
Ampersand
Comma
Period
Single quotation mark, apostrophe, or remark
delimiter
Semicolon
Colon or statement separator
Question mark (PRINT abbreviation)
Less than
Greater than
Double quotation mark or string delimiter
Underline

General Information about BASIC 5-7

Reserved Words

Many characters can be printed or displayed even though they have no
particular meaning to BASIC. See Appendix B, "ASCII Character
Codes," in the BASIC Reference for a complete list of these characters.

Certain words and letter combinations have special meaning in BASIC.
They are called reserved words. Reserved words include all BASIC
commands, statements, function names, and operator names. Reserved
words cannot be used as variable names.

Reserved words must be separated from data or other parts of a BASIC
statement by blanks or special characters as allowed by the syntax
described in the BASIC Reference.

You can enter reserved words in uppercase or lowercase letters, or in
any combination thereof.

The following are reserved words in BASIC:

ABS
APPEND
AS
ASC
ASK
ATN
AUTO
BASE
BEEP
BLOAD
BREAK
BSAVE
CALL
CC HAR
CDBL
CHAIN
CHANGE
CHDIR
CHR$
CINT

CIRCLE
CLEAR
CLOSE
CLS
COLOR
COM
COMMON
CONT
cos
CSNG
CSR LIN
CVD
CVI
CVP$
CVS
DATA
DATE$
DEF
DELETE
DIM

DRAW
EDIT
ELSE
END
EOF
EQU
ERASE
ERL
ERR
ERROR
EXP
EXTERNAL
FIELD
FILES
FIX
FOLLOW
FOR
FN
FRE
GET

GO SUB
GOTO
HEX$
IF
$INCLUDE
IN KEY$
INP
INPUT
INPUT#
INPUT$
INSTR
INT
KEY
KILL
LEFT$
LEN
LET
LINE
$LINESIZE
LIST

5-8 BASIC Language Handbook

$LIST
LUST
LOAD
LOC
LOCATE
LOF
LOG
LOGlO
LPOS
LPRINT
LSET
MERGE
MID$
MKDIR
MKD$
MKI$
MKS$
MOD
NAME
NEW
NEXT
NOT
OCT$
OFF
ON
OPEN

BASIC Statements

OPTION
OR
OUT
OUTPUT
$PAGE
$PAGEIF
$PAGESIZE
PAINT
PEEK
PLAY
PMAP
POINT
POKE
POS
PRESET
PRINT
PRINT#
PSET
PUT
RANDOMIZE
READ
REM
RENUM
REPLACE
RESET
RESTORE

RESUME
RETURN
RIGHT$
RMDIR
RND
RSET
RUN
SAVE
SCREEN
SEG
SGN
SHELL
SIN
$SKIP
SOUND
SPACE$
SPC
SQR
STEP
STICK
STOP
STR$
STRIG
STRING$
$SUBTITLE
SWAP

SYSTEM
TAB
TAN
THEN
$TITLE
TIME$
TIMER
TO
TRACE
TROFF
TRON
UNBREAK
UNFOLLOW
UNTRACE
USING
VAL
VARPTR
VARPTR$
VIEW
WEND
WHILE
WIDTH
WINDOW
WRITE
WRITE#

A BASIC statement is either executable or nonexecutable. Executable
statements are instructions that tell BASIC what to do next while
running a program. For example, PRINT X is an executable statement.
Nonexecutable statements, such as COMMON, DAT A, DEFtype, or
REM, contain information only and do not cause any program action
when BASIC sees them. All the BASIC statements are explained in
detail in the BASIC Reference.

General Information about BASIC 5-9

BASIC Data Types

Constants

BASIC allows you to work with the following types of data:

Data Type

String
Integer
Real

Short Definition

Sequence of characters
Whole number
Number with fractional part

Example

Dale
1234
12.34

BASIC has two types of real numbers, single precision and double
precision. Double-precision real numbers can have a larger numeric
range and be more than twice as accurate as single-precision ones. See
"Numeric Precision," later in this chapter.

Data in BASIC can be represented as constants or as variables. We
shall discuss constants and then variables.

Constants are values that you supply in the BASIC program and that
do not change when the program is running. There are two types of
constants: string (character) constants and numeric (integer and real)
constants. Examples of constants are Hello, 12, and 58797873673.5.

5-10 BASIC Language Handbook

String Constants

A string constant is a sequence of characters enclosed in double
quotation marks. In PC Mode, a string constant may have up to 255
characters. In Native Mode, a string constant may have up to 1896
characters. The characters can be letters, numbers, or symbols. For
example,

HELLO
$ 25,000.00
Number of Employ ees
!@#$% A&*()_+

Note: If you start a string with a quotation mark but do not finish it
with the second quotation mark, BASIC assumes that the string
continues to the end of the screen line. Be careful when you start a
string constant, to end it with a quotation mark; otherwise, any
statements following on the same line are also part of that string. For
example, in the following line, PRINT 1 + 2 is assumed to be part of
the constant starting with "Fred.

Ok PRINT "Fred; : PRINT 1 + 2
Fred; : PRINT 1 + 2
Ok

There are a few cases where BASIC knows that a particular sequence of
characters must be a string constant, and the quotation marks are not
required. These cases are noted where appropriate in the BASIC
Reference.

General Information about BASIC 5-11

Numeric Constants

Numeric constants are positive or negative numbers. Negative numbers
must be preceded by a minus sign (-), but a plus sign (+) is optional
on a positive number. Numeric constants in BASIC do NOT contain
commas or dollar signs ($). Numeric constants can take the following
forms:

Real Number Constants: Decimal Notation

This common notation includes numbers with decimal points and very
large integers. Real numbers using this notation are accurate up to 16
digits.

BASIC considers decimal constants ending with a number sign (#) to
be double-precision numbers (accurate to 16 digits). For example,
123.45# is a double-precision number, equivalent to
123.4500000000000.

BASIC considers decimal constants ending with an exclamation point
(!) to be single-precision numbers. For example, 123.45! is a
single-precision number, equivalent to 123.450 in PC Mode.

A number with no trailing character is assumed to be an integer,
single-precision real, or double-precision real, depending on how large
the number is, and whether or not it has a decimal point.

5-12 BASIC Language Handbook

Real Number Constants: Exponential Notation

Integer Constants

Exponential notation is similar to scientific notation. It consists of an
optionally signed integer or decimal number (the mantissa) followed by
the letter E or D and an optionally signed integer (the exponent). The E
or D means times ten to the power of It takes one of the following
formats:

[sign] number E [sign] integer

or

[sign] number D [sign] integer

For example, in the number 23E-2, 23 is the mantissa, and -2 is the
exponent. This number is read as 23 times 10 to the power of minus
two. You can write it as 0.23 in decimal notation.

Single-precision numbers use the letter E. For example, -l .234E2 is
equivalent to -123.4! , 567.89E-2 is equivalent to 5.6789!, and
235.988E-7 is equivalent to .0000235988!.

Double-precision floating point numbers use the letter D instead of the
letter E. For instance, -l.234D2 is equivalent to -123.4#, 567 .89D-2 is
equivalent to 5.6789#, and 2359D6 is equivalent to 2359000000#.

Remember, E indicates a single-precision number and D indicates a
double-precision number.

Integers, being whole numbers, cannot have decimal points. They can
range from -2 15 through 215-l in PC Mode, and from -2 31 through 231-l
in Native Mode. BASIC allows five different integer notations:

Decimal: This is the most common notation. For example, 1, 567, and
-10. Decimal integers range from -32768 through + 32767 in PC
Mode; and from -2147483648 through + 2147483647 in Native Mode.

General Information about BASIC 5-13

Variables

Hexadecimal: Hexadecimal integers use the digits 0 through 9, and the
letters A through F. They must have a prefix of &H. For example,
&H76, &H32F, and -&HA. Hexadecimal integers can be up to four
digits in length in PC Mode (&HFFFF), and up to eight digits in
Native Mode (&HFFFFFFFF).

Octal: Octal integers use the digits 0 through 7, and a prefix of &O or
just&. For example, &0347, &362535 and -&12. Octal integers can be
up to 6 digits in length in PC Mode, and up to 11 digits in Native
Mode. The largest PC Mode octal integer is &0177777. For Native
Mode it is &037777777777.

Binary: Binary integers use the digits 0 and 1, and a prefix of &B. For
example, &BOl , &B l 1001010, and -&B IOlO. Binary integers can be up
to 16 digits long in PC Mode, and up to 32 digits long in Native Mode.

ASCII: ASCII notation uses a prefix of&" followed by a single
character and optionally a second ". Some examples are: &"J'', &"d '',
and-&"&". This gives you the ASCII value of the character. You can
only use printable characters. See Appendix B in the BASIC Reference
for a list of ASCII characters and their numeric values.

Variables are like electronic boxes used to store data in the computer.
Each variable is given a name, such as Denise$, and Phone. Variable
names may not change, but the numbers or characters stored in a
variable may change while the program is running.

As with constants, there are two general types of variables: numeric
and string. A numeric variable always has a numeric value. A string
variable can only have a character string value. A string variable can
have up to 255 characters in PC Mode and 65535 characters in Native
Mode.

5-1 4 BASIC Language Handbook

You can give a variable an unchanging value (such as salary equals a
certain amount) or you can set its value to be the result of calculations
or data input statements in the program (such as salary equals 10% of
sales). In either case, the variable type (string or numeric) must match
the type of data assigned to it.

If you use a numeric variable before you assign a value to it, its value
is assumed to be zero. String variables are initially assumed to be null ;
that is, they have no characters in them and have a length of zero.

How to Name a Variable

BASIC allows a variable name to be up to 39 characters long plus an
optional type character (for example, $ or %). If a variable name is
longer than 39 characters, BASIC ignores the characters between the
39th character and the type character.

The characters can be letters (uppercase or lowercase), numbers, and
decimal points. The first character must be a letter. BASIC treats
uppercase and lowercase letters in variable names or keywords as
equivalent. For example, the variable AA$ is the same as Aa$, aa$, or
aA$. Special characters that identify the type of variable are also
allowed as the last character of the name. For more information about
types, see the next section, "How to Declare Variable Types."

A variable name cannot be a reserved word, but it can contain
embedded reserved words. See "Reserved Words," earlier in this
chapter, for a list of reserved words. For example,

1 0 EXP = 5

is invalid, because EXP is a reserved word. However,

1 0 EXPONENT = 5

is okay, because EXP is embedded in the variable name.

General Information about BASIC 5-15

Note: A variable beginning with FN! (where l is a letter) is assumed to
be a call to a user-defined function. See the DEF FN statement in the
BASIC Referen ce.

How to Declare Variable Types
A variable name determines its type (string or numeric, and if numeric,
its precision).

String variable names finish with a dollar sign ($). For example,

A$ = II SALES REPORT II

The dollar sign is a variable type-declaration character. It declares that
the variable will represent a string.

A string variable with a $ character occupies four bytes of storage in
PC Mode and eight bytes in Native Mode, plus one byte for each
character in the string.

Numeric variable names can declare integer, single-, or
double-precision values.

The type-declaration characters for numeric variables are

% Integer variable

Single-precision variable

Double-precision variable

Note: If a variable name does not end with a $, %, !, or #, BASIC
assumes the variable is a single-precision number.

5-16 BASIC Language Handbook

Arrays

Examples of variable names with type-declaration characters:

PI#
MINIMUM!
N$
ABC

declares a double-precision value
declares a single-precision value
declares a string value
defaults to a single-precision value

Variable types can also be declared in another way. The BASIC
statements DEFINT, DEFSNG, DEFDBL, and DEFSTR can be
included in a program to declare the types for certain variable names.
These statements are described under "DEFtype Statements" in the
BASIC Reference. All the examples in this book assume that no
DEFtype statements are used unless they are explicitly shown in the
examples.

An array is a list or table of values that is referred to by a single name.
Each value in the array is called an element. Elements are string or
numeric variables and can be used in expressions and in BASIC
statements.

The subscript, which is the number in parentheses, indicates the
position of an element in an array. Zero is the first position unless you
explicitly change it. See the OPTION BASE statement in the BASIC
Reference.

Declaring the name and type of an array and setting the number of
elements and their arrangement within it is known as defining, or
dimensioning, the array. The maximum number of dimensions for an
array is 15.

To define an array, use the DIM statement. For example,

DIM B$(5)

This statement creates a one-dimensional, string-variable array named
B$ with a maximum of six elements. Array B$ can be thought of as a
list of character strings.

General Information about BASIC 5-17

B$(0)

B$(1)

B$(2)

B$(3)

B$(4)

B$(5)

The statement below creates a two-dimensional, numeric-variable array
named A. Since the array does not include a type-declaration character,
the array by default consists of single-precision values.

DIM A (2, 3)

Array A can be thought of as a table of rows and columns.

A(O,O) A(O, l) A(0,2) A(0,3)

A(l ,O) A(l , l) A(1,2) A(l ,3)

A(2,0) A(2 , 1) A(2,2) A(2,3)

The element in the second row, first column, is called A(1,0).

If you use an array element before you define or dimension the array,
BASIC dimensions the array with subscripts 0 through 10 for each
dimension you declare. For example, the following statement,

10 X(5) = 2356.88

creates an array, X, with a subscript range 0 through 10.

5-18 BASIC Language Handbook

Here is a sample program:

Ok LIST
1 0 DIM YEARS(3,4)
20 YEARS(2,3)=84
30 FOR ROW=O TO 3
40 FOR COLUMN=O TO 4
50 PRINT YEARS(ROW,COLUMN);
60 NEXT COLUMN
70 PRINT
80 NEXT ROW

Ok RUN
0 0 0 0 0
0 0 0 0 0
0 0 0 84 0
0 0 0 0 0

Ok

In this program, line 10 dimensions an array with 20 elements (4 rows
and 5 columns). Line 20 assigns the value of 84 to the array element at
position 2,3. The nested loops in lines 30-80 print the array as a 4-by-5
table.

Note: A simple variable can have the same name as an array variable
because A$ is different from any of the elements in array A$().

Numeric Expressions and Operators

A numeric expression can be simply a numeric constant or variable. It
can also be an operator, combining other numeric expressions to
produce a single numeric value.

General Information about BASIC 5-19

Numeric operators perform mathematical or logical operations on
numeric values to produce a value that is a number. BASIC numeric
operators can be divided into the following categories:

• Arithmetic

• Relational

• Logical

• Functions

Arithmetic Operators

The arithmetic operators perform the usual arithmetic operations in the
standard mathematical order of preference; that is, when an expression
contains more than one operation, they are carried out in the following
order:

Operator

" or**

* I

MOD

+-

5-20 BASIC Language Handbook

Operation

Exponentiation

Negation

Sample Expression

X" Y or X**Y

-X

Multiplication, X*Y
Floating Point Division

Integer Division

Modulo Arithmetic

Addition, Subtraction

x\y

XMODY

X+Y
X-Y

Although most of these operations probably look familiar to you,
integer division and modulo arithmetic might need some explanation.

Integer Division: A backslash (\) denotes integer division. It rounds its
two operands to integers before dividing (unless the operand is already
an integer). Then it truncates the quotient to an integer. For example,

Ok LIST
1 0 A = 10\ 4
20 B = 25.68\6.99
30 PRINT A;B

Ok RUN
2 3

Ok

Modulo Arithmetic: Modulo arithmetic is denoted by the operator
MOD. It gives the integer value that is the remainder of an integer
division. For example,

Ok LIST
1 0 A = 7 MOD 4
20 PRINT A

Ok RUN
3

Ok

This result occurs because 7\4 is 1, with a remainder of 3.

General Information about BASIC 5-21

Numeric Functions

MOD rounds its two operands to integers before dividing (unless the
operand is already an integer). For example, in the following statement,

Ok PRINT 25 . 68 MOD 6.99
5

Ok

the result is 5 because MOD rounds 25.88 and 6.99, and 26\ 7 is 3,
with the remainder 5.

A function is used like a variable in an expression to call a
predetermined operation that is to be performed on one or more
operands. BASIC has some built-in numeric functions, such as SQR
(square root) and SIN (sine).

You can also define your own numeric functions using the DEF FN
statement.

5-22 BASIC Language Handbook

Numeric Precision

BASIC stores numbers as integers, single-precision reals, or
double-precision reals. The following table summarizes the range and
accuracy of these numbers.

PC Mode

Single Double
Integer Precision Precision

Range -32768 to 2.9E-39 to 2.9D -39 to
32767 1.7E + 38 1.7D+38

Storage 2 bytes 4 bytes 8 bytes
7 digits 17 digits

Accuracy Exact 6 digits 16 digits

Printed All digits 7 digits 16 digits

Native Mode

Single Double
Integer Precision Precision

Range - 231 to l.41E - 45 to 4.950 - 324 to
231_ 1 3.40E+ 38 1. 79D+ 308

Storage 4 bytes 4 bytes 8 bytes
7 digits 17 digits

Accuracy Exact 7 digits 16 digits

Printed All digits 7 digits 16 digits

Note: The values given for single- and double-precision reals apply to
both positive and negative numbers.

For more information about storage of numbers, see Appendix B,
"How Variables are Stored," in this handbook.

General Information about BASIC 5-23

How BASIC Converts Numbers from One Precision to Another
When necessary, BASIC converts a number from one precision to
another according to the following rules:

l . If a numeric value of one precision is assigned to a numeric
variable of a different precision, BASIC converts the number to the
precision declared in the target variable name. For example,

Ok LI ST
10 A% = 23 . 42
20 PRINT A%

Ok RUN
23

Ok

prints A% as an integer, not as a real number.

2. Rounding as opposed to truncation , occurs when converting a
higher precision value to a lower precision value (for example,
changing from double- to single-precision values). For example,

Ok LIST
10 c = 55.8834667#
20 PRINT C

Ok RUN
55.88347

Ok

This affects not only assignment statements (for example, I0/0=2.6
results in I0/0=3), but also function , expression, and statement
evaluations. For instance, TAB(4.2) goes to the fourth position;
A(l.8) is the same as A(2); and X=l l.6 MOD 4 results in a value of
0 for X.

5-24 BASIC Language Handbook

Note: When the digit to be rounded is 5, Native Mode rounds the
number down and PC Mode rounds it up. For example, the
following program,

Ok 10 a% = 2. 5
Ok 20 PRINT a%

prints 2 in Native Mode, and 3 in PC Mode.

3. If you convert from a lower precision to a higher precision number,
the resulting higher precision number cannot be any more accurate
than the lower precision number. For example, in PC Mode, if you
assign a single-precision value (A) to a double-precision variable
(B#), only the first six digits of B# will be accurate because only six
digits of accuracy were supplied with A. The error can be bounded
using the following formula:

ABS(B#-A) < 6. 3E-8 * A

That is, the absolute value of the difference between the printed
double-precision number and the original single-precision value is
less than 6.3E-8 times the original single-precision value. For
example,

Ok LIST
10 A= 2.04
2 0 B# = A
30 PRINT A; B#

Ok RUN
2.04 2 . 039999961853027

Ok

Note: Be careful when using both single- and double-precision
numbers in the same expression because it might reduce accuracy.

Numeric Precision and Expression Evaluation

The precision in which an expression is evaluated depends on the
numeric precision of the operands, and on the type of operator used.
The following concepts apply.

General Information about BASIC 5-25

Operand Precision

• In PC Mode, single-precision real numbers have greater precision
(accuracy) than integers.

• In Native Mode, the opposite is true.

• In both Modes, double-precision real numbers have greater
precision than single-precision real numbers and integers. (See the
table under "Numeric Precision.")

Operator Precision

• The +, - ,*/' and ** operators work in Native Mode in the
minimum precision necessary and in PC Mode in the minimum
floating-point precision necessary.

• The floating-point division operator (/) uses the minimum
floating-point precision necessary.

• The MOD and \ operators work in integer.

These concepts translate into the following rules:

• The operators MOD and \ convert their two operands to integers
before dividi ng and returning an integer.

• For the +,-,*,/,1' , and ** operators, if their two operands are of the
same numeric type, then the operation is evaluated in the precision
of that type.

Exception 1: In PC Mode, these operators convert two integer
operands to single-precision reals before evaluating the expression
and returning a single-precision real number. For example,

Ok PRINT 32000 * 32000
1. 024E+09

Ok

5-26 BASIC Language Handbook

Exception 2: In Native Mode, the floating-point division operator
(/) converts two integer operands to double-precision reals before
evaluating the expression and returning a double-precision real
number. For example,

Ok PRINT 2/ 3
. 6666666666666667

Ok

• For the +, - ,*,// ', and ** operators, if their two operands are of
mixed types, then BASIC converts the operands to double-precision
real numbers before evaluating the expression and returning a
double-precision real number.

In the following program, BASIC converts the 7 to a
double-precision real number, performs the division in double
precision and returns a double-precision result, D#.

Ok LIST
10 D# = 6# / 7
20 PRINT D#

Ok RUN
.8571428571428571

Ok

Exception: In PC Mode, if one operand is an integer and the other
is a single-precision real number, then BASIC converts the integer
to a single-precision real number before evaluating the expression.
For example,

Ok LIST
10 D = 6.0 / 7
20 PRINT D

Ok RUN
. 8571429

Ok

General Information about BASIC 5-27

Techniques for Formatting Numeric Output

BASIC has built-in statements and functions that you can use in your
programs to display numbers in the desired format and with the
desired accuracy.

To display program results in decimal notation, use the PRINT
USING and LPRINT USING statements. These statements let you
choose the format in which the results will be printed or displayed. For
example,

Ok LIST
10 FOR I=4 to 5 STEP .1
20 PRINT USING " #·# ";I;
30 NEXT

Ok RUN
4.0 4.1 4.2 4.3 4.4 4 . 5 4.6 4.7 4.8 4.9 5.0
Ok

Relational Expressions and Operators

Relational operators compare two values. You can use the relational
operators to compare two numeric values or two string values. The
result of the comparison is either true (-1) or false (0). This result is
usually used to make a decision regarding program flow. See the IF
statement in the BASIC Reference.

5-28 BASIC Language Handbook

Operator

<> or ><

<

>

< =or=<

> =or=>

Numeric Comparisons

Relation Tested

Equality

Inequality

Less than

Greater than

Less than or equal to

Greater than or equal to

Sample Expression

X=Y, X$=Y$

X<>Y
X><Y

X< Y

X> Y

X <=Y
X=<Y

X=> Y
X=> Y

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. The expression
(X + Y < (T-1)/Z) is true (-1) if the value of X plus Y is less than
the value of T - 1 divided by Z.

BASIC makes sure that the two relational operands are of the same
type. If the operands are of different (mixed) numeric types, BASIC
converts both operands to double-precision real values before
comparing them. (Exception: In PC Mode, if BASIC compares an
integer with a single-precision real value, it converts the integer to
single precision.) For example, in Native Mode, (X% = Y) is a
double-precision floating point comparison and is the same as
(CDBL(X%) = CDBL(Y)). In PC Mode, (X% = Y) is a
single-precision floating-point comparison and is exactly the same as
(CSNG(X%) = Y). If the two relational operands are already of the
same numeric type, BASIC does not convert them before comparison.

General Information about BASIC 5-29

String Comparisons

String comparisons can be thought of as alphabetical. That is, a string
is less than another if the first letter of the string comes before the
other one alphabetically. Lowercase letters are greater than their
uppercase counterparts. Numbers are less than letters.

The way two strings are actually compared is by taking one character at
a time from each string and comparing the ASCII codes. See Appendix
B, "ASCII Character Codes," in the BASIC Reference. If all the ASCII
codes are the same, the strings are equal. Otherwise, as soon as the
ASCII codes differ, the string with the lower code number is less than
the string with the higher code number. If the end of one string is
reached during string comparison, the shorter string is said to be less.
Leading and trailing blanks are significant. For example, all the
following relational expressions are true (that is, the result of the
relational operation is -1):

"AA" < "AB"
"filename" = "filename"
" X& " > "X#"
"kg" > "KG"
"RICH" < "RI CHE "
B$ < 11 718 11 (where B$ = 11 12343 11

)

All string constants used in comparison expressions must be enclosed
in quotation marks.

Logical Expressions and Operators

Logical operators perform logical , or Boolean, operations on integer
values. Just as the relational operators are usually used to make
decisions regarding program flow, logical operators are usually used to
connect two or more relations and return a true or false value to be
used in a decision. See the IF statement in the BASIC Reference.

5-30 BASIC Language Handbook

Logical Operators

A logical operator takes a combination of true-false values and returns
a true or false result. An operand of a logical operator is considered to
be true if it is not equal to zero (like the -1 returned by a relational
operator), or false if it is equal to zero. The number is calculated by
performing the operation bit by bit.

The logical operators are

• NOT (logical complement)

• AND (conjunction)

• OR (disjunction)

• XOR (exclusive OR)

• IMP (implication)

• EQV (equivalence)

Each operator returns results as indicated in the following table. T
indicates a true, or nonzero value. F indicates a false, or zero value.
The operators are listed in order of precedence.

General Information about BASIC 5-31

NOT
x NOTX
True False
False True

AND
x y XANDY
True True True
True False False
False True False
False False False

OR
x y XORY
True True True
True False True
False True True
False False False

XOR
x y XXORY
True True False
True False True
False True True
False False False

EQV
x y XEQVY
True True True
True False False
False True False
False False True

IMP
x y XIMPY
True True True
True False False
False True True
False False True

5-32 BASIC Language Handbook

The following examples demonstrate ways to use logical operators in
decisions.

IF HE > 60 AND SHE < 20 THEN 1000

In this example, the result is true if the value of the variable HE is
more than 60 and the value of SHE is less that 20.

50 IF NOT (P=-1) THEN 100

In this example, the program branches to line 100 if P is not equal to
-1. Note the NOT (P=-1) does not produce the same result as NOT P.
See the next section, "How Logical Operators Work," for an
explanation.

100 FLAG % = NOT FLAG %

This example switches a value back and forth from true (-1) to false (0).

How Logical Operators Work
Logical operators convert their operands to integers and return an
integer result. (Operands must be in the integer range or an Overflow
error occurs.) If the operand is negative, the twos complement form is
used. This turns each operand into a sequence of 16 bits. The operation
is performed on these sequences. That is, each bit of the result is
determined by the corresponding bits in the two operands, according to
the tables for the operator listed previously. A 1 bit is considered true
and a 0 bit is false.

Thus, you can use logical operators to test for a particular bit pattern.
For instance, the AND operator might be used to mask all but one of
the bits of a status flag.

General Information about BASIC 5-33

The following examples show how the logical operators work.

A % = 6 3 AND 16

Here, A% is set to 16. Because 63 is binary 111111 and 16 is binary
10000, 63 AND 16 equals 010000 in binary, which is equal to 16.

In the following example, B% is set to 8. Because -1 is binary
11111111 11111111and8 is binary 1000, -1AND8 equals binary
00000000 00001000, or 8.

B % = -1 AND 8

In the next example, C% equals 6. Because 4 is binary 100 and 2 is
binary 010, 4 OR 2 is binary 110, which is equal to 6.

C % = 4 OR 2

The next example shows how to form the twos complement of a
number. X% is 2, which is 10 binary. NOT X% is then binary
11111111 111111101 , which is-3 in decimal; -3 plus 1 is-2, the
complement of 2. That is, the twos complement of any integer is the
bit complement plus one.

X % = 2
TWOSCOMP % = (NOT X%) +
Note that if both operands are equal to either 0 or -1 , a logical
operator returns either 0 or -1.

String Expressions and Operators

A string expression can simply be a string constant or variable, or it
can combine constants and variables by using operators to produce a
single string value.

5-34 BASIC Language Handbook

Concatenation

String Functions

String operators are used to arrange character strings in different ways.
The two categories of string operators are

• Concatenation

• Function

Note that although you can use the relational operators =, < >, <, >,
< =, and >= to compare two strings, these are not considered to be
string operators because they produce an integer result, rather than a
string result. Read through "Relational Operators" earlier in this
chapter for an explanation of how you can compare strings using
relational operators.

Joining two strings together is called concatenation. Strings are
concatenated using the plus symbol (+). For example,

Ok LIST
10 COMPANY$ = "IBM"
20 TYPE$ = " Computer"
3 0 FULLNAME$ = TYPE$ + " System"
40 PRINT COMPANY$+FULLNAME$

Ok RUN
IBM Computer System
Ok

A string function is like a numeric function except that it returns a
string result. A string function can be used in an expression to call a
predetermined operation that is to be performed on one or more
operands. BASIC has built-in string functions , such as MID$, which
returns a string from the middle of another string, and CHR$, which
returns the character with the specified ASCII code.

You can also define your own string functions using the DEF FN
statement.

General Information about BASIC 5-35

Order of Evaluation

In the previous sections, the categories of numeric operations have
been discussed in their order of precedence, and the precedence of each
operation within a category was indicated in the discussion of the
category. In summary:

1. Operations within parentheses () are performed first.

2. Function calls are evaluated.

3. Arithmetic operations are performed in this order:

a. /\or **
b. unary -
c. *, I
d.
e. MOD
f. + -,

4. Relational operations are evaluated.

5. Logical operations are performed last in this order:

a. NOT
b. AND
c. OR
d. XOR
e. EQV
f. IMP

For example, in the following statement, because * is higher on the list
than+ , BASIC evaluates the expression 3 * 4 (=12), before adding it to 2.

Ok PRINT 2 + 3 * 4
14

Ok

5-36 BASIC Language Handbook

The order in which operations at the same level in the list are
performed might vary between PC Mode and Native Mode (but not
between the Compiler and the Interpreter in the same Mode). To
control the order in which the operations are performed, use
parentheses. For example,

Ok PRINT (2 + 3) * 4
20

Ok

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression BASIC Expression

X + 2Y X + Y*2

x - Y z X - Y/Z

XY
X*Y/Z z

X+Y (X + Y)/Z z
(X2)Y (XA2YY

x vz X A(YAZ)

X(- Y) X*(- Y)

Note: If you have two operators next to each other, the second
operator can only be +, - , or NOT. For example, the expression
X*-Y is legal ; BASIC understands it to be X*(-Y). However, the
expression X-*Y is not legal.

General Information about BASIC 5-37

Files

File Number

Filename

A file is a collection of information that is kept somewhere other than
in the random access memory (usually on disk). To access the
information, you must open the file with the OPEN statement. Then
you can use the file for input and/or output.

BASIC supports the concept of general device I/O files. This means
that any type of input/output can be treated as I/0 to a file, whether
you are using a disk file or you are using your computer to
communicate with another computer.

BASIC performs I/0 operations using a file number. You assign the
number to a file when you open it with the OPEN statement. A file
number can be any number, variable, or expression from 1 to 15.

The filename must conform to the operating system conventions.

• The name can be from 1 to 14 characters.

If name is longer than 14 characters, a Bad filename error occurs.

5-38 BASIC Language Handbook

Device Nam es

• Only the following characters are allowed in a name:

a through z
A through Z
0 through 9
<) I I
@ # $ % /\& !

Note: We strongly suggest that you use only lowercase letters (a -
z), digits, and the period in filenames because other characters may
have special meaning to BASIC and the operating system.

• For BASIC program files:

If the filename does not already end with .bas, BASIC appends .bas
to the filename. If adding .bas makes the filename longer than 14
characters, a Bad Filename error occurs.

Some examples of filenames for BASIC are as follows:

27hal
vdl
program 1 . bas

BASIC appends .bas to the first two filenames because the resultant
names are still within the 14-character limit.

The operating system does not support device names, but BASIC
recognizes some names as having special meaning.

General Information about BASIC 5-39

Naming Files

The device name consists of up to four alphameric characters followed
by a colon (:). The name can be in UPPERCASE or lowercase. It is a
name assigned to input/output devices and device files. Device names
and what they apply to are as follows:

KYBD: or kybd:

SCRN: or scrn:

LPTl: or lptl:

LPT2: or lpt2:

LPT3: or lpt3:

COMl: or coml:

COM2: or com2:

Keyboard. STDIN when BASIC is invoked.
Input only.

Screen. STDOUT when BASIC is invoked.
Output only.

First print file. Output.

Second print file. Output.

Third print file. Output.

Operating system device driver linked to
/dev/com I. Input and output.

Operating system device driver linked to
/dev/com2. Input and output.

A file is described by its pathname. The pathname is a string
expression in the form :

[directory] filename

The directory tells BASIC which directory contains the file. The
filename tells BASIC which file to look for.

If you specify a device name, BASIC ignores the directory and
filename.

All device names end with a colon (:). The colon is part of the device
name and you must include it whenever that device is specified.

Note: File specifications for communications files are different. The
filename is replaced with a list of options specifying such things as line
speed. See the OPEN "COM statement in the BASIC Reference for
details.

5-40 BASIC Language Handbook

If you use a string constant for the pathname, you must enclose it in
quotation marks. For example,

KILL "data"

The directory is a list of directory names separated by slashes (/).

You can use pathnames for the following commands and statements:

BLOAD
BSAVE
CHAIN
CHAIN MERGE
KILL
LOAD
REPLACE

Remember:

MERGE
NAME
NEW
OPEN
RUN
SAVE
STEP

1. A complete pathname including a directory cannot contain more
than 63 characters.

2. If you specify a device, BASIC ignores the directory and filename.

3. If you use a string constant for the path, you must enclose it in
quotation marks. For example,

11 / sales / june / report / 11

4. If you specify a file that is not in your current directory, you must
supply BASIC with a path of directory names so it can locate the file.

Tree-structured Directories

A directory is a collection of files ; each file contains a packet of
information such as a program, a letter, or a list of names and
addresses. You can find out what files are in a directory from
within the BASIC Interpreter by using the FILES Command.

General Information about BASIC 5-41

The operating system uses a special kind of file called the subdirectory.
Each subdirectory is itself a directory, containing any number of
additional files and subdirectories.

The operating system allows you to manage files with directories
known as tree-structured directories. These directories begin with the
root directory (named with a /). In addition to containing the names of
files , the root directory also contains the names of other directories
called subdirectories. Unlike the root directory, these subdirectories are
actually files. Each of them can contain any number of additional files
and subdirectories-limited only by the amount of available space on
the disk. You can find all available directories and files by searching
from the root directory.

For example, if a company has two departments, sales and accounting,
that share the computer, all the company's files can be kept on the
computer's fixed disk. The organization of the files might look like this:

ROOT

/~ /T accor~
mike a lice shannon chelle

reports reports

5-42 BASIC Language Handbook

Naming Directories

Current Directory

Directory names are in the same format as filenames. All characters
that are valid for filenames are valid for directory names. Each
directory can contain file and directory names that also appear in other
directories.

BASIC remembers which directory you are in when you start BASIC.
This is the current directory. If you enter a filename without specifying
the directory that contains the file, BASIC assumes that it is in the
current directory. You can change the current directory by using the
CHDIR statement.

If a filename is included in a path, it must be separated from the
previous directory name by a slash (/). If a path begins with a slash,
BASIC starts its search from the root directory; otherwise, the search
begins at the current directory.

Accessing Another Device

You can access another device by using the operating system command
called MOUNT. For example, imagine that you have four
subdirectories called a, b, c, and d under your root directory and you
want to access subdirectory c on another drive. You can mount the
other drive under subdirectory d on the current drive. To access
subdirectory c on the other drive, you type the following:

/ d / c / filenarne

For more information on the MOUNT command, see the IBM RT PC
AJX Operating System: Commands R eference manual.

General Information about BASIC 5-43

Redirection of Standard Input and Output

In BASIC, you can redirect BASIC input and output (I/0). Standard
input, normally read from the keyboard, can be redirected to any file
you specify in the BASIC command line. Standard output, normally
written to the screen, can be redirected to any file you specify in the
BASIC command line.

basic[n] [> stdin][>][> stdout] [- r pathname]

When redirecting standard input and output, keep in mind the
following:

• When input is redirected, all INPUT, INPUT$, INKEY$, and
LINE INPUT statements are read from the specified input file,
instead of from the keyboard.

• When output is redirected, all PRINT and WRITE statements and
error messages write to the specified output file , instead of to the
screen.

• Graphics statements are not allowed in a program with output
redirected to a file.

• File output to SCRN: still goes to STDOUT.

• If standard input is redirected and there is no pathname on the
command line, the input file must contain valid BASIC commands.

5-44 BASIC Language Handbook

Some examples of redirection of I/O follow.

basic > data. out -r my prog

In this example, data read by INPUT, INPUT$, INKEY$, and LINE
INPUT will continue to come from the keyboard. All screen output
will go into the data.out file. This includes all data printed to the screen
with the PRINT or WRITE statements, any error messages that BASIC
prints to the screen, and any data entered as part of an input statement
that is normally echoed to the screen.

basic < data. in

Here, commands and data read by INPUT, INPUT$, INKEY$, and
LINE INPUT will come from the data.in file. Data written by PRINT
will continue to go to the screen.

basic < myinput. dat > myoutput. dat -r my prog

In this example, data read by INPUT, INPUT$, INKEY$, and LINE
INPUT will come from the myinput.dat file and data written by
PRINT will go in the myoutput.dat file

basic </sales / john/ trans >>/sales / sales . dat -r myprog

In the last example, data read by INPUT, INPUT$, INKEY$, and
LINE INPUT will come from the /sales/john/trans file. Data written
by PRINT will be appended to the /sales/sales.dat file.

Note that these examples apply to both PC and Native Modes.

General Information about BASIC 5-45

Calling C Functions from BASIC

BASIC lets you call C language functions that have been linked either
with the Interpreter or with your BASIC Compiler program. See the Id
command in the IBM RT PC AIX Operating System: Commands
Reference manual for instructions on how to link.

To call a C language function , you must first declare the function in
the BASIC program using the following syntax:

EXTERNAL function name[typech] [(parameter list)]

This EXTERNAL declaration must precede any executable statements
in the program.

typech is optional. It declares the type of data returned by the function.
typech is one of the following characters:

% function returns an integer value
' function returns a single-precision value
function returns a double-precision value
$ function returns a pointer to char.

You can declare the data type of function name using the DEFtype
statement. The DEFtype statement must precede the EXTERNAL
declaration.

The default type for fun ction name is single-precision.

(parameter list) must be of the form (var, var, var, ...).

The parameter list defines the type of data that BASIC passes to the C
fu nction. All elements in the parameter list must be simple integer or
simple double-precision variables only. Integers will always suffice for
passing addresses.

5-46 BASIC Language Handbook

Calling C Functions

You can call a C function either as a single statement or as part of a
larger statement. The following are examples of valid function calls:

50 EXTERNAL func%(x, y%)
100 func%(34, v%)
120 v% = x% + func%(COS(y) - z, 9)

If necessary, BASIC converts the arguments you use to conform to the
types declared in the parameter list.

You cannot use strings or arrays as arguments to C functions. You can,
however, pass addresses. For arrays, you can use the V ARPTR
function to determine the address of the first element of the array, and
pass that address along with the dimensions of the array to the C
function . See Appendix B, "How Variables Are Stored," for
information on how BASIC stores variables. See the following section
for information on passing and returning strings.

Note: Event trapping is disabled while in external subroutines.

General Information about BASIC 5-47

Passing Strings to C Functions

To pass a string to a C function , you must first use the CCHAR
function. The format is as follows:

adr % = CCHAR(b $, c% ())

b$ represents the string you want to pass to the C function. CCHAR
takes the string, converts it to a C format, null-terminated string, and
stores it in a BASIC integer array, represented in this case by co/o().
After CCHAR has stored the string in the integer array, it returns the
address of the first element of the array, co/o(O). This is the address that
you pass to the C function when you call it. Calling the function takes
the following form:

10 0 Cfun c(adr %) or 100 x = Cf u nc (adr %)

For example, to use the C function strlen to determine the length of
string xyz$, your BASIC program would read as follows:

10 EXTERNAL strlen%(v$) 'Declare· strlen% () as
'an external function.

50 adr% = CCHAR(xyz$, xyz%()) 'Store xyz$ into xyz%()
'and put the address of
'xyz%() into adr% .

80 LenXYZ% = strlen% (adr%) 'Call strlen

Note that you can use the DIM statement to dimension the integer
array prior to using it as an argument in CCHAR. If you do so, the size
of the one-dimension array must be large enough to hold any strings
assigned to it, including the terminating null character. If not, an Array
bounds exceeded error occurs. If you decide not to dimension the
integer array, CCHAR does so automatically, creating a one-dimension
array just large enough to write the string to it.

5-48 BASIC Language Handbook

Passing Strings from C Functions
If you type your C function as a pointer to char both in the BASIC
program (with $) and in the C routine, the C function can return a
string directly to BASIC. The format looks like this:

EXTERNAL Cfunc$ () 'Cfunc$ () declared a pointer to char
X$ = Cfunc$ () 'Call Cfunc$ (), returning a string

You can use the CVP$ function to convert any null-terminated C string
into a BASIC string given the starting address of the C string as input.
This takes the following form:

x$ = CVP$ (StringAddress%)

If you have used CCHAR to store a BASIC string into a BASIC integer
array, as explained earlier in this section, you can use the CHANGE
statement to convert the integer array back to a BASIC string. Note
that the last character of the integer array must be null. For example,
the following two lines of BASIC are a roundabout way of writing the
statement abc$ = xyz$.

100 adr% = CCHAR(xyz$, xyz% ())
200 CHANGE xyz%() to abc$

'Copy xyz$ into x y z%
'Copy xyz% into abc$

If you want to use the operating system subroutine strtok(), your
program might look something like this:

10 EXTERNAL strtok$(a$, b$)

90 'This routine finds the tokens in an expression
91 'such as •a= b + c•
100 Seprtr% = CCHAR("=+ - *I ", S% ())
110 i%= 0
120 Token$(i%) = strtok$(CCHAR(Exprsn$,E%()), Seprtr%)
130 WHILE Token$(i%) <> 1111

140 i% = i% + 1
150 Token$ (i%) = strtok$ (0, Seprtr%)
160 WEND

General Information about BASIC 5-49

Demonstration Program
A demonstration program in BASIC and a C program are included
when BASIC is installed to provide an example of linking external
functions into the BASIC Interpreter. Use the following steps to run the
demonstration program.

l. Change to the login directory and copy the necessary files to your
directory:

$ cd
$ cp / usr / basic / clink.bas
$ c p / usr / basic / strtok2.c

2. Compile the C program to generate a .o file:

$ cc -c strtok2.c

3. Use the fgrep system command to create a file containing just the
external statements, one per line:

$ fgrep external clink . bas > externals

4. Run the BASIC External Referencing Tool to produce exfn.o:

$ bert externals

5. Run the Interpreter Linker (select either PC Mode or Native
Mode). Specify the object files or archives that contain the external
references. Use the -o option to specify a name for the new BASIC
Interpreter that you are creating:

PC Mode

$ intlink strtok2.o -o mybasic

Native Mode

$ intlinkn strtok2. o - o mybasicn

You can use the strip command to reduce the size of the output
files.

6. Run the new BASIC Interpreter:

$ mybasic
LOAD" CLINK
RUN

5-50 BASIC Language Handbook

CONTENTS

Graphics 6-3
Text and Graphics Environments 6-3
Text Environment 6-4

Function Key Display 6-5
Text Statements, Functions, and Variables 6-5
Text Colors 6-6
Character and Screen Colors 6-6

Graphics Environments 6-7
Graphics Statements and Functions 6-7
Specifying Coordinates 6-8

Windows 6-8
Viewports 6-10
Initial Coordinates 6-12
Relative Coordinates (STEP) 6-14

Setting Graphics Environments 6-16
PC Mode Graphics 6-16
Native Mode Graphics 6-17

6-2 BASIC Language Handbook

Graphics

BASIC can display text, special characters, points, lines, and more
complex shapes in one color or in full color. How much of this you can
do depends on what hardware you have.

Text and Graphics Environments

BASIC offers two basic kinds of screen display environments, Text and
Graphics.

Text is the minimum environment provided for all displays. It is the
default environment for BASIC. In it you can print letters, numbers,
and all the special characters listed in Appendix B of the BASIC
Reference. You can draw pictures using the special characters. You can
also create blinking, reverse image, invisible, and highlighted characters
by setting options in the COLOR statement.

If you have a color display and it is connected to a color adapter, you
can vary the colors that appear on the screen. If you do not have color
hardware, your screen can only show two colors: one dark, and one
light.

The graphics environments require that you have the proper hardware,
including a graphics adapter. The graphics environments let you draw
complex pictures anywhere on the screen. They are more versatile for
creating pictures than the text environment. For purposes of discussion
in this handbook and in the BASIC Reference, the term graphics refers
only to screen displays in a graphics environment. The use of the
special characters listed in Appendix B of the BASIC Reference are not
called graphics.

Graphics 6-3

Text Environment

The text environment is the initial environment. The BASIC statement
for it is SCREEN 0. In the text environment, the screen can be
pictured like this:

Character
position 1 , 1

_\

_l

' g

I

Border
screen

Characters are shown in 25 horizontal lines across the screen. Line 1 is
at the top; line 25 at the bottom. Each line has 80 character positions.
These are numbered 1 to 80 from left to right. The line and position
numbers are used in the LOCATE statement, and in the TAB,
SCREEN, POS(O), and CSRLIN functions. For example, the character g
in the upper left corner of the screen is on line l , position 1. The
VIEW and WINDOW statements, (used in graphics) do not change
these line and position numbers.

6-4 BASIC Language Handbook

Function Key Display

Line 25 is usually used for the function key display, but you can write
text in this area of the screen if you turn off the display. See the KEY
statement in the BASIC Reference. The 25th line is never scrolled by
BASIC.

The function key display should not be used for an attached work
station with a 24-line by 80-column screen. Applications designed for
such terminals should restrict the use of the 25th line because the
results are unpredictable.

Text Statements, Functions, and Variables
Statements you can use to display text are as follows:

CLS
COLOR
LOCATE

PRINT
WRITE

The following functions and system variables can be used with text.

CSR LIN SPC
POS TAB
SCREEN

These statements and functions also work the same in the graphics
environments. They are, in general, not affected by the SCREEN,
WINDOW, and VIEW Statements.

Graphics 6-5

Text Colors

In the text environment, if you have color hardware, you may have
access to the following 16 colors:

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Yellow
7 White

8 Gray
9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 High-intensity Yellow
15 High-intensity White

Note: The actual colors might vary depending on your hardware.

Character and Screen Colors

You can set the color for each text character, and for the box on the
screen around the character. To do this, use the color numbers (listed
with each color in the table above) in the COLOR character%, screen%
statement. For example, the statement

Ok COLOR 6,4

will get you yellow (6) characters on a red (4) background. You can use
all 16 colors for the characters. Only colors 0 through 7 are available
for the screen. You can also make the characters blink by adding 16 to
the color number.

6-6 BASIC Language Handbook

Graphics Environments

The graphics environments let you draw lines, circles, graphs, and other
complex figures on graphics displays. Graphics are available only if you
have a graphics adapter.

BASIC offers several different graphics environments with varying
degrees of resolution and numbers of colors available. These
environments are set using the SCREEN statement (see "Setting
Graphics Environments" later on in this chapter for more information).

Note: Graphics statements are not allowed when output is redirected to
a file.

Graphics Statements and Functions

The BASIC statements used for graphics are as follows:

ASK
CIRCLE
COLOR
DRAW
GET
LINE
PAINT

PRESET
PSET
PUT
SCREEN
VIEW
WINDOW

The graphics functions are as follows:

PMAP
POINT

Graphics 6-7

Specifying Coordinates

Windows

BASIC graphics offers the flexibility to write powerful graphics routines
expressed directly in the numbers you are working with. It also allows
you to have your routines automatically adapt to a variety of terminals.

In order to do this, you should think not in terms of physical points on
a screen, but of points on a plane that extends to infinity in all
directions. This plane is called a problem space or a world coordinate
space. BASIC references points on this plane using a world coordinate
system. Conceptually, this system has an x and a y axis, each running
from - infinity to + infinity.

Since the graphics in any one program need to refer only to a relatively
small number of points on the infinite plane, it is useful to focus our
attention on a rectangular section on the plane. This rectangular
section, called a window, contains the points relevant to our program
that appear on the screen. The dimensions of the window vary from
program to program.

When you begin using graphics commands in a program, you should
first define the x and y dimensions of the window you are using. You
can also think of it as setting the scales of the x and y axes that you use
to refer to points in the window. These window points may or may not
correspond on a one-to-one basis to the physical points on your screen.
BASIC converts them for you.

6-8 BASIC Language Handbook

You define the x and y dimensions by using the WINDOW statement.
For example, if your routine were to plot points representing stock
market averages for the years 1950 to 1970, you might want to have a
window extending from 1950 to 1970 on the x axis, and from 100 to
1000 on the y axis:

1950,1000 1970,1000

y increases

y decreases

1950,100 1970,100

The statement to define the window would read:

Ok WINDOW (1950,100)-(1970,1000)

You can then plot points in the window using coordinates defined in
terms of years and stock averages. For example, the statement

Ok PSET (1960,550)

would draw a point in the center of the window. Any points drawn
beyond the edges of the window do not appear on the screen.

Graphics 6-9

Viewports

Adding the word SCREEN to the WINDOW statement sets the
numerically lower ends of the X and Y axes in the upper left corner
instead of the lower left corner. For example, the statement

Ok WINDOW SCREEN (1950,100)-(1970, 1000)

defines this window setting:

1950, 1000 1970,1000

y increases

y decreases

1950,100 1970,100

Normally, when you define a window, it fills the entire screen. It is
possible, however, to place the window within a specific area of the
screen. This area is called the viewport. It lets you place and use
several windows on the screen, one after the other, without disturbing
the rest of the screen.

6-10 BASIC Language Handbook

Points plotted outside the viewport are clipped, that is they do not
appear on the screen, but BASIC remembers what they were. hey may
appear later on the screen if you zoom out by changing the WINDOW
settings and redrawing the object. You may get an Overflow error if a
WINDOW coordinate translates into a viewport coordinate exceeding
plus or minus 32768.

You use the VIEW statement to set up a viewport and to tell BASIC
where to place it on the screen. The (x l ,yl) and (x2,y2) options of
VIEW designate the upper left and lower right-hand corners of the
viewport. They use the coordinates of the screen's current graphics
environment, with the numbering starting at 0,0 in the upper left
corner of the screen.

PC Mode: In PC Mode there are 320-by-200 points on the screen in
medium resolution, and 640-by-200 points in high resolution. So, to
place the previously mentioned stock average window in the right half
of a medium resolution PC Mode screen, you would need the following
statements:

10 SCREEN 1
20 VIEW (160,0)-(319,199)
30 WINDOW (1950,100)-(1970,1000)

'Medium resolution
'Viewport on right
'Window in viewport

You can later reset the viewport to the left half of the screen, VIEW
(0,0)-(159,199), to place and use the same or another window there.

Native Mode: In Native Mode, the number of points available on the
screen is not predefined. It is a function of the number of physical
points on the screen, and of the current graphics environment.
Therefore, before you use the VIEW statement you need to find out
how many points are actually available. You can do this by using an
ASK statement, as shown in the following example.

10 SCREEN 1 'Set graphics environment 1
20 ASK VIEW x%,y% 'Number of points available
30 VIEW (x% / 2,0)-(x%-1,y%-1) 'Viewport on right
40 WINDOW (1950,100)-(1970,1000) 'Window in viewport

Note: You cannot use the ASK VIEW statement in the text
environment (SCREEN 0).

Graphics 6-11

Initial Coordinates

Whenever BASIC executes a SCREEN statement to put the screen in a
graphics environment, it establishes the following initial conditions:

Viewport: The starting viewport is the entire screen.

Windows: The initial dimensions of the window are those of the screen
in the current graphics environment. Numbering starts at (0,0) in the
upper left comer of the screen.

In PC Mode, the initial dimensions for medium resolution (SCREEN
1) are

Ok WINDOW SCREEN (0,0)-(319,199) ' initial window

o,o 319,0

0,199 319,199

6-12 BASIC Language Handbook

In PC Mode, for high resolution (SCREEN 1), and

Ok WINDOW SCREEN (0, 0) - (639, 199) 'initial window

o,o 639,0

I

0) 199
0

639, 199

for high resolution (SCREEN 2).

Graphics 6-13

In Native Mode the initial dimensions depend on your hardware
configuration. Use the ASK VIEW statement to find out what they are.
For example,

ASK VIEW x%,y% 'ASK gets the size of the screen
WINDOW SCREEN (0,0) - (x% - 1,y% - 1) 'initial window

o,o xi - 1 , 0

O,y%-1 x% - 1 ,y%-1

Relative Coordinates (STEP)

Normally, when you specify a point on the screen, you give the
coordinates in the form (x,y), where x is the horizontal position, and y
is the vertical position. This form is known as the absolute form and
refers to the actual coordinates of the point in the window.

6-14 BASIC Language Handbook

There is another way to show coordinates, known as relative form.
Using this form you tell BASIC where the point is, relative to the fast
point referenced. The last point referenced is the last point plotted by a
graphics statement. Initially, after a SCREEN statement, the last point
referenced is the center of the screen. After a CLS statement, it is the
center of the viewport. Later statements change the last point
referenced. What each graphics statement sets as the last point
referenced is indicated in the discussion of that statement in the BASIC
Reference. The last point referenced may fall outside the viewport.

To designate a point relative to the last point referenced, you use the
keyword STEP:

STEP (xoffset,yoffset)

You indicate inside the parentheses the offset (distance) in the
horizontal and vertical directions from the last point referenced.

The following example shows use of both forms of coordinates:

Ok List

Ok

100 SCREEN 1
110 WINDOW (1,1)-(100,100)
120 PSET (20,70)
130 PSET STEP (10,-20)

'absolute form
'relative form

In this example, PSET (20, 70) draws a point at window coordinates
(20, 70), which becomes the last point referenced. PSET STEP (10,-20)
draws a point 10 points to the right, and 20 points down from the last
point referenced, at coordinates (30,50).

Graphics 6-15

Setting Graphics Environments

PC Mode Graphics

PC Mode and Native Mode use different methods to set the current
graphics environment (that is, the number of points on the screen, and
the colors available).

Before you run a BASIC program that uses a graphics terminal in text
mode (SCREEN 0) you should set the system variable $TERM to the
graphics terminal type to be used. For example:

$ TERM=ibrn5154
$ export TERM

PC Mode graphics offers two graphics environments, medium
resolution (SCREEN 1) and high resolution (SCREEN 2).

Medium Resolution: There are 320 horizontal and 200 vertical points
on the screen in the PC Mode, medium resolution environment.
Medium resolution is turned on using the SCREEN 1 statement as
follows:

Ok SCREEN 1

If your hardware supports it, the medium resolution environment lets
you work with four colors, numbers 0 through 3. The colors on your
hardware might be as follows:

Number Color

0
1
2
3

Black
Blue
Red
White

For example, the following statement sets the background color to red (2).

Ok COLOR 2

To draw a blue (1) circle, you can use the circle statement as follows:

Ok CIRCLE (150,100), 50, 1

You can still display text characters on the screen when you are in a
graphics environment. The medium resolution environment can
display 25 lines of 40 characters.

6-16 BASIC Language Handbook

High Resolution: In high resolution there are 640 horizontal and 200
vertical points. High resolution is turned on by the SCREEN 2
statement.

High resolution has only two colors: black (0) and white (1). When you
print text (characters) in high resolution, you get 80 characters per line.

Native Mode Graphics

Graphics Environments: A display with graphics capability may be able
to handle several graphics environments in Native Mode. The
environments available depend on your hardware. To find out what is
possible with your hardware, use the ASK statement. For example, the
statement

ASK SCREEN environ%

assigns to the variable environ% the number of graphics environments
your hardware can handle. If environ% is 0, then the hardware can
only show text. If, for example, environ% is 3, then the hardware can
handle text, and three graphics environments: 2 color, 4 color, and 16
color.

You can then tell BASIC which graphics environment you want by
using the SCREEN n statement. For example, if your hardware handles
three graphics environments, (environ%= 3), the use of one of the
following screen statements switches you into the corresponding
environment:

SCREEN 0
SCREEN 1
SCREEN 2
SCREEN 3

Text environment
2 color graphics environment
4 color graphics environment
16 color graphics environment

The actual resolution available in each environment depends on your
hardware. Use the ASK VIEW x%,y% statement to find out what it is.
See "Viewports" earlier in this chapter.

Graphics 6-17

Color: To find out how many colors are actually available in the
current graphics environment, use the ASK COLOR statement. For
example, the statement

ASK COLOR color%

assigns to the variable color% the number of colors available in the
current graphics environment. If it is available, graphics environment 1
(SCREEN 1) has two colors available, black (0), and white (1).
Graphics environment 2 (SCREEN 2), may have four colors available,
black (0), blue (1), red (2), and white (3). Graphics environment 3
(SCREEN 3), may have available the 16 colors listed earlier under
"Text Colors." What the actual colors are will depend on your
hardware.

Viewports and Coordinates: Using the statement

ASK VIEW x%,y%

returns the number of points available on the x and y axes in the
current graphics environment. You can use this information to set up
the viewport, as explained earlier in "Viewports."

Text: Native Mode Graphics prints characters eight points high and
eight points wide. As in the text environment, there are 80 character
positions on 24 (25) text lines.

Note: You cannot use ASK VIEW in the text environment (SCREEN
0). If you do, an Illegal Function Call error occurs.

6-18 BASIC Language Handbook

The following program prints out information about your hardware:

Ok LIST

Ok

10 CLS 'Clear the screen
20 ASK SCREEN environ% 'Get number of environments
30 PRINT
40 PRINT "THE NUMBER OF ENVIRONMENTS IS:" ; environ%
50 PRINT
60 IF environ% < 1 THEN PRINT "TEXT ONLY" : END
70 FOR E% = 1 TO environ%
80 SCREEN E%
90 PRINT "ENVIRONMENT #" ; E%
100 ASK COLOR coli 'Get number of colors
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

PRINT "COLORS ·"
FOR ci = 0 TO coli - 1

PRINT ci 'Print the color number
LINE (20,C%*8)-(80,(C%+1)*8-1),C%,BF 'Draw a box

NEXT C%
PRINT
ASK VIEW X%, Y%
PRINT
PRINT "THERE ARE " ; X% ; " HORIZONTAL POINTS"
PRINT "AND " ; Y% ; "VERTICAL POINTS"
PRINT
INPUT "PRESS ENTER TO CONTINUE: " ; ANY$
PRINT
NEXT E%
END

Graphics 6-19

6-20 BASIC Language Handbook

CONTENTS

Appendix A. BASIC Input and Output A-5
Specifying File Names A-5
Data Files - Sequential and Random Input and Output A-5

Sequential Files A-6
Creating and Accessing a Sequential File A-6
Adding Data to a Sequential File A-8

Random Files A-8
Creating a Random File , A-9
Accessing a Random File A-10

Appendix B. How Variables are Stored B-1
PC Mode B-1
Native Mode B-3

Appendix C. Communications C-1
Opening a Communications File C-1

Communications I/O C- 1
GET and PUT for Communications Files C-2
I/O Functions C-2
INPUT$ Function C-3
A Sample Program C-4

Notes on the Program C-5
Linking to Operating System Device Drivers C-6

Appendix D. Control Sequences D-1
Key Name D-1
Code D-1

Appendix E. Converting Programs to IBM RT PC E-1
BASIC E-1
File I/O E-1
Graphics E-1
IF. . .THEN E-2
Line Feeds E-3
Logical Operations E-3
MAT Functions E-4
Multiple Assignments E-4
Multiple Statements E-4
PEE Ks and PO KEs E-4
Relational Expressions E-5
Remarks E-5
Rounding of Numbers E-5

A-2 BASIC Language Handbook

Scan Codes . E-6
Sounding the Bell E-6
Sound Statement E-6
String Handling E-7
Use of Blanks E-8
Other E-8

Appendix F. BASIC Installation F-1
Installation Procedure F-1

BASIC Input and Output A-3

A-4 BASIC Language Handbook

Appendix A. BASIC Input and Output

This appendix describes procedures and special considerations for using
input and output. It contains lists of the commands and statements
that are used with files , and explanations of how to use them. Several
sample programs are included to help clarify the use of data files. If
you are new to BASIC or if you are getting file 1/0 errors, read these
procedures and program examples thoroughly to make sure that you
are using all the file 1/0 statements correctly.

Note: You will need to convert data files created under BASICA to
IBM RT PC. Use the operating system dosread utility to do this.

Specifying File Names

Filenames for files must conform to the operating system naming
conventions for BASIC to be able to read them. See "Naming Files" in
Chapter 5 of this manual to be sure you are specifying your files
correctly.

Data Files - Sequential and Random Input and
Output

Two types of data files can be created and accessed by a BASIC
program: sequential files and random access files.

BASIC Input and Output A-5

Sequential Files

Sequential files are easier to create than random files , but are limited in
flexibility and speed when it comes to accessing the data. The data that
is written to a sequential file is stored sequentially, one item after
another, in the order that it is written. Each item is read back in the
same way, from the first item in the file to the last item.

The statements and functions used with sequential files are as follows:

CLOSE
EOF
INPUT#
INPUT$
KILL
LINE INPUT#
LOC

LOF
NAME
OPEN
PRINT#
PRINT # USING
WRITE#

Creating and Accessing a Sequential File

To create a sequential file and access the data in it, include the
following steps in your program:

1. Open the file for output or append using the OPEN statement.

2. Write data to the file using the PRINT #, WRITE #, or PRINT #
USING statements.

3. To access the data in the file , you must close the file (using
CLOSE) and reopen it for input (using OPEN).

4. Use the INPUT # or LINE INPUT # statements to read data from
the sequential file into the program.

A-6 BASIC Language Handbook

These steps are shown in PROGRAM!:

Ok LIST
10 REM PROGRAM1 - SEQUENTIAL FILES
20 OPEN "data" FOR OUTPUT AS # 1 'STEP 1
30 FOR I=1 TO 100 WRITE #1,I I STEP 2
50 NEXT
60 CLOSE #1 'STEP 3
70 OPEN "I" '# 1 ' "data"
80 WHILE NOT EOF(1)
90 INPUT #1,A
100 PRINT A
11 0 WEND
120 CLOSE:END

Ok

Notice the two ways of writing the OPEN statement in line 20 and line 70.

In line 80 the EOF function tests for end of file. This usage prevents an
Input past end error.

A program that creates a sequential file can also write formatted data
to the file with the PRINT # USING statement. For example, the
statement

PRINT #1, USING"####-## "; A,B,C,D

can be used to write numeric data to the file without explicit
delimiters. The space at the end of the format string separates the items
in the file.

The LOC function, when used with a sequential file, returns the
number of characters that have been written to or read from the file
since it was opened. The LOF function returns the number of
characters allocated to the file.

BASIC Input and Output A-7

Adding Data to a Sequential File

Random Files

To add data to a sequential file, you cannot simply open the file for
output and start writing data. When you open a sequential file for
OUTPUT, you erase its current contents. Instead you should open the
file for APPEND. See the OPEN statement in the BASIC Reference for
details.

Creating and accessing random files requires more program steps than
creating and accessing sequential files, but there are advantages to using
random files. For instance, numbers in random files are usually stored
in binary formats, while numbers in sequential files are stored as ASCII
characters. Therefore, in many cases random files require less space
than sequential files.

The biggest advantage to random files is that data can be accessed
randomly. It is not necessary to read through all the files up to the
point where the information is stored as with sequential files. This is
possible because the information is stored and accessed in distinct units
called records. Each record is numbered and of the same size, as
specified by the programmer.

Records can be any length up to 32767 bytes. The size of a record is
not related to the size of blocks in the file system.

The statements and functions used with random files are as follows:

CLOSE
FIELD
GET
KILL
LOC

LOF
NAME
OPEN
PUT

A-8 BASIC Language Handbook

Statements and functions used to convert and move data into or out of
random file buffers are as follows:

CVD
CVI
CVS
LSET /RSET /MID$

Creating a Random File

MKD$
MKI$
MKS$

The following program steps are required to create a random file:

1. Open the file for random access. For example, this line

20 OPEN "datay" AS #1 LEN=32 'STEP

specifies a record length of 32 bytes. If the record length is omitted,
BASIC assumes that it is 128 bytes.

2. Use the FIELD statement to allocate space in the random buffer for
the variables that will be written to the random file.

30 FIELD #1, 20 AS N$, 4 AS A$, 8 ASP$ 'STEP 2

3. Use LSET, RSET, or MID$ to move the data into the random
buffer. Numeric values must be made into strings when placed in
the buffer. To do this, use the make functions: MKI$ to make an
integer value into a string; MKS$ for a single-precision value; and
MKD$ for a double-precision value.

90 LSET N$ = X$
100 LSET A$= MKS$(AMT)

'STEP 3
'STEP 3

4. Write the data from the buffer to the file using the PUT statement.

120 PUT #1, CODE% 'STEP 4

BASIC Input and Output A-9

These steps are shown in PROGRAM2.

Note: Do not use a string variable that has been defined in a FIELD
statement in an input statement or on the left side of an assignment
(LET) statement. This causes the pointer for that variable to point into
string space instead of the random file buffer.

Examine PROGRAM2. It writes to a random file the information
entered at the keyboard. Each time the PUT statement in line 120
executes, it writes a record to the file. The two-digit code that is input
in line 40 becomes the record number.

Ok LIST

Ok

Accessing a Random File

10 REM PROGRAM2 - CREATE A RANDOM FILE
20 OPEN "datay" AS #1 LEN=32 'STEP 1
30 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$ 'STEP 2
40 INPUT "2-DIGIT CODE"; CODE%
50 IF CODE%=99 THEN CLOSE: END
60 INPUT "NAME"; X$
70 INPUT "AMOUNT"; AMT
80 INPUT "PHONE"; TEL$
90 LSET N$ X$
100 LSET A$ = MKS$(AMT)
11 0 LSET P$ = TEL$
120 PUT #1, CODE%
130 GOTO 40

PRINT
'STEP 3
'STEP 3
'STEP 3
'STEP 4

The following program steps are required to access a random file:

1. Open the file for random access.

2 0 OPEN "datay" as #1 LEN=3 2 'STEP 1

2. U Se the FIELD statement to allocate space in the random buffer for
the variables that will be read from the file.

30 FIELD #1, 20 AS N$, 4 AS A$, 8 ASP$ 'STEP 2

A-10 BASIC Language Handbook

Note: In a program that performs both input and output on the
same random file , you can usually use just one OPEN statement
and one FIELD statement.

3. Use the GET statement to move the desired record into the
random buffer.

60 GET #1 , CODE % ' STEP 3

4. The data in the buffer can now be accessed by the program.
Numeric values must be converted back to numbers using the
convert functions: CVI for integers; CVS for single-precision values;
and CVD for double-precision values.

70 PRINT N$
80 PRINT USING "$$###.##"; CVS (A$)

' STEP 4
' STEP 4

These steps are shown in PROGRAM3.

PROGRAM3 accesses the random file that was created in
PROGRAM2. When the two-digit code is entered at the keyboard, the
information associated with that code is read from the file and
displayed.

Ok LIST

Ok

10 REM PROGRAM3 - ACCESS A RANDOM
20 OPEN "datay" as #1 LEN=3 2
30 FIELD #1, 20 AS N$, 4 AS A$, 8
40 INPUT "2-DIGIT CODE"; CODE %
5 0 IF CODE% = 99 THEN CLOSE : END
60 GET #1, CODE %
70 PRINT N$
80 PRINT USING "$$###.##"; CVS(A$)
90 PRINT P$
100 GOTO 40

FILE
'STEP 1

AS P$ 'STEP 2

'STEP 3
' STEP 4
' STEP 4

BASIC Input and Output A-11

With random files , the LOC function returns the current record
number. The current record number is the latest one used in a GET or
PUT statement. For example, the statement

IF LOC (1) > 50 THEN END

stops the program if the current record number in file# 1 is higher than 50.

A-12 BASIC Language Handbook

PC Mode

Appendix B. How Variables are Stored

This appendix contains information on how variables are stored for PC
Mode and Native Mode.

PC Mode integers range from -32768 to + 32767.

Integers are stored in two bytes aligned on a halfword boundary as:

lsb = least significant byte
msb = most significant byte

a a + 1

lsb I msb I

Single-precision floating point numbers are stored in four bytes aligned
on a word boundary as:

a a+ a+2 a+3

lsb I slmsb I exp I

Exponent bias = OX80 (128 decimal)
lsb = least significant byte
msb = most significant byte

How Variables are Stored B-1

Single-precision mantissa size = 24 bits ,.._, 7 digits.

For example,

OxOO, OxOO, OxOO, Ox80 = 0.5 (1/2)

Double-precision floating point numbers are stored in eight bytes
aligned on a word boundary as:

a a+ a + 2 a + 3 a + 4 a + 5 a + 6 a + 7

lsb I I I I I I slmsb I exp I
Exponent bias = Ox80 (128 decimal)
lsb = least significant byte
msb = most significant byte

If exp < > 0, then there is a hidden most significant bit. This is
conceptually overlaid by the sign bit.

Double-precision mantissa size = 56 bits ,.._, 17 digits.

For example,

OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, Ox40, Ox82 = 3

B-2 BASIC Language Handbook

Native Mode

A string is described by a String Descriptor Block , or SDB. The layout
of an SDB is:

a a+l a + 2 a + 3
type I len I ptr to ch I

type occupies one byte and has values:

0 short string; characters are in a+ 2 .. .
1 constant; ptr points into a constant area.
2 variable; ptr points into the heap.
3 temporary; ptr is an index into a table of pointers into the heap.
4 field; ptr points to a field descriptor block.

Native Integer range is -2,147,483,648 to +2,147,483,647.

How Variables are Stored B-3

Native integers are stored in four bytes aligned on a four-byte boundary as:

a a+

I msb I

msb = most significant byte
lsb = least significant byte

a + 2 a + 3
I I lsb I

IEEE FP (single-precision) numbers are stored in four bytes aligned on
a four-byte boundary as:

a a+ a + 2 a + 3
slexplmsb I lsb I

s = sign, 1 bit
exp = exponent, 8 bits
mantissa total size = 24 bits including hidden bit

B-4 BASIC Language Handbook

IEEE DP (double-precision) numbers are stored in eight bytes aligned
on a four-byte boundary as:

a a+ a + 2 a + 3 a + 4 a + 5 a + 6 a + 7
slexplm I I I I I I lsb I

s = sign, 1 bit
exp = exponent, 11 bits
m = most significant part of mantissa, 4 bits
mantissa total size = 53 bitsincluding hidden bit

A string is described b a String Descriptor Block, or SDB. The layout
of an SDB is:

a a+ a + 2 a + 3 a + 4 a + 5 a + 6 a + 7
type I Jen I ptr to char I

type occupies two bytes and has values:

0 short string; characters are in a+ 4 ...
1 constant; ptr points into a constant area.
2 variable; ptr points into the heap.
3 temporary; ptr is an index into a table of pointers into the heap.
4 field ; ptr points to a field descriptor block.

How Variables are Stored B-5

B-6 BASIC Language Handbook

Appendix C. Communications

This appendix describes the BASIC statements required to support
RS232 asynchronous communication with other computers and
peripherals.

Opening a Communications File

OPEN "COM allocates a buffer for input and output in the same
fashion as OPEN for other files.

Communications 1/0
Since each communications adapter is opened as a file , all input/ouput
statements that are valid for other files are also valid for
communications.

Communications sequential input statements are the same as those for
other files. They are

INPUT #
LINE INPUT #
INPUT$

Communications sequential output statements are also the same as
those for other files, and are

PRINT #
PRINT # USING
WRITE #

See "INPUT" and "PRINT" for details of coding syntax and usage.

Communications C-1

GET and PUT for Communications Files

1/0 Functions

GET and PUT are only slightly different for communications files than
for other files. They are used for fixed length I/0 from or to the
communications file. Instead of specifying the record number to be
read or written, you specify the number of bytes to be transferred into
or out of the file buffer. This number cannot exceed the value set by
the LEN option on the OPEN "COM statement.

The difficult aspect of asynchronous communication is processing
characters as fast as they are received. At rates of 1200 bps or higher, it
may be necessary to suspend character transmission from the other
computer long enough to catch up. This can be done by sending XOFF
(CHR$(19)) to the other computer and XON (CHR$(17)) when you are
ready to resume. XOFF tells the other computer to stop sending, and
XON tells it to start sending again.

Note: This is a commonly used convention, but it is not universal.
Whether it is valid depends on the protocol implemented between you
and the other computer or peripheral.

BASIC provides three functions that help determine when an overrun
condition is likely to occur. They are:

LOC(f)
LOF(f)
EOF(f)

C-2 BASIC Language Handbook

Note: A Communications buffer overflow error can occur if a read is
attempted after the input buffer is full (that is, when LOF(f) returns 0).

INPUT$ Function

The INPUT$ function is preferred over the INPUT # and LINE
INPUT # statements when reading communications files , since all
ASCII characters may be significant in communications. INPUT # is
least desirable because input stops when a comma or carriage return is
seen. LINE INPUT # stops when a carriage return is seen.

INPUT$ allows all characters read to be assigned to a string.
INPUT$(n,f) returns n characters from the #f file. The following
statements can be used for reading a communications fi le:

10 WHILE NOT EOF(1)
20 A$= INPUT$(LOC(1), #1)

(process data returned as A$)

100 WEND

When there are characters in the buffer, line 20 assigns them to A$,
and they are processed. If there are more than 255 characters in the
buffer, only 255 are returned at a time to prevent String overflow. Since
EOF(l) is false, input continues until the input buffer is empty.

To process characters quickly, avoid examining every character as you
receive it. If you are looking for special characters (such as control
characters), you can use the INSTR function to find them in the input
string.

Communications C-3

A Sample Program

The following program allows the IBM RT PC computer to be used as
a conventional dumb terminal in a full duplex mode. This program
assumes a 300 bps line· and an input buffer of 256 bytes.

Ok
10 REM dumb terminal example
20 'set screen to text environment
40 SCREEN 0
50 'turn off key display; clear screen
60 ' make sure all files are closed
70 KEY OFF: CLS: CLOSE
80 'define numeric variables as integer
90 DEFINT A-Z
100 'define true and false
110 FALSE=O: TRUE=NOT FALSE
120 'define the XON, XOFF characters
130 XOFF$=CHR$(19): XON$=CHR$(17)
140 'open communications to file number 1,
150 ' 300 bps, EVEN parity, 7 data bits
160 OPEN "COM1:300,E,7" AS #1
170 'use screen as a file, just for fun
180 OPEN "SCRN:" FOR OUTPUT AS #2
190 'turn cursor on
200 LOCATE ,,1
400 PAUSE=FALSE: ON ERROR GOTO 9000
490 '
500 'send keyboard input to com line
51 0 B$=INKEY$: IF B$ <>"" THEN PRINT # 1 , B$;
520 'if com buffer is empty, check key in
530 IF EOF(1) THEN 510
540 'if buffer more than 1/2 full, then
550 'set PAUSE flag to say input suspended,
560 'send XOFF to host to stop transmission
5 7 0 IF LOC (1) > 1 28 THEN PAUSE=TRUE
575 PRINT #1,XOFF$
580 'read contents of com buffer

C-4 BASIC Language Handbook

Ok

Notes on the Program

590 A$=INPUT$(LOC(1),#1)
600 ' remove linefeeds to avoid double spaces
610 'when input displayed on screen
620 LFP=O
625 'look for linefeed
630 LFP=INSTR(LFP+ 1 ,A$, CHR$ (10))
64 0 IF LFP> 0 THEN MID$ (A$, LFP, 1)=" "
645 GOTO 630
650 'display com input, and check for more
660 PRINT #2,A$;: IF LOC(1)>0 THEN 570
670 'if transmission suspended by XOFF,
680 'resume by sending XON
690 IF PAUSE THEN PAUSE=FALSE
695 PRINT #1,XON$;
700 ' check for keyboard input again
710 GOTO 510
8999 'if error, print its number and retry
9000 PRINT "ERROR NO. " ;ERR: RESUME

• Asynchronous communication implies character 1/0 as opposed to
line or block 1/0. Therefore, all PRINTs (either to communications
fi le or to screen) are ended with a semicolon. This stops the
carriage return normally issued at the end of the list of values to be
printed.

• Line 90, where all numeric variables are defined as integers, is
coded because any program looking for speed optimization should
use integer counters in loops where possible.

• Note that in line 510 that IN KEY$ will return a null string if no
character is pending.

Communications C-5

Linking to Operating System Device Drivers

BASIC devices COM 1: and COM2: are connected to operating system
files coml and com2. When COM 1: or COM2: is opened in a BASIC
program, the current directory is searched for the appropriate system
file and the connection is made. If the operating system file is not in
the current directory, the file in the / dev directory is used. To link
coml or com2 to actual operating system device drivers, use the link
command (see the IBM RT PC A!X Operating System: Commands
Reference).

For example,

$ link /dev/tty1 /dev/com1

links COM 1: to the operating system device driver / dev / ttyl if the
coml file in the / dev directory is used. If the coml file is in the current
directory, the link command would be:

$ link /dev/tty1 com1

Two BASIC programs cannot li nk to the same system device driver at
the same time. Two BASIC programs can, however, be using COM 1: or
COM2: concurrently if they are linked to different device drivers. This
would be done by using coml or com2 files that reside in different
directories. For example, one program could link COM 1: to ttyl
through a file in the current directory while another program could link
COM l : to tty3 through the / dev directory.

C-6 BASIC Language Handbook

Key Name

Code

Appendix D. Control Sequences

This appendix lists the codes returned by the INKEY$ function when
non-graphic key~ are pressed on the keyboard. Graphic keys return the
same character from INKEY$ as the character on the key which was
pressed.

The Key Names are shown as the name engraved on the key top or as
a phrase describing the key function . Ctrl represents holding the Ctrl
key while pressing the following key.

The code values are given as the decimal integers returned by INKEY$.
The values in the column labelled Code are the single values returned
for the keys shown. Those in the column labelled 1-Code are the
second character of a two character sequence, the first character of
which is always decimal value 1.

Use the LEN function to get the length of the string. Sequences longer
than two characters are not listed here. Not all keyboards will return
values for all possible key combinations, and some keyboards will
return different values for some keys.

Key Name Code Key Name Code

Ctrl 2 0 Ctr! J 10
Ctrl A 1 Ctrl K 11
Ctrl B 2 Ctrl L 12
Ctrl C 3 Ctrl M 13
Ctr! D 4 Ctrl N 14
Ctr! E 5 Ctr! 0 15
Ctr! F 6 Ctrl P 16
Ctr! G 7 Ctr! Q 17

Control Sequences D-1

Key Name Code Key Name Code

Ctrl H 8 Ctrl R 18
Ctrl I 9 Ctrl S 19
Ctrl T 20 Ctrl [27
Ctrl U 21 Ctrl \ 28
Ctrl V 22 Ctrl] 29
Ctrl W 23 Ctrl 6 30
Ctrl X 24 Ctrl - 31
Ctrl Y 25 Ctrl Backspace 127
Ctrl Z 26

Key Name 1-Code Key Name 1-Code

Break 1 Keypad Center 30
Cursor Down 2 Keypad Lower Left 31
Cursor Up 3 Keypad Lower Right 32
Cursor Left 4 Do 33
Cursor Right 5 Quit 34
Home 6 Command 35
Backspace 7 Previous Command 36
Delete Line 8 Next Pane 37
Insert Line 9 Previous Pane 38
Delete Character 10 Command Pane 39
Insert Mode On 11 End 40
Insert Mode Off 12 Help 41
Clear Screen 13 Select 42
Clear to End of Screen 14 Scroll Right 43
Clear to End of Line 15 Scroll Left 44
Scroll Forward 16 Tab 45
Scroll Backward 17 Back Tab 46
Next Page 18 New Line 47
Previous Page 19
Set Tab Stop 20 Function Key 1 129
Clear Tab Stop 21 Function Key 2 130
Clear All Tabs 22 Function Key 3 131
Enter 23 Function Key 4 132
Soft Reset 24 Function Key 5 133
Hard Reset 25 Function Key 6 134
Print or Copy 26 Function Key 7 135
Last Line 27 Function Key 8 136
Keypad Upper Left 28 Function Key 9 137
Keypad Upper Right 29 Function Key 10 138

D-2 BASIC Language Handbook

Appendix E. Converting Programs to IBM RT PC BASIC

File 1/0

Graphics

Since IBM RT PC BASIC is very similar to many other microcomputer
BASICS, many BASIC programs written for other microcomputers can
be run using IBM RT PC BASIC. Some minor adjustments may be
necessary before running them with IBM RT PC BASIC. Here are
some specific things to look for when converting BASIC programs.

In IBM RT PC BASIC, you read and write information to a file by
opening the file to associate it with a particular file number; then using
the 1/0 statements that specify the file number. File 1/0 is
implemented differently in some other BASICs. Refer to the section in
Chapter 5 called "Files," and to the OPEN statement in the BASIC
Reference for more specific information.

How you draw on the screen varies greatly between different BASICs.
Refer to Chapter 6 for specific information about IBM RT PC BASIC
graphics.

Converting Programs to IBM RT PC BASIC E-1

IF ... THEN

The IF statement in IBM RT PC BASIC contains an optional ELSE
clause, which is performed when the expression being tested is false .
Some other BASICs do not have this capability. For example, in
another BASIC you may have:

10 IF A=B THEN 30
20 PRINT "NOT EQUAL"
30 PRINT "EQUAL"
40 REM CONTINUE

GOTO 40

This sequence of code functions correctly in IBM RT PC BASIC, but it
may also be conveniently recoded as follows:

10 IF A=B THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL"
20 REM CONTINUE

IBM RT PC BASIC also allows multiple statements in both the THEN
and ELSE clauses. This may cause a program written in another BASIC
to perform differently. For example,

10 IF A=B GOTO 100 : PRINT "NOT EQUAL"
20 REM CONTINUE

In some other BASICs, if the test A=B is false, control branches to the
next statement; that is, if A is not equal to B, "NOT EQUAL" is
printed. In IBM RT PC BASIC, both GOTO 100 and PRINT "NOT
EQUAL" are considered to be part of the THEN clause of the IF
statement. If the test is false, control continues with the next program
line; that is, to line 20 in this example. PRINT "NOT EQUAL" does
not execute.

This example can be recoded in IBM RT PC BASIC as follows:

10 IF A=B THEN 100 ELSE PRINT "NOT EQUAL"
20 REM CONTINUE

E-2 BASIC Language Handbook

Line Feeds

In other BASICs, the line feed character is used to continue a statement
on the next physical line. In IBM RT PC BASIC, if the underscore
appears as the last character on a line, it is interpreted as a line
continuation character.

Logical Operations

In IBM RT PC BASIC, logical operations (NOT, AND, OR, XOR,
IMP, and EQV) are performed bit-by-bit on integer operands to
produce an integer result. In some other BASICs, the operands are
considered to be simple true (non-zero) or false (zero) values, and the
result of the operation is either true or false. As an example of this
difference, consider this small program:

1 0 A=9: B=2
20 IF A AND B THEN PRINT "BOTH A AND B ARE TRUE"

This example in another BASIC will perform as follows: A is non-zero,
so it is true; B is also non-zero, so it is also true, so the program prints
BOTH A AND B ARE TRUE.

However, IBM RT PC BASIC calculates it differently: A is 1001 in
binary form, and B is 0010 in binary form, so A AND B (calculated
bit-by-bit) are 0000, or zero; zero indicates false, so the message is not
printed, and the program continues with the next line.

This can affect not only tests made in IF statements, but calculations as
well. To get similar results, recode logical expressions like the
following:

1 0 A=9: B=2
20 IF (A<> O) AND (B<> O)

THEN PRINT "BOTH A AND B ARE TRUE"

Converting Programs to IBM RT PC BASIC E-3

MAT Functions

Programs using the MAT functions available in some BASICs must be
rewritten using FOR ... NEXT loops to work properly.

Multiple Assignments

Some BASICs allow statements of the form:

1 0 LET B=C=O

to set Band C equal to zero. IBM RT PC BASIC would interpret the
second equal sign as a logical operator and set B equal to -1 if C
equaled 0. Instead, convert this statement to two assignment
statements:

10 C=O: B=O

Multiple Statements

Some BASICs use a backslash(\) to separate multiple statements on a
line. With IBM RT PC BASIC, be sure all statements on a line are
separated by a colon(:).

PEEKs and POKEs

Many PEEKs and POKEs are dependent on the particular computer
you are using. You should examine the purpose of the PEEKs and
POKEs in a program in another BASIC, and translate the statement so
it performs the same function in IBM RT PC BASIC.

E-4 BASIC Language Handbook

In particular, look at IBM RT PC BASIC's External Function's
capability. An external fu nction may be the best way to carry out the
function you require.

Relational Expressions

Remarks

In IBM RT PC BASIC, the value returned by a relational expression,
such as A> B, is either -1 , indicating the relation is true, or 0,
indicating the relation is false. Some other BASICs return a positive 1
to indicate true. If you use the value of a relational expression in an
arithmetic calculation, the results are likely to be different from what
you want.

Some BASICs allow you to add remarks to the end of a line using the
exclamation point (!). Be sure to change this to a single quote (') when
converting to IBM RT PC BASIC.

Rounding of Numbers

IBM RT PC BASIC rounds single- or double-precision numbers when
it requires an integer value. Many other BASICs truncate instead. This
can change the way your program runs because it affects not only
assignment statements (for example, 1°/0=2.5 results in 1% equal to 3),
but also affects function and statement evaluations (for example,
TAB(4. 5) goes to the fifth position, A(1. 5) is the same as A(2), and
X=l 1.5 MOD 4 will result in a value of 0 or X). Note in particular that
rounding may cause IBM RT PC BASIC to select a different element
from an array, possibly one that is out of range.

Converting Programs to IBM RT PC BASIC E-5

Scan Codes

Scan codes (keyboard codes) are not used in IBM RT PC BASIC.
Instead, control sequences are passed to BASIC by the operating
system. Refer to the KEY statement, ON KEY statement, and the
INKEY$ variable for information on using control sequences. The
control sequences passed to BASIC are listed in Appendix D of this
manual.

Sound Statement

In IBM RT PC BASIC, clock ticks occur at a rate of 128 times per
second. You may need to adjust the duration per second to get sounds
of the same length.

Sounding the Bell

Some BASICs require PRINT CHR$(7) to send an ASCII bell
character. In IBM RT PC BASIC, you may replace this statement with
BEEP, although it is not required.

E-6 BASIC Language Handbook

String Handling

String Length: Since strings in IBM RT PC BASIC are all variable
lengths, you should delete all statements that are used to declare the
length of strings. A statement such as DIM A$(1,J), which dimensions a
string array for J elements of length I, should be converted to the IBM
RT PC BASIC statement DIM A$(J).

Concatenation: Some BASICs use a comma or ampersand for string
concatenation. Each of these must be changed to a plus sign, which is
the operator for IBM RT PC BASIC string concatenation.

Substrings: In IBM RT PC BASIC, the MID$, RIGHT$, and LEFT$
functions are used to take substrings of strings. Forms such as A$(1) to
access the character at position I in A$, or A$(1,J) to take a substring of
A$ from position I to position J, must be changed as follows:

Other BASIC

X$=A$(1)
X$=A$(1,J)

IBM RT PC BASIC

X$=MID$(A$,I, 1)
X$=MID$(A$,I,J - I+ 1)

If the substring reference is on the left side of an assignment and X$ is
used to replace characters in A$, convert as follows:

Other BASIC

A$(l)=X$
A$(I,J)=X$

IBM RT PC BASIC

MID$(A$,I, 1)=X$
MID$(A$,I,J - I+ 1)=X$

Converting Programs to IBM RT PC BASIC E-7

Use of Blanks

Other

Some BASICs allow statements with no separation of keywords:

20FORI=1TOX

With IBM RT PC BASIC be sure all keywords are separated by a
space:

20 FOR I=1 TO X

The BASIC language on another computer may be different from IBM
RT PC BASIC in other ways than those listed here. You should
become familiar with IBM RT PC BASIC as much as possible in order
to be able to appropriately convert any function you may require.

E-8 BASIC Language Handbook

Appendix F. BASIC Installation

The IBM RT PC BASIC Licensed Program Product provides both the
BASIC Interpreter and the BASIC Compiler. This appendix explains
how to install the IBM RT PC BASIC Licensed Program Product.
Before you install BASIC on your system, you must have the AIX
Operating System installed.

Installation Procedure

This section describes the installation procedure. If any error messages
occur during the procedure, see the IBM RT PC Messages Reference.

Remove the BASIC diskettes from the plastic envelope in the back of
the binder. Perform the following steps to install BASIC on your
system.

1. Make sure that no one else is using the system and that no user
programs are running. If the system is not in a quiet state, problems
may occur as you install the various fi les for your licensed program
product.

2. Log in as superuser or as a member of the system group. You must
have superuser authority or be a member of the system group to
install a licensed program product. See IBM RT PC Using and
Managing the AIX Operating System for more information. After
you log in, you will see the # prompt.

3. Type installp command. Then press Enter.

installp

BASIC Installation F-1

4. The following message appears to remind you to make sure that the
system is quiet:

000- 12 3 Before you continue, you must make sure there is no other
a c tivity on the system. You should ha ve just restarted the system ,
and no other users should b e l ogged on. Refer to your messages
reference bo ok f o r mo re i nf o rmati o n .

Do yo u want t o c o ntinue with th is command ? (Y o r n)

Type y, and press Enter to continue with the installp command.

5. Insert your program diskette volume 1 in response to the prompt.
Then press Enter. You will be asked to insert subsequent volumes
at the appropriate time.

Insert the program diskette into diskette drive
' / dev / rdfO' and then press Enter .

6. In response to the prompt, type y to indicate that you wish to
continue with the installation. Then press Enter.

Th e program 'BASIC Interpreter and Compiler•
will be installed .

Do you want to do this ? (y or n)

7. If a version of this program has already been installed on your
system, a message explains that the version of the program you are
about to install is the same as or older than the version you already
have installed on your system. Indicate whether you wish to go
ahead with the installation.

You are about to install version '01 . 00.000 " of this program.
This version is the same as or older than the version currently
on your system . Do you want to do this? (y / n)
If you type y and press Enter , the
installation process begins.
Please mount volume 1 on / de v/ rfdO

Your program diskette should already be in the diskette drive
(/dev/rfdO). Type return is the same as Press Enter. As installation
continues, various files are listed on the screen as they are copied to
the fixed disk.

F-2 BASIC Language Handbook

8. When installation is complete, remove the program diskette from
the diskette drive and replaceit in its protective envelope in the
binder.

The i~stallation proc es s has completed .

9. Log off as superuser or as a member of the system group.

You may now begin using your LPP.

BASIC Installation F-3

F-4 BASIC Language Handbook

lndex-2 BASIC Language Handbook

I Special Characters I
$INCLUDE metacommand 4-12
- I option 4-5
.bas file type 5-39

Alt key 3-6
ASCII mode 3-6

APPEND A-8
arithmetic operators 5-20
array 5-17
arrow keys 3-5
ASCII notation 5-14
ASK statement 6-11 , 6-17

BASIC line 3-7
BASIC

Compiler 1-5, 4-3
Editor 3-3
installation F-1
interpreter 1-5

backslash (\) E-4
baslink 4-14
baslinkn 4-14
BEEP Statement E-6
bell 3-7
blanks E-7
binary integers 5-14
break function 3-12
break mode 3-18

C language function
call ing 5-46
passing string from 5-49
passing strings to 5-48

CCHAR function 5-48
character

add 3-15
change 3-14
delete 3-11 , 3-12, 3-14
set 5-7

CHOIR statement 5-43
color

availability 6-18
character 6-6
screen 6-6
teJ1t 6-6

COM!: 5-40
COM2: 5-40
command level 2-5
comments 5-6
communications C-1
communications files 5-40
compare

numerics 5-29
strings 5-30

Compiler
-c option 4-8
-d option 4-8
-I option 4-8
-n option 4-8 , 4-13
-o option 4-8
-p option 4-9
-s option 4-10
-v option 4-9
-w option 4-9
com mand line format 4-7
error messages 4-13
interrupt 4-13
listing 4-8

lndex-3

log on 4-3
metacommands 4-11
Native mode 4-7
n option 4-7
object linking 4-14
PC Mode 4-7
start 4-3
stdout option 4-7
warnings 4-13

console keyboard 3-3
constant

integer 5-13
numeric 5-12
real number 5-12
string 5-11

constants 5-10
CONT command 3-8
control sequences D-1 , E-6
coordinates 6-8

absolute form 6-14
initial 6-12

Ctr! key 3-7
CVP$ function 5-49

5-13
5-12

data types 5-1 0
decimal integers
decimal notation
DEF FN statement
demo. bas 4-4
demo.1st 4-5

5-22, 5-35

device names 5-39
DIM statement 5-17
direct method 2-5
directory 5-40

current 5-43
name 5-43
on another device 5-43
root 5-42

lndex-4 BASIC Language Handbook

search order 5-43
tree-structured 5-41

EDIT command 3-8
Editor

command-level 3-8
full-screen 3-8

ELSE clause E-1
error checking 3-9
exclamation point (!) E-5
executable statements 5-9
exponential notation 5-13
expression evaluation 5-25
EXTERNAL declaration 5-46

FIELD statement A-9, A-10
file 5-38

communications C-1
1/0 E-1
list 4-12
name 5-38, E-1
number 5-38
random A-8
sequential A-6
type 5-39

filename 5-38, 5-40
FILES command 5-42
function keys 3-5

display 6-5

GET statement A-11
graphics environments

setting 6-16

graphics statements 5-44
graphics

environments 6-7
functions 6-7
Native mode 6-17
PC Mode 6-16
statements 6-7

hexadecimal integers 5-14

IF ... THEN E-2
indirect method 2-6
INKEY$ 5-44
INPUT 5-44
INPUT$ 5-44
Insert mode 3-11
integer division 5-21
integers 5-13
Interpreter 1-5

-p option 2-10
-r option 2-10
-s option 2-11
-w option 2-11
command line format 2-8
debug commands 2-12
direct method 2-5
indirect method 2-6
log on 2-3
n option 2-9
starting 2-4
stdin option 2-9
stdout option 2-9
stopping 2-4

keyboard codes E-6
keys

Alt 3-6
arrow 3-5
Ctr! 3-7
cursor movement 3-9
function 3-5
numeric keypad 3-5
Program Editor 3-9
typewriter 3-5

keywords 3-6
KYBD: 5-40

LINE INPUT 5-44
line numbers

line

omit 4-8
relax 4-8

add 3-17
BASIC 3-7
cancel 3-15
concatenation
continuation
copy 3-17
delete 3-17
editing 3-16
erase 3-12
erase to end
feeds E-3
fill 3-14
length 5-6
long 5-5
numbers 5-5
replace 3-1 7
screen 3-7

LIST command

3-13
3-13, 3-14, 5-6, E-3

3-15

2-6, 3-9

Index-5

list file 4-12
LOAD command 2-6
LOC function A-7 , A-12
LOF function A-7
logical expressions 5-30
logical operations E-3
logical operator 5-31
LPRINT USING statement 5-28
LPTl : 5-40
LPT2: 5-40
LPT3: 5-40

MAT functions E-4
metacommands 4-11
MOD operator 5-21
modulo arithmetic 5-21
MOUNT command 5-43
multiple statements E-4

name
directory 5-43
file 5-38
variable 5-15

Native mode 1-4
nonexecutable statements 5-9
number conversion 5-24
numeric comparisons 5-29
numeric constants 5-12
numeric expression 5-19
numeric functions 5-22
numeric keypad 3-5
numeric operators 5-20
numeric output

formatting 5-28

Index-6 BASIC Language Handbook

numeric prec1s1on 5-23, 5-25
numeric variable 5-14

OBJECT file 4-5
object file name 4-8
octal integers 5-14
OPEN statement 5-38
Order of Evaluation 5-36

pathname 5-40
PC mode 1-4
PEEK E-4
POKE E-4
PRINT 5-44
PRINT USING statement 5-28
program

compile 4-5, 4-8
delete 3-18
entering 3-16
interrupt 3-7
lines 5-5
link 4-5
list 2-6
load 2-6
replace 2-6
run 2-7, 4-6, 4-16
save 3-18
source 4-6

PUT statement A-9

random file
accessing A-10
creating A-9

real number constants 5-12
redirect

input 2-9
input/output 5-44
output 2-9, 4-7

relational expressions E-5
relational operators 5-28
remarks E-5
REM statement 5-6
REPLACE command 2-6
reserved words 5-8
resolution

high 6-17
medium 6-16

rounding numbers E-5
RUN command 2-7

SA VE command 2-6
scan codes E-6
SCREEN I statement
SCREEN 2 statement
screen

6-16
6- 17

line 3-7
refresh 3-13

screen colors 6-6
SCREEN statement
SCRN: 5-40, 5-44
scroll

6-7

start/stop 3-12
sequential file

accessing A-6
adding to A-8
creating A-6

shell procedure 2-12
single quotes (') E-5
sound statement E-6
STEP keyword 6-15

string
concatenation 5-35, E-7
expression 5-34
function 5-35
operators 5-35

string comparisons 5-30
string constant 5-11
string handling E-7
string variable 5-14
subdirectory 5-42
syntax errors 3-18
SYSTEM command 2-4

tab 3-13
text colors 6-6
text environment 6-4
THEN clause E-2
truncating numbers E-5
typewriter keys 3-5

underscore E-3

variable 5-14
name 5-15
type 5-16
type delaration 5-16

variables
storage format B-1

viewports 6-10
VIEW statement 6-11

Index-7

window 6-8
WINDOW statement 6-9
WRITE 5-44

x axis 6-8

y axis 6-8

lndex-8 BASIC Language Handbook

--------- - ---- --- - ---- -- ------ ----- ·-

Reader's Comment Form

IBM RT PC BASIC
Language Handbook

IBM RT PC
Programming Family

SV2 l-8019

Your comments assist us in improving our products. IBM may use and
distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

For prompt resolution to questions regarding setup, operation, program
support, and new program literature, contact the authorized IBM RT PC
dealer in your area.

Comments:

L - - -
I ade1 pue PIO::!

"' c
:.::;

"' c
0
;:r
"O
Ci
LL

0
~

:J
u

~rlPI

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

:uth:nc 1nt..1 nn ::u::::P.~1....1

NO POSTA(
NECESSAF

IF MAILE[
IN THE

UNITED STA

ade1

--------- - - --- - -- - ---- - - ------ ----- ·-

Reader's Comment Form

IBM RT PC BASIC
Language Handbook

IBM RT PC
Programming Family

SV21-8019

Your comments assist us in improving our products. IBM may use and
d istribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

For prompt resolution to questions regarding setup, operation, program
support, and new program literature, contact the authorized IBM RT PC
dealer in your area.

Comments:

L - - -
I

"' c
~
Cl
c
0
<(

" 0
lL

0
~

" u

....t~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK , NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997 , Building 998
11400 Burnet Rd .
Austin , Texas 78758

NO POSTA1
NECESSAI

IF MAILEI
IN THE

UNITED STA

adei r

IBM RT PC BASIC Language Handbook SV21-8019

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its organ
ization, or subject matter , with the understanding that IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you . Please take a few minutes to evaluate this book as soon as you become
familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may improve this book.

y N Is the purpose of this book clear?

y N ls the table of contents helpful?

y N ls the index complete?

y N Are the chapter titles and other headings meaningful?

y N ls the information organized appropriately?

y N Is the information accurate?

y N ls the information complete?

y N Is only necessary information included?

y N Does the book refer you to the appropriate places for

more information ?

y N Are terms defined clearly?

y N Are terms used consistently?

y N Are the abbreviations and acronyms understandable?

y N Are the examples clear?

y N Are examples provided where they are needed?

y N Are the illustrations clear?

y N Is the format of the book (shape, size, color) effective?

Other Comments

What could we do to make th is book or the entire set of boo ks for

this system easier to use?

Your name

Company name

Street address

City , State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

L - - -
I ade1 pue PIO.::J

QJ
c

:.::;
O>
c
0

;:;::
-0
0
lL

0
~

:J
u

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997 , Building 998
11400 Burnet Rd .
Austin , Texas 78758

NO POSTA<
NECESSAF

IF MAILE[
IN THE

UNITED STA

ade1

©IBM Corp. 1985
All rights reserved .

International Business
Machines Corporation
Department 997 , Bu ilding 998
11400 Burnet Rd .
Aust in , Texas 78758

Printed in the
United States of America

59X9289

--------- - - --- - -- - ---- - - ------ ----- ·

About This Section

59X9291

This section contains three new Usability Services commands that appear
when you install the IBM RT PC BASIC Interpreter and Compiler Licensed
Program Product. These commands are:

• BASCOMPILE

• BASINTERPRET .

• BASNINTERPRET .

You should read these pages before using your IBM RT PC BASIC
Interpreter and Compiler Licensed Program Product with the Usability
Services command interpreter. Insert this section in the chapter of your
Usability Services Reference called "Licensed Program Product Commands."

BC-1

BASCOMPILE-Using the BASIC Compiler

BASCOMPILE allows you to either compile BASIC source files or compile
and link edit the BASIC source files and object files you specify.
BASCOMPILE uses the AIX command basicn -c.

You can also use COMPILE to compile BASIC source files from the FILES
window. See a description of COMPILE in the "Commands" chapter of
Usability Services Reference. See the description of the LINKEDIT
command in the "Commands" chapter of Usability Services Reference if you
want to link edit BASIC object files separately from the BASCOMPILE
command.

Steps for Compiling BASIC Source Files

1. Display a TOOLS window.

2. Select PROGRAM DEVELOPMENT. Then select OPEN

3. Select BASCOMPILE . Then select RUN .

4. Make the choices and press Do in each pop-up to run the
command.

5. Follow the prompts on the display screen.

More Detailed Information

BC-2 BASIC

1. To display a TOOLS window:

• If the window is already open, press the Next Window key until the
window appears.

OR

• Open a window:

a. Select TOOLS from the Window Types pane of the WINDOWS
window. The command bar changes to show you the commands
that you can use with the selected window.

b. Select OPEN from the command bar. A TOOLS window appears
on the screen.

2. From the TOOLS window:

a. Select PROGRAM DEVELOPMENT. The command bar changes.

b. Select OPEN from the command bar. The Program Development
Tools Group appears.

3. From the Program Development Tools Group:

a. Select BASCOMP I LE. The command bar changes.

b. Select RUN from the command bar. A pop-up appears that contains
the choices for BASCOMPILE.

4. Make the choices and press Do in each pop-up. Depending on your
choices, one or more pop-ups may appear. Pressing Do in the last
remaining pop-up on the screen runs the command with your choices.
Pressing Quit cancels a pop-up without saving your choices.

The choices are:

• Source File is the file you want to compile and link edit.

• Use PC BASIC lets you decide whether or not to compile the program
using features similar to PC Advanced BASIC (BASICA) . Using
this option may enable you to run a program that was written on a
PC with fewer changes to the code than if you run without this
option (in native mode). The default for this field is No.

• Save Listing File allows you to save the listing file that the
compiler produces. This listing file contains a formatted copy of
your source program and shows any syntax errors :~ ~he program
when and where they occur. The default value is Yes . If you select
Yes , a pop-up appears that contains the name of the listing file

BC-3

BC-4 BASIC

produced by the compiler. The default name is the source file name
with the suffix . 1 st attached. You can change this name.

• L inkedit After Compile allows you to build a run file from the
specified object files and any object files produced by the compile
process. The default value is Yes . If you do not want to link edit the
files now, you can use LINKEDIT to link them later. See the
"Commands" chapter of Usability Services Reference for details of
this command. If you select Yes , a pop-up appears. In this pop-up,
you have the following choices:

Other Object Fil es are additional object files that you want to
link edit along with any generated by the COMPILE command.
You can use the pattern-matching characters*,?, [],and ! to
specify multiple object file names. See the discussion of
pattern-matching characters in the "Using Commands" chapter
of Usability Services R eference for more information.

Library Di rectory is the full path name of the directory that
contains the libraries you want to use. Only one library
directory can be specified.

Library Names are the names of the libraries that contain the
files you want to use. Separate each name with a space. You
can use the pattern-matching characters*,?, [] , and ! to specify
multiple library names. See the discussion of pattern-matching
characters in the "Using Commands" chapter of Usability
Services Reference for more information.

Run Fi 1 e is the name for the single file created when the object
files are link edited. The name you specify must contain the
. out suffix.

• Direct Output To lets you decide to send the output of the
command to the screen, the printer, or a file . By default, all output
or messages go to the screen. If you select Fi 1 e, a pop-up asks you
to type in the file name. If you select Printer , the output is sent to
the printer.

5. Follow the prompts on the display screen. See "Running a Command in
a FILES, TOOLS or APPLICATIONS Window" in Usability Services
Reference for more details on the prompts.

BC-5

BASINTERPRET- Running the BASIC Interpreter in PC or Native
Mode

BC-6 BASIC

BASINTERPRET runs the BASIC interpreter, which allows you to enter
one or more BASIC statements and run them immediately, or to run a
program you have already written and saved in a file . You can run the
interpreter in two different modes: either in PC Mode, which provides an
environment similar to that of IBM PC Basic, or in Native Mode, which
interprets your program using the full power available to you on your RT
PC system. See "More Detailed Information" below for a further
discussion of modes. BASINTERPRET is the Usability Services version of
the AIX command basic or basicn.

You can run this command from the Program Development Tools Group of
the TOOLS window (with either keyboard or file input, in either mode) , or
from the Applications Tools Group of the TOOLS window or from the
APPLICATIONS window (with keyboard input, in PC Mode only). If you
run this command from the Applications Tools Group or from the
APPLICATIONS window, no pop-ups with choices appear.

You can also use INTERPRET to interpret BASIC source files from the
FILES window. See a description of INTERPRET in the chapter called
"Commands" in Usability Services Reference.

Steps for Using the BASIC Interpreter

1. Display a TOOLS window.

2. Select PROGRAM DEVELOPMENT. Then select OPEN

3. Select BAS INTERPRET. Then select RUN.

4. Make the choices and press Do in each pop-up to run the
command.

5. Follow the prompts on the display screen.

More Detailed Information

1. To display a TOOLS window:

• If the window is already open, press the Next Window key until the
window appears.

OR

• Open a window:

a. Select TOOLS from the Window Types pane of the WINDOWS
window. The command bar changes to show you the commands
that you can use with the selected window.

b. Select OPEN from the command bar. A TOOLS window appears
on the screen.

2. From the TOOLS window:

a. Select PROGRAM DEVELOPMENT. The command bar changes.

b. Select OPEN from the command bar. The Program Development
Tools Group appears.

3. From the Program Development Tools Group:

a. Select BAS INTERPRET. The command bar changes.

b. Select RUN from the command bar. A pop-up appears that contains
the choices for BASINTERPRET.

4. Make the choices and press Do in each pop-up. Depending on your
choices, one or more pop-ups may appear. Pressing Do in the last
remaining pop-up on the screen runs the command with your choices.
Pressing Quit cancels a pop-up without saving your choices.

The choices are:

BC-7

BC-8 BASIC

• Source File is the name of the BASIC file that you want to
interpret. You can type in only one name.

• Use PC BASIC lets you decide whether or not to interpret the
program using features similar to PC Advanced BASIC (BASICA) .
BASICA enables you to run a program from a PC with few changes
to the code. The default for this field is No.

• Accept Input From lets you decide if the program will be input from
the keyboard or from a file . By default, the program is input from
the keyboard. If you specify File input, a pop-up appears that lets
you type in one file name.

• Direct Output To lets you decide whether to send your output to
the screen, the printer, or a file. By default, all output is sent to the
screen. If you select Printer, the output is sent to the printer. If
you select File, a pop-up asks you to type in the file name. The file
may be an existing file or a new file. If the file already exists, the
output of this command will replaces and destroys the contents of
the file.

5. Follow the prompts on the display screen. See "Running a Command in
a FILES, TOOLS or APPLICATIONS Window" in Usability Services
Reference for more details on the prompts.

BASNINTERPRET-Running the BASIC Interpreter in Native Mode

BASNINTERPRET runs the BASIC interpreter in Native Mode and allows
you to enter one or more BASIC statements and run them immediately.
Running in Native Mode enables you to interpret your program using the
full power available to you on your RT PC system. BASNINTERPRET is
the Usability Services version of the AIX command basicn.

You can run this command from the Applications Tools Group of the
TOOLS window, or from the APPLICATIONS window. No pop-ups with
choices appear when you run this command.

Use the BASINTERPRET command to interpret BASIC source files . See
"BASINTERPRET-Running the BASIC Interpreter in PC or Native
Mode" on page BC-6 for a description of this command. You can also use
INTERPRET to interpret BASIC source files from the FILES window. See
a description of INTERPRET in the chapter called "Commands" in
Usability Services Reference.

The steps required for running BASNINTERPRET from the Applications
Tools Group of the TOOLS window appear in the box below.

Steps for Using the BASIC Interpreter

1. Display a TOOLS window.

2. Select APPLICATIONS. Then select OPEN.

3. Select BASNINTERPRET. Then select RUN .

4. For more information on running this command, consult the
reference books that came with your Licensed Program Product.

BC-9

More Detailed Information

BC-10 BASIC

1. To display a TOOLS window:

• If the window is already open, press the Next Window key until the
window appears.

OR

• Open a window:

a. Select TOOLS from the Window Types pane of the WINDOWS
window. The command bar changes to show you the commands
that you can use with the selected window.

b. Select OPEN from the command bar. A TOOLS window appears
on the screen.

2. From the TOOLS window:

a. Select APPLICATIONS. The command bar changes.

b. Select OPEN from the command bar. The APPLICATIONS Tools
Group appears.

3. From the APPLICATIONS Tools Group:

a. Select BASNINTERPRET. The command bar changes.

b. Select RUN from the command bar.

4. For further information on running this command, refer to BASIC
Language Handbook or BASIC Language Reference. These books came
with your IBM RT PC BASIC Interpreter and Compiler Licensed
Program Product.

Notes:

Notes:

