

First Edition (March 1990)

This edition of the A/X Calls and Subroutines Reference for IBM RISC System/6000 applies to IBM AIX
Version 3 for RISC System/6000, Version 3 of IBM AlXwindows Environment/6000, IBM AIX System
Network Architecture Services/6000, IBM AlX 3270 Host Connection Program/6000, IBM AlX 3278/79
Emulation/6000, IBM AIX Network Management/6000, and IBM AiIX Personal Computer Simulator/6000 and
to all subsequent releases of these products until otherwise indicated in new releases or technical
newsletters.

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS MANUAL “AS I1S” WITHOUT WARRANTY ‘OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions; therefore, this statement may not apply to you.

IBM does not warrant that the contents of this publication or the accompanying source code examples,
whether individually or as one or more groups, will meet your requirements or that the publication or the
accompanying source code examples are error-free.

This publication could include technical inaccuracies or typographlcal errors.-Changes are periodically made
to the information herein; these changes will be incorporated.in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time.

It is possible that this publication may contain reference to, or information about, IBM products (machines
and programs), programming, or services that are not announced in your country. Such references or
information must not be construed to mean that IBM intends to announce such IBM products, programming,
or services in your country. Any reference to an IBM licensed program in this publication is not intended to
state or imply that you can use only IBM's licensed program You can use any functionally equivalent
program instead.

Requests for copies of this publication and for technical information about IBM products should be made to
your IBM Authorized Dealer or your IBM Marketing Representatlve

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to IBM Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758-3493. IBM may
use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you. '

® Copyright Adobe Syétems, Inc., 1984, i987

® Copyright» X/Open Company Limited, 1988. All Rights Reserved.

© Copyright IXI Limited, 1989. All rights reserved. |

©® Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rlghts reserved.
® Silicon Graphics, Inc., 1988. All rights reserved. ‘

Use, duplication or disclosure of the SOFTWARE by the Government is subject to restrictions as set
forth in FAR 52.227-19(c)(2) or subparagraph (c)(1)(li) of the Rights in Technical Data-and Computer
SOFTWARE clause at SFARS 252.227-7013, and/or in similar or successor clauses in the FAR, or
the DOD or NASA FAR Supplement. Unpublished rights reserved under the Copyright Laws of the
United States. Contractor/manufacturer is SILICON GRAPHICS, INC., 2011 N. Shoreline Bivd.,
Mountain View, CA 94039-7311.

© Copyright Carnegie Mellon, 1988. All rights reserved.
@ Copyright Stanford University, 1988. All rights reserved.

Permission to use, copy, modify, and distribute this program for any purpose and without fee is
hereby granted, provided that this copyright and permission notice appear on all copies and
supporting documentation, the name of Carnegie Mellon and Stanford University not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission, and
notice be given in supporting documentation that copying and distribution is by permission of
Carnegie Mellon and Stanford University. Carnegie Mellon and Stanford University make no
representations about the suitability of this software for any purpose. It is provided “as is” without
express or implied warranty.

©® Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.
The Network File System (NFS) was developed by Sun Microsystems, Inc.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of
California.

Portion of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:

® Copyright Regents of the University of California, 1986, 1987. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is
preserved and that due credit is given to the University of California at Berkeley. The name of the
University may not be used to endorse or promote products derived from this software without
specific prior written permission. This software is provided “as is” without express or implied
warranty.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:

@ Copyright Digital Equipment Corporation, 1985, 1988. All rights reserved.
® Copyright 1985, 1986, 1987, 1988 Massachusetts Institute of Technology. All rights reserved.

Permission to use, copy, modify, and distribute this program and its documentation for any purpose
and without fee is hereby granted, provided that this copyright, permission, and disclaimer notice
appear on all copies and supporting documentation; the name of M.I.T. or Digital not be used in
advertising or publicity pertaining to distribution of the program without specific prior permission.
M.LT. and Digital makes no representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

© Copyright INTERACTIVE Systems Corporation 1984. All rights reserved.

© Copyright 1989, Open Software Foundation, Inc. All rights reserved.

® Copyright 1987, 1988, 1989, Hewlett—Packard Company. All rights reserved.

® Copyright 1988 Microsoft Corporation. All rights reserved.

©® Copyright Graphic Software Systems Incorporated, 1984, 1990. All rights reserved.
©® Copyright Micro Focus, Ltd., 1987, 1990. All rights reserved.

© Copyright Paul Milazzo, 1984, 1985. All rights reserved. ;

© Copyright EG Pup User Process, Paul Kirton, and 1S, 1984. All righis reserved.

® Copyright Apollo Computer, Inc., 1987. All rights reserved.
® Copyright TITN, Inc., 1984, 1989. All rights reserved.

This software is derived in part from the ISO Development Environment (ISODE). IBM acknowledges source
author Marshall Rose and the following institutions for their role in its development: The Northrup
Corporation and The Wollongong Group.

However, the following copyright notice protects this documentation under the Copyright laws of the United

States and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying,
and making derivative works.

® Copyright International Business Machines Corporation 1987, 1990. All rights reserved.

Notice to U.S. Government Users — Documentation Related to Restricted Rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

Trademarks and Acknowledgements

The following trademarks and acknowledgements apply to this information:

AlX is a trademark of International Business Machines Corporation.

AlXwindows is a trademark of International Business Machines Corporation.
Apollo is a trademark of Apollo Computer, Inc.

IBM is a registered trademark of International Business Machines Corporation.
NCK is a trademark of Apollo Computer, Inc.

NCS is a trademark of Apollo Computer, Inc.

Network Computing Kernel is a trademark of Apollo Computer, Inc.

Network Computing System is a trademark of Apollo Computer, Inc.

Network File System and NFS are trademarks of Sun Microsystems, Inc.

POSIX is a trademark of the Institute of Electrical and Electronic Engineers (IEEE).
RISC System/6000 is a trademark of International Business Machines Corporation.
SNA 3270 is a trademark of International Business Machines Corporation.

UNIX was developed and licensed by AT&T and is a registered trademark of AT&T
Corporation.

X/OPEN is a trademark of XOPEN Company Limited.

Note to Users
The term “network information services (NIS)” is now used to refer to the service formerly
known as “Yellow Pages.” The functionality remains the same; only the name has changed.
The name “Yellow Pages” is a registered trademark in the United Kingdom of British
Telecommunications plc, and may not be used without permission.

Legal Notice to Users Issued by Sun Microsystems, Inc.
“Yellow Pages” is a registered trademark in the United Kingdom of British
Telecommunications plc, and may also be a trademark of various telephone companies
around the world. Sun will be revising future versions of software and documentation to
remove references to “Yellow Pages.”

Trademarks

vi Base Operating System Reference

About This Book

This book, Calls and Subroutines Reference: Base Operating System, provides information
on application programming interfaces to the Advanced Interactive Executive Operating
System (referred to in this text as AlX) for use on the IBM RISC System/6000 System. This
book is part of AIX Calls and Subroutines Reference for IBM RISC System/6000,
SC23-2198, which is divided into the following four major sections:

Volumes 1 and 2, Calls and Subroutines Reference: Base Operating System, contains
reference information about the system calls, subroutines, functions, macros, and
statements associated with AlX base operating system runtime services, communications
services, and devices services.

Volumes 3 and 4, Calls and Subroutines Reference: User Interface, contain reference
information about the AlXwindows widget classes, subroutines, and resource sets; the
AlXwindows Desktop resource sets; the Enhanced X-Windows subroutines, macros,
protocols, extensions, and events; the X—Window toolkit subroutines and macros; and the
curses and extended curses subroutine libraries.

Volume 5, Calls and Subroutines Reference: Kernel Reference, contains reference
information about kernel services, device driver operations, file system operations
subroutines, the configuration subsystem, the communications subsystem, the high
function terminal (HFT) subsystem, the logical volume subsystem, the printer subsystem,
and the SCSI subsystem.

Volumes 6, Calls and Subroutines Reference: Graphics, contains reference information
and example programs for the Graphics Library (GL) and the AiXwindows Graphics
Support Library (XGSL) subroutines.

Who Should Use This Book
This book is intended for experienced C programmers. To use this book effectively, you
should be familiar with AIX or UNIX System V commands, system calls, subroutines, file
formats, and special files. If you are not already familiar with the AIX operating system or the
UNIX System V operating system, see AIX General Concepts and Procedures.

How to Use This Book

Overview of Contents
This book contains. the following alphabetically arranged sections consisting of system calls,
subroutines, functions, macros and statements. In this book all system calls are described
as subroutines.

Base Operating System Runtime (BOS) Services
Communications Services

SNA Services

AIX 3270 Host Connection Program (HCON)
Remote Procedure Calls (RPC)

Sockets

Simple Network Management Protocol (SNMP)
Network Computing System (NCS)

About This Book Vi

— Data Link Controls
~ X.25 Application

Devices Services

Highlighting
The following highlighting conventions are used in this book:
Bold Identifies commands, keywords, files, directories, and other items whose
names are predefined by the system.
Italics Identifies parameters whose actual names or values are to be supplied by
the user.

Monospace ldentifies examples of specific data values, examples of text similar to what

you might see displayed, examples of portions of program code similar to
what you might write as a programmer, messages from the system, or
information you should actually type.

Related Publications
The following books contain information about or related to application programming
interfaces:

AIX General Programming Concepts for IBM RISC System/6000, Order Number
SC23-2205.

AlX Communication Programming Concepts for IBM RISC System/6000, Order Number
SC23-2206.

AlX Kernel Extensions and Device Support Programming Concepts for IBM RISC
System/6000, Order Number SC23-2207.

AlX Files Reference for IBM RISC System/6000, Order Number SC23-2200.
IBM RISC System/6000 Problem Solving Guide, Order Number SC23-2204.

XL C Language Reference for IBM AlX Version 3 for RISC System/6000, Order Number
SC09-1260.

XL C User’s Guide for IBM AlX Version 3 for RISC System/6000, Order Number
SC09-1259.

Ordering Additional Copies of This Book
To order additional copies of this book, use Order Number SC23-2198.

viii Base Operating System Reference

Contents

Base Operating System (BOS) Runtime Services

SUbIrOUtINES A — Z . .. e 1-1
FORTRAN Basic Linear Algebra Subroutines (BLAS) 1-823
Communications Services

AIX 3270 Host Connection Program (HCON) 2-1
Data Link Controls e 3-1
Network Computing System (NCS) i 4-1
Remote Procedure Calls (RPC)o i 5-1
Simple Network Management Protocol (SNMP) 6-1
SN A S IVICES . ..ttt e e 7-1
SOCKEES . . e e e 8-1
X.25 Application e 9-1
Devices Services e 10-1
Appendix A: Base Operating System ErrorCodes A-1
Appendix B: ODMErrorCodes it iiinininnnnnnn. B-1
Appendix C: X.25 ApplicationErrorCodes C-1
INdeX . X-1

Contents ix

Base Operating System Reference

Base Operating System (BOS) Runtime Services

Base Operating System Runtime 11

1-2 Base Operating System Reference

ab4l,...

a64l or I164a Subroutine

Purpose
Converts between long integers and base-64 ASCIi strings.
Library
Standard C Library (libc.a)
Syntax
long a64l (String)
char *String;
char *164a (Longlinteger)
long Longinteger;
Description
The a64l and 164a subroutines maintain numbers stored in base-64 ASCII characters. This
is a notation in which long integers are represented by up to 6 characters, each character
representing a digit in a base-64 notation.
The following characters are used to represent digits:
. represents 0
/ represents 1
0-9 represent 2-11
A-Z represent 12-37
a-z represent 38-63
Parameters
String Specifies the address of a null-terminated character string.
Longlinteger Specifies a long value to convert.

Return Values

The a64l subroutine takes a pointer to a null-terminated character string containing a value
in base-64 representation and returns the corresponding long value. If the string pointed to
by the String parameter contains more than 6 characters, the aé4l subroutine uses only the
first 6.

Conversely, the 164a subroutine takes a long parameter and returns a pointer to the
corresponding base-64 representation. If the Longinteger parameter is a value of 0, the 164a
subroutine returns a pointer to a null string.

The value returned by the 164a subroutine is a pointer into a static buffer, the contents of
which are overwritten by each call.

Implementation Specifics

These subroutines are part of AlX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-3

abort

abort Subroutine

Purpose
Generates a SIGIOT signal to end the current process.
Library
Standard C Library (libc.a)
Syntax
int abort ()
Description

The abort subroutine causes a SIGIOT signal to be sent to the current process. This usually
terminates the process and produces a memory dump.

It is possible for the abort subroutine to return control if the SIGIOT signal is caught or
ignored. In this case, the abort subroutine returns the value returned by the kill subroutine.

If the SIGIOT signal is neither caught nor ignored, and if the current directory is writable, the
system produces a memory dump in the core file in the current directory. The shell then
displays the following message:

abort — core dumped
Note: The SIGABRT signal is defined to be the same as the SIGIOT signal.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The exit, atexit, _exit subroutine, kill, killpg subroutines, sigaction, sigvec, signal
subroutines.

The dbx command.

14 Base Operating System Reference

abs,...

abs, div, labs, Idiv, imul_dbl, or umul_dbl Subroutine

Purpose
Library

Syntax

Computes absolute value, division, and double precision multiplication of integers.

Standard C Library (libc.a)

int abs (/)
int j;

long labs (/)
long /;

div_t div (Numerator, Denominator)
int Numerator, Denominator;

void imul_dbl (i, j, Result)
long /, j;
long *Result;

Idiv_t \div (Numerator, Denominator)
long Numerator, Denominator;

void umul_dbil (i, j, Result)
unsigned long /, j;
unsigned long *Result;

Description

The abs subroutine returns the absolute value of its integer operand.

Note: A two's-complement integer can hold a negative number whose absolute value is too
large for the integer to hold. When given this largest negative value, the abs
subroutine returns the same value.

The div subroutine computes the quotient and remainder of the division of the number
represented by the Numerator parameter by that specified by the Denominator parameter. If
the division is inexact, the sign of the resulting quotient is that of the algebraic quotient, and
the magnitude of the resulting quotient is the largest integer less than the magnitude of the
algebraic quotient. If the result cannot be represented (for example if the denominator is
zero), the behavior is undefined.

The labs subroutine and ldiv subroutine are included for compatibility with the ANSI C
library, and accept long integers as parameters, rather than as integers. However, on all
systems supported by AIX for RISC System/6000, there is no difference between an integer
and a long integer.

The imul_dbl subroutine computes the product of two signed longs i and j, and stores the
double long product into an array of two signed longs pointed to by the Result parameter.

The umul_dbl subroutine computes the product of two unsigned longs 7and j, and stores
the double unsigned long product into an array of two unsigned longs pointed to by the
Result parameter.

Base Operating System Runtime 1-5

abs,...

Parameters

i Specifies, for abs, some integer; for labs and imul_dbl, some long
integer; for umul_dbl, some unsigned long integer.

Numerator Specifies, for div, some integer; for Idiv, some long integer.

Ji Specifies, for imul_dbl, some long integer; for umul_dbl, some unsigned
long integer.

Denominator Specifies, for div, some integer; for Idiv, some long integer.

Result Specifies, for imul_dbl, some long integer; for umul_dbl, some unsigned
long integer.

Return Values .
The abs and labs subroutines return the absolute value. The imul_dbl and umul_dbl
subroutines have no return values. The div subroutine returns a structure of type div_t. The
Idiv subroutine returns a structure of type Idiv_t, comprising the quotient and the remainder.
The structure is displayed as:

struct idiv_t {
int quot; /* quotient */
int rem; /* remainder */

|5

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The imul_dbl subroutine and umul_dbl subroutine are not included in the ANS! C Library.

Related information
The floor, ceil, nearest, trunc, itrunc, uitrunc, fmod, fabs subroutines.

1-6 Base Operating System Reference

access

access Subroutine

Determines the accessibility of a file.

int access (Path, AccessMode)

The access subroutine checks the accessibility of the file, using the path name.

Points to the full path name. If the Path parameter refers to a symbolic
link, the access subroutine returns information about the file pointed to
by the symbolic link.

Access permission to all components of the Path parameter is
determined using the real user ID instead of the effective user ID, the
group access list (including the real group ID) instead of the effective
group ID, and the inherited privilege setinstead of the effective privilege
set.

Purpose
Library
Standard C Library (libc.a)
Syntax
#include <sys/access.h>
char *Path;
int AccessMode;
Description
Parameters
Path
AccessMode

Return Values

Specifies the type of access. The bit pattern contained in the
AccessMode parameter is constructed by logically ORing the following
values:

R_ACC Checks read permission.

W_ACC Checks write permission.

X_ACC Checks execute (search) permission.
E_ACC Checks to see if the file exists.

If the requested access is permitted, the access subroutine returns a value of 0. If the
requested access is denied, it returns a value of —1 and sets the global variable errno to

indentify the error.

Error Codes

Access to the file is denied if one or more of the following are true:

ENOENT

The named file does not exist.

Base Operating System Runtime 1-7

access

EACCES ~ Permission bits of the file mode do not permit the requested
access. :
EROFS Write access is requested for a file on a read-only file system.

The access subroutine can also fail if additional errors on page A—1 occur.

If Network File System is installed on the system, the access subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The chmod, fchmod subroutines, statx subroutine.

1-8 Base Operating System Reference

acct

acct Subroutine

Purpose
Enables and disables process accounting.

Library
Standard C Library (libc.a)

Syntax

int acct (Path)
char *Path;

Description
The acct subroutine enables the accounting routine when the Path parameter specifies the
path name of the file to which an accounting record is written for each process that
terminates. When the Path parameter is a 0 or NULL value, the acct subroutine disables the
accounting routine.

If the Path parameter refers to a symbolic link, the acct subroutine causes records to be
written to the file pointed to by the symbolic link.

If Network File System is installed on your system, the accounting file can reside on another
node.

Warning: To ensure accurate accounting, each node must have its own accounting file,
which can be located on any node in the network.

The calling process must have root user authority to use the acct subroutine.

Parameter
Path Specifies a pointer to the path name of the file or a NULL pointer.

Return Values
Upon successful completion, the acct subroutine returns a value of 0. Otherwise, a value of
-1 is returned and the global variable errno is set to indicate the error.

Error Codes
The acct subroutine fails if one or more of the following are true:

EPERM The calling process does not have root user authority.

ENOENT The file named by the Path parameter does not exist.

EACCES The file named by the Path parameter is not an ordinary file.

EACCES Write permission is denied for the named accounting file.

EBUSY An attempt is made to enable accounting when it is already
enabled.

EROFS The named file resides on a read—-only file system.

Base Operating System Runtime 1-9

acct

The acct subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the acct subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.
Implementation Specifics
This subroutine is part of AlX Base Operating System (BOS) Runtime.

The BSD acet subroutine can be used to switch an accounting file; this is not the case with
the AIX Version 3 Operating System acct subroutine.

Related Information
The _exit, exit, atexit subroutines, raise subroutine, sigaction, signal, sigvec subroutines.
The acct file.

1-10 Base Operating System Reference

acl_chg,...

acl_chg or acl_fchg Subroutine

Purpose
Changes the access control information on a file.
Library
Security Library (libs.a)
Syntax
#include <sys/access/h>
int acl_chg (Path, How, Mode, Who)
char *Path;
int How,
int Mode;
int Who;
int acl_fchg (FileDescriptor, How, Mode, Who)
int FileDescriptor;
int How;
int Mode;
int Who;
Description
The acl_chg and acl_fchg subroutines modify the access control information of a specified
file.
Parameters
FileDescriptor Specifies the file descriptor of an open file.
How Specifies how the permissions are to be altered for the affected entries of
the ACL. This parameter must be one of:
ACC_PERMIT Allow the types of access included in the Mode
parameter.
ACC_DENY Deny the types of access included in the Mode
parameter.

ACC_SPECIFY Grants the access modes included in the Mode
parameter and restricts the access modes not

included in the Mode parameter.

Mode Specifies the access modes to be changed. The Mode parameter is a bit

mask containing zero or more of the foliowing values:
R_ACC Allows read permission.

W_ACC Allows write permission.

X_ACC Allows execute or search permission.

Path Specifies a pointer to the path name of a file.

Base Operating System Runtime 1-11

acl_chg,...

Who ; Specifies which entries in the ACL are affected. This parameter must be
one of:
ACC_OBJ_OWNER Changes the owner entry in the base ACL.
ACC_OBJ_GROUP Changes the group entry in the base ACL.
ACC_OTHERS Changes all entries in the ACL except the

base entry for the owner.

ACC_ALL Changes all entries in the ACL.

Return Values

On successful completion, the acl_chg and acl_fchg subroutines return a value of 0.
Otherwise, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

The acl_chg subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disalliow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The process'’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbblic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fchg subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EROFS The named file resides on a read—only file system.
EINVAL The How parameter is not one of ACC_PERMIT, ACC_DENY, or
ACC_SPECIFY.

1-12 Base Operating System Reference

acl_chg,...

EINVAL The Mode parameter contained values other than R_ACC, W_ACC, or
X_ACC.
EINVAL The Who parameter is not one of ACC_OWNER, ACC_GROUP,

ACC_OTHERS, or ACC_ALL.

The acl_chg or acl_fchg subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EIO An 1/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the
invoker does not have root user authority.

If NFS is installed on your system, the acl_chg and acl_fchg subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.
The acl_get subroutine, acl_put subroutine, acl_set subroutine

The acl_get command, acl_put command, chmod command.

Base Operating System Runtime 1-13

acl_get,...

acl_get or acl_fget Subroutine

Purpose
Gets the access control information of a file.
Library
Security Library (libs.a)
Syntax
#include <sys/access.h>
char *acl_get (Path)
char *Path;
char *acl_fget (FileDescriptor)
int FileDescriptor;
Description ,
The acl_get and acl_fget subroutines retrieve the access control information for a file
system object. This information is returned in a buffer pointed to by the return value. The
structure of the data in this buffer is unspecified. The value returned by these subroutines
should be used only as an argument to the acl_put or acl_fput subroutines to copy or
restore the access control information.
Parameters ;
Path Specifies the pathname of the file.
FileDescriptor Specifies the file descriptor of an open file.

Return Values
On successful completion, the acl_get and acl_fget subroutines return a pointer to the

buffer containing the access control information. Otherwise, a NULL pointer is returned and
the global variable errno is set to indicate the error.

Error Codes
The acl_get subroutine fails if one or more of the following are true:

ENOTDIR A component of the Path prefixvis not a directory.

ENOENT A component of the Path does not exist or the process has the disallow
truncation attribute (see the ulimit subroutine).

ENOENT The Path parameter was riull.
EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The brocess’s root or current directory is located in a virtual file system that
has been unmounted.

1-14 Base Operating System Reference

Security

acl_get,...

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fget subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.
The acl_get or acl_fget subroutine fails if the following is true:

EIO An I/O error occurred during the operation.

If NFS is installed on your system, the acl_get and acl_fget subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.
Access Control The invoker must have search permission for all components of
the Path prefix.
Auditable Events None.

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.

The acl_chg, acl_fchg subroutines, acl_put, acl_fput subroutines, acl_set, acl_fset
subroutines.

The acl_get command, ac!_put command, chmod command.

Base Operating System Runtime 1-15

acl_put,...

acl_put or acl_fput Subroutine

Purpose ~
Sets the access control information of a file.
Library
Security Library (libs.a)
Syntax
#include <sys/access.h>
int acl_put (Path, Access, Free)
char *Path;
char *Access;
int Free;
int acl_fput (FileDescriptor, Access, Free)
int FileDescriptor;
char *Access;
int Free;
Description , : ,
The acl_put and acl_fput subroutines set the access control information of a file system
object. This information is contained in a buffer returned by a call to the acl_get or acl_fget
subroutines. The structure of the data in this buffer is unspecified. .
Parameters
Path Specifies the pathname of a file.
FileDescriptor

Specifies the file descriptor of an open file.

Access Specifies a pointer to the buffer containing the access control information.

Free Specifies whether the buffer space is to be deallocated. The following
values are valid: ,
e 0 Means the space is not deallocated.
o 1 Means the space is deallocated.

Return Values
On successful completion, the acl_put and acl_fput subroutines return a value of 0.
Otherwise, -1 is returned and the global variable errno is set to indicate the error.

Error Codes

The acl_put subroutine fails and the access control information for a file remains unchanged
if one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory. -

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

1-16 Base Operating System Reference

Security

acl_put,...

ENOENT The Path parameter was null.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fput subroutine fails and the file permissions remain unchanged if the foliowing is
true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_put or acl_fput subroutine fails and the access control information for a file
remains unchanged if one or more of the following are true:

EROFS The named file resides on a read—only file system.

EINVAL The Access parameter does not point to a valid access control buffer.
EINVAL The Free parameter is not 0 or 1.

EIO An /O error occurred during the operation.

If NFS is installed on your system, the acl_put and acl_fput subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Access Control The invoker must have search permission for all components of
the Path prefix.

Auditable Events

Event Name Tail Information
chacl Path
fchacl » FileDescriptor

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-17

acl_put,...

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.

The acl_chg subroutine, acl_get subroutine, acl_set subroutine.

The acl_get command, acl_put command, chmod command.

1-18 Base Operating System Reference

acl_set,...

acl_set or acl_fset Subroutine

Purpose
Sets the access control information of a file.
Library
Security Library (libs.a)
Syntax
#include <sys/access.h>
int acl_set (Path, OwnerMode, GroupMode, DefaultMode)
char *Path;
int OwnerMode;
int GroupMode;
int DefaultMode;
int acl_fset (FileDescriptor, OwnerMode, GroupMode, DefaultMode)
int *FileDescriptor,;
int OwnerMode;
int GroupMode;
int DefaultMode;
Description
The acl_set and acl_fset subroutines set the base entries of the Access Control List of the
file. All other entries are discarded. Other access control attributes are left unchanged.
Parameters
DefaultMode Specifies the access permissions for the default class.
FileDescriptor Specifies the file descriptor of an open file.
GroupMode Specifies the access permissions for the group of the file.
OwnerMode Specifies the access permissions for the owner of the file.
Path Specifies a pointer to the path name of a file.

The mode parameters specify the access permissions in a bitmask containing zero or more
of the following values:

R_ACC Authorize read permission.
W_ACC Authorize write permission.
X_ACC Authorize execute or search permission.

Return Values

Upon successful completion, the acl_set and acl_fset subroutines return the value 0.
Otherwise, the value —1 is returned and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-19

acl_set,...

Error Codes

1-20

The acl_set subroutine fails and the access contro! information for a file remains unchanged
if one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of thé allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The acl_fset subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

The acl_set or acl_fset subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EROFS The named file resides on a read—only file system.

EINVAL One of the Mode parameters contained values other than R_ACC, W_ACC,
or X_ACC.

EIO An 1/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the

invoker does not have root user authority.

If NFS is installed on your system, the acl_set and acl_fset subroutines can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Base Operating System Reference

acl_set,...

Security

Access Control The invoker must have search permission for all components of
the Path prefix.

Auditable Events

Event Name Tail Information
chacl Path
fchacl FileDescriptor

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The chacl subroutine, statacl subroutine, chmod subroutine, stat subroutine.
The acl_get subroutine, acl_put subroutine, acl_chg subroutine.

The acl_get command, acl_put command, chmod command.

Base Operating System Runtime 1-21

addssys

addssys Subroutine

Purpose
Adds the SRCsubsys record to the subsystem object class.
Library
System Resource Controlier Library (libsrc.a)
Syntax
#include <sys/srcobj.h>
#include <sys/spc.h>
int addssys(SRCSubsystem)
struct SRCsubsys *SRCSubsystem;
Description
The addssys subroutine adds a record to the subsystem object class. You must call
defssys to initialize the SRCSubsystem buffer before your application program uses the
SRCsubsys structure. The SRCsubsys structure is defined in the sys/srcobj.h header file.
The executable running with this subroutine must be running with the group system.
Parameter

SRCSubsystern A pointer to the SRCsubsys structure.

Return Values
‘ Upon successful completion, the addssys subroutine returns a value of 0. Otherwise, it

returns a value of -1 and odmerrno is set to indicate the error, or an SRC error code is
returned.

Error Codes
The addssys subroutine fails if one or more of the following are true:

SRC_NONAME No subsystem name specified.

SRC_NOPATH No subsystem path specified.

SRC_BADNSIG Invalid stop normal signal.

SRC_BADFSIG Invalid stop force signal.

SRC_NOCONTACT' Contact not signal, sockets, or message queue
SRC_SUBEXIST New subsystem name already on file.
SRC_SYNEXIST New subsystem synonym name already on file.

SRC_SUBSYS2BIG Subsystem name too long.
SRC_SYN2BIG Synonym name too long.
SRC_CMDARG2BIG Command arguments too long.

1-22 Base Operating System Reference

addssys

SRC_PATH2BIG Subsystem path too long.
SRC_STDIN2BIG stdin path too long.
SRC_STDOUT2BIG stdout path too long.
SRC_STDERR2BIG stderr path too long.
SRC_GRPNAM2BIG Group name too long.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

File

/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

Related Information
The chssys subroutine, delssys subroutine, defssys subroutine.

The mkssys command, chssys command, rmssys command.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-23

adjtime

adjtime Subroutine

Purpose
Corrects the time to allow synchronization of the system clock.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
int adjtime (Delfa, Olddelta)
struct timeval *Delta;
struct timeval *Olddelta;

Description
The adjtime subroutine makes small adjustments to the system time, as returned by the
gettimeofday subroutine, advancing or retarding it by the time specified by the Delta
parameter of the timeval structure. If Delta is negative, the clock is slowed down by
incrementing it more slowly than normal until the correction is complete. If Delta is positive, a
larger increment than normal is used. The skew used to perform the correction is generally a
fraction of one percent. Thus, the time is always a monotonically increasing function. A time
correction from an earlier call to adjtime may not be finished when adjtime is called again. If
the Olddelta parameter is non—zero, then the structure pointed to will contain, upon return,
the number of microseconds still to be corrected from the earlier call.
This call may be used by time servers that synchronize the clocks of computers in a local
area network. Such time servers would slow down the clocks of some machines and speed
up the clocks of others to bring them to the average network time.
The adjtime subroutine is restricted to the users with root user authority.

Parameters
Delta Specifies the amount of time to be altered.
Olddelta Contains the number of microseconds still to be corrected from an earlier

call.

Return Values
A return value of 0 indicates that the adjtime subroutine succeeded. A return value of —1
indicates than an error occurred, and errno is set to indicate he error.

Error Codes
The adjtime subroutine fails if the following is true:

EFAULT An argument address referenced invalid memory

EPERM The process’s effective user ID does not have root user authority.

1-24 Base Operating System Reference

adjtime

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The gettimeofday, settimeofday, ftime subroutines, gettimer subroutine.

Base Operating System Runtime 1-25

asinh,...

asinh, acosh, or atanh Subroutine

Purpose
Computes inverse hyperbolic functions.

Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double asinh (x)
double x;

double acosh (x)
double x;

doubie atanh (x)
double x;

Description
The asinh subroutine, acosh subroutine, and atanh subroutine compute the inverse
hyperbolic functions.

The asinh subroutine returns the hyperbolic arc sine of x, in the range -HUGE_VAL to
+HUGE_VAL. The acosh subroutine returns the hyperbolic arc cosine of x, in the range 1 to
+HUGE_VAL. The atanh subroutine returns the hyperbolic arc tangent of x, in the range
~HUGE_VAL to +HUGE_VAL.

Note: Compile any routine that uses subroutines from the libm.a library with the —=Im flag.
To compile the asinh.c file, for example:

cc asinh.c —=1lm

Parameters
X Specifies some double-precision floating-point value.

Error Codes
The acosh subroutine returns a NaNQ if x < 1.
The atanh subroutine returns a NaNQ if |x] > 1.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The exp, expm1, log, log10, pow subroutines, sinh, cosh, tanh subroutines, copysign,
nextafter, scalb, logb, ilogb subroutines.

1-26 Base Operating System Reference

assert

assert Macro

Purpose

Library

Syntax

Verifies a program assertion.

Standard C Library (libc.a)

#include <assert.h>

void assert (Expression)
int Expression;

Description

Parameter

The assert macro puts error messages into a program. If the Expression is false, the assert
macro writes the following message to standard error and stops the program:

Assertion failed: Expression, file FileName, line LineNumber

In the error message, FileName is the name of the source file and LineNumber is the source
line number of the assert statement.

For Japanese Language Support, the error message is taken from the standard C library
message catalog.

If you compile a program with the preprocessor option —-DNDEBUG, or with the preprocessor
control statement #define NDEBUG before the #include <assert.h> statement, assertions
will not be compiled into the program.

Expression Specifies an expression that can be evaluated as TRUE or FALSE.

This expression is evaluated in the same manner as the C language
“if” statement.

Implementation Specifics

This macro is part of AIX Base Operating System (BOS) Runtime.

The assert macro uses the _assert() library routine.

Related Information

The abort subroutine.

The cpp command.

Base Operating System Runtime 1-27

atof,...

atof, strtod, atoff, or strtof Subroutine

Purpose
Converts an ASCII string to a float or double floating-point number.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

double atof (NumberPointer)
char *NumberPointer;

double strtod (NumberPointer, EndPointen
char *NumberPointer, * *EndPointer;

float atoff (NumberPointer)
char *NumberPointer;

float strtot (NumberPointer, EndPointer)
char *NumberPointer, **EndPointer

Description
The atof subroutine and strtod subroutine convert a character string, pointed to by the
NumberPointer parameter, to a double-precision floating-point number. The atoff subroutine
and strtof subroutine convert a character string, pointed to by the NumberPointer

parameter, to a single-precision floating-point number. The first unrecognized character ends
the conversion.

These subroutines recognize a character string when the characters appear in one of the
two following orders:

o An optional string of white-space characters

e An optional sign

* A non-empty string of digits optionally containing a radix character
* An optional e or E followed by an optionally signed integer.

Or....

¢ An optional string of white-space characters

¢ An optional sign

¢ One of the strings: “INF”, “infinity”, “NaNQ", or “NaNS” (case insensitive).

Parameters
NumberPointer Specifies a character string to convert.

EndPointer A pointer to the character that ended the scan or a NULL value.

1-28 Base Operating System Reference

atof,...

Error Codes
If the string is empty or begins with an unrecognized character, +0.0 is returned.

For the strtod or strtof subroutines, if the value of EndPointer is not:
(char**) NULL

then a pointer to the character that terminated the scan is stored in *EndPointer. If a
floating-point value cannot be formed, *EndPointer is set to NumberPointer.

The atof (NumberPointer) subroutine call is equivalent to:
strtod (NumberPointer, (char **) NULL).

The atoff (NumberPointer) subroutine call is equivalent to:
strtof (NumberPointer, (char **) NULL).

If the correct return value overflows, a properly signed HUGE_VAL is returned. On
underflow, a properly signed zero is returned.

Note: The setlocale function may affect the radix character used in the conversion.

The atoff and strtof subroutines have only one rounding error. (lf the atof or strtod

subroutines are used to create a double and then that double is converted to a float, two
rounding errors could occur.)

If the correct value would cause overflow, +/- HUGE is returned (according to the sign of the
value), and errno is set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The atoff and strtof subroutines are not part of the ANSI C Library. The accuracy of these
routines is at least as accurate as required by the IEEE Standard for Binary Floating-Point
Arithmetic. The atof and strtod subroutines accept at least 17 significant decimal digits. The
atoff and strtof subroutines accept at least nine leading zeroes. Leading zeroes are not
counted as significant digits.

Related Information

The scanf subroutine, strtol, strtoul, atol, atoi subroutines, wstrtol, watol, watoi
subroutines.

Base Operating System Runtime 1-29

audit

audit Subroutine

Purpose
Enables and disables system auditing.
Library
Standard C Library (libc.a)
Syntax
#include <sys/audit.h>
nt audit (Command, Argument)
int Command;
int Argument,
Description
The audit subroutine enables or disables system auditing.
When auditing is enabled, audit records are created for security—relevant events. These
records can be collected through the auditbin subroutine, or through the /dev/audit special
file interface.
Parameters

Command Defined in the sys/audit.h header file, can be one of the following values:

AUDIT_QUERY

AUDIT_ON

AUDIT_PANIC

AUDIT_OFF

AUDIT_RESET

1-30 Base Operating System Reference

Returns a mask indicating the state of the auditing
subsystem. The mask is a logical ORing of the
AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and
AUDIT_NOPANIC flags. The Argument parameter
is ignored.

Enables auditing. If auditing is already enabled,
only the failure mode behavior will change. The
Argument parameter is used to specify recovery
behavior in the presence of failure and may include
one or more of the following values, defined in
sys/audit.h:

The operating system will shutdown if an audit
record cannot be written to a bin. Note that
binmode auditing must be enabled prior to invoking
this call if AUDIT_PANIC is specified.

Disables the auditing system if auditing is enabled.
If the auditing system is disabled, the audit
subroutine does nothing. The Argument parameter
is ignored.

Disables the auditing system (as for AUDIT_OFF)
and resets the auditing system. If auditing is
already disabled, only the system configuration is
reset. Resetting the audit configuration involves
clearing the audit events and audited objects table

audit

and terminating bin and stream auditing. The
Argument parameter is ignored.

Argument Specifies the behavior when a bin write fails.

Return Values
For a Command value of AUDIT_QUERY, the audit subroutine returns, upon successful
completion, a mask indicating the state of the auditing subsystem. The mask is a logical
ORing of the AUDIT_ON, AUDIT_OFF, AUDIT_PANIC, and AUDIT_NOPANIC flags. For
any other Command value, the audit subroutine returns 0 on successful completion.

If the audit subroutine fails, a value of —1 is returned and errno is set to indicate the error.

Error Codes
The audit subroutine fails if either of the following is true:

EINVAL The Command parameter is not one of AUDIT_ON, AUDIT_OFF,
AUDIT_RESET, or AUDIT_QUERY.

EINVAL The Command parameter is AUDIT_ON and the Argument parameter
includes values other than AUDIT_PANIC.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditbin subroutine, auditlog subroutine, auditproc subroutine, auditevents
subroutine, auditobj subroutine.

The audit command.

Base Operating System Runtime 1-31

auditbin

auditbin Subroutine

Purpose
Defines files to contain audit records

Library
Standard C Library (libc.a)

Syntax
#include <sys/audit.h>
int auditbin (Command, Current, Next, Threshold)
int Command;
int Current;
int Next;
int Threshold,

Description
The auditbin subroutine establishes an audit bin file into which the kernel writes audit
records. Optionally, it may be used to establish an overflow bin into which records are written
when the current bin reaches the size specified by the Threshold parameter.

Parameters
Command If nonzero, may specify:

AUDIT_EXCL If the file specified by Current is not the kernel's
current bin file, the auditbin subroutine fails
immediately with errno set to EBUSY.

AUDIT_WAIT The auditbin subroutine should not return until:

bin full The kernel writes the number of
bytes specified by the Threshold
parameter to the file descriptor
specified by the Current parameter.
Upon successful completion,
auditbin returns a 0. The kernel
writes subsequent audit records to
the file descriptor specified by the
Next parameter.

bin failure An attempt to write an audit record
to the file specified by the Current
parameter fails. If this occurs,
auditbin fails with errno set to the
return code from the auditwrite
subroutine.

bin contention
Another process had already
issued a successful auditbin
subroutine. If this occurs, audtbin
fails with errno set to EBUSY.

1-32 Base Operating System Reference

Current

Next

Threshold

Return Values

auditbin

system shutdown

‘ The auditing system was
shutdown, If this occurs, auditibin
fails with errno set to EINTR.

A file descriptor for a file to which the kernel should immediately write audit
records.

Specifies the file descriptor which will be used as the current audit bin if the
value of the Threshold parameter is exceeded or if a write to the current bin
should fail. If this value is —1, no switch will occur.

Specifies the maximum size of the current bin. If 0, the auditing subsystem
will not switch bins. If it is non—zero, the kernel will begin writing records to
the file specified by the Next parameter if writing a record to the file
specified by the Cur parameter would cause the size of this file to exceed
Threshold bytes. If no next bin is defined and AUDIT_PANIC was specified
when the auditing subsystem was enabled, the system will be shutdown. If
the size of the Threshold parameter was too small to contain a bin header
and a bin tail, then the auditbin subroutine will fail and an errno of EINVAL
will be set.

If the auditbin subroutine is successful, a value of 0 returns.

If the auditbin subroutine fails, a value of— 1 returns and errno is set to indicate the error. If
this occurs, the result of the call does not indicate whether any records were written to the

bin.

Error Codes

The auditbin subroutine fails if any of the following are true:

EBADF

EINVAL

EINVAL

EBUSY

EBUSY

EINTR

The Current parameter is not a file descriptor for a regular file open for
writing, or the Next parameter is neither —1 nor a file descriptor for a regular
file open for writing.

The Command parameter specifies a nonzero value other than
AUDIT_EXCL or AUDIT_WAIT.

The Threshold parameter value is less than the size of a bin header and
trailer.

The Command parameter specifies AUDIT_EXCL and the kernel is not
writing audit records to the file specified by Current.

The Command parameter specifies AUDIT_WAIT and another process has
already registered a bin.

The auditing subsystem is shutdown.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-33

auditbin

Related Information
The audit subroutine, auditevents subroutine, auditlog subroutine, auditproc subroutine,
auditobj subroutine.

The audit command.

The audit.h file.

1-34 Base Operating System Reference

auditevents

auditevents Subroutine

Purpose
Gets or sets the status of system event auditing.
Syntax
#include <sys/audit.h>
int auditevents (Command, Classes, Nclasses)
int Command;
struct audit_class *Classes;
int Nclasses;
Description
The auditevents subroutine reads or writes the audit class definitions which control event
auditing in the kernel. Each audit class is a set of one or more audit events.
System auditing need not be enabled to set or query the event lists. The audit subroutine
can be directed to clear all event lists with the AUDIT_RESET command.
Parameters

Command Specifies whether the event lists are to be read or written. The values for
the Command parameter, defined in sys/audit.h, are:

AUDIT_SET Sets the lists of audited events.
AUDIT_GET Queries the lists of audited events.
AUDIT_LOCK Queries the lists of audited events. This also blocks

any other process attempting to set the list of audit
events. The lock is released when the process
holding the lock dies or calls auditevents with the
Command parameter set to AUDIT_SET.

Classes The base array of a_event structures for the AUDIT_SET operation, or after
and AUDIT_GET or AUDIT_LOCK operation. The audit_class structure is
defined in sys/audit.h and contains the following members:

Note: Event and class names are limited to 15 significant characters.
ae_name A pointer to the name of the audit class.

ae_list A pointer to a list of null-terminated audit event names for
this audit class. The list is ended by a null name (a leading
null byte, or two consecutive null bytes). .

ae_len The length of the event list in ae_list. This length includes
the terminating null bytes. On an AUDIT_SET operation,
the caller must set this field to indicate the actual length of
the list (in bytes) pointed to by ae_list. On an AUDIT_GET
or AUDIT_LOCK operation, auditevents sets this field to
indicate the actual size of the list.

Base Operating System Runtime 1-35

auditevents

Security

Nclasses

Serves a dual purpose. For AUDIT_SET, Nclasses specifies the number of
elements in the events array. For AUDIT_GET and AUDIT_LOCK,
Nclasses specifies the size of the buffer pointed to by the Classes
parameter.

Warning: Only 32 audit classes are supported. One class is implicitly defined by the system
to include all audit events (ALL). The administrator of the system should not attempt to
define more than 31 audit classes.

The calling process must have the AUDIT_CONFIG kernel privilege in order to use the
auditevents subroutine.

Return Codes
If the auditevents subroutine completes successfully, the number of audit classes is
returned if the Command parameter is AUDIT_GET or AUDIT_LOCK; a value of 0 is
returned if the Command parameter is AUDIT_SET. If this call fails, a value of -1 is

returned and errno is set to indicate the error.

Error Codes |
The auditevents subroutine fails if any one of the following is true:

EPERM
EINVAL
EINVAL

EINVAL
ENOSPC

EFAULT
EFAULT

EFAULT

The calling process does not have the AUDIT_CONFIG kernel privilege.
The value of Command is not AUDIT_SET, AUDIT_GET, or AUDIT_LOCK.

The Command parameter is AUDIT_SET and the values of the Nclasses
parameter is greater than or equal to 32.

A class name or event name is longer than 15 significant characters.

The value of Command is AUDIT_GET or AUDIT_LOCK and the size of the
buffer as specified by Nc/asses is not large enough to hold the list of event
structures and names. If this occurs, the first word of the buffer is set to the
required buffer size.

The Classes parameter points outside of the process’ address space.

The ae_list field of one or more audit_class structures passed for an
AUDIT_SET operation points outside of the process’ address space.

The Commandis AUDIT_GET or AUDIT_LOCK and the size of the
Classes buffer is not large enough to hold an integer.

Implementation Specifications
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-36

The audit subroutine, auditbin subroutine, auditlog subroutine, auditobj subroutine,
auditproc subroutine.

The auditread subroutine, auditwrite subroutine.

The audit command.

Base Operating System Reference

auditiog

auditlog Subroutine

Purpose
Appends an audit record to the audit trail file.
Library
Standard C Library (libc.a)
Syntax
#include <sys/audit.h>
int auditlog (Event, Result, Buffer, BufferSize)
char *Event,;
int Result;
char *Buffer;
int Buffersize;
Description
The auditlog subroutine generates an audit record. The kernel audit logging component will
append a record for the specified Eventif system auditing is enabled, process auditing is not
suspended and the Event parameter is in one or more of the audit classes for the current
process.
The audit logger generates the audit record by adding the Event and Result parameters to
the audit header and including the information in the Buffer parameter as the audit tail.
Parameters
Event The name of the audit event to be generated. This parameter should be the
name of an audit event. Audit event names are truncated to 15 characters
plus NULL.
Result Describes the result of this event. Valid values are defined in sys/audit.h and

include the following:
AUDIT_OK The event was successful.
AUDIT_FAIL The event failed.

AUDIT_FAIL_ACCESS
The event failed because of any access control denial.

AUDIT_FAIL_DAC

The event failed because of a discretionary access control
denial.

AUDIT_FAIL_PRIV
The event failed because of a privilege control denial.

AUDIT_FAIL_AUTH
The event failed because of an authentication denial.

Other non-zero values of the Result parameter will be converted into
AUDIT_FAIL.

Base Operating System Runtime 1-37

auditlog

Buffer Points to a buffer containing the tail of the audit record. The format of the
information in this buffer depends on the event name.

BufferSize
Specifies the size of the Buffer parameter including the terminating NULL
character.

Return Values
Upon successful completion, the auditlog subroutine returns a value of 0. If auditiog fails, a
value of -1 is returned and errno is set to indicate the error.

The auditiog subroutine does not return any indication of a failure to write the record due to
the auditing subsystem configuration.

Error Codes
The auditlog subroutine fails if any of the following are true:

EFAULT The Event or Buffer parameter points outside of the process’ address
space.

EINVAL The auditing system is either interrupted or not initialized.

EINVAL The length of the audit record is greater than 32 kilobytes.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditobj subroutine,
auditproc subroutine, auditwrite subroutine.

1-38 Base Operating System Reference

auditobj

auditobj Subroutine

Purpose
Library

Syntax

Gets or sets the auditing mode of a system data object.

Standard C Library (libc.a)

#include <sys/audit.h>

int auditobj (Command, Obj_Events, Objsize)
int Command,

struct o_event *Obj_Events;

int ObjSize;

Description
The auditobj subroutine reads or writes the audit events to be generated by accessing
selected objects. For each object in the file system name space, it is possible to specify the
event generated per access mode. This call allows an administrator to define new audit
events in the system that correspond to accesses to the specified objects. These events are

not treated differently than the system—defined events.

System auditing need not be enabled to set or query the object audit events. The audit
subroutine can be directed to clear the object audit event definitions with the AUDIT_RESET

command.

Parameters
Command Specifies whether the object audit event lists are to be read or written. The
valid values for the Command parameter, defined in sys/audit.h are:

Obj_Events

AUDIT_SET
AUDIT_GET
AUDIT_LOCK

Sets the list of object audit events.
Queries the list of object audit events.

Queries the list of object audit events. This also
blocks any other process attempting to set or lock the
list of audit events. The lock is released when the
process holding the lock dies or calls auditobj with
the Command parameter set to AUDIT_SET.

Specifies a buffer that contains AUDIT_SET, or will contain AUDIT_GET or
AUDIT_LOCK as the list of object audit events. This buffer is an array of
o_event structures. The o_event structure is defined in sys/audit.h and

contains the following members.

o_type Specifies the type of the object, in terms of naming space.
Currently, only one object naming space is supported:

AUDIT_FILE Denotes the file system naming space.

0_hame Specifies the name of the object.

Base Operating System Runtime

1-39

auditobj

o_event Specifies any array of event names to be generated when
the object is accessed. Note that event names in AlX are
currently limited to 16 bytes, including the trailing NULL.
The index of an event name in this array corresponds to an
access mode. Valid indices are defined in the audit.h file
and include the following:

« AUDIT_READ
 AUDIT_WRITE
« AUDIT_EXEC

ObjSize For an AUDIT_SET operation, the ObjSize parameter specifies the number
of object audit event definitions in the array pointed to by the Obj_Events
parameter. For an AUDIT_GET or AUDIT_LOCK operation, the ObjSize
parameter specifies the size of the buffer pointed to by the Obj_Events
parameter.

Return Values
If the auditobj subroutine completes successfully, the number of object audit event
definitions is returned if the Command parameter is AUDIT_GET or AUDIT_LOCK; a value
of 0 is returned if the Command parameter is AUDIT_SET. If this call fails, a value of -1 is
returned and errno is set to indicate the error.

Error Codes
The auditobj subroutine fails if any of the following are true;

EINVAL The value of the Command parameter is not AUDIT_SET, AUDIT_GET or
AUDIT_LOCK.
EINVAL The Command parameter is AUDIT_SET and either the value of one or

more of the o_type fields is not AUDIT_FILE.
EINVAL An event name was longer than 15 significant characters.

ENOENT The Command parameter is AUDIT_SET and the parent directory of one of
the file system objects does not exist.

ENOSPC The value of the Command parameter is AUDIT_GET or AUDIT_LOCK and
the size of the buffer as specified by the ObjSize parameter is not large
enough to hold the list of event structures and names. If this occurs, the
first word of the buffer is set to the required buffer size.

EFAULT The Obj_Events parameter points outside the address space of the process.

EFAULT The Command parameter is AUDIT_SET and one or more of the o_name
fields points outside the address space of the process.

EFAULT The Command parameter is AUDIT_GET or AUDIT_LOCK and the buffer

size of the Obj_Events parameter is not large enough to hold the integer.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

1-40 Base Operating System Reference

auditobj

Related Information
The audit subroutine, auditbin subroutine, auditevents subroutine, auditlog subroutine,
auditproc subroutine.

The audit command.

The audit.h file

Base Operating System Runtime 1-41

auditpack

auditpack Subroutine

Purpose
Compresses and uncompresses audit bins.
Library
Security Library (libs.a)
Syntax
#include <sys/audit.h>
#include <stdio.h>
char *auditpack (Expand, Buffer)
int Expand;
char */buf;
Description
The auditpack subroutine can be used to compress or uncompress bins of audit records.
Parameters
Expand Specifies the operation. Valid values, which are defined in the sys/audit.h
header file, are one of the following:
AUDIT_PACK Performs standard compression on the audit bin.
AUDIT_UNPACK Unpacks the compressed audit bin.
Buffer Specifies the buffer containing the bin to be compressed or uncompressed.

This buffer must contain a standard bin as described in the audit. h file.

Return Values
If the auditpack subroutine is successful, a pointer to a buffer containing the processed

audit bin is returned. [If unsuccessful, a NULL pointer is returned and errno is set {o indicate
the error.

Error Codes
The auditpack subroutine fails if one or more of the following values is true:

EINVAL The Expand parameter is not one of the valid values (AUDIT_PACK or
AUDIT_UNPACK).

EINVAL The Buffer parameter does not point to a valid buffer.

EINVAL The Expand parameter is AUDIT_PACK and the bin in the Buffer parameter

is already compressed on the Expand parameter is AUDIT_UNPACK and
the bin in the Buffer parameter is already unpacked.

ENOSPC The function is unable to allocate space for a new buffer.

1-42 Base Operating System Reference

auditpack

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditread subroutine.

The auditcat command.

Base Operating System Runtime 1-43

auditproc

auditproc Subroutine

Purpose
Gets or sets the audit state of a process.

Library
Standard C Library (libc.a)

Syntax
#inciude <sys/audit.h>
int auditproc (Processid, Command, Argument, Length)
int Processid;
int Command;
int Argument;
int Length,

Description
The auditproc subroutine queries or sets the auditing state of a process. There are two
parts to the auditing state of a process:

» The list of administrative events to be audited for this process. Administrative events are
defined by the auditevents subroutine. Each class includes a set of audit events. When a
process causes an audit event, that event may be logged in the audit trail, if it is included
in one or more of the audit classes of the process.

¢ The audit status of the process. Auditing for a process may be suspended or resumed.
Functions that generate an audit record can first check to see whether auditing is
suspended. If process auditing is suspended, no audit events are logged for a process.
This is described the auditlog subroutine documentation.

Parameters

Processid The process ID of the process to be affected. If Processid is 0, the
auditproc subroutine affects the current process.

Command Specifies the action to be taken. Defined in the audit.h file, valid values for
the are as follows:

AUDIT_QEVENTS Returns the list of audit classes defined for the
current process. The Argument parameter is a
pointer to a character buffer. The Length parameter
is the size of this buffer. On return, this buffer
contains a list of null-terminated audit class names.
A null name terminates the list.

AUDIT_EVENTS Sets the list of audit classes to be audited for the

process. The Argument parameter is a pointer to a
list of null-terminated audit class names. The
Length parameter is the length of this list.

AUDIT_QSTATUS Returns the audit status of the current process. You

can only check the status of the current process. If
the Processid parameter is nonzero, —1 returns and

1-44 Base Operating System Reference

Argument

Length

Return Values

auditproc

errno is set to EINVAL. The Length and Argument
parameters are ignored. A return value of

AUDIT_SUSPEND indicates auditing is suspended.

A return value of AUDIT_RESUME indicates
normal auditing for this process.

AUDIT_STATUS Sets the audit status of the current process. The
Length parameter is ignored, and the Processid
parameter must be zero. If Argument is
AUDIT_SUSPEND, the audit status is set to
suspend event auditing for this process. If the
Argument parameter is AUDIT_RESUME, the audit
status is set to resume event auditing for this
process.

Specifies a character pointer for the audit class buffer for an AUDIT_EVENT

or an AUDIT_QEVENTS value of the Command parameter or an integer
defining the audit status to be set for an AUDIT_STATUS operation.

Size of the audit class character buffer.

The auditproc subroutine returns the foliowing values upon successful completion:

e The previous audit status (AUDIT_SUSPEND or AUDIT_RESUME), if the call queried or
set the audit status (the Command parameter was AUDIT_QSTATUS or
AUDIT_STATUS).

e The value 0 if the call queried or set audit events (the Command parameter was
AUDIT_QEVENTS or AUDIT_EVENTS).

Error Codes

If the auditproc subroutine fails if one or more of the following are true:

EINVAL
EINVAL

EINVAL

ENOSPC

EFAULT

An invalid value was specified for the Command parameter.

The Command parameter is set to AUDIT_QSTATUS or AUDIT_STATUS
value and the pid value is nonzero.

The Command parameter is set to AUDIT_STATUS value and the
Argument parameter is not set to AUDIT_SUSPEND or AUDIT_RESUME.

The Command parameter is AUDIT_QEVENTS and the buffer size is

insufficient. In this case, the return value is the required buffer size, in
bytes.

The Command parameter is AUDIT_QEVENTS or AUDIT_EVENTS and

the Argument parameter points to a location outside of the process'’s
allocated address space.

Base Operating System Runtime 1-45

auditproc

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The audit subroutine, auditbin subroutine, auditevents subroutine, auditiog subroutine,
auditobj subroutine, auditwrite subroutine.

1-46 Base Operating System Reference

auditread

auditread Subroutine

Purpose
Reads an audit record.

Library
Security Library (libs.a)

Syntax
#include <sys/audit.h>
#include <stdio.h>

char *auditread (FilePointer, AuditRecord)
FILE *FilePointer;
struct aud_rec *AuditRecord;

Description
The auditread subroutine will read the next audit record from the specified file descriptor.
Bins on this input stream will be unpacked and uncompressed if necessary.

Parameters
FilePointer Specifies the file descriptor from which to read.

AuditRecord Specifies the buffer to contain the header. The first short in this buffer
must contain a valid number for the header.

Return Values
If the auditread subroutine completes successfully, a pointer to a buffer containing the tail of
the audit record is returned. The length of this buffer is returned in the ah_length field of the
header file. If it is unsuccessful, a NULL pointer is returned and errno is set to indicate the
error. '

Error Codes
The auditread subroutine fails if one or more of the following is true:

EINVAL The ah_magic field in the header does not contain a valid number.
EBADF The FilePointer parameter is not valid.
ENOSPC The auditread subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the read subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditpack subroutine.

Base Operating System Runtime 1-47

auditwrite

auditwrite Subroutine

Purpose
Writes an audit record.

Library
Security Library (libs.a)

Syntax

#include <sys/audit.h>
#include <stdio.h>

int auditwrite (Event, Result,
Buffer1, Length1, Buffer2, Length2...)
char *Event,
int Result;
char *Buffer1, *Buffer2 ...;
int Length1, Length2 ...;

Description
The auditwrite subroutine will build the tail of an audit record and then write it with the

auditlog subroutine. The tail is built by gathering the specified buffers. The last butfer
pointer must be a NULL.

Parameters ‘
Event Specifies the name of the event to be logged.

Result Specifies the audit status of the event. Valid values are defined in the
' sys/audit.h file and are listed in the auditlog subroutine.

Buffer1, Buffer2 Specifies the character buffers containing audit tail information. Note

that numerical values must be passed by reference. The correct size
can be computed with the sizeof C function.

Length1, Length2 Specifies the lengths of the corresponding buffers.

Return Values

If the auditwrite subroutine completes successfully, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

Error Codes :
The auditwrite subroutine fails if one or more of the following is true:

ENOSPC The auditwrite subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the auditlog subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The auditlog subroutine.

1-48 Base Operating System Reference

bcopy,...

bcopy, becmp, bzero or ffs Subroutine

Purpose
Performs bit and byte string operations.

Library
Standard C Library (libc.a)

Syntax

void bcopy (Source, Destination, Length)
char *Source, *Destination;
int Length;

int bemp (String1, String2, Length)
char *String1, *String2;
int Length;

void bzero (String, Length)
char *String;
int Length;

int ffs (/ndex)
int /ndex;

Description
The bcopy, bemp, and bzero subroutines operate on variable length strings of bytes. They
do not check for null bytes as do the string routines.

The bcopy subroutine copies the value of the Length parameter in bytes from the string in
the Source parameter to the string in the Destination parameter.

The bemp subroutine compares byte string in the String? parameter against byte string of
the String2 parameter, returning a zero value if the two strings are identical and a nonzero
value otherwise. Both strings are assumed to be Length bytes long.

The bzero subroutine zeroes out the string in the String parameter for the value of the
Length parameter in bytes.

The ffs subroutine finds the first bit set in the Index parameter passed to it and returns the
index of that bit. Bits are numbered starting at 1. A return value of 0 indicates that the value
passed is 0.

Warning: The bcopy subroutine takes parameters backwards from the strepy subroutine.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The memcmp, memccpy, memchr, memcpy, memmove, memset subroutines, string
subroutines, NCstring subroutines, NLstring subroutines, swab subroutine.

Base Operating System Runtime 1-49

bessel

bessel: j0, j1, jn, y0, y1, or yn Subroutine

Purpose
Computes Bessel functions.
Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Syntax
#include <math.h>
double jO (x)
double x;
double j1 (x)
double x;
double jn (n, x)
int n:
double x;
double y0 (x)
double x;
double y1 (x)
double x;
double yn (n, x)
int n;
double x;
Description
Bessel functions are used to compute wave variables, primarily in the field of
communications.
The jO subroutine and j1 subroutine return Bessel functions of x of the first kind, of orders 0
and 1, respectively. The jn subroutine returns the Bessel function of x of the first kind of
order n.
The y0 subroutine and y1 subroutine return the Bessel functions of x of the second kind, of
orders 0 and 1, respectively. The yn subroutine returns the Bessel function of x of the
second kind of order n. The value of x must be positive.
Note: Compile any routine that uses subroutines from the libm.a library with the —-Im flag.
To compile the j0.c file, for example:
cc jO0.c —=1m
Parameters
X Specifies some double-precision floating-point value.
n Specifies some integer value.

1-50 Base Operating System Reference

bessel

Error Codes
When using libm.a (-Im):

Non-positive values cause y0, y1, and yn to return the value NaNQ.
When using libmsaa.a (-Imsaa):

Values too large in magnitude cause the functions j0, j1, y0, and y1 to return 0 and to set
errno to ERANGE. In addition, a message indicating TLOSS error is printed on the standard
error output.

Non-positive values cause y0, y1, and yn to return the value -HUGE and to set errno to
EDOM. in addition, a message indicating argument DOMAIN error is printed on the standard
error output.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (-Imsaa).

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine.

Base Operating System Runtime 1-51

brk,...

brk or sbrk Subroutine

Purpose
Changes data segment space allocation.

Syntax
int brk (EndDataSegment)
char *EndDataSegment;
char *sbrk (/Increment)
int Increment;

Description
The brk subroutine and the sbrk subroutine dynamically change the amount of space
allocated for the data segment of the calling process. (For information about segments, see
the exec subroutine. For information about the maximum amount of space that can be
allocated, see the ulimit and getrlimit system calls.)
The change is made by resetting the break value of the process, which determines the
maximum space that can be allocated. The break value is the address of the first location
beyond the current end of the data area in the process private segment. The amount of
available space increases as the break value increases. The available space is initialized to
a value of 0 at the time it is used. The break value can be automatically rounded up to a size
appropriate for the memory management architecture.
The brk subroutine sets the break value to the value of the EndDataSegment parameter and
changes the amount of available space accordingly.
The sbrk subroutine adds to the break value the number of bytes contained in the Increment
parameter and changes the amount of available space accordingly. The Increment
parameter can be a negative number, in which case the amount of available space is
decreased.

Parameters
EndDataSegment Specifies the effective address of the maximum available data.
Increment Specifies any integer.

Return Values

Upon successful completion, the brk subroutine returns a value of 0, and the sbrk
subroutine returns the old break value. If either subroutine is unsuccessful, a value of -1 is
returned and the global variable errno is set to indicate the error.

Error Codes

1-52

The brk subroutine and the sbrk subroutine are unsuccessful and the allocated space
remains unchanged if one or more of the following are true:

ENOMEM The requested change allocates more space than is allowed by a

system-imposed maximum. (For information on the system-imposed
maximum on memory space, see the ulimit system call.)

Base Operating System Reference

brk,...

ENOMEM The requested change sets the break value to a value greater than

or equal to the start address of any attached shared memory

segment. (For information on shared memory operations, see the
shmat subroutine.)

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The exec subroutine, shmat subroutine, getrlimit subroutine, shmdt subroutine, ulimit
subroutine.

The _end, _etext, _edata identifier.

Base Operating System Runtime 1-53

bsearch

bsearch Subroutine

Purpose
Performs a binary search.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>
void *bsearch (Key, Base, NumberOfElements, Size, ComparisonPointer)
void *Key, *Base;
Size_t Size, NumberOfElements;
int (*ComparisonPointer) (void *, void *);

Description
The bsearch subroutine is a binary search routine.
The bsearch subroutine searches an array of NumberOfElements objects, the initial
member of which is pointed to by the Base parameter, for a member that matches the object
pointed to by the Key parameter. The size of each member in the array is specified by the
Size parameter.
The array must already be sorted in increasing order according to the provided comparison
function ComparisonPointer parameter.

Parameters
Key Paoints to the object to be sought in the array.
Base Points to the element at the base of the table.
NumberOfElements Specifies the number of elements in the array.
ComparisonPointer Points to the comparison function, which is called with two

arguments that point to the Key parameter object and to an
array member, in that order.

Size Specifies the size of each member in the array.

Return Values

1-54

For the Key parameter: If the Key parameter value is found in the table, the bsearch
subroutine returns a pointer to the element found.

If the Key parameter value is not found in the table, the bsearch subroutine returns the
NULL value. If two members compare as equal, the matching member is unspecified.

For the ComparisonPointer parameter. The comparison function compares its parameters
and returns a value as follows:

« If the first parameter is less than the second parameter, the ComparisonPointer
parameter returns a value less than 0.

Base Operating System Reference

bsearch

¢ If the first parameter is equal to the second parameter, the ComparisonPointer parameter
returns a value of 0.

o If the first parameter is greater than the second parameter, the ComparisonPointer
parameter returns a value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained in
the elements in addition to the values being compared.

The Key and Base parameters should be of type pointer-to-element, and cast to type
pointer-to-character. Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The hsearch subroutine, Isearch subroutine, gsort subroutine.

Donald E. Knuth’s The Art of Computer Programming, Volume 3, 6.2.1, Algorithm B. This
book was published in Reading, Massachusetts by Addison-Wesley, 1981.

Base Operating System Runtime 1-55

catclose

catclose Subroutine

Purpose

Closes a specified message catalog.
Library

Standard C Library (libc.a)
Syntax

#include <nl_types.h>

int catclose (CatalogDescriptor)
nl_catd CatalogDescriptor;

Description
The catclose subroutine closes a specified message catalog. If your program accesses
several message catalogs you may reach the NL_MAXOPEN number of opened catalogs,
and you must close some before opening more. Before exiting, programs should close any
catalog they have opened.

The catclose subroutine will close a message catalog only when the number of calls to
catclose matches the combined number of calls to catopen and NLcatopen in an
application.

Parameter

CatalogDescriptor Points to the message catalog that is returned from a call to
the catopen or NLcatopen subroutine.

Return Values
The catclose subroutine returns a value of 0 if it closes the catalog successfully, or if the
number of calls to catclose is fewer than the number of calls to catopen and NLcatopen.

Error Codes
The catclose subroutine returns a value of -1 if it does not succeed in closing the catalog.
The catclose subroutine fails if the number of calls to catclose is greater than the number
of calls to catopen and NLcatopen, or if the CatalogDescriptor parameter value is not valid.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The catopen, NLcatopen subroutine.

1-56 Base Operating System Reference

catgetmsg

catgetmsg Subroutine

Purpose
Copies a message from a catalog into a user-defined character string buffer.

Library
Standard C Library (libc.a)

Syntax

#include <nl_types>

char *catgetmsg (CatalogDescriptor, SetNumber, MessageNumber, Buffer, BufferLength)
nl_catd CatalogDescriptor;

int SetNumber, MessageNumber, BufferLength;

char *Buffer,

Description
The catgetmsg subroutine retrieves a message from a catalog after a successful call to the
catopen subroutine. As with the catgets subroutine, you specify a catalog with the
CatalogDescriptor parameter returned by the catopen subroutine.

If the message is found, the catgetmsg subroutine returns the Buffer pointer that points to
the message.

The catgetmsg subroutine copies up to BufferLength—1 bytes of the message into the buffer
specified by the Buffer parameter. The catgetmsg subroutine does not split a 2-byte
character (an extended character).

Parameters

CatalogDescriptor Specities a catalog description that is returned by the catopen
subroutine.

SetNumber Specifies the set ID.

MessageNumber Specifies the message ID. SetNumber and MessageNumber
specify a particular message in the catalog to retrieve.

Buffer Points to the buffer in which the retrieved message is placed.
BufferLength Specifies the length of the buffer.

Error Codes
If the catgetmsg subroutine fails, the Buffer parameter points to an empty string.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

The catgetmsg subroutine has been withdrawn from X/Open.

Related Information
The catgets subroutine, NLcatgets subroutine, NLgetamsg subroutine.

Base Operating System Runtime 1-57

catgets

catgets Subroutine

Purpose
Retrieves a message from a catalog.

Library
Standard C Library (libc.a)

Syntax
#include <nl_types>
char *catgets (CatalogDescriptor, SetNumber, MessageNumber, String)
nl_catd CatalogDescriptor;
int SetNumber, MessageNumber;
char *String;

Description
The catgets subroutine retrieves a message from a catalog after a successful cail to the
catopen or NLcatopen subroutine. If the catgets subroutine finds the specified message, it
loads that message into a character string buffer, ends the message string with a null
character, and returns the pointer to the buffer.
The pointer is used to reference the buffer and display the message; use the printf or
NLprintf subroutine with either the %s or %n$s conversion specification. The message in
the buffer is overwritten by the next call to the catgets subroutine.
The catgets and catgetmsg subroutines retrieve messages from an open catalog. The AIX
operating system includes two functions for getting messages that are not defined by
X/Open: the NLcatgets and the NLgetamsg subroutines.

Parameters
CatalogDescriptor Specifies a catalog description that is returned by the catopen or

NLcatopen subroutine.

SetNumber ; Specifies the set ID.
MessageNumber Specifies the message ID. SetNumber and MessageNumber

specify a particular message in the catalog to retrieve.

String Specifies the character string buffer.

Error Codes

If the catgets subroutine fails for any reason, it returns the user-supplied default message
string, String.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-58

The catgetmsg subroutine, NLcatgets subroutine, NLgetamsg subroutine.

Base Operating System Reference

catopen,...

catopen or NLcatopen Subroutine

Purpose
Library

Syntax

Opens a specified message catalog.

Standard C Library (libc.a)

include <limits.h>
include <ni_types.h>

nl_catd catopen (CatalogName, Parameter)
char *CatalogName;
int Parameter;

ni_catd NLcatopen (CatalogName, Parameter)
char *CatalogName;
int Parameter;

Description

The catopen subroutine opens a specified message catalog and returns a catalog
descriptor that you use to retrieve messages from the catalog.

The NLcatopen subroutine prepares a catalog to be opened. To avoid unnecessary opening
of files, NLcatopen does not actually open the catalog until a message is needed.

The special ni_catd data type is used for catalog descriptors. Since this data type is defined
in the ni_types.h header file, include this file in your application program.

If the catalog file name referred to by the CatalogName parameter begins with a /, it is
assumed to be an absolute path name. If the catalog file name is not an absolute path
name, the user environment determines the directory paths to search.

The environment variable NLSPATH defines the directory search path. You can use two
special variables, %N and %L, in the environment variable NLSPATH.

The variable %N will be replaced by the catalog name referred to by the call that opens the
message catalog. The variable %L will be replaced by the value of the LANG environment
variable.

You can use the LANG environment variable to refer to message catalogs that are separated
into directories based on natural languages. For example, if the catopen subroutine
specifies a catalog with the name mycmd, and the environment variables are set as follows:

NLSPATH=../%N:./%N:/system/nls/%L/%N:/system/nls/%N
LANG=Fr_FR

then the application searches for the catalog in the following order:

. . /mycmd

. /mycmd
/system/nls/Fr_FR/mycmd
/system/nls/mycmd

Base Operating System Runtime 1-59

catopen,...

If you omit the variable %N in a directory specification within the environment variable
NLSPATH, the application assumes that the path defines a directory and searches for the
catalog in that directory before searching the next specified path.

Parameters
CatalogName Specifies the catalog file to open.
Parameter Included for compatibility'with X/Open, but is not used by the AIX

operating system. Takes the value of 0.

Error Codes
The catopen and NLcatopen subroutines return a value of —1 if they cannot find the file or if

the number of catalogs already open is equal to the NL_MAXOPEN limit defined in the
mesg.h header file.

implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The catclose subroutine.

1-60 Base Operating System Reference

cfgetospeed,...

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed
Subroutine

Purpose

Library

Syntax

Get and set input and output baud rates.

Standard C Library (libc.a)

#include <termios.h>

speed_t cfgetospeed (TermiosPointer)
struct termios *TermiosPointer,;

int ctsetospeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed,

speed_t cfgetispeed (TermiosPointer)
struct termios *TermiosPointer;

int cfsetispeed (TermiosPointer, Speed)
struct termios *TermiosPointer;
speed_t Speed;

Description

The baud rate subroutines are provided for getting and setting the values of the input and
output baud rates in the termios structure. The effects on the terminal device described
below do not become effective and not all errors are detected until the tcsetattr function is
successfully called.

The input and output baud rates are stored in the termios structure. The values shown
below are supported. The name symbols in this table are defined in the termios.h file.

The type speed_t is defined in the termios.h file as an unsigned integral type.

The cfgetospeed subroutine returns the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetospeed subroutine sets the output baud rate stored in the termios structure
pointed to by the TermiosPointer parameter to the value specified by the Speed parameter.

The cfgetispeed subroutine returns the input baud rate stored in the termios structure
pointed to by the TermiosPointer parameter.

The cfsetispeed subroutine sets the input baud rate stored in the termios structure pointed
to by the TermiosPointer parameter to the value specified by the Speed parameter.

Certain values for speeds have special meanings when set in the termios structure and
passed to the tcsetattr function. These are discussed in the tcsetattr subroutine.

Base Operating System Runtime 1-61

cfgetospeed.,...

Baud Rate Values

Name
BO
B50
B75
B110
B134
B150
B200
B300

Parameters
TermiosPointer

Speed

Return Values

Description
Hang up

50 baud

75 baud

110 baud
134 baud
150 baud
200 baud
300 baud

Name
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400

Points to a termios structure.

Specifies the baud rate.

Description
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud
19200 baud
38400 baud

The cfgetospeed and cfgetispeed subroutines return exactly the value found in the
termios data structure, without interpretation.

Both the cfsetospeed and cfsetispeed subroutines return a value of zero if successful and
-1 to indicate an error.

Example

To set the output baud rate to zero to force modem control lines to no longer be asserted,

enter:

cfsetospeed (&my_termios, BO);
tcsetattr (stdout, TCSADRAIN, &my_ termios);

Implementation Specifics
These subroutines are part of AlIX Base Operating System (BOS) Runtime.

Related Information

The tcsetattr subroutine.

The termios.h header file.

1-62 Base Operating System Reference

chacil,...

chacl or fchacl Subroutine

Purpose

Changes the permissions on a file.

Library

Standard C Library (libc.a)

Syntax

#include <sys/acl.h>
#include <sys/mode.h>

int chacl (Path, ACL, ACLSize)

char *Path;

struct acl *ACL;

int ACLSize;

int fchacl (FileDescriptor, ACL, ACLSize)
int FileDescriptor;
struct acl *ACL;

int ACLSize;

Description

The chacl and fchacl subroutines set the access control attributes of a file according to the
Access Control List structure pointed to by the ACL parameter. This structure is defined in
the sys/acl.h file and contains the following members:

acl_len

acl_mode
u_access
g_access
0_access

acl_ext[]

The size of the ACL (Access Control List) in bytes, including the base
entries.

The file mode.

The access permissions for the file owner.

The access permissions for the file group.

The access permissions for the default class others.

An array of the extended entries for this access control list.

The following bits in the acl_mode field are defined in the sys/mode.h file and are
significant for this subroutine:

S_ISUID
S_ISGID

S_ISVTX
S_IXACL

Enables the setuid attribute on an executable file.

Enables the setgid attribute on an executable file. Enables the group
inheritance attribute on a directory.

Enables linking restrictions on a directory.

Enables extended ACL entry processing. If this attribute is not set, only the
base entries (owner, group, and default) are used for access authorization
checks.

Other bits in the mode are ignored.

Base Operating System Runtime 1-63

chacl,...

The fields for the base ACL — owner, group, and others — may contain the following bits
which are defined in the sys/access.h file:

R_ACC Allows read permission.

W_ACC Allows write permission.

X_ACC Allows execute or search permiséion.
Parameters :

Path Specifies the path name of the file.

FileDescriptor

Specifies the file descriptor of an open file.

ACL Specifies the Access Control List to be established on the file. The format of an
ACL is defined in the sys/acl.h header file.

ACLSize Specifies the size of the buffer containing the ACL.
Return Values

Upon successful completion, the chacl and fchacl subroutines return a value of 0. If the

chacl or fchacl subroutine fails, a value of —1 is returned, and the global variable errno is
set to indicate the error.

Error Codes
The chacl subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit system call).

ENOENT The Path parameter was null.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location ou‘t’side of the allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

1-64 Base Operating System Reference

Security

chacl,...

The chacl or felacl subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EROFS The named file resides on a read-only file system.

EFAULT The ACL parameter points to a location outside of the allocated address
space of the process.

EINVAL The ACL parameter does not point to a valid Access Control List.

EINVAL The ACL_Len field in the ACL is not valid.

ElO An /O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the

invoker does not have root user authority.

The fchacl subroutine fails and the fite permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

If NFS is installed on your system, the chacl and fchacl subroutines can also fail if the
following is true: '

ETIMEDOUT The connection timed out.

Access Control

The invoker must have search permission for all components of the Path
prefix.

Auditable Events

Event Name Tail Information
chacl Path
fchacl FileDescriptor

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The statacl subroutine, chmod subroutine, stat subroutine.
The acl_get subroutine, acl_put subroutine, acl_set subroutine, acl_chg subroutine.

The acl_get command, acl_put command.

Base Operating System Runtime 1-65

chdir

chdir Subroutine

Purpose
Changes the current directory.
Library
Standard C Library (libc.a)
Syntax
int chdir (Path)
char *Path;
Description
The chdir subroutine changes the current directory to the directory indicated by the Path
parameter.
Parameter

Path A pointer to the path name of the directory. If the Path parameter refers to a
symbolic link, the chdir subroutine sets the current directory to the directory
pointed to by the symbolic link. If Network File System is installed on the
system, this path can cross into another node.

The current directory, also called the current working directory, is the
starting point of searches for path names that do not begin with a / (slash).
The calling process must have search access to the directory specified by
the Path parameter.

Return Values

Upon successfut completion, the chdir subroutine returns a value of 0. Otherwise, a value of
—1 is returned and the global variable errno is set to identify the error.

Error Codes

The chdir subroutine fails and the current directory remains unchanged if one or more of the
following are true:

EACCES Search access is denied for the named directory.
ENOENT The named directory does not exist.
ENOTDIR The path name is not a directory.

The chdir subroutine can also fail if additional errors on page A-1 occur.

If Network File System is installed on the system, the chdir system call can also fail if the
following is true:

ETIMEDOUT The connection timed out.

1-66 Base Operating System Reference

chdir

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The chroot subroutine.

The cd command.

Base Operating System Runtime 1-67

chmod,...

chmod or fchmod Subroutine

Purpose
Changes file access permissions.

Library
Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int chmod (Path, Mode)
char *Path;
int Mode;

int fchmod (FileDescriptor, Mode)
char *FileDescriptor,
int Mode;

Description
The chmod subroutine sets the access permissions of the file specified by the Path

parameter. If Network File System is installed on your system, this path can cross into
another node.

~ Use the fchmod subroutine to set the access permissions of an open file pointed to by the
FileDescriptor parameter.

The access control information is set according to the Mode parameter. The use of these
subroutines will implicitly disable extended ACL entries and is therefore discouraged.

Parameters
FileDescriptor
Specifies the file descriptor of an open file.

Mode Specifies the bit pattern which determines the access permissions. The Mode
parameter is constructed by logically ORing one or more of the following
values, which are defined in the sys/mode.h header file:

S_ISUID Enables the setuid attribute for an executable file. A process

executing this program acquires the access rights of the owner
of the file.

S_ISGID Enables the setgid attribute for an executable file. A process
executing this program acquires the access rights of the group
of the file.

Enables the group inheritance attribute for a directory. Files
created in this directory will have a group equal to the group of
the directory.

S_ISVTX Enables the link/unlink attribute for a directory. Files may not
be linked to in this directory and files may only be unlinked if
the requesting process has write permission for the directory
and is either the owner of the file or the owner of the directory.

1-68 Base Operating System Reference

chmod,...

S_ISVTX Enables the link/unlink attribute for a direcsave text attribute
for an executable file. The program is not unmapped after
usage.

S_ENFMT Enables enforcement—-mode record locking for a regular file.
File locks requested with the lockf() subroutine are enforced.

S_IRUSR Permits the file's owner to read it.

S_IWUSR Permits the file’'s owner to write to it.

S_IXUSR Permits the file's owner to execute it (or to search the
directory).

S_IRGRP Permits the file's group to read it.

S_IWGRP Permits the file’s group to write to it.

S_IXGRP Permits the file’s group to execute it (or to search the
directory).
S_IROTH Permits others to read the file.

S_IWOTH Permits others to write to the file.

S_IXOTH Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod subroutine, but not
with the chmod subroutine.

Path Specifies the full path name of the file.
Return Values
Upon successful completion, the chmod subroutine and fchmod subroutine return a value

of 0. If the chmod subroutine or fchmod subroutine fails, a value of -1 is returned, and the
global variable errno is set to identify the error.

Error Codes
The chmod subroutine fails and the file permissions remain unchanged if one or more of the
following are true: '

ENOTDIR A component of the Path prefix is not a directory.

EACCESS Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

Base Operating System Runtime 1-69

chmod,...

Security

ENOENT A component of the Path does not exist or has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was nuil.

ENOENT The named file does not exist.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters or the entire
Path parameter exceeded 1023 characters.

The fchmod subroutine fails and the file permissions remain unchanged if the following is
true:

EBADF The file descriptor FileDescriptor is not valid.

The chmod or fchmod subroutine fails and the access control information for a file remains
unchanged if one or more of the following are true:

EROFS The named file resides on a read—only file system.
EIO An /O error occurred during the operation.
EBUSY The value of the Mode parameter would change the enforced lov=cking

attribute of an open file.

If NFS is installed on your system, the acl_chg and acl_fchg subroutines can also fail if the
following is true:

ETIMEDOUT
The connection timed out.

Access Control

The invoker must have search permission for all components of the Path
prefix.

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-70

The chacl subroutine, statacl subroutine, stat subroutine.
The acl_get subroutine, acl_put subroutine, acl_set subroutine, acl_chg subroutine.

The acl_get command, acl_put command, chmod command.

Base Operating System Reference

chown,...

chown, fchown, chownx, or fchownx Subroutine

Purpose

Syntax

Changes file ownership.

#include <sys.chownx.h>

int chown (Path, Owner, Group)
char *Path;

uid_t Ownern;

gid_t Group;

int fchown (FileDescriptor, Owner, Group)
int FileDescriptor;

uid_t Owner;

gid_t Group;

int chownx (Path, Owner, Group, Flags)
char *Path;

uid_t Owner;

gid_t Group;

int Flags;

int fchownx (FileDescriptor, Owner, Group, Flags)

int FileDescriptor;
uid_t Owner;
gid_t Group;

int Flags;

Description
The chown, chownx, fchown, and fchownx subroutines set the file owner and group 1Ds
of the specified file system object. Root user authority is required to change the owner of a

file.

The new owner or group will inherit the access control permissions in the base Access
Control List. All other permissions are unchanged by this function.

Parameters

FileDescriptor

Flags

Specifies the file descriptor of an open file.

Specifies whether each of the file owner ID and group 1D is to be

changed. This parameter is constructed by logically ORing the

following values:

T OWNER_AS_IS

T_GROUP_AS_IS

Base Operating System Runtime

Ignores the value specified in the Owner
parameter and leaves the owner ID of the
file unaltered.

Ignores the value specified in the Group
parameter and leaves the group 1D of the
file unaltered.

1-71

chown,...

Group Specifies the new group of the file. If this value is ~1, the group will not
be changed.
Owner o Specifies the new owner of the file. If this value is -1, the owner will

not be changed.

Path Specifies the full path name of the file. If Path resolves to a symbolic
link, the ownership of the symbolic link is changed.

Return Values
Upon successful completion, the chown, chownx, fchown, and fchownx subroutines
return a value of 0. If the chown, chownx, fchown, or fchownx subroutines fail, a value of
—1 is returned and errno is set to indicate the error.

Error Codes
The chown or chownx subroutines fail and the owner and group of a file remain unchanged
if one or the following are true:

ENOTDIR A component of the path prefix is not a directory.

EACCESS Search permission is denied on a component of the Path parameter.

EFAULT The Path parameter points to a location outside of the allocated address
space of the process.

ESTALE The process’s root or current directory is located in a virtual file system that
has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOENT A component of the Path parameter does not exist or the process has the
disallow truncation attribute set.

ENOENT The Path parameter was null.

ENAMETOOLONG

A component of the Path parameter exceeded 255 characters of the entire
Path parameter exceeded 1023 characters.

The fchown or fchownx subroutines fail and the file owner and group remain unchanged if
the following is true:

EBADF The named file resides on a read-only file system.

EIO An /O error occurred during the operation.

1-72 Base Operating System Reference

chown,...

Security
Access Control

The invoker must have search permission for all components of the Path
parameter.

Auditing Events

Event Information
FILE_SetOwner object descriptor, owner, group

Implementation Specifics
These subroutines are part of AlX Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine.

Base Operating System Runtime 1-73

chroot

chroot Subroutine

Purpose
Library

Syntax

Changes the effective root directory.

Standard C Library (libc.a)

int chroot (Path)
char *Path;

Description

Parameter

The chroot subroutine causes the directory named by the Path parameter to become the
effective root directory. If the Path parameter refers to a symbolic link, the chroot subroutine
sets the effective root directory to the directory pointed to by the symbolic link. If Network
File System is installed on your system, this path can cross into another node.

The effective root directory is the starting point when searching for a file’s path name that
begins with / (slash). The current directory is not affected by the chroot subroutine.

The calling process must have root user authority in order to change the effective root

directory. The calling process must also have search access to the new effective root
directory.

The .. (dot dot) entry in the effective root directory is interpreted to mean the effective root

directory itself. Thus, .. (dot dot) cannot be used to access files outside the subtree rooted at
the effective root directory.

Path A pointer to the new effective root directory.

Retur'n Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and the global variable errno is set to indicate the error.

Error Codes

1-74

The chroot subroutine fails and the effective root directory remains unchanged if one or
more of the following are true:

ENOENT The named directory does not exist.
EACCES The named directory denies search access.
EPERM The process does not have root user authority.

The chroot subroutine can also fail if additional errors on page A—1 occur.

If Network File System is installed on the system the chroot subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Base Operating System Reference

chroot

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The chdir subroutine.

The chroot command.

Base Operating System Runtime 1-75

chssys

chssys Subroutine

Purpose
Modifies the subsystem objects associated with the SubsystemName parameter.
Library
System Resource Controller Library (libsrc.a)
Syntax
#include <sys/srcobj.h>
#include <sys/spc.h>
int chssys(SubsystemName,SRCSubsystem)
char *SubsystemName;
struct SRCsubsys *SRCSubsystem;
Description ,
The chssys subroutine modifies the subsystem objects associated with SubsystemName
with the values in the SRCsubsystem parameter. This will modify the objects associated with
subsystem in the following object classes: Subsystem object, Subserver object, Notify
object. The Subserver and Notify object classes will only be updated if the subsystem name
has been changed.
The SRCsubsys structure is defined in the sys/srcobj.h header file.
The executable running with this subroutine must be running with the group system.
Parameters
SRCSubsystem Points to the SRCsubsys structure.
SubsystemName Specifies the name of the subsystem.

Return Values
Upon successful completion, the chssys subroutine returns a value of 0. Otherwise, it
returns a value of —1 and odmerrno is set to indicate the error or an SRC error code is
returned.

Error Codes
The chssys subroutine is unsuccessful if one or more of the following are true:

SRC_NONAME No subsystem name is specified.
SRC_NOPATH No subsystem path is specified.
SRC_BADNSIG Invalid stop normal signal.
SRC_BADFSIG Invalid stop force signal.

~ SRC_NOCONTACT Contact not signal, sockets, or message queues.
SRC_SSME Subsystem name does not exist.
SRC_SUBEXIST - New subsystem name is already on file.

1-76 Base Operating System Reference

chssys

SRC_SYNEXIST New subsystem synonym name is already on file.
SRC_NOREC The specified SRCsubsys record does not exist.
SRC_SUBSYS2BIG Subsystem name is too long.

SRC_SYN2BIG Synonym name is too long.
SRC_CMDARG2BIG Command arguments are too long.
SRC_PATH2BIG Subsystem path is too long.

SRC_STDIN2BIG stdin path is too long.

SRC_STDOUT2BIG stdout path is too long.

SRC_STDERR2BIG stderr path is too Iong.

SRC_GRPNAM2BIG Group name is too long.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Files
letc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.
letc/objrepos/SRCnotify SRC Notify Method object class.

Related Information
The addssys subroutine, delssys subroutine.

The chssys command, mkssys command, rmssys command.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-77

ckuseriD

ckuserID Subroutine

Purpose

Authenticates the user
Library

Security Library (libs.a)
Syntax

#include<login.h>

int ckuserlD(User, Mode)

int Mode;

char *User;

Description
The ckuserID function will authenticate the account specified by the User parameter. The
mode of the authentication is given by the Mode parameter.

Parameters

User Specifies the name of the user to authenticated.

Mode Specifies the mode of authentication. This parameter is a bit mask and may
contain one or more of the following values, which are defined in the login.h
file:

S_PRIMARY The primary authentication methods defined for the
User parameter are checked. All primary
authentication checks must be passed.

S_SECONDARY The secondary authentication methods defined for the
User parameter are checked. Secondary
authentication checks need not be done successfully.

Primary and secondary authentication methods are set for each user in

lete/security/user by defining the AUTH1 and AUTH2 attributes. If no primary
methods are defined for a user, SYSTEM is assumed. If no secondary
methods are defined, there is no default.

Security

file access The calling process must have access to the account information in the user
data base and the authentication data. These include:

modes file

r /etc/passwd

r /etc/security/passwd
r /etc/security/user

r /etc/security/login.cfg

1-78 Base Operating System Reference

ckuserlD

Return Values
If the account is valid for the specified usage, the ckuserlD subroutine returns a value of 0.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

Error Codes
The ckuserlD subroutine fails if one or more of the following are true:

ESAD Security authentication failed for the user.

EINVAL The Mode parameter is not one or more of S_PRIMARY or
S_SECONDARY.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The ckuseracct subroutine, getpcred subroutine, setpcred subroutine, getpenv
subroutine, setpenv subroutine.

The login command and su command.

Base Operating System Runtime 1-79

ckuseracct

ckuseracct Subroutine

Purpose |
Checks the validity of the user account
Library
Security Library (libs.a)
Syntax
#include <usersec.h>
int ckuseracct(Name, Mode, Tty)
char *Name;
int Mode;
char * Tty;
Description ,
The ckuseracct subroutine will check the validity of the account of the user specified by the
Name parameter. The mode of the account usage is given by the Mode parameter, while the
Tty parameter defines the terminal being used for the access.
The ckuseracct subroutine will check for the following conditions:
e account existence
e account expiration
Other Mode specific checks are made as described in the Mode parameter.
e S_LOGIN
e S__RLOGIN
e S_SU
e S DAEMON
Parameters
Name Specifies the login name of the user whose account is to be validated.
Mode Specifies the manner of usage. Valid values are defined in the usersec.h file
and are listed below. The Mode parameter must be one of these or zero.
S_LOGIN Verifies the local logins are permitted for this account.
S_SuU Verifies that the su command is permitted and that the

current process has a group ID which can invoke the su
command to switch to the account.

S_DAEMON Verifies the account can be used to invoke daemon or batch
programs via the src or cron subsystems.

S_RLOGIN Verifies the account can be used for remote logins via the
tlogind or telnetd programs.

1-80 Base Operating System Reference

ckuseracct

Tty Specifies the terminal of the originating activity. If this parameter is a NULL
pointer or a NULL string, no tty origin checking is done.
Security

File Access The calling process must have access to the account information in the user
data base. This includes:

modes file
r /etc/passwd
r /etc/security/user

Return Values

If the account is valid for the specified usage, the ckuseracct subroutine returns a value of
0. Otherwise, a value of —1 is returned and errno is set to the appropriate error code.

Error Codes
The ckuseracct subroutine fails if one or more of the following are true:

ENOENT The user specified in the Name parameter does not have an account.

ESTALE The user's account is expired.

EACCES The specified terminal does not have access to the specified account.

EACCES The Mode parameter is S_SU and the current process is not permitted to
user the su command to access the specified user.

EACCES Access to the account is not permitted in the specified Mode.

EINVAL The Mode parameter is not one of S_LOGIN, S_SU, S_DAEMON,
S_RLOGIN.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The ckuserlD subroutine, getpcred subroutine, setpcred subroutine, getpenv subroutine,
setpenv subroutine.

The login command, cron command, rlogin command, telnet command, su command.

Base Operating System Runtime 1-81

class,...

class, finite, isnan, or unordered Subroutines

Purpose
Determines classifications of floating-point numbers.

Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include<math.h>
#include<float.h>

int class(x)
double x;

int finite(x)
double x;

int isnan(x)
double x;

int unordered(x, y)
double x, y;

Description
The class subroutine, finite subroutine, isnan subroutine, and unordered subroutin
determine the classification of their floating-point value. The unordered subroutine
determines if a floating-point comparison involving x and y would generate the IEEE
floating-point unordered condition (such as whether x or yis a NaN).

The class subroutine returns an integer that represents the classification of the floating-point
x parameter. The values returned by the class subroutine are defined in the float.h header
file. The return values are the following:

FP_PLUS_NORM Positive normalized, nonzero x
FP_MINUS_NORM Negative normalized, nonzero x
FP_PLUS_DENORM Positive denormalized, nonzero x
FP_MINUS_DENORM Negative denormalized, nonzero x
FP_PLUS_ZERO x=+0.0

FP_MINUS_ZERO =-0.0

FP_PLUS_INF x = +INF

FP_MINUS_INF x=—INF

FP_NANS x = Signaling Not a Number (NaNS)
FP_NANQ x = Quiet Not a Number (NaNQ)

1-82 Base Operating System Reference

class,...

The finite subroutine returns a nonzero value if the x parameter is a finite number; that is, if
xis not £INF, NaNQ, or NaNS.

The isnan subroutine returns a nonzero value if the x parameter is an NaNS or a NaNQ.
Otherwise, it returns zero.

The unordered subroutine returns a nonzero value if a floating-point comparison between x
and y would be unordered. Otherwise, it returns zero.

Note: Compile any routine that uses subroutines from the libm.a library with the —Im flag.
To compile the class.c file, for example, enter:

cc class.c —1lm

Parameters
X Specifies some double-precision floating-point value.
y Specifies some double-precision floating-point value.

Error Codes
The finite, isnan, and unordered subroutines neither return errors nor set bits in the
floating-point exception status, even if a parameter is an NaNS.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

IEEE Standard for Binary Floating-Point Arithmetic (ANSV/IEEE Standards 754-1985 and
854-1987)

Base Operating System Runtime 1-83

clock

clock Subroutine

Purpose

Reports CPU time used.
Library

Standard C Library (libc.a)
Syntax

#include <time.h>

clock_t clock ();
Description

The clock subroutine reports the amount of CPU time used (in microseconds). The reported
- time is the sum of the CPU time of the calling process and its terminated child processes for
which it has executed wait, system or pclose subroutines.

Return Value

The clock subroutine returns the amount of CPU time used since the first call to the clock
subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getrusage, times subroutine, wait, waitpid, wait3 subroutine.

The system subroutine, pclose subroutine, vtimes subroutine.

1-84 Base Operating System Reference

close

close Subroutine

Purpose

Syntax

Closes the file associated with a file descriptor.

close (FileDescriptor)
int FileDescriptor,

Description

Parameter

The close subroutine closes the file associated with the FileDescriptor parameter. If Network
File System is installed on your system, this file can reside on another node.

Ali file regions associated with the file specified by the FileDescriptor parameter that this
process has previously locked with the lockf or fcntl subroutine are unlocked. This occurs
even if the process still has the file open by another file descriptor.

If the FileDescriptor parameter resulted from an open subroutine that specified O_DEFER,
and this was the last file descriptor, all changes made to the file since the last fsync
subroutine are discarded.

It the FileDescriptor parameter is associated with a mapped file, it is unmapped. The shmat
subroutine provides more information about mapped files.

When all file descriptors associated with a pipe or FIFO special file have been closed, any
data remaining in the pipe or FIFO is discarded. If the link count of the file is 0 when all file
descriptors associated with the file have been closed, the space occupied by the file is freed,
and the file is no longer accessible.

Note: |f FileDescriptor refers to a device and the close subroutine actually results in a
device close, and the device close routine returns an error, the error is returned to
the application. However, the FileDescriptor is considered closed and it may not be
used in any subsequent calls.

All open file descriptors are closed when a process exits. In addition, file descriptors
may be closed during exec if the close—on—exec flag has been set for that file
descriptor.

FileDescriptor Specifies a valid open file descriptor.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and the global variable errno is set to identify the error.

Error Codes

The close subroutine fails if the following is true:

EBADF The FileDescriptor parameter does not specify a valid open file
descriptor.

- Base Operating System Runtime 1-85

close

If Network File System is installed on the system, the close subroutine can also fait if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The exec subroutines, fentl subroutine, ioctl subroutine, lockfx subroutine, open, openx,
creat subroutines, pipe subroutine, socket subroutine.

1-86 Base Operating System Reference

compile,...

compile, step, or advance Subroutine

Purpose
Compiles and matches regular—expression patterns.
Library
Standard C Library (libc.a)
Syntax
#define INIT declarations
#define GETC() getc_code
#define PEEKC() peekc_code
#define UNGETC(c) ungetc_code
#define RETURN(pointer) return_code
#define ERROR(va)) error_code
#include <regexp.h>
#include <NLregexp.h>
char *compile (/nString, Expbuffer, Endbuffer, EndOfFile)
char *InString, * Expbuffer, * Endbuffer;
char EndOfFile;
int step (String, Expbuffer)
char *String, *Expbuffer;
int advance (String, Expbuffer)
char *String, *Expbuffer,
Description

The regexp.h header file defines several general purpose subroutines that perform
regular—expression pattern matching. Programs that perform regular-expression pattern
matching such as ed, sed, grep, bs, and expr use this source file. In this way, only this file
needs to be changed in order to maintain regular expression compatibility between
programs.

The NLregexp.h header file handles extended characters and requires access to the locale
information for collation and character class determination. NLregexp.h accepts character
classes as described in ed.

The interface to these header files is complex. Programs that include this file define the
following six macros before the #include <regexp.h> or the #include <NLregexp h>
statement. These macros are used by the compile subroutine.

INIT This macro is used for dependent declarations and initializations. It is placed
right after the declaration and opening { (left brace) of the compile
subroutine. The definition of INIT must end with a ; (semicolon). INIT is
frequently used to set a register variable to point to the beginning of the
regular expression so that this register variable can be used in the
declarations for GETC, PEEKC, and UNGETC. Otherwise, you can use
INIT to declare external variables that GETC, PEEKC, and UNGETC need.

Base Operating System Runtime 1-87

compile,...

GETC()

PEEKC()

UNGETC(c)

RETURN(pointer)

ERROR(val)

Error
11
16
25
36
41
42
43
44
45
46
48
49
50
70

This macro returns the value of the next character in the regular

expression pattern. Successive calls to the GETC macro should
return successive characters of the pattern.

This macro returns the next character in the regular expression.
Successive calls to the PEEKC macro should return the same
character, which should also be the next character returned by the
GETC macro.

This macro causes the parameter ¢ to be returned by the next call
to the GETC and PEEKC macros. No more than one character of
pushback is ever needed and this character is guaranteed to be the
last character read by the GETC macro. The return value of the
UNGETC macro is always ignored.

This macro is used on normal exit of the compile subroutine. The
pointer parameter points to the first character immediately following
the compiled regular expression. This is useful for programs that
have memory allocation to manage.

This macro is used on abnormal exit from the compile subroutine. It
should never contain a return statement. The val parameter is an
error number. The error values and their meanings are:

Meaning

Interval end point too large.

Bad number.

\ digit out of range.

lliegal or missing delimiter.

No remembered search String.

\ (?\) imbalance.

Too many \(.

More than two numbers given in \{ \}.
} expected éfter \;

First number exceeds second in \{ \}.
Invalid end point in range expression.
[}imbalance.

Regular expression overflow.

Invalid endpoint in range

The compile subroutine compiles the regular expression for later use. The /Instring
parameter is never used explicitly by the compile subroutine, but you can use it in your
macros. For instance, you may want to pass the string containing the pattern as the Instring
parameter to compile and use the INIT macro to set a pointer to the beginning of this string.

1-88 Base Operating System Reference

compile,...

(The example below uses this technique.) If your macros do not use Instring, then call
compile with a value of ((char *) 0) for this parameter.

The Expbuffer parameter points to a character array where the compiled regular expression
is to be placed. The Endbuffer parameter points to the location that immediately follows the
character array where the compiled regular expression is to be placed. If the compiled
expression cannot fit in (Endbuffer—Expbuffer) bytes, the call ERROR(50) is made.

The EndOfFile parameter is the character that marks the end of the regular expression. For
example, in ed this character is usually / (slash).

The regexp.h and NLregexp.h header files define other subroutines that perform actual
regular—expression pattern matching. One of these is the step subroutine.

The String parameter of step is a pointer to a null-terminated string of characters to be
checked for a match.

The Expbuffer parameter points to the compiled regular expression, which was obtained by
a call to the compile subroutine.

The step subroutine returns the value 1 if the given string matches the pattern, and 0 if it
does not match. If it matches, then step also sets two global character pointers: loct,
which points to the first character that matches the pattern, and loc2, which points to the
character immediately following the last character that matches the pattern. Thus, if the
regular expression matches the entire string, loc1 points to the first character of the String
parameter and loc2 points to the null character at the end of the String parameter.

The step subroutine uses the global variable circf, which is set by compile if the regular
expression begins with a * (circumflex). If this variable is set, then step only tries to match
the regular expression to the beginning of the string. If you compile more than one regular
expression before executing the first one, then save the value of circf for each compiled
expression and set circf to that saved value before each call to step.

Using the same parameters that were passed to it, the step subroutine calls a subroutine
named advance. The step function increments through the String parameter and calls
advance until advance returns a 1, indicating a match, or until the end of string is reached.
To constrain the String parameter to the beginning of the string in all cases, call the advance
subroutine directly instead of calling the step subroutine.

When advance subroutine encounters an * (asterisk) or a \{ \} sequence in the regular
expression, it advances its pointer to the string to be matched as far as possible and
recursively calls itself, trying to match the rest of the string to the rest of the regular
expression. As long as there is no match, the advance subroutine backs up along the string
until it finds a match or reaches the point in the string that initially matched the *or \{ \}. itis
sometimes desirable to stop this backing—up before the initial point in the string is reached.
If the locs global character is equal to the point in the string sometime during the
backing—up process, advance breaks out of the loop that backs up and returns 0. This is
used by ed and sed for global substitutions on the whole line so that expressions like s/y*//g
do not loop forever.

Parameters
Instring String containing the pattern to be compiled. The Instring parameter is not
used explicitly by the compile subroutine, but may be used in macros.
Expbuffer Pointer to a character array where the compiled regular expression is to be

placed.

Base Operating System Runtime 1-89

compile,...

Endbuffer Pointer to the location that immediately follows the character array where
the compiled regular expression is to be placed.

EndOfFile Character that marks the end of the regular expression.

String Pointer to a null-terminated string of characters to be checked for a match.
Example

The following is an example of the regular expression macros and calls from the grep

command.

#define INIT register char *sp=instring;

#define GETC() (*sp++)

#define PEEKC() (*sp)

#define UNGETC(c) (—sp)

#define RETURN(c) return;

#define ERROR(cC) regerr()

#include <regexp.h>
compile (patstr,expbuf, &expbuf[ESIZE], '\0’);

if (step (linebuf, expbuf))
succeed();

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related information
The NCctype subroutine, and regemp, regex subroutines.
The ed command, sed command, and, grep command.

National Language Support Overview in General Programming Concepts

1-90 Base Operating System Reference

conv

conv Subroutines

Purpose

Translates characters.
Library

Standard C Library (libc.a)
Syntax

#include <ctype.h>

int toupper (Character)
int Character;

int tolower (Character)
int Character;

int _toupper (Character)
int Character;

int _tolower (Characten)
int Character;

int toascii (Character)
int Character;

int NCesc (Pointer, CharacterPointer)
NLchar * Pointer;
char * CharacterPointer,

int NCtoupper (Xcharacter)
int Xcharacter;

int NCtolower (Xcharacter)
int Xcharacter;

int _NCtoupper (Xcharacter)
int Xcharacter;

int _NCtolower (Xcharacter)
int Xcharacter;

int NCtoNLchar (xcharacter)
int Xcharacter;

int NCunesc (CharacterPointer, Pointer)
char * CharacterPointer;
NLchar * Pointer;

int NCflatchr (Xcharacter)
int Xcharacter;

Base Operating System Runtime

1-91

conv

Description

1-92

The NCxxxxxx subroutines translate all characters, including extended characters, as code
points. The other subroutines translate traditional ASCII characters only.

The toupper and the tolower subroutines have as domain the range of the getc subroutine:
-1 through 255.

It the parameter of the toupper subroutine represents a lowercase letter, the result is the
corresponding uppercase letter. If the parameter of the tolower subroutine represents an
uppercase letter, the result is the corresponding lowercase letter. All other values in the
domain are returned unchanged. '

The _toupper and _tolower routines are macros that accomplish the same thing as the
toupper and tolower subroutines, but they have restricted domains and are faster. The
_toupper routine requires a lowercase letter as its parameter; its result is the corresponding
uppercase letter. The _tolower routine requires an uppercase letter as its parameter; its
result is the corresponding lowercase letter. Values outside the domain cause undefined
results.

The value of the Xcharacter parameter is in the domain of any legal NLchar data type. It can
also have a special value of —1, which represents the end of file (EOF).

If the parameter of the NCtoupper subroutine represents a lowercase letter according to the
current collating sequence configuration, the result is the corresponding uppercase letter. if
the parameter of the NLtolower subroutine represents an uppercase letter according to the
current collating sequence configuration, the result is the corresponding lowercase letter. All
other values in the domain are returned unchanged.

The _NCtoupper and _NCtolower routines are macros that perform the same function as
the NCtoupper and NCtolower subroutines, but have restricted domains and are faster.
The _NCtoupper macro requires a lowercase letter as its parameter; its resutlt is the
corresponding uppercase letter. The _NCtolower macro requires an uppercase letter as its
parameter; its result is the corresponding lowercase letter. Values outside the domain cause
undefined results.

The NCtoNLchar subroutine yields the value of its parameter with all bits turned off that are
not part of an NLchar data type.

The NCesc subroutine converts the NLchar value of the Pointer parameter into one or more
ASCI! bytes stored in the character array pointed to by the CharacterPointer parameter. If
the NLchar data type represents an extended character, it is converted into a printable
ASCII escape sequence that uniquely identifies the extended character. NCesc returns the
number of bytes it wrote. The display symbol table lists the escape sequence for each
character.

The opposite conversion is performed by the NCunesc macro, which translates an ordinary
ASCII byte or escape sequence starting at CharacterPointer into a single NLchar at Pointer.
NCunesc returns the number of bytes it read.

The NCflatchr subroutine converts its parameter value into the single ASCII byte that most
closely resembles the parameter character in appearance. If no ASCll equivalent exists, it
converts the parameter value to a question mark (?).

(The NCflatchr subroutine is not supported when running AIX with Japanese Language
Support.)

Note: The setlocale subroutine may affect the conversion of the decimal point symbol and
the thousands separator.

Base Operating System Reference

conv

Parameters
Character The character to be converted.
Xcharacter An NLchar value to be converted.
CharacterPointer A pointer to an ASCII character array.
Pointer A pointer to an escape sequence.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The ctype subroutines, Japanese conv subroutines, getc, fgetc, getchar, getw
subroutines, getwc, fgetwc, getwchar subroutines, setiocale subroutine.

Base Operating System Runtime 1-93

copysign,...

copysign, nextafter, scalb, logb, or ilogb Subroutine

Purpose
Computes certain binary floating-point arithmetic functions.

Library ,
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>
#include <float.h>

double copysign (x, ¥)
double x, y;

double nextafter (x,)
double x, y;

double scalb(x, n)
double x;
int n,

double logh(x)
double x;

int ilogb (x)
double x;

Description
These subroutines compute certain functions recommended in the /EEE Standard for Binary

Floating-Point Arithmetic. The other such recommended function is provided in the class
subroutine.

The copysign subroutine returns the x parameter with the same sign as y.

The nextafter subroutine returns the next representable neighbor of x in the direction of y. If
X =y, the resultis x.

The scalb subroutine returns x times 2**n.

The logb subroutine returns a floating-point double that is equal to the unbiased exponent of
the x parameter. Special cases are:

logb (NaN) = NaNQ
logb (infinity) = + INF
logb (0) = ~INF

Note: When the x parameter is finite and nonzero, then logb (x) satisfies the following
equation:

1 < = scalb ([|x]|, —(int) logb (x)) < 2

1-94 Base Operating System Reference.

i

copysign,...

The ilogb subroutine returns an integer that is equal to the unbiased exponent of x. Special
cases are:

ilogb (NaN) = LONG_MIN

ilogb (INF) = LONG_MAX

ilogb (0) = LONG_MIN

Note: ilogb (x) is equivalent to (int) logb (x). However, ilogb may be faster on some
platforms of IBM AIX Version 3 for RISC System/6000.

¢

Compile any routine that uses subroutines from the libm.a library with the —=im flag. To
compile the copysign.c file, for example, enter:

cc copysign.c —1m

Parameters
x Specifies some double-precision floating-point value.
y Specifies some double-precision floating-point value.
n Specifies some integer value.

Return Values
The nextafter subroutine sets the overflow bit in the floating-point exception status when x s
finite but nextafter (x, y) is infinite. Likewise, when the nextafter subroutine is
denormalized, the underflow exception status flag is set.

The logb(0) subroutine returns —INF and sets the division-by-zero exception status flag.
The ilogb(0) subroutine returns LONG_MIN and sets the division-by-zero exception status
flag.

implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The class, finite, isnan, unordered subroutines, fp_invalid_op, fp_divbyzero,
fp_overflow, fp_underflow, fp_inexact, fp_any_xcp, fp_iop_snan, fp_iop_infsinf,
fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmazr, fp_iop_invemp subroutines.

The IEEE Standard for Binary Floating-Point Arithmetic (ANSV/IEEE Standards 754—1985
and 854-1987).

Base Operating System Runtime 1-95

crypt,...

crypt, encrypt or setkey Subroutine

Purpose
Performs basic encryption of data.

Library
Standard C Library (libc.a)

Syntax
char *crypt (Key, Salf)
char *Key, *Salt;

void encrypt (Block, Edflag)
char *Block;
int Edflag,

void setkey (Key)
char *Key;

Description
The crypt and encrypt subroutines provide encryption of data. The crypt subroutine
performs a one way encryption of a fixed data array with the supplied Key parameter, using
the Salt parameter to perturb the encryption algorithm. The encrypt subroutine encrypts or
decrypts the data supplied in the Block parameter by using the key supplied by an earlier
call to the setkey subroutine. The data in the Block parameter on input must be an array of
64 characters, with each character having the value of ASCIl "0” or ASCIl "1”.

Parameters

Block A 64—character array containing the values (char) 0 and (char) 1. Upon
return, this buffer will contain the encrypted or decrypted data.

Edflag If this parameter is zero, the argument is encrypted; if non—zero, it is
decrypted.

Key Specifies an 8 character string which is used to change the encryption
algorithm.

Salt Specifies a 2 character string chosen from the set [’a-zA-Z0-9./”]. The
Salt parameter is used to vary the hashing algorithm in one of 4096 different
ways.

Compatibility Interface
These functions are provided for compatibility with UNIX system implementations.

Return Values

The crypt subroutine returns a pointer to the encrypted password. The first two characters
of it are the same as the Salt parameter.

Note: The return value points to static data that is overwritten by subsequent calis.

1-96 Base Operating System Reference

crypt,...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The newpass subroutine.

The login command, passwd command, su command.

Base Operating System Runtime 1-97

CsS

cs Subroutine

Purpose

Syntax

Compare and swap data.

int cs (Destination, Compare, Value)
int *Destination;

int Compare;

int Value;

Description

The ¢s command compares Compare with the integer pointed to by Destination. If they are
equal, Value is stored in the integer pointed by Destination and c¢s returns 0. If the values
are different, cs returns 1, and the value pointed by Destination is not affected. The compare
and store are executed as an atomic operation, therefore no process switches occur
between them.

The cs subroutine can be used to implement interprocess communication facilities or to
manipulate data structures shared among several processes, such as linked lists stored in
shared memory.

The following examples shows how a new element can be inserted in a NULL terminated list
stored in shared memory and maintained by several processes, with the following code:

struct elem {
struct elem *next;

}i
struct elem *list, *new_elem;
do
new_elem—>next = list;
while (cs((int *)&list, (int)(new_elem—>next),
(int)new_elem));

Parameters

Destination Specifies the address of the integer that will be compared with Compare,
and if need be, where Value will be stored.

Compare Specifies the value that will be compared with the integer pointed by
Destination.
Value Specifies the value that will be stored in the integer pointed by Destination it

Destination and Compare are equal.

Error Codes

If the integer pointed by Destination references memory that does not belong to the process
address space then the SIGSEGV signal is sent to the process.

Implementation Specifics

1-98

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Reference

CS

Related Information
The sigaction, sigvec, signal subroutine, shmget subroutine, shmat subroutine, shmdt
subroutine, shmetl subroutine.

Base Operating System Runtime 1-99

ctermid

ctermid Subroutine

Purpose :
Generates the path name for the controlling terminal.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
char *ctermid (String)
char *String;

Description
The ctermid subroutine generates the path name of the controlling terminal for the current
process and stores it in a string.
The difference between the ctermid subroutine and the ttyname subroutine is that the
ttyname subroutine must be handed a file descriptor and returns the actual name of the
terminal associated with that file descriptor, while the ctermid subroutine returns a string
(/dev/tty) that refers to the terminal if used as a file name. Thus, the ttyname subroutine is
useful only if the process already has at least one file open to a terminal.

Parameter

String If the String parameter is a NULL pointer, the string is stored in an internal
static area and the address is returned. The next call to the ctermid
subroutine overwrites the contents of the internal static area.

If the String parameter is not a NULL pointer, it points to a character array
of at least L_ctermid elements as defined in the stdio.h header file. The
path name is placed in this array and the value of the String parameter is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operatmg System (BOS) Runtime.

Related Information
The ttyname, isatty subroutines.

1-100 Base Operating System Reference

ctime,...

ctime, localtime, gmtime, mktime, difftime, asctime, tzset, or
timezone Subroutine

Purpose
Converts the formats of date and time representations.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

char *ctime (Clock)
time_t *Clock;

struct tm *localtime (Clock)
time_t *Clock;

struct tm *gmtime (Clock)
time_t *Clock;

time_t mktime(Timeptr)
struct tm *Timeptr;

double *difftime(Time1, Time0)
time_t TimeO, TimeT;

char *asctime (7m)
struct tm *Tm;

void tzset ()

extern long timezone;
extern int daylight;
extern char *tzname[2];

char *timezone(Zone, Destination)
int Zone, Destination;

Description
The ctime subroutine converts a time value pointed to by the Clock parameter, which
represents the time in seconds since 00:00:00 Greenwich Mean Time (GMT), January 1,
1970, into a 26—character string in the following form:

Sun Sep 16 01:03:52 1973\n\0
The width of each field is always the same as shown here.
The ctime subroutine adjusts for the timezone and daylight savings time, if it is in effect.

The localtime subroutine converts the long integer pointed to by the Clock parameter, which
contains the time in seconds since 00:00:00 GMT, January 1, 1970, into a tm structure. The
localtime subroutine adjusts for the time zone and for daylight—saving time, if it is in effect.

The gmtime subroutine converts the long integer pointed to by the Clock parameter into a
tm structure containing the Greenwich Mean Time, which is the time that AIX uses.

Base Operating System Runtime 1-101

ctime,...

1-102

The tm structure is defined in the time.h header file, and it contains the following members:

int tm_sec; /* Seconds (0 — 59) */

int tm min; /* Minutes (0 — 59) */

int tm_hour; /* Hours (0 — 23) */

int tm_mday; /* Day of month (1 — 31) */

int tm_mon; /* Month of year (0 — 11) */

int tm_year; /* Year — 1900 */

int tm_wday; /* Day of week (Sunday = 0) */

int tm_yday; /* Day of year (0 — 365) */

int tm_isdst; /* Nonzero = Daylight saving time */

The mktime subroutine is the reverse function of the gmtime subroutine.

The difftime subroutine computes the difference between two calendar times: the
Time1 —Time0 parameters.

The asctime subroutine converts a tm structure to a 26—character string of the same format
as ctime.

if the TZ environment variable is defined, then its value overrides the default time zone,
which is the U.S. Eastern time zone. The environment facility contains the format of the
time zone information specified by TZ. TZ is usually set when the system is started with the
value that is defined in either the /etc/environment or /etc/profile files. However, it can also
be set by the user as a regular environment variable for performing alternate time zone
conversions.

The tzset subroutine sets the timezone, daylight, and tzname external variables to reflect

the setting of TZ. tzset is called by ctime and localtime, and it can also be called explicitly
by an application program.

The timezone external variable contains the difference, in seconds, between GMT and local
standard time. For example, timezone is 5 * 60 * 60 for U.S. Eastern Standard Time.

The daylight external variable is nonzero when a daylight—saving time conversion should be
applied. By default, this conversion follows the standard U.S. conventions; other conventions
can be specified. The default conversion algorithm adjusts for the peculiarities of U.S.
daylight-saving time in 1974 and 1975. See environ. for information about specifying
alternate daylight-saving time conventions.

The tzname external variable contains the name of the standard time zone (tzname[0]) and
of the time zone when daylight-saving time is in effect (tzname[1]). For example:

char *tzname[2] = {"EST”, “EDT"};

The timezone subroutine returns the name of the timezone associated with the first
argument, which is measured in minutes westward of Greenwich. If the second argument is
0, the standard name is used, otherwise the Daylight Saving version. If the required name
does not appear in an internal table, the difference from GMT is produced; e.g. in Afganistan
timezone [—(60 * 4 + 30), 0] is appropriate because it is 4:30 ahead of GMT and the string
GMT+4:30 is produced.

The time.h header file contains declarations of all these subroutines, externals, and the tm
structure.

Warning: The return values point to static data that is overwritten by each call.

Base Operating System Reference

ctime,...

Parameters
Clock Pointer to the time value in seconds.
Timeptr Pointer to a tm structure.
Time1 Pointer to a time_t structure.
Time0 Pointer to a time_t structure.
Tm Pointer to a tm structure.
Zone The minutes westward of Greenwich Mean Time.

Destination Standard Time, if 0, otherwise Daylight Savings Time

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The timezone subroutine was added for BSD compatibility, and is not part of the ANSI C
Library.

Related Information
The getenv, NLgetenv subroutines, NLstrtime, strftime subroutines, and NLtmtime
subroutine, gettimer subroutine.

The gettimer subroutine.

Base Operating System Runtime 1-103

ctype

ctype Subroutines

Purpose
Classifies characters.

Library
Standard Character Library (libc.a)

Syntax

#include <ctype.h>

int isalpha (Characten
int Character;

int isupper (Character)
int Character;

int islower (Character)
int Character;

int isdigit (Character)
int Character;

int isxdigit (Characten
int Character;

int isalnum (Character)
int Character;

int isspace (Character)
int Character;

int ispunct (Character)
int Character;

int isprint (Characten)
int Character;

int isgraph (Character)
int Character;

int iscntrl (Character)
int Character;
int isascii (Characten
int Character;

Description

The ctype subroutines classify character—coded integer values specified in a table. Each of
these subroutines returns a nonzero value for TRUE and 0 for FALSE.

1-104 Base Operating System Reference

ctype

The following list shows the set of values for which each subroutine returns a nonzero

(TRUE) value:

isalnum
isalpha
isupper
islower
isdigit
isxdigit

isspace

ispunct

isprint

isgraph

iscntrl

isascii

Parameter
Character

Characteris a letter or a digit.

Character is a letter.

Characteris an uppercase letter.

Characteris a lowercase letter.

Characteris a digit in the range [0-9].

Characteris a hexadecimal digit in the range [0-9], [A—F], or [a—f].

Characteris a space, tab, carriage return, new-line, vertical tab, or form
feed character.

Characteris a punctuation character (neither a control character nor an
alphanumeric character).

Characteris a printing character: aiphanumeric, punctuation, or space.

Characteris a printing character, like isprint, but, unlike isprint, isgraph
returns FALSE (0) for the space character.

Characteris an ASCII delete character (0177 or 0x7F), or an ordinary
control character (less than 040 or 0x20).

Characteris an ASCII character whose value is in the range 0-0177
(0-0x7F), inclusive.

Character to be tested (integer value).

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The NCctype subroutines, Japanese ctype subroutines, setlocale subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-105

cuserid

cuserid Subroutine

Purpose
Gets the alphanumeric user name associated with the current process.
Library
Standard C Library (libc.a)
Syntax
#include <stdio.h>
char *cuserid (String)
char *String,
Description
The cuserid subroutine generates a character string representing the user name of the
owner of the current process.
Parameter

String If the String parameter is a NULL pointer, the character string is stored into
an internal static area, the address of which is returned.

If the String parameter is not a NULL pointer, the character string is stored

into the array pointed to by the String parameter. This array must contain at
least L_cuserid characters. L_cuserid is a constant defined in the stdio.h
header file.

If the user name cannot be found, the cuserid subroutine returns a NULL
pointer; if the String parameter is not a NULL pointer, a null character (\0’)
is stored into String{0].

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The getlogin subroutine, getpwent, getpwuid, getpwnam, setpwent, endpwent,
setpufile subroutines. ‘

1-106 Base Operating System Reference

defssys

defssys Subroutine

Purpose
Initializes the SRCsubsys structure with default values.

Library

System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <sys/spc.h>

void detssys(SRCSubsystem)
struct SRCsubsys *SRCSubsystem;

Description
The defssys subroutine initializes the SRCsubsys structure with the following default
values:

Field Value
display SRCYES

multiple SRCNO
contact SRCSOCKET
waittime TIMELIMIT
priority 20

restart ONCE

stderr /dev/console
stdin /dev/console
stdout /dev/console

All other numeric fields are set to 0, and all other alphabetic fields are set to an empty string.

This function must be called to initialize the SRCsubsys structure before an application
program uses this structure to add records to the subsystem object class.

Parameter
SRCSubsystem Points to the SRCsubsys structure, which is defined in the
sys/srcobj.h header file.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-107

defssys

Related Information
The addssys subroutine.

The System Resource Controller Overview in General Programming Concepts.

1-108 Base Operating System Reference

delssys

delssys Subroutine

Purpose
Removes the subsystem objects associated with the SubsystemName parameter.
Library
System Resource Controller Library (libsrc.a)
Syntax
#include <sys/srcobj.h>
#include <srcerrno.h>
int delssys(SubsystemName)
char *SubsystemName;
Description
The delssys subroutine removes the subsystem objects associated with the
SubsystemName parameter. This removes all objects associated with the subsystem from
the following object classes: Subsystem object, Subserver object, Notify object.
The executable running with this subroutine must be running with the group system.
Parameter

SubsystemName Specifies the name of the subsystem.

Return Values
Upon successful completion, the delssys subroutine returns a positive value. If no record is

found, a value of 0 is returned. Otherwise, —1 is returned and odmerrno is set to indicate
the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Files
/etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
/etc/objrepos/SRCsubsvr SRC Subsystem Configuration object class.
/etc/objrepos/SRCnotify SRC Notify Method object class.

Related Information
The addssys subroutine, chssys subroutine.

The mkssys command, chssys command, rmssys command.

The System Resource Controlier Overview in General Programming Concepts.

Base Operating System Runtime 1-109

disclaim

disclaim Subroutine

Purpose
Disclaims the content of a memory address range.
Syntax
#include <sys/shm.h>
int disclaim (Address, Length, Flag)
char *Address;
unsigned int Length, Flag;
Description
The disclaim subroutine marks an area of memory that has content that is no longer
needed. This allows the system to stop paging the memory area. This subroutine cannot be
used on memory that is mapped to a file by the shmat subroutine.
Parameters ,
Address Points to the beginning of the memory area.
Length Specifies the length of the memory area in bytes.
Flag Must be the value ZERO_MEM, which indicates that each memory location

in the address range is to be set to a value of 0.

Return Values
Upon successful completion, the disclaim subroutine returns a value of 0.

Error Codes
If the disclaim subroutine is unsuccessful, it returns a value of —1 and sets the global

variable errno to indicate the error. The disclaim subroutine if unsuccessful if one or more
of the following are true:

EFAULT The calling process does not have write access to the area of memory that
begins at the Address parameter and extends for the number of bytes
specified by the Length parameter.

EINVAL The value of the Flag parameter is not valid.

EINVAL The memory area is mapped to a file.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The shmat subroutine, shmetl subroutine, shmdt subroutine, shmget subroutine.

1-110 Base Operating System Reference

drand4s,...

drand48, erand48, jrand48, Icong48, Irand48, mrand48,
nrand48, seed48, or srand48 Subroutine

Purpose
Library

Syntax

Generate uniformly distributed pseudo-random number sequences.

Standard C Library (libc.a)

double drand48 ()

double erand48 (xsubi)
unsigned short xsubi3];

long jrand48 (xsubi)
unsigned short xsubi3];

void lcong48 (Parameter)
unsigned short Parameten7);

long Irand48 ()
long mrand48 ()

long nrand48 (xsubj)
unsigned short xsub{3];

unsigned short *seed48 (Seed16v)
unsigned short Seed16y3);

void srand48 (SeedValue)
long SeedValue;

Description

This family of subroutines generates pseudo-random numbers using the linear congruential
algorithm and 48-bit integer arithmetic.

The drand48 subrouiine and erand48 subroutine return non-negative double-precision
floating-point values uniformly distributed over the range of y values suchthat0 < y < 1.

The Irand48 subroutine and nrand48 subroutine return non-negative long integers uniformly
distributed over the range of y values such that 0 < y < 2**31.

The mrand48 subroutine and jrand48 subroutine return signed long integers uniformly
distributed over the range of y values such that —2**31 < y < 2**31.

The srand48 subroutine, seed48 subroutine, and lcong48 subroutine initialize the
random-number generator. Programs should call one of them before calling the drand48,
Irand48 or mrand48 subroutines. (Although it is not recommended practice, constant default
initializer values are supplied automatically if the drand48, Irand48 or mrand48 subroutines
are called without first calling an initialization subroutine.) The erand48, nrand48, and
jrand48 subroutines do not require that an initialization subroutine to be called first.

Base Operating System Runtime 1-11

drand48,...

All the subroutines work by generating a sequence of 48-bit integer values, x{/], according
to the linear congruential formula:

x[n+l] = (ax[n] + c)mod m, n is > = 0

The parameter m = 248; hence 48-bit integer arithmetic is perfofmed. Unless the Icong48
subroutine has been called, the multiplier value a and the addend value c are:

a = S5DEECE66D base 16 = 273673163155 base 8
c = B base 16 = 13 base 8
Parameters
xsubi Specifies an array of three shorts, which, when concatenated together, form

a 48-bit integer.

SeedValue Specifies the initialization value to begin randomization. Changing this value
changes the randomization pattern.

Seed16v Specifies another seed value; an array of three unsigned shorts that form a
48-bit seed value.

Parameter Specifies an array of seven shorts, which specifies the initial xsubi value,
the multiplier value a and the add-in value c.

Return Values

The value returned by the drand48, erand48, jrand48, Irand48, nrand48, and mrand48
subroutines is computed by first generating the next 48-bit x{]] in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied
from the high-order (most significant) bits of x{/] and transformed into the returned value.

The drand48, Irand48, and mrand48 subroutines store the last 48-bit x{/] generated into an
internal buffer; that is why they must be initialized prior to being invoked.

The erand48, jrand48, and nrand48 subroutines require the calling program to provide
storage for the successive x{j] values in the array pointed to by the xsubi parameter. That is
why these routines do not have to be initialized; the calling program merely has to place the
desired initial value of x{] into the array and pass it as a parameter.

By using different parameters, the erand48, jrand48, and nrand48 subroutines allow
separate modules of a large program to generate several independent sequences of
pseudo-random numbers. In other words, the sequence of numbers that one module
generates does not depend upon how many times the subroutines are called by other
modules.

The icong48 subroutine specifies the initial x{/] value, the multiplier value a, and the addend
value ¢. The Parameter array elements Parameter{0-2] specify x{i], Parameter{3-5] specify
the multiplier a, and Parameter{6] specifies the 16-bit addend c. After lcong48 has been
called, a subsequent call to either the srand48 or seed48 subroutine restores the standard a
and c as specified previously. ‘

The initializer subroutine seed48 sets the value of x{/] to the 48-bit value specified in the
array pointed to by the Seed?16v parameter. In addition, seed48 returns a pointer to a 48-bit
internal buffer that contains the previous value of x{j. that is used only by seed48. The
returned pointer allows you to restart the pseudo-random sequence at a given point. Use the
pointer to copy the previous x{/] value into a temporary array. Later you can call seed48 with
a pointer to this array to resume where the original sequence left off.

1-112 Base Operating System Reference

drandd4s,...

The initializer subroutine srand48 sets the high-order 32 bits of x{/] to the 32 bits contained
in its parameter. The low order 16 bits of x{/] are set to the arbitrary value 330E16.

Implementation Specifics
These subroutines are part of AiX Base Operating System (BOS) Runtime.

Related Information
The rand, srand subroutine, random, srandom, initstate, setstate subroutine.

Base Operating System Runtime 1-113

drem

drem Subroutine

Purpose '

Computes the IEEE Remainder as defined in the IEEE Floating-Point Standard.
Library

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)
Syntax

#include <math.h>

double drem (x, y)
double x, y;

Description
The drem subroutine calculates the remainder r= x—n x y, where n is the integer nearest
the exact value of x/y; moreoverif |n —x/y| = 1/2, then nis an even value.
Therefore, the remainder is computed exactly, and | r| is less than or equal to |y | /2.

The IEEE Remainder differs from FMOD in that the IEEE Remainder always returns an r
such that |r| is less than or equal to |y| /2, while FMOD returns an rsuch that |r| is

less than or equal to | y|. The IEEE Remainder is useful for argument reduction for
transcendental functions.

Note: Compile any routine that uses subroutines from the libm.a library with the —Im flag.
To compile the drem.c file, for example:

cc drem.c —1lm

Parameters
X Some double-precision floating-point value.
y Some double-precision floating-point value.

Return Values
The drem subroutine returns a NaNQ for (x, 0) and (+INF, y).

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, fabs subroutines, copysign,
nextafter, scalb, logb, ilogb subroutines.

IEEE Standard for Binary Floating-Point Arithmetic (ANSV/IEEE Standards 754-1985 and
854-1987) describes the IEEE Remainder Function.

1-114 Base Operating System Reference

ecvt,...

ecvt, fcvt, or gcvt Subroutine

Purpose
Library

Syntax

Converts a floating-point number to a string.

Standard C Library (libc.a)

#include <stdlib.h>

char *ecvt (Value, NumberOfDigits, DecimalPointer, Sign)
double Value;
int NumberOfDigits, * DecimalPointer, *Sign;

char *fcvt (Value, NumberOfDigits, DecimalPointer, Sign)
double Value;
int NumberOfDigits, * DecimalPointer, *Sign;

char *gevt (Value, NumberOfDigits, Buffer)
double Value;

int NumberOfDigits;

char *Buffer;

Description

The ecvt subroutine, fevt subroutine, and gcvt subroutine convert floating-point numbers to
strings.

The ecvt subroutine converts the Value parameter to a null-terminated string and returns a
pointer to it. The NumberOfDigits parameter specifies the number of digits in the string. The
low-order digit is rounded according to the current rounding mode. The ecvt subroutine sets
the integer pointed to by the DecimalPointer parameter to the position of the decimal point
relative to the beginning of the string. (A negative number means the decimal point is to the
left of the digits given in the string). The decimal point itself is not included in the string. The
ecvt subroutine also sets the integer pointed to by the Sign parameter to a nonzero value if
the Value parameter is negative, and sets it to 0 otherwise.

The fevt subroutine operates identically to the ecvt subroutine, except that the correct digit
is rounded for C or FORTRAN F-format output of the number of digits specified by
NumberOfDigits.

Note: In the F-format, the NumberOfDigits parameter is the number of digits desired after
the decimal point. Large numbers produce a long string of digits before the decimal
point, and then NumberOfDigits digits after the decimal point. Generally, the gevt
and ecvt subroutines are more useful for large numbers.

The gevt subroutine converts the Value parameter to a null-terminated string, stores it in the
array pointed to by the Buffer parameter, and then returns Buffer. The gevt subroutine
attempts to produce a string of NumberOfDigits significant digits in FORTRAN F-format. !f
this is not possible, the E-format is used. The gevt subroutine suppresses trailing zeros. The
string is ready for printing, complete with minus sign, decimal point, or exponent, as
appropriate.

Base Operating System Runtime 1-115

ecvt,'-.

The ecvt, fcvt, and gevt subroutines represent the following special values that are
specified in ANSI/IEEE standards 754-1985 and 854-1987 for floating-point arithmetic:

Quiet NaN NaNQ
Signalling NaN NaNS
Infinity INF

The sign associated with each of these values is stored into the Sign parameter. Note also
that 0 can be positive or negative. In the IEEE floating-point, zeros also have signs and set
the Sign parameter appropriately.

Warning: All three subroutines store the strings in a static area of memory whose contents
are overwritten each time one of the subroutines is called.

Parameters

Value Specifies some double-precision floating-point value.

NumberOfDigits Specifies the number of digits in the string.

DecimalPointer ‘Specifies the position of the decimal point relative to the beginning
of the string.

Sign The sign associated with the return value is placed in the Sign
parameter. In IEEE floating-point, since 0 can be signed, the Sign
parameter is set appropriately for signed 0.

Buffer Specifies a character array for the string.

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-116

The atof, atoff, strtod, strtof subroutines, scanf subroutine, printf subroutine,
fp_read_rnd, fp_swap_rnd subroutines.

IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854-1987).

Base Operating System Reference

_end,..

_end, _etext, or _edata ldentifier

Purpose

Define the first addresses following the program, initialized data, and all data.
Syntax

extern _end;

extern _etext;

extern _edata;
Description

The external names _end, _etext, and _edata are defined by the loader for all programs.
They are not subroutines, but identifiers associated with the following addresses:

_etext The first address following the program text

_edata The first address following the initialized data region

_end The first address following the data region that is not initialized. The name
end (with no underscore) defines the same address as does _end (with
underscore).

The break value of the program is the first location beyond the data. When a program begins
running, this location coincides with end. However, many factors can change the break
value, including:

e The brk or sbrk subroutine
* The malloc subroutine
o The standard input/output subroutines
¢ The ~p flag on the cc command.
Therefore, use brk or sbrk(0), not end, to determine the break value of the program.

Implementation Specifics
These identifiers are part of AIX Base Operating System (BOS) Runtime.

Related Information
The malloc subroutine, brk, sbrk subroutine.

Base Operating System Runtime 1-117

erf,...

erf or erfc Subroutine

Purpose
Computes the error and complementary error functions.
Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Syntax
#include <math.h>
double erf (x)
double x;
double erfc (x)
double x;
Description
The erf subroutine returns the error function of the x parameter, defined as the following:
erf(x) = (2/sqrt(pi) * (integral [0 to x] of exp(—(t**2)) dt)
erfc(x) = 1.0 — erf(x)
The erfc subroutine is provided because of the extreme loss of relative accuracy if erf (x)
is called for large values of the x parameter and the result is subtracted from 1. For example,
12 decimal places are lost when calculating (1.0 — erf(5)).
Note: Compile any routine that uses subroutines from the libm.a library with the —Im fiag.
To compile the erf.c file, for example, enter:
cc erf.c =1lm
Parameter

X Specifies some double-precision floating-point value.

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-118

The exp, expm1, log, log10, log1p, pow subroutines, sqrt, cbrt subroutines.

errilog

errlog Subroutine

Purpose
Logs application errors.

Library

Run-time Services Library.

Syntax
#include <sys/errids.h>
int errlog (Buffer, Cnf)
char *Buffer;
unsigned int Cnt,

Description
The erriog subroutine writes an error to the error log device driver. This subroutine is used
by application programs.

Parameters
Buffer Points to a buffer that contains an error record.

Cnt Specifies the size in bytes of the error record in the buffer.

Return Values
0 Successful.

-1 Error message if unsuccessful.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Files
/dev/error Provides standard device driver interfaces required by the error log
component.
librts.a Run-time Services Library.

Related Information
The errdemon daemon.

The errclear command, errdead command, errinstall command, errlogger command,
errmsg command, errpt command, errstop command, errupdate command.

The error file.

The errsave kernel service.

Base Operating System Runtime 1-119

exec

exec: execl, execv, execle, execve, execlp, execvp, or exect
Subroutine

Purpose
Executes a file.

Library
Standard C Library (libc.a)

Syntax

int execl (Path, Argument0 [, Argument1, .. .1, 0)
char *Path, *Argument0, *Argumenti, . . .;

int execle (Path, Argument0 [, Argumentt, ...}, 0,
EnvironmentPointer)
char *Path, *Argument0, *Argument1,
., *EnvironmentPointed];

int execlp (File, Argument0 [, Argument1, ...], 0)
char *File, *Argument0, *Argument1, . . . ;

int execv (Path, ArgumentV)
char *Path, *Argument\] 1;

int execve (Path, ArgumentV,
EnvironmentPointer)
char *Path, *Argument\ 1, *EnvironmentPointed 1;

int execvp (File, ArgumentV)
char *File, *Argument\] 1;

extern char **environ;
int exect (Path,ArgumentV, EnvironmentPointer)

char *Path, *ArgumentV, *EnvironmentPointer[];

Description
The exec subroutine, in all its forms executes a new program in the calling process. The
exec subroutine does not create a new process, but overlays the current program with a
new one, which is called the new process image. The new process image file can be one of
three file types:

o An executable binary file in extended COFF format. (See the a.out file.)

» An executable text file that contains a shell procedure (only the execlp and execvp
subroutines allow this type of new process image file).

* A file that names an executable binary file or shell procedure to be run.
The last of the types mentioned is recognized by a header with the following syntax:
#! Path [String]

The #!is the file magic number, which identifies the file type. The path name of the file to be
executed is specified by the Path parameter. The String parameter is an optional character
string that contains no tab or space characters. If specified, this string is passed to the new

1-120 Base Operating System Reference

exec

process as an argument in front of the name of the new process image file. The header must
be terminated with a new-line character. When called, the new process passes the Path
parameter as Argument\V[0]. If a String parameter is specified in the new process image file,
the exec subroutine sets ArgumentV[0]. to the String and Path parameters concatenated
together. The rest of the arguments passed are the same as those passed to the exec
subroutine.

exect is included for compatibility with older programs being traced with the ptrace
command. The program being executed is forced into hardware single—step mode.

Parameters
Path Specifies a pointer to the path name of the new process image file.
If Network File System is installed on your system, this path can
cross into another node. Data is copied into local virtual memory
before proceeding.
File Specifies a pointer to the name of the new process image file.

Unless the File parameter is a full path name, the path prefix for the
file is obtained by searching the directories named in the PATH
environment variable. The initial environment is supplied by the
shell.

Note: The execlp subroutine and the execvp subroutine take File parameters, but the rest
of the exec subroutines take Path parameters. (For information about the
environment, see the environment miscellaneous facility and the sh command.)

Argument0 [, Argumentt, . ..]
Point to null-terminated character strings. The strings constitute the
argument list available to the new process. By convention, at least
the ArgumentO parameter must be present, and it must point to a
string that is the same as the Path parameter or its last component.

ArgumentV Specifies an array of pointers to null-terminated character strings.
These strings constitute the argument list available to the new
process. By convention, the ArgumentV parameter must have at
least one element, and it must point to a string that is the same as
the Path parameter or its last component. The last element of the
ArgumentV parameter is a NULL pointer.

EnvironmentPointer ~ An array of pointers to null-terminated character strings. These

strings constitute the environment for the new process. The last
element of the EnvironmentPointer parameter is a NULL pointer.

When a C program is run, it receives the following parameters:

main (ArgumentCount, ArgumentV, EnvironmentPointer)
int ArgumentCount;
char *Argument\ 1, *EnvironmentPointed];

In this example, the ArgumentCount parameter is the argument count, and the ArgumentV
parameter is an array of character pointers to the arguments themselves. By convention, the
value of the ArgumentCount parameter is at least 1, and the ArgumentV{0] parameter points
to a string containing the name of the new process image file.

The main routine of a C language program automatically begins with a run—time start—off
routine. This routine sets the environ global variable so that it points to the environment

Base Operating System Runtime 1-121

exec

1-122

array passed to the program in EnvironmentPointer. You can access this global variable by
including the following declaration in your program:

extern char **environ;

The execl, execv, execlp, and execvp subroutines use the environ global variable to pass
the calling process current environment to the new process.

File descriptors open in the calling process remain open, except for those whose
close-on-exec flag is set. For those file descriptors that remain open, the file pointer is
unchanged. (For information about file control, see the fentl.h header file.)

If the new program requires shared libraries, the exec subroutine finds, opens, and loads
each of them into the new process address space. The referenced counts for shared
libraries in use by the issuer of the exec are decremented. Shared libraries are searched for
in the directories listed in the LIBPATH environment variable. If any of these files is remote,
the data is copied into local virtual memory.

The exec subroutines reset all caught signals to the default action. Signals that cause the
default action continue to do so after the exec subroutines. Ignored signals remain ignored,
the signal mask remains the same, and the signal stack state is reset. (For information about
signals, see the sigaction subroutine.)

The exec subroutines cause the following changes in the privilege sets of the process:

* Upon exec, the inherited privilege set is assigned the value of the old effective privilege
set.

o The effective and maximum privilege set are assigned the value of the logical union of the
old effective privilege set and the privilege set assigned to the file named in the Path
parameter. :

The exec subroutines do not alter the value of the TrustedState parameter of the process.

If the SetUser/D mode bit of the new process image file is set, the exec subroutine sets the
effective user ID of the new process to the owner ID of the new process image file. Similarly,
if the SetGroup/D mode bit of the new process image file is set, the effective group ID of the
new process is set to the group ID of the new process image file. The real user ID and real
group 1D of the new process remain the same as those of the calling process. (For
information about the Set/D modes, see the chmod subroutine.)

When one or both of the set ID mode bits is set and the file to be executed is a remote file,
the file user and group IDs go through outbound translation at the server. Then they are
transmitted to the client node where they are translated according to the inbound translation
table. These translated IDs become the user and group IDs of the new process.

Profiling is disabled for the new process. (For information about profiling, see the profil
subroutine.) -

The new process inherits the following attributes from the calling process:

The nice value (See the getpriority subroutine, setpriority subroutine, nice subroutine)

The process ID

The parent process ID

The process group ID

The semadj values (See the semop subroutine)

Base Operating System Reference

Examples

exec

The tty group ID (See the exit, atexit, _exit subroutines, sigaction subroutine)
The trace flag (See request 0 of the ptrace subroutine)

The time left until an alarm clock signal (See the incinterval subroutine, setitimer
subroutine, and alarm subroutine)

The current directory

The root directory

The file mode creation mask (See the umask subroutine)
The file size limit (See the ulimit subroutine)

The resource limits (See the getrlimit subroutine, setrlimit subroutine, and vlimit
subroutine)

The privileges (See the above discussion)

The utime, stime, cutime, and cstime subroutines(See the times subroutine)
The login user ID

The suspend/resume process audit flag (See the auditproc subroutine)

The general/special user audit flag.

1. To run a command and pass it a parameter, enter:

execlp(”1i”, "1i", "—al”, 0);

The execlp subroutine searches each of the directories listed in the PATH environment
variable for the li command, and then it overlays the current process image with this
command. The execlp subroutine is not returned, unless the li command cannot be
executed. Note that this example does not run the shell command processor, so
operations interpreted by the shell, such as using wildcard characters in file names, are
not valid.

2. To run the shell to interpret a command, enter:

execl(”/bin/sh”, "sh", "—c", "1li =1 *.c”, 0);

This runs the sh (shell) command with the —¢ flag, which indicates that the following
parameter is the command to be interpreted. This example uses the execl subroutine
instead of the execlp subroutine because the full path name /bin/sh is specified, making
a PATH search unnecessary.

Running a shell command in a child process is generally more useful than simply using

the exec subroutine, as shown in this example. The simplest way to do this is to use the
system subroutine.

3. The following is an example of a new process file that names a program to be run:

#! /bin/awk —f
{ for (i = NF; i > 0; —1i) print $i }

Base Operating System Runtime 1-123

exec

If this file is named reverse, entering the following command on the command line:

reverse chapterl chapter?2

causes the following command to be run:

/bin/awk —f reverse chapterl chapter2

Note: The exec subroutines use only the first line of the new process image file and ignore
the rest of it. Also, the awk command interprets the text that follows a # (comment
character sign) as a comment, »

Return Values
Upon successful completion, the exec subroutines do not return because the calling process
image is overlaid by the new process image. If the exec subroutines return to the calling
process, the value of -1 is returned and the global variable errno is set to identify the error.

Error Codes
The exec subroutine fails and returns to the calling process if one or more of the following

1-124

are true:
EACCES
EACCES
ENOEXEC

ENOEXEC

ETXTBSY
ENOMEM

E2BIG

EFAULT

EPERM

The new process image file is not an ordinary file.
The mode of the new process image file denies execution permission.

The exec subroutine is not an execlp subroutine or an execvp subroutine,
and the new process image file has the appropriate access permission but
the magic number in its header is not valid.

The new process image file has a valid magic number in its header, but the

header is damaged or is incorrect for the machine on which the file is to be
run.

The new process image file is a pure procedure (shared text) file that is
currently open for writing by some process. '

The new process requires more memory than is allowed by the
system—-imposed maximum MAXMEM.

The number of bytes in the new process argument list is greater than the
system—imposed limit. This limit is defined as NCARGS in the sys/param.h
header file.

The Path, ArgumentV, or EnviromentPointer parameter points outside of the
process address space.

The SetUserlD or SetGroup/D mode bit is set on the process image file, and
the translation tables at the server or client do not allow translation of this
user or group ID.

The exec subroutines can aISo fail if one or more of the following conditions that apply to
any service that requires path name resolution are true:

EACCES
EFAULT

Search permission is denied on a component of the path prefix.

The Path parameter points outside of the allocated address
space of the process.

Base Operating System Reference

ElO
ELOOP

ENAMETOOLONG

ENOENT

ENOENT

ENOENT
ENOTDIR
ESTALE

exec

An 1/O error occurred during the operation.

Too many symbolic links were encountered in translating the
Path parameter.

A component of a path name exceeded 255 characters and the
process has the disallow truncation attribute (see the ulimit
subroutine), or an entire path name exceeded 1023 characters.

A component of the path prefix does not exist.

A symbolic link was named, but the file to which it refers does not
exist.

The path name is null.
A component of the path prefix is not a directory.

The root or current directory of the process is located in a virtual
file system that has been unmounted.

In addition, some errors can occur when using the new process file after the old process
image has been overwritten. These errors include problems in setting up new data and stack
registers, problems in mapping a shared library, or problems in reading the new process file.
Because returning to the calling process is not possible, the system sends the SIGKILL
signal to the process when one of these errors occurs.

If an error occurred while mapping a shared library, an error message describing the reason
for error will be written to standard error before the signal SIGKILL is sent to the process. If
a shared library cannot be mapped, one or more of the following is true:

ENOENT
ENOTDIR

ENAMETOOLONG

EACCES

EACCES
ENOEXEC

ETXTBSY
ENOMEM

ESTALE

One or more components of the path name of the shared library
file do not exist.

A component of the path prefix of the shared library file is not a
directory.

- . A component of a path name prefix of a shared library file

exceeded 255 characters, or an entire path name exceeded 1023
characters.

Search permission is denied for a directory listed in the path
prefix of the shared library file.

The shared library file mode denies execution permission.

The shared library file has the appropriate access permission, but
a magic number in its header is not valid.

The shared library file is curréntly open for writing by some other
process.

The shared library requires more memory than is allowed by the
system—imposed maximum.

The process root or current directory is located in a virtual file
system that has been unmounted.

Base Operating System Runtime 1-125

exec

If Network File System is installed on the system, the exec subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related information
The chmod, fchmod subroutines, exit subroutine, fentl subroutine, fork subroutine,
getrusage, times subroutines, incinterval, alarm subroutines, nice subroutine, profil
subroutine, ptrace subroutine, semop subroutine, settimer subroutine, sigaction, signal,
sigvec subroutines, shmat subroutine, system subroutine, ulimit subroutine, umask
subroutine.

The varargs macros.
The a.out file.
The sh command, ksh command.

The environment miscellaneous facility.

1-126 Base Operating System Reference

exit,...

exit, atexit, or _exit Subroutine

Purpose

Terminates a process.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

void exit (Status)
int Status;

void _exit (Status)
int Status;

int atexit (Function)
void (* Function) (void));

Description

The atexit subroutine registers functions to be called at normal process termination for
cleanup processing.

The exit subroutine terminates the calling process after calling the Standard I/O Library
_cleanup function to flush any buffered output. Also, it calls any functions registered
previously for the process by the atexit subroutine. Finally, it calls the _exit subroutine,
which completes process termination and does not return. The _exit subroutine terminates
the calling process and causes the following to occur:

All of the file descriptors open in the calling process are closed. If Network File System is
installed on your system, some of these files can be remote. Since the _exit subroutine
terminates the process, any errors encountered during these close operations go
unreported.

If the parent process of the calling process is running a wait call, it is notified of the
termination of the calling process and the low—order 8 bits (that is, bits 0377 or 0xFF) of
the Status parameter are made available to it.

If the parent process is not running a wait call when the child process terminates, it may
still do so later on, and the child’s status will be returned to it at that time.

The parent process is sent a SIGCHLD signal when a child terminates; however, since
the default action for this signal is to ignore it, the signal usually is not seen.

Terminating a process by exiting does not terminate its child processes.

Each attached shared memory segment is detached and the value of shm_nattch in the
data structure associated with its shared memory identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj value, that semadj
value is added to the semval of the specified semaphore. (The semop subroutine
provides information about semaphore operations.)

If the process has a process lock, text lock, or data lock, an unlock is performed. (See
the plock subroutine.)

Base Operating System Runtime 1-127

exit,...

e An.accounting record is written on the accounting file if the system accounting routine is
enabled. (The acct subroutine provides information about enabling accounting routines.)

e Locks set by the fentl, flock, and lockf subroutines are removed.

Note: The system init process is used to assist cleanup of terminating processes. If the
code for the init process is replaced, the program must be prepared to accept
SIGCHLD signals and issue a wait call for each.

Parameters
Status Indicates the status of the process.
Function Specifies up to 32 functions that are called at normal process termination for

cleanup processing. A push—~down stack of functions is kept, such that the
last function registered is the first function called.

Return Values

Upon successful completion, the atexit subroutine returns a value of 0. Otherwise, a
nonzero value is returned. The exit and _exit subroutines do not return a value.

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

If the parent process of the calling process is not ignoring SIGCHLD, the calling process is
transformed into a zombie process, and its parent process is sent a SIGCHLD signal to
notify it of the death of a child process.

A zombie process is a process that occupies a slot in the process table, but has no other
space allocated to it either in user of kernel space. The process table slot that it occupies is
partially overlaid with time accounting information to be used by the times subroutine. (See
the sys/proc.h header file.)

A process remains a zombie until its parent issues one of the wait subroutines. At this time,
the zombie is /aid to rest, and its process table entry is released.

Termination of a process does not terminate its child processes. Instead, the parent process
ID of all of the calling process child processes and zombie child processes is set to the
process ID of init. The init process thus inherits each of these processes, and catches their
SIGCHLD signals and calls the wait subroutine for each of them.

If the process is a controlling process, the SIGHUP signal will be sent to each process in the
foreground process group of the controlling terminal belonging to the calling process.

If the process is a controlling process, the controlling terminal associated with the session is
disassociated from the session, allowing it to be acquired by a new controlling process.

If the exit of the process causes a process group to become orphaned, and if any member of
the newly—orphaned process group is stopped, then a SIGHUP signal followed by a
SIGCONT signal will be sent to each process in the newly—orphaned process group.

Related Information

1-128

The acct subroutine, sigaction, signal, sigvec subroutines, times subroutine, wait,
waitpid, wait3 subroutines.

Base Operating System Reference

exp,...

exp, expmi, log, log10, log1p, or pow Subroutine

Purpose
Computes exponential, logarithm, and power functions.

Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double exp (x)
double x;

double expm1 (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double logip (x)
double x;

double pow (x, y)
double x, y;

Description
These subroutines are used to compute exponential, logarithm, and power functions.
The exp subroutine returns exp (x).
The expm1 subroutine returns exp (x)—1.
The log subroutine returns the natural logarithm of x. The value of x must be positive.
The log10 subroutine returns the logarithm base 10 of x. The value of x must be positive.
The log1p subroutine returns log(1 + x).

The pow subroutine returns x*+*y. If xis negative or 0, then y must be an integer. If yis 0,
then pow returns 1.0 for all x.

The expm1 subroutine and log1p subroutine are useful to guarantee that financial
calculations of ((1+x**n)—1)/x, namely:

expml(n * loglp(x))/x

are accurate when x is tiny (for example, when calculating small daily interest rates). These
subroutines also simplify writing accurate inverse hyperbolic functions.

Base Operating System Runtime 1-129

exp;...

Note: Compile any routine that uses subroutines from the libm.a library with the ~Im flag.
To compile the pow.c file, for example:

cc pow.c —lm

Parameters
X Specifies some double-precision floating-point value.
y Specifies some double-precision floating-point value.

Error Codes

1-130

When using libm.a (-Im):

exp If the correct value would overflow, exp returns HUGE_VAL and errno is set
to ERANGE.

log If xis less than zero, log returns the value NaNQ and sets errno to EDOM.
If x equals zero, log returns the value ~HUGE_VAL but does not modify
errno.

log10 If xis less than zero, log10 returns the value NaNQ and sets errno to

EDOM. If x equals zero, log returns the value -HUGE_VAL but does not
modify errno.

pow If the correct value overflows, pow returns HUGE_VAL and sets errno to
ERANGE. If xis negative and y is not an integer, pow returns NaNQ and
sets errno to EDOM. If x equals zero and y is negative, pow returns
HUGE_VAL but does not modify errno.

When using libmsaa.a (-imsaa):

exp It the correct value would overflow, exp returns HUGE_VAL. If the correct
value would underflow, exp returns 0. In both cases errno is set to
ERANGE.

log If x is non-positive, log returns the value ~HUGE_VAL, and sets errno to

EDOM. A message indicating DOMAIN error (or SING error when x = 0) is
output to standard error.

log10 If x is non-positive, log10 returns the value -HUGE_VAL and sets errno to
EDOM. A message indicating DOMAIN error (or SING error when x = 0) is
output to standard error.

pow If x =0 and yis non-positive, or if x is negative and y is not an integer, pow
returns 0 and sets errno to EDOM. In these cases a message indicating
DOMAIN error is output to standard error. When the correct value for pow
would overflow or underflow, pow returns + or - HUGE_VAL or 0
respectively and sets errno to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (~Imsaa).

Base Operating System Reference

exp,...

When using either libm.a (-Im) or libmsaa.a (-Imsaa):

expmi If the correct value overflows, expm1 returns HUGE_VAL but does not
modify errno.

log1p If x <-1, log1p returns the value NaNQ. If x = -1, log1p returns the value
—HUGE_VAL. In neither case is errno modified.

Implementation Specifics
These subroutines are part of AiX Base Operating System (BOS) Runtime.

The expm1 and log1p subroutines are not part of the ANSI C Library.

Related Information
The hypot, cabs subroutines, sinh, cosh, tanh subroutines, matherr subroutine.

Base Operating System Runtime 1-131

fclear

fclear Subroutine

long fclear (FileDescriptor, NumberOfBytes)

The fclear subroutine zeros the number of bytes specified by the NumberOfBytes parameter
starting at the current position of the file open on the file descriptor FileDescriptor. If Network
File System is installed on your system, this file can reside on another node.

The fclear subroutine cannot be applied to a file that a process has opened with the
O_DEFER mode. Successful completion of the fclear subroutine clears the SetUser/D and
SetGrouplD attributes of the file if the calling process does not have root user authority.

The file specified by the FileDescriptor parameter must be open for
writing. This function differs from the logically equivalent write
operation in that it returns full blocks of binary zeros to the file system,
constructing holes in the file.

Purpose
Makes a hole in a file.
Library
Standard C Library (libc.a)
Syntax
int FileDescriptor,
unsigned long NumberOfBytes;
Description
Parameters
FileDescriptor
NumberOfBytes

Return Values

Upon successful completion, a value of NumberOfBytes is returned. Otherwise, a value of
—1 is returned and the global variable errno is set to indicate the error.

Error Codes
The fclear subroutine fails if one or more of the following are true:

1-132

EIO
EBADF

EINVAL
EMFILE

The number of bytes that the seek pointer is advanced. If you use the
fclear subroutine past the end of a file, the rest of the file is cleared
and the seek pointer is advanced by NumberOfBytes. The file size is
updated to include this new hole, which leaves the current file position
at the byte immediately beyond the new end-of-file pointer.

1/0O error.

The FileDescriptor parameter is not a valid file descriptor open for
writing.

The file is not a regular file.

The file is mapped O_DEFER by one or more processes.

Base Operating System Reference

fclear

EAGAIN The write operation in the fclear subroutine failed due to an enforced
write lock on the file.

If Network File System is installed on the system the fclear subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The truncate, ftruncate subroutines, open subroutine.

Base Operating System Runtime 1-133

fclose,...

fclose or fflush Subroutine

Purpose
Closes or flushes a stream.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int fclose (Stream)
FILE *Stream;

int fflush (Stream)
FILE *Stream;

Description ‘ :
The fclose subroutine writes buffered data to the stream specified by the Stream parameter,

and then closes the stream. fclose is automatically called for all open files when the exit
subroutine is invoked.

The fflush subroutine writes any buffered data for the stream specified by the Stream
parameter and leaves the stream open.

Parameter
Stream Specifies the output stream.

Return Values

Upon successful completion, the fclose and fflush subroutines return a value of 0.
Otherwise, a value of EOF is returned.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The close subroutine, exit, atexit, _exit subroutines, fopen, freopen, fdopen subroutines,
setvbuf, setbuf, setbuffer, setlinebuf subroutines.

1-134 Base Operating System Reference

fentl,...

fentl, dup, or dup2 Subroutine

Purpose
Library

Syntax

Controls open file descriptors.

Standard C Library (libc.a)

#include <fcntl.h>

int fcntl (FileDescriptor, Command, Argument)
int FileDescriptor, Command, Argument;

int dup2(Old, New)
int Old, New;

int dup(FileDescripton
int FileDescriptor;

Description

The fentl subroutine performs controlling operations on the open file specified by the
FileDescriptor parameter. If Network File System is installed on your system, the openfile
can reside on another node. The fentl subroutine is used to:

» duplicate open file descriptors

» set and get the file descriptor flags

o set and get the file status flags

* manage record locks

e manage asynchronous /O ownership

¢ close multiple files.

General Record Locking Information:

Any lock is either an enforced lock or an advisory lock, and any lock is either a read lock or a
write lock.

Warning: Buffered I/O does not work properly when used with file locking. Do not use the
standard 1/O package routines on files that are going to be locked.

For a lock to be an enforced lock, the Enforced Locking attribute of the file must be set; for
example, the S_ENFMT bit must be set, but the S_IXGRP, S_IXUSR and S_IXOTH bits
must be clear. Otherwise, the lock is an advisory lock. A given file can have advisory or
enforced locks, but not both. The description of the sys/mode.h header file provides a
description of file attributes.

When a process holds an enforced lock on a section of a file, no other process can access
that section of the file with the read or write subroutines. in addition, the open and
ftruncate subroutines are prevented from truncating the locked section of the file, and the
fclear subroutine can not modify the locked section of the file. If another process attempts to

Base Operating System Runtime 1-135

fentl,...

read or modify the locked section of the file, it sleeps until the section is unlocked or returns
with an error indication.

When a process holds an advisory lock on a section of a file, no other process can lock that
section of the file (or an overlapping section) with the fentl subroutine. No other subroutines
are affected. This means that processes must voluntarily call fontl in order to make advisory
locks effective.

When a process holds a read lock on a section of a file, other processes can also set read
locks on that section or on subsets of it. Read locks are also called shared locks.

A read lock prevents any other process from setting a write lock on any part of the protected
area. If the read lock is also an enforced lock, no other process can modify the protected
area.

The file descriptor on which a read lock is being placed must have been opened with read
access. :

When a process holds a write lock on a section of a file, no other process can set a read
lock or a write lock on that section. Write locks are also called exclusive locks. Only one
write lock and no read locks can exist for a specific section of a file at any time.

If the lock is also an enforced lock, no other process can read or modify the protected area.
Some general rules about file locking include:

e Changing or unlocking part of a file in the middie of a locked section leaves two smaller
sections locked at each end of the originally locked section.

o When the calling process holds a lock on a file, that lock can be replaced by later calls to
the fentl subroutine.

» All locks associated with a file for a given process are removed when the process closes
any file descriptor for that file.

o Locks are not inherited by a child process after running a fork subroutine.

Note: Deadlocks due to file locks in a distributed system are not always detected. When
such deadlocks are possible, the programs requesting the locks should set time-—out
timers.

Locks can start and extend beyond the current end of a file, but cannot be negative relative
to the beginning of the file. A lock can be set to extend to the end of the file by setting the
|_len field to 0. If such a lock also has the |_start and |_whence fields set to 0, the whole file
is locked.

Parameters

1-136

FileDescriptor Specifies an open file descriptor obtained from a successful open, fentl,
or pipe subroutine.

Argument Specifies a variable that depends on the value of the Command
parameter.

Base Operating System Reference

Command

fentl,...

Specifies the operation to be performed. The following Command
parameter values get a file descriptor or associated flags or set those

flags:
F_DUPFD

F_GETFD

F_SETFD

F_GETFL

F_SETFL

F_GETLK
F_SETLK

F_SETLKW

Returns a new file descriptor as follows:

¢ Lowest numbered available file descriptor greater than
or equal to the Argument parameter

e Same object references as the original file

+ Same file pointer as the original file (that is, both file
descriptors share one file pointer if the object is a file)

e Same access mode (read, write, or read—write)

e Same file status flags (That is, both file descriptors
share the same file status flags.)

e The close-on—exec flag (FD_CLOEXEC bit)
associated with the new file descriptor is set to remain
open across exec subroutines.

Gets the close—on-exec flag (FD_CLOEXEC bit)
associated with the file descriptor FileDescriptor. The
Argument parameter is ignored.

Sets the close-on-exec flag (FD_CLOEXEC bit)
associated with the FileDescriptor parameter to the value
of the Argument parameter.

Gets the file status flags for the file referred to by the
FileDescriptor parameter. The Argument parameter is
ignored.

The Argument parameter specifies the desired flags. The
following flags may be given:

e O_APPEND or FAPPEND
O_NDELAY or FNDELAY
O_NONBLOCK or FNONBLOCK
O_SYNC or FSYNC

o FASYNC

O_NDELAY and O_NONBLOCK affect only
operations against file descriptors derived from the
same open subroutine. In BSD, these apply to all file
descriptors that refer to the object.

Sets or clears a file lock.

Gets the first lock that blocks the lock described in the
flock structure.

Performs the same function as F_SETLK except that if a
read or write lock is blocked by existing locks, the

Base Operating System Runtime 1-137

fentl,...

process sleeps until the section of the file is free to be
locked.

F_GETOWN Gets the process ID or process group currently receiving
SIGIO and SIGURG signals. Process groups are
returned as negative values.

F_SETOWN Sets the process or process group to receive SIGIO and
SIGURG signals. Process groups are specified by
supplying the Argument parameter as negative;
otherwise the Argument parameter is interpreted as a
process ID.

F_CLOSEM Closes all file descriptors from Argument up to

OPEN_MAX.
Old Specifies an open file descriptor.
New Specifies an open file descriptor that is returned by the dup2 subroutine.

Compatibility Interfaces

fnetl (FileDescriptor, Command, Argument)
is equivalent to:
lockfx (FileDescriptor, Command, Argument)

when the Command parameter is F_SETLK, F_SETLKW, or F_GETLK.

dup (FileDescripton
is equivalent to:
fnetl (FileDescriptor, F_DUPFD, 0).

dup2 (Old, New)
is equivalent to:
fentl(Old F_DUPFD, New)

Return Values

1-138

Upon successful completion, the vaiue returned depends on the value of the Command
parameter as follows:

Command Return Value

F_DUPFD A new file descriptor.

F_GETFD The value of the flag (only the FD_CLOEXEC bit is defined).
F_SETFD A value other than —1.

F_GETFL The value of file flags.

F_SETFL A value other than -1.

F_GETOWN The value of descriptor owner.
F_SETOWN A value other than 1.
F_GETLK A value other than —1.

Base Operating System Reference

fentl,...

F_SETLK A value other than —-1.
F_SETLKW A value other than -1.
F_CLOSEM A value other than —1.

If the fentl subroutine fails, a value of —1 is returned and the global variable errno is set to
indicate the error.

Error Codes
The fentl subroutine fails if one or more of the following are true:

EBADF The FileDescriptor parameter is not a valid open file descriptor.

EMFILE The Command parameter is F_DUPFD and OPEN_MAX file descriptors
are currently open.

EINVAL The Command parameter is F_DUPFD and the Argument parameter is
negative or greater than or equal to OPEN_MAX.

EINVAL An illegal value was provided for the Command parameter.

ESRCH The value of the Command parameter is F_SETOWN and the process ID

given as Argument s not in use.

The dup and dup2 subroutines fail if one or both of the following are true:

EBADF The Old parameter is not a valid open file descriptor or the New
parameter file descriptor is out of range.

EMFILE The number of file descriptors exceeds OPEN_MAX or there is no file
descriptor above the value of the New parameter.

If Network File System is installed on the system the fentl subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

it FileDescriptor refers to a terminal device or socket, then asynchronous I/O facilities can be
used. These facilities are normally enabled via use of the ioctl subroutine with the
FIOASYNC, FIOSETOWN, and FIOGETOWN commands. However, a BSD compatible
mechanism is also available if the application is linked with libbsd.

When using libbsd, asynchronous /O is enabled by using F_SETFL with the FASYNC flag
set in the Argument parameter. The F_GETOWN and F_SETOWN commands are used to
get the current asynchronous 1/0 owner and to set the asynchronous /O owner.

Related Information _ _
The close subroutine, execl, excecv, execle, execve, execlp, execvp, exect subroutines,
lockf subroutine, openx, open, creat subroutines.

The fentl.h header file.

Base Operating System Runtime 1-139

feof,...

feof, ferror, clearerr, or fileno Macro

Purpose
Checks the status of a stream.
Library
Standard C Library (libc.a)
Syntax .
#include <stdio.h>
int feof (Stream)
FILE *Stream;
int ferror (Stream)
FILE *Stream
void clearerr (Stream)
FILE *Stream;
int fileno (Stream)
FILE *Stream;
Description
The feof macro inquires about the end—of—file character. If EOF has previously been
detected reading the input stream specified by the Stream parameter, a nonzero value is
returned. Otherwise, a value of 0 is returned.
The ferror macro inquires about input/output errors. If an I/O error has previously occurred
when reading from or writing to the stream specified by the Stream parameter, a nonzero
value is returned. Otherwise, a value of 0 is returned.
The clearerr macro inquires about the status of a stream. The clearerr macro resets the
error indicator and the EOF indicator to 0 for the stream specified by the Stream parameter.
The fileno macro inquires about the status of a stream. The fileno macro returns the integer
file descriptor associated with the input pointed to by the Stream parameter.
Note: Since this routine is implemented as a macro, it cannot be declared or redeclared.
Parameter

Stream Specifies the input or output stream.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The open subroutine, fopen, freopen, fdopen subroutines.

1-140 Base Operating System Reference

floor,...

floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, or fabs
Subroutine

Purpose

Library

Syntax

The floor subroutine, ceil subroutine, nearest subroutine, trunc subroutine, and rint
subroutine round floating-point numbers to floating-point integer values.

The itrunc subroutine and uitrunc subroutine round floating-point numbers to signed and
unsigned integers, respectively.

The fmod subroutine and fabs subroutine compute the Modulo Remainder and
floating-point absolute value functions, respectively.

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Standard C Library (libc.a) (separate syntax follows.)

#include <math.h>
double floor (x)
double x;

double ceil (x)
double x;

double fmod (x,y)
double x, y;

double fabs (x)
double x;

Standard C Library (libc.a)
#include <stdlib.h>
#include <limits.h>

double rint (x)
double x;

int itrunc (x)
double x;

unsigned int uitrunc (x)
double x;

Description

The floor subroutine returns the largest floating-point integer value not greater than the x
parameter.

The ceil subroutine returns the smallest floating-point integer value not less than the x
parameter. .

The nearest subroutine returns the nearest floating-point integer value to the x parameter. If
x lies exactly halfway between the two nearest floating-point integer values, the floating-point
integer that is even is returned.

Base Operating System Runtime 1-141

floor,...

The trunc subroutine returns the nearest floating-point integer value to the x parameter in
the direction of zero. This is equivalent to truncating off the fraction bits of the x parameter.

The rint subroutine returns one of the two nearest floating-point integer values to the x
parameter. To determine which integer is returned, use the current floating-point rounding
mode as described in the /EEE Standard for Binary Floating-Point Arithmetic.

Ifithe current rounding mode is round toward —INF, rint(x) is identical to floor(x).
If the current rounding mode is round toward +INF, rint(x) is identical to ceil(x).

If the current rounding mode is round to nearest, rint(x) is identical to nearest(x).
If the current rounding mode is round toward zero, rint(x) is identical to trunc(x).

Note: The default floating-point rounding mode is round to nearest. All C main programs
begin with the rounding mode set to round to nearest.

The itrunc subroutine returns the nearest signed integer to the x parameter in the direction
of zero. This is equivalent to truncating the fraction bits from of the x parameter and then
converting x to a signed integer.

‘The uitrunc subroutine returns the nearest unsigned integer to the x parameter in the
direction of zero. This is equivalent to truncating off the fraction bits of the x parameter and
then converting x to an unsigned integer.

The fmod subroutine computes the modulo floating-point remainder of x/y. The fmod
subroutine returns the value x—iy for some i such that if y is non-zero, the result has the
same sign as x and magnitude less than the magnitude of y.

The fabs subroutine returns the absolute value of x, |x.

Note: Compile any routine that uses subroutines from the libm.a library with the ~Im flag.
To compile the floor.c file, for example, enter:

cc floor.c —1lm

Parameters
x Specifies some double-precision floating-point value.
y Specifies some double-precision floating-point value.

Error Codes
The itrunc and uitrunc subroutines return LONG_MAX if x is greater than or equal to

LONG_MAX and LONG_MIN if x is equal to or less than LONG_MIN. The itrunc subroutine
returns LONG_MIN if x is a NaNQ or NaNS. The uitrunc subroutine returns zero if xis a
NaNQ or NaNS. (LONG_MAX and LONG_MIN are defined in the limits.h header file.)

The fmod subroutine for (x/0) returns a NaNQ and sets the global variable errno to EDOM.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The itrunc, uitrunc, trunc, nearest, and rint subroutines are not part of the ANSI C Library.

1-142 Base Operating System Reference

floor,...

Related Information
The fp_read_rnd, fp_swap_rnd subroutines.

The ANSI C FLT_ROUNDS macro, which is in the float.h header file.

IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854-1987).

Base Operating System Runtime 1-143

fopen,...

fopen, freopen, or fdopen Subroutine

Purpose
Library

Syntax

Opens a stream.

Standard C Library (libc.a)

#include <stdio.h>

FILE *fopen (Path, Type)
char *Path, * Type;

FILE *freopen (Path, Type, Stream)
char *Path, * Type;
FILE *Stream;

FILE *fdopen (FileDescriptor, Type)
int FileDescriptor;
char *Type;

Description

1-144

The fopen subroutine opens the file named by the Path parameter and associates a stream
with it. The fopen subroutine returns a pointer to the FILE structure of this stream.

When you open a file for update, you can perform both input and output operations on the
resulting stream. However, an output operation cannot be directly followed by an input
operation without an intervening fflush subroutine call or a file positioning operation (fseek,
fsetpos, or rewind subroutine). Also, an input operation cannot be directly followed by an
output operation without an intervening flush or file positioning operation, unless the input
operation encounters the end of the file.

When you open a file for append (that is, when the Type parameter is a or a+), it is
impossible to overwrite information already in the file. You can use the fseek subroutine to
reposition the file pointer to any position in the file, but when output is written to the file, the
current file pointer is ignored. All output is written at the end of the file and causes the file
pointer to be repositioned to the end of the output.

If two separate processes open the same file for append, each process can write freely to
the file without destroying the output being written by the other. The output from the two
processes is intermixed in the order in which it is written to the file. Note that if the data is
buffered, it is not actually written until it is flushed.

The freopen subroutine substitutes the named file in place of the open stream. The original
stream is closed regardless of whether the openx subroutine succeeds. The freopen
subroutine returns a pointer to the FILE structure associated with Stream. The freopen
subroutine is typically used to attach the pre—opened streams associated with stdin, stdout,
and stderr to other files.

The fdopen subroutine associates a stream with a file descriptor obtained from an openx
subroutine, dup subroutine, creat subroutine, or pipe subroutine. These subroutines open

-files but do not return pointers to FILE structures. Many of the standard I/0 package

Base Operating System Reference

fopen,...

subroutines require pointers to FILE structures. Note that the Type of stream specified must
agree with the mode of the open file.

Parameters
Path Points to a character string that contains the name of the file to be
opened.
Type Points to a character string that has one of the following values:
r Open text file for reading.
w Create a new text file for writing, or open and truncate to
zero length.
a Append (open text file for writing at the end of the file, or
create for writing).
rb Open binary file for reading.
wb Create a binary file for writing, or open and truncate to
zero length.
ab Append (open binary file for update, writing at the end of
the file, or create for writing.)
r+ Open for update (reading and writing).
W+ Truncate or create for update.
a+ Append (open text file for update, writing at end of file,or
create for writing).
r+b or rb+ Open binary file for update (reading and writing).

w+b or wb+ Create binary file for update, or open and truncate to
zero length.

a+b or ab+ Append (Open a binary file for update, writing at the end
of the file, or create for writing).

Note: The system does not distinguish between text and binary files. In the AIX Version 3
Operating System, the b value in the Type parameter value is ignored.

Stream Specifies the input stream.

FileDescriptor Specifies a valid open file descriptor.

Return Values
If the fopen, fdopen, or freopen subroutine fails, a NULL pointer is returned and the global
variable errno is set to indicate the error.

Error Codes
The fopen subroutine fails if one or both of the following are true:

EACCES Search permission is denied on a component of the path prefix, or the file
exists and the permissions specified by mode are denied, or the file does

Base Operating System Runtime 1-145

fopen,...

not exist and write permission is denied for the parent directory of the file to
be created.

EINVAL The type of stream given to fdopen does not agree with the type of the
already open file.

The freopen subroutine fails if the following is true:
EINVAL The Type argument is not a valid type.
Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.
POSIX: w and w+ types do not truncate, and a and a+ types do not create.
SAA: At least eight streams, including three standard text streams, can open simultaneously.

Both binary and text modes are supported.

Related Information
The fclose, fflush subroutines, fseek, rewind, ftell, fgetpos, fsetpos subroutines,
setbuf, setvbuf, setbuffer, setlinebuf subroutines.

The open, openx, creat subroutines.

1-146 Base Operating System Reference

fork,...

fork or vfork Subroutine

Purpose
Creates a new process.
Libraries
fork: Standard C Library (libc.a)
vfork: Berkeley Compatibility Library (libbsd.a)
Syntax
#include <sys/types.h>
pid_t fork ()
int vfork ()
Description

The fork subroutine creates a new process. The new process (child process) is an almost
exact copy of the calling process (parent process). The child process inherits the following
attributes from the parent process:

Environment

Close on exec flags (described in the exec subroutines)
Signal handling settings (that is, SIG_DFL, SIG_IGN, Function Address)
Set user ID mode bit

Set group ID mode bit

Inherited, effective, and maximum privilege vectors
Trusted state

Profiling on/off status

Nice value

All attached shared libraries

Process group ID

tty group ID (described in the exit, atexit, and _exit subroutines, signal subroutine, and
raise subroutine)

Current directory

Root directory

File mode creation mask (described in the umask subroutine)

File size limit (described in the ulimit subroutine)

Attached shared memory segments (described in the shmat subroutine)
Attached mapped file segments (described in the shmat subroutine)

List of auditable events

Base Operating System Runtime 1-147

fork,...

o Audit status flag

» Debugger process ID and multiprocess flag if the parent process has multiprocess
debugging enabled (described in the ptrace subroutine).

The child process differs from the parent process in the following ways:
e The child process has a unique process ID. '
* The child process has a different parent process ID.

o The child process has its own copy of the parent process’s file descriptors. However, each
of the child's file descriptors shares a common file pointer with the corresponding file
descriptor of the parent process.

o All semadj values are cleared. (Information about semadj values can be found in the
semop subroutine.)

o Process locks, text locks, and data locks are not inherited by the child process.
(Information about locks can be found in the plock subroutine.)

¢ If multi-process debugging is turned on, the trace flags are inherited from the parent;
otherwise the trace flags are reset. (A discussion of request 0 can be found in the ptrace
subroutine.)

¢ The child process’s utime, stime, cutime, and cstime subroutines are set to 0. (More
information can be found in the getrusage, times, and vtimes subroutines.)

¢ Any pending alarms are cleared in the child process. (More information can be found in
the incinterval subroutine, setitimer subroutine, and alarm subroutine).

o The set of signals pending for the child process is initialized to the empty set.

Return Values
Upon successful completion, the fork subroutine returns a value of 0 to the child process
and returns the process ID of the child process to the parent process. Otherwise, a value of

-1 is returned to the parent process, no child process is created, and the global variable
errno is set to indicate the error.

Error Codes
The fork subroutine fails if one or more of the following are true:

EAGAIN The system-imposed limit on the total number of processes executing
would be exceeded.

EAGAIN The system—imposed limit on the total number of processes executing for a
single user would be exceeded.

ENOMEM There is not enough space left for this process.
Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The vfork subroutine is supported as a compatibility interface for older BSD system
programs, and can be used by compiling with Berkeley Compatibility Library (libbsd.a).

In the AIX Version 3 Operating System, the parent process is not forced to wait until the child
either exits or execs, as it is in BSD systems. The child process is given a new address

1-148 Base Operating System Reference

fork,...

space, as in the fork subroutine. The child process does not share any parent address
space.

Related Information

The exec subroutines, _exit, exit, atexit subroutines, getrusage, times subroutines,
getpriority, setpriority subroutines, nice subroutine, plock subroutine, ptrace subroutine,
raise subroutine, semop subroutine, shmat subroutine, sigaction, signal, sigvec
subroutines, ulimit subroutine, umask subroutine, wait, waitpid, wait3 subroutines.

Base Operating System Runtime 1-149

fp_any_enable,...

fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, or fp_disable Subroutine

Purpose
These subroutines allow operations on the floating-point trap control.
Library
Standard C Library (libc.a)
Syntax
#include <fptrap.h>
int fp_any_enable()
int fp_is_enabled(Mask)
fptrap_t Mask;
void fp_enable_all()
void fp_enable(Mask)
fptrap_t Mask;
void fp_disable_all()
void fp_disable(Mask)
fptrap_t Mask;
Description
Thza RISC System/6000 currently does not generate an interrupt for floating-point traps.
Therefore, the common method of catching the signal SIGFPE and calling an appropriate
trap handler to identify a floating-point trap is not supported.
These subroutines aid in manipulating floating-point traps and identifying the trap state and
type.
The header file fptrap.h defines the following names for the individual bits in the
floating-point trap control:
TRP_INVALID Invalid Operation Summary
TRP_DIV_BY_ZERO Divide by Zero
TRP_OVERFLOW Overflow
TRP_UNDERFLOW Underflow
TRP_INEXACT Inexact Result
Parameters
Mask A 32-bit pattern that identifies floating-point traps.

Return Values

The fp_any_enable subroutine returns 1 if any floating-point traps are enabled. Otherwise,
0 is returned.

1-150 Base Operating System Reference

fp_any_enable,...

The fp_is_enabled subroutine returns 1 if the floating-point trap(s) specified by Mask are
enabled. Otherwise, 0 is returned.

The tp_enable_all subroutine enables all floating-point traps.

The fp_enable subroutine enables all floating-point trap(s) specified by Mask.
The tp_disable_all subroutine disables all floating-point traps.

The fp_disable subroutine disables all floating-point trap(s) specified by Mask.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The fp_cir_flag, fp_set_{lag, fp_read_flag, fp_swap_flag subroutines, fp_invalid_op,
fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp, fp_iop_snan,
fp_iop_intsinf, fp_iop_infdinf, fp_iop_zrdar, fp_iop_infmazr, fp_iop_invemp subroutines,
fp_read_rnd, fp_swap_rnd subroutines.

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985
and 854-1987).

Base Operating System Runtime 1-151

fp_clr_flag,...

fp_clr_flag, fp_set_flag, fp read _flag, or fp_swap_ flag

Subroutine

Purpose
These subroutines allow operations on the floating-point exception fiags.

Library
Standard C Library (libc.a)

Syntax .
#include <float.h>
#include <fpxcp.h>
void fp_clr_flag(Mask)
fpflag_t Mask;
void fp_set_flag(Mask)
fpflag_t Mask;
fpflag_t fp_read_flag()
fpflag_t fp_swap_flag(Mask)
fpflag_t Mask;

Description
The RISC System/6000 currently does not generate an interrupt for floating-point
exceptions. Therefore, the common method of catching the signal SIGFPE and calling an
appropriate trap handler to identify a floating-point exception is not supported.
These subroutines aid in determining when an exception has occurred and the exception
type. These subroutines can be called explicitly around blocks of code that may cause a
floating-point exception. '
According to the IEEE Standard for Binary Floating-Point Arithmetic, there are five types of
floating-point operations that must be signaled when detected in a floating-point operation.
They are: Invalid Operation, Division by Zero, Overflow, Underflow, and Inexact. An Invalid
Operation occurs when the result cannot be represented (for example, a sqrt operation on
a number less than 0).
The IEEE Standard for Binary Floating-Point Arithmetic states: “For each type of exception,
the implementation shall provide a status flag that shall be set on any occurrence of the
corresponding exception...It shall be reset only at the user’s request. The user shall be able
to test and to alter the status flags individually and should further be able to save and restore
all five at one time.” 4 ; ;
Floating-point operations can set flags in the floating-point exception status but can not clear
them. You can clear a flag in the floating-point exception status using an explicit software
action such as fp_swap_fiag (0).

1-152 Base Operating System Reference

fp_clr_flag,...

The header file fpxcp.h defines the following names for the individual flags in the
floating-point exception status:

FP_INVALID Invalid operation summary
FP_OVERFLOW Overflow
FP_UNDERFLOW Underflow
FP_DIV_BY_ZERO Divide by zero
FP_INEXACT Inexact result

In addition to the above flags, the AlX for RISC System/6000 supports additional information
about the cause of an Invalid Operation exception. The following flags are included in the
floating-point exception status and defined in the fpxcp.h header file. The flag number for
each exception type varies, but the mnemonics are the same for all ports. The Invalid
Operation detail flags are not required for conformance to the AIX for RISC System/6000.

FP_INV_NANS Signalling NaN

FP_INV_ISI INF — INF

FP_INV_IDI INF / INF

FP_INV_ZDZ 0/0

FP_INV_IMZ INF x0

FP_INV_CMP Unordered compare

FP_INV_REM_YO Remainder (x,y) with y=0

FP_INV_REM_ X1 Remainder (x,y) with x=INF

FP_INV_SQRT Square root of a negative number

FP_INV_CVI Conversion to integer error
Parameters

Mask A 32-bit pattern that identifies floating-point exception flags.

Return Values
The fp_cir_flag (Mask) subroutine resets the exception status flag(s) defined by Maskto 0
(false). The remaining flags in the exception status are unchanged. The return value is that
of the exception status before the reset.

The fp_set_flag (Mask) subroutine sets the exception status flag(s) defined by Mask to 1
(true). The remaining flags in the exception status are unchanged. The return value is that of
the exception status before the set.

The fp_read_flag () subroutine returns the current floating-point exception status. The
flags in the returned exception status can be tested using the flag definitions above. You can
test individual flags or sets of flags.

The fp_swap_flag (Mask) subroutine writes Mask into the floating-point status and returns
the floating-point exception status from before the write.

Base Operating System Runtime 1-153

fp_cir_flag,...

You can set or reset multiple exception flags using fp_set_flag and fp_cir_flag by ANDing

or ORing definitions for individual flags. For example, the following resets both the overflow
and inexact flags: .

fp_clr_flag (FP_OVERFLOW | FP_INEXACT)

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-154

The fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp,
fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmazr,
fp_iop_invemp subroutines.

The fp_read_rnd, fp_swap_rnd subroutines.

The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all,
fp_disable subroutines.

IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standards 754-1985 and
854-1987) describes the IEEE floating-point exceptions.

Base Operating System Reference

fp_invalid_op,...

fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow,
fp_inexact, fp_any_xcp, fp_iop_snan, fp_iop_infsinf,

fp_iop_ mfdmf fp_iop_zrdzr, fp_iop_ mfmzr, or fp_iop_invemp
Subroutine

Purpose
Tests to see if a floating-point exception has occurred.

Library
Standard C Library (libc.a)

Syntax
#include<float.h>
#include<fpxcp.h>

int fp_invalid_op()
int fp_divbyzero()

int fp_overflow()
int fp_underflow()

int fp_inexact()
int fp_any_xcp()

int fp_iop_snan()
int fp_iop_infsinf()

int fp_iop_infdin{()
int fp_iop_zrdzr()

int fp_iop_infmzr()
int fp_iop_invemp()

Description
The RISC System/6000 currently does not generate an interrupt for floating-point
exceptions. Therefore, the common method of catching the signal SIGFPE and calling an
appropriate trap handler to identify the floating-point exception is not supported.

These subroutines aid in determining when an exception has occurred and the exception
type. These subroutines can be called explicitly around blocks of code that may cause a
floating-point exception.

Return Values
The fp_invalid_op subroutine returns 1 if a floating-point invalid operation exception status
flag is set. Otherwise, 0 is returned.

The fp_divbyzero subroutine returns 1 if a floating-point divide by zero exception status flag
is set. Otherwise, 0 is returned.

The fp_overflow subroutine returns 1 if a floating-point overflow exception status flag is set.
Otherwise, 0 is returned.

Base Operating System Runtime 1-155

fp_invalid_op,...

The fp_underflow subroutine returns 1 if a floating-point underflow exception status flag is
set. Otherwise, 0 is returned.

The fp_inexact subroutine returns 1 if a floating-point inexact exception status flag is set.
Otherwise, 0 is returned.

The fp_any_xcp subroutine returns 1 if a floating-point invalid operation, divide by zero,
overflow, underflow, or inexact exception status flag is set. Otherwise, 0 is returned.

The following routines are available for the AlX for RISC System/6000 platform only:

The fp_iop_snan subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a signalling NaN (NaNS). Otherwise, 0 is returned.

The fp_iop_infsinf subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a INF-INF. Otherwise, 0 is returned.

The fp_iop_infdinf subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a INF/INF. Otherwise, 0 is returned.

The fp_iop_zrdzr subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a 0.0/0.0. Otherwise, 0 is returned.

The fp_iop_infxzr subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a INF*0.0. Otherwise, 0 is returned.

The fp_iop_invemp subroutine returns 1 if a floating-point invalid operation exception status
flag is set due to a compare involving a NaN. Otherwise, 0 is returned.

implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-156

The fp_read_rnd, fp_swap_rnd subroutines, fp_clr_flag, fp_set_flag, fp_read_flag,
fp_swap_flag subroutines, fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,
fp_disable_all, fp_disable subroutines.

Base Operating System Reference

fp_read_rnd,...

fp_read_rnd or fp_swap_rnd Subroutine

Purpose
Read and set the IEEE floating-point rounding mode.
Library
Standard C Library (libc.a)
Syntax
#include <float.h>
fprnd_t fp_read_rnd()
fprnd_t fp_swap_rnd(RoundMode)
fprnd_t RoundMode;
Description

The fp_read_rnd subroutine returns the current rounding mode. The fp_swap_rnd
subroutine changes the rounding mode to the RoundMode parameter and returns the value
of the rounding mode before the change.

Floating-point rounding occurs when the infinitely precise result of a floating-point operation
cannot be represented exactly in the destination floating-point format (such as,
double-precision format).

The IEEE Standard for Binary Floating-Point Arithmetic allows floating-point numbers to be
rounded in 4 different ways: round toward zero, round to nearest, round toward +INF and
round toward —INF. Once a rounding mode is selected it affects all subsequent floating-point
operations until another rounding mode is selected.

Note: The default floating-point rounding mode is round to nearest. All C main programs
begin with the rounding mode set to round to nearest.

The encodings of the rounding modes are those defined in the ANS/ C Standard. The
header file float.h contains definitions for the rounding modes. Below is the float.h
definition, the ANS/ C Standard value, and a description of each rounding mode.

float.h Definition ANSI Value Description
FP_RND_RZzZ 0 Round toward 0
FP_RND_RN 1 Round to nearest.
FP_RND_RP 2 Round toward +INF
FP_RND_RM 3 Round toward —INF

Note: For IBM AIX Version 3 for RISC System/6000, the ANS/ C Standard macro
FLT_ROUNDS is defined in float.h as an invocation of fp_read_rnd. The ANS/ C
Standard does not specify a mechanism for changing the rounding mode.

Base Operating System Runtime 1-157

fp_read_rnd,...

The subroutine fp_swap_rnd can be used to swap rounding modes by saving the return
value from fp_swap_rnd(RoundMode). This can be useful in functions that need to force a
specific rounding mode for use during the function but wish to restore the caller’s rounding
mode on exit. Below is a code fragment that accomplishes this action:

save_mode = fp swap_rnd (new_mode);
....desired code using new_mode
(void) fp_swap_rnd(save _mode); /*restore caller’s mode*/

Parameters
RoundMode Specifies FP_RND_RZ, FP_RND_RN, FP_RND_RP, or FP_RND_RM.

Implementation Specifics
These subroutines are part of AlIX Base Operating System (BOS) Runtime.

Related Information

The floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, fabs subroutines, fp_cir_flag,

fp_set_flag, fp_read_flag, fp_swap_flag subroutines, fp_any_enable, fp_is_enabled,
fp_enable_all, fp_enable, fp_disable_all, fp_disable subroutines.

1-158 Base Operating System Reference

fread,...

fread or fwrite Subroutine

Purpose
Performs binary input/output.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

size_t fread ((void *) Pointer, Size, NumberOfltems, Stream)
size_t Size, NumberOfitems;
FILE *Stream;

size_t fwrite ((void *) Pointer, Size, NumberQfltems, Stream)
size_t Size, NumberOfitems;
FILE *Stream;

Description
The fread subroutine copies NumberOfitems items of data from the input stream into an
array beginning at the location pointed to by the Pointer parameter. Each data item has the
type *Pointer.

The fread subroutine stops copying bytes if an end—of—file or error condition is encountered
while reading from the input specified by the Stream parameter, or when the number of data
items specified by the NumberOfitems parameter have been copied. It leaves the file pointer
of the Stream parameter, if defined, pointing to the byte following the last byte read, if there
is one. The fread subroutine does not change the contents of the Stream parameter.

The fwrite subroutine appends NumberOfitems items of data of the type *Pointer from the
array pointed to by the Pointer parameter to the output stream.

The fwrite subroutine stops writing bytes if an error condition is encountered on the stream,
or when the number of items of data specified by the NumberOfitemns parameter have been
written. The fwrite subroutine does not change the contents of the array pointed to by the
Pointer parameter.

Parameters
Pointer Points to an array.

Size Specifies the size of the variable type of the array pointed to by the
Pointer parameter.

NumberOfitems Specifies the number of items of data.

Stream Specifies the input or output stream.

Return Values
The fread and fwrite subroutines return the number of items actually transferred. if the
NumberOfltems parameter is negative or 0, no characters are transferred, and a value ot 0
is returned.

Base Operating System Runtime 1-159

fread.,...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information .
The fopen, freopen, fdopen subroutines, getc, fgetc, getchar, getw, getwc, fgetwc,
getwchar subroutines, gets, fgets, getws, fgetws subroutines, printf, fprintf, sprintf,
NLprintf, NLfprintf, NLsprintf subroutines, putc, putchar, fputc, putw, putwc,
putwchar, fputwe subroutines, puts, fputs, putws, fputws subroutines, read subroutine,
scanf, fscanf, sscanf, NLscanf, NLfscanf, NLsscanf subroutines, write subroutine.

1-160 Base Operating System Reference

frevoke

frevoke Subroutine

Purpose
Revokes access to a file by other processes.
Library
Standard C Library (libc.a)
Syntax
int frevoke(Fildescriptor)
int Fildescriptor,;
Description

The frevoke subroutine revokes access to a file by other processes.

All accesses to the file are revoked, except through the file descriptor provided as the

Fildescriptor parameter to the frevoke subroutine. Subsequent attempts to access the file

using another file descriptor established before the frevoke subroutine fail and cause the

process to be killed.

A process can revoke access to a file only if its effective user ID is the same as the file

owner ID, or if the invoker has root user authority.

Note: The frevoke subroutine has no affect on subsequent attempts to open the file. To
assure exclusive access to the file, the caller should change the mode of the file
before issuing the frevoke subroutine. Currently the frevoke subroutine works only
on terminal devices.

Parameter

Fildescriptor A file descriptor returned by a successful open subroutine.
Return Values
Upon successful completion, the frevoke subroutine returns a value of 0.

If the frevoke subroutine fails, it returns a value of —1 and the global variable errno is set to
indicate the error.

Error Codes
The frevoke subroutine fails if the following is true:

EBADF The Fildescriptor parameter is not the valid file descriptor of a terminal.

EPERM The effective user ID of the calling process is not the same as the file owner
ID.

EINVAL Access rights revocation is not implemented for this file.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-161

frevoke

Related Information
The revoke subroutine.

1-162 Base Operating System Reference

frexp,...

frexp, ldexp, or modf Subroutine

Purpose
Manipulates floating-point numbers.
Library
Standard C Library (libc.a)
Syntax
#include <math.h>
double frexp (Value, Exponent)
double Value;
int *Exponent,;
double Idexp (Mantissa, Exponent)
double Mantissa;
int Exponent,
double modf (Value, IntegerPointer)
double Value, *IntegerPointer;
Description
Every non-zero number can be written uniquely as x * 2**n, where the mantissa (fraction) x
is in the range 0.5 <= |x| < 1.0, and the exponent, n, is an integer.
The frexp subroutine breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in the object pointed to by the Exponent parameter
and returns the fraction part.
The Idexp subroutine multiplies a floating-point number by an integral power of 2.
The modf subroutine breaks the Value parameter into an integral and fractional part, each of
which has the same sign as the value. It stores the integral part as a double in the location
pointed to by the IntegerPointer parameter.
Parameters
Value Specifies some double-precision floating-point value.
Exponent For frexp, specifies an integer pointer to store the exponent; for
ldexp, some integer value.
Mantissa Specifies some double-precision floating-point value.
IntegerPointer Specifies a double pointer in which to store the signed integral part.

Return Values

The frexp subroutine returns a value x such that x is in (0.5, 1.0) or is 0, and the Value
parameter equals x * 2**(*Exponent). If the Value parameter is zero, *Exponent and x are
zero. If the Value parameter is a NaN, xis a NaNQ and *Exponent is set to LONG_MIN. If
the Value parameter is +/~INF, xis +/- 0.0, and *Exponentis setto +/—- LONG_MAX.

The ldexp subroutine returns the value x * 2**(Exponent).

Base Operating System Runtime 1-163

frexp,...

The modf subroutine returns the signed fractional part of Value and stores the signed
integral part in the object pointed to by IntegerPointer. If Value is a NaN, then a NaNQ is
returned and a NaNQ is stored in the object pointed to by IntegerPointer. If Value is +/=INF,
then +/— 0.0 is returned, and +/—INF is stored in the object pointed to by /ntegerPointer.

Error Codes

if the result of the Idexp subroutine overflows, then +/- HUGE_VAL is returned, and the
global variable errno is set to ERANGE.

If the result of the Idexp subroutine underflows, 0 is returned, and the global variable errno
is set to ERANGE.

Implementation Specifics
These subroutines are part of AlX Base Operating System (BOS) Runtime.

Related Information

The sgetl, sputl subroutines, scanf, fscanf, sscanf, NLscanf, NLFscanf, NLsscanf
subroutines.

1-164 Base Operating System Reference

fscntl

fscntl Subroutine

Purpose

Controls file system control operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/fscntl.h>

int fsentl (vfs_id,Command,Argument,
ArgumentSize)

int vfs_id,

int Command,

char *Argument;

int ArgumentSize;

Description

The fscntl subroutine performs a variety of file system specific functions. These functions

typically require root user authority.

At present only one file system, the journalled file system, supports any commands via the
fscntl subroutine. The only supported command is FS_EXTENDFS. This is used to increase

the size of a mounted file system.

Note: Application programs should not call this function, as it is reserved for system
management commands such as the chfs command.

Parameters

vfs_id Identifies the file system to be acted upon. This
information is returned by the stat subroutine in the
st_vfs field of the stat.h header file.

Command Identifies the operation to be performed.

Argument Specifies a pointer to a block of file system specific
information that defines how the operation is to be
performed.

ArgumentSize Defines the size of the buffer pointed to by the
Argument parameter.

Return Values

Upon successful completion, the fscntl subroutine returns a value of 0. Otherwise, a value
of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

The fsent! subroutine fails if one or both of the following are true:

EINVAL The vfs_id parameter does not identify a valid file system.

Base Operating System Runtime 1-165

fscntl

EINVAL The Command parameter is not recognized by the file system.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

1-166 Base Operating System Reference

fseek,...

fseek, rewind, ftell, fgetpos, or fsetpos Subroutine

Purpose
Repositions the file pointer of a stream.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int fseek (Stream, Offset, Whence)
FILE *Stream;

long Offset;

int Whence;

void rewind (Stream)
FILE *Stream;

long ftell (Stream)
FILE *Stream;

int fsetpos (Stream, Position)
FILE *Stream;
fpos_t Position;

int fgetpos (Stream, Position)
FILE *Stream;
fpos_t Position;

Description
The fseek subroutine sets the position of the next input or output operation on the /O
stream specified by the Stream parameter. The position of the next operation is determined
by the Offset parameter, which can be either positive or negative.

The fseek subroutine sets the file pointer associated with the specified Stream as follows:
o If the Whence parameter is 0, the pointer is set to the value of the Offset parameter.

» If the Whence parameter is 1, the pointer is set to its current location plus the value of the
Offset parameter.

o If the Whence parameter is 2, the pointer is set to the size of the file plus the value of the
Offset parameter.

The fseek subroutine fails if attempted on a file that has not been opened using the fopen
subroutine. In particular, the fseek subroutine cannot be used on a terminal or on a file
opened with the popen subroutine.

The rewind subroutine is equivalent to seekdir (Stream, (long) 0, 0), except that it does not
return a value.

The fseek and rewind subroutines undo any effects of the ungetc subroutine.

A successful call to the fsetpos subroutine clears the EOF indicator and undoes any effects
of the ungetc subroutine. N

Base Operating System Runtime 1-167

fseek,...

After an fseek or a rewind, the next operation on a file opened for update can be either
input or output. '

The fgetpos subroutine is similar to the ftell subroutine and the fsetpos subroutine is
similar to the fseek subroutine. The fgetpos subroutine stores the current value of the file
position indicator for the stream pointed to by the Stream parameter in the object pointed to
by the Position parameter. The fsetpos subroutine sets the file position indicator according
to the value of the Position parameter, returned by a prior call to the fgetpos subroutine.

Parameters
Stream Specifies the 1/0 stream.
Offset Determines the position of the next operation.
Whence Determines the value for the file pointer associated with the Stream
parameter.
Position Specifies the value of the file position indicator.

Return Values

Upon successful completion, the fseek subroutine returns a value of 0. Otherwise, a
nonzero value is returned.

The ftell subroutine returns.the offset of the curfent byte relative to the beginning of the file
associated with the named stream.

- Upon successful completion, the fgetpos and fsetpos subroutines return 0. Otherwise, a

value of —1 is returned and the global variable errno is set to EINVAL.:

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

1-168

The Iseek subroutine, fopen, freopen, fdopen subroutines.

Base Operating System Reference

fsync

fsync Subroutine

Purpose
Writes changes in a file to permanent storage.
Library
Standard C Library (libc.a)
Syntax
int fsync (FileDescriptor)
int FileDescriptor;
Description

The tsync subroutine causes all modified data in the file open on the FileDescriptor

parameter to be saved to permanent storage. On return from the fsync subroutine, all

updates have been saved on permanent storage.

Data written to a file that some process has opened for deferred update (with O_DEFER) will

not be written to permanent storage until some process issues an fsync subroutine against

this file, or until some process runs a synchronous write system call (with O_SYNC) to this
file. See the fentl.h header file and the open subroutine for descriptions of O_DEFER and

O_SYNC.

Note: The file identified by the FileDescriptor parameter must be open for writing when the
fsync subroutine is issued or the call fails. This restriction was not enforced in BSD
systems.

Parameter
FileDescriptor A valid open file descriptor.

Return Values

Upon successful completion, the fsync subroutine returns a value of 0. Otherwise, a value
of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

The fsync subroutine fails if one or more of the following are true:

EIO I/O error.
EBADF FileDescriptor is not a valid file descriptor open for writing.
EINVAL The file is not a regular file.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The open subroutine, sync subroutine, write subroutine.

The fentl.h header file.

Base Operating System Runtime 1-169

ftok

ftok Subrbutine

Purpose
Generates a standard interprocess communication key.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok (Path, ID)
char *Path;
char /D;

Description
The ftok subroutine returns a key, based on the Path and ID parameters, to be used to
obtain interprocess communication identifiers. The ftok subroutine returns the same key for
linked files if called with the same /D parameter. Different keys are returned for the same file
if different /D parameters are used.
All interprocess communication facilities require you to supply a key to the msgget, semget,
and shmget subroutines in order to obtain interprocess communication identifiers. The ftok
subroutine provides one method of creating keys, but many other methods are possible.
Another way to do this, for example, is to use the project ID as the most significant byte of
the key, and to use the remaining portion as a sequence number.
Warning: It is important for each installation to define standards for forming keys. If some
standard is not adhered to, it is possible for unrelated processes to interfere with each
other’s operation.

Parameters
Path Specifies the path name of an existing file that is accessible to the process.
D Specifies a character that uniquely identifies a project.

Return Values

Upon successful completion, the ftok subroutine returns a key that can be passed to the
msgget, semget, or shmget subroutine.

Error Codes

1-170

The ftok subroutine returns the value (key_t)-1 if one or more of the following are true:
The file named by the Path parameter does not exist.
The file named by the Path parameter is not accessible to the process.

The ID parameter is a value of 0 (\0’).

Base Operating System Reference

ftok

Warning: If the Path parameter of the ftok subroutine names a file that has been removed
while keys still refer to it, then the ftok subroutine returns an error. If that file is then
recreated, the ftok subroutine will probably return a different key than the original one.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The msgget subroutine, semget subroutine, shmget subroutine.

Base Operating System Runtime 1-171

ftw

ftw Subroutine

Purpose
Library

Syntax

Walks a file tree.

Standard C Library (libc.a)

#include <ftw.h>

int ftw (Path, Function, Depth)
char *Path;

int (*Function) ();

int Depth;

Description

1-172

The ftw subroutine recursively searches the directory hierarchy that descends from the
directory specified by the Path parameter.

For each file in the hierarchy, the ftw subroutine calls the function specified by the Function
parameter, passes it a pointer to a null-terminated character string containing the name of
the file, a pointer to a stat structure containing information about the file, and an integer.
(See the stat system call for more information about this structure.)

The integer passed to the Function parameter identifies the file type, and it has one of the
following values:

FTW_F Regular file
FTW_D Directory
FTW_DNR Directory that cannot be read

FTW_NS A file for which the stat structure could not be executed successfully.

If the integer is FTW_DNR, then the files and subdirectories contained in that directory are
not processed.

If the integer is FTW_NS, then the stat structure contents are meaningless. An example of a
file that causes FTW_NS to be passed to the Function parameter is a file in a directory for
which you have read permission but not execute (search) permission.

The ftw subroutine finishes processing a directory before processing any of its files or
subdirectories.

The ftw subroutine continues the search until the directory hierarchy specified by the Path
parameter is completed, an invocation of the function specified by the Function parameter
returns a nonzero value, or an error is detected within the ftw subroutine, such as an 1/0
error.

The ftw subroutine uses one file descriptor for each level in the tree. The Depth parameter
specifies the maximum number of file descriptors to be used. In general, the ftw subroutine
runs faster if the value of the Depth parameter is at least as large as the number of levels in

Base Operating System Reference

ftw

the tree. However, the Depth parameter must not be greater than the number of file
descriptors currently available for use. If the value of the Depth parameter is 0 or negative,
the effect is the same as if it were 1.

Because the ftw subroutine is recursive, it is possible for it to terminate with a memory fault
due to stack overflow when applied to very deep file structures.

The ftw subroutine uses the malloc subroutine to allocate dynamic storage during its
operation. If the ftw subroutine is terminated prior to its completion, such as by the longjmp
subroutine being executed by the function specified by the Function parameter or by an
interrupt routine, the ftw subroutine cannot free that storage. The storage remains allocated.
A safe way to handle interrupts is to store the fact that an interrupt has occurred, and
arrange to have the function specified by the Function parameter return a nonzero value the
next time it is called.

Parameters
Path Specifies the directory hierarchy to be searched.
Function Specifies the file type.
Depth Specifies the maximum number of file descriptors to be used.

Return Values
If the directory hierarchy is completed, the ftw subroutine returns a value of 0. If the function
specified by the Function parameter returns a nonzero value, the ftw subroutine stops its
search and returns the value that was returned by the function.

Error Codes
If the ftw subroutine detects an error, a value of —1 is returned and the global variable errno
is set to indicate the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The malloc, free, realloc, calloc, mallopt, mallinfo, alloca subroutines, setjmp, longjmp
subroutines, signal subroutine, stat subroutine.

Base Operating System Runtime 1-173

getc,...

getc, fgetc, getchar, or getw Subroutine

Purpose
Gets a character or word from an input stream.

Library
Standard I/O Package (libc.a)

Syntax

#include <stdio.h>

int getc (Stream)
FILE *Stream;

int fgetc (Stream)
FILE *Stream;

int getchar ()

int getw (Stream)
FILE *Stream;

Description
The getc macro returns the next byte from the input specified by the Stream parameter and
moves the file pointer, if defined, ahead one byte in Stream. The getc macro cannot be used
where a subroutine is necessary; for example, a subroutine pointer cannot point to it.

Because it is implemented as a macro, getc does not work correctly with a Stream
parameter that has side effects. In particular, the following does not work:

getc(*f++)
In cases like this, use the fgetc subroutine instead.

The fgetc subroutine performs the same function as the getc macro, but fgetc is a genuine
subroutine, not a macro. The fgetc subroutine runs more slowly than getc, but takes less
space.

The getchar macro returns the next byte from stdin. the standard input stream. Note that
getchar is also a macro.

The getc and getchar macros have also been implemented as subroutines for ANSI
compatibility. To access the subroutines instead of the macros insert #undef getc or #undef
getchar at the beginning of the source file.

. The getw subroutine returns the next word (int) from the input specified by the Stream
parameter and increments the associated file pointer, if defined, to point to the next word.
The size of a word varies from one machine architecture to another. The getw subroutine
returns the constant EOF at the end of the file or when an error occurs. Since EOF is a valid
integer value, the feof and ferror subroutines should be used to check the success of getw.
The getw subroutine assumes no special alignment in the file.

Because of possible differences in word length and byte ordering from one machine
architecture to another, files written using the putw subroutine are machine—dependent and
may not be readable using getw on a different type of processor.

1-174 Base Operating System Reference

getc,...

Parameter
Stream A pointer to the file structure of an open file.

Return Values
These subroutines and macros return the integer constant EOF at the end of the file or upon
an error.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The fopen, freopen, fdopen subroutines, fread, fwrite subroutines, getwe, fgetwe,
getwchar subroutines, gets, fgets subroutines, putc, putchar, fputc, putw subroutines,
scanf, fscanf, sscanf, NLscanf, NL.fscanf, NLsscanf, wsscanf subroutines.

Base Operating System Runtime 1-175

getcwd

getcwd Subroutine

Purpose
Gets the path name of the current directory.
Library
Standard C Library (libc.a)
Syntax
char *getcwd (Buffer, Size)
char *Buffer,
int Size;
Description R .
The getcwd subroutine returns a pointer to a string containing the path name of the current
directory.
The getcwd subroutine calls the getwd subroutine to obtain the path name.
Parameters

Buffer Pointer to a string space to hold the path name. If the Buffer parameter is a
NULL pointer, the getcwd subroutine, using the malloc subroutine, obtains
the number of bytes of free space as specified by the Size parameter. In this
case, the pointer returned by the getewd subroutine can be used as the
parameter in a subsequent call to the free subroutine.

Size The length of the string space. The value of the Size parameter must be at
least 2 greater than the length of the path name to be returned.

Return Values
If the getcwd subroutine fails, a NULL value is returned and the global variable errno is set
to indicate the error. The getewd subroutine fails if the Size parameter is not large enough
or if an error occurs in a lower—level function.

Error Codes
The getcwd subroutine fails if one or both of the following are true:

EINVAL The Size argument is 0 or negative.

ERANGE The Size argument is greater than 0 but is smaller than the length of the
path name plus 1.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The malloc subroutine, getwd subroutine.

1-176 Base Operating System Reference

getdtablesize

getdtablesize Subroutine

Purpose

Gets the descriptor table size.
Library

Standard C Library (libc.a)
Syntax

int getdtablesize ()
Description

Each process has a fixed—size descriptor table, which is guaranteed to have at least 2000
slots. The entries in the descriptor table are numbered with small integers starting at 0.

Return Value
The getdtablesize subroutine returns the size of the descriptor table.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The close subroutine, open subroutine, select subroutine.

Base Operating System Runtime 1-177

getenv,...

getenv or NLgetenv Subroutine

Purpose
Returns the value of an environment variable.

Library
Standard C Library (libc.a)

Syntax

char *getenv (Name)
char *Name

char *NLgetenv (Name)
char *Name

Description
The getenv subroutine searches the environment list for a string of the form Name=Value.

Environment variables are sometimes called shell variables since they are frequently set
with shell commands.

The NLgetenv subroutine gets an NLS parameter from the locale information set up by a
call to the setlocale subroutine. This parameter should belong in one of the following
categories:

LC_MONETARY
I.C_NUMERIC
LC_TIME
LC_MESSAGES

If the information solicited is not found in the tables set up by the setlocale subroutine, an
American English default table is searched and the value in that default table is returned. If
no data can be found, a NULL pointer is returned.

Parameters
Name The name of an environment variable; can be null.

Return Values
The getenv subroutine returns a pointer to the value in the current environment, if such a
string is present. If such a string is not present, a NULL pointer is returned.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime. .
The NLgetenv subroutine is not part of the ANSI C Library.

Related Information

The setlocale and putenv subroutine.
National Language Support Overview in Programming Concepts and Procedures.

1-178 Base Operating System Reference

getfsent,...

getfsent, getfsspec, getsfile, getfstype, setfsent, or endfsent
Subroutine

Purpose
Gets information about a file system.

Library
Standard C Library (libc.a)

Syntax

#include <fstab.h>
struct fstab *getfsent|]

struct tstab *getfsspec [Special]
char *Special;

struct fstab *getfsfile|File]
char *File;

struct fstab *getfstype| Type]
char *Type;

void setfsent]
void endfsent|]

Description
The getfsent subroutine reads the next line of the file, opening the file if necessary.

The setfsent subroutine opens the file and positions to the first record.

The endfsent subroutine closes the file.

The getfsspec and getfsfile subroutines sequentially search from the beginning of the file
until a matching special file name or file system file name is found, or until the end of the file

is encountered. The getfstype subroutine does likewise, matching on the file system type
field.

Note: Allinformation is contained in a static area, so it must be copied if it is to be saved.
Parameters

Special Specifies the file system file name.

File Specifies the file name.

Type Specifies the file system type.

Return Value

The getfsent, getfsspec, getfstype, and getsfile subroutines return a pointer to a structure
that contains information about a file system. The header file fstab.h describes the
structure. A pointer to NULL is returned on EOF or error.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-179

getgid,...

getgid or getegid Subroutine

Purpose

Gets the process group IDs.
Library

Standard C Library (libc.a)
Syntax

#include <sys/types.h>
gid_t getgid ()
gid_t getegid ()
Description
The getgid subroutine returns the real group ID of the calling process.
The getegid subroutine returns the effective group ID of the calling process.

Return Values
The getgid and getegid subroutines return the requested group ID.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The getgidx subroutine, getgroups subroutine, setgidx subroutine, setgroups subroutine,
setgid subroutine, initgroups subroutine.

The setgroups command, groups command.

1-180 Base Operating System Reference

getgidx

getgidx Subroutine
Purpose

Gets the process group IDs.
Library

Standard C Library (libc.a)
Syntax

#include <sys/id.h>

uid_t getgidx (Which)

int Which;
Description

The getgidx subroutine returns the specified group ID of the current process.
Parameter

Which Specifies which group ID to return. The valid values for this parameter are
defined in sys/id.h and include:

ID_EFFECTIVE
Returns the effective group ID of the process.

ID_REAL Returns the real group ID of the process.

ID_SAVED Returns the saved group ID of the process.

Return Values
Upon successful completion, the getgidx subroutine returns the requested group ID. If the
getgidx subroutine fails, a value of —1 is returned and the global variable errno is set to
indicate the error.

Error Code
The getgidx subroutine fails if:
EINVAL The Which parameter is not one of ID_EFFECTIVE, ID_REAL, or
ID_SAVED.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The getgroups subroutine, setgidx subroutine, setgroups subroutine, getgid subroutine,
setgid subroutine, initgroups subroutine.

Base Operating System Runtime 1-181

getgrent,...

getgrent,

getgrgid, getgrnam, putgrent, setgrent or endgrent

Subroutine

Purpose
Library

Syntax

Accesses the basic group information in the user database.

Standard C Library (libc.a)

#include <grp.h>
struct group *getgrent ()

struct group *getgrgid (Gid)
gid_t Gid;

struct group *getgrnam (Name)
char *Name;

int putgrent (Group, File)
struct group Group;
FILE *File;

void setgrent ()

void endgrent ()

Description

These subroutines may be used to access the basic group attributes. These attributes can
also be accessed with the getgroupattr subroutine, which can access all group attributes
and offer better granularity of access.

The setgrent subroutine opens the user database (if not already open) and rewinds the
cursor to point to the first group entry in the database.

The getgrent, getgrnam, and getgrgid subroutines return information about the requested
group. The getgrent subroutine returns the next group in the sequential search, getgrnam
returns the first group in the data base whose name matches the Name parameter and
getgrgid returns the first group in the data base whose group ID matches the Gid
parameter. The endgrent subroutine will close the user data base.

The putgrent subroutine writes a group entry to a file in the colon separated format of the
/etc/group file. Note that an exclamation mark '’ will be written into the gr_passwd field
and this field is ignored and is only there for compatibility with older versions of UNIX.

The group structure, which is returned by the getgrent, getgrnam, and getgrgid
subroutines, is defined in the grp.h header file, and it contains the following members:

gr_name The name of the group.

gr_passwd The password of the group. Note that this field is no longer used by the
system and so its value is meaningless.

1-182 Base Operating System Reference

getgrent,...

gr_gid The ID of the group.

gr_mem The members of the group.

If NIS is enabled on the system, these routines will attempt to retrieve the group information
from the NIS authentication server.

Warning: The information that is returned by the gretgrent, getgrnam and getgrgid
subroutines is stored in a static area and will be overwritten on subsequent calls to these
routines. If it is to be saved, it should be copied.

Warning: These subroutines should not be used in conjunction with the getgroupattr
subroutine. The results are unpredictable.

Parameters
Gid Specifies the group 1D of the group for which the basic attributes are to be
read.
Name Specifies the name of the group for which the basic attributes are to be read.

Return Values
The getgrent, getgrnam, and getgrgid subroutines return a pointer to a valid group
structure if successful. Otherwise, a NULL pointer is returned.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The getpwent subroutine, getgroupattr subroutine, getuserattr subroutine, setuserdb
subroutine.

Base Operating System Runtime 1-183

getgroupattr,...

getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine

Purpose |
Accesses the group information in the user database.

Library
Security Library (libs.a)

Syntax

#include <usersec.h>

int getgroupattr(Group, Attribute, Value, Type)
char *Group;

char *Attribute;

void *Value;

int Type;

int putgroupattr(Group, Attribute, Value, Type)
char *Group;

char *Attribute;

void *Value;

‘int Type;

char *IDtogroup(Gid)
gid_t Gid;

char *nextgroup(Mode, Argument)
int Mode, Argument,

Description
These subroutines may be used to access group information. Because of their greater
granularity and extensibility, these should be used instead of the getgrent, putgrent,
getgrnam, getgrgid, setgrent, and endgrent subroutines.

The getgroupattr subroutine reads a specified attribute from the group data base. If the

data base is not already open, the getgroupattr subroutine will do an implicit open for
reading.

The putgroupattr subroutine writes a specified attribute into the group data base. If the data
base is not already open, the putgroupattr subroutine will do an implicit open for reading
and writing. The data changed by putgroupattr must be explicitly committed by calling the
putgroupattr subroutine with a Type parameter which includes the SEC_COMMIT value.
Until the data is committed, only the get subroutine calls within the process will return the
written data.

The IDtogroup subroutine trahsiates a group ID into a group name.

The nextgroup subroutine returns the next group in a linear search of the group data base.
The consistency of consecutive searches depends upon the underlying storage access
mechanism and is not guaranteed by this function.

Values which are returned by these subroutines are in dynamically allocated buffers and
need not be moved prior to the next call.

Note: These functions ahd the setpwent and setgrent functions should not be used
simultaneously. The result can be unpredictable.

1-184 Base Operating System Reference

getgroupattr,...

The setuserdb and enduserdb subroutines should be used to open and close the user data

base.

Parameters
Argument

Attribute

Gid
Group
Mode

Type

The Argument parameter is presently unused and must be specified as
NULL.

Specifies the name of the attribute which is to be read. This can be one of
the following, which are defined in the usersec.h file:

S_ID The group ID. Type: SEC_INT.

S_USERS The members of the group. Type: SEC_LIST.
S_ADMS The administrators of the group. Type: SEC_LIST.
S_ADMIN Defines the administrative status of a group.

Type: SEC_BOOL
Specifies the group ID to be translated into a group name.
Specifies the name of the group for which an attribute is to be read.

Specifies the search mode. This parameter can be used to delimit the
search to one or more user credential data bases. Specifying a non_NULL
Mode also implicitly rewinds the search. A NULL mode should be used to
continue the search sequentially through the data base. This attribute may
include one or more of the following values specified as a bit mask; these
are defined in the usersec:h file:

S_LOCAL The local data base of groups will be included in the
search.
S_SYSTEM All credentials servers for the system are searched.

Specifies the type of attribute expected. Valid values are defined in the
usersec.h file and include:

SEC_INT The format of the attribute is an integer. The bufter
returned by the getuserattr subroutine and the buffer
supplied by the putuserattr subroutine is defined to
contain an integer.

SEC_CHAR The format of the attribute is a NULL terminated
character string.

SEC_LIST The format of the attribute is a list of NULL terminated
character strings. The list itself is NULL terminated.

SEC_BOOL The format of the attribute is an integer where zero
indicates false and non—zero indicates true.

SEC_COMMIT For the putgroupattr subroutine, this value specified
by itself indicates that changes to the named group
are to be committed to permanent storage. The
Attribute and Value parameters are ignored. If no

Base Operating System Runtime 1-185

getgroupattr,...

Security

group is specified. the changes to all modified groups
will be committed.

SEC_DELETE The corresponding attribute will be deleted from the
data base.
SEC_NEW Updates all the group data base files with the new

group name when using the putgroupattr subroutine.

Value Specifies the address of a buffer in which the attribute is to be stored
(getgroupattr) or is stored (putgroupattr).

file access The calling process must have access to the group information in the user
data base. This includes:

modes file
rw /etc/group (write access for putgroupattr)
rw /etc/security/group (write access for putgroupattr)

Return Values

The getroupattr and putgroupattr subroutines, when successfully completed, return a
value of 0. Otherwise, a value of -1 is returned and errno is set to indicate the error.

The IDtogroup and nextgroup subroutines return a character pointer to a buffer containing

the requested group name, if successfully completed. Otherwise a NULL pointer is returned
and errno is set to indicate the error.

Error Codes

1-186

These subroutines fail if the following is true:

EACCES Access permission is denied for the data request.

All of these functions will return errors from other functions.

The getgroupattr and putgroupattr subroutines fail if one or more of the following is true:

ENOATTR The specified group attribute does not exist for this group.

ENOENT The specified Group parameter does not exist or the attribute is not defined
for this user.

EINVAL The Attribute parameter does not contain one of the defined attributes.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this
type of attribute.

EINVAL The Type parameter does not contain only one of SEC_INT, SEC_BOOL,

SEC_CHAR, or SEC_LIST or SEC_COMMIT.

EINVAL The Type parameter specifies that an individual attribute is to be committed
and the Group parameter is NULL.

Base Operating System Reference

getgroupattr,...

The IDtogroup subroutine fails if the following is true:

ENOENT The Gid parameter could not be translated into a valid group name on the
system.

The nextgroup subroutine fails if one or more of the following is true:

EINVAL The Mode parameter is not one of NULL, S_LOCAL, or S_SYSTEM.
EINVAL The Argument parameter is not NULL.
ENOENT The end of the search was reached.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The getuserattr subroutine, getuserpw subroutine, setuserdb subroutine, setpwdb
subroutine.

Base Operating System Runtime 1-187

getgroups

getgroups Subroutine

Purpose .
Gets the concurrent group set of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <grp.h>
int getgroups (Ngroups, Gidsef)

int Ngroups;
gid_t *Gidset,

Description
The getgroups subroutine gets the concurrent group set of the process. The list is stored in
the array pointed to by the Gidset parameter. The Ngroups parameter indicates the number
of entries that can be stored in this array. The getgroups subroutine never returns more
than NGROUPS_MAX entries. (NGROUPS_MAX is a constant defined in the limits.h
header file.) If Ngroups is zero, the getgroups subroutine returns the number of groups in
the concurrent group set.

Parameters

Gidset Pointer to the array in which the process’s concurrent group set of the user
process is stored.

Ngroups Indicates the number of entries that can be stored in the array pointed to by the
Gidset parameter.

Return Values
Upon successful completion, the getgroups subroutine returns the number of elements

stored into the array pointed to by the Gidset parameter. If getgroups fails, then a vaiue of
—1 is returned and errno is set to indicate the error.

Error Codes
The getgroups subroutine fails if the following is true:

EFAULT The Ngroups and Gidset parameters specify an array that is partially or
completely outside of the allocated address space of the process.

EINVAL The argument Ngroups is smaller than the number of groups in the
concurrent group set.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

1-188 Base Operating System Reference

getgroups

Related Information
The setgroups subroutine, getgidx subroutine, setgidx subroutine.

The getgid subroutine, setgid subroutine, initgroups subroutine.

The setgroups command, groups command.

Base Operating System Runtime 1-189

getinterval,...

getinterval, incinterval, absinterval, resinc, resabs, alarm,
ualarm, getitimer or setitimer Subroutine

Purpose
Manipulate the expiration time of interval timers.

Library
Standard C Library (libc.a)

Syntax

#include <sys/times.h>

int getinterval (Timerid, Value)
timer_t Timerid,
itimerstruc_t *Value;

int incinterval (Timerid, Value, Ovalue)
timer_t Timerid,
itimerstruc_t *Value, *Ovalue;

int absinterval (Timerid, Value, Ovalue)
timer_t Timerid,
itimerstruc_t * Value, *Ovalue;

int resabs (Timerid, Resolution, Maximum)
timer_t Timerid;
timestruc_t *Resolution, *Maximum:;

int resinc (Timerid, Resolution, Maximum)
timer_t Timerid,
timestruc_t *Resolution, *Maximum,

unsigned int alarm (Seconds)
unsigned int Seconds;

unsigned int ualarm (Value, Intvi)
unsigned int Value, Intvi,

int setitimer (Which, Value, Ovalue)
int Which;

struct itimerval *Value;

struct itimerval *Ovalue;

int getitimer (Which, Value)
int Which;
struct itimerval *Value;

Description
The getinterval, incinterval, and absinterval subroutines manipulate the expiration time of
interval timers. These functions use a timer value defined by the itimerstruc_t structure,
which includes the following members:

timestruc_t it_interval; /* timer interval period */
timestruc_t it_value; /* timer interval expiration */

1-190 Base Operating System Reference

getinterval,...

If the it_value member is non-zero, it indicates the time to the next timer expiration. I
it_value is 0, the per—process timer is disabled. If the it_interval member is non-zero, it
specifies a value to be used in reloading it_value when the timer expires. If it_intervalis O,
the timer is to be disabled after its next expiration (assuming it_value is non—zero).

The getinterval subroutine returns an itimerstruc_t value to the Value parameter. The
it_value member of this structure represents the amount of time in the current interval
before the timer expires, should one exist (or 0 if not) for the per—process timer specified in
the Timerid parameter. The it_interval member has the value last set by the incinterval or
absinterval subroutines. The members of the Value parameter are subject to the resolution
of the timer.

The incinterval subroutine sets the value of a per—process timer to a given offset from the
current timer setting. The absinterval subroutine sets the value of the per—process timer to
a given absolute value. If the specified absolute time has already expired, absinterval will
succeed and the expiration notification will be made. Both functions update the interval
timer period. Time values smaller than the resolution of the specified timer are rounded up
to this resolution. Time values larger than the maximum value of the specified timer are
rounded down to the maximum value.

The resinc and resabs subroutines return the resolution and maximum value of the interval
timer contained in the Timerid parameter. The resolution of the interval timer is contained in
the Resolution parameter, and the maximum value is contained in the Maximum parameter.
These values might not be the same as the values returned by the corresponding system
timer, the gettimer subroutine. In addition, it is likely that the maximum values returned by
the resinc and resabs subroutines will be different.

Note: If a non—privileged user attempts to submit a fine granularity timer (i.e., a timer
request less than 10 milliseconds), the timer request is raised to 10 milliseconds.

Parameters
Timerid The id of the interval timer.
Value Pointer to a itimerstruc_t structure.
Ovalue Represents the previous amount of time before the timer would have
expired.
Resolution Resolution of the timer.
Maximum Maximum value of the interval timer.

Compatibility Interface
The alarm, ualarm, getitimer. and setitimer subroutines are provided for compatibility with
older AIX, AT&T System V, and BSD systems.

The alarm, ualarm, and setitimer subroutines are implemented to call the incinterval
subroutine with the appropriate flag set.

The getitimer subroutine is implemented as a call to the getinterval subroutine.

Return Values
If these subroutines are successful, a 0 is returned. A return value of —1 indicates that an
error occurred and errno is set. The alarm subroutine returns the amount of time in seconds
remaining betfore the system is scheduled to generate the SIGALARM signal from the
previous call to alarm, or zero if there was no previous alarm request.

Base Operating System Runtime 1-191

getinterval,...

Error Codes S
If the getinterval, incinterval, absinterval, resinc or resabssubroutine fails, a -1 is
returned and errno is set to one of the following error codes:

EINVAL The Timerid parameter does not correspond to an id returned by the
gettimerid subroutine.

A value structure specified a nanosecond value less than zero or greater
than or equal to one 1000 million.

EIO An error occurred while accessing the timer device.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The gettimer subroutine, gettimerid subroutine.

1-192 Base Operating System Reference

getlogin

getlogin Subroutine

Purpose
Gets the user’s login name.

Library
Standard C Library (libc.a)

Syntax
char *getlogin ()

Description
The getiogin subroutine returns a pointer to the login name as found in the /etc/utmp file.
Use the getlogin subroutine in conjunction with the getpwnam subroutine to locate the
correct password file entry when the same user 1D is shared by several login names.
If the getlogin subroutine is called within a process that is not attached to a terminal, it
returns a NULL pointer.
If the login name is not found, the getlogin subroutine returns a NULL pointer.
Warning: The getlogin subroutine returns a pointer to a static area that is overwritten by
successive calls.

File

lete/utmp

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The getgrent, getgrgid, getgrnam, setgrent, endgrent subroutines, getpwent, getpwuid,
setpwent, endpwent subroutines.

Base Operating System Runtime 1-193

getopt

getopt Subroutine

Purpose
Gets flag letters from the argument vector.
Library
Standard C Library (libc.a)
Syntax
int getopt (ArgumentC, ArgumentV, OptionString)
int ArgumentC;
char **ArgumentV;
char *OptionString;
extern int optind;
extern char optopt;
extern int opterr;
extern char *optarg;
Description
The getopt subroutine returns the next flag letter in the ArgumentV parameter list that
matches a letter in the OptionString parameter. The getopt subroutine is an aid to help
programs interpret shell command-line flags that are passed to them.
The optarg external variable is set to point to the start of the flag's parameter on return from
the getopt subroutine.
The getopt subroutine places the ArgumentV index of the next argument to be processed in
optind. optind is externally initialized to 1 so that ArgumentV[0] is not processed.
Parameters
ArgumentC The number of parameters passed to the routine.
ArgumentV The list of parameters passed to the routine.
OptionString A string of recognized flag letters. If a letter is followed by a colon,

the flag is expected to take a parameter that may or may not be
separated from it by white space.

Return Values

When all flags have been processed (that is, up to the first non-flag argument), the getopt
subroutine returns EOF. The special flag — (dash dash) can be used to delimit the end of
the flags; EOF is returned, and — is skipped.

Error Codes

1-194

The getopt subroutine prints an error message on stderr and returns (int) ‘?’ (question
mark) when it encounters a flag letter that is not included in the OptionString parameter.

Note: The external int optopt variable is set to the real option found in the ArgumentV
parameter. This is true whether the flag is in the OptionString parameter or not.

You can set the int variable opterr to zero to suppress the generation of error messages.

Base Operating System Reference

getopt

Implementation Specifics
This command is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getopt command.

Base Operating System Runtime 1-195

getpagesize

getpagesize Subroutine

Library

Standard C Library (libc.a)
Purpose

Gets the system page size.
Syntax

int getpagesize()
Description

The getpagesize subroutine returns the number of bytes in a page. Page granularity is the
granularity of many of the memory management calls.

The page size is a System page size and may not be the same as the underlying hardware
page size.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The brk, sbrk subroutines.

The pagesize command.

1-196 Base Operating System Reference

getpass

getpass Subroutine

Purpose
Reads a password.
Library
Standard C Library (libc.a)
Syntax
#include <stdio.h>
char *getpass (Prompt)
char *Prompt;
Description
The getpass subroutine will open the controlling terminal of the current process, write the
specified Prompt parameter to that device and read up to the value of PASS_MAX
characters until a new line or EOF condition is detected. Echoing of charters is disabled
during the read.
Note: The characters are returned in a static data area which will be overwritten upon
subsequent calls to this routine.
Parameter
Prompt Specifies a prompt to.be displayed on the terminal. If this parameter is NULL,
the prompt passwd: is used. Note that an empty string is treated the same as
a NULL string.

Return Values
If the information is successfully read, a pointer to the string is returned. If an error occurs, a
NULL pointer is returned and errno is set to indicate the error.

Error Codes
The getpass subroutine fails if one or more of the following is true:

EINTR An interrupt occurred while reading the terminal device.
ENXIO The process does not have a controlling terminal.

Other errors may be set by any subroutines invoked by this function.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The newpass subroutine, getuserpw subroutine.

Base Operating System Runtime 1-197

getpcred

getpcred Subroutine

Purpose

Reads the current process credentials
Library

Ssecurity Library (libs.a)
Syntax

#include <usersec.h>

char **getpcred(Which)
int *Which;

Description
The getpcred subroutine will read the specified process security credentials and return them
in a character buffer.

Parameters

Which Specifies which credentials are to be read. This parameter is a bit mask and

may contain one or more of the following values, which are defined in the
usersec.h file:

CRED_RUID The real user name.
CRED_LUID The login user name.
CRED_RGID The real group name.
CRED_GROUPS The concurrent group set.
CRED_AUDIT The audit class.
CRED_RLIMITS The BSD resource limits.

Note: Support of all the process resource limits is
needed, not just the file size. Use the
getrlimit call.

CRED_UMASK The umask.

If the Which parameter is equal to NULL, all credentials are returned.

Return Values
: Upon successful return, the getpcred subroutine returns a pointer to a string containing the

requested values. If getpcred fails, a value of —1 is returned and errno is set to indicate the
error.

1-198 Base Operating System Reference

N

getpcred

Error Codes
The getpcred subroutine fails if one or the more following are true:

EINVAL The Which parameter contains invalid credentials requests.

Other errors may be set by any subroutines invoked by the getpcred subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The setpenv subroutine, getpenv surbroutine, setpcred subroutine, ckuseracct
subroutine, ckuserlD subroutine.

Base Operating System Runtime 1-199

getpenv

getpenv Subroutine

Purpose
Reads the current process credentials
Library
Security Library (libs.a)
Syntax
#include <usersec.h>
char **getpenv(Which)
int Which;
Description
The getpenv subroutine reads the specified environment variables and returns them in a
character buffer.
Parameter

Which Specifies which environment variables are to be returned. This parameter is a

bit mask and may contain one or more of the following values, which are
defined in the usersec.h file:

PENV_USR The normal user—state environment. Typically, the shell
variables are contained here.

PENV_SYS The system-state environment. This data is located in
system space and is protected from unauthorized access.

All variables will be returned by setting the Which parameter to logically OR
the PENV_USER and PENV_SYSTEM values.

The variables are returned in a NULL terminated array of character pointers in
the form var=val. The user state environment variables are prefaced by the
string USRENVIRON:, and the system state variables are prefaced with
SYSENVIRON.:. If user state environment is requested, the current working
directory is always returned, in a variable named PWD. If this variable is not
present in the existing environment, the getpenv subroutine will add it to the
returned string.

Return Values
Upon successful return, the getpenv subroutine returns the environment values. If getpenv
fails, a value of NULL is returned and errno is set to indicate the error. Note that this

function can partially succeed, returning only the values that the process will permit it to
read.

1-200 Base Operating System Reference

getpenv.

Error Codes
The getpenv subroutine fails if one or more of the following are true:

EINVAL The Which parameter contains values other than PENV_USR or
PENV_SYS.

Other errors may be set by any subroutines invoked by the getpenv subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The ckuseracct subroutine, ckuserlD subroutine, getpcred subroutine, setpenv
subroutine.

Base Operating System Runtime 1-201

getpid.,...

getpid, getpgrp, or getppid Subroutine

Purpose

Gets the process ID, process group ID, and parent process ID.
Syntax

pid_t getpid()

pid_t getpgrp()

pid_t getppid()
Description

The getpid subroutine returns the process ID of the calling process.

The getpgrp subroutine returns the process group ID of the calling process.

The getppid subroutine returns the process group ID of the calling process parent process.
Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

In the AIX Version 3 Operating System, the POSIX version of the getpgrp subroutine is
implemented. The process group ID of the calling process is returned. (The BSD version
allows a process ID as input and returns the process group ID of that process.)

Related Information

The exec subroutines, fork subroutine, setpgid subroutine, sigaction, sigvec, signal
subroutines, setpgrp subroutine.

1-202 Base Operating System Reference

getpri

getpri Subroutine

Purpose
Returns the scheduling priority of a process.
Library
Standard C Library (libc.a)
Syntax
int getpri (ProcessID)
pid_t pid;
Description
The getpri subroutine returns the scheduling priority of a process.
Parameter

ProcessID Specifies the process ID. If this value is 0, the current process scheduling
priority is returned.

Return Values
Upon successful completion, the getpri subroutine returns the scheduling priority of the
process. Otherwise, a value of —1 is returned and the global variable errno is set to indicate
the error.

Error Codes .
The getpri subroutine fails if one or both of the following are true:

EPERM A process was located, but its effective and real user ID did not match those
of the process executing the getpri subroutine, and the calling process did
not have root user authority.

ESRCH No process can be found corresponding to that specified by the Process/D
parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The setpri subroutine.

Base Operating System Runtime 1-203

getpriority,...

getpriority, setpriority, or nice Subroutine

Purpose

Gets or sets nice value.
Libraries

getpriority, setpriority: Standard C Library (libc.a)

nice: Standard C Library (libc.a); Berkeley Compatibility Library (libbsd.a)
Syntax

#include <sys/resource.h>

int getpriority(Which, Who)

int Which;

int Who;

int setpriority(Which, Who, Priority)

int Which;

int Who;

int Priority;

int nice(/ncrement)

int /ncrement,;

Description :

The nice value of the process, process group, or user, as indicated by the Which and Who

parameters is obtained with the getpriority subroutine and set with the setpriority

subroutine.

The getpriority subroutine returns the highest priority (lowest numerical value) pertaining to

any of the specified processes. The setpriority subroutine sets the priorities of all of the

specified processes to the specified value. If the specified value is less than —20, a value of

—20 is used; if it is greater than 20, a value of 20 is used. Only processes that have root user

authority can lower nice values.

The nice subroutine increments the nice value by Increment.

Parameters

Which Specifies one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

Who Interpreted relative to the Which parameter (a process identifier, process
group identifier, and a user 1D, respectively). A zero value for the Who
parameter denotes the current process, process group, or user.

Priority Specifies a value in the range —20 to 20. Negative nice values cause more
tavorable scheduling.

Increment Specifies a value that is added to the current process nice value. Negative
values can be specified, although values exceeding either the high or low
limit are truncated.

1-204 Base Operating System Reference

getpriority,...

Return Values
On successful completion, the getpriority subroutine returns an integer in the range -20 to

20. A return value of —1 can also indicate an error, and in this case the global variable errno
is set.

On successful completion, the setpriority subroutine returns 0. Otherwise, —1 is returned
and the global variable errno is set to indicate the error.

On successful completion, the nice subroutine returns the new nice value minus {NZERO}.
Otherwise, a value of —1 is returned and the global variable errno is set to indicate the error.

Note: —1 can also be returned as a valid return value; in that case the calling process
should also check errno.

Error Codes
The getpriority and setpriority subroutines fail if one or more of the following are true:

ESRCH No process was located using the Which and Who parameter values
specified.
EINVAL The Which parameter was not recognized.

In addition to the errors indicated above, the setpriority subroutine can fail if one or both of
the following are true:

EPERM A process was located, but neither the effective nor the real user ID of the
caller, and neither the effective nor the real user ID of the process executing
the setpriority subroutine has root user authority.

EACCESS The call to setpriority would have changed the priority of a process to a
value lower than its current value, and the effective user ID of the process
executing the call did not have root user authority.

The nice subroutine fails if the following is true:

EPERM The Increment parameter is negative or greater than 2 x {NZERO} and the
calling process does not have appropriate privileges.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

To provide upward compatibility with older programs, the nice interface, originally found in
AT&T System V, is supported.

Note: Process priorities in AT&T System V are defined in the range of 0 to 39, rather than
—20 to 20 as in BSD, and the nice library routine is supported by both. Accordingly,
two versions of nice are supported by the AlX Version 3 Operating System. The
default version behaves like the AT&T System V version, with the Increment
parameter treated as the modifier of a value in the range of 0 to 39 (0 corresponds to
—-20, 39 to 19, and priority 20 is not reachable with this interface).

If the behavior of the BSD version is desired, compile with the Berkeley Compatibility
Library (libbsd.a) and the Increment parameter is treated as the modifier of a value
in the range —20 to 20.

Related Information
The exec subroutines.

Base Operating System Runtime 1-205

getpwent,...

getpwent, getpwuid, getpwnam, putpwent, setpwent, or
endpwent Subroutine

Purpose
Accesses the basic user information in the user data base.

Library
Standard C Library (libc.a)

Syntax

#include <pwd.h>
struct passwd *getpwent ()

struct passwd *getpwuid (User/D)
uid_t UserID;

struct passwd *getpwnam (Name)
char *Name;

int putpwent (Password, File)
struct passwd *Password;
FILE *File;

void setpwent ()

void endpwent ()

Description
These subroutines may be used to access the basic user attributes.

The setpwent subroutine opens the user database (if not already open) and rewinds the
cursor to point to the first user entry in the database.

The getpwent, getpwnam, and getpwuid subroutines return information about the
requested user. The getpwent subroutine returns the next user entry in the sequential
search, getpwnam returns the first user entry in the data base whose name matches the
Name parameter and getpwuid returns the first user entry in the data base whose ID
matches the User/D parameter.

The putpwent subroutine writes a password entry into a file in the colon separated format of
the /etc/passwd file. Note that the pw_passwd field will be written into the corresponding
field in the file. If this user’s password is stored in the shadow password file, this field must
be an exclamation mark '!". The password in the shadow file cannot be updated with this
function, the putuserpw subroutine should be used to update this file.

The endpwent subroutine will close the user data base.

The user structure, which is returned by the getpwent, getpwnam and getpwuid

subroutines and which is written by the putpwent subroutine, is defined in the pwd.h file
and has the following members:

pw_name The name of the user.

pw_passwd The encrypted password of the user. Note that if the password is not stored
in the /etc/passwd file and the invoker does not have access to the shadow

1-206 Base Operating System Reference

getpwent,...

file which contains them, this field will contain an undecryptable string
(usually an asterisk ™).

pw_uid The ID of the user.

pw_gid The group ID of the principle group of the user.
pwW_gecos The personal information about the user.
pw_dir The home directory of the user.

pw_shell The initial program for the user.

Warning: All information generated by the getpwent, getpwnam, and getpwuid
subroutines is stored in a static area and will be overwritten on subsequent calls to these
routines. If it is to be saved, it should be copied.

Warning: These subroutines should not be used in conjunction with the getuserattr
subroutine. The results are unpredictable.

Parameters
File Specifies an open file whose format is like that of /etc/passwd.
Name Specifies the name of the user for which the basic attributes are to be read.
Password Specifies the password structure which contains the user attributes which
are to be written.
UserlD Specifies the 1D of the user for which the basic attributes are to be read.
Security

File Access The calling process must have access to the basic information in the user
data base. This includes the following files:

modes fite
™w /letc/passwd (write access for putpwent only)
r letc/security/passwd (if the password is desired)

Return Values
The getpwent, getpwnam and getpwuid subroutines return a pointer to a valid password
structure if successful. Otherwise, a NULL pointer is returned.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The getgrent subroutine, getgroupattr subroutine, getuserattr subroutine, setuserdb
subroutine, getuserpw, putuserpw subroutines.

Base Operating System Runtime 1-207

getrlimit,...

getrlimit,

Purpose
Library

Syntax

setrlimit, or vlimit Subroutine
Controls maximum system resource consumption.

Standard C Library (libc.a)

#include <sys/time.h>
#include <sys/resource.h>

int setrlimit(Resource1,RLP)
int Resourcet;
struct rlimit *RLP;

int getrlimit (Resource1, RLP)
int ResourceT;
struct rlimit *RLP;

#include <sys/vlimit.h>

vlimit (Resource2, Value)
int Resource2, Value;

Description

Limits on the consumption of system resources by the current process and each process it
creates are obtained with the getrlimit system call, and set with the setrlimit subroutine.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process can receive a signal (for example, if the CPU time is exceeded), but it is allowed to
continue until it reaches the hard limit or modifies its resource limit. The rlimit structure is
used to specify the hard and soft limits on a resource, as defined in the sys/resource.h
header file.

The calling process must have root user authority in order to raise the maximum limits.
Other processes can alter rlim_cur within the range from 0 to rlim_max or (irreversibly) lower
rlim_max.

An infinite value for a limit is defined as RLIM_INFINITY.

Because this information is stored in the per—process information, this subroutine must be
executed directly by the shell if it is to affect all future processes created by the shell; limitis
thus a built-in command to the shells.

The system refuses to extend the data or stack space when the limits would be exceeded in
the normal way: a break system call fails if the data space limit is reached. When the stack
limit is reached, the process receives a SIGSEGYV signal; if this signal is not caught by a
handler using the signal stack, this signal kills the process. When the soft CPU time limit is
exceeded, a signal SIGXCPU is sent to the offending process.

The vlimit subroutine is also supported, but this facility is superceded by the getrlimit
subroutine.

1-208 Base Operating System Reference

Parameters
Resource1

ARLP

Resource2

Value

Return Values

getrlimit,...

Can be one of the following values:

RLIMIT_CPU The maximum amount of CPU time (in seconds) to be
used by each process.

RLIMIT_FSIZE The largest size, in bytes, of any single file that can be
created.

RLIMIT_DATA The maximum size, in bytes, of the data segment for a

process; this defines how far a program can extend its
break with the sbrk subroutine.

RLIMIT_STACK The maximum size, in bytes, of the stack segment for
a process; this defines how far a program stack
segment can be extended. Stack extension is
performed automatically by the system.

RLIMIT_CORE The largest size, in bytes, of a core file that can be
created.

RLIMIT_RSS The maximum size, in bytes, to which a process'’s
resident set size can grow. This imposes a limit on the
amount of physical memory to be given to a process; if
memory is tight, the system prefers to take memory
from processes that are exceeding their declared
resident set size.

Points to the rlimit structure, which contains the current (soft) and hard
limits. For the getrlimit subroutine, the requested limits are returned in this
structure, and for the setrlimit subroutine, the desired new limits are
specified here.

The flags for this parameter are defined in the sys/vlimit.h header file, and
are mapped to corresponding flags for the setrlimit subroutine.

An integer that is used as a hard limit parameter to the setrlimit subroutine.

On successful completion, a return value of 0 is returned, changing or returning the resource
limit. Otherwise, a value of —1 is returned and the global variable errno is set to indicate the

error.

Error Codes

The getrlimit, setrlimit or vlimit subroutine fails if one or more of the following are true:

EFAULT
EINVAL
EPERM

The address specified for the RLP parameter is invalid.
The Resource1 parameter is not a valid resource.

The limit specified to the setrlimit system call would have raised the
maximum limit value, and the caller does not have root user authority.

Base Operating System Runtime 1-209

getrlimit,...

Implementation Specifics
These subroutines are part of AiX Base Operating System (BOS) Runtime.

Related Information ;
The sigaction, sigvec,signal subroutines, sigstack subroutine, ulimit subroutine.

1-210 Base Operating System Reference

getrusage,...

getrusage, times, or vtimes Subroutine

Purpose
Gets information about resource utilization.

Libraries
getrusage, times: Standard C Library (libc.a)

viimes: Berkeley Compatibility Library (libbsd.a)

Syntax
#include <sys/time.h>
#include <sys/time.h>

int getrusage (Who, RUsage)
int Who;
struct rusage "RUsage;

#include <sys/types.h>
#include <sys/times.h>

time_t times (Buffer)
struct tms *Buffer;

#include <sys/times.h>

vtimes (ParentVm, ChildVm)
struct vtimes *ParentVm, ChildVm;

Description
The getrusage subroutine returns information describing the resources utilized by the
current process, or all its terminated child processes.

The times subroutine fills the structure pointed to by the Buffer parameter with
time-accounting information. All time values reported by the times subroutine are in tenths
of a second, unless execution profiling is enabled. When profiling is enabled, the times
subroutine reports values in 1/60 of a second.

The tms structure is defined in the sys/times.h header file, and it contains the following
members:

time_t tms_utime;

time_t tms_stime;

time_t tms_cutime;

time_t tms_cstime;

This information comes from the calling process and each of its terminated child processes
for which it has executed a wait subroutine.

tms_utime The CPU time used while executing instructions in the user space of the
calling process.

tms_stime The CPU time used by the system on behalf of the calling process.
tms_cutime The sum of the tms_utimes and the tms_cutimes of the child processes.

tms_cstime The sum of the tms_stimes and the tms_cstimes of the child processes.

Base Operating System Runtime 1-211

getrusage,...

Note: The system measures time by counting clock interrupts. The precision of the values
reported by the times subroutine depends on the rate at which the clock interrupts

occur.

Parameters
Who
RUsage
1-212

RUSAGE_SELF or RUSAGE_CHILDREN.

A pointer to a buffer that will be filled in as described in the sys/resource.h
header file. The fields are interpreted as follows:

ru_utime

ru_stime

ru_maxrss

ru_ixrss

ru_idrss

ru_minflt

ru_majfit

ru_nswap

ru_inblock
ru_outblock
ru_msgsnd
ru_msgrev
ru_nsignals

ru_nvcsw

Base Operating System Reference

The total amount of time spent executing in user mode.

The total amount of time spent in the system executing on
behalf of the process(es).

The maximum resident set size utilized (in kilobytes).

An integral value indicating the amount of memory used by
the text segment that was also shared among other
processes. This value is expressed in units of kilobytes *
seconds-of-execution and is calculated by summing the
number of shared memory pages in use each time the
internal system clock ticks, and then averaging over one
second intervals.

An integral value of the amount of unshared memory
residing in the data segment of a process (expressed in
units of kilobytes * seconds-of-execution).

The number of page fauits serviced without any I/O activity:
here I/O activity is avoided by reclaiming a page frame from
the list of pages awaiting reallocation.

The number of page faults serviced that required I/O
activity. ‘

The number of times a process was swapped out of main
memory.

The number of times the file system had to perform input.
The number of times the file system had to perform output.
The number of IPC messages sent.

The number of IPC messages received.

The number of signals delivered.

The number of times a context switch resulted due to a
process voluntarily giving up the processor before its time
slice was completed (usually to await availability of a
resource).

getrusage,...

ru_nivesw The number of times a context switch resulted due to a
higher priority process becoming runnable or because the
current process exceeded its time slice.

Note: The numbers the ru_inblock and ru_outblock fields account only for
real I/O; data supplied by the caching mechanism is charged only to
the first process to read or write the data.

Buffer Points to a structure.

ParentVm Points to a vtimes structure that will contain the accounting information for
the current process.

ChildVm Points to a vtimes structure that will contain the accounting information for
the terminated child processes of the current process.

Return Values
Upon successful completion, the getrusage subroutine returns a value of 0. Otherwise, a
value of —1 is returned and the global variable errno is set to indicate the error.

Upon successful completion, the times subroutine returns the elapsed real time, in 1/60 of a
second, since an arbitrary reference time in the past (for example, system start-up time).
This reference time does not change from one call of the times subroutine to another.

Error Codes
The getrusage subroutine fails if either of the following is true:

EINVAL The Who parameter is not a valid value.

EFAULT The address specified for RUsage is not valid.
Implementation Specifics

These subroutines are part of AlX Base Operating System (BOS) Runtime.

The vtimes subroutine is supported to provide compatibility with older programs.

The vtimes subroutine returns accounting information for the current process and for the
terminated child processes of the current process. Either ParVm or ChVm or both may be 0,
in which case only the information for the pointers which are nonzero are returned.

Atfter the call, each buffer contains information as defined by the contents of the
sys/vtimes.h include file.

Related Information
The gettimer, time subroutines, wait, waitpid, wait3 subroutines.

Base Operating System Runtime 1-213

gets,...

gets or fgets Subroutine

Purpose
Gets a string from a stream.

Library
Standard I/O Library (libc.a)

Syntax
#include <stdio.h>
char *gets (String)
char *String;
char *tgets (String, Number, Stream)
char *String;
int Number;
FILE *Stream;

Description
The gets subroutine reads characters from the standard input stream, stdin, into the array
pointed to by the String parameter. Data is read until a new—line character is read or an
end-of-file condition is encountered. If reading is stopped due to a new-line character, the
new-line character is discarded and the string is terminated with a null character.
The fgets subroutine reads characters from the data pointed to by the Stream parameter
intc the array pointed to by the String parameter. Data is read until the value of the Number
parameter -1 characters have been read, until a new—line character is read and transferred
to String, or until an end—of-file condition is encountered. The string is then terminated with
a null character.

Parameters
String A pointer to a string to receive characters.
Stream A pointer to the FILE structure of an open file.
Number An upper bound on the number of characters to read.

Return Value
If the end of the file is encountered and no characters have been read, no characters are

transferred to String and a NULL pointer is returned. If a read error occurs, a NULL pointer
is returned. Otherwise, String is returned.

Implementation Specifics
These subroutines are part of AiX Base Operating System (BOS) Runtime.

Related Information
The ferror, feof, clearerr, fileno macros, fopen, freopen, fdopen subroutines, fopen,
freopen, fdopen, subroutines, fread subroutine, getc, fgetc, getchar, getw subroutines,
getwe, fgetwce, getwchar subroutines, getws, fgetws subroutines, puts, fputs subroutines,
putws, fputws subroutines, scanf, fscanf, sscanf, NLscanf, NLsscanf subroutines.

1-214 Base Operating System Reference

getssys

getssys Subroutine

Purpose
Reads a subsystem record.

Library

System Resource Controller Library (libsrc.a)

Syntax
#include <sys/srcobj.h>
#include <sys/spc.h>

int getssys(SubsystemName, SRCSubsystem)
char *SubsystemName;
struct SRCsubsys *SRCSubsystem;

Description
The getssys subroutine reads a subsystem record associated with the SubsystemName
parameter and returns the ODM record in the SRCSubsystem parameter.

The SRCsubsys structure is defined in the sys/srcobj.h header file.

Parameters
SRCSubsystem Points to a SRCsubsys structure.

SubsystemName Specifies the name of the subsystem to be read.

Return Values
Upon successful completion, the getssys subroutine returns a value of 0. Otherwise, it

either returns a value of -1 and odmerrno is set to indicate the error, or it returns
SRC_NOREC.

Error Code
The getssys subroutine fails if the following is true:
SRC_NOREC Subsystem name does not exist.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

File
/letc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

Related Information
The addssys subroutine, delssys subroutine, getsubsvr subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-215

getsubsvr

getsubsvr Subroutine

Purpose
Reads a subsystem record.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <sys/spc.h>

int getsubsvr(SubserverName, SRCSubserver)
char *SubserverName;
struct SRCSubsvr *SRCSubserver,;

Description
The getsubsvr subroutine reads a subsystem record associated with the SubserverName
parameter and returns the ODM record in the SRCSubserver parameter.

The SRCsubsvr structure is defined in the sys/srcobj.h header file and includes the
following fields:

char sub_type[30];
char subsysname[30];
short sub_code;

Parameters
SRCSubserver Points to the SRCsubsvr structure.

SubserverName Specifies the subserver to be read.

Return Values
Upon successful completion, the getsubsvr subroutine returns a value of 0. Otherwise, it
either returns a value of —1 and odmerrno is set to indicate the error, or SRC_NOREC is
returned.

Error Code
The getsubsvr subroutine fails if the following is true:

SRC_NOREC The specified SRCsubsvr record does not exist.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

File

/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.

1-216 Base Operating System Reference

getsubsvr

Related Information
The getssys subroutine.

The System Resource Controller Overview in General Programming Concepts.

Base Operating System Runtime 1-217

gettimeofday,...

gettimeofday, settimeofday, or ftime Subroutine

Purpose
Gets and sets date and time.

Libraries
gettimeofday, settimeofday: Standard C Library (libc.a)
ftime: Berkeley Compatibility Library (libbsd.a)

Syntax
#include <sys/time.h>
int gettimeofday (Tp, Tzp)
struct timeval *Tp;
struct timezone *Tzp;
int settimeofday (7p, Tzp)
struct timeval * Tp;
struct timezone * 7zp;
int ftime (7p)
struct timeb * Tp;

Description
The system’s notion of the current Greenwich time and the current time zone is obtained
with the gettimeofday subroutine, and set with the settimeofday subroutine. The time is
expressed in seconds and microseconds since midnight (0 hour), January 1, 1970. The
resolution of the system clock is hardware dependent, and the time may be updated
continuously or in "ticks.” If Tzp is zero, the time zone information will not be returned or set.
Only users with SEC_SYS_ATTR system privilege may change the date and time.
The Tp parameter returns a pointer to a timeval structure which contains the time since the
epoch began in seconds and microseconds.
The timezone structure indicates the local time zone (measured in minutes of time
westward from Greenwich), and a flag that, if nonzero, indicates that daylight saving time
applies locally during the appropriate part of the year.
In addition to the difference in timer granularity, the timezone structure distinguishes these
subroutines from the POSIX gettimer and settimer subroutines, which deal strictly with
Greenwich Mean Time.

Parameters
Tp Pointer to a timeval structure, defined in the sys/time.h file.
Tzp Pointer to a timezone structure, defined in the sys/time.h file.

Return Values

1-218

If the subroutine succeeds, a value of 0 is returned. If an error occurs, a value of -1 is
returned and errno is set to indicate the error.

Base Operating System Reference

gettimeofday,...

Error Codes
The possible errors are:

EFAULT A parameter points to an invalid address.

EPERM The process’s effective user ID does not have root user authority.
Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The gettimeofday and settimeofday subroutines are supported for compatibility with BSD
programs.

The ftime subroutine is included for compatibility with older BSD programs. It's function has
been obsoleted by the gettimeofday subroutine.

Related Information
The ctime, localtime, gmtime, mktime, difftime, asctime, tzset, timezone subroutines.

The gettimer subroutine, adjtime subroutine.

The date command.

Base Operating System Runtime 1-219

gettimer,...

gettimer, settimer, restimer, stime, or time Subroutine
Purpose

Gets or sets the current value for the specified system—wide timer.
Library

Standard C Library (libc.a)
Syntax

#include <sys/time.h>

int gettimer(Timer_type, TimePointer)

int Timer_type;

timestruc_t * TimePointer;

int settimer(Timer_type, TimePointer)

int Timer_type;

timestruc_t *Tp;

int restimer(Timer_type, Resolution, MaximumValue)

int Timer_type;

timestruc_t *Resolution, *MaximumValue;

int stime(7p)

long Tp;

<include time.h>

time_t time(Tp)

time_t *Tp;
Description

The settimer subroutine is used to set the current value of the Tp parameter for the
system-wide timer, specified by the Timer_type parameter. The gettimer subroutine is used
to get the current value of the Tp parameter for the system—wide timer, specified by the

Timer_type parameter. The Tp parameter points to a structure of type timestruc_t, which
includes the following members:

unsigned fong tv_sec; /* seconds */
long tv_nsec; /* nano-seconds */

The tv_nsec member is only valid if greater than or equal to zero, and less than the number
of nanoseconds in a second (1000 million).

The resolution of any timer can be obtained by the restimer subroutine. The Resolution
parameter represents the resolution of the specified timer. The MaximumValue parameter
represents the maximum possible timer value. The value of these parameters are the
resolution accepted by the settimer subroutine.

Note: If a non—privileged user attempts to submit a fine granularity timer (i.e., a timer
request less than 10 milliseconds), the timer request is raised to 10 milliseconds.

1-220 Base Operating System Reference

gettimer,...

Parameters
Timer_type Specifies the system-wide timer.

TIMEOFDAY (POSIX system clock timer) This timer represents the
time—of—day clock for the system. For this timer the
values returned by the gettimer subroutine and
specified by the settimer subroutine represent the
amount of time since 00:00:00 GMT, January 1, 1970.

TimePointer Points to a structure of type timestruc_t.
Resolution The resolution of a specified timer.
MaximumValue

The maximum possible timer value.

Tp Time in seconds.

Compatibility Interface
The stime and time subroutines are implemented to provide compatibility with oider AlX,
AT&T System V, and BSD systems. They are implemented to simply call the settimer and
gettimer subroutines using the TIMEOFDAY timer.

Return Values
The gettimer, settimer, restimer, and stime subroutines return a 0 if the call is successful.
A return value of —1 indicates an error occurred, and errno is set. The time subroutine
returns the value of time in seconds since Epoch, (i.e., 00:00:00 GMT, January 1, 1970).

Error Codes
If an error occurs a return value of —1 is received and errno is set to one of the following
error codes:

EINVAL The Timer_type parameter does not specify a known system-—wide timer.
The Tp parameter of the settimer subroutine is outside the range for the
specified system-wide timer.

EIO An error occurred while accessing the timer device.

EPERM The requesting process does not have the appropriate privilege to set the
specified timer.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The getinterval subroutine, ctime subroutine.

Base Operating System Runtime 1-221

gettimerid

gettimerid Subroutine

Purpose
Library

Syntax

Allocates a per—process interval timer.

Standard C Library (libc.a)

#include <sys/time.h>
#include <sys/events.h>

timer_t gettimerid(Timer_type, Notify_type)

int Timer_type;
int Notify_type;

Description
The gettimerid subroutine is used to allocate a per—process interval timer based on the
timer with the given timer type. The unique ID is used to identify the interval timer in interval
timer requests. (See getinterval subroutine). The particular timer type, the

Timer_type parameter, is defined in the sys/time.h file, and can identify either a
system-wide timer or a per—process timer. The mechanism by which the process is to be
notified of the expiration of the timer event is the Notify_type parameter, which is defined in

1-222

the sys/events.h file.

The Timer_type parameter represents one of the following timer types supported under AIX

Version 3:

TIMEOFDAY

TIMERID_ALRM

TIMER_REAL

TIMER_VIRTUAL

TIMER_PROF

(POSIX system clock timer) This timer represents the
time—-of-day clock for the system. For this timer the values
returned by the gettimer subroutine and specified by the
settimer subroutine represent the amount of time since 00:00:00
GMT, January 1, 1970, in nanoseconds.

(Alarm timer) This timer schedules the delivery of a SIG_ALRM
signal at a timer specified in the call to the settimer subroutine.

(Real time timer) The real time timer decrements in real time. A
SIG_ALRM signal is delivered when this timer expires.

(Virtual timer) The virtual timer decrements in process virtual
time. it runs only when the process is executing in user mode. A
SIGVTALRM signal is delivered when it expires.

(Profiling timer) The profiling timer decrements both when
running in user mode and when the system is running for the
process. lt is designed to be used by processes to profile their
execution statistically. A SIGPROF signal is delivered when the
profiling timer expires.

The system shall cause a SIGALRM signal to be sent to the process whenever the interval

timer expires.

Base Operating System Reference

gettimerid

Interval timers are not inherited by a child process across a fork subroutine, or across an
exec subroutine, if the notification mechanism is DELIVERY_EVENTS. Interval timers with
a notification value of DELIVER_SIGNALS are inherited across an exec subroutine.

Parameters
Notify_type Notifies the process of the expiration of the timer event.

Timer_type Identifies either a system-wide timer or a per—process timer.

Return Values
If the gettimerid subroutine succeeds, it returns a timer_t structure which can be passed to
the per—process interval timer subroutines, such as the getinterval subroutine. If an error
occurs, the value —1 is returned, and errno is set.

Error Codes
If the gettimerid subroutine fails, the value —1 is returned and errno is set to one of the
following error codes:

EAGAIN The calling process has already allocated all of the interval timers
associated with the specified timer type for this implementation.

EINVAL The specified timer type is not defined.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The exec subroutine, fork subroutine, gettimer, settimer, restimer subroutines,
getinterval, incinterval, absinterval, resabs, resinc subroutines, reltimerid subroutine.

Base Operating System Runtime 1-223

getttyent,...

getttyent, getttynam, setttyent, or endttyent Subroutine

Purpose
Library

Syntax

Gets a tty description file entry.

Standard C Library (libc.a)

#include <ttyent.h>

struct ttyent *getttyent()

struct ttyent *getttynam(Name)

char *Name;
void setttyent()
void endttyent

Description
The getttyent and getttynam subroutines each return a pointer to an object with the ttyent

1-224

structure, contai

ning the broken-out fields of a line from the tty description file. The ttyent

structure is in the ttyent.h header file and contains the following fields:

tty_name

ty_getty

ty_type

ty_status

ty_window

ty_comment

The name of the character-special file in the directory “/dev”. For various
reasons, it must reside in the directory “/dev”.

The command (usually getty) which is called by init to initialize tty line
characteristics. In fact, any arbitrary command can be used; a typical use is
to initiate a terminal emulator in a window system.

The name of the of the default terminal type connected to this tty line. This
is typically a name from the termcap data base. The environment variable
TERM is initialized with this name by getty or login.

A mask of bit fields which indicate various actions to be allowed on this ity
line. The following is a description of each flag.

TTY_ON Enables logins (i.e., init will start the specified getty
command on this entry).

TTY_SECURE Allows root user to login on this terminal. Note that
TTY_ON must be included for this to be useful.

The command to execute for a window system associated with the line. The
window system will be started before the command specified in the ty_getty
entry is executed. If none is specified, this will be nuli.

The trailing comment field, if any; a leading delimiter and white space will be
removed.

Note: The getttyent and getttynam subroutines require links to /lib/libodm.a and
/usr/lib/libcfg.a. ’

Base Operating System Reference

getttyent,...

The getttyent subroutine reads the next line from the tty file, opening the file if necessary;
the settyent subroutine rewinds the file; the endttyent subroutine closes it.

The getttyent subroutine searches from the beginning of the file until a matching Name is
found (or until the EOF is encountered).

Parameter
Name Specifies the name of a tty description file.

Return Value
Null pointer (0) returned on EOF or error.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The ttyslot subroutine.

The init command, getty command, login command.

Base Operating System Runtime 1-225

getuid,...

getuid or geteuid Subroutine

Purpose

Gets the process’s real or effective user ID.
Library

~ Standard C Library (libc.a)

Syntax

#iclude <sys.types.h>

uid_t getuid()

uid_t geteuid()
Description

The getuid subroutine returns the real user ID of the current process.

The geteuid subroutine returns the effective user ID of the current process.

Return Values
The getuid and geteuid subroutines return the corresponding user ID.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The getuidx subroutine, setuid subroutine, setuidx subroutine.

1-226 Base Operating System Reference

getuidx

getuidx Subroutine

Purpose

Gets the process user IDs.
Library

Standard C Library (libc.a)
Syntax

#include <sys/id.h>

uid_t getuidx (Which)

int Which;
Description

The getuidx subroutine returns the specified user ID of the current process.
Parameter

Which Specifies which user ID to return. The valid values for this parameter are
defined in sys/id.h and include:

ID_EFFECTIVE
Returns the effective user ID of the process.

ID_REAL Returns the real user ID of the process.
ID_SAVED Returns the saved user ID of the process.
ID_LOGIN Returns the login user ID of the process.
Return Values
Upon successful completion, the getuidx subroutine returns the requested user ID. If the

getuidx subroutine fails, a value of —1 is returned and the global variable errno is set to
indicate the error.

Error Code
The getuidx subroutine fails if:
EINVAL The Which parameter is not one of ID_EFFECTIVE, ID_REAL, ID_SAVED,
or ID_LOGIN.

- Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The setuid subroutine, setuidx subroutine, getuid subroutine.

Base Operating System Runtime 1-227

getuinfo

getuinfo Subroutine

Purpose
Finds the value associated with a user information name.

Library
Standard C Library (libc.a)

Syntax
char *getuinfo (Name)
char *Name;

Description
The getuinfo subroutine searches a user information buffer for a string of the form
Name=value and returns a pointer to the value substring if Name is found. NULL is returned
if Name is not found. ‘
The user information buffer searched is pointed to by the global variable:
extern char *INuibp;
This variable is initialized to NULL.
If the INuibp global variable is NULL when the getuinfo subroutine is called, the usrinfo
subroutine is run to read user information from the kernel into a local buffer. The address of
the buffer is then put into the INuibp external variable. The usrinfo subroutine is
automatically called the first time the getuinfo subroutine is called if the INuibp external
variable is not set.

Parameter

Name A user information name.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The usrinfo subroutinef

1-228 Base Operating System Reference

getuserattr,...

getuseratir, IDtouser, nextuser, or putuserattr Subroutine

Purpose
Library

Syntax

Accesses the user information in the user data base.

Security Library (libs.a)

#include <usersec.h>

int getuserattr (User, Attribute, Value, Type)
char *User;

char *Attribute;

void *Value;

int Type;

int putuserattr (User, Attribute, Value, Type)
char *User;

char *Attribute;

void *Value;

int Type;

char *IDtouser(Uid)
uid__t *Uid;

char *nextuser (Mode, Argument)
int Mode, Argument,

Description

These subroutines may be used to access user information. Because of their greater
granularity and extensibility these routines should be used instead of the getpwent routines.

The getuserattr subroutine reads a specified attribute from the user data base. If the data
base is not already open, the getuserattr subroutine will do an implicit open for reading.

The putuserattr subroutine writes a specified attribute into the user data base. If the data
base is not already open, the putuserattr subroutine will do an implicit open for reading and
writing. The data changed by putuserattr must be explicitly committed by calling
putuserattr with a Type parameter equal to SEC_COMMIT. Until ail the data is committed,
only these subroutines within the process will return the written data.

The IDtouser subroutine translates a user ID into a user name.

The nextuser subroutine returns the next user in a linear search of the user data base. The
consistency of consecutive searches depends upon the underlying storage access
mechanism and is not guaranteed by this function.

Values which are returned by these functions are in dynamically allocated buffers and need
not be moved prior to the next call.

The setuserdb and enduserdb subroutines should be used to open and close the user data
base.

Base Operating System Runtime 1-229

getuserattr,...

Note: These subroutines and the setpwent and setgrént subroutines should not be used
simultaneously. The results can be unpredictable.

Parameters
Argument
NULL.

Attribute

The Argument parameter is presently unused and must be specified as

Specifies the name of the attribute which is to be read. This can be one of

the following, which are defined in the usersec.h file:

S_ID
S_PGRP
S_GROUPS

S_ADMGROUPS
S_ADMIN
S_AUDITCLASSES

S_HOME
S_SHELL

S_GECOS
S_USRENV
S_SYSENV
S_LOGINCHK
S_SUCHK
S_RLOGINCHK

S_DAEMONCHK

1-230

Base Operating System Reference

The user ID. Type: SEC_INT.
The principle group name. Type: SEC_CHAR.

The groups to which the user belongs, other than the
principle group. Type: SEC_LIST.

The groups for which the user is an administrator.
Type: SEC_LIST.

Defines the administrative status of a user.
Type: SEC_BOOL.

Defines the audit classes to which the user belongs.
Type: SEC_LIST.

Defines the home directory. Type: SEC_CHAR.

Defines the initial program run by a user.
Type: SEC_CHAR.

Defines the personal information for a user.
Type: SEC_CHAR.

Defines the user—state environment variables.
Type: SEC_LIST.

Defines the protected—state environment variables.
Type: SEC_LIST.

Defines if the user account can be used for local
logins. Type: SEC_BOOL.

Defines if the user account can be accessed with the
su command. Type SEC_BOOL.

Defines if the user account can be used for remote
logins via teinet or rlogin. Type: SEC_BOOL.

Defines if the user account can be used for daemon

execution of programs and subsystems via cron or
src.

S_TPATH

S_TTYS

S_SUGROUPS

S_EXPIRATION

S_AUTH1

S_AUTH2

S_UFSIZE
S_UCPU
S_UDATA

S_USTACK

S_URSS

S_UCORE

S_PWD
S_UMASK

getuserattr,...

Defines how the account may be used on the Trusted
Path. Type: SEC_CHAR. This attribute must be one
of the following:

nosak The Secure Attention Key is not enabled
for this account.

notsh The Trusted Shell cannot be accessed
from this account.

always This account may only run Trusted
Programs.
on Normal Trusted Path processing applies.

Defines a list of ttys which may or may not be used to
access this account. Type: SEC_LIST.

Defines the groups which may or may not be
permitted to access this account. Type: SEC_LIST.

Defines the expiration date for this account, in
seconds since the epoch. Type: SEC_CHAR.

Defines the primary authentication methods for this
account. Type: SEC_LIST.

Defines the secondary authentication methods for this
account. Type: SEC_LIST.

Defines the process file size limit. Type: SEC_INT.
Defines the process CPU time limit. Type: SEC_INT.

Defines the process data segment size limit. Type:
SEC_INT.

Defines the process stack segment size limit.
Type: SEC_INT.

Defines the process real memory size limit.
Type: SEC_INT.

Defines the process core file size limit. Type:
SEC_INT.

Defines the passwd field in the /etc/passwd file.

Defines the file creation mask for a user. Type:
SEC_INT.

Note: These values are string constants which should be used by
applications both for convenience and to permit optimization in latter
implementations.

Base Operating System Runtime 1-231

getuserattr,...

Security

1-232

Mode

Type

Uid
User

Value

File Access

Specifies the search mode. This parameter can be used to delimit the
search to one or more user credentials data bases. Specifying a non_NULL
Mode also implicitly rewinds the search. A NULL mode should be used to
continue the search sequentially through the data base. This attribute may
include one or more of the following values specified as a bin mask; these
are defined in the usersec.h file:

S_LOCAL Locally defined users will be included in the search.
S_SYSTEM All credentials servers for the system are searched.

Specifies the type of attribute expected. Valid types are defined in the
usersec.h file and include:

SEC_INT The format of the attribute is an integer. The buffer
returned by the getuserattr subroutine and the buffer
supplied by the putuserattr subroutine are defined to
contain an integer.

SEC_CHAR The format of the attribute is a NULL terminated
character string.

SEC_LIST The format of the attribute is a list of NULL terminated
character strings. The list itself is NULL terminated.

SEC_BOOL The format of the attribute is a boolean.

SEC_COMMIT For the putuserattr subroutine, this value specified by

itself indicates that changes to the named group are to
be commited to permanent storage. The Attribute and
Value parameters are ignored. If no group is specified,
the changes to all modified groups will be committed.

SEC_DELETE The corresponding attribute will be deleted from the
data base.
SEC_NEW Updates all the group data base files with the new

user name when using the putuserattr subroutine.
Specifies the user ID to be translated into a user name.
Specifies the name of the user for which an attribute is to be read.

Specifies the address of a buffer in which the attribute is to be stored
(getuserattr) or is stored (putuserattr).

The calling process must have access to the account information in the user
data base and the authentication data. This includes:

modes file
w /etc/passwd
rw /letc/group

Base Operating System Reference

getuserattr,...

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/audit/audit.config
rw /etc/security/group

™w /etc/security/environ

Return Values

The getuserattr and putuserattr subroutines return 0 if completed successfully. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

The IDtouser and nextuser subroutines return a character pointer to a buffer containing the

requested group name if successful. Otherwise a NULL pointer is returned and errno is set
to indicate the error.

Error Codes
These subroutines fail if the following is true:

EACCES Access permission is denied for the data request.
The getuSerattr and putuserattr subroutines fail if one or more of the following is true:

ENOENT The specified User parameter does not exist or the attribute is not defined
for this user.

ENOATTR The specified user attribute does not exist for this user.

EINVAL The Attribute parameter does not contain one of the defined attributes or
NULL.
EINVAL The Value parameter does not point to a valid buffer or to valid data for this

type of attribute.

The iDtouser subroutine fails if the following is true:
ENOATTR The specified user attribute does not exist for this user.

ENOENT The Uid parameter could not be translated into a valid user name on the
system.

The nextuser subroutine fails if one or more of the following are true:

EINVAL The Mode parameter is not one of NULL, S_LOCAL, or S_SYSTEM.
EINVAL The Argument parameter is not NULL.
ENOENT The end of the search was reached.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Base Operating System Runtime 1-233

getuserattr,...

Related Information ,
The getgroupattr subroutine, getuserpw subroutine, setuserdb subroutine, setpwdb
subroutine.

1-234 Base Operating System Reference

getuserpw,...

getuserpw or putuserpw Subroutine

Purpose
Accesses the user authentication data.

Library
Security Library (libs.a)

Syntax

#include <userpw.h>

struct userpw *getuserpw(User)
char *User,

int putuserpw(Password)
struct userpw *Password;

Description
These subroutines may be used to access user authentication information. Because of their
greater granularity and extensibility these should be used instead of the getpwent routines.

The getuserpw subroutine reads the user’s locally—defined password information.

The putuserpw subroutine updates or creates a locally defined password information
stanza in the /etc/security/passwd file.

Parameters
Password Specifies the password structure which is to be used to update the

password information for this user. This structure is defined in userpw.h
and contains the following members:

upw_name Specifies the user’s name.
upw_passwd Specifies the user’s password.

upw_lastupdate Specifies the time (in seconds since the Epoch) when
the password was last updated.

upw_flags Specifies attributes of the password. This member is
a bitmask of the following values, defined in the
userpw.h file.

PW_NOCHECK Specifies that new passwords
need not meet password
restrictions in effect for the
system.

PW_ADMCHG Specifies that the password was
last set by an administrator and
will need to be changed at the
next successful use of the login
or su command.

Base Operating System Runtime 1-235

getuserpw,...

PW_ADMIN Specifies that password

information for this user may
only be changed by user or by
the root user.

User Specifies the name of the user for which password information is to be read.

Security

File Access The calling process must have access to the user authentication data in the
user data base. This includes:

modes file

w /etc/security/passwd

Return Values
The getuserpw subroutine returns a valid pointer to a pw structure if successfully
completed. Otherwise, a NULL pointer is returned and errno is set to indicate the error.

Error Codes
The getuserpw and putuserpw subroutines fail if the following are true:
ENOENT The user does not have an entry in the /etc/security/passwd file.

ENAMETOOLONG
The user name is greater than the PW_NAMELEN value in characters

Other errors may be set by any subroutines invoked by getuserpw or putuserpw.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The getuserattr subroutine, getgroupattr subroutine, setuserdb subroutine, setpwdb,
endpwdb subroutines.

1-236 Base Operating System Reference

getutent,...

getutent, getutid, getutline, pututline, setutent, endutent, or

utmpname Subroutine

Purpose

Accesses utmp file entries.
Library

Standard C Library (libc.a)
Syntax

#include <utmp.h>
struct utmp *getutent ()

struct utmp *getutid (/D)
struct utmp */D;

struct utmp *getutline (Line)
struct utmp *Line;

void pututline (Utmp)
struct utmp *Utmp;

void setutent ()
void endutent ()

void utmpname (File)
char *File;

Description

The getutent, getutid, and getutline subroutines return a pointer to a structure of the

following type:

#define ut_name
#define wut_id

struct utmp

{

char ut_user[8];
char ut_id[14];
char ut_line[12];

short ut_pid;

short ut_type;
struct exit_status

{

short e_termination;
short e_exit;

} ut_exit;

time_t ut_time;

char ut_host[16];
}i

ut_user

ut_line

/* User name */
/* /etc/inittabid */

/*
/*
/*

/%
/*
/*
/*
/*

Device name (console,
Process ID */
Type of entry */

lnxx) */

Process termination status */

Process exit status

*/

The exit status of a DEAD_PROCESS */
Time entry was made */

Host name */

Base Operating System Runtime

1-237

getutent,...

The getutent subroutine reads the next entry from a utmp-like file. If the file is not already
open, this subroutine opens it. If the end of the file is reached, the getutent subroutine fails.

The pututline subroutine writes the supplied Utmp parameter structure into the utmp file. If
you have not searched for the proper place in the file using one of the getut routines, the
pututline subroutine calls getutid to search forward for the proper place. It is expected that
the user of pututline searched for the proper entry using one of the getut subroutines. If so,
pututline does not search. If the pututline subroutine does not find a matching slot for the
entry, it adds a new entry to the end of the file.

The setutent subroutine resets the input stream to the beginning of the file. You should do
this before each search for a new entry if you want to examine the entire file.

The endutent subroutine closes the currently open file.

The utmpname subroutine changes the name of the file to be examined from /etc/utmp to
any other file. The name specified is usually /usr/adm/wtmp. If the specified file does not
exist, no indication is given. You are not aware of this fact until your first attempt to reference
the file. The utmpname subroutine does not open the file. It closes the old file, if it is
currently open, and saves the new file name.

The most current entry is saved in a static structure. If you want to make multiple accesses,
you must copy or use the structure between each access. The getutid and getutline
subroutines examine the static structure first. If the contents of the static structure match
what they are searching for, they do not read the utmp file. Therefore, you must fill the static
structure with zeros after each use if you want to use these subroutines to search for
multiple occurrences.

If the pututline subroutine finds that it is not already at the correct place in the file, the
implicit read it performs does not overwrite the contents of the static structure returned by
the getutent subroutine, the getuid subroutine, or the getutline subroutine. This allows you
to get an entry with one of these subroutines, modify the structure, and pass the pointer
back to the pututline subroutine for writing.

These subroutines use buffered standard 1/O for input, but the pututline subroutine uses an
unbuffered nonstandard write to avoid race conditions between processes trying to modify
the utmp and wtmp files.

Parameters

D If you specify type RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME in
the /D parameter, the getutid subroutine searches forward from the current
point in the utmp file until an entry with a ut_type matching /ID->ut_typeis
found.

If you specify one of the types INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS or DEAD_PROCESS in the /d parameter, then the
getutid subroutine returns a pointer to the first entry whose type is one of
these four and whose ut_id field matches Id—>ut _id. If the end of the file is
reached without a match, the getutid subroutine fails.

Line The getutline subroutine searches forward from the current point in the
utmp file until it finds an entry of the type LOGIN_PROCESS or
USER_PROCESS that also has a ut_line string matching the Line->ut_line
parameter string. If the end the of file is reached without a match, the
getutline subroutine fails.

1-238 Base Operating System Reference

getutent,...

Utmp Points to the utmp structure.

File Specifies the name of the file to be examined.

Return Value
These subroutines fail and return a NULL pointer if a read or write fails due to the end of the
file or a permission conflict.

Files
letc/utmp The path to the utmp file, which contains a record of users logged into
the system.
lusr/adm/wtmp The path to the wtmp file, which contains accounting information

about users logged in.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The ttyslot subroutine.

The utmp, wtmp, .ilog files. -

Base Operating System Runtime 1-239

getvisent,...

getvisent, getvfisbytype, getvfshyname, getvfsbyflag,
setvfsent, or endvfsent Subroutine

Purpose

Library

Syntax

Gets a vfs file entry.

Standard C Library(libc.a)

#include <vfs.h>
#include <vmount.h>

struct vfs_ent *getvisent()

struct vis_ent *getvisbytype(visType)
int visType;

struct vfs_ent *getvfsbyname(vfsName)
char *vfsName;

struct vis_ent *getvfsbyflag(vfsFiag)
int visFlag,

void setvisent()
void endvfsent()

Description

1-240

The getvfsent subroutine, when first called, returns a pointer to the first vis_ent structure in
the file. On the next call, it returns a pointer to the next vfs_ent structure in the file.
Successive callls can be used to search the entire file.

The vis_ent structure is defined in the vfs.h header file, and it contains the following
members:

char visent_name;

int vfsent_type;

int vfsent_flags;
char *visent_mnt_hlpr;
char *visent_fs_hlpr;
char *visent_vinfop;

The getvisbytype subroutine searches from the beginning of the file until it finds a vfs type
matching the vfsType parameter. The subroutine then returns a pointer to the structure in
which it was found.

The getvisbyname subroutine searches from the beginning of the file until it finds a vfs
name matching the vfsName parameter. The search is made using flattened names; the
characters of the name searched for are the ASCII equivalent character.

The getvisbytype subroutine searches from the beginning of the file untit it finds a type
matching the vfsType parameter.

The getvisbyflag subroutine searches from the beginning of the file until it finds the entry
whose flag corresponds to those defined in the vfs.h file. Currently, these are
VFS_DFLT_LOCAL and VFS_DFLT_REMOTE.

Base Operating System Reference

getvisent,...

The setvisent subroutine rewinds the vfs file to allow repeated searches.

The endvisent subroutine closes the vfs file when processing is complete.

Warning: All information is contained in a static area, so it must be copied if it is to be

saved.
Parameters
visType Specifies a vfs type.
vfsName Specifies a vfs name.
visFlag Specifies either VFS_DFLT_LOCAL or VFS_DFLT_REMOTE.

Return Values
The getvisent, getvisbytype, getvisbyname and getvfsbyflag subroutines return a
pointer to a vfs_ent structure containing the broken—out fields of a line in the /etc/vfs file. If
an end-of-file condition or an error is encountered on reading, a NULL pointer is returned.

Implementation Specifics
These suborutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The getfsent, getfsspec, getfstype, getsfile, setfsent, endfsent subroutines.

The National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-241

getwc,...

getwc, fgetwc, or getwchar Subroutine

Purpose
Gets a wide character from an input stream.

Library
Standard I/0O Package (libc.a)

Syntax

#include <stdio.h>

int getwc (Stream)
FILE *Stream;

int fgetwe (Stream)
FILE *Stream;

int getwchar ()

Description
The getwe subroutine gets the next 1-byte or 2-byte character from the input stream
specified by the Stream parameter, and returns an wchar_t data type as an integer. The
fgetwce subroutine performs the same function as getwe.

The getwchar subroutine gets the next 1-byte or 2-byte character from the standard input
stream and returns an wchar_t as an integer.

Parameter
Stream Input data.

Return Values
These subroutines and macros return the integer constant EOF at the end of the file or upon
an error.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The fopen, freopen, fdopen subroutines, fread, fwrite subroutines, getc, fgetc, getchar,
getw subroutines, gets, fgets subroutines, putwc, putwchar, fputwe subroutines, scanf,
fscanf, sscanf, NLscanf, NLfscanf, wsscanf subroutines.

National Language Support Overview in General Programming Concepts.

1-242 Base Operating System Reference

getwd

getwd Subroutine

Purpose
Gets current directory path name.
Library
Standard C Library (libc.a)
Syntax
char *getwd (PathName)
char *PathName;
Description
The getwd subroutine determines the absolute path name of the current directory, then
copies that path name into the area pointed to by the PathName parameter.
The maximum path name length, in characters, is set by the PATH_MAX definition, as
specified in the limits.h file.
Parameter

PathName Points to the full path name.

Return Values
If the call to the getwd subroutine is successful, a pointer to the absolute path name of the
current directory is returned. If an error occurs, the getwd subroutine returns a value of 0
and places a message in the PathName parameter.

implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getcwd subroutine.

Base Operating System Runtime 1-243

getws,...

getws or fgetws Subroutine

Purpose
Gets a string from a stream.

Library
Standard C Library (libc.a)

Japanese Language Support Syntax

When running AlIX with Japanese Language Support on your system, the following
subroutines stored in libc.a, are provided:

#include <stdio.h>
#include <NLchar.h>
NLchar *getws (String)
NLchar *String;

NLchar *fgetws (String, Number, Stream)
NLchar *String;

int Number,

FILE *Stream,

Description
Japanese Language Support Information

The getws subroutine expands 1-byte and 2—byte character input values to uniform NLchar
(2—-byte) width. With this exception, getws functions exactly like the gets subroutine.

The fgetws subroutine also expands 1-byte and 2-byte character input values to uniform
NLchar (2-byte) width. Again, with this exception, fgetws works just like fgets.

Parameters
String A pointer to a string to receive characters.
Stream A pointer to the FILE structure of an open file.
Number An upper bound on the number of characters to read.

Return Value

If the end of the file is encountered and no characters have been read, no characters are

transferred to the String parameter and a NULL pointer is returned. If a read error occurs, a
NULL pointer is returned. Otherwise, String is returned.

Implementation Specifics
These subroutines are part of AlX Base Operating System (BOS) Runtime.

1-244 Base Operating System Reference

getws,...

Related Information

The ferror, feof, clearerr, fileno macros, fopen, freopen, fdopen subroutines, fread
subroutine, getc, fgetc , getchar, getw subroutines, getwce, fgetwe, getwchar subroutines,
gets, fgets subroutines, puts, fputs subroutines, putws, fputws subroutines, scanf,
fscanf, sscanf, NLscanf, NLsscanf subroutines.

National Language Support Overview in General Programming Concepts

Base Operating System Runtime 1-245

hsearch,...

hsearch, hcreate, or hdestroy Subroutine

Purpose
Manages hash tables.

Library
Standard C Library (libc.a)

Syntax

#include <search.h>

ENTRY *hsearch (/tem, Action)
ENTRY /tem;
Action Action;

int hcreate (NumberOfElements)
unsigned int NumberOfElements;
void hdestroy ()

Description
The hsearch subroutine is a hash table search routine. It returns a pointer into a hash table

that indicates the location of a given entry. The hsearch subroutine uses open addressing
with a multiplicative hash function.

The hcreate subroutine allocates sufficient space for the table. You must call the hcreate
subroutine before calling the hsearch subroutine.

The hdestroy subroutine deletes the hash table. This allows you to start a new hash table
since only one table can be active at a time.

Parameters

Item Identifies a structure of the type ENTRY as defined in the search.h header
file. It contains two pointers:

Item.key Points to the comparison key.
ltem.data Points to any other data associated with that key.
Pointers to types other than char should be cast to pointer-to-character.

Action Specifies a value of the Action enumeration type that indicates what is to be
done with an entry if it cannot be found in the table:

ENTER Enters the Item into the table at the appropriate point. [f the
table is full, a NULL pointer is returned.

FIND Does not enter the Item into the table, but returns a NULL
pointer if the ltem cannot be found.

NumberOfElements

Provides an estimate of the maximum number of entries that the table
contains. Under some circumstances, the hcreate subroutine may actually
make the table larger than specified.

1-246 Base Operating System Reference

hsearch,...

Return Values
Upon successful completion, the hcreate subroutine returns a value of 1.

Error Code
The hcreate subroutine returns a value of 0 if it cannot allocate sufficient space for the table.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The bsearch subroutine, Isearch subroutine, tsearch subroutine.

Base Operating System Runtime 1-247

hypot,...

hypot or cabs Subroutine

Purpose ‘
Computes the Euclidean distance function and complex absolute value.
Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)
Syntax
#include <math.h>
double hypot (x,)
double x, y;
double cabs (2)
struct {double x, y;} z;
Description
The hypot subroutine and cabs subroutine compute sqrt (x**2 + y**2) in such a way that
underflow will not occur, and overflow occurs only if the final result warrants it.
The cabs subroutine is commonly referred to as computing the complex absolute value.
Note: Compile any routine that uses subroutines from the libm.a library with the —Im flag.
To compile the hypot.c file, for example:
cc hypot.c —1m
Parameters
X Specifies some double-precision floating-point value.
% Specifies some double-precision floating-point value.
z Specifies a structure that has two double elements (z = xi + yj).

Error Codes

- 1-248

When using libm.a (-Im):
If the correct value overflows, the hypot subroutine returns HUGE_VAL.
Note: hypot (INF, value) = hypot (value, INF) = +INF for all values, even if value = NaN.

When using libmsaa.a (-Imsaa):

If the correct value overflows, the hypot subroutine returns HUGE_VAL and sets the global
variable errno to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (~Imsaa).

Base Operating System Reference

hypot,...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The sqrt subroutine, matherr subroutine.

Base Operating System Runtime 1-249

IMAIXMapping

IMAIXMapping Subroutine

Purpose
Translates a pair of KeySymbol and State to a string and returns a pointer to this string.

Library
Input Method Library (libiM.a)

Syntax

caddr_t IMAIXMapping (/MMap, KeySymbol, State, NBytes)
IMMap /mmap;

KeySym KeySymbol,

uint State;

int "NBytes;

Description
The IMAIXMapping subroutine translates a pair of KeySymbo/ and State to a string and
returns a pointer to this string.

This function handles the diacritic character sequence and ALT NumPad sequence
Parameters

IMMap Identifies the keymap

KeySymbol Key symbol to which the string is mapped.

State State to which the string is mapped.

NBytes Returns the length of the returning string.
Return Values

If the length set by the NBytes parameter has a postive value, the IMAIXMapping

subroutine returns a pointer to the returning string. Note that the returning string is not null
terminated.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMInitializeKeymap subroutine, IMFreeKeymap subroutine, IMSimpleMapping
subroutine.

AIX Input Method Overview in General Programming Concepts.

1-250 Base Operating System Reference

IMAuxCreate

IMAuxCreate Subroutine

Purpose
Callback function that tells the application program to create an Auxiliary area.
Syntax
int IMAuxCreate(/M, AuxiliarylD, UData)
IMObject /M;
caddr_t *AuxiliaryID;
caddr_t UData;
Description
The IMAuxCreate subroutine is invoked by the Input Method if it wants to create an Auxiliary
area. The Auxiliary area may contain several different forms of data and is not restricted by
the interface.
Most Input Methods will only have a single Auxiliary area displayed at a time but callbacks
must be capable of handling multiple Auxiliary areas.
Parameters
M Indicates the Input Method instance.
AuxiliarylD Identifies the newly created Auxiliary area.
UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values
On successtul return of the IMAuxCreate subroutine, an id of the created Auxiliary area is

set to the Auxiliary/D parameter and IMNoError is returned. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMCreate subroutine.

AIX input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-251

IMAuxDestroy

IMAuxDestroy Subroutine

Purpose
Callback function that notifies the Callback API to destroy any knowledge of all the Auxiliary
areas.
Syntax
int IMAuxDestroy(/M, AuxiliarylD, UData)
IMObject /M;
caddr_t AuxiliarylD;
caddr_t UData;
Description
The IMAuxDestroy subroutine is called by the Input Method when the auxiliary area should
be destroyed.
Parameters
M Indicates the Input Method instance.
AuxiliarylD Identifes the Auxiliary area to be destroyed.
UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values
If an error happens, the IMAuxDestroy subroutine returns IMError. Otherwise, IMNoError
is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

1-252 Base Operating System Reference

IMAuxDraw

IMAuxDraw Subroutine

Purpose ‘
Callback function that tells the application program to draw the auxiliary area.
Syntax
int IMAuxDraw(/M, AuxiliaryID, Auxiliaryinformation, UData)
IMObject /M;
caddr_t AuxiliaryID;
IMAuxinfo *Auxiliaryinformation;
caddr_t UData;
Description
The IMAuxDraw subroutine is invoked by the Input Method when the Auxiliary area should
be drawn. The Auxiliary area should also be created if it has not previously been done.
Parameters
M Indicates the Input Method instance.
AuxiliarylD Identifies the auxiliary area.
AuxiliaryInformation Points to the IMAUXINFO structure.
UData Application datum specified in the parameter of the IMCreate
subroutine.

Return Values
If an error happens, the IMAuxDraw subroutine returns IMError. Otherwise, IMNoError is
returned. ~

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMAuxCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-253

IMAuxHide

IMAuxHide Subroutine

Purpose
Callback function that tells the application program to hide the Auxiliary area.
Syntax
int IMAuxHide(/M, AuxiliarylD, UData)
IMObject /M;
caddr_t AuxiliarylD;
caddr_t UData;
Description
The IMAuxHide subroutine is called by the Input Method when the Auxiliary area should be
hidden.
Parameters
M Indicates the Input Method instance.
AuxiliarylD Identifies the Auxiliary area to be hidden.
UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values
If an error occurs, the IMAuxHide subroutine returns IMError. Otherwise, IMNoOETrror is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMAuxCreate subroutine.

AlX Input Method Overview in General Programming Concepts.

1-254 Base Operating System Reference

IMBeep

IMBeep Subroutine
Purpose
Callback function that tells the application program to emit a beep sound.
Syntax
int IMBeep(/M, Percent, UData)
IMObject /M;
int Percent;
caddr_t UData;
Description :
The IMBeep subroutine tells the application program to emit a beep sound.
Parameters
M Indicates the Input Method instance.
Percent Specifies the beep level. The value range is from —100 to 100 inclusively
and the value —100 means no beep.
UData An application datum specified by the parameter to the IMCreate
subroutine.

Return Values ,
If an error happens, the IMBeep subroutine returns IMError. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-255

imcalloc

imcalloc Subroutine

Purpose
Allocates space for an array.

Library
Input Method Library (libIM.a)

Syntax
caddr_t imcalloc(NumberOfElements, ElementSize)
uint NumberOfElements, ElementSize;

Description
The imcalloc subroutine allocates space for an array with the number of elements specified
by the NumberOfElements parameter. Each element is of the size specified by the
ElementSize parameter. The space is initialized to 0's.

Parameters
NumberOfElements Specifies the number of elements in the array.
ElementSize Specifies the size of each element.

Return Values
If an error happens during the imcalloc subroutine the abort subroutine is called.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The abort subroutine, imfree subroutine, immalloc subroutine, imrealloc subroutine.

AIX Input Method Overview in General Programming Concepts.

1-256 Base Operating System Reference

IMClose

IMClose Subroutine

Purpose
Closes the Input Method.
Library
Input Method Library (liblM.a)
Syntax
void IMClose(/mfep)
IMFep Imfep;
Description
The IMClose subroutine closes the Input Method. All Input Method instances, previously
created, must be destroyed using the IMDestroy subroutine before calling the IMClose
subroutine or memory will not be cleared.
Parameters

Imfep Specifies the Input Method.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMDestroy subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-257

IMCreate

IMCreate Subroutine

Purpose
Creates one instance of an IMObject for a particular Input Method.
Library
Input Method Library (libIM.a)
Syntax
IMObject IMCreate(/Mfep, IMCallback, UData)
IMFep /Mfep;
IMCallback */MCallback;
caddr_t UData,
Description
The IMCreate subroutine creates one instance of a particular Input Method. Several Input
Method instances can be created under one Input Method.
Parameters

IMfep Specifies the Input Method.
IMCallback A pointer to the caller supplied IMCallback structure.

UData The optional UData parameter may be used to pass an application own
information to the CALLBACK functions. Using this, the application can
avoid the external references from the CALLBACK functions. The Input
Method never changes this parameter, it merely passes it to the CALLBACK
functions. The UData parameter is usually a pointer to the application data
structure which may contain the information about location, font id, and so
forth.

Return Values
The IMCreate subroutine returns a pointer to the created Input Method instance of type
IMObject. If the subroutine fails, NULL is returned and the global variable imerrno is set to
indicate the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMProcess subroutine, IMDestroy subroutine.

AIX Input Method Overview in General Programming Concepts.

1-258 Base Operating System Reference

IMDestroy

IMDestroy Subroutine

Purpose
Destroys an Input Method instance.
Library
Input Method Library (liblM.a)
Syntax
void IMDestroy(/M)
IMObject /M;
Description
The IMDestroy subroutine destroys an Input Method instance.
Parameters

M Specifies the Input Method instance to be destroyed.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMCreate subroutine, IMClose subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-259

‘imfree

imfree Subroutine

Purpose
Frees a block of memory.
Library
Input Method Library (libIM.a)
Syntax
void imfree(Pointer)
caddr_t Pointer;
Description
The imfree subroutine frees the block of memory pointed to by the Pointer parameter.
Parameter

Pointer Points to a block of memory. The block pointed to by the Pointer parameter
must have been previously allocated by the imcalloc subroutine.

Implementation Specifics
This subroutine is part of AIX.Base Operating System (BOS) Runtime.

Related Information
The imcalloc subroutine, immalloc subroutine, imrealloc subroutine.

AIX Input Method Overview in General Programming Concepts.

- 1-260 Base Operating System Reference

IMFreeKeymap

IMFreeKeymap Subroutine

Purpose
Frees resources allocated by the IMinitializeKeymap subroutine.
Library
Input Method Library (libIM.a)
Syntax
void IMFreeKeymap(/MMap)
IMMap /MMap;
Description
The IMFreeKeymap subroutine frees resources allocated by the IMInitializeKeymap
subroutine.
Parameter
IMMap Identifies the keymap.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMInitializeKeymap subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-261

IMIndicatorDraw

IMIndicatorDraw Subroutne

Purpose
Callback function that tells the application program to draw the indicator.
Syntax
int IMindicatorDraw(/M, Indicatorinformation, UData)
IMObject /M;
IMIndicatorinfo *Indicatorinformation;
caddr_t UData;
Description |
The IMIndicatorDraw subroutne is called by the Input Method when the value of the
indicator is changed.
Parameters
m Indicates the Input Method instance.
lndicatorlnformétion

Points to the IMIndicatorinfo structure that hold the current value of the
Indicator. However, the interpretation of this value varies among (phonic)
~ languages. The Input Method provides a function to interpret this value.

UData An application datum specified by the parameter to the IMCreate subroutine.
Return Values

If an error happens, the IMIndicatorDraw subroutne returns IMError. Otherwise,
IMNoETrror is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMIndicatorHide subroutne.

AlX Input Method Overview in General Programming Concepts.

1-262 Base.Operating System Reference

IMindicatorHide

IMindicatorHide Subroutine

Purpose
Callback function that tells the application program to hide the indicator.
Syntax
int IMindicatorHide(/M, UData)
IMObject /M;
caddr_t UData;
Description
The IMindicatorHide subroutine is called by the Input Method when the Indicator shoul!d be
hidden.
Parameters
IM Indicates the Input Method instance.
UData An application datum specified by the parameter to the IMCreate
subroutine.

Return Values
If an error happens, the IMIndicatorHide subroutine returns IMError. Otherwise,
IMNoETrror is returned.

Implementation Specifics
This subroutine is part of AiX Base Operating System (BOS) Runtime.

Related Information
The IMIndicatorDraw subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-263

IMInitialize

IMInitialize Subroutine

Purpose
Initializes the Input Method for a particular language.
Library
Input Method Library (libIM.a)
Syntax
IMFep IMInitialize(Language)
IMLanguage Language;
Description
The IMInitialize subroutine initializes the Input Method for a particular language. Each Input
Method can produce one or more Input Method instances, which are created by calling the
IMCreate subroutine.
Parameters

Language Specifies the language to be used. Each Input Method is dynamically linked
to the application program.

Return Values
If IMInitialize succeeds, it returns a handle of type IMFep. Otherwise, NULL is returned and
the global variable imerrno is set to indicate the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

1-264 Base Operating System Reference

IMInitializeKeymap

IMInitializeKeymap Subroutine

Purpose
Initializes the keymap associated to the specified language.
Library
Input Method Library (libIM.a)
Syntax
IMMap IMInitalizeKeymap(Language)
IMLanguage Language;
Description
The IMInitializeKeymap subroutine initializes the keymap associated to the specified
language. The Keyboard Mapping Table defines the keymap searching order.
Parameter

Language Specifies the language to be used.

Return Values :
The IMInitializeKeymap subroutine returns an identifier of type IMMap. Returning NULL
means the occurrence of an error. IMMap is type defined in the im.h as caddr_t. This
identifier is used for keymap manipulation functions. :

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMQuerylLanguage subroutine, IMFreeKeymap subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-265

IMloctl

IMloctl Subroutine

Purpose
Performs a variety of control or query operations on the Input Method.
Library
Input Method Library (libIM.a)
Syntax
int IMloctl(/M, Operation, Argument)
IMObject /M;
int Operation;
char "Argument;
Description '
The IMloctl subroutine performs a variety of control or query operations on the Input Method
specified by the /M parameter. In addition, the IMloctl subroutine can be used to control
unique function of each language Input Method.
Parameters
M Specifies the Input Method instance.
Operation Specifies the operation.
Argument The use of this parameter depends on the particular operation performed.

The following operations are defined across languages.

IM_Refresh Refresh the text area, Auxiliary area and Indicator by calling
the needed callback functions if these area's contents are
not empty. The Argument parameter is not used.

IM_GetString The application can use this operation to get the current
pre-editing string. The Argument parameter is an address of
the IMSTR structure supplied by the caller. The callback
function is invoked to clear the pre-editing if it exists.

IM_Clear Clears the text area and the Auxiliary area if they exist. If
the Argument parameter is not NULL, this operation will
invoke the callback functions to clear the screen.

IM_Reset Clears the Auxiliary area if it currently exists. If the
Argument parameter is NULL, it clears only the Input
Method’s internal buffer, otherwise, the required callback
functions are invoked.

IM_ChangelLength
Used to change the maximum length of the pre—editing
string.

IM_QueryState This operation returns the status of the text area, the
Auxiliary area and the Indicator. It also returns beep status
and the processing mode. The results are stored into the
caller supplied IMQueryState structure pointed to by the
Argument parameter.

1-266 Base Operating System Reference

IMloctl

IM_QueryText Returns the detailed information about the text area. The
results are stored in the caller supplied IMQueryText
structure pointed to by the Argument parameter.

IM_QueryAuxiliary
Returns the detailed information about the Auxiliary area.
The results are stored in the caller supplied
IMQueryAuxiliary structure pointed to by the Argument
parameter.

IM_Queryindicator
Returns the detailed information about the Indicator. The
results are stored in the caller supplied IMQueryindicator
structure pointed to by the Argument parameter.

IM_Query!ndicatorString
Returns the Indicator string corresponding to the current
indicator. Results are stored into the caller supplied
IMQueryindicatorString structure pointed to by the
Argument parameter. The caller can request either short
form or long form by specifying in the format member of the
IMQuerylndicatorString structure.

Return Values
The IMloctl subroutine returns IMError if the error happens. In this case, the global variable
imerror is set to indicate the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMProcess subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-267

immalloc

immalloc Subroutine

Purpose
Returns a pointer to a block of memory of at least the number of bytes specified by the Size
parameter.

Library
Input Method Library (liblM.a)

Syntax
caddr_t immalloc(Size)
uint Size;

Description
The immalloc subroutine returns a pointer to a block of memory of at least the number of
bytes specified by the Size parameter. The block is aligned so that it can be used for any
type of data.

Parameter
Size Specifies the size, in bytes, of the memory block.

Return Values
If an error happens during the immalloc subroutine, the subroutine calls the abort
subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The imcalloc subroutine, imfree subroutine, imrealloc subroutine.
The abort subroutine.

AIX Input Method Overview in General Programming Concepts.

1-268 Base Operating System Reference

IMProcess

IMProcess

Purpose

Subroutine

Processes keyboard events and does the language specific input processing.

Library

Input Method Library (libiM.a)

Syntax

int IMProcess (IM, KeySymbol, State, String, Length)
IMObject IM;

KeySym KeySymbol;

uint State;

caddr_t “String;

uint “Length;

Description

This is a main entry points to the Input Method.

The IMProcess subroutine processes one keyboard event at a time.

Processing of the IMProcess subroutine may look like the following:

1.

A I

Parameters
M

Validates the /M parameter.

Keyboard translation for all its supported modifier states.

invokes internal function to do language dependent processing.

Performs any necessary Callback functions depending on the internal state.

Returns to application, setting the String and Length parameters appropriately.

Specifies the Input Method instance.

KeySymbol Defines the set of keyboard symbols that will be handled.

State State of the keyboard.

String Holds the returned string. Returning NULL means that the input is used or

discarded by the Input Method.

Note: The String parameter is not a null terminated string.

Length Stores the length of the String parameter in bytes.

Return Values
The return code for the IMProcess subroutine has one of the following meanings:

IMError Error caused during this subroutine.
IMTextAndAuxiliaryOff No text string in the Text area and the Auxiliary area is not
shown.

Base Operating System Runtime 1-269

IMProcess

IMTextOn Text string in the Text area but no Auxiliary area.

IMAuxiliaryOn No text string in the Text area and the Auxiliary area is
shown.

IMTextAndAuxiliaryOn Text string in the Text area and the Auxiliary is shown.

This function returns IMError if the error happens. In this case, the global variable imerrno
is set to indicate the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMCreate subroutine, IMClose subroutine.

AIX Input Method Overview in General Programming Concepits.

1-270 Base Operating System Reference

IMProcessAuxiliary

IMProcessAuxiliary Subroutine

Notifies the Input Method of input for an Auxiliary area.

int IMProcessAuxiliary (/M, AuxiliaryID, Button, PanelRow, PanelColumn,

The IMProcessAuxiliary subroutine is used to notify the Input Method instance of input for

Purpose
Library
Input Method Library (liblM.a)
Syntax
itemRow, ItemColumn)
IMObject /M;
caddr_t AuxiliaryID;
uint Button;
uint PanelRow;
uint PanelColumn;
uint /temRow;
uint /temColumn;
Description
an Auxiliary area.
Parameters
M
AuxiliarylD
Button Tells the type of input
iM_OK
IM_CANCEL
IM_ENTER
IM_RETRY
IM_ABORT
IM_IGNORE
IM_YES
IM_NO
IM_HELP
IM_SELECTED
PanelRow

Specifies the Input Method instance.

Identifies the Auxiliary area that has process.

OK button is pushed.
CANCEL button is pushed.
ENTER button is pushed.
RETRY button is pushed.
ABORT button is pushed.
IGNORE button is pushed.
YES button is pushed.

NO button is pushed.
HELP button is pushed.

Selection has been made. Only in this case, the
PanelRow, PanelColumn, ItemRow, and ltemColumn
parameters have meaningful values.

Indicates the panel on which the selection event occurred.

Base Operating System Runtime 1-271

IMProcessAuxiliary

PanelColumn Indicates the panel on which the selection event occurred.
ItemRow Indicates the selected item.
ItemColumn Indicates the selected item.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMAuxCreate subroutine.

AlX Input Method Overview in General Programming Concepts.

1-272 Base Operating System Reference

IMQueryLanguage

IMQueryLanguage Subroutine

Purpose
Checks to see if the specified (phonic) language is supported.
Library
Input Method Library (libIM.a)
Syntax
uint IMQueryLanguage(Language)
IMLanguage Language;
Description
The IMQueryLanguage subroutine checks to see if the specified (phonic) language
specified by the Language parameter is supported.
The keyboard mapping table in the Understanding Keyboard Mapping article in General
Programming Concepts contains a listing of supported languages and their names.
Parameter

Language The specified (phonic) language.

Return Values
The IMQueryLanguage subroutine returns true if the specified language is supported.
Otherwise, false is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMinitialize subroutine, IMClose subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-273

imrealloc

imrealloc Subroutine

Purpose
Changes the size of a block of memory.
Library
Input Method Library (liblM.a)
Syntax
caddr_t imrealloc(Pointer, Size)
caddr_t Pointer;
uint Size;
Description
The imrealloc subroutine changes the size of the block of memory pointed to by the Pointer
parameter to the number of bytes specified by the Size parameter, and then it returns a
pointer to the block. The contents of the block remain unchanged up to the lesser of the old
and new sizes.
Parameters
Pointer Points to a block of memory.
Size Specifies, in bytes, the new size of the block.

Return Values
If an error happens during the imrealloc subroutine, the subroutine calls the abort
subroutine.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The imcalloc subroutine, imfree subroutine, immalloc subroutine.
The abort subroutine.

AIX Input Method Overview in General Programming Concepts.

1-274 Base Operating System Reference

IMRebindCode

IMRebindCode Subroutine

Purpose A
Rebinds the string to the specified KeySymbol and State pair.

Library
Input Method Library (libiM.a)

Syntax
IMRebindCode(/MMap, KeySymbol, State, String, NBytes)
iIMMap IMMap;
KeySym KeySymbol;
uint State;
caddr_t String;
int NBytes;

Description
The IMRebindCode subroutine can be used to rebind the string to the specified KeySymbol
and State pair. It changes the binding of the keyboard temporarily. After issuing the
IMRebindCode subroutine, subsequent calls to the IMAIXMapping or IMSimpleMapping
subroutines return the supplied string instead of the string found in the keymap file.
If the NBytes parameter is zero and the String parameter is not NULL, then the String
parameter points to a 2—byte array that contains the code page and code points of a dead
key. If the String parameter is NULL and NBytes is not zero, then NBytes defines a function
ID.

Parameters

IMMap Specifies the keymap.

KeySymbol Key symbol to which the String parameter is bound.

State State to which the String parameter is bound.
String Rebinding string.
NBytes Length of the rebinding string.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The IMinitializeKeymap subroutine, IMFreeKeymap subroutine, IMSimpleMapping
subroutine, IMAIXMapping subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-275

IMSimpleMapping

IMSimpleMapping Subroutine

Purpose
Translates a pair of KeySymbol and State parameters to a string and returns a pointer to this
string.
Library
Input Method Library (libiM.a)
Syntax
caddr_t IMSimpleMapping (/MMap, KeySymbol, State, NBytes)
IMMap /IMMap;
KeySym KeySymbol;
uint State;
int “NBytes;
Description
Like the IMAIXMapping subroutine, the IMSimpleMapping subroutine translates a pair of
KeySymbol and State parameters to a string and returns a pointer to this string. All the
parameters have the same meaning as those in the IMAIXMapping subroutine.
The IMSimpleMapping subroutine differs from the IMAIXMapping subroutine in that this
function does not support the diacritic character sequence or the ALT NumPad sequence.
Parameters

IMMap Identifies the keymap
KeySymbol Key symbol to which the string is mapped.
State State to which the string is mapped.

NBytes Returns the length of thé returning string.

Implementation Specifics

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-276

The IMAIXMapping subroutine, IMFreeKeymap subroutine, IMinitializeKeymap
subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Reference

IMTextCursor

IMTextCursor Subroutine

Purpose
Callback function that sets the new display cursor position.
Syntax
int IMTextCursor(/M, Direction,
Cursor, UData)
IMObject IM;
uint Direction;
int *Cursor;
caddr_t UData;
Description
The IMTextCursor subroutine is invoked by Input Method when the cursor up or down key is
input to the IMProcess subroutine.
This subroutine sets the new display cursor position in the text area to the integer pointed to
by the Cursor parameter. The cursor position is relative to the top of the text area or —1 if
the cursor should not be moved.
This subroutine is a hook of the Input Method which always treats a text string as one
dimensional because the Input Method does not know about actual screen. However, in the
terminal emulator, text string sometimes wraps to the next line, namely, it occupies multiline.
This single— to multi— line conversion is done in this subroutine. So the cursor up or down
should be interpreted by the subroutine, and the subroutine informs the corresponding
cursor position relative to the text string to the AIX Input Method.
Parameters
M Indicates the input Method instance.
Direction Specifies Up or Down.
- Cursor The new cursor position or —1.
UData An application datum specified in the parameter of the IMCreate function.

Return Values
If an error happens, the IMTextCursor subroutine returns IMError. Otherwise, IMNoOError
is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMTextDraw subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-277

IMTextDraw

IMTextDraw Subroutine

Purpose
Callback function that tells the application program to draw the text string.
Syntax
int IMTextDraw(/M, TextInfo, UData)
IMObject /M;
IMTextinfo *Textinfo;
caddr_t UData;
Description
The IMTextDraw subroutine is invoked by the Input Method whenever it needs to update the
screen with its internal string.
Parameters
M Indicates the Input Method instance.
Textinfo Points to the IMTextInfo structure.
UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values
If an error happens, the IMTextDraw subroutine returns IMError. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts

1-278 Base Operating System Reference

IMTextHide

IMTextHide Subroutine

Purpose
Callback function that tells the application program to hide the text area.
Syntax
int IMTextHide(/M, UData)
IMObject /M;
caddr_t UData,
Description
The IMTextHide subroutine is invoked by the Input Method when the text area should be
cleared.
Parameters
M Indicates the Input Method instance.
UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values
If an error happens, the IMTextHide subroutine returns IMError. Otherwise, IMNoOError is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMTextDraw subroutine.

AIX Input Method Overview in General Programming Concepts.

Base Operating System Runtime 1-279

IMTextStart

IMTextStart Subroutine

Purpose
Callback function that notifies the application program of the length of the pre—editing space.
Syntax
int IMTextStart(/M, Space, UData)
IMObject /M;
int *Space;
caddr_t UData;
Description
The IMTextStart subroutine is invoked by the Input Method when the pre—editing is started,
prior to drawing anything. The purpose of this function is to notify the Input Method of the
length of the pre—editing space. This function sets the Iength of the available space (>=0) on
the display to the integer pointed to by the Space parameter. Setting a value of —1 is
acceptable to indicate that the pre—editing space is dynamic.
For example, if the Text area where the pre—editing string is drawn to has a fixed length and
growing the pre—editing string beyond the right-most boundary wouldn’t be expected,
changing the maximum length of the pre—editing string must be possible because ususally
pre—editing starts at the current cursor position.
Parameters
M Indicates the Input Method instance.
Space Maximum length of pre-editing string.
UData An application datum specified in the parameter of the IMCreate subroutine.

Return Values

If an error happens, the IMTextStart subroutine returns IMError. Otherwise, IMNoError is
returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The IMCreate subroutine.

AIX Input Method Overview in General Programming Concepts.

1-280 Base Operating System Reference

initgroups

initgroups Subroutine

Purpose
Initializes concurrent group set.

Library
Standard C Library (libc.a)

Syntax
int initgroups (User, Basegid)
char *Usern
gid_t Basegid,

Description
The initgroups subroutine reads the defined group membership of the specified User and
sets the concurrent group set of the current process to that value. The Basegid parameter is
always included in the concurrent group set. It is normally the principal user’s group. If the
user is in more that NGROUPS_MAX groups, only NGROUPS_MAX groups are set,
including the Basegid group.

Warning: The initgroups subroutine uses the getgrent subroutines. If the program that
invokes initgroups uses any of these subroutines, then calling initgroups overwrites the
static group structure.

Parameters
User Specifies the user whose groups are to be used to initialize the group set.

Basegid Specifies an additional group to include in the group set.

Return Values
Upon successful completion, the initgroups subroutine returns a value of 0. If the

initgroups subroutine fails, a value of 1 is returned and the global variable errno is set to
indicate the error.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The getgroups subroutine, getgidx subroutine, setgidx subroutine, setgroups subroutine.
The getgid subroutine.

The setgroups command, groups command.

Base Operating System Runtime 1-281

insque

insque or remque Subroutine

Purpose
Inserts or removes an element in a queue.

Library
Standard C Library (libc.a)

Syntax
struct gelem |
struct gelem *next;
struct qgelem *prev;
char q_datal};
I
insque (Element, Pred)
struct gelem *Element, * Pred,

remque (Element)
struct gelem *Element;

Description
The insque subroutine and remque subroutine manipulate queues built from double-linked
lists. Each element in the queue must be in the form of a gelem structure. The next and
prev elements of that structure must point to the elements in the queue immediately before
and after the element to be inserted or deleted.

The insque subroutine inserts the element pointed to by the Element parameter into a
queue immediately after the element pointed to by the Pred parameter.

The remque subroutine removes the element defined by the Element parameter from a
queue.

Parameters

Pred Points to the element in the queue immediately before the element to be
inserted or deleted.

Element Points to the element in the queue immediately after the element to be
inserted or deleted.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

1-282 Base Operating System Reference

ioctl,...

ioctl or ioctix Subroutine

Purpose
Performs control functions associated with open file descriptors.
Syntax
#include <sys/ioctl.h>
#include <sys/types.h>
int ioctl (file_descriptor, cmd, argument)
int file_descriptor, cmd,
void *argument;
int ioctlix (file_descriptor, cmd, argument, ext)
int file_descriptor, cmd,
void *argument;
int ext;
Parameters
file_descriptor Specifies the open file descriptor for which the control operation is to
be performed.
cmd Specifies the control function to be performed. The value of this
parameter depends on which object is specified by the file_descriptor
parameter.
argument Specifies additional information required by the function requested in
the cmd parameter. The data type of this parameter (a void pointer) is
object-specific, and is typically used to point to an object
(device)-specific data structure. However, in some device-specific
instances, this parameter is used as an integer.
ext Specifies an extension parameter used with the ioctix subroutine. This
parameter is passed on to the object associated with the specified
open file descriptor. Although normally of type int, this parameter can
be used as a pointer to a device—specific structure for some devices.
Description

The ioctl subroutine performs a variety of control operations on the object associated with
the specified open file descriptor. This function is typically used with character or block
special files, with sockets, or with generic device support such as the termio general
terminal interface.

The control operation provided by this function call is specific to the object being addressed,
as are the data type and contents of the argument parameter. The ioctix form of this
function can be used to pass an additional extension parameter to objects supporting it.

Most AIX device drivers support a common ioctl operation, IOCINFQ, that returns device
information. This operation and the information returned is defined in the <sys/devinfo.h>
header file. This header file should be included if the IOCINFQ ioctl operation in to be used.
The argument parameter for this operation should point to a caller—provided devinfo
structure to be filled in by the device driver specified by the open file descriptor.

Base Operating System Runtime 1-283

ioctl,...

Specific device operations supported by the ioctl function are provided by the particular

" device driver, usually described with the relevant special file documentation. Refer to

Understanding Socket Data Transfers for a description of the ioctl operations supported by
socket objects.

Performing an ioctl function on a file descriptor associated with an ordinary file results in an
error being returned.

Return Values

If the ioctl subroutine fails, a value of —1 is returned. The errno global variable is set to
indicate the error.

Error Codes

The ioctl subroutine fails if one or more of the following are true:
EBADF The file_descriptor parameter is not a valid open file descriptor.

ENOTTY The file_descriptor parameter is not associated with an object that
accepts control functions.

ENODEV The file_descriptor parameter is associated with a valid character or

block special file, but the supporting device driver does not support the
ioctl function.

ENXIO The file_descriptor parameter is associated with a valid character or
block special file, but the supporting device driver is not in the
configured state.

EFAULT The argument or ext parameter is used to point to data outside of the
process’s address space.

EINVAL The emd or argument parameter is not valid for the specified object.

EINTR A signal was caught during the ioctl or ioctlx subroutine and the

process had not enabled re-startable subroutines for the signal.

Object—specific error codes are defined in the documentation for associated with the object.

Related Information

1-284

The ddioctl device driver entry point.

The fp_ioctl kernel service.

Understanding Socket Data Transfers.

Special Files Overview, in General Programming Concepts.

Understanding Block I/0 Device Drivers, in Kernel Extensions and Device Support
Programming Concepts.

Understanding Character I/O Device Drivers, in Kernel Extensions and Device Support
Programming Concepts.

Sockets Overview, in Communications Programming Concepts.

termio General Terminal Interface in General Programming Concepts.

Base Operating System Reference

Japanese conv

Japanese conv Subroutines

Purpose

Library

Translates characters.

Standard C Library (libc.a)

Japanese Language Support Syntax

When running AiX with Japanese Language Support on your system, the following

subroutines, stored in the libe.a library, are provided:

#include <jctype.h>
int atojis (Characten
int Character;

int jistoa (Character)
int Character;

int _atojis (Character)
int Character;

int _jistoa (Character)
int Character;

int tojupper (Character)
int Character;

int tojlower (Character)
int Character;

int _tojupper (Character)
int Character;

int _tojlower (Character)
int Character;

int toujis (Character)
int Character,

int kutentojis (Characten
int Character;

int tojhira (Character)
int Character;

int tojkata (Character)
int Character;

int NCwunesc (Pointer,CharacterPointer)
NLchar “Pointer, * CharacterPointer,

Base Operating System Runtime

1-285

Japanese conv

Description
The NCwunesc subroutine translate all characters, including extended characters, as code
points. The other subroutines translate traditional ASCII characters only.

When running AIX with Japanese Language Support on your system, the legal value of the
Character parameter is in the range from 0 to NLCOLMAX.

The jistoa subroutine converts an SJIS ASCIl equivalent to the corresponding ASCII
equivalent. The atojis subroutine converts an ASCII character to the corresponding SJIS
equivalent. Other values are returned unchanged.

The _jistoa and _atojis routines are macros that function like the jistoa and atojis
subroutines, but are faster and have no error checking function.

The tojlower subroutine converts a SJIS uppercase letter to the corresponding SJIS
lowercase letter. The tojupper subroutine converts an SJIS lowercase letter to the
corresponding SJIS uppercase letter. All other values are returned unchanged.

The _tojlower and _tojupper routines are macros that function like the tojlower and
tojupper subroutines, but are faster and have no error—checking function.

The toujis subroutine sets all parameter bits that are not 16-bit SJIS code to zero.

The kutentojis subroutine converts a kuten code to the corresponding SJIS code. The
kutentojis routine returns 0 if the given kuten code is invalid.

The tojhira subroutine converts an SJIS katakana character to its SJIS hiragana equivalent.
Any value that is not an SJIS katakana character is returned unchanged.

The tojkata subroutine converts an SJIS hiragana character to its SJIS katakana equivalent.
Any value that is not an SJIS hiragana character is returned unchanged.

The _tojhira and _tojkata subroutines attempt the same conversions without checking for
valid input.

The NCwunesc subroutine converts the escape sequence pointed to by the Pointer
parameter to a single NLchar pointed to by CharacterPointer. NCwunesc returns the
number of NLchar data types used in the translation.

For all functions except the toujis subroutine, the out—of-range parameter values are
returned without conversion.

Parameters
Character Character to be converted.
Pointer Pointer to the escape sequence.
CharacterPointer Pointer to a single NLchar.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The ctype subroutines, conv subroutines, getc, fgetc, getchar, getw, getwc, fgetwe,
getwchar subroutines, setlocale subroutine.

National Language Support Overview in General Programming Concepits.

1-286 Base Operating System Reference

Japanese ctype

Japanese ctype Subroutines

Purpose

Library

Japanese Language Support Syntax

Classifies characters.

Standard Character Library (libc.a)

When running AIX with Japanese Language Support on your system, the following

subroutines, stored in the libc.a library, are provided:

#include <jctype.h>
int isjalpha (Character)
int Character;

int isjupper (Characten
int Character;

int isjlower (Character)
int Character;

int isjlbytekana (Characten);

int Character;

int isjdigit (Character)
int Character;

int isjxdigit (Characten
int Character;

int isjalnum (Character)
int Character;

int isjspace (Character)
int Character;

int isjpunct (Character)
int Character;

int isjparen (Character)
int Character;

int isparent (Characten);
intCharacter;

int isjprint (Character)
int Character;

int isjgraph (Character)
int Character;

int isjis (Character)

Base Operating System Runtime 1-287

Japanese ctype

int Character;

int isjhira (Characten)

int Character;

int isjkanji (Character)

int Character;

int isjkata (Character)

int Character;

Description

The Japanese ctype subroutines classify character—coded integer values specitied in a -
table. Each of these subroutines returns a nonzero value for TRUE and 0 for FALSE.

The following list shows the classification functiosn for character sets within SJIS (SJIS).

isjis

isjhira

isjkata

isjkaniji

Characteris an SJIS character.

OxAQ0 - O0xDF
0x8140 — Ox817E 0x8180 —~ 0x81FC

| | I |
0x9F40 — Ox9F7E 0x9F80 — Ox9FFC
0xE040 — 0XEO7A 0xE080 - OXEOFC

| | I |
O0xFC40 — 0xFC7E 0xFC80 - OxFCFC

Characteris a hiragana character.
0x829F — 0x82F1
Character is a katakana character.

0x8340 — 0x837E 0x8380 — 0x8396
0xA0 — OxDF

Characteris a kanji character.

0x889F — 0x88FC
0x8940 — Ox897E 0x8980 — 0x89FC

| I | |
0x9740 ~ 0x977E 0x9780 — 0x97FC
0x9840 — 0x9872 0x989F — 0x98FC
0x9940 ~ 0x997E 0x9980 — 0x99FC

| | | I
0x9F40 — Ox9F7E 0x9F80 ~ OxSFFC
0xE040 — OxEO7E 0xE080 — OxEQFC

| | | |
0xE940 — OxEQ7E 0xE980 — OxEQFC
0xEA40 — OXxEA7E OxEA80 — OxEAA2
0xFAS5C — OxFA7E 0xFA80 — OxFAFC
0xFB40 - 0xFB7E 0xFB80 — OxFBFC
0xFC40 — OxFC4B

The following list shows the classification functions for double-width equivalents within SJIS.

isjalpha

Characteris an alphabetic SJIS character.

0x8260 — 0x8279 0x8281 — Ox829A

1-288 Base Operating System Reference

isjspace

isjpunct

Japanese ctype

Characteris a space SJIS character.
0x8140

Characteris a punctuation SJIS character (neither a control character nor
an alphanumeric character).

0x8141- 0x8151 0x815A — 0x8198 0x81F5 — Ox81

isjparent and isjparen

isjdigit

isjxdigit

isjuppetr

isjlower

isjprint

Character is a bracketing SJIS character.

0x8169 — 0x817A

Characteris a digit SJIS character in the range [0-9].
0x824F — 0x8258

Character is an Arabic hexadecimal SJIS character in the range [0-9],
[A—F], or [a-1].

0x824F — 0x8258
0x8260 — 0x8265
0x8281 — 0x8286

Characteris an uppercase SJIS character.

0x8260 — 0x8279

Characteris a lowercase SJIS character.

0x8281 — 0xB2%A

Characteris a printing SJIS character, including the space character.

8140 - 817E
8180 - 81AC
81B8 - 81BF
81C8 -81C9
81CB - 81CE
81DA - 81E5
81E7 - 81E8
81F0 - 81F7
81FC

824F — 8258
8260 — 8279
8281 - 829A
829F - B2F1
8340 - 837E
8380 — 8396
839F - 83B6
83BF - 83D6
8440 — 8460
8470 —847E
8480 — 8491
849F — 84BE
889F — 88FC
8940 — 897E 8980 — 89FC

Base Operating System Runtime 1-289

Japanese ctype

9740 - 977E 9780 - 97FC
9840 — 9872 989F - 98FC
9940 - 997E 9980 — 99FC

I l | l
9F40 — 9F7E 9F80 — 9FFC
E040 - EO7E E080 - EOFC

l | I |
E940 - E97E E980 - E9FC
EA40 — EA7E EAS0 - EAA2
FA40 — FA7E FA80 - FAFC
FB40 - FB7E FB80 - FBFC
FC40 — FC4B

isjgraph Characteris a printing SJIS character, excluding the space character.

8141 - 817E
8180 -81AC
81B8 - 81BF
81C8 -81C9
81CB - 81CE
81DA - 81E5
81E7 - 81E8
81F0 - 81F7
81FC

824F — 8258
8260 - 8279
8281 — 829A
829F - 82F1
8380 - 8396
839F - 8386
83BF - 83D6
8440 - 8460
8470 - 847E
8480 - 8491
849F — 84BE
889F - 88FC
8940 - 897E 8980 - 89FC

I | I |
9740 - 977E 9780 - 97FC
9840 — 9872 989F — 98FC
9940 - 997E 9980 — 99FC

l I l I
9F40 - 9F7E 9F80 — 9FFC
E040 — EO7E E080 - EOFC

| | | |
E940 ~ E97E E980 - E9FC
EA40 — EA7E EAS80 - EAA2
FA40 - FA7E FA80 - FAFC
FB40 - FB7E FB80 — FBFC
FC40 - FC4B8340 - 837E

Parameter

Character Character to be tested.

Return Values

1-290

The isjprint and isjgraph subroutines return a 0 value for user—defined characters.

Base Operating System Reference

Japanese ctype

Implementation Specifics
These subroutines are part of AlX Base Operating System (BOS) Runtime.

Related Information
The ctype subroutines, NCctype subroutines and setlocale subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-291

jcode

jcode Subroutines

Purpose N ,
Perform string conversion on 8—bit processing codes.

Library :
Standard C Library (libc.a)

Japanese Language Support Syntax
When running AlX with Japanese Language Support on your system, the following
subroutines, stored in libc.a, are provided:

#include <jcode.h>.

char *jistosj(String1, String2)
char *String1, *String2;

char *jistouj(String1, String2)
char *String1, *String2;

char *sjtojis(String1, String2)
char *String1, *String?2;

char *sjtouj(String1, String2)
char *String1, *String2;

char *ujtojis(String1, String2)
char *String1, *String2;

char *ujtosj(String1, String2)
char *String1, *String2;

char *cjistosj(String1, String2)
char *String1, *String2;

char *cjistouj(String1, String2)
char *String1, *String2;

char *csjtojis(String1, String2)
char *String 1, *String2;

char *csjtouj(String1, String2)
char *String1, *String?2;

char *cujtojis(String1, String2)
char *String1, *String2;

char *cujtosj(String1, String2)
char *String1, *String2;

1-292 Base Operating System Reference

jcode

Description
The jistosj, jistouj, sjtojis, sjtouj, ujtojis, and ujtosj subroutines perform string conversion
on 8-bit processing codes. The String2 parameter is converted and the converted string is
stored in the String1 parameter. The overflow of the String? parameter is not checked. Also,
the String2 parameter must be a valid string. Code validation is not permitted.

The jistosj subroutine converts JIS to SJIS. The jistouj subroutine converts JIS to UJIS.
The sjtojis subroutine converts SJIS to JIS. The sjtouj subroutine converts SJIS to UJIS.
The ujtojis subroutine converts UJIS to JIS. The ujtosj subroutine converts UJIS to SJIS.

The cjistosj, cjistouj, csjtojis, csjtouj, cujtojis, and cujtosj macros perform code
conversion of 8-bit processing JIS Kaniji characters. A character is removed from the String2
parameter, its code is converted and stored in the String1 parameter. The String1 parameter
is returned. The validity of the String2 parameter is not checked.

The cjistosj macro converts from JIS to SJIS. The cjistouj macro converts from JIS to
UJIS. The csijtojis macro converts from SJIS to JIS. The csjtouj macro converts from SJIS
to UJIS. The cujtojis macro converts from UJIS to JIS. The cujtosj macro converts from

UJIS to SJIS.

Parameters
String1 Stores converted string or code.
String2 String or code to be converted.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The Japanese conv subroutines, Japanese ctype subroutines.

Base Operating System Runtime 1-293

kill,...

kill or killpg Subroutine

Purpose»

Library

Syntax

Sends a signal to a process or to a group of processes.

Standard C Library (libc.a)

int kill(Process, Signal)
pid_t Process;
int Signal;

killpg(ProcessGroup, Signal)
int ProcessGroup;
int Signal;

Description

The kill subroutine sends the signal specified by the Signal parameter to the process or
group of processes specified by the Process parameter.

To send a signal to another process, either the real or the effective user ID of the sending
process must match the real or effective user ID of the receiving process, and the caliing
process must have root user authority.

The processes that have the process IDs 0 and 1 are special processes and are sometimes
referred to here as proc0O and proc1, respectively.

Processes can send signals to themselves.

Note: Sending a signal does not imply that the operation is successful. All signal operations
must pass the-access checks prescribed by each enforced access control policy on
the system.

Parameters

1-294

Process Specifies the process or group of processes.

If the Process parameter is greater than 0, the signal specified by the
Signal parameter is sent to the process that has a process ID equal to
the value of the Process parameter.

If the Process parameter is 0, the signal specified by the Signa/
parameter is sent to all of the processes, excluding procO and proc1,
whose process group ID is equal to the process group ID of the
sender.

If the Process parameter is —1, the signal specified by the Signal
parameter is sent to all of the processes, excluding proc0 and proc1, if
the calling process passes the access checks for the process to be
signalled. If the calling process effective user ID has root user
authority, all processes, excluding proc0 and proc1, are signalled.

If the Process parameter is negative but not —1, the signal specified by
the Signal parameter is sent to all of the processes which have a

Base Operating System Reference

kill,...

process group 1D equal to the absolute value of the Process
parameter.

Signal Specifies the signal. If the Signal parameter is 0 (the null signal), error
checking is performed but no signal is sent. This can be used to check
the validity of the Process parameter.

ProcessGroup Specifies the process group.

Return Values

Upon successful completion, the kill subroutine returns a value of 0. Otherwise, a value of
—1 is returned and the global variable errno is set to indicate the error.

Error Codes

The kill subroutine fails and no signal is sent if one or more of the following are true:

EINVAL The Signal parameter is not a valid signal number.

EINVAL The Signal parameter is SIGKILL, SIGSTOP, SIGTSTP or SIGCONT and
the Process parameter is 1 (proc1).

ESRCH No process can be found corresponding to that specified by the Process
parameter.

EPERM The real or effective user ID does not match the real or effective user ID of
the receiving process, or the calling process does not have root user
authority.

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.
The following interface is provided for BSD Compatibility:

killpg(ProcessGroup, Signal)
int ProcessGroup;
int Signal,

is equivalent to:

if (ProcessGroup < 0)

errno = ESRCH;
return (—1);

return (kill(—ProcessGroup, Signal));

Related Information

The getpid, getpgrp, getppid subroutines, setpgid, setpgrpsubroutines, sigaction,
signal, sigvec subroutines.

The kill command.

Base Operating System Runtime 1-295

kleenup

kleenup Subroutine

Purpose
Cleans up the run—time environment of a process. .
Library
Standard C Library (libc.a)
Syntax
int kleenup (FileDescriptor, Sigign, SigKeep)
int FileDescriptor,
int Sigignl I;
int SigKeep[1;
Description
: The kleenup subroutine initializes the run—time environment for a trusted process by:
¢ Closing unnecessary file descriptors.
¢ Resetting the alarm time. '
¢ Resetting signal handlers.
e Turning off UCOMPAT_DIRSYSS5.
¢ Resetting the ulimit value, if it is less than a reasonable value (8192).
Parameters

FileDescriptor A file descriptor; the kleenup subroutine closes all file descriptors
greater than or equal to the FileDescriptor parameter.

Siglgn, SigKeep Pointers to lists of signal numbers. If non—-NULL, these lists are
terminated by zeros. The handling of any signals specified by the
SigKeep parameter is left unchanged. Any signals specified by the
Siglgn parameter are set to SIG_IGN. The handling of all signals
not specified by either list is set to SIG_DFL. Some signals cannot
be reset and are left unchanged.

Return Value

The kleenup subroutine is always successful and always returns a value of 0. Errors in

closing files are not reported, and it is not an error to attempt to modify a signal that the
process is not allowed to handle.

Implementation Specifics ,
This subroutine is part of AIX Base Operating System (BOS) Runtime.

1-296 Base Operating System Reference

knlist

knlist Subroutine

Purpose
Translates names to addresses in the running system.
Syntax
#include <nlist.h>
int knlist(NList, NumberOfElements, Size)
struct nlist *NList,
int NumberOfElements;
int Size;
Description
The knlist subroutine allows a program to examine the list of symbols exported by kernel
routines to other kernel modules.
The first field in the nlist structure is an input parameter to the knlist subroutine. The
remaining fields are filled in by knlist. The nlist structure consists of the following fields:
char *n_name The name of the symbol whose attributes are to be retrieved.
long n_seg A descriptor for the segment in which the object named by the
symbol resides. The only use of this descriptor is as the
Extension parameter on a subroutine against /dev/mem.
long n_value The offset of the object in this segment.
unsigned shortn_type ~ Symbol type.
short n_scnum Section number.
char n_sclass Storage class.
If the name is not found, both the n_value and n_type fields are set to 0.
The nlist.h header file is automatically included by a.out.h for compatibility. However, do not
include a.out.h if you only need the information necessary to use the knlist subroutine. If
you do include a.out.h, follow the #include statement with the line:
#undef n_name
Parameters
NList Points to an array of nlist structures.
NumberOfElements Specifies the number of structures in the array of nlist structures.
Size Specifies the size of each structure.

Return Values
Upon successful completion, knlist returns a value of 0. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-297

knlist

Error Code
The knlist subroutine fails when the following is true:

EFAULT The NList parameter points outside the limit of the array of nlist structures.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The nlist subroutine.

1-298 Base Operating System Reference

I3tol,...

I3tol or Itol3 Subroutine

Purpose
Converts between 3-byte integers and long integers.

Library
Standard C Library (libc.a)

Syntax

void I3tol (LongPointer, CharacterPointer, Number)
long *LongPointer;

char *CharacterPointer,

int Number;

void Itol3 (CharacterPointer, LongPointer, Number)
char *CharacterPointer;

long *LongPointer;

int Number;

Description
The 13tol subroutine converts a list of the number of 3-byte integers specitied by the Number
parameter packed into a character string pointed to by the CharacterPointer parameter into
a list of long integers pointed to by the LongPointer parameter.

The Itol3 subroutine performs the reverse conversion, from long integers (the LongPointer
parameter) to 3-byte integers (the CharacterPointer parameter).

These functions are useful for file system maintenance where the block numbers are 3 bytes
long.

Warning: The numerical values of the long integers are machine-dependent because of
possible differences in byte ordering.

Parameters
LongPointer Specifies the address of a list of long integers.

CharacterPointer Specifies the address of a list of 3-byte integers.

Number Specifies the number of list elements to convert.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The fs file format.

Base Operating System Runtime 1-299

Idahread

Idahread Subroutine

Purpose
‘ Reads the archive header of a member of an archive file.

Library
Object File Access Routine Library (libld.a)

Syntax
#include <stdio.h>
#include <ar.h>

#include <filehdr.h>
#include <ldfcn.h>

int Idahread (/dPointer, ArchiveHeader)
LDFILE *dPointer;
ARCHDR *ArchiveReader,

Description
If TYPE(/dPointer) is the archive file magic number, the Idahread routine reads the archive
header of the common object file currently associated with /dPointer into the area of memory
beginning at ArchiveHeader.

Parameters
IdPointer Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

ArchiveHeader Points to a FILHDR structure.

Return Values
The Idahread subroutine returns SUCCESS or FAILURE.

Error Codes
The Idahread routine fails if TYPE(/dPointer) does not represent an archive file, or if it
cannot read the archive header.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The Idfhread subroutine, Idiread, Idlinit, Idlitem subroutines, Idshread, Idnshread
subroutines, ldtbread subroutine, Idgetname subroutine.

1-300 Base Operating System Reference

Idclose,...

Idclose or Idaclose Subroutine

Purpose
Closes a common object file.
Library
Object File Access Routine Library (libid.a)
Syntax
#include <stdio.h>
#tinclude <filehdr.h>
#include <ldfcn.h>
int Idclose(/dPointen
LDFILE */dPointer;
int Idaclose(ldPointer)
LDFILE */dPointer,
Description
The Idopen and Idclose subroutines provide uniform access to both simple object files and
object files that are members of archive files. Thus, an archive of common object files can be
processed as if it were a series of simple common object files.
If TYPE(/dPointer) is the magic number of an archive file, and if there are any more files in
the archive, the Idclose subroutine reinitializes OFFSET (/dPointer) to the file address of the
next archive member and returns FAILURE. The Idfile structure is prepared for a
subsequent Idopen. :
If TYPE(/dPointer) does not represent an archive file, the ldclose subroutine closes the file
and frees the memory allocated to the ldfile structure associated with /dPointer.
The Idaclose subroutine closes the file and frees the memory allocated to the ldfile
structure associated with IdPointer regardless of the value of TYPE(IdPointer).
Parameter

IdPointer Pointer to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Return Values

The ldclose subroutine returns SUCCESS or FAILURE.

The Idaclose subroutine always returns SUCCESS, and is often used in conjunction with
the Idaopen subroutine.

Error Code

The ldclose subroutine returns FAILURE if there are more files to archive.

Base Operating System Runtime 1-301

Idclose,...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The Idopen, Idaopen subroutines.

1-302 Base Operating System Reference

Idfhread

Idfhread Subroutine

Purpose
Reads the file header of a common object file.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int Idthread (IdPointer, FileHeader)
LDFILE */dPointer;
FILHDR *FileHeader;

Description
The Idfhread subroutine reads the file header of the common object file currently associated
with /dPointer into the area of memory beginning at FileHeader.

Parameters

IdPointer Pointer to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

FileHeader Pointer to a FILHDR structure.

Return Values
The Idfhread subroutine returns SUCCESS or FAILURE.

Error Codes
The Idfhread subroutine fails if if it cannot read the file header.

Note: In most cases, the use of Idfhread can be avoided by using the macro
header(/dPointer) defined in Idfen.h. The information in any field or fieldname of
the file header may be accessed using header (dPointer) fieldname.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The ldahread subroutine,ldiread, Idlinit, Idlitem subroutines, ldshread, Idnshread
subroutines, ldtbread subroutine, Idgetname subroutine.

Base Operating System Runtime 1-303

Idgetname

Idgetname Subroutine

Purpose
Retrieves symbol name for common object file symbol table entry.
Library
Object File Access Routine Library (libid.a)
Syntax
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>
char *ldgetname (/dPointer, Symbol)
LDFILE */dPointer;
SYMENT *Symbol;
Description
The Idgetname subroutine returns a pointer to the name associated with Symbo/ as a string.
The string is in a static buffer local to Idgetname that is overwritten by each call to
Idgetname, and therefore, must be copied by the caller if the name is to be saved.
The common object file format handles arbitrary length Symbol/ names with the addition of a
string table. The Idgetname subroutine returns the symbol name associated with a symbol
table entry for an XCOFF-format object file.
Parameters

IdPointer Points to the LDFILE structure that was returned as the resuit of a
successful call to Idopen or Idaopen.

Symbol Points to an initialized SYMENT structure.
Error Codes

The Idgetname subroutine returns NULL (defined in the stdio.h file) for a COFF-format
object file if the name cannot be retrieved. This situation can occur:

if the string table cannot be found,
if not enough memory can be allocated for the string table,

if the string table appears not to be a string table (for example, if an auxiliary entry is handed
to ldgetname that looks like a reference to a name in a non-existent string table), or

if the name’s offset into the string table is past the end of the string table.

Typically, the ldgetname subroutine is called immediately after a successful call to the

Idtbread subroutine to retrieve the name associated with the Symbol table entry filled by the
Idtbread subroutine.

1-304 Base Operating System Reference

Idgethname

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The Idahread subroutine, Idfhread subroutine, Idiread, Idlinit, Idlitem subroutines,
Idshread, Idnshread subroutines, Idtbread subroutine.

Base Operating System Runtime 1-305

Idiread,...

Idiread, Idlinit, or Idlitem Subroutine

Purpose
Library

Syntax

Manipulates line number entries of a common object file function.

Object File Access Routine Library (libid.a)

#include <stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <ldfcn.h>

int Idiread (/dPointer, LineNumber, LineEntry)
LDFILE */dPointer;

long Functionindex;

unsigned short LineNumber;

LINENO LineEntry,

int Idlinit (/dPointer, Functionindex)
LDFILE *IdPointer,
long Functionindex;

int Idlitem (/dPointer, LineNumber, LineEntry)
LDFILE */dPointer;,

unsigned short LineNumber;

LINENO LineEntry,

Description

The ldlread subroutine searches the line number entries of the common object file currently
associated with /dPointer. The Idiread subroutine begins its search with the line number
entry for the beginning of a function and confines its search to the line numbers associated
with a single function. The function is identified by Functionindex, the index of its entry in the
object file symbol table. The Idiread subroutine reads the entry with the smallest line
number equal to or greater than LineNumber into the memory beginning at LineEntry.

The Idlinit subroutine and Idlitem subroutine together perform exactly the same function as
the Idiread routine. After an initial call to ldiread or Idlinit, Idlitem may be used to retrieve
a series of line number entries associated with a single function. The ldlinit subroutine
simply locates the line number entries for the function identified by Functionindex. The
Idlitem subroutine finds and reads the entry with the smallest line number equal to or
greater than LineNumber into the memory beginning at LineEntry.

Parameters

1-306

IdPointer Points to the LDFILE structure that was returned as the result of a
successiul call to Idopen or Idaopen.

LineNumber Specifies the index of the first LineNumber entry to be read.
LineEntry Points to a LINENO structure.

Functionindex Points to the symbol table index of a function.

Base Operating System Reference

Idiread,...

Return Values
The ldliread, Idlinit, and Idlitem subroutines return SUCCESS or FAILURE.

Error Codes
The Idiread subroutine fails if there are no line number entries in the object fite, if
Functionindex does not index a function entry in the symbol table, or if it finds no line
number equal to or greater than LineNumber. The Idlinit subroutine fails if there are no line
number entries in the object file or if Functionindex does not index a function entry in the
symbol table. The ldlitem subroutine fails if it finds no line number equal to or greater than
LineNumber.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The Idahread subroutine, Idfhread subroutine, Idshread, ldnshread subroutines, |dtbread
subroutine, ldgetname subroutine.

Base Operating System Runtime 1-307

Idiseek,...

Idiseek or Idniseek Subroutine

Purpose
Seeks to line number entries of a section of a common object file.
Library
Object File Access Routine Library (libld.a)
Syntax
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>
int ldiseek (/dPointer, Sectionindex)
LDFILE */dPointer,
unsigned short Sectionindex;
int Idnlseek (/dPointer, SectionName)
LDFILE */dPointer,
char *SectionName;
Description
The Idiseek subroutine seeks to the line number entries of the section specified by
Sectionindex of the common object file currently associated with /dPointer. The first section
has an index of 1.
The ldniseek subroutine seeks to the line number entries of the section specified by
SectionName.
Parameters
IdPointer Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.
Sectionindex Specifies the index of the section whose line number entries are to
be seeked to.
SectionName Specifies the name of the section whose line number entries are to

be seeked to.

Return Values
The Idlseek and Idnlseek subroutines return SUCCESS or FAILURE.

Error Codes
The Idiseek subroutine fails if Sectionindex is greater than the number of sections in the
object file; the Idnlseek subroutine fails if there is no section name corresponding with
SectionName. Either function fails if the specified section has no line number entries or if it
cannot seek to the specified line number entries.

1-308 Base Operating System Reference

Idiseek,...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The Idohseek subroutine, Idsseek, ldnsseek subroutines, Idtbseek subroutine, Idrseek,
Idnrseek subroutines.

Base Operating System Runtime 1-309

ldohseek

Idohseek Subroutine

Purpose
Seeks to the optional file header of a common object file.
Library
Object File Access Routine Library (libid.a)
Syntax
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>
int Idohseek (/dPointer)
LDFILE */dPointer,
Description
The Idohseek subroutine seeks to the optional file header of the common object file
currently associated with /dPointer.
Parameter

IdPointer Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Return Values
The Idohseek subroutine returns SUCCESS or FAILURE.

Error Codes
The Idohseek subroutine fails if the object file has no optional header or if it cannot seek to
the optional header.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The Idsseek, Idnsseek subroutines, Idtbseek subroutine, ldrseek,ldnrseek subroutines,
Idiseek, idnlseek subroutines.

1-310 Base Operating System Reference

Idopen,...

Idopen or Idaopen Subroutine

Purpose
Opens a common object file for reading.

Library
Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

Idfile *Idopen(FileName, IdPointer)
char *FileName;
LDFILE */dPointer,

LDFILE *Idaopen(FileName, IdPointen
char *FijleName;
LDFILE */dPointer,

Description
The Idopen subroutine and Idclose subroutine provide uniform access to both simpie object
files and object files that are members of archive files. Thus, an archive of common object
files can be processed as if it were a series of simple common object files.

If TYPE(/dPointer) has the value NULL, the Idopen subroutine opens FileName and allocate
and initialize the Idfile structure, and returns a pointer to the structure to the calling program.

If IdPointer is valid and if TYPE(/dPointer) is the archive magic number, the ldopen
subroutine reinitializes the ldfile structure for the next archive member of FileName.

The Idopen and Idclose subroutines are designed to work in concert. The ldclose
subroutine returns FAILURE only when TYPE(/dPointer) is the archive magic number and
there is another file in the archive to be processed. Only then should ldopen be called with
‘the current value of /dPointer. In all other cases, in particular whenever a new FileName is
opened, Idopen should be called with a NULL /dPointer argument.

Base Operating System Runtime 1-311

Idopen,...

The following is an example for the use of Idopen and Idclose:
/* for each FileName to be processed */

ldpointer = NULL;
do

if((ldpointer = ldopen(FileName, ldPointer)) != NULL)

/* check magic number */
/* process the file */

n

”

while(ldclose(ldPointer) == FAILURE);

If the value of IdPointer is not NULL, the Idaopen subroutine opens FileName again and
allocate and initializes a new ldfile structure, copying the TYPE, OFFSET, and HEADER
fields from /dPointer. The ldaopen subroutine returns a pointer to the new Idfile structure.
This new pointer is independent of the old pointer, /dPointer. The two pointers may be used
concurrently to read separate parts of the object file. For example, one pointer may be used
to step sequentially through the relocation information, while the other is used to read
indexed symbol table entries.

Parameters
IdPointer Pointer to the LDFILE structure.
FileName Specities the file name of an object file or archive of object files.

Error Codes
Both Idopen and Idaopen open FileName for reading. Both functions return NULL if
FileNarme cannot be opened, or if memory for the ldfile structure cannot be allocated. A
successful open does not insure that the given file is a common object file or an archived
object file.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The ldclose, Idaclose subroutines.

The Extended Common Object File Format (XCOFF).

1-312 Base Operating System Reference

Idrseek,...

idrseek or Idnrseek Subroutine

Purpose

Library

Syntax

Seeks to relocation entries of a section of a common object file.

Object File Access Routine Library (libid.a)

#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int Idrseek (/dPointer, Sectionindex)
Idfile *ldPointer;
unsigned short Sectionindex;

int ldnrseek (IdPointer, SectionName)
Idfile */dPointer;
char *SectionName;

Description

The ldrseek subroutine seeks to the relocation entries of the section specified by
Sectionindex of the common object file currently associated with IdPointer.

The Idnrseek subroutine seeks to the relocation entries of the section specified by
SectionName.

Parameters

IdPointer Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Sectionindex Specifies an index of the section whose relocation entries are to be
seeked to.

SectionName Specifies the name of the section whose relocation entries are to be
seeked to.

Return Values

The Idrseek and ldnrseek subroutines return SUCCESS or FAILURE.

Error Codes

The ldrseek subroutine fails if Sectionindex is greater than the number of sections in the
object file; ldnrseek fails if there is no section name corresponding with *SectionName.
Either function fails if the specified section has no relocation entries or it it cannot seek to the
specified relocation entries. Note that the first section has an index of 1.

Base Operating System Runtime 1-313

Idrseek,...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The ldohseek subroutine, Idtbseek subroutine, Idsseek, ldnsseek subroutines, idiseek,
Idnlseek subroutines.

1-314 Base Operating System Reference

Idshread,...

Idshread or ldnshread Subroutine

Purpose
Reads an indexed/named section header of a common object file.
Library
Object File Access Routine Library (libld.a)
Syntax
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>
#include <ldfcn.h>
int idshread (/dPointer, Sectionindex, SectionHead)
LDFILE */dPointer;
unsigned short Sectionindex;
SCNHDR *SectionHead;
int Idnshread (/dPointer, SectionName, SectionHead)
LDFILE */dPointer,
char *SectionName;
SCNHDR *SectionHead;
Description
The ldshread subroutine reads the section header specified by Sectionindex of the common
object file currently associated with /dPointer into the area of memory beginning at
SectionHead.
The ldnshread subroutine reads the section header specified by SectionName into the area
of memory beginning at SectionHead.
Parameters
IdPointer Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.
Sectionindex Specifies the index of the section header to be read.
SectionHead Specifies the name of the section header to be read.
SectionName Points to an SCNHDR structure.

Return Values

The Idshread and ldnshread subroutines return SUCCESS or FAILURE.

Error Codes

The Idshread subroutine fails if Sectionindex is greater than the number of sections in the
object file; the ldnshread subroutine fails if there is no section name corresponding with
SectionName. Either function fails if it cannot read the specified section header. Note that
the first section has an index of 1.

Base Operating System Runtime 1-315

Idshread,...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The Idahread subroutine, Idfhread subroutine, Idiread, Idlinit, Idlitem subroutines,
Idtbread subroutine, Idgetname subroutine.

1-316 Base Operating System Reference

Idsseek,...

Idsseek or ldnsseek Subroutine

Purpose
Seeks to an indexed/named section of a common object file.
Library
Obiject File Access Routine Library (libld.a)
Syntax
#include <stdio.h>
#include <filehdr.h>
#include <Ildfcn.h>
int Idsseek (/dPointer, Sectionindex)
LDFILE */dPointer,
unsigned short Sectionindex;
int ldnsseek (ldPointer, SectionName)
LDFILE */dPointer;
char *SectionName;
Description
The Idsseek subroutine seeks to the section specified by Section/ndex of the common
object file currently associated with /dPointer.
The ldnsseek subroutine seeks to the section specified by SectionName.
Parameters

ldPointer Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.

Sectionindex Specifies the index of the section whose line number entries are to
be seeked to.

SectionName Specifies the name of the section whose line number entries are to
be seeked to.

Return Values
The Idsseek and Idnsseek subroutines return SUCCESS or FAILURE.

Error Codes
The ldsseek subroutine fails if Sectionindex is greater than the number of sections in the
object file; ldnsseek fails if there is no section name corresponding with SectionName.
Either function fails if there is no section data for the specified section or if it cannot seek to
the specified section. Note that the first section has an index of 1.

Base Operating System Runtime 1-317

Idsseek,...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The Idohseek subroutines, Idtbseek subroutine, Idrseek, Idnrseek subroutines, Idiseek,
Idnlseek subroutines.

1-318 Base Operating System Reference

Idtbindex

Idtbindex Subroutine

Purpose
Computes the index of a symbol table entry of a common object file.
Library
Object File Access Routine Library (libld.a)
Syntax
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>
long Idthbindex (/dPointer)
LDFILE */dPointer;
Description
The Idtbindex subroutine returns the (LONG) index of the symbol table entry at the current
position of the common object file associated with IdPointer.
The index returned by Idtbindex may be used in subsequent calls to Idtbread. However,
since ldtbindex returns the index of the symbol table entry that begins at the current
position of the object file, if Idtbindex is called immediately after a particular symbol table
entry has been read, it returns the index of the next entry.
Parameter

IdPointer Points to the LDFILE structure that was returned as a result of a successful
call to Idopen or Idaopen.

Error Codes
The Idtbindex routine fails if there are no symbols in the object file, or if the object file is not

positioned at the beginning of a symbol table entry. Note that the first symbol in the symbol
table has an index of 0.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The Idtbseek subroutine, Idtbread subroutine.

Base Operating System Runtime 1-319

Idtbread

Idtbread Subroutine

Purpose
Reads an indexed symbol table entry of a common object file.
Library
Object File Access Routine Library (libld.a)
Syntax
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>
int Idtbread (/dPointer, Symbolindex, Symbol)
LDFILE */dPointer;
long Symbolindex;
SYMENT *Symbol;
Description
The Idtbread subroutine reads the symbol table entry specified by Symbolindex of the
common object file currently associated wnth IdPointer into the area of memory beginning at
Symbol.
Parameters
IdPointer Points to the LDFILE structure that was returned as the result of a
successful call to Idopen or Idaopen.
Symbolindex Specifies the index of the symbol table entry to be read.
Symbol Points to a SYMENT structure.

Return Values
The Idtbread subroutine returns SUCCESS or FAILURE.

Error Codes
The Idtbread subroutine fails if Symbolindex is greater than or equal to number of symbols
in the object file, or if it cannot read the specified symbol table entry. Note that the first
symbol in the symbol table has an mdex of 0.

Implementation Specifics
This subroutine is part of AiX Base Operating System (BOS) Runtime.

Related Information

The Idahread subroutine, Idfhread subroutine, Idiread, Idlinit, Idlitem subroutines,
Idshread, Idnshread subroutines, Idgetname subroutine.

1-320 Base Operating System Reference

Idtbseek

Idtbseek Subroutine

Purpose
Seeks to the symbol table of a common object file.
Library
Object File Access Routine Library (libld.a)
Syntax
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>
int Idtbseek (/dPointer)
LDFILE */dPointer;
Description
The Idtbseek subroutine seeks to the symbol table of the common object file currently
associated with /dPointer.
Parameter

IdPointer Points to the LDFILE structure that was returned as the result of a
successful call to idopen or idaopen.

Return Values
The Idtbseek subroutine returns SUCCESS or FAILURE.

Error Codes
The Idtbseek subroutine fails if the symbol table has been stripped from the object file, or if
it cannot seek to the symbol table.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The Idohseek subroutine, ldrseek, ldnrseek subroutines, ldsseek, ldnsseek subroutines,
Idiseek, ldniseek subroutines.

Base Operating System Runtime 1-321

lgamma,...

Igamma or gamma Subroutine

Purpose

Computes the natural logarithm of the gamma function. The subroutine names Igamma and
gamma are different names for the same function.

Library
IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax

#include <math.h>
extern int signgam;

double Igamma (x)
double x;

double gamma (x)
double x;

Description

The Igamma subroutine returns the natural logarithm of the absolute value of the gamma
function of the x parameter, where the gamma function of x is defined as:

G(x) = integral [0 to INF] of ((e**(—t) * t**(x—1) dt)

The sign of Ilgamma of x is stored in the external integer variable signgam. The x
parameter may not be a non-positive integer.

Do not use the expression:
g = exp(lgamma(x)) * signgam
to compute g = G(x). Instead, use a sequence such as:

lg = lgamma(x);
g = exp(lg) * signgam;

because the variable signgam can be relied on only after lgamma has finished execution.

Note: Compile any routine that uses subroutines from the libm.a library with the ~Im flag.
To compile the igamma.c file, for example:

cc lgamma.c —1lm

Parameter
X Specifies some double-precision floating-point value.

Error Codes
When using libm.a (~Im):

For non-positive integer arguments, the Igamma function returns NaNQ and sets the
division-by-zero bit in the floating-point exception status.

1-322 Base Operating System Reference

lgamma,...

It the correct value overflows, lgamma returns HUGE_VAL. If the correct value underflows,
lgamma returns 0.

When using libmsaa.a (-Imsaa):

For non-positive integer arguments, the lgamma function returns HUGE_VAL, and sets the
global variable errno is set to EDOM. A message indicating SING error is printed on the
standard error output.

If the correct value overflows, Igamma returns HUGE_VAL, and sets the global variable
errno is set to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using
libmsaa.a (—imsaa).

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The exp, expm1, log, log10, log1p, pow subroutines, matherr subroutine.

Base Operating System Runtime 1-323

link

link Subroutine

Purpose
« Creates an additional directory entry for an existing file.
Library
Standard C Library (libc.a)
Syntax
int link (Path1, Path2)
char *Path1, * Path2;
Description
The link subroutine creates an additional hard link (directory entry) for an existing file. Both
the old and the new link share equal access rights to the underlying object.
Parameters
Path1 Points to the path name of an existing file.
Path2 Points to the path name for the new directory entry to be created.

If Network File System is installed on your system, these paths can cross into another node.

With hard links, both the Path1 and Path2 parameters must reside on the same file system.
Creating links to directories requires root user authority.

Return Values
Upon successful completion, the link subroutine returns a value of 0. Otherwise, a value of
-1 is returned, and the giobal variable errno is set to indicate the error.

Error Codes ,
The link subroutine fails if one or more of the following are true:

ENOENT The file named by the Path1 parameter does not exist.

EEXIST The link named by the Path2 parameter already exists.

EPERM The file named by the Path1 parameter is a directory and the
calling process does not have root user authority.

EXDEV The link named by the Path2 parameter and the file named by
the Path1 parameter are on different file systems.

EACCES The requested link requires writing in a directory with a mode that
denies write permission.

EMLINK The file already has the maximum number of links.

EROFS The requested link requires writing in a directory on a read—only
file system.

1-324 Base Operating System Reference

link

ENOSPC The directory in which the entry for the new link is being placed

cannot be extended because there is no space left on the file
system containing the directory.

EDQUOT The directory in which the entry for the new link is being placed
cannot be extended because the user’s quota of disk blocks on
the file system containing the directory has been exhausted.

The link subroutine can also fail if additiona! errors on page A-1 occur.

If Network File System is installed on the system, the link system call can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part ot AiX Base Operating System (BOS) Runtime.

Related Information
The unlink subroutine.

The link command, In command, rm command.

Base Operating System Runtime 1-325

load

load Subroutine

Purpose

Syntax

Loads and binds an object module into the current process.

int (*load (FilePath, Flags, LibraryPath)) ()
char *FilePath;

uint Flags;

char *LibraryPath;

Description

1-326

The load subroutine loads the object file for the program into the calling process. Unlike the
exec subroutine, load does not replace the current program with the new one. Instead, it
loads the new program into the process private segment at the current break value and the
break value is updated to point past the new program.

The exec subroutine is similar to the load subroutine, except that exec does not have an
explicit library path parameter; it has only the LIBPATH environment variable. Also, LIBPATH
is ignored when the exec'd program has more privilege than the caller, for example, in the
case of an suid program.

If the calling process later uses the unload subroutine to unload the object file, once the file
is loaded, the space is unusable by the process except through the load subroutine. If the
kernel finds an unused space created by a previous unload, rather than load the program at
the break value, it loads the program into this unused space. Space for loaded programs is
managed by the kernel and not by any user level storage management routine.

A large application can be split up into one or more object files in one of two ways that
allows execution within the same process. The first way is to create each of the application’s
object files separately and use load to explicitly load an object when it is needed. The other
way is to specify the relationship between the object files when they are.created by defining
imported and exported symbols.

Obiject files can import symbols from other object files. Whenever symbols are imported from
one or more other object files, these object files are automatically loaded to resolve the
symbol references if the required object files are not already loaded, and if the imported
symbols are not specified as “deferred resolution”. These object files can be archive
members in libraries or separate object files and can have either “shared” or “private” object
file characteristics that control how and where they are loaded.

Shared object files (typically members of a shared library archive) are loaded into the shared
library region, when their access permissions are such that sharing is acceptable. Shared
object files without the required permissions for sharing and private object files are loaded
into the process private region.

When the loader resolves a symbol it uses the filename recorded with that symbol to find the
object file that exports the symbol. If the file name contains any “/” characters, it is used
directly and must name an appropriate object file. However, if the filename is a basename
(contains no “/” characters), the loader searches the directories specified in the default
library path for an object file with that basename.

The library path is a string containing one or more directory path names separated by a
colon. If the basename is not found the search continues, using the library path specfied in

Base Operating System Reference

load

the object file containing the symbol being resolved (normally the library path specified to the
Id command that created the object file). The first instance of the basename found is used.
An error occurs if this object file cannot be loaded or does not export a definition of the
symbol being resolved.

The default library path may be specified using the LibraryPath parameter. If not explicitly
set, the default library path may be obtained fro the LIBPATH environment variable or from
the object file specified by the FilePath parameter.

Programs loaded by this subroutine are automatically unioaded when the process terminates
or when exec is executed. They are explicitly unloaded by calling the unload subroutine.

Parameters
*FilePath A pointer to the name of the object file to be loaded. If the FilePath name

contains no “/” symbols, it is treated as a basename, and should be in one
of the directories listed in the library path.

The library path is either the value of LibraryPath (if not NULL), or the value
of LIBPATH (if set). If no library path is provided, the object file should be in
the current directory. '

If FilePath is not a basename (if it contains at least one “/” character), the
name is used as it is, and no library path searches are performed to locate
the object file.

Flags Used to modify the behaviour of the load service as follows (see the Idr.h
file):

1 The typical value for loading modules.

L_NOAUTODEFER -Specifies that any unresolved imports
(designated for deferred resolution) must be explicitly
resolved by use of the loadbind subroutine. This allows
unresolved imports to be explicitly resolved at a later time
with a specified object module. If this flag is not specified,
unresolved imports (marked for deferred resolution) are
resolved at the earliest opportunity when any module is
loaded that has exported symbols matching unresolved
imports.

LibraryPath A pointer to a character string that specifies the default library search path.

It LibraryPath is NULL and LIBPATH is set, the LIBPATH value is used as
the default load path. If neither default library path option is provided, the
library path specified in the loader section of the object file specified in
FilePath is used as the default library path.

If the object file is not in LibraryPath or LIBPATH (if LibraryPath was NULL),
then the library path specified in the loader section of the object file
importing the symbol is used, to locate the object file exporting the required
symbol. The library path in the importing object file was specified when the
object file was link edited (by the |d command).

The library path search is not performed when either a relative or an
absolute pathname is specified for the object file exporting the symbol.

Base Operating System Runtime 1-327

load

Return Values

Upon successful completion, the load subroutine returns the pointer to function for the main
entry point of the program.

Error Codes

If the load subroutine fails, a NULL pointer is returned, the program is not loaded, and errno
is set to indicate the error. The load subroutine fails if one or more of the following are true
of an object file to be explicitly or automatically loaded:

EACCES The progrém file is not an ordinary file, or the mode of the program file
denies execution permission, or search permission is denied on a
component of the path prefix.

EINVAL The program file has a valid magic number in its header, but the header is
damaged or is incorrect for the machine on which the file is to be run.

ELOOP Too many symbolic links were encountered in translating the pathname.

ENOEXEC An error occurred when loading or resolving symbols for the specified object
file. This can be due to an attempt to load an object file with an invalid
XCOFF header, a failure to resolve symbols that were not specified as
“deferred resolution” or several other load time related problems. The
loadquery subroutine can be used to return more information about the
load failure.

ENOMEM The program requires more memory than is allowed by the system-imposed
maximum.

ETXTBSY The program file is currently open for writing by some process.

ENAMETOOLONG
A component of a path. name exceeded 255 characters, or an entire path
name exceeded 1023 characters. (

ENOENT A combonent of the path prefix does not exist, or the path name is NULL.

ENOTDIR A component of the path prefix is not a directory.

ESTALE The process’s root or current directory is located in a virtual file system that

has been unmounted.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The Id command.

The exec subroutine, unload subroutine, Idbind subroutine, loadquery subroutine.

1-328 Base Operating System Reference

loadbind

loadbind Subroutine

Purpose
Provides specific runtime resolution of a module’s deferred symbols.

Syntax
int loadbind(Flag, ExportPointer, ImportPointer)
int Flag,
void *ExportPointer, *ImportPointer;

Description
The loadbind subroutine controls the runtime resolution of a previously loaded object
module’s unresolved imported symbols.
The loadbind subroutine is used when the following occurs: two modules are loaded.
Module A, an object module loaded at runtime with the load subroutine, has designated that
some of its imported symbols be resolved at a later time. Module B contains exported
symbols to resolve module A's unresolved imports.
To keep module A’'s imported symbols from being resolved until the loadbind service is
called, you can specify the load subroutine flag, L_NOAUTODEFER, when loading module
A.

Parameters
Flag Currently not used.
ExportPointer Set to the function pointer returned by the load subroutine when

module B was loaded.

ImportPointer Set to the function pointer returned by the load subroutine when
module A was loaded.

The ImportPointer or ExportPointer parameters may also be set to any exported static data
area symbol or function pointer contained in the associated module. This would typically be
the function pointer returned from the load of the specified module.

Return Values

A 0 is returned if the loadbind subroutine is successful.

Error Codes

A -1 is returned if an error is detected, with the errno global variable set to an associated
error code:

EINVAL Either the ImportPointer or ExportPointer is not valid (the pointer to
ExportPointer or ImportPointer does not correspond to a loaded program
module or library).

ENOMEM The program requires more memory than allowed by the system-imposed
maximum. '

After an error is returned by the loadbind subroutine, you may also use the loadquery
subroutine to obtain additional information about the loadbind error.

Base Operating System Runtime 1-329

loadbind

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related information
The load subroutine, unload subroutine, loadquery subroutine.

The Id command.

1-330 Base Operating System Reference

loadquery

loadquery Subroutine

Returns error information from the load subroutine or exec subroutine; also provides a list of
object files loaded for the current process.

int loadquery(Flags, Buffer, BufferLength)

unsigned int BufferLength;

The loadquery subroutine obtains detailed information about an error reported on the last
load subroutine or exec subroutine executed by a calling process. The loadquery
subroutine may also be used to obtain a list of object file names for all object files that have
been loaded for the current process.

Purpose
Syntax
int Flags;
void *Buffer;
Description
Parameters
Buffer
BufferLength
Flags

Points to a Bufferin which to store error message or object file
information.

Specifies the number of bytes available in Buffer.
Specifies the action of the loadquery function as follows:

L_GETINFO - Returns a list of all object files loaded for the current
process, and stores the list in Buffer. The object file information is
contained in a sequence of LD_INFO structures as defined in the
sys/ldr.h header file. Each structure contains the module location in
virtual memory and the pathname that was used to load it into memory.
The file descriptor field in the LD_INFO structure is not filled in by this
function.

L_GETMESSAGES - Returns detailed error information describing the
failure of a previously invoked load or exec function, and stores the error
message information in Buffer. Upon successful return from this function
the beginning of the Buffer contains an array of character pointers. Each
character pointer points to a string in the buffer containing a loader error
message. The character array ends with a NULL character pointer. Each
error message string consists of an ASCIl message number followed by
zero or more characters of error-specific message data. Valid message
numbers are listed in the sys/ldr.h header file.

You can format the error messages returned by the L_GETMESSAGES
function and write them to standard error using the standard system
command /etc/execerror as follows:

char *buffer{1024];

buffer[0] = “execerror”;

buffer[l] = “name of program that failed to load”;
loadquery(L,_GETMESSAGES, &buffer[2],sizeof buffer -8);
execvp(”/etc/execerror”,buffer);

Base Operating System Runtime 1-331

loadquery

This sample code causes the application to terminate after the messages
are written to standard error. :

Return Values

Upon successful completion, loadquery returns the requested information in the caller’s
buffer specified by the Buffer and BufferLength parameters.

Error Codes

The loadquery subroutine returns with a return code of —1 and the global variable errno is
set to one of the following when an error condition is detected:

ENOMEM The caller’s buffer specified by the Buffer and BufferLength parameters is

too small to return the information requested. When this occurs, the
information in the buffer is undefined.

EINVAL The function specified in the Flags parameter is not valid or an error
occurred when accessing the caller’s buffer.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, ioad subroutine, unload subroutine, loadbind subroutine.

The Id‘ command.

1-332 Base Operating System Reference

localeconv

localeconv Subroutine

Sets the locale dependent conventions of an object.

Purpose
Library

Standard C Library (libc.a)
Syntax

#include <locale.h>

struct Iconv *localeconv ()
Description

The localeconv subroutine sets the components of an object using the lconv structure.
The lconv structure contains values appropriate for the formatting of numeric quantities
(monetary and otherwise) according to the rules of the current locale.

The members of the structure with the type char * are strings, any of which (except
decimal_point) can point to a NULL string, to indicate that the value is not available in the
current locale or is of zero length. The members with type char are nonnegative numbers,
any of which can be CHAR_MAX to indicate that the value is not available in the current
locale. The members include the following:

char *decimal_point

char *thousands_sep

char *grouping

char *int_curr_symbol

char *currency_symbol

char *mon_decimal_point

char *mon_thousands_sep

char *mon_grouping

char *positive_sign

The decimal-point character used to format
non—monetary quantities.

The character used to separate groups of digits to the
left of the decimal point in formatted non-monetary
quantities.

A string whose elements indicate the size of each
group of digits in formatted non—monetary quantities.

The international currency symbol applicable to the
current locale, left justified within a four—character
space-padded field. The character sequences are in
accordance with those specified in ISO 4217 Codes
for the Representation of Currency and Funds.

The local currency symbol applicable to the current
locale.

The decimal point used to format monetary quantities.

The separator for groups of digits to the left of the
decimal point in formatted monetary quantities.

A string whose elements indicate the size of each
group of digits in formatted monetary quantities.

The string used to indicate a nonnegative formatted
monetary quantity.

Base Operating System Runtime 1-333

localeconv

char *negative_sign

char int_frac_digits

char p_cs_precedes

char p_sep_by_space

char n_cs_precedes

char n_sep_by_space

char p_sign_posn

char n_sign_posn

The string used to indicate a negative formatted
monetary quantity.

The number of fractional digits (those to the right of
the decimal point) to be displayed in a formatted
monetary quantity.

Set to 1 or 0 if the currency_symbol respectively
precedes or succeeds the value for a nonnegative
formatted monetary quantity.

Set to 1 or 0 if the currency_symbol respectively is
or is not separated by a space from the value for a
nonnegative formatted monetary quantity.

Set to 1 or 0 if the currency_symbol respectively

precedes or succeeds the value for a negative
formatted monetary quantity.

Set to 1 or 0 if the currency_symbol respectively is
or is not separated by a space from the value for a
negative formatted monetary quantity.

Set to a value indicating the positioning of the
positive_sign for nonnegative formatted monetary
quantity.

Set to a value indicating the positioning of the
negative_sign for a negative formatted monetary
quantity.

The elements of grouping and mon_grouping are interpreted according to the following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the
digits.

other The value is the number of digits that comprise the current group. The

next element is examined to determine the size of the next group of
digits to the left of the current group.

The value of p_sign_posn and n_sign_posn is interpreted according to the following:

0 Parenthesis surround the quantity and currency_stboI.

1 The sign string precedes the quantity and currency_symbol.
2 The sign string succeeds the quantity and currency_symbol.
3 The sign string immediately precedes the currency_symbol.
4 The sign string immediately succeeds the currency_symbol.

Return Values

A pointer to the filled—in object is returned. The structure pointed to by the return value shall
not be modified by the program, but may be overwritten by a subsequent call to localeconv.

1-334 Base Operating System Reference

localeconv

In addition, calls to setlocale with categories LC_ALL, LC_MONETARY or LC_NUMERIC
may cause subsequent calls to localeconv to return different values based on the selection
of the locale.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The setlocale subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-335

lockfx,...

lockfx, lockf or flock Subroutine

Purpose
Controls open file descriptors.
Library
Standard C Library (libc.a)
Syntax
#include <fcntl.h>
int lockfx (FileDescriptor, Command, Argument)
int FileDescriptor,;
int Command,
struct flock *Argument;
#include <sys/lockf.h>
int lockf(FileDescriptor, Request, Size)
int FileDescriptor;
int Request,
off_t Size;
#include <sys/file.h>
int flock(FileDescriptor, Operation)
int FileDescriptor,
int Operation;
Description
The lockfx subroutine is used to lock and unlock sections of an open file. lockfx provides a
subset of locking function provided by the fentl subroutine.
The lockf subroutine also locks and unlocks sections of an open file; however, its interface
is limited to setting only write (exclusive) locks.
Although the lockfx, lockf, flock, and fcntl interfaces are all different, the implementations
are fully integrated. Therefore, locks obtained from one subroutine are honored and
enforced by any of the lock subroutines.
Warning: Buffered I/O does not work properly when used with file locking. Do not use the
standard 1/0 package routines on files that are going to be locked.
A parameter to the lockfx subroutine that creates the lock determines whether it is a read
lock or a write lock.
The file descriptor on which a write lock is being placed must have been opened with write
access.
Parameters ;
FileDescriptor A file descriptor returned by a successful open or fcntl subroutine,

identifying the file to which the lock is to be applied or removed.

1-336 Base Operating System Reference

Command

Argument

Request

Size

Operation

Return Values

lockfx,...

One of the following constants for lockfx:

o F_SETLK: Sets or clears a file lock. The |_type field of the flock
structure indicates whether to establish a read or write lock, or to
remove either type of lock. If a read or write lock cannot be set, the
lockfx subroutine returns immediately with an error value of -1.

e F_SETLKW: Performs the same function as F_SETLK except that
if a read or write lock is blocked by existing locks, the process
sleeps until the section of the file is free to be locked.

o F_GETLK: Gets the first lock that blocks the lock described in the
flock structure. If a lock is found, the retrieved information
overwrites the information in the flock structure. If no lock is found
that would prevent this lock from being created, the structure is
passed back unchanged except that the |_type field is set to
F_UNLCK.

A pointer to a structure of type flock, defined in the flock.h header file.
One of the following constants for lockf:
o F_ULOCK: Unlocks a previously locked region in the file.

o F_LOCK: Locks the region for exclusive use. This request causes
the calling process to sleep if the region overlaps a locked region,
and to resume when it is granted the lock.

e F_TEST: Tests to see if another process has already locked a
region. The lockf subroutine returns 0 if the region is unlocked. If
the region is locked, then —1 is returned and the global variable
errno is set to EACCES.

The number of bytes to be locked or unlocked for lockf. The region
starts at the current location in the open file and extends forward if
Size is positive and backward if Size is negative. If the Size parameter
is 0, the region starts at the current location and extends forward to
the maximum possible file size, including the unallocated space after
the end of the file. ‘

One of the following constants for flock:
o LOCK_SH: Apply a shared lock.
e LOCK_EX: Apply an exclusive lock.

e LOCK_NB: Do not block when locking. This value can be logically
ORed with either LOCK_SH or LOCK_EX. ‘

¢ LOCK_UN: Remove a lock.

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned
and the global variable errno is set to indicate the error.

Base Operating System Runtime 1-337

lockfx,...

Error Codes
The lockfx, lockf, and flock subroutines fail if one or more of the following are true:

EBADF The FileDescriptor parameter is not a valid open file descriptor.
EINVAL The request is not valid.

EDEADLK The lock is blocked by some lock from another process. Putting the calling

process to sleep while waiting for that lock to become free would cause a
deadlock.

ENOLCK The lock table is full. Too many regions are already locked.

The lockfx subroutine fails if one or more of the following are true:

EAGAIN The Command parameter is F_SETLK, the I_type field is F_RDLCK, and
the segment of the file to be locked is already write—locked by another
process.

EAGAIN The Command parameter is F_SETLK, the |_type field is F_WRLCK, and

the segment of a file to be locked is already read-locked or write—locked by
another process.

The lockf subroutine fails if the following is true:

EWOULDBLOCK The file is locked and the LOCK_NB option was specified.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The flock subroutine locks and unlocks entire files. This is a limited interface maintained for
BSD compatibility, although its behavior differs from BSD in a few subtle ways. In order to
apply a shared lock, the file must be opened for reading, and to apply an exclusive lock, it
must be opened for writing. Also, locks are not inherited; therefore, a child process cannot
unlock a file locked by the parent process.

Related Information
The close subroutine, execve subroutine, fentl subroutine, fork subroutine, open
subroutine.

The flock.h header file, sys/file.h header file.

1-338 Base Operating System Reference

Isearch,...

Isearch or lfind Subroutine

Purpose
Library

Syntax

Performs a linear search and update.

Standard C Library (libc.a)

void *Isearch (Key, Base, NumberOfElementsPointer, Width, ComparisonPointer)
void *Key, Base;

size_t Width, NumberOfElementsPointer,

int (ComparisonPointen) ();

void *ifind (Key, Base,NumberOfElementsPointer, Width, ComparisonPointer)
void *Key, Base;

size_t Width, NumberOfElementsPointer;

int (ComparisonPointer) ();

Description

The Isearch subroutine performs a linear search.

The algorithm returns a pointer to a table where data can be found. If the data is not in the
table, the program adds it at the end of the table.

The Ifind subroutine is identical to the Isearch subroutine, except that if the data is not
found, it is not added to the table. In this case, a NULL pointer is returned.

The pointers to the Key parameter and the element at the base of the table should be of type

pointer-to-element and cast to type pointer-to-character. The value returned should be cast
into type pointer-to-element.

The comparison function need not compare every byte; therefore, the elements can contain
arbitrary data in addition to the values being compared.

Warning: Undefined results can occur if there is not enough room in the table for the
Isearch subroutine to add a new item.

Parameters

Key Specifies the data to be sought in the table.

Base Points to the first element in the table.
NumberOfElementsPointer

Points to an integer containing the current number of elements in the table.
This integer is incremented if the data is added to the table.

ComparisonPointer

Specifies the name (that you supply) of the comparison function (stremp,
for example). It is called with two parameters that point to the elements
being compared.

Base Operating System Runtime 1-339

Isearch,...

Width Specifies the size of an element in bytes.
Return Values
The comparison function compares its parameters and return a value as foliows:

o If the first parameter equals the second parameter, the ComparisonPointer parameter
returns a value of 0.

o If the first parameter does not equal the second parameter, the ComparisonPointer
parameter returns a value of 1.

Implementation Specifics
These subroutines are part of AIX Base Operating Systems (BOS) Runtime.

Related Information
The bsearch subroutine, hsearch subroutine, tsearch subroutine, qsort subroutine.

Donald E. Knuth's The Art of Computer Programming, Volume 3, 6.1, Algorithm S. This book
was published in Reading, Massachusetts by Addison-Wesley, 1981.

1-340 Base Operating System Reference

Iseek

Iseek Subroutine

Purpose

Moves read—write file pointer.
Library

Standard C Library (libc.a)
Syntax

#include <sys/types.h>

#include <unistd.h>

off_t Iseek (FileDescritpor, Offset, Whence)

int FileDescriptor;

off_t Offset;

int Whence; ,

Description
The Iseek subroutine sets the file pointer for the open file specified by the FileDescriptor
parameter.

Parameters

FileDescriptor Specifies a file descriptor obtained from a successful open or fentl
subroutine.

Offset Specifies a value, in bytes, that is used in conjunction with the Whence
parameter to set the file pointer. A negative value causes seeking in the
reverse direction. The resulting file position may also be negative.

Whence Specifies how to interpret the Offset in setting the file pointer associated

with the FileDescriptor parameter, as follows:
SEEK_SET Sets the file pointer to the value of the Offset parameter.

SEEK_CUR Sets the file pointer to its current location plus the value
of the Offset parameter.

SEEK_END Sets the file pointer to the size of the file plus the value of
the Offset parameter.

Return Values
Upon successful completion, the resulting pointer location, measured in bytes from the

beginning of the file, is returned. If the Iseek system call fails, a value of —1 is returned and
the global variable errno is set to indicate the error.

Error Codes
The Iseek subroutine fails and the file pointer remains unchanged if any of the following are

frue:
EBADF The FileDescriptor parameter is not an open file descriptor.
ESPIPE The FileDescriptor parameter is associated with a pipe (FIFO) or a socket.

Base Operating System. Runtime 1-341

Iseek

EINVAL The Whence parameter is an invalid value.

EINVAL The resulting offset would be negative.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The fentl subroutine, fseek, rewind, ftell, fgetpos, fsetpos subroutines, open subroutine,
read subroutine, write subroutine.

1-342 Base Operating System Reference

Ilvm_changelv

lvm_changelv Subroutine

Purpose
Library

Syntax

Changes the attributes of a logical volume.

Logical Volume Manager Library (liblvm.a)

#include <lvm.h>

int lvm_changelv (Changelv)
struct changelv *Changelv;

Description

The Ivm_changelv subroutine changes the attributes of an existing logical volume.

The changelv structure pointed to by the Changelv parameter is defined in the lvm.h
header file and contains the following members:

struct changelv{
struct lv_id 1lv_id;
char *lvname;
long maxsize;
long permissions;
long bb_relocation;
long mirror_ policy;
long write_verify;
long mirwrt_consist;

}
struct 1lv_id{

struct unique id vg_ id;
long minor_num;}

The Iv_id specifies the logical volume to be changed. The Ilvhame specifies either the full
path name of the logical volume, or a single file name that must reside in the /dev directory,
(i.e., rhd1). This field must be a nuli-terminated string of from 1 to LVM_NAMESIZ bytes,
including the null byte, and must be the name of a raw/character device. If a raw/character
device is not specified for the lvname field, the Logical Volume Manager will add an ’r’ to
the file name in order to have a raw device name. If there is no raw device entry for this
name, the Logical Volume Manager will return the LVM_NOTCHARDEYV error code. The
maxsize field specifies the new maximum size of the logical volume in number of logical
partitions (1 — LVM_MAXLPS). A change in the maxsize field does not change the existing
size of the logical volume. The permissions field specifies the permission assigned to the
logical volume, either read only, or read/write, and the bb_relocation field specifies if bad
block relocation is desired. The mirror_policy field specifies how the copies of the logical
partition should be written. This field can be either LVM_SEQUENTIAL or LVM_PARALLEL.
The write_verify field specifies if writes to the logical volume should be checked for
successful completion. The values for this field are either LVM_VERIFY or
LVM_NOVERIFY. Any other fields in the parameter list that are not to be changed should
either contain a zero (0), or be set to null if they are pointers.

Base Operating System Runtime 1-343

lvm_changelv

The mirwrt_consist field tells whether mirror write consistency recovery will be performed
for this logical volume. The Logical Volume Manger always insures data consistency among
mirrored copies of a logical volume during normal I/O processing. For every write to a logical
volume, the Logical Volume Manager generates a write request for every mirror copy. A
problem arises if the system crashes in the middle of processing a mirrored write (before all
copies are written). If mirror write consistency recovery is requested for a logical volume, the
Logical Volume Manager keeps additional information to allow recovery of these inconsistent
mirrors. Mirror write consistency recovery should be performed for most mirrored logical
volumes. Logical volumes, such as the page space, that do not use the existing data when
the volume group is re—varied on do not need this protection.

The logical volume must not be open when trying to change the permissions,
bb_relocation, write_verify, mirror_policy, or mirwrt_consist fields. If the volume group
that contains the logical volume to be changed is not on-line, an error will be returned.

Parameter
Changelv A pointer to the changelv structure.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the changelv subroutine fails, then it returns one of the following values.

LVM_OFFLINE A routine that requires a volume group to be on-line has
encountered one that is off-line.

LVM_INVALID_PARAM A field in the changelv structure is invalid or the pointer to
the changelv structure is invalid.

LVM_MAPFOPN The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

LVM_MAPFSHMAT An error occurred while trying to attach the mapped file.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_DALVOPN The volume group reserved logical volume could not be
opened.

LVM_LVOPEN The logical volume was open. It must be closed to change

the permissions, bb_relocation, write_verify,
mirror_policy, or mirwrt_consist fields.

LVM_INV_DEVENT The logical volume device entry is invalid and cannot be
checked to determine if it is raw.

LVM_ALLOCERR A memory allocation error occurred.

LVM_NOTCHARDEV The device is not a raw/character device.

LVM_INVALID_MIN_NUM An invalid minor number was received.

1-344 Base Operating System Reference

Ilvm_changelv

LVM_LVEXIST A logical volume already exists with the name passed into
the routine.
LVM_INVCONFIG An error occurred while attempting to configure this volume

group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

LVM_WRTDAERR An error occurred while trying to write the volume group
descriptor area to the logical volume.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The lvm_querylv subroutine, lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-345

lvm_changepv

lvmm_changepv Subroutine

Purpose
Library

Syntax

Changes the attributes of a physical volume in a volume group.

Logical Volume Manager Library (liblvm.a)

#include <lvm.h>

int lvm_changepv (Changepv)
struct changepv *Changepv;

Description

Parameter

The Ilvm_changepv subroutine changes the state of the specified physical volume.

The changepv structure pointed to by the Changepv parameter is defined in the lvm.h
header file and contains the following members:

struct changepv{
struct unique_id vg_id;
struct unique_id pv_id;
long rem_ret;
long allocation;}

The lvm_changepv subroutine changes the state of the physical volume specified by the
pv_id field. The rem_ret field should be set to LVM_REMOVEPV to temporarily remove the
physical volume from the volume group, or LVM_RETURNPYV to return the physical volume
to the volume group. When a physical volume is temporarily removed from the volume
group, there will be no access to that physical volume through the Logical Volume Manager
while that physical volume is in the removed state. Also, when a physical volume is removed
from the volume group, any copies of the volume group descriptor area which are contained
on that physical volume are removed from the volume group and therefore will not be
counted in the quorum count of descriptor area copies which are needed for a volume group
to be varied on.

The allocation field should be set to LVM_NOALLOCPYV to disallow the allocation of
physical partitions to the physical volume, or LVM_ALLOCPYV to allow the allocation of
physical partitions to the physical volume. It is not necessary to change both state fields; for
example, the allocation field could be set to LVM_NOALLOCPYV and the rem_ret field could
simply be set to zero to indicate no change is desired. The vg_id field identifies the volume
group that contains the physical volume to be changed. The volume group must be on-line,
or an error is returned.

Changepv Pointer to the changepv structure.

Return Value

Upon successful completion, a value of 0 is returned.

1-346 Base Operating System Reference

Error Codes

Ivm_changepv

If the lvm_changepv subroutine fails, then it returns one of the following values.

LVM_OFFLINE

LVM_INVALID_PARAM

LVM_MAPFOPN

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_DALVOPN

LVM_ALLOCERR
LVM_BELOW_QRMCNT

LVM_INV_DEVENT

LVM_NOTCHARDEV
LVM_WRTDAERR

LVM_PVOPNERR
LVM_RDPVID

LVM_BADBBDIR

LVM_INVCONFIG

LVM_LVMRECERR
LVM_PVDAREAD

The volume group containing the physical volume to be
changed is off-line and should be on-line.

A field in the changepv structure is invalid, or the pointer to
the changepv structure is invalid.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the

. volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The volume group reserved logical volume could not be
opened.

A memory allocation error occurred.

The physical volume cannot be removed because there
would not be a quorum of available physical volumes.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The device specified is not a character/raw device.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

The physical volume device could not be opened.

The record which contains the physical volume id could not
be read.

The bad block directory on the physical volume could not be
read from and/or written to.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

The lvm record could not be read or written.

An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

1-347

Base Operating System Runtime

lvm_changepv

Implementation Specifics |
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The Ivm_querypv subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-348 Base Operating System Reference

Ilvm_createlv

Ivm_createlv Subroutine

Purpose
Creates an empty logical volume in a specified volume group.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int lvm_createlv (Createlv)
struct createlv *Createlv;
Description

The Ivm_createlv subroutine creates an empty logical volume in an existing volume group
with the information supplied. The lvm_extendlv subroutine should be called to allocate
partitions once the logical volume is created.

The createlv structure pointed to by the Createlv parameter is defined in the lvm.h header
file and contains the following members:

struct createlv {
char *lvname;
struct unique_id vg_id;
long minor_ num;
long maxsize;
long mirror_policy;
long permissions;
long bb_relocation;
long write verify;
long mirwrt_consist;

}

struct unique_id{
unsigned long wordl;
unsigned long word2;
unsigned long word3;
unsigned long wordd;

}

The lvname field specifies the special file name of the logical volume, and can be either the
full path name or a single file name that must reside in the /dev directory (e.g., rhd1). All
name fields must be nuli-terminated strings of from 1 to LVM_NAMESIZ bytes, including the
null byte. If a raw/character device is not specified for the lvname field, the Logical Volume
Manager will add an ’r’ to the file name in order to have a raw device name. If there is no
raw device entry for this name, the Logical Volume Manager will return the
LVM_NOTCHARDEV error code. The vg_id field specifies the unique ID of the volume
group that will contain the logical volume. The minor_num field must be in the range from 1
to maxivs. The maxivs field is set when a volume group is created and is returned by the
lvm_queryvg subroutine. The maxsize field is the maximum size in logical partitions for the
logical volume and must be in the range of 1 to LVM_MAXLPS. The mirror_policy field
specifies how the physical copies will be written. The mirror_policy should be either
LVM_SEQUENTIAL or LVM_PARALLEL to indicate how the physical copies of a logical

Base Operating System Runtime 1-349

lvm_createlv

1-350

partition are to be written when there is more than one copy. The permissions field
indicates read/write or read only permission for the logical volume, and the bb_relocation
field indicates that bad block relocation is desired. The write_verify field indicates that
writes to the logical volume are to be verified as successful.

The mirwrt_consist field teils whether mirror write consistency recovery will be performed
for this logical volume.

The Logical Volume Manger always insures data consistency among mirrored copies of a
logical volume during normal I/O processing. For every write to a logical volume, the Logical
Volume Manager generates a write request for every mirror copy. A problem arises if the
system crashes in the middle of processing a mirrored write (before all copies are written). If
mirror write consistency recovery is requested for a logical volume, the Logical Volume
Manager keeps additional information to allow recovery of these inconsistent mirrors. Mirror
write consistency recovery should be performed for most mirrored logical volumes. Logical
volumes, such as the page space, that do not use the existing data when the volume group
is re—varied on do not need this protection.

All fields in the createlv structure must have a valid value in them, or an error will be
returned.

The lvm_createlv subroutine uses the createlv structure to build an information area for the
logical volume. If the volume group that is to contain this logical volume is not varied
on-line, the LVM_OFFLINE error code is returned.

Values for the mirror_policy field:

LVM_SEQUENTIAL For this logical volume, use a sequential method of writing
the physical copies (if more than one) of a logical partition.

LVM_PARALLEL For this logical volume, use a parallel method of writing the
physical copies (if more than one) of a logical partition.

Values for the permissions field:
LVM_RDONLY Create the logical volume with read only permission.

LVM_RDWR Create the logical volume with read/write permission.

Values for the bb_relocation field:
LVM_RELOC Bad block relocation is desired.
LVM_NORELOC Bad block relocation is not desired.

Values for the write_verify field:
LVM_VERIFY Write verification is desired.

LVM_NOVERIFY Write verification is not desired.

Values for the mirwrt_consist field:

LVM_CONSIST Mirror write consistency recovery will be done for this logical
volume.
LVM_NOCONSIST Mirror write consistency recovery will not be done for this

logical volume.

Base Operating System Reference

ivm_createlv

Parameter
Createlv A pointer to the createlv structure.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the lvm_createlv subroutine fails, then it returns one of the following values.

LVM_INV_DEVENT The logical volume device entry is invalid and cannot be
checked to determine if it is raw.

LVM_OFFLINE A routine that requires a volume group to be on-line has
encountered one that is off-line.

LVM_VGFULL The volume group that the logical volume was requested to
be a member of already has the maximum number of
logical volumes.

LVM_INVALID_PARAM A field in the createlv structure is invalid, or the pointer to
the createlv structure is invalid.

LVM_MAPFOPN The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

LVM_MAPFSHMAT An error occurred while trying to attach the mapped file.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_DALVOPN The descriptor area logical volume could not be opened.

LVM_INVALID_MIN_NUM A minor number passed into the routine is invalid.

LVM_LVEXIST A logical volume already exists with the name passed into
the routine.

LVM_NOTCHARDEV The lvname name given does not represent a raw/character
device.

LVM_ALLOCERR A memory allocation error has occurred.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The lvm_extendlv subroutine, lvm_varyonvg subroutine, lvm_querylv subroutine,
lvm_queryvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-351

Ilvm_createvg

lvm_createvg Subroutine

Purpose
Creates a new volume group and installs the first physical volume.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int lvm_createvg (Createvg)
struct createvg *Createvg;
Description
The lvm_createvg subroutine is used to create a new volume group and to install its first
physical volume. The physical volume must not exist in another volume group.
The createvg structure pointed to by the Createvg parameter is found in the lvm.h header
file and defined as follows: ~
struct createvg
{
mid_t kmid;
char *vgname;
long vg_major;
char *pvname;
long maxlvs;
long ppsize;
long vgda_size;
short int override;
struct unique_id vg_id;
}i
The kmid field is the module id which identifies the entry point of the logical volume device
driver module. The module id is returned when the logical volume device driver is loaded
into the kernel.
The vgname field is the character special file name, which is either the full path name or a
file name that resides in the /dev directory (e.g., rvg13), of the volume group device. This
device is actually a logical volume with minor number 0 (zero), which is reserved for use by
the Logical Volume Manager. ,
The vg_maijor field is the major number for the volume group which is to be created.
The pvname field is the character special file name, which is either the full path name or a
single file name that resides in the /dev directory (e.g., thdisk0) of the physical volume
being installed in the new volume group. ,
The maxlvs field is the maximum minor number, which will be allowed for a logical volume
in the volume group. The range is 1 to LVM_MAXLVS.
The ppsize field specifies the size of the physical partitions in the volume group. The range
is LVM_MINPPSIZ to LYM_MAXPPSIZ. The size in bytes of every physical partition in the
volume group is 2 to the power of ppsize.
1-352 Base Operating System Reference

lvm_createvg

The vgda_size field is the number of 512 byte blocks which are to be reserved for one copy
of the volume group descriptor area. The range is LVM_MINVGDASIZ to
LVM_MAXVGDASIZ. Twice this amount of space will be reserved on each physical volume
in the volume group so that two copies of the volume group descriptor area may be saved
when needed.

The override field specifies whether or not the LVM_VGMEMBER error code should be
ignored. If the override field is TRUE, the Logical Volume Manager will create the volume
group with the specified physical volume even if it appears to belong to another volume
group; as long as that volume group is not varied on. If the volume group is varied on, the
LVM_MEMACTVVG error code is returned. if the override field is FALSE, the Logical
Volume Manager will return the LVM_VGMEMBER error code, if the specified physical
volume is a member of another volume group whether that volume group is varied on or
varied off. If the LVM_MEMACTVVG or LVM_VGMEMBER error code is returned, the vg_id
field will contain the ID of the volume group that the specified physical volume is a member
of.

The vg_id field is an output field in which the |ID of the newly created volume group will be
returned upon successful completion.

The physical volume installed into the new volume group will contain two copies of the
volume group descriptor area in the reserved area at the beginning of the physical volume,
since this is the first physical volume instalied. The volume group descriptor area contains
information about the physical and logical volumes in the volume group. This descriptor area
is used by the Logical Volume Manager to manage the logical volumes and physical
volumes in the volume group.

Parameter
Createvg Pointer to the createvg structure.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the lvm_createvg subroutine fails, then it returns one of the following values.

LVM_INV_DEVENT The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

LVM_NOTCHARDEV The device specified is not a character/raw device.

LVM_VGMEMBER The physical volume cannot be installed into the specified

volume group because its LVM record indicates it is already
a member of another volume group. If the caller feels that
the information in the LVM record is incorrect, the override
field can be set to TRUE in order to override this error. This
error is only returned when the override field is set to

FALSE.
LVM_INVALID_PARAM A field in the createvg structure is invalid.
LVM_PVOPNERR The physical volume device could not be opened.

Base Operating System Runtime 1-353

lvm_createvg

LVM_LVMRECERR

LVM_RDPVID

LVM_MEMACTVVG

LVM_WRTDAERR

LVM_VGDASPACE

LVM_BADBBDIR

LVM_ALLOCERR
LVM_INVCONFIG

LVM_DALVOPN

Implementation Specifics

The LVM record, which contains information about the
volume group descriptor area, could not be read or could
not be written.

The record, which contains the physical volume id, could
not be read.

The physical volume specified is a member of another
volume group that is varied on. This is returned only when
the override field is set to TRUE.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

The physical volume cannot be installed into the specified
volume group because there is not enough space in the
volume group descriptor area to add a description of the
physical volume and its partitions.

The physical volume could not be installed into the volume
group because the bad block directory could not be read
from and/or written to.

A memory allocation error occurred.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

The volume group reserved logical volume could not be
opened.

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-354 Base Operating System Reference

lvm_deletelv

lvm_deletelv Subroutine

Purpose
Deletes a logical volume from its volume group.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int lvm_deletelv (Lv_id)
struct Iv_id *Lv_id,;
Description
The lvm_deletelv subroutine deletes the logical volume specified by the Lv_id parameter
from its volume group. The logical volume must not be opened, and the volume group must
be on-line, or an error is returned. Also, all logical partitions belonging to this logical volume
must be removed using the lvm_reducelv subroutine before the logical volume can be
deleted.
Parameter :
Lv_id Specifies the logical volume to be deleted.

Return Value

Upon successful completion, a value of 0 is returned.

Error Codes

If the Ivm_deletelv subroutine fails, then it returns one of the following values:

LVM_OFFLINE

LVM_LVOPEN

LVM_INVALID_PARAM

LVM_NODELLV

LVM_MAPFOPN

LVM_MAPFSHMAT
LVM_MAPFRDWR

A routine that requires a volume group to be on-line has
encountered one that is off-line.

An open logical volume was encountered when it should be
closed.

The logical volume ID passed in is not a valid logical
volume, or the pointer to the logical volume is invalid.

The logical volume cannot be deleted because there are
existing logical partitions.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

Base Operating System Runtime 1-355

lvm_deletelv

LVM_DALVOPN
LVM_INVALID_MIN_NUM

LVM_ALLOCERR
LVM_NOTCHARDEV
LVM_INVCONFIG

LVM_WRTDAERR

LVM_INV_DEVENT

Implementation Specifics

The volume group reserved logical volume could not be
opened.

An invalid minor number was received.
A memory allocation error occurred.
The device specified is not a character/raw device.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is invalid.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

The device entry for the logical volume is invalid and cannot
be checked to determine if it is raw. '

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-356 Base Operating System Reference

lvm_deletepv

lvm_deletepv Subroutine

Purpose
Deletes a physical volume from a volume group.

Library
Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>
int lvm_deletepv (Pv_id, Vg_id)

struct unique_id *Vg_id;
struct unique_id *Pv_id;

Description
The lvm_deletepv subroutine deletes the physical volume specified by the Pv_id parameter
from its volume group. The Vg _id parameter indicates the volume group that contains the
physical volume to be deleted. The physical volume must not contain any partitions of a
logical volume, or the LVM_PARTFND error code is returned. In this case, the user must
delete logical volumes or relocate the partitions that reside on the physical volume. The
volume group containing the physical volume to be deleted must be varied on or an error is
returned.

Parameters
Pv_id Specifies the physical volume to be deleted.
Vg _id Specifies the volume group that contains the physical volume to be deleted.

Return Values
Upon successful completion, one of the following positive return codes will be returned.

LVM_SUCCESS The physical volume was successfully deleted.

LVM_VGDELETED The physical volume was successfully deleted, and the
volume group was also deleted because that physical
volume was the last one in the volume group.

Error Codes
If the lvm_deletepv subroutine does not complete successfully, one of the following
negative error codes will be returned.

LVM_OFFLINE The volume group which contains the physical volume to be
deleted is off-line and should be on-line.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_PARTFND This routine cannot delete the specified physical volume
because it contains physical partitions allocated to a logical
volume.

Base Operating System Runtime 1-357

lvm_deletepv

LVM_MAPFOPN
LVM_MAPFSHMAT
LVM_MAPFRDWR

LVM_DALVOPN
LVM_PVOPNERR
LVM_LVMRECERR
LVM_ALLOCERR
LVM_NOTCHARDEV

LVM_INV_DEVENT
LVM_WRTDAERR

LVM_INVCONFIG

Implementation Specifics

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The descriptor area logical volume could not be opened.
The physical volume device could not be opened.

The lvm record could not be read or written.

A memory allocation error occurred.

The physical volume to be deleted does not have a raw
device entry.

The physical volume specified has an invalid device entry
and cannot be checked to determine if it is raw.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The lvm_deletelv subroutine, lvm_varyonvg subroutine, Ivm_reducelv subroutine,
lvm_migratepp subroutine, lvm_queryvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-358 Base Operating System Reference

Ilvm_extendlv

lvm_extendlv Subroutine

Purpose
Extends a logical volume by a specified number of partitions.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int lvm_extendlv (Lv_id, Extendlv)
struct Lv_id *Lv_id;
struct ext_redlv *Extendlv;
Description

The lvm_extendlv subroutine extends a logical volume specified by the Lv_id parameter by
adding a completely new logical partition or by adding another copy to an existing logical
partition.

The ext_redlv structure pointed to by the Extendlv parameter is defined in lvm.h header file
and contains the following members:

struct ext_redlv{
long size;
struct pp *parts;

}
struct pp {
struct unique_id pv_id;
long lp num;
long pp_num;

}

Within this structure is the parts field, which is a pointer to an array of pp structures. Also in
the ext_redlv structure, is the size field which is the number of entries in the array pointed to
by the parts variable. The parts array should have one entry for each physical partition
being allocated and the size field should reflect a total of these entries. The size field should
never be zero; if it is, an error will be returned. Within the pp structure is a Ip_num field
which is the number of the logical partition that you are extending. This number should be in
the range of 1 to the maximum number of logical partitions allowed in the logical volume
being extended. The maximum number of logical partitions allowed on the logical volume is
the maxsize field returned from a query of the logical volume, and must be in the range of 1
to LVM_MAXLPS. Also in the pp structure are the pp_num and pv_id. The pp_num field
is the number of the physical partition to be allocated as a copy of the logical partition. This
number should be in the range of 1 to the number of physical partitions allowed on the
physical volume specified by the pv_id field (The pp_count field returned from a query of
the physical volume. This field is in the range 1 to LVM_MAXPPS). The physical partition
specified by the pp_num should have a state of LVM_PPFREE (i.e., should not be
allocated). The pv_id field should contain the valid ID of a physical volume that is a member
of the same volume group as the logical volume being extended. The volume group should
be varied on, or an error is returned.

Base Operating System Runtime 1-359

lvm_extendlv

An example of a correct parts array and size value follows:

size = 4 (The size field is set to 4 because there are 4 struct
pp entries.)

parts:
entryl pv_id = 4321
lp_ num = 2
pp_num = 1
entry?2 pv_id = 1234
lp_num = 2
pp_num = 3
entry3 pv_id = 5432
lp_num = 3
pp_num = 5
entry4 pv_id = 4242
lp num = 2
pp_num = 12

Up to 3 copies (physical partitions) can be allocated to the same logical partition, and an
error will be returned if an attempt is made to add more. lt is also possible to have entries
with a valid Ip_num and zeroes for the pv_id and pp_num fields; this type of entry specifies
that this logical partition should be ignored (nothing will be allocated for the logical partition).
Another way to have a logical partition ignored is to simply skip an entry for it.

EXAMPLE 1
size = 2
parts:
entryl pv_id = 0 (Entry 1 would indicate that 1lp 3
lp num = 3 should be ignored.)
pp_num = 0
entry2 pv_id = 4467
lp num = 5
pp_num = 3
EXAMPLE 2
size = 3
parts:
entryl pv_id = 5347
lp num = 1
pp_num = 1
entry2 pv_id = 8790
l1p num 3
pp_num = 3
entry3 pv_id = 2938
lp_num = 6
pp_num = 6

Logical partition numbers 2, 4, and 5 will be ignored since there were no entries for them in

the array.
Parameters
Extendlv Pointer to the ext_redlv structure.
Lv_id Pointer to the Iv_id structure, which specifies the logical volume to extend.

Return Value
Upon successful completion, a value of 0 is returned.

1-360 Base Operating System Reference

Error Codes

lvm_extendlv

If the Ivm_extendlv subroutine fails, then it returns one of the following values.

LVM_OFFLINE
LVM_INVALID_PARAM

LVM_NOALLOCLP
LVM_LPNUM_INVAL
LVM_PPNUM_INVAL
LVM_PVSTATE_INVAL

LVM_MAPFOPN

LVM_MAPFSHMAT

LVM_MAPFRDWR

LVM_DALVOPN

LVM_INVALID_MIN_NUM

LVM_ALLOCERR
LVM_INV_DEVENT

LVM_NOTCHARDEV

LVM_INRESYNC

LVM_INVCONFIG

LVM_WRTDAERR

The volume group is off-line and should be on-line.

Either one or both of the Extendlv or Lv_id parameters are

invalid or the Lv_id parameter is not a valid logical volume.
This could also mean that one of the fields in the ext_redlv
structure is invalid.

The logical partition specified already has three copies.
A logical partition number passed in is invalid.
A physical partition number passed in is invalid.

A physical volume id sent in specifies a physical volume
with a state of LVM_PVNOALLOC.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The volume group reserved logical volume could not be
opened.

An invalid minor number was received.
A memory allocation error occurred.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The device specified is not a character/raw device.

The logical partition to be extended is being resynced, and
cannot be extended while the resync is in progress.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is invalid.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

1-361

Base Operating System Runtime

Ivm_extendlv

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The lvm_changelv subroutine, lvm_createlv subroutine, Ivm_reducelv subroutine,
lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-362 Base Operating System Reference

lvm_installpv

Ilvm_installpv Subroutine

Purpose

Installs a physical volume into a volume group.
Library

Logical Volume Manager Library (liblvm.a)
Syntax

#include <lvm.h>

int lvm_installpv (/nstalipv)

struct installpv *Installpv;

Description

The lvm_installpv subroutine installs a physical volume into a specified volume group. The
physical volume must not exist in another volume group.

The installpv structure pointed to by the /nstallpv parameter is found in the lvm.h header
file and is defined as follows:

struct installpv

{

char *pvname;

struct unique_id vg_id;
short int override;

struct unique_id out_vg_id;

}i

The pvname field is the character special file name, which can be either a fuli path name or
a single file name that resides in the /dev directory (e.g., rhdisk0), of the physical volume
being installed into the volume group specified by the vg_id field. The pvname field must
be a null-terminated string of from 1 to LVM_NAMESIZ bytes, including the null byte, and
must be the name of a raw/character device. If a raw device is not specified for the pvname
field, the Logical Volume Manager will add an 'r’ to the file name in order to have a raw
device name. If there is no raw device entry for this name, the Logical Volume Manager will
return the LVYM_NOTCHARDEYV error code.

The override field specifies whether or not the LVM_VGMEMBER error code should be
ignored. If the override field is TRUE, the Logical Volume Manager will install the physical
volume into the specified volume group even if the physical volume is a member of another
volume group. This is done only if the other volume group is not varied on. If it is varied on,
the LVM_MEMACTVVG error code is returned. |f the override field is FALSE, the
LVM_VGMEMBER error code is returned if the physical volume belongs to another volume
group wheter that volume group is varied on or varied off. The LVM_ALRDYMEM error code
is returned if the physical volume is already a member of the specified volume group. This
error is returned no matter what the setting is of the override field.

The out_vg_id field contains the ID of the volume group that the physical volume is a
member of if either the LVM_MEMACTVVG or the LVM_VGMEMBER error code is
returned.

Base Operating System Runtime 1-363

lvm_installpv

Each physical volume installed into a volume group will contain a volume group descriptor
area in the reserved area at the beginning of the physical volume. The volume group
descriptor area contains information about the physical and logical volumes in the volume
group. This descriptor area is used by the Logical Volume Manager to manage the logical
volumes and physical volumes in the volume group.

Parameter

Installpv Pointer to the installpv structure.

Return Values

Upon successful completion, a value of 0 is returned.

Error Codes

If the Ivm_installipv subroutine fails, then it returns one of the following negative values.

LVM_ALRDYMEM
LVM_OFFLINE

LVM_VGMEMBER

LVM_PVMAXERR

LVM_VGDASPACE

LVM_PVOPNERR
LVM_LVMRECERR

LVM_RDPVID

LVM_MAPFOPN

LVM_MAPFRDWR

1-364 Base Operating System Reference

The physical volume is already a member of the specified
volume group.

A volume group specified is off-line. It must be varied-on to
perform this operation.

The physical volume cannot be installed into the specified
volume group because its LVM record indicates it is already
a member of another volume group. If the caller feels that
the information in the LVM record is incorrect, the override
field can be set to TRUE in order to override this error. This
error is only returned when the override field is set to
FALSE.

The physical volume cannot be installed into the specified
volume group because the maximum allowed number of
physical volumes are already installed in the volume group.
The maximum number of physical volumes is
LVM_MAXPVS.

The physical volume cannot be installed into the specified
volume group because there is not enough space in the
volume group descriptor area to add a description of the
physical volume and its partitions.

The physical volume device could not be opened.

The LVM record, which contains information about the

volume group descriptor area, could not be read or could
not be written.

The record which contains the physical volume id could not
be read.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to write to the mapped file.

LVM_DALVOPN

LVM_BADBBDIR

LVM_INVCONFIG

LVM_ALLOCERR
LVM_INVALID_PARAM
LVM_NOTCHARDEV
LVM_INV_DEVENT

LVM_MEMACTVVG

LVM_INVCONFIG

LVM_WRTDAERR

Implementation Specifics

lvm_installpv

The volume group reserved logical volume could not be
opened.

The physical volume could not be installed into the volume
group because the bad block directory could not be read
from and/or written to.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is invalid.

A memory allocation error occurred.
An invalid parameter was passed into the routine.
The device specified is not a character/raw device.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The physical volume specified is a member of another

volume group that is varied on. This is returned when the
override field is TRUE.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-365

lvm_migratepp

Ivm_migratepp Subroutine

Purpose
Library

Syntax

Moves a physical partition to a specified physical volume.

Logical Volume Manager Library (liblvm.a)

#include <lvm.h>

int lvm_migratepp (Migratepp)
struct migratepp *Migratepp;

Description

Parameter

The Ilvm_migratepp subroutine moves the physical partition specified by the oldpp_num
field from the physical volume specified by the oldpv_id field to the physical partition, the
newpp_num field, located on the physical volume given in the newpv_id field. The vg_id
field specifies the volume group that contains both the old physical volume and the new
physical volume. This volume group should be varied on, or an error is returned.

The migratepp structure pointed to by the Migratepp parameter is defined in the lvm.h
header file and contains the following members:

struct migratepp({
struct unique_id vg_id;
long oldpp_num;
long newpp_num;
struct unique_id oldpv_id;
struct unique_id newpv_id;

Migratepp Points to the migratepp structure.

Return Value

Upon successful completion of the lvm_migratepp subroutine a value of 0 is returned.

Error Codes

1-366

If the Ivm_migratepp subroutine fails, then it returns one of the following values.

LVM_NOTSYNCED The resync involving the physical partitions of the
migratepp call was not complete.

LVM_OFFLINE The volume group is off-line and should be on—line.

LVM_INVALID_PARAM One of the parameters passed in did not have a valid value.

LVM_MAPFOPN The mapped file, which contains a copy of the volume

group descriptor area used for making changes to the
volume group, could not be opened.

Base Operating System Reference

LVM_MAPFSHMAT
LVM_MAPFRDWR

LVM_DALVOPN

LVM_NOALLOCLP
LVM_LPNUM_INVAL
LVM_PPNUM_INVAL
LVM_PVSTATE_INVAL

LVM_ALLOCERR
LVM_NOTCHARDEV
LVM_INV_DEVENT

LVM_INVALID_MIN_NUM
LVM_INVLPRED

LVM_INVCONFIG

LVM_WRTDAERR

LVM_MIGRATE_FAIL
LVM_INRESYNC

Implementation Specifics

lvm_migratepp

An error occurred while trying to attach the mapped file.

An error occurred while trying to read or write the mapped
file.

The volume group reserved logical volume could not be
opened.

The logical partition specified already has three copies.
A logical partition number is invalid.
A physical partition number is invalid.

A physical volume specified has a state of
LVM_PVNOALLOC.

A memory allocation error occurred.
A device is not a raw/character device.

A device has a major number that does not correspond to
the volume group being worked in.

An invalid minor number was received.

A reduction was requested that would leave a logical
partition with no good copies.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

The migration failed due to an error in the resync phase.

The physical partition being migrated is allocated to a
logical partition that is being resynced. The migration
cannot be completed while the resync is in progress.

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The lvm_querypv subroutine, lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-367

Base Operating System Runtime

Ivm_querylv

Ivm_querylv Subroutine

Purposes
Queries a logical volume and returns all pertinent information.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int lvm_querylv (Lv_id, Querylv, Pvname)
struct Iv_id *Lv_id;
struct querylv *Querylv;
char *Pvname;
Description

The lvm_querylv subroutine returns information for the logical volume specified by the
Lv_id parameter.

The querylv structure, found in the Ivm.h header file, is defined as follows:

struct querylv {
char 1lvname[LVM NAMESIZ];
struct unique_id vg_id;
long maxsize;
long mirror_policy;
long lv_state;
long currentsize;
long ppsize;
long permissions;
long bb_relocation;
long write_verify;
long mirwrt_consist;
long open_close;
struct pp *mirrors[LVM_NUMCOPIES]

}

struct pp {
struct unique_id pv_id;
long lp_num;
long pp_num;

}

The Pvname parameter enables the user to query from a volume group descriptor area on a
specific physical volume instead of from the Logical Volume Manager’s most recent,
in-memory copy of the descriptor area. If the query is done this way, the volume group does
not have to be on-line; however, the data returned may reflect a back level descriptor area
instead of the most recent one. The Pvname parameter should specify either the full path
name of the physical volume that contains the descriptor area to query, or a single file name
that must reside in the /dev directory (e.g., rhdisk1). This parameter must be a null
terminated string of from 1 to LVM_NAMESIZ bytes, including the null byte and must
represent a raw device entry. If a raw/character device is not specified for the Pvname
parameter, the Logical Volume Manager will add an ’r’ to the file name in order to have a

1-368 Base Operating System Reference

lvm_querylv

raw device name. If there is no raw device entry for this name, the Logical Volume Manager
will return the LVM_NOTCHARDEYV error code.

If a pvname is specified, only the minor_num portion of the Lv_id parameter need be
supplied. The Logical Volume Manager will fill in the vg_id portion and return it to the user. If
the user wishes to query from the Logical Volume Manager's in-memory copy, the Pvname
parameter should be set to null. When using this method of query, the volume group must
be varied on, or an error will be returned.

Note: As long as the Pvname is not NULL, the Logical Volume Manager will attempt a
query from a physical volume and not its in-memory copy of data.

In addition to the Pvname, the caller passes the ID of the logical volume to be queried (Lv_id
parameter) and the address of a pointer to the querylv structure, specified by the Querylv
parameter. The Logica!l Volume Manager will allocate the space needed for the querylv
structure and return the structure’s address in the pointer variable passed in by the user.

The Iv_state field specifies the current state of the logical volume and may have any of the
following bit specific values ORed together:

LVM_LVDEFINED The logical volume is defined.

LVM_LVSTALE The logical volume contains stale partitions.

The currentsize field is the current size in logical partitions of the logical volume. The
ppsize specifies the size of the physical partitions of all physical volumes in the volume
group. The size in bytes of every physical partition is 2 ** ppsize.

The permissions field sbecifies the permission assigned to the logical volume and may be
one of the following:

LVM_RDONLY Access to this logical volume is read only.

LVM_RDWR Access to this logical volume is read/write.

The bb_relocation field specifies if bad block relocation is desired and will be one of the
following:

LVM_RELOC Bad blocks will be relocated.
LVM_NORELOC Bad blocks will not be relocated.

The write_verify field specifies if write verification for the logical volume is desired and will
be one of the following:

LVM_VERIFY Write verification is performed on all writes to thé logical
volume.
LVM_NOVERIFY Write verification is not performed for this logical volume.

The mirwrt_consist field tells whether mirror write consistency recovery will be performed
for this logical volume.

The Logical Volume Manger always insures data consistency among mirrored copies of a
logical volume during normal I/O processing. For every write to a logical volume, the Logical
Volume Manager generates a write request for every mirror copy. A problem arises if the
system crashes in the middle of processing a mirrored write (before all copies are written). If
mirror write consistency recovery is requested for a logical volume, the Logical Volume
Manager keeps additional information to allow recovery of these inconsistent mirrors. Mirror

Base Operating System Runtime 1-369

lvm_querylv

write consistency recovery should be performed for most mirrored logical volumes. Logical
volumes, such as the page space, that do not use the existing data when the volume group
is re—varied on do not need this protection.

Values for the mirwrt_consist field:

LVM_CONSIST Mirror write consistency recovery will be done for this logical
volume.
LVM_NOCONSIST Mirror write consistency recovery will not be done for this

logical volume.

The open_close field specifies if the logical volume is opened or closed.
LVM_QLVOPEN The logical volume is opened by one or more processes.
LVM_QLV_NOTOPEN The logical volume is closed.

The mirrors field is an array of pointers to partition map lists (physical volume id, logical
partition number, and physical partition number for each copy of the logical partitions for the
logical volume). If a logical partition does not contain any copies, its pv_id, Ip_num, and
pp_hum fields will contain zeros.

All other fields are described in the lvm_createlv subroutine.

Parameters
Lv_id Pointer to an Iv_id structure that specifies the logical volume to query.
Querylvy Address of a pointer to the querylv structure.
Pvname Name of the physical volume from which to use the volume group descriptor

for the query. (Can also be NULL).

Return Value

Upon successful completion, a value of 0 is returned.

Error Codes

1-370

If the lIvm_querylv subroutine fails, then it returns one of the following values.

LVM_ALLOCERR The subroutine could not allocate enough space for the
complete buffer.

LVM_OFFLINE The volume group containing the logical volume to query
was off-line.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INVALID_MIN_NUM The minor number of the logical volume is invalid.

LVM_NOTCHARDEV The physical volume name given does not represent a
raw/character device.
LVM_INV_DEVENT The device entry for the physical volume specified by the

Pvname parameter is invalid and cannot be checked to
determine if it is raw.

Base Operating System Reference

lvm_querylv

If the query is done from the varied on volume group’s current volume group descriptor area,
then one of the following negative return codes may be returned.

LVM_MAPFOPN The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

LVM_MAPFSHMAT An error occurred while trying to attach the mapped file.
LVM_DALVOPN The volume group reserved logical volume could not be
opened.

If a physical volume name has been passed, requesting that the query come from a specific
physical volume, then one of the following negative return codes may be returned.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_LVMRECERR The LVM record, which contains information about the
volume group descriptor area, could not be read.

LVM_PVDAREAD An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

LVM_NOTVGMEM The physical volume specified is not a member of a volume
group.

LVM_NOPVVGDA There are no volume group descriptor areas on the physical

volume specified.

LVM_VGDA_BB A bad block was found in the volume group descriptor area
located on the physical volume that was specified for the
query; therefore, a query cannot be done from the specified
physical volume.

LVM_BADBBDIR The bad bock directory could not be read or written.

Implementation Specifics
This subroutine is part of AiX Base Operating System (BOS) Runtime.

Related Information
The Ilvm_varyonvg subroutine, lvm_createlv subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-371

lvm_querypv

lvm_querypv Subroutine

Purpose
Queries a physical volume and returns all pertinent information.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int Ivm_querypv (Vg_id, Pv_id, Querypv,
Pvname)
struct unique_id *Vg_id,;
struct unique_id *Pv_id,
struct querypv **Querypv;
char *Pvname;
Description
The Ivm_querypv subroutine returns information on the physical volume specified by the
Pv_id parameter.
The querypv structure, defined in the lvm.h header file, contains the following members:
struct querypv {
long ppsize;
long pv_state;
long pp_count;
long alloc_ppcount;
struct pp_map *pp_map;
long pvnum_vgdas;
}
struct pp_map {
long pp_state;
struct 1lv_id 1lv_id;
long 1lp_num;
struct unique_id fst_alt_vol;
long fst_alt_part;
struct unique_id snd_alt_vol;
long snd_alt_part;
}
The Pvname parameter enables the user to query from a volume group descriptor area on a
specific physical volume instead of from the Logical Volume Manager’s most recent,
in-memory copy of the descriptor area. If the query is done this way, the volume group does
not have to be on-line; however, the data returned may reflect a back level descriptor area
instead of the most recent one. The Pvname parameter should specity either the full path
name of the physical volume that contains the descriptor area to query or a single file name
that must reside in the /dev directory (.e.g., rhdisk1). This field must be a null terminated
string of from 1 to LVM_NAMESIZ bytes, including the null byte, and represent a
raw/character device. If a raw/character device is not specified for the pvname field, the
Logical Volume Manager will add an ’r’ to the file name in order to have a raw device name.
If there is no raw device entry for this name, the Logical Volume Manager will return the
1-372 Base Operating System Reference

ivm_querypv

LVM_NOTCHARDEYV error code. If a Pvname is specified, the vg_id will be returned by the
Logical Volume Manager through the Vg_id parameter passed in by the user. If the user
wishes to query from the Logical Volume Manager’s in—-memory copy, the Pvname
parameter should be set to null. When using this method of query, the volume group must be
varied on, or an error will be returned. NOTE As long as the Pvname is not NULL, the
Logical Volume Manager will attempt a query from a physical volume and not from its
in-memory copy of data.

In addition to the Pvname parameter, the caller passes the Vg_id parameter, indicating the
volume group that contains the physical volume to be queried, the unique id of the physical
volume to be queried, the Pv_id parameter, and the address of a pointer of the type
Querypv. The Logical Volume Manager will allocate enough space for the querypv structure
and return the address to this structure in the Querypv pointer passed in.

The pv_state field will contain the current state of the physical volume. The ppsize field
specifies the size of the physical partitions, which is the same for all partitions within a
volume group. The size in bytes of a physical partition is 2 to the power of ppsize. The
pp_count field will contain the total number of physical partitions on the physical volume.
The alloc_ppcount field will contain the number of allocated physical partitions on the
physical volume. The pvnum_vgdas field contains the number of volume group descriptor
areas (0, 1, or 2) that are on the specified physical voiume. The pp_map field is a pointer to
an array that has entries for each physical partition of the physical volume. Each entry in
this array will contain the pp_state that specifies the state of the physical partition
(LVM_PPFREE, LVM_PPALLOC, or LVM_PPSTALE) and the Iv_id, the ID of the logical
volume that it is a member of. Also in the struct pp_map array are the physical volume IDs
(fst_alt_vol and snd_alt_vol) and the physical partition numbers (fst_alt_part and
snd_alt_part) for the first and second alternate copies of the physical partition, and the
logical partition number (Ip_num) that the physical partition corresponds to. The fst_alt_vol
and fst_alt_part fields will contain zeroes if the logical partition has only one physical copy.
The snd_alt_vol and snd_alt_part fields will contain zeroes if the logical partition has only
one or two physical copies.

Parameters
Vg_id Pointer to a unique_id structure that specifies the volume group of which
the physical volume to query is a member.
Pv_id Pointer to a unique_id structure that specifies the physical volume to query.
Querypv Address of a pointer to a querypv structure.
Pvname Name of physical volume from which to use the volume group descriptor

area for the query. This can also be NULL.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the lvm_querypv subroutine fails, then it returns one of the following negative return
codes.

LVM_INV_DEVENT The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

Base Operating System Runtime 1-373

lvm_querypv

LVM_ALLOCERR

LVM_OFFLINE

LVM_INVALID_PARAM

The routine cannot allocate enough space for a complete
buffer.

The volume group specified is off-line and should be
on-line.

An invalid parameter was passed into the routine.

If the query is done from the varied—on volume group’s current volume group descriptor
area, then one of the following negative return codes may be returned.

LVM_MAPFOPN

LVM_MAPFSHMAT
LVM_DALVOPN

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

An error occurred while trying to attach the mapped file.

The volume group reserved logical volume could not be
opened.

If a physical volume name has been passed, requesting that the query come from a specific
physical volume, then one of the following negative return codes may be returned.

LVM_PVOPNERR
LVM_LVMRECERR

LVM_PVDAREAD

LVM_NOTVGMEM
LVM_NOPVVGDA

LVM_NOTCHARDEV
LVM_VGDA_BB

LVM_BADBBDIR

implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-374

The lvm_varyonvg subroutine.

The physical volume device could not be opened.

The LVM record, which contains information about the
volume group descriptor area, could not be read.

An error occurred while trying to read the voiume group
descriptor area from the specified physical volume.

The physical volume is not a member of a volume group.

There are no volume group descriptor areas on this
physical volume.

A device is not a raw/character device.

A bad block was found in the volume group descriptor area
located on the physical volume that was specified for the
query; therefore, a query cannot be done from the specified
physical volume.

The bad bock directory could not be read or written.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Reference

lvm_queryvg

lvm_queryvg Subroutine

Purpose
Queries a volume group and returns pertinent information.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int lvm_queryvg (Vg_id, Queryvg, Pvname)
struct unique_id *Vg_id;,
struct queryvg **Queryvg;
char *Pvname;
Description

The lvm_queryvg subroutine returns information on the volume group specified by the
Vg_id parameter.

The queryvg structure, found in the lvm.h header file, contains the following members:

struct queryvg {
long maxlvs;
long ppsize;
long freespace;
long num_1lvs;
long num_pvs;
long total_vgdas;
struct lv_array *lvs;
struct pv_array *pvs;
}
struct pv_array {
struct unique_id pv_id;
long pvnum vgdas;
char state;
char res{3];
}
struct lv_array ({
struct 1lv_id lv_id;
char lvname[LVM_NAMESIZ];
char state;
char res[3];

}

The Pvname parameter enables the user to query from a descriptor area on a specific
physical volume instead of from the Logical Volume Manager’'s most recent, in-memory
copy of the descriptor area. If the query is done this way, the volume group does not have to
be on-line; however, the data returned may reflect a back level descriptor area instead of
the most recent one. The Pvname parameter should specify either the full path name of the
physical volume that contains the descriptor area to query or a single file name that must
reside in the /dev directory (e.g., rhdisk1). The name must represent a raw device. Ifa
raw/character device is not specified for the Pvname parameter, the Logical Volume
Manager will add an ’r’ to the file name in order to have a raw device name. |f there is no
raw device entry for this name, the Logical Volume Manager will return the

Base Operating System Runtime 1-375

lvm_queryvg

LVM_NOTCHARDEY error code. This field must be a null terminated string of from 1 to
LVM_NAMESIZ bytes, including the null byte.lf a pvname is specified, the Logical Volume
Manager will return the vg_id to the user through the Vg_id pointer passed in. If the user
wishes to query from the Logical Volume Manager’s in-memory copy, the Pvname
parameter should be set to null. When using this method of query, the volume group must be
varied on, or an error will be returned.

Note: As long as the pvname is not NULL, the Logical Volume Manager will attempt a
query from a physical volume and not its in-memory copy of data.

In addition to the Pvname parameter, the caller passes the unigue ID of the volume group to
be queried (Vg_id), and the address of a pointer to a queryvg structure. The logical volume
manager will allocate enough space for the structure and return the address of the
completed structure in the Queryvg parameter passed in by the user.

The maxlvs field is the maximum number of logical volumes allowed in the volume group.
The ppsize field specifies the size of all physical partitions in the volume group. The size in
bytes of each physical partitions is 2 to the power of the ppsize field. The freespace field
contains the number of free physical partitions in this volume group. The number of logical
volumes and the number of physical volumes will be returned in the num_lvs and num_pvs
fields, respectively. The total_vgdas field specifies the total number of volume group
descriptor areas for the entire volume group. The lvs field is a pointer to an array of unique
ids, names. and states of the logical volumes in the volume group. The pvs field is a pointer
to an array of unique ids, states, and the number of volume group descriptor areas for each
of the physical volumes in the volume group.

Parameters
Vg_id Pointer to a unique_id structure that specifies the volume group to be
queried.
Queryvg Address of a pointer to the queryvg structure.
Pvname Specifies the name of the physical volume that contains the descriptor area

to query and must be the name of a raw device.

Return Value

Upon successful completion, a value of 0 is returned.

Error Codes

1-376

If the Ivm_queryvg subroutine fails, then it returns one of the following negative return
codes.

LVM_ALLOCERR The subroutine cannot allocate enough space for a
complete buffer.

LVM_OFFLINE The volume group is off-line and should be on-line.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

If the query is done from the varied—on volume group’s current volume group descriptor
area, then one of the following negative return codes may be returned.

LVM_MAPFOPN The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

Base Operating System Reference

LVM_MAPFSHMAT
LVM_DALVOPN

LVM_INV_DEVENT

LVM_NOTCHARDEV

lvm_queryvg

An error occurred while trying to attach the mapped file.

The volume group reserved logical volume could not be
opened.

The device entry for the physical volume specified by the

Pvname parameter is invalid and cannot be checked to
determine if it is raw.

A device is not a raw/character device.

If a physical volume name has been passed, requesting that the query come from a specific
physical volume, then one of the following negative return codes may be returned.

LVM_PVOPNERR
LVM_LVMRECERR

LVM_PVDAREAD

LVM_NOTVGMEM
LVM_NOPVVGDA

LVM_VGDA_BB

LVM_BADBBDIR

Implementation Specifics

The physical volume device could not be opened.

The LVM record, which contains information about the
volume group descriptor area, could not be read.

An error occurred while trying to read the volume group
descriptor area from the specified physical volume.

The physical volume is not a member of a volume group.

There are no volume group descriptor areas on this
physical volume.

A bad block was found in the volume group descriptor area
located on the physical volume that was specified for the
query; therefore, a query cannot be done from this physical
volume.

The bad bock directory could not be read or written.

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-377

lvm_queryvgs

lvm_queryvgs Subroutine

Purpose
Queries the volume groups of the system and returns information for the volume groups that
are on-line.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int lvm_queryvgs (Queryvgs, Kmid)
struct queryvgs **Queryvgs;
mid_t Kmid,
Description
The lvm_queryvgs subroutine returns the volume group ids and major numbers for all
volume groups in the system that are on-line.
The caller passes the address of a pointer to a queryvgs structure and the logical volume
manager allocates enough space for the structure and returns the address of the structure in
the pointer passed in by the user. The caller also passes in a Kmid parameter, which
identifies the entry point of the logical device driver module.
struct queryvgs {
long num_vgs;
struct ({
long major_ num
struct unique_id vg_id;
} vgs [LVM_MAXVGS];
}
The num_vgs field contains the number of on-line volume groups on the system. The vgs
is an array of the volume group IDs and major numbers of all on-line volume groups in the
system.
Parameters
Queryvgs Address of a pointer that is of the type struct queryvgs.
Kmid Identifies the address of the entry point of the logical volume device driver

module.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the lvm_queryvgs subroutine fails, then it returns one of the following values.

LVM_ALLOCERR The routine cannot allocate enough space for the complete
buffer.

1-378 Base Operating System Reference

lvm_queryvgs

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INVCONFIG An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-379

lvm_reducelv

lvm_reducelv Subroutine

Purpose
Reduces the size of a logical voiume by a specified number of partitions.
Library
Logical Volume Manager Library (libivm.a)
Syntax
#include <lvm.h>
int lvm_reducelv (Lv_id, Reducelv)
struct Ilv_id *Lv_id;
struct ext_redlv *Reducelv;
Description
The lvm_reducelv subroutine reduces a logical volume specified by the Lv_id parameter.
This logical volume should be closed and should be a member of a volume group that is
on-line. On partial reductions of a logical volume, all remaining logical partitions must have
one good (non—stale) copy allocated to them. The Logical Volume Manager will not reduce
the last good (non-stale) copy of a logical partition on partial reductions to a logical volume.
If a reduction is refused for this reason, the resync routines can be used to make ail stale
copies of a logical partition good so that a reduction can then be performed.
The ext_redlv structure, pointed to by the Reducelv parameter, is found in the lvm.h header
file and is defined as follows:
stfuct ext_redlv{
long size;
struct pp *parts;
}
struct pp {
struct unique_id pv_id;
long lp num;
long pp_num;
}
Following is an example of a correct parts array and size value.
size = 4 (The size field is set to 4 because there
are
4 struct pp entries.)
parts:
entryl pv_id = 4321
lp_num = 2
pp_num = 1
entry2 pv_id = 1234
lp num = 2
pp_num = 3
entry3 pv_id = 5432
lp_ num = 3
pp_num = 5
entry4 pv_id = 4242
lp_ num = 2
pp_num = 12
1-380 Base Operating System Reference

lvm_reducelv

The Reducelv parameter is a pointer to an ext_redlv structure. Within this structure is the
parts field, which is a pointer to an array of struct pps. Also in the ext_redlv structure is the
size field which is the number of entries in the array that is pointed to by the parts field. The
parts array should have one entry for each physical partition being deallocated, and the size
field should reflect a total of these entries. Also, the size field should never be zero; if it is,
an error will be returned. Within the pp structure is a Ip_num field which is the number ot
the logical partition that you are reducing. This number should be in the range of 1 to the
value of the maxsize field. The maxsize field is returned from the lvm_gquerylv subroutine
and is the maximum number of logical partitions allowed for a logical volume. Also in the pp
structure, are the pp_num and pv_id fields. The pp_num is the number of the physical
partition to be deallocated as a copy of the logical partition. This number should be in the
range of 1 to the value of the pp_count field. The pp_count field is returned from the
lvm_querypv subroutine and is the maximum number of physical partitions a'lowed on a
physical volume. Also, the physical partition specified by the pp_num should have a state
of LVM_PPALLOC (i.e., should be allocated). The pv_id field should contain the valid ID of
a physical volume that is a member of the same volume group as the logical volume being

reduced.
Parameters
Reducelv Pointer to the ext_redlv structure.
Lv_id Specifies the logical volume to be reduced.

Return Value
Upon successful completion, a value of 0 is returned.

Error Codes
If the lvm_reducelv subroutine fails, then it returns one of the following values.

LVM_OFFLINE . The volume group is off-line and should be on-line.

LVM_INVALID_PARAM One of the parameters passed in is invalid, or one of the
fields in the structures pointed to by one of the parameters
is invalid.

LVM_LVOPEN The logical volume to be reduced was open and should be
closed.

LVM_PPNUM_INVAL A physical partition number passed in is invalid.

LVM_LPNUM_INVAL A logical partition number passed in is invalid.

LVM_MAPFOPN The mabped file, which contains a copy of the volume

group descriptor area used for making changes to the
volume group, could not be opened.

LVM_MAPFSHMAT An error occurred while trying to attach the mapped file.
LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_INVALID_MIN_NUM An invalid minor number was received.

LVM_ALLOCERR A memory allocation error occurred.

Base Operating System Runtime 1-381

lvm_reducelv

LVM_DALVOPN
LVM_INVLPRED
LVM_INV_DEVENT

LVM_NOTCHARDEV
LVM_INVCONFIG

LVM_WRTDAERR

Implementation Specifics

The volume group reserved logical volume could not be
opened.

The reduction can not be completed because a logical
partition would exist with only stale copies remaining.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The device specified is not a character/raw device.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
module id is invalid, if the major number given is already in
use, or if the volume group device could not be opened.

An error occurred while trying to write the volume group
descriptor area to the physical volume.

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The Ivm_extendlv subroutine, lvm_createlv subroutine, lvm_deletelv subroutine,
Ilvm_resynclp subroutine, lvm_resynclv subroutine, lvm_resyncpv subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-382 Base Operating System Reference

lvm_resynclp

lvm_resyncip Subroutine

Purpose
Synchronizes all physical partitions for a logical partition.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int lvm_resynclp (Lv_id, Lp_num)
struct Lv_id *Lv_id;
long Lp_num;
Description
The lvm_resynclp subroutine initiates resynchronization for all the existing physical partition
copies of the specified logical partition, if required.
The Lv_id parameter specifies the logical volume that contains the logical partition needing
resynchronization. The Lp_num parameter is the logical partition number within the logical
volume to be resynchronized. The volume group must be varied on, or an error is returned.
Parameters

Lv_ id Specifies the logical volume that contains the logical partition needing
resynchronization.

Lp num The logical partition number within the logical volume to be resynchronized.

Return Value
Upon successful completion the ivm_resynclp subroutine returns a value of 0.

Error Codes
If the lvm_resynclp subroutine fails, then it returns one of the following values.

LVM_NOTSYNCED The logical partition was not completely resynced.

LVM_OFFLINE The volume group is off-line and should be on-line.
-LVM_INVALID_PARAM One of the fields passed in did not have a valid value.

LVM_MAPFOPN The mapped file, which contains a copy of the volume

group descriptor area used for making changes to the
volume group, could not be opened.

LVM_MAPFSHMAT An error occurred while trying to attach the mapped file.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_DALVOPN The volume group reserved logical volume could not be
opened.

Base Operating System Runtime 1-383

lvm_resynclp

LVM_ALLOCERR A memory allocation error occurred.

LVM_NOTCHARDEV A device is not a raw/character device.
LVM_INV_DEVENT A device has a major number that does not correspond to

the volume group being worked in.
LVM_INVALID_MIN_NUM An invalid minor number was received.

LVM_WRTDAERR An error occurred while trying to write the volume group
descriptor area to the physical volume.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The lvm_resynclv subroutine, lvm_resyncpv subroutine, lvm_extendiv subroutine,
Ilvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-384 Base Operating System Reference

lvm_resynclv

Ivm_resynclv Subroutine

Purpose
Synchronizes all physical copies of all of the logical partitions for a logical volume.
Library
Logical Volume Manager Library (liblvm.a)
Syntax
#include <lvm.h>
int lvm_resynclv (Lv_id)
struct Lv_id *Lv_id;
Description
The lvm_resynciv subroutine synchronizes all physical copies of a logical partition for each
logical partition of the logical volume specified by the Lv_id parameter. The volume group
must be varied on or an error is returned.
Parameter

Lv_id Specifies the logical volume name.

Return Value
Upon successful completion, the lvm_resynclv subroutine returns a value of 0.

Error Codes
If the lvm_resynclv subroutine fails, then it returns one of the following values.

LVM_OFFLINE The volume group is off-line and should be on-line.
LVM_INVALID_PARAM One of the fields passed in did not have a valid value.
LVM_MAPFOPN The mapped file, which contains a copy of the volume

group descriptor area used for making changes to the
volume group, could not be opened.

LVM_MAPFSHMAT An error occurred while trying to attach the mapped file.

LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

LVM_DALVOPN The volume group reserved logical volume could not be
opened.

LVM_NOTSYNCED The logical volume could not be completely resynced.

LVM_ALLOCERR A memory allocation error occurred.

LVM_NOTCHARDEV A device is not a raw/character device.

LVM_INV_DEVENT A device has a major number that does not correspond to

the volume group being worked in.

Base Operating System Runtime 1-385

lvm_resynclv

LVM_INVALID_MIN_NUM An invalid minor number was received.

LVM_WRTDAERR An error occurred while trying to write the volume group
descriptor area to the physical volume.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The lvm_resyncpv subroutine, lvm_resynclp subroutine, lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-386 Base Operating System Reference

Ilvm_resyncpv

lvm_resyncpv Subroutine

Purpose

Synchronizes all physical partitions on a physical volume with the related copies of the
logical partition to which they correspond.

Library

Logical Volume Manager Library (liblvm.a)

Syntax
#include <lvm.h>
int lvm_resyncpv (Vg_id, Pv_id)

struct unique_id * Vg _id;
struct unique_id *Pv_id;

Description
The lvm_resyncpv subroutine synchronizes all copies of the corresponding logical partition
for each physical partition on the physical volume specified by the Pv_id parameter. The
Vg_id parameter specifies the volume group that contains the physical volume to be

resynced. The volume group must be varied on, or the LVM_OFFLINE error code will be
returned.

Note: The resync of the physical volume is done by resyncing entire logical partitions that
any stale physical partitions belong to on the physical volume. Because a complete
logical partition is resynced, other physical volumes besides the one specified may
be partially or completely resynced.

Parameters

Vg_id Specifies the volume group that contains the physical volume to be
resynced.

Pv_id Specifies the physical volume.

Return Value
Upon successful completion the lvm_resyncpv subroutine returns a value of 0.

Error Codes
If the lvm_resyncpv subroutine fails, then it returns one of the following values.

LVM_OFFLINE The volume group is off-line and should be on-line.
LVM_INVALID_PARAM One of the fields passed in did not have a valid value.
LVM_MAPFOPN The mapped file, which contains a copy of the volume

group descriptor area used for making changes to the
volume group, could not be opened.

LVM_MAPFSHMAT An error occurred while trying to attach the mapped file.
LVM_MAPFRDWR An error occurred while trying to read or write the mapped
file.

Base Operating System Runtime 1-387

lvm_resyncpv

LVM_DALVOPN The volume group reserved logical volume could not be
opened.

LVM_NOTSYNCED The physical volume could not be completely resynced.

LVM_ALLOCERR A memory allocation error occurred.

LVM_NOTCHARDEV A device is not a raw/character device.

LVM_INV_DEVENT A device has a major number that does not correspond to

the volume group being worked in.

LVM_WRTDAERR An error occurred while trying to write the volume group
descriptor area to the physical volume.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The Ivm_resynclv subroutine, lvm_resynclp subroutine, lvm_varyonvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

1-388 Base Operating System Reference

lvm_varyoffvg

Ivm_varyoffvg Subroutine

Purpose
Varies a volume group off-line.
Library
Logical Volume Manager Library (libivm.a)
Syntax
#include <lvm.h>
int lvm_varyoffvg (Varyoffvg)
struct varyoffvg * Varyoffvg,
Description
The lvm_varyoffvg subroutine varies a specified volume group off-line. All logical volumes
in the volume group to be varied off—line must be closed.
The varyoffvg structure pointed to by the Varyoffvg parameter is found in the lvm.h header
file and defined as follows:
struct varyoffvg
{
struct unique_id vg_id;
long lvs_only;
} * Varyoffvg;
The lvm_varyoffvg subroutine varies the volume group specified by the vg_id field ofi-line.
The Ivs_only flag is used to indicate whether the volume group is to be varied—off entirely or
whether system management commands, which act on the volume group, will still be
permitted. If the Ivs_only flag is TRUE, then all logical volumes in the volume group will be
varied—off, but the volume group will still be available for system management commands
which act on the volume group. If the lvs_only flag is FALSE, then the entire volume group
is varied—off, and system management commands cannot be performed on the volume
group. The normal value for this flag is FALSE.
Parameter

Varyoffvg Pointer to the varyoffvg structure.

Return Value

Upon successful completion, a value of 0 is returned.

Error Codes

If the lvm_varyoffvg subroutine fails, then it returns one of the following negative values.

LVM_LVOPEN An open logical volume was encountered when it should be
closed.
LVM_MAPFOPN The mapped file, which contains a copy of the volume

group descriptor area used for making changes to the
volume group, could not be opened.

Base Operating System Runtime 1-389

lvm_varyoffvg

LVM_MAPFSHMAT
LVM_MAPFRDWR
LVM_ALLOCERR
LVM_INVALID_PARAM
LVM_INVCONFIG

LVM_OFFLINE

LVM_INV_DEVENT

LVM_NOTCHARDEV

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

1-390

The Ivm_varyonvg subroutine.

An error occurred while trying to attach the mapped file.
An error occurred while trying to write to the mapped file.
A memory allocation error occurred.

An invalid parameter was passed into the routine.

An error occurred while attempting to configure this volume
group into the kernel. This error will normally result if the
major number in the mapped file is invalid.

The volume group specified is off-line. It must be varied—on
to perform this operation.

The device entry for the physical volume is invalid and
cannot be checked to determine if it is raw.

The device specified is not a character/raw device.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Reference

lvm_varyonvg

Ilvm_varyonvg Subroutine

Purpose

Varies a volume group on-line.
Library

Logical Volume Manager Library (liblvm.a)
Syntax

#include <lvm.h>

int lvm_varyonvg (Varyonvg)

struct varyonvg *Varyonvg;

Description

The lvm_varyonvg subroutine varies the specified volume group on—line. The
lvm_varyonvg subroutine contacts the physical volumes in the volume group and performs
recovery of the volume group descriptor area if necessary.

The varyonvg structure pointed to by the Varyonvg parameter is found in the lvm.h header
file and defined as follows:

struct varyonvg
{
mid_t kmid;
char *vgname;
long vg_major;
struct unique_id vg_id;
long noopen_lvs;
long reserved;
long auto_resync;
long misspv_von;
long missname_von;
short int override;
struct {
long num_pvs;
struct {
struct unique_id pv_id;
char *pvname;)
} pv [LVM MAXPVS];
} vvg_in;
struct {
long num_pvs;
struct {
struct unique_id pv_id;
char *pvname;
long pv_status;
} pv [2 * LVM MAXPVS];
} vvg_out;

}s

The kmid field is the module id that identifies the entry point of the logical volume device
driver module.

Base Operating System Runtime 1-391

lvm_varyonvg

1-392

The vgname field is the character special file name, which is either the full path name or a
file name that resides in the /dev directory (e.g. rvg13) of the volume group device. This
device is actually a logical volume with a minor number reserved for use by the Logical
Volume Manager.

The vg_maijor is the major number of the volume group to be varied on.

If the noopen_lvs flag is FALSE, the lvm_varyonvg subroutine builds and sends data
structures describing all logical volumes in the volume group to the logical volume device
driver. This enables those logical volumes to be opened and accessed. If the noopen_lvs
flag is TRUE, then queries to the volume group and any other system management
functions can be performed, but opens to the logical volumes in the volume group will not be
allowed.

The auto_resync is a flag that should contain either TRUE or FALSE. If auto_resync is
FALSE then resynchronization of physical and logical volumes containing stale partitions will
not be performed and should be initiated by the caller at some other time. The LVM
subroutines lvm_resyncpv and lvm_resynclv are provided to perform resynchronization of
physical and logical volumes, respectively. The recommended value for the auto_resync
flag is TRUE.

The structure vvg_in contains input from the caller to the lvm_varyonvg subroutine which
describes the physical volumes in the volume group. The num_pvs field is the number of
entries in the pv array of structures. Each entry in the pv array contains the ID (pv_id) and
name (pvname) of a physical volume in the volume group. Unless the volume group is
already varied on, this array should contain an entry for each physical volume in the volume
group.

The structure vvg_out contains output from the lvm_varyonvg subroutine to the user that
describes the status of the physical volumes in the caller’s input list and any additional
physical volumes which are found to be in the volume group but were not included in the
input list. The num_pvs is the number of entries in the pv array of structures. Each entry in
the pv array contains the ID (pv_id), the name (pvhame), and the status (pv_status) of a
physical volume contained in the input list or the volume group.

The pvname field is the character special file name, which is either the full path name or a
single file name that resides in the /dev directory (e.g., rhdisk0) of the physical volume
being installed in the new volume group.

The pv_status field for each physical volume in the vvg_out structure will contain one of
the following values if either the volume group is varied on successfully or if the
LVM_MISSPVNAME or LVM_MISSINGPV error is returned:

LVM_PVACTIVE This physical volume is currently an-active member of the volume
group.
LVM_PVMISSING This physical volume is currently missing from the volume group.

LVM_PVREMOVED This physical volume has been temporarily removed from the
volume group by user request. '

LVM_INVPVID This physical volume is not a member of the specified volume
group.
LVM_NONAME This physical vo|umé is a member of the volume group but its

name was not passed.in the input list.

Base Operating System Reference

lvm_varyonvg

LVM_DUPPVID A physical volume with the same pv_id as this physical volume
has already appeared earlier in the input list.

LVM_LVMRECNMTCH This physical volume needs to be deleted from the volume group
because it has invalid or non—-matching data in its LVM record.
This may mean that the physical volume has been installed into
another volume group.

LVM_NAMIDNMTCH The pv_id for this physical volume was passed in the input list

but it does not match the pv_id of the specified physical volume
device name.

For physical volumes in the input list which are found to be members of the specified volume
group, the pv_status will contain the physical volume state of either LVM_PVACTIVE,
LVM_PVMISSING, or LVM_PVREMOVED. If a physical volume which has the same pv_id
has appeared previously in the input list, the pv_status field will contain LVM_DUPPVID.
For physical volumes in the list which are not members of the volume group, the pv_status
will be LVM_INVPVID.

In some cases, a physical volume that is a member of the volume group might have a
pv_status of LVM_LVMRECNMTCH. This means that the LVM record on the physical
volume has either invalid or non—-matching data and that the physical volume cannot be
brought on line. If this happens, it is most likely because the physical volume has been
installed into another volume group without first deleting it from this one. The user should
now delete this physical volume from this volume group since it can no longer be accessed
as a member of this volume group.

For physical volumes that are members of the volume group but were not in the input fist,
the pv_status will be LVM_NONAME or LVM_NAMIDNMTCH. In this case the pv_id field
will contain the ID of the physical volume, and the pvname field will contain a null pointer.
An unsuccessful (negative) return code of LVM_MISSPVNAME will be returned to the calier
unless the subroutine was called with a value of TRUE for the missname_von flag.

The pv_status field for each physical volume in the vvg_out structure will contain one of
the following values if either the LVM_NOQUORUM or LVM_NOVGDAS error is returned.

LVM_PVNOTFND Either the physical volume device could not be opened or
necessary information in the IPL record or the LVM record could
not be read.

LVM_PVNOTINVG The LVM record for this physical volume indicates that it is not a

member of the specified volume group.

LVM_PVINVG The LVM record for this physical volume indicates that itis a
member of the specified volume group.

It is recommended that the missname_von flag contain a value of FALSE for the first call to
the lvm_varyonvg subroutine since a value of TRUE will mean that any physical volume for
which a name was not passed in the input list will be given a state of LVM_PVMISSING, and
users of the volume group cannot have access to that physical volume until a subsequent
call is made to the Ivm_varyonvg subroutine for that volume group.

If the misspv_von flag is TRUE, the volume group will be varied on (provided a quorum
exists) even if some of the physical volumes in the volume group have a state of
LVM_PVMISSING or LVM_PVREMOVED. if the flag is FALSE, the volume group will be
varied on only if all physical volumes in the volume group are in the active state
(LVM_PVACTIVE). The value recommended for this flag is TRUE. For any physical volume

Base Operating System Runtime 1-393

Ivm_varyonvg

Parameter

that has a state of LVM_PVMISSING or LVM_PVREMOVED when the volume group is
varied on, access to that physical volume will not be available through the Logical Volume
Manager. If the state of a physical volume is changed from LVM_PVREMOVED to
LVM_PVACTIVE through a call to the Ivm_changepv subroutine, then that physical volume
will again be available to the Logical Volume Manager, provided that it is not missing at the
time. ~

If the override flag is TRUE, an attempt will be made to vary on the volume group even if
access to a quorum (or majority) of volume group descriptor area copies cannot be obtained.
Provided that there is at least one valid copy of the descriptor area, the vary on of the
volume group will proceed with the latest available copy of the volume group descriptor area.

The recommended value for the override flag is FALSE. Note that if the user chooses to
override the LVM_NOQUORUM error and artificially force a quorum, the Logical Volume
Manger will not guarantee the data integrity of the data contained in the chosen copy of the
volume group descriptor area.

If a physical volume’s state is LVM_PVMISSING when the volume group is varied on, then
access to that physical volume can be made available to the LVM only by again calling the
lvm_varyonvg subroutine for that volume group. When the lvm_varyonvg subroutine is
called for a volume group that is already varied on, a check will be made for any physical
volumes in the volume group with a state of LVM_PVMISSING, and an attempt will be made
to open those physical volumes. Any previously missing physical volumes that are
successfully opened will be defined to the logical volume device driver, and access to those
physical volumes will again be available through the Logical Volume Manager.

When the lvm_varyonvg subroutine is called for an already varied—on volume group for the
purpose of changing previously missing physical volumes back to the active state, the caller
does not need to pass an entire list of physical volumes in the vvg_in structure but only
needs to pass information for those missing physical volumes that he wishes to attempt to
return to the LVM_PVACTIVE state.

Varyonvg Pointer to the varyonvg structure.

Return Values

Upon successful completion, one or more of the following positive return codes will be
returned:

LVM_SUCCESS The volume group was successfully varied on.

LVM_CHKVVGOUT The volume group was varied on successfully, but there is
information in the vvg_out structure which should be
checked. :

Error Codes

1-394

If the lvm_varyonvg subroutine does not complete successfully, one of the following
negative error codes will be returned:

LVM_NOQUORUM The volume group could not be varied on because access
to a quorum count, or majority, of all volume group
descriptor areas could not be obtained.

LVM_MISSPVNAME The volume group was not varied on because the volume
group contains a physical volume ID for which no name was

Base Operating System Reference

LVM_MISSINGPV

LVM_INVCONFIG

LVM_NOTCHARDEV
LVM_INV_DEVENT

LVM_INVALID_PARAM
LVM_MAPFRDWR
LVM_ALLOCERR

LVM_MAPFOPN

LVM_NOVGDAS

Implementation Specifics

Ivm_varyonvg

passed. The vvg_out structure will contain the pv_id, a
null pointer for the pvname, and a pv_status of
LVM_NONAME for any physical volume in the volume
group for which a name was not passed in the vvg_in
structure. This error will be returned only if the
missname_von flag has a value of FALSE; otherwise, the
volume group will be varied on if a quorum is obtained.

The volume group was not varied on because one of the

physical volumes in the volume group has a state of either
LVM_PVMISSING or LVM_PVREMOVED. This error will be
returned only if the misspv_von flag has a value of FALSE;
otherwise, the volume group will be varied on if a quorum is
obtained.

An error occurred while attempting to configure this volume

group into the kernel. This error will normally result if the
module id is invalid, or if the major number given is already
in use.

The device specified is not a character/raw device.

The device entry for a specified device is invalid and cannot
be checked to determine if it is raw.

A field in the varyongvg structure is invalid or the pointer
structure is invalid.

An error occurred while trying to read or write the mapped
file.

A memory allocation error has occurred.

The mapped file, which contains a copy of the volume
group descriptor area used for making changes to the
volume group, could not be opened.

The volume group could not be varied on because access
to a valid copy of the volume group descriptor area could
not be obtained.

This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The lvm_varyoffvg subroutine.

Logical Volume Programming Overview in General Programming Concepts.

Base Operating System Runtime 1-395

madd.,...

madd, msub, muit, mdiv, pow, gcd, invert, rpow, msqrt, mcmp,
move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv,
or itom Subroutine

Purpose
Multiple precision integer arithmetic.

Library
Berkeley Compatibility Library (libbsd.a)

Syntax
#include <mp.h>
#include <stdio.h>

typedef struct mint {int Length; short * Value} MINT,

madd(a,b,c)
msub(a,b,c)
mult(a,b,c)
mdiv(a,b,q,")
pow(a,b,m,c)
ged(a,b,c)
invert(a,b,c)
rpow(a,n,c)
msqrt(a,b,n)
mcmp(a,b)
move(a,b)
min(a)
omin(a)
fmin(a,f)
m_in(a,n,f
mout(a)
omout(a)
fmout(a,/)
m_out(a,n,/
MINT *a, *b, *c, *m, *q, *r;
FILE *f;

int n;
sdiv(a,n,q,”)
MINT *a, *q;
short n;
short *r;

MINT *itom(n)

Description
These subroutines perform arithmetic on integers of arbitrary Length. The integers are
stored using the defined type MINT. Pointers to a MINT can be initialized using the itom

subroutine which sets the initial Value to n. After that, space is managed automatically by the
subroutines.

The madd subroutine, msub subroutine, and mult subroutine assign to ¢ the sum,
difference, and product, respectively, of a and b.

1-396 Base Operating System Reference

madd,...

The mdiv subroutine assigns to g and rthe quotient and remainder obtained from dividing a
by b.

The sdiv subroutine is like the mdiv subroutine except that the divisor is a short integer n
and the remainder is placed in a short whose address is given as r.

The msqrt subroutine produces the integer square root of ain b and places the remainder in
r.

The rpow subroutine calculates in ¢ the value of a raised to the (regular integral) power n,
while the pow subroutine calculates this with a full multiple precision‘exponent b and the
result is reduced modulo m.

The ged subroutine returns the greatest common denominator of a and bin ¢, and the
invert subroutine computes ¢ such that a*c mod b=1, for a and b relatively prime.

The memp subroutine returns a negative, zero, or positive integer value when a is less than,
equal to, or greater than b, respectively.

The move subroutine copies a to b. The min subroutine and mout subroutine do decimal
input and output while the omin subroutine and omout subroutine do octal input and output.
More generally, the fmin subroutine and fmout subroutine do decimal input and output
using file f, and the m_in subroutine and m_out subroutine do inputs and outputs with
arbitrary radix n. On input, records should have the form of strings of digits terminated by a
newline; output records have a similar form.

Parameters

Length Specifies the length of an integer.

Value Specifies the initial value to be used in the routine.

a Specifies the first operand of the multiple precision routines.

b Specifies the second operand of the multiple precision routines.

c Contains the integer result.

f A pointer of the type FILE that points to input and output files used with
input/output routines.

m Indicates modulo.

n Provides a value used to specify radix with m_in and m_out, power with
rpow, and divisor with sdiv.

q Contains the quotient obtained from mdiv.

r Contains the remainder obtained from mdiv, sdiv, and msqrt.

Error Codes

Error messages and core images are displayed as a result of illegal operations and running
out of memory.

Base Operating System Runtime 1-397

madd,...

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Programs that use the multiple-precision arithmetic functions must link with libbsd.a.
Bases for input and output should be less than or equal to 10.
pow is also the name of a standard math library routine.

Files

/usr/include/mp.h include file
/lib/libbsd.a object code library

Related Information
The be command, dc command.

1-398 Base Operating System Reference

malloc,...

malloc, free, realloc, calloc, mallopt, mallinfo, or alloca
Subroutine

Purpose
Provides a memory allocator.

Libraries
Standard C Library (libc.a), Berkeley Compatibility Library (libbsd.a)

Syntax
#include <malloc.h>

void *malloc (Size)
size_t int Size;

char *alloca (Size)
int Size;

void free (Pointen
void *Pointer;

void *realloc (Pointer, Size)
char *Pointer;
size_t Size;

int mallopt (Command, Value)

int Command
int Value;

struct mallinfo mallinfo()

void *calloc (NumberOfElements, ElementSize)
size_t NumberOfElements;
size_t ElementSize;

Description

The malloc subroutine and free subroutines provide a simple general-purpose memory

allocation package.

The malloc subroutine returns a pointer to a block of memory of at least the number of bytes
specified by the Size parameter. The block is aligned so that it can be used for any type of
data. Undefined results occur if the space assigned by the malloc subroutine is overrun.

The malloc subroutine searches memory for the first contiguous area of free space of at
least the number of bytes specified by the Size parameter. The search is performed in a
circular pattern from the last block of memory allocated or freed. During the search, the
subroutine joins adjacent free blocks of memory. If a large enough contiguous area of free
space is not found, this subroutine issues an sbrk subroutine to get more memory from the

system.

The free subroutine frees the block of memory pointed to by the Pointer parameter for
further allocation. The block pointed to by the Pointer parameter must have been previously
allocated by the malloc subroutine. The free subroutine does not change the contents of
this block of memory. Undefined results occur if the Pointer parameter is not a valid pointer.

Base Operating System Runtime

1-399

malloc,...

1-400

The realloc subroutine changes the size of the block of memory pointed to by the Pointer
parameter to the number of bytes specified by the Size parameter and returns a pointer to
the block. The contents of the block remain unchanged up to the lesser of the old and new
sizes. If a large enough block of memory is not available, the realloc subroutine calls the
malloc subroutine to enlarge the memory area and moves the data to the new space.

The realloc subroutine also works if the Pointer parameter points to a block freed since the
last call to the malloc subroutine, realloc subroutine, or calloc subroutine.

The calloc subroutine allocates space for an array with the number of elements specified by
the NumberOfElements parameter. Each element is of the size specified by the ElementSize
parameter. The space is initialized to zeros.

The alloca subroutine allocates the number of bytes of space specified by the Size
parameter in the stack frame of the caller. This space is automatically freed when the
subroutine that called the alloca subroutine returns to its caller.

The mallopt subroutine and mallinfo subroutine allow tuning the allocation algorithm at
execution time. These subroutines are implemented to provide compatibility with System V.
Nothing done with mallopt affects how memory is allocated by the system. malloc performs
efficient memory allocation without needing mallopt.

The mallopt subroutine initiates a mechanism that can be used to allocate small blocks of
memory quickly. Using this scheme, a large group (called a holding-block) of these small
blocks is allocated at one time. Then, each time a program requests a small amount of
memory, a pointer to one of the pre-allocated small blocks is returned. Different
holding-blocks are created for different sizes of small blocks and are created when needed.
This subroutine allows the programmer to set the following three values to maximize efficient
small block allocation for a particular application. The three values are:

grain The grain of small block sizes. This value determines what range of small
block sizes is considered the same size, which influences the number of
separate holding-blocks atlocated. For example, if the grain value is 16
bytes, all small blocks of 16 bytes or less belong to one holding-block and
blocks from 17 to 32 bytes belong to another holding-block. Thus, if the
grain value is too small, space may be wasted because many holding-
~ blocks are created.

number The number of small blocks in a holding-block. If holding-blocks have many
more small blocks than the program is using, space is wasted. If
holding-blocks are too small or have too few small blocks in each,
performance gain is lost.

size Below this value, a request to the malloc subroutine is filled using the
special small block algorithm. Initially this value, which is called MAXFAST,

is zero, which means that the small block option is not normally in use by
malloc.

The values for the Command parameter to the mallopt subroutine are:

M_GRAIN Sets the GRAIN value to the Value parameter (must be greater than 0). The
sizes of all blocks smaller than MAXFAST are considered to be rounded up,
to the nearest multiple of GRAIN. The default value for the GRAIN

- parameter is the smallest number of bytes that allows alignment of any data
type. When the GRAIN parameter is set, the Value parameter is rounded up
to a multiple of the default

Base Operating System Reference

malloc,...

M_KEEP Preserves data-in a free-block until the next call to the malloc, realloc, or
calloc subroutine. This option is provided only for compatibility with the
older version of the malloc subroutine and is not recommended.

M_MXFAST Sets the MAXFAST value to the value specified by the Value parameter.
The algorithm allocates all blocks below the size of MAXFAST in large

groups and then doles them out very quickly. The default value tor
MAXFAST is 0.

M_NLBLKS Sets the NUMBLKS value to the Value parameter. The aforementioned
large groups each contain NUMBLKS blocks. The value for NUMBLKS must
be greater than 1. The default value is 100.

The mallopt subroutine can be called repeatedly, but parameters cannot be changed after
the first small block is allocated from a holding-block. If the mallopt subroutine is called
again after the first small block is allocated, it returns an error.

The mallinfo subroutine can be used during program development to determine the best
settings of these parameters for a particular application. It must be called only after some
storage is allocated. Information is returned describing space usage. Refer to the malloc.h
file for details of the mallinfo structure.

Parameters
Size Specifies a number of bytes of memory.
Pointer Points to the block of memory that was returned by malloc or
calloc.
Command Specifies a mallopt subroutine command.
Value Specifies the value to which M_MXFAST, M_NLBLKS,
' M_GRAIN, or M_KEEP is to be set.
NumberOfElements Specifies the number of elements in the array.
ElementSize Specifies the size of each element in the array.

Return Values
Each of the allocation subroutines returns a pointer to space suitably aligned for storage of
any type of object. Cast the pointer to the pointer-to-element type before using it.

The malloc subroutine, realloc subroutine, and calloc subroutine return a NULL pointer if
there is no available memory or if the memory arena has been corrupted by storing outside
the bounds of a block. When this happens, the block pointed to by the Pointer parameter
may be destroyed.

Implementation Specifics \
These subroutines are part of AIX Base Operating System (BOS) Runtime.

The valloc subroutine found in many BSD systems is supported as a compatibility interface
in the Berkeley Compatibility library (libbsd.a). The function of the valloc subroutine is
superseded by the malloc subroutine, which automatically page aligns large (greater than 1
page) requests. The valloc syntax follows:

char *valloc (Size)
unsigned int Size;

Base Operating System Runtime 1-401

malloc,...

The alloca subroutine obtains storage by increasing the size of the current stack frame. The
speed of allocating storage this way and the automatic release of the storage on return of
the function, makes the alloca subroutine preferable to the malloc subroutine in many
applications.

Some assistance is typically required from compilers to remove dependence on a fixed-size
stack frame and to pass extra information to the alloca subroutine. The details vary
depending on hardware architecture, stack format, and linkage conventions, but the AIX
System/370 alloca subroutine support described in the following text is representative.

Space allocated by the alloca subroutine resides in its caller’s stack frame on a double-
word boundary following the outgoing argument list.

The C compiler, through a switchable option, recognizes use of the function name alloca.
Unlike special-casing of other libc functions like strlen and memcpy, which may be on by
default, alloca recognition is off by default because support can affect code quality in the
function using alloca.

When it is recognized that a function contains a call to the alloca subroutine:

e Code generated for the function addresses auto-variables, the incoming argument list,
and the incoming register save area by using a base register that is relative to the end of
the stack frame. The stack pointer, r13, is relative to the start of the stack frame and must
be used only to address the outgoing argument list and other values located below any
storage allocated by the alloca subroutine.

e The external name of alloca is left as “alloca” instead of being changed to “_alloca.”
This ensures that only functions compiled with alloca support can call it. The
end-of-argument-list offset (rounded up) is passed as a hidden argument to alloca in the
four bytes following the BALR instruction. (This nonstandard call format is also used by
the stack-overflow checker and by the profiling mechanism.)

The alloca subroutine itself is written in assembler and does the following:
¢ Rounds space request up to a multiple of 8 bytes.

¢ If the request size exceeds red-zone capability, the alloca subroutine checks explicitly for
stack overflow and returns NIL if there is insufficient space.

o Decreases the r13 stack pointer by the request size. Copies the stack back-pointer table
into 4(r13).

+ Determines the result value: r13 plus the hidden argument.

e Returns.

Related Information

1-402

The _end, _etext, _edata identifiers.

Base Operating System Reference

matherr

matherr Subroutine

Purpose

Math error handling function.

Library

System V Math Library (libmsaa.a)

Syntax

#include <math.h>

int matherr (x)

struct exception “x;

Description

The matherr subroutine is called by math library routines when errors are detected.

You can use matherr or define your own procedure for handling errors by creating a function
named matherr in your program. Such a user-designed function must follow the same

syntax as matherr. When an error occurs, a pointer to the exception structure will be passed
to the user-supplied matherr function.This structure, which is defined in the math.h header

file, includes:

int Type;
char *Name;

double Argumentl, Argument2, ReturnValue;

Parameters
Type

Name
Argument1
Argument2

ReturnValue

Specifies an integer describing the type of error that has occurred from the
fiollowing list defined by the math.h header file:

DOMAIN — argument domain error

SING - argument singularity

OVERFLOW - overflow range error

UNDERFLOW — underflow range error

TLOSS - total loss of significance

PLOSS - partial loss of significance.

Points to a string containing the name of the routine that caused the error.
Points to the first argument with which the routine was invoked.

Points to the second argument with which the routine was invoked.

Specifies the default value that is returned by the routine unless the user’s
matherr function sets it to a different value.

Base Operating System Runtime 1-403

matherr

Return Values

If the user’s matherr function returns a non-zero value, no error message is printed, and
errno will not be set.

Error Codes

If the function matherr is not supplied by the user, the default error-handling procedures,
described with the math library routines involved, will be invoked upon error. In every case,
errno is set to EDOM or ERANGE and the program continues.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information |
The bessel: j0, j1, jn, y0, y1, yn subroutines, exp, expm1, log, log10, log1p, pow

subroutines, Igamma, gamma subroutines, hypot, cabs subroutines, sinh, cosh, tanh
subroutines, sin, cos, tan, asin, acos, atan, atan2 subroutines.

1-404 Base Operating System Reference

mblen

mblen Subroutine

Purpose
Determines the length in bytes of a multibyte character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int mblen(Mbstring, Number)
char *Mbstring;
size_t Number,;

Description
The mblen subroutine determines the length in bytes of a multibyte character, similar to the
NLchrlen subroutine.

Parameters
Mbstring Pointer to a multibyte character string.
Number Maximum number of bytes to cosider.
Return Values
The mblen subroutine returns 0 if the Mbstring parameter points to a null. It returns -1 ifa

character cannot be formed from the Number parameter (or less than Number) bytes
pointed to by the Mbstring parameter. 1f Mbstring is a null pointer, a 0 is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The NLchar subroutines

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-405

mbscat,...

mbscat, mbscmp, or mbscpy Subroutine

Purpose
Performs operations on multibyte character strings

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbscat(MbString1, MbString2)
char *MbString1, *MbString2;

int mbsemp(MbString1, MbString2)
char *MbString1, *MbString2;

char *mbscpy(MbString1, MbString2)
char *MbString1, *MbString2);

Description

The mbscat, mbscmp and mbscpy subroutines operate on null-terminated multibyte
character strings.

The mbscat subroutine appends characters (code points) from the MbString2 parameter to
the end of the MbString? parameter, appends null to the result, and returns MbString1.

The mbscmp subroutine compares multibyte characters in the MbString1 parameter to the
MbString2 parameter and returns an integer greater than zero if MbString1 is greater than

MbString2; zero if the strings are equivalent; and an integer less than zero it MbString? is
less than MbString2.

The mbscpy subroutine copies multibyte characters from the MbString2 parameter to the
MbString1 parameter and returns MbString1. The copy operation terminates with the
copying of a null character.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information

The mbsncat, mbsncmp, mbsncpy subroutines, wescat, weschr, wescmp, wescpy,
wcescesphn subroutines.

National Language Support Overview in General Programming Concepts.

1-406 Base Operating System Reference

mbschr

mbschr Subroutine

Purpose
Locates a character (code point) in a multibyte character string.
Library
Standard C Library (libc.a)
Syntax
#include<mbstr.h>
char *mbschr(MbString, MbCharacter)
char *MbString;
int MbCharacter;
Description
The mbschr subroutine locates the first occurrence of MbCharacter in the string pointed to
by the MbString parameter. The MbCharacter parameter is the code point of a multibyte
character represented as an integer. The terminating null character is considered to be part
of the string.
Parameters
MbString Pointer to a multibyte character string.
MbCharacter A code point of a multibyte character represented as an integer.

Return Values
The mbschr subroutine returns a pointer to MbCharacter within the multibyte character
string or a NULL pointer if MbCharacter does not occur in the string.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The wesrchr subroutine, mbsrchr subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-407

mbslen

mbslen Subroutine

Purpose
Determines the number of characters (code points) in a multibyte character string.
Library
Standard C Library (libc.a)
Syntax
#include <stdlib.h>
size_t mbslen(MultibyteString)
char *mbs;
Description
The mbslen subroutine determines the number of characters (code points) in a multibyte
character string.
Parameter
MultibyteString Pointer to a multibyte character string.

Return Values ~
The mbslen subroutine returns the number of multibyte characters in a multibyte character
string. It returns 0 if the MultibyteString parameter points to a null or a character cannot be
formed from the string pointed to by the MultibyteString parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The mblen subroutine.

National Language Support Overview in General Programming Conceplts.

1-408 Base Operating System Reference

mbsncat,...

mbsncat, mbsncmp, or mbsncpy Subroutine

Purpose
Performs operations on a specified number of null-terminated multibyte characters.

Library
Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbsncat(MbString1, MbString2, Number)
char *MbString1, *MbString2;
size_t Number,

int mbsnemp(MbString1, MbString2, Number)
char *MbString1, *MbString2;
size_t Number;

char *mbsncpy(MbString1, MbString2, Number)
char *MbString1, MbString2;
size_t Number,

Description

The mbsncat, mbsncmp, and mbsncpy subroutines operate on null-terminated multibyte
character strings.

The mbsncat subroutine appends up to the value of the Number parameter of characters
(code points) from the MbString2 parameter to the end of the MbString1 parameter, appends
null to the result, and returns the MbString1 parameter.

The mbsnemp subroutine compares up to the value of the Number parameter of multibyte
characters in the MbString1 parameter to the MbString2 parameter and returns an integer

greater than zero if MbString1 is greater than MbString2; zero if the strings are equivalent;

and an integer less than zero if MbString1 is less than MbString2.

The mbsncpy subroutine copies up to the value of the N parameter of multibyte characters
from the MbString2 parameter to the MbString1 parameter and returns MbString1. If
MbString2 is shorter than Number characters (code points), MbString1 is padded out to
Number characters with null characters.

Implementation Specifics
These subroutines are part of AIX Base Operating System (BOS) Runtime.

Related Information
The mbscat, mbscmp, mbscpy subroutines, wesncat, wesnemp, wesncpy subroutines.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-409

mbspbrk

mbspbrk Subroutine
Purpose
Locates the first occurrence of multibyte characters (code points) in a string.
Library
Standard C Library (libc.a)
Syntax
#include <mbstr.h>
char *mbspbrk(MbString1, MbString2)
char *MbString1, *MbString2;
Description
The mbspbrk subroutine locates the first occurrence in the string pointed to by the
MbString1 parameter of any character from the string pointed to by the MbString2
parameter.
Parameters

MbString1 Pointer to a string being searched.

MbString2 Pointer to a set of characters string.

Return Values
The mbspbrk subroutine returns a pointer to the character, or NULL if no character from the
string pointed to by the MbString2 parameter occurs in the string pointed to by the MbString1
parameter.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The wespbrk subroutine, weswces subroutine.

National Language Support Overview in General Programming Concepts.

1-410 Base Operating System Reference

mbsrchr

mbsrchr Subroutine

Purpose
Locates a character (code point) in a multibyte character string.
Library
Standard C Library (libc.a)
Syntax
#include <mbstr.h>
char *mbsrchr(MbString, MbCharacter)
char *MbString;
int MbCharacter,
Description
The mbschr subroutine locates the last occurrence of the MbCharacter parameter in the
string pointed to by the MbString parameter. The MbCharacter parameter is the code point
of a multibyte character represented as an integer. The terminating null character is
considered to be part of the string.
Parameters
MbString Pointer to a multibyte character string.
MbCharacter A code point of a multibyte character represented as an integer.

Return Values
The mbsrchr subroutine returns a pointer to the MbCharacter parameter within the multibyte
character string or a NULL pointer if MbCharacter does not occur in the string.

Implementation Specifics
This subroutine is part of AlX Base Operating System (BOS) Runtime.

Related Information
The mbschr subroutine, wesrchr subroutine.

National Language Support Overview in General Programming Concepts.

Base Operating System Runtime 1-411

mbstoint

mbstoint Subroutine

Purpose
Extracts a multibyte (single—byte or double—byte) character from a multibyte character string.
Library
Standard C Library (libc.a)
Syntax
#include <mbstr.h>
int mbstoint(MultibyteString)
char *MultibyteString;
Description
The mbstoint subroutine extracts the multibyte character pointed to by the MultibyteString
parameter from the multibyte character string.
Parameter

MultibyteString Pointer to a multibyte character string.

Return Values
The mbstoint subroutine returns the code point of the multibyte character pointed to by the
MultibyteString parameter. If an invalid multibyte character is encountered a 0 is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The mbsrchr subroutine, mbtowc subroutine, mbstowcs subroutine.

National Language Support Overview in General Programming Concepts.

1-412 Base Operating System Reference

mbstowcs

mbstowcs Subroutine

Purpose |
Converts a multibyte (single—byte or double—byte) character string to a wide—-character
string.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

size_t mbstowcs(WcString, String, Number)

wchar_t *WcString;
char *String;
size_t Number;

Description
The mbstowcs subroutine converts the sequence of multibyte characters pointed to by The
String parameter to wide—characters and places the result in the buffer pointed to by the
WeString parameter. The multibyte characters are converted up to the null character or until
the value of the Number parameter or (Number—1) in wide—characters have been
processed.

Parameters
WcString Pointer to the area where result of the conversion is stored.

String Pointer to a multibyte character string.

Number Number of wide—characters to be converted.

Return Values
The mbstowcs subroutine returns the number of wide—characters converted, not including a
null terminator, if any. If an invalid multibyte character is encountered a —1 is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information
The mbtowc subroutine, westombs subroutine, wetomb subroutine.

National Language Support Overview in General Programming Conceplts.

Base Operating System Runtime 1-413

mbtowc

mbtowc Subroutine

Purpose
Converts a multibyte character to a wide—character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int mbtowc (WideCharacter, String, Number)
wchar_t *WideCharacter,

char *String;

size_t Number;

Description

The mbtowc subroutine converts a multibyte character to a wide—character and returns the
number of bytes of the multibyte character.

The mbtowe subroutine determines the number of bytes that comprise the multibyte
character pointed to by the String parameter, then converts that character to the
corresponding wide—character and places it in the location pointed to by the WideCharacter
paramter. If WideCharacteris NULL, the multibyte character is not converted. The number
of bytes comprising the multibyte character is returned.

The mbtowe subroutine is similar to the NCdecode subroutine except NCdecode does not
accept a length argument.

Parameters
WideCharacter Pointer to location where wide—character is to be placed.

String Pointer to multibyte character.

Number Number of bytes of the multibyte character.

Return Values
The mbtowec subroutine returns a 0 if the String parameter is a NULL pointer or if String
points to a null character (the null is converted to a wide—character null). It returns a -1 if
the bytes pointed to by String do not form a valid multibyte character within the value of the

Number parameter or fewer bytes. Otherwise, the number of bytes comprising the multibyte
character is returned.

Implementation Specifics
This subroutine is part of AIX Base Operating System (BOS) Runtime.

Related Information

The NLchar subroutines, mbstowcs subroutine, wetomb subroutine, westombs
subroutine.

National Language Support Overview in General Programming Concepts.

1-414 Base Operating System Reference

memccpy,...

memccpy, memchr, memcmp, memcpy, memset or memmov

Subroutine |
Purpose
Performs memory operations.
Library
Standard C Library (libc.a)
Syntax

#include <memory.h>

void *memccpy (Target, Source, C, N)
void *Target, *Source;

int C;

size_t N;

void *memchr (S, C, N)
void *S;

int C;

size_t N;

int mememp (7arget, Source, N)
void *Target, *Source;
size_t N;

void *memcpy (Target, Source, N)
void *Target, *Source;
size_t N;

void *memset (S, C, N)
void *S;

int C;

size_t N;

void *memmove (Target, Source, N)
void *Source, * Target,
size_t N,

The memory subroutines operate on memory areas. A memory area is an array of
characters bounded by a count, and not ended by a null character. The memory subroutines
do not check for the overflow of any receiving memory area. All of the memory subroutines
are declared in the memory.h header file.

The memccpy subroutine copies characters from the memory area specified by the Source
parameter into the memory area specified by the Target parameter. The memccpy
subroutine stops after the first character specified by the C parameter is copied, or after N
characters are been.copied, whichever comes first.

The memcmp subroutine lexicographically compares the first N characters in memory area
Targetto the first N characters in memory area Source. The memcmp subroutine uses
native character comparison, which may be signed on some machines.

The memcpy subroutine copies N characters from memory area Source to area Target and
returns Target.

Base Operating System Runtime 1-415

memccpy;...

The memset subroutine sets the first N characters in memory area S to the value of
character C and returns S.

Like the memecpy subroutine, the memmove subroutine copies N characters from memory
area Source to area Target. However, if the Source and Target areas overlap, the move is
perfomed non-destructively, proceeding from right to left.

Parameters
Target Points to the start of a memory area.
Source Points to the start of a memory area.
C Specifies a character for which to search.
N Specifies the number of characters to search.
) Points to the start of a memory area.

Return Values

The memccpy subroutine returns a pointer to the character after Cis copied into Target, or
a NULL pointer if Cis not found in the first N.characters of Source.

The memchr subroutine returns a pointer to the first occurrence of character Cin the first N
characters of memory area S, or a NULL pointer if C does not occur.

The memcmp subroutine returns the following values:

Less than 0 If the Target parameter is less than the Source parameter
Equal to 0 If Target is equal to Source
Greater than 0 If Targetis greater than Source.

Implementation Specifics

These subroutines are part of AIX Base Operating System (BOS) Runtime.

The memccepy subroutine is not in the ANSI C library.

Related Information

1-416

The swab subroutine, string subroutine.

Base Operating System Reference

mkdir

mkdir Subroutine

Purpose
Creates a directory.
Library
Standard C Library (libc.a)
Syntax
#include <sys/mode.h>
int mkdir (Path, Mode)
char *Path;
int Mode;
Description
The mkdir subroutine creates a new directory.
The new directory has the following:
e Owner ID set to the process effective user ID.
+ Group ID set to the group ID of its parent directory.
» Permission and attribute bits set according to the value of the Mode parameter, with the
following modifications:
— All bits set in the process file mode creation mask are cleared.
— The SetFileUserlD, SetFileGrouplD, and Sticky (S_ISVTX) attributes are cleared.
Parameters

Path The name of the new directory. |f Network File System is installed on your

system, this path can cross into another node. In this case, the new
directory is created at that node.

To execute the mkdir subroutine, a process must have search permission to
get to the parent directory of the Path parameter and write permission in the
parent directory of the Path parameter.

Mode The mask for the read, write, and execute (RWX) flags for owner, group,
and others. The Mode parameter specifies the directory permissions and
attributes. This parameter is constructed by logically ORing values
described in the sys/mode.h header file.

Return Values

Upon successful completion, the mkdir subroutine returns a value of 0. Otherwise, a value
of —1 is returned, and the global variable errno is set to indicate the error.

Base Operating System Runtime ~~ 1-417

mkdir

Error Codes
The mkdir subroutine fails and the directory i